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Preface 

Molecular dynamics (MD) simulations have played increasing roles in our 
understanding of physical and chemical processes of complex systems and in
advancing science and technology. Over the past forty years, MD simulations have 
made great progress from developing sophisticated theories for treating complex 
systems to broadening applications to a wide range of scientific and technological
fields. The chapters of Molecular Dynamics are a reflection of the most recent progress 
in the field of MD simulations. 

This is the first book of Molecular Dynamics which focuses on the theoretical 
developments and the applications in nanotechnology and energy. This book is
divided into five parts. The first part deals with the development of molecular
dynamics theory. Komeiji et al. summarize, in Chapter 1, the advances made in 
fragment molecular orbital based molecular dynamics, which is the ab inito molecular 
dynamics simulations, to treat large molecular systems with solvent molecules being 
treated explicitly. In Chapter 2, Wang & Hudson present a new meta-molecular 
dynamics method, i.e. beyond the conventional MD simulations, that allows
monitoring the change of electronic state of the system during the dynamical process. 
Fukuda & Queyroy discuss in Chapter 3 two numerical techniques, i.e. phase space
time-invariant function and numerical integrator, to enhance the MD performance. In 
Chapter 4, Rosas-García & Sáenz-Tavera provide a summary of MD methods to 
perform a configurational search of clusters of less than 100 atoms. In Chapter 5, 
Termentzidis & Merabia describe MD simulations in the calculation of thermal
transport properties of nanomaterils.  

The second part consists of three chapters that describe MD theory beyond a classical 
treatment. In Chapter 6, Wong describes a practical ab inito path-integral method,
denoted as method, for macromolecules. Chapters 7 and 8, by Rampho and
Togashi & Katō, respectively, deal with the asymmetric molecular dynamics 
simulations of nuclear structures.  

Part III is on nanoparticles. In Chapter 9, Liu et al. provide a detailed description of 
MD simulations to study liquid metal clusters consisting of up to 106 atoms. In 
Chapter 10, Çiftci & Özgen provide a MD study of Au clusters on the melting, glass
formation, and crystallization processes. Lim provides a MD study of gelation of
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magnetic nanoparticles in Chapter 11. Chapter 12 by Gutiérrez et al. provides a MD 
simulation of a nanoparticle colliding inelastically with a solid surface.  

The fourth part is about diffusion of gas molecules in solid, an important research area 
related to gas storage, gas separation, catalysis, and biomedical applications. In 
Chapter 13, Keskin describes MD simulations of the gas diffusion in molecular organic 
framework (MOF). In Chapter 14, Pastukhov et al. provide the MD results on the H2 
dynamics on various solid surfaces. In Chapter 15, Tokumasu provides a summary of 
MD results on H2 dissociation on Pt(111). In Chapter 16, Mu & Li discuss MD 
simulation of the adsorption and diffusion of polydimethylsiloxane (PDMS) on a 
Si(111) surface.  

In the last part of the book, ionic conductivity in solid oxides is discussed. Solid oxides 
are especially important materials in the field of energy, including the development of 
fuel cells and batteries. In Chapter 17, Lau & Dunlap describe the dynamics of O2- in 
Y2O3 and in Y2O3 doped crystal and amorphous ZrYO. Khoo & Dissado provide a 
study of the mechanism of Na+ conductivity in hollandites in Chapter 18. The last 
chapter of this part deals with the ion solvation in methanol/water mixture. Hawlicka 
and Rybicki summarize the Mg2+, Ca2+, and Cl- solvation in the liquid mixture and I 
hope the readers can find connections between the liquid and solid ionic 
conductivities.   

With strenuous and continuing efforts, a greater impact of MD simulations will be 
made on understanding various processes and on advancing many scientific and 
technological areas in the foreseeable future.  

In closing I would like to thank all the authors taking primary responsibility to ensure 
the accuracy of the contents covered in their respective chapters. I also want to thank 
my publishing process manager Ms. Daria Nahtigal for her diligent work and for 
keeping the book publishing progress in check.  

Lichang Wang 
 Department of Chemistry and Biochemistry 

       Southern Illinois University 
       Carbondale 

 USA 
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Recent Advances in Fragment  
Molecular Orbital-Based Molecular  

Dynamics (FMO-MD) Simulations 
Yuto Komeiji1, Yuji Mochizuki2, Tatsuya Nakano3 and Hirotoshi Mori4 

1National Institute of Advanced Industrial Science and Technology (AIST) 
2Rikkyo University 

3National Institute of Health Sciences 
 4Ochanomizu University 

Japan 

1. Introduction   
Fragment molecular orbital (FMO)-based molecular dynamics simulation (MD), hereafter 
referred to as "FMO-MD," is an ab initio MD method (Komeiji et al., 2003) based on FMO, a 
highly parallelizable ab initio molecular orbital (MO) method (Kitaura et al., 1999).  Like any 
ab initio MD method, FMO-MD can simulate molecular phenomena involving electronic 
structure changes such as polarization, electron transfer, and reaction.  In addition, FMO's 
high parallelizability enables FMO-MD to handle large molecular systems.  To date, FMO-
MD has been successfully applied to ion-solvent interaction and chemical reactions of 
organic molecules. In the near future, FMO-MD will be used to handle the dynamics of 
proteins and nucleic acids. 

In this chapter, various aspects of FMO-MD are reviewed, including methods, applications, 
and future prospects. We have previously published two reviews of the method (Komeiji et 
al., 2009b; chapter 6 of Fedorov & Kitaura, 2009), but this chapter includes the latest 
developments in FMO-MD and describes the most recent applications of this method.  

2. Methodology of FMO-MD 
FMO-MD is based on the Born-Oppenheimer approximation, in which the motion of the 
electrons and that of the nuclei are separated (Fig. 1). In FMO-MD, the electronic state is 
solved quantum mechanically by FMO using the instantaneous 3D coordinates of the nuclei 
(r) to obtain the energy (E) and force (F, minus the energy gradient) acting on each nucleus, 
which are then used to update r classical mechanically by MD.  In the following subsections, 
software systems for FMO-MD are described, and then the FMO and MD aspects of the 
FMO-MD methodology are explained separately. 

2.1 Software systems for FMO-MD 

FMO-MD can be implemented by using a combination of two independent programs, one 
for FMO and the other for MD.  Most of the simulations presented in this article were  
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Fig. 1. Schematics of the FMO-MD method exemplified by an ion solvation with four water 
molecules. The atomic nuclei are represented by black circles (the large one for the ion, 
medium ones for Oxygens, and small ones for Hydrogens) and the electron cloud by a grey 
shadow. The electronic structure is calculated by FMO to give force (F) and energy (E), 
which are then used to update the 3D coordinates of nuclei (r) by MD, i.e., by solving the 
classical equation of motion. 

performed by the PEACH/ABINIT-MP software system composed of the PEACH  
MD program (Komeiji et al., 1997) and the ABINIT-MP 1 (F)MO program (Nakano et  
al., 2000). We have revised the system several times (Komeiji et al., 2004, 2009a), but  
here we describe the latest system, which has not yet been published. In the latest system, 
the PEACH program prepares the ABINIT-MP input file containing the list of fragments 
and 3D atomic coordinates, executes an intermediate shell script to run ABINIT- 
MP, receives the resultant FMO energy and force, and updates the coordinates by the 
velocity-Verlet integration algorithm. This procedure is repeated for a given number of 
time steps. 

The above implementation of FMO-MD, referred to as the PEACH/ABINIT-MP system, has 
both advantages and disadvantages. The most important advantage is the convenience for 
the software developers; both FMO and MD programmers can modify their programs 
independently from each other. Also, if one wants to add a new function of MD, one can 
first write and debug the MD program against an inexpensive classical force field simulation 
and then transfer the function to FMO-MD, a costly ab initio MD. Nonetheless, the 
PEACH/ABINIT-MP system has several practical disadvantages as well, mostly related to 
the use of the systemcall command to connect the two programs. For example, frequent 
invoking of ABINIT-MP from PEACH sometimes causes a system error that leads to an 
abrupt end of simulations. Furthermore, use of the systemcall command is prohibited in 
many supercomputing facilities. To overcome these disadvantages, we are currently 
                                                 
1 Our developers‘ version of ABINIT-MP is named ABINIT-MPX, but it is referred to as ABINIT-MP 
throughout this article. 
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implementing FMO-MD directly in the ABINIT-MP program. This working version of 
ABINIT-MP is scheduled to be completed within 2012. 

Though not faultless, the PEACH/ABINIT-MP system has produced most of the important 
FMO-MD simulations performed thus far, which will be presented in this article. Besides the 
PEACH/ABINIT-MP system, a few FMO-MD software systems have been reported in the 
literature, some using ABINIT-MP (Ishimoto et al., 2004, 2005; Fujita et al., 2009, 2011) and 
others GAMESS (Fedorov et al., 2004a; Nagata et al., 2010, 2011c; Fujiwara et al., 2010a). 
Several simulations with these systems are also presented. 

2.2 FMO 

FMO, the essential constituent of FMO-MD, is an approximate ab initio MO method 
(Kitaura et al., 1999). FMO scales to N1-2, is easy to parallelize, and retains chemical 
accuracy during these processes. A vast number of papers have been published on the 
FMO methodology, but here we review mainly those closely related to FMO-MD. To be 
more specific, those on the FMO energy gradient, Energy Minimization (EM, or geometry 
optimization), and MD are preferentially selected in the reference list. Thus, those readers 
interested in FMO itself are referred to Fedorov & Kitaura (2007b, 2009) for 
comprehensive reviews of FMO. Also, one can find an extensive review of fragment 
methods in Gordon et al. (2011), where FMO is re-evaluated in the context of its place in 
the history of the general fragment methods. 

2.2.1 Hartree-Fock (HF) 

We describe the formulation and algorithm for the HF level calculation with 2-body 
expansion (FMO2), the very fundamental of the FMO methodology (Kitaura et al., 1999). 
Below, subscripts I, J, K... denote fragments, while i, j, k,... denote atomic nuclei. 

First, the molecular system of interest is divided into Nf fragments. Second, the initial 
electron density, ρI(r), is estimated with a lower-level MO method, e.g., extended Hückel, for 
all the fragments. Third, self-consistent field (SCF) energy, EI, is calculated for each fragment 
monomer while considering the electrostatic environment. The SCF calculation is repeated 
until all ρI(r)’s are mutually converged. This procedure is called the self-consistent charge 
(SCC) loop. At the end of the SCC loop, monomer electron density ρI(r) and energy EI are 
obtained. Finally, an SCF calculation is performed once for each fragment pair to obtain 
dimer electron density ρIJ(r) and energy EIJ. Total electron density ρ(r) and energy E are 
calculated using the following formulae: 

      ( 2)IJ f I
I J I

N  


   r r r  (1) 

 ( 2)IJ f I
I J I

E E N E


    . (2) 

In calculation of the dimer terms, electrostatic interactions between distant pairs are 
approximiated by simple Coulombic interactions (dimer-ES approximation, Nakano et al., 
2002). This approximation is mandatory to reduce the computation cost from O(N4) to 
O(N2). 
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In calculation of the dimer terms, electrostatic interactions between distant pairs are 
approximiated by simple Coulombic interactions (dimer-ES approximation, Nakano et al., 
2002). This approximation is mandatory to reduce the computation cost from O(N4) to 
O(N2). 
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The total energy of the molecular system, U, is obtained by adding the electrostatic 
interaction energy between nuclei to E, namely, 

 ( 2) i j
IJ f I

ijI J I i j

Z Z
U E N E

r 
       (3) 

where rij denotes the distance between nuclei i and j and Zi and Zi their charges, 
respectively.  

Force (Fi) acting on atomic nucleus i can be obtained by differenciation of eq. (3) by ri as 
follows: 

 i iU F  (4) 

Analytical formulation of eq. (4) was originally derived for the HF level by Kitaura et al. 
(2001) and used in several EM calculations (for example, Fedorov et al., 2007a) and in the 
first FMO-MD simulation (Komeiji et al., 2003). Later on, the HF gradient was made fully 
analytic by Nagata et al. (2009, 2010, 2011a).  

2.2.2 FMOn 

The procedure described in the previous subsection is called FMO2, with “2” indicating that 
the energy is expanded up to 2-body terms of fragments.  It is possible to improve the 
precision of FMO by adding 3-body, 4-body, ..., and n-body terms (FMOn) at the expense of 
the computation cost of O(1). FMO3 has been implemented in both GAMESS and ABINIT-
MP. The improvement by FMO3 is especially apparent in FMO-MD, as exemplified by a 
simulation of proton transfer in water (Komeiji et al., 2010). Recently, FMO4 was 
implemented in ABINIT-MP (Nakano et al., 2012), which will presumably make it possible 
to regard even a metal ion as a fragment.  

2.2.3 Second-order Moeller-Plesset perturbation (MP2)  

The HF calculation neglects the electron correlation effect, which is necessary to incorporate 
the so-called dispersion term.  The electron correlation can be calculated fairly easily by the 
second-order Moeller-Plesset perturbation (MP2). Though the MP2/FMO energy formula 
was published as early as 2004 (Fedorov et al., 2004b; Mochizuki et al., 2004ab), the energy 
gradient formula for MP2/FMO was first published in 2011 by Mochizuki et al. (2011) and 
then by Nagata et al. (2011). In Mochizuki’s implementation of MP2 to ABINIT-MP, an 
integral-direct MP2 gradient program module with distributed parallelism was developed 
for both FMO2 and FMO3 levels, and a new option called "FMO(3)" was added, in which 
FMO3 is applied to HF but FMO2 is applied to MP2 to reduce computation time, based on 
the relatively short-range nature of the electron correlation compared to the range of the 
Coulomb or electrostatic interactions. 

The MP2/FMO gradient was soon applied to FMO-MD of a droplet of water molecules 
(Mochizuki et al., 2011). The water was simulated with the 6-31G* basis set with and without 
MP2, and the resultant trajectories were subjected to calculations of radial distribution 
functions (RDF). The RDF peak position of MP2/FMO-MD was closer to the experimental 
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value than that of HF/FMO-MD was. This result indicated the importance of the correlation 
energy incorporated by MP2 to describe a condensed phase. 

2.2.4 Configuration Interaction Singles (CIS) 

CIS is a useful tool to model low-lying excited states caused by transitions among near 
HOMO-LUMO levels in a semi-quantitative fashion (Foresman et al., 1992). A tendency of 
CIS to overestimate excitation energies is compensated for by CIS(D) in which the orbital 
relaxation energy for an excited state of interest as well as the differential correlation energy 
from the ground state correlated at the MP2 level (Head-Gordon et al., 1994). Both CIS and 
CIS(D) have been introduced to multilayer FMO (MFMO; Fedorov et al., 2005) in ABINIT-
MP (Mochizuki et al., 2005a, 2007a). Very recently, Mochizuki implemented the parallelized 
FMO3-CIS gradient calculation, based on the efficient formulations with Fock-like 
contractions (Foresman et al., 1992). The dynamics of excited states is now traceable as long 
as the CIS approximation is qualitatively correct enough. The influence of hydration on the 
excited state induced proton-transfer (ESIPT) has been attracting considerable interest, and 
we have started related simulations for several pet systems such as toropolone. 

2.2.5 Unrestricted Hartree-Fock (UHF) 

UHF is the simplest method for handling open-shell molecular systems, as long as care for 
the associated spin contamination is taken. The UHF gradient was implemented by 
preparing - and β-density matrices. Simulation of hydrated Cu(II) has been underway at 
the FMO3-UHF level, and the Jahn-Teller distortion of hexa-hydration has been reasonably 
reproduced (Kato et al., in preparation). The extension to a UMP2 gradient is planned as a 
future subject, where the computational cost may triple the MP2 gradient because of the 
three types of transformed integrals, (,), (,), and (,) (Aikens et al., 2003). 

2.2.6 Model Core Potential (MCP)  

Heavy metal ions play major roles in various biological systems and functional materials. 
Therefore, it is important to understand the fundamental chemical nature and dynamics of the 
metal ions under physiological or experimental conditions. Each heavy metal element has a 
large number of electrons to which relativistic effects must be taken into account, however. 
Hence, the heavy metal ions increase the computation cost of high-level electronic structure 
theories. A way to reduce the computation is the Model Core Potential (MCP; Sakai et al., 1987; 
Miyoshi et al., 2005; Osanai et al., 2008ab; Mori et al., 2009), where the proper nodal structures 
of valence shell orbitals can be maintained by the projection operator technique. In the MCP 
scheme, only valence electrons are considered, and core electrons are replaced with 1-electron 
relativistic pseudo-potentials to decrease computational costs. The MCP method has been 
combined with FMO and implemented in ABINIT-MP (Ishikawa et al., 2006), which has been 
used in the comparative MCP/FMO-MD simulations of hydrated cis-platin and trans-platin 
(see subsection 3.6). Very recently, the 4f-in-core type MCP set for trilvalent lanthanides has 
been developed and made available (Fujiwara et al., 2011). 

2.2.7 Periodic Boundary Condition (PBC) 

PBC was finally introduced to FMO-MD in the TINKER/ABINIT-MP system by Fujita et 
al. (2011). PBC is a standard protocol for both classical and ab intio MD simulations. 
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Nonetheless, partly due to the complexity of PBC in formulation but mostly due to its 
computation cost, FMO-MD simulations reported in the literature had been performed 
under a free boundary condition, usually with a cluster solvent model restrained by a 
harmonic spherical potential. This spherical boundary has the disadvantage of exposing 
the simulated molecular system to a vacuum condition and altering the electronic 
structure of the outer surface (Komeiji et al., 2007).  Hence, PBC is expected to avoid the 
disadvantage and to extend FMO-MD to simulations of bulk solvent and crystals. For PBC 
simulations to be practical, efficient approximations in evaluating the ESP matrix 
elements will need to be developed. A technique of multipole expansion may be worth 
considering. 

2.2.8 Miscellaneous 

Analytic gradient formulae have been derived for several FMO methods and implemented 
in the GAMESS software, including those for the adaptive frozen orbital bond detachment 
scheme (AFO; Fedorov et al., 2009), polarizable continuum model method (PCM; Li et al., 
2010), time-dependent density functional theory (TD-DFT; Chiba et al., 2009), MFMO with 
active, polarisable, and frozen sites (Fedorov et al., 2011), and effective fragment potential 
(EFP; Nagata et al., 2011c). Also, Ishikawa et al. (2010) implemented partial energy gradient 
(PEG) in their software PACIS. These gradients have been used for FMO-EM calculations of 
appropriate molecules. Among them, the EFP gradient has already been applied 
successfully to FMO-MD (Nagata et al., 2011c), and the others will be combined with FMO-
MD in the near future. 

2.3 MD 

The MD portion of FMO-MD resembles the conventional classical MD method, but several 
algorithms have been introduced to facilitate FMO-MD. 

2.3.1 Dynamic Fragmentation (DF) 

DF refers to the redefinition of fragments depending on the molecular configuration during 
FMO-MD. For example, in an H+-transfer reaction (AH+ + B → AHB+ → A + BH+), AH+ and 
B can be separate fragments before the reaction but should be unified in the transition state 
AHB+, and A and BH+ may be separated after the reaction. The DF algorithm handles this 
fragment rearrangement by observing the relative position and nuclear species of the 
constituent atoms at each time step of a simulation run. 

The need for DF arose for the first time in an FMO-MD simulation of solvated H2CO 
(Mochizuki et al. 2007b; see subsection 3.1). During the equilibration stage of the 
simulation, an artifactual H+-transport frequently brought about an abrupt halt of the 
simulation. To avoid the halt by the H+-transport, T. Ishikawa developed a program to 
unite the donor and acceptor of H+ by looking up the spatial formation of the water 
molecules. This program was executed at each time step of the simulation. This was the 
first implementation of the DF algorithm (see Komeiji et al., 2009a, for details). A similar 
ad hoc DF program was written for a simulation of hydrolysis methyl-diazonium (Sato et 
al., 2008; see subsection 3.2). Thus, at the original stage, different DF programs were 
needed for different molecular systems. 
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The DF algorithm was generalized later to handle arbitrary molecular systems (Komeiji et 
al., 2010). The algorithm requires each atom's van der Waals radius and instantaneous 3D 
coordinate, atomic composition and net charge of possible fragment species, and certain 
threshold parameters. 

Presently, PEACH has four fragmentation modes, as follows: 

Mode 0: Use the fragmentation data in the input file throughout the simulation. 
Mode 1: Merge covalently connected atoms, namely, those constituting a molecule, into a 
fragment.  
Mode 2: Fragments produced by Mode 1 are unified into a larger fragment if they are 
forming an H-bond. 
Mode 3: Fragments produced by Mode 2 are unified if they are an ion and coordinating 
solvent molecules. 

The modes are further explained as follows. Heavy atoms located significantly close to each 
other are united as a fragment, and each H atom is assigned to its closest heavy atom (Mode 
1). Then, two fragments sharing an H atom are unified (Mode 2). Finally, an ion and 
surrounding molecules are united (Mode 3). See Figure 2 for typical examples of DF. 
Usually, Mode 1 is enough, but Mode 2 or 3 sometimes become necessary. 

 
Fig. 2. Typical examples of fragment species generated by the generalized DF scheme. 
Expected fragmentation patterns are drawn for three solute molecules, A–C. Reproduced 
from Komeiji et al. (2010) with permission. 
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The DF algorithm gracefully handles molecular systems consisting of small solute and 
solvent molecules, but not those containing large molecules such as proteins and DNA, 
which should be fragmented at covalent bonds. Currently, Mode 0 is the only choice of 
fragmentation for these large molecules, in which the initial fragmentation should be used 
throughout and no fragment rearrangement is allowed (Nakano et al., 2000; Komeiji et al., 
2004). This limitation of the DF algorithm will be abolished soon by the introduction of a 
mixed algorithm of DF and a static fragmentation. 

2.3.2 Blue moon ensemble 

The blue moon ensemble method (Sprik & Ciccotti, 1998) is a way to calculate the free 
energy profile along a reaction coordinate (RC) while constraining RC to a specified value. 
The method was implemented in FMO-MD (Komeiji, 2007) and was successfully applied to 
drawing a free energy profile of the Menschutkin reaction (Komeiji et al., 2009a). 

2.3.3 Path Integral Molecular Dynamics (PIMD) 

The nuclei were handled by the classical mechanics in most of the FMO-MD simulations 
performed to date (Fig. 1), but PIMD (Marx & Parrinello, 1996) has been introduced into 
FMO-MD to incorporate the nucleic quantum effect (Fujita et al., 2009). FMO-PIMD 
consumes tens of times more computational resource than the classical FMO-MD does but is 
necessary for a better description of, for example, a proton transfer reaction. 

2.3.4 Miscellaneous 

Miscellaneous MD methods implemented in the PEACH/ABINIT-MP system include the 
Nosé-Hoover (chain) thermostat, RATTLE bond constraint, RC constraint, spherical solvent 
boundary, and so on (Komeiji et al., 2009a). Another research group has implemented the 
Hamiltonian Algorithm (HA) to FMO-MD to enhance conformation sampling of, for 
example, polypeptides (Ishimoto et al., 2004, 2005; Tamura et al., 2008). 

3. Applications of FMO-MD 
FMO-MD has been extensively applied to hydrated small molecules to simulate their 
solvation and chemical reactions. Some benchmark FMO-MD simulations were described 
briefly in the previous section. In this section, we review genuine applications of FMO-MD 
in detail. 

3.1 Excitation energy of hydrated formaldehyde 

FMO-MD and MFMO-CIS(D) were combined to evaluate the lowest n* excitation  
energy of hydrated formaldehyde (H2CO) molecules (Mochizuki et al., 2007b). The shift  
of excitation energy of a solute by the presence of a solvent, known as solvatochronism, 
has drawn attention of both experimentalists and theorists and has been studied  
by various computational methods, mostly by the quantum mechanics and molecular 
mechanics (QM/MM) method. Alternatively, Mochizuki et al. (2007b) tried a fully ab  
initio approach, in which FMO-MD sampled molecular configurations for excited 
calculations. 
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Fig. 3. An FMO-MD snapshot of the solvated H2CO (left). Histogram of excitation energies 
for CIS and CIS(D) calculations (right). Reproduced from Mochizuki et al. (2007b) with 
permission. 

In the configuration sampling, H2CO was solvated within a droplet of 128 water molecules 
(Fig. 3 left), and the molecular system was simulated by FMO-MD at the FMO2-HF/6-31G 
level to generate a 2.62-ps trajectory at 300 K. From the last 2-ps portion of the trajectory, 400 
conformations were chosen and were subjected to MFMO-CIS(D) calculations at the 
FMO2/HF/6-31G* level. In MFMO, the chromophore region contained H2CO and several 
water molecules and was the target of CIS(D) calculation. The calculated excitation energy 
was averaged over the 400 configurations (Fig. 3 right). A similar protocol was applied to an 
isolated H2CO molecule to calculate the excitation energy in a vacuum. The blue-shift by 
solvatochromism thus estimated was 0.14 eV, in agreement with preceding calculations. 

The solvatochromism of H2CO is frequently challenged by various computational methods, 
but this study distinguishes itself from preceding studies in that all the calculations were 
fully quantum, without classical force field parameters. 

3.2 Hydrolysis of a methyl diazonium ion 

The hydrolysis of the methyl-diazonium ion (CH3N2+) is an SN2-type substitution reaction 
that proceeds as follows: 

 H2O + CH3N2+ → [H2O...CH3+...N2]� → + H2OCH3 + N2. (5) 

Traditionally, this reaction is believed to occur in an enforced concerted mechanism in 
which a productive methyl cation after N2 leaving is too reactive to have a finite lifetime, 
and consequently the attack by H2O and the bond cleavage occur simultaneously. This 
traditional view was challenged by Sato et al. (2008) using FMO-MD. The FMO-MD 
simulations exhibited diverse paths, showing that the chemical reaction does not always 
proceed through the lowest energy paths. 

This reaction was simulated as follows. FMO-MD simulations were conducted at the 
FMO2/HF/6-31G level. CH3-N2+ was optimized in the gas phase and then hydrated in a 
sphere of 156 water molecules. The water was optimized at 300 K for 0.5 ps with the 
RATTLE bond constraint. The temperature of the molecular system was raised to 1000 K, 
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throughout and no fragment rearrangement is allowed (Nakano et al., 2000; Komeiji et al., 
2004). This limitation of the DF algorithm will be abolished soon by the introduction of a 
mixed algorithm of DF and a static fragmentation. 
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The blue moon ensemble method (Sprik & Ciccotti, 1998) is a way to calculate the free 
energy profile along a reaction coordinate (RC) while constraining RC to a specified value. 
The method was implemented in FMO-MD (Komeiji, 2007) and was successfully applied to 
drawing a free energy profile of the Menschutkin reaction (Komeiji et al., 2009a). 

2.3.3 Path Integral Molecular Dynamics (PIMD) 

The nuclei were handled by the classical mechanics in most of the FMO-MD simulations 
performed to date (Fig. 1), but PIMD (Marx & Parrinello, 1996) has been introduced into 
FMO-MD to incorporate the nucleic quantum effect (Fujita et al., 2009). FMO-PIMD 
consumes tens of times more computational resource than the classical FMO-MD does but is 
necessary for a better description of, for example, a proton transfer reaction. 

2.3.4 Miscellaneous 

Miscellaneous MD methods implemented in the PEACH/ABINIT-MP system include the 
Nosé-Hoover (chain) thermostat, RATTLE bond constraint, RC constraint, spherical solvent 
boundary, and so on (Komeiji et al., 2009a). Another research group has implemented the 
Hamiltonian Algorithm (HA) to FMO-MD to enhance conformation sampling of, for 
example, polypeptides (Ishimoto et al., 2004, 2005; Tamura et al., 2008). 

3. Applications of FMO-MD 
FMO-MD has been extensively applied to hydrated small molecules to simulate their 
solvation and chemical reactions. Some benchmark FMO-MD simulations were described 
briefly in the previous section. In this section, we review genuine applications of FMO-MD 
in detail. 

3.1 Excitation energy of hydrated formaldehyde 

FMO-MD and MFMO-CIS(D) were combined to evaluate the lowest n* excitation  
energy of hydrated formaldehyde (H2CO) molecules (Mochizuki et al., 2007b). The shift  
of excitation energy of a solute by the presence of a solvent, known as solvatochronism, 
has drawn attention of both experimentalists and theorists and has been studied  
by various computational methods, mostly by the quantum mechanics and molecular 
mechanics (QM/MM) method. Alternatively, Mochizuki et al. (2007b) tried a fully ab  
initio approach, in which FMO-MD sampled molecular configurations for excited 
calculations. 
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Fig. 3. An FMO-MD snapshot of the solvated H2CO (left). Histogram of excitation energies 
for CIS and CIS(D) calculations (right). Reproduced from Mochizuki et al. (2007b) with 
permission. 

In the configuration sampling, H2CO was solvated within a droplet of 128 water molecules 
(Fig. 3 left), and the molecular system was simulated by FMO-MD at the FMO2-HF/6-31G 
level to generate a 2.62-ps trajectory at 300 K. From the last 2-ps portion of the trajectory, 400 
conformations were chosen and were subjected to MFMO-CIS(D) calculations at the 
FMO2/HF/6-31G* level. In MFMO, the chromophore region contained H2CO and several 
water molecules and was the target of CIS(D) calculation. The calculated excitation energy 
was averaged over the 400 configurations (Fig. 3 right). A similar protocol was applied to an 
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and consequently the attack by H2O and the bond cleavage occur simultaneously. This 
traditional view was challenged by Sato et al. (2008) using FMO-MD. The FMO-MD 
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proceed through the lowest energy paths. 

This reaction was simulated as follows. FMO-MD simulations were conducted at the 
FMO2/HF/6-31G level. CH3-N2+ was optimized in the gas phase and then hydrated in a 
sphere of 156 water molecules. The water was optimized at 300 K for 0.5 ps with the 
RATTLE bond constraint. The temperature of the molecular system was raised to 1000 K, 
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and the simulation was continued for 5 ps. From the 1000 K trajectory, 15 configurations 
were taken and subjected to a further run at 700 K without any constraint. Ten trajectories 
out of fifteen produced the final products (CH3-OH2++N2). The ten productive trajectories 
were classified into three groups: tight SN2, loose SN2, and intermediate. 

 
Fig. 4. Initial droplet structure and structures of substrate and nearby water molecules along 
type A and B trajectories. Numbers are atomic distances in Å. Reproduced from Sato et al. 
(2008) by permission. 

Trajectory A in Fig. 4 is of the tight SN2 type, in which the attack by H2O and C-N  
bond cleavage, i.e. release of N2, occur concertedly. Trajectory B is of the loose SN2 type, 
which shows a two-stage process in which C-N bond cleavage precedes the attack  
by H2O. 

The difference between trajectories A and B was further analyzed by the configuration 
analysis for fragment interaction (CAFI; Mochizuki et al., 2005b), and the results are plotted 
in Fig. 5. Charge-transfer (CT) interaction between the two fragments increases rapidly 
when the C-N distance increases to 1.6 Å for trajectory A, but for trajectory B the CT 
increased only when RCN was 2.4 Å or longer. In trajectory B, the C-N bond cleavage and O-
C bond formation events take place in a two-stage fashion. The CT interaction energy is 
larger for trajectory B than for A at RC-O = 2.6 Å, because at the same C-O distance the C-N 
bond is cleaved to a larger extent, and hence the CH3 moiety has more positive charge for 
trajectory B than for trajectory A. 

Most of the other productive trajectories exhibited intermediate characteristics between 
those of trajectories A and B. The diversity of the reaction path can be illustrated by the two-
dimensional RC-N-RO-C plot (Fig. 6). The existence of different paths indicates that the 
reaction does not always proceed through the lowest energy pathway with optimal 
solvation. 

In summary, this series of simulations illustrated for the first time how the atoms in reacting 
molecules, from reactant to product, behave in solution at the molecular level. This was 
made possible by the advent of the full ab initio FMO-MD method.  
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Fig. 5. Charge transfer interaction energy between attacking H2O and CH3N2+ as functions 
of RO-C (left) and RC-N (right). The open circles show trajectory A, and the filled triangles 
show trajectory B. Reproduced from Sato et al. (2008) by permission. 

 
Fig. 6. RC-N-RO-C plot of the ten trajectories that resulted in product formation. Those 
trajectories that proceeded along the diagonal line are regarded as tight SN2, in which attack 
by water and the exit of N2 occurred simultaneously, while a trajectory that deviated from 
the diagonal line is regarded as loose SN2, in which N2 left before the attack by water. 
Reproduced from Sato et al. (2008) by permission. 

3.3 Amination of formaldehyde  

Sato et al. (2010) tackled the reaction mechanism of the amination of H2CO by FMO-MD 
simulations. In particular, they focused on whether the reaction proceeds via a zwitterion 
(ZW) intermediate (Fig. 7). The results indicated that the reaction proceeds through a 
stepwise mechanism with ZW as a stable intermediate. 
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Fig. 7. Two contradictory schemes of H2CO amination. RT: reactant; ZW: zwitterion; PD: 
product. 

The FMO-MD simulations were designed as follows. RC was defined as RN-C-RN-H. With RC 
constrained, structural changes of the reactant (RT) molecules in MD simulations are 
confined to the line that has the slope=1 and intercept=RC in a More O'Ferrall–Jencks-type 
diagram (Fig. 8). This diagram allows the reader to distinguish between the stepwise 
process and the concerted one. 

 

Fig. 8. Schematic representation of the More O'Farrall-Jencks-type diagram of carbinolamine 
formation of formaldehyde and ammonia (left). Three optimized initial configurations 
(right). Reproduced from Sato et al. (2010) by permission. 

By FMO-MD, a More O'Ferrall–Jencks-type diagram was drawn for the H2CO amination. 
Three initial configurations were prepared, (A) zwitterion-like, (B) reactant-like, and (C) 
concerted TS-like (Fig. 8), each solvated with ca. 200 water molecules. After appropriate 
optimization and equilibration by classical and FMO-EM/MD methods, average RNH and 
RNC were calculated at 300 K for RC = -0.4, -0.3,..., 0.9 Å starting from configuration A and 
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for RC = 0.9, 1.0,..., 1.8 Å starting from configuration B. For each RC value the configuration 
was equilibrated for 0.3 ps and sampled for a further 0.3 ps. 

The diagram thus obtained clearly favored the stepwise mechanism over the concerted 
mechanism (Fig. 9). Nevertheless, there remained a possibility of the MD trajectory being 
trapped in a local minimum. To investigate the possibility, we conducted additional FMO-
MD simulations starting from configuration C, the concerted TS-like one. These additional 
trajectories all diverted from the TS-like structure toward the trajectory of the stepwise path 
(see Sato et al., 2010, for details), thus confirming the validity of the stepwise mechanism. 

 

Fig. 9. Reaction profile obtained by FMO-MD simulations (left). The concerted TS-like 
structure (right). Reproduced from Sato et al. (2010) by permission. 

In summary, the constraint FMO-MD simulations indicated that the H2CO amination in 
water solvent occurs by the stepwise mechanism, not by the concerted one.  

3.4 Hydration of Zn(II) 

The divalent zinc ion, Zn(II), plays bio-chemically relevant roles, e.g., as the reaction center 
of superoxide dismutase. By using a droplet model of the Zn(II) ion with 64 water 
molecules, FMO2- and FMO3-MD simulations were performed at the HF/6-31G level, 
supposing that the electrostatic and coordination interactions are dominant in this system 
(Fujiwara et al., 2010b). The Zn-O peak positions at the first hydration shell were 
investigated, and a better accuracy of FMO3-MD than that of FMO2-MD was demonstrated, 
where the FMO3 value of 2.05 Å agreed well with the experimental value of 2.06±0.02 Å 
(Fig. 10). The coordination number of the first hydration shell was 6 consistently. 
Additionally, the charge fluctuations on the Zn atom were evaluated by the natural 
population analysis (NPA) as well as the conventional Mulliken population analysis (MPA). 
The NPA results showed a consistent picture with the coordination bond with reasonable 
fluctuation (around a net charge of 1.8), while MPA yielded an artificially enhanced 
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The NPA results showed a consistent picture with the coordination bond with reasonable 
fluctuation (around a net charge of 1.8), while MPA yielded an artificially enhanced 
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fluctuation with a larger extent of electron donation (net charge of 1.3-1.4). Discussion with 
NPA was found to be preferable for hydrated metal ions. 

 
Fig. 10. Zn-O RDFs and coordination numbers (CN) calculated by FMO2/3-MD simulations. 
Reproduced from Fujiwara et al. (2010b) by permission. 

3.5 Hydration of Ln(III) 

The lanthanide contraction and the gadolinium break have attracted considerable attention 
in the inorganic chemistry. As an application of the 4f-in-core MCP (Fujiwara et al., 2011), a 
series of FMO3-MD simulations on droplet model of Ln(III) plus 64 water molecules have 
been underway at the HF level (Fujiwara et al., in preparation). The RDF peal positions for 
La(III) (nona-hydration) and Lu(III) (octa-hydration) were estimated to be 2.59 Å and 2.31 Å, 
respectively, and they were comparable to the corresponding experimental values of 2.54 Å 
and 2.31 Å. Interestingly, the octa- and nona-hydration results for Gd(III) were evaluated as 
2.46 Å and 2.53 Å, respectively. The former value is in closer agreement with the 
experimental value of 2.42 Å, suggesting that the octa-hydration is preferable. 

3.6 Comparison on hydration dynamics of cis- and trans-platin  

FMO-MD has also given important insight into the difference in the hydration dynamics of 
cis- and trans-platin (Mori et al., 2012). Since cis-platin (cis-[PtIICl2(NH3)2]) is recognized as an 
anticancer substance, quite a few studies have been devoted to the biochemical functions of 
its derivatives. Particularly interesting in the pharmaceutical research field of Pt-based 
anticancer drugs is the behaviour of its geometrical isomer, trans-platin, which only shows 
very low anticancer activity (Fig. 11). Trans-platin had not been considered to form DNA 
adducts that lead to anticancer activity. However, trans-type Pt-complexes that shows 
antitumor activities was found recently. Despite the extensive research on both cis- and 
trans-platin, the origin of their difference in biochemical activity still remains unclear. The 
final step of the antitumor treatment is the combination of cis-platin and DNA leading 
modifications of the DNA structure. Meanwhile, some earlier steps, such as solvation before 
reaching the final target, are also believed to play important roles in the efficacy of drugs. 
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Their hydration should be investigated to understand the difference in the medical 
application between cis- and trans-platins.  

 
Fig. 11. Structures of cis- and trans-platins and schematic representations of DNA adducts. 
Reproduced from Mori et al. (2012) by permission. 

FMO-MD simulations were performed for hydrated cis- and trans-platins. The simulation 
conditions were set as described below. Each platin complex was hydrated with a spherical 
droplet of water centred at the Pt atom with a diameter of 10.5 Å. This diameter was 
determined to include up to the second solvation shell, so that the physicochemical 
properties of the first shell should be reproduced. In the FMO-MD simulations, the 
electronic states of the hydrated platin complexes were described by FMO(3)-MP2. The basis 
sets were MCPdz for Pt, MCPdzp for Cl, and 6-31G(d) for the others, respectively. The MCP 
basis sets were applied for heavy elements (see subsection 2.2.6). The central platin and each 
of the water molecules were regarded as independent fragments. DF was applied to allow 
for the generation of proton-transferred species during the production MD runs. For each 
cis- and trans-platin system, a 1-ps equilibration and a subsequent 2-ps production MD run 
were performed using the Nose-Hoover Chains NVT ensemble at 300 K. NPA was also 
performed during the FMO-MD run to analyze the differences in charge fluctuations 
between cis- and trans-platin, illuminating the differences in the hydration environment 
around polarized Pt+-Cl- bonds, which should be cleaved by the nucleophilic attack of a 
solvent water molecule. 

The time evolution of the natural charge on each ligand in cis- and trans-platin, and that of 
Pt-Cl bond lengths are shown in Fig. 12. Relatively larger charge fluctuations were observed 
on the Pt/Cl sites than on the NH3 sites in both platins. This difference among the sites was 
attributable to the fact that NH3 has no amplitude in the highest occupied molecular orbital. 
A close comparison of the left and right graphs in Fig. 12 revealed a correlation between 
fluctuation of the Pt/Cl sites and that of the Pt-Cl bond. By applying the Fourier transform 
technique to the charge fluctuation, we calculated the frequency of the fluctuation to be  
334 cm-1. This frequency can also be assigned to the Pt-Cl stretching mode coupled with 
intermolecular vibrations between the solute platin and solvent water molecules. The 
correlation observed in charge fluctuation on Pt and Cl sites means that there is a CT 
interaction between them. Since the frontier MO that participates in the CT process is a Pt-Cl 
antibonding orbital, the CT interaction coupled with the fluctuation of the solvent water 
should induce a Pt-Cl bonds fluctuation. Since trans-platin has inversion symmetry, the 
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dipole moment of trans-platin is much smaller than that of cis-platin. This means that the 
number of water molecules which coordinates to the platin complex is larger for cis-platin 
than for trans-platin. Thus, the CT interaction coupled with the solvent motion is stronger in 
cis-platin than in trans-platin. As a result, the Pt-Cl bonds are easier to elongate for the 
cleavage in the hydrated cis-platin than in the hydrated trans-platin. Thus, by using FMO-
MD simulations, we obtained new quantum chemical insight into the solvation of platin 
complexes. 

   

Fig. 12. (Left) Time evolution of natural charge on the Pt, NH3, and Cl sites in the cis- and 
trans-platin. Solid and dotted lines indicate cis- and trans- isomers, respectively. (Right) Time 
evolution of Pt-Cl bond lengths. Reproduced from Mori et al. (2012) by permission. 

4. Prospects and conclusion 
As reviewed so far, FMO-MD has been applied to various chemical phenomena in the 
presence of explicit solvents and has given realistic molecular pictures of the phenomena. 
We are planning to extend the field of FMO-MD by introduction of new capabilities, as 
follows. 

The so-called QM/MM scheme will enhance the target size of FMO-MD. QM/MM has 
attracted great interest in simulating condensed-phase systems as well as proteins. In this 
scheme, the chemically relevant region is subjected to QM calculations while the 
environmental effects are incorporated through a set of MM parameters. MFMO has a 
conceptual similarity to QM/MM, and hence we have a plan to implement a general 
QM/MM ability in conjunction with MFMO. 

The improvement of accuracy in FMO gradient evaluations may be a future subject. 
Nagata’s reformulation, including the supplemental response terms of monomers (Nagata et 
al., 2011a) as well as the BDA-related residual contributions (Nagata et al., 2010), are of 
interest for implementation at the HF level. 

Another important issue is the extraction of more information from FMO-MD trajectories. 
From a series of configurations, the time-dependent fluctuations in electronic densities can 
be derived, some of which are correlated with the creation and destruction of bonding 
interactions. For example, the Fourier transform-based analyses may shed light on the 
detailed dynamical picture of nucleophilic attack reactions. 
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In conclusion, FMO-MD is a highly-parallelizable ab initio MD method. FMO-MD has 
advanced rapidly by improvement of both the FMO and MD portions of the method and 
has been successfully applied to various chemical phenomena in solution. We are planning 
to extend the methodology and application of FMO-MD by incorporating several new 
features.  
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trans-platin. Solid and dotted lines indicate cis- and trans- isomers, respectively. (Right) Time 
evolution of Pt-Cl bond lengths. Reproduced from Mori et al. (2012) by permission. 
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1. Introduction 
Metal clusters and nanoparticles have gained attention in the recent years due to their 
application as catalysts, antimicrobials, pigments, micro circuits, drug delivery vectors, and 
many other uses. Many fascinating properties exhibited by nanomaterials are highly size 
and structure dependent. Therefore, understanding the formation of these nanoparticles is 
important in order to tailor their properties. The laboratory synthesis and characterization of 
such clusters and nanoparticles has provided insight into characteristics such as size and 
shape. However, monitoring the synthesis of such a cluster (or nanoparticle) on the atomic 
scale is difficult and to date no experimental technique is able to accomplish this. The use of 
computational methods has been employed to gain insight into the movement and 
interactions of atoms when a metal cluster or nanoparticle is formed. The most common 
computational approach has been to use molecular dynamics (MD) simulation which 
models the movement of atoms using a potential energy surface (PES) often referred to as a 
force field. The PES is used to describe the interaction of atoms and can be obtained from 
electronic strcuture calculations, from experimental measurements, or from the combining 
calculations and measurements.  

Molecular dynamics simulations have been used to study many phenomena associated with 
nanoparticles. Of particular interests are the geometric structure and energetics of 
nanoparticles of Au (Erkoc 2000; Shintani et al. 2004; Chui et al. 2007; Pu et al. 2010), Ag (El-
Bayyari 1998; Monteil et al. 2010), Al (Yao et al. 2004), Fe (Boyukata et al. 2005), Pb (Hendy & 
Hall 2001), U (Erkoc et al. 1999) and of alloys such as NaMg (Dhavale et al. 1999), Pt-Ni/Co 
(Favry et al. 2011), Pt-Au (Mahboobi et al. 2009), Zn-Cd (Amirouche & Erkoc 2003), Cu-
Ni/Pd (Kosilov et al. 2008), Co-Sb (Yang et al. 2011) as well as the behavior of nanoparticles 
during the melting or freezing process such as Au (Wang et al. 2005; Bas et al. 2006; Yildirim 
et al. 2007; Lin et al. 2010; Shibuta & Suzuki 2010), Na (Liu et al. 2009), Cu (Wang et al. 2003; 
Zhang et al. 2009), Al (Zhang et al. 2006), Fe (Ding et al. 2004; Shibuta & Suzuki 2008), Ni 
(Wen et al. 2004; Lyalin et al. 2009; Shibuta & Suzuki 2010), Pd (Miao et al. 2005), Sn 
(Chuang et al. 2004; Krishnamurty et al. 2006), Na-alloys (Aguado & Lopez 2005), Pt-alloys 
(Sankaranarayanan et al. 2005; Yang et al. 2008; Yang et al. 2009; Shi et al. 2011), Au-alloys 
(Yang et al. 2008; Yang et al. 2009; Gonzalez et al. 2011; Shi et al. 2011) and Ag-alloys 
(Kuntova et al. 2008; Kim et al. 2009). Molecular dynamics simulations have also been 
applied to study adsorption and desorption of nanoparticles on surfaces, such as Pd/MgO 
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force field. The PES is used to describe the interaction of atoms and can be obtained from 
electronic strcuture calculations, from experimental measurements, or from the combining 
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Molecular dynamics simulations have been used to study many phenomena associated with 
nanoparticles. Of particular interests are the geometric structure and energetics of 
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Zhang et al. 2009), Al (Zhang et al. 2006), Fe (Ding et al. 2004; Shibuta & Suzuki 2008), Ni 
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(Kuntova et al. 2008; Kim et al. 2009). Molecular dynamics simulations have also been 
applied to study adsorption and desorption of nanoparticles on surfaces, such as Pd/MgO 
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(Long & Chen 2008) and Mn/Au (Mahboobi et al. 2010), nanoparticle aggregation such as 
Au (Lal et al. 2011), diffusion processes (Shimizu et al. 2001; Sawada et al. 2003; Yang et al. 
2008; Alkis et al. 2009; Chen & Chang 2010), fragmentation of Au and Ag (Henriksson et al. 
2005), thermal conductivity of Cu nanoparticles (Kang et al. 2011), and cluster (nanoparticle) 
formation of Au (Boyukata 2006; Cheng et al. 2009), Ag (Yukna & Wang 2007; Zeng et al. 
2007; Hudson et al. 2010), Ir (Pawluk & Wang 2007), Co (Rives et al. 2008), and various 
alloys (Cheng et al. 2009; Chen & Chang 2010; Chen et al. 2010; Goniakowski & Mottet 2010; 
Carrillo & Dobrynin 2011). 

Formation of metal clusters or nanoparticles can take place in all three phases: in liquid, gas, 
and on solid surfaces. Different formation mechanisms can be involved in the formation of 
transition metal nanoparticles. Of particular interest is coalescence, a process by which two 
droplets or particles collide to form a new daughter droplet or particle. Coalescence is 
important due to its role in nanoparticle formation and size control. Conventional MD 
simulations are used to describe coalescence of transition metal nanoparticles and provide 
information on the dynamics of nanoparticle formation, such as rate constant. However, the 
change of the electronic properties of the particles can only be probed by performing 
electronic structure calculations. Therefore, to have a complete picture of the formation of 
nanoparticles, the coupling of both MD and electronic structure calculations is important 
and forms the practice of our MD simulations. We denote it as the meta-molecular dynamics 
(meta-MD) method. In this chapter, we provide a description of the meta-MD method and 
its application in the study of Fe cluster formations. Before we present the meta-MD method 
and its application, we provide a general description of conventional MD simulations and 
the PES that is of ultimate importance in the accuracy of MD simulations. 

2. Molecular Dynamics (MD) Simulations and Potential Energy Surfaces 
(PESs) 
In a conventional molecular dynamics simulation, if the motion of atoms in the system is 
governed by Newton’s equations of motion, we numerically solve the position of atom i 
with a mass of mi in the Cartesian coordinates xi, yi, and zi by  

 ixi

i

pdx
dt m

 , (1a) 

 iyi

i

pdy
dt m

 , (1b) 

 izi

i

pdz
dt m

 . (1c) 

Here
ixp ,

iyp , and
izp are the momentum of the atom i in the x, y, and z direction, 

respectively, and are solved by the gradient of the PES, denoted V:   
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The accuracy of the PES determines the accuracy of the outcome of MD simulations. There 
are many possible force fields (a.k.a. PESs) (Mazzone 2000; Hendy et al. 2003) but two used 
most often are the embedded atom method (Daw & Baskes 1984; Zhao et al. 2001; Dong et 
al. 2004; Lummen & Kraska 2004; Lummen & Kraska 2005; Lummen & Kraska 2005a, 2005b, 
2005c; Rozas & Kraska 2007) and the Sutton-Chen potential (Kim et al. 2007; Pawluk & 
Wang 2007; Yukna & Wang 2007; Hudson et al. 2010; Kayhani et al. 2010). 

In the Sutton-Chen PES, V is expressed as  

 iij i

1V [ v(i, j) c ]
2

    , (3) 

where ν(i,j) is an interaction between atoms i and j given by, 
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and ρi is the local electron density contribution of atom i given by, 
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In the above equations of the Sutton-Chen potential, rij is the distance between atom i and 
atom j. The parameters; a, n, m, ε, and c depend on the element that is under study.  

The N-body term, ii
 , is a cohesive term that describes the tendency for the atoms to 

stick together. The attraction between atoms is normally described by a 1/r6 potential at 
long distances, due to van der Waals interaction, and described by an N-body form at short 
distances. Choosing the value of the parameter m to be 6 accomplishes these two things 
(Sutton & Chen 1990).  

Define the lattice sum of a perfect face centered cubic (f.c.c.) crystal to be, 

 
n

f
f
n j

j

aS
r

 
   

 
 . (6) 

The sum is taken over all separations rj from an arbitrary atom. af is equal to the f.c.c. lattice 
parameter which then defines the unit of length.  

In equilibrium the total energy of the crystal does not change to first order when the lattice 
parameter is varied. This implies, 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 26

(Long & Chen 2008) and Mn/Au (Mahboobi et al. 2010), nanoparticle aggregation such as 
Au (Lal et al. 2011), diffusion processes (Shimizu et al. 2001; Sawada et al. 2003; Yang et al. 
2008; Alkis et al. 2009; Chen & Chang 2010), fragmentation of Au and Ag (Henriksson et al. 
2005), thermal conductivity of Cu nanoparticles (Kang et al. 2011), and cluster (nanoparticle) 
formation of Au (Boyukata 2006; Cheng et al. 2009), Ag (Yukna & Wang 2007; Zeng et al. 
2007; Hudson et al. 2010), Ir (Pawluk & Wang 2007), Co (Rives et al. 2008), and various 
alloys (Cheng et al. 2009; Chen & Chang 2010; Chen et al. 2010; Goniakowski & Mottet 2010; 
Carrillo & Dobrynin 2011). 

Formation of metal clusters or nanoparticles can take place in all three phases: in liquid, gas, 
and on solid surfaces. Different formation mechanisms can be involved in the formation of 
transition metal nanoparticles. Of particular interest is coalescence, a process by which two 
droplets or particles collide to form a new daughter droplet or particle. Coalescence is 
important due to its role in nanoparticle formation and size control. Conventional MD 
simulations are used to describe coalescence of transition metal nanoparticles and provide 
information on the dynamics of nanoparticle formation, such as rate constant. However, the 
change of the electronic properties of the particles can only be probed by performing 
electronic structure calculations. Therefore, to have a complete picture of the formation of 
nanoparticles, the coupling of both MD and electronic structure calculations is important 
and forms the practice of our MD simulations. We denote it as the meta-molecular dynamics 
(meta-MD) method. In this chapter, we provide a description of the meta-MD method and 
its application in the study of Fe cluster formations. Before we present the meta-MD method 
and its application, we provide a general description of conventional MD simulations and 
the PES that is of ultimate importance in the accuracy of MD simulations. 

2. Molecular Dynamics (MD) Simulations and Potential Energy Surfaces 
(PESs) 
In a conventional molecular dynamics simulation, if the motion of atoms in the system is 
governed by Newton’s equations of motion, we numerically solve the position of atom i 
with a mass of mi in the Cartesian coordinates xi, yi, and zi by  
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Here
ixp ,

iyp , and
izp are the momentum of the atom i in the x, y, and z direction, 

respectively, and are solved by the gradient of the PES, denoted V:   
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The accuracy of the PES determines the accuracy of the outcome of MD simulations. There 
are many possible force fields (a.k.a. PESs) (Mazzone 2000; Hendy et al. 2003) but two used 
most often are the embedded atom method (Daw & Baskes 1984; Zhao et al. 2001; Dong et 
al. 2004; Lummen & Kraska 2004; Lummen & Kraska 2005; Lummen & Kraska 2005a, 2005b, 
2005c; Rozas & Kraska 2007) and the Sutton-Chen potential (Kim et al. 2007; Pawluk & 
Wang 2007; Yukna & Wang 2007; Hudson et al. 2010; Kayhani et al. 2010). 

In the Sutton-Chen PES, V is expressed as  
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where ν(i,j) is an interaction between atoms i and j given by, 
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and ρi is the local electron density contribution of atom i given by, 
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In the above equations of the Sutton-Chen potential, rij is the distance between atom i and 
atom j. The parameters; a, n, m, ε, and c depend on the element that is under study.  

The N-body term, ii
 , is a cohesive term that describes the tendency for the atoms to 

stick together. The attraction between atoms is normally described by a 1/r6 potential at 
long distances, due to van der Waals interaction, and described by an N-body form at short 
distances. Choosing the value of the parameter m to be 6 accomplishes these two things 
(Sutton & Chen 1990).  

Define the lattice sum of a perfect face centered cubic (f.c.c.) crystal to be, 
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The sum is taken over all separations rj from an arbitrary atom. af is equal to the f.c.c. lattice 
parameter which then defines the unit of length.  

In equilibrium the total energy of the crystal does not change to first order when the lattice 
parameter is varied. This implies, 
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The cohesive energy per atom is given by, 
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Finally the bulk modulus, Bf, is given by, 

 

f
f n

f

(2n m)n sB
36







, (9) 

where Ωf=(af)3/4 which is the atomic volume. Using the above equations a relation between 
the cohesive energy, E, and the bulk modulus, B is given by, 

 
f f

f
c

B nm
E 18


 . (10) 

Using experimental measurements of the cohesive energy, E, the bulk modulus, B, and  
the chosen value of m=6, an integer value for n was to give the value closest in agreement 
with eq. (10). From the values of m and n eq. (9) can be used to obtain a value of ε and eq.  
(8) can be used to obtain the value for c. (Sutton & Chen 1990) The parameters ε and a  
are defined as units of energy and length, respectively. Thus the values of ε and a  
were chosen, for the different metals, to coincide with results obtained from fitting the  
PES with experimental or computational measurements. The parameters used in the current 
MD simulations of Fe cluster formations were obtained from Sutton and Chen (Sutton & 
Chen 1990). 

3. Advanced MD simulations: Meta-MD simulations 
In the meta-MD simulations, we couple the conventional MD simulation with the electronic 
structure calculation to study the formation of transition metal nanoparticles. Such a 
coupling allows us to record the electronic change of the system during the formation 
process in addition to the conventional properties in a MD simulation. Furthermore, we will 
also be able to monitor the accuracy of the PES as well as determine whether the MD 
simulation on a single PES is valid.   

The three ingredients in a meta-MD simulation are electronic structure theory, molecular 
dynamics theory, and coupling method. In principle, any electronic structure theory can be 
chosen. Depending on the system of interest, our choice of a particular electronic structure 
theory is determined by the cost effectiveness and the accuracy of electronic structure 
calculations. For transition metal systems, the most practical choice of method is density 
functional theory, where a variety of functionals may be used. The molecular dynamics 
theory can be quantum scattering, pure classical, mixed quantum-classical, or semi-classical 
treatment, which also depends on the characteristics of the system to be described. For 
instance, our current system involves only heavy atoms, we therefore choose classical MD 
simulations.  
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Once these theories are chosen, a coupling method has to be employed so that the two types of 
calculations can be integrated. Appropriate techniques need to be developed in order to 
integrate the electronic structure calculations seamlessly to the MD simulations. There are 
several ways to couple MD and DFT calculations. The most straightforward way would be to 
perform MD simulations first and save the structural information, i.e. the Cartesian 
coordinates of each atom at each time step. The DFT calculations can be performed using these 
data. We note that the time step in a typical MD simulation is in the range of 0.01-1 fs, and the 
simulation can run for ~10ps or longer times. Therefore, the concern with this strategy is that 
far too many data have to be saved. Additionally, too much computational time is required. 
An alternative strategy is to carry out MD and DFT calculations simultaneously. One of the 
advantages of this strategy is to be able to use the electronic wavefunctions generated from the 
past time step as the initial electronic wavefunction in the subsequent DFT calculation. We are 
exploring other possibilities to save computer time. Further, the time between two DFT 
calculations will be set to a longer interval than a simple MD time step. A DFT calculation will 
be performed between the two DFT calculations only when significant changes have taken 
place, which will be monitored in the MD simulations. For a particular system of interest, one 
will need to test extensively which length of  time interval will be appropriate to perform DFT 
calculations in order to find an optimal choice and a common ground in terms of effectiveness 
and accuracy. Development of the pragmatic coupling methods is in progress. 

In this work, we studied the coalescence of an Fe dimer with an Fe atom and of two 15-atom 
Fe clusters. The numerical aspects of the MD simulations are similar to the previous MD 
simulations (Billing & Wang 1992a, 1992b; Ge et al. 1992; Wang & Billing 1992; Wang  
& Billing 1993; Wang et al. 1994a, 1994b; Wang & Clary 1996; Clary & Wang 1997;  
Wang & Billing 1997; Wang et al. 1999; Wang et al. 2000; McCoy et al. 2001; Wang &  
McCoy 2003).  

The simulations for the systems were performed over a 10 ps time period with a time step of 
0.01 fs. During the formation of nanoparticles, a small amount of energy was extracted at 
every single time step from any atom that had a kinetic energy greater than a defined 
minimum energy. In this work two simulations were run with a minimum of 298 K and  
693 K. The subtraction of energy was done to mimic a cooling rate of 1.5625x1011 K/s 
(1.3464x10-8 eV/fs) and 1.5625x1013 K/s (1.3454x10-8 eV/fs). These cooling rates were used in 
our studies of Ag cluster formation previously (Hudson et al. 2010). 

DFT calculations were performed in a similar fashion as our previous studies of transition 
metal clusters (Wang & Ge 2002; Cao et al. 2003; Zhang et al. 2003; Xiao & Wang 2004a, 
2004b; Zhang et al. 2004a, 2004b, 2004c)  Specifically, spin polarized DFT calculations were 
carried out via the Vienna Ab-initio Simulation Package (VASP).(Kresse & Hafner 1993; 
Kresse & Furthmuller 1996a, 1996b) The electron-ion interactions were described by the 
Projector Augmented Waves method.(Kresse & Joubert 1999) The exchange and correlation 
energies were calculated using the Perdew-Burke-Ernzerhof (PBE) functional.(Perdew et al. 
1996)  A plane wave basis set was used with a cutoff energy of 300 eV, which was shown to 
be sufficient from the convergence test. One k point, the point, was used. In order to 
eliminate interactions between two neighboring images, we set the nearest distance between 
images no less than 1.0 nm. The simulation techniques used here are very similar to those in 
our previous study of Pt clusters.(Xiao & Wang 2004b) Single point calculations were 
performed based on the structural data from the MD simulations. The binding energy, the 
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where Ωf=(af)3/4 which is the atomic volume. Using the above equations a relation between 
the cohesive energy, E, and the bulk modulus, B is given by, 
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Using experimental measurements of the cohesive energy, E, the bulk modulus, B, and  
the chosen value of m=6, an integer value for n was to give the value closest in agreement 
with eq. (10). From the values of m and n eq. (9) can be used to obtain a value of ε and eq.  
(8) can be used to obtain the value for c. (Sutton & Chen 1990) The parameters ε and a  
are defined as units of energy and length, respectively. Thus the values of ε and a  
were chosen, for the different metals, to coincide with results obtained from fitting the  
PES with experimental or computational measurements. The parameters used in the current 
MD simulations of Fe cluster formations were obtained from Sutton and Chen (Sutton & 
Chen 1990). 

3. Advanced MD simulations: Meta-MD simulations 
In the meta-MD simulations, we couple the conventional MD simulation with the electronic 
structure calculation to study the formation of transition metal nanoparticles. Such a 
coupling allows us to record the electronic change of the system during the formation 
process in addition to the conventional properties in a MD simulation. Furthermore, we will 
also be able to monitor the accuracy of the PES as well as determine whether the MD 
simulation on a single PES is valid.   

The three ingredients in a meta-MD simulation are electronic structure theory, molecular 
dynamics theory, and coupling method. In principle, any electronic structure theory can be 
chosen. Depending on the system of interest, our choice of a particular electronic structure 
theory is determined by the cost effectiveness and the accuracy of electronic structure 
calculations. For transition metal systems, the most practical choice of method is density 
functional theory, where a variety of functionals may be used. The molecular dynamics 
theory can be quantum scattering, pure classical, mixed quantum-classical, or semi-classical 
treatment, which also depends on the characteristics of the system to be described. For 
instance, our current system involves only heavy atoms, we therefore choose classical MD 
simulations.  
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Once these theories are chosen, a coupling method has to be employed so that the two types of 
calculations can be integrated. Appropriate techniques need to be developed in order to 
integrate the electronic structure calculations seamlessly to the MD simulations. There are 
several ways to couple MD and DFT calculations. The most straightforward way would be to 
perform MD simulations first and save the structural information, i.e. the Cartesian 
coordinates of each atom at each time step. The DFT calculations can be performed using these 
data. We note that the time step in a typical MD simulation is in the range of 0.01-1 fs, and the 
simulation can run for ~10ps or longer times. Therefore, the concern with this strategy is that 
far too many data have to be saved. Additionally, too much computational time is required. 
An alternative strategy is to carry out MD and DFT calculations simultaneously. One of the 
advantages of this strategy is to be able to use the electronic wavefunctions generated from the 
past time step as the initial electronic wavefunction in the subsequent DFT calculation. We are 
exploring other possibilities to save computer time. Further, the time between two DFT 
calculations will be set to a longer interval than a simple MD time step. A DFT calculation will 
be performed between the two DFT calculations only when significant changes have taken 
place, which will be monitored in the MD simulations. For a particular system of interest, one 
will need to test extensively which length of  time interval will be appropriate to perform DFT 
calculations in order to find an optimal choice and a common ground in terms of effectiveness 
and accuracy. Development of the pragmatic coupling methods is in progress. 

In this work, we studied the coalescence of an Fe dimer with an Fe atom and of two 15-atom 
Fe clusters. The numerical aspects of the MD simulations are similar to the previous MD 
simulations (Billing & Wang 1992a, 1992b; Ge et al. 1992; Wang & Billing 1992; Wang  
& Billing 1993; Wang et al. 1994a, 1994b; Wang & Clary 1996; Clary & Wang 1997;  
Wang & Billing 1997; Wang et al. 1999; Wang et al. 2000; McCoy et al. 2001; Wang &  
McCoy 2003).  

The simulations for the systems were performed over a 10 ps time period with a time step of 
0.01 fs. During the formation of nanoparticles, a small amount of energy was extracted at 
every single time step from any atom that had a kinetic energy greater than a defined 
minimum energy. In this work two simulations were run with a minimum of 298 K and  
693 K. The subtraction of energy was done to mimic a cooling rate of 1.5625x1011 K/s 
(1.3464x10-8 eV/fs) and 1.5625x1013 K/s (1.3454x10-8 eV/fs). These cooling rates were used in 
our studies of Ag cluster formation previously (Hudson et al. 2010). 

DFT calculations were performed in a similar fashion as our previous studies of transition 
metal clusters (Wang & Ge 2002; Cao et al. 2003; Zhang et al. 2003; Xiao & Wang 2004a, 
2004b; Zhang et al. 2004a, 2004b, 2004c)  Specifically, spin polarized DFT calculations were 
carried out via the Vienna Ab-initio Simulation Package (VASP).(Kresse & Hafner 1993; 
Kresse & Furthmuller 1996a, 1996b) The electron-ion interactions were described by the 
Projector Augmented Waves method.(Kresse & Joubert 1999) The exchange and correlation 
energies were calculated using the Perdew-Burke-Ernzerhof (PBE) functional.(Perdew et al. 
1996)  A plane wave basis set was used with a cutoff energy of 300 eV, which was shown to 
be sufficient from the convergence test. One k point, the point, was used. In order to 
eliminate interactions between two neighboring images, we set the nearest distance between 
images no less than 1.0 nm. The simulation techniques used here are very similar to those in 
our previous study of Pt clusters.(Xiao & Wang 2004b) Single point calculations were 
performed based on the structural data from the MD simulations. The binding energy, the 
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energy gap between the highest occupied molecular orbital and the lowest unoccupied 
molecular orbital (HOMO-LUMO), and the magnetic moment of the system were obtained 
and discussed. 

4. Formation of iron clusters 
In this work, we performed MD simulations to study the formation of iron trimers and 
meta-MD simulations to that of 30-atom iron clusters. The results of these simulations are 
presented below starting from the formation of iron trimers. 

4.1 Iron trimer formation 

The MD results for the Fe atom collinearly colliding with an Fe dimer are summarized in 
Figs. 1-8.  

We first examine the effects of initial kinetic energy, cooling rate, and temperature on the 
structure of Fe trimers. Figure 1 shows the time evolution of interatomic distances 
between Fe pairs. These plots show the slower cooling rate producing a faster collision 
and a longer lived linear trimer than the faster cooling rate, though the final products in 
both cooling rates are triangular trimers, which are demonstrated by the overlap of all 
three curves at longer times. When the minimum temperature increases from 298 K to 673 
K, the linear trimers at both cooling rates last longer, as clearly shown in Fig. 2. In fact, the 
linear trimer exists at the end of simulation time when the cooling rate is 1.5625x1011 K/s. 
When the initial kinetic energy increases from 0.1 eV shown in Figs. 1 and 2 to 0.5 eV 
shown in Figs. 3 and 4, the time evolution of interatomic distances has trends similar to 
the lower kinetic energy cases.  

 
Fig. 1. The interatomic distances of a three-atom coalescence with an initial energy of 0.1 eV at 
a minimum temperature of 298 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 1013 
K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long dash). 

Among the eight collisions depicted in Figs. 1-4, the favored product was the trigonal 
trimer, which accounts for 6 of them. The other two were the linear trimer at the end of 10 
ps. A high minimum energy and a slow cooling rate was the condition that gave the linear 
trimer regardless of the initial energy given to the system. The slow cooling rate resulted in 
a longer duration of the linear trimer configuration before the structure converted to the 
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trigonal structure. The slow cooling rate also shows a wild oscillation of the bond distances 
between atoms. This result is as expected due to the slower removal of energy from the 
system. It can also be noticed that the higher minimum energy resulted in a more violent 
oscillation of bond lengths after cluster formation (Fig. 2 vs. Fig. 1 and Fig. 4 vs. Fig. 3). This 
is because the greater amount of heat available is expressed as a vibration in the formed 
cluster.  The greater initial energy of the system (0.1 eV vs. 0.5 eV) has an effect only when a 
slow cooling rate is employed.  

 

 
Fig. 2. The interatomic distances of a three-atom coalescence with an initial energy of 0.1 eV 
at a minimum temperature of 673 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 
1013 K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long 
dash). 

 

 
Fig. 3. The interatomic distances of a three-atom coalescence with an initial energy of 0.5 eV 
at a minimum temperature of 298 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 
1013 K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long 
dash). 
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energy gap between the highest occupied molecular orbital and the lowest unoccupied 
molecular orbital (HOMO-LUMO), and the magnetic moment of the system were obtained 
and discussed. 

4. Formation of iron clusters 
In this work, we performed MD simulations to study the formation of iron trimers and 
meta-MD simulations to that of 30-atom iron clusters. The results of these simulations are 
presented below starting from the formation of iron trimers. 

4.1 Iron trimer formation 

The MD results for the Fe atom collinearly colliding with an Fe dimer are summarized in 
Figs. 1-8.  

We first examine the effects of initial kinetic energy, cooling rate, and temperature on the 
structure of Fe trimers. Figure 1 shows the time evolution of interatomic distances 
between Fe pairs. These plots show the slower cooling rate producing a faster collision 
and a longer lived linear trimer than the faster cooling rate, though the final products in 
both cooling rates are triangular trimers, which are demonstrated by the overlap of all 
three curves at longer times. When the minimum temperature increases from 298 K to 673 
K, the linear trimers at both cooling rates last longer, as clearly shown in Fig. 2. In fact, the 
linear trimer exists at the end of simulation time when the cooling rate is 1.5625x1011 K/s. 
When the initial kinetic energy increases from 0.1 eV shown in Figs. 1 and 2 to 0.5 eV 
shown in Figs. 3 and 4, the time evolution of interatomic distances has trends similar to 
the lower kinetic energy cases.  

 
Fig. 1. The interatomic distances of a three-atom coalescence with an initial energy of 0.1 eV at 
a minimum temperature of 298 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 1013 
K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long dash). 

Among the eight collisions depicted in Figs. 1-4, the favored product was the trigonal 
trimer, which accounts for 6 of them. The other two were the linear trimer at the end of 10 
ps. A high minimum energy and a slow cooling rate was the condition that gave the linear 
trimer regardless of the initial energy given to the system. The slow cooling rate resulted in 
a longer duration of the linear trimer configuration before the structure converted to the 
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trigonal structure. The slow cooling rate also shows a wild oscillation of the bond distances 
between atoms. This result is as expected due to the slower removal of energy from the 
system. It can also be noticed that the higher minimum energy resulted in a more violent 
oscillation of bond lengths after cluster formation (Fig. 2 vs. Fig. 1 and Fig. 4 vs. Fig. 3). This 
is because the greater amount of heat available is expressed as a vibration in the formed 
cluster.  The greater initial energy of the system (0.1 eV vs. 0.5 eV) has an effect only when a 
slow cooling rate is employed.  

 

 
Fig. 2. The interatomic distances of a three-atom coalescence with an initial energy of 0.1 eV 
at a minimum temperature of 673 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 
1013 K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long 
dash). 

 

 
Fig. 3. The interatomic distances of a three-atom coalescence with an initial energy of 0.5 eV 
at a minimum temperature of 298 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 
1013 K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long 
dash). 
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Fig. 4. The interatomic distances of a three-atom coalescence with an initial energy of 0.5 eV 
at a minimum temperature of 673 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 
1013 K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long 
dash). 

We now discuss the energetic aspects of the MD results. Figure 5 shows the changes of the 
kinetic and potential energy over time at the minimum temperature of 298 K and initial 
kinetic energy of 0.1 eV. The kinetic energy oscillates during the collision with the slower 
cooling rate (red curve of the left figure) and is essentially featureless in the case with the 
faster cooling rate (red curve of right figure). This is due to the slower cooling rate not being 
able to dissipate the kinetic energy released by the rapid decrease in potential energy.  

 
Fig. 5. The kinetic (red/dash) and potential (green/solid) energy of a three-atom coalescence 
with an initial energy of 0.1 eV at a minimum temperature of 298 K and a cooling rate of 
1.5625 x 1011 K/s (left) and 1.5625 x 1013 K/s (right).  

When the minimum energy, or similarly the reaction chamber temperature, was 673 K, 
similar pictures of the coalescences were obtained. The kinetic energy oscillates in a regular 
pattern (left of Fig. 6) for the slower cooling rate and has no feature for the faster cooling rate 
(right of Fig. 6). Again, this is due to the slower cooling rate not being able to remove all of 
the kinetic energy gained due to a rapid release of potential energy. Similar to the kinetic 
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energy plots, the potential energy plots show that the slower cooling rate produces a more 
oscillatory potential while the faster cooling rate produces a smooth curve with a sudden 
potential drop. 

When the initial kinetic energy increases to 0.5 eV, the energy distributions at different 
cooling rate are similar to the case of 0.1 eV. There is a resemblance of the kinetic and 
potential energy plots between the two minimum temperatures, namely Fig. 7 vs Fig. 8. The 
difference between the temperature lies at the oscillatory part of the potential energy curves. 
In the case of the 298 K chamber, the oscillations in the potential energy curve occur at the 
very last of the MD simulations. 

 

 
Fig. 6. The kinetic (red/dash) and potential (green/solid) energy of a three-atom coalescence 
with an initial energy of 0.1 eV at a minimum temperature of 673 K and a cooling rate of 
1.5625 x 1011 K/s (left) and 1.5625 x 1013 K/s (right). 

 

 
Fig. 7. The kinetic (red/dash) and potential (green/solid) energy of a three-atom coalescence 
with an initial energy of 0.5 eV at a minimum temperature of 298 K and a cooling rate of 
1.5625 x 1011 K/s (left) and 1.5625 x 1013 K/s (right). 
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Fig. 4. The interatomic distances of a three-atom coalescence with an initial energy of 0.5 eV 
at a minimum temperature of 673 K and a cooling rate of 1.5625 x 1011 K/s (left) and 1.5625 x 
1013 K/s (right) of atoms 1 & 2 (red/short dash), 2 & 3 (green/solid), and 1 & 3 (blue/long 
dash). 

We now discuss the energetic aspects of the MD results. Figure 5 shows the changes of the 
kinetic and potential energy over time at the minimum temperature of 298 K and initial 
kinetic energy of 0.1 eV. The kinetic energy oscillates during the collision with the slower 
cooling rate (red curve of the left figure) and is essentially featureless in the case with the 
faster cooling rate (red curve of right figure). This is due to the slower cooling rate not being 
able to dissipate the kinetic energy released by the rapid decrease in potential energy.  

 
Fig. 5. The kinetic (red/dash) and potential (green/solid) energy of a three-atom coalescence 
with an initial energy of 0.1 eV at a minimum temperature of 298 K and a cooling rate of 
1.5625 x 1011 K/s (left) and 1.5625 x 1013 K/s (right).  

When the minimum energy, or similarly the reaction chamber temperature, was 673 K, 
similar pictures of the coalescences were obtained. The kinetic energy oscillates in a regular 
pattern (left of Fig. 6) for the slower cooling rate and has no feature for the faster cooling rate 
(right of Fig. 6). Again, this is due to the slower cooling rate not being able to remove all of 
the kinetic energy gained due to a rapid release of potential energy. Similar to the kinetic 
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energy plots, the potential energy plots show that the slower cooling rate produces a more 
oscillatory potential while the faster cooling rate produces a smooth curve with a sudden 
potential drop. 

When the initial kinetic energy increases to 0.5 eV, the energy distributions at different 
cooling rate are similar to the case of 0.1 eV. There is a resemblance of the kinetic and 
potential energy plots between the two minimum temperatures, namely Fig. 7 vs Fig. 8. The 
difference between the temperature lies at the oscillatory part of the potential energy curves. 
In the case of the 298 K chamber, the oscillations in the potential energy curve occur at the 
very last of the MD simulations. 

 

 
Fig. 6. The kinetic (red/dash) and potential (green/solid) energy of a three-atom coalescence 
with an initial energy of 0.1 eV at a minimum temperature of 673 K and a cooling rate of 
1.5625 x 1011 K/s (left) and 1.5625 x 1013 K/s (right). 

 

 
Fig. 7. The kinetic (red/dash) and potential (green/solid) energy of a three-atom coalescence 
with an initial energy of 0.5 eV at a minimum temperature of 298 K and a cooling rate of 
1.5625 x 1011 K/s (left) and 1.5625 x 1013 K/s (right). 
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Fig. 8. The kinetic (red/dash) and potential (green/solid) energy of a three-atom coalescence 
with an initial energy of 0.5 eV at a minimum temperature of 673 K and a cooling rate of 
1.5625 x 1011 K/s (left) and 1.5625 x 1013 K/s (right). 

Figures 5-8 show that the faster cooling rate generates a smoother kinetic and potential 
energy plot. The minimum energy has little noticeable effect on the kinetic and potential 
energy plots except that the oscillations of either are more drastic with the greater minimum 
energy. The greater initial energy causes a spike in the kinetic energy at the beginning of the 
simulation which occurs later in the simulation when less initial energy is given to the 
system. Figures 7 and 8 both show a ‘flare up’ that is noticeably separate from the initial 
spike of kinetic energy when a slow cooling rate is used. The simulations that resulted in 
trigonal trimers gave an ending potential energy of around -3.5 eV while the simulations 
that resulted in the linear trimer (Fig. 6 left and Fig. 8 left) gave an ending potential of 
around -3.0 eV. This is due to the lower potential when each atom interacts with the other 
two atoms rather than two of the three atoms only interacting with one other atom. 

4.2 Formation of 30-atom iron clusters 

Four MD simulations were carried out with different minimum temperatures and cooling 
rates in order to investigate how these factors affect the formation process and the structure 
of the products.  

The energy profile evolutions and the final structures of the 30-atom Fe clusters are given in 
Figs. 9-11.  

Figure 9 shows the kinetic energy plot (left) and the potential energy plot (right) of the 
coalescence of two 15- atom clusters. The slow cooling rate gave a kinetic energy spike 
after the initial reaction (Fig. 9, left blue and red). The higher minimum temperature 
results in a higher kinetic energy at the end of the simulation (Fig. 9, left blue and yellow). 
Figure 9 also shows that the faster cooling rate negates the other parameters. The faster 
cooling rate plots (yellow and green) have similar kinetic energies while the slower 
cooling rate plots (red and blue) are very different and the difference is determined by the 
minimum temperature.  
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configuration and not being able to overcome an energy barrier to reach a lower energy 
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(c)         (d) 

Fig. 11. 30-atom clusters formed under 0.5 eV initial energy with 673 K minimum 
temperature and a cooling rate of 1.5625 x 1011 K/s (left, c) and 1.5625 x 1013 K/s  (right, d). 

Figures 10 and 11 show that all four simulations predict the coalescence product is a 30-
atom cluster, though they are structurally different. The faster cooling rate (Fig. 10 right and 
Fig. 11 right) produce a cluster that is more spreading out than the clusters produced by the 
slower cooling rate.  

DFT calculations were performed for the structures shown in Figs. 10 and 11. The results of 
these clusters are given in Table 1. 

 
Structure Energy difference HOMO-LUMO gap Unpaired electrons 

a (Fig.10) 0.55 0.15 56 

b (Fig.10) 9.69 0.13 60 

c (Fig.11) 2.37 0.11 62 

d (Fig. 11) 0 0.06 78 

Table 1. The energy difference (eV) between cluster d and others, HOMO-LUMO energy 
gap (eV), and the number of unpaired electrons of 30-atom clusters.  

The DFT results in Table 1 show that structure b is the least stable isomer of the 30-atom 
clusters, which agrees with the MD simulations as depicted in Fig. 9 (right). However, the 
energy differences among the other three clusters are not significant in the MD simulations 
but are significant in the DFT calculations. More importantly, the number of unpaired 
electrons of the products is very different, indicating a more complex electronic state of the 
final product. MD simulations based on a single PES may need to be reexamined for the 
accuracy of the simulations. 
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5. Conclusion 
Meta-Molecular Dynamics (meta-MD) simulation was developed and described for 
studying the formation of transition metal nanoparticles. The meta-MD simulation 
integrates single point electronic structure calculations into the conventional molecular 
dynamics simulations so that instant changes of the intrinsic electromagnetic properties of 
the system can be monitored and obtained during the formation of nanoparticles. The 
results of Fe cluster formation obtained from the meta-MD simulations were presented and 
discussed. Additionally, the effect of cooling rates was also presented and discussed. 
Furthermore, using the spin-polarized DFT calculations in meta-MD simulations can also 
provide indications whether the electronically adiabatic treatment in the MD simulations is 
sufficient by monitoring the electronic state changes during the dynamic processes.  

The meta-MD technique developed here should also be a good tool in studying 
heterogeneous catalysis by providing guidance in the design of catalysts. For instance, the 
detailed picture of local charge distribution may provide insight into the active site and 
requirement for the catalytic activity. This information will be potentially useful in the 
preparation of catalysts. The meta-MD simulations described here can also be employed for 
studying other processes where the changes of the intrinsic electromagnetic properties of the 
local entities of the system, i.e. subsystems, are important in order to obtain a complete 
picture of the dynamical processes.   
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1. Introduction

In this chapter we address numerical integration techniques of ordinary differential equation
(ODE), especially that for molecular dynamics (MD) simulation. Since most of the
fundamental equations of motion in MD are represented by nonlinear ODEs with many
degrees of freedom, numerical integration becomes essential to solve the equations for
analyzing the properties of a target physical system. To enhance the molecular simulation
performance, we demonstrate two techniques for numerically integrating the ODE. The first
object we present is an invariant function, viz., a conserved quantity along a solution, of a
given ODE. The second one is a numerical integrator itself, which numerically solves the ODE
by capturing certain geometric properties of the ODE.

In our proposed procedure (Fukuda & Nakamura, 2006), for an ODE defined on an
N-dimensional phase space Ω we construct an extended phase space Ω′ of N + 1 dimension,
by introducing an additional degree of freedom. Then, on Ω′ we constitute a new ODE,
which has an invariant but retains every solution of the original ODE, and we construct
efficient integrators for the extended ODE. Advantageous features of our proposal are the
simplicity and the applicability to a wide class of ODEs beyond the Hamiltonian equations.
In fact, in MD methods, non-Hamiltonian equations are often used (Hoover, 1991); they
have been developed (Hoover & Holian, 1996), e.g., to provide more robustness than
conventional one or a rapid convergence to a targeted statistical thermodynamic ensemble,
or to define a new ensemble itself. Considering such a development, new equations must be
designed successively in future studies, and the simplicity and the applicability for the current
techniques will be useful also in such a circumstance.

Specifically, by the first technique, the invariant can be simply constructed for any (smooth)
ODE, including non-Hamiltonian equation. It can thus be easily used to examine the
accuracy of numerical integration of the ODE by monitoring the invariant value, as done in
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Hamiltonian system by using the Hamiltonian value. Namely, the integration accuracy check
can be done in a system that does not have or may not have an invariant.

The second technique is to constitute the integrator that is widely applicable to many ODEs,
including those for non-Hamiltonian systems. We require higher accuracy to avoid the
accumulation of the numerical errors, as the simulation time increases. In addition, we should
seriously address the issue of the computational cost: with the advancement of computational
architecture, larger and larger systems can be treated and the computational cost grows
consequently. In fact, the number of the interaction evaluations, which characterize the total
cost in MD calculations, is considerably grown with increasing the number of degrees of
freedom of the system, n; e.g. the number of the evaluation is of order of n2 in a typical
classical system. We provide a route to easily construct efficient integrators for many kinds of
ODEs. Specifically, on the extended space we present integrators that are explicit, symmetric,
and phase space volume-preserving.

Geometric features of integrator, including the volume preserving property (Zai-jiu, 1994;
Kang & Zai-jiu, 1995, Quispel, 1995; Okunbor, 1995; Quispel & Dyt, 1998), give rise to stable
simulation, as if the symplectic integrator does for Hamiltonian system (Ruth, 1983; Yoshida,
1990; McLachlan & Atela, 1992; Sanz-Serna, 1992). In fact, volume-preserving property is a
generalization of the symplectic property; this corresponds to the fact that a divergence-free
system, which is realized in the extended system by our protocol, is a generalization of a
Hamiltonian system. For relevant geometric concepts in the analysis of molecular dynamics
equations, see e.g., the work of Ezra (Ezra, 2006) and the references therein.

In section 2, we demonstrate the details of the integration method and explain the geometric
view lying in our technique. To effectively present such a view in MD study, the
implementation of algorithms is explicitly described in reference to the Nosé-Hoover (NH)
equation (Nosé, 1984; Hoover, 1985), which is one of the representative ODEs in MD studies.
In section 3 we discuss the applicability of our method and clarify the issues that should be
considered for a further development of the method.

2. Geometric concept in the integration techniques

2.1 Invariant on extended space: Fiber bundle structure

Beginning with a review of our work (Fukuda & Nakamura, 2006) concerning the construction
of the invariant, we give a new interpretation of this matter to clarify the geometric view under
consideration. The main idea is to suitably generate a vector field in the extended dimension
so that the extended ODE has an invariant.

For any ODE in phase space Ω (domain of RN),

ω̇ = X(ω), (1)

viz., dωi/dt = Xi(ω1, ...., ωN) for i = 1, ..., N, consider an extended ODE

ω̇� = X�(ω�), (2)

which is defined, on an extended phase space Ω� ≡ Ω × R×, by

ω̇ = X(ω), (3a)

v̇ = Xe(ω
�) ≡ −

N

∑
i=1

Xi(ω) DiB(ω) v, (3b)
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where a point in Ω� is expressed as ω� = (ω, v) [R× denotes non-zero numbers; Di the partial
differentiation with respect to ωi (all quantities are supposed to be sufficiently smooth)]. Here,
B is any phase-space function. Then we can show that

L(ω, v) = B(ω) + ln |v| (4)

defines an invariant (dimensionless); i.e., for an arbitrary solution φ� of Eq. (3), the value of
L(φ�(t)) is constant for all time t.

The way of defining the extended equation is not unique and Eq. (3b) is constructed
with the aim that we will make a volume-preserving integrator, as demonstrated in the
following subsection. In fact, alternative schemes are discussed in the literature (Fukuda
& Nakamura, 2006), and by applying the scheme to several MD equations the conserved
quantity individually defined in each equation can be reproduced in a uniform, generalized
manner. Concerning the technical issue, we assume that, for simplicity, the Liouville equation,

div(ρX) = 0, (5)

holds for a certain density function ρ, and put B≡− ln ρ as the choice of B. Thus, it follows
from Eq. (3b) that Xe(ω�) = −divX(ω)v.

The above conception is illustrated in figure 1: A new ODE (2) in an extended phase space
Ω� is defined such that (i) a projection of any solution φ� onto the original phase space Ω is a
solution of the original ODE (1), and (ii) a function (invariant) L exists, whose value is constant
along any solution (in the figure, ω�

t ≡ φ�(t) is a point of the solution at time t with initial value
ω�, and the similar holds for ωt ≡ φ(t)). The above (i) is a trivial matter, since Eq. (3a) in the
extended ODE is the original ODE itself, which does not couple to the new variable v. By the
suitable generation of the field (viz., Xe) in the extended dimension, the above (ii) is attained,
as straightforwardly confirmed.

( )  for all tL c t

( )tX( )X :  Original phase space
t

t
( )X

: Added space

( )tX

: Level setcL

Fig. 1. A schematic figure to illustrate the basic concept for an invariant and extended phase
space

As was stated, a projection of any solution with initial value (ω0, v0) for the extended ODE (3)
onto Ω is also a solution with initial value ω0 for the original ODE (3a). Conversely, any
solution of the original ODE can be lifted to the solution of the extended ODE. However,
this correspondence is not one-to-one, i.e., many lifts are possible according to the choice of
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v0. This correspondence can be naturally understood via a geometric concept, fiber bundle
(e.g., Husemoller, 1966), which plays an important role in physics (see Choquet-Bruhat et
al., 1982), including gauge theory, Berry’s phase, and the quantum Hall effect, as well as in
mathematics. In this context, our target is a product (trivial) vector bundle over Ω with fiber
R, i.e., (E ≡ Ω ×R, π, Ω), where we have considered that the total space is Ω ×R rather than
Ω × R×. A level set (i.e., a generalization of energy surface) is represented by Lc = L+

c ∪ L−
c ,

where
L±

c ≡ {
ω� ∈ Ω� | L(ω�) = c, v ≷ 0

}
. (6)

In each piece, i.e., one component of a level set, the invariant function takes a constant value,
c. It should be noted that each piece becomes a (image of) global cross section from a base
space Ω, where the cross section is a map defined by

s±c : Ω → E, ω �→ (ω,± exp(−B(ω) + c)). (7)

This indicates that L±
c is equivalent, in a topological sense, to the original space Ω. This

situation is different in the Hamiltonian system in which a level set {(x, p) ∈ R2n | H(x, p) =
c} often becomes compact and is not necessarily equivalent to R2n−1 nor R2n. The choice
of v0, under an arbitrary fixed ω0, corresponds to the choice of the level set, i.e., the choice
of the parameter c and the signature, which also characterizes the section map. The time
development in the extended space is always on the (image of the) cross section.

2.2 Integrator on extended space: Volume-preserving discrete dynamical-system structure

The second technique is on the numerical integrator. We explain a general idea for
constructing the current integrator through the following five procedures:

(i) Considering a solvable decomposition for the ODE originally given,

(ii) Making a solvable decomposition for the extended ODE,

(iii) Turning attention from the solutions of the (decomposed) ODE to phase-space maps in
the extended space,

(iv) Combining the individual maps to get a first order integrator,

(v) Combining the maps furthermore to get a higher order integrator.

Our view is clear: the integrator Ψh is a (one-step) invertible map (see figure 2) parametrized
by a time step h. In metaphorical terms, we have the most fundamental geometric view as

Integration ≡ {Tm ≡ Ψh ◦ m· · · ◦ Ψh (iteration of the map) : Ω� → Ω�}m: integers (8)

≡ Discrete dynamical system (generated by map). (9)

Namely, the iterations of the map Ψh constitute the integration [T0 ≡identity, T−m ≡ (Tm)−1

can be defined]. This iteration corresponds to an approximation to

Exact flow ≡ {Tt : Ω� → Ω�}t: real numbers

≡ Continuous dynamical system (generated by ODE). (10)

Of course, this view is applicable for a one-step map integrator and not necessarily valid
for an arbitrary integrator; e.g., linear multistep methods, including the predictor-corrector
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Fig. 2. A schematic picture to show that one-step map integrator is a mapping of the
(extended) phase space onto itself.

method, estimate the succeeding value by using the several values previously sought with
certain interpolation techniques.

To explain the procedures in a specific manner, we shall use the NH equation (Nosé, 1984;
Hoover, 1985; Nosé, 1991) as an example of ODE. This is because the NH equation is
frequently used in MD simulation to control the temperature, and furthermore it gives a
foundation of various realizations of the Boltzmann-Gibbs dynamics (see e.g., Hoover, 1991;
Nosé, 1991; Fukuda & Nakamura, 2004). The NH equation can be represented by

ω̇ = XNH(ω) (11a)

≡
(

p · M−1, −∇U(x)− (ζ/Q)p, 2K(p)− nkBT
)

, (11b)

where ω ≡ (x, p, ζ) and M ≡diag(m1, ..., mn); x ≡ (x1, . . . , xn), p ≡ (p1, . . . , pn), U(x), and
K(p) ≡ ∑n

i=1 p2
i /2mi represent the coordinates, momenta, potential energy, and kinetic energy,

respectively, of a physical system; kB is Boltzmann’s constant, ζ a real variable to control the
temperature of the physical system to targeted temperature T, and Q a positive parameter
associated with ζ. The function

ρ (ω) ≡ exp
(
−[U(x) + K(p) + ζ2/2Q]/kBT

)
(12)

is a density for the Liouville equation. Thus, extended equation (3b) becomes

v̇ = −div X(ω)v = (nζ/Q)v, (13)

and invariant (4) becomes

L(ω�) =
[
U(x) + K(p) + ζ2/2Q

]
/kBT + ln |v|. (14)

Now, the five procedures are described as follows:

(i) For a given ODE (1), consider a solvable decomposition

X = X[1] + X[2] + · · ·+ X[L]. (15)
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associated with ζ. The function
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)
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is a density for the Liouville equation. Thus, extended equation (3b) becomes
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and invariant (4) becomes
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That is, decompose X such that each ODE, ω̇ = X[j](ω), can be solved explicitly for all time;
viz., decompose the field X into “easier” field components, prior to the procedure (see (iv)) in
which the individual maps generated by the individual field components are combined.

For the NH equation, a solvable decomposition is given (but not uniquely) by XNH =

∑4
j=1 X[j] defined as:

X[1](ω) ≡
(

p · M−1, 0, 0
)

, (16a)

X[2](ω) ≡ (0, −∇U(x), 0) , (16b)

X[3](ω) ≡ (0, 0, 2K(p)− nkBT) , (16c)

X[4](ω) ≡ (0, −(ζ/Q)p, 0) . (16d)

This is indeed the solvable decomposition as is easily seen; e.g., ω̇ = X[1](ω) is

ẋ = p · M−1, ṗ = 0, ζ̇ = 0, (17)

so we have its solution φ[1] with an initial value ω0 = (x0, p0, ζ0) in an explicit form for all
time t, as

φ[1](t) =
(

tp0 · M−1 + x0, p0, ζ0

)
. (18)

(ii) Consider a solvable decomposition for, in turn, the extended ODE (2), which is now
represented by

ω̇ = X(ω), (19a)

v̇ = −divX(ω)v. (19b)

To obtain an extended phase-space volume-preserving integrator we should devise a
decomposition X� = ∑ X�[j] that yields, for each j, the divergence-free property,

divX�[j] = 0. (20)

Fortunately, this can be done automatically; we have a desired decomposition:

X� = X�[1] + X�[2] + · · ·+ X�[L], (21)

X�[j](ω�) = (X[j](ω),−divX[j](ω)v) (j = 1, . . . , L). (22)

Although, in a strict sense, regarding a solution Φ[j] of

ω̇� = X�[j](ω�), (23)

its v-component is generally given via a form that is integrated with respect to time, this form
can be evaluated explicitly in many cases as already discussed (Fukuda & Nakamura, 2006).

In fact, for the NH equation, according to Eqs. (16) and (22) we have

X�[1](ω�) =
(

p · M−1, 0, 0, 0
)

, (24a)

X�[2](ω�) = (0, −∇U(x), 0 , 0) , (24b)

X�[3](ω�) = (0, 0, 2K(p)− nkBT, 0) , (24c)

X�[4](ω�) =
(

0,− ζ

Q
p, 0,

nζ

Q
v
)

, (24d)
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where ω� ≡ (x, p, ζ, v); and a solution with an initial value ω�
0 ≡ (x0, p0, ζ0, v0) for ODE (23)

is given, respectively, by

Φ[1](t) =
(

tp0 · M−1 + x0, p0, ζ0, v0

)
, (25a)

Φ[2](t) = (x0,−t∇U(x0) + p0, ζ0, v0) , (25b)

Φ[3](t) = (x0, p0, (2K(p0)− nkBT)t + ζ0, v0) , (25c)

Φ[4](t) =
(

x0, e−
ζ0 t
Q p0, ζ0, e

nζ0 t
Q v0

)
. (25d)

(iii) Turn attention from solutions to phase-space maps.

Consider any decomposed component j. Even when we rewrite Φ[j](t) as Φ[j]ω�
0 (t) to express

the initial value, Φ[j]ω�
0 (t) still denotes the solution as long as we focus on the variation with

respect to time t by fixing initial value ω�
0. On the other hand, if we focus on the variation

with respect to initial value by fixing time, we get a phase-space map Φ[j]
t : Ω� → Ω� as,

Φ[j]
t (ω�) ≡ Φ[j]ω�

(t), (26)

where we have dropped the suffix “0” in the initial value because we consider all the

(extended) phase-space point to be impartial. Namely Φ[j]
t maps every point ω� in Ω�

to the point reached by the solution with initial value ω� for ODE (23) after a period t.
Volume-preserving property is ensured by Eq. (20); i.e., for any area A ⊂ Ω�, its volume
and the volume of the mapped area are equal:

Vol(Φ[j]
t (A)) = Vol(A). (27)

For the NH equation, it follows from Eq. (25) that e.g., Φ[1]
t maps ω� = (x, p, ζ, v) to(

tp · M−1 + x, p, ζ, v
)
; here, the variable that changes is only x, and in this way we can express

the essential changes provided by each map Φ[j]
t as

x → tp · M−1 + x by Φ[1]
t , (28a)

p → −t∇U(x) + p by Φ[2]
t , (28b)

ζ → (2K(p)− nkBT)t + ζ by Φ[3]
t , (28c)

p → e−(ζ/Q)t p, v → e(nζ/Q)tv by Φ[4]
t . (28d)

(iv) Combine the individual maps as

Φt ≡ Φ[1]
t ◦ Φ[2]

t ◦ · · · ◦ Φ[L]
t : Ω� → Ω�, (29)

giving Φ[1]
t

(
Φ[2]

t

(
· · ·Φ[L]

t (ω�) · · ·
))

for point ω�.

Through just this procedure we get a first-order integrator for the extended ODE (19). Here,
“first-order” means that the map approximates the exact flow of the ODE locally with an order
of t1: Φt(ω

�)− Tt(ω
�) = O(t2) as t → 0. In general, map Φt is said to be order p if

Φt(ω
�)− Tt(ω

�) = O(tp+1) as t → 0. (30)
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ẋ = p · M−1, ṗ = 0, ζ̇ = 0, (17)

so we have its solution φ[1] with an initial value ω0 = (x0, p0, ζ0) in an explicit form for all
time t, as

φ[1](t) =
(

tp0 · M−1 + x0, p0, ζ0

)
. (18)

(ii) Consider a solvable decomposition for, in turn, the extended ODE (2), which is now
represented by

ω̇ = X(ω), (19a)

v̇ = −divX(ω)v. (19b)

To obtain an extended phase-space volume-preserving integrator we should devise a
decomposition X� = ∑ X�[j] that yields, for each j, the divergence-free property,

divX�[j] = 0. (20)

Fortunately, this can be done automatically; we have a desired decomposition:

X� = X�[1] + X�[2] + · · ·+ X�[L], (21)

X�[j](ω�) = (X[j](ω),−divX[j](ω)v) (j = 1, . . . , L). (22)

Although, in a strict sense, regarding a solution Φ[j] of

ω̇� = X�[j](ω�), (23)

its v-component is generally given via a form that is integrated with respect to time, this form
can be evaluated explicitly in many cases as already discussed (Fukuda & Nakamura, 2006).

In fact, for the NH equation, according to Eqs. (16) and (22) we have

X�[1](ω�) =
(

p · M−1, 0, 0, 0
)

, (24a)

X�[2](ω�) = (0, −∇U(x), 0 , 0) , (24b)

X�[3](ω�) = (0, 0, 2K(p)− nkBT, 0) , (24c)

X�[4](ω�) =
(

0,− ζ

Q
p, 0,

nζ

Q
v
)

, (24d)
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where ω� ≡ (x, p, ζ, v); and a solution with an initial value ω�
0 ≡ (x0, p0, ζ0, v0) for ODE (23)

is given, respectively, by

Φ[1](t) =
(

tp0 · M−1 + x0, p0, ζ0, v0

)
, (25a)

Φ[2](t) = (x0,−t∇U(x0) + p0, ζ0, v0) , (25b)

Φ[3](t) = (x0, p0, (2K(p0)− nkBT)t + ζ0, v0) , (25c)

Φ[4](t) =
(

x0, e−
ζ0 t
Q p0, ζ0, e

nζ0 t
Q v0

)
. (25d)

(iii) Turn attention from solutions to phase-space maps.

Consider any decomposed component j. Even when we rewrite Φ[j](t) as Φ[j]ω�
0 (t) to express

the initial value, Φ[j]ω�
0 (t) still denotes the solution as long as we focus on the variation with

respect to time t by fixing initial value ω�
0. On the other hand, if we focus on the variation

with respect to initial value by fixing time, we get a phase-space map Φ[j]
t : Ω� → Ω� as,

Φ[j]
t (ω�) ≡ Φ[j]ω�

(t), (26)

where we have dropped the suffix “0” in the initial value because we consider all the

(extended) phase-space point to be impartial. Namely Φ[j]
t maps every point ω� in Ω�

to the point reached by the solution with initial value ω� for ODE (23) after a period t.
Volume-preserving property is ensured by Eq. (20); i.e., for any area A ⊂ Ω�, its volume
and the volume of the mapped area are equal:

Vol(Φ[j]
t (A)) = Vol(A). (27)

For the NH equation, it follows from Eq. (25) that e.g., Φ[1]
t maps ω� = (x, p, ζ, v) to(

tp · M−1 + x, p, ζ, v
)
; here, the variable that changes is only x, and in this way we can express

the essential changes provided by each map Φ[j]
t as

x → tp · M−1 + x by Φ[1]
t , (28a)

p → −t∇U(x) + p by Φ[2]
t , (28b)

ζ → (2K(p)− nkBT)t + ζ by Φ[3]
t , (28c)

p → e−(ζ/Q)t p, v → e(nζ/Q)tv by Φ[4]
t . (28d)

(iv) Combine the individual maps as

Φt ≡ Φ[1]
t ◦ Φ[2]

t ◦ · · · ◦ Φ[L]
t : Ω� → Ω�, (29)

giving Φ[1]
t

(
Φ[2]

t

(
· · ·Φ[L]

t (ω�) · · ·
))

for point ω�.

Through just this procedure we get a first-order integrator for the extended ODE (19). Here,
“first-order” means that the map approximates the exact flow of the ODE locally with an order
of t1: Φt(ω

�)− Tt(ω
�) = O(t2) as t → 0. In general, map Φt is said to be order p if

Φt(ω
�)− Tt(ω

�) = O(tp+1) as t → 0. (30)
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(v) Combine the maps furthermore to get a higher order integrator.

The simplest manner to do this is, by using the adjoint map

Φ∗
t ≡ (Φ−t)

−1 = Φ[L]
t ◦ · · · ◦ Φ[2]

t ◦ Φ[1]
t , (31)

to adopt
Ψh = Φh/2 ◦ Φ∗

h/2, (32)

where h stands for a time step. Equation (32) is shown to be a second order integrator, which
is a generalized version of the Verlet integrator. In fact, for the NH equation, it can be easily
seen from Eq. (28) that Eq. (32) gives the (position) Verlet integrator (Tuckerman et al., 1992)
when one ignores the non-canonical variables ζ and v.

Reaching a construction of first order integrators (29) and (31) enables us to use several general
mathematical schemes to obtain higher order integrators (Hairer et al., 2002; McLachlan,
1995). Using a number of parameters, which designate the division of time step h, a more
general formula for higher order method can be

Ψh = Φαsh ◦ Φ∗
βsh ◦ · · · ◦ Φα2h ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗
β1h. (33)

We assume the symmetric condition αi = βs+1−i to get the symmetric property:

(Ψh)
−1 = Ψ−h. (34)

Namely, the numerical map is time-reversible as is the exact flow. Since this property is the
most fundamental and universal property observed in any smooth ODE, this preservation in
a numerical map is highly recommended. Volume-preserving property is achieved by the fact
that each map is volume preserving due to Eq. (27):

Vol(Ψh(A)) = Vol(A). (35)

Finally, we give the whole explicit algorithm for the NH equation. Equation (31) stands for
the mapping from (x, p, ζ, v) to (x, p, ζ, v), summarized in the following procedure:

FAIAD(t) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x → x ≡ tp · M−1 + x by Φ[1]
t ,

p → p̃ ≡ −t∇U(x) + p by Φ[2]
t ,

ζ → ζ ≡ (2K( p̃)− nkBT)t + ζ by Φ[3]
t ,

p̃ → p ≡ e−(ζ/Q)t p̃, v → v ≡ e(nζ/Q)tv by Φ[4]
t .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(36)

Similarly, Eq. (29) does from (x, p, ζ, v) to (x, p, ζ, v), summarized in the procedure,

FAI(t) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p → �p ≡ e−(ζ/Q)t p, v → v ≡ e(nζ/Q)tv by Φ[4]
t ,

ζ → ζ ≡ (2K(�p)− nkBT)t + ζ by Φ[3]
t ,

�p → p ≡ −t∇U(x) + �p by Φ[2]
t ,

x → x ≡ tp · M−1 + x by Φ[1]
t .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(37)
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Therefore, the total straightforward implementation of the algorithms is described as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Do m = 1, total time step
Do k = 1, s

t = βkh
call FAIAD(t)
t = αkh
call FAI(t)
x = x, p = p, ζ = ζ, v = v

enddo
x, p, ζ, and v are the variables at time = mh

enddo

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

2.3 Numerical simulation

Short (or very short) time behaviour for the numerical integration is governed by
Equation (30). However, long time behaviour is beyond the reach of this equation and not so
a trivial matter, especially in non-Hamiltonian systems. Since the results of the fundamental
numerical investigations are already described (for the NH equation, see e.g., Queyroy et al.,
2009), we here focus on the above issue. To do this, we studied the integrator for the NH
equation, Eq. (11), by applying it to a one-dimensional model system, using a double-well
potential. In the numerical simulation, we set kBT = 1 and Q = 1, with mass mi being unity,
and initial values were x0 = 0, p0 = 1, ζ0 = 0, v0 = 1.

Figure 3 shows the trajectories (time development) of invariant (14) obtained by the
integrators with time step h = 0.01. It exhibits the behaviours during a relatively short
period. The integrators are P2S1 [equation (32)], its higher-order version, P4S5, and the local
refinement second-order scheme (LR2). Local deviations of each trajectory seem to be similar
in the second order schemes, but the critical difference of trajectories between them is in the
behaviour of abrupt jumps. The amplitude of such a jump is highest in the P2S1 scheme, and
the amplitude, as well as the frequency, of the jumps is smaller in the other schemes. The
local refinement scheme is superior to the P2S1 scheme. The most accurate integrator is P4S5,
but it needs five times more evaluations of the force function than those by the second order
schemes.

Long time (107 time) trajectories with time step h = 0.01 are shown in figure 4. In the
conservation behaviour of the invariant, the “jump” appearing in a certain time scale may
characterize the essential “deviation” in larger time scale. We would like to briefly discuss
this view using figures 3 and 4, where the most visible behaviours supporting this view is
observed in P2S1. Each of the jumps in a time scale of about 104 observed in figure 3 appears
to correspond to an “ordinary” deviation in a time scale of 107 in figure 4. The direction
(viz., up or down) of the deviation, in general, seems to be random. However, sometimes,
consecutive deviations in a same direction occur, and they eventually may form a jump.
Such a relation, viz., the directed consecutive deviations form a jump and the resulting jumps
characterize the deviations in a larger time scale, might continue in further larger time scale.
The true origin of the jumps in the invariant is not clear, requiring further investigations for
longer time simulations. However, the jump would not be directly induced by the "actual"
jump of coordinate x between the two wells of the one-dimensional double-well potential,
nevertheless the jump of x induces large motion in the phase space. This is because the jump
of x with our schemes occurred too frequently (but plausible in the sense of producing the
Boltzmann-Gibbs distribution), compared with the invariant jump.
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(v) Combine the maps furthermore to get a higher order integrator.

The simplest manner to do this is, by using the adjoint map

Φ∗
t ≡ (Φ−t)

−1 = Φ[L]
t ◦ · · · ◦ Φ[2]

t ◦ Φ[1]
t , (31)

to adopt
Ψh = Φh/2 ◦ Φ∗

h/2, (32)

where h stands for a time step. Equation (32) is shown to be a second order integrator, which
is a generalized version of the Verlet integrator. In fact, for the NH equation, it can be easily
seen from Eq. (28) that Eq. (32) gives the (position) Verlet integrator (Tuckerman et al., 1992)
when one ignores the non-canonical variables ζ and v.

Reaching a construction of first order integrators (29) and (31) enables us to use several general
mathematical schemes to obtain higher order integrators (Hairer et al., 2002; McLachlan,
1995). Using a number of parameters, which designate the division of time step h, a more
general formula for higher order method can be

Ψh = Φαsh ◦ Φ∗
βsh ◦ · · · ◦ Φα2h ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗
β1h. (33)

We assume the symmetric condition αi = βs+1−i to get the symmetric property:

(Ψh)
−1 = Ψ−h. (34)

Namely, the numerical map is time-reversible as is the exact flow. Since this property is the
most fundamental and universal property observed in any smooth ODE, this preservation in
a numerical map is highly recommended. Volume-preserving property is achieved by the fact
that each map is volume preserving due to Eq. (27):

Vol(Ψh(A)) = Vol(A). (35)

Finally, we give the whole explicit algorithm for the NH equation. Equation (31) stands for
the mapping from (x, p, ζ, v) to (x, p, ζ, v), summarized in the following procedure:

FAIAD(t) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x → x ≡ tp · M−1 + x by Φ[1]
t ,

p → p̃ ≡ −t∇U(x) + p by Φ[2]
t ,

ζ → ζ ≡ (2K( p̃)− nkBT)t + ζ by Φ[3]
t ,

p̃ → p ≡ e−(ζ/Q)t p̃, v → v ≡ e(nζ/Q)tv by Φ[4]
t .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(36)

Similarly, Eq. (29) does from (x, p, ζ, v) to (x, p, ζ, v), summarized in the procedure,

FAI(t) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p → �p ≡ e−(ζ/Q)t p, v → v ≡ e(nζ/Q)tv by Φ[4]
t ,

ζ → ζ ≡ (2K(�p)− nkBT)t + ζ by Φ[3]
t ,

�p → p ≡ −t∇U(x) + �p by Φ[2]
t ,

x → x ≡ tp · M−1 + x by Φ[1]
t .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(37)
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Therefore, the total straightforward implementation of the algorithms is described as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Do m = 1, total time step
Do k = 1, s

t = βkh
call FAIAD(t)
t = αkh
call FAI(t)
x = x, p = p, ζ = ζ, v = v

enddo
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enddo
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. (38)
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2009), we here focus on the above issue. To do this, we studied the integrator for the NH
equation, Eq. (11), by applying it to a one-dimensional model system, using a double-well
potential. In the numerical simulation, we set kBT = 1 and Q = 1, with mass mi being unity,
and initial values were x0 = 0, p0 = 1, ζ0 = 0, v0 = 1.

Figure 3 shows the trajectories (time development) of invariant (14) obtained by the
integrators with time step h = 0.01. It exhibits the behaviours during a relatively short
period. The integrators are P2S1 [equation (32)], its higher-order version, P4S5, and the local
refinement second-order scheme (LR2). Local deviations of each trajectory seem to be similar
in the second order schemes, but the critical difference of trajectories between them is in the
behaviour of abrupt jumps. The amplitude of such a jump is highest in the P2S1 scheme, and
the amplitude, as well as the frequency, of the jumps is smaller in the other schemes. The
local refinement scheme is superior to the P2S1 scheme. The most accurate integrator is P4S5,
but it needs five times more evaluations of the force function than those by the second order
schemes.

Long time (107 time) trajectories with time step h = 0.01 are shown in figure 4. In the
conservation behaviour of the invariant, the “jump” appearing in a certain time scale may
characterize the essential “deviation” in larger time scale. We would like to briefly discuss
this view using figures 3 and 4, where the most visible behaviours supporting this view is
observed in P2S1. Each of the jumps in a time scale of about 104 observed in figure 3 appears
to correspond to an “ordinary” deviation in a time scale of 107 in figure 4. The direction
(viz., up or down) of the deviation, in general, seems to be random. However, sometimes,
consecutive deviations in a same direction occur, and they eventually may form a jump.
Such a relation, viz., the directed consecutive deviations form a jump and the resulting jumps
characterize the deviations in a larger time scale, might continue in further larger time scale.
The true origin of the jumps in the invariant is not clear, requiring further investigations for
longer time simulations. However, the jump would not be directly induced by the "actual"
jump of coordinate x between the two wells of the one-dimensional double-well potential,
nevertheless the jump of x induces large motion in the phase space. This is because the jump
of x with our schemes occurred too frequently (but plausible in the sense of producing the
Boltzmann-Gibbs distribution), compared with the invariant jump.
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Fig. 3. Trajectories of the invariant using the current integration scheme, applied to the NH
equation of the one dimensional system.

3. Discussions

We have utilized the NH equation to explain the integration techniques. The NH equation
is a representative of the Boltzmann-Gibbs dynamics, i.e., an ODE that can directly generate
the Boltzmann-Gibbs distribution or NTV ensemble (Hoover & Holian, 1996). For such a
dynamics, the Nosé-Hoover chain (NHC) equation (Martyna et al. 1992), the Kusnezov,
Bulgac, and Bauer equation (Kusnezov et al. 1990), and the generalized Gaussian moment
thermostat equation (Liu & Tuckerman, 2000) have been developed, along the line of the
generalization of the NH method. Martyna et al. (Martyna et al. 1996) have developed the
numerical algorithms to integrate the NHC equations and generalized the scheme to NTP
ensemble. The current method described so far is also applicable to NTV equations other than
the NH equation and different ensembles, e.g., NTP protocol, including the non-Hamiltonian
method derived by Melchionna et al. (Melchionna et al., 1993), and the generalized ensemble
(Fukuda & Nakamura, 2002) for the Tsallis statistics (Tsallis, 1988). These targets are well
suited to our method, since we have assumed the Liouville equation with B≡− ln ρ and since
they have densities satisfying the Liouville equation.

The Liouville equation is valid in many MD equations. As well as the Liouvillian case, our
scheme is applicable to the locally Liouvillian case such as the Gaussian isokinetic equation
(Hoover et al., 1982; Evans, 1983; Evans et al., 1983; Evans & Morris, 1983). However,
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Fig. 4. Long time behaviours of the invariant shown in Figure 3.

the assumption itself for the validness of the Liouville equation in our method can actually
be removed if we employ the twisting technique (Fukuda & Nakamura, 2006). Using this
technique or its variant, we can apply our method to the system that is not Liouvillian. For
example, non-equilibrium problems, including the heat flow problem, are important targets.
As an alternative method to control the temperature, the equation developed by Berendsen
et al. (Berendsen et al., 1984), which is not Liouvillian to the best of our knowledge, is also a
target of our method. Berendsen’s method is simple, stable, and has been employed by many
researchers to perform e.g., biomolecular simulations. Our protocol is expected to introduce a
systematic efficient scheme also in such a situation.

Note that our protocol is also applicable when the force function defined in the equations
of motion does not correspond to an explicit potential function, such as in the case where
a tabulated force is used (Queyroy et al., 2004). Then, the numerical integration error check
using the ordinary MD protocol (NVE, NTV, etc.) is not sufficient, since the invariants always
use the potential function. However, even in such a situation, our protocol offers a solution
for the consistent numerical integration error check. This is because the function B (in the
definition of the invariant; see Eq. (4)) is an arbitrary function in general and so does not
necessarily require the potential function.

Regarding the technical issues, we note two points. The first point is the multiple
extended-variable formalism developed by Queyroy et al. (Queyroy et al., 2009). Extended
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example, non-equilibrium problems, including the heat flow problem, are important targets.
As an alternative method to control the temperature, the equation developed by Berendsen
et al. (Berendsen et al., 1984), which is not Liouvillian to the best of our knowledge, is also a
target of our method. Berendsen’s method is simple, stable, and has been employed by many
researchers to perform e.g., biomolecular simulations. Our protocol is expected to introduce a
systematic efficient scheme also in such a situation.

Note that our protocol is also applicable when the force function defined in the equations
of motion does not correspond to an explicit potential function, such as in the case where
a tabulated force is used (Queyroy et al., 2004). Then, the numerical integration error check
using the ordinary MD protocol (NVE, NTV, etc.) is not sufficient, since the invariants always
use the potential function. However, even in such a situation, our protocol offers a solution
for the consistent numerical integration error check. This is because the function B (in the
definition of the invariant; see Eq. (4)) is an arbitrary function in general and so does not
necessarily require the potential function.

Regarding the technical issues, we note two points. The first point is the multiple
extended-variable formalism developed by Queyroy et al. (Queyroy et al., 2009). Extended
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phase-space volume-preserving integrator should keep the volume of the extended space
spanned by the original variables ω1, ...., ωN and the extended variable v. Sometimes, the
subspace volume change derived by the former variables is very large, which is emphasized
as the system size n is large. In such a case, to compensate the large change, the single
extended variable v takes a very large or very small absolute value, as seen in the mapping

v → e(nζ/Q)tv by Φ[4]
t n the NH equation. This situation can be avoided by the multiple

extended-variable formalism, where v1, ...., vM are used instead of v (practically M = n).

The second point is the order of appearance of each map for constructing the basic first order
integrator. The first order integrator, Eq. (29), has an arbitrariness for the permutation of

Φ[1]
t , Φ[2]

t , · · · , Φ[L]
t , since the decomposition (15) is independent of the order of appearance

of each vector field. Regarding the local accuracy, any permutation gives the same order
of accuracy in a mathematical sense. However, other properties may be distinguishable in
general (e.g., historically, the difference between the velocity Verlet and the position Verlet
was discussed). For instance, the long-time behaviour and the robustness would be changed
by the permutation. Further, they also depend on the physical system (particle interaction,
the number of degrees of freedom, etc.) and the equations of motion (ensembles, system
parameters including temperature and pressure, etc.). Thus we require more studies to clarify
these issues. The cost of the force evaluation is critical in MD, and the number of force
evaluations during a unit period should be small. This number depends on the permutation,
in general (but the maps (25) in the NH equation is not the case, and the number is always
once in the unit map Φh1

◦ Φ∗
h2

in Eq. (33)). Thus the permutation yielding a small number is
preferable.

So far, we have considered the volume-preserving property of the integrator in the extended
phase space. Considering further the measure-preserving property in the original phase space
will be of great value to the improvement of the integration. Moreover, the difficulty we
should surmount is the resonance phenomena (see e.g., Schlick, 2006), which disturbs the use
of larger unit time step.

4. Acknowledgments

This research was supported by Research and Development of the Next-Generation Integrated
Simulation of Living Matter, a part of the Development and Use of the Next-Generation
Supercomputer Project of the Ministry of Education, Culture, Sports, Science and Technology
of Japan.

5. References

[1] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, & J. R. Haak (1984).
Molecular-dynamics with coupling to an external bath, J. Chem. Phys. 81: 3684-3690.

[2] Y. Choquet-Bruhat, C. Dewitt-Morette, & M. Dillard-Bleick (1982). Analysis, Manifolds and
Physics, Part I, Rev. ed., North-Holland, Amsterdam.

[3] D. J. Evans (1983). Computer “experiment” for nonlinear thermodynamics of Couette
flow, J. Chem. Phys. 78: 3297-3302.

[4] D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, & A.J. C. Ladd (1983). Nonequilibrium
molecular dynamics via Gauss’s principle of least constraint, Phys. Rev. A 28: 1016-1021.

[5] D. J. Evans & G. P. Morris (1983). Phys. Lett. 98A: 433.

54 Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy Numerical Integration Techniques Based on a Geometric View and Application to Molecular Dynamics Simulations 13

[6] G. S. Ezra (2006). Reversible measure-preserving integrators for non-Hamiltonian
systems, J. Chem. Phys. 125: 034104.

[7] I. Fukuda & H. Nakamura (2002). Tsallis dynamics using the Nosé-Hoover approach,
Phys. Rev. E 65: 026105.

[8] I. Fukuda & H. Nakamura (2004). Efficiency in the generation of the Boltzmann-Gibbs
distribution by the Tsallis dynamics reweighting method, J. Phys. Chem. B 108: 4162-4170.

[9] I. Fukuda & H. Nakamura (2006). Construction of an extended invariant for an arbitrary
ordinary differential equation with its development in a numerical integration algorithm,
Phys. Rev. E 73: 026703.

[10] E. Hairer, C. Lubich, & G. Wanner (2002). Geometric Numerical Integration,
Springer-Verlag, Berlin.

[11] W. G. Hoover, A. J. C. Ladd, & B. Moran (1982). High-strain-rate plastic flow studied via
nonequilibrium molecular dynamics, Phys. Rev. Lett. 48: 1818-1820.

[12] W. G. Hoover (1985). Canonical dynamics: Equilibrium phase-space distributions, Phys.
Rev. A 31: 1695-1697.

[13] Wm. G. Hoover (1991). Computational Statistical Mechanics, Elsevier, N.Y.
[14] W. G. Hoover & B. L. Holian (1996). Kinetic moments method for the canonical ensemble

distribution, Phys. Lett. A 211: 253-257.
[15] D. Husemoller (1966). Fibre Bundles, second edition, Springer, N.Y.
[16] F. Kang & S. Zai-jiu (1995). Volume-preserving algorithms for source-free dynamical

systems, Numer. Math. 71: 451-463.
[17] D. Kusnezov, A. Bulgac, & W. Bauer (1990). Canonical ensembles from chaos, Ann. Phys.

(N.Y.) 204: 155-185.
[18] Y. Liu & M. E. Tuckerman (2000). Generalized Gaussian moment thermostatting: A new

continuous dynamical approach to the canonical ensemble, J. Chem. Phys. 112: 1685-1700.
[19] G. J. Martyna, M. L. Klein, & M. Tuckerman (1992). Nosé-Hoover chains: The canonical

ensemble via continuous dynamics, J. Chem. Phys. 97: 2635.
[20] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, & M. L. Klein (1996). Explicit reversible

integrators for extended systems dynamics, Mol. Phys. 87: 1117-1157.
[21] R. I. McLachlan & P. Atela (1992). The accuracy of symplectic integrators, Nonlinearity 5:

541-562.
[22] R. I. McLachlan (1995). On the numerical integration of ordinary differential equations

by symmetric composition methods, SIAM J. Sci. Comput. 16: 151-168.
[23] S. Melchionna, G. Ciccotti, & B. L. Holian (1993). Hoover NPT dynamics for systems

varying in shape and size, Mol. Phys. 78: 533-544.
[24] S. Nosé (1984). A unified formulation of the constant temperature molecular dynamics

methods, J. Chem. Phys. 81: 511-519.
[25] S. Nosé (1991). Constant temperature molecular dynamics methods, Prog. Theor. Phys.

Suppl. 103: 1-46.
[26] D. I. Okunbor (1995). Energy conserving, Liouville, and symplectic integrators, J. Comp.

Phys. 120: 375-378.
[27] S. Queyroy, S. Neyertz, D. Brown, & F. Müller-Plathe (2004). Preparing relaxed systems of

amorphous polymers by multiscale simulation: Application to cellulose, Macromolecules
37: 7338-7350.

[28] S. Queyroy, H. Nakamura & I. Fukuda (2009). Numerical examination of the extended
phase-space volume-preserving integrator by the Nosé-Hoover molecular dynamics
equations, J. Comput. Chem. 30: 1799-1815.

55
Numerical Integration Techniques Based on a 
Geometric View and Application to Molecular Dynamics Simulations



12 Will-be-set-by-IN-TECH

phase-space volume-preserving integrator should keep the volume of the extended space
spanned by the original variables ω1, ...., ωN and the extended variable v. Sometimes, the
subspace volume change derived by the former variables is very large, which is emphasized
as the system size n is large. In such a case, to compensate the large change, the single
extended variable v takes a very large or very small absolute value, as seen in the mapping

v → e(nζ/Q)tv by Φ[4]
t n the NH equation. This situation can be avoided by the multiple

extended-variable formalism, where v1, ...., vM are used instead of v (practically M = n).
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Φ[1]
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t , · · · , Φ[L]
t , since the decomposition (15) is independent of the order of appearance

of each vector field. Regarding the local accuracy, any permutation gives the same order
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in Eq. (33)). Thus the permutation yielding a small number is
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So far, we have considered the volume-preserving property of the integrator in the extended
phase space. Considering further the measure-preserving property in the original phase space
will be of great value to the improvement of the integration. Moreover, the difficulty we
should surmount is the resonance phenomena (see e.g., Schlick, 2006), which disturbs the use
of larger unit time step.

4. Acknowledgments

This research was supported by Research and Development of the Next-Generation Integrated
Simulation of Living Matter, a part of the Development and Use of the Next-Generation
Supercomputer Project of the Ministry of Education, Culture, Sports, Science and Technology
of Japan.

5. References

[1] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, & J. R. Haak (1984).
Molecular-dynamics with coupling to an external bath, J. Chem. Phys. 81: 3684-3690.

[2] Y. Choquet-Bruhat, C. Dewitt-Morette, & M. Dillard-Bleick (1982). Analysis, Manifolds and
Physics, Part I, Rev. ed., North-Holland, Amsterdam.

[3] D. J. Evans (1983). Computer “experiment” for nonlinear thermodynamics of Couette
flow, J. Chem. Phys. 78: 3297-3302.

[4] D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, & A.J. C. Ladd (1983). Nonequilibrium
molecular dynamics via Gauss’s principle of least constraint, Phys. Rev. A 28: 1016-1021.

[5] D. J. Evans & G. P. Morris (1983). Phys. Lett. 98A: 433.

54 Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy Numerical Integration Techniques Based on a Geometric View and Application to Molecular Dynamics Simulations 13

[6] G. S. Ezra (2006). Reversible measure-preserving integrators for non-Hamiltonian
systems, J. Chem. Phys. 125: 034104.

[7] I. Fukuda & H. Nakamura (2002). Tsallis dynamics using the Nosé-Hoover approach,
Phys. Rev. E 65: 026105.

[8] I. Fukuda & H. Nakamura (2004). Efficiency in the generation of the Boltzmann-Gibbs
distribution by the Tsallis dynamics reweighting method, J. Phys. Chem. B 108: 4162-4170.

[9] I. Fukuda & H. Nakamura (2006). Construction of an extended invariant for an arbitrary
ordinary differential equation with its development in a numerical integration algorithm,
Phys. Rev. E 73: 026703.

[10] E. Hairer, C. Lubich, & G. Wanner (2002). Geometric Numerical Integration,
Springer-Verlag, Berlin.

[11] W. G. Hoover, A. J. C. Ladd, & B. Moran (1982). High-strain-rate plastic flow studied via
nonequilibrium molecular dynamics, Phys. Rev. Lett. 48: 1818-1820.

[12] W. G. Hoover (1985). Canonical dynamics: Equilibrium phase-space distributions, Phys.
Rev. A 31: 1695-1697.

[13] Wm. G. Hoover (1991). Computational Statistical Mechanics, Elsevier, N.Y.
[14] W. G. Hoover & B. L. Holian (1996). Kinetic moments method for the canonical ensemble

distribution, Phys. Lett. A 211: 253-257.
[15] D. Husemoller (1966). Fibre Bundles, second edition, Springer, N.Y.
[16] F. Kang & S. Zai-jiu (1995). Volume-preserving algorithms for source-free dynamical

systems, Numer. Math. 71: 451-463.
[17] D. Kusnezov, A. Bulgac, & W. Bauer (1990). Canonical ensembles from chaos, Ann. Phys.

(N.Y.) 204: 155-185.
[18] Y. Liu & M. E. Tuckerman (2000). Generalized Gaussian moment thermostatting: A new

continuous dynamical approach to the canonical ensemble, J. Chem. Phys. 112: 1685-1700.
[19] G. J. Martyna, M. L. Klein, & M. Tuckerman (1992). Nosé-Hoover chains: The canonical

ensemble via continuous dynamics, J. Chem. Phys. 97: 2635.
[20] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, & M. L. Klein (1996). Explicit reversible

integrators for extended systems dynamics, Mol. Phys. 87: 1117-1157.
[21] R. I. McLachlan & P. Atela (1992). The accuracy of symplectic integrators, Nonlinearity 5:

541-562.
[22] R. I. McLachlan (1995). On the numerical integration of ordinary differential equations

by symmetric composition methods, SIAM J. Sci. Comput. 16: 151-168.
[23] S. Melchionna, G. Ciccotti, & B. L. Holian (1993). Hoover NPT dynamics for systems

varying in shape and size, Mol. Phys. 78: 533-544.
[24] S. Nosé (1984). A unified formulation of the constant temperature molecular dynamics

methods, J. Chem. Phys. 81: 511-519.
[25] S. Nosé (1991). Constant temperature molecular dynamics methods, Prog. Theor. Phys.

Suppl. 103: 1-46.
[26] D. I. Okunbor (1995). Energy conserving, Liouville, and symplectic integrators, J. Comp.

Phys. 120: 375-378.
[27] S. Queyroy, S. Neyertz, D. Brown, & F. Müller-Plathe (2004). Preparing relaxed systems of

amorphous polymers by multiscale simulation: Application to cellulose, Macromolecules
37: 7338-7350.

[28] S. Queyroy, H. Nakamura & I. Fukuda (2009). Numerical examination of the extended
phase-space volume-preserving integrator by the Nosé-Hoover molecular dynamics
equations, J. Comput. Chem. 30: 1799-1815.

55
Numerical Integration Techniques Based on a 
Geometric View and Application to Molecular Dynamics Simulations



14 Will-be-set-by-IN-TECH

[29] G. R. W. Quispel (1995). Volume-preserving integrators, Phys. Lett. A 206: 26-30.
[30] G. R. W. Quispel & C. P. Dyt (1998). Volume-preserving integrators have linear error

growth, Phys. Lett. A 242: 25-30.
[31] R. D. Ruth (1983). A canonical integration technique, IEEE Trans. Nucl. Sci. NS-30:

2669-2671.
[32] J. M. Sanz-Serna (1992). Symplectic integrators for Hamiltonian problems: an overview,

Acta Numerica 1: 243-286.
[33] T. Schlick (2006). Molecular Modeling and Simulation, Springer-Verlag, Berlin.
[34] C. Tsallis (1988). Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52:

479-487.
[35] M. Tuckerman, B. J. Berne, & G. J. Martyna (1992). Reversible multiple time scale

molecular-dynamics, J. Chem. Phys. 97: 1990-2001.
[36] H. Yoshida (1990). Construction of higher order symplectic integrators, Phys. Lett. A 150:

262-268.
[37] S. Zai-jiu (1994). Construction of volume-preserving difference-schemes for source-free

systems via generating-functions, J. Comp. Math. 12: 265-272.

56 Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy

0

Application of Molecular Dynamics
Simulation to Small Systems

Víctor M. Rosas-García and Isabel Sáenz-Tavera
Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León,

San Nicolás de los Garza, N. L.
México

1. Introduction

The study of chemical behavior includes answering questions as ’which isomer is the most
stable?’, ’which relative orientation is the most favorable for such-and-such interaction?’,
’which conformer is the global minimum?’, ’what are the lowest energy configurations and
their relative energies?’. The answer to these questions–and many others–depends on the
ability to find and study a variety of configurations of the system of interest. Recently,
(Atilgan, 2007) briefly reviewed the use of molecular dynamics simulation for conformational
search in the process of drug design, concluding that its use could reduce the errors in
estimating binding affinities and finding more viable conformations. In addition, (Corbeil,
2009) considered the need to include ring flexibility in the conformational searches used in
flexible docking. Most of the flexible docking algorithms skip searching for conformations in
rings, even though a protein may stabilize a conformation other than the most stable one.

The need for a tool to examine the diverse configurations of the constituent particles of
a system becomes obvious even as we consider relatively small systems (10-100 atoms).
Finding by hand all the conformers of cyclohexane is feasible and maybe even instructive;
this is somewhat more complex when doing morpholine and even something as small as
an eight-membered heterocycle can be prohibitively complex to analyze by manipulating
molecular models by hand. One of the methods available to the researcher to tackle this
kind of problem is Molecular Dynamics (MD) simulation. MD allows an exploration of the
configurational space of a system, respecting chemical constraints. Chemical constraints–such
as atomic connectivities–are needed in cases such as conformations of molecular rings and
configurations of molecular clusters, e.g., solvation shells. In both cases, atomic connectivities
must be kept intact, otherwise we risk breaking up the ring or the molecular constituents
of the cluster. In our research group we routinely employ MD simulation, sometimes in its
semiempirical variety, to study small systems (systems with fewer than 100 atoms) whether
they be solvation shells, inorganic clusters or heterocycles.

This review is narrowly focused on current software and methods appropriate for doing MD
simulations of small heterocycles and clusters composed of 10-100 molecules. In particular,
we try to systematize the tools available to tackle the problem of searching for minima in
heterocycles and in molecular clusters. We want to use MD simulations as a tool to explore the
energy landscape of a small system, so we can locate the global minimum. We do not include
the vast literature simulating water solvation by MD. Even though the aggregates of water
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an eight-membered heterocycle can be prohibitively complex to analyze by manipulating
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configurations of molecular clusters, e.g., solvation shells. In both cases, atomic connectivities
must be kept intact, otherwise we risk breaking up the ring or the molecular constituents
of the cluster. In our research group we routinely employ MD simulation, sometimes in its
semiempirical variety, to study small systems (systems with fewer than 100 atoms) whether
they be solvation shells, inorganic clusters or heterocycles.

This review is narrowly focused on current software and methods appropriate for doing MD
simulations of small heterocycles and clusters composed of 10-100 molecules. In particular,
we try to systematize the tools available to tackle the problem of searching for minima in
heterocycles and in molecular clusters. We want to use MD simulations as a tool to explore the
energy landscape of a small system, so we can locate the global minimum. We do not include
the vast literature simulating water solvation by MD. Even though the aggregates of water
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molecules around a solute can be considered clusters, we focus our attention on non-water
clusters and we only borrow some tools for our purposes.

When MD is based on molecular mechanics force-fields, it cannot model bond
breaking-forming processes. For these cases, there are mixed methods such as Quantum
Mechanics/Molecular Mechanics (QM/MM), where the bond breaking and formation
is taken care of by the quantum mechanical part, while everything else is handled
by the molecular mechanics/dynamics part. Another method that considers bond
breaking-formation is Car-Parrinello Molecular Dynamics, where the electrons are also
considered particles in the dynamics. Such methods are beyond the scope of this chapter.

2. Basic concepts of molecular dynamics simulation

Let us imagine a container (an imaginary box) with a finite number of particles. These particles
move about the box at varying velocities (both speed and direction can vary), continuously
colliding and bouncing off each other. The trajectories of the particles, taken as a set, contain
valuable physical information. For example, if the particles interact with each other, making
the particles move more slowly (equivalent to lowering the temperature) the interaction may
allow the particles to associate and form a liquid. In a condensed phase, collisions happen
more often, and the distance a particle can travel before colliding is much shorter than in
the gas phase. It follows that, the movements of the particles correspond to the state of the
system. It is by analyzing trajectories that we can compute properties. One can also hope that
the results of such analysis will yield physical insight about the behavior of a system. For a
full introduction to MD simulation see the book by Haile(Haile, 1992). It is of the foremost
importance to have a correct description of the interactions between the particles.

2.1 Is MD ready for general consumption?

For a long time, MD simulation has been the province of specialists, and the literature is still
packed with obscure vocabulary and long descriptions of complicated algorithms. All these
are necessary when the purpose is the calculation of dynamical macroscopic properties of the
system, such as viscosities, surface tensions or rheological properties. Unfortunately, finding
such a scenario can put off the non-specialist that does not want to become an expert in the
theory of molecular dynamics before attempting some configurational search.

When narrowly restricted to the task of configurational search, we can prescind with many
of the details like periodic boundary conditions, equilibration, thermostats and the like. In
addition, the field has produced software packages increasingly friendly to the user so, doing
a MD simulation becomes just a little harder than using a molecular visualization program.

2.2 Description of the interactions

Every MD simulation depends on specifying an interaction model, that is, some analytical
function that calculates the energy of interaction between the particles of a system (a
potential). The Lennard-Jones (L-J) potential is probably the most popular potential in MD
studies, (eq 1)

VLJ(r) = 4ε
( σ

r12

)
−

( σ

r6

)
(1)

where σ is the particle diameter, ε is the depth of the energy well and r is the distance between
the centers of the particles. σ and ε are determined empirically, to fit observed properties of the
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system of interest, such as boiling point or density, to name a few. The L-J potential illustrates
one of the main stumbling blocks faced by the simulator, that is, the need to determine values
of empirical parameters, so the simulation has physical meaning.

The L-J potential as such is of little use in chemical systems because it does not consider
chemically important bonds, such as covalent or hydrogen bonds. To take into account the
intramolecular interactions, as well as the intermolecular interactions, the potential has to
be defined in terms of the bond lengths, bond angles and torsions present in the molecule
(its internal coordinates). When the potential energy functions are defined in terms of the
molecular internal coordinates, the potential function is called a ’force-field’(Engler, 1973).
There are many force-fields available for simulation of chemical systems: AMBER(Case, 2005;
2010; Pearlman, 1995), CHARMM(Brooks, 2009), MM3(Allinger, 1989), OPLS(Jorgensen, 1988)
and TRIPOS(Clark, 1989), among others. In a MD simulation we use the force-field together
with the equations of motion to obtain the dynamic behavior of the system (the trajectories of
the particles).

2.3 Description of the trajectories

The MD algorithm is a way to compute such trajectories and analyze them to extract
physical information about a system. How do we describe the particle trajectories? At any
given moment, each particle can be described in tridimensional space by 3 numbers, the
x-coordinate, the y-coordinate, the z-coordinate. Since we are interested in the trajectories, we
need to know the location of a particle and where it is headed at each point in time. So, we also
need the momenta along each axis: px, py and pz. The first three numbers (XYZ coordinates)
are known as configuration space; while the three momenta define the momentum space. Taken
together they form the phase space. In the same way that a set of values for XYZ coordinates
defines a point in configuration space, any set of values for these 6 coordinates (three XYZ and
three momenta) defines a point in phase space. Inasmuch as both the positions and momenta
depend on the time, as time changes the phase space coordinates also change, thus defining a
trajectory in phase space. So a MD simulation is about computing the trajectories of particles
in phase space.

Fig. 1. Phase space coordinates of a particle with position in x,y,z and momenta px, py, pz
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Fig. 1. Phase space coordinates of a particle with position in x,y,z and momenta px, py, pz
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2.4 Calculation of the trajectories

The forces acting on that particle dictate where a particle is located in space and its direction
of movement at each point in time. The classical way to deal with forces uses Newton’s laws
of motion. The first law states that "every object persists in its state of rest or uniform motion
in a straight line unless it is compelled to change that state by forces impressed on it". So, if r
is a vector that contains the particle coordinates at a given moment, and its first derivative
with respect to time (its velocity) is symbolized by ṙ, then the first law of motion can be
mathematically expressed as

ṙ = constant (2)

keeping in mind that quantities written in bold are vectors.

The second law of motion states that "force is equal to the change in momentum (mV) per
change in time. For a constant mass, force equals mass times acceleration". If F is the force,
m is the particle mass, and r̈ indicates a second derivative of position with respect to time (or
the first derivative of velocity with respect to time), then r̈ corresponds to an acceleration. The
second law can be mathematically expressed as follows,

F = mr̈ (3)

The third law states that "For every action, there is an equal and opposite re-action". Assuming
an isolated system of identical particles, where the total net force, Ftotal , is zero, Ftotal = 0, then
any force exerted by particle 1 on particle 2, F1, is compensated by an equal and opposite force,
F2, exerted by particle 2 on particle 1. Using the same notation, this law can be expressed as,

F1 = −F2 (4)

To calculate the trajectory in phase space, a MD simulation relies on solving Newton’s
equations of motion. We just need to use a slightly modified notation. Since we need to
keep track of each particle, we use subindices, just as we did for the two particles used in the
third law

Fi = mi r̈i (5)

We now turn our attention to an interesting fact: the trajectories depend on time, but the
mathematical form of the second law (see equation 3 is time-independent, that is, at any
moment the relationship between forces, masses and accelerations is expressed by the same
formula. So we expect to find a quantity that remains constant with time for the whole system
of particles. In an isolated system, the total energy is constant with time, so this means that
the sum of kinetic and potential energies for all the particles in the system is constant. This
invariant quantity is also known as the Hamiltonian. The kinetic energy for each particle can
be expressed by

Eki =
1
2

mi ṙi (6)

while the potential energy is calculated according the the model for description of the
interactions, such as the Lennard-Jones potential (see equation 1), although it could be any
of the force-fields available in the literature. So the form of the equation for the total energy
might be

Etotal = Eki + Epoti = Σi
1
2

mi ṙi + ΣiΣj4ε
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where the new variable rij denotes the center-to-center distance between each pair of particles.
This formidable-looking equation tells us that the total energy is calculated by adding the
contribution of each particle and of each pair of particles to the kinetic and potential energy,
respectively.

Once an initial configuration of atoms is specified and values for location and momenta have
been assigned to each atom in the system, the system is allowed to evolve as time progresses.
This evolution causes a redistribution of energy, and allows the formation of an energy
distribution characteristic of the temperature. This step is known as equilibration. The key
step in the calculation of an equilibrated distribution is the determination of the time between
collisions and the pairs of colliding particles, because the collisions are the ones responsible
for the energy redistribution. After the system has achieved equilibration, we can register
the trajectories of the particles. This is the simulation step, and it is the only stage when the
trajectories have physical meaning. Once the trajectories have been calculated, properties can
be estimated, as long as they can be formulated as averages over time. In dealing with small
systems, let us say, macrocycles, we do not expect ever to achieve equilibration, because all
the atoms that form the system have restrictions on them that preclude an accurate calculation
of the parameters that indicate equilibrium.

All the calculations are performed using finite-difference methods, of which Runge-Kutta
is probably the best known, although the Runge-Kutta family of methods finds little use in
MD simulations because of the large computational demands. One of the most widely used
finite-difference methods is Verlet’s algorithm, a third-order Störmer algorithm. It is not as
stable as a Runge-Kutta, but its computational demands are much lower.

2.5 Keeping the system in one piece

Each atom has its own velocity, which could take it in a direction very different from that of
the other atoms so, what happens when a particle, atom or molecule, moves far away from
the others? The usual way to deal with this problem is to employ periodic boundary conditions
(PBC). In PBC we formally consider the system as made up by multiple copies of itself along
all three X, Y, and Z axes. With this setup, if a particle wanders far enough from the others in
one direction as to be located outside the box that contains the particles, another, identical,
particle comes into the system from the opposite direction, bearing the same velocity. In
general, when dealing with a single molecule–within the molecular mechanics formalism–we
do not have to worry about losing atoms, because all the atoms are connected by chemical
bonds, and molecular mechanics does not allow for bond breaking. In the case of clusters, it
is conceivable that a single group (either a neutral molecule or an ion) might wander off the
box limits, but that could give us information about the intensity of the interaction and about
the optimum equilibrium geometry.

2.6 Simulated annealing

Simulated annealing is a technique able to locate the global minimum of a system of particles.
The concept is obtained by analogy with the process of annealing a metal, where the metal
is heated to high temperature and then suddenly cooled down by submersion in water. By
raising the temperature of the system, it leaves the local minimum where we happened to
find it (or build it), and is able to sample the configuration space so it can find another energy
minimum when lowering the temperature. Hopefully the new energetic minimum will be
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stable as a Runge-Kutta, but its computational demands are much lower.

2.5 Keeping the system in one piece

Each atom has its own velocity, which could take it in a direction very different from that of
the other atoms so, what happens when a particle, atom or molecule, moves far away from
the others? The usual way to deal with this problem is to employ periodic boundary conditions
(PBC). In PBC we formally consider the system as made up by multiple copies of itself along
all three X, Y, and Z axes. With this setup, if a particle wanders far enough from the others in
one direction as to be located outside the box that contains the particles, another, identical,
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general, when dealing with a single molecule–within the molecular mechanics formalism–we
do not have to worry about losing atoms, because all the atoms are connected by chemical
bonds, and molecular mechanics does not allow for bond breaking. In the case of clusters, it
is conceivable that a single group (either a neutral molecule or an ion) might wander off the
box limits, but that could give us information about the intensity of the interaction and about
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Simulated annealing is a technique able to locate the global minimum of a system of particles.
The concept is obtained by analogy with the process of annealing a metal, where the metal
is heated to high temperature and then suddenly cooled down by submersion in water. By
raising the temperature of the system, it leaves the local minimum where we happened to
find it (or build it), and is able to sample the configuration space so it can find another energy
minimum when lowering the temperature. Hopefully the new energetic minimum will be
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lower in energy than the previous one. In a MD simulation, we can maintain the system at
high temperature (even unrealistically high temperatures, like 2000 K) and then the system
temperature is reduced. This adds a cooling step to the simulation.

3. Software that implements molecular dynamics simulation

AMBER(Case, 2005; 2010; Pearlman, 1995) designates two different things: a force-field and
a package for MD simulation. AMBER the package uses AMBER the force-field for its
calculations, but it is entirely possible to use AMBER the force-field in a non-AMBER package,
such as GROMACS or CHARMM. Beware, though, that using the same force-field in two
different packages will not necessarily get identical results. AMBER the package is currently
in version 11. Its learning curve is steep. It is possible to simulate small species, with at least
one tutorial showing how to do it.

CHARMMBrooks (2009) also shares the situation of AMBER, in that the name designates
both a force-field and a computational engine for MD simulation. It is also possible to use
CHARMM the force-field in a non-CHARMM engine. Similar caveats apply, although these
authors could not find any information on using CHARMM for small molecules.

Gabedit(Allouche, 2011) makes quantum chemistry software accessible to the novice modeller.
It presents to the user a rather limited array of options, making for a less confusing experience.
On the other hand, this means that to take full advantage of the capabilities of the quantum
chemistry software, the user needs to be well versed in the respective manuals. Gabedit
can perform MD simulations by itself, using the AMBER99 force-field. It can also setup MD
simulations using semiempirical quantum mechanical energy evaluations, and submit them
to a variety of computational engies, such as MOPAC2009(Stewart, 2009), ORCA(Radoul,
2010) or FireFly(Granovsky, 2011). When using quantum-mechanical energy evaluations, the
user should keep in mind that these methods allow for bond breaking and formation, so it is
entirely possible to end up with an isomerized structure.

Ghemical(Hassinen, 2001) can perform MD simulations, and defines a graphical user interface
for this. It has a convenient facility to generate water solvation boxes. The user has to make
sure that the force-field contains appropriate parameters. New parameters can be added by
editing some configuration files. Its graphical user interface makes Ghemical very accessible
to the beginning modeller.

GROMACS(Berendsen, 1995; Hess, 2008; Lindahl, 2001; van der Spoel, 2005) is a molecular
dynamics software tailored to simulations with hundreds of millions of particles. It is certainly
not made with the novice user in mind, and its learning curve is steep. However, it is an
extremely fast computational engine. It is not recommended for dynamics of small species
because then the advantages of the fast computation are lost, and because it is command-line
based. Building the required topology before running the simulation can be daunting to a
novice.

AMBER, CHARMM and GROMACS are tailored towards simulation of bio-macromolecules,
and the force-fields included reflect this. They contain force-fields highly optimized for
aminoacids or nucleotides or carbohydrates.

HyperChem(Hyperchem, 2011) is a commercial software product has a module for MD
simulation, in addition to ab initio, density functional and semiempirical capabilities. It can
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simulate chemical reactions by molecular dynamics, because it is not limited to molecular
mechanics parameters.

MacroModel(Mohamadi, 1990) is a well-developed molecular dynamics package for
biomolecules, and it includes a polished interface known as Maestro.

TINKER(Ponder, 2011) is a molecular dynamics package created and maintained by the group
of Jay W. Ponder. It employs molecular mechanics and currently lacks a graphical user
interface. Its learning curve is somewhat steep.

VASP(Kresse, 1993; 1994; 1996a;b) seems to be very popular in the metal clusters community.
It can do MD simulations using density functional theory (considered as part of Ab Initio
Molecular Dynamics) and its use does require the skills of an expert computational chemist.

4. Conformational analysis of heterocycles

It is well known that MD is a very inefficient way to search for minima in large rings(Saunders,
1990). However, it should not be underestimated for searches in medium and small rings
(rings < 10 atoms). The use of MD simulations for conformational search is in large part
favored by convenience, given that many different software programs include it.

Isayev et al.(Isayev, 2007) claim that the pyrimidine ring in nucleic acid bases has a range
of effective non-planar conformations under ambient conditions. Saiz et al.(Saiz, 1996)
demonstrated that MD simulation with the Tripos force-field was good at reproducing the
conformational behavior of a dioxo ring in aqueous solution. Rosas-García et al.(Rosas-Garcia,
2010) studied conformations of fosforinanes using MD simulations in Ghemical, although
some parameters had to be determined at the Hartree-Fock level (basis set 6-31G*). An
extensive search by MD found all the conformers for two diastereomers, and a comparison of
the global minima allowed to explain why the axial preference of the phenyl ring was linked
to the relative configuration of the stereocenters in the molecule.

Sometimes a side chain can modify the conformational behavior of small rings, like the case of
Tosco et al. (Tosco, 2008) who used MD simulations in CHARMM to do conformational search
on a series of cyclic oxadiazolol, and thiadiazolol isosteres of carboxylate, where most of the
conformational freedom came from the side chain attached to the ring. A similar case is that
of Bombasaro et al.(Bombasaro, 2008) who used GROMACS in combination with a systematic
grid conformational search to study bullacin. Bullacin contains three five-membered rings,
with one 11-carbon side chain, and two rings joined by a 12-carbon chain (see Figure 2).

Regarding structures with fused rings, Aleksandrov and Simonson(Aleksandrov, 2006; 2009)
reported development of CHARMM22 parameters (employing the TIP3P(Jorgensen, 1983)
model for water) for several tetracycline derivatives and a tetracycline/Mg2+ complex (see
the structure in Figure 2). Tetracyclines exist in two conformations, twisted and extended.
In this case the interest was not so much the conformational variety but the possibility of
several protonation sites, and the uncertainty of the binding sites for metals such as Mg2+.
They employed TINKER and the MM3 force-field for MD/simulated annealing. On the other
hand, Kiliç et al.(Kiliç, 2000) found out by simulations using quantum MD that cubane and
their group 14 analogs can convert to eight-membered rings at high temperature.
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Fig. 2. Some heterocycles and fused cycles studied by molecular dynamics simulations.
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5. Configurational search of clusters by molecular dynamics simulation

A lot of work on clusters is based on atomic clusters. In this case it may suffice to develop
a random-placement algorithm to generate structural variety. Many researchers have taken
this route. Chen et al.(Chen, 2011) employed VASP to study clusters of metal carbides.
They first generated a variety of Ca8 clusters and used step-wise addition of carbon atoms
and geometry optimization after each step. MD simulations were used to evaluate the
thermodynamic stability of several cage structures. The presence of only small distortions
in the cage structures at 400 K was taken as evidence of their thermodynamic stability. Fujima
and Oda employed VASP to study titanium clusters adsorbed on a single wall nano-capsule.
There is no description of the parameters used in the MD calculations (temperature, time
step, total simulation time or any others). The only configurational searching took place
by putting Ti atoms on different adsorption sites on the carbon wall and doing geometry
optimization. Given that they attempted to maximize the contact area between the cluster
and the nano-wall, such approach seems justified(Fujima, 2009). Jian-Song and Li(Jiang-Song,
2010) did a configurational search for Ga7As7 clusters by randomly choosing points in space
from a tridimensional box, cage or sphere, applying distance constraints to keep the atoms
at chemically reasonable distances. This is not MD, and they had to generate thousands
of structures, although the original paper is sketchy on the details of how many structures
were generated. It could well be that the imposed distance constraints biased the resulting
structures. This method does have the advantage of not requiring force-field parameters
for generating the structures. Jiménez-Sáez(Jiménez-Sáez, 2006) studied the equilibrium
structures of copper clusters as a function of the kinetic energy of deposition on a gold surface.
For the starting geometries, no configurational search was done. The configurations of the
deposited clusters were analyzed in terms of the deformation produced as the kinetic energy
of deposition varied. Kuzmin et al.(Kuzmin, 2008) used software developed in-house to study
configurations of silver clusters using MD simulations with the embedded atom model on
clusters between 13 and 2057 atoms. They used temperatures between 0 and 1300 K. Li et
al.(Li, 2007) used full-potential linear-muffin-tin-orbital MD (FP-LMTO-MD) calculations to
study the effect of Al impurities on Si clusters. The method is suitable for semiconductor and
metal clusters. As for the generation of the initial structures, the authors took the reported
ground states of the silicon clusters and added or substituted Al atoms in all possible positions
of each cluster. Yang and Xiong(Yang, 2008) used a similar method to generate the initial
geometries for FeBn clusters. So there appears to be a need for more systematically searching
the configurational space of clusters.

In our literature review, we found only one recent example of a configurational search on
a cluster using MD simulations, that of Chandrachud et al.(Chandrachud, 2009). These
researchers employed VASP to study gold cages using Born-Oppenheimer MD to generate
initial configurations. They did MD runs at four different constant temperatures, for
60 ps each, obtaining 600 structures (150 for each constant temperature run). Geometry
optimization of these structures yielded 50 distinct isomeric clusters.

Clusters are not limited to groups of separate individual particles like in the case of
metal clusters. When we have polyatomic species involved in cluster formation, it
becomes important to maintain chemical bonds intact. Shiroishi et al.(Shiroishi, 2005) used
Car-Parrinello Molecular Dynamics to study iron oxide clusters. Doll et al.(Doll, 2010) used
Ab Initio Molecular Dynamics calculations to study clusters of lithium fluoride. They used a
two-part protocol: first generation of candidate structures by means of simulated annealing at
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a low level of theory (Hartree-Fock) and, second, optimization of the obtained structures using
the Local Density Approximation. Takayanagi(Takayanagi, 2008) studied clusters of solvated
glycine using the PM6 Hamiltonian. Their semiempirical MD simulations were performed at
300 K, and the initial geometries were taken from previously reported higher-level results and
reoptimized using PM6. They observed dissociation of the proton from a carboxylate group,
although could not observe formation of the zwitterion. In our group we have studied calcium
carbonate clusters(Rosas-Garcia, 2011), and we have explored the configurational space by
means of semiempirical MD simulations, using the PM6 Hamiltonian in MOPAC2009. Pang
et al.(Pang, 1994) studied inclusion compounds in cycloalkanes by simulated annealing using
HyperChem using the MM+ force-field (a variant of MM2. We cannot recommend the use
of MM+ due to the lack of a published description of the modifications) and varying the
temperature from 300 to 1000 K in 100 K increments. The dynamics revealed that there was
orientational flexibility within the cycle and that the interconversion barriers were as low as 1
kcal/mole.

6. How to run a basic simulation

Setting up the run is probably the part of the MD simulation that a novice finds most
intimidating. This requires several steps: creation of an initial configuration for the system,
choice of physical conditions as defined by an ensemble and a temperature for the run;
and some numerical parameters necessary for the integration of the equations: time-step,
simulation time, integrator and thermostat.

6.1 Creation of the initial geometry

We have to create an initial geometry for the system, that is, to position the atoms and
molecules in three dimensions so the calculation can proceed. A simple random placement is
not useful, because we must be careful to avoid placing two atoms at the same coordinates,
or closer than the sum of their atomic radii. This situations, known as bad contacts, tend
to destabilize the numerical algorithms used in the determination of the trajectory (the
integration step). Most MD packages, such as GROMACS or AMBER, provide their own
utilities for building starting configurations.

For the creation of a starting configuration, we can use programs such as Ghemical,
Avogadro(Avogadro, 2011) or Gabedit. Both Avogadro and Ghemical have polished graphic
interfaces, and they are very easy to use for building single molecules. Gabedit is still
somewhat lacking in this regard, as its interface is harder to use than that of Ghemical or
Avogadro. For building clusters, use of a graphical interface quickly becomes tedious and
prone to errors. PACKMOL(Martínez, 2009) seems particularly convenient for building any
kind of cluster due to its ability to add a given number copies of a molecule, water or any other
at the user’s choice. For the specific case of water solvation, Ghemical provides a function to
build a water box or a water sphere around any compound previously loaded in Ghemical’s
memory, although the number of water molecules added is less intuitive, because it depends
on both the dimensions of the box and of the molecule to be solvated.

Our preferred tools for building systems are packages with graphical user interface, like
Ghemical, Avogadro or Gabedit. For running MD simulations we have used, with varying
degrees of success Ghemical, MOPAC2009 and Gabedit. PACKMOL is very well suited for
the construction of clusters because it lets the user specify the structures of the molecules
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of interest and how many of them are to be added. Ghemical is less flexible in this regard,
because it has tools only for building solvation shells, and the number of water molecules
added is not specified directly by the user, but by the volume specified for the water box.
Adding a precise number of water molecules in Ghemical can be a hit-and-miss experience.

6.2 Choice of physical conditions

The set of ’physical’ information contains: temperature, pressure, relaxation times,
compresibilities, whether the simulation will be at constant temperature or constant pressure
and–probably most important of all–the force-field used to evaluate the interactions within a
molecule and between molecules. Given that the trajectories should have physical meaning,
how do we know what kind of experimental conditions are we simulating? This corresponds
to the choice of the ensemble. We should be familiar with three ensembles: the microcanonical
ensemble, the canonical ensemble and the isothermal-isobaric ensemble.

The microcanonical ensemble maintains constant number of particles (N), constant volume
(V) and constant total energy (E), so it is also known as the NVE ensemble. The canonical
ensemble keeps a constant number of particles, constant volume and constant temperature
(T), so it is also called the NVT ensemble.

The isothermal-isobaric ensemble keeps constant number of particles, constant pressure and
constant temperature, so it is also known as the NPT ensemble. Physically, the NPT ensemble
is the most important in chemistry, because many chemical processes are performed under
constant pressure and temperature.

For our particular situation, when we deal with so few molecules that even the concepts of
pressure and temperature are not well defined, it suffices to say that these ensembles are
different ways to give energy to the system and any one of them can accomplish the task of
taking the system out of an energy well and into another one.

In our group we typically choose the program defaults, as we are not interested in the physical
meaning of the trajectories, but only in the energetic minima resulting from the dynamic
search.

6.3 Choice of force-field

Choosing a force-field can be daunting to a novice, because of all the options available. In
terms of the specific strengths and weaknesses of each force-field, the reader is referred to
the literature. However, the main roadblock in using molecular mechanics force-fields is
that, sooner or later, one wants to study a molecule lacking adequate parameters in any
force-field. Here, the user of MD software needs to know that some software packages,
particularly the most friendly to the user, sometimes allow a dynamics calculation to run
substituting default values for the missing parameters. Such calculations have practically no
value at all. Ghemical uses the TRIPOS force-field, but the user should be aware of the error
messages because usually many parameters are missing, and Ghemical will substitute default
values. Gabedit will not run a dynamics unless all the parameters are defined or one decides
to use semiempirical methods. The lack of adequate parameters usually requires doing ab
initio calculations on a model compound, so the parameters can be generated. This route is
reasonable when the molecules of interest are large compared to the model molecule, but what
are we supposed to do if the molecule and the model compound are the same?
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taking the system out of an energy well and into another one.

In our group we typically choose the program defaults, as we are not interested in the physical
meaning of the trajectories, but only in the energetic minima resulting from the dynamic
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6.3 Choice of force-field

Choosing a force-field can be daunting to a novice, because of all the options available. In
terms of the specific strengths and weaknesses of each force-field, the reader is referred to
the literature. However, the main roadblock in using molecular mechanics force-fields is
that, sooner or later, one wants to study a molecule lacking adequate parameters in any
force-field. Here, the user of MD software needs to know that some software packages,
particularly the most friendly to the user, sometimes allow a dynamics calculation to run
substituting default values for the missing parameters. Such calculations have practically no
value at all. Ghemical uses the TRIPOS force-field, but the user should be aware of the error
messages because usually many parameters are missing, and Ghemical will substitute default
values. Gabedit will not run a dynamics unless all the parameters are defined or one decides
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reasonable when the molecules of interest are large compared to the model molecule, but what
are we supposed to do if the molecule and the model compound are the same?
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Inasmuch as a MD simulation will evaluate thousands of structures, it may still be worth
doing the work of generating molecular mechanics parameters, although this may need a
collaboration with a computational chemist. Another option would be to use dynamics not
based on molecular mechanics. As previously mentioned, Ab Initio Molecular Dynamics,
such as Car-Parrinello, is a specialist technique well beyond the scope of this review but there
is a middle ground, in terms of complexity and computational requirements: semiempirical
MD simulations. Computational packages exist that are able to use semiempirical methods,
such as AM1(Dewar, 1985), PM3(Stewart, 1989) or PM6(Stewart, 2007), for energy evaluation
without the need to determine molecular parameters. The user must exercise due care when
using semiempirical methods because, at temperatures high enough, the molecules can break
apart. This is because semiempirical methods calculate the electronic structure so, even the
strongest covalent bonds can break if the temperature is high enough. In our studies of ionic
clusters, it was all too easy to destroy the species by giving too much kinetic energy to the
system.

6.4 Computational parameters for the run

The set of computational information, includes how long the simulation is supposed to run
in picoseconds (the simulation time), the length of simulation time elapsed between energy
evaluations in femtoseconds (the time-step), the algorithm for integration, from a variety such
as Verlet, Leapfrog-Verlet and Beeman, among others (the integrator) and the thermostat,
which is the algorithm that enforces the constancy of temperature.

The duration of the simulation is usually split in three steps: heating, equilibration and
cooling of the system. For the purposes of conformational searching, it is advisable to take
a simulation length longer than the program default, probably two times or three times the
default value, depending on the complexity of the system.

6.5 Choice of software

For the MD-based conformational search, both Gabedit and Ghemical can do it, but Gabedit
has a more automated implementation. Gabedit automatically saves a user-defined number of
geometries from the trajectory and minimizes their energies, either with molecular mechanics
or with a semiempirical method.

7. Further efforts

We hope that this brief introduction to molecular dynamics will pique the interest of other
researchers in exploring mechanical or semiempirical molecular dynamics as a useful tool
for the study of small chemical systems. Recent progress on inclusion of dispersion and
H-bonding interactions in semiempirical Hamiltonians, such as the corrections to the PM6
Hamiltonian by R̆ezác̆(R̆ezác̆, 2009) and Korth(Korth, 2010), should prove valuable in this
regard. As we have focused on small molecules, the ability to run calculations in parallel over
several computers seems unnecessary.

Work remaining to be done includes some benchmarking/callibration of semiempirical MD
simulations against higher-level QM/MM simulations or pure ab initio calculations to find
out its realm of applicability, and perhaps some further improvement of the semiempirical
Hamiltonians to this end. It is also necessary to ascertain the adequacy of including solvation
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models, whether continuum or explicit, in these calculations. After all, a global minimum
obtained in the gas phase may or may not resemble the global minimum under the influence
of aqueous solvation. In addition, the general performance of semiempirical MD simulations
to study the behavior of solvated ions is still unknown. We caution the reader against
an uncritical application of this technique for conformational, configurational searches or
otherwise, e.g., the ability of semiempirical Hamiltonians to model transition structures
has been questioned(Schenker, 2011), so modeling the dynamics of chemical reactions by
semiempirical means may be dangerous, at best.
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1. Introduction  
This chapter presents an overview of the Molecular Dynamics (MD) simulation technique to 
predict thermal transport properties of nanostructured materials. This covers systems 
having characteristic lengths of the order of a few nanometers like carbon nanotubes, 
nanowires and also superlattices, i.e. composite materials made of submicronic thickness of 
solid layers. The common features of these systems is the small ratio between their 
characteristic system size and the phonon mean free path, which leads to ballistic heat 
transport and deviations from the classical Fourier law. Also when the density of interfaces 
gets large, the energy transport properties of the materials can not longer be described solely 
by the thermal conductivities of the constituents of the material, but depend also on the 
thermal boundary resistance which measures the transmission of phonons across an 
interface. In this context, molecular dynamics was proven to be a very useful technique to 
study heat transport in nanostructured materials. The main reasons are; the length scale 
probed by the method is in the nanometer range, and it does not make any assumption on 
the phonons dynamics except their classical nature. 

In this contribution, we present two MD methods, the equilibrium and the non-equilibrium 
method, which are now commonly used to determine both the thermal conductivity and the 
thermal boundary resistance of nanostructured materials. We focus on superlattices and 
discuss how the structural features of the interfaces like height, shape, inter-diffusion 
phenomena and the layer thickness affect the thermal conductivity of the superlattice. We 
show how these complex phenomena can be predicted by simple models of Lennard-Jones 
crystals with a mass ratio corresponding to the acoustic impedance ratio of Si/Ge and 
GaAs/AlAs superlattices.  

2. Molecular dynamics 
The development of molecular simulations began in the early fifties after the considerable 
development of computer facilities in the United States during World War II. A few years 
after the first Monte-Carlo simulation, Alder and Wainwright, first introduced in the late 
50’s the Molecular Dynamics (MD) method (Alder & Wainwright, 1957, 1959). The aim of 
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the first simulations both Monte-Carlo or MD was to probe the different phases of model 
hard spheres. The necessity to model liquids motivated the development of realistic 
potentials. Rahman was the first to model Argon using Lennard-Jones potential , which is 
still considered as a standard potential for MD (Rahman, 1964). This opened the way to 
consider a broad range of condensed matter systems, ranging from liquid water first 
modelled by Rahman and Stillinger to silicon (Rahman & Stillinger, 1974). The efforts 
towards realistic modelling have permitted to applicate MD to characterize the collective 
excitations in solids (Hensen 1976). The last step came with the implementation of MD 
thermostats opening the way to probe the phonon dynamics in rare-gas solids (Ladd 1986). 
More recently, there has been an increasing number of MD studies on nano-scale heat 
transport motivated by fine measurements of energy transport in nano-materials (Volz 
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where: m , ir
  and V  denote respectively the mass of the particle i, its position vector and 

the inter-atomic potential. The integration scheme commonly used is the Verlet algorithm 
(Verlet 1967a, 1967b) which predicts the positions at time t + dt  given the positions at the 
earlier times t  and t dt : 
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where the acceleration is calculated using the inter-atomic forces. The velocities can be 
computed using  

        2

2
i i

i
r t + dt r t dt

v t = + O dt
dt
 

 
  (3) 

and the error is larger than the error on the positions, but as soon as the velocities are only 
used to compute the instantaneous kinetic energy the consequences are minor. Of course 
there are other integration schemes, but the Verlet algorithm has the advantage to be simple, 
easy to implement, stable and time-reversible. The typical time step used in the integration 
algorithms is a fraction of the characteristic atomic period 
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where m  is the mass of the particles and   denotes a typical atomic diameter.  

Given the power of modern computers, it takes a few hours on a mono-processor machine 
to follow the trajectory of a set of 10000 particles over a time comparable to 1 ns. Using 
parallel MD codes or GPUs (graphics processing units) opens the way to model larger 
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systems or reach orders of magnitude longer times . The system represented in a MD 
simulation has microscopic dimensions, and usually one is not so much interested in 
simulating a nano system with free surfaces, but rather a part of a bulk system. To embed 
the small system simulated in a bulk-like system, one can use periodic boundary conditions. 
These conditions assume that the system is repeated periodically in all  space directions and 
thus any particle close to the boundaries of the simulation box interacts with an image 
particle, and when a particle crosses one of the face of the central simulation box, one of its 
images will enter the central box through the opposite face. One of the consequences of the 
use of periodic boundary conditions is the cut-off of long wavelengths fluctuations, i.e. those 
having a wavelength larger than the simulation box length. In the context of heat transport 
simulations this will imply that phonons with long wavelengths are not present.  

The strength of MD lies on the versatility and the flexibility in the choie of the atomic 
potential (eq.1). Generally speaking, the total potential can be decomposed in the sum  

        1 2 3 ...i i i j i j ki i j i j kV r = V r + V r ,r + V r ,r ,r +
            (5) 

where the first term represents the one body contribution to the potential and is often 
associated to an external field like e.g. an electric field. The second and third terms represent 
respectively two-body and three-body potentials of the inter-atomic interaction. The choice 
of the inter-atomic potential depends on the problem at hand (type of atomic structure and 
on the properties to be studied), and on the necessity to model a real system or an 
experiment. One of the simplest potential used in condensed matter physics is the Lennard-
Jones (LJ) potential, where the total potential decomposes in a sum of pair potentials:  

  2 iji jV = V r
  (6) 

with 

      12 6
2 4 / /ij ij ijV r = r r    

 
  (7) 

This is the LJ pair potential, which depends only on the distance between neighbouring 
particles ij ijr = r . The interaction energy    identifies with the depth well of the potential, and 
  is the atomic diameter. Although very simple, the LJ potential is often thought to be a 
good potential to model rare gas and in particular Argon, using the following parameters: 

211,67 10 J    and 103,40 10= m  . Due to the algebraic decay of the LJ potential, all the 
atoms of the simulation box interact. From a practical point of view however, it would be 
computationally costly to estimate 2 / 2N  inter-atomic forces at each time step, with 

10000N  . To bring back the computational cost of the force calculation to  O N , the inter-
atomic pair potential is often truncated at a cut-off radius, usually 2,5cr =  , which 
represents typically a neighbourhood of 50 atoms per particle. It should be mentioned at this 
point, that even if the potential at the radius of truncation is small compared to the well 
depth:   0,016cV r   , truncating the potential may have a non negligible effect on the 
thermodynamics of the system modelled. As an example, let us estimate the effect of 
truncating the inter-atomic potential respectively on the internal energy per particle and on 
the pressure. The respective errors are given by:  
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where we have used the previous value of the cut-off radius and we have assumed that 
beyond rc , the medium is structureless, i.e. the pair correlation function may be considered 
close to unity. The previous errors are found to be typically 10% the values of the internal 
energy and pressure for a condensed phase. This is not worrying since the calculation of 
thermodynamic quantities can be corrected using the previous estimations, but this has to 
be kept in mind when calculating a phase diagram for instance.  

Although the LJ potential is quite simple, some situations require to use more sophisticated 
semi-empirical potentials whose parameters are chosen to reproduce either microscopic or 
macroscopic properties of a model system. These semi-empirical potentials are usually no 
longer pair potentials like the LJ potential but many-body, where the many-body terms 
describes how does the potential energy of an atom depends on its coordination.  

As an illustration, let us mention the embedded atom model (EAM) used in the context of 
metals (Daw & Baskes 1984), where the potential 

     ij ii j ir + u r 
   (10) 

consists of a pair term  r accounting for repulsion at short distances and a many body 
term   u r  which accounts for the cohesion of the metallic bond and which depends on 
the local density measured using the positions of neighbouring particles    i ijjr = w r  . 
The choice of the functional  u   and the weight function  w r  depends on the 
microscopic and macroscopic properties to be reproduced, usually the lattice constant, the 
elastic constants and the sublimation energy of the metal (Daw & Baskes 1984). 

Another limitation of LJ potentials is the description of solids crystalizing in non-compact 
structures. Indeed, Lennard Jones atoms form close-packed structures at low temperatures 
(usually fcc at low pressure), and thus LJ potentials are also not adapted to model materials 
which crystallize in opened structures such as diamond. Semi-conductors like silicon or 
germanium are usually modelled using many-body semi-empirical potentials, in which the 
many body terms  account for the local preferential bond ordering of the semi-conductor. 
Among the most famous potentials for silicon, let us quote the Tersoff potential (Tersoff 
1986, 1988a, 1988b) and the Stillinger-Weber potential (Stillinger & Weber 1985). The 
parameters of the former are chosen so as to reproduce the elastic properties of bulk silicon, 
while the latter describes satisfactorily the structural properties of liquid silicon. Of course 
the list of potentials is non exhaustive and there exists plethora of empirical potentials to 
model as disparate systems as charged systems, liquid crystals, polymers, surfactants, 
granular media,... and mixtures of them! 
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As we have already briefly mentioned, the output of MD simulations can be compared to 
experiments if we know how to relate the microscopic state of the material under study to 
the macroscopic observables typically measured in an experiment. Generally speaking,  
one can distinguish three classes of information that can be extracted from MD. On the  
one hand, MD allows to compute global quantities which correspond usually to  
the thermodynamics of the system modelled. For instance, the internal energy can be 
expressed as:  

  iiU = V r KE  (11) 

and the total kinetic energy:  

 21
2 iiKE = mv   (12) 

where the brackets denote an ensemble average. If sufficient time has been left to the system 
to reach equilibrium, the ensemble average may be performed by averaging over a sufficient 
long time thanks to ergodicity. On the other hand, in non-equilibrium situations, different 
initial conditions (usually the positions and the velocities of the atoms) may be used to 
generate independent trajectories in phase space. The latter definition of the kinetic energy 
is intimately related to the definition of the local temperature : 
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  (13) 

where the sum runs over particles i in a small volume V(r) centred around r and which 
contains n(r) particles. Another important quantity in heat transport simulations is the 
energy flux, defined as  

  i ii
dJ = E r
dt 

   (14) 

where Ei is the total energy of particle i, yielding for pair potentials:  

  1
2i i ij i j iji i jJ = E v + F v + v r


 

      (15) 

For simulations in crystals at low temperatures, the previous energy flux displays large 
oscillations due to optical phonons which carry a negligible amount of heat, and sometimes 
it can be more suited to work with the equivalent definition of the flux:  

   01
2 ij i j iji jJ = F v + v r




      (16) 

where the superscript “0” denotes the equilibrium positions of the atoms. From the 
knowledge of the local temperature and the energy flux, it is possible to measure thermal 
conductivity and we would come back to the measurement of transport coefficients in MD 
in the next section, with a particular emphasis on heat transport.  
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The other type of information that one can extract from MD is structural. Since the output of 
a MD simulation is the set of positions ijr , it is possible to compute the pair distribution 

function  

    1
iji jg r = r r

N
 


    (17) 

where   is the mean number density of the system. Physically, g(r) represents the 
probability to find two particles separated by a distance r, and  24 r g r dr   is the average 
number of particles located at a distance between r and r+dr from a given particle. Note that 
sometimes, it may be more useful to compute the structure factor: 

      ,
1 exp i ji jS q = iq r r
N

      (18) 

which is simply related to the pair distribution function through a Fourier transform: 

      1 expS q = + g r iq r dr  
      (19) 

Finally, MD may be used to compute the vibrational properties of a model system. In 
particular, the vibrational density of states (DOS)  
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V
      (20) 

where the sum runs over the eigenmodes of the system can be estimated using the Fourier 
transform of the velocity autocorrelation function: 

        
0

0g v t v exp i t dt 


    
   (21) 

where here  v t  is the velocity of an atom. One has to keep in mind that the previous 
equation is only approximate, as it assumes small deviations from harmonicity, and thus is 
only valid strictly speaking at low temperatures. Note also that the resulting DOS mixes 
information about the different polarizations of the atomic vibrations, e.g. transversal or 
longitudinal, and to determine the DOS relative to a particular polarization, a more refined 
analysis of the atomic displacement should be undertaken. Apart from the DOS, MD is a 
common technique to characterise the propagation of phonons in a crystal. 

The vibrations of a crystal containing N atoms may be decomposed in normal modes: 

      1/2 1/2 0
, ,i iik

i
S t N m exp ik r e k u    

     (22) 

where  iu t  denotes the displacement of atom i in the crystal vibrating around the 
equilibrium position 0

ir
 ,   is an index designating the polarization of the vibration, e.g. 

longitudinal or transversal and  e k,
  is the corresponding polarization vector. From the 

normal mode amplitude, one can compute the dispersion relation and the phonon lifetime 
as follows. First consider the autocorrelation of the atomic displacement: 
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It is a straightforward exercize to show that  

   2 2
, 0 /Bk kS t k T w    ű ű  (24) 

Hence, from the previous autocorrelation function, one can determine the dispersion 
relation  = k 


 for the two polarizations. From the dispersion relation, the phonon phase 

   /v k = k 
 

 and group velocities   gv k =
k




   may be predicted.  

Secondly, from the time decay of     0k, k,S t S 
  , one can compute the lifetime of the 

mode k,


 (Ladd 1986): 
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The wavelength dependance of the phonon lifetime may then be compared to the theoretical 
predictions, given either by Callaway 1959 or Holland 1963, see e.g. (McGaughey 2004).  

As we have already mentioned, the conversion of the microscopic information given by a 
MD simulation to macroscopic observables requires to evaluate averages over phase space. 
The phase space is a multidimensional space generated by the positions and the momenta of 
a classical system, and has dimension of 6N for a system of N particles. A molecular 
dynamics simulation generates a sequence of points in phase space as a function of time, 
whose points belong to the same thermodynamic ensemble. The first MD simulations were 
performed in the micro-canonical ensemble or NVE ensemble, which corresponds to a fixed 
number of atoms N, a fixed volume V, and a fixed energy E. Although these simulations are 
very easy to implement, they do not represent a realistic system as the set of molecules 
studied is completely isolated. The need to model real situations led to the development of 
thermostats for MD, which allow to simulate the dynamics of a system in the canonical or 
the grand-canonical ensemble for instance (Frenkel & Smit, 1996).  

Although MD can be used to calculate the thermodynamics, structural and vibrational 
properties of systems at equilibrium, it is more designed to study the non-equilibrium 
situations where the system under study is driven by an external force; the latter can be of 
thermodynamic nature. In the language of out of equilibrium statistical physics, MD can 
help in determining the relation between the forces and the fluxes. Statistical physics 
predicts that there is proportionality between the forces and the fluxes if the system under 
study is driven weakly out of equilibrium. The coefficients of proportionality are called 
transport coefficients and measure the susceptibility of the system to respond to a given 
thermodynamic force. For instance, the thermal conductivity quantifies the amount of 
energy flowing in a material submitted to a temperature gradient. MD is a very powerful 
tool to calculate the transport coefficients of a model system. To this end, two routes can be 
traditionally followed: either the model system is submitted to an external force or the 
thermally induced fluctuations of an internal variable are probed at equilibrium. Statistical 
physics states indeed that the typical time decay of the spontaneous thermal fluctuations is 
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transport coefficients and measure the susceptibility of the system to respond to a given 
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proportional to the appropriate transport coefficient. This will be illustrated in the context of 
the heat transfer in the next sextion. Before focusing on energy transfer applications of MD, 
let us mention that MD can be used also beyond the linear response domain of out of 
equilibrium systems. This includes situations of large external forcing such as e.g. polymer 
melts flowing at large shear rates (Vladkov 2006b). But this includes also systems for which 
intrinsically the linear relationship between forces and fluxes is violated. As an example 
consider a nano-structured system at low temperatures for which the phonon mean free 
path is comparable with the characteristic system size. Heat transfer in such systems is no 
longer described by Fourier law, but is rather described by an effective conductivity which 
depends on the strength of the thermal flux flowing across the system. Molecular dynamics 
has been shown to predict the effective conductivity under conditions where the heat 
carriers travel ballistically in the system and being scattered only by the boundaries of the 
nanostructure. 

2.1 Limitations of molecular dynamics  

As any simulation technique, molecular dynamics suffers from some intrinsic limitations. 
The most obvious is the limitation in system size. This may be critical in the modeling of real 
scale devices with disparate length scales ranging from 1nm to microns. To address such 
situations, MD should be coupled with a more mesoscopic method, such as the Boltzmann 
Transport Equations, where the microscopic information on the phonon lifetime is used as 
input in a Boltzmann equation.  

We have also mentioned that a finite system size cuts the long wavelength phonon modes. 
As we will see, this affects only mildly the measurement of the thermal conductivity unless 
we couple the system with heat reservoirs.  

The second limitation of MD is its classical nature. Each phonon mode is equally populated, 
and the heat capacity is given to a good approximation by the Dulong-Petit law. This is a 
good approximation if one ever considers solids above or just below their Debye 
temperature. However, many materials do not obey this condition at ambient temperature. 
Quantum effects in MD may be accounted for in different ways. The phonon lifetimes 
computed from MD may be used in a Boltzmann transport equation which includes 
quantum statistics in the phonon occupation number (McGaughey 2004). Quantum effects 
may be also directly incorporated in the course of a MD simulation, using a Langevin 
thermostat with a colored noise consistent with a Bose-Einstein distribution for the phonon 
modes (Dammak2009). 

Finally, the electronic degrees of freedom are not explicitly simulated in MD. Hence, it is not 
possible to probe thermal transport in electrical conductors, and in its basic version the 
contribution of electron-phonon scattering to the transport in semi-conductors is not 
accounted for.  

3. Predicting thermal conductivity with EMD and NEMD 
In general the heat energy is transmitted through a solid by electrons (mainly in metals) 
or phonons (mainly in insulators) or other excitations as spin waves. In this paragraph, we 
focus on the lattice thermal conductivity, which is the dominant mechanism in 
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semiconductors (Yang, 2004). There are three principal techniques used to evaluate  
the thermal conductivity with molecular dynamic simulations (Allen & Tildesley  
1987, Chantrenne, 2007); a. the equilibrium approach based on the Green-Kubo formulae 
(Frenkel & Smit, 1996), b. the non-equilibrium MD, also called the direct method,  
which uses a heat source and a heat sink, or the so-called direct method, based on  
the creation of a temperature gradient, and c. the homogeneous non-equilibrium MD, 
where a heat flux is induced (Evans, 1982, 1986). The comparison between the two 
methods has been undertaken by many researchers, who have concluded that the two 
methods give consistent results (Shelling et al, 2002; Mahajan et al, 2007; Termentzidis et 
al, 2011b).  

3.1 Non-equilibrium molecular dynamics method (NEMD) 

Kotake and Wakuri proposed the direct method (Kotake & Wakuri, 1994), which is similar 
to the hot-plate experiment setup. A temperature gradient is imposed across the structure 
under study by allowing thermal power exchange between the heat source and sink and 
measure the resulting heat flux (Chantrenne & Barrat, 2004a, 2004b, Termentzidis et al, 
2009). The thermal conductivity is then obtained as the ratio of the heat flux and the 
temperature gradient. An alternative, but equivalent way consists in inducing a heat flux 
and to measure the resulting temperature gradient (Muller-Plathe, 1997). In both cases the 
system is first allowed to reach a steady state, after which prolong simulations are 
conducted allowing to obtain correct statistical measurements (Stevens et al, 2007).  
The NEMD method is often the method of choice for studies of nanomaterials (Poetzsch  
& Botter, 1994) while for bulk thermal conductivity, particularly of high-conductivity 
materials, equilibrium method is typically preferred due to less severe size effects.  
The size effects in the determination of the thermal conductivity using NEMD can  
be understood using the following simple line of thought (Schelling & al 2002). Imagine  
a phonon travelling in the crystal between the two heat reservoirs. This phonon  
can experience at least two kinds of scattering events: either it can be scattered by  
other phonons travelling in the material, or it can be scattered by the reservoirs which 
are seen by the considered phonon as a different material with an almost infinite thermal 
conductivity. The mean free path associated with this former mechanism can be  
roughly approximated by / 2reservoir = L , where L is the distance between the reservoirs, 
because on average a phonon will travel ballistically a distance L/2 before being  
scattered by the heat source/sink. Now invoking Mathiessen rule to predict the effect of 
reservoir scattering on the overall thermal conductivity, the effective mean free path is 
given by:  

    1 / 2 / 1 /L = L + L     (26) 

where the last term  L   describes the phonon-phonon interaction in a bulk- 
like medium. The length dependence of the thermal conductivity can now be estimated 
using kinetic theory of gas:    /3L = cv L   where c  is the heat capacity per unit 
volume, v  is the mean group velocity. Of course, this analysis is simplified because we 
have assumed that the effect of phonon-phonon scattering can be described in terms of a 
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single mean free path, and we should have rather done the analysis mode by mode (Sellan 
et al 2010).  

However, the previous simple kinetic model predicts:  

      1 / 1 / 6 /L = L + cvL    (27) 

and the size dependence is found to be consistent with MD NEMD simulations (Schelling et 
al 2002, Termentzidis et al 2009). Because of the algebraic decay, size effects in NEMD are 
severe, and sometimes it is faster to run equilibirum simulations to determine the thermal 
conductivity. 

We now illustrate the determination of the thermal conductivity using the direct method 
with the exemple of superlattices composed of a regular alternative arrangement of solid 
layers, having different physical properties. Thermal transport in superlattices is 
characterized by the cross-plane and the in-plane conductivities, which correspond 
respectively to heat flowing in the direction perpendicular or parallel to the interfaces. 

The geometry used for the determination of the cross-plane and in-plane thermal 
conductivities using NEMD is given in figure 3.1.1. Periodic boundary conditions are used 
in all directions, while in all cases the heat flux is imposed in z-direction. The interatomic 
interactions are described with Lennard-Jones (LJ) potentials, with energy unit ij=1.0 and 
length unit ij=1.0. The use of LJ potential is justified by the interest in focusing on the 
main phenomena introduced by the interface roughness of the super-lattices (for all the 
following results). The two types of materials A and B may represent respectively the Si 
and Ge, if one considers Si/Ge-type superlattice (paragraph 5) or the GaAs and AlAs in 
case of GaAs/AlAs-type superlattice (paragraph 6). The two solids have the same lattice 
constants and they differ only by the mass ratio of the atoms constituting the superlattices 
layers. For the Si/Ge-type superlattices the mass ratio is taken to be 2.0, while for 
GaAs/AlAs this ratio is equal to 1.5. This mass ratio is consistent with the acoustic 
impedance ratio in the case of Si/Ge (1.78) and in the case of GaAs/AlAs (1.2), as the ratio 
of acoustic impedances is equal to the square root of the ratio of masses (Swartz & Pohl, 
1989). 

In this chapter the equilibrium (EMD) and the non-equilibrium (NEMD) methods are 
presented and the results of the thermal conductivity are reported. For both methods the 
molecular dynamics code LAMMPS is used (Plimpton, 1995, 1997). 

In the NEMD method or direct method, a temperature gradient is imposed across the 
structure under study. Depending on the boundary conditions the geometry of the 
thermostats can change. For periodic boundary conditions there is one thermostat (cold or 
hot) at the middle of the slab and a second thermostat (hot or cold) is divided in two parts, 
which are positioned at the two edges of the slab (fig. 1). This configuration gives the 
opportunity to increase the statistics (double the results). The thermal conductivity is then 
calculated using the Fourier’s law monitoring the thermal power exchange and the 
temperature profile of the system (fig. 2). The infinitive system size thermal conductivity 
then can be extrapolated by plotting the inverse of the thermal conductivity as a function of 
the inverse of the system size (Schelling et al, 2002). 
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Fig. 1. Geometric configuration for the determination of the cross-plane (left) and in-plane 
(right) thermal conductivity simulations with NEMD and periodic boundary conditions are 
used in all directions. 

 
Fig. 2. To calculate the thermal conductivity (in the example the in-plane TC) of the 
superlattices the energy exchange (b1) and the temperature profile (b2) is extracted for each 
of the structures (at least 4 structures with increasing length see (a)). Then the inverse 
thermal conductivity is plotted as a function of the inverse of the size of slab (c). The last 
diagram helps in calculating the thermal conductivity of an infinitive size superlattice.  
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3.2 Equilibrium molecular dynamics method (EMD) 

Alternately, the thermal conductivity of a model system can be determined using 
equilibrium simulations (Shelling et al, 2002). The principle relies on the fact that the 
regression of the thermal fluctuations of an internal variable, in our case the thermal flux, 
obeys macroscopic laws. Hence, the time decay of the fluctuations of the flux is proportional 
to the thermal conductivity. This is mathematically expressed by the Green-Kubo formulae 
which state that the time integral of the heat flux autocorrelation function is proportional to 
the thermal conductivity tensor (Evans & Morris, 1990):  
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where V  is the volume of the system, and J denotes the component of the heat flux vector 
along the direction  . The equilibrium method consists then in computing the 
corresponding autocorrelation, which requires following the dynamics of a system over 
time scales a few times larger than the longest relaxation time present in the system. In the 
case of heat transfer in solid materials, the longest relaxation times correspond to long 
wavelengths phonons (a few nm) with a lifetime on the order of 100 picoseconds.  

The advantage of the equilibrium method is that it allows to compute the full conductivity 
tensor from one simulation, which may be appreciated in superlattice simulations for 
instance, which display large thermal anisotropies. Another advantage of the equilibrium 
method is that it does not suffer from severe finite size effects as NEMD, mainly because in 
EMD the phonons are not strongly scattered by the boundaries of the simulation box. We 
can estimate the finite size effects in EMD using the following assumptions: the thermal 
conductivity measured in a MD simulation is given by: 
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where  

    /c L = k = L    (30) 

is the low pulsation cut-off introduced by the periodic boundary conditions, and the upper 
bound is  

  /D k a     (31) 

where a  is the interatomic step, since high frequency phonons are supposed to contribute 
weakly to the overall thermal conductivity. In the latter expression of the thermal 
conductivity,   Bc = k is the heat capacity which obeys Dulong and Petit law,  v  is the 
phonon group velocity, and    is the relaxation time of phonon having a pulsation  . In 
the following, we have ignored the possible different polarization states of the phonons to 
simplify the discussion. The error in the determination of the thermal conductivity  
is thus: 
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and if we assume that for sufficient low wavevectors that the medium behaves like a Debye 
solid,   2g   , the group velocity is constant and the phonon relaxation time is supposed 
to obey Callaway model:   2   , then the error in the conductivity scales as 

  /c L a L    and thus decreases faster as the error in NEMD  /NEMDδλ Λ L L  . 

This allows obtaining good estimates of the thermal conductivity with rather small systems. 
The main drawback is intrinsic to the method, as we need to probe small thermal 
fluctuations around equilibrium over long time scales, which requires also performing 
several statistical averages over different initial conditions.  

3.3 Thermal boundary resistance  

Apart from the thermal conductivity, both NEMD and EMD simulation techniques may be 
used to calculate the thermal boundary resistance characterizing heat transport across the 
interface between two media (Barrat, 2003). The thermal boundary resistance (TBR), also 
known as the Kapitza resistance is defined as the ratio of the temperature jump at the 
interface T over the heat flux J  crossing the interface: 

 K
TR =
J


 (33) 

The Kapitza resistance is thus a measure of the ability of phonons to be transmitted by the 
interface, with common values falling in the range between 0,01  and 10,1MW m K    
(Cahill et al 2003) depending on the dissimilarity between the two media. There have been 
several models to predict the TBR between two solids (Swartz & Pohl 1987, 1989). Among 
the most popular, let us mention the acoustic mismatch model (AMM) (Khalatnikov 1952) in 
which the transmission of phonons is assumed to be specular and depends only the acoustic 
impedance mismatch between the two media, in a way similar to Snell Descartes's law 
ruling the transmission of an electromagnetic wave across the interface between two 
dielectrics with different optical indexes. The other popular model is the so-called diffuse 
mismatch model (DMM) (Swartz & Pohl 1989), in which it is assumed that the phonons are 
diffusively scattered by the interface, and the transmission coefficient depends in this limit 
in the mismatch of the density of states characterizing the two media. Generally speaking, 
both models fail to predict the thermal boundary resistance of real interfaces (Cahill et al 
2003), and a deep physical understanding of interfacial heat transport between two solids is 
still missing. In this context, MD may be a convenient tool to probe the transmission of 
phonons across ideal surfaces, and also has the flexibility to introduce defects at the 
interface and study their effect on interfacial heat transport. Again, two routes may be 
followed to calculate the interfacial resistance: in NEMD simulations, the interface to be 
charaterized is placed between two heat reservoirs fixed at a distance a few atomic layers 
away from the interface. A net heat flux in the direction perpendicular to the interface is 
created, and the resulting temperature jump at the interface is measured, allowing to derive 
the interfacial resistance. With NEMD method only the TBR of smooth interfaces can be 
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calculated, as for rough interfaces there are geometrical issues about the cross-
section/effective surface of the interfaces. 

Equilibrium simulations rely again on the Green-Kubo formula for the interfacial 
conductance G=1/R (Puech 1986): 
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where A is the interfacial area and q(t) is the instantaneous value of the flux flowing across 
the interface.  

The latter quantity may be computed in a MD simulation using the power of interfacial 
forces (Barrat 2003): 

   1, 2 ij ii jq t = F v
 


   (35) 

where the indexes 1 and 2 denote the two media separating the interface to be studied, and 
we have assumed pair potentials to simplify. Equilibrium simulations have been performed 
for interface between simple Lennard Jones solids, where the dissimilarity between the two 
solids is introduced by changing the acoustic impedance ratio between the two solids. The 
results were found to disagree with NEMD determinations of the Kapitza conductance 
(McGaughey 2006), especially for solids with a weak acoustic mismatch. These discrepancies 
are not surprising and can be traced back to the formulation of the equations themselves 
(Pettersson 1990), as the Green-Kubo formula above predicts a finite conductance for the 
interface between two identical media, while of course in NEMD one measures an infinite 
conductance in this situation. Maybe for this reason, most of the MD works on Kapitza 
resistance have considered the direct method.  

Among significant work, let us mention Stevens et al. 2007, who showed that the DMM and 
AMM models underpredicts the thermal boundary conductance obtained by NEMD, which 
is found to increase with the temperature, in contrast with the theoretical models predicting 
a constant value, at least above the Debye temperature of the softer solid. The authors 
showed also that the existence of a large lattice mismatch induces interfacial stress, which 
deteriorates thermal transport significantly. The existence of grain boundaries has been 
shown also to increase the interfacial resistance (Schelling 2004). 

Further work is needed, in particular using equilibrium molecular dynamics to compare 
MD with the available theoretical models.  

4. Heat transport in nanostructured materials  
Thermal transport in nanostructured materials has attracted an increasing international 
interest in the last decades. From a theoretical point of view, nanostructured materials are 
platforms for testing novel phonon and electron transport theories. From the research and 
development point of view, nanomaterials are promising candidates for nanoscale on chip 
coolers (Zhang & Li, 2010). A high density of interfaces, which is the source of phonon 
scattering, appeared in advanced technological devices affecting their reliability and 
performance. Phonon interactions are modified significantly in nanostructures due to the 
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dimensional confinement of the phonon modes. This effect shares some similarities with the 
electron confinement in a quantum well (Stroscio & Dutta 2001). Phonon engineering in 
nanostructures can be succeeded in tailoring the phonon modes through the designing of 
the dimensions and the roughness of nanostructured materials. 

 
Fig. 3. Several types of nanostructured materials, including nano-wires, nano-objects, 
superlattices etc. 

Nanomaterials are composite materials with at least one characteristic dimension smaller 
than 0.5µm. Super-lattices, nanofilms, nanowires, nanotubes and nanoparticles are typical 
examples of such materials (fig. 3). Nanomaterials exhibit transport properties different 
from their constituents and a fundamental understanding of heat conduction at the 
nanoscale is absolutely necessary to tailor their properties. Heat conduction on nanoscale 
differs significantly from heat transfer laws describing macroscopic transport. Among 
others, nanoscale energy transport can be controlled by phonon confinement (Montroll, 
1950), the modification of the density of states induced by the confinement and also the 
ballistic behaviour of phonons. At low temperatures, phonons may travel ballistically in the 
bulk of the nanostructured material being scattered only by the interfaces, the latter 
mechanism providing the scattering mechanism which controls the thermal conductivity of 
the material. The crucial parameter describing ballistic transport is the ratio of the phonon 
mean free path (MFP) over the characteristic lengths of the nanostructure (eg. for 3D-
structures: period and roughness of the interfaces of superlattices, for 2D: interfacial 
roughness in case of thin films or 1D: length of nanowires). Three different regimes may be 
distinguished, depending on the ratio of the characteristic length of the nanostructures, over 
the mean free path of the energy carriers. When the characteristic length is larger than the 
MFP of carriers the transport is diffusive and can be described by Fourier law, while when it 
is smaller, the heat carriers feel the nanostructured material as a homogeneous medium 
with a low thermal conductivity. There is an intermediate regime, where the transport 
becomes ballistic and diffusion scattering becomes predominant. As we will see, this third 
regime offers the possibility to tailor the thermal properties of nanostructures.  

Nanoscale heat transfer has indeed an old history, which can be traced back to the Fermi-
Pasta-Ulam study of heat transport in a 1D anharmonic chain (Dhar 2008). It is theoretically 
predicted that the thermal conductivity of model 1D chain assumptotically increases with 
the chain length L L  , at least as soon as phonon scattering is ensured by momentum 
conserving process (Dhar 2008). The possibility of a diverging conductivity together with 
thte fantastic developement of nanotechnologies in the nineties motivated experimental 
investigation of energy transfer in 1D systems. There has been however considerably fewer 
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thermal measurement in low dimensional systems compared to electrical measurements for 
instance, because of the difficulty to measure directly the thermal current. Carbon nanotubes 
is a good paradigm of 1D objects, because all the heat carriers travel in the axial direction. 
The first experiments probing energy transfer in isolated multi-wall carbon nanotubes (Kim 
2001) reported values of the thermal conductivity 3000 /W mK  even larger than the 
conductivity of diamond at room temperature. These large values have been confirmed by 
other experiments on isolated single wall (Yu 2005, Pop 2006). 

This experimental effort has been accompanied by several molecular dynamics works 
(Berber 2000, Maruyama 2002, Zhang 2005, Yao 2005, Donadio 2007), which have concluded 
that the phonon mean free path may be m and that the thermal conductivity converges for 
very long nanotubes (Mingo 2005, Donadio 2007). We note besides that Green-Kubo 
equilibrium simulations are preferred because in the direct method, it is hard to compute an 
effective conductivity in a material where heat is transported ballistically. Also the coupling 
between the nanotube and heat reservoirs in NEMD would certainly affect the conductivity 
measurement.  

Thermal transport in nanowires has been also extensively studied during the last decade. 
The motivations of the first experimental works was to measure the quantum of 
conductance (Schwab 2000):  

  2
0 / 3h2

Bg = k T  (36) 

at very low temperatures. During the years 2000, the thermal conductivity of Si nanowires at 
room temperatures has been measured (Li 2003) reporting values two orders of magnitude 
smaller than bulk Si. These low values of the thermal conductivity may be understood 
because in a nanowire the free surfaces induce diffuse scattering of the phonons, contrary to 
carbon nanotubes where phonons can only travel in the axial direction. As a consequence, 
the transport properties of semi-conductor nanowires depend on the state of the nanowire 
surface, and in particular its roughness, opening the way to achieve materials combining 
low thermal conductivity but electrical transport properties comparable to bulk semi-
conductor, with  promising applications in thermoelectric conversion (Hochbaum 2008). 

On the computational side, the first MD simulation of heat transport in a nanowire has been 
performed by Volz and Chen (Volz 1999), who already measured a two orders of magnitude 
reduction of the conductivity compared to the bulk. Recent simulations have confirmed the 
reduction, but yielding contradicting results for very small nanowires diameters 
(Ponomareva 2007, Donadio 2009, Abs-Da-Cruz 2011). Molecular simulations have been also 
pointed out the role of surface disorder on the conductivity reduction (Donadio 2009). 
Comparatively, there has been fewer studies on heat transport in molecular junctions, 
probably because of the difficulty to measure a thermal current flowing across a molecule. 
Molecular junctions have been however proposed to be good candidates for thermal 
rectifiers (Chang 2006, Casati 2007). Whang et al. recently used ultrafast thermal to probe 
ballistic heat transport in alkane-thiol chains supported on a gold substrate (Whang 2007). 
This opens the way to measure the conductance of a molecular chain as a function of its 
length. Theoretical studies have first considered simple one-dimensional chains (Dhar 2008, 
Segal 2003). Realistic models of molecular junctions have been studied recently (Mingo 2006) 
using Green function technique. There is relatively few molecular dynamics studies in the 
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field, with the exception of the modeling of self-assembled monolayers (Luo 2010), Henry 
and Chen used equilibrium simulations  to show that the conductivity of polyethylene 
chains may be orders of magnitude larger than bulk polyethylene (Henry 2008). A recent 
study concluded that the conductance of molecular chain is also strongly affected by its 
environment (Merabia 2011), with a transition between ballistic and Fourier regime. 

Finally, heat transfer in the vicinity of nano-particles has also shown an increasing interest 
during the last years. This interest has been motivated first by the early measurements of large 
thermal conductivity in the so-called nanofluids, i.e. suspensions of nano-particles  in a liquid 
solvent (Keblinski 2008). Molecular simulations have helped in solving the controversy and 
showed that for well dispersed nano-particles, no enhancement is expected with respect to the 
effective medium theory (Vladkov 2006a). These simulations have also helped in determining 
the interfacial thermal resistance characterising the nanoparticle/liquid interface (Vladkov 
2006a). Heat transfer  around strongly heated nanoparticles has also attracted attention after 
the development of ultrafast optical techniques which allow to selectively heat nanoparticles in 
suspension (Plech 2004). When the metallic particles are excited at wavelengths close to the 
maximum of their optical extinction, their temperature can be raised by hundreds of Kelvin, 
while the liquid environment in the immediate vicinity may remain at ambient temperature, 
thus creating very large temperature gradients and energy fluxes flowing from the 
nanoparticles. This raises interesting new questions regarding nanoscale heat transfer, e.g. 
regarding the validity of Fourier law at very large temperature gradients (Merabia 2009b), and 
the competition between heat transfer and boiling of the fluid surrounding the nanoparticles 
(Merabia 2009b). Apart from the academic interest, these questions have important bio-
medical applications in hyperthermia, as the appearance of vapor bubbles with submicronic 
radius would concentrate large thermomechanical stresses which may destroy tumors for 
instance. Further work is needed to understand the conditions of formation of these 
“nanobubbles”. Let us conclude saying that nanoparticles may also served as thermal contacts 
to measure the conductance of molecular chains as demonstrated using MD (Merabia2011). 

5. Thermal conductivity predictions for Si/Ge superlattices, impact of  
rough interfaces 
Heat transport in superlattices, which are materials composed of a periodic or a random 
arrangement of different alternating materials with a submicronic thickness, has attracted a 
large scientific interest, as they exhibit low thermal conductivity (Cahill et al, 2003), at least 
in one direction, usually the direction normal to the interfaces. This makes superlattices 
promising materials for applications in MEMS and NEMS devices such as semiconductor 
lasers (Sale, 1995), optical data-storage media (Kim et al, 2000), thermoelectric (Hicks et al, 
1993; Lin-Chung & Reinecke, 1993) and thermomechanic devices (Ezzahri et al, 2008). For 
the latter two categories the thermal-conductivity characteristics are very important to 
ensure the correct function of the device(Daly et al, 2002). Depending on the use, the highest 
possible thermal conductivity is required for example to remove the Joule heat in electronic 
devices, or very low thermal conductivity for thermoelectric applications (Mahan 2004). 
With a clever tailoring of the properties of superlattice, one can succeed in both directions.  

The phonon thermal conductivity of superlattices has been started to be in the center of 
scientific interest quite early as superlattice are promising structures for new electronic 
devices (Ren & Dow 1982). It has been reported that the thermal conductivity of 
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superlattices may be dramatically smaller than the corresponding values of the constituent 
materials in their bulk form. This decrease has been related to the folding of the Brillouin 
zone and the related mini-umklapp three-phonon scattering process. Tamura & al 1999 
analysed the effect on the phonon spectra in superlattices by three major reasons: a. folding 
of the phonon branches caused by the periodicity of the superlattices, b. the formation of the 
mini-band and c. the confinement of the acoustic phonons in the different layers due to the 
mismatch of the spectra. These three reasons impose reduction of the group velocity in the 
cross-plane direction, leading to the decrease of the cross-plane thermal conductivity. Chen 
& Yang 2005a claimed that the group velocity reduction is not sufficient to explain the 
dramatic decrease of the thermal conductivity, and they argued that one should add the 
diffusive scattering at the interfaces and treat phonons as incoherent particles. Chen & 
Neagu 1997 solving the Boltzmann Transport Equation for specular and diffuse interfaces 
showed that depending on the superlattice period, the thermal conductivity might be 
influenced either by the diffuse interface scattering or by the scattering induced by the 
dislocations. The literature is rich in this subject and a series of articles appeared with a lot 
of experimental (Capinski et al 1999, Huxtable et al 2002, Lee et al 1997) or theoretical results 
using lattice dynamics method or Equilibrium (Volz 2000, Landry 2008, Termentzidis 2011b, 
Termentzidis 2011c) and Non-Equilibrium Molecular Dynamics method (Liang & Shi 2000, 
Chen 2004, Termentzidis 2009, Termentzidis 2010). 

One very interesting property of superlattices is their thermal anisotropy. In the paragraphs 
below the distinction between the in-plane (parallel to the interfaces) and cross-plane 
(perpendicular to the interfaces) thermal conductivity has been underlined. In general one 
expects a value of the in-plane thermal conductivity close to the bulk conductivity especially 
for superlattices with smooth interfaces, where phonons are expected to specularly reflect 
from the interfaces, and in which each layer behaves like a phonon waveguide. For the 
cross-plane direction the picture is totally different, with thermal conductivity even smaller 
than a random alloy of the same material (Mahan 2004). A key point for the physical 
explanation of the phenomena related to the superlattice thermal conductivity is the thermal 
boundary resistance or the Kapitza resistance, which has been discussed before.  

Molecular dynamics simulations have been performed recently to understand the physical 
mechanisms ruling the transport properties of superlattices (Landry et al, 2008, 2009, 
Termentzidis et al, 2009,2010,2011a,2011b,2011c). In this contribution, we will discuss the 
influence of the interface roughness and of the superlattice period on the in-plane and the 
cross-plane thermal conductivities of Si/Ge superlattices using both the EMD and NEMD 
methods. This study proves that heat transport in superlattices is controlled by the 
interfaces. An atomic knowledge (or description) of the interfaces is necessary for the correct 
prediction of the thermal conductivity. In turn, understanding the link between the 
interfacial structure and the thermal conductivity will certainly help in tailoring and 
controlling the phonon behaviour in nanostructures. This can lead to the augmentation  
of the lifetime and to optimize the working of several nano-devices. The state of the 
interfaces is crucial for the determination of the behavior of phonons within the 
nanostructures. When the layer thickness of the superlattice is comparable with the MFP, 
the thermal conductivity is controlled by the transmission of phonons across the interfaces 
of the superlattice. In particular, the thermal boundary resistance or the Kapitza resistance, 
which has been discussed before, will play a key role in the thermal transport in 
superlattices with thin layers.  
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5.1 Modelling Si/Ge superlattices with rough interfaces  

In this subsection, we study the effect of the superlattice period and the structure of the 
interface on both the in-plane and the cross-plane superlattice thermal conductivities. 
Simulations have been held for two periods of superlattices 20 and 400,  which are 
comparable to the phonon meat free path at the temperature we are working at. To 
understand the role of the interfacial structure, we have considered two types of interfaces: 
smooth interfaces on the one hand, and rough interfaces with a right-isoscele-triangles 
shape, as shown in fig. 4. In the case of rough interfaces, the height of the interfaces has been 
varied between 1 monolayer (ML) which is half of a lattice constant for a fcc crystal, up to 
120, which is more than the half of the superlattice period for superlattices with period of 
200 and from 1ML up to 240 for superlattices with period of 400 (see fig. 4). The maximal 
interface height is thus more than half the superlattice’s period. 

  
Fig. 4. Several triangular shaped interfaces with varing height, for superlattice period  
of 400.  

We examined also the effect of the shape of the interface on the cross-plane and the in-plane 
thermal conductivities. In this case, the superlattice period is kept constant and equal to 200 
and we considered only one height of interfaces, the 60 or 12MLs. Fig. 5 shows the smooth 
interfaces, the periodic triangular isosceles interfaces and the additional 4 other shapes. The 
structure shown in 5.iii is obtained by superposing the periodic isosceles of small lengths 
with the periodic triangular interfaces shown in 5.ii. Cosine like, random like and square 
like interfaces are also examined. 

5.2 Thermal conductivity of Si/Ge like superlattices with rough interfaces 

The in-plane and cross-plane thermal conductivities have been calculated using the EMD 
and the NEMD methods. The results are displayed in figure 6 as a function of the interface  



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

90

superlattices may be dramatically smaller than the corresponding values of the constituent 
materials in their bulk form. This decrease has been related to the folding of the Brillouin 
zone and the related mini-umklapp three-phonon scattering process. Tamura & al 1999 
analysed the effect on the phonon spectra in superlattices by three major reasons: a. folding 
of the phonon branches caused by the periodicity of the superlattices, b. the formation of the 
mini-band and c. the confinement of the acoustic phonons in the different layers due to the 
mismatch of the spectra. These three reasons impose reduction of the group velocity in the 
cross-plane direction, leading to the decrease of the cross-plane thermal conductivity. Chen 
& Yang 2005a claimed that the group velocity reduction is not sufficient to explain the 
dramatic decrease of the thermal conductivity, and they argued that one should add the 
diffusive scattering at the interfaces and treat phonons as incoherent particles. Chen & 
Neagu 1997 solving the Boltzmann Transport Equation for specular and diffuse interfaces 
showed that depending on the superlattice period, the thermal conductivity might be 
influenced either by the diffuse interface scattering or by the scattering induced by the 
dislocations. The literature is rich in this subject and a series of articles appeared with a lot 
of experimental (Capinski et al 1999, Huxtable et al 2002, Lee et al 1997) or theoretical results 
using lattice dynamics method or Equilibrium (Volz 2000, Landry 2008, Termentzidis 2011b, 
Termentzidis 2011c) and Non-Equilibrium Molecular Dynamics method (Liang & Shi 2000, 
Chen 2004, Termentzidis 2009, Termentzidis 2010). 

One very interesting property of superlattices is their thermal anisotropy. In the paragraphs 
below the distinction between the in-plane (parallel to the interfaces) and cross-plane 
(perpendicular to the interfaces) thermal conductivity has been underlined. In general one 
expects a value of the in-plane thermal conductivity close to the bulk conductivity especially 
for superlattices with smooth interfaces, where phonons are expected to specularly reflect 
from the interfaces, and in which each layer behaves like a phonon waveguide. For the 
cross-plane direction the picture is totally different, with thermal conductivity even smaller 
than a random alloy of the same material (Mahan 2004). A key point for the physical 
explanation of the phenomena related to the superlattice thermal conductivity is the thermal 
boundary resistance or the Kapitza resistance, which has been discussed before.  

Molecular dynamics simulations have been performed recently to understand the physical 
mechanisms ruling the transport properties of superlattices (Landry et al, 2008, 2009, 
Termentzidis et al, 2009,2010,2011a,2011b,2011c). In this contribution, we will discuss the 
influence of the interface roughness and of the superlattice period on the in-plane and the 
cross-plane thermal conductivities of Si/Ge superlattices using both the EMD and NEMD 
methods. This study proves that heat transport in superlattices is controlled by the 
interfaces. An atomic knowledge (or description) of the interfaces is necessary for the correct 
prediction of the thermal conductivity. In turn, understanding the link between the 
interfacial structure and the thermal conductivity will certainly help in tailoring and 
controlling the phonon behaviour in nanostructures. This can lead to the augmentation  
of the lifetime and to optimize the working of several nano-devices. The state of the 
interfaces is crucial for the determination of the behavior of phonons within the 
nanostructures. When the layer thickness of the superlattice is comparable with the MFP, 
the thermal conductivity is controlled by the transmission of phonons across the interfaces 
of the superlattice. In particular, the thermal boundary resistance or the Kapitza resistance, 
which has been discussed before, will play a key role in the thermal transport in 
superlattices with thin layers.  

 
Molecular Dynamics Simulations and Thermal Transport at the Nano-Scale 

 

91 

5.1 Modelling Si/Ge superlattices with rough interfaces  

In this subsection, we study the effect of the superlattice period and the structure of the 
interface on both the in-plane and the cross-plane superlattice thermal conductivities. 
Simulations have been held for two periods of superlattices 20 and 400,  which are 
comparable to the phonon meat free path at the temperature we are working at. To 
understand the role of the interfacial structure, we have considered two types of interfaces: 
smooth interfaces on the one hand, and rough interfaces with a right-isoscele-triangles 
shape, as shown in fig. 4. In the case of rough interfaces, the height of the interfaces has been 
varied between 1 monolayer (ML) which is half of a lattice constant for a fcc crystal, up to 
120, which is more than the half of the superlattice period for superlattices with period of 
200 and from 1ML up to 240 for superlattices with period of 400 (see fig. 4). The maximal 
interface height is thus more than half the superlattice’s period. 

  
Fig. 4. Several triangular shaped interfaces with varing height, for superlattice period  
of 400.  

We examined also the effect of the shape of the interface on the cross-plane and the in-plane 
thermal conductivities. In this case, the superlattice period is kept constant and equal to 200 
and we considered only one height of interfaces, the 60 or 12MLs. Fig. 5 shows the smooth 
interfaces, the periodic triangular isosceles interfaces and the additional 4 other shapes. The 
structure shown in 5.iii is obtained by superposing the periodic isosceles of small lengths 
with the periodic triangular interfaces shown in 5.ii. Cosine like, random like and square 
like interfaces are also examined. 

5.2 Thermal conductivity of Si/Ge like superlattices with rough interfaces 

The in-plane and cross-plane thermal conductivities have been calculated using the EMD 
and the NEMD methods. The results are displayed in figure 6 as a function of the interface  
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Fig. 5. Shapes of different superlattice interfaces i) smooth interfaces, ii) periodic isosceles 
triangles, iii) superposition of small triangles over the interfaces of the type ii, iv) cosine like 
v) random like, vi) periodic square like interfaces. In all cases, the height of the rough 
interfaces is kept constant equal to 12ML (taken from Termentzidis et al 2011b). 

roughness. Again, two superlattice periods have been considered 200 (left) and 400 (right). 
The figures show also some points named “intra-plane” thermal conductivity, which is 
defined as the thermal conductivity in the direction of 45° both of the in-plane or cross-plane 
directions. For the case of infinite roughness (with isosceles periodic triangles) the thermal 
conductivity in both the in-plane and the cross-plane directions is expected to be equal to 
this of the intra-plane conductivity, which is verified in our simulations. 

For smooth interfaces, it is expected that the transmission of phonons across the interface is 
specular and depends only on the acoustic impedance mismatch between the bulk materials 
of the superlattice (Swartz and Pohl, 1987, 1989). This is actually not the case since it is 
observed that the thermal conductivity of the layer decreases when the film thickness 
decreases (at least enough to be of the same order of magnitude as the phonon mean-free 
path). For rough surfaces with small roughness the transmission of phonons becomes more 
diffusive and the transmitted phonons are distributed over a wide range of angles, which 
induces an additional resistance to in-plane transport. This is consistent with the MD results 
which conclude to a decrease of the in-plane conductivity with the interfacial roughness. For 
rough surfaces with large roughness there is a combination of specular and diffusive 
transmission. This last case shows some similarities with the smooth surface case but now 
specular reflection is accompanied by back scattering. 

This back-scattering explains the existence of a minimum in the thermal conductivity 
observed for free surfaces, as well as for the in-plane conductivity of superlattices. A 
further increase in the surface roughness leads to higher thermal conductivity. This 
further increase in the thermal conductivity is related to the fact that on average, phonons 
experience less reflections on the asperities of the superlattice, and the mean free path 
length between scattering events increases, leading to an enhanced in plane transport. For 
the randomlike roughness, the monotonous decrease in the thermal conductivity in 
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increasing the roughness’s height can be interpreted if we assume that the phonon 
scattering at the interface remains diffusive, phenomena of back scattering and specular 
reflection, playing a secondary role here. Hence, we conclude that the variation in the 
ratio of interface roughness to the superlattice period can tailor the thermal properties of 
superlattices. 

 
Fig. 6. In-plane and cross-plane thermal conductivity as a function of the interface roughness 
obtained by EMD and NEMD for superlattice with period 200 (top) and with 400 
(bottom). 

The cross-plane and in-plane thermal conductivities obtained by NEMD and EMD for 
superlattices with various shapes of interfaces are plotted in figure 7. Further details about 
the modelling of these interfaces and the physical explanation of the results are given in 
Termentzidis et al, 2011b. It is striking to note that for rough interfaces, the anisotropy of the 
thermal conductivity is drastically reduced. Regarding the anisotropy between the in-plane 
and cross-plane directions, we can categorize the interfaces in three different groups, first 
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The cross-plane and in-plane thermal conductivities obtained by NEMD and EMD for 
superlattices with various shapes of interfaces are plotted in figure 7. Further details about 
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the smooth interfaces which displays the maximum anisotropy, with the in-plane thermal 
conductivity being more than twice larger than the cross-plane thermal conductivity; A 
second group contains totally random interfaces for which the two thermal conductivities 
exhibit their minimum values and a third group with periodic rough interfaces of a specific 
shape (triangular, square or cosine) where the thermal anisotropy is negligible compared to 
the uncertainties of the methods. 

6. Thermal conductivity predictions for GaAs/AlAs superlattices, impact  
of rough interfaces 
The GaAs/AlAs superlattices are important materials mainly for their optical  properties. 
Simulations of the thermal conductivity of superlattices as a function of their period exhibit 
a minimum for period around 8 to 10 monolayers (Daly et al 2002, Imamura et al 2003, Chen 
2005b), but this minimum is not observed in experimental measurements (Capinski et al 
1999). The quality of the interfaces might be the reason to explain this discrepancy. For 
perfectly smooth interfaces the minimum exists, while for rough interfaces with a height as 
small as one monolayer the minimum disappears and the thermal conductivity increases 
with the periodicity of the superlattice. The works of Daly et al 2002 and Imamura and al 
2003 are based on rough interfaces of one atomic layer and with a stochastic distribution of 
the two types of atoms that compose the superlattice.  

 
Fig. 7. In-plane and cross-plane thermal conductivities for several shapes of the interfaces 
obtained by EMD and NEMD for superlattices with period 20a0 and with constant height of 
interfaces 6a0. 
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6.1 Modelling rough interfaces for the GaAs/AlAs superlattices  

A new modeling of realistic interfaces is considered with the present study (Termentzidis et 
al 2010, 2011a). Interfaces with square formed islands of one monolayers and pyramide like 
islands of two monolayers are modelled. Furthermore there are two characteristic lengths of 
square islands depending if GaAs or AlAs is on top. It has been proven that large scale 
islands are formed when an AlAs layer grows on a GaAs layer while small scale islands are 
formed when a GaAs layer grows on an AlAs layer (Tanaka & Sakaki 1987, Jusserand et al 
1990). Furthermore interfaces with interdiffusion parts are also considered. Figure 8 depicts 
the two kind of interfaces with interface height of one monolayer and in figure 9 with two 
monolayers (these figures are taken from Termentzidis et al 2010)  

 
Fig. 8. Schematic representation of the two different scale interfaces between the GaAs/AlAs 
and the AlAs/GaAs, for height of interfaces of one monolayer – square like interfaces.  

 
Fig. 9. Schematic representation of the two different scale interfaces between the GaAs/AlAs 
and the AlAs/GaAs, for height of interfaces of two monolayers – pyramoidal like interfaces 
(taken from Termentzidis et al 2010).  

6.2 Thermal conductivity of GaAs/AlAs like superlattices with rough interfaces 

Figure 10 shows the predicted cross-plane thermal conductivity as a function of the 
superlattice period, for a variety of interface configurations. In figure 10 at left the thermal 
conductivity is plotted for smooth interfaces, for rough interfaces with height of one 
monolayer and three coverage factors (1%, 10% and 50%) and finally for interfaces with 
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height of 2 monolayers. The coverage factor of 1% exhibits the minimum in thermal 
conductivity as the smooth interfaces. For coverage factor of 10% and 50% the minimum 
dissapears and the results confirm previous theoretical observations (Daly et al 2002, 
Imamura et al 2003), while the two defect concentrations do not influence the thermal 
conductivity. For height of roughness of 2MLs, the thermal conductivity is higher than for 
smooth interfaces and exhibits a maximum for a 80. In the same figure at the right the 
influence of interdiffusion of the two species is shown, with similar behavior as the 
interfaces of height of two MLs. These unexpected results are related with the fact that 
inelastic scattering could enhance the thermal conductivity through interfaces (Lepi et al 
2003). The study shows that the thermal conductivity depends strongly on the detailed 
description of the interfaces, including height, shape of roughness, interdiffusion of species 
etc. Changing the structure of the interface can favor or deteriorate the thermal transport 
through interfaces, and we showed that the interface structure is a relevant parameter which 
controls the thermal properties of superlattices.  
 

 
Fig. 10. Cross-plane thermal conductivity as a function of the superlattice period with 
NEMD for GaAs/AlAs systems. Left: smooth interfaces,  rough interfaces of height of 1ML 
with three different concentrations and rough interfaces of height of 2ML are presented. 
Right: rough interfaces with interdiffusion. The smooth and rough interfaces with a 
concentration of 50% are also shown for comparison. 
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7. Conclusion 
We hope we have helped in showing the possibilities of the molecular dynamics technique 
to probe heat transport in solids, and in particular nanomaterials. Molecular dynamics is a 
relatively simple and flexible method to be used especially today when stable optimized 
open source codes have become avalaible: LAMMPS, DLPOLY, GROMACS to name a few. 
The ever increasing number of publications has helped in resolving controversies regarding 
heat transfer at the nanoscale, and also getting physical insights in classical problems. A 
physical understanding of energy transport across two solids-a very simple question-still 
poses a challenge ! MD simulations may help in observing the scattering of phonons at 
interfaces, which certainly complements experimental investigations. In the context of 
nanomaterials, MD is well adapted to characterize ballistic heat transport in nano-objects, 
although care should be taken not to introduce spurious sources of scattering ! Let us hope 
that further experimental measurements may improve the modeling of the nanomaterials 
that we  have considered.   
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1. Introduction 
An ultimate level of theory in molecular simulations [e.g., molecular dynamics (MD) and 
Monte Carlo (MC) simulations], which can accurately reproduce or even predict many 
experimental values, should be ab initio path integral. In ab initio path-integral simulations, 
both electrons and nuclei are treated quantum mechanically and adiabatically. No empirical 
parameter is involved, other than those fundamental physical constants (e.g., electronic mass 
and Planck’s constant). The only inherent approximations are the Born-Oppenheimer 
approximation (to decouple internuclear dynamics from electronic motions) and the ergodicity 
in MD simulations or the importance samplings in MC simulations (to partly integrate the 
entire phase space). Consequently, correlation energy among electrons, anharmonic zero-point 
motions and tunnelling effects in nuclei, and isotope effects can all be incorporated in the 
simulations. Proper consideration of the electronic and internuclear quantum effects, even just 
partially, can be critical to compare computed values with state-of-the-art experiments, e.g., (I) 
hydrogen adsorption in carbon nanotechnology (Tanaka, Kanoh et al. 2005; Kowalczyk, 
Gauden et al. 2007; Kowalczyk, Gauden et al. 2008); (II) electronic redistributions and isotope 
effects (Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; Gao and Wong 
2008) on biochemical reactions in protein (Wong and Gao 2007; Wong and Gao 2011; Wu and 
Wong 2009; Warshel, Olsson et al. 2006; Gao, Major et al. 2008; Major, Heroux et al. 2009) and 
RNA enzymes (Wong, Lee et al. 2011; Wong, Gu et al. 2012). 

However, owing to the extraordinarily high computational cost, ab initio path-integral 
simulations are thus far not practical even for modest size molecules, and are limited to only 
some relatively simpler or smaller molecular systems, e.g., thirty-two water molecules, and 
malonaldehyde [CH2(CHO)2]. Nevertheless, the unique information and invaluable insight 
for a molecular system, which can be provided perhaps only from ab initio path-integral 
simulations, have already been recognized in a number of pure computational publications 
in some high-profile journals, e.g., Nature, Science, and Physical Review Letters, etc (Marx and 
Parrinello 1995; Tuckerman, Marx et al. 1997; Marx, Tuckerman et al. 1999; Tuckerman and 
Marx 2001; Tuckerman, Marx et al. 2002; Ohta, Ohta et al. 2004; Hayashi, Shiga et al. 2006; 
Paesani, Iuchi et al. 2007). 

In this chapter, after quickly going over the fundamental physical laws tailoring MD 
simulations, we (wongky@biomaps.rutgers.edu; kiniu@alumni.cuhk.net) discuss a new 
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theoretical method that combines our novel systematic free-energy expansion approach, 
based on Zwanzig’s free-energy perturbation theory, with our recently developed 
automated integration-free path-integral method, based on Kleinert’s variational 
perturbation theory, (Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; 
Wong, Gu et al. 2012) to perform ab initio path-integral simulations for realistic 
macromolecules at an affordable computational cost. Since in this new method, we can 
progressively choose computationally affordable levels of theory, now important physical 
quantities, e.g., free-energy barrier, change of binding energy, pKa value, and isotope effect, 
can all be computed at an ab initio path-integral level. Therefore, we anticipate this new 
systematic approach will become an essential computational tool to catch up with or even 
predict experimental results for breaking down subtle mechanisms underlying a variety of 
molecular systems in Life and Materials Sciences. 

2. Fundamental physical laws governing molecular dynamics simulations 
In this section, we lay the theoretical foundation for molecular dynamics (MD) simulations. 

2.1 Molecular Schrödinger equation 

Ever since quantum mechanics was constructed in the 1920s, solving the non-relativistic 
time-independent Schrödinger equation for a system of nuclei and electrons has  
become an essential step to understand every single detail of atomic or molecular properties 
(Kleppner and Jackiw 2000). The non-relativistic time-independent Schrödinger equation for 
a molecular system (the molecular Schrödinger equation) is: 

 ˆ ,mole n n nH E    (1) 

where ˆ
moleH  is the complete (non-relativistic) molecular Hamiltonian, n  and nE  are an 

energy eigenfunction (or wave function) and an energy eigenvalue at an eigenstate n, 
respectively. In contrast to the (intra)nuclear or nucleon Hamiltonian (Dean 2007), the 
complete molecular Hamiltonian (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000) for Nn nuclei and Ne 
electrons can fortunately be written in an analytic closed form (thanks to the inverse square-
distance proportionality in Coulomb’s electrostatic force law): 

 2 21 1 1ˆ .
2 2

n n e n e eN N N N N N
j j j

mole j i
j jj ij iij j j i j i i i

Z Z Z
H

M x r r


   
             (2) 

In Eq. (2), the units are atomic units, Mj is the mass ratio of nucleus j to electron, and Zj is the 
atomic number of nucleus j. The Laplacian operators 2

j  and 2
i  denote the second order 

differentiation with respect to the coordinates of the jth nucleus and the ith electron, 
respectively. The first term in Eq. (2) represents the kinetic energy operator for nuclei; the 
second term is the Coulomb repulsion between nuclei; the third term is the operator for the 
kinetic energy of electrons; the fourth and fifth terms indicate the Coulomb attraction 
between electrons and nuclei, and the repulsion between electrons, respectively. The 
distance between the jth and the j'th nuclei is jjx  ; the separation between the ith and the 
i′th electrons is iir  ; the distance between the jth nucleus and the ith electrons is ijr . 
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2.2 Central quantity in quantum thermodynamics: Quantum partition function 

Once the energy eigenvalues or the quantized energy spectrum in Eq. (1) are calculated, it is 
straightforward to obtain a central physical quantity in thermodynamics, i.e., the quantum 
canonical partition function qmQ  (McQuarrie 2000), by the following summation of the 

Boltzmann energy distribution: 

  exp ,qm n
n

Q E   (3) 

where 1 Bk T  , Bk  is Boltzmann’s constant, and T is temperature. All standard 
thermodynamic quantities for a system of nuclei and electrons, e.g., free energy, internal 
energy, entropy, pressure, etc., can be derived from it. In Eq. (3), the lowest energy level 0E , 
which is often called the ground state energy or zero-point energy (ZPE), is usually the 
dominant energy level contributing to the partition function. Further, by virtue of 
Heisenberg’s uncertainty principle, the ZPE is always larger than the minimum value of 
potential energy because a particle can never be at rest anywhere in a given potential or a 
particle with a particular momentum can be everywhere in a given potential. 

2.3 Origin of potential energy surface: Born-Oppenheimer approximation 

Unfortunately, even though all physics and chemistry of a (time-independent) molecular 
system is essentially in the molecular Schrödinger equation [Eq. (1)], it can be exactly solved 
only for simplest one-electron atoms or ions. For other systems, approximations must be 
introduced to calculate numerical solutions with the aid of computers. The most common 
and perhaps the mildest approximation is the Born-Oppenheimer approximation (Born and 
Oppenheimer 1927; Hirschfelder and Meath 1967; Kolos 1970; Ballhausen and Hansen 1972; 
Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Helgaker, Jørgensen et al. 2000; 
Springborg 2000; Mielke, Peterson et al. 2003). It decouples internuclear motions from 
electrons so that nuclei effectively move on a potential energy surface (PES) obtained by 
solving the electronic part of Schrödinger equation. 

This approximation is based on the fact that an electron is much lighter than any nucleus 
(e.g., a proton, the lightest nucleus, is about 1840 times heavier than an electron). Nuclei 
move, consequently, much slowlier. As a result, from the electronic perspective, for a given 
set of nuclear positions, electrons adjust their positions ‘instantly’ before nuclei have a 
chance to move. On the other hand, from the standpoint of nuclei, electrons are moving so 
fast that their effects on nuclei are averaged out over the electronic wave functions. 
Mathematically, to simplify the molecular Hamiltonian, we first solve the electronic part of 
the Schrödinger equation for a particular set of nuclear configurations  jx . The electronic 
part of the complete molecular Hamiltonian [Eq. (2)] is called electronic Hamiltonian: 

 21 1ˆ .
2

e n e eN N N N
j

elec i
ij iii j i i i

Z
H

r r 
        (4) 

With this electronic Hamiltonian, we can obtain the electronic energy elecE from the 
corresponding electronic Schrödinger equation: 
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molecular systems in Life and Materials Sciences. 

2. Fundamental physical laws governing molecular dynamics simulations 
In this section, we lay the theoretical foundation for molecular dynamics (MD) simulations. 

2.1 Molecular Schrödinger equation 

Ever since quantum mechanics was constructed in the 1920s, solving the non-relativistic 
time-independent Schrödinger equation for a system of nuclei and electrons has  
become an essential step to understand every single detail of atomic or molecular properties 
(Kleppner and Jackiw 2000). The non-relativistic time-independent Schrödinger equation for 
a molecular system (the molecular Schrödinger equation) is: 

 ˆ ,mole n n nH E    (1) 

where ˆ
moleH  is the complete (non-relativistic) molecular Hamiltonian, n  and nE  are an 

energy eigenfunction (or wave function) and an energy eigenvalue at an eigenstate n, 
respectively. In contrast to the (intra)nuclear or nucleon Hamiltonian (Dean 2007), the 
complete molecular Hamiltonian (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000) for Nn nuclei and Ne 
electrons can fortunately be written in an analytic closed form (thanks to the inverse square-
distance proportionality in Coulomb’s electrostatic force law): 
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             (2) 

In Eq. (2), the units are atomic units, Mj is the mass ratio of nucleus j to electron, and Zj is the 
atomic number of nucleus j. The Laplacian operators 2

j  and 2
i  denote the second order 

differentiation with respect to the coordinates of the jth nucleus and the ith electron, 
respectively. The first term in Eq. (2) represents the kinetic energy operator for nuclei; the 
second term is the Coulomb repulsion between nuclei; the third term is the operator for the 
kinetic energy of electrons; the fourth and fifth terms indicate the Coulomb attraction 
between electrons and nuclei, and the repulsion between electrons, respectively. The 
distance between the jth and the j'th nuclei is jjx  ; the separation between the ith and the 
i′th electrons is iir  ; the distance between the jth nucleus and the ith electrons is ijr . 

 
Developing a Systematic Approach for Ab Initio Path-Integral Simulations 

 

109 

2.2 Central quantity in quantum thermodynamics: Quantum partition function 

Once the energy eigenvalues or the quantized energy spectrum in Eq. (1) are calculated, it is 
straightforward to obtain a central physical quantity in thermodynamics, i.e., the quantum 
canonical partition function qmQ  (McQuarrie 2000), by the following summation of the 

Boltzmann energy distribution: 

  exp ,qm n
n

Q E   (3) 

where 1 Bk T  , Bk  is Boltzmann’s constant, and T is temperature. All standard 
thermodynamic quantities for a system of nuclei and electrons, e.g., free energy, internal 
energy, entropy, pressure, etc., can be derived from it. In Eq. (3), the lowest energy level 0E , 
which is often called the ground state energy or zero-point energy (ZPE), is usually the 
dominant energy level contributing to the partition function. Further, by virtue of 
Heisenberg’s uncertainty principle, the ZPE is always larger than the minimum value of 
potential energy because a particle can never be at rest anywhere in a given potential or a 
particle with a particular momentum can be everywhere in a given potential. 

2.3 Origin of potential energy surface: Born-Oppenheimer approximation 

Unfortunately, even though all physics and chemistry of a (time-independent) molecular 
system is essentially in the molecular Schrödinger equation [Eq. (1)], it can be exactly solved 
only for simplest one-electron atoms or ions. For other systems, approximations must be 
introduced to calculate numerical solutions with the aid of computers. The most common 
and perhaps the mildest approximation is the Born-Oppenheimer approximation (Born and 
Oppenheimer 1927; Hirschfelder and Meath 1967; Kolos 1970; Ballhausen and Hansen 1972; 
Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Helgaker, Jørgensen et al. 2000; 
Springborg 2000; Mielke, Peterson et al. 2003). It decouples internuclear motions from 
electrons so that nuclei effectively move on a potential energy surface (PES) obtained by 
solving the electronic part of Schrödinger equation. 

This approximation is based on the fact that an electron is much lighter than any nucleus 
(e.g., a proton, the lightest nucleus, is about 1840 times heavier than an electron). Nuclei 
move, consequently, much slowlier. As a result, from the electronic perspective, for a given 
set of nuclear positions, electrons adjust their positions ‘instantly’ before nuclei have a 
chance to move. On the other hand, from the standpoint of nuclei, electrons are moving so 
fast that their effects on nuclei are averaged out over the electronic wave functions. 
Mathematically, to simplify the molecular Hamiltonian, we first solve the electronic part of 
the Schrödinger equation for a particular set of nuclear configurations  jx . The electronic 
part of the complete molecular Hamiltonian [Eq. (2)] is called electronic Hamiltonian: 
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With this electronic Hamiltonian, we can obtain the electronic energy elecE from the 
corresponding electronic Schrödinger equation: 
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   ˆ ,elec elec elec j elecH E x   (5) 

where elec  is the electronic wave function. Note that the electronic energy   elec jE x  
depends parametrically on the nuclear positions  jx . With this electronic energy, the 
molecular Hamiltonian in Eq. (2) can be simplified as follows: 
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where   signifies the average over electronic wave functions or the expectation value. In 
Eq. (6), V is defined as the sum of the nuclear repulsion energy and electronic energy, which 
effectively turns out to be the internuclear potential energy function as a consequence of the 
Born-Oppenheimer approximation: 
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There are many systematic and rigorous theories in electronic structure calculations to 
derive the internuclear potential energy from first principles (i.e., besides the universal 
fundamental constants in physics, there is no other empirical parameter involved in the 
calculations), e.g., Hartree-Fock theory, configuration interaction method, Møller-Plesset 
perturbation theory, coupled cluster approach, and Kohn-Sham density functional theory. 
All these quantum mechanical (QM) approaches for electronic structure calculations are 
often known as ab initio methods (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000). 

In contrast, a complete empirical method to determine an internuclear potential energy 
surface is to parameterize the potential energy as an analytic function without treating 
electronic degrees of freedom. This type of approach is referred to as molecular mechanical 
(MM) method and the empirical potential energy is called force-field energy. Comparing to 
ab initio approach, MM methods are computationally much less expensive and can be 
applied to describe equilibrium properties in macromolecular systems involving over tens 
of thousands of heavy atoms (Hagler, Huler et al. 1974; Brooks, Bruccoleri et al. 1983; 
Weiner, Kollman et al. 1984; Jorgensen and Tirado-Rives 1988; Mayo, Olafson et al. 1990). 
But for the process involving electronic redistributions (e.g., electronic transfer, chemical 
bond breaking or forming, etc.), MM force field is often unable to describe it. Later, a hybrid 
approach called combined QM/MM method has emerged to synthesize the efficiency of 
MM force field with the accuracy of QM calculations (Field, Bash et al. 1990; Gao and 
Truhlar 2002). For the rest of this chapter, discussions are limited to the Born-Oppenheimer 
approximation, which adiabatically decouples nuclear and electronic degrees of freedom. 
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2.4 Classical free-energy profile vs classical potential of mean force 

In practice, quantum effects on internuclear motions are much smaller than those on the 
electronic part. In many applications, the internuclear quantum effects are insignificant and 
could even be neglected. Thus, the eigenenergy spectrum En in Eq. (1) would become 
continuous. Given an internuclear potential V, the quantum canonical partition function in 
Eq. (3) consequently reduces to the classical canonical partition function as: 
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where h is Planck’s constant and p is the momenta associated with the nuclear coordinates x. 
Subsequently, the classical free energy Gcl of a molecular system can be expressed in terms 
of the classical partition function Qcl as follows: 
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Note that the partition function and the free energy defined above are ‘state’ functions, 
which is independent of any nuclear coordinate and momentum (as we integrate out the 
entire phase space). Given a particular 3 nN -degree-of-freedom molecular system described 
by a particular potential energy function V at particular temperature, the partition function 
and the free energy are constants. 

On the other hand, of significant interest in simulating a many-body biochemical or physical 
event is to examine how the free energy of a molecular system varies during the event. 
Conventionally, we first predetermine a coordinate which should be able to describe the 
event of interest from the start to the end. Next, we generate a free energy profile, which is 
an energy function of that predetermined coordinate, to investigate how the profile changes 
during the event. In fact, such a kind of free-energy profile can also be termed as potential 
energy of ensemble-average or mean force (Kirkwood 1935). Reasons are given below. 

The free energy profile of a molecular system as a function of a predetermined coordinate of 
interest z can be written as follows: 
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where   is Dirac delta function, z  is the thermal de Broglie wavelength for the degree of 
freedom along z-direction, and C is a normalization factor dependent on the inverse of the 
thermal de Broglie wavelengths for all degrees of freedom (the wavelength is a function of 
the nuclear mass Mj, and temperature T). C should be a constant during the biochemical or 
physical event of our interest. The integrand in the final configurational integral of Eq. (10) 
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where elec  is the electronic wave function. Note that the electronic energy   elec jE x  
depends parametrically on the nuclear positions  jx . With this electronic energy, the 
molecular Hamiltonian in Eq. (2) can be simplified as follows: 
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where   signifies the average over electronic wave functions or the expectation value. In 
Eq. (6), V is defined as the sum of the nuclear repulsion energy and electronic energy, which 
effectively turns out to be the internuclear potential energy function as a consequence of the 
Born-Oppenheimer approximation: 
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perturbation theory, coupled cluster approach, and Kohn-Sham density functional theory. 
All these quantum mechanical (QM) approaches for electronic structure calculations are 
often known as ab initio methods (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000). 

In contrast, a complete empirical method to determine an internuclear potential energy 
surface is to parameterize the potential energy as an analytic function without treating 
electronic degrees of freedom. This type of approach is referred to as molecular mechanical 
(MM) method and the empirical potential energy is called force-field energy. Comparing to 
ab initio approach, MM methods are computationally much less expensive and can be 
applied to describe equilibrium properties in macromolecular systems involving over tens 
of thousands of heavy atoms (Hagler, Huler et al. 1974; Brooks, Bruccoleri et al. 1983; 
Weiner, Kollman et al. 1984; Jorgensen and Tirado-Rives 1988; Mayo, Olafson et al. 1990). 
But for the process involving electronic redistributions (e.g., electronic transfer, chemical 
bond breaking or forming, etc.), MM force field is often unable to describe it. Later, a hybrid 
approach called combined QM/MM method has emerged to synthesize the efficiency of 
MM force field with the accuracy of QM calculations (Field, Bash et al. 1990; Gao and 
Truhlar 2002). For the rest of this chapter, discussions are limited to the Born-Oppenheimer 
approximation, which adiabatically decouples nuclear and electronic degrees of freedom. 
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where h is Planck’s constant and p is the momenta associated with the nuclear coordinates x. 
Subsequently, the classical free energy Gcl of a molecular system can be expressed in terms 
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Note that the partition function and the free energy defined above are ‘state’ functions, 
which is independent of any nuclear coordinate and momentum (as we integrate out the 
entire phase space). Given a particular 3 nN -degree-of-freedom molecular system described 
by a particular potential energy function V at particular temperature, the partition function 
and the free energy are constants. 

On the other hand, of significant interest in simulating a many-body biochemical or physical 
event is to examine how the free energy of a molecular system varies during the event. 
Conventionally, we first predetermine a coordinate which should be able to describe the 
event of interest from the start to the end. Next, we generate a free energy profile, which is 
an energy function of that predetermined coordinate, to investigate how the profile changes 
during the event. In fact, such a kind of free-energy profile can also be termed as potential 
energy of ensemble-average or mean force (Kirkwood 1935). Reasons are given below. 

The free energy profile of a molecular system as a function of a predetermined coordinate of 
interest z can be written as follows: 
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where   is Dirac delta function, z  is the thermal de Broglie wavelength for the degree of 
freedom along z-direction, and C is a normalization factor dependent on the inverse of the 
thermal de Broglie wavelengths for all degrees of freedom (the wavelength is a function of 
the nuclear mass Mj, and temperature T). C should be a constant during the biochemical or 
physical event of our interest. The integrand in the final configurational integral of Eq. (10) 
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is basically the probability density of the molecular system as a function of z. In practice, it is 
rare to determine the value of C because what we often care about is the free-energy 
difference at various values of z. 

Notably, by taking the negative derivative of  zG z , i.e.,  zdG z dz , we obtain the average 
force over all ensembles or over all degrees of freedom, which is called the mean force 
(Kirkwood 1935), based on the ensemble average definition in Eq. (16): 
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Thus  zG z , the free energy profile as a function of a predetermined coordinate, is also 
called the potential of mean force (PMF) (Kirkwood 1935). 

However, please note that if the predetermined coordinate of interest is not a linear 
combination of rectilinear coordinates, or in other words, if it is a curvilinear coordinate, 
then PMF is oftentimes not exactly equal to free-energy profile. Not only the Jacobian-
determinant contribution makes their difference (Ruiz-Montero, Frenkel et al. 1997; Hénin, 
Fiorin et al. 2010), but also in a forthcoming paper, we will show that actually change of 
domains with respect to the coordinate of interest can also contribute to the free-energy 
profile, i.e., the Leibnizian contribution (Flanders 1973). 

In addition, we will also show that according to differential geometry and general relativity, 
once we realize the equivalence between orthogonal covariant and contravariant vectors 
(Arfken and Weber 2001), then the Jacobian scale factor for a predetermined curvilinear 
coordinate of interest, q , can be proved to be (in contravariant space): 

 1
qh q
 


 
  (12) 

and the unit vector for q  can be proved as (in contravariant space): 

 q̂ q q    
   (13) 

In Eq. (12) and (13), q  must belong to at least one complete set of curvilinear coordinates, 
hypothetically. In general, unless we explicitly define the rest of the complete curvilinear 
coordinates, the sole definition of q  is not sufficient to make the PMF be unique. But, we 
will show the free-energy profile does not suffer from this uniqueness problem. In fact, if we 
restrict ourselves to a complete set of curvilinear coordinates in which q  is orthogonal to the 
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rest of coordinates, then the PMF will be unique and its relation with the free-energy profile 
can be proved as follows (den Otter 2000), after using Eq. (12) and Eq. (13): 
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In Eq. (14), the Leibnizian contribution is nil, the first term on RHS is the mean force for q , 
the second term is the Jacobian contribution, and 

0q   is the ensemble average over all 
configurations with 0q  . 

Finally, the Fixman potential (Fixman 1974), which corrects the velocity-bias in constrained 
MD, will also be presented with correct dependence on mass in our forthcoming paper. 

2.5 Simulating classical thermodynamics: Molecular dynamics simulations 

By assuming the molecular system of our interest is ergodic, molecular dynamics (MD) 
simulation techniques can be employed to compute the ensemble average of a physical 
quantity. In essence, MD simulations is numerically solving, integrating or propagating the 
Newtonian equations of motion, one-time-step by one-time-step. Given an internuclear 
potential V (regardless of using QM, MM, or hybrid QM/MM to construct), the motion or 
trajectory of a nucleus j as a function of time t is governed by Newton’s second law: 
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2

2 .j
j j j

d x
V x t M

dt
  


 (15) 

Note the extended forces in Eq. (15) are essential for having canonical ensemble (constant 
temperature) instead of microcanonical ensemble (constant energy) in MD simulations 
(Hünenberger 2005). In the ergodic hypothesis (Lebowitz and Penrose 1973; Cogswell 1999) 
[the dynamical version of ergodic theory was first proposed by Birkhoff (Birkhoff 1931), in 
which Liouville’s theorem was applied to ensure the ensemble distribution in phase-space is 
invariant with time], if the simulation time for propagating the trajectory  jx t  of the 
nucleus j is infinitely long, the ensemble average of a physical quantity     f ,x p  (which 
can be either a scalar or a vector) over the entire phase space, i.e., 
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is equal to the time average in MD simulations: 
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In other words, longer MD simulation time allows us to sample more phase space for 
computing the corresponding ensemble average, which in turn could be in higher accuracy. 
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In Eq. (14), the Leibnizian contribution is nil, the first term on RHS is the mean force for q , 
the second term is the Jacobian contribution, and 

0q   is the ensemble average over all 
configurations with 0q  . 

Finally, the Fixman potential (Fixman 1974), which corrects the velocity-bias in constrained 
MD, will also be presented with correct dependence on mass in our forthcoming paper. 

2.5 Simulating classical thermodynamics: Molecular dynamics simulations 

By assuming the molecular system of our interest is ergodic, molecular dynamics (MD) 
simulation techniques can be employed to compute the ensemble average of a physical 
quantity. In essence, MD simulations is numerically solving, integrating or propagating the 
Newtonian equations of motion, one-time-step by one-time-step. Given an internuclear 
potential V (regardless of using QM, MM, or hybrid QM/MM to construct), the motion or 
trajectory of a nucleus j as a function of time t is governed by Newton’s second law: 
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is equal to the time average in MD simulations: 
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In other words, longer MD simulation time allows us to sample more phase space for 
computing the corresponding ensemble average, which in turn could be in higher accuracy. 
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3. Zwanzig’s free-energy perturbation theory 
Owing to the Boltzmann exponential energy distribution, one of the major difficulties in 
computing a converged free-energy profile or potential of mean force [Eq. (10)] via MD and 
MC sampling techniques is that it takes longer simulation time or runs more MC steps to 
have enough higher-energy samples. Yet, many interesting biochemical or physical 
molecular properties could be in higher-energy regions, e.g., the transition state during 
protein folding or biochemical reaction. 

In practice, in order for having effective samplings on both the lower-energy (e.g., reactant 
state) and higher-energy regions (e.g., transition state), Zwanzig’s free-energy perturbation 
(Zwanzig 1954) [which is also referred to as statistical-mechanical perturbation theory 
(McQuarrie 2000)] has been extensively applied. The feature of the perturbation is relating 
the change of free energy between two systems (both have the same number of degrees of 
freedom) by an ensemble average taken in only one of the two systems. This can be 
illustrated by first writing the classical free energy Gcl corresponding to the partition 
function in Eq. (8) as follows: 
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where E is the energy at a point     ,j jp x  in the phase space, i.e., 
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Next, we rewrite Eq. (18) as: 

 

 

 

0

0

0

3 3

03 3 3

33 3

3

0 00

exp
ln ln

ln exp ,

n n

n n n

nn n

n

N N
E

N N N
E

cl B B NN N
E

N

B

dx dp E E e
h dx dpG k T k T e

hdx dp e
h

k T E E G











 


 
 

 
  

 

 
    

    
 
  

      

 
 

 
 (20) 

where 0G  is the free energy of the reference system, 0E  is the energy at a point in the phase 
space of the reference system, and 0  is an ensemble average for the reference system. 
From Eq. (20), we obtain Zwanzig’s free-energy perturbation (Zwanzig 1954): 

  0 0 0
ln exp .BG G k T E E        (21) 

As a result, by taking the advantage of the perturbation [Eq. (21)], we can readily have 
enough samples in higher-energy regions in a reference frame where their original high 
potential energy values intentionally get lowered. Afterwards, the corrected free energy can 
straightforwardly be recovered by taking the average of the exponential factor 

 0exp E E     over the ensembles sampled in the reference system. This is exactly the 
idea behind many enhanced sampling methods, such as the umbrella sampling technique. 
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4. Systematic ab initio molecular dynamics approach: Free-energy expansion 
method as a series of covariance tensors 
A fundamental key to have successful molecular simulations is the accuracy of internuclear 
potential for describing atomic motions during biochemical or physical events. By exploiting 
Zwanzig’s free-energy perturbation (FEP) theory, we are developing a new rigorous method 
to systematically obtain accurate free-energy profiles, in which the internuclear potential 
energy is effectively computed at a high-level ab initio theory. Our new method is a 
systematic free-energy expansion (FEE) in terms of a series of covariance tensors. The new 
expansion will enable us to have a free-energy profile at a level as high as the coupled 
cluster theory at an affordable computational cost, which is currently known as the gold 
standard but unreachable level of theory for free-energy simulations. The focus of our FEE 
method will be on the difference of free energy calculated by two different internuclear 
potential. Furthermore, in contrast to Car-Parrinello MD (CPMD) which is limited to 
potential energy derived from DFT (Car and Parrinello 1985), our method is independent of 
how the potential energy functions being constructed. Therefore, by combining it with our 
novel automated integration-free path-integral (AIF-PI) method together (See Section 5; 
Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, Gu et al. 2012), 
we will also be able to compute free-energy barriers, changes of binding energy, pKa values, 
and isotope effects at an ab initio path integral level (see Section 6). 

Let’s begin with the FEP theory. From Eq. (21), the free energy difference between using 
lower-level (LL) and higher-level (HL) ab initio methods can be expressed as: 

  ln exp .HL LL B HL LL LL
G G G k T E E          (22) 

Next we expand the ensemble average in Eq. (22) and sum up the prefactors into a series of 
cumulants: 
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where 

 ,HL LLE E E    (24) 

,LL c  is a cumulant, and n is the order of a cumulant. In his original 1954 paper (Zwanzig  

1954), Zwanzig showed that the cumulant expansion is fast converging when the change of 
energy ΔE in the ensemble is reasonably small relative to the inverse of . However, in terms 
of computational cost, this cumulant expansion does not provide an advantage for 
correcting lower-level free energy. This is because the time required for calculating the 
cumulant average ,LL c  with computer is basically as much as the time needed to directly 
compute the higher-level free energy HLG , regardless of whether the perturbation ΔE is big. 

In order to ease up this situation, in a forthcoming paper we will prove that each cumulant 
can be further expanded as a Taylor series expansion fluctuating about the ensemble 
average position xLL  in the form: 
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where 0G  is the free energy of the reference system, 0E  is the energy at a point in the phase 
space of the reference system, and 0  is an ensemble average for the reference system. 
From Eq. (20), we obtain Zwanzig’s free-energy perturbation (Zwanzig 1954): 

  0 0 0
ln exp .BG G k T E E        (21) 

As a result, by taking the advantage of the perturbation [Eq. (21)], we can readily have 
enough samples in higher-energy regions in a reference frame where their original high 
potential energy values intentionally get lowered. Afterwards, the corrected free energy can 
straightforwardly be recovered by taking the average of the exponential factor 
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idea behind many enhanced sampling methods, such as the umbrella sampling technique. 
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          2 x x D x x x1 ˆ cov ,
2!

pTn
n n LL n LLLLLL

E f f f           (25) 

where pT  is transpose,    x  n
nf E   , x is a position vector of 3N Cartesian coordinates 

of the system, D̂n  is the nth-order tensor operator for differentiation with respect to the 3N 
coordinates (e.g.,  D xˆ

n LLf  is the gradient and  2D xˆ
n LLf  is the Hessian matrix), and 

 x xcov ,pT  is the covariance matrix. The higher order terms in Eq. (25) involve higher order 
covariance tensors. Note that the term associated with the gradient is not shown in Eq. (25) 
because the first order central moment, i.e., x xLL LL , is always zero by definition. 

By combining Eq. (25) with Eq. (23), we have enough equations to systematically approach 
the exact value of high-level free energy at a reduced computational cost. The number of 
calculations involving EHL is now considerably decreased to only a single-point energy 
calculation at xLL  for the zeroth order correction, and merely a normal-mode frequency 
analysis at xLL  for the second order correction. 

To increase the converging property for the expansion in Eq. (25) as well as to overcome the 
problem of multi-model probability distribution, we can further generalize the FEE method 
by considering a decomposition of the ensemble average into subgroups by clustering 
methods. The clustering scheme will be determined in a way such that the FEE expansion is 
converged up to the second order correction in each group or each cluster. Please note that, 
in the limit that the number of clusters becomes as many as the number of ensembles, the 
formalism reduces back to the original ensemble average, and inclusion of only the zeroth 
order term  in Eq. (25) is able to  return us back the exact result of Eq. (23). 
 

Cumulant Tensor G (kcal/mol) Error 

1st 

0th −170.601 0.316 
1st −170.601 0.316 
2nd −170.680 0.237 
3rd −170.680 0.237 
∞ −170.680 0.237 

2nd 

0th −170.601 0.316 
1st −170.601 0.316 
2nd −170.875 0.042 
3rd −170.877 0.040 
∞ −170.883 0.034 

6th ∞ −170.917 0.000 

Table 1. Free-Energy correction G for H2O from HF/6-31G(d) to MP2/6-311G(d,p). 

Since single-point energy calculations and a normal-mode frequency analysis at high-level 
electronic structure calculations are actually very common in literature (which are often 
used for minimized structures, though), we anticipate this new free-energy expansion 
method would be particularly useful for coupling accurate results from high-level ab initio 
theory with computational efficiency of lower-level samplings in free-energy calculations. 
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The preliminary results using this new systematic FEE method, i.e., Eq. (23), are very 
encouraging. Table 1 shows the free energy correction G for a single water molecule from 
HF/6-31G(d) to MP2/6-311G(d,p). Even just up to the first cumulant at the zeroth order 
correction, the computed error is in the order of magnitude ~0.1 kcal/mol. The first 
cumulant is basically converged as soon as the second order correction is included. 

5. Simulating quantum thermodynamics: Feynman’s path integral 
All the above discussions on simulating internuclear thermodynamics are limited to 
classical mechanics (regardless of using QM, MM, hybrid QM/MM to construct potential 
energy). However, the real world is described by quantum mechanics, including nuclei. In 
some important applications of Life and Materials Sciences, such as hydrogen adsorption in 
carbon nanotechnology, the transport mechanism of hydrated hydroxide ions in aqueous 
solution, and kinetic isotope effects on a proton-transfer reaction, actually internuclear 
quantum-statistical effects (e.g., quantization of vibration and quantum tunneling) are not 
negligible. A popular choice for incorporating such internuclear quantum-statistical effects 
in the conventional molecular dynamics (MD) or Monte Carlo (MC) simulations (Tanaka, 
Kanoh et al. 2005; Warshel, Olsson et al. 2006; Kowalczyk, Gauden et al. 2007; Gao, Major et 
al. 2008; Kowalczyk, Gauden et al. 2008; Major, Heroux et al. 2009; Wong, Gu et al. 2012) is 
using Feynman’s path integral (Feynman 1948; Feynman 1966; Kleinert 2004; Brown 2005; 
Feynman, Hibbs et al. 2005). 

The essence of Feynman’s path integral is to transform the Schrödinger differential equation 
to become an integral equation. As a result, the many-body path integrations can be carried 
out by the conventional MD or MC sampling techniques. In addition, the quantum 
canonical partition function can be directly obtained with no need to compute individual 
energy eigenvalues. 

5.1 Kleinert’s variational perturbation theory for centroid density of path integrals 

Kleinert’s variational perturbation (KP) theory (Kleinert 2004) for the centroid density 
(Gillan 1987; Gillan 1987; Voth 1996; Ramírez, López-Ciudad et al. 1998; Ramírez and López-
Ciudad 1999; Feynman, Hibbs et al. 2005) of Feynman path integrals (Feynman 1948; 
Feynman 1966; Kleinert 2004; Brown 2005; Feynman, Hibbs et al. 2005) provides a complete 
theoretical foundation for developing non-stochastic methods to systematically incorporate 
internuclear quantum-statistical effects in condensed phase systems. Similar to the 
complementary interplay between the rapidly growing quantum Monte Carlo simulations 
(Anderson 1975; Grossman and Mitas 2005; Lester and Salomon-Ferrer 2006; Wagner, 
Bajdich et al. 2009) and the well-established ab initio or density-functional theories (DFT) for 
electronic structure calculations (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000), non-stochastic path-
integral methods can complement the conventional Fourier or discretized path-integral 
Monte-Carlo (PIMC) (MacKeown 1985; Coalson 1986; Ceperley 1995; Mielke and Truhlar 
2001; Sauer 2001) and molecular dynamics (PIMD) (Cao and Voth 1994; Voth 1996) 
simulations which have been widely used in condensed phases. 

To simplify the illustration of the essence of Kleinert’s variational perturbation theory, we 
now consider a one-particle one-dimensional system. For a one-particle one-dimensional 
system, the classical canonical partition function in Eq. (8) reduces to become: 
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The traditional way to obtain the quantum canonical partition function, i.e., Eq. (3), is to 
solve the internuclear Schrödinger equation to get the individual energy eigenvalues. But in 
the path-integral (PI) formulation, we do not know the individual energy eigenvalues for 
obtaining the quantum partition function. This is because the PI representation of the 
quantum partition function can be written in terms of the centroid effective potential W as a 
classical configuration integral (Gillan 1987; Gillan 1987; Voth 1996; Ramírez, López-Ciudad 
et al. 1998; Ramírez and López-Ciudad 1999; Kleinert 2004; Feynman, Hibbs et al. 2005): 
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Given the centroid potential  0W x , thermodynamic and quantum dynamic quantities can 
be accurately determined, including molecular spectroscopy of quantum fluids and the rate 
constant of chemical and enzymatic reactions. The mass-dependent nature of  0W x  is also 
of particular interest because isotope effects can be obtained, and it has been applied to 
carbon nanotubes (Tanaka, Kanoh et al. 2005; Kowalczyk, Gauden et al. 2007; Kowalczyk, 
Gauden et al. 2008), and biochemical reactions in protein (Warshel, Olsson et al. 2006; Gao, 
Major et al. 2008; Major, Heroux et al. 2009) and RNA enzymes (Wong, Gu et al. 2012). 

The centroid potential  0W x  in Eq. (27) is defined as follows (Gillan 1987; Gillan 1987; 
Voth 1996; Ramírez, López-Ciudad et al. 1998; Ramírez and López-Ciudad 1999; Kleinert 
2004; Feynman, Hibbs et al. 2005): 
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where τ is a real number and represents the component for pure imaginary time in path 
integral,  x   describes a path in space-time,    0x x x  D  denotes a summation over 
all possible closed paths in which x  is equal to 0x  (i.e., a functional integration), and x  is 
the time-average position, called ‘centroid’ 
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In Eq. (28), A  is the quantum-statistical action: 
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where  V x  is the original potential energy of the system. Generalization of Eq. (28) to a 
multi-dimensional system is straightforward (Kleinert 2004; Feynman, Hibbs et al. 2005). 
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A number of non-stochastic approaches have been developed to approximately estimate the 
centroid potential. For example, Feynman and Hibbs described a first-order cumulant 
expansion by introducing a Gaussian smearing function in a free-particle reference frame to 
yield an upper bound on the centroid potential (Feynman, Hibbs et al. 2005). This was 
subsequently modified by Doll and Myers (DM) by using a Gaussian width associated with 
the angular frequency at the minimum of the original potential (Doll and Myers 1979). 
Mielke and Truhlar employed a free-particle reference state and approximated the sum over 
paths by a minimal set of paths constrained for a harmonic oscillator. The action integral is 
obtained by using the three-point trapezoidal rule for the potential to yield the displaced-
point path integral (DPPI) centroid potential (Mielke and Truhlar 2001). 

A closely related theoretical approach to the KP theory is the variational method 
independently introduced by Giachetti and Tognetti (Giachetti and Tognetti 1985), and by 
Feynman and Kleinert (hereafter labeled as GTFK) (Feynman and Kleinert 1986), which 
formally corresponds to the first order approximation in the KP theory, i.e., KP1. The GTFK 
approach is a variational method that adopts a harmonic reference state by variationally 
optimizing the angular frequency. This variational method has been applied to a variety of 
systems, including quantum dynamic processes in condensed phases (e.g., water and 
helium). Although the original GTFK approach is among the most accurate approximate 
methods for estimating the path-integral centroid potential in many applications (Mielke 
and Truhlar 2001), significant errors can exist in situations in which quantum effects are 
dominant, especially at low temperatures. Higher order perturbations of KP theory can 
significantly and systematically improve computational accuracy over the KP1 
results.(Kleinert 2004; Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; 
Wong, Gu et al. 2012) 

In essence, what Kleinert’s variational perturbation (KP) theory does is to systematically 
builds up anharmonic corrections to the harmonic centroid potential calculated in a 
harmonic reference state characterized by a trial angular frequency Ω (Kleinert 2004). Given 
the reference, or trial harmonic action: 
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the centroid potential  0W x  in Eq. (28) can be expressed as a path integral of the harmonic 
action which is perturbed by the anharmonicity of the original potential: 
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where 0xQ  is the local harmonic partition function given as follows: 
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and 0x
  is the expectation value over all closed paths of the action in Eq. (31): 
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Given the centroid potential  0W x , thermodynamic and quantum dynamic quantities can 
be accurately determined, including molecular spectroscopy of quantum fluids and the rate 
constant of chemical and enzymatic reactions. The mass-dependent nature of  0W x  is also 
of particular interest because isotope effects can be obtained, and it has been applied to 
carbon nanotubes (Tanaka, Kanoh et al. 2005; Kowalczyk, Gauden et al. 2007; Kowalczyk, 
Gauden et al. 2008), and biochemical reactions in protein (Warshel, Olsson et al. 2006; Gao, 
Major et al. 2008; Major, Heroux et al. 2009) and RNA enzymes (Wong, Gu et al. 2012). 

The centroid potential  0W x  in Eq. (27) is defined as follows (Gillan 1987; Gillan 1987; 
Voth 1996; Ramírez, López-Ciudad et al. 1998; Ramírez and López-Ciudad 1999; Kleinert 
2004; Feynman, Hibbs et al. 2005): 
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where τ is a real number and represents the component for pure imaginary time in path 
integral,  x   describes a path in space-time,    0x x x  D  denotes a summation over 
all possible closed paths in which x  is equal to 0x  (i.e., a functional integration), and x  is 
the time-average position, called ‘centroid’ 
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In Eq. (28), A  is the quantum-statistical action: 
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where  V x  is the original potential energy of the system. Generalization of Eq. (28) to a 
multi-dimensional system is straightforward (Kleinert 2004; Feynman, Hibbs et al. 2005). 
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A number of non-stochastic approaches have been developed to approximately estimate the 
centroid potential. For example, Feynman and Hibbs described a first-order cumulant 
expansion by introducing a Gaussian smearing function in a free-particle reference frame to 
yield an upper bound on the centroid potential (Feynman, Hibbs et al. 2005). This was 
subsequently modified by Doll and Myers (DM) by using a Gaussian width associated with 
the angular frequency at the minimum of the original potential (Doll and Myers 1979). 
Mielke and Truhlar employed a free-particle reference state and approximated the sum over 
paths by a minimal set of paths constrained for a harmonic oscillator. The action integral is 
obtained by using the three-point trapezoidal rule for the potential to yield the displaced-
point path integral (DPPI) centroid potential (Mielke and Truhlar 2001). 

A closely related theoretical approach to the KP theory is the variational method 
independently introduced by Giachetti and Tognetti (Giachetti and Tognetti 1985), and by 
Feynman and Kleinert (hereafter labeled as GTFK) (Feynman and Kleinert 1986), which 
formally corresponds to the first order approximation in the KP theory, i.e., KP1. The GTFK 
approach is a variational method that adopts a harmonic reference state by variationally 
optimizing the angular frequency. This variational method has been applied to a variety of 
systems, including quantum dynamic processes in condensed phases (e.g., water and 
helium). Although the original GTFK approach is among the most accurate approximate 
methods for estimating the path-integral centroid potential in many applications (Mielke 
and Truhlar 2001), significant errors can exist in situations in which quantum effects are 
dominant, especially at low temperatures. Higher order perturbations of KP theory can 
significantly and systematically improve computational accuracy over the KP1 
results.(Kleinert 2004; Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; 
Wong, Gu et al. 2012) 

In essence, what Kleinert’s variational perturbation (KP) theory does is to systematically 
builds up anharmonic corrections to the harmonic centroid potential calculated in a 
harmonic reference state characterized by a trial angular frequency Ω (Kleinert 2004). Given 
the reference, or trial harmonic action: 
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the centroid potential  0W x  in Eq. (28) can be expressed as a path integral of the harmonic 
action which is perturbed by the anharmonicity of the original potential: 
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where 0xQ  is the local harmonic partition function given as follows: 
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and 0x
  is the expectation value over all closed paths of the action in Eq. (31): 
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In Eq. (34),  F x     denotes an arbitrary functional. It is of interest to note that Eq. (32) is 
similar to the starting point of Zwanzig’s free-energy perturbation (Section 3), which has 
been extensively used in free-energy calculations through Monte Carlo and molecular 
dynamics simulations. Their difference is one is for ordinary ensemble average, while 
another one is for closed-path average, i.e., functional average. 

If we expand the exponential functional in Eq. (32) and sum up the prefactors into an 
exponential series of cumulants, then the nth-order approximation,  0nW x , to the centroid  
potential  0W x  can be written as follows (Kleinert 2004): 
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where 0 0
int
x x

 A A A  is the so-called inter-action, representing the perturbation to the 
harmonic reference state, 0

,
x

c  is a cumulant which can be written in terms of expectation 
values 0x

  by the cumulant expansion (Zwanzig 1954; Kubo 1962; Kleinert 2004), e.g., 
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More importantly, Kleinert and co-workers derived a math equation for expressing the 

expectation value  
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 from the functional-integral form to be in 

terms of Gaussian smearing convolution integrals (ordinary integrals) (Kleinert 2004): 
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where  Det 2
k k

a  
    is the determinant of the -matrixn n  consisting of the Gaussian 

width  2
k k

a  
 ,  2

k k
a  

   is an element of the inverse matrix of  2
k k

a  
 , and the Gaussian 

width is a function of the trial frequency Ω: 
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After using these smearing potentials given in Eq. (39), the nth-order Kleinert variational 
perturbation (KPn) approximation,  0nW x , shown in Eq. (35) as functional integrals, can 
now be written in terms of ordinary integrals as follows (Kleinert 2004): 
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where      0
22

0int
1
2

xV x V x M x x                  (the kinetic energy terms in Eq. (30) and 
Eq. (31) cancel each other out). 

As n tends to infinity,  0nW x  approaches the exact value of the centroid potential  0W x  
in Eq. (28), which is independent of the trial Ω. But the truncated sum in Eq. (41) does 
depend on Ω, and the optimal choice of this trial frequency at a given order of KP expansion 
and at a particular centroid position 0x  is determined by the least-dependence of  0x

nW   
on Ω itself. This is the so-called frequency of least dependence, which provides a variational 
approach to determine the optimal value of Ω,  opt, 0n x  (Kleinert 2004). 

Of particular interest is the special case when 1n  , which turns out to be identical to the 
original GTFK variational approach. An important property of KP1 or the GTFK variational 
approach is that there is a definite upper bound for the computed  1 0W x  by virtue of the  

Jensen-Peierls inequality, i.e., from Eq. (32) and (35): 
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Note that by choosing 0   (i.e., the reference state is for a free particle), KP1 or GTFK 
(Giachetti and Tognetti 1985; Feynman and Kleinert 1986) reduces to the Feynman-Hibbs 
approach (Feynman, Hibbs et al. 2005). For higher orders of n, unfortunately, it is not 
guaranteed that a minimum of  0x

nW   actually exists as a function of Ω. In this case, the 
least dependent Ω is obtained from the condition that the next derivative of  0x

nW   with 
respect to Ω is set to zero. Consequently, Ω is considered as a variational parameter in the 
Kleinert perturbation theory such that  opt,

0
0

x
n nW x    is least-dependent on Ω. 
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In Eq. (34),  F x     denotes an arbitrary functional. It is of interest to note that Eq. (32) is 
similar to the starting point of Zwanzig’s free-energy perturbation (Section 3), which has 
been extensively used in free-energy calculations through Monte Carlo and molecular 
dynamics simulations. Their difference is one is for ordinary ensemble average, while 
another one is for closed-path average, i.e., functional average. 
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After using these smearing potentials given in Eq. (39), the nth-order Kleinert variational 
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xV x V x M x x                  (the kinetic energy terms in Eq. (30) and 
Eq. (31) cancel each other out). 

As n tends to infinity,  0nW x  approaches the exact value of the centroid potential  0W x  
in Eq. (28), which is independent of the trial Ω. But the truncated sum in Eq. (41) does 
depend on Ω, and the optimal choice of this trial frequency at a given order of KP expansion 
and at a particular centroid position 0x  is determined by the least-dependence of  0x

nW   
on Ω itself. This is the so-called frequency of least dependence, which provides a variational 
approach to determine the optimal value of Ω,  opt, 0n x  (Kleinert 2004). 

Of particular interest is the special case when 1n  , which turns out to be identical to the 
original GTFK variational approach. An important property of KP1 or the GTFK variational 
approach is that there is a definite upper bound for the computed  1 0W x  by virtue of the  

Jensen-Peierls inequality, i.e., from Eq. (32) and (35): 
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Note that by choosing 0   (i.e., the reference state is for a free particle), KP1 or GTFK 
(Giachetti and Tognetti 1985; Feynman and Kleinert 1986) reduces to the Feynman-Hibbs 
approach (Feynman, Hibbs et al. 2005). For higher orders of n, unfortunately, it is not 
guaranteed that a minimum of  0x

nW   actually exists as a function of Ω. In this case, the 
least dependent Ω is obtained from the condition that the next derivative of  0x

nW   with 
respect to Ω is set to zero. Consequently, Ω is considered as a variational parameter in the 
Kleinert perturbation theory such that  opt,

0
0

x
n nW x    is least-dependent on Ω. 
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This variational criterion relies on the uniformly and exponentially convergent property 
demonstrated from the KP theory. Kleinert and coworkers proved that his theory exhibits 
this property in several strong anharmonic-coupling systems. More importantly, this 
remarkably fast convergent property can also be observed even for computing the electronic 
ground state energy of a hydrogen atom (3 degrees of freedom). The ground state energy 
was determined by calculating the electronic centroid potential at the zero-temperature 
limit. The accuracies of the first three orders of the KP theory for a hydrogen atom are 85%, 
95%, and 98%, respectively (Kleinert 2004). 

In practice, for odd n, there is typically a minimum point in Ω, but due to the alternating 
sign of the cumulants in Eq. (41), there is usually no minimum in Ω for even n. Nevertheless, 
the frequency of least-dependence for an even order perturbation in n can be determined by 
locating the inflexion point, i.e., the zero-value of the second derivative of  0x

nW   with 
respect to Ω. Since the KP expansion is uniformly and exponentially converged, Kleinert has 
demonstrated that the least-dependent plateau in  0x

nW  , which is characterized by a 
minimum point for odd n or by an inflexion point for even n, grows larger and larger with 
increasing orders of n (Kleinert 2004). 

5.2 Automated integration-free path-integral method 

An especially attractive feature of Eq. (41) is that the if the real system potential is 
expressed as a series of polynomials or Gaussians, then analytic expressions of Eq. (41) 
can be obtained, making the computation extremely efficient because the time-demanding 
Monte Carlo samplings for multi-dimensional numerical integrations could be avoided. 
Hereafter, the level of calculations up to nth order KP expansion for an mth-order-
polynomial potential is denoted as KPn/Pm. For other potentials, KPn theory still 
involves elaborate n-dimensional space-time (2n degrees of freedom) smearing integrals 
in Eq. (39). The intricacy of the smearing integrals increases tremendously for 
multidimensional potentials, where Ω becomes a 3 3N N  matrix Ωij for N nuclei. This 
complexity is a major factor limiting applications of the KP theory beyond KP1, the 
original FK approach. 

To render the KP theory feasible for many-body systems with N particles, we decouple the 

instantaneous normal mode (INM) coordinates  0
3Nxq  for a given configuration  3

0
Nx  

(Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, 
Gu et al. 2012). Hence the multidimensional V effectively reduces to 3N one-dimensional 
potentials along each normal mode coordinate. Note that INM are naturally decoupled 
through the second order Taylor expansion of V. The approximation of decoupling the INM 
coordinates has also been used elsewhere (Stratt 1995; Deng, Ladanyi et al. 2002). This 
approximation is particularly suited for the KP theory because of the exponential decaying 
property of the Gaussian convolution integrals in Eq. (39). In the decoupling INM 
approximation, the total effective centroid potential for N nuclei can be simplified as: 

        0
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where  0
,

x
i n iw q  is the centroid potential for normal mode i. Although the INM 

approximation sacrifices some accuracy, in exchange, it allows analyses of quantum 
mechanical vibration and tunneling, and their separate contributions to the W. Positive and 
negative values of iw  raise (vibration) and lower (tunneling) the original potential, 
respectively. In practice, real frequencies from the INM analysis often yields positive iw ’s in 
Eq. (43) with dominant contributions from zero-point-energy effects. For imaginary 
frequencies in the INM, the values of iw  are often negative, due to tunneling contributions. 

To obtain analytical expressions for the expectation values in Eq. (41), we use an mth order 
polynomial (Pm) to approximate or interpolate the potential along qi. Hereafter, an mth 
order polynomial representation of the original potential energy function obtained with an 
interpolating step size q Å both in the forward and backward directions along the normal 
mode coordinate at x0 is denoted as Pm-qA. Note that analytical results for P4 have been 
used by Kleinert for a quadratic-quartic anharmonic potential and a double-well potential 
(Kleinert 2004); however, higher order polynomials are needed to achieve the desired 
accuracy in real systems. We have thus derived the analytical closed forms of Eq. (41) up to 
P20 (Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; 
Wong, Gu et al. 2012). Consequently, the W as a function of an arbitrary Ω can be promptly 
obtained. This provides a convenient way to determine the least dependent Ω value without 
computing the complicated smearing integrals [Eq. (39)] iteratively for different trial values 
of Ω by Monte Carlo multi-dimensional numerical integrations. In fact, after the 
interpolating potential along each instantaneous normal-mode coordinate is determined, 
there is little computational cost for obtaining the W. Thereby, high level ab initio or density-
functional (DFT) methods can be used to evaluate the potential energy function for ab initio 
path-integral calculations (Wong, Richard et al. 2009; Wong, Gu et al. 2012). 

The computational procedure for obtaining the first and second order KP approximations to 
the centroid potential using our automated integration-free path-integral (AIF-PI) method is 
summarized below (Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard 
et al. 2009; Wong, Gu et al. 2012): 

1. For each  3
0

Nx , the mass-scaled Hessian matrix is diagonalized to obtain  0
3Nxq . 

2. The original potential V is scanned from the configuration  3
0

Nx  along each 0x
iq  for 10 

points both in the forward and backward directions to interpolate V as P20-0.1A. A step 
size of 0.1 Å should be a reasonable choice to yield W in a few per cent of the exact. 

3. After the P20-0.1A interpolations, each 0
, ( )x

i n iw q  as a function of Ω is readily obtained 
using the analytical expressions of KP1/P20 or KP2/P20. Note that the path integrals 
for these polynomials have been analytically integrated. 

4. The values of 0
, ( )x

i n iw q  are determined by numerically locating the least dependence of 
0

, ( )x
i n iw q  on Ω, i.e., zeroing the lowest order derivative of 0

, ( )x
i n iw q  w.r.t. Ω (first 

derivative for KP1 and usually second derivative for KP2). 

The procedure presented above is integration-free and essentially automated (Wong and 
Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, Gu et al. 2012). 
We hope it could be used by non-path-integral experts or experimentalists as a “black-box” 
for any given system. We are currently developing a formalism to systematically couple 
instantaneous normal-mode coordinates. 
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where  0
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1. For each  3
0

Nx , the mass-scaled Hessian matrix is diagonalized to obtain  0
3Nxq . 

2. The original potential V is scanned from the configuration  3
0

Nx  along each 0x
iq  for 10 

points both in the forward and backward directions to interpolate V as P20-0.1A. A step 
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, ( )x

i n iw q  as a function of Ω is readily obtained 
using the analytical expressions of KP1/P20 or KP2/P20. Note that the path integrals 
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4. The values of 0
, ( )x

i n iw q  are determined by numerically locating the least dependence of 
0

, ( )x
i n iw q  on Ω, i.e., zeroing the lowest order derivative of 0

, ( )x
i n iw q  w.r.t. Ω (first 

derivative for KP1 and usually second derivative for KP2). 

The procedure presented above is integration-free and essentially automated (Wong and 
Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, Gu et al. 2012). 
We hope it could be used by non-path-integral experts or experimentalists as a “black-box” 
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Due to the integration-free feature, our AIF-PI method is computationally efficient such that 
the potential energy can be evaluated using ab initio or density-functional theory (DFT) for 
performing the so-called ab initio path-integral calculations. Consequently, we used DFT to 
construct the internuclear potential energy function for computing kinetic isotope effects 
(KIE) on several series of proton transfer reactions in water with the AIF-PI method. These 
reactions are relevant to biosynthesis of cholesterol. The computed KIE results at the KP2 
level are in good agreement with experiment (Wong, Richard et al. 2009). Recently, we also 
employed the same computational technique to perform ab initio path-integral calculations 
of KIE on some RNA model reactions. Again, as shown in Table 2, the calculated values are 
in good agreement with experiments (Wong, Gu et al. 2012). 
 

Reaction 
KP2 Expt 

18kNu 18,34kLg 18kNu 18,34kLg 

Native 0.968 1.059 0.981(3) 1.034(4) 
S3′ 1.043 1.008 1.119(6) 1.0118(3) 
S5′ 1.042 1.002 1.025(5) 1.0009(1) 

Table 2. Calculated primary kinetic isotope effects (KIEs) on 2’ nucleophile (18kNu) and 5’ 
leaving (18kLg or 34kLg) oxygens for RNA-model reactions using our AIF-PI method based on 
second order of Kleinert’s variational perturbation theory (KP2), along with the most 
relevant available experimental (Expt) results for comparison. Experimental errors in the last 
decimal place are given in parenthesis. 

Another compelling feature of the AIF-PI method is that it does not suffer the convergence 
difficulties of PIMC or PIMD simulations at the zero-temperature limit, i.e., absolute zero 
temperature. At the zero-temperature limit (T = 0 K), in principle, minimizing the centroid 
effective potential with respect to the nuclear positions can give us two important physical 
quantities: the exact value of the eigenenergy for zero-point motion (i.e., the zero-point 
energy ZPE or the ground state energy) and the exact expectation values of the nuclear 
positions at the ground state (Ramírez, López-Ciudad et al. 1998; Ramírez and López-
Ciudad 1999), i.e., 

  min min 00
lim ,
T

W x E


  (44) 

and 

 min 0 0 ,x x   (45) 

where x  is the position operator, and minx  and  min minW x  are, respectively, the 
coordinate and value at the (global) minimum of the centroid potential. In Eq. (44) and (45), 

0  is the nuclear ground state wave function and 0E  is the lowest eigenvalue of the 
Hamiltonian, i.e., the zero-point energy. In a forthcoming paper, we will have a rigorous 
proof showing that in fact at absolute zero temperature, there is only one stationary and 
minimum point in centroid potential, which is true even for any many-body systems. 
Hence, our recently derived analytical zero-temperature-limit results provide a convenient 
way to compute these two important physical quantities without solving the Schrödinger 
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equation (Wong 2008; Wong and Gao 2008), e.g., see Table 3. Together with the accurate 
low-lying excitation energies (Ramírez and López-Ciudad 2001) which could be obtained by 
the frequency analysis of the Hessian matrix at the sole minimum point at absolute zero 
temperature (including tunneling splitting), potentially one day our AIF-PI method could 
replace MC or MD simulations to have highly reproducible and precise free-energy calculations 
for many-body systems. 
 

Molecule Quantum Harmonic KP1 KP2 
HCl 4.231 4.274 4.253 4.234 
HF 5.732 5.793 5.762 5.736 
H2 6.193 6.284 6.238 6.202 

Table 3. Ground state energy values (kcal/mol) for hydrogen chloride, hydrogen fluoride, 
and hydrogen molecules from the Morse potential using the harmonic-oscillator 
approximation, and our AIF-PI method based on first and second orders of the Kleinert’s 
variational perturbation theory (KP1 and KP2). 
 

Born-Oppenheimer Approximation 

Electronic Schrödinger equation 
Ab initio molecular orbital theory 

Internuclear Schrödinger equation 
Systematic internuclear thermodynamics 

theory 
Most molecular properties of interest are 

at 
low lying electronic energy states 

All thermodynamic properties virtually 
can be derived from quantum partition 

functions 

Hartree-Fock (HF) theory Kleinert’s variational perturbation 
theory for centroid effective potential 

Independent electron (single-electron) 
approximation 

Decoupled instantaneous normal 
coordinate approximation (DINCA) 

Roothaan and Hall expressed the Fock 
operator in terms of basis functions for 
solving HF equations in matrix algebra 

self-consistently (SCF) 

We propose interpolating potential energy 
functions to mth order polynomials in 

which analytic results of path-integration 
can be derived 

Explain chemical properties in terms of 
frontier occupied and unoccupied 

molecular orbitals 

Quantum effects from vibration and 
tunneling are separated and quantified in 

one mathematical framework 
Post Hartree-Fock method to include 
correlation energy by systematically 

couple single-electron orbitals 

Work out a formalism to systematically 
couple instantaneous normal coordinates 

Table 4. Comparison (1) between Kleinert’s variational perturbation (KP) theory and 
Hartree-Fock (HF) theory, (2) between our decoupled instantaneous normal coordinate 
approximation and independent electron approximation, and (3) between our integration-
free path-integral results for polynomials in the KP theory and Roothann-Hall basis function 
approach for HF theory. 
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Finally, we make a quite interesting table (Table 4) to compare the traditional ab initio 
molecular orbital theory for electronic structure calculations with our systematic approach 
for computing internuclear quantum effects. In short, the rigor and the spirit of both types of 
methods is the same. We first breakdown or dissect a complicated many-body problem into 
many one-body problems. Then we identify which one bodies are more important. Next we 
couple back those important one bodies to systematically approach the exact. 

6. Systematic ab initio path-integral free-energy expansion approach 
In order to systematically refine a classical free-energy profile to become ultimate quantum 
free-energy profile, in which both electrons and nuclei are treated quantum mechanically 
and adiabatically, we are developing a systematic ab initio path-integral free-energy 
expansion (SAI-PI-FEE; ) approach. In this  approach, we combine our novel free-
energy expansion (FEE) method (Section 4) with our automated integration-free path-
integral (AIF-PI) method (Section 5.2) such that we can perform ab initio path-integral 
simulations for realistic molecular systems. The key of this combination is that first we 
realize the quantum partition function can be computed as a classical configuration shown 
in Eq. (27), then now in Eq. (23), we treat the E as: 

 ,E W V    (46) 

where V is the original internuclear potential and W is the centroid potential. So once we get 
the accurate value of W using our AIF-PI method, we can go ahead using our FEE method to 
systematically upgrade the level of our classical free-energy profile to an ab initio path-
integral level, in which zero-point energy and tunnelling effects in nuclei, and isotope effects 
could all be incorporated. 

In order to rigorously validate our  method in a more effective way, the free-energy 
perturbation (FEP) in the Hamiltonian space will be performed, using the recently derived 
“universal” probability density function (UPDF), which is defined as follows: 

       exp .b E sP E K a b E s e       
 

 (47) 

 

 
Fig. 1. Free energy perturbation for a water molecule in the Hamiltonian space using the 
universal probability density function (UPDF). 
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This UPDF can be used to determine the change of free energy G in Eq. (23), by simply 
locating the intersection point of two probability density functions (Nanda, Lu et al. 2005; 
Chipot and Pohorille 2007). In Eq. (47), E is a variable for the difference of the Hamiltonian 
or energy between two levels of theory, while K, a, b, and s are the fitting parameters. In 
Figure 1, we demonstrate the simultaneous fitting to the UPDF to determine the change of 
free-energy for a water molecule from HF/6-31G(d) to MP2/6-311G(d,p). The intersection 
point of the two probability functions at −170.917 kcal/mol is the best estimate value for the 
G in Table 1 above. 

7. Conclusion and outlook 
In this chapter, we (wongky@biomaps.rutgers.edu; kiniu@alumni.cuhk.net) discuss 
developing the method to systematically generate quantum free-energy profiles at an 
ab initio path-integral level in molecular simulations. Since quantum free energy or partition 
function is a universal central quantity in thermodynamics of biology, chemistry, and 
physics, we anticipate our method would be very crucial in both Life and Materials 
Sciences and wish that it could be used by non-specialists as a black box one day. 
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1. Introduction

One of the aims of nuclear physics studies is to establish a complete theoretical description
of the structure of nuclear systems. The correct theoretical description of nuclear structure is
expected to help explain and accurately predict different properties of and process in nuclei
(Donnelly & Raskin, 1986). Fundamental to a complete description of nuclear structure are
the wave function describing nuclear systems, the Hamiltonian describing interactions in
the nucleus and electromagnetic form factors describing charge and currents distributions
in the nucleus. None of these components is completely understood and, therefore, none can
be completely determined for a given nuclear system, yet. As a result, theoretical models
of these components, based on different approximations that are guided by experimental
observations, are usually employed in the description of nuclear systems. The quality of such
models is often judged by their ability to explain existing experimental observations. Parallel
to the theoretical developments, the developments in experimental technologies has led not
only to the availability of more precise experimental data, but also to data in kinematical
regions previously not accessible. The availability of precise experimental data in a wide
kinematical region allow for more accurate quantitative testing and, therefore, development
of realistic theoretical models that, in turn, generate more accurate predictions of experimental
outcomes (Golak et al., 2005).

Besides the understanding of static and dynamical properties of nuclear matter, studies
in nuclear physics are aimed at constructing a comprehensive description of properties of
nucleon-nucleon interactions. Few-nucleon systems provide unique favourable environment
for such investigations (Rampho, 2010). In theoretical investigations, the interaction
models in few-nucleon systems can be treated realistically and the resulting dynamical
equations can be solved directly. The formulation and solution of dynamical equations for
many-body systems is, on the other hand, quite challenging. Progress towards a better
understanding of the nuclear force has been made over the years. Based on the accumulated
experimental nucleon-nucleon scattering data different phenomenological nucleon-nucleon
interaction models have been suggested. The models are constructed by fitting the models
to existing nucleon-nucleon scattering data as well as some properties of the 2H nucleus
(Cottingham et al., 1973; Lagaris & Pandharipande, 1981; Machleidt et al., 1987; Nagels et al.,
1978; Wiringa et al., 1984). These interaction models are known as modern or realistic
nucleon-nucleon potentials and are able to explain most of the static properties of light
nuclei. Since the exact form of the short-range behavior of the nucleon-nucleon interaction
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1. Introduction

One of the aims of nuclear physics studies is to establish a complete theoretical description
of the structure of nuclear systems. The correct theoretical description of nuclear structure is
expected to help explain and accurately predict different properties of and process in nuclei
(Donnelly & Raskin, 1986). Fundamental to a complete description of nuclear structure are
the wave function describing nuclear systems, the Hamiltonian describing interactions in
the nucleus and electromagnetic form factors describing charge and currents distributions
in the nucleus. None of these components is completely understood and, therefore, none can
be completely determined for a given nuclear system, yet. As a result, theoretical models
of these components, based on different approximations that are guided by experimental
observations, are usually employed in the description of nuclear systems. The quality of such
models is often judged by their ability to explain existing experimental observations. Parallel
to the theoretical developments, the developments in experimental technologies has led not
only to the availability of more precise experimental data, but also to data in kinematical
regions previously not accessible. The availability of precise experimental data in a wide
kinematical region allow for more accurate quantitative testing and, therefore, development
of realistic theoretical models that, in turn, generate more accurate predictions of experimental
outcomes (Golak et al., 2005).

Besides the understanding of static and dynamical properties of nuclear matter, studies
in nuclear physics are aimed at constructing a comprehensive description of properties of
nucleon-nucleon interactions. Few-nucleon systems provide unique favourable environment
for such investigations (Rampho, 2010). In theoretical investigations, the interaction
models in few-nucleon systems can be treated realistically and the resulting dynamical
equations can be solved directly. The formulation and solution of dynamical equations for
many-body systems is, on the other hand, quite challenging. Progress towards a better
understanding of the nuclear force has been made over the years. Based on the accumulated
experimental nucleon-nucleon scattering data different phenomenological nucleon-nucleon
interaction models have been suggested. The models are constructed by fitting the models
to existing nucleon-nucleon scattering data as well as some properties of the 2H nucleus
(Cottingham et al., 1973; Lagaris & Pandharipande, 1981; Machleidt et al., 1987; Nagels et al.,
1978; Wiringa et al., 1984). These interaction models are known as modern or realistic
nucleon-nucleon potentials and are able to explain most of the static properties of light
nuclei. Since the exact form of the short-range behavior of the nucleon-nucleon interaction
is not completely determined, yet, the short-range part of many of these potential models is
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often musked by introducing short-distance cut-off factors. Knowledge of the short-range
behavior of the nucleon-nucleon force may reveal some information about the limits and
boundaries between hadronic degrees of freedom and quark degrees of freedom. The
suggestion that the short-range behavior of the strong nuclear interaction could manifest
itself through short-range nucleon-nucleon correlations and momentum distributions in a
nucleus (Schroeder et al., 1979) refocused the need for a better understanding of, and therefore
more intensive investigations into, these concepts. Hence, there are continued experimental
(Egiyan et al., 2007; 2006; Jones et al., 2000; Ulmer et al., 2002) and theoretical (Alvioli et al.,
2008; Frankfurt et al., 1993; Piasetzky et al., 2006) investigations of these concepts.

Over the years a variety of methods have been developed and refined in the study of
properties of nuclei. Very accurate wave functions for bound and scattering states in
few-nucleon systems can now be constructed using realistic Hamiltonian for the systems. A
demonstration of the level of accuracy that can now be achieved in describing ground state
properties of the four-nucleon system using seven different state-of-the-art methods is given
in reference (Kamada et al., 2001). The use of some of these methods in the study of properties
of few-nucleon systems is shown in references (Carlson & Schiavilla, 1998; Golak et al., 2005).
The application of these methods to systems consisting of more than four particles is still
a challenge. For investigations of light to medium nuclei microscopic models have been
employed in the study of static and dynamical properties of nuclei (Aichelin, 1991; Boffi et al.,
1968; Kanada-En’yo et al., 2003; Neff et al., 2005; Ono & Horiuchi, 2004). These methods are
continuously developing. Following the Time-Dependent Cluster Model (Caurier et al., 1982),
microscopic simulation models were developed (Feldmeier, 1990; Horiuchi, 1991) for the
study of fermionic systems. These models combine Fermi-Dirac statistics with elementary
quantum mechanics to treat the motion of particles in a system (Feldmeier, 1990). However,
the models are not fully quantum mechanical and do not assume a shell structure for the
system. In this work the antisymmetrized molecular dynamics (AMD) approach is employed.
The AMD total wave function is constructed as Slater determinant of single particle shifted
Gaussian wave functions. The shift parameters of the Gaussian functions are complex
variational parameters which are treated as generalised coordinates of the system. The
width parameters are taken as free real parameters and are chosen to be the same for all the
Gaussian. The equations of motion for the variational parameters are determined from the
time-dependent variational principle. The equations are then solved by using the frictional
cooling technique (Ono et al., 1992) to determine the variational parameters.

In the past, the AMD approach was employed in the study of dynamics of heavy-ion collisions
(Ono et al., 1992) and elastic proton-nucleus scattering (Engel et al., 1995; Tanaka et al., 1995).
Clustering in nuclei as well as angular distributions of scattered protons in proton-nucleus
scattering can be well explained with the AMD model (Tanaka et al., 1995). Some properties
and/or processes in physical systems are governed by conservation laws related to parity
and total angular momentum of the system. Such systems are best described in terms of
wave functions that have definite parity and angular momentum. The AMD wave function
does not have definite parity nor does it possess definite total angular momentum. As
a result, for applications in realistic investigations of properties of physical systems the
AMD wave function requires some improvement. A number of modifications have since
been introduced in the AMD formalism. In reference (Kanada-En’yo et al., 1995) numerical
technique are used to project the AMD wave function onto the eigenstates of parity and
total angular momentum. The resulting wave functions have definite parity and total
angular momentum. In addition, a number of different techniques were considered for
constructing a more flexible total wave function. One way was to use linear combinations
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of variational spatial, spin and isospin functions to represent single-particle wave functions
(Doté & Horiuchi, 2000; Doté et al., 2006). The resulting wave functions are suitable for
investigating systems with tensor forces. The other approach is to use a linear combination
of several Slater determinants (Kanada-En’yo et al., 1995; 2003; Kimura, 2004) to represent the
total wave function of the system. In the approach of reference (Doté et al., 1997) orthogonal
single-particle wave functions characteristic of the Hartree-Fock orbitals are constructed from
the AMD wave function. The AMD+Hartree-Fock wave function is also more flexible than
the original AMD wave function. These modifications to the AMD wave function introduced
significant improvements in the description of ground-state properties, mean-field and cluster
structure of nuclear systems. It should be noted that most of the studies indicated employed
phenomenological nucleon-nucleon potentials of Gaussian radial form. The main reason for
this is that the expectation values of this type of potentials can be evaluated analytically.

To extend the application of the AMD approach to realistic potentials further proposals were
made. In Refs. (Togashi & Kato, 2007; Togashi et al., 2009) the G-matrix approach was used to
incorporate two-body correlations in the wave function. The resulting Bruckner-AMD wave
function can be constructed with realistic nuclear potentials. In Ref. (Watanabe et al., 2009;
Watanabe & Oryu, 2006) Jacobi coordinates are employed to construct the wave function.
Many-body correlations are included, more variational parameters are considered and the
effects of the center-of-mass are completely and explicitly removed. Most realistic potentials
are of non-Gaussian form and are, in many cases, expanded as the sum-of-Gaussian for
application in the AMD approach. In Ref. (Rampho, 2011) a numerical technique of evaluating
expectation values of non-Gaussian potentials is introduced. The technique approximates the
expectation value of the potential operator with a rapidly converging series of Talmi integrals.
This technique is further elaborated on in this work. Ground-state properties of selected
few-nucleon systems are determined using the Argonne V4’ nucleon-nucleon potential.

In section 2 the construction of the AMD wave function is outlined while the variational
technique used to determine the variational parameters is briefly discussed in section 3.
Application of AMD to selected light nuclei is presented in section 4 while section 5 is devoted
to the charge form factors of ground state in three- and four-nucleon systems. Conclusions are
given in section 6.

2. The AMD wave function

Consider a nuclear system consisting of A nucleons. The wave function Ψ describing the
system depends on the position�ri, spin �σi and isospin �τi (i = 1, 2, 3, . . . , A), vectors of the
nucleons. In what follows the collective vector, �υi, is used to represent the set {�si�ri�σi�τi }
where�si is a complex variational parameter. For a systems of fermions, like nuclei, the total
wave function is required to be antisymmetric with respect to the interchange of any two
particles in the system. One way of constructing such a wave function is by the use of Slater
determinants of single-particle wave functions ψi(�υj) as

Ψt(�υ1,�υ2,�υ3, . . . ,�υA) =
1√
A!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(�υ1) ψ2(�υ1) ψ3(�υ1) · · · ψA(�υ1)

ψ1(�υ2) ψ2(�υ2) ψ3(�υ2) · · · ψA(�υ2)

ψ1(�υ3) ψ2(�υ3) ψ3(�υ3) · · · ψA(�υ3)

...
...

...
. . .

...
ψ1(�υA) ψ2(�υA) ψ3(�υA) · · · ψA(�υA)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (1)
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The functions ψi(�υj) do not form an orthogonal basis. However, an orthonormal basis can
be constructed from these functions (Doté et al., 1997; Togashi & Kato, 2007; Togashi et al.,
2009). The ground state wave function of the system is represented by Ψt(�S) where �S ≡
{�s1,�s2,�s3, . . . ,�sA}.

The single-particle wave function ψ(�υ) is assumed to be separable in the form

ψ(�υ) = φ(�s,�r) χ(�σ) ξ(�τ) (2)

where φ(�s,�r), χ(�σ), and ξ(�τ) are the spatial, spin and isospin wave functions, respectively.
The intrinsic spin state χ(�σ) of a fermion, with spin s and third component of the spin ms, is
denoted by

χ(�σ) = | s , ms � =
⎧
⎨
⎩

��� 1
2 , + 1

2

�
= | ↑ �

��� 1
2 , − 1

2

�
= | ↓ �

(3)

where | ↑ � represents the spin-up and | ↓ � the spin-down state. These two spin states are
orthogonal to each other. To improve the quality of the wave function the spins of the fermions
may be allowed to vary. This is done by representing the fermion spin as a general spinor.
Such a spinor is expressed as a linear combination of the spin-up and spin-down states using
complex variational parameters (Kanada-En’yo et al., 2003). The isospin state, ξ(�τ), in the
case of a nucleon, with isospin t and third component of the isospin mt, is given by

ξ(�τ) = | t , mt � =
⎧⎨
⎩

��� 1
2 , + 1

2

�
= | p �

��� 1
2 , − 1

2

�
= | n �

(4)

where | p � refers to a proton while | n � refers to a neutron state. These states are
time-independent also.

All the constituent particles are described by the same form of the spatial wave function. The
spatial component, φ(�s,�r), is parametrized as a normalized Gaussian wave packet (Ono et al.,
1992)

φ(�s,�r) =
�

2α

π

�3/4
exp

�
− α

�
�r − �s√

α

�2
+
�s2

2

�
. (5)

The phase �s2/2 is included mainly to simplify the structure of the elements of the resulting
overlap matrix, � φi | φj �. The width parameter α is treated as a real constant and assumed to
be the same for both protons and neutrons in the nucleus. It can be argued that the assumption
is still valid if the masses of the constituents are not significantly different, like in nuclear
systems. When the momentum operator of a fermion is denoted by �p, then the real component
Re[�s] and the imaginary component Im[�s] of the parameter�s are given by

Re[�s] =
√

α
� φ(�r) |�r | φ(�r) �
� φ(�r) | φ(�r) � and Im[�s] =

1
2 h̄

√
α

� φ(�r) |�p | φ(�r) �
� φ(�r) | φ(�r) � . (6)

The single-particle wave function in Eq. (5) satisfies the minimum uncertainty Δ�r Δ�p = h̄/2
(Ono & Horiuchi, 2004) which helps in the choice of the value for the width parameter
α. Following Ref. (Ono et al., 1992), the value of α is chosen so as to generate reasonable
description of the ground state properties of light nuclei. The expectation values of relevant
operators calculated with this form of the wave function can be determined in analytical form.
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A more realistic wave function is constructed from the AMD wave function (1) by projecting
on to states with definite parity π and total angular momentum J. The parity projected wave
function has the form

Ψπ =
1
2
[
1 ± Pπ

]
Ψ(�S) (7)

where Pπ is the parity projection operator. A wave function with a definite parity π, total
angular momentum J, and angular momentum projections MK, is constructed from the AMD
wave function as

ΨJπ
MK =

1
2

PJ
MK(Ω)

[
1 ± Pπ ]

ΨAMD (8)

where PJ
MK(Ω) is the angular momentum projection operator, Pπ the parity projection

operator. The angular momentum projection operator is defined by (Peierls & Yoccoz, 1957)

PJ
MK(Ω) =

2 J + 1
8 π2

∫
dΩ DJ∗

MK(Ω) R̂(Ω) (9)

where DJ
MK(Ω) is the Wigner D-function and R̂(Ω) the rotation operator with Ω ≡ {α, β, γ}

representing Euler rotation angles.

3. Equations of motion

The wave function of the system Ψ(�S) depends on the set of complex variational parameters
�S. To establish the time evolution of such a wave function, the form of the time dependence
of the variational parameters, and therefore the equations of motion, is determined. The
equations of motion of the parameters are derived from the time-dependent variational
principle (Kramer & Saraceno, 1981)

δ
∫ t2

t1

[
ih̄
2

〈
Ψ
∣∣Ψ̇ 〉− 〈

Ψ̇
∣∣ Ψ

〉
�Ψ|Ψ � − �Ψ |H| Ψ�

�Ψ|Ψ�

]
dt = 0 (10)

with the constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 (11)

where Ψ̇ = dΨ/dt and Ψ∗ the complex conjugate of the wave function. In this definition
of the variational principle the wave function Ψ is not normalized. Therefore the equations
of motion for the variational parameters will not depend on either the normalization or the
phase of the wave function. The variation of the wave function in Eq. (10) with respect to time
can be cast in the form

d Ψ
d t

= ∑
i

[
d s̃i

dt
∂ Ψ
∂�si

+
d s̃i

∗
dt

∂ Ψ
∂�si

∗

]
. (12)

The equations of motion of the variational parameters can then be obtained by expressing
Eq. (10) in terms of the parameters as

δ
∫ t2

t1

[
i h̄
2 ∑

j

(
d s̃j

dt
∂

∂�sj
− d s̃j

∗

dt
∂

∂�sj
∗

)
ln�Ψ|Ψ� − E

]
dt = 0 (13)

with the constraints
δ�s(t1) = δ�s(t2) = δ�s∗(t1) = δ�s∗(t2) = 0 (14)
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The phase �s2/2 is included mainly to simplify the structure of the elements of the resulting
overlap matrix, � φi | φj �. The width parameter α is treated as a real constant and assumed to
be the same for both protons and neutrons in the nucleus. It can be argued that the assumption
is still valid if the masses of the constituents are not significantly different, like in nuclear
systems. When the momentum operator of a fermion is denoted by �p, then the real component
Re[�s] and the imaginary component Im[�s] of the parameter�s are given by
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The single-particle wave function in Eq. (5) satisfies the minimum uncertainty Δ�r Δ�p = h̄/2
(Ono & Horiuchi, 2004) which helps in the choice of the value for the width parameter
α. Following Ref. (Ono et al., 1992), the value of α is chosen so as to generate reasonable
description of the ground state properties of light nuclei. The expectation values of relevant
operators calculated with this form of the wave function can be determined in analytical form.

136 Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy Antisymmetrized Molecular Dynamics and Nuclear Structure 5

A more realistic wave function is constructed from the AMD wave function (1) by projecting
on to states with definite parity π and total angular momentum J. The parity projected wave
function has the form

Ψπ =
1
2
[
1 ± Pπ

]
Ψ(�S) (7)

where Pπ is the parity projection operator. A wave function with a definite parity π, total
angular momentum J, and angular momentum projections MK, is constructed from the AMD
wave function as

ΨJπ
MK =

1
2

PJ
MK(Ω)

[
1 ± Pπ ]

ΨAMD (8)

where PJ
MK(Ω) is the angular momentum projection operator, Pπ the parity projection

operator. The angular momentum projection operator is defined by (Peierls & Yoccoz, 1957)

PJ
MK(Ω) =

2 J + 1
8 π2

∫
dΩ DJ∗

MK(Ω) R̂(Ω) (9)

where DJ
MK(Ω) is the Wigner D-function and R̂(Ω) the rotation operator with Ω ≡ {α, β, γ}

representing Euler rotation angles.

3. Equations of motion

The wave function of the system Ψ(�S) depends on the set of complex variational parameters
�S. To establish the time evolution of such a wave function, the form of the time dependence
of the variational parameters, and therefore the equations of motion, is determined. The
equations of motion of the parameters are derived from the time-dependent variational
principle (Kramer & Saraceno, 1981)
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]
dt = 0 (10)

with the constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 (11)

where Ψ̇ = dΨ/dt and Ψ∗ the complex conjugate of the wave function. In this definition
of the variational principle the wave function Ψ is not normalized. Therefore the equations
of motion for the variational parameters will not depend on either the normalization or the
phase of the wave function. The variation of the wave function in Eq. (10) with respect to time
can be cast in the form

d Ψ
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i

[
d s̃i

dt
∂ Ψ
∂�si

+
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∗
dt
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∂�si

∗

]
. (12)

The equations of motion of the variational parameters can then be obtained by expressing
Eq. (10) in terms of the parameters as
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(
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dt
∂
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∗

dt
∂
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)
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]
dt = 0 (13)

with the constraints
δ�s(t1) = δ�s(t2) = δ�s∗(t1) = δ�s∗(t2) = 0 (14)
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where

E(�S,�S∗) = �Ψ(�S)| H |Ψ(�S)�
�Ψ(�S)|Ψ(�S)� (15)

is the energy functional of the system. Minimizing the action in Eq. (13) with the constraints
(14) results in the equations

i h̄
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�
d s̃i
dt

=
∂E
∂�s∗j

and − i h̄
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j

�
∂2 ln�Ψ|Ψ�

∂�si ∂�s∗j

�
d s̃∗j
dt

=
∂E
∂�si

(16)

of the variational parameters. Defining a Hermitian and positive definite matrix C with
elements

Cij =
∂2 ln�Ψ|Ψ�

∂�si ∂�s∗j
, (17)

the equations of motion can be compactly expressed in the form (Kramer & Saraceno, 1981)

i h̄
2

⎡
⎢⎢⎢⎢⎣

0 C

−C∗ 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

d�s∗
d t

d�s
d t

⎤
⎥⎥⎥⎥⎦
=

⎡
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∂ E
∂�s∗

∂ E
∂�s

⎤
⎥⎥⎥⎥⎦

. (18)

The solution to these equations provide the time evolution of the variational parameters and
therefore of the wave function of the system.

To determine the parameters�si and the variational energy E of the system Eq. (18) are modified
by multiplying the right-hand-side by a complex constant μ = a + ib where a and b are
arbitrary real numbers. The coefficient μ introduce friction in the equations. The resulting
equations can be solved numerically. To show that solving the modified equation of motion
minimizes the energy the matrix C is replaced by a simpler positive definite matrix, the unit
matrix I (Ono & Horiuchi, 2004). Then the equations of motion for the variational parameters
takes the form

d�si
d t

=
2μ

i h̄
∂ E
∂�s∗i

and
d�s∗
d t

= − 2μ∗
i h̄

∂ E
∂�si

. (19)

These equations have a form similar to that of Hamilton’s classical equations of motion for
canonically conjugate variables. The variation of the energy functional with time leads to

d E
d t

= ∑
i

�
∂ E
∂�si

d s̃i

d t
+

∂ E
∂�s∗i

d s̃∗i
d t

�
=

4b
h̄ ∑

i

∂ E
∂�si

∂ E
∂�s∗i

. (20)

The same result can be obtained using the positive definite matrix C (Ono & Horiuchi, 2004).
Since the two terms in Eq. (20) are positive at all times, it is evident that

d E
d t

< 0 when b < 0 , (21)

so that choosing b < 0 results in the energy functional decreasing with time during the
variation of the parameters. Hence the parameter μ is referred to as the coefficient of friction
and this technique of lowering the energy of a system is called frictional cooling. The equations
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are solved with the constraint ∑i �si = 0. The zero-point oscillation of the center-of-mass need
be subtracted from the expectation value of the Hamiltonian of the system.

4. Nuclear ground state properties

To evaluate the variational energy functional and solve for the variation parameters, the
Hamiltonian H of the nucleus is required as input. Considering only two-body interactions in
the nucleus the nuclear Hamiltonian has the form

H = −∑
i

h̄2

2 mi
∇2

i +
1
2 ∑

i �=j

[
VNN(�rij) + VC(�rij)

]
(22)

where mi is the mass of nucleon i, VNN(�r) the nucleon-nucleon NN potential, VC(�r) the
Coulomb potential and�r the relative position vector of the interacting nucleons. In this work
the AV4� NN potential with the VC1(�r) Coulomb component is used (Wiringa & Pieper, 2002).
In operator form the general Argonne nucleon-nucleon potential can be written in the form

V(�rij) = ∑
m

vm(rij)Om
ij (23)

where vm(rij) are radial form factors and Om
ij two-body nucleon operators. The Argonne V4’

potential employed in this work consists of the first four operators

O1→4
ij ≡ {

1 , �σi ·�σj
} ⊗ {

1 , �τi ·�τj
}

. (24)

The V4 potential model can also be cast in the form

V(�rij) =
1

∑
T=0

1

∑
S=0

Vc
ST(rij)Ω(S)

ij Ω(T)
ij (25)

where the subscripts S (T) indicate the coupled spin (isospin) of the interacting nucleon pair.
Using the transformations

Ω(S)
ij =

1
2

[
1 + (−1)S+1 Pσ

ij

]
and Ω(T)

ij =
1
2

[
1 + (−1)T+1 Pτ

ij

]
(26)

of the spin and isospin projection operators, respectively, where Pσ
ij (Pτ

ij) is the spin (isospin)
exchange operator, one obtains

V(�rij) = Vc(rij) + Vσ(rij) Pτ
ij − Vτ(rij) Pσ

ij − Vστ(rij) Pσ
ij Pτ

ij . (27)

The relation between the form factors in equations (23) and (27) are

Vc = vc − vτ − vσ + vστ (28)
Vτ = 2

[
vτ − vστ

]
(29)

Vσ = 2
[

vσ − vστ
]

(30)
Vστ = 4 vστ (31)

where the dependence on r is understood. These radial form factors are very difficult to
approximate satisfactorily with less than twenty Gaussian functions.
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The variational energy E0, root-mean-square (rms) radius
√�r2� and magnetic moment μ of

the nuclei are calculated using the parity projected AMD wave function, Ψπ. These three
quantities are given by

E0 =
�Ψπ | H |Ψπ�
�Ψπ |Ψπ� (32)

�r2� = 1
A

〈
Ψπ

∣∣ ∑A
i=1

[
�ri − �R

]2∣∣Ψπ
〉

�Ψπ |Ψπ� (33)

�μ =

〈
Ψπ

∣∣ ∑A
i=1

[
g���i + gs�si

]∣∣Ψπ
〉

�Ψπ |Ψπ� (34)

where �R is the center-of-mass of the nucleus,��i (�si) the orbital (spin) angular momentum and
g� (gs) the corresponding g-factor of a nucleon. The g-factors are constants with values (Wong,
1998)

g� =
{

1 for proton
0 for neutron : gs =

{
5.585695 for proton

−3.826085 for neutron (35)

The integrals in equations (32), (33) and (34) can be analytically evaluated (Rampho, 2010). As
an illustration the evaluation of the variational energy is summarized. The variational energy
is evaluated as

E0 = ∑
ik

Tik B−1
ik + ∑

ijkl
Vijkl Bli Bkj

[
Pd

ij B−1
il B−1

jk −Pe
ij B−1

ik B−1
jl

]
(36)

where the first sum generate the total kinetic energy while the second generate the total
potential energy of the system. In this energy functional Tik and Vijkl represent the integrals
involving the kinetic operator and potential functions, respectively, with Bij = �ψi|ψj� and Pd

ij
(Pe

ij) resulting from direct (exchange) interactions. The evaluation of the expectation values
of the potential can be evaluated analytically when the these radial components are given in
terms of Gaussian functions (Tohsaki, 1992). Instead of expanding the potential in terms of
Gaussians the corresponding expectation value is approximated by the series (Rampho, 2011)

Vijkl = exp

(
− η2

2
4

)
∞

∑
m=0

(
η2

2
4

)m

Iα(m) (37)

where �η2 =�sl −�sk +�si −�sj and

Iα(m) =
2 αm+3/2

Γ(m + 1)Γ(m + 3
2 )

∫ ∞

0
r2 m+2V(r)e−α r2

dr (38)

the Talmi integral involving the gamma function Γ(x). If the range of the potential is not
greater than 1/

√
2 α then the series in Eq. (37) converges quite fast for any value of �η2

(Brink, 1965). Therefore, only the first few terms in the series tend to be significant. The
Coulomb potential is treated with a Gaussian integral transform. In solving the cooling
equations a random number generator is used to set up the initial values of the variational
parameters. The required wave function is obtained when the energy functional for the system
is independent of the variations of the parameters of the wave function. The parity projection
of the wave functions is done before the variation of the parameters. Only the first five terms
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of the series in (37) were considered. The integral in Iα(m) is evaluated numerically using a
Gaussian quadrature. The value of α was chosen to satisfactorily reproduce the experimental
binding energy of the three-nucleon systems. The variational energies are corrected by
subtracting contributions from spurious center-of-mass. The results are presented along with
corresponding experimental data in Table 1. As can be observed from this table the theoretical
prediction of the experimental binding energies of the three-nucleon systems is satisfactory,
as expected. However, the experimental binding energy of the 2H nucleus is overestimated
by about 60 %. The binding energy of the 4He nucleus is underestimated by 10 % whereas
that of the 6Li and 8Be nuclei are underestimated by 14 %. The 8Be nucleus is very unstable
(Audi et al., 2003) and, therefore, very challenging to study experimentally.

The AMD generates reasonable predictions of the experimental values for the rms radii of
the nuclei. The deviation of the predicted values from the experimental values for the nuclei
range from 0 %, for the 3He nucleus, to 11 %, for the 6Li nucleus. The theoretical radii of the
6Li and the 8Be nuclei are almost the same. In general the theoretical results overestimate the
experimental values of the rms radii for all the nuclei. The calculated magnetic moments of
the three-nucleon systems are different from the experimental values by 6 % and 10 %. For
the three-nucleon systems the theoretical moments equal the magnetic moment of the unlike
nucleon in the system. This reason also explains why the calculated magnetic moments of
the 2H and 6Li nuclei, which overestimate the respective experimental values by 3 % and 7 %,
are equal. The calculated magnetic moments of the 4He and 8Be nuclei are both equal to
zero. These results are consistent with the theoretical expectation when only the dominant
spherical ground state wave function of the system is used in the calculations (Phillips, 1977).
The results for the parity and angular momentum projected wave function are given in
Table 2 for the three-nucleon and the four-nucleon systems. The parity projection is done
before the variation of the parameters and the angular momentum projection is done after
the optimisation of the parameters. The rotation increases the theoretical energies of the
three-nucleon systems by 10 % and decreases that of the four-nucleon system by 10 %, relative
to the un-rotated wave function. Since the nuclear systems are described with spherical
wave functions, spatial rotations are not expected to introduce significant modifications to
the results presented in Table 1. The binding energy found for the 3H system overestimates

E0 (MeV)
√〈r2〉 (fm) μ (μN)

AXπ AMD EXP AMD EXP AMD EXP

2H+ -3.53 -2.23 2.16 1.96 0.880 0.857

3H+ -8.12 -8.48 1.76 1.60 2.793 2.979

3He+ -7.78 -7.72 1.76 1.77 -1.913 -2.128

4He+ -25.50 -28.3 1.53 1.47 0.000

6Li+ -27.54 -31.99 2.70 2.4 0.880 0.822

8Be+ -49.38 -55.99 2.75 0.000

Table 1. The ground state energies, rms radii and magnetic moments of selected light nuclei.
The experimental data are taken from reference (Suzuki et al., 2008).
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zero. These results are consistent with the theoretical expectation when only the dominant
spherical ground state wave function of the system is used in the calculations (Phillips, 1977).
The results for the parity and angular momentum projected wave function are given in
Table 2 for the three-nucleon and the four-nucleon systems. The parity projection is done
before the variation of the parameters and the angular momentum projection is done after
the optimisation of the parameters. The rotation increases the theoretical energies of the
three-nucleon systems by 10 % and decreases that of the four-nucleon system by 10 %, relative
to the un-rotated wave function. Since the nuclear systems are described with spherical
wave functions, spatial rotations are not expected to introduce significant modifications to
the results presented in Table 1. The binding energy found for the 3H system overestimates

E0 (MeV)
√〈r2〉 (fm) μ (μN)

AXπ AMD EXP AMD EXP AMD EXP

2H+ -3.53 -2.23 2.16 1.96 0.880 0.857

3H+ -8.12 -8.48 1.76 1.60 2.793 2.979

3He+ -7.78 -7.72 1.76 1.77 -1.913 -2.128

4He+ -25.50 -28.3 1.53 1.47 0.000

6Li+ -27.54 -31.99 2.70 2.4 0.880 0.822

8Be+ -49.38 -55.99 2.75 0.000

Table 1. The ground state energies, rms radii and magnetic moments of selected light nuclei.
The experimental data are taken from reference (Suzuki et al., 2008).
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E0 (MeV)
√�r2� (fm) μ (μN)

AX
(

Jπ
)

AMD EXP AMD EXP AMD EXP

3H
( 1

2
+)

-8.95 -8.48 1.33 1.60 2.769 2.979

3He
( 1

2
+)

-8.61 -7.72 1.33 1.77 -1.847 -2.128

4He
(
0+

)
-23.04 -28.30 1.16 1.47 0.000

Table 2. The ground state energies, rms radii and magnetic moments of the three- and
four-nucleon systems. The experimental values are taken from reference (Suzuki et al., 2008).

the experimental energy by 5 % and for the 3He system by 12 %. In contrast, the 4He
results are lower than the experimental value by ∼ 19 %, a result which is in line with other
calculations in the field using the same rank in the potential. The rms radii obtained for the
3H and 3He systems are lower than the experimental values by ∼ 16 % and ∼ 22 % less,
respectively. Similar results are obtained for the 4He system where the calculated rms radius
is underestimated by ∼ 21 %. In general, the AMD approach reproduces the experimental
values for the magnetic moment of the nuclei quite satisfactorily.

Intrinsic density distribution in a nucleus is determined by rotating the arbitrary space-fixed
coordinate axes on to the body-fixed principal axes of the nucleus. The rotation is generated
by diagonalising the moment-of-inertia tensor of the nucleus which is defined by elements

Iμν =

〈
Ψπ

∣∣ ∑A
i=1

[
�ri − �R

]
μ

[
�ri − �R

]
ν

∣∣Ψπ
〉

�Ψπ |Ψπ� (39)

where { μ, ν } ≡ { x, y, z }. The calculated intrinsic density using the parity projected wave
function, in the body-fixed coordinate axes, are shown in Figure 1 for the 4He nucleus and in
Figure 2 for the 6Li and 8Be nuclei. The 4He nuclei displays a spherical density distribution
whereas the 6Li and 8Be nuclei display distinct cluster structures.
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Fig. 2. Density distributions of the 6Li nucleus (left) and the 8Be nucleus (right).

5. Charge form factors

Most of the information accumulated about nuclear structure is derived from electron-nucleus
scattering. In electron-nucleus scattering the electron transfers momentum �q and energy ω to
the target nucleus and the nucleus undergoes some transitions that are governed by selection
rules related angular momentum and parity. For elastic scattering the initial and final states
of the nucleus have the same angular momentum (de Forest Jr. & Walecka, 1966). This type
of electron scattering is used to probe ground state charge and magnetisation distributions
in nuclei. The ground state of the 3He nucleus has total angular momentum and parity
Jπ = 1

2
+

whereas the 4He system has Jπ = 0+. Theoretical predictions of electromagnetic
provide a good test of the quality of the wave function describing the system. In this section
the charge form factors of 3He and 4He nuclei are calculated in the plane wave impulse
approximation (PWIA) (Chew & Wick, 1952). In this approximation the nucleons inside the
target nucleus are assumed non-interacting with one another during the interaction with the
electron. This means that the electron interacts with independent nucleons inside the nucleus.
Since the transitions are between states of definite angular momentum, the parity and angular
momentum projected wave functions are employed.

The charge distribution in the nucleus is inferred from the electric transitions in the nucleus
due elastic electron-nucleus scattering. The charge form factor is the expectation value of the
nuclear charge operator. For a nucleus in an initial state

∣∣ΨJπ
MK

〉
the charge form factor is given

by

Fch(�q) =
1
Z

〈
ΨJπ

MK

∣∣ ρ(�q)
∣∣ΨJπ

MK

〉
〈

ΨJπ
MK

∣∣ΨJπ
MK

〉 (40)

where Ze is the total charge on and ρ(�q) the charge operator of the nucleus with �q being
the momentum transferred to the nucleus by the electron. In the PWIA the nuclear charge
operator is formed by the superposition of the individual nucleon charge operators and is
given by (Rampho, 2010)

ρ(�q) =
A

∑
k=1

[
q
Q

GN
Ek(Q

2)− 2 GN
Mk(Q

2)− GN
Ek(Q

2)

4 m2
N

√
1 + τ

i�σk ·�q ×�pk

]
exp

(
i�q ·�rk

)
(41)
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the experimental energy by 5 % and for the 3He system by 12 %. In contrast, the 4He
results are lower than the experimental value by ∼ 19 %, a result which is in line with other
calculations in the field using the same rank in the potential. The rms radii obtained for the
3H and 3He systems are lower than the experimental values by ∼ 16 % and ∼ 22 % less,
respectively. Similar results are obtained for the 4He system where the calculated rms radius
is underestimated by ∼ 21 %. In general, the AMD approach reproduces the experimental
values for the magnetic moment of the nuclei quite satisfactorily.

Intrinsic density distribution in a nucleus is determined by rotating the arbitrary space-fixed
coordinate axes on to the body-fixed principal axes of the nucleus. The rotation is generated
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Iμν =

〈
Ψπ

∣∣ ∑A
i=1

[
�ri − �R

]
μ

[
�ri − �R

]
ν

∣∣Ψπ
〉

�Ψπ |Ψπ� (39)

where { μ, ν } ≡ { x, y, z }. The calculated intrinsic density using the parity projected wave
function, in the body-fixed coordinate axes, are shown in Figure 1 for the 4He nucleus and in
Figure 2 for the 6Li and 8Be nuclei. The 4He nuclei displays a spherical density distribution
whereas the 6Li and 8Be nuclei display distinct cluster structures.
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5. Charge form factors

Most of the information accumulated about nuclear structure is derived from electron-nucleus
scattering. In electron-nucleus scattering the electron transfers momentum �q and energy ω to
the target nucleus and the nucleus undergoes some transitions that are governed by selection
rules related angular momentum and parity. For elastic scattering the initial and final states
of the nucleus have the same angular momentum (de Forest Jr. & Walecka, 1966). This type
of electron scattering is used to probe ground state charge and magnetisation distributions
in nuclei. The ground state of the 3He nucleus has total angular momentum and parity
Jπ = 1

2
+

whereas the 4He system has Jπ = 0+. Theoretical predictions of electromagnetic
provide a good test of the quality of the wave function describing the system. In this section
the charge form factors of 3He and 4He nuclei are calculated in the plane wave impulse
approximation (PWIA) (Chew & Wick, 1952). In this approximation the nucleons inside the
target nucleus are assumed non-interacting with one another during the interaction with the
electron. This means that the electron interacts with independent nucleons inside the nucleus.
Since the transitions are between states of definite angular momentum, the parity and angular
momentum projected wave functions are employed.

The charge distribution in the nucleus is inferred from the electric transitions in the nucleus
due elastic electron-nucleus scattering. The charge form factor is the expectation value of the
nuclear charge operator. For a nucleus in an initial state
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the charge form factor is given

by
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where Ze is the total charge on and ρ(�q) the charge operator of the nucleus with �q being
the momentum transferred to the nucleus by the electron. In the PWIA the nuclear charge
operator is formed by the superposition of the individual nucleon charge operators and is
given by (Rampho, 2010)

ρ(�q) =
A

∑
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where τ = Q2/4 m2
N , Q2 = q2 − ω2, ω =

√
q2 + m2

N − mN and GN
E (GN

M) the nucleon
Sachs electric (magnetic) form factor. For the Sachs form factors the phenomenological
parametrization derived in Ref. (Friedrich & Walcher, 2003) is adopted. The general multipole
analysis of nuclear charge form factors is given by (Uberall, 1971)

Fch(�q) =
√

4 π
≤ 2J

∑
L=0

�J JL0|J J� Fρ
L(q)Y∗

L0(q̂) (42)

where Y∗
LM(q̂) are the spherical harmonics, L the nuclear orbital angular momentum and

�J JL0|J J� the Clebsch-Gordan coefficients and q̂ = �q/|�q|. The summation is over even values
of L only. The intrinsic charge form factor is corrected by dividing the calculated charge form
factor by the contributions of the center-of-mass (Rampho, 2010). The integrals in Eq. (42) can
be analytically evaluated.
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Fig. 3. The charge form factor of 3He (left) and 4He (right) compared with the experimental
data of (McCarthy et al., 1977) and the theoretical fit to the data (Amroun et al., 1994).

The results of the calculated ground-state charge form factors of the 3He and 4He nuclei
are presented in Figure 3. In these figures the theoretical charge form factors are compared
with experimental data from (Frosch et al., 1967; McCarthy et al., 1977). In the comparison
phenomenological parametrization (Amroun et al., 1994) that fit experimental universal data
of the form factors for electron-nucleus scattering are also shown. The charge form factors are
normalized such that Fch(0) = 1. As can be seen in these figures, for low momentum transfers,
up to the first diffraction minimum, the AMD gives a reasonable description, albeit it slightly
overestimates the experimental data. Beyond the first diffraction minimum the results are
lower than the data. The first diffraction minimum for the nuclei are consistent with, but not
better than, the predictions of other theoretical models obtained with various nucleon-nucleon
potentials in the PWIA (Kloet & Tjon, 1974). It should be noted that the overestimation of
the position of the diffraction minimum indicates an underestimation of the nuclear charge
radius.

6. Conclusions

To test the applicability of the AMD model in nuclear structure studies, the angular
momentum and parity projected AMD wave function were used to calculate binding energies,
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rms radii, and the magnetic moments for selected few-nucleon systems. The nuclear
Hamiltonian was constructed from the Argonne AV4′ NN potential that includes also the
Coulomb interaction. Comparison with the experimental data revealed that the reproduction
of the ground state properties of light nuclei is quite satisfactory. The discrepancies observed
can be attributed to reasons not entirely related to the AMD. These include i) the omission of
mixed-symmetric states (for three-body) ii) the use of a limited rank for the Argonne AV18
potential, and iii) the omission of three-nucleon forces. As far as the magnetic moment is
concerned, the inclusion of relativistic corrections to the magnetic moment operator, are also
expected to contribute to the reduction of the discrepancy between theory and experiment.
The technique used in the approximation of the variational energy can be easily extended
to the three-body interactions. The implementation of this technique in nuclear three-body
interactions will be considered future projects.

The angular momentum and parity projected AMD was used to calculate the ground state
charge form factors for the 3He and 4He nuclei. In overall, the results obtained, within the
AMD and PWIA approximation, reproduce the general behavior of the experimental form
factors. For momentum transfer below the first diffraction minimum the reproduction of
experimental form factors is fairly good. However, beyond the first diffraction minimum the
results are lower than the data. The deviations of the theoretical results from experimental
data can be minimize by employing improved wave functions. The wave functions can
be constructed by using a more complete realistic Hamiltonian, three-body forces, and
relativistic corrections in the electromagnetic operators. It should be noted that these results
are consistent with other results obtained by competing theoretical models. In conclusion,
the results indicate that the AMD method is a very promising method in calculating
electromagnetic form factors of the general A-body nuclear system.

Work is underway to construct wave functions for scattering processes applicable in nuclear
breakup reactions (Rampho, 2010). In these constructs the AMD is combined with the Glauber
multiple scattering to account for final state interactions. Wave functions for two-body
and three-body scattering reactions can be treated accurately in the Faddeev formalism
(Golak et al., 2005; Merkuriev et al., 1976). In the hyperspherical harmonics approach some
progress in being made towards the construction of accurate wave functions for two-body
scattering processes (Kievsky et al., 2008). However, these methods become involved for
systems consisting of more than four constituent particles.
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The results of the calculated ground-state charge form factors of the 3He and 4He nuclei
are presented in Figure 3. In these figures the theoretical charge form factors are compared
with experimental data from (Frosch et al., 1967; McCarthy et al., 1977). In the comparison
phenomenological parametrization (Amroun et al., 1994) that fit experimental universal data
of the form factors for electron-nucleus scattering are also shown. The charge form factors are
normalized such that Fch(0) = 1. As can be seen in these figures, for low momentum transfers,
up to the first diffraction minimum, the AMD gives a reasonable description, albeit it slightly
overestimates the experimental data. Beyond the first diffraction minimum the results are
lower than the data. The first diffraction minimum for the nuclei are consistent with, but not
better than, the predictions of other theoretical models obtained with various nucleon-nucleon
potentials in the PWIA (Kloet & Tjon, 1974). It should be noted that the overestimation of
the position of the diffraction minimum indicates an underestimation of the nuclear charge
radius.

6. Conclusions

To test the applicability of the AMD model in nuclear structure studies, the angular
momentum and parity projected AMD wave function were used to calculate binding energies,
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rms radii, and the magnetic moments for selected few-nucleon systems. The nuclear
Hamiltonian was constructed from the Argonne AV4′ NN potential that includes also the
Coulomb interaction. Comparison with the experimental data revealed that the reproduction
of the ground state properties of light nuclei is quite satisfactory. The discrepancies observed
can be attributed to reasons not entirely related to the AMD. These include i) the omission of
mixed-symmetric states (for three-body) ii) the use of a limited rank for the Argonne AV18
potential, and iii) the omission of three-nucleon forces. As far as the magnetic moment is
concerned, the inclusion of relativistic corrections to the magnetic moment operator, are also
expected to contribute to the reduction of the discrepancy between theory and experiment.
The technique used in the approximation of the variational energy can be easily extended
to the three-body interactions. The implementation of this technique in nuclear three-body
interactions will be considered future projects.

The angular momentum and parity projected AMD was used to calculate the ground state
charge form factors for the 3He and 4He nuclei. In overall, the results obtained, within the
AMD and PWIA approximation, reproduce the general behavior of the experimental form
factors. For momentum transfer below the first diffraction minimum the reproduction of
experimental form factors is fairly good. However, beyond the first diffraction minimum the
results are lower than the data. The deviations of the theoretical results from experimental
data can be minimize by employing improved wave functions. The wave functions can
be constructed by using a more complete realistic Hamiltonian, three-body forces, and
relativistic corrections in the electromagnetic operators. It should be noted that these results
are consistent with other results obtained by competing theoretical models. In conclusion,
the results indicate that the AMD method is a very promising method in calculating
electromagnetic form factors of the general A-body nuclear system.

Work is underway to construct wave functions for scattering processes applicable in nuclear
breakup reactions (Rampho, 2010). In these constructs the AMD is combined with the Glauber
multiple scattering to account for final state interactions. Wave functions for two-body
and three-body scattering reactions can be treated accurately in the Faddeev formalism
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1. Introduction

Ab initio calculation starting from the bare nuclear interactions is one of recent major
theoretical subjects in nuclear physics. One hopes to understand the property of nuclei
based on the nuclear forces against the background of the progress of the fundamental
understanding of bare nuclear interactions and the study of unstable nuclei far from the beta
stable line, which are expected to have structures different from stable nuclei. Nowadays, one
can obtain the three-, four-, or few-body wave functions starting from the bare Hamiltonian by
applying many kinds of few-body exact methods (Kamada et al., 2001). It is difficult to apply
such methods directly to heavier nuclei in viewpoint of computational costs at this stage,
therefore, in many of ab initio approaches, the effective interaction is constructed based on the
bare interaction by applying, for example, the unitary correlated operator method (UCOM)
(Neff & Feldmeier, 2004) and so on. As one of remarkable achievements in ab initio approaches,
the quantum Monte Carlo method (Wiringa et al., 2000) has presented the appearance of the
two-alpha (4He) cluster structure in 8Be starting from the bare interactions. That suggests that
one has the ability to discuss cluster structures based on the bare nuclear forces.

The existence of cluster states appearing around thresholds, which are weakly bound systems
of subunits consisting of several nucleons to be strongly correlated each other, is predicted
by the Ikeda diagram and the cluster models (Ikeda et al., 1972). The cluster states in
some excited states of a light nucleus can be described as the states different from the
mean-field-like structures. Cluster models in nuclear physics are able to describe these states
successfully. In unstable nuclei, it is expected that mean-field-like and cluster-like structures
coexist because their ground states often exist around the thresholds of decaying particles.
The antisymmetrized molecular dynamics (AMD) (Kanada-En’yo et al., 1995) to be one of
the recent developments of the cluster model has succeeded in understanding and predicting
many properties of unstable nuclei. AMD can describe the nuclear structures without any
assumption of configurations as the results of the energy variation in quantum mechanics.
However, it is difficult for the bare nuclear interactions to be applied straightforwardly to
the AMD framework because of the singularity and complexity in the interactions. Hence,
AMD calculations have been performed with phenomenological interactions represented by

 

Antisymmetrized Molecular Dynamics with Bare 
Nuclear Interactions: Brueckner-AMD, and Its 

Applications to Light Nuclei 
 

8



16 Will-be-set-by-IN-TECH

Tanaka, E. I., Ono, A., Horiuchi, H., Maruyama, T. & Engel, A. (1995). Proton inelastic
scattering to continuum studied with antisymmetrized molecular dynamics, Phys.
Rev. C 52(1): 316–325.

Togashi, T. & Kato, K. (2007). Brueckner-amd method and its applications to light nuclei, Prog.
Theor. Phys. 117(1): 189–194.

Togashi, T., Murakami, T. & Kato, K. (2009). Description of nuclear structures with
brueckner-amd plus Jπ projection, Prog. Theor. Phys. 121(2): 299–317.

Tohsaki, A. (1992). Microscopic representation of α-cluster matter. I, Prog. Theor. Phys.
88(6): 1119–1129.

Uberall, H. (1971). Electron Scattering from Complex Nuclei: Part A, Academic Press, New York.
Ulmer, P. E., Aniol, K. A., Arenhövel, H. & et al. (2002). 2H(e, e′p)n reaction at high recoil

momenta, Phys. Rev. Lett. 89(6): 062301.
Watanabe, T., Oosawa, M., Saito, K. & Oryu, S. (2009). A new molecular dynamics calculation

and its application to the spectra of light and strange baryons, J. Phys. G: Nucl. Part.
Phys. 36(1): 015001.

Watanabe, T. & Oryu, S. (2006). A new antisymmetrized molecular dynamics approach to
few-nucleon systems, Prog. Theor. Phys. 116(2): 429–434.

Wiringa, R. B. & Pieper, S. C. (2002). Evolution of nuclear spectra with nuclear forces, Phys.
Rev. Lett. 89(18): 182501.

Wiringa, R. B., Smith, R. A. & Ainsworth, T. L. (1984). Nucleon-nucleon potentials with and
without Δ(1232) degrees of freedom, Phys. Rev. C 29(4): 1207–1221.

Wong, S. S. M. (1998). Introductory Nuclear Physics, 2 edn, John Wiley and Sons Inc., New York.

148 Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy

Tomoaki Togashi1 and Kiyoshi Katō2
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the simple forms and adjusted parameters to be suitable for the wave functions of AMD so
far.

For the purpose of the fundamental understanding of nuclear structures, we have recently
developed a new AMD framework, “Brueckner-AMD” (Togashi & Katō, 2007; Togashi et al.,
2009), which makes AMD available to us with bare nuclear interactions. It is the basic idea
of Brueckner-AMD that the effective interaction with no singularity to be applicable to the
AMD wave functions is constructed starting from the bare interaction. Instead of the unitary
transformation of the bare Hamiltonian, we introduce the effective interaction, G-matrix,
based on the Brueckner theory to be combined with the single-particle orbits and energies
solved by the AMD+Hartree-Fock (AMD-HF) method (Doté et al., 1997). In this framework,
the G-matrix and single-particle states of AMD can be solved self-consistently so as to reflect
structural changes of nucleus to the effective interactions. In that sense, Brueckner-AMD is a
kind of ab initio calculations.

The appearance of alpha clusters has been studied in many light nuclei for many years. It
is well known that the alpha particle, 4He, which is the unit of alpha clusters, has the strong
stability as its threshold energy for a nucleon is about 20 MeV, while normal nuclei have about
8 MeV. Theoretical few-body studies (Kamada et al., 2001) have proven that the tensor force
in the bare nuclear interaction, which has the operator: S12 = 3(σ1 · r̂)(σ2 · r̂)− σ1 · σ2 where
σ1,2 represent the Pauli matrices, contributes more than half of the binding potential energy
of the alpha particle, and the correlations induced by the tensor force play an important
role in the structure of 4He (Myo et al., 2009). Therefore, it is considered that the peculiar
stability of the alpha particle supported by the tensor force contributions induces the strong
correlations to realize the alpha clusters. However, the reason for the stability of alpha clusters
in a nucleus has not yet been clarified, and it is still one of the central problems in nuclear
theories at present. Although the recent ab initio approach (Wiringa et al., 2000) has provided
the result of the alpha-alpha cluster structure in 8Be as previous mentioned, it has been
difficult to explain the reason why the alpha-alpha cluster in 8Be appears for the complicated
wave function solved from the bare Hamiltonian. Therefore, as our works, we present the
prescription to simulate and visualize the development of alpha-alpha clustering in 8Be, and
elucidate its mechanism of the clustering as the result of effects of nuclear interactions in the
Brueckner-AMD framework.

In this chapter, we plan to introduce the formulation and applications of Brueckner-AMD. In
the second section, we present the formulation of Brueckner-AMD and focus on the details
of the way how to solve the G-matrix in this framework. In the third section, we show
the applications to several light nuclei and the study of alpha-alpha clustering in 8Be in
Brueckner-AMD. Finally, in the forth section, we conclude our works in this chapter.

2. Formulation

In this section, we explain the formulation of Brueckner-AMD. In the first subsection 2.1, we
explain the concept of Brueckner-AMD, in which the G-matrix within the AMD framework
can be calculated straightforwardly. In the second subsection 2.2, the detail of the way how to
solve the G-matrix in Brueckner-AMD and its explicit examples are presented, and then the
energy variation method in Brueckner-AMD is explained in the third subsection 2.3.
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2.1 G-matrix in Brueckner-AMD

In this framework, we use the A-nucleons wave function of AMD, which represents the Slater
determinant of Gaussian wave packets to be satisfied with the Fermi statistics in quantum
mechanics as

|Φ� = 1√
A!

det
�
|�Zi� · |χi�

�
, ��r |�Zi� =

�
2ν

π

�3/4
exp

⎡
⎣−ν

�
�r − �Zi√

ν

�2

+
�Z2

i
2

⎤
⎦ , (1)

where |�Zi� and |χi� represent the spatial and spin-isospin parts of a nucleon, respectively. The
spin-isospin functions |χi� are given by spin-up (or spin-down) protons (or neutrons) in this
work. The complex vector �Zi represents the position of a nucleon in the phase space.

The bare nuclear interactions have the high repulsive potential at a short distance and the
non-central potentials to induce the admixture of high orbital angular moments (Wiringa
et al., 1995). Every pair wave function in AMD is too simple to describe their induced
nucleon-nucleon correlations. Therefore, we construct the effective interactions to be
applicable to AMD, G-matrix (Ĝ), starting from bare interactions as

Ĝ = v̂ + v̂
Q

εα + εβ − (t̂1 + t̂2)
Ĝ , (2)

where v̂, Q, ε i and t̂i represent the bare interaction, the Pauli projection operator, the
single-particle energy and kinetic operator, respectively. The above equation called
“Bethe-Goldstone equation” denotes an infinite sum of scattering processes of two nucleons
in the medium. In this equation, several methods of choosing the energy denominator of the
propagator have been proposed. Here, we adopt the “QTQ(gap) choice” (Baldo et al., 2001)
where only kinetic energy appears and there is no single-particle potential in intermediate
states, as seen in Eq. (2). In the nuclear matter theory, it is known that the convergence of the
hole-line expansion in the QTQ choice is inferior to that in the “continuous choice” (Baldo et
al., 2001). However, at this stage, we check the adequacy of the QTQ choice in finite nuclei.

In the Brueckner theory, single-particle orbits and energies are needed to determine the
G-matrix self-consistently. The single-particle orbits and energies in AMD can be defined
by the AMD+Hartree-Fock (AMD-HF) method (Doté et al., 1997). Following AMD-HF, we
construct an orthonormal basis { f̃ p} for single-particle orbits by diagonalizing the overlap
matrix Bij expressed as

Bij = � �Zi | �Zj � · � χi | χj � , (3)

and then we have
∑

j
Bij · C̃jp = μp · C̃ip, ∑

j
C̃∗

jp C̃jq = δp,q , (4)

| f̃ p � = 1√
μp

∑
j

C̃jp | �Zi � · | χi �, � f̃ p | f̃q � = δp,q. (5)

The Hartree-Fock Hamiltonian matrix can be written with { f̃ p}:

hpq = � f̃ p | t̂ | f̃q �+ ∑
r
� f̃ p f̃r| Ĝ | f̃q f̃r − f̃r f̃q �. (6)
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the simple forms and adjusted parameters to be suitable for the wave functions of AMD so
far.

For the purpose of the fundamental understanding of nuclear structures, we have recently
developed a new AMD framework, “Brueckner-AMD” (Togashi & Katō, 2007; Togashi et al.,
2009), which makes AMD available to us with bare nuclear interactions. It is the basic idea
of Brueckner-AMD that the effective interaction with no singularity to be applicable to the
AMD wave functions is constructed starting from the bare interaction. Instead of the unitary
transformation of the bare Hamiltonian, we introduce the effective interaction, G-matrix,
based on the Brueckner theory to be combined with the single-particle orbits and energies
solved by the AMD+Hartree-Fock (AMD-HF) method (Doté et al., 1997). In this framework,
the G-matrix and single-particle states of AMD can be solved self-consistently so as to reflect
structural changes of nucleus to the effective interactions. In that sense, Brueckner-AMD is a
kind of ab initio calculations.

The appearance of alpha clusters has been studied in many light nuclei for many years. It
is well known that the alpha particle, 4He, which is the unit of alpha clusters, has the strong
stability as its threshold energy for a nucleon is about 20 MeV, while normal nuclei have about
8 MeV. Theoretical few-body studies (Kamada et al., 2001) have proven that the tensor force
in the bare nuclear interaction, which has the operator: S12 = 3(σ1 · r̂)(σ2 · r̂)− σ1 · σ2 where
σ1,2 represent the Pauli matrices, contributes more than half of the binding potential energy
of the alpha particle, and the correlations induced by the tensor force play an important
role in the structure of 4He (Myo et al., 2009). Therefore, it is considered that the peculiar
stability of the alpha particle supported by the tensor force contributions induces the strong
correlations to realize the alpha clusters. However, the reason for the stability of alpha clusters
in a nucleus has not yet been clarified, and it is still one of the central problems in nuclear
theories at present. Although the recent ab initio approach (Wiringa et al., 2000) has provided
the result of the alpha-alpha cluster structure in 8Be as previous mentioned, it has been
difficult to explain the reason why the alpha-alpha cluster in 8Be appears for the complicated
wave function solved from the bare Hamiltonian. Therefore, as our works, we present the
prescription to simulate and visualize the development of alpha-alpha clustering in 8Be, and
elucidate its mechanism of the clustering as the result of effects of nuclear interactions in the
Brueckner-AMD framework.

In this chapter, we plan to introduce the formulation and applications of Brueckner-AMD. In
the second section, we present the formulation of Brueckner-AMD and focus on the details
of the way how to solve the G-matrix in this framework. In the third section, we show
the applications to several light nuclei and the study of alpha-alpha clustering in 8Be in
Brueckner-AMD. Finally, in the forth section, we conclude our works in this chapter.

2. Formulation

In this section, we explain the formulation of Brueckner-AMD. In the first subsection 2.1, we
explain the concept of Brueckner-AMD, in which the G-matrix within the AMD framework
can be calculated straightforwardly. In the second subsection 2.2, the detail of the way how to
solve the G-matrix in Brueckner-AMD and its explicit examples are presented, and then the
energy variation method in Brueckner-AMD is explained in the third subsection 2.3.
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2.1 G-matrix in Brueckner-AMD

In this framework, we use the A-nucleons wave function of AMD, which represents the Slater
determinant of Gaussian wave packets to be satisfied with the Fermi statistics in quantum
mechanics as

|Φ� = 1√
A!

det
�
|�Zi� · |χi�

�
, ��r |�Zi� =

�
2ν

π

�3/4
exp

⎡
⎣−ν

�
�r − �Zi√

ν

�2

+
�Z2

i
2

⎤
⎦ , (1)

where |�Zi� and |χi� represent the spatial and spin-isospin parts of a nucleon, respectively. The
spin-isospin functions |χi� are given by spin-up (or spin-down) protons (or neutrons) in this
work. The complex vector �Zi represents the position of a nucleon in the phase space.

The bare nuclear interactions have the high repulsive potential at a short distance and the
non-central potentials to induce the admixture of high orbital angular moments (Wiringa
et al., 1995). Every pair wave function in AMD is too simple to describe their induced
nucleon-nucleon correlations. Therefore, we construct the effective interactions to be
applicable to AMD, G-matrix (Ĝ), starting from bare interactions as

Ĝ = v̂ + v̂
Q

εα + εβ − (t̂1 + t̂2)
Ĝ , (2)

where v̂, Q, ε i and t̂i represent the bare interaction, the Pauli projection operator, the
single-particle energy and kinetic operator, respectively. The above equation called
“Bethe-Goldstone equation” denotes an infinite sum of scattering processes of two nucleons
in the medium. In this equation, several methods of choosing the energy denominator of the
propagator have been proposed. Here, we adopt the “QTQ(gap) choice” (Baldo et al., 2001)
where only kinetic energy appears and there is no single-particle potential in intermediate
states, as seen in Eq. (2). In the nuclear matter theory, it is known that the convergence of the
hole-line expansion in the QTQ choice is inferior to that in the “continuous choice” (Baldo et
al., 2001). However, at this stage, we check the adequacy of the QTQ choice in finite nuclei.

In the Brueckner theory, single-particle orbits and energies are needed to determine the
G-matrix self-consistently. The single-particle orbits and energies in AMD can be defined
by the AMD+Hartree-Fock (AMD-HF) method (Doté et al., 1997). Following AMD-HF, we
construct an orthonormal basis { f̃ p} for single-particle orbits by diagonalizing the overlap
matrix Bij expressed as

Bij = � �Zi | �Zj � · � χi | χj � , (3)

and then we have
∑

j
Bij · C̃jp = μp · C̃ip, ∑

j
C̃∗

jp C̃jq = δp,q , (4)

| f̃ p � = 1√
μp

∑
j

C̃jp | �Zi � · | χi �, � f̃ p | f̃q � = δp,q. (5)

The Hartree-Fock Hamiltonian matrix can be written with { f̃ p}:

hpq = � f̃ p | t̂ | f̃q �+ ∑
r
� f̃ p f̃r| Ĝ | f̃q f̃r − f̃r f̃q �. (6)
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Then we obtain the single-particle orbit as the solution { fα} for the following equations:

∑
q

hpq · gqα = εα · gpα, ∑
q

g∗qα gqβ = δα,β , (7)

| fα � = ∑
q

gqα | f̃q � = ∑
j

(
∑
q

C̃jq√
μq

· gqα

)
| �Zj � · | χj � = ∑

j
Cjα | �Zj � · | χj �,

� fα | fβ � = δα,β. (8)

And then the single-particle energy is solved as

εα = � fα | t̂ | fα �+ ∑
γ
� fα fγ | Ĝ | fα fγ − fγ fα �. (9)

In Brueckner-AMD, both the single-particle energies (εα) of the wave function and the
G-matrix (Ĝ) are determined self-consistently. That means that the G-matrix within the AMD
framework can be determined theoretically without any corrections.

2.2 Details of the G-matrix calculation

2.2.1 How to treat the Pauli projection operator

The Pauli projection operator Q in the Bethe-Goldstone equation, Eq. (2), is introduced in
order to take account of the Pauli principle in the scattering processes in the medium. In this
framework, the Pauli projection operator Q is represented as

Q = 1 − P = 1 − ∑
α<β

| fα fβ �� fα fβ | , (10)

where P is the projection operator for occupied states. In the nuclear matter, the occupied
states are represented as the Fermi gas states below the Fermi momentum kF and the operator
Q can be defined in terms of kF . In Brueckner-AMD, the occupied states are composed of
single-particle orbits with AMD single-particle wave functions, and so it is hard to solve the
Bethe-Goldstone equation directly because of treating the Q-operator. Therefore, following
the prescription formulated by Bandō et al. (Bandō et al., 1970), which presents an appropriate
means of treating Eq. (2) in the finite nuclear systems, we calculate the G-matrix in the
following two steps: First, ignoring the Q-operator (Q → 1), we solve the equation for G0:

Ĝ0 = v̂ + v̂
1

εα + εβ − (t̂1 + t̂2)
Ĝ0. (11)

Second, we solve the following equation to take into account the Q-operator:

Ĝ = Ĝ0 + Ĝ0 Q − 1
εα + εβ − (t̂1 + t̂2)

Ĝ. (12)

The explicit form of Eq. (12) becomes the algebraic equations as

∑
α<β

{
δγ1, α δδ1, β +

� fγ1 fδ1 | Ĝ0 | fα fβ − fβ fα �
e(γ0δ0, αβ)

}
� fα fβ | Ĝ | fγ0 fδ0 − fδ0 fγ0 �

= � fγ1 fδ1 | Ĝ0 | fγ0 fδ0 − fδ0 fγ0 �, (13)

e(γ0δ0, αβ) = εγ0 + εδ0 − � fα | t̂ | fα � − � fβ | t̂ | fβ �. (14)
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2.2.2 How to solve the Bethe-Boldstone equation

In order to see the way how to solve Eq.(11), we use another expression of the Bethe-Goldstone
equation with wave functions as

ψkl = ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
Ĝ · ϕkl

= ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
v̂ · ψkl , (15)

where the following relationship is used:

� ϕij | Ĝ | ϕkl � = � ϕij | v̂ | ψkl � . (16)

In the above equations, ψkl and ϕkl represent the solution of the Bethe-Goldstone equation
and the two-body part of the AMD wave function, respectively. As any analogy of Eq. (15),
the equation for G0, Eq. (11), becomes

ψ0
kl = ϕkl +

1
εα + εβ − (t̂1 + t̂2)

v̂ · ψ0
kl , (17)

where ψ0
kl represents the solution of Eq. (11) and it has

� ϕij | Ĝ0 | ϕkl � = � ϕij | v̂ | ψ0
kl � . (18)

Then, Eq. (17) can be solved as the differential equation for every pair (kl) of particles:

[ T̂rel − ω ]
�

δl �, l0
· ϕl0m

�
r ; �Zrel

kl

�
− ψ0 JS

l �l0m(r)
�
= ∑

l ��
VJS

l �l ��(r) ψ0 JS
l ��l0m(r) , (19)

where T̂rel represents the relative kinetic energy operator and ω = εα + εβ − Tcm (ij : kl). In
this case, T̂rel can be expressed as

T̂rel = − h̄2

M
1
r

d2

dr2 r +
h̄2

M
l �(l � + 1)

r2 , (20)

and Tcm (ij : kl) is the expectation value of the two-body center-of-mass kinetic energy:

Tcm(ij : kl) =
� �Zcm

ij | T̂cm | �Zcm
kl �

� �Zcm
ij | �Zcm

kl � , (21)

where T̂cm represents the two-body center-of-mass kinetic energy operator and | �Zcm
kl � is the

two-body AMD wave function of the center-of-mass part: �Zcm
kl = (�Zk + �Zl)/

√
2. Note that

the two-body AMD wave function is decomposed into the center-of-mass and relative parts

and its relative one can be applied directly to Eq. (17). In Eq. (19), ϕl0m

�
r ; �Zrel

kl

�
represent the

two-body AMD wave function of the relative part | �Zrel
kl �: �Zrel

kl = (�Zk − �Zl)/
√

2 for the partial
wave having the orbital angular momentum l0 and its z component m as

��r | �Zrel
kl � =

�
2νrel

π

�3/4
exp

⎡
⎣−νrel

�
�r −

�Zrel
kl√
νrel

�2

+
�Zrel 2

kl
2

⎤
⎦ = ∑

l0, m
ϕl0m

�
r ; �Zrel

kl

�
| l0m � ,

(22)
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Then we obtain the single-particle orbit as the solution { fα} for the following equations:

∑
q

hpq · gqα = εα · gpα, ∑
q

g∗qα gqβ = δα,β , (7)

| fα � = ∑
q

gqα | f̃q � = ∑
j

(
∑
q

C̃jq√
μq

· gqα

)
| �Zj � · | χj � = ∑

j
Cjα | �Zj � · | χj �,

� fα | fβ � = δα,β. (8)

And then the single-particle energy is solved as

εα = � fα | t̂ | fα �+ ∑
γ
� fα fγ | Ĝ | fα fγ − fγ fα �. (9)

In Brueckner-AMD, both the single-particle energies (εα) of the wave function and the
G-matrix (Ĝ) are determined self-consistently. That means that the G-matrix within the AMD
framework can be determined theoretically without any corrections.

2.2 Details of the G-matrix calculation

2.2.1 How to treat the Pauli projection operator

The Pauli projection operator Q in the Bethe-Goldstone equation, Eq. (2), is introduced in
order to take account of the Pauli principle in the scattering processes in the medium. In this
framework, the Pauli projection operator Q is represented as

Q = 1 − P = 1 − ∑
α<β

| fα fβ �� fα fβ | , (10)

where P is the projection operator for occupied states. In the nuclear matter, the occupied
states are represented as the Fermi gas states below the Fermi momentum kF and the operator
Q can be defined in terms of kF . In Brueckner-AMD, the occupied states are composed of
single-particle orbits with AMD single-particle wave functions, and so it is hard to solve the
Bethe-Goldstone equation directly because of treating the Q-operator. Therefore, following
the prescription formulated by Bandō et al. (Bandō et al., 1970), which presents an appropriate
means of treating Eq. (2) in the finite nuclear systems, we calculate the G-matrix in the
following two steps: First, ignoring the Q-operator (Q → 1), we solve the equation for G0:

Ĝ0 = v̂ + v̂
1

εα + εβ − (t̂1 + t̂2)
Ĝ0. (11)

Second, we solve the following equation to take into account the Q-operator:

Ĝ = Ĝ0 + Ĝ0 Q − 1
εα + εβ − (t̂1 + t̂2)

Ĝ. (12)

The explicit form of Eq. (12) becomes the algebraic equations as

∑
α<β

{
δγ1, α δδ1, β +

� fγ1 fδ1 | Ĝ0 | fα fβ − fβ fα �
e(γ0δ0, αβ)

}
� fα fβ | Ĝ | fγ0 fδ0 − fδ0 fγ0 �

= � fγ1 fδ1 | Ĝ0 | fγ0 fδ0 − fδ0 fγ0 �, (13)

e(γ0δ0, αβ) = εγ0 + εδ0 − � fα | t̂ | fα � − � fβ | t̂ | fβ �. (14)
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2.2.2 How to solve the Bethe-Boldstone equation

In order to see the way how to solve Eq.(11), we use another expression of the Bethe-Goldstone
equation with wave functions as

ψkl = ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
Ĝ · ϕkl

= ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
v̂ · ψkl , (15)

where the following relationship is used:

� ϕij | Ĝ | ϕkl � = � ϕij | v̂ | ψkl � . (16)

In the above equations, ψkl and ϕkl represent the solution of the Bethe-Goldstone equation
and the two-body part of the AMD wave function, respectively. As any analogy of Eq. (15),
the equation for G0, Eq. (11), becomes

ψ0
kl = ϕkl +

1
εα + εβ − (t̂1 + t̂2)

v̂ · ψ0
kl , (17)

where ψ0
kl represents the solution of Eq. (11) and it has

� ϕij | Ĝ0 | ϕkl � = � ϕij | v̂ | ψ0
kl � . (18)

Then, Eq. (17) can be solved as the differential equation for every pair (kl) of particles:

[ T̂rel − ω ]
�

δl �, l0
· ϕl0m

�
r ; �Zrel

kl

�
− ψ0 JS

l �l0m(r)
�
= ∑

l ��
VJS

l �l ��(r) ψ0 JS
l ��l0m(r) , (19)

where T̂rel represents the relative kinetic energy operator and ω = εα + εβ − Tcm (ij : kl). In
this case, T̂rel can be expressed as

T̂rel = − h̄2

M
1
r

d2

dr2 r +
h̄2

M
l �(l � + 1)

r2 , (20)

and Tcm (ij : kl) is the expectation value of the two-body center-of-mass kinetic energy:

Tcm(ij : kl) =
� �Zcm

ij | T̂cm | �Zcm
kl �

� �Zcm
ij | �Zcm

kl � , (21)

where T̂cm represents the two-body center-of-mass kinetic energy operator and | �Zcm
kl � is the

two-body AMD wave function of the center-of-mass part: �Zcm
kl = (�Zk + �Zl)/

√
2. Note that

the two-body AMD wave function is decomposed into the center-of-mass and relative parts

and its relative one can be applied directly to Eq. (17). In Eq. (19), ϕl0m

�
r ; �Zrel

kl

�
represent the

two-body AMD wave function of the relative part | �Zrel
kl �: �Zrel

kl = (�Zk − �Zl)/
√

2 for the partial
wave having the orbital angular momentum l0 and its z component m as

��r | �Zrel
kl � =

�
2νrel

π

�3/4
exp

⎡
⎣−νrel

�
�r −

�Zrel
kl√
νrel

�2

+
�Zrel 2

kl
2

⎤
⎦ = ∑

l0, m
ϕl0m

�
r ; �Zrel

kl

�
| l0m � ,

(22)
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where νrel = ν/2 and the explicit expression of ϕl0m

(
r ; �Zrel

kl

)
is given later. ψ0 JS

l �l0m(r) is the

solution of Eq. (19) which has the dependence on (i, j, k, l, α, β) due to ω and ϕl0m

(
r ; �Zrel

kl

)
,

and VJS
l l � (r) is the potential for the two-body channel of total angular momentum J and total

spin S with the transition between the angular momenta l and l � in the bare interaction v̂,

VJS
l l � (r) =

∫

spin

∫
dΩ�r yM ∗

lSJ (Ω�r) v̂ yM
l �SJ (Ω�r) , (23)

where yM
lSJ (Ω�r) represents the eigenfunction of two-body total angular momentum.

Here, we present explicit expressions of Eq.(19). In the nucleon-nucleon interaction, two-body
total angular momentum J, total spin S, total isospin T, and parity are conserved. However,
due to the Fermi statistics of two nucleons, two-body states are restricted to the four states
under conditions of S + T + l = odd where l is the two-body angular moment: in the case
of even parity (l = 0, 2, 4, · · · ), the spin-triplet S = 1 state called “triplet-even (3E)” with
the isospin-singlet T = 0 and the spin-singlet S = 0 state called “singlet-even (1E)” with the
isospin-triplet T = 1; in the case of odd parity (l = 1, 3, 5, · · · ), the spin-triplet S = 1 state
called “triplet-odd (3O)” with the isospin-triplet T = 1 and the spin-singlet S = 0 state called
“singlet-odd (1O)” with the isospin-singlet T = 0. Hence, the expressions of Eq. (19) for the
above four two-body channels with the lowest allowed angular momentum are presented in
the following.

At this stage, one has no unique nucleon-nucleon interaction and many varieties. However,
at least, nucleon-nucleon interactions have central (v̂c), spin-orbit (v̂ls), and tensor (v̂t) forces.
Here, we consider only the case of the interaction with the above three forces. For spin-singlet
states, the interaction has only the central force, and then, Eq. (19) for the singlet-even (1E)
with l = 0 becomes

[− h̄2

M
1
r

d2

dr2 r − ω ]
{

ϕ0m

(
r ; �Zrel

kl

)
− ψ0 J=0 S=0

00m (r)
}
= v (1E)

c (r) ψ0 J=0 S=0
00m (r) , (24)

and that for the singlet-odd (1O) with l = 1 becomes

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ0 J=1 S=0

11m (r)
}
= v (1O)

c (r)ψ0 J=1 S=0
11m (r). (25)

For spin-triplet states, nucleon-nucleon interactions include central, spin-orbit, and tensor
forces. Note that the orbital angular momentum l state may be admixed with higher angular
momentum l � state by the tensor force. Hence, Eq. (19) for the triplet-even (3E) with l = 0
becomes the coupled equation to l � = 2 as

[− h̄2

M
1
r

d2

dr2 r − ω ]
{

ϕ0m

(
r ; �Zrel

kl

)
− ψ0 J=1 S=1

00m (r)
}
= 2

√
2 v (3E)

t (r)ψ0 J=1 S=1
20m (r)

+v (3E)
c (r)ψ

0 J=1 S=1
00m (r) ,

− [− h̄2

M
1
r

d2

dr2 r +
h̄2

M
6
r2 − ω ] ψ0 J=1 S=1

20m (r) = 2
√

2 v (3E)
t (r) ψ0 J=1 S=1

00m (r)

+[ v (3E)
c (r)− 3v (3E)

ls (r)− 2v (3E)
t (r) ] ψ

0 J=1 S=1
20m (r). (26)
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For the the triplet-odd (3O) with l = 1, the cases of J = 0, 1, and 2 are considered. And then,
Eq. (19) for the 3O with J = 0 and l = 1 becomes

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ

0 J=0 S=1
11m (r)

}

= [ v (3O)
c (r)− 2v (3O)

ls (r)− 4v (3O)
t (r) ] ψ

0 J=0 S=1
11m (r) , (27)

that for the 3O with J = 1 and l = 1 becomes

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ

0 J=1 S=1
11m (r)

}

= [ v (3O)
c (r)− v (3O)

ls (r) + 2v (3O)
t (r) ] ψ0 J=1 S=1

11m (r) , (28)

and that for the 3O with J = 2 and l = 1 becomes the coupled equation to l � = 3 as

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ0 J=2 S=1

11m (r)
}
=

6
√

6
5

v (3O)
t (r) ψ0 J=2 S=1

31m (r)

+[ v (3O)
c (r) + v (3O)

ls (r)− 2
5

v (3O)
t (r) ] ψ

0 J=2 S=1
11m (r) ,

− [− h̄2

M
1
r

d2

dr2 r +
h̄2

M
12
r2 − ω ] ψ

0 J=2 S=1
31m (r) =

6
√

6
5

v (3O)
t (r)ψ

0 J=2 S=1
11m (r)

+[ v (3O)
c (r)− 4v (3O)

ls (r)− 8
5

v (3O)
t (r) ] ψ0 J=2 S=1

31m (r). (29)

In the following, we explain the partial-wave expansion of the two-body AMD wave function
of the relative part in Eq. (22). It becomes

��r | �Zrel
kl � =

(
2νrel

π

)3/4
exp

[
−νrel�r

2 −
�Zrel 2

kl
2

]
· exp

[
2
√

νrel �Z
rel
kl ·�r

]
, (30)

where the complex vector �Zrel
kl = �ZR + i�ZI . Here, the term “exp

[
2
√

νrel �Zrel
kl ·�r

]
” can be

expanded as multipole:

exp
[

2
√

νrel �Z
rel
kl ·�r

]
= (4π)2 ∑

l1, l2, m1, m2

Jl1 (2
√

νrelZRr) · il2 jl2 (2
√

νrelZIr)×

Y∗
l1m1

(ẐR)Y∗
l2m2

(Ẑ I)Yl1m1
(r̂)Yl2m2

(r̂) , (31)

where ZR, I = |�ZR, I | and ẐR, I = �ZR, I /|�ZR, I |. In Eq. (31), we use the formulas

exp[ i�k ·�r ] = 4π ∑
l, m

il jl(kr)Y∗
lm(k̂)Ylm(r̂) ,

exp[�k ·�r ] = 4π ∑
l, m

Jl(kr)Y∗
lm(k̂)Ylm(r̂) , (32)

where Jl(r) ≡ (−i)l jl(ir). We use the following formula for the product of two spherical
harmonics with 3-j symbols:

Yl1m1 (r̂)Yl2m2 (r̂) = ∑
l, m

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l

m1 m2 m

)(
l1 l2 l
0 0 0

)
Y∗

lm(r̂). (33)
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where νrel = ν/2 and the explicit expression of ϕl0m

(
r ; �Zrel

kl

)
is given later. ψ0 JS

l �l0m(r) is the

solution of Eq. (19) which has the dependence on (i, j, k, l, α, β) due to ω and ϕl0m

(
r ; �Zrel

kl

)
,

and VJS
l l � (r) is the potential for the two-body channel of total angular momentum J and total

spin S with the transition between the angular momenta l and l � in the bare interaction v̂,

VJS
l l � (r) =

∫

spin

∫
dΩ�r yM ∗

lSJ (Ω�r) v̂ yM
l �SJ (Ω�r) , (23)

where yM
lSJ (Ω�r) represents the eigenfunction of two-body total angular momentum.

Here, we present explicit expressions of Eq.(19). In the nucleon-nucleon interaction, two-body
total angular momentum J, total spin S, total isospin T, and parity are conserved. However,
due to the Fermi statistics of two nucleons, two-body states are restricted to the four states
under conditions of S + T + l = odd where l is the two-body angular moment: in the case
of even parity (l = 0, 2, 4, · · · ), the spin-triplet S = 1 state called “triplet-even (3E)” with
the isospin-singlet T = 0 and the spin-singlet S = 0 state called “singlet-even (1E)” with the
isospin-triplet T = 1; in the case of odd parity (l = 1, 3, 5, · · · ), the spin-triplet S = 1 state
called “triplet-odd (3O)” with the isospin-triplet T = 1 and the spin-singlet S = 0 state called
“singlet-odd (1O)” with the isospin-singlet T = 0. Hence, the expressions of Eq. (19) for the
above four two-body channels with the lowest allowed angular momentum are presented in
the following.

At this stage, one has no unique nucleon-nucleon interaction and many varieties. However,
at least, nucleon-nucleon interactions have central (v̂c), spin-orbit (v̂ls), and tensor (v̂t) forces.
Here, we consider only the case of the interaction with the above three forces. For spin-singlet
states, the interaction has only the central force, and then, Eq. (19) for the singlet-even (1E)
with l = 0 becomes

[− h̄2

M
1
r

d2

dr2 r − ω ]
{

ϕ0m

(
r ; �Zrel

kl

)
− ψ0 J=0 S=0

00m (r)
}
= v (1E)

c (r) ψ0 J=0 S=0
00m (r) , (24)

and that for the singlet-odd (1O) with l = 1 becomes

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ0 J=1 S=0

11m (r)
}
= v (1O)

c (r)ψ0 J=1 S=0
11m (r). (25)

For spin-triplet states, nucleon-nucleon interactions include central, spin-orbit, and tensor
forces. Note that the orbital angular momentum l state may be admixed with higher angular
momentum l � state by the tensor force. Hence, Eq. (19) for the triplet-even (3E) with l = 0
becomes the coupled equation to l � = 2 as

[− h̄2

M
1
r

d2

dr2 r − ω ]
{

ϕ0m

(
r ; �Zrel

kl

)
− ψ0 J=1 S=1

00m (r)
}
= 2

√
2 v (3E)

t (r)ψ0 J=1 S=1
20m (r)

+v (3E)
c (r)ψ

0 J=1 S=1
00m (r) ,

− [− h̄2

M
1
r

d2

dr2 r +
h̄2

M
6
r2 − ω ] ψ0 J=1 S=1

20m (r) = 2
√

2 v (3E)
t (r) ψ0 J=1 S=1

00m (r)

+[ v (3E)
c (r)− 3v (3E)

ls (r)− 2v (3E)
t (r) ] ψ

0 J=1 S=1
20m (r). (26)
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For the the triplet-odd (3O) with l = 1, the cases of J = 0, 1, and 2 are considered. And then,
Eq. (19) for the 3O with J = 0 and l = 1 becomes

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ

0 J=0 S=1
11m (r)

}

= [ v (3O)
c (r)− 2v (3O)

ls (r)− 4v (3O)
t (r) ] ψ

0 J=0 S=1
11m (r) , (27)

that for the 3O with J = 1 and l = 1 becomes

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ

0 J=1 S=1
11m (r)

}

= [ v (3O)
c (r)− v (3O)

ls (r) + 2v (3O)
t (r) ] ψ0 J=1 S=1

11m (r) , (28)

and that for the 3O with J = 2 and l = 1 becomes the coupled equation to l � = 3 as

[− h̄2

M
1
r

d2

dr2 r +
h̄2

M
2
r2 − ω ]

{
ϕ1m

(
r ; �Zrel

kl

)
− ψ0 J=2 S=1

11m (r)
}
=

6
√

6
5

v (3O)
t (r) ψ0 J=2 S=1

31m (r)

+[ v (3O)
c (r) + v (3O)

ls (r)− 2
5

v (3O)
t (r) ] ψ

0 J=2 S=1
11m (r) ,

− [− h̄2

M
1
r

d2

dr2 r +
h̄2

M
12
r2 − ω ] ψ

0 J=2 S=1
31m (r) =

6
√

6
5

v (3O)
t (r)ψ

0 J=2 S=1
11m (r)

+[ v (3O)
c (r)− 4v (3O)

ls (r)− 8
5

v (3O)
t (r) ] ψ0 J=2 S=1

31m (r). (29)

In the following, we explain the partial-wave expansion of the two-body AMD wave function
of the relative part in Eq. (22). It becomes

��r | �Zrel
kl � =

(
2νrel

π

)3/4
exp

[
−νrel�r

2 −
�Zrel 2

kl
2

]
· exp

[
2
√

νrel �Z
rel
kl ·�r

]
, (30)

where the complex vector �Zrel
kl = �ZR + i�ZI . Here, the term “exp

[
2
√

νrel �Zrel
kl ·�r

]
” can be

expanded as multipole:

exp
[

2
√

νrel �Z
rel
kl ·�r

]
= (4π)2 ∑

l1, l2, m1, m2

Jl1 (2
√

νrelZRr) · il2 jl2 (2
√

νrelZIr)×

Y∗
l1m1

(ẐR)Y∗
l2m2

(Ẑ I)Yl1m1
(r̂)Yl2m2

(r̂) , (31)

where ZR, I = |�ZR, I | and ẐR, I = �ZR, I /|�ZR, I |. In Eq. (31), we use the formulas

exp[ i�k ·�r ] = 4π ∑
l, m

il jl(kr)Y∗
lm(k̂)Ylm(r̂) ,

exp[�k ·�r ] = 4π ∑
l, m

Jl(kr)Y∗
lm(k̂)Ylm(r̂) , (32)

where Jl(r) ≡ (−i)l jl(ir). We use the following formula for the product of two spherical
harmonics with 3-j symbols:

Yl1m1 (r̂)Yl2m2 (r̂) = ∑
l, m

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l

m1 m2 m

)(
l1 l2 l
0 0 0

)
Y∗

lm(r̂). (33)
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Fig. 1. The vectors �Zrel
kl = �ZR + i�ZI and �Zrel

ij = �Z�
R + i�Z�

I in the body-fixed frame we adopt in
this framework are schematically shown.

Thus, in the calculations of � �Zrel
ij | Ô | �Zrel

kl �, the state of | �Zrel
kl � can be expressed as the

expansion of angular momental states | lm �:

��r | �Zrel
kl � = ∑

l, m
ϕlm

(
r ; �Zrel

kl

)
| lm �

=

(
2νrel

π

)3/4
exp

[
−νrel�r

2 −
�Zrel 2

kl
2

]
∑
l, m

zlm

(
2
√

νrel r ; �Zrel
kl

)
| lm � , (34)

where

zlm

(
r ; �Zrel

kl

)
≡ (4π)3/2 ∑

l1, l2, m1, m2

√
(2l1 + 1)(2l2 + 1) Jl1 (ZRr) · il2 jl2 (ZIr)×

Y∗
l1m1

(ẐR)Y∗
l2m2

(Ẑ I)
√

2l + 1
(

l1 l2 l
m1 m2 m

)(
l1 l2 l
0 0 0

)
. (35)

In the case of the rotational-invariant operator, for example, nucleon-nucleon interaction,
its expectation value may be calculated in the arbitrary body-fixed frame because
� �Zrel

ij | Ô | �Zrel
kl � = � �Zrel

ij | R̂†(Ω)ÔR̂(Ω) | �Zrel
kl � where R̂(Ω) is the operator of rotation by the

arbitrary Euler angle Ω. Here, we adopt the body-fixed frame shown in Fig. 1 where �ZR is
fixed along the z-axis with the angle ẐR = (θR = 0, ϕR = 0) and �ZI is in the xz-plane with the
angle Ẑ I = (θI , ϕI = 0).
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2.2.3 G-matrix calculations with correlation functions

In order to explain the way how to calculate the G-matrix element, we provide another
viewpoint of Eq. (15):

ψkl = ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
Ĝ · ϕkl ≡ F̂kl · ϕkl , (36)

where we call F̂kl the “correlation function” defined schematically as F̂kl = ψkl/ϕkl which
represents nucleon-nucleon correlations induced by the interaction. From Eqs. (16) and (36),
one can obtain the G-matrix element as

� ϕij | Ĝ | ϕkl � = � ϕij | v̂ · F̂kl | ϕkl � . (37)

The equation for Ĝ0 has the analogy to Eq. (37):

� ϕij | Ĝ0 | ϕkl � = � ϕij | v̂ · F̂0
kl | ϕkl � , (38)

where the correlation function F̂0
kl is defined as F̂0

kl = ψ0
kl/ϕkl by using the solution ψ0

kl of Eq.
(17). Hence, Ĝ0 for each J and S channel becomes

G0 JS
l0l �(r) = ∑

l ��
VJS

l � l ��(r) F0
kl [

JS
l ��l0

](ω, r) , (39)

where the correlation function is given by ψ
0 JS
l �l0m(r) and ϕl0m

(
r ; �Zrel

kl

)
in Eq. (19) as

F0
kl [

JS
l �l0

](ω, r) = ψ
0 JS
l �l0m(r) / ϕl0m

(
r ; �Zrel

kl

)
. (40)

Note that the above correlation function has the dependence on (i, j, k, l, α, β) through

ϕl0m

(
r ; �Zrel

kl

)
and ω = εα + εβ − Tcm(ij : kl) of Eq. (19). The correlation function of Eq.

(40) is approximated as m = 0 in ψ
0 JS
l �l0m(r) and ϕl0m

(
r ; �Zrel

kl

)
because we find that it has little

dependence on m. In order to carry the practical calculations, we determine Ĝ0 with explicit
operators as follows:

Ĝ0 S
l0l � =

2

∑
λ=0

G0 S
l0l �, λ(r)(Rλ · Sλ) , (41)

where (Rλ · Sλ) is a scalar product of an orbital tensor Rλ and a spin tensor Sλ of rank λ.
The components of λ = 0, 1, and 2 correspond to the central, spin-orbit, and tensor forces in a
potential, respectively. And then, one can utilize the following equation

G0 S
l0l �, λ(r) =

(2λ + 1)
� l0 || Rλ || l � � � S || Sλ || S � ∑

J
(−1)J−l0−S(2J + 1)W(l0l �SS; λJ) G0 JS

l0l �(r) , (42)

where the expressions with double bars such as � l0 || Rλ || l � � represent the reduced matrix
elements and W(l0l �SS; λJ) is the Racah coefficient. In this calculation, the angular momenta l0
and l � in Eq. (42) are taken as the allowed lowest values for each two-body channel: l0 = l � = 0
in the 1E and 3E central force, l0 = l � = 1 in all forces of the 1O and 3O channels, l0 = l � = 2
in the 3E spin-orbit force, and l0 = 0, l � = 2 in the 3E tensor force. As a result, Ĝ0 becomes

Ĝ0 = G0
λ=0(r) + G0

λ=1(r)�L · �S + G0
λ=2(r)S12. (43)
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Fig. 1. The vectors �Zrel
kl = �ZR + i�ZI and �Zrel

ij = �Z�
R + i�Z�

I in the body-fixed frame we adopt in
this framework are schematically shown.

Thus, in the calculations of � �Zrel
ij | Ô | �Zrel

kl �, the state of | �Zrel
kl � can be expressed as the

expansion of angular momental states | lm �:

��r | �Zrel
kl � = ∑

l, m
ϕlm

(
r ; �Zrel

kl

)
| lm �

=

(
2νrel

π

)3/4
exp

[
−νrel�r

2 −
�Zrel 2

kl
2

]
∑
l, m

zlm

(
2
√

νrel r ; �Zrel
kl

)
| lm � , (34)

where

zlm

(
r ; �Zrel

kl

)
≡ (4π)3/2 ∑

l1, l2, m1, m2

√
(2l1 + 1)(2l2 + 1) Jl1 (ZRr) · il2 jl2 (ZIr)×

Y∗
l1m1

(ẐR)Y∗
l2m2

(Ẑ I)
√

2l + 1
(

l1 l2 l
m1 m2 m

)(
l1 l2 l
0 0 0

)
. (35)

In the case of the rotational-invariant operator, for example, nucleon-nucleon interaction,
its expectation value may be calculated in the arbitrary body-fixed frame because
� �Zrel

ij | Ô | �Zrel
kl � = � �Zrel

ij | R̂†(Ω)ÔR̂(Ω) | �Zrel
kl � where R̂(Ω) is the operator of rotation by the

arbitrary Euler angle Ω. Here, we adopt the body-fixed frame shown in Fig. 1 where �ZR is
fixed along the z-axis with the angle ẐR = (θR = 0, ϕR = 0) and �ZI is in the xz-plane with the
angle Ẑ I = (θI , ϕI = 0).
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2.2.3 G-matrix calculations with correlation functions

In order to explain the way how to calculate the G-matrix element, we provide another
viewpoint of Eq. (15):

ψkl = ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
Ĝ · ϕkl ≡ F̂kl · ϕkl , (36)

where we call F̂kl the “correlation function” defined schematically as F̂kl = ψkl/ϕkl which
represents nucleon-nucleon correlations induced by the interaction. From Eqs. (16) and (36),
one can obtain the G-matrix element as

� ϕij | Ĝ | ϕkl � = � ϕij | v̂ · F̂kl | ϕkl � . (37)

The equation for Ĝ0 has the analogy to Eq. (37):

� ϕij | Ĝ0 | ϕkl � = � ϕij | v̂ · F̂0
kl | ϕkl � , (38)

where the correlation function F̂0
kl is defined as F̂0

kl = ψ0
kl/ϕkl by using the solution ψ0

kl of Eq.
(17). Hence, Ĝ0 for each J and S channel becomes

G0 JS
l0l �(r) = ∑

l ��
VJS

l � l ��(r) F0
kl [

JS
l ��l0

](ω, r) , (39)

where the correlation function is given by ψ
0 JS
l �l0m(r) and ϕl0m

(
r ; �Zrel

kl

)
in Eq. (19) as

F0
kl [

JS
l �l0

](ω, r) = ψ
0 JS
l �l0m(r) / ϕl0m

(
r ; �Zrel

kl

)
. (40)

Note that the above correlation function has the dependence on (i, j, k, l, α, β) through

ϕl0m

(
r ; �Zrel

kl

)
and ω = εα + εβ − Tcm(ij : kl) of Eq. (19). The correlation function of Eq.

(40) is approximated as m = 0 in ψ
0 JS
l �l0m(r) and ϕl0m

(
r ; �Zrel

kl

)
because we find that it has little

dependence on m. In order to carry the practical calculations, we determine Ĝ0 with explicit
operators as follows:

Ĝ0 S
l0l � =

2

∑
λ=0

G0 S
l0l �, λ(r)(Rλ · Sλ) , (41)

where (Rλ · Sλ) is a scalar product of an orbital tensor Rλ and a spin tensor Sλ of rank λ.
The components of λ = 0, 1, and 2 correspond to the central, spin-orbit, and tensor forces in a
potential, respectively. And then, one can utilize the following equation

G0 S
l0l �, λ(r) =

(2λ + 1)
� l0 || Rλ || l � � � S || Sλ || S � ∑

J
(−1)J−l0−S(2J + 1)W(l0l �SS; λJ) G0 JS

l0l �(r) , (42)

where the expressions with double bars such as � l0 || Rλ || l � � represent the reduced matrix
elements and W(l0l �SS; λJ) is the Racah coefficient. In this calculation, the angular momenta l0
and l � in Eq. (42) are taken as the allowed lowest values for each two-body channel: l0 = l � = 0
in the 1E and 3E central force, l0 = l � = 1 in all forces of the 1O and 3O channels, l0 = l � = 2
in the 3E spin-orbit force, and l0 = 0, l � = 2 in the 3E tensor force. As a result, Ĝ0 becomes

Ĝ0 = G0
λ=0(r) + G0

λ=1(r)�L · �S + G0
λ=2(r)S12. (43)
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Note that Ĝ0 has the dependence on (i, j, k, l, α, β) drived from the correlation function of Eq.
(40). By using the matrix element for Ĝ0, � fγ fδ | Ĝ0 | fα fβ − fβ fα �, one can obtain the G-matrix
element � fγ fδ | Ĝ | fα fβ − fβ fα � from Eq. (13).

The G-matrix has the dependence on the bra state (i, j) and difficulty to treat the case of
superpostion of wave functions. In addition, the G-matrix is given by the matrix element
not to be easy to analyze its properties. Hence, in the following, we present the practical
alternative. In Eq. (19), we use Tcm(kl) instead of Tcm(ij : kl) in ω as

Tcm(kl) =
� �Zcm

kl | T̂cm | �Zcm
kl �

� �Zcm
kl | �Zcm

kl � , (44)

which reprents the expectation value of the two-body center-of-mass kinetic energy for only
the ket state. We solve Eq. (19) using ω0 = εα + εβ − Tcm(kl) instead of ω, and then, by using

its solution, we determine the correlation function F0
kl [

JS
l �l0

](ω0, r) with no dependence on the

bra state (i, j). One can obtain the alternative of the G0-matrix, � fγ fδ | Ĝ� 0 | fα fβ − fβ fα �, by

applying Eqs. (39) and (42) with the correlation function F0
kl [

JS
l �l0

](ω0, r). Here, we consider

the ratio of the G-matrix element solved by � fα fβ | Ĝ0 | fα fβ − fβ fα � with F0
kl [

JS
l �l0

](ω, r) from

Eq. (13), � fα fβ | Ĝ | fα fβ − fβ fα �, to the matrix element � fα fβ | Ĝ� 0 | fα fβ − fβ fα �:

Cαβ
Q =

� fα fβ | Ĝ | fα fβ − fβ fα �
� fα fβ | Ĝ� 0 | fα fβ − fβ fα �

, (45)

which represents the effects of the operator Q and Tcm(ij : kl). By using the above value Cαβ
Q ,

one can present the explicit form of the correlation function F̂kl in Eq. (36) as

Fkl [
JS
l �l0

](ω0, r) = Cαβ
Q · F0

kl [
JS
l � l0

](ω0, r). (46)

Hence, the G-matrix for each J and S channel becomes

GJS
l0l � (r) = ∑

l ��
VJS

l � l ��(r) Fkl [
JS
l ��l0

](ω0, r). (47)

Applying Eq. (42) with GJS
l0l � (r) instead of G0 JS

l0l �(r), the G-matrix can be determined as

Ĝ = Gλ=0(r) + Gλ=1(r)�L · �S + Gλ=2(r)S12. (48)

Note that the expectation value for the potential of Eq. (48) reproduces the G-matrix element.
As seen in the above discussion, one can obtain the G-matrix as the effective interaction with
the explicit form by using the correlation function of Eq. (46).

2.2.4 Explicit examples of G-matrix

In order to see the properties of G-matrix in Brueckner-AMD, we present the G-matrix in
the specific case. As the bare nucleon-nucleon interaction, we adopt the Argonne v8� (AV8�)
(Wiringa & Pieper, 2002). AV8� is constructed by renormalizing the�L2 and (�L ·�S)2 terms in the
Argonne v18 (AV18) (Wiringa et al., 1995), which is the high accurate bare nucleon-nucleon
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interaction, into the central, spin-orbit, and tensor forces. And the iso-spin symmetry and
independence breaking included in AV18 are ignored in the case of AV8�. In the following, we
switch off the electromagnetic interactions.

As a preparation, several explicit terms of the G-matrix in Eq. (48) are shown. For the
spin-singlet states, the G-matrix has only the central force given by the simple product of
the bare interaction multiplied by the correlation function. For example, the singlet-even (1E)
central force of the G-matrix becomes

G (1E)
c (r) = v (1E)

c (r) · Fkl [
J=0 S=0
l �=0 l0=0 ](ω0, r). (49)

The singlet-odd (1O) central G-matrix is given as the same way as the above equation.
On the other hand, for the spin-triplet states, the non-central forces in the bare interaction
are renormalized into the central G-matrix through the correlation functions. Hence, the
triplet-even (3E) central G-matrix becomes

G (3E)
c (r) = v (3E)

c · Fkl [
J=1 S=1
l �=0 l0=0 ] + 2

√
2 v (3E)

t · Fkl [
J=1 S=1
l �=2 l0=0 ] , (50)

and the triplet-odd (3O) central becomes

G (3O)
c (r) =

1
9

{ (v (3O)
c − 2v (3O)

ls − 4v (3O)
t ) · Fkl [

J=0 S=1
l �=1 l0=1 ]

+ 3(v (3O)
c − v (3O)

ls + 2v (3O)
t ) · Fkl [

J=1 S=1
l �=1 l0=1 ]

+ 5(v (3O)
c + v (3O)

ls − 2
5

v (3O)
t ) · Fkl [

J=2 S=1
l �=1 l0=1 ] + 6

√
6 v (3O)

t · Fkl [
J=2 S=1
l �=3 l0=1 ] } , (51)

where the (ω0, r) dependence in the above right hands is omitted for simplicity. In addition, as
examples, for the 3E tensor and 3O spin-orbit G-matrices, their expressions where the (ω0, r)
dependence is omitted as the aboves are given:

G (3E)
t (r) = v (3E)

t · Fkl [
J=1 S=1
l �=0 l0=0 ] +

1
2
√

2
(v (3E)

c − 3v (3E)

ls − 2v (3E)
t ) · Fkl [

J=1 S=1
l �=2 l0=0 ] , (52)

G (3O)

ls (r) = − 1
12

{ 2(v (3O)
c − 2v (3O)

ls − 4v (3O)
t ) · Fkl [

J=0 S=1
l �=1 l0=1 ]

+ 3(v (3O)
c − v (3O)

ls + 2v (3O)
t ) · Fkl [

J=1 S=1
l �=1 l0=1 ]

− 5(v (3O)
c + v (3O)

ls − 2
5

v (3O)
t ) · Fkl [

J=2 S=1
l �=1 l0=1 ]− 6

√
6 v (3O)

t · Fkl [
J=2 S=1
l �=3 l0=1 ] }. (53)

In Brueckner-AMD, the G-matrix for each pair have dependence on not only the paricle pair
(k, l) but also the single-particle orbits (α, β) due to the dependence on ω0 = εα + εα − Tcm(kl)
in the correlation function. Therefore, in general, one cannot abstract the explicit form as
the interaction between particles (k, l). However, as the special case, in the system of 4He
consisting of the spin-up proton, spin-up neutron, spin-down proton, and spin-down neutron,
the G-matrix is given as the interaction between particles (k, l) because the single-particle
orbits | fα,β � are equal to the one-particle wave funcions, which means (α, β) = (k, l), on
condition that the overlap matrix Bij in Eq. (3) becomes a diagonal matrix such as this system.
Here, we consider the G-matrix between particles in the 3N-N cluster system of 4He where
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Note that Ĝ0 has the dependence on (i, j, k, l, α, β) drived from the correlation function of Eq.
(40). By using the matrix element for Ĝ0, � fγ fδ | Ĝ0 | fα fβ − fβ fα �, one can obtain the G-matrix
element � fγ fδ | Ĝ | fα fβ − fβ fα � from Eq. (13).

The G-matrix has the dependence on the bra state (i, j) and difficulty to treat the case of
superpostion of wave functions. In addition, the G-matrix is given by the matrix element
not to be easy to analyze its properties. Hence, in the following, we present the practical
alternative. In Eq. (19), we use Tcm(kl) instead of Tcm(ij : kl) in ω as

Tcm(kl) =
� �Zcm

kl | T̂cm | �Zcm
kl �

� �Zcm
kl | �Zcm

kl � , (44)

which reprents the expectation value of the two-body center-of-mass kinetic energy for only
the ket state. We solve Eq. (19) using ω0 = εα + εβ − Tcm(kl) instead of ω, and then, by using

its solution, we determine the correlation function F0
kl [

JS
l �l0

](ω0, r) with no dependence on the

bra state (i, j). One can obtain the alternative of the G0-matrix, � fγ fδ | Ĝ� 0 | fα fβ − fβ fα �, by

applying Eqs. (39) and (42) with the correlation function F0
kl [

JS
l �l0

](ω0, r). Here, we consider

the ratio of the G-matrix element solved by � fα fβ | Ĝ0 | fα fβ − fβ fα � with F0
kl [

JS
l �l0

](ω, r) from

Eq. (13), � fα fβ | Ĝ | fα fβ − fβ fα �, to the matrix element � fα fβ | Ĝ� 0 | fα fβ − fβ fα �:

Cαβ
Q =

� fα fβ | Ĝ | fα fβ − fβ fα �
� fα fβ | Ĝ� 0 | fα fβ − fβ fα �

, (45)

which represents the effects of the operator Q and Tcm(ij : kl). By using the above value Cαβ
Q ,

one can present the explicit form of the correlation function F̂kl in Eq. (36) as

Fkl [
JS
l �l0

](ω0, r) = Cαβ
Q · F0

kl [
JS
l � l0

](ω0, r). (46)

Hence, the G-matrix for each J and S channel becomes

GJS
l0l � (r) = ∑

l ��
VJS

l � l ��(r) Fkl [
JS
l ��l0

](ω0, r). (47)

Applying Eq. (42) with GJS
l0l � (r) instead of G0 JS

l0l �(r), the G-matrix can be determined as

Ĝ = Gλ=0(r) + Gλ=1(r)�L · �S + Gλ=2(r)S12. (48)

Note that the expectation value for the potential of Eq. (48) reproduces the G-matrix element.
As seen in the above discussion, one can obtain the G-matrix as the effective interaction with
the explicit form by using the correlation function of Eq. (46).

2.2.4 Explicit examples of G-matrix

In order to see the properties of G-matrix in Brueckner-AMD, we present the G-matrix in
the specific case. As the bare nucleon-nucleon interaction, we adopt the Argonne v8� (AV8�)
(Wiringa & Pieper, 2002). AV8� is constructed by renormalizing the�L2 and (�L ·�S)2 terms in the
Argonne v18 (AV18) (Wiringa et al., 1995), which is the high accurate bare nucleon-nucleon
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interaction, into the central, spin-orbit, and tensor forces. And the iso-spin symmetry and
independence breaking included in AV18 are ignored in the case of AV8�. In the following, we
switch off the electromagnetic interactions.

As a preparation, several explicit terms of the G-matrix in Eq. (48) are shown. For the
spin-singlet states, the G-matrix has only the central force given by the simple product of
the bare interaction multiplied by the correlation function. For example, the singlet-even (1E)
central force of the G-matrix becomes

G (1E)
c (r) = v (1E)

c (r) · Fkl [
J=0 S=0
l �=0 l0=0 ](ω0, r). (49)

The singlet-odd (1O) central G-matrix is given as the same way as the above equation.
On the other hand, for the spin-triplet states, the non-central forces in the bare interaction
are renormalized into the central G-matrix through the correlation functions. Hence, the
triplet-even (3E) central G-matrix becomes

G (3E)
c (r) = v (3E)

c · Fkl [
J=1 S=1
l �=0 l0=0 ] + 2

√
2 v (3E)

t · Fkl [
J=1 S=1
l �=2 l0=0 ] , (50)

and the triplet-odd (3O) central becomes

G (3O)
c (r) =

1
9

{ (v (3O)
c − 2v (3O)

ls − 4v (3O)
t ) · Fkl [

J=0 S=1
l �=1 l0=1 ]

+ 3(v (3O)
c − v (3O)

ls + 2v (3O)
t ) · Fkl [

J=1 S=1
l �=1 l0=1 ]

+ 5(v (3O)
c + v (3O)

ls − 2
5

v (3O)
t ) · Fkl [

J=2 S=1
l �=1 l0=1 ] + 6

√
6 v (3O)

t · Fkl [
J=2 S=1
l �=3 l0=1 ] } , (51)

where the (ω0, r) dependence in the above right hands is omitted for simplicity. In addition, as
examples, for the 3E tensor and 3O spin-orbit G-matrices, their expressions where the (ω0, r)
dependence is omitted as the aboves are given:

G (3E)
t (r) = v (3E)

t · Fkl [
J=1 S=1
l �=0 l0=0 ] +

1
2
√

2
(v (3E)

c − 3v (3E)

ls − 2v (3E)
t ) · Fkl [

J=1 S=1
l �=2 l0=0 ] , (52)

G (3O)

ls (r) = − 1
12

{ 2(v (3O)
c − 2v (3O)

ls − 4v (3O)
t ) · Fkl [

J=0 S=1
l �=1 l0=1 ]

+ 3(v (3O)
c − v (3O)

ls + 2v (3O)
t ) · Fkl [

J=1 S=1
l �=1 l0=1 ]

− 5(v (3O)
c + v (3O)

ls − 2
5

v (3O)
t ) · Fkl [

J=2 S=1
l �=1 l0=1 ]− 6

√
6 v (3O)

t · Fkl [
J=2 S=1
l �=3 l0=1 ] }. (53)

In Brueckner-AMD, the G-matrix for each pair have dependence on not only the paricle pair
(k, l) but also the single-particle orbits (α, β) due to the dependence on ω0 = εα + εα − Tcm(kl)
in the correlation function. Therefore, in general, one cannot abstract the explicit form as
the interaction between particles (k, l). However, as the special case, in the system of 4He
consisting of the spin-up proton, spin-up neutron, spin-down proton, and spin-down neutron,
the G-matrix is given as the interaction between particles (k, l) because the single-particle
orbits | fα,β � are equal to the one-particle wave funcions, which means (α, β) = (k, l), on
condition that the overlap matrix Bij in Eq. (3) becomes a diagonal matrix such as this system.
Here, we consider the G-matrix between particles in the 3N-N cluster system of 4He where
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Fig. 2. The comparison of the G-matrix with the bare interaction AV8� for the central
components of two-body four channels. In these graphs, the x- and y-axes represent the
distances between nucleons (fm) and the potential energies (MeV), respectively. The blue and
red lines represent the G-matrix and AV8�, respectively. The explanation of the G-matrix is in
text in detail. In the 3E channel, the attractive part is enlarged.

three nucleons (3N) located at the same positon are separated from one nucleon (N). We
assume that three nucleons consist of the spin-up proton, spin-up neutron, and spin-down
proton and one nucleon to be sperated is the spin-down neutron, and the distance between
three nucleons and one nucleon is 1.0 fm. The AMD wave funciton of Eq. (1) with ν = 0.238
(fm−2) is used in this calculation. In Figs. 2 and 3, we present all forces of the G-matrix
between the spin-up proton in three nucleons and the spin-down neutron to be one nucleon
sperated from three nucleons at a distance of 1.0 fm and compare them with those of the bare
interaction AV8�. As seen in Fig. 2, the central forces of the bare interaction AV8� have huge
repulsive parts at a short distance, while, in the central G-matrices, the short range repulsion
is reduced to be applicable to the AMD wave function. At a long distance, each force of the
G-matrix except the 3E state agrees with the behaviour of the bare interaction. For the 3E
G-matrices, the renormalization of the strong 3E tensor force with a long range tail in the
bare interaction acts as the long range correlation to be large contributions. Especially, in the
3E central G-matrix, the renormalization of tensor force by the correlation for the admixture
of l � = 2, Fkl [

J=1 S=1
l �=2 l0=0 ] in Eq. (50), induces the more attractive part than that of the bare

interaction and contributes largely to the binding energy of a nucleus.
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Fig. 3. The comparison of the G-matrix with the bare interaction AV8� for the non-central
components of 3O and 3E channels in the upper and lower panels, respectively. In these
graphs, the meanings of the axes and lines are the same as Fig. 2.

2.3 Energy variation in Brueckner-AMD

In the AMD method, the wave-packet positions �Zi in Eq. (1) are complex variational
parameters in the A-nucleons wave function. In this method, one usually sets the initial
configuration of the wave-packet positions {�Zi} randomly and obtains the optimized solution
automatically with no assumption by using the frictional cooling method of molecular
dynamics (Kanada-En’yo et al., 1995) to determine �Zi. The brief expression of frictional
cooling equation is given by

d�Zi
dt

= − ∂�H�
∂�Z∗

i

,
d�Z∗

i
dt

= − ∂�H�
∂�Zi

, (54)

where �H� is the expectation value of Hamiltonian. In Brueckner-AMD, the expectation value
of Hamiltonian is expressed as �H� = �T�− �TCM�+ �G�where �T�, �TCM�, and �G� represent
the expectation values of the A-body summation of the one-body kinetic energy operator t̂i
as T̂ = ∑A

i t̂i, the center-of-mass kinetic energy of the system, and the G-matrix as two-body
interactions, respectively. In Eq. (54), the next positions of �Zi in the time evolution are decided
as

�Zi(t + Δt) = �Zi(t)− Δt · ∂�H�
∂�Z∗

i

. (55)
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Fig. 2. The comparison of the G-matrix with the bare interaction AV8� for the central
components of two-body four channels. In these graphs, the x- and y-axes represent the
distances between nucleons (fm) and the potential energies (MeV), respectively. The blue and
red lines represent the G-matrix and AV8�, respectively. The explanation of the G-matrix is in
text in detail. In the 3E channel, the attractive part is enlarged.

three nucleons (3N) located at the same positon are separated from one nucleon (N). We
assume that three nucleons consist of the spin-up proton, spin-up neutron, and spin-down
proton and one nucleon to be sperated is the spin-down neutron, and the distance between
three nucleons and one nucleon is 1.0 fm. The AMD wave funciton of Eq. (1) with ν = 0.238
(fm−2) is used in this calculation. In Figs. 2 and 3, we present all forces of the G-matrix
between the spin-up proton in three nucleons and the spin-down neutron to be one nucleon
sperated from three nucleons at a distance of 1.0 fm and compare them with those of the bare
interaction AV8�. As seen in Fig. 2, the central forces of the bare interaction AV8� have huge
repulsive parts at a short distance, while, in the central G-matrices, the short range repulsion
is reduced to be applicable to the AMD wave function. At a long distance, each force of the
G-matrix except the 3E state agrees with the behaviour of the bare interaction. For the 3E
G-matrices, the renormalization of the strong 3E tensor force with a long range tail in the
bare interaction acts as the long range correlation to be large contributions. Especially, in the
3E central G-matrix, the renormalization of tensor force by the correlation for the admixture
of l � = 2, Fkl [

J=1 S=1
l �=2 l0=0 ] in Eq. (50), induces the more attractive part than that of the bare

interaction and contributes largely to the binding energy of a nucleus.
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Fig. 3. The comparison of the G-matrix with the bare interaction AV8� for the non-central
components of 3O and 3E channels in the upper and lower panels, respectively. In these
graphs, the meanings of the axes and lines are the same as Fig. 2.

2.3 Energy variation in Brueckner-AMD

In the AMD method, the wave-packet positions �Zi in Eq. (1) are complex variational
parameters in the A-nucleons wave function. In this method, one usually sets the initial
configuration of the wave-packet positions {�Zi} randomly and obtains the optimized solution
automatically with no assumption by using the frictional cooling method of molecular
dynamics (Kanada-En’yo et al., 1995) to determine �Zi. The brief expression of frictional
cooling equation is given by

d�Zi
dt

= − ∂�H�
∂�Z∗

i

,
d�Z∗

i
dt

= − ∂�H�
∂�Zi

, (54)

where �H� is the expectation value of Hamiltonian. In Brueckner-AMD, the expectation value
of Hamiltonian is expressed as �H� = �T�− �TCM�+ �G�where �T�, �TCM�, and �G� represent
the expectation values of the A-body summation of the one-body kinetic energy operator t̂i
as T̂ = ∑A

i t̂i, the center-of-mass kinetic energy of the system, and the G-matrix as two-body
interactions, respectively. In Eq. (54), the next positions of �Zi in the time evolution are decided
as

�Zi(t + Δt) = �Zi(t)− Δt · ∂�H�
∂�Z∗

i

. (55)
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If �H� converges in this time evolution, we consider that the optimized energy and state are
attained. In Brueckner-AMD, the derivative of �Zi in �H� cannot be calculated analytically
because the G-matrix depends on the change of the single-particle orbits and the Pauli
projection operator derived from the configuration of the wave-packet positions {�Zi}.
Therefore, we determine the G-matrix self-consistently for each small displaced configuration
of {�Zi + Δ�Zi} and calculate this derivative as the difference in �Zi.

3. Applications

We apply Brueckner-AMD to various light nuclei and present the applicability of this method.
In the subsection 3.1, we present the results of light nuclei with the mass number A < 10
to describe cluster structures and reproduce the energy level schemes in Brueckner-AMD.
Furthermore, we discuss the mechanism of clustering in 8Be which has the alpha-alpha cluster
structure in the subsection 3.2. In these calculations, we adopt the bare nuclear interaction of
the Argonne v8� (AV8�) (Wiringa & Pieper, 2002) explained in the previous section and switch
off the electromagnetic interactions.

3.1 Description of the structures and energy-level schemes of light nuclei

In Brueckner-AMD, the bound states of nucleus can be obtained as the solution of
energy variation starting from the bare nuclear interactions without any assumption of
configurations. However, in general, since the AMD wave functions are not good quantum
states of the spin and parity (Jπ), one cannot calculate the energy-level scheme by a single
AMD wave function and must project out the AMD wave functions onto the spin and parity
eigenstates, which means the superposition of space-reflected and rotated Slater determinants
(Kanada-En’yo et al., 1995). The parity projection means a linear combination of two Slater
determinants:

| Φ± � = 1√
2

(
1 ± P̂

) | Φ � , (56)

where P̂ is the space-reflection operator that operates at the spatial coordinate �Zi of each
nucleon. In projecting out the wave functions onto each spin-parity J± state, the spin- and
parity-projected state | ΦJ ±

MK � is expressed as

| ΦJ ±
MK � = 2J + 1

8π2

∫
dΩ DJ ∗

MK(Ω) R̂(Ω) | Φ± � , (57)

where DJ
MK(Ω) is the Wigner D-function and R̂(Ω) is the rotational operator that makes

the spatial and spin coordinates rotated by the Euler angle Ω. In the above equation, the
integration means a linear combination of differential rotated Slater determinants. The energy
expectation value of | ΦJ ±

MK � is given by

� ĤJ ±
K� K � ≡ �ΦJ ±

MK� | Ĥ | ΦJ ±
MK �

� ΦJ ±
MK� | ΦJ ±

MK �
=

∫
dΩ DJ ∗

K�K(Ω)
{� Φ | R̂(Ω) · Ĥ | Φ � ± � Φ | P̂R̂(Ω) · Ĥ | Φ �}∫

dΩ DJ ∗
K�K(Ω)

{�Φ | R̂(Ω) | Φ � ± � Φ | P̂R̂(Ω) | Φ �}
.

(58)
In order to calculate the energy expectation value of the J± state correctly, we perform
the K-mixing by diagonalizing the Hamiltonian matrix � ΦJ ±

MK� | Ĥ |ΦJ ±
MK � and norm matrix

� ΦJ ±
MK� | ΦJ ±

MK � simultaneously for the quantum numbers of K and K�.
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Fig. 4. Intrinsic matter ρ densities as a half value, the proton ρπ and neutron ρν ones of the
lowest-energy parity solutions in 4He, 7Li, 8Be, and 9Be. The size of these squares is shown in
the panel of 4He.

In these calculations, we determine the wave functions | Φ � by performing the energy
variation for the parity-projected states | Φ± �. Therefore, we can obtain not only the
lowest-energy parity solution corresponding to the ground state but also the excited parity
solution, whose parity is opposite to that of the lowest-energy state. Projecting out the
solutions of the energy variation, | Φ± �, onto each J state, we calculate the energy levels. In
the following, we present the results of 4He, 7Li, 8Be, and 9Be using the above procedure. As
the Gaussian width parameter ν for every wave packet in Eq. (1), we adopt ν = 0.222 (fm−2)
for 4He and ν = 0.208 (fm−2) for other nuclei. Fig. 4 shows the intrinsic densities obtained
from the wave functions | Φ �. For 9Be, both the lowest-energy negative-parity solution and
the excited positive-parity one are shown. In these figures, the X-, Y-, and Z-axes in the
body-fixed frame are chosen so as to be �∑i z2

i � ≥ �∑i y2
i � ≥ �∑i x2

i �, and each density
distribution in the Z-Y plane is displayed. As seen in Fig. 4, the alpha particle (4He) is
compactly spherical and 8Be consists of two-alpha cluster. In this result, the density of 7Li
does not present the explicit cluster structure as seen in an almost symmetric distribution. In
the densities of 9Be, the structures of two-alpha cluster plus a valence neutron can be seen. In
the negative-parity state of 9Be, the density distribution of the valence neutron corresponds
to a π-molecular orbit; on the other hand, that of the positive-parity state corresponds to a
σ-molecular orbit.
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If �H� converges in this time evolution, we consider that the optimized energy and state are
attained. In Brueckner-AMD, the derivative of �Zi in �H� cannot be calculated analytically
because the G-matrix depends on the change of the single-particle orbits and the Pauli
projection operator derived from the configuration of the wave-packet positions {�Zi}.
Therefore, we determine the G-matrix self-consistently for each small displaced configuration
of {�Zi + Δ�Zi} and calculate this derivative as the difference in �Zi.

3. Applications

We apply Brueckner-AMD to various light nuclei and present the applicability of this method.
In the subsection 3.1, we present the results of light nuclei with the mass number A < 10
to describe cluster structures and reproduce the energy level schemes in Brueckner-AMD.
Furthermore, we discuss the mechanism of clustering in 8Be which has the alpha-alpha cluster
structure in the subsection 3.2. In these calculations, we adopt the bare nuclear interaction of
the Argonne v8� (AV8�) (Wiringa & Pieper, 2002) explained in the previous section and switch
off the electromagnetic interactions.

3.1 Description of the structures and energy-level schemes of light nuclei

In Brueckner-AMD, the bound states of nucleus can be obtained as the solution of
energy variation starting from the bare nuclear interactions without any assumption of
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AMD wave function and must project out the AMD wave functions onto the spin and parity
eigenstates, which means the superposition of space-reflected and rotated Slater determinants
(Kanada-En’yo et al., 1995). The parity projection means a linear combination of two Slater
determinants:

| Φ± � = 1√
2

(
1 ± P̂

) | Φ � , (56)

where P̂ is the space-reflection operator that operates at the spatial coordinate �Zi of each
nucleon. In projecting out the wave functions onto each spin-parity J± state, the spin- and
parity-projected state | ΦJ ±

MK � is expressed as

| ΦJ ±
MK � = 2J + 1

8π2

∫
dΩ DJ ∗

MK(Ω) R̂(Ω) | Φ± � , (57)

where DJ
MK(Ω) is the Wigner D-function and R̂(Ω) is the rotational operator that makes

the spatial and spin coordinates rotated by the Euler angle Ω. In the above equation, the
integration means a linear combination of differential rotated Slater determinants. The energy
expectation value of | ΦJ ±

MK � is given by

� ĤJ ±
K� K � ≡ �ΦJ ±

MK� | Ĥ | ΦJ ±
MK �

� ΦJ ±
MK� | ΦJ ±

MK �
=

∫
dΩ DJ ∗

K�K(Ω)
{� Φ | R̂(Ω) · Ĥ | Φ � ± � Φ | P̂R̂(Ω) · Ĥ | Φ �}∫

dΩ DJ ∗
K�K(Ω)

{�Φ | R̂(Ω) | Φ � ± � Φ | P̂R̂(Ω) | Φ �}
.

(58)
In order to calculate the energy expectation value of the J± state correctly, we perform
the K-mixing by diagonalizing the Hamiltonian matrix � ΦJ ±

MK� | Ĥ |ΦJ ±
MK � and norm matrix

� ΦJ ±
MK� | ΦJ ±

MK � simultaneously for the quantum numbers of K and K�.
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Fig. 4. Intrinsic matter ρ densities as a half value, the proton ρπ and neutron ρν ones of the
lowest-energy parity solutions in 4He, 7Li, 8Be, and 9Be. The size of these squares is shown in
the panel of 4He.

In these calculations, we determine the wave functions | Φ � by performing the energy
variation for the parity-projected states | Φ± �. Therefore, we can obtain not only the
lowest-energy parity solution corresponding to the ground state but also the excited parity
solution, whose parity is opposite to that of the lowest-energy state. Projecting out the
solutions of the energy variation, | Φ± �, onto each J state, we calculate the energy levels. In
the following, we present the results of 4He, 7Li, 8Be, and 9Be using the above procedure. As
the Gaussian width parameter ν for every wave packet in Eq. (1), we adopt ν = 0.222 (fm−2)
for 4He and ν = 0.208 (fm−2) for other nuclei. Fig. 4 shows the intrinsic densities obtained
from the wave functions | Φ �. For 9Be, both the lowest-energy negative-parity solution and
the excited positive-parity one are shown. In these figures, the X-, Y-, and Z-axes in the
body-fixed frame are chosen so as to be �∑i z2

i � ≥ �∑i y2
i � ≥ �∑i x2

i �, and each density
distribution in the Z-Y plane is displayed. As seen in Fig. 4, the alpha particle (4He) is
compactly spherical and 8Be consists of two-alpha cluster. In this result, the density of 7Li
does not present the explicit cluster structure as seen in an almost symmetric distribution. In
the densities of 9Be, the structures of two-alpha cluster plus a valence neutron can be seen. In
the negative-parity state of 9Be, the density distribution of the valence neutron corresponds
to a π-molecular orbit; on the other hand, that of the positive-parity state corresponds to a
σ-molecular orbit.
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In Table 1, the calculated binding energy of the ground state for each nucleus is listed
to be compared with the experimental one. Although the calculated ground states are
underbinding for the experimental ones, it is known that bare three nucleons interactions are
needed to reproduce the experimental binding energies from accurate few-body calculations
(Wiringa et al., 2000). However, in this work, there seems to be room for improvement to
develop these calculations to the superposition with the wave functions having different
configurations {�Zi} or Gaussian width parameters ν. The calculated energy-level schemes
of 7Li, 8Be, and 9Be are shown in Fig. 5. These energy levels are reproduced well. In the
result of 9Be, the energy levels including the first excited states, 3/2−2 , 5/2−2 , and 7/2−2 , which
can be described by the K-mixing, are also reproduced well. In these calculations, in the
negative-parity states of 9Be, the group of the dominant K = 3/2 i.e. Kπ = 3/2− band
contains 3/2−1 , 5/2−1 , and 7/2−1 states, while the 1/2−1 , 3/2−2 , 5/2−2 , and 7/2−2 states belong
to the Kπ = 1/2− band. The predicted 9/2−1 state is described coherently by the K = 1/2
and K = 3/2 states, which has almost equal weights to the K = 1/2 and K = 3/2. The
positive-parity states of 9Be are described as the Kπ = 1/2+ band.

nucleus Jπ B-AMD (MeV) EXP (MeV)
4He 0+ −24.6 −28.3
7Li 3/2− −29.6 −39.2
8Be 0+ −44.0 −56.5
9Be 3/2− −41.9 −58.2

Table 1. Total binding energies of the ground states for 4He, 7Li, 8Be, and 9Be. The column
labeled “Jπ” lists the spin and parity of the ground state for each nucleus, and the columns
labeled “B-AMD” and “EXP” list the calculated binding energies and the experimental ones,
respectively.

3.2 Investigation of the mechanism of alpha-alpha clustering

In the following, we simulate the development of the alpha-alpha cluster in 8Be and
investigate its mechanism by using the bare nuclear interaction AV8� in the Brueckner-AMD
framework. In this work, we construct the states that have the definite distance between two
quasi-clusters consisting of four nucleons of the spin-up proton, spin-up neutron, spin-down
proton, and spin-down neutron by using the constraint cooling method (Yamamoto et al.,
2010). The definition of the distance between quasi-clusters in this case is represented as

� d2 �1/2 = |�R1 − �R2|, �R1(�R2) =
1
4 ∑

i∈C1(C2)

Re�Zi√
ν

, (59)

where the �R1(�R2) represents the center of mass of the quasi-cluster C1(C2) consisting of four
nucleons. We take the z-axis as an inertia axis and the center of mass of quasi-clusters on the
z-axis. We define a quasi-cluster as an initial set of nucleons that are chosen arbitrarily and
determine a configuration of eight nucleons for 8Be by solving the following equation of the
constraint cooling method as an energy variation:

d�Zi
dt

= − ∂�H�
∂�Z∗

i

− ∂C

∂�Z∗
i

, C = C0 ·
(
� d2 �1/2 − d

)2
, (60)
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Fig. 5. Low-lying energy-level schemes of the experiments and Brueckner-AMD calculations
labeled “EXP” and “B-AMD”, respectively. The groud states are normalized to zero energy in
these figures. Each energy level is represented as the line labeled its spin and parity.
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Fig. 6. Upper panel: Total binding energies of 8Be are shown as a function of the distance of
quasi-clusters. Lower panels: Density distributions of 8Be at d = 0.5, 3.0, 4.5 fm.

where C0 is the positive constant and d is the constraint parameter; in this work, d is the
distance of quasi-clusters. The above equation makes it possible to obtain the solution of the
energy variation under the constraint of a distance between two quasi-clusters. Note that
the set of nucleons is not assumed to be localized spatially in this case. As a parameter of
the wave function, we use the optimized Gaussian width for every wave packet in Eq. (1);
ν = 0.195 (fm−2). We perform the energy variation and calculate the total binding energy for
the parity-projected states corresponding to the lowest-energy parity solutions | Φ+ � in Eq.
(56). In Fig. 6, the energy curve of calculated total binding energies are shown as a function
of the distance between two quasi-clusters in the upper panel, and we show the intrinsic
density distribution of wave functions obtained at different d-values (d = 0.5, 3.0, and 4.5 fm)
in the lower panels. As seen in Fig. 6, one can see that the optimum distances are around
3.0 fm, where the alpha-alpha structure is realized starting from the bare nuclear interaction
AV8�, and the situation that the localized clusters are more developed at larger distances is
reproduced as the results of the energy variation. In Fig. 7, we present single-particle energies
and orbits at different distances d. Single-particle energies of eight nucleons are degenerated
approximately into two types of energy ε1 and ε2 as seen in the upper panel of Fig. 7.
The two energy orbits correspond to gerade and ungerade orbits in the molecular orbital
method (Bandō et al., 1970). However, in the present approach without the molecular-orbit
assumption, the single-particle orbits describe not only molecular orbits but also atomic orbits
of a mean field. At the small distance d = 0.5 fm, ε2 − ε1 = 15 MeV are obtained in this
calculation. That energy difference between the lowest (ε1) and the excited (ε2) single-particle
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Fig. 7. Upper panel: Single-particle energies of 8Be are shown. Lower panels: The density
distributions of single-particle orbits for the two spin-up protons at d = 0.5, 3.0, 4.5 fm. The
other single-particle orbits also have similar behavior. The upper and lower density
distributions represent the higher-energy (ε2) and lower-energy (ε1) states, respectively.

orbits are consistent with h̄ω of a shell model in nuclear systems. At the large distance d = 4.5
fm, ε1 and ε2 degenerate within 5 MeV. This result suggests that the single-particle orbits for
ε1 and ε2 have configurations similar to each other. As shown in the lower panels of Fig.
7, at the small distance region of d = 0.5 fm, the two types of single-particle energy ε1 and
ε2 are understood as those of s-wave and p-wave orbits, respectively. The four nucleons of
the p-wave orbit (ε2), which has a node at the origin, occupy around the z-direction in the
intrinsic framework. This is the cause of the dumbbell shape of the density distribution at
the small distance. On the other hand, at the large distance region far from d = 4.5 fm,
these single-particle energies are expected to degenerate because all eight nucleons occupy the
same type of single-particle orbit around different alpha clusters. At the intermediate distance
region of d = 3.0 fm, they are interpreted to form gerade and ungerade orbits in the molecular
orbital picture. In this work, we discuss the mechanism to cause this energy curve focusing
on the state (d) dependence of the G-matrix. For this purpose, we decompose the G-matrix
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Fig. 8. Upper panel: Energy curves with and without odd-force contributions. The solid line,
“Even+Odd+kine”, and the dashed line, “Even+kine”, represent the energy curves with and
without the odd-force, respectively. Lower panel: the solid line, “G”, is the energy curve for
the distance of quasi clusters, which is identical with the curve in the upper panel of Fig. 6,
and the dotted line, “G1E (d=4.5)”, and dashed line, “G3E (d=4.5)”, are the energy curves
calculated using the fixed G-matrices at d = 4.5 fm for 1E and 3E channels, respectively.

into the two-body spin-parity channels and recalculate the energy curve fixing the G-matrix
calculated at the largest d = 4.5 (fm) for each two-body spin-parity channel. The upper panel
of Fig. 8 indicates that the energy surface does not change even if the odd-force contributions
of the triplet-odd (3O) and singlet-odd (1O) channels are taken off, and therefore, in the lower
panel of Fig. 8, we focus on only the even-force contributions of the triplet-even (3E) and
singlet-even (1E) channels. As seen in the lower panel of Fig. 8, the energy curve using the
fixed G-matrix for the 1E channel has no difference from the original energy curve; the energy
curve using the fixed G-matrix for the 3E channel is shifted largely from the original one.
That means the 1E G-matrix has no state dependence but the 3E one is responsible for the
state dependence of the G-matrix to cause the development of clusters in 8Be. This large state
dependence is caused by the contributions of the tensor force of the bare nuclear interaction
renormalized mainly by the correlation function Fkl [

J=1 S=1
l ′=2 l0=0 ] in Eq. (50). If the G-matrix had
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no state dependence, the energy curve would be deeper at a small distance, in other words,
the actual energy curve becomes shallow due to the suppression of contributions at a small
distance as the state dependence of the G-matrix and induces the separated clusters.

4. Conclusion

We develop a new ab initio framework, Brueckner-AMD, to makes AMD available with bare
nuclear interactions. In this theory, we focus on the fact that one can apply the Brueckner
theory straightforwardly to the AMD framework by using AMD-HF and the correlation
functions constructed by the solutions of the Bethe-Goldstone equation make it possible to
calculate the G-matrix in the AMD calculation. In these applications of Brueckner-AMD, we
show that one can describe various states of nucleus starting from bare nuclear interactions
with no assumption of a configuration. Furthermore, we simulate the development of
alpha-alpha cluster in 8Be and elucidate the origins of its formation in the Brueckner-AMD
framework. The alpha-alpha clustering of 8Be is induced by the contributions of the
interaction for the triplet-even (3E) channel, where the 3E G-matrix has large state dependence
caused by the correlations derived from the tensor force of the bare nuclear interaction.
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Formation and Evolution Characteristics  
of Nano-Clusters (For Large-Scale  
Systems of 106 Liquid Metal Atoms)  

Rang-su Liu*, Hai-rong Liu, Ze-an Tian,  
Li-li Zhou and Qun-yi Zhou 

Hunan University 
China 

1. Introduction  
It is well known that the formation and evolution characteristics of clusters and nano-clusters 
have been studied, both experimentally and theoretically over the years. Many experimental 
works were carried out by using physical or chemical methods, such as ionic spray, thermal 
evaporation, chemical action deposition, and so on, to obtain some nice particles or clusters 
consisted of dozens to hundreds of atoms in special configurations ( Echt et al, 1981; Knight et 
al, 1984; Harris et al, 1984; Schriver et al, 1990; Robles et al, 2002; Magudoapathy et al, 2001; 
Spiridis et al, 2001; Liu X H et al, 1998; Yamamoto et al, 2001; Bruhl R et al, 2004; Kostko et al, 
2007; Alexander & Moshe, 2001) . The theoretical works were mainly carried out on diversified 
individual clusters configured by accumulating atoms according to some fixed pattern (Liu C. 
S. et al, 2001; Solov’yov et al, 2003; Doye & Meyer, 2005; Li H. & Pederiva, 2003; Ikeshoji et al, 
1996; Wang L et al, 2002; Haberland et al., 2005; Joshi et al., 2006; Noya et al., 2007; Cabarcos et 
al., 1999; Orlando & James, 1999; Alfe, 2003). However, it is interesting that the similar clusters 
or aggregations have been found in some liquid metals during rapid solidification processes in 
our MD simulations ( Liu R. S. et al., 1992a, 1992b, 1995, 2002, 2005a, 2005b, 2007a, 2007b, 
2007c, 2009; Dong K. J. et al., 2003; Liu F. X. et al., 2009; Hou Z. Y. et al., 2009, 2010a, 2010b) and 
that it is also important for understanding in depth the solidification processes from liquid 
state to solid state. Furthermore, the formation and evolution characteristics of cluster 
configurations, especially the nano-cluster configurations, formed during solidification 
processes of liquid metals are still not well known up to now.  

In this chapter, the main purpose is to further extended our previous MD simulation 
method (Liu R. S. et al., 2007a, 2007b, 2007c, 2009; Tian et al., 2008, 2009; Zhou et al.,  
2011) to study the large-sized systems consisting of 106 atoms of liquid metal Al and Na. 
Using the center-atom method, bond-type index method, and cluster-type index method 
(we proposed), the results have been analyzed and demonstrated that the larger simulation 
system can lead to a better understanding of the formation and evolution characteristics of 
the cluster configurations, especially the nano-clusters during solidification processes. 
                                                 
* Corresponding Author 
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2. Simulation conditions and methods 
The molecular dynamics (MD) technique used here is based on canonical MD, and the 
simulation conditions are as follows: 106 atoms of metal Al, and the same for Na, are placed 
in a cubic box, respectively, and the systems run under periodic boundary conditions. The 
cubic box sizes are determined by both the number of atoms in each system and the mean 
volume of each atom at each given temperature, for these simulations the mean volumes are 
taken from the Ω-T curve as shown in Fig.5 of Ref (Qi D. W. & Wang S, 1991a) thus the box 
sizes would be changed with temperature. The motion equations are solved using leap-frog 
algorithm. The interacting inter-atomic potentials adopted here are the effective pair 
potential function of the generalized energy independent non-local model-pseudo-potential 
theory developed by Wang et al (Wang S. & Lai S. K., 1980; Li D. H., Li X. R. & Wang S., 
1986). The effective pair potential function is 

        2 2/ 1 sin /effV r Z r dqF q rq q


     
   

   (1) 

where Zeff and F(q) are, respectively, the effective ionic valence and the normalized energy 
wave number characteristics, which were defined in detail in Refs. (Wang S. & Lai S. K., 
1980; Li D. H., Li X. R. & Wang S., 1986). These pair potentials are cut off at 20 a.u (atom 
unit). The time step of simulation is chosen as 10-15s.  

The simulating calculations are performed for different metals respectively. For example, 
the simulation starts at 943K (the melting point (Tm) of Al is 933K), (for other metals at 
different temperatures). First of all, let the system run at the same temperature so as to reach 
an equilibrium liquid state determined by the energy change of system. Thereafter, the 
damped force method (Hoover et al., 1982; Evans, 1983)  is employed to decrease the 
temperature of the system with the cooling rate of 1.00×1013 K/s to some given 
temperatures: 883, 833, 780, 730, 675, 625, 550, 500, 450, 400 and 350K. At each given 
temperature, the instantaneous spatial coordinates of each atom are recorded for analysis 
below. The bond-type index method of Honeycutt-Andersen (HA) ( Honeycutt & Andersen, 
1987), the center-atom method ( Liu R. S., Li J. Y. & Zhou Q. Y., 1995 ) and the cluster-type 
index method (Dong et al., 2003; Liu R. S., et al., 2005a ) are used to detect and analyze the 
bond-types and cluster-types of the related atoms in the system, and we go further to 
investigate the formation mechanisms and magic number characteristics of various clusters 
configurations formed during solidification processes at atomic level as follows. 

3. Microstructure analysis  
3.1 Pair distribution function 

The pair distribution function g(r) can be obtained by Fourier transformation of X-ray scattering 
structure factors Sαβ(Q), and has been widely used to describe the structure characterization for 
liquid and amorphous metals. The validity of the simulation results can be verified by 
comparing the calculated pair distribution function g(r) with the experimental results.  

In this chapter, we inspect the g(r) curves of the system of Al at 943K and of the system of 
Na at 573K, 473K and 373K obtained from simulations and compare them with the 
experimental results obtained by Waseda (Waseda, 1980), as shown in corresponding 
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Figures 1 and 2 for Al and Na, respectively. From these Figures, it can be clearly seen that 
the simulation results are in good agreement with the experimental results. This means that 
the effective pair-potentials adopted here have successfully described the objective physical 
nature of these systems. 

3.2 Bond-type index analysis 

For deep understanding the formation and evolution mechanism of clusters in liquid metals, 
it is very important for us to know the concrete relationship of an atom with its near 
neighbors. Recently, the pair analysis technique has become an important method to 
describe and discern the concrete relationship of an atom with the near neighbors in liquid 
and amorphous systems. For a long time, the pair analysis technique, especially, the 
Honeycutt-Andersen (HA) bond-type indexes (Honeycutt & Andersen, 1987) have been 
successfully applied to describe and analyze the microstructure transitions in simulation 
systems, the details was shown in Refs (Liu R. S., et al., 2002; Dong K. J., et al., 2003). In this 
chapter, for the systems consisting of 106 atoms for Al and Na, various bond-types are also 
described by HA indexes, as shown in Table 1 and 2, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Pair distribution function of liquid Al at 943K 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Pair distribution function of liquid Na at 573K, 473K and 373K 
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Fig. 1. Pair distribution function of liquid Al at 943K 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Pair distribution function of liquid Na at 573K, 473K and 373K 
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From Table 1 and 2, it can be clearly seen that: 

Firstly, the relative numbers of 1551 and 1541 bond-types, related to the icosahedral 
configurations and amorphous structures, play an important role: (1) For Al, they represent 
14.3% and 13.2% at 943K, respectively, and the two bond-types represent 27.5% of the total 
bond-types. It is worth noting that these percentages change with the system temperature. 
At 350K, the proportion of 1551 bond-type increases remarkably with decreasing 
temperature, reaching 29.4% of the total, whilst the 1541 bond-type only increase slightly to 
14.6% of the total; the sum of the 1551 and 1541 bond-types makes up 44.0% of all bond-
types, indicating an increase of 16.5% from the corresponding proportion at 943K. (2) For 
Na, they represent 6.0% and 9.0% of all bond-types at 973K, respectively. While the sum of 
the 1551 and 1541 bond-types represents 45.8% of all bond-types, being increased about 
30.8%. Highly interesting is that the relative numbers of 1551 bond-type is also increased 
remarkably with decreasing temperature, reaching 31.2% at 223K. From these results, it can 
be obviously seen that for the two systems, the 1551 bond-type plays a decisive role in the 
whole evolution process of microstructures.  

For the relative numbers of the 1441, 1431, 1421 and 1422 bond-types related to the 
tetrahedral structures, the 1331, 1321, 1311 and 1301 bond-types related to the rhombohedral 
structures, and the 1661 bond-type related to hcp and bcc structures, are also similar to those 
obtained from previous works as above-mentioned. 

Highly interesting is the 1771 bond-type, according to the definition of Honeycutt-
Andersen bond-type indexes, it should possess seven-fold symmetry. It is well known 
that the seven-fold symmetry cannot exist in crystal solid state. However, in the Al 
system, although the relative number of 1771 bond-type is less than 0.1%, it still only 
exists in liquid and supercooled liquid states above 500K, and disappears in the solid state 
below 500K. This result just proves that the seven-fold symmetry cannot exist in crystal 
solid state, and further proves that the seven-fold symmetry also cannot exist in 
amorphous solid state. But for Na system, at 123K, it is still in the suppercooled liquid, so 
the 1771 bond-type can exist in it.  

 
Table 1. Relations of the number of various bond types (%)of Al with temperature (K). 
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Table 2. Relations of the number of various bond types (%) of Na with temperature (K). 

On the whole, these simulation results are rather close to those obtained in our previous 
works on different-sized liquid metal systems (Liu R. S., et al., 1998, 1999, 2005a, 2005b; 
Dong K. J., et al., 2003) ; that is to say, for different-sized liquid metal systems, the 
simulation results of relative numbers of corresponding bond-types are similar to each 
other, there being only a minor difference during solidification processes.  

3.3 Cluster-type index analysis 

As is well known that different combinations of bond-types can form different cluster 
configurations, however, the HA bond-type indices cannot be used to describe and discern 
different basic clusters formed by an atom with its nearest neighbors, especially, the 
different nano-clusters formed by some different basic clusters.  

In order to differentiate the basic cluster and the polyhedron, we define the “basic cluster“ 
as the smallest cluster composed of a core atom and its surrounding neighbor atoms. A 
larger cluster can be formed by continuous expansion, with a basic cluster as the core, 
according to a certain rule, or by combining several basic clusters together. A polyhedron is 
generally a hollow structure with no central atom as the core. This is the essential distinction 
of a polyhedron from a “basic cluster“, such as the Bernal polyhedron. However, if a basic 
cluster is shaped as a certain polyhedron, for simplicity, we also call it a polyhedron cluster, 
such as icosahedral cluster, Bernal polyhedron cluster, and so on. 

It is clear that the bond-types formed by each atom with its neighbor atoms in the system are 
different; the cluster configurations formed by these bond-types are also different. Even if 
some cluster configurations are formed by the same number of bond-types, their structures 
may still be completely different from each other, owing to a slight difference in bond-
length or bond-angle. On this point, at present it is hard to use the bond-type index method 
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such as icosahedral cluster, Bernal polyhedron cluster, and so on. 

It is clear that the bond-types formed by each atom with its neighbor atoms in the system are 
different; the cluster configurations formed by these bond-types are also different. Even if 
some cluster configurations are formed by the same number of bond-types, their structures 
may still be completely different from each other, owing to a slight difference in bond-
length or bond-angle. On this point, at present it is hard to use the bond-type index method 
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to describe clearly the cluster configurations of different types. In order to deal with this 
difficult matter, a cluster-type index method (CTIM) has been proposed (Liu R. S., et al., 
1998, 1999, 2005a, 2005b; Dong K. J., et al., 2003) based on the HA indexes (Honeycutt & 
Andersen, 1987)  and the work of Qi and Wang (Qi. & Wang, S., 1991b). According to the 
definition of basic cluster, four integers  (N, n1441,n1551,n1661) also adopted to describe the 
basic clusters. The meaning of the four integers used in CTIM are as follows: the first integer 
represents the number of surrounding atoms which form a basic cluster with the central 
atom, i. e. the coordination number Z of the central atom; the second, third and fourth 
integers respectively represent the numbers of 1441, 1551 and 1661 bond-types, by which the 
surrounding atoms are connected with the central atom of the basic cluster. For example, (12 
0 12 0) stands for an icosahedral cluster that is composed of 13 atoms: the central atom is 
connected to the surrounding atoms through twelve 1551 bond-types (i. e. the coordination 
number of the central atom Z=12); (13 1 10 2) stands for the defective polyhedron cluster 
composed of 14 atoms, the core atom is connected to the surrounding atoms with one 1441, 
ten 1551 and two 1661 bond-types (the coordination number Z=13). For ease of 
representation, some main basic clusters have been chosen from the simulation system of 
liquid metal Al as shown in Fig. 3. 

By using the CTIM, the statistical numbers of various cluster-types at each given 
temperature have been obtained. For liquid metal Al, during the whole solidification 
process, there are 53 different basic cluster-types in the system, only 34 of them appearing 
more than 5 times at some temperatures are listed in Table 3. For liquid metal Na, there are 
63 different basic cluster-types, of which only 34 main types are listed in Table 4 ( only 17 
types appearing more than 1000 times play a critical role). 
 

 
Fig. 3. Schematics of five main basic clusters at 350K: (a) icosahedral cluster（12 0 12 0） 
with central atom of 238228; (b) basic cluster（13 1 10 2）with central atom of 354408;     (c) 
basic cluster（14 2 8 4）with central atom of 205450; (d) basic cluster（14 1 10 3）with 
central atom of 652129; (e) basic cluster（12 2 8 2）with central atom of 778825. 
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Table 3. Variation of the number of clusters with temperature (K) for liquid metal Al. 
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For liquid metal Al, from Table 3, however, it can be clearly seen that only 18 cluster-types 
appearing more than 100 times play a critical role in the solidification process. For 
convenience of discussion, we only show the variations of ten significant basic clusters with 
temperature in Figure 4(a) and (b). From Figure 4 (a), it is clear that among the most 
significant five basic clusters, the highest one is the icosahedral basic cluster expressed by 
(12 0 12 0), which increases rapidly as the temperature comes down. The number of basic 
cluster (12 0 12 0) climbs above 30,000 at 350K, and this cluster-type plays the most 
important role in the microstructure transitions during rapid solidification process. The 
second one is the basic cluster expressed by (13 1 10 2) and its number over 9400 at 350K. 
The number of the fifth cluster type expressed by (12 2 8 2) is over 1956 at 350K and still 
plays a certain role.  

Figure 4 (b) presents that the numbers of basic clusters (14 0 12 2), (15 1 10 4), (13 2 8 3) and 
(15 2 8 5) all changed at about the same rate, except the basic cluster (13 3 6 4), and their 
numbers are in the range of 1023 - 1360 at 350K. Therefore, these clusters play only a 
secondary role.  

However, as we go further to observe the Figures 4 (a), (b) and Table 3 carefully, it can be 
seen that the basic clusters (12 0 12 0) and (13 3 6 4) have almost a same turning point Tt in 
the range of 550-625K; in particular for cluster (13 3 6 4), Tt is a peak value point, it means 
that the cluster (13 3 6 4) plays an opposite role to the cluster (12 0 12 0) in the 
solidification process. Maybe just these cluster-types play a particular role, this turning 
point Tt is in agreement with the glass transition temperature Tg obtained by Liu et al ( 
Liu R. S., Qi & Wang S., 1992; Wendt & Abraham, 1978; Zheng et al., 2002). On the other 
hand, this confirms that the glass transition temperature Tg can also be found by the 
turning point Tt in the relations of the numbers of main basic clusters with temperature. 
Therefore, it is possible to find a new method to determine the glass transition 
temperature Tg. 
 

 
                                     (a)                                                                        (b) 

Fig. 4. Variation of the numbers of the ten main basic clusters with temperatures for Al. 
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Fig. 5. Relations of the numbers of 10 main basic clusters with temperature for Na. 

It is worth noting that, from Table 3, it can be clearly seen that even at 943K, there are still a 
certain number of various basic clusters in the liquid state. That is to say, the liquid state 
discussed here is not an ideal liquid, as usually imagined, in which no cluster exist and each 
atom is free to diffuse. Furthermore, from our previous works for a small system consisting 
of 500 Al atoms, as shown in Fig.3 of Ref ( Liu R. S., et al, 1999), it can be seen that even the 
temperature is increased up to 1800K (≈ 2Tm ), the number of 1551 bond-type (which plays a 
leading role in microstructure transition of liquid metal Al) is still occupied 7.3 % of the total 
bond-types ( and 16.5 % at 943K); thus some basic clusters formed mainly by 1551 bond-type 
would still be in the liquid system. If we want to get an ideal liquid state, the temperature 
should be increased higher and higher. In general, from the view point of microscopic 
structure, it is hard to completely reach the ideal case.  

For liquid metal Na, for convenience of discussion, only the relations of the former 10 main 
basic clusters with temperature are shown in Fig.5. From Fig.5 (a), it can be clearly seen that 
the first 3 basic clusters (13 3 6 4), (13 1 10 2) and (14 2 8 4) are increased rapidly with 
decreasing temperature, and play almost the same important role in the microstructure 
transitions of liquid metal Na. While the basic cluster (12 0 12 0) has been ranked as the sixth 
one and only plays a secondary role; however, in the liquid metal Al, it is the first one and 
plays the most important role in the microstructure transitions ( Liu R. S. et al., 2005a). 

4. Formation and evolution of nano-clusters 
4.1 Formation and description of nana-clusters 

In this section, some nano-clusters have been described. They are composed of various 
kinds of smaller clusters, and their sizes and amounts are increased with temperature 
decreasing. Their configurations are very complex.  

As above mentioned, we have defined the basic cluster as the smallest cluster composed of a 
core atom and its surrounding neighbor atoms. A larger cluster can be formed by 
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continuous expansion, with a basic cluster as the core, according to a certain rule, or by 
combining several basic clusters together.  

 
                                       (a)                                                             (b) 

Fig. 6. The 2D schematic of the whole system consisting of 1,000,000 atoms at 350K: (a) a part 
of (111) cross section×2 times ; (b) a part of (111) cross section ×5 times.  

First of all, we display the whole schematic diagram of the 2D (111) cross section of the 
1000000 atoms system of Al at 350 K, as shown in Fig.6(a) and (b), a part of (111) cross 
section × 2 times and a part of (111) cross section × 5 times, respectively. Fig.6(a), (b) show 
that the system has become amorphous state and formed two types of region: the dense 
region and the loose region. In the dense regions, some regular or distorted five-lateral 
patterns appear in Fig.6(b), which are just the cross sections of some icosahedron and their 
combining configurations. The loose regions are also of different sizes and shapes without 
apparent regulation and the atoms are randomly distributed there. The dense regions and 
the loose regions are also distributed randomly in the system; the inhomogeneous solid 
seems to be rather sponge-like with cavities (also commonly called “free volume”) in 
different sizes and shapes. 

It is clear that the microstructure of this system is hard to be described by the well-known 
model of “random hard sphere packing”, since that model is too simple for describing 
amorphous metals. Figure 6, however, shows a typical amorphous picture, thus it is 
necessary to establish a new model to describe the complex structures of amorphous metals 
in the near future. 

In these simulations, some larger clusters have been found. They are composed of various 
kinds of basic clusters and their sizes and numbers increase with temperature decreasing. 
Their configurations are very complex. For example, a larger cluster consisting of 68 atoms 
is composed of 10 basic clusters with central atoms (represented by gray circle) in Al system 
as shown in figure 7(a) , (b), displaying the whole atoms and the central atoms, respectively. 
From figures 7(a) and (b), it can be clearly seen that the larger cluster is formed by 
combining different medium-sized clusters, and each medium-sized cluster is also 
composed of some basic clusters that can be described by a set of indexes in the CTIM as 
shown in the caption. Interestingly, the larger clusters formed during rapid solidification 
processes of liquid metals Al and Na do not consist of multi-shell configurations 
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Fig. 5. Relations of the numbers of 10 main basic clusters with temperature for Na. 
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continuous expansion, with a basic cluster as the core, according to a certain rule, or by 
combining several basic clusters together.  
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of (111) cross section×2 times ; (b) a part of (111) cross section ×5 times.  

First of all, we display the whole schematic diagram of the 2D (111) cross section of the 
1000000 atoms system of Al at 350 K, as shown in Fig.6(a) and (b), a part of (111) cross 
section × 2 times and a part of (111) cross section × 5 times, respectively. Fig.6(a), (b) show 
that the system has become amorphous state and formed two types of region: the dense 
region and the loose region. In the dense regions, some regular or distorted five-lateral 
patterns appear in Fig.6(b), which are just the cross sections of some icosahedron and their 
combining configurations. The loose regions are also of different sizes and shapes without 
apparent regulation and the atoms are randomly distributed there. The dense regions and 
the loose regions are also distributed randomly in the system; the inhomogeneous solid 
seems to be rather sponge-like with cavities (also commonly called “free volume”) in 
different sizes and shapes. 

It is clear that the microstructure of this system is hard to be described by the well-known 
model of “random hard sphere packing”, since that model is too simple for describing 
amorphous metals. Figure 6, however, shows a typical amorphous picture, thus it is 
necessary to establish a new model to describe the complex structures of amorphous metals 
in the near future. 

In these simulations, some larger clusters have been found. They are composed of various 
kinds of basic clusters and their sizes and numbers increase with temperature decreasing. 
Their configurations are very complex. For example, a larger cluster consisting of 68 atoms 
is composed of 10 basic clusters with central atoms (represented by gray circle) in Al system 
as shown in figure 7(a) , (b), displaying the whole atoms and the central atoms, respectively. 
From figures 7(a) and (b), it can be clearly seen that the larger cluster is formed by 
combining different medium-sized clusters, and each medium-sized cluster is also 
composed of some basic clusters that can be described by a set of indexes in the CTIM as 
shown in the caption. Interestingly, the larger clusters formed during rapid solidification 
processes of liquid metals Al and Na do not consist of multi-shell configurations 
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accumulated by atoms as obtained by gaseous deposition or ionic spray methods. However, 
the cluster configurations of Al formed by gaseous deposition have been verified by mass-
spectrometer to be crystals or similar structures formed in octahedral shell structures 
(Martin, et al., 1992). Therefore, it can be concluded that different methods of preparing 
metallic materials would produce different cluster configurations. Figure 7 shows that the 
atoms contained in the larger clusters are labeled randomly, that is to say, the atoms in the 
system have been distributed homogeneously.   

4.2 Evolution of nana-clusters 

In order to display clearly the evolution characteristics of nano-clusters, it is necessary to 
trace the evolution processes of nano-clusters during rapid solidification processes. 
Adopting an inverse-evolving method, some tracking studies for the structural 
configurations of the nano-clusters have been performed. The evolution processes of the 
nano-clusters, at different temperatures, have been shown in Figures. It can be clearly seen 
that the central atoms of basic clusters of the nano-clusters are bonded with each other, some 
central atoms are multi-bonded, and others single-bonded. 

In this simulation, some nano-clusters have been found. They are composed of various 
kinds of smaller clusters, and their size and amount are increased with temperature 
decreasing. Their configurations are very complex. For example, a nano-cluster consisting of 
126 atoms are composed of 24 basic clusters with center atoms (represented by gray circle), 
as shown in Fig.8 (a), (b). It can be seen that the nano-cluster is produced by combining 
three different middle clusters, and each middle cluster composed of some basic clusters, 
and each basic cluster described by a set of indexes in CTIM.  

 
Fig. 7. Schematic diagram of a larger cluster consisting of 68 atoms within ten basic clusters 
with connecting bonds at 350 K (the gray spheres are the center atoms of basic clusters).  
The cluster is composed of 1 icosahedron (12 0 12 0), and basic clusters of 1 (16 0 12 4), 5  
(13 1 10 2), 1 (14 1 10 3), 1 (14 2 8 4) and 1 (14 3 6 5). (a) displays all the atoms; (b) displays 
only the central atoms. 

In order to display clearly the evolution characteristics of nano-clusters, it is necessary to 
trace the evolution processes of nano-clusters during rapid solidification processes. From 
our previous simulation results (Liu R S, et al., 1995, 2002), we have known that once an 
atom became the center of a cluster, it would possess certainly relative stability and 
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continuity (namely heredity). According to this feature, we can adopt the label of the central 
atom of a basic cluster to simplify the description of the nano-clusters, thus we can 
understand the whole evolution process of them more clearly. Adopting an inverse-
evolving method, a tracking study for the structural configurations of this nano-cluster has 
been made.The evolution process of the nano-cluster, at different temperatures (for 
simplicity, we only select 2 different temperatures), has been shown in Fig.8(c),(d). It can be 
clearly seen that when the temperature is below 350K, the central atoms of 24 basic clusters 
of the nano-cluster are bonded with each other, some central atoms are multi-bonded, and 
others single-bonded. However, this is a very important characteristic for simplifying the 
research on the evolution processes and mechanisms of nano-clusters. With the increase of 
temperature, the maximal size of the original middle and small clusters decreases 
continuously. From the macro-viewpoint, such a degree of order is rather consistent with 
the statistical rules of thermodynamics. It can be clearly seen that this nano-cluster is also 
formed by connecting various middle and small clusters with different cluster-types or 
sizes, and different from that obtained by gaseous deposition, ionic spray and so on. It is 
well known that the latter is proved by mass-spectrometric analysis to be the nano-level 
crystal clusters formed by octahedron-shells configuration accumulated with an atom as the 
center (Joshi et al., 2006). 

 

 

Fig. 8. Schematic figures of a nano-clusters consisting of 126 atoms within 24 basic clusters 
with connecting bonds at 350 K(the gray spheres are the center atoms of basic clusters).  
The cluster is composed of 7 icosahedron (12 0 12 0), and basic clusters of 1 (14 0 12 2), 5  
(13 1 10 2), 3 (14 1 10 3), 3 (15 1 10 4), 1 (12 2 8 2), 2 (14 2 8 4), 1 (15 2 8 5) and 1 (15 3 6 6).  
(a) the whole atoms; (b) at 350K; (c) at 550K; (d) at 780K.  

                      (a)                                                               (b) 

                      (c)                                                               (d) 
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as shown in Fig.8 (a), (b). It can be seen that the nano-cluster is produced by combining 
three different middle clusters, and each middle cluster composed of some basic clusters, 
and each basic cluster described by a set of indexes in CTIM.  

 
Fig. 7. Schematic diagram of a larger cluster consisting of 68 atoms within ten basic clusters 
with connecting bonds at 350 K (the gray spheres are the center atoms of basic clusters).  
The cluster is composed of 1 icosahedron (12 0 12 0), and basic clusters of 1 (16 0 12 4), 5  
(13 1 10 2), 1 (14 1 10 3), 1 (14 2 8 4) and 1 (14 3 6 5). (a) displays all the atoms; (b) displays 
only the central atoms. 

In order to display clearly the evolution characteristics of nano-clusters, it is necessary to 
trace the evolution processes of nano-clusters during rapid solidification processes. From 
our previous simulation results (Liu R S, et al., 1995, 2002), we have known that once an 
atom became the center of a cluster, it would possess certainly relative stability and 
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continuity (namely heredity). According to this feature, we can adopt the label of the central 
atom of a basic cluster to simplify the description of the nano-clusters, thus we can 
understand the whole evolution process of them more clearly. Adopting an inverse-
evolving method, a tracking study for the structural configurations of this nano-cluster has 
been made.The evolution process of the nano-cluster, at different temperatures (for 
simplicity, we only select 2 different temperatures), has been shown in Fig.8(c),(d). It can be 
clearly seen that when the temperature is below 350K, the central atoms of 24 basic clusters 
of the nano-cluster are bonded with each other, some central atoms are multi-bonded, and 
others single-bonded. However, this is a very important characteristic for simplifying the 
research on the evolution processes and mechanisms of nano-clusters. With the increase of 
temperature, the maximal size of the original middle and small clusters decreases 
continuously. From the macro-viewpoint, such a degree of order is rather consistent with 
the statistical rules of thermodynamics. It can be clearly seen that this nano-cluster is also 
formed by connecting various middle and small clusters with different cluster-types or 
sizes, and different from that obtained by gaseous deposition, ionic spray and so on. It is 
well known that the latter is proved by mass-spectrometric analysis to be the nano-level 
crystal clusters formed by octahedron-shells configuration accumulated with an atom as the 
center (Joshi et al., 2006). 

 

 

Fig. 8. Schematic figures of a nano-clusters consisting of 126 atoms within 24 basic clusters 
with connecting bonds at 350 K(the gray spheres are the center atoms of basic clusters).  
The cluster is composed of 7 icosahedron (12 0 12 0), and basic clusters of 1 (14 0 12 2), 5  
(13 1 10 2), 3 (14 1 10 3), 3 (15 1 10 4), 1 (12 2 8 2), 2 (14 2 8 4), 1 (15 2 8 5) and 1 (15 3 6 6).  
(a) the whole atoms; (b) at 350K; (c) at 550K; (d) at 780K.  

                      (a)                                                               (b) 

                      (c)                                                               (d) 
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4.3 Size distribution and magic number sequence of nana-clusters  

In order to investigate the size distribution characteristics of various clusters in the system, 
the relationship between the numbers of various clusters and their sizes (the numbers of 
atoms contained in each cluster) should be displayed clearly according to some statistical 
method. For convenience of discussion, we propose a new statistical method as follows. 

Since a larger cluster can be described clearly by different basic clusters in the CTIM, all the 
clusters (from basic cluster to larger cluster) in the system can be classified according to the 
numbers of basic clusters contained in the larger cluster under consideration. Then, the 
clusters containing the same numbers of basic clusters can be further classified as a group. 
However, the clusters within a same group may not have the same number of atoms 
because the different basic clusters they contained would have different number of atoms. 
Thus there is a certain range of the numbers of atoms for a group of clusters, this can be 
clearly seen below.  
 

Cluster consisting  
of 1 basic clusters 

Cluster consisting 
of 2 basic clusters 

Cluster consisting 
of 3 basic clusters 

Cluster consisting 
of 4 basic clusters 

Cluster consisting 
of 5 basic clusters 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Number 
of  atom 

943K  
350K 

Number 
of  atom 943K350K Number 

of  atom 943K350K Number 
of  atom 943K350K Number 

of  atom 943K350K 

11 13      0 17 1      0 23 9   210 26 0    7 30 0     2 

12 245    55 18 6      4 24 19  204 27 0   27 31 0     6 

13 
2254 
10606 

19 167 2761 25 28  647 28 2   47 32 0     9 

14 
1912 
3159 

20 269 1432 26 53  551 29 4  130 33 1    23 

15 
998  
1611 

21 311 1370 27 62  588 30 10 128 34 3    46 

16 300   433 22 202 730 28 43  451 31 8  212 35 0    69 

17 39     37 23 86  273 29 32  202 32 9  210 36 4    69 

18 0       1 24 46   56 30 21  106 33 10 225 37 1   105 

  25 13   15 31 3    38 34 7  194 38 7   118 
  26 2     1 32 4    15 35 15 126 39 6   106 

    33 1     3 36 3   83 40 0   110 

      37 4   27 41 2    69 

      38 1   17 42 1    46 

      39 1    7 43 1    27 

      40 0    1 44 1    15 

      41 0    1 45 0     7 

      42 0    2 46 0     5 

        47 0     2 
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Cluster consisting  
of 6 basic clusters 

Cluster consisting 
of 7 basic clusters 

Cluster consisting 
of 8 basic clusters 

Cluster consisting 
of 9 basic clusters 

Cluster consisting 
of 10 basicclusters 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Cluster 
size 

Cluster 
number 

Number 
of  atom 

943K  
350K 

Number 
of  atom 943K350K Number 

of  atom 943K350K Number 
of  atom 943K350K Number 

of  atom 943K350K 

35 0     2 37 0   1 44 0   1 46 0   1 56 0   2 

36 0     3 38 0   0 45 0   0 47 0   0 57 0   1 

37 0     7 39 0   0 46 0   1 48 0   0 58 0   1 

38 1     7 40 0   0 47 0   2 49 0   2 59 0   1 

39 2    16 41 0   4 48 0   4 50 0   0 60 0   2 

40 0    34 42 1   3 49 0   3 51 0   0 61 0   1 

41 1    36 43 1   8 50 1   8 52 0   3 62 0   7 

42 2    54 44 0  13 51 0  12 53 0   0 63 0   5 

43 0    51 45 0  12 52 0  11 54 0   4 64 0   4 

44 2    33 46 0  19 53 0  13 55 0   6 65 0   3 

45 0    51 47 0  23 54 0  16 56 0   3 66 0   4 

46 0    45 48 2  33 55 0  17 57 0   7 67 0   9 

47 0    21 49 1  17 56 0  16 58 0   5 68 0   6 

48 0    27 50 0  27 57 0  10 59 0   5 69 0   6 

49 0    12 51 0  29 58 0  13 60 0   7 70 0   2 

50 0     9 52 0  20 59 0  22 61 0   9 71 0   0 

51 0     8 53 0  18 60 0  11 62 0   3 72 0   1 

52 0     1 54 0  12 61 0   6 63 0   7 73 0   1 

53 0     1 55 0   6 62 0   3 64 0   2 74 0   2 

  56 1   4 63 0   0 65 0  14 75 0   1 

  57 0   4 64 0   1 66 0   4 76 0   0 

  58 0   3 65 0   1 67 0   1 77 0   0 

  59 0   1 66 0   1 68 0   6 78 0   1 

      69 0   1   

      70 0   2   

Table 5. Relations of the number of clusters consisting of 1-10 basic clusters with the cluster 
size (number of atoms included) for liquid metal Al. 

4.3.1 Magic number sequence of nana-clusters for liquid metal Al  

For liquid metal Al, for simplicity, we only analyze ten groups in the system in turn by the 
numbers of basic clusters contained in each group for two cases of liquid state at 943K and 
solid state at 350K, as shown in Table 5. From Table 5, it can be clearly seen that there is a 
peak value (maximum) of the numbers of clusters for each group and this is shown with a 
short underline in the table. As we compare this peak value with the abundance usually 
used in the research of cluster configurations, it is found that the two concepts are 
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In order to investigate the size distribution characteristics of various clusters in the system, 
the relationship between the numbers of various clusters and their sizes (the numbers of 
atoms contained in each cluster) should be displayed clearly according to some statistical 
method. For convenience of discussion, we propose a new statistical method as follows. 

Since a larger cluster can be described clearly by different basic clusters in the CTIM, all the 
clusters (from basic cluster to larger cluster) in the system can be classified according to the 
numbers of basic clusters contained in the larger cluster under consideration. Then, the 
clusters containing the same numbers of basic clusters can be further classified as a group. 
However, the clusters within a same group may not have the same number of atoms 
because the different basic clusters they contained would have different number of atoms. 
Thus there is a certain range of the numbers of atoms for a group of clusters, this can be 
clearly seen below.  
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17 39     37 23 86  273 29 32  202 32 9  210 36 4    69 

18 0       1 24 46   56 30 21  106 33 10 225 37 1   105 

  25 13   15 31 3    38 34 7  194 38 7   118 
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(continued) 

Formation and Evolution Characteristics of  
Nano-Clusters (For Large-Scale Systems of 106 Liquid Metal Atoms) 

 

187 
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36 0     3 38 0   0 45 0   0 47 0   0 57 0   1 

37 0     7 39 0   0 46 0   1 48 0   0 58 0   1 

38 1     7 40 0   0 47 0   2 49 0   2 59 0   1 

39 2    16 41 0   4 48 0   4 50 0   0 60 0   2 

40 0    34 42 1   3 49 0   3 51 0   0 61 0   1 

41 1    36 43 1   8 50 1   8 52 0   3 62 0   7 

42 2    54 44 0  13 51 0  12 53 0   0 63 0   5 

43 0    51 45 0  12 52 0  11 54 0   4 64 0   4 

44 2    33 46 0  19 53 0  13 55 0   6 65 0   3 

45 0    51 47 0  23 54 0  16 56 0   3 66 0   4 

46 0    45 48 2  33 55 0  17 57 0   7 67 0   9 

47 0    21 49 1  17 56 0  16 58 0   5 68 0   6 

48 0    27 50 0  27 57 0  10 59 0   5 69 0   6 

49 0    12 51 0  29 58 0  13 60 0   7 70 0   2 

50 0     9 52 0  20 59 0  22 61 0   9 71 0   0 

51 0     8 53 0  18 60 0  11 62 0   3 72 0   1 

52 0     1 54 0  12 61 0   6 63 0   7 73 0   1 

53 0     1 55 0   6 62 0   3 64 0   2 74 0   2 

  56 1   4 63 0   0 65 0  14 75 0   1 

  57 0   4 64 0   1 66 0   4 76 0   0 

  58 0   3 65 0   1 67 0   1 77 0   0 

  59 0   1 66 0   1 68 0   6 78 0   1 

      69 0   1   

      70 0   2   

Table 5. Relations of the number of clusters consisting of 1-10 basic clusters with the cluster 
size (number of atoms included) for liquid metal Al. 

4.3.1 Magic number sequence of nana-clusters for liquid metal Al  

For liquid metal Al, for simplicity, we only analyze ten groups in the system in turn by the 
numbers of basic clusters contained in each group for two cases of liquid state at 943K and 
solid state at 350K, as shown in Table 5. From Table 5, it can be clearly seen that there is a 
peak value (maximum) of the numbers of clusters for each group and this is shown with a 
short underline in the table. As we compare this peak value with the abundance usually 
used in the research of cluster configurations, it is found that the two concepts are 
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completely consistent with each other. As we display the relations of the numbers of clusters 
formed in system with the size (the number of atoms contained in them) of these clusters, it 
is further found that the positions of the peak value points of the numbers of clusters also 
correspond to the magic number points. It is also clearly seen that the numbers of clusters at 
943K are much less than those for the same group level at 350K for the former five group 
levels and there are few or almost none for the latter five group levels; and the front five 
peak value positions of clusters at 943K are not all consistent with those at 350K, for 
convenience of discussion for magic numbers, we only show the simulation results at 350K 
in figure 9. 

It is clear from figure 9 that the quantity of various clusters is sensitive to the size of a 
cluster, and the magic numbers do exist. In the solid state at 350K, the total magic number 
sequence of all groups are in turn as 13, 19, 25, 27, 31, 33, 38, 40, 42, 45, 48, 51, 59, 65, 67…. 
However, when the number of atoms contained in a cluster is more than 70, the position of 
its magic number would be ambiguous. 

In order to further reveal the magic number characteristics of the above-mentioned groups, 
we show the variation of the numbers of clusters in the system with the numbers of atoms 
contained in the clusters for ten groups in Figure 10, respectively.  

It is observed in Fig.10 that although the ranges of neighboring groups have overlapped 
each other, one or two partial magic numbers still can be obviously distinguished for each 
group, and all the partial magic numbers for the ten groups rather correspond to the total 
magic number sequence for the whole system as shown in Figure 10. Going further, the total 
magic number sequence can be classified again according to the order of the ten groups of 
clusters in the following sequence: 13 (first magic number), 19 (second), 25-27(third), 31-
33(fourth), 38-40(fifth), 42-45(sixth), 48-51(seventh), 55-59(eighth), 61-65(ninth) and 
67(tenth). The ninth and tenth magic numbers are not so obvious in figure 10 because the 
numbers of clusters containing 9 and 10 basic clusters are insufficient, however, they stand 
out in figure 10 (c). For simplicity, the magic number sequence corresponding to the order of 
the ten groups of clusters can be listed again as 13, 19, 25(27), 31(33), 38(40), 42(45), 48(51), 
55(59), 61(65) and 67, where the numbers in bracket are the secondary magic numbers of the 
corresponding groups of clusters. We think the above-mentioned analysis is very important 
for searching the origin of the magic number of clusters formed in the system. 

We compare the total magic number sequence mentioned above to the experimental results 
of the photo-ionization mass spectra of clusters, formed through supersonic deposition from 
supersaturated gaseous phase Al, obtained by Schriver et al as shown in Fig.3 of Ref. 
(Schriver et al., 1990), it can be clearly seen that the magic numbers reported (14, 17, 23, 29, 
37, 43, 47, 55, 67…), and those not reported (19, 21, 25, 33, and 39) (they can be clearly seen in 
the same Fig.3, maybe the authors thought those numbers were not consistent with the 
magic number rule at that time), are almost all consistent with our magic number sequence 
(in the error range of ±1). Thus, it can be said that the magic number sequence from our 
simulation is supported by the experimental results, but their clusters are produced by both 
different formation processes even though they are of the same element, Al. 

In particular, as we further compare the magic number sequence from our simulation to the 
experimental results of inert gas clusters, it can be also clearly seen that the magic number 
sequence obtained from the mass spectra of Ar clusters formed in a supersaturated ionic 
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phase given by Harris et al is 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, 61, 64, 66... (see Fig.1 in 
Ref. ( Harris, Kidwell & Northby, 1984), and the sequence obtained from the mass spectra of 
Xe clusters formed in a supersaturated vapor phase given by Echt et al (Echt, Sattler & 
Recknagle, 1981) is 13, 19, 23, 25, 29, 55, 71... (see Fig.1 in this Ref.), these results are also in 
good agreement with our sequence in the same error range. That is to say that the this 
simulation result from metal Al is similar to those from inert gases Ar and Xe, and this 
similarity should reflect in certain degree some essential relations between different 
elements, especially in different states.  

 
Fig. 9. Variation of the number of clusters in system of Al with sizes of clusters (i. e. the 
number of atoms contained in the cluster) at 350K. 

It is highly interesting that this magic number sequence is also in good agreement with the 
results, obtained by using MD simulation and other model potentials from Solov’yov’s and 
Doye’s works, such as 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, 61, 64, 71, … (see Fig.1 and 2 in 
Ref. (Solov’yov I A, Solov’yov A V & Greiner, 2003)), and 13, 19, 23, 26, 29, 34, 45, 51, 55,… 
(see Fig.1 and 2 in Ref. (Doye & Meyer, 2005)) , respectively. From these, it can be explained 
that as long as the methods used to solve the similar problem are reasonable, the results 
should also be similar.  

4.3.2 Magic number sequence of nana-clusters for liquid metal Na 

For liquid metal Na, for deep understanding the size distribution of the clusters mentioned 
above, we also only analyze ten group levels in the system in turn by the numbers of basic 
clusters contained in each group level for two cases of liquid state at 573 K and solid state at  
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completely consistent with each other. As we display the relations of the numbers of clusters 
formed in system with the size (the number of atoms contained in them) of these clusters, it 
is further found that the positions of the peak value points of the numbers of clusters also 
correspond to the magic number points. It is also clearly seen that the numbers of clusters at 
943K are much less than those for the same group level at 350K for the former five group 
levels and there are few or almost none for the latter five group levels; and the front five 
peak value positions of clusters at 943K are not all consistent with those at 350K, for 
convenience of discussion for magic numbers, we only show the simulation results at 350K 
in figure 9. 

It is clear from figure 9 that the quantity of various clusters is sensitive to the size of a 
cluster, and the magic numbers do exist. In the solid state at 350K, the total magic number 
sequence of all groups are in turn as 13, 19, 25, 27, 31, 33, 38, 40, 42, 45, 48, 51, 59, 65, 67…. 
However, when the number of atoms contained in a cluster is more than 70, the position of 
its magic number would be ambiguous. 

In order to further reveal the magic number characteristics of the above-mentioned groups, 
we show the variation of the numbers of clusters in the system with the numbers of atoms 
contained in the clusters for ten groups in Figure 10, respectively.  

It is observed in Fig.10 that although the ranges of neighboring groups have overlapped 
each other, one or two partial magic numbers still can be obviously distinguished for each 
group, and all the partial magic numbers for the ten groups rather correspond to the total 
magic number sequence for the whole system as shown in Figure 10. Going further, the total 
magic number sequence can be classified again according to the order of the ten groups of 
clusters in the following sequence: 13 (first magic number), 19 (second), 25-27(third), 31-
33(fourth), 38-40(fifth), 42-45(sixth), 48-51(seventh), 55-59(eighth), 61-65(ninth) and 
67(tenth). The ninth and tenth magic numbers are not so obvious in figure 10 because the 
numbers of clusters containing 9 and 10 basic clusters are insufficient, however, they stand 
out in figure 10 (c). For simplicity, the magic number sequence corresponding to the order of 
the ten groups of clusters can be listed again as 13, 19, 25(27), 31(33), 38(40), 42(45), 48(51), 
55(59), 61(65) and 67, where the numbers in bracket are the secondary magic numbers of the 
corresponding groups of clusters. We think the above-mentioned analysis is very important 
for searching the origin of the magic number of clusters formed in the system. 

We compare the total magic number sequence mentioned above to the experimental results 
of the photo-ionization mass spectra of clusters, formed through supersonic deposition from 
supersaturated gaseous phase Al, obtained by Schriver et al as shown in Fig.3 of Ref. 
(Schriver et al., 1990), it can be clearly seen that the magic numbers reported (14, 17, 23, 29, 
37, 43, 47, 55, 67…), and those not reported (19, 21, 25, 33, and 39) (they can be clearly seen in 
the same Fig.3, maybe the authors thought those numbers were not consistent with the 
magic number rule at that time), are almost all consistent with our magic number sequence 
(in the error range of ±1). Thus, it can be said that the magic number sequence from our 
simulation is supported by the experimental results, but their clusters are produced by both 
different formation processes even though they are of the same element, Al. 

In particular, as we further compare the magic number sequence from our simulation to the 
experimental results of inert gas clusters, it can be also clearly seen that the magic number 
sequence obtained from the mass spectra of Ar clusters formed in a supersaturated ionic 
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phase given by Harris et al is 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, 61, 64, 66... (see Fig.1 in 
Ref. ( Harris, Kidwell & Northby, 1984), and the sequence obtained from the mass spectra of 
Xe clusters formed in a supersaturated vapor phase given by Echt et al (Echt, Sattler & 
Recknagle, 1981) is 13, 19, 23, 25, 29, 55, 71... (see Fig.1 in this Ref.), these results are also in 
good agreement with our sequence in the same error range. That is to say that the this 
simulation result from metal Al is similar to those from inert gases Ar and Xe, and this 
similarity should reflect in certain degree some essential relations between different 
elements, especially in different states.  

 
Fig. 9. Variation of the number of clusters in system of Al with sizes of clusters (i. e. the 
number of atoms contained in the cluster) at 350K. 

It is highly interesting that this magic number sequence is also in good agreement with the 
results, obtained by using MD simulation and other model potentials from Solov’yov’s and 
Doye’s works, such as 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, 61, 64, 71, … (see Fig.1 and 2 in 
Ref. (Solov’yov I A, Solov’yov A V & Greiner, 2003)), and 13, 19, 23, 26, 29, 34, 45, 51, 55,… 
(see Fig.1 and 2 in Ref. (Doye & Meyer, 2005)) , respectively. From these, it can be explained 
that as long as the methods used to solve the similar problem are reasonable, the results 
should also be similar.  

4.3.2 Magic number sequence of nana-clusters for liquid metal Na 

For liquid metal Na, for deep understanding the size distribution of the clusters mentioned 
above, we also only analyze ten group levels in the system in turn by the numbers of basic 
clusters contained in each group level for two cases of liquid state at 573 K and solid state at  
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Fig. 10. Relationship of the numbers of basic clusters in a group with the size of cluster 
(number of atoms contained in a cluster) at 350K in system of Al. (a) for 1 ~ 3 group;  
(b) for 4 ~ 6 group; (c) for 7 ~ 10 group. 

223 K, as shown in Table 6. From Table 6, it can be clearly seen that there is a peak value 
(maximum) of the numbers of clusters for each group, and this is shown with a short 
underline in the table. It is also found that the positions of the peak value points of the 
numbers of clusters are corresponded to the magic number points. In liquid state, the magic 
numbers are in the order of 14, 21, 28, 34…, and it is not clear for the clusters contained more 
than five basic clusters. In solid state, the magic numbers are in the order of 14, 22, 28, 34, 
41(43), 46(48), 52(54), 57(59), 61(66), 70(74), which are corresponding to the first, second, 
third, …. and tenth group levels, respectively, the numbers in the brackets are the second 
magic numbers corresponding to the same group level. The first four magic numbers are 
almost the same as in liquid state; thereafter, it is also not clear for the clusters contained 
more than ten basic clusters.  

On the other hand, for further understanding the magic number characteristics of the  
group level of clusters, the relations of the number of clusters in each group level with  
the number of atoms contained in each cluster for twelve groups, and the total number  
of clusters in all the group levels enclosed at 223K are shown in Fig 11 (a), (b), (c)  
and (d).  
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11 43       4 18 9     8 24 2    28 29 0    21 33 0     6 

12 297   149 19 46  227 25 15  108 30 2    54 34 0    17 

13 
1180 
2771 

20 133 788 26 18  369 31 4   131 35 2    26 

14 
1650 
5962 

21 213 1736 27 26  620 32 1   193 36 0    66 

15 
1119 
4992 

22 182 1883 28 36  708 33 4   271 37 1    92 

16 
412  
1404 

23 102 1167 29 25  638 34 6   334 38 1   120 

17 59    151 24 46   507 30 19  503 35 4   322 39 0   156 

18 6      0 25 9    134 31 12  305 36 5   284 40 1   162 

  26 2     22 32 4   138 37 3   239 41 0   179 

  27 0     3 33 2    47 38 1   153 42 0   164 

    34 0   11 39 1    84 43 0   154 

      40 0    36 44 1   105 

      41 0    17 45 1    68 

      42 0     1 46 0    51 

      43 0     1 47 0    24 

        48 0    10 

        49 0     4 

        50 0    1 
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Fig. 10. Relationship of the numbers of basic clusters in a group with the size of cluster 
(number of atoms contained in a cluster) at 350K in system of Al. (a) for 1 ~ 3 group;  
(b) for 4 ~ 6 group; (c) for 7 ~ 10 group. 
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38 0      6 41 0     1 44 0     1 51 0     3 53 0    1 

39 0     19 42 0     3 45 0     0 52 0     2 54 0    0 

40 0     24 43 0     4 46 0     3 53 0     4 55 0    2 

41 0     29 44 0     2 47 0     4 54 0     7 56 0    2 

42 1     59 45 1    16 48 0     8 55 0    15 57 0    5 

43 2     79 46 0    38 49 0     6 56 0    11 58 0    5 

44 0     96 47 0    40 50 1    21 57 0    15 59 0    5 

45 0    114 48 0    60 51 0    17 58 0    27 60 0   10 

46 1    114 49 0    54 52 0    30 59 1    34 61 0   14 

47 0     97 50 0    50 53 0    38 60 0    31 62 0    7 

48 0    107 51 0    65 54 0    54 61 0    34 63 0   14 

49 1     98 52 0    66 55 0    36 62 0    34 64 0   17 

50 1     73 53 0    56 56 0    41 63 0    32 65 0   20 

51 0     44 54 0    63 57 0    50 64 0    20 66 0   23 
52 0     33 55 0    65 58 0    45 65 0    32 67 0   18 

53 0     23 56 0    42 59 0    50 66 0    39 68 0   25 

54 0     20 57 0    42 60 0    41 67 0    26 69 0   23 

55 0     10 58 0    36 61 0    42 68 0    23 70 0   26 
56 0      2 59 0    26 62 0    39 69 0    17 71 0   21 

57 0     1 60 0    18 63 0    25 70 0    22 72 0   19 

  61 0    11 64 0    19 71 0    15 73 0   21 

  62 0    11 65 0    17 72 0    14 74 0   22 
  63 0     1 66 0    10 73 0    12 75 0   21 

  64 0    1 67 0    4 74 0     6 76 0   8 

    68 0    1 75 0     1 77 0   8 

    69 0    5 76 0     1 78 0   8 

    70 0    2 77 0     2 79 0   5 

        80 0   8 

        81 0   5 

Table 6. Relations of the number of clusters consisting of 1-10 basic clusters with the cluster 
size (number of atoms included) for liquid metal Na. 

Highly interesting is that though the ranges of neighboring group levels are overlapped 
each other as shown in Fig 11, the magic number of each group level is still clearly 
corresponded to the magic number of the total magic number sequence for all the group 
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levels at the same group level. For this point, as we consider the magic number of  
each group level as the corresponding partial magic number, the total magic number 
sequence of all the group levels can be considered as the superposition of all the partial 
magic numbers.  

Therefore, the total magic number sequence can be analyzed according to the corresponding 
group level in the order of 14(the first magic number), 22(second), 28(third), 34(fourth), 41-
43(fifth), 46-48(sixth), 52-54 (seventh), 57-59(eighth), 61-66(ninth) and 70-74(tenth). However, 
the last three magic numbers also cannot be clearly distinguished in the Fig.11 (d), since the 
numbers of the larger clusters containing more basic clusters are not enough. 

Going further, it can be seen that not only have the experimental results reported by 
Schriver and Harris et al (Schriver et al., 1990; Harris, Kidwell & Northby, 1984) provided 
a vital experimental certification to our simulation results, but also our simulation results 
could provide a reasonable model explanation to those experimental results. As regards 
the magic numbers obtained from experimental researches, some of them can be 
explained as usual with the viewpoint of geometric shell structure of cluster 
configurations being closed regularly (for neutral clusters and charged clusters) (Knight 
et.al., 1984; Harris et al., 1984; Echt, Sattler & Recknagle, 1981; Schriver et al., 1990; Robles, 
Longo & Vega, 2002), and the others cannot be explained with the same viewpoint 
because they are corresponding to the geometric non-shell structure of cluster 
configurations. However, from our simulation, it can be clearly seen that during the 
forming process of larger clusters, only a few clusters accumulate and extend 
continuously with a basic cluster as the core according to a certain rule; most of them are 
formed with combining different numbers and different types of basic clusters. So, it is 
the normal case and can be explained to find more clusters with geometric non-shell 
structure in their magic number sequence as above-noted. 

So far, the critical question is why the magic number sequence of clusters formed by 
solidification of liquid metal Al from our simulation is so similar to those magic number 
sequences of clusters formed by ionic spray and gaseous deposition of metal Al, inert gases 
Ar and Xe from experimental studies? We think the main reason is that the solidification 
process of liquid metal is essentially similar to the formation process of clusters in the 
above-mentioned experimental studies. We consider that in the solidification process of 
liquid metals, various cluster configurations could be formed by the rapid agglomerating of 
a large number of atoms as the system spreads over a large space for a short time, while in 
the formation process of clusters in the experiments, various cluster configurations could be 
formed by slow gathering of a few atoms as the system spreads over a small space for a long 
time, and both their final results could be similar each other on the whole (even though they 
are not be similar completely). On the other hand, at present, the essential differences 
between different elements, especially different states, are still not be distinguished in detail, 
it is necessary to analyze and compare in detail various similar and dissimilar magic 
numbers of these sequences in the future. 

Therefore, it may be feasible to adopt magic numbers, especially the partial magic  
numbers of the group levels, obtained during the rapid solidification process of liquid 
metals to understand the magic number characteristics obtained with experimental 
methods. 
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levels at the same group level. For this point, as we consider the magic number of  
each group level as the corresponding partial magic number, the total magic number 
sequence of all the group levels can be considered as the superposition of all the partial 
magic numbers.  

Therefore, the total magic number sequence can be analyzed according to the corresponding 
group level in the order of 14(the first magic number), 22(second), 28(third), 34(fourth), 41-
43(fifth), 46-48(sixth), 52-54 (seventh), 57-59(eighth), 61-66(ninth) and 70-74(tenth). However, 
the last three magic numbers also cannot be clearly distinguished in the Fig.11 (d), since the 
numbers of the larger clusters containing more basic clusters are not enough. 

Going further, it can be seen that not only have the experimental results reported by 
Schriver and Harris et al (Schriver et al., 1990; Harris, Kidwell & Northby, 1984) provided 
a vital experimental certification to our simulation results, but also our simulation results 
could provide a reasonable model explanation to those experimental results. As regards 
the magic numbers obtained from experimental researches, some of them can be 
explained as usual with the viewpoint of geometric shell structure of cluster 
configurations being closed regularly (for neutral clusters and charged clusters) (Knight 
et.al., 1984; Harris et al., 1984; Echt, Sattler & Recknagle, 1981; Schriver et al., 1990; Robles, 
Longo & Vega, 2002), and the others cannot be explained with the same viewpoint 
because they are corresponding to the geometric non-shell structure of cluster 
configurations. However, from our simulation, it can be clearly seen that during the 
forming process of larger clusters, only a few clusters accumulate and extend 
continuously with a basic cluster as the core according to a certain rule; most of them are 
formed with combining different numbers and different types of basic clusters. So, it is 
the normal case and can be explained to find more clusters with geometric non-shell 
structure in their magic number sequence as above-noted. 

So far, the critical question is why the magic number sequence of clusters formed by 
solidification of liquid metal Al from our simulation is so similar to those magic number 
sequences of clusters formed by ionic spray and gaseous deposition of metal Al, inert gases 
Ar and Xe from experimental studies? We think the main reason is that the solidification 
process of liquid metal is essentially similar to the formation process of clusters in the 
above-mentioned experimental studies. We consider that in the solidification process of 
liquid metals, various cluster configurations could be formed by the rapid agglomerating of 
a large number of atoms as the system spreads over a large space for a short time, while in 
the formation process of clusters in the experiments, various cluster configurations could be 
formed by slow gathering of a few atoms as the system spreads over a small space for a long 
time, and both their final results could be similar each other on the whole (even though they 
are not be similar completely). On the other hand, at present, the essential differences 
between different elements, especially different states, are still not be distinguished in detail, 
it is necessary to analyze and compare in detail various similar and dissimilar magic 
numbers of these sequences in the future. 

Therefore, it may be feasible to adopt magic numbers, especially the partial magic  
numbers of the group levels, obtained during the rapid solidification process of liquid 
metals to understand the magic number characteristics obtained with experimental 
methods. 
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Fig. 11. Relations of the number of cluster in a group with the size of cluster (i. e. atoms 
included in cluster) at 223K .(a) for 1 ~ 3 groups; (b) for 4 ~ 6 groups; (c) for 7 ~ 9 groups; 
(d) for 10 ~ 12 group levels of clusters . 

4.3.3 Stability of nana-clusters 

From the above mentioned, it can be clearly seen that the larger clusters within a same 
group level should have not the same number of atoms because they contained different 
basic clusters containing different number of atoms. Therefore, these larger clusters would 
have different number of atoms. It can be clearly seen that those larger clusters containing 
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minority of atoms in which the central atoms of basic clusters are connected tightly each 
other with multi-bonded, would be more stable than others and they would possess better 
stability and higher heredity, and so on.  

 
Fig. 12. Schematic diagram of three larger clusters consisting of 43, 53 and 69 atoms within 7 
basic clusters with connecting bonds, respectively, at 223K (the gray spheres are the center 
atoms of basic clusters). 

These features can be shown in Fig.12. It is the schematic diagram of three larger clusters 
consisting of 43, 53 and 69 atoms within the same group level of 7 basic clusters, with 
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minority of atoms in which the central atoms of basic clusters are connected tightly each 
other with multi-bonded, would be more stable than others and they would possess better 
stability and higher heredity, and so on.  

 
Fig. 12. Schematic diagram of three larger clusters consisting of 43, 53 and 69 atoms within 7 
basic clusters with connecting bonds, respectively, at 223K (the gray spheres are the center 
atoms of basic clusters). 

These features can be shown in Fig.12. It is the schematic diagram of three larger clusters 
consisting of 43, 53 and 69 atoms within the same group level of 7 basic clusters, with 
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connecting bonds, respectively, at 223K (the gray spheres are the center atoms of basic 
clusters). From the diagrams of their center atoms with multi-bonded or single-bonded each 
other, it can be clearly seen that the cluster consisting of 43 atoms has a dense connecting of 
all atoms and would possess better stability and higher heredity than other two clusters 
consisting of 53 and 69 atoms, respectively, in turn. 

5. Conclusions  
In this chapter, for deeply understanding the formation and evolution characteristics of 
various clusters, especial of nano-clusters formed during solidification processes,  molecular 
dynamic simulation studies have been performed for a large-sized system consisting of 106 
liquid metal for Al and Na atoms, respectively. Several microstructure analysis methods, 
especial the cluster-type index method (CTIM) have been adopted to describe various types 
of cluster, especial of nano-cluster by basic clusters. It is demonstrated that the icosahedral 
cluster (12 0 12 0) is the most important basic cluster, and plays a critical role in the 
microstructure transition. The nano-clusters are formed by connecting various middle and 
small clusters with different cluster-types or sizes, and their structures are different from 
those obtained by gaseous deposition, ionic spray and so on.  

For the evolution processes of the nano-clusters, at different temperatures, it is 
demanstrated clearly that the central atoms of basic clusters in the nano-clusters are bonded 
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bonded. A new statistical method has been proposed to classify the clusters (from basic 
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1. Introduction  
Theoretical and computational modeling is becoming increasingly important in the 
devolopment of advanced high performance materials for industrial applications.[1] 
Computer simulations on various metallic systems usually use simple pairwise potentials. 
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pairwise interactions only. A pure pairwise potential model gives the Cauchy relation, 
C12=C44, between the elastic constants, which is not the case in real metals. Therefore, many-
body interactions should be taken into account in any studies of metals and metal alloys.  

It is very important to calculate the phase diagrams of metallic systems and their alloys in 
order to achieve technological improvements. The phase diagrams are still obtained by 
using experimental techniques because there are no available methods for entirely 
theoretical predictions of all of the phase diagrams of any pure metal. Therefore, in the 
calculations of the phase diagrams some expressions have been formed by using theoretical 
or semi-empirical approach and their validity have been investigated in a selected portion of 
the phase diagrams. The expressions suggested in semi-empirical approaches generally 
contain some factors depending on temperature and pressure. Therefore, the calculated 
phase region is restricted by experimental limits. Today, the free energy concepts, such as 
Gibbs and Helmholtz, on the other hand, have been widely used to calculate the 
macroscopic phase diagrams [2, 3] in which thermodynamics parameters are dominant. In 
microscopic scale, their calculations require some vibrational properties which can be 
derived from elastic constants of the material. So, the correct calculations of the elastic 
constants are important as well as the calculations of phase diagrams. 

MD simulations can be utilized to compute the thermodynamic parameters and the results 
of the external effects, such as temperature and pressure or stress acted on a physical system 
[4, 5]. In the MD simulations, the interatomic interactions are modeled with a suitable 
mathematical function, and its gradient gives the forces between atoms. Hence, Newton’s 
equations of motion of the system are solved numerically and the system is forced to be in a 
state of minimum energy, an equilibrium point of its phase space. Although many 
properties of the system, such as enthalpy, cohesive energy and internal pressure, have been  
directly calculated in the MD simulations, the entropy which  is required for the free energy 
calculations has not been directly obtained and it is possible to obtain it by some approaches 
involved harmonic and anhormonic assumptions. There are some investigations related to 
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these approaches: the calculation of the free energy between FCC and HCP structures [6, 7], 
the investigation of first order phase transition [8], the dependence of the phase diagram on 
the range of attractive intermolecular forces [9], the investigation of harmonic lattice 
dynamics and entropy calculations in metal and alloys [10], the calculation of the P-T 
diagram of hafnium [11], etc. Recently, the P-T diagrams for Ni and Al have been calculated 
by Gurler and Ozgen [12] by using the MD simulations based on the EAM technique [13].  

The reliability of the results obtained from MD simulations depends on the suitable 
modeling of the interatomic interactions. Interatomic interactions are usually results of fits 
to various experimental data. However, it is not clear whether simulations performed at 
other temperatures still reproduce the experimental data accurately. Comparing theoretical 
and experimental elastic constants and other properties at various temperatures can serve as 
a measure of reliability and usefulness of potential models [14, 15]. In fact, there are several 
potential energy functions that can be used for the metallic systems. However, the EAM, 
originally developed by Daw and Baskes [16, 17] to model the interatomic interactions of 
face-centered cubic (FCC) metals, has been successfully used to compute the properties of 
metallic systems such as bulk, surface and interface problems. The reliability of the EAM in 
the bulk and its simple form for use in computer simulations make it attractive. 

When a liquid metal is quenched through the super-cooled region, a phase transition from 
liquid to glass takes place. Several techniques have been proposed to obtain a disordered 
state [18-20]. Among them the rapid solidification  method is widely used for the 
amorphous phase. However, due to the demand of a high cooling rate this method is 
restiricted in most experimental cases. Thus, the computer simulation of molecular 
dynamics is applied.   

In this study, in order to model Au metallic systems we have used the EAM functions 
modified by us (Ciftci and Colakoğlu [21]), developed firstly by Cai [22]. In this work, we 
have carried out MD simulations to obtain the P-V diagrams at 300 K and the P-T diagrams 
of the systems for an ideal FCC lattice with 1372 atoms, by using an anisotropic MD scheme. 
In addition, the bulk modulus and specific heat of the system in solid phase are determined 
and results-driven simulations are interpreted by comparing with the values in literature. 
We have also calculated the pressure derivatives of elastic constants and bulk moduli for 
Au. The obtained results are compared with the values in the literature. The another 
purpose of this work is to explore the glass transition and crystallization of Au using EAM .   

2. Potential energy function  
According to the embedded atom method, the cohesive energy of an assembly of N atoms is 
given by [16, 17] 

 ( ) ( )tot i i ij
i i j

E F r 


                  (1) 

 
( )

( )i ij
j i

f r


  ,       (2) 

where Etot is the total cohesive energy, ρi is the host electron density at the location of atom i 
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between i and j atoms, Fi(ρi) is the embedding energy to embed atom i in an electron density 
ρi, and (rij) is the pairwise potential energy function between atoms i and j.  

In this work, we used a modified pairwise potential function in the framework of the Cai 
version [22] of the EAM. Recently, this potential function has been used by us for predicting 
several physical properties of some transitional metals [21,23-25]. The present form of the 
potential makes it more flexible owing to the constants, m and n in the multiplier forms. 
Such a factor included in the classical Morse function is treated by Verma and Rathore [26] 
to compute the phonon frequencies of Th, based on the central pair potential model. The 
modified parts of the potential and the other terms are as follows: 
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where α, β, D1 and D2 are fitting parameters that are determined by the lattice parameter a0, 
the cohesive energy Ec, the vacancy formation energy Evf, the elastic constants Cij. Here ρe is 
the host electron density at equilibrium state, re is the nearest neighbor equilibrium distance, 
and F0=EcEvf . In this potential model, there are four parameters: β and D1 are from two-
body term, m and n are adjustable selected constants. The fitting parameters are determined 
by minimizing the value of exp exp 2[( ) / ]calW X X X  . Here X represents the calculated 
and experimental values of the quantities taken into account in the fitting process. Hence, 
the potential functions can be fitted very well to the experimental properties of the matter, 
such as the vacancy formation energy (Ev), cohesive energy (Ec), elastic constants (Cij), and 
lattice constants (a0) in an equilibrium state. In the fitting process here, the cutoff distance is 
taken to be rcut=1.65a0. In the Eq. (3), the fe parameter is selected as unity for mono atomic 
systems because it is used for alloy modeling as an adjustable parameter to constitute 
suitable electron density. For the selected values of the constants m and n, the computed 
potential parameters and experimental input data for Au are given in Table 1.  

The cohesive energy changes with the variation of lattice constants of Au calculated from 
Eq. (1) and from the general expression of the cohesive energy of metals proposed by Rose 
et al. [32] are compared in Fig.1. The Rose energy is also called as the generalized equation 
of state of metals and written as 
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where α, β, D1 and D2 are fitting parameters that are determined by the lattice parameter a0, 
the cohesive energy Ec, the vacancy formation energy Evf, the elastic constants Cij. Here ρe is 
the host electron density at equilibrium state, re is the nearest neighbor equilibrium distance, 
and F0=EcEvf . In this potential model, there are four parameters: β and D1 are from two-
body term, m and n are adjustable selected constants. The fitting parameters are determined 
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and experimental values of the quantities taken into account in the fitting process. Hence, 
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systems because it is used for alloy modeling as an adjustable parameter to constitute 
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et al. [32] are compared in Fig.1. The Rose energy is also called as the generalized equation 
of state of metals and written as 

 *
0( *) (1 *) a

RE a E a e        (6) 

 
1/2

0
* 1 /

9
C

m

Eaa
a B

   
    

   
     (7) 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

204 

where E0 is a constant to be taken as an equilibrium cohesive energy of solid, Bm is the bulk 
modulus, and  is the atomic volume in equilibrium. It has been determined that the 
cohesive energy calculated from Eq. (1) with the parameter given in Table1 for Au  is in 
good agreement with Rose energies in equilibrium.   
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Au 4.079 2.8842 3.81 0.93 180.32 201.63 169.67 45.44 1337 25.42 
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Au 7 0.5 4.3482 3.5361 0.0685 0.3097 

Table 1. The experimental properties and potential parameters of Au. The experimental 
lattice parameters (a0) at room temperature are from ref. [27]. Bulk modulus (Bm) and elastic 
constants (Cij) given at zero temperature are from [28], vacancy formation energy (Evf) is 
from ref. [29], melting temperature (Tm), the coefficient of linear thermal expansion α are 
from [30], and specific heat Cp is from [31]. 
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Fig. 1. Rose and EAM energies versus lattice constant for Au. 

3. Molecular dynamics simulation 
The Lagrange function, written for an anisotropic box, i.e. MD cell, containing N particles by 
Parrinello and Rahman, is given by [33, 34] 
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where mi is mass of particle i, si is the scaled coordinate of atom i and is represented by a 
column vector whose elements are between zero and unity, h=(a, b, c); a, b and c vectors are 
MD cell axes, the metric tensor G is given by matrix product hth, M is an arbitrary constant 
which represents mass of the computational box, Pext is external pressure applied on the cell, 
V is the volume of the MD cell and is obtained from det(h). Thus, square of distance 
between particles i and j is described by 2 t

ij ij ijr s Gs . The classical equations of motion of the 
system obtained from Eq. (1) become 
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Also the force on an atom i in the system is calculated from the following equation, 
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where the primes denote the first derivatives of the functions with respect to their 
arguments.  

In all of the simulation studies, the equation of motion given in Eqs. (9) and (10) were 
numerically solved by using the velocity version of the Verlet algorithm [35]. The size of 
integration step was chosen to be 7.87x1015s for Au. Initial structures of the systems were 
constructed on a lattice with 1372 atoms and an FCC unit cell. It has been observed that, 
with these initial conditions, the systems were equilibrated in 5000 integration steps. Time 
averages of the thermodynamic properties of the system in each simulation run were 
determined by using 30,000 integration steps following the equilibration of the system. The 
structures of the system in solid phase were examined by using the radial distribution 
function. Melting temperatures were determined from the plots of the cohesive energy 
versus temperature. It is possible to classify our simulation runs in two groups as thermal 
and pressure applications. In the thermal applications, the temperature of the system under 
zero pressure is raised from 100K to 2400K  for Au with an increment of 100K in each run of 
35,000 integration step; but near the melting temperatures, the increment is reduced to 20K. 
The pressure applications are also implemented by repeating the thermal applications under 
pressure values of 0.5, 1.0, 1.5, 2.5, 5.0, 7.5, 10.0, 15.0 and 20.0 GPa. The simulation is 
restarted with different pressure in each run, to avoid algorithmic errors.   

The temperature dependency of the elastic constants and the bulk moduli are calculated by 
following the procedure given by Karimi et al [14]. 
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where mi is mass of particle i, si is the scaled coordinate of atom i and is represented by a 
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where the primes denote the first derivatives of the functions with respect to their 
arguments.  

In all of the simulation studies, the equation of motion given in Eqs. (9) and (10) were 
numerically solved by using the velocity version of the Verlet algorithm [35]. The size of 
integration step was chosen to be 7.87x1015s for Au. Initial structures of the systems were 
constructed on a lattice with 1372 atoms and an FCC unit cell. It has been observed that, 
with these initial conditions, the systems were equilibrated in 5000 integration steps. Time 
averages of the thermodynamic properties of the system in each simulation run were 
determined by using 30,000 integration steps following the equilibration of the system. The 
structures of the system in solid phase were examined by using the radial distribution 
function. Melting temperatures were determined from the plots of the cohesive energy 
versus temperature. It is possible to classify our simulation runs in two groups as thermal 
and pressure applications. In the thermal applications, the temperature of the system under 
zero pressure is raised from 100K to 2400K  for Au with an increment of 100K in each run of 
35,000 integration step; but near the melting temperatures, the increment is reduced to 20K. 
The pressure applications are also implemented by repeating the thermal applications under 
pressure values of 0.5, 1.0, 1.5, 2.5, 5.0, 7.5, 10.0, 15.0 and 20.0 GPa. The simulation is 
restarted with different pressure in each run, to avoid algorithmic errors.   

The temperature dependency of the elastic constants and the bulk moduli are calculated by 
following the procedure given by Karimi et al [14]. 
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For the calculation of glass formation and crystallization, firstly, we run 20 000 time steps to 
make the system into equilibrium state, then  the liquid phase is cooled to  100K  at the rate 
of 1.5833x1013  K/s and 1.5833x1012 K/s , respectively to examine the formation process  of 
amorphization and crystallization. 

4. Results and discussion 
4.1 Thermal and mechanical properties  

We can classify our results on thermal and mechanical properties of Au  in to seven different 
categaries (i) the P-V diagram has been analyzed to determine the bulk modulus under zero 
pressure, (ii) the specific heat has been determined by using the changes of the enthalpy 
with temperature, (iii) the radial distribution function has been obtained in solid and liquid 
phases for the estimation of structural properties, (iv) the P-T graph, which is plotted by 
using the variation in melting temperatures with increasing pressure acted on the system, 
have been examined. (v) the pressure dependence of V/Vo has been obtained, (vi)  elastic 
constants and pressure derivatives of elastic constants and bulk modulus  has been 
investigated.  

The change on the atomic volume with the gradually increasing pressure, which acts on the 
system at 300K temperature, is given in Fig.2 for Au. The bulk modulus calculated from the 
P-V diagram shown in Fig.2 is obtained as B=174.3 GPa for Au. The calculated bulk 
modulus is in good agreement with their experimental values (see Table 1) within an error 
of ~3.4% for Au. 

0 2 4 6 8 10 12 14 16

16.0

16.4

16.8

17.2

17.6

V(
A

3 )

P(GPa)

Au, T=300K
Bm= 173.4 GPa

 
Fig. 2. P-V diagrams for Au.                                       

The variations of enthalpy with temperatures under zero pressure for solid Au is given in 
Fig.3, and this graph is used to compute specific heats under the constant pressure. The 
calculated values of specific heats over 0-300K are found to be Cp= 28.2 J/molK for Au. 

 
A Molecular Dynamics Study on Au 

 

207 

Considering the experimental data in Table 1, it can be seen that the specific heat is 
calculated with an error of  9.8 %  for Au.          
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Fig. 3. Variation of the enthalpy with temperature for Au. 

There are several methods for determining the melting temperature of a crystal. MD 
simulations are performed on system at various temperatures, and the cohesive energy is 
plotted as a function of temperature in one of these methods, as we did here. At the melting 
point, a discontinuity occurs in the cohesive energy. The other way of determining the 
melting temperature is to plot caloric curve which is the change of the total energy of crystal 
versus kinetic energy [36]. Indeed, the melting temperature of metal is obtained as the 
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The entropy is required to compute the free energy, but it can not be directly calculated 
from MD simulations. For this reason, some other approaches are required [3]. Another way 
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For the calculation of glass formation and crystallization, firstly, we run 20 000 time steps to 
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Fig. 2. P-V diagrams for Au.                                       

The variations of enthalpy with temperatures under zero pressure for solid Au is given in 
Fig.3, and this graph is used to compute specific heats under the constant pressure. The 
calculated values of specific heats over 0-300K are found to be Cp= 28.2 J/molK for Au. 

 
A Molecular Dynamics Study on Au 

 

207 

Considering the experimental data in Table 1, it can be seen that the specific heat is 
calculated with an error of  9.8 %  for Au.          
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Fig. 3. Variation of the enthalpy with temperature for Au. 
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error on a0 and r0  are 0.8% and 1.5% for Au. So, the present errors can be omitted since the 
parameters of the potential energy function were fitted to the crystal properties in static 
case. Since the peak locations shown in Fig. 5 satisfy the certain peak locations at 2 , 3 , 

4 , 5 , etc. times r0 in an ideal FCC unit cell, the metal of Au  has an FCC unit cell under 
zero pressure. 

The P-T diagrams plotted by using the melting temperatures under different pressures are 
given in Fig. 6  for Au. The binding energies of the metals can be reduced by increasing 
temperature. At high temperatures near the melting point, it is generally expected that the 
Gibbs free energy is lowered by phase transition like martensitic types from one structure to 
another one which has lower energy at higher temperatures, like a BCC lattice.  

 
Fig. 4. The cohesive energy as a function of temperature at different pressure for Au. The 
symbols     ,    ,   ,    ,     ,    ,  +  reppresents the pressure values of 0.0,  0.5, 1.0, 1.5, 2.5, 5.0, 7.5 
GPa, respectively. 

We calculated V/Vo as a function of pressure (0-45 kbar) for Au and added experimental 
points [37] for comparing with MD results. The plot of V/Vo versus pressure for Au is given 
in Fig. 7. Here Vo is the volume under the zero pressure. MD results are in very good 
agreement with the experimental data at pressures below 25GPa.  

We also calculated elastic constans and pressure derivatives of the elastic constants and bulk 
modulus at 0 K and in P=0 GPa pressure. The results are summarized in Table 2. Obtained 
results are in good agreement with available other theoretical results. 
 

 C11 

(GPa) 

C12 

(GPa) 

C44 

(GPa) 
 11 TC P    12 TC P    44 TC P    TB P   

This study  195.43 163.67 44.56 6.99 3.98 2.01 4.02 
[38] 192.9 162.8 41.5 5.72 4.96 1.52 4.66 
[39] 192.2 162.8 42.0 7.01 6.14 1.79 6.43 

Table 2. Second order elastic constants and pressure derivatives of elastic constants and bulk 
modulus (P=0 GPa). 
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Fig. 7. Variation of pressure as a function of V/Vo for Au. Experimental points are taken 
from Ref.[37].   

4.2 Glass formation and crystallization  

Traditionally,the heating and cooling processes are applied to examine the formation 
process of amorphization and crystallization. The Fig.8(a) and (b) show the variation of 
volume at the rate of 1.5833x1013  K/s and 1.5833x1012 K/s, respectively. The sudden jump in 
volume in the temperature range of 1000 to 1100K for the heating process is due to the 
melting of the Au. In contrast to heating, cooling  curves show a continuous change in 
volume. 

The slope of the volume versus temperature curve in Fig.8(a) at the rate of 1.5833x1013  K/s 
decreases  below 500K. This is a sign of glass formation. Since the glass is a frozen liquid,  
the change in configurational entropy vanishes. Thus, the derivative of entropy with respect 
to pressure is the derivative of volume with respect to temperature[40]. The Fig. 8(b) at rate 
of 1.5833x1012 K/s shows a sharp change in the volume as the temperature is lowered below 
300K. At 350 K system shows that  the cooled Au has crystallized.  

Different methods are suggested to determine the glass transition temperature (Tg) which is 
observed widely in amorphous materials. According to one of these definitions, which is 
known as Wendt-Abraham ratio [41], to determine Tg in MD simulations, the gmin/gmax 
ratios  of RDF curves  at different temperatures are calculated [39]. Here, gmin is the first 
minimum value and gmax is first maximum value of RDF curve. In such a plot, two lines in 
different slopes occur, and glass transition temperature is taken as intersection point of these 
lines. The graph of gmin/gmax ratios versus temperature obtained in this study is given in Fig. 
9. The Tg is obtained from this figure to be 500K. 

The RDF curves of the model structure during the heating and cooling processes at different 
temperature are given in Fig10. The RDF shows an fcc crystal structure as the sample is 
heated from 0 to 500 K. But, at 1200 K (above the melting temperature) the emergence of  
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Fig. 8. Average volume of Au during heating and cooling at a rate of (a) 1.5833x1013 K/s and 
(b) 1.5833x1012 K/s. 

broad peaks shows that the structure has melted. The sample was heated to 1500K and then 
cooled back to 1200 K, leading to the same structure as for heating, indicating a stable liquid 
state.  Cooling to 500K, from RDF we still see the structure of a liquid, in fact a supercooled 
liquid. However, after cooling to 300K, we see that the second peak of RDF is split.  
This splitting of the second peak is a well-known characteristic feature in the RDF of a 
metallic glass. 
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300K. At 350 K system shows that  the cooled Au has crystallized.  

Different methods are suggested to determine the glass transition temperature (Tg) which is 
observed widely in amorphous materials. According to one of these definitions, which is 
known as Wendt-Abraham ratio [41], to determine Tg in MD simulations, the gmin/gmax 
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minimum value and gmax is first maximum value of RDF curve. In such a plot, two lines in 
different slopes occur, and glass transition temperature is taken as intersection point of these 
lines. The graph of gmin/gmax ratios versus temperature obtained in this study is given in Fig. 
9. The Tg is obtained from this figure to be 500K. 
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cooled back to 1200 K, leading to the same structure as for heating, indicating a stable liquid 
state.  Cooling to 500K, from RDF we still see the structure of a liquid, in fact a supercooled 
liquid. However, after cooling to 300K, we see that the second peak of RDF is split.  
This splitting of the second peak is a well-known characteristic feature in the RDF of a 
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Fig. 9. Determination of glassy transition temperature. 
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Fig. 10. Radial distribution function (RDF) of Au during the heating and cooling processes at 
rate of 1.5833x1013 K/s (a) at 0K (b)at 500 K , and (c) at 1200K. 

5. Conclusion 
It has been found that the present version of EAM with a recently developed potential 
function, which makes it more flexible owing to the parameter n, represents quite well the 
interactions between the atoms to simulate the studied mono atomic systems. Since the 
parameterization technique of our potential is based on the bulk properties of metals at 0K, 
it can describe the temperature-dependent behaviors of our crystals particularly, 
qualitatively. As a whole, present  model well describes the many physical properties ,and  
our results are in reasonable agreement with the corresponding experimental findings, and 
provide another measure of the quantitative limitations of the EAM for bulk metals. 
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1. Introduction  

The study of magnetic nanoparticles and ferrofluids has gained considerable interests 
among research workers in recent years. The potential range of application that these novel 
magnetic nanomaterials can offer is gradually being recognized and continues to be 
explored. As described in a recent review article (Pamme, 2006), magnetic particles have 
already been used for such diverse applications as the fabrication of ferrofluidic pumps, 
solid supports for bioassays, fast DNA hybridization, giant magnetoresistive sensors and 
superconducting quantum interference devices (SQUID). At a more fundamental level, one 
of the most important and widely investigated aspects of magnetic nanoparticles and 
ferrofluids is the formation of self-organized microstructures under the influence of an 
externally applied magnetic field. A suspension of magnetic nanoparticles in a fluid 
medium can generally be considered as a single magnetic domain with macroscopic 
properties that are dependent on the properties of individual nanoparticles as well as the 
interactions between them (Rosensweig, 1985). In the presence of an external magnetic field, 
the magnetic domain will be oriented in the direction of the field and may approach 
saturation magnetization. When the external magnetic field is removed, the domain will 
revert to a randomly oriented state which exhibits no macroscale magnetism. Although it is 
well-established that the magnetization of a magnetic fluid or ferrofluid is related to the 
arrangement of the suspended magnetic nanoparticles, which in turn arises due to the 
effects of interactions between various types of forces present such as Brownian and dipole-
dipole interactions for example, current understanding of the kinetics, dynamics and 
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1. Introduction  

The study of magnetic nanoparticles and ferrofluids has gained considerable interests 
among research workers in recent years. The potential range of application that these novel 
magnetic nanomaterials can offer is gradually being recognized and continues to be 
explored. As described in a recent review article (Pamme, 2006), magnetic particles have 
already been used for such diverse applications as the fabrication of ferrofluidic pumps, 
solid supports for bioassays, fast DNA hybridization, giant magnetoresistive sensors and 
superconducting quantum interference devices (SQUID). At a more fundamental level, one 
of the most important and widely investigated aspects of magnetic nanoparticles and 
ferrofluids is the formation of self-organized microstructures under the influence of an 
externally applied magnetic field. A suspension of magnetic nanoparticles in a fluid 
medium can generally be considered as a single magnetic domain with macroscopic 
properties that are dependent on the properties of individual nanoparticles as well as the 
interactions between them (Rosensweig, 1985). In the presence of an external magnetic field, 
the magnetic domain will be oriented in the direction of the field and may approach 
saturation magnetization. When the external magnetic field is removed, the domain will 
revert to a randomly oriented state which exhibits no macroscale magnetism. Although it is 
well-established that the magnetization of a magnetic fluid or ferrofluid is related to the 
arrangement of the suspended magnetic nanoparticles, which in turn arises due to the 
effects of interactions between various types of forces present such as Brownian and dipole-
dipole interactions for example, current understanding of the kinetics, dynamics and 
resulting microstructure of the nanoparticle aggregation process is far from complete. 

In the research literature, a variety of experimental, theoretical and computational 
approaches have been applied towards studies of the aggregation and microstructure 
formation process of magnetic nanoparticles and ferrofluids. In particular, the 
computational techniques that have been used for such investigations include Monte 
Carlo simulations (Davis et al., 1999; Richardi et al., 2008), Brownian dynamics (Meriguet 
et al., 2004, 2005; Yamada and Enomoto, 2008), lattice-Boltzmann method (Xuan et al., 
2005), molecular dynamics simulations (Huang et al., 2005), combination of analytical 
density functional theory and molecular dynamics (Kantorovich et al., 2008), stochastic 
dynamics (Duncan and Camp, 2006) and analytical methods (Furlani, 2006; Furlani and 
Ng, 2008; Nandy et al., 2008). Further, several recent studies have also reported 
comparisons between experimental and theoretical or computational results. For example, 
the chain formation process of magnetic particles in an external magnetic field and under 
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the effects of shear in microchannels was analyzed and the chain growth rate predicted by 
the Smoluchowski model was observed to be consistent with experimental observations 
(Brunet et al., 2005). The transport of an isolated magnetic microsphere or of very dilute 
suspensions where dipole-dipole interactions are negligible through a microchannel have 
also been investigated both experimentally and numerically (Sinha et al., 2007). The 
controlled aggregation of Janus magnetic nanoparticles was studied using dynamic light 
scattering and cryo-TEM imaging techniques and the main features of the aggregation 
behavior were consistent with predictions provided by a modified version of the classic 
Monte Carlo simulation algorithm (Lattuada and Hatton, 2007). Brownian dynamics has 
also been applied towards the study of motion of magnetic particles in a magnetic field 
gradient and shown to be in agreement with experimental measurements based on an 
optical detection method (Schaller et al., 2008). 

While most of the investigations of magnetic nanoparticles dispersions have targeted 
colloidally stable systems, a few studies have also focused on suspensions undergoing 
aggregation. Colloidal systems undergoing aggregation exhibit complex behaviors due to 
several factors such as particle-particle interactions, fractal structure of individual clusters 
and the aggregation mechanism and kinetics. Several modeling approaches have been 
proposed in the literature to simulate the aggregation kinetics of colloidal systems, either 
based on Monte-Carlo simulations, or on population balance equations, or on a combination 
of the cluster mass distribution computed based on the population balance equations with 
the structure properties of individual clusters determined by Monte-Carlo simulations 
(Lattuada et al., 2004a). It was found that the average sizes and structure properties 
predicted in both the diffusion-limited and reaction-limited aggregation regimes were in 
good agreement with light scattering measurements (Lattuada et al., 2004b). In the case of 
magnetic nanoparticles aggregation, both experimental and computational studies have 
underlined substantial differences between diffusion limited aggregation in the absence and 
in the presence of an applied magnetic field (Tsouris and Scott, 1995; Promislow et al., 1995; 
Miyazima et al., 1987). In the presence of magnetic fields, clusters grow as chains aligned in 
the direction of the applied magnetic field. The kinetics of chain growth has been modeled 
using Monte-Carlo methods (Miyazima et al., 1987), Brownian Dynamics simulations 
(Dominguez-Garcia et al., 2007), and population balance equations (Martinez-Pedrero et al., 
2008). All of these studies have demonstrated how the average size of chains grows as a 
power law of time, with an exponent that depends upon the particle volume fraction and 
the strength of the dipolar interactions (Climent et al., 2004). However, no studies to the best 
of our knowledge have focused on gelation and percolation of magnetic dispersions at high 
particles volume fractions. 

In this work, we report the first application of a modified version of the Discrete Element 
Method (DEM) towards the simulation of magnetic nanoparticle aggregation with and 
without an external magnetic field. The various types of interparticle forces that are 
important in the dynamics of the aggregation process, such as dipole-dipole interactions, 
van der Waals forces, electrostatic forces and Brownian effects, are taken into account 
through the incorporation of the respective force models into the classical DEM model. The 
effects of overall solid fraction and the presence or absence of an external magnetic field on 
the propensity of such magnetic nanoparticles to aggregate and the microstructure of the 
resulting clusters or chain-like assemblies formed are investigated computationally. 
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2. Computational model 
2.1 Discrete element method 

The molecular dynamics approach to modeling of particulate systems, otherwise known as 
the Discrete Element Method (DEM), has been applied extensively for studies of flow 
behaviors in various types of granular and multiphase systems (Lim et al., 2006a, 2006b; Lim 
and Wang, 2006; Lim et al., 2007; Lim, 2007, 2008, 2009, 2010a, 2010b; Lim et al., 2011). For a 
comprehensive review, the interested reader is referred to a recent review article by Zhu et 
al. (2008). The methodology of DEM and its corresponding governing equations have also 
been presented numerous times in the research literature and only a brief description will be 
presented here for sake of completeness. 

The translational and rotational motions of individual solid particles are governed by 
Newton’s laws of motion: 
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where mi and vi are the mass and velocity of the ith particle respectively, N is the number of 
particles in contact with the ith particle, fc,ij and fd,ij are the contact and viscous contact 
damping forces respectively, ff,i is the fluid drag force that is governed by Stokes’ Law, fdd,ij 
is the dipole-dipole interaction between particles i and j in the presence of an applied 
magnetic field, fvdw,ij and fe,ij are the van der Waals interaction and electrostatic repulsion 
between particles i and j respectively, fB,i is the random force arising due to Brownian 
effects, flub,ij is the lubrication force due to hydrodynamic effects, Ii is the moment of inertia 
of the ith particle, i is its angular velocity and Tij is the torque arising from contact forces 
which causes the particle to rotate. The effect of gravity is neglected in the present study. 

Contact and damping forces have to be calculated using force-displacement models that 
relate such forces to the relative positions, velocities and angular velocities of the colliding 
particles. A linear spring-and-dashpot model is implemented for the calculation of these 
collision forces. With such a closure, interparticle collisions are modeled as compressions of 
a perfectly elastic spring while the inelasticities associated with such collisions are modeled 
by the damping of energy in the dashpot component of the model. The normal (fcn,ij, fdn,ij) 
and tangential (fct,ij, fdt,ij) components of the contact and damping forces are calculated 
according to the following equations: 

  , , ,cn ij n i n ij if n    (3) 

  , , ,ct ij t i t ij if t    (4) 

  , ,dn ij n i r i if v n n    (5) 
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     , ,dt ij t i r i i i i j jf v t t R R          (6) 

where n,i, n,ij, ni, n,i and t,i, t,ij, ti, t,i are the spring constants, displacements between 
particles, unit vectors and viscous contact damping coefficients in the normal and tangential 
directions respectively, vr is the relative velocity between particles and Ri and Rj are the radii 
of particles i and j respectively. If , , tanct ij cn ijf f  , then ‘slippage’ between two contacting 
surfaces is simulated based on Coulomb-type friction law, i.e. , , tanct ij cn ijf f  , where tan 
 is analogous to the coefficient of friction. 

2.2 Long range interactions 

In the presence of an externally applied magnetic field, paramagnetic nanoparticles can be 
considered as magnetic single-domains with a permanent magnetic moment, i proportional 

to their volume, 
3

6
i

i i
d M

  , where Mi is the intensity of magnetization. By the 

superparamagnetic magnetization law for a monodisperse, colloidal ferrofluid (Rosensweig, 
1985), 
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where 
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  , o is the magnetic permeability of free space, Md is the saturation 

magnetization of the bulk magnetic solid, H is the magnetic field strength, k is the 
Boltzmann’s constant, T is thermodynamic temperature and s is the volume fraction of 
solid present. The anisotropic dipole-dipole interaction energy Edd,ij is then given by 

(Rosensweig, 1985) 
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where i and j are the magnetic moments of particles i and j respectively and rij is the 
displacement vector between the two particles. The dipole-dipole force of interaction acting 
on particle i is then derived from fdd,ij = -Edd,ij. 

The van der Waals forces of interaction and electrostatic repulsion between particles are 
calculated as follows (Russel et al., 1989): 
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where Ha is the Hamaker constant and hij is the surface-to-surface separation distance along 
the line of centers of particles i and j. When the actual surface-to-surface separation distance 
between two particles is less than 1 nm, hij is fixed at 1 nm to avoid the singularity in the 
above equation. 
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The electrostatic repulsion between particles due to the so called double layer forces is 
described by the DLVO theory (Russel et al., 1989): 

 
 
 

2
2

,
exp

2
1 exp

ij
e ij o i

ij

hkTf R q
ze h


 



   
   

 (10) 

where  is relative permittivity, o is the absolute permittivity of free space, z is the valency 
of ions, q is the surface charge, e is the fundamental electronic charge, κ-1 is the Debye decay 

length given by 
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, nb is the concentration of ions. 

For the size of nanoparticles simulated, it is also pertinent to consider the random forces 
arising due to Brownian effects. The algorithm for simulating Brownian forces is similar to 
that for generating a Gaussian white noise process (Russel et al., 1989): 
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where t is the time step used in the simulation and ni’ is a unit vector with a random 
direction. It is well-established that Brownian effects become less significant at small 
separation distances between particles due to the presence of hydrodynamic lubrication 
effects. As such, Brownian forces were set to zero for surface-to-surface distances less than 1 
nm in all simulations. 

2.3 Hydrodynamic interactions 

Hydrodynamic interactions due to lubrication effects become important at small surface-to-
surface separation distances between particles. The lubrication force between two spheres is 
described by the lubrication theory and may be calculated as follows (Russel et al., 1989): 
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Here, as with the calculation of van der Waals forces described earlier, when the surface-to-
surface separation distance between two particles is less than 1 nm, hij is fixed at 1 nm to 
avoid the singularity in the above equation. 

3. Simulation conditions 
The simulation conditions applied were based as much as possible on the materials and 
methods used for experimental studies reported in the literature so that a meaningful 
comparison between the simulations and experiments can be made. Spherical nanoparticles 
of diameter 70 nm and density 1000 kg m-3 were simulated within a pseudo-three-
dimensional computational domain. The dimensions of the computational domain were 5 
m  5 m with thickness in the spanwise direction equivalent to one particle diameter. The 
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numbers of nanoparticles simulated were 485, 975, 1460 and 1950 which correspond to solid 
volume fractions of 0.05, 0.10, 0.15 and 0.20 respectively. Here, solid volume fraction is 
defined to be the ratio of the total volume of all nanoparticles present to the volume of the 
pseudo-three-dimensional domain. To ensure numerical stability and accuracy, a relatively 
small time step of 10 ps was applied for all simulations carried out in this study. Table 1 
summarizes the values of pertinent material properties and system parameters applied in 
the simulations. At the start of each simulation, the positions of all nanoparticles were 
assigned randomly within the computational domain such that no overlap between any two 
nanoparticles occurred. Periodic boundary conditions were applied on all four sides of the 
computational domain so as to eliminate any possible effects that may arise due to the 
presence of boundaries. The application of such boundary conditions also allowed the 
possibility of simulating a large system using a significantly smaller computational domain 
which leads to more efficient utilization of computing resources. 

 
Shape of particles Spherical 
Number of particles, N 485, 975, 1460, 1950 
Solid volume fraction 0.05, 0.10, 0.15, 0.20 
Particle diameter, d 70 nm 
Particle density, p 1000 kg m-3 
Spring constant in force model,  1.0  10-3 N m-1 
Viscous contact damping coefficient,  1.0  10-12 
Coefficient of restitution 0.99 
Coefficient of friction 0.5 
Saturation magnetization, Md 1.0  105 A m-1 
Hamaker constant, Ha 1.0  10-19 J 
Surface charge, q 1.6  10-15 C 
Ion concentration, nb 1.0 M 
Temperature, T 298 K 
Domain size 5 m  5 m  70 nm 
Simulation time step, t 10 ps 

Table 1. Material properties and system parameters for DEM simulations 

4. Results and discussion 
Fig. 1 shows the aggregation patterns of magnetic nanoparticles formed in the absence of an 
external magnetic field obtained from computer simulations with the modified DEM 
methodology. It may be seen that small isolated aggregates of nanoparticles are observed at 
low solid volume fractions while at high solid volume fractions, an extended network of 
nanoparticles usually referred to as a percolated network is observed to form 
spontaneously. The former is typically associated with gelation experiments carried out at 
insufficient concentrations of nanoparticles resulting in simple destabilisation of the 
suspension and formation of a collapsed structure. 
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Fig. 2. Aggregation process of magnetic nanoparticles of solid volume fraction 0.20 in the 
absence of an external magnetic field. The states of aggregation correspond to (a) 0.0 s, (b) 
2.0 × 10-4 s, (c) 4.0 × 10-4 s, (d) 6.0 × 10-4 s, (e) 8.0 × 10-4 s and (f) 10-3 s. 
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To observe gelation of nanoparticle suspensions, the present simulations have shown that 
solid concentrations must be sufficiently high and beyond the percolation threshold in order 
for a stable network structure to form. Although the simulations presented here are 
computationally expensive and so have been carried out at smaller length and time scales 
than those associated with experiments, it may be seen that the main qualitative features  
of the type of gel networks formed in the absence of an external magnetic field have  
been reproduced computationally. In particular, Fig. 2 shows that the gelation process takes 
place with the initial formation of small random aggregates throughout the domain  
which then join to form a fairly open network with no specific orientation of the various 
branches. 

The intermediate states of the gel during its formation process that are unobservable 
experimentally with present day technology are readily available from DEM simulations. 
With the advent of computing power, this computational technique is expected to become 
more important in this research field as such information will be necessary for more 
fundamental and mechanistic understanding of nanoparticle gelation processes. Fig. 3 
shows that in the presence of an external magnetic field, the aggregates of nanoparticles are 
aligned along the direction of the magnetic field due to the anisotropic nature of the 
magnetic forces exerted on each nanoparticle and aggregate. At low solid volume fractions, 
individual elongated strands of aggregates are formed while at high solid volume fractions, 
such aggregates are capable of joining together due to smaller distances between aggregates. 
In comparison with the previous case where an external magnetic field was absent, the 
branches of the network that is beginning to form here are composed of more particles and 
are thus longer. This can be understood from inspection of the intermediate states of 
aggregation obtained from the simulations. 

Fig. 4 shows that the aggregation process in the presence of an external magnetic field 
starts, as in the previous case, with the formation of random aggregates throughout  
the domain. However, due to the anisotropic magnetic forces, aggregates formed are 
rotated to align along the direction of the magnetic field. Elongation of aggregates occurs 
as the growth of these aggregates also occurs along the direction of the magnetic field 
imposed. The final network structure consisting of long, parallel chains of nanoparticles is 
also in good agreement with structures of gels obtained experimentally with an applied 
magnetic field. 

Fig. 5 shows quantitatively the time evolution of the average sizes of clusters formed by the 
magnetic nanoparticles both in the absence and presence of an external magnetic field. Here, 
average cluster size is defined as the average number of nanoparticles forming a cluster or 
aggregate. It may be observed that average cluster sizes increase with increasing total 
number of nanoparticles present within the domain or, equivalently, the overall solid 
volume fraction. Interestingly, the average size of clusters formed at each solid volume 
fraction evolves in a similar fashion with respect to time regardless of the presence or 
absence of an external magnetic field. This is despite the fact that the morphologies of the 
clusters or aggregates formed are significantly different as seen earlier. At the end of 1 ms, 
the average cluster sizes for N = 485 and N = 975 both in the absence and presence of an 
external magnetic field have reached more or less steady values. In contrast, the clusters 
formed for N = 1460 and N = 1950 are still growing in size, indicating that the percolation 
process is not completed yet at the end of 1 ms. 
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Fig. 3. Aggregation patterns of magnetic nanoparticles in the presence of an external 
magnetic field at 10-3 s physical time obtained from the modified DEM simulations. The 
orientation of the simulated magnetic field was in the vertical direction. The solid volume 
fractions applied were (a) 0.05, (b) 0.10, (c) 0.15 and (d) 0.20. 
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Fig. 4. Aggregation process of magnetic nanoparticles of solid volume fraction 0.20 in the 
presence of an external magnetic field. The states of aggregation correspond to (a) 0.0 s, (b) 
2.0 × 10-4 s, (c) 4.0 × 10-4 s, (d) 6.0 × 10-4 s, (e) 8.0 × 10-4 s and (f) 10-3 s. 
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Fig. 5. Time evolution of average size of clusters formed by magnetic nanoparticles (a) in the 
absence of an external magnetic field and (b) in the presence of an external magnetic field. 

5. Conclusions 
The process of gelation with and without the application of an external magnetic field giving 
rise to the different internal pore structures could be understood mechanistically by results of 
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the simulations performed using a modified Discrete Element Method. Gelation occurred by 
the formation of random aggregates of nanoparticles within the domain which then joined 
with one another to form a network. However, in the presence of anisotropic magnetic forces, 
these aggregates were rotated to align along the direction of the magnetic field. Elongation of 
aggregates occurred and the final network formed consisted largely of such elongated 
branches of magnetic nanoparticles arranged more or less parallel to one another. 
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Fig. 5. Time evolution of average size of clusters formed by magnetic nanoparticles (a) in the 
absence of an external magnetic field and (b) in the presence of an external magnetic field. 
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the simulations performed using a modified Discrete Element Method. Gelation occurred by 
the formation of random aggregates of nanoparticles within the domain which then joined 
with one another to form a network. However, in the presence of anisotropic magnetic forces, 
these aggregates were rotated to align along the direction of the magnetic field. Elongation of 
aggregates occurred and the final network formed consisted largely of such elongated 
branches of magnetic nanoparticles arranged more or less parallel to one another. 
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2. Molecular dynamics in non-equilibrium conditions

The framework to tackle the problems out of equilibrium is Non-equilibrium Statistical
Mechanics. Its concerns the extension of the usual formalism of Statistical Mechanics
(microcanonical, canonical and other extended ensembles, partition functions) to systems
either approaching thermodynamic equilibrium after a perturbation, or definitely far away
from it. So far there is no unified theory we can appropriately call non-equilibrium
statistical mechanics 1, only a number of results applicable to processes in the linear response
regime (thermodynamic fluxes proportional to the thermodynamic forces), such as the
celebrated Onsager regression hypothesis (Callen, 1985) that relates the decay of macroscopic
variables in a non-equilibrium setting to the regression of fluctuations in equilibrium.
Prigogine’s minimum entropy production (Prigogine, 1968) principle, also restricted to the
linear response regime, is a possible explanation for the emergence of order in dissipative
systems. The fluctuation-dissipation theorem and the Green-Kubo formulas (Zwanzig,
2001) determine transport coefficients from equilibrium measurements. There are also a
few results valid arbitrarily far away from equilibrium, such as the family of fluctuation
theorems (Evans & Searles, 2002) quantifying the likelihood of instantaneous violations of the
Second Law of thermodynamics.

Non-equilibrium Molecular Dynamics (NEMD) is then the natural extension of molecular
dynamics techniques to study non-equilibrium problems, and attempts to fill the void left by
a missing theoretical framework.

Stationary (or steady-state) processes like deformation under shear stress, or a sample
submitted under a temperature gradient, among others, require the implementation of NEMD
under temperature control. In this case the use of thermostat algorithms is necessary
to maintain the steady-state regime, extracting the excess heat generated by the process.
However this has the drawback of modifying the equations of motion, introducing friction
and noise forces which perturb the original dynamics (energy is not conserved), and affecting
the performance of the usual numerical integration methods.

A comprehensive review of thermostat methods and their implementation in the context of
NEMD is given by Hoover (Hoover & Hoover, 2007). Briefly, the standard implementation of
the thermostat is the Nosé-Hoover equation of motion,

d�pi
dt

= �Fi − ζ�pi, (1)

where ζ is a friction coefficient governed by

dζ

dt
=

1
Nτ2

N

∑
i=1

(
p2

i /mkBT0 − 1
)

, (2)

T0 the imposed temperature and τ is a relaxation time, controlling the degree of coupling of
the “thermal bath” with the system.

It is possible, however, to perform NEMD in a completely microcanonical way (i.e. without
modifying Newton’s equations) for systems outside the steady-state regime (for instance in

1 The maximum caliber formalism (Jaynes, 1980; Stock et al., 2008), based on information-theoretic ideas,
together with the maximum entropy production principle derived from it seem to show promising
early results as such a unifying basis (Dewar, 2005; 2003; Kleidon et al., 2005).
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the case of shockwave propagation (Holian, 1995), collisions, fast fracture, detonations) where
it is not necessary to remove the excess heat. Here energy is conserved, being converted from
kinetic or elastic into thermal, vibrational and other forms, the heat eventually produced in the
process remains inside the system, causing an increase in temperature and eventually being
able to induce local melting. This kind of NEMD simulations are justified because we are
implicitly solving the Liouville equation,

∂P(p, q)
∂t

= −{P,H}, (3)

which describes the evolution of the phase space distribution function P(p, q) of a system of
particles obeying Newton’s equations, and this is valid arbitrarily away from equilibrium.

It is important to consider that, away from the linear response regime, there is no unique
definition of thermodynamic intensive variables such as temperature, pressure or chemical
potential if those variables are not fixed (Casas-Vásquez & Jou, 2003). However, the usual
practice is to take the instantaneous kinetic energy of the system (or even of a region of the
system) to evaluate an instantaneous “kinetic” temperature,

TK(t) =
m

3kB

N

∑
i=1

v2
i . (4)

When using the instantaneous kinetic energy to evaluate a local instantaneous temperature, it
might be required to remove the translational part of the velocities for the atoms in the region,
if they happen to have non-zero linear momentum. For instance, a projectile approaching a
target cannot be assigned a higher temperature by virtue of its translational speed.

It is also possible to evaluate an instantaneous “configurational” temperature (Baranyai, 2000),

TC(t) =
1

kB

|∇Φ(t)|2
∇2Φ(t)

, (5)

where Φ is the potential energy function, which depends on t only through the atomic
positions. Away from equilibrium both definitions (kinetic and configurational) do not
necessarily coincide, because an object immersed in the non-equilibrium system and used
as a thermometer could equilibrate in different time scales to the configurational and kinetic
degrees of freedom and therefore measure different temperatures. In fact “operational”
definitions of non-temperature exist that measure the kinetic energy of a tracer (probably
heavier) particle placed inside the system, and assumed to be in thermal equilibrium with
it.

In the following, we briefly describe the molecular dynamic method and its implementation
our in-house code Las Palmeras Molecular Dynamics. Next, the inelastic collisions and
hypervelocity impacts simulations are presented, as examples of the potential of an
atomic-level description. Finally, general conclusions are drawn.

3. Las Palmeras Molecular Dynamics

Although there are many general purpose MD codes, they are usually subjected to design
limitations arising mostly due to efficiency considerations. A given code is usually optimized
to perform extremely well for one kind of system (for instance bulk systems) but because of
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said optimization it performs poorly on a different kind of system. This, in practice, only
allows the study of certain systems and conditions.

Most codes cannot handle in an easy way the requirements of some setups, such as
non-periodic boundary conditions, non-negligible variations of density inside a sample, or
initial states prepared far from equilibrium. It might be possible to modify these codes to lift
some of the limitations, but it could be cumbersome and error-prone. For these cases, a more
flexible MD code is needed, even though some performance could be sacrificed.

We could say that the early way of doing MD was to implement a tailor-made computer
program with precisely the chosen algorithms for numerical integration of the equations
of motion and computation of the interatomic potentials and forces. Thus, one different
computer code for each system to be simulated.

The next stage in MD computer codes is the ability to choose the interatomic potential at
runtime (i.e., every time the program is executed, without the need to recompile for every
change) along with all the other options such as the time step used for integration, total
simulation time, initial conditions of pressure and temperature and so on. This has led to
general purpose MD codes such as Moldy (Refson, 2000) and DL_POLY (Smith & Forester,
1996) among many others. While the ability to choose the potential function is commonplace
nowadays, very few computer codes offer the choice of changing the integration algorithm at
runtime, although several have the choice at compile-time (i.e., during the compilation stage).

From a general point of view, the MD procedure consist of four main stages, namely: (a) the
initialization of the sample, (b) the calculation of interatomic forces, (c) the integration of the
equations of motion, and (d), collecting statistics and the computation of properties. It work
quite well in several different cases, like equilibrium conditions or even for metastable system,
like glasses (see, for example (Gutiérrez et al., 2010)). But also MD procedure can be applied
to more extreme conditions.

When the MD simulation that we intend to perform is not standard, for example in the case
of simulations far away from thermodynamic equilibrium (shockwaves (Loyola et al., 2010),
high velocity impacts, ) or non-standard potential functions and forces (for example friction
forces or external fields) one can clearly see the need for an hybrid approach between the
tailor-made MD code (containing exactly the algorithms we need for a given simulation) and
the general purpose MD code (with several choices available at run-time and compile-time).
We would want to replace pieces of the program at will, including (but not limited to)
integration methods, potential functions and other algorithms, such as the one responsible
for computing interatomic distances or the thermostat algorithms used to control the applied
temperature or pressure in an isothermal-isobaric (NPT) MD simulation. Here the general
purpose approach is not general enough, only allowing some limited choices.

Our motivation for writing yet another MD code, Las Palmeras Molecular Dynamics
(LPMD) (Davis et al., 2010) is to fill this practical void. LPMD is designed as a completely
modular MD code, consisting of a set of interchangeable pieces or plug-ins which can
be linked together in different ways to accommodate the needs of a non-standard MD
simulation. Beyond that, the user can also perform post-simulation analysis, convert between
input/output formats, prepare samples with ease and visualize simulations in real time.
LPMD’s modular design also improves efficiency in some cases. It also allows the user to add
new pieces (integration methods, interatomic potentials, properties, file formats, and many
others) without the need for learning the complete code architecture. LPMD is open source
software written in standard C++ language, and released under the General Public License
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(GPL) version 3. Figure 1 displays an example of the control file. For more information, visit
www.lpmd.cl.

#This is a comment. Comments are used usually as a title:
#########################################
# System file of Au crystal using LPMD #
#########################################
cell cubic 28.56
input module=lpmd file=300K-Gold.lpmd level=1
output module=lpmd file=au.lpmd each=15 level=1
periodic false true true
steps 5000

#Integrator
use velocityverlet as vv

dt 1.0
enduse

#CellManager

use linkedcell
mode auto
cutoff 7.5

enduse

# Sutton-Chen Potential (parameters for gold)
use suttonchen as sc

e 0.013
n 10
a 4.08
m 8
c 34.408
cutoff 7.5

enduse

#- Applying Plugins -#
integrator vv
cellmanager linkedcell
potential sc Au Au

Fig. 1. Example of an LPMD control file. The components are loaded (use...enduse) and
then applied.

3.1 Structural properties with LPMD

We will denote by structural property, any quantity AS which depends on the instant t only
through the atomic coordinates,

AS(t) = AS(�r1(t), . . . ,�rN(t)), (6)

with N the number of particles.

LPMD allows the calculation of several structural properties (either as instantaneous values
or as averages), including the radial distribution function g(r) (using the gdr plug-in) and
common neighbor analysis (through the cna plug-in), both of which can be used to measure
a degree of deviation from an ideal crystal structure.
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use linkedcell
mode auto
cutoff 7.5

enduse

# Sutton-Chen Potential (parameters for gold)
use suttonchen as sc

e 0.013
n 10
a 4.08
m 8
c 34.408
cutoff 7.5

enduse

#- Applying Plugins -#
integrator vv
cellmanager linkedcell
potential sc Au Au

Fig. 1. Example of an LPMD control file. The components are loaded (use...enduse) and
then applied.

3.1 Structural properties with LPMD

We will denote by structural property, any quantity AS which depends on the instant t only
through the atomic coordinates,

AS(t) = AS(�r1(t), . . . ,�rN(t)), (6)

with N the number of particles.

LPMD allows the calculation of several structural properties (either as instantaneous values
or as averages), including the radial distribution function g(r) (using the gdr plug-in) and
common neighbor analysis (through the cna plug-in), both of which can be used to measure
a degree of deviation from an ideal crystal structure.
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Fig. 2. Schematic representation of the computation of the radial distribution function g(r).

The radial distribution function g(r) represents the probability density for finding a
neighboring atom at a distance r, normalized to the same probability density in a perfectly
uniform distribution of atoms. This ensures that g(r) goes to unity for large enough r,
independently of the system. It is formally defined as

g(r) =
V
N2

〈
∑

i
∑
j �=i

δ(�r − �rij)

〉
. (7)

where N is the total number of atoms in the system and V is the total volume. However, in
practice, it is computed from an histogram of the neighbor distribution,

g(r) =
V
N

n(r)
4
3 π((r + Δr)3 − r3)

≈ V
N

n(r)
4πr2Δr

(8)

where n(r) is the number of atoms in the spherical shell between r and r + Δr (see figure 2).

The Common Neighbor Analysis (CNA) (Honeycutt & Andersen, 1987) is a technique used in
atomistic simulations to determine the local ordering in a given structure. CNA gives more
detailed information than the radial distribution function g(r), as it considers not only the
number of neighbors at a given distance but also their location with respect to other common
neighboring atoms. In the CNA method (see figure 3), every pair of atoms is labeled according
to four indices (i, j, k, l): the first index, i, is 1 for nearest neighbor pairs, 2 for next-nearest
neighbors, and so on. The second index, j, corresponds to the number of common neighbors
shared by the atoms in the pair. The third index, k, corresponds to the number of bonds that can
be “drawn” between the j common neighbors (taking the bond length as the nearest neighbor
distance). Finally, the fourth index, l, corresponds to the length of the longest chain that
connects all the k bonds. The different structures have the following distribution of pairs: FCC
has only 1-4-2-1 pairs, in hcp the pairs are distributed equally between 1-4-2-1 and 1-4-2-2, and
in bcc there are 1-4-4-4 and 1-6-6-6 present in ratios 3/7 and 4/7, respectively.
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Fig. 3. Four common neighbors (green atoms) of the pair a-b (in blue) in a face-centered cubic
structure. The pair depicted as a-b has indices 1-4-2-1 in CNA notation, and is the only kind
of pair appearing in the FCC structure.

4. Bouncing of a ball over a surface: atomic level study

A typical problem in classical mechanics is the bouncing of a bead in free fall over a surface,
due to the action of the force of gravity (Alonso & Finn, 1992; Eisberg & Lerner, 1981). After
each bouncing, the body reaches different heights, each one of them less or equal than
the previous one. The most common explanation for this phenomenon is the viscoelastic
dissipation, which results in an energy loss due to the inelastic collision (Aguirregabiria et al.,
2008; Falcon et al., 1998).

Although there have been many works dealing with the dynamics of inelastic
collisions (Goldsmith, 2001; Johnson, 1987; Zukas et al., 1982) and many measurements of
the energy loss in such collisions (Bridges et al., 1984; Goldsmith, 2001; Hatzes et al., 1988;
Lifshitz & Kolsky, 1964; Lun & Savage, 1986; Raman., 1918; Reed, 1985; Supulver et al., 1995;
Tabor, 1948; Tillett, 1954; Tsai & Kolsky, 1967; Zener, 1941), there is a considerable scatter
in existing data, and the mechanisms of dissipation and the behavior of the restitution
coefficient with the impact velocity are still open problems (Falcon et al., 1998). At high
impact velocities, i.e., when fully plastic deformations occur, this behavior is well known both
experimentally (Goldsmith, 2001; Raman., 1918; Reed, 1985; Tabor, 1948; Tillett, 1954; Zener,
1941) and theoretically (Goldsmith, 2001; Johnson, 1987; Tabor, 1948), but the mechanisms of
energy loss during a collision are hard to track at a macroscopic level.

Molecular dynamics allows us to keep track of the position and velocity of every particle
in the system at any instant of time. Using statistical mechanics, the calculation of energy,
temperature and other thermodynamic properties is straightforward. Moreover, if the target
(surface) is considered as being a part of the system, the total energy remains constant, and
the “energy loss” that the bead experiments is just a transfer of translational kinetic energy
to internal potential and thermal energy, which can be identified with mechanisms of energy
loss, such as plastic deformation, vibrational energy and others.

To show how this phenomenon occurs, molecular dynamics simulations were performed
using the LPMD program(Davis et al., 2010) (see section 3). A bead is dropped from rest at
different heights in a constant force field over a surface. The resulting collisions show two
main types of deformation: slight deformation, where the bead remains vibrating after the
collision, and substantial deformation, where the bead changes its shape. Then, the evolution
of the different energies in time is computed in order to show in detail the energy transfer.
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To show how this phenomenon occurs, molecular dynamics simulations were performed
using the LPMD program(Davis et al., 2010) (see section 3). A bead is dropped from rest at
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main types of deformation: slight deformation, where the bead remains vibrating after the
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4.1 Simulation details

The system consist of a solid ball that interacts repulsively with a solid surface, both made of
argon in the solid state (see figure 4). The interaction between atoms separated by a distance

Fig. 4. Argon ball over a solid argon surface, immersed in a constant force field. Image
generated by the LPVisual plugin of the LPMD program.

r is modeled using a modified form of the Lennard-Jones potential (Barrat & Bocquet, 1999):

V(r) =

{
4ε

[(
σ
r

)12 − c
(

σ
r

)6
]

r < rc = 2.5σ

0 r � rc ,
(9)

where rc is a cut-off chosen here to be 2.5σ (σ is the Lennard-Jones diameter and ε is the depth
of the potential well). For our system, the parameters ε/kB = 119.8 K and σ = 3.40 Å are the
same for all atoms and correspond to the values for argon (Kittel, 2005), whose atomic mass
is M = 39.948 amu. In the rest of this section, all quantities are expressed in LJ reduced units,
using σ, ε and M as length, energy and mass scales, respectively 2.

The interaction between atoms in the ball and atoms in the surface is given by the equation (9)
with c = 0 (i.e., purely repulsive), while the interactions between any pair of atoms in the ball
is given by the usual Lennard-Jones potential (eq. (9) with c = 1). The last also holds for every
pair of atoms inside the surface. The Newton equations of motion are integrated using the
Beeman algorithm, with a time step Δt = 4.651 × 10−4τ.

The solid ball and the surface slab were equilibrated at zero temperature for 5× 103 time steps
to allow them to adopt relaxed configurations.

The ball, composed of less than 100 atoms, was immersed in a constant force field in the
direction of the negative z−axis, whose magnitude was 0.026 F0, and it was dropped from
different heights over the surface, composed of about 1500 atoms. This force produces a
constant acceleration of the center of mass of the ball of 0.026 a0, which means that it travels
0.49 σ after a time τ of being dropped. Each simulation took about 3 × 104 time steps (∼14 τ).

Different types of collisions were observed. The most representatives are shown in figures 5
and 6. Figure 5 shows one of the simulations where the ball is falling over the surface. In

2 Time: τ ≡ σ
√

M/ε = 2.15 ps.
Velocity: v0 ≡ √

ε/M = 157.91 m/s.
Acceleration: a0 = ε/Mσ = 0.73 Å/ps2.
Force: F0 ≡ ε/σ = 3.04 × 10−3 eV/Å.
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this case, the ball was dropped from z = 11.03 σ. While the ball is hitting the surface, it gets
compressed, and then leaves the ground, oscillating harmonically (figures 5(c) and 5(d)).

(a) (b)

(c) (d)

Fig. 5. Ball dropped from z = 11.03 σ. (a) The ball is falling towards the surface. (b) The ball
hits the surface and gets compressed, inducing an oscillatory movement on it. (c) The ball
leaves the surface vibrating. A maximum amplitude is reached. (d) A minimum amplitude is
reached due to the induced oscillatory movement. The maximum amplitude is slightly
greater than the minimum, so the difference between the size of the ball in 5(c) and its size
in 5(d) is not clearly appreciated. You can see the simulations at www.lpmd.cl in the
examples section, where these oscillations can be clearly appreciated in the videos.

Figure 6 shows another simulation, where the ball was dropped from z = 28.15 σ. After the
collision, the ball acquires a new shape.

4.2 Results

In this section we present the results of several simulated collisions. The ball was dropped
from heights h0 between 11.03 σ and 79.53 σ. We begin by describing the dynamics of the ball
and discuss about the height reached after each bounce. Then, we analyze the deformation
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leaves the surface vibrating. A maximum amplitude is reached. (d) A minimum amplitude is
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in 5(d) is not clearly appreciated. You can see the simulations at www.lpmd.cl in the
examples section, where these oscillations can be clearly appreciated in the videos.

Figure 6 shows another simulation, where the ball was dropped from z = 28.15 σ. After the
collision, the ball acquires a new shape.

4.2 Results

In this section we present the results of several simulated collisions. The ball was dropped
from heights h0 between 11.03 σ and 79.53 σ. We begin by describing the dynamics of the ball
and discuss about the height reached after each bounce. Then, we analyze the deformation
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(a) (b)

(c) (d)

Fig. 6. Ball dropped from z = 28.15 σ. (a) The ball is falling towards the surface. (b) The ball
hits the surface and gets compressed. (c) The ball lifts the surface acquiring a new shape,
with almost none internal vibrations. (d) The ball keeps its new shape after the collision.

of the ball by evaluating the pair-distribution function g(r). Finally, we classify kinetic and
potential energies in different types and then examine how these energies are transferred from
one to another to keep the total energy constant.

4.2.1 Heights reached

Fig. 7 shows the heights reached by the center of mass of the ball after each bounce. The zeroth
bounce represents the initial height h0. The case in which the ball is dropped from a height
of 11.03 σ corresponds to a quasi-elastic bounce because the height of bounces are almost the
same. When h0 = 18.64 σ, the height reached by the ball after the first bounce is smaller
than the initial height from where it was dropped, and something similar happens with the
other bounces: the maximum heights reached decrease until the ball remains static over the
target. For h0 = 41.47 σ, the maximum height reached after the first bounce is considerably
smaller than h0. Big differences of height are observed also for h0 = 58.6 σ, where a notorious
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Fig. 7. (Color online) Maximum heights reached after each bounce, by the center of mass of
the ball.

decrease is appreciated in the first bounce as well as in the second. For h0 = 79.53 σ only
two bounces are observed because, after the first bounce, the ball gets deformed and loses its
solid structure, which does not allow it to keep bouncing. Nevertheless, a common behavior
is observed for all cases: after the third bounce, the height reached is almost the same. At this
point, the ball remains over the surface.

4.2.2 Deformation of the ball

We analyze in detail the structure of the ball evaluating the pair-distribution function g(r) for
the atoms that constitute the ball for different time steps (Fig. 8) in different simulations.

Before the first impact, i.e., when the ball is falling, it has a FCC structure (for any h0), because
the first neighbors are clearly appreciated at 1.09 σ for all cases (Fig. 8), which is the known
value for first neighbors in argon lattice structure (Kittel, 2005). In Fig. 8(a) it can be seen
that for times between t = 0 and t = 5.581τ the initial FCC structure is conserved, despite
of the effects of the impacts with the surface, which took place at t = 0.71 τ, t = 2.07 τ,
t = 3.38 τ, t = 4.52 τ and t = 5.83 τ. The peaks also have similar widths, which means that
there are small temperature effects. If h0 is increased, the peaks become wider and smaller
(Fig. 8(b) to 8(c)) but still distinguishables, which implies a rising of the temperature inside
the ball without melting. We will analyze this subject deeper in the next section (4.2.3). In
the latter case (Fig. 8(c)), the ball acquires a new solid structure (Fig. 6), that seems to be, just
looking at the g(r) function, still FCC type. For h0 > 41.47 σ (Fig. 8(d) to 8(f)) just one peak is
distinguishable as long as the distance r to an atom increases, which means that an atom has,
in average, a neighbor at 1.09 σ and no well defined second neighbors or further. This can be
interpreted as the melting of the ball.

4.2.3 Energy

In an inelastic collision, the dissipation of energy of a body is given by the energy transfer from
mechanical energy to internal energies, such as thermal energies and vibrational energies,
being the last one the responsible of plastic deformations of the body. Since our simulations
consider the surface as part of the system, no dissipation is observed, because the total energy
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Fig. 6. Ball dropped from z = 28.15 σ. (a) The ball is falling towards the surface. (b) The ball
hits the surface and gets compressed. (c) The ball lifts the surface acquiring a new shape,
with almost none internal vibrations. (d) The ball keeps its new shape after the collision.
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the ball without melting. We will analyze this subject deeper in the next section (4.2.3). In
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in average, a neighbor at 1.09 σ and no well defined second neighbors or further. This can be
interpreted as the melting of the ball.
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mechanical energy to internal energies, such as thermal energies and vibrational energies,
being the last one the responsible of plastic deformations of the body. Since our simulations
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(a) h0 = 11.03 σ (b) h0 = 18.64 σ

(c) h0 = 28.15 σ (d) h0 = 41.47 σ

(e) h0 = 58.6 σ (f) h0 = 79.53 σ

Fig. 8. (Color online) Pair-distribution functions calculated for the atoms in the ball, for
different times (see inset in τ/10). Each graph corresponds to different initial heights h0. The
pair distribution function for each t at h0, has been shifted upwards for clarity.

remains constant. The internal energies of the ball change in each bounce, and the mechanism
of loss and gain of energy are explained by considering the following classification of energies:
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The velocity of the center of mass of the ball VCM
B is calculated for each time-step to compute

the translational kinetic energy of the ball, defined by

KB =
1
2

MB�VCM
B�2, (10)

where MB = 79 M is the mass of the ball. The velocity of the center of mass of the surface VCM
S

is calculated for each time-step to compute the translational kinetic energy of the surface,
defined by

KS =
1
2

MS�VCM
S�2, (11)

where MS = 1444 M is the mass of the surface. For a given time step, the difference
between the velocity of the center of mass VCM

B and the velocity of the atom i, vi, defines
v̄i = vi − VCM

B, the velocity of the atom i relative to the center of mass of the ball, which is
used to define the kinetic energy of the ball relative to its center of mass, what we call thermal
energy of the ball, by

TB = ∑
all ball
atoms

1
2

mi�v̄i�2, (12)

where mi = M is the mass of the atom i. In the same way, we define the thermal energy of
the surface by

TS = ∑
all surface

atoms

1
2

mi�v̄i�2, (13)

where, in this case, v̄i = vi − VCM
S. Now, since the interaction between any pair of atoms is

given by equation (9), the total potential energy U is given by the sum over all pairs of atoms
plus the energy given by the force field, UF = MB a zCM, where a = 0.026 a0 and zCM is the
z−axis coordinate of the center of mass of the ball. We divide the sum in four terms as follows:

U = VB + VS + Uc + UF . (14)

The first term corresponds to the potential energy of the ball, which keeps together all the
pairs that belong to the ball, and we can associate it to a vibrational energy of the ball:

VB = ∑
all ball
atoms

V(r). (15)

The second term corresponds to the potential energy of the surface, which keeps together all
the pairs that belong to the surface, and we can associate it to a vibrational energy of the
surface:

VS = ∑
all surface

atoms

V(r). (16)

The third term corresponds to the potential energy generated by the interaction of an atom of
the ball with an atom of the surface, i.e., between atoms of different types. We will refer to this
term as collisional energy:

Uc = ∑
all

ball-surface
atom pairs

V(r). (17)
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(a) h0 = 11.03 σ (b) h0 = 18.64 σ

(c) h0 = 28.15 σ (d) h0 = 41.47 σ

(e) h0 = 58.6 σ (f) h0 = 79.53 σ

Fig. 8. (Color online) Pair-distribution functions calculated for the atoms in the ball, for
different times (see inset in τ/10). Each graph corresponds to different initial heights h0. The
pair distribution function for each t at h0, has been shifted upwards for clarity.

remains constant. The internal energies of the ball change in each bounce, and the mechanism
of loss and gain of energy are explained by considering the following classification of energies:
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The last term UF was already explained and corresponds to the potential that generates the
force field.

Fig. 9 shows the evolution of all these energies in time, except for VS , which is a negative term
that remains almost constant and does not add additional information to the phenomenon.
The energies are expressed in the Lennard-Jones energy unit, ε. The energy UF has been
shifted 2 ε downwards and VB, 400 ε upwards to keep all energies in the same range, since
what matters is the changes in energy rather than their absolute values. Other cases, where
the ball was dropped at different h0, are quite similar in shape, but some peaks are bigger than
others.
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Fig. 9. (Color online) Evolution of the different energies in time for the simulation where the
ball was dropped from h0 = 11.03 σ.

In the Fig. 9 it can be observed that the translational energy of the ball has several local
minima, located between two maxima placed symmetrically around each of them. These
minima represent the instant in which the kinetic translational energy KB vanishes, i.e., when
the ball is completely stopped over the surface during a bounce. The maximum at the left
hand of each minimum shows the instant in which the velocity of the center of mass of the
ball acquires its maximum value before it begins to stop. The repulsive potential of the surface
is equivalent to a force exerted upwards, but this force does not reduce velocity of the ball
immediately, in fact, the velocity keeps growing with time before reaching the maximum, but
its rate of change, that is, its acceleration, is reduced. Considering just the z coordinate of the
velocity of the center of mass, the first derivative of KB is given by

dKB

dt
= MBVB

CMV̇B
CM = MBVB

CM AB
CM,

where AB
CM is the acceleration of the center of mass of the ball. This derivative vanishes

whether the velocity or the acceleration is zero, this is, when the net force exerted over the
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ball is zero. This happens at the minima and maxima of KB, so the maxima show where the
force exerted by the surface equals the force F = MB a = �∇UF�.

When the ball has reached the point of maximum velocity, that is, the impact velocity, the
velocity begins to decrease, because now the acceleration (and so the net force) is directed
upwards. The ball reaches the point of null velocity (the minima) and then keeps accelerating
until a maximum velocity that, for the first bounce, is the same as the impact velocity. In
this interval of time, the energy Uc becomes greater while the energy KB and TS decreases,
which means that most of the energy was stored in the collision energy and a little bit in the
vibrational energy of the surface, with almost no energy transferred to the thermal energy of
the ball (TB). In the second bounce (see labels above Fig. 9), much of the energy is transferred
to the collision energy Uc, but now a little bit of energy is now transferred to the thermal
energy of the ball TB, so the ball lose translational energy and the maximum velocity after
the collision (the departure velocity) is smaller than the impact velocity, so it is not able to
reach the same height than before the collision. In the third bounce, the thermal energy of
the ball is transferred back to kinetic translational energy, and the ball can reach a departure
velocity greater than the impact velocity. Something similar happens with the fourth bounce,
and what all bounces has in common is that the fluctuations of the thermal energy of the ball
TB are comparable to the fluctuations of its vibrational energy VB and the thermal energy of
the surface TS.

Finally, we want to mention that, since Uc is non-zero only when atoms of the ball are close
to atoms of the surface, this energy gives a reasonable definition of the collision time as the
width of the peak generated by this energy in each bounce.

In conclusion, a molecular dynamics study of the behavior of a ball bouncing repeatedly off a
surface, considered as part of the system, has been done. We have observed that a study of the
different types of energies of the system clearly shows what may be considered as the duration
of a collision which, in contrast with typical macroscopic classical mechanics considerations, is
not instantaneous, but a non negligible time interval. We have also shown that, despite of the
fact that the collision is actually a continuous process that does not allow us to determine
the “instant just before the collision” and the “instant just after the collision”, which are
always mentioned in macroscopic problems of momentum conservation, the impact velocity
(maximum velocity reached before the ball stops) and the departure velocity (maximum
velocity reached after the ball stops) can be determined precisely. This makes possible to
determine the restitution coefficient in each bounce, a well studied property of bouncing
systems, as the usual quotient of these velocities. The study of these energies have also helped
to understand the processes of energy loss in inelastic collisions, which are actually not a loss,
but a transfer to thermal and vibrational energy, within others. We could conclude that the
force exerted by the surface acts as a break for the ball, and this force is the responsible for
the decrease of the acceleration of the ball to zero (where the net force is null). So the impact
velocity (maximum velocity reached before hitting the surface) is reached after the ball begins
its collision with the floor, which can be considered as the moment in which the energy Uc
becomes relevant. It is clear that KT + UF is constant when the collision is not taking place,
but when it happens, in all bounces, despite of the fact that the collision energy Uc behaved
similar in every bounce, it was the most important among the energies in the collision, since it
stores most of the “dissipated” energy by the ball, more than the vibrational energy transferred
to the surface. The other energies, in spite of their changes, do not contribute significantly to
the energy transfer.

243
Inelastic Collisions and Hypervelocity Impacts 
at Nanoscopic Level: A Molecular Dynamics Study



14 Will-be-set-by-IN-TECH

The last term UF was already explained and corresponds to the potential that generates the
force field.

Fig. 9 shows the evolution of all these energies in time, except for VS , which is a negative term
that remains almost constant and does not add additional information to the phenomenon.
The energies are expressed in the Lennard-Jones energy unit, ε. The energy UF has been
shifted 2 ε downwards and VB, 400 ε upwards to keep all energies in the same range, since
what matters is the changes in energy rather than their absolute values. Other cases, where
the ball was dropped at different h0, are quite similar in shape, but some peaks are bigger than
others.

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  2000  4000  6000  8000  10000  12000  14000

1st 2nd 3rd 4th 5th

E
ne

rg
y 

(ε
)

Time (Δt)

KB
KS
TB
TS
VB
Uc
UF

Fig. 9. (Color online) Evolution of the different energies in time for the simulation where the
ball was dropped from h0 = 11.03 σ.

In the Fig. 9 it can be observed that the translational energy of the ball has several local
minima, located between two maxima placed symmetrically around each of them. These
minima represent the instant in which the kinetic translational energy KB vanishes, i.e., when
the ball is completely stopped over the surface during a bounce. The maximum at the left
hand of each minimum shows the instant in which the velocity of the center of mass of the
ball acquires its maximum value before it begins to stop. The repulsive potential of the surface
is equivalent to a force exerted upwards, but this force does not reduce velocity of the ball
immediately, in fact, the velocity keeps growing with time before reaching the maximum, but
its rate of change, that is, its acceleration, is reduced. Considering just the z coordinate of the
velocity of the center of mass, the first derivative of KB is given by
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where AB
CM is the acceleration of the center of mass of the ball. This derivative vanishes
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velocity begins to decrease, because now the acceleration (and so the net force) is directed
upwards. The ball reaches the point of null velocity (the minima) and then keeps accelerating
until a maximum velocity that, for the first bounce, is the same as the impact velocity. In
this interval of time, the energy Uc becomes greater while the energy KB and TS decreases,
which means that most of the energy was stored in the collision energy and a little bit in the
vibrational energy of the surface, with almost no energy transferred to the thermal energy of
the ball (TB). In the second bounce (see labels above Fig. 9), much of the energy is transferred
to the collision energy Uc, but now a little bit of energy is now transferred to the thermal
energy of the ball TB, so the ball lose translational energy and the maximum velocity after
the collision (the departure velocity) is smaller than the impact velocity, so it is not able to
reach the same height than before the collision. In the third bounce, the thermal energy of
the ball is transferred back to kinetic translational energy, and the ball can reach a departure
velocity greater than the impact velocity. Something similar happens with the fourth bounce,
and what all bounces has in common is that the fluctuations of the thermal energy of the ball
TB are comparable to the fluctuations of its vibrational energy VB and the thermal energy of
the surface TS.

Finally, we want to mention that, since Uc is non-zero only when atoms of the ball are close
to atoms of the surface, this energy gives a reasonable definition of the collision time as the
width of the peak generated by this energy in each bounce.

In conclusion, a molecular dynamics study of the behavior of a ball bouncing repeatedly off a
surface, considered as part of the system, has been done. We have observed that a study of the
different types of energies of the system clearly shows what may be considered as the duration
of a collision which, in contrast with typical macroscopic classical mechanics considerations, is
not instantaneous, but a non negligible time interval. We have also shown that, despite of the
fact that the collision is actually a continuous process that does not allow us to determine
the “instant just before the collision” and the “instant just after the collision”, which are
always mentioned in macroscopic problems of momentum conservation, the impact velocity
(maximum velocity reached before the ball stops) and the departure velocity (maximum
velocity reached after the ball stops) can be determined precisely. This makes possible to
determine the restitution coefficient in each bounce, a well studied property of bouncing
systems, as the usual quotient of these velocities. The study of these energies have also helped
to understand the processes of energy loss in inelastic collisions, which are actually not a loss,
but a transfer to thermal and vibrational energy, within others. We could conclude that the
force exerted by the surface acts as a break for the ball, and this force is the responsible for
the decrease of the acceleration of the ball to zero (where the net force is null). So the impact
velocity (maximum velocity reached before hitting the surface) is reached after the ball begins
its collision with the floor, which can be considered as the moment in which the energy Uc
becomes relevant. It is clear that KT + UF is constant when the collision is not taking place,
but when it happens, in all bounces, despite of the fact that the collision energy Uc behaved
similar in every bounce, it was the most important among the energies in the collision, since it
stores most of the “dissipated” energy by the ball, more than the vibrational energy transferred
to the surface. The other energies, in spite of their changes, do not contribute significantly to
the energy transfer.
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5. Hypervelocity impact of projectiles

Hypervelocity impact of projectiles is of great interest in basic and applied research, and
it is present in areas such as engineering and physics of materials, including civilian and
military applications, among others. For example, since the development in the 1980’s of
cluster beam technology, the quality of the beams and the number of applications continues to
grow (Jacquet & Beyec, 2002; Kirkpatrick, 2003; Popok & Campbell, 2006), as is the case of the
materials which are bombarded with cluster beams in order to clean or smooth their surface
or to analyze their composition, as well as to consolidate clusters. In several cases the effect of
the cluster beams result from the combined effects of a single impact, which occurs separately
and independently (Hsieh et al., 1992). Therefore it is important to understand the dynamics
of such a single impact. In the field of space applications, hypervelocity impacts are being
studied to see the damage they produce on ceramic tiles when nano and micrometeorites hit
satellites, spacecraft and space stations. Because the experimental study at such high velocities
(ranging from 3 km/s to 15 km/s approximately) is extremely difficult, computer simulation
is an ideal tool to deal with them.

In the following we will study, by classical molecular dynamics simulations, the impact of a
cluster composed of 47 atoms of copper (Cu) on a solid target of approximately 50 000 atoms
of copper. The main goal is to depict the structural response of the target with respect to three
different velocities of impact, 1.5 km/s, 3.0 km/s and 5.0 km/s. There will be a detailed
description of the different processes, emphasizing the structural changes suffered by the
target.

5.1 Computational procedure

The impact simulations were performed at high speeds with classical molecular dynamics,
using the computer program LPMD (Davis et al., 2010). To simulate the impact of a projectile
on a target, we initially built a cubic box of edge 86.64 Å containing 55,296 copper atoms in a
FCC structure, which is used as target. This target was thermalized to 300 K through rescaling
of velocities, for 15,000 time steps with 1Δt = 1 fs. Then it was allowed to evolve without
temperature control for another 15,000 time steps. The projectile is spherical in shape with a
diameter of approximately 8 Å (one tenth the length of the edge of the target). Both projectile
and target were placed in a tetragonal simulation cell length x = y = 198.55 Å and z = 249.09
Å, centered at x and y, and separated by a distance 11 Å in z, as is shown in Figure 10.

The atomic interaction is represented by the empirical many-body Sutton-Chen potential,

φ = ε
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where ε = 0.0124 eV, a = 3.61 Å (Cu lattice parameter), and c = 39.432, n = 9, m = 6 are
adimensional parameters.

The simulations we perform used three different velocities for the projectile: 1.5 km/s, 3.0
km/s and 5.0 km/s, while the target is at rest. The projectile velocity is kept constant during
all the simulation, irrespective of the friction or the force exerted by the target. Although
this is not a real situation, it represent an extreme condition, where the momentum and
hardness of the projectile is much higher than the momentum and hardness of the target.
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Fig. 10. Cu spherical projectile with velocity −vz. Both are sitting in the xy plane of the
simulation box

In the following we present a detailed description of the different processes, emphasizing the
structural changes suffered by the target. To perform the analysis of the target in a better way,
atoms belonging to the projectile were removed and the target was divided into two radial
sections.

5.2 Results

In Figure 11 is shown a general view of the passage of the projectile, in this case corresponding
to 1.5 km/s. As can be seen, it melts the sample locally when it is going through. After the
passage of the projectile, there are two regimes on the behavior of the target: 1) to certain
speeds, including 1.5 and 3.0 km/s, the sample returns to its initial fcc structure, but with at
higher temperature and with dislocations of planes, and 2) for speeds equal to or greater than
5.0 km/s, the projectile left a hole in the target and even though the atoms regroup in the same
way, the target as a whole can not return its initial fcc structure, resulting a large percentage
in the amorphous state.

Here we will analyze in details only the case at lower velocity, 1.5 km/s. From the snapshots
showed in Figure 11, we can see that at 1.2 ps the projectile hits the target producing an
increase in temperature at the impact zone. Then the projectile continues to move through the
target producing, in addition to local temperature increases (in the vicinity of the projectile
trajectory), a wake of disturbed material, which is perceived as temperature fluctuations.
At 4.8 ps dislocations appeared. When the projectile begins to leave the target, at 8.4 ps,
some target atoms are ejected. At this same time, the area where the bullet impacts begins
to become disordered. After a longer time, at 15 ps, the area where the projectile leaves the
target (back side) is disordered. Finally, at 28.2 ps, we observe that the whole area which
had been disturbed by the projectile is re-ordered, resembling its original structure, but with
dislocations. In general, it appears that the projectile disturbs the zone which corresponds to
its trajectory and its neighborhood, but it does not causes great impact beyond that (Loyola,
2010).

In order to quantify the just described picture, we analyze the change of local temperature,
and the atomic order, by means of g(r) and by the CNA. Temperature profiles are shown in
Figs. 12, 13, which correspond to a radial zone close and far to bullet trajectory, respectively. In
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where ε = 0.0124 eV, a = 3.61 Å (Cu lattice parameter), and c = 39.432, n = 9, m = 6 are
adimensional parameters.

The simulations we perform used three different velocities for the projectile: 1.5 km/s, 3.0
km/s and 5.0 km/s, while the target is at rest. The projectile velocity is kept constant during
all the simulation, irrespective of the friction or the force exerted by the target. Although
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In the following we present a detailed description of the different processes, emphasizing the
structural changes suffered by the target. To perform the analysis of the target in a better way,
atoms belonging to the projectile were removed and the target was divided into two radial
sections.

5.2 Results

In Figure 11 is shown a general view of the passage of the projectile, in this case corresponding
to 1.5 km/s. As can be seen, it melts the sample locally when it is going through. After the
passage of the projectile, there are two regimes on the behavior of the target: 1) to certain
speeds, including 1.5 and 3.0 km/s, the sample returns to its initial fcc structure, but with at
higher temperature and with dislocations of planes, and 2) for speeds equal to or greater than
5.0 km/s, the projectile left a hole in the target and even though the atoms regroup in the same
way, the target as a whole can not return its initial fcc structure, resulting a large percentage
in the amorphous state.

Here we will analyze in details only the case at lower velocity, 1.5 km/s. From the snapshots
showed in Figure 11, we can see that at 1.2 ps the projectile hits the target producing an
increase in temperature at the impact zone. Then the projectile continues to move through the
target producing, in addition to local temperature increases (in the vicinity of the projectile
trajectory), a wake of disturbed material, which is perceived as temperature fluctuations.
At 4.8 ps dislocations appeared. When the projectile begins to leave the target, at 8.4 ps,
some target atoms are ejected. At this same time, the area where the bullet impacts begins
to become disordered. After a longer time, at 15 ps, the area where the projectile leaves the
target (back side) is disordered. Finally, at 28.2 ps, we observe that the whole area which
had been disturbed by the projectile is re-ordered, resembling its original structure, but with
dislocations. In general, it appears that the projectile disturbs the zone which corresponds to
its trajectory and its neighborhood, but it does not causes great impact beyond that (Loyola,
2010).

In order to quantify the just described picture, we analyze the change of local temperature,
and the atomic order, by means of g(r) and by the CNA. Temperature profiles are shown in
Figs. 12, 13, which correspond to a radial zone close and far to bullet trajectory, respectively. In

245
Inelastic Collisions and Hypervelocity Impacts 
at Nanoscopic Level: A Molecular Dynamics Study



18 Will-be-set-by-IN-TECH

(a) t = 1.2 ps (b) t = 2.4 ps (c) t = 3.6 ps

(d) t = 4.8 ps (e) t = 6 ps (f) t = 8.4 ps

(g) t = 15 ps (h) t = 28.2 ps

Fig. 11. Snapshots of the impact of the projectile traveling at 1.5 km/s over a copper target at
different times. The colors are assigned according to the atom’s temperature, from low
temperature (blue) to high temperature (red) (Loyola, 2010).

general, we can observe a temperature front that is moving in the same direction as the bullet.
In Fig. 12 can be seen a temperature maxima of 1760 K at 3.6 ps. After that, at 28.2 ps, this
part of the sample is thermalized at 450 K. The temperature, of course, propagates in radial
direction from the center outward of the sample. Figure 13 displays the temperature profile
beyond the central zone. Although there are not prominent peaks, the information about the
passage of the projectile is shown in the 1.2 ps panel as a small peak at 65 Å , indicating that
the temperature perturbation propagates at higher velocity than the projectile, ruling out the
occurrence of a shock wave.
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Fig. 12. Local temperature along the z−direction for different times, in the zone close to the
center of the target, as the 1.5 km/s projectile is moving.

Fig. 13. Local temperature along the z−direction for different times, in the zone far the
center of the target, as the 1.5 km/s projectile is moving.

The structural analysis of the sample was made by the pair distribution function, g(r) for three
different region in the z direction: region A, where the bullet hit the sample (Fig. 14 a), region
B, in the middle (Fig. 14 b), and region C, at the end of the sample (Fig. 14 c), where the bullet
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the temperature perturbation propagates at higher velocity than the projectile, ruling out the
occurrence of a shock wave.
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Fig. 12. Local temperature along the z−direction for different times, in the zone close to the
center of the target, as the 1.5 km/s projectile is moving.

Fig. 13. Local temperature along the z−direction for different times, in the zone far the
center of the target, as the 1.5 km/s projectile is moving.

The structural analysis of the sample was made by the pair distribution function, g(r) for three
different region in the z direction: region A, where the bullet hit the sample (Fig. 14 a), region
B, in the middle (Fig. 14 b), and region C, at the end of the sample (Fig. 14 c), where the bullet
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Fig. 14. Pair distribution function for different region of the sample. The curves have been
shifted for clarity

go out. Figures 14 a, and 14 b show the same phenomenology but at different times. Initially,
all sections have fcc structure (the peaks have a finite width because initially the system is at
room temperature), then melt, as is appreciated at the times 3.3 ps, 6 ps and 8.5 ps for regions
A, B and C, respectively. Finally, all these regions recover their crystalline structure, but at
higher temperatures than the initial stage. In the case of the radial zone far from the bullet
trajectory the situation is different because this part did not melt at any time, preserving the
initial fcc structure but at higher temperatures, around 500 K.

Interestingly, the crystalline structure that the sample recovers after the passage of the bullet
is a mixture between fcc and hcp structure. In fact, the high pressure resulting by the impact
produce structural transformation, which at the end results in the coexistence of fcc and hcp
phases. To quantify its relation, we perform a common neighbors analysis, CNA, for the
the three region where the projectile pass, at the beginning (region A), the middle (region B)
and the end (region C), with respect to the z direction. The CNA calculates the percentage of
atoms with structure fcc, hcp, bcc and icosahedral, and the rest is considered as non-crystalline
(amorphous) structure. Figure 15 displays the percentage of fcc and hcp atoms (the difference
between their sum and 100% corresponds to atoms in amorphous structure). We can see that
in the region A, for t < 2 ps, all the atoms are still in a fcc order, because the bullet is just
hitting. After that, the percentage of fcc atoms decrease to 10% and the hcp atoms appear,
reaching also almost 10%. The rest are atoms in a non-crystalline structure. At t > 8.5 ps,
when the projectile has go out the sample, the region A start to recover its crystalline order,
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most atoms in fcc order. Finally, at t = 28 ps, the region reach 70% of fcc atoms, 3% of
hcp atoms and around 25% of non-crystalline atoms. For the others regions the situation
is similar, except it occurs at longer times, when the perturbation and the bullet reach that
regions. The only significant difference is that, in the case of region C, the percentage of atoms
in a non-crystalline structure is greater than the previous regions, which can be also seen
directly from the snapshot (Fig. 11(h)).
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Fig. 15. Common neighbors analysis (CNA) at different times, for three region in the z
direction.

In summary, molecular dynamics simulation of hypervelocity projectile impact has been done.
The atomic level study allows us to describe several interesting features that are not possible
to track by other methods. In particular, two regimes has been identified, in dependence of
the projectile initial velocity. At high velocity, the passage of the projectile through the target
leaves a hole in the sample, as well as produce structural phase transition. Al low temperature,
the case that has been study in detail here, the projectile cause local melting and dislocations as
it moves through the sample. At the end, the target recover its original fcc crystalline structure,
but with a non-negligible percentage of atoms in hcp structure and amorphous phase.

6. Conclusions

Descriptions of phenomena far from equilibrium are not an easy task in physics: from the
experimental point of view it is required to have both high spatial and temporal resolution in
the different variables measured; even worse, often we have destructive experiments, such as
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go out. Figures 14 a, and 14 b show the same phenomenology but at different times. Initially,
all sections have fcc structure (the peaks have a finite width because initially the system is at
room temperature), then melt, as is appreciated at the times 3.3 ps, 6 ps and 8.5 ps for regions
A, B and C, respectively. Finally, all these regions recover their crystalline structure, but at
higher temperatures than the initial stage. In the case of the radial zone far from the bullet
trajectory the situation is different because this part did not melt at any time, preserving the
initial fcc structure but at higher temperatures, around 500 K.

Interestingly, the crystalline structure that the sample recovers after the passage of the bullet
is a mixture between fcc and hcp structure. In fact, the high pressure resulting by the impact
produce structural transformation, which at the end results in the coexistence of fcc and hcp
phases. To quantify its relation, we perform a common neighbors analysis, CNA, for the
the three region where the projectile pass, at the beginning (region A), the middle (region B)
and the end (region C), with respect to the z direction. The CNA calculates the percentage of
atoms with structure fcc, hcp, bcc and icosahedral, and the rest is considered as non-crystalline
(amorphous) structure. Figure 15 displays the percentage of fcc and hcp atoms (the difference
between their sum and 100% corresponds to atoms in amorphous structure). We can see that
in the region A, for t < 2 ps, all the atoms are still in a fcc order, because the bullet is just
hitting. After that, the percentage of fcc atoms decrease to 10% and the hcp atoms appear,
reaching also almost 10%. The rest are atoms in a non-crystalline structure. At t > 8.5 ps,
when the projectile has go out the sample, the region A start to recover its crystalline order,
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most atoms in fcc order. Finally, at t = 28 ps, the region reach 70% of fcc atoms, 3% of
hcp atoms and around 25% of non-crystalline atoms. For the others regions the situation
is similar, except it occurs at longer times, when the perturbation and the bullet reach that
regions. The only significant difference is that, in the case of region C, the percentage of atoms
in a non-crystalline structure is greater than the previous regions, which can be also seen
directly from the snapshot (Fig. 11(h)).
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In summary, molecular dynamics simulation of hypervelocity projectile impact has been done.
The atomic level study allows us to describe several interesting features that are not possible
to track by other methods. In particular, two regimes has been identified, in dependence of
the projectile initial velocity. At high velocity, the passage of the projectile through the target
leaves a hole in the sample, as well as produce structural phase transition. Al low temperature,
the case that has been study in detail here, the projectile cause local melting and dislocations as
it moves through the sample. At the end, the target recover its original fcc crystalline structure,
but with a non-negligible percentage of atoms in hcp structure and amorphous phase.

6. Conclusions

Descriptions of phenomena far from equilibrium are not an easy task in physics: from the
experimental point of view it is required to have both high spatial and temporal resolution in
the different variables measured; even worse, often we have destructive experiments, such as
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projectile impact. From a theoretical standpoint, it is known that there is not a formalism that
allows generally treatment of these systems, except in the case of linear response. This is where
computer simulation provides valuable services, allowing for an atomic description of the
phenomenon, taking into account the entire trajectory of the system. This was precisely what
we do here, using a comprehensive computer code developed by us, for two cases of interest,
namely inelastic impact and hypervelocity impact. In the first case, we were able to separate
the various contributions of energy and revealed how they are transferred between them. Our
results show that the most important transferable energy is the one between the ball-surface
atoms, which grows during the impact and is zero at the others cases. Thus, this energy
allows us to define a time of impact, which is approximately 1/10 the time between bounces.
For the case of hypervelocity impact, we showed that molecular dynamics simulation reveals
that exist a thresholds of materials behavior respect to projectile velocity: beyond certain
velocity, in our case 4 km/s, the sample left with a permanent structural damage, expressed
as a permanent hole in the center of the sample.
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1. Introduction 
Over approximately the last decade, metal organic framework (MOF) materials have 
attracted a great deal of attention as a new addition to the classes of nanoporous materials. 
MOFs, also known as porous coordination polymers (PCPs) or porous coordination 
networks (PCNs), are hybrid materials composed of single metal ions or polynuclear metal 
clusters linked by organic ligands through strong coordination bonds. Due to these strong 
coordination bonds, MOFs are crystallographically well defined structures that can keep 
their permanent porosity and crystal structure after the removal of the guest species used 
during synthesis.(Eddaoudi et al., 2000; Li et al., 1999; Rowsell et al., 2005; Yaghi et al., 2003) 
MOFs typically have low densities (0.2-1 g/cm3), high surface areas (500-4500 m2/g), high 
porosities and reasonable thermal and mechanical stabilities. This combination of properties 
has made MOFs interesting materials for a wide range of potential applications, including 
gas storage, gas separation, catalysis and biomedical applications.(Eddaoudi et al., 2002; 
Keskin&Kizilel, 2011; Millward&Yaghi, 2005; Mueller et al., 2006; Pan et al., 2004)  

MOFs have become attractive alternatives to traditional nanoporous materials specifically in 
gas storage and gas separation since their synthesis can be readily adapted to control pore 
connectivity, structure and dimension by varying the linkers, ligands and metals in the 
material.(Düren et al., 2004; Eddaoudi et al., 2002; El-Kaderi et al., 2007) Hundreds of MOF 
materials with various physical and chemical characteristics have been synthesized to 
date.(James, 2003; Kitagawa et al., 2004; Uemura et al., 2005; Yaghi et al., 2003) Most of the 
studies in the literature have focused on a few specific MOF groups such as  IRMOFs 
(isoreticular MOFs)(Eddaoudi et al., 2002), ZIFs (zeolite imidazolate frameworks)(Park et al., 
2006), CPOs (coordination polymers of Oslo)(Dietzel et al., 2005; Dietzel et al., 2006), MILs 
(Materials of the Institute Lavoisier)(Loiseau et al., 2004), CuBTC (Copper 1,3,5-
benzenetricarboxylate) (Chui et al., 1999) and Zn(bdc)(ted)0.5 (Zinc 1,4-benzenedicarboxylic 
acid-triethylenediamine) (Li et al., 1998). As an example Figure 1 shows the unit cell 
structure of one of the most widely studied MOFs, CuBTC (also known as HKUST-1). The 
figures from left to right represent an empty CuBTC structure, a CuBTC structure with CH4 
molecules in the pores at 100 bar, 298 K and a CuBTC structure with adsorbed CH4 and H2 
molecules in the pores at 100 bar, 298 K  for a bulk gas composition of CH4/H2:5/95. 
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Fig. 1. Unit cell representation of a widely studied MOF, CuBTC. From left to right: Empty 
CuBTC, CuBTC with CH4 molecules (blue spheres) in the pores, CuBTC with CH4 and H2 
(orange spheres) molecules in the pores. The atoms in the unit cell are copper (green), 
oxygen (red), carbon (gray) and hydrogen (white). 

The enormous number of different possible MOFs indicates that purely experimental means 
for designing optimal MOFs for targeted applications is inefficient at best. Efforts to predict 
the performance of MOFs using molecular modeling play an important role in selecting 
materials for specific applications. In many applications that are envisioned for MOFs, 
diffusion behavior of gases is of paramount importance. Applications such as catalysis, 
membranes and sensors cannot be evaluated for MOFs without information on gas diffusion 
rates. Most of the information on gas diffusion in MOFs has been provided by molecular 
dynamics (MD) studies. Figure 2 indicates that the idea of using MD simulations to assess 
the diffusivity of gases in MOFs is a new area and there is a rapid growth in the number of 
publications featuring the terms ‘MOFs’, ‘MD’ and ‘diffusion’ over the past decade.  
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Fig. 2. Open bars represent the number of publications featuring the term ‘metal organic 
framework’, closed bars represent the number of publications featuring the terms ‘metal 
organic framework’ and ‘molecular dynamics’ and ‘diffusion’. (Source: ISI Web of Science, 
retrieved August, 8 2011). 
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The objective of this chapter is to review the recent advances in MD simulations of gas 
diffusion in MOFs. In Section 2, the MD models used for gas molecules and MOFs will be 
introduced. Studies which computed single component and mixture gas diffusivities in 
MOFs will be reviewed in Section 3. The discussion of comparing results of MD simulations 
with the experimental measurements and with the predictions of theoretical correlations 
will be given in Sections 4 and 5, respectively. Finally, opportunities and challenges in using 
MD simulations for examining gas diffusion in MOFs will be summarized in Section 6.  

2. Molecular dynamics models  
Gas diffusion is an observable consequence of the motion of atoms and molecules as a 
response to external force such as temperature, pressure or concentration change. Molecular 
dynamics (MD) is a natural method to simulate the motion and dynamics of atoms and 
molecules. The main concept in an MD simulation is to generate successive configurations 
of a system by integrating Newton’s law of motion.(Frenkel&Smit, 2002) Using MD 
simulations, various diffusion coefficients can be measured from the trajectories showing 
how the positions and velocities of the particles vary with time in the system. Several 
different types of gas diffusion coefficients and the methods to measure them will be 
addressed in the next section in details. 

In accessing the gas diffusion in nanoporous materials, equilibrium MD simulations which 
model the behavior of the system in equilibrium have been very widely utilized. In 
equilibrium MD simulations, first a short grand canonical Monte Carlo (GCMC) simulation is 
applied to generate the initial configurations of the atoms in the nanopores. Initial velocities 
are generally randomly assigned to each particle (atom) based on Maxwell-Boltzmann velocity 
distribution.(Allen&Tildesley, 1987; Frenkel&Smit, 2002) An initial NVT-MD (NVT: constant 
number of molecules, constant volume, constant temperature) simulation is performed to 
equilibrate the system. After the equilibration, Newton’s equation is integrated and the 
positions of each particle in the system are recorded at a pre-specified rate. Nosé-Hoover 
thermostat is very widely applied to keep the desired temperature and the integration of the 
system dynamics is based on the explicit N-V-T chain integrator by Martyna et al.(Martyna et 
al., 1992; Martyna et al., 1996) By keeping temperature constant, Newton’s equations are 
integrated in a canonical ensemble (NVT) instead of a microcanonical ensemble (NVE: 
constant number of molecules, constant volume and constant energy). To describe the 
dynamics of rigid-linear molecules such as carbon dioxide the MD algorithm of Ciccotti et 
al.(Ciccotti et al., 1982) is widely used. The so-called order N algorithm(Frenkel&Smit, 2002) is 
implemented to calculate the diffusivities from the saved trajectories.  

In order to perform classical MD simulations to measure gas diffusion in MOFs’ pores, force 
fields defining interactions between gas molecules-gas molecules and gas molecules-MOF’s 
atoms are required. Once these force fields are specified, dynamical properties of the gases 
in the simulated material can be probed. These force fields will be studied in two parts: 
models for gas molecules (adsorbates) and models for MOFs (adsorbents). 

2.1 Models for gases 

Diffusion of hydrogen, methane, argon, carbon dioxide and nitrogen are very widely 
studied in MOFs. For H2, three different types of fluid-fluid potential models have been 
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studied in MOFs. For H2, three different types of fluid-fluid potential models have been 
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used. In most of the MD simulations, spherical 12-6 Lennard-Jones (LJ) model (Buch, 1994) 
has been used for H2. The Buch potential is known to reproduce the experimental bulk 
equation of state accurately for H2. Two-site LJ models have also been used in the 
literature.(Yang&Zhong, 2005) The potential model of Darkrim and Levesque 
(Darkrim&Levesque, 1998) has been used to account for the quadrupole moment of H2 
molecules. This potential consists of a LJ core placed at the center of mass of the molecule 
and point charges at the position of the two protons and the center of mass.(Liu et al., 2008b)  

Methane and argon diffusion simulations have been performed using single site-spherical LJ 
potentials. The CO2 potential consists of three LJ sites with charges located on each site to 
represent the quadrupole moment of CO2.(Potoff&Siepmann, 2001) In N2 diffusion 
simulations, N2 is generally represented as a three site model with two sites located at two N 
atoms and the third one located at its center of mass (COM) with partial point 
charges.(Potoff&Siepmann, 2001) For alkanes in MOFs, the TraPPE potential has been 
used.(Martin&Siepmann, 1997) As an example, the most widely used potential parameters 
(ε: energy parameter, kB: Boltzmann constant, σ: size parameter) are listed in Table 1. 
 

Atoms/Molecules ε/kB (K) σ (Å) References 
H2-H2 34.20 2.96 Buch, 1994 
Ar-Ar 119.8 3.4 Clark, 1998 

CH4-CH4 148.20 3.73 Martin&Siepmann, 1997 
C-C (in CO2) 27.00 2.80 Potoff&Siepmann, 2001 
O-O (in CO2) 79.00 3.05 Potoff&Siepmann, 2001 

N (in N2) 36.4 3.32 Potoff&Siepmann, 2001 
COM (N2) 0.00 3.32 Potoff&Siepmann, 2001 

Table 1. Potential parameters used for adsorbate molecules in MD simulations. 

2.2 Models for MOFs 

When the first MD simulations were performed to examine gas diffusion in MOFs at the 
beginning of 2004, there was no experimental data to validate the accuracy of MD studies. 
However, in general whenever experimental equilibrium properties such as adsorption 
isotherms have been reproduced by the molecular simulations, it has been observed that 
dynamic simulations based on the same interatomic potentials are also reliable. Therefore, 
many MD studies examining gas diffusion in MOFs first showed the good agreement 
between experiments and simulations for gas adsorption isotherms and then used the same 
potential models for gas diffusion simulations.(Skoulidas&Sholl, 2005) Here, it is useful to 
highlight that considering a wide gas loading range when comparing simulation results 
with experimental data is crucial.(Keskin et al., 2009b) It is unreasonable to compare 
outcome of simulations with the experimental measurements over a very narrow range of 
loading and assume that good (or poor) agreement with experiment will continue to high 
loadings.  

The MD simulations have used general-purpose force fields such as the universal force field 
(UFF) (Rappe et al., 1992), DREIDING force field(Mayo et al., 1990) and optimized potential 
for liquid simulations all-atom (OPLS-AA)(Jorgensen et al., 1996) force field for representing 
the interactions between MOF atoms and adsorbates. A few studies have used quantum 
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mechanical calculations to develop new potentials for specific MOF-adsorbate 
interactions.(Bordiga et al., 2005; Sagara et al., 2004) There are studies where the parameters 
of the force fields are refined to match the predictions of simulations with the experimental 
measurements (in most cases experimental adsorption isotherm data exist whereas 
experimental diffusion data do not exist) or using first principles calculations.(Sagara et al., 
2004; Sagara et al., 2005a; Sagara et al., 2005b; Yang&Zhong, 2005; Yang&Zhong, 2006). Of 
course, one must be careful in refining force field parameters to match the results of 
simulations with the experimental data since the accuracy of the experiments are 
significantly affected by the defects of as-synthesized MOFs or trapped residual solvent 
molecules present in the samples.(Keskin et al., 2009b) 

Most MD simulations performed to date have assumed rigid MOF structures which means 
the framework atoms are fixed at their crystallographic positions. Generally, the 
crystallographic data for MOFs are obtained from X-ray diffraction experiments. In rigid 
framework simulations, only the nonbonding parameters, describing the pair wise 
interactions between the adsorbate and the adsorbent atoms of the particular force field, 
were used. It can be anticipated that the assumption of a rigid framework brings a huge 
computational efficiency yet the inclusion of the lattice motion and deformation is crucial 
for an accurate description of diffusion of large gas molecules since they fit tightly in the 
MOF pores, forcing the MOF to deform in order to allow migration from pore to pore.  

In order to include the lattice dynamics in MD simulations of gas diffusion in MOFs, 
Tafipolsky and coworkers extended the MM3 (Molecular Mechanics) force field (Lii et al., 
1989), which is well known to accurately describe structures and conformational energies of 
organic molecules, with parameters for the Zn4O moiety based on the first principles of 
density functional theory (DFT) calculations of nonperiodic model systems.(Tafipolsky et 
al., 2007) After this force field accurately predicted the structure of MOF-5 (also known as 
isoreticular MOF-1, IRMOF-1), it was used in MD simulations to investigate the self 
diffusion of benzene in MOF-5.(Amirjalayer et al., 2007) The self diffusivity calculated from 
MD simulations, 2.49×10-9 m2/s, corresponds well to the experimental value determined by 
Stallmach et al., who found values between 1.8-2×10-9 m2/s.(Stallmach et al., 2006) Under 
identical conditions, MD simulations performed with a rigid MOF lattice gave substantially 
higher diffusion coefficient, 19.5×10-9 m2/s, which is almost one order of magnitude larger 
than the value obtained from MD simulations with flexible lattice.  

Amirjalayer et al. later investigated the diffusion mechanism of benzene in MOF-5 using 
MD simulations based on fully flexible MM3 force field and computed the self diffusivity of 
benzene as a function of loading in MOF-5.(Amirjalayer&Schmid, 2009) The results were 
close to the experimentally determined self diffusivity for liquid benzene, therefore they 
concluded that MOF-5 is a very open structure with liquid like mobilities for benzene, 
~2.49×10-9 m2/s. The third study including flexibility of MOFs in MD simulations used the 
modified MM3 force field to study hexane’s self diffusion mechanism in IRMOF-1 and 
IRMOF-16 and concluded that the flexibility of IRMOF-16 is much larger than that of 
IRMOF-1 due to the nature of the organic linkers.(Xue&Zhong, 2009)  

Greathouse and Allendorf developed a flexible hybrid force field for MD simulations of 
IRMOF-1(Greathouse&Allendorf, 2006) and the activation energy for benzene self diffusion 
calculated at low loadings using this force field was found to be in good agreement  
with previous MD simulations and nuclear magnetic resonance (NMR) results. (Greathouse 
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with previous MD simulations and nuclear magnetic resonance (NMR) results. (Greathouse 
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& Allendorf, 2008) In this force field, only nonbonded parameters were used to describe 
Zn−O interactions and the CVFF (consistent valence force field) was used with slight 
modifications to describe the benzene dicarboxylate linker. The magnitude of the diffusion 
constant was underestimated and this was attributed to the deficiencies in the CVFF portion 
of the force field.  

The literature summary presented so far indicates that the number of MD simulation studies 
with flexible MOFs and flexible force fields is very limited. More research will sure be 
helpful to understand the importance of lattice dynamics on diffusivity of gas molecules in 
MOFs. Studies to date indicated that the lattice dynamics are specifically important in 
computing diffusivity of large gas molecules (such as benzene) in MOFs having relatively 
narrow pores. Studies on flexible force fields also suggested that a force field developed for 
a specific MOF can be adapted to similar MOF structures (as in the case of IRMOFs) with 
slight modifications for doing comparative studies to provide a comprehensive 
understanding of gas diffusion in flexible MOFs. 

One major issue in carrying out MD simulations for MOFs is to assign partial charges to 
the MOF atoms that are required to calculate adsorbate-adsorbent interactions for some 
polar (including quadrupolar) adsorbates. Several MD studies computed the diffusivity of 
CO2 in MOFs’ pores and to do this, partial charges must be assigned to MOF atoms. 
Recent studies showed that the effects of inclusion of framework charges are crucial at 
low loadings. If the charge-quadrupolar interactions are not taken into account in MD 
simulations then the diffusivities can be significantly overestimated.(Rankin et al., 2009) 
Force field-based classical MD simulations of MOFs typically treat electrostatic 
interactions between adsorbates and MOF atoms by assigning fixed point charges to each 
atom. In this context an important role for quantum mechanics (QM) calculations is to 
assign the point charges that can later be used in force field calculations. Unfortunately, 
multiple methods exist for partitioning the net electron density determined in a QM 
calculation(Keskin et al., 2009b) and none of these methods give an unambiguous 
definition of the resulting point charges. Keskin and coworkers reviewed the partial 
charges assigned to IRMOF-1 on the basis of QM calculations and showed that there is a 
significant variation in the charge values based on the method used.(Keskin et al., 2009b) 
This variation may have a significant impact on the outcome of classical force field 
calculations in examples where electrostatic interactions are important. Since QM 
calculations are time consuming and the charges obtained from these calculations are 
method sensitive, a strategy called connectivity based atom contribution method (CBAC) 
with which the partial charges of framework atoms can be estimated easily was 
proposed.(Xu&Zhong, 2010) A recent study on two different MOFs showed that CO2 
adsorption isotherms and diffusivities computed using the charges from QM methods 
based on the ChelpG(Francl et al., 1996) DFT calculations are very similar to the ones 
computed using charges from CBAC method.(Keskin, 2011a) 

3. Predicting gas diffusivity using molecular dynamics simulations 
In the literature, MD simulations have been used to predict three different types of gas 
diffusivities in MOFs. These are transport diffusivity, corrected diffusivity and self 
diffusivity. The transport diffusivity, which is also known as Fickian diffusivity or chemical 
diffusivity, can be defined without approximation in terms of corrected diffusivity, Do and a 
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thermodynamic correction factor, a partial derivative relating the adsorbate concentration, c 
and bulk phase fugacity, f  
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The thermodynamic correction factor is fully defined once the single component adsorption 
isotherm is known. Well developed approaches exist for calculating the corrected diffusion 
coefficient from MD simulations.(Kärger&Ruthven, 1992; Keil et al., 2000; Skoulidas&Sholl, 
2003; Skoulidas&Sholl, 2005) For systems with a single adsorbed component, the corrected 
diffusivity is equivalent to the Maxwell-Stefan diffusion coefficient.(Kapteijn et al., 2000; 
Ruthven, 1984; Sholl, 2006) The corrected diffusivity includes information on the collective 
motion of multiple adsorbed molecules that is relevant to net mass transport and can be 
calculated using the following expression:(Kärger&Ruthven, 1992; Keil et al., 2000)  
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Here, N is the number of molecules, ril(t) is the three dimensional position vector of 
molecule l of species i at time t and the angular brackets denote that the ensemble average. 
Using MD simulations, one can record the trajectory of the gas molecules in the pores of 
MOFs and calculate the corrected diffusivity. A more microscopic measure of diffusion is 
the self diffusion coefficient which describes the motion of individual, tagged particles. In an 
isotropic three dimensional material, the self diffusivity is related to the mean squared 
displacement of tagged particles by the Einstein relation: 
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This definition of self diffusivity is applicable to both single component and multi-
component systems.(Sanborn&Snurr, 2000) In general, all three diffusion coefficients 
described here, transport, corrected and self diffusivities are the functions of concentration 
and they are only equal in the limit of dilute concentrations.(Sholl, 2006) In some extreme 
cases, the self and corrected diffusivities vary by orders of magnitude.(Ackerman et al., 
2003; Skoulidas et al., 2002) This observation sometimes underscores the value of 
characterizing these two diffusivities independently. Applications such as modeling of 
membranes, pressure swing adsorption require the accurate description of net mass transfer 
and in these processes generally the transport diffusivity is of greatest interest.(Sholl, 2006) 

Almost all applications of nanoporous materials in gas separations involve chemical 
mixtures; therefore it is important to describe the multi-component gas transport in 
nanopores. There are several mathematically equivalent formalisms such as Onsager, 
Fickian and Maxwell-Stefan to describe multi-component gas transport through nanoporous 
materials.(Krishna&van den Broeke, 1995; Wesselingh&Krishna, 2000) The Onsager 
formulation is based on irreversible thermodynamics and expresses the flux of each species 
in terms of chemical potentials. One can calculate the Onsager coefficient using MD 
simulations based on the method by Theodorou et al. (Theodorou et al., 1996): 
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calculations are time consuming and the charges obtained from these calculations are 
method sensitive, a strategy called connectivity based atom contribution method (CBAC) 
with which the partial charges of framework atoms can be estimated easily was 
proposed.(Xu&Zhong, 2010) A recent study on two different MOFs showed that CO2 
adsorption isotherms and diffusivities computed using the charges from QM methods 
based on the ChelpG(Francl et al., 1996) DFT calculations are very similar to the ones 
computed using charges from CBAC method.(Keskin, 2011a) 
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In the literature, MD simulations have been used to predict three different types of gas 
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thermodynamic correction factor, a partial derivative relating the adsorbate concentration, c 
and bulk phase fugacity, f  
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diffusivity is equivalent to the Maxwell-Stefan diffusion coefficient.(Kapteijn et al., 2000; 
Ruthven, 1984; Sholl, 2006) The corrected diffusivity includes information on the collective 
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Here, N is the number of molecules, ril(t) is the three dimensional position vector of 
molecule l of species i at time t and the angular brackets denote that the ensemble average. 
Using MD simulations, one can record the trajectory of the gas molecules in the pores of 
MOFs and calculate the corrected diffusivity. A more microscopic measure of diffusion is 
the self diffusion coefficient which describes the motion of individual, tagged particles. In an 
isotropic three dimensional material, the self diffusivity is related to the mean squared 
displacement of tagged particles by the Einstein relation: 
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This definition of self diffusivity is applicable to both single component and multi-
component systems.(Sanborn&Snurr, 2000) In general, all three diffusion coefficients 
described here, transport, corrected and self diffusivities are the functions of concentration 
and they are only equal in the limit of dilute concentrations.(Sholl, 2006) In some extreme 
cases, the self and corrected diffusivities vary by orders of magnitude.(Ackerman et al., 
2003; Skoulidas et al., 2002) This observation sometimes underscores the value of 
characterizing these two diffusivities independently. Applications such as modeling of 
membranes, pressure swing adsorption require the accurate description of net mass transfer 
and in these processes generally the transport diffusivity is of greatest interest.(Sholl, 2006) 

Almost all applications of nanoporous materials in gas separations involve chemical 
mixtures; therefore it is important to describe the multi-component gas transport in 
nanopores. There are several mathematically equivalent formalisms such as Onsager, 
Fickian and Maxwell-Stefan to describe multi-component gas transport through nanoporous 
materials.(Krishna&van den Broeke, 1995; Wesselingh&Krishna, 2000) The Onsager 
formulation is based on irreversible thermodynamics and expresses the flux of each species 
in terms of chemical potentials. One can calculate the Onsager coefficient using MD 
simulations based on the method by Theodorou et al. (Theodorou et al., 1996): 
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In this formulation, V is the subsystem volume, kB is the Boltzmann constant, T is 
temperature, ril(t) is the three-dimensional position vector of molecule l of species i at time t 
and Ni is the number of molecules of species i. The Onsager coefficients and the matrix of 
Fickian coefficients are mathematically equivalent and they are related to each other without 
approximation by expressions involving derivatives of the mixture adsorption isotherm for 
the adsorbed species.(Skoulidas et al., 2003) The Onsager coefficients from MD simulations 
can be converted to Fickian diffusion coefficients using the followings: 
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In these equations, T is temperature, ci is the concentration of species i, fj is the fugacity of 
species j, kB is Boltzmann constant, Lij and Lik are the Onsager coefficients and Dii and Dij are 
the Fickian diffusivity coefficients. Using Onsager or Fickian diffusivities, one can calculate 
the flux (J) of a binary gas mixture through a membrane as follows: 
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In these expressions, ic and i represent concentration gradient and chemical potential 
gradient of species i through the membrane, respectively. As Equation 9 suggests, gas fluxes 
in a MOF membrane can be calculated based on either of the formulations (Onsager or 
Fickian).  

3.1 Single component diffusion 

The transport rates of single component gas molecules inside the materials’ pores are 
important in many potential applications of MOFs. For example, in equilibrium-based 
separations such as pressure swing adsorption, transport rates define limits on the cycle 
times that can be achieved. In these cases, molecular transport rates are mainly important if 
they are very slow. Since accurate characterization of molecular transport inside nanoporous 
materials using experiments is very challenging, most of the information that is currently 
available about single component gas diffusion in MOFs has obtained from MD simulations.  
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Skoulidas performed the first study of gas diffusion in a MOF material in the literature 
using equilibrium MD simulations and calculated the self, corrected and transport 
diffusivities of argon at 298 K as a function of pressure.(Skoulidas, 2004) Results showed 
that diffusion in CuBTC MOF is an activated process as in zeolites. The calculated 
diffusivities of Ar in CuBTC were similar to the diffusion in zeolites both in magnitude and 
concentration dependence. Sarkisov et al. used equilibrium MD simulations to calculate the 
self diffusivities of methane, n-pentane, n-hexane, n-heptane, cyclohexane and benzene in 
MOF-5 at 300 K at dilute loadings.(Sarkisov et al., 2004) They found that self diffusivities of 
n-alkanes in MOF-5 are comparable to those in the crystalline bipyridine system (0.1-3×10-8 
m2/s), but they show a stronger dependence on chain length because of the more open 
structure of MOF-5.  

Skoulidas and Sholl(Skoulidas&Sholl, 2005) then used equilibrium MD simulations to probe 
the self, corrected and transport diffusivity of a number of gas species, Ar, CH4, CO2, N2 and 
H2 in MOF-5 as a function of pore loading at room temperature.  They also calculated self, 
corrected and transport diffusivities of Ar in MOF-2, MOF-3, MOF-5, CuBTC and MFI to 
make a comparison among different MOFs and a zeolite. They concluded that diffusion of 
gas molecules in MOFs is mostly dominated by motions where the adsorbed species remain 
in close contact with the surfaces defined by the pore structure throughout their diffusion. 
At the time of their study, there was no experimental data for gas diffusion in MOFs. 
Therefore, Skoulidas and Sholl could not directly comment on the accuracy of the MD 
simulations, however, they pointed out that using similar molecular simulation methods for 
gas diffusion in zeolites they got excellent agreement with the experiments.  

Yang and Zhong performed constant temperature equilibrium MD simulations by a 
momentum scaling method to calculate the self diffusivity of H2 in isoreticular MOFs, 
IRMOF-1, IRMOF-8 and IRMOF-18 as a function of pressure.(Yang&Zhong, 2005) Their 
results showed that the diffusivity of H2 in IRMOFs is slightly larger than in zeolites due to 
the larger pore volume of IRMOFs. The self diffusivity of H2 in IRMOFs at 77 K at low 
pressures was around 1-3×10-8 m2/s whereas the self diffusivity of H2 in various zeolites 
were experimentally measured to be around 0.1-1×10-8 m2/s. The activation energy of H2 in 
IRMOFs was between 2-3 kJ/mol which is close to the values measured in zeolite NaX (4 
kJ/mol(Bär et al., 1999)) and single walled carbon nanotubes (1.12 kJ/mol(Narehood et al., 
2003)). This MD study examined the effects of framework topology on the diffusivity of H2. 
For example, H2 diffuses more rapidly in IRMOF-8 than that in IRMOF-1 because of the 
relatively larger pore sizes of the former. The diffusivity of H2 in IRMOF-18 is much slower 
than diffusion in IRMOF-1 and IRMOF-8 due to the steric hindrance effects of the pendant 
CH3 groups in IRMOF-18.  

IRMOFs can be further categorized as catenated and non-catenated structures. In catenation, 
two or more identical frameworks are intergrown at the expense of pore volume. Early 
studies showed that catenated MOFs can give better adsorption properties compared to 
their counterparts.(Ryan et al., 2008) The first study about the effects of catenation on the gas 
diffusion used equilibrium MD simulations in the canonical ensemble to investigate H2 
diffusion.(Liu et al., 2008a) Nosé-Hoover chain thermostat as formulated by Martyna et 
al.(Martyna et al., 1996) was used to calculate room temperature self diffusivities of H2 in 
catenated and non-catenated MOFs. The results showed that H2 self diffusivity in the 
IRMOFs without catenation such as IRMOF-10, IRMOF-12, IRMOF-14, IRMOF-16 (30-90×10-
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m2/s), but they show a stronger dependence on chain length because of the more open 
structure of MOF-5.  

Skoulidas and Sholl(Skoulidas&Sholl, 2005) then used equilibrium MD simulations to probe 
the self, corrected and transport diffusivity of a number of gas species, Ar, CH4, CO2, N2 and 
H2 in MOF-5 as a function of pore loading at room temperature.  They also calculated self, 
corrected and transport diffusivities of Ar in MOF-2, MOF-3, MOF-5, CuBTC and MFI to 
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simulations, however, they pointed out that using similar molecular simulation methods for 
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For example, H2 diffuses more rapidly in IRMOF-8 than that in IRMOF-1 because of the 
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studies showed that catenated MOFs can give better adsorption properties compared to 
their counterparts.(Ryan et al., 2008) The first study about the effects of catenation on the gas 
diffusion used equilibrium MD simulations in the canonical ensemble to investigate H2 
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8 m2/s) are two or three times of those (10-20×10-8 m2/s) in their corresponding catenated 
counterparts IRMOF-9, IRMOF-11, IRMOF-13, IRMOF-15. This implied that the motion of 
H2 molecules in these MOFs is restricted by their catenated structures.   

Lee and coworkers also investigated the diffusion of H2 in catenated MOFs, IRMOF-9, 
IRMOF-11 and IRMOF-13 at 77 K.(Lee et al., 2009) Diffusivities reported by Liu et al. were 
larger than the ones reported by Lee et al. by one order of magnitude since the former group 
performed the MD simulations at room temperature. The results of two studies were 
consistent; the diffusion rate of H2 is dramatically reduced by the catenation of IRMOFs due 
to the interpenetrated chains of the catenated structures and/or by tighter binding of the H2 
molecules in catenated structures. Equilibrium MD simulation studies showed that the 
effect of catenation on CH4 diffusivity is much larger than that on H2 diffusivity at room 
temperature.(Xue et al., 2009) Xue and coworkers discussed that the motion of both CH4 and 
H2 is restricted by the catenated structures of IRMOF-11 and IRMOF-13 while the stronger 
interactions between CH4 and atoms of the catenated frameworks lead to stronger 
confinement effects than that of H2 in these IRMOFs. 

Liu and coworkers(Liu et al., 2008b) investigated the influence of quantum effects on H2 
diffusivity using MD simulations. They used both the classical and the Feynman-Hibbs 
(FH)(Feynman&Hibbs, 1965) effective Buch potentials with UFF in their MD simulations to 
calculate self, corrected and transport diffusivities of H2 in a MOF called Zn(bdc)(ted)0.5 at 77 
K. The inclusion of quantum effects increased the self diffusivity of H2 at zero loading which 
was explained by the decrease in the diffusion energy barrier due to a non-uniform 
smearing of solid-fluid potential within the FH formalism. At higher loadings, inclusion of 
quantum effects decreased H2 diffusivity which was attributed to the steric hindrance in 
narrow pores due to the increase in the effective size parameter for the solid-fluid and fluid-
fluid interactions. In contrast to self diffusivity, transport diffusivity is not strongly 
influenced by the quantum effects at 77 K. 

In order to compare the diffusivities of gases in MOFs with those in zeolites, MD 
simulations were performed to calculate self, corrected and transport diffusivities of CH4 
and CO2 in silicalite, IRMOF-1 and C168 schwarzite.(Babarao&Jiang, 2008) The simulations 
were carried out in a canonical ensemble with a Nosé-Hoover thermostat and the equations 
of motion were integrated using a sixth order Gear predictor-corrector algorithm. 
(Allen&Tildesley, 1987) Both self and corrected diffusivities of CH4 and CO2 were found to 
be larger in IRMOF-1 (Dself-CH4:4-5×10-8 m2/s, Dself-CO2:2-3×10-8 m2/s) compared to the 
diffusivities in MFI and C168. This was attributed to the large pore volume of the IRMOF-1. 
This work also showed that in the limit of infinite dilution the diffusivities at various 
temperatures exhibit a good Arrhenius relationship. In another MD study, NVT ensemble 
with Berendsen(Frenkel&Smit, 2002) thermostat was used to examine the self diffusivity of 
CH4 in alkoxy functionalized IRMOF-1.(Jhon et al., 2007) As expected, CH4 diffusion was 
hindered due to the constriction of the pores as the length of the alkoxy chains increases. 
Comparison of the results with the early MD studies of Sarkisov et al.(Sarkisov et al., 2004) 
revealed good agreement whereas there is an unexplained small discrepancy between the 
results of Jhon et al. and Skoulidas et al.(Skoulidas&Sholl, 2005) at higher loadings. 

Zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs with their tetrahedral 
networks that resemble those of zeolites with transition metals linked by imidazolate 
ligands.(Banerjee et al., 2008; Banerjee et al., 2009; Hayashi et al., 2007; Park et al., 2006) 
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Zeolites are known with the Al(Si)O2 unit formula, whereas ZIFs are recognized by M(Im)2 
where M is the transition metal (zinc, cobalt, copper, etc.) and Im is the imidazolate-type 
linker. Recent MD simulations focused on gas diffusion in ZIFs. For example, self and 
corrected diffusivities of CO2, CH4 and H2 were simulated using equilibrium MD in ZIF-68 
and ZIF-70.(Rankin et al., 2009) That study underlined the importance of including charge-
quadrupole interactions on the diffusivity of CO2. Simulation results clearly revealed that 
addition of charge-quadrupole interaction terms results in almost one order of magnitude 
drop in the self and transport diffusivities of CO2 at low loadings. At high loadings 
diffusivities calculated from MD simulations with or without charge-quadrupole interaction 
terms converge towards the same values. The diffusivities of CO2, CH4 and H2 in ZIF-68 
were found to be lower than the ones in ZIF-70 since ZIF-68 has narrower pores hence 
provides stronger confinement of the adsorbate molecules in the pores. Self diffusivity of 
CO2 in ZIF-68 and ZIF-69 was also computed by MD simulations.(Liu et al., 2009) The 
diffusion of CO2 in ZIF-68 and ZIF-69 was found to be nearly an order of magnitude slower 
than that in IRMOF-10 and IRMOF-14. This was attributed to the smaller pores of ZIFs and 
their structural characteristic that causes larger steric hindrance. Pantatosaki and coworkers 
computed H2 self diffusion in ZIF-8 using both LJ and FH potentials at 77 and 300 
K.(Pantatosaki et al., 2010) The diffusivity predictions showed that quantum mechanical 
description of H2 at ambient temperatures is unimportant whereas MD simulations showed 
a marked difference between the values obtained from the classical and quantum 
mechanical description at 77 K. A recent MD study computed self diffusivities of H2, CO2, 
CH4 and N2 in ZIF-2, ZIF-4, ZIF-5, ZIF-8 and ZIF-9.(Battisti et al., 2011) Results showed that 
gases except H2 do not diffuse appreciably in ZIF-5 at least within the time interval of the 
MD calculations which makes ZIF-5 promising in H2 separations as a molecular sieve. 

Self diffusivities of H2, CH4 and CO2 in bioMOF-11 were computed from canonical ensemble 
MD simulations at 298 K.(Atci et al., 2011) BioMOFs are another subclass of MOFs that have 
been recently discovered. They incorporate simple biomolecules and biocompatible metal 
cations in their structures as linkers and metals.(An et al., 2009a; An et al., 2009b) Gas 
diffusion in bioMOFs was found to be similar to IRMOFs in terms of magnitude and loading 
dependence. As can be seen from the literature reviewed so far, most of the MD studies on 
MOFs computed self diffusivity of gases rather than corrected diffusivities since the 
calculation of the latter is computationally demanding. Keskin computed both single 
component self and corrected diffusivities of CH4 and H2 as a function of fugacity and pore 
loading in CPO-27-Ni.(Keskin, 2010a) The diffusivity of H2 (4×10-3 cm2/s) was faster than 
CH4 (6×10-4 cm2/s) as expected. Single component corrected diffusivities were found to be 
higher than the self diffusivities, since corrected diffusivity by definition includes 
information on the collective motion of multiple adsorbed molecules that is relevant to net 
mass transport.  

Figure 3 represents the self diffusivity of CO2 computed from MD simulations in the widely 
studied MOFs at room temperature. Gas diffusion in MOFs having large pores (IRMOF-1, 
CuBTC, Zn(bdc)(ted)0.5) is higher than the one in MOFs having narrow pores 
(Cu(hfipbb)(H2hfipbb)0.5, MMIF). The CO2 self diffusivity decreases with increased adsorbed 
loading in bioMOF-11, Cu(hfipbb)(H2hfipbb)0.5 and MMIF since CO2 reaches saturation in 
these MOFs due to their small pore volumes. The diffusivities in large pore MOFs do not 
change significantly with increased loadings since CO2 is further away from the saturation 
loading in MOFs having large pore volumes. 
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8 m2/s) are two or three times of those (10-20×10-8 m2/s) in their corresponding catenated 
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narrow pores due to the increase in the effective size parameter for the solid-fluid and fluid-
fluid interactions. In contrast to self diffusivity, transport diffusivity is not strongly 
influenced by the quantum effects at 77 K. 
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temperatures exhibit a good Arrhenius relationship. In another MD study, NVT ensemble 
with Berendsen(Frenkel&Smit, 2002) thermostat was used to examine the self diffusivity of 
CH4 in alkoxy functionalized IRMOF-1.(Jhon et al., 2007) As expected, CH4 diffusion was 
hindered due to the constriction of the pores as the length of the alkoxy chains increases. 
Comparison of the results with the early MD studies of Sarkisov et al.(Sarkisov et al., 2004) 
revealed good agreement whereas there is an unexplained small discrepancy between the 
results of Jhon et al. and Skoulidas et al.(Skoulidas&Sholl, 2005) at higher loadings. 

Zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs with their tetrahedral 
networks that resemble those of zeolites with transition metals linked by imidazolate 
ligands.(Banerjee et al., 2008; Banerjee et al., 2009; Hayashi et al., 2007; Park et al., 2006) 
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Zeolites are known with the Al(Si)O2 unit formula, whereas ZIFs are recognized by M(Im)2 
where M is the transition metal (zinc, cobalt, copper, etc.) and Im is the imidazolate-type 
linker. Recent MD simulations focused on gas diffusion in ZIFs. For example, self and 
corrected diffusivities of CO2, CH4 and H2 were simulated using equilibrium MD in ZIF-68 
and ZIF-70.(Rankin et al., 2009) That study underlined the importance of including charge-
quadrupole interactions on the diffusivity of CO2. Simulation results clearly revealed that 
addition of charge-quadrupole interaction terms results in almost one order of magnitude 
drop in the self and transport diffusivities of CO2 at low loadings. At high loadings 
diffusivities calculated from MD simulations with or without charge-quadrupole interaction 
terms converge towards the same values. The diffusivities of CO2, CH4 and H2 in ZIF-68 
were found to be lower than the ones in ZIF-70 since ZIF-68 has narrower pores hence 
provides stronger confinement of the adsorbate molecules in the pores. Self diffusivity of 
CO2 in ZIF-68 and ZIF-69 was also computed by MD simulations.(Liu et al., 2009) The 
diffusion of CO2 in ZIF-68 and ZIF-69 was found to be nearly an order of magnitude slower 
than that in IRMOF-10 and IRMOF-14. This was attributed to the smaller pores of ZIFs and 
their structural characteristic that causes larger steric hindrance. Pantatosaki and coworkers 
computed H2 self diffusion in ZIF-8 using both LJ and FH potentials at 77 and 300 
K.(Pantatosaki et al., 2010) The diffusivity predictions showed that quantum mechanical 
description of H2 at ambient temperatures is unimportant whereas MD simulations showed 
a marked difference between the values obtained from the classical and quantum 
mechanical description at 77 K. A recent MD study computed self diffusivities of H2, CO2, 
CH4 and N2 in ZIF-2, ZIF-4, ZIF-5, ZIF-8 and ZIF-9.(Battisti et al., 2011) Results showed that 
gases except H2 do not diffuse appreciably in ZIF-5 at least within the time interval of the 
MD calculations which makes ZIF-5 promising in H2 separations as a molecular sieve. 

Self diffusivities of H2, CH4 and CO2 in bioMOF-11 were computed from canonical ensemble 
MD simulations at 298 K.(Atci et al., 2011) BioMOFs are another subclass of MOFs that have 
been recently discovered. They incorporate simple biomolecules and biocompatible metal 
cations in their structures as linkers and metals.(An et al., 2009a; An et al., 2009b) Gas 
diffusion in bioMOFs was found to be similar to IRMOFs in terms of magnitude and loading 
dependence. As can be seen from the literature reviewed so far, most of the MD studies on 
MOFs computed self diffusivity of gases rather than corrected diffusivities since the 
calculation of the latter is computationally demanding. Keskin computed both single 
component self and corrected diffusivities of CH4 and H2 as a function of fugacity and pore 
loading in CPO-27-Ni.(Keskin, 2010a) The diffusivity of H2 (4×10-3 cm2/s) was faster than 
CH4 (6×10-4 cm2/s) as expected. Single component corrected diffusivities were found to be 
higher than the self diffusivities, since corrected diffusivity by definition includes 
information on the collective motion of multiple adsorbed molecules that is relevant to net 
mass transport.  

Figure 3 represents the self diffusivity of CO2 computed from MD simulations in the widely 
studied MOFs at room temperature. Gas diffusion in MOFs having large pores (IRMOF-1, 
CuBTC, Zn(bdc)(ted)0.5) is higher than the one in MOFs having narrow pores 
(Cu(hfipbb)(H2hfipbb)0.5, MMIF). The CO2 self diffusivity decreases with increased adsorbed 
loading in bioMOF-11, Cu(hfipbb)(H2hfipbb)0.5 and MMIF since CO2 reaches saturation in 
these MOFs due to their small pore volumes. The diffusivities in large pore MOFs do not 
change significantly with increased loadings since CO2 is further away from the saturation 
loading in MOFs having large pore volumes. 
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As the literature cited so far indicated most MD studies focused on diffusion of small gas 
molecules such as Ar, CH4, CO2, N2, H2 in MOFs. Limited number of studies investigated 
diffusion of larger gases. The self diffusivities of hexahydro-1,3,5-trinitro-1,3,5-triazine 
(RDX) were generated by MD in IRMOF-1, IRMOF-3, IRMOF-10.(Xiong et al., 2010) The 
trend for the self diffusivities of RDX in MOFs followed the pore sizes, highest in IRMOF-10 
and lowest in IRMOF-3. The self diffusivity of ethane, n-butane, n-hexane and cyclohexane 
in a MOF with the organic linker tetrakis[4-(carboxyphenyl)oxamethyl]methane was studied 
using MD simulations.(Sun et al., 2011) For linear alkanes, the diffusivities decreased 
dramatically with increased chain length.  The specific MOF studied in this work exhibited 
high selectivity towards n-hexane as a result of kinetics. 
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Fig. 3. The self diffusivity of CO2 in IRMOF-1, CuBTC, Zn(bdc)(ted)0.5, bioMOF-11, 
Cu(hfipbb)(H2hfipbb)0.5 and MMIF at 298 K computed from MD simulations.(Atci et al., 
2011; Erucar&Keskin, 2011;Keskin, 2011b; Keskin&Sholl, 2009b;Watanabe et al., 2009) 

In some cases, the adsorbate molecules cannot move in the MOF pores at a rate that can be 
measured by MD simulations. This case is generally observed when the kinetic diameter of 
the gas molecule is very similar in size to the pore diameter of the MOF. For example, initial 
MD simulations of adsorbed CH4 in a rigid Cu(hfipbb)(H2hfipbb)0.5 indicated that CH4 can 
not move between adjacent cages on the nanosecond time scales accessible using MD due to 
the large energy barrier.(Watanabe et al., 2009) The authors used a simple transition state 
expression to estimate the diffusivity of CH4 in Cu(hfipbb)(H2hfipbb)0.5 by assuming that the 
CH4 hopping rate between cages is,  

 exp( / )trans Bk E k T    (10) 
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where υ is the pre-exponential factor (1012-1013 s-1), Etrans is the transition energy barrier 
computed using DFT calculations for a flexible MOF, kB is the Boltzmann constant, T is 
temperature. These calculations resulted in a one-dimensional diffusivity,  

 21 / 2D k a    (11) 

where a is the cage-to-cage distance along the pore. Keskin studied diffusion of CH4 and 
CO2 in a microporous metal-imidazolate framework and similarly observed that CH4 
diffusion in this MOF is not accessible by MD due to a very large energy barrier (95 kJ/mol) 
that exists for the adsorbate to move through the pore.(Keskin, 2011b) It is important to note 
that both Watanabe et al. and Keskin concluded that Cu(hfipbb)(H2hfipbb)0.5 and MMIF are 
very promising materials for separation of CO2 from CH4 since CO2 diffuses several orders 
of magnitude faster than CH4 in these MOFs. 

3.2 Mixture diffusion 

In most practical applications, gases exist as mixtures rather than single components. For 
example, in membrane-based separations, at least two gas components exist. The relative 
transport rates of these components inside the material of interest are crucial in determining 
the overall performance of a material. Therefore, understanding mixture diffusion in MOFs 
is essential to design these materials as separation devices. In this section, MD simulations 
which predicted multi-component mixture diffusion in MOFs will be reviewed. These 
studies have mostly focused on self diffusivities of CO2/CH4, CO2/H2, CO2/N2, CO2/CO 
and CH4/H2 mixtures. The diffusion selectivities of MOFs for these gas mixtures have been 
computed using MD to understand the potential of MOFs in kinetic-based separations. It is 
important to highlight the fact that number of mixture MD simulations is limited compared 
to the number of single component MD simulations since characterizing diffusivity of gas 
mixtures is harder than studying a single species. 

Keskin and coworkers provided the first gas mixture diffusivity data in a MOF material 
using MD simulations.(Keskin et al., 2008) They computed self and Fickian diffusivities of 
CH4/H2 mixtures at various compositions in CuBTC. Theoretical correlations that can 
estimate mixture self and Fickian diffusivities based on single component data were tested 
in that work and the predictions of the correlations were compared with the results of direct 
MD simulations. This will be discussed in detail in Section 5. Keskin and Sholl later showed 
that if MD (GCMC) simulations are used to compute the mixture diffusivities (adsorbed 
amounts of each species) in a MOF, one can simply estimate the selectivity of this MOF as a 
membrane using:(Keskin&Sholl, 2009b) 

 1, 1 2 1 2
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self
perm diff sorp

self

D q q q q
D q q y y

       (12) 

where αperm,1/2, αdiff,1/2 and αsorp,1/2 represent permeation selectivity, diffusion selectivity and 
sorption selectivity of species 1 over species 2, respectively. In this approximate expression, 
the diffusion selectivity is defined as the ratio of self diffusivities in a binary mixture 
(Di,self(qi)) and the sorption selectivity is described as the ratio of adsorbed molar loadings, qi. 
This expression predicts a membrane’s selectivity at a specified feed pressure and 
composition based on a single mixture GCMC simulation and an MD simulation performed 
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As the literature cited so far indicated most MD studies focused on diffusion of small gas 
molecules such as Ar, CH4, CO2, N2, H2 in MOFs. Limited number of studies investigated 
diffusion of larger gases. The self diffusivities of hexahydro-1,3,5-trinitro-1,3,5-triazine 
(RDX) were generated by MD in IRMOF-1, IRMOF-3, IRMOF-10.(Xiong et al., 2010) The 
trend for the self diffusivities of RDX in MOFs followed the pore sizes, highest in IRMOF-10 
and lowest in IRMOF-3. The self diffusivity of ethane, n-butane, n-hexane and cyclohexane 
in a MOF with the organic linker tetrakis[4-(carboxyphenyl)oxamethyl]methane was studied 
using MD simulations.(Sun et al., 2011) For linear alkanes, the diffusivities decreased 
dramatically with increased chain length.  The specific MOF studied in this work exhibited 
high selectivity towards n-hexane as a result of kinetics. 
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Fig. 3. The self diffusivity of CO2 in IRMOF-1, CuBTC, Zn(bdc)(ted)0.5, bioMOF-11, 
Cu(hfipbb)(H2hfipbb)0.5 and MMIF at 298 K computed from MD simulations.(Atci et al., 
2011; Erucar&Keskin, 2011;Keskin, 2011b; Keskin&Sholl, 2009b;Watanabe et al., 2009) 

In some cases, the adsorbate molecules cannot move in the MOF pores at a rate that can be 
measured by MD simulations. This case is generally observed when the kinetic diameter of 
the gas molecule is very similar in size to the pore diameter of the MOF. For example, initial 
MD simulations of adsorbed CH4 in a rigid Cu(hfipbb)(H2hfipbb)0.5 indicated that CH4 can 
not move between adjacent cages on the nanosecond time scales accessible using MD due to 
the large energy barrier.(Watanabe et al., 2009) The authors used a simple transition state 
expression to estimate the diffusivity of CH4 in Cu(hfipbb)(H2hfipbb)0.5 by assuming that the 
CH4 hopping rate between cages is,  
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where υ is the pre-exponential factor (1012-1013 s-1), Etrans is the transition energy barrier 
computed using DFT calculations for a flexible MOF, kB is the Boltzmann constant, T is 
temperature. These calculations resulted in a one-dimensional diffusivity,  

 21 / 2D k a    (11) 

where a is the cage-to-cage distance along the pore. Keskin studied diffusion of CH4 and 
CO2 in a microporous metal-imidazolate framework and similarly observed that CH4 
diffusion in this MOF is not accessible by MD due to a very large energy barrier (95 kJ/mol) 
that exists for the adsorbate to move through the pore.(Keskin, 2011b) It is important to note 
that both Watanabe et al. and Keskin concluded that Cu(hfipbb)(H2hfipbb)0.5 and MMIF are 
very promising materials for separation of CO2 from CH4 since CO2 diffuses several orders 
of magnitude faster than CH4 in these MOFs. 

3.2 Mixture diffusion 

In most practical applications, gases exist as mixtures rather than single components. For 
example, in membrane-based separations, at least two gas components exist. The relative 
transport rates of these components inside the material of interest are crucial in determining 
the overall performance of a material. Therefore, understanding mixture diffusion in MOFs 
is essential to design these materials as separation devices. In this section, MD simulations 
which predicted multi-component mixture diffusion in MOFs will be reviewed. These 
studies have mostly focused on self diffusivities of CO2/CH4, CO2/H2, CO2/N2, CO2/CO 
and CH4/H2 mixtures. The diffusion selectivities of MOFs for these gas mixtures have been 
computed using MD to understand the potential of MOFs in kinetic-based separations. It is 
important to highlight the fact that number of mixture MD simulations is limited compared 
to the number of single component MD simulations since characterizing diffusivity of gas 
mixtures is harder than studying a single species. 

Keskin and coworkers provided the first gas mixture diffusivity data in a MOF material 
using MD simulations.(Keskin et al., 2008) They computed self and Fickian diffusivities of 
CH4/H2 mixtures at various compositions in CuBTC. Theoretical correlations that can 
estimate mixture self and Fickian diffusivities based on single component data were tested 
in that work and the predictions of the correlations were compared with the results of direct 
MD simulations. This will be discussed in detail in Section 5. Keskin and Sholl later showed 
that if MD (GCMC) simulations are used to compute the mixture diffusivities (adsorbed 
amounts of each species) in a MOF, one can simply estimate the selectivity of this MOF as a 
membrane using:(Keskin&Sholl, 2009b) 
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where αperm,1/2, αdiff,1/2 and αsorp,1/2 represent permeation selectivity, diffusion selectivity and 
sorption selectivity of species 1 over species 2, respectively. In this approximate expression, 
the diffusion selectivity is defined as the ratio of self diffusivities in a binary mixture 
(Di,self(qi)) and the sorption selectivity is described as the ratio of adsorbed molar loadings, qi. 
This expression predicts a membrane’s selectivity at a specified feed pressure and 
composition based on a single mixture GCMC simulation and an MD simulation performed 
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at the loadings determined from this GCMC calculation. Keskin and Sholl computed self 
diffusivities for CH4/H2, CO2/CH4 and CO2/H2 mixtures in several MOFs, IRMOF-1, 
IRMOF-8, IRMOF-9, IRMOF-10, IRMOF-14, COF-102, Zn(bdc)(ted)0.5 using MD simulations 
and based on these diffusivities they estimated the membrane selectivity of these MOFs. 

Mixture self diffusivities of CH4/H2 in CPO-27-Ni and CPO-27-Co were computed at 298 K 
for a wide pressure range and selectivity of these MOFs in CH4/H2 separations were 
predicted.(Keskin, 2010a) MD calculations were carried out to evaluate diffusion selectivities 
and permeation selectivities of ZIF-3 and ZIF-10 for CH4/H2, CO2/CH4 and CO2/H2 
mixtures.(Keskin, 2011a) Figure 4 shows the diffusion selectivities for these mixtures in the 
pores of ZIF-3 and ZIF-10 as a function of pressure at room temperature. Using the same 
approach, Krishna and van Baten computed diffusion selectivities and permeation 
selectivities for equimolar CO2/CH4 and CO2/H2 mixtures as a function of total pore 
loading in CPO-27-Zn, CPO-27-Mg, IRMOF-1.(Krishna&van Baten, 2011) Atci and 
coworkers evaluated the mixture self diffusivities of CH4/H2, CO2/CH4 and CO2/H2 in 
bioMOF-11 at the adsorbed loadings calculated from GCMC simulations.(Atci et al., 2011)  
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Fig. 4. The diffusion selectivities of ZIF-3 (closed symbols) and ZIF-10 (open symbols) 
computed from MD simulations. The first species on the label indicates the selected one. The 
compositions of the bulk gas mixtures are CH4/H2:10/90, CO2/CH4:10/90 and 
CO2/H2:1/99.(Keskin, 2011a) 

The self diffusivities of adsorbed CH4/H2 mixtures were examined at different compositions 
in Zn(bdc)(ted)0.5.(Keskin, 2010b) The self diffusivities of CH4 (H2) in the CH4/H2 mixture 
were larger (smaller) than pure component CH4 (H2) self diffusivity at the same loading. 
This observation is natural since the fast diffusing H2 molecules in the mixture speeds up 
the slowly diffusing CH4 molecules. Self diffusivities of CO2/CH4 and CH4/H2 mixtures 
were computed in ZIF-68 and ZIF-70 using NVT-MD simulations.(Liu et al., 2011) Results 
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indicated that diffusion of CH4 is increased with increasing concentration of H2 in the 
CH4/H2 mixture, while the diffusivity of H2 decreases with increasing CH4 concentration. In 
contrast, the diffusivity of CH4 was essentially independent of the concentration of CO2 in 
the CO2/CH4 mixture, while CO2 diffusivity decreases with increased CH4 loading, even 
though the diffusivity of CH4 is substantially larger than that of CO2. This unusual behavior 
was explained in terms of differences in adsorption site preferences due to charge-
quadrupole interactions. Another recent MD study examined the self diffusivities of 
equimolar CO2/ethane, CH4/ethane and CO2/methanol mixtures in Zn(tbip) including the 
flexibility effects.(Seehamart et al., 2011) Similar to previous observations, faster diffusing 
molecules accelerate the slower diffusing molecules whereas the slower ones slow down the 
faster ones through the channel of Zn(tbip).  

4. Comparison of diffusivities from molecular dynamics with experiments 
Measuring diffusivities of gas molecules in nanoporous materials is a challenging process, 
therefore experimentally measured diffusion data for gases in the pores of MOFs is still very 
limited. Stallmach and co-workers(Stallmach et al., 2006) carried out the first experimental 
study in the literature for diffusivity of hydrocarbons in MOF-5. They measured diffusion of 
methane, ethane, n-hexane, benzene by pulsed field gradient-nuclear magnetic resonance 
(PFG-NMR) which is a well-established technique for intra-crystalline diffusion studies in 
nanoporous materials. Diffusion of methane and ethane in MOF-5 was found to be faster 
than in NaX which was attributed to the larger pores of the former. This study supplied the 
first experimental data points for gas diffusion in MOFs for direct comparison between 
experiments and MD simulations. The measured diffusivity of n-hexane, 3.2-4.1×10-9 m2/s, 
was found to be in a good agreement with the value of 2.2×10-9 m2/s predicted by earlier 
MD simulations(Sarkisov et al., 2004) for a slightly higher loading. However, the self 
diffusivity of CH4 measured by PFG-NMR was about one order of magnitude higher than 
the value of 3.1×10-8 m2/s reported in MD simulations.(Sarkisov et al., 2004; 
Skoulidas&Sholl, 2005) Stallmach and coworkers attributed this discrepancy to the 
imperfections that may exist in the MOF structure and loadings used in MD simulations 
which were lower than the ones considered in the experiments. Zhao and coworkers(Zhao 
et al., 2009) measured diffusivity of CO2 in MOF-5 and reported a value (8×10-13 m2/s) 
which is several orders of magnitude smaller than the one obtained by the MD simulations 
(4×10-9 m2/s)(Skoulidas&Sholl, 2005) and also significantly smaller than the diffusivity of 
larger adsorbates such as n-hexane, benzene measured by other groups. This large 
difference between experiments and simulations can be again attributed to the imperfections 
in the synthesized MOF structure. 

The first experimental exploration of the H2 self diffusivity in MOFs was performed by 
quasielastic neutron scattering (QENS) measurements.(Salles et al., 2008) The QENS 
technique has proved to be very powerful to extract the loading dependence of the 
diffusivities for a wide range of adsorbates including H2 diffusivity in zeolites.(Jobic et al., 
1999) Combining QENS technique with molecular simulations has been successful in the 
past to characterize the diffusion mechanism of various adsorbates in nanoporous 
materials.(Jobic&Theodorou, 2007) The self diffusivities of H2 in MOFs, MIL-47(V) and MIL-
53(Cr) were extracted from QENS measurements and compared with the ones predicted by 
MD simulations performed in the NVT ensemble using the Evans isokinetic 
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at the loadings determined from this GCMC calculation. Keskin and Sholl computed self 
diffusivities for CH4/H2, CO2/CH4 and CO2/H2 mixtures in several MOFs, IRMOF-1, 
IRMOF-8, IRMOF-9, IRMOF-10, IRMOF-14, COF-102, Zn(bdc)(ted)0.5 using MD simulations 
and based on these diffusivities they estimated the membrane selectivity of these MOFs. 

Mixture self diffusivities of CH4/H2 in CPO-27-Ni and CPO-27-Co were computed at 298 K 
for a wide pressure range and selectivity of these MOFs in CH4/H2 separations were 
predicted.(Keskin, 2010a) MD calculations were carried out to evaluate diffusion selectivities 
and permeation selectivities of ZIF-3 and ZIF-10 for CH4/H2, CO2/CH4 and CO2/H2 
mixtures.(Keskin, 2011a) Figure 4 shows the diffusion selectivities for these mixtures in the 
pores of ZIF-3 and ZIF-10 as a function of pressure at room temperature. Using the same 
approach, Krishna and van Baten computed diffusion selectivities and permeation 
selectivities for equimolar CO2/CH4 and CO2/H2 mixtures as a function of total pore 
loading in CPO-27-Zn, CPO-27-Mg, IRMOF-1.(Krishna&van Baten, 2011) Atci and 
coworkers evaluated the mixture self diffusivities of CH4/H2, CO2/CH4 and CO2/H2 in 
bioMOF-11 at the adsorbed loadings calculated from GCMC simulations.(Atci et al., 2011)  
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Fig. 4. The diffusion selectivities of ZIF-3 (closed symbols) and ZIF-10 (open symbols) 
computed from MD simulations. The first species on the label indicates the selected one. The 
compositions of the bulk gas mixtures are CH4/H2:10/90, CO2/CH4:10/90 and 
CO2/H2:1/99.(Keskin, 2011a) 

The self diffusivities of adsorbed CH4/H2 mixtures were examined at different compositions 
in Zn(bdc)(ted)0.5.(Keskin, 2010b) The self diffusivities of CH4 (H2) in the CH4/H2 mixture 
were larger (smaller) than pure component CH4 (H2) self diffusivity at the same loading. 
This observation is natural since the fast diffusing H2 molecules in the mixture speeds up 
the slowly diffusing CH4 molecules. Self diffusivities of CO2/CH4 and CH4/H2 mixtures 
were computed in ZIF-68 and ZIF-70 using NVT-MD simulations.(Liu et al., 2011) Results 
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indicated that diffusion of CH4 is increased with increasing concentration of H2 in the 
CH4/H2 mixture, while the diffusivity of H2 decreases with increasing CH4 concentration. In 
contrast, the diffusivity of CH4 was essentially independent of the concentration of CO2 in 
the CO2/CH4 mixture, while CO2 diffusivity decreases with increased CH4 loading, even 
though the diffusivity of CH4 is substantially larger than that of CO2. This unusual behavior 
was explained in terms of differences in adsorption site preferences due to charge-
quadrupole interactions. Another recent MD study examined the self diffusivities of 
equimolar CO2/ethane, CH4/ethane and CO2/methanol mixtures in Zn(tbip) including the 
flexibility effects.(Seehamart et al., 2011) Similar to previous observations, faster diffusing 
molecules accelerate the slower diffusing molecules whereas the slower ones slow down the 
faster ones through the channel of Zn(tbip).  
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therefore experimentally measured diffusion data for gases in the pores of MOFs is still very 
limited. Stallmach and co-workers(Stallmach et al., 2006) carried out the first experimental 
study in the literature for diffusivity of hydrocarbons in MOF-5. They measured diffusion of 
methane, ethane, n-hexane, benzene by pulsed field gradient-nuclear magnetic resonance 
(PFG-NMR) which is a well-established technique for intra-crystalline diffusion studies in 
nanoporous materials. Diffusion of methane and ethane in MOF-5 was found to be faster 
than in NaX which was attributed to the larger pores of the former. This study supplied the 
first experimental data points for gas diffusion in MOFs for direct comparison between 
experiments and MD simulations. The measured diffusivity of n-hexane, 3.2-4.1×10-9 m2/s, 
was found to be in a good agreement with the value of 2.2×10-9 m2/s predicted by earlier 
MD simulations(Sarkisov et al., 2004) for a slightly higher loading. However, the self 
diffusivity of CH4 measured by PFG-NMR was about one order of magnitude higher than 
the value of 3.1×10-8 m2/s reported in MD simulations.(Sarkisov et al., 2004; 
Skoulidas&Sholl, 2005) Stallmach and coworkers attributed this discrepancy to the 
imperfections that may exist in the MOF structure and loadings used in MD simulations 
which were lower than the ones considered in the experiments. Zhao and coworkers(Zhao 
et al., 2009) measured diffusivity of CO2 in MOF-5 and reported a value (8×10-13 m2/s) 
which is several orders of magnitude smaller than the one obtained by the MD simulations 
(4×10-9 m2/s)(Skoulidas&Sholl, 2005) and also significantly smaller than the diffusivity of 
larger adsorbates such as n-hexane, benzene measured by other groups. This large 
difference between experiments and simulations can be again attributed to the imperfections 
in the synthesized MOF structure. 

The first experimental exploration of the H2 self diffusivity in MOFs was performed by 
quasielastic neutron scattering (QENS) measurements.(Salles et al., 2008) The QENS 
technique has proved to be very powerful to extract the loading dependence of the 
diffusivities for a wide range of adsorbates including H2 diffusivity in zeolites.(Jobic et al., 
1999) Combining QENS technique with molecular simulations has been successful in the 
past to characterize the diffusion mechanism of various adsorbates in nanoporous 
materials.(Jobic&Theodorou, 2007) The self diffusivities of H2 in MOFs, MIL-47(V) and MIL-
53(Cr) were extracted from QENS measurements and compared with the ones predicted by 
MD simulations performed in the NVT ensemble using the Evans isokinetic 
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thermostat.(Frenkel&Smit, 2002) Simulated data was in a good agreement with the 
experimentally measured data for both MILs. Experiments measured a diffusivity of 9×10-8 
m2/s (1.65×10-7 m2/s) and simulations predicted 4.5×10-8 m2/s (1.5×10-7 m2/s) at a loading 
of 0.5 H2 molecules per unit cell of MIL-53(Cr) (MIL-47(V)). In a similar study, QENS 
measurements were combined with MD simulations in NVT ensemble using either 
Berendsen or Evans thermostat to determine the self diffusivity of H2 in the same 
MILs.(Salles et al., 2008) Two different force fields, spherical one site model(Frost et al., 
2006) and explicit two atoms model(Yang&Zhong, 2005) were used in MD simulations of 
H2. Comparisons between QENS data and MD simulations clearly showed that the two 
force fields lead to very similar diffusivity values that produce the experimental value. This 
observation suggests that H2 diffusion is not significantly affected by the potential model. 

A combination of MD and QENS measurements were used to examine the diffusivity of water 
in MIL-53(Cr).(Salles et al., 2011) The breathing of this MOF upon water adsorption induces a 
structural transition between narrow pore (NP) and large pore (LP) forms. The self diffusivity 
of water was faster in LP form (8×10-10 m2/s) compared to the one in NP form (2.5×10-11 m2/s) 
since the confinement degree was much higher in NP structure. As an extension of this work, 
self, corrected and transport diffusivities of CO2 in MIL-47(V) were determined using MD and 
QENS.(Salles et al., 2010) While self and corrected diffusivities exhibited a decreasing profile 
with increased loading as expected, transport diffusivity presented an unexpected trend with a 
decrease at low loadings. This behavior was attributed to the unusual evolution of 
thermodynamic correction factor. This work was a good example of probing the transport 
diffusivity of gases in MOFs by combining MD and QENS. 

Two experiments studied diffusion of alkanes in MOFs: The diffusivity of n-butane, iso-
butane, 2-methylbutane and 2,2-dimethylpropane in CuBTC was investigated using infrared 
microscopy and MD simulations.(Chmelik et al., 2009) In another work, intracrystalline self 
diffusivities of propane, propene, n-butane, 1-butene, n-pentane and n-hexane in CuBTC 
were assessed using PFG-NMR and MD simulations.(Wehring et al., 2010) For the n-
alkanes, measured diffusivities within the experimental uncertainty agreed with the values 
from the MD simulations. The different trends observed in diffusivities of alkanes remained 
as an unsolved issue.  

5. Comparison of diffusivities from molecular dynamics with theories 
The prediction of transport properties in chemical mixtures from data taken from single 
component studies has been a long standing goal in describing mass transport in 
nanoporous materials. The validation of methods for this task can have great practical 
significance, but this type of validation can only be considered when high quality mixture 
diffusion data is available from MD. This section will present the validity of theoretical 
correlations by comparing their predictions for self diffusivities and Fickian diffusivities 
with the ones derived from MD. In the literature, Krishna-Paschek’s (KP) correlation 
(Krishna&Paschek, 2002) and Skoulidas, Sholl and Krishna (SSK) correlation(Skoulidas et 
al., 2003) have been widely used to predict the self diffusivities and Fickian diffusivities of a 
binary gas mixture, respectively. 

Keskin and Sholl studied MOF-5 as a membrane for separation of CO2/CH4 
mixtures.(Keskin&Sholl, 2007) As discussed in previous sections, in order to study transport 
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of gas mixtures in membranes mixture diffusivity data is required. However, at the time of 
that study there was no binary diffusion data available for MOF-5. Keskin and Sholl applied 
the SSK approach to quantify mixture diffusion of CO2/CH4 in MOF-5. This approach 
combines information from the loading dependence of the single component self 
diffusivities and corrected diffusivities (computed from MD simulations) with the binary 
adsorption isotherms (computed from GCMC simulations) to predict the loading and 
composition dependent matrix of binary diffusion coefficients. The SSK approach defines 
the mixture diffusivities for all loadings and compositions, an important feature of any 
description that will be used in examining a wide range of potential membrane operating 
conditions. Prior tests of this method by comparison with detailed atomic simulations of 
binary diffusion in silica zeolites and carbon nanotubes indicated that this approach is 
accurate for a wide variety of adsorbed mixtures.(Sholl, 2006)  

A year later, Keskin and coworkers presented the validity of SSK approach in a 
MOF.(Keskin et al., 2008) They examined both KP and SSK approaches by comparing 
predictions of these methods with the results of MD simulations for mixture transport of 
H2/CH4 in CuBTC. In order to use SSK correlation, continuous functions describing the 
pure component self and corrected diffusivities were required. The self and corrected 
diffusivities of each species in H2/CH4 mixture were calculated by MD simulations. Based 
on these single component diffusivities, the SSK approach predicted the Fickian 
diffusivities. Mixture MD simulations in a Nosé-Hoover thermostat in the NVT ensemble 
calculated Onsager coefficients (Equation 4) for H2/CH4 mixture and these values were 
converted to Fickian diffusivities (Equations 5 and 6). The predictions of the SSK approach 
for the Fickian diffusivities were in good agreement with the direct MD simulations of 
binary diffusion, suggesting that this approach may be a powerful one for examining multi-
component diffusion in MOFs. Mixture self diffusivities were predicted using KP 
correlations based on single component self diffusivities, corrected diffusivities and 
fractional loadings. Comparison between KP predictions and mixture MD simulations were 
also found to be in a good agreement. The SSK approach was also used to obtain Fickian 
diffusivities of CH4/H2, N2/H2, N2/CH4, CO2/H2, CO2/N2 mixtures in MOF-5 and CH4/H2, 
CO2/CH4 in CuBTC.(Keskin&Sholl, 2009a; Keskin et al., 2009a)  

Babarao and Jiang calculated self diffusivities of CH4 and CO2 in IRMOF-1 as a function of 
total loading based on the adsorption of an equimolar mixture using MD simulations and 
compared their results with the predictions of KP correlation.(Babarao&Jiang, 2008) Theory 
predictions were found to be in a fairly good agreement with MD simulations particularly 
for CH4 diffusivity in IRMOF-1 whereas the CO2 diffusivity was slightly overestimated by 
the theory. No certain reasoning was given for this overestimation. The predictions of KP 
correlations for mixture self diffusivities of CH4 and H2 were in reasonable agreement with 
the results of MD simulations for ZIF-68 and ZIF-70. (Liu et al., 2011) 

6. Conclusion and outlook 
Because of the large number of different MOFs that exist, efforts to predict the performance 
of MOFs using molecular modeling play an important role in selecting materials for specific 
applications. The high number of publications on MOFs and the dense interest of academy 
and industry on these new nanoporous materials hint that MOFs have numerous potential 
applications. Since almost all of these applications require the knowledge of molecular 
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thermostat.(Frenkel&Smit, 2002) Simulated data was in a good agreement with the 
experimentally measured data for both MILs. Experiments measured a diffusivity of 9×10-8 
m2/s (1.65×10-7 m2/s) and simulations predicted 4.5×10-8 m2/s (1.5×10-7 m2/s) at a loading 
of 0.5 H2 molecules per unit cell of MIL-53(Cr) (MIL-47(V)). In a similar study, QENS 
measurements were combined with MD simulations in NVT ensemble using either 
Berendsen or Evans thermostat to determine the self diffusivity of H2 in the same 
MILs.(Salles et al., 2008) Two different force fields, spherical one site model(Frost et al., 
2006) and explicit two atoms model(Yang&Zhong, 2005) were used in MD simulations of 
H2. Comparisons between QENS data and MD simulations clearly showed that the two 
force fields lead to very similar diffusivity values that produce the experimental value. This 
observation suggests that H2 diffusion is not significantly affected by the potential model. 

A combination of MD and QENS measurements were used to examine the diffusivity of water 
in MIL-53(Cr).(Salles et al., 2011) The breathing of this MOF upon water adsorption induces a 
structural transition between narrow pore (NP) and large pore (LP) forms. The self diffusivity 
of water was faster in LP form (8×10-10 m2/s) compared to the one in NP form (2.5×10-11 m2/s) 
since the confinement degree was much higher in NP structure. As an extension of this work, 
self, corrected and transport diffusivities of CO2 in MIL-47(V) were determined using MD and 
QENS.(Salles et al., 2010) While self and corrected diffusivities exhibited a decreasing profile 
with increased loading as expected, transport diffusivity presented an unexpected trend with a 
decrease at low loadings. This behavior was attributed to the unusual evolution of 
thermodynamic correction factor. This work was a good example of probing the transport 
diffusivity of gases in MOFs by combining MD and QENS. 

Two experiments studied diffusion of alkanes in MOFs: The diffusivity of n-butane, iso-
butane, 2-methylbutane and 2,2-dimethylpropane in CuBTC was investigated using infrared 
microscopy and MD simulations.(Chmelik et al., 2009) In another work, intracrystalline self 
diffusivities of propane, propene, n-butane, 1-butene, n-pentane and n-hexane in CuBTC 
were assessed using PFG-NMR and MD simulations.(Wehring et al., 2010) For the n-
alkanes, measured diffusivities within the experimental uncertainty agreed with the values 
from the MD simulations. The different trends observed in diffusivities of alkanes remained 
as an unsolved issue.  

5. Comparison of diffusivities from molecular dynamics with theories 
The prediction of transport properties in chemical mixtures from data taken from single 
component studies has been a long standing goal in describing mass transport in 
nanoporous materials. The validation of methods for this task can have great practical 
significance, but this type of validation can only be considered when high quality mixture 
diffusion data is available from MD. This section will present the validity of theoretical 
correlations by comparing their predictions for self diffusivities and Fickian diffusivities 
with the ones derived from MD. In the literature, Krishna-Paschek’s (KP) correlation 
(Krishna&Paschek, 2002) and Skoulidas, Sholl and Krishna (SSK) correlation(Skoulidas et 
al., 2003) have been widely used to predict the self diffusivities and Fickian diffusivities of a 
binary gas mixture, respectively. 

Keskin and Sholl studied MOF-5 as a membrane for separation of CO2/CH4 
mixtures.(Keskin&Sholl, 2007) As discussed in previous sections, in order to study transport 

Recent Advances in Molecular Dynamics  
Simulations of Gas Diffusion in Metal Organic Frameworks 

 

271 

of gas mixtures in membranes mixture diffusivity data is required. However, at the time of 
that study there was no binary diffusion data available for MOF-5. Keskin and Sholl applied 
the SSK approach to quantify mixture diffusion of CO2/CH4 in MOF-5. This approach 
combines information from the loading dependence of the single component self 
diffusivities and corrected diffusivities (computed from MD simulations) with the binary 
adsorption isotherms (computed from GCMC simulations) to predict the loading and 
composition dependent matrix of binary diffusion coefficients. The SSK approach defines 
the mixture diffusivities for all loadings and compositions, an important feature of any 
description that will be used in examining a wide range of potential membrane operating 
conditions. Prior tests of this method by comparison with detailed atomic simulations of 
binary diffusion in silica zeolites and carbon nanotubes indicated that this approach is 
accurate for a wide variety of adsorbed mixtures.(Sholl, 2006)  

A year later, Keskin and coworkers presented the validity of SSK approach in a 
MOF.(Keskin et al., 2008) They examined both KP and SSK approaches by comparing 
predictions of these methods with the results of MD simulations for mixture transport of 
H2/CH4 in CuBTC. In order to use SSK correlation, continuous functions describing the 
pure component self and corrected diffusivities were required. The self and corrected 
diffusivities of each species in H2/CH4 mixture were calculated by MD simulations. Based 
on these single component diffusivities, the SSK approach predicted the Fickian 
diffusivities. Mixture MD simulations in a Nosé-Hoover thermostat in the NVT ensemble 
calculated Onsager coefficients (Equation 4) for H2/CH4 mixture and these values were 
converted to Fickian diffusivities (Equations 5 and 6). The predictions of the SSK approach 
for the Fickian diffusivities were in good agreement with the direct MD simulations of 
binary diffusion, suggesting that this approach may be a powerful one for examining multi-
component diffusion in MOFs. Mixture self diffusivities were predicted using KP 
correlations based on single component self diffusivities, corrected diffusivities and 
fractional loadings. Comparison between KP predictions and mixture MD simulations were 
also found to be in a good agreement. The SSK approach was also used to obtain Fickian 
diffusivities of CH4/H2, N2/H2, N2/CH4, CO2/H2, CO2/N2 mixtures in MOF-5 and CH4/H2, 
CO2/CH4 in CuBTC.(Keskin&Sholl, 2009a; Keskin et al., 2009a)  

Babarao and Jiang calculated self diffusivities of CH4 and CO2 in IRMOF-1 as a function of 
total loading based on the adsorption of an equimolar mixture using MD simulations and 
compared their results with the predictions of KP correlation.(Babarao&Jiang, 2008) Theory 
predictions were found to be in a fairly good agreement with MD simulations particularly 
for CH4 diffusivity in IRMOF-1 whereas the CO2 diffusivity was slightly overestimated by 
the theory. No certain reasoning was given for this overestimation. The predictions of KP 
correlations for mixture self diffusivities of CH4 and H2 were in reasonable agreement with 
the results of MD simulations for ZIF-68 and ZIF-70. (Liu et al., 2011) 

6. Conclusion and outlook 
Because of the large number of different MOFs that exist, efforts to predict the performance 
of MOFs using molecular modeling play an important role in selecting materials for specific 
applications. The high number of publications on MOFs and the dense interest of academy 
and industry on these new nanoporous materials hint that MOFs have numerous potential 
applications. Since almost all of these applications require the knowledge of molecular 
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transport rates, MD studies become one of the most beneficial methods in studying MOFs. 
As is evident from the volume of literature cited, this area is growing rapidly. The 
development of quantitative information about mixture diffusion in MOFs is just beginning 
(section 3.2) whereas a significant number of studies have already considered single 
component gas diffusion in MOFs (section 3.1). Detailed understanding of mixture diffusion 
in MOFs will be very beneficial for design of MOF membranes, adsorbents, catalysts and 
sensors. Current opportunities and challenges of using MD simulations in assessing 
transport rates of gases in MOFs will be addressed below. 

6.1 Opportunities 

The most significant opportunity of employing MD simulations for obtaining gas diffusivity 
in MOFs lies in areas where experiments for transport property of interest (transport 
diffusivities, energy barrier to diffusion) are challenging, not in reiterating properties that 
have already been addressed experimentally. Measuring diffusivity at a wide range of 
loadings in the pores at extreme conditions such as infinite dilute loading and/or saturation 
loading is experimentally difficult. MD simulations can provide information about gas 
diffusion in MOFs’ pores under these conditions. Getting diffusivity data as a function of 
gas loading is crucial to design membranes, adsorbents, catalysts from MOFs that will work 
under a wide range of operating conditions.  

As addressed in Section 5, the development of quantitative information about mixture 
diffusion in MOFs is just beginning. Since performing mixture MD simulations for MOFs 
with large frameworks and for gas mixtures at high adsorbed loadings are computationally 
demanding, theoretical correlations that predict mixture diffusion based on single 
component diffusion data are very useful. Recent research search showed that these models 
yield accurate results for at least simple chemical mixtures in MOFs. Testing and validation 
of theoretical correlations for predicting gas diffusivity in various subclasses of MOFs will 
be useful to widely utilize these correlations for different structures. 

A great advantage of using MD simulations is to test hypothetical MOF structures for 
particular applications if the metric describing the performance of a material for the 
application can be directly calculated. For example, Düren and coworkers used GCMC 
simulations to design materials with large adsorption capacities for CH4.(Düren et al., 2004) 
In a similar way, MD simulations can be used to design materials with slow diffusivities for 
CH4 and fast diffusivities for CO2 to identify materials that will be promising in kinetic 
separation of CO2 from CO2/CH4 mixtures.  

6.2 Challenges 

The development of accurate classical interatomic potentials for describing gas diffusion in 
MOFs remains challenging. From the modeling perspective, it is important to use 
experimental diffusion data from a broad range of conditions to parameterize interatomic 
potentials whenever this is practical. However, as discussed in Section 4, the number of 
experimental data on gas diffusion in MOFs is very limited. Furthermore, developing 
potentials specific to a MOF structure is not the solution since hundreds of different MOF 
structures are available. Therefore, efforts to test and improve the transferability of 
potentials among related families of MOFs will have a great value. One of the major 
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challenges in using MD simulations for MOFs was addressed in Section 2.2: absence of fully 
flexible force fields. Rigid framework assumption creates tremendous savings in 
computational effort. A handful of studies used flexible force fields to include the lattice 
dynamics effects on gas diffusivity in MOFs. These studies showed that there can be orders 
of magnitude difference between the diffusivity data from MD simulations using rigid 
framework and the one using flexible framework, specifically for large adsorbates. This 
issue indeed turns to be related with the challenge listed above, having accurate flexible 
interatomic potentials which can be applied to a family of MOF structures in a 
computationally meaningful time scale.  

Another major challenge, especially in diffusivity simulations of CO2 and N2, is the choice of 
method to assign partial charges to MOF atoms. The QM calculations were used to define 
partial point charges in the literature, however there is no unique way to accomplish this 
task and different charge decomposition methods can give rather different results. Studies 
have shown that charge effects are important especially for computing diffusivities at low 
loadings. Careful studies that establish reliable approaches in charge assignment will be 
very useful in employing MD simulations for diffusion of polar and quadrupolar molecules 
in MOFs. 

To date MD simulations have been used to compute the transport rates of adsorbates in 
MOFs. One remaining challenge is to predict the long term stability of MOFs since this is a 
serious issue in practical applications of these materials. Although stability issue sounds to 
be most likely addressed by experimental studies, one recent MD study which investigated 
the mechanism of water induced decomposition of IRMOF-1(Greathouse&Allendorf, 2006) 
showed that molecular simulations can be also helpful in this area. 
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transport rates, MD studies become one of the most beneficial methods in studying MOFs. 
As is evident from the volume of literature cited, this area is growing rapidly. The 
development of quantitative information about mixture diffusion in MOFs is just beginning 
(section 3.2) whereas a significant number of studies have already considered single 
component gas diffusion in MOFs (section 3.1). Detailed understanding of mixture diffusion 
in MOFs will be very beneficial for design of MOF membranes, adsorbents, catalysts and 
sensors. Current opportunities and challenges of using MD simulations in assessing 
transport rates of gases in MOFs will be addressed below. 
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in MOFs lies in areas where experiments for transport property of interest (transport 
diffusivities, energy barrier to diffusion) are challenging, not in reiterating properties that 
have already been addressed experimentally. Measuring diffusivity at a wide range of 
loadings in the pores at extreme conditions such as infinite dilute loading and/or saturation 
loading is experimentally difficult. MD simulations can provide information about gas 
diffusion in MOFs’ pores under these conditions. Getting diffusivity data as a function of 
gas loading is crucial to design membranes, adsorbents, catalysts from MOFs that will work 
under a wide range of operating conditions.  

As addressed in Section 5, the development of quantitative information about mixture 
diffusion in MOFs is just beginning. Since performing mixture MD simulations for MOFs 
with large frameworks and for gas mixtures at high adsorbed loadings are computationally 
demanding, theoretical correlations that predict mixture diffusion based on single 
component diffusion data are very useful. Recent research search showed that these models 
yield accurate results for at least simple chemical mixtures in MOFs. Testing and validation 
of theoretical correlations for predicting gas diffusivity in various subclasses of MOFs will 
be useful to widely utilize these correlations for different structures. 

A great advantage of using MD simulations is to test hypothetical MOF structures for 
particular applications if the metric describing the performance of a material for the 
application can be directly calculated. For example, Düren and coworkers used GCMC 
simulations to design materials with large adsorption capacities for CH4.(Düren et al., 2004) 
In a similar way, MD simulations can be used to design materials with slow diffusivities for 
CH4 and fast diffusivities for CO2 to identify materials that will be promising in kinetic 
separation of CO2 from CO2/CH4 mixtures.  

6.2 Challenges 

The development of accurate classical interatomic potentials for describing gas diffusion in 
MOFs remains challenging. From the modeling perspective, it is important to use 
experimental diffusion data from a broad range of conditions to parameterize interatomic 
potentials whenever this is practical. However, as discussed in Section 4, the number of 
experimental data on gas diffusion in MOFs is very limited. Furthermore, developing 
potentials specific to a MOF structure is not the solution since hundreds of different MOF 
structures are available. Therefore, efforts to test and improve the transferability of 
potentials among related families of MOFs will have a great value. One of the major 

Recent Advances in Molecular Dynamics  
Simulations of Gas Diffusion in Metal Organic Frameworks 

 

273 

challenges in using MD simulations for MOFs was addressed in Section 2.2: absence of fully 
flexible force fields. Rigid framework assumption creates tremendous savings in 
computational effort. A handful of studies used flexible force fields to include the lattice 
dynamics effects on gas diffusivity in MOFs. These studies showed that there can be orders 
of magnitude difference between the diffusivity data from MD simulations using rigid 
framework and the one using flexible framework, specifically for large adsorbates. This 
issue indeed turns to be related with the challenge listed above, having accurate flexible 
interatomic potentials which can be applied to a family of MOF structures in a 
computationally meaningful time scale.  

Another major challenge, especially in diffusivity simulations of CO2 and N2, is the choice of 
method to assign partial charges to MOF atoms. The QM calculations were used to define 
partial point charges in the literature, however there is no unique way to accomplish this 
task and different charge decomposition methods can give rather different results. Studies 
have shown that charge effects are important especially for computing diffusivities at low 
loadings. Careful studies that establish reliable approaches in charge assignment will be 
very useful in employing MD simulations for diffusion of polar and quadrupolar molecules 
in MOFs. 

To date MD simulations have been used to compute the transport rates of adsorbates in 
MOFs. One remaining challenge is to predict the long term stability of MOFs since this is a 
serious issue in practical applications of these materials. Although stability issue sounds to 
be most likely addressed by experimental studies, one recent MD study which investigated 
the mechanism of water induced decomposition of IRMOF-1(Greathouse&Allendorf, 2006) 
showed that molecular simulations can be also helpful in this area. 
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1. Introduction 

Main concepts of Hydrogen permeability (HP) mechanism for the pure crystal metals are 
already stated. There are well-founded theoretical models and numerous experimental 
researches. As far as disordered systems (in which Hydrogen solubility is much more, than 
in crystal samples) are concerned, such works appear to be comparatively recent and rare. 
Particularly, they are devoted to Hydrogen interaction of with amorphous structures. 
Deficiency of similar researches is caused by thermo-temporal instability of amorphous 
materials structure and properties. 

Unlike crystal alloy, where interstice volumes are presented discretely only by tetrahedron 
and octahedron cavities, small and big interstice cavities distribution in an amorphous alloy 
is close to Gaussian function (Polukhin and Vatolin, 1985, Polukhin et.al, 1984, 1986). Thus 
Hydrogen energy distribution function form in the amorphous alloys cavities is close to the 
main RDF peak which is approximated by Gaussian function. Inter-cavities transitions are 
strongly correlated, and the stationary states contribution to the Hydrogen atoms motion is 
negligible. 

Amorfizator-elements (Si, B, C, etc.) insertion into the amorphous metals reduces number of 
large cavities (octahedrons) providing most energetically favourable Hydrogen migration 
path. It reduces metal absorption ability, as well as hydrogen diffusion motion intensity, 
reducing Hydrogen permeability.  

Amorphous alloys absorption ability of hydrogen is defined by number and size of cavities 
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by the other metals additives. In the plasma-arc (PAM) and electron beam (EBM) refining 
melting of the Nb, Zr, Ta, etc. metals, the necessity of impurity elements (especially 
hydrogen and iron) transport research in such melts arises. Electric and magnetic fields 
affect to liquid metal and its impurities during melting have been indicated in the number of 
researches as well.   

Therefore research of an electric field intensity affect to the impurity elements transport 
properties in the liquid metals is very urgent.  

Amorphous and liquid systems based on Fe, Pd, Zr, Ta, Si with and without Hydrogen 
researches are presented in this work. Short order structure experimental results and 
molecular dynamics simulations are considered. Partial structure factors, radial distribution 
function of atoms, its mean square displacement and diffusion factors are calculated.  
Hydrogen concentration affect to its mobility and short order parameters in the system are 
analyzed. Electric field intensity affect to liquid metals are compared with literary data on 
impurities removal from Zr and Ta in plasma-arc melting in the Hydrogen presence.  

2. Molecular dynamics calculation method 
Molecular dynamics method (MD) had been primary proposed in (Alder & Wainwright, 
1959). The method allows particles real-time motion analysis using classic equations. So far 
it’s the only numeric method for dens medium dynamic research. Generally accepted 
nowadays MD calculation scheme is the following. A system consisting of several hundred 
particles with the given interparticle interaction potential is considered. Classic equations of 
the particles motion are numerically resolved using Verlet algorithm (Verlet, 1976). It 
calculates i-particle coordinate on the following (k+1)-step by coordinates on given k- and 
previous (k-1)-steps.  
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Where ri – radius-vector of particle, m - its mass, Fi – resultant force and Δt – time step. 
Velocity doesn’t take part in  calculation. Other algorithms of motion path calculation are 
considered in (Polukhin & Vatolin 1985). Periodic boundary conditions are used in 
motion equation solution, i.e. if some particle with pi - momentum exits through cube 
face, then other particle with the same momentum enters through opposite face 
symmetric relatively plane in the center of cube. Interaction in the MD models is defined 
as the pair interaction potentials resultant force in the pair approximation models. 
Temperature of system is defined basing on its total kinetic energy. Diffusion factors are 
calculated from mean square displacement of the particles in model 2( )ir t  by the major 
of steps. 
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Where <r2(t)>  – mean square displacement of Hydrogen atoms at t – time. 

Disorder systems short order is characterized by of radial distribution function of atoms g 
(r) (RDF) and its Fourier transform – structure factor s(k). Radial distribution function RDF 
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determines location probability any atom at r distance from the chosen atom and described 
in MD model by the well-known formula:  
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Where ∆N ─ number of particles in a spherical layer thickness ∆r on r distance from the 
chosen particle: L ─ cube edge length of basic cell and N ─ number of its particles. Structure 
factor s(k) is defined by following equation: 
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Where k is wave vector, k = (4  Sin 2Ө)/λ  and rm is RDF attenuation radius.  

Minimum k value in the MD – experiment is inversely proportional to main cube edge and 
calculations for smaller k, have not physics sense. Final configuration for RDF in our 
calculation was chosen its constant value. This condition needs no less than 10000 steps. 
Coordination number had been calculated by following formula:  
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Molecular dynamics calculation had been done using  microcanonical (NVE)  ensemble.  

The particles of system were randomly distributed in the basis MD – cell. Interpartial 
potentials and its numerical value factors had been taken from works of (Varaksin & 
Kozjaychev, 1991, Zhou et.al, 2001, Rappe et.al, 1992). General questions of this method 
using had been considered in details by authors (Polukhin & Vatolin, 1985).              

3. Hydrogen in amorphous and recrystallized Fe-Ni-Si-B-C-P alloy 
(experiment) 
Experimental researches of Hydrogen absorption affect to structure and physical-chemical 
properties of transition metals (Palladium and Iron) alloys are presented by works 
(Pastukhov et.al, 1988). This researches indicated, that Hydrogen absorption leads to 
considerable shift of structure relaxation start and finish to the higher heating temperature 
interval. This process provokes significant modification of the amorphous (Iron based) 
material strength properties and leads to increased embrittlement. All mentioned changes 
are adequately displayed on the atoms distribution curves (fig. 1), obtained from diffraction 
experiment data (Vatolin et.al, 1989). 

Hydrogen permeability of the amorphous and recrystallized Fe based (Fe77.333Ni1.117Si7.697 

B13.622C0.202P0.009) alloy membrane (25 micron thickness) was researched by stationary stream 
method (Pastuchov et.al, 2007). Recrystallized alloy was prepared by vacuum annealing at 
4000С from amorphous specimen. 

Molecular Hydrogen injection to input side of degasified specimen at maximal acceptable 
temperatures (300°С for amorphous and   400°С for recrystallized specimens) didn’t lead to 
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noticeable output stream increase. At 10 torr Hydrogen pressure the stream achieved 
3.81012 sm-2/s value. Hydrogen medium glow discharge had been used in order to delete 
the specimen passivation layer. Hydrogen ions, formed in glow discharge, simply penetrate 
to the specimen bulk (Lifshiz, 1976). We observed significant penetrating stream in this 
procedure. All researches have been carried out at 2 torr Hydrogen pressure, when the 
discharge is most stable. 

Temperature dependences of the stable (stationary) Hydrogen stream had been defined for 
amorphous and recrystallized specimens. Lower limit of the researched temperature 
interval was defined as reliable stream registration possibility which had been stated as 
1250C for amorphous and 2000С for crystal specimens. Most impotent difference between 
two states of the researched alloy is observed as non-monotonic output stream increase at 
temperature expansion in amorphous state.  

 
Fig. 1. Atoms radial distribution for amorphous (Fe77.3 Ni1.1Si7.7B13.6C0.2P0.009) alloy with 
Hydrogen ( <Н2> ) and Hydrogen absence  (1 - 2750C; 2 - 3000 + <H2>; 3 - 4250C; 4 - 4250C + 
<H2>; 5 - 4500C; 6 - 4750C +<H2>; 7 - 5500C; 8 - 5750C +<H2>). 

Hydrogen stream stabilization has different nature in amorphous and recrystallized 
specimens. But both situations are characterized by rapid increase of output stream with 
characteristic 3060s stabilization times.  

Amorphous membrane is characterized by very elongated hydrogen output with 6000s 
stabilizing time after rapid output increase at temperatures from 1250 C up to 225°C. 
Hydrogen stream dependence on inverse temperature is illustrated by fig.2. The 
dependence isn’t monotonous and has maximum in 200°C region.  

The stream increases from 1250С and achieves maximum 3.31013 sm-2s-1 value at 200°С. 
Subsequent heating demonstrates anomalously sharp decrease. Second specimen follows to 
classic Arrhenius dependence with activation energy 17.9 kj/mol and maximum stream 
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value 2.71013 sm-2s-1 at 3750C (fig. 2). Amorphization of the alloys leads to considerable free 
volume increasing, which increases Hydrogen permeability, solubility and diffusion. Special 
attention should be directed to the Hydrogen permeability changing (by order) effect with 
comparatively low solubility increase. This effect is explained by competition from 
amorphization-elements, which occupy large Bernal polyhedron-cavities, first of all in the 
high amorphization-elements concentration  region (Polukhin et.al, 1997). “Overextended“ 
stream yield to the stationary value evidently related to reversible diffusant capture 
(Herst,1962). Thus Hydrogen escape probability from the traps increases faster than capture 
probability. It was experimentally showed, that at temperature increase up to 2000C, low 
increase Hydrogen streams observed in reality. Its decrease begins after 2000C. Such 
behavior is proper namely for the traps with activation energies of escape and capture 
ЕescEcap.  

 
Fig. 2. Stationary Hydrogen stream (J) dependence on temperature. (1 – amorphous alloy,  
2 – recrystallized alloy) 

Penetrating stream decreasing in amorphous specimen for temperature interval from 2000 C 
up to 3000 C most probably is related to surface processes. Since penetrating stream is three 
orders less than incident stream to input surface (Vf 1016cm-2s-1), balance of streams is 
written as  

 Vf = VT + Vr (6) 

where VT + Vr   

 Vr = VfCi/Cmax     and    VT =  bi·exp(-Ei/RT)Ci (7) 

are streams of ion-induced reemission and thermal desorption on input side. Term Ci is 
Hydrogen concentration in no-violated alloy structure near input surface, bi – pre-exponent 
factor. Maximal obtainable concentration in near-surface layer Cmax at room temperature 
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(when thermal desorption is negligible) is estimated as 1018 at/cm3 (Grashin et.al, 1982, 
Sokolov et.al, 1984). In assumption, that С2 – concentration n on output side much less than 
Ci, for stationary penetrating stream, we obtain following expression   

 J = A·exp(-Ed/RT)/(1 + B·exp(-Ei/RT)) (8) 

where Ed – diffusion activation energy. The rates of diffusant capture and release are equal 
in stationary state and do not affect to stationary stream intensity. Thus equation (8) doesn’t 
include interaction parameters of Hydrogen with traps. Approximation results are 
displayed by solid curves at fig. 3. Energy values Edam = 40.8, Eiam = 86.7 kj/mol for 
amorphous, and Еdcr = 71.2, Eicr = 51.7 kj/mol for crystal specimens give good agreement 
with experiment data. 

Concentration calculation on input membrane side by (6) and (7) equations accounting 
thermodesorption activation energies is illustrated by fig. 4. Parameter Cmax , used in 
calculation does not any effect to activation energies, but affects only to pre-exponent 
factors.  

 
Fig. 3. Stable (stationary) Hydrogen stream through amorphous membrane.  

Surface processes and correlation of Ed and Ei values define stationary stream temperature 
dependence. Concentration Cam for an amorphous alloy has Сmax value up to 175°С 
temperature and penetration rate is defined by diffusion, at that stream increases. Following 
temperature increase leads to exponential Ci concentration decrease, and Ed<Ei correlation 
leads to stream decreasing. Input Ccr concentration for recrysallyzed alloy decreases in all 
temperature interval (fig. 4, curve 2), and Еd > Ei relation leads to classic Arrhenius 
dependence  

 J  exp(-Ea/RT) (9) 

where Ea=Ed-Ei ~ 19.6 kj/mol in our calculation, that is close to Еа = 17.9 kj/mol, obtained 
experimentally.  
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Fig. 4. Temperature Hydrogen concentration dependence at input side of membrane  
(1- amorphous alloy, 2- recrystallized alloy). 

Diffusion activation energies related to specimens structure, obviously. Excess free 
volume presence in the amorphous alloy provides less energy consumption for the 
Hydrogen atom jumps from one interstice to another. Besides some part of interstices may 
perhaps be wrong Bernal cavities, i.e. be deformed. Thermodesorption activation energy 
in recrystallized alloy is less than in amorphous one Eicr < Eiam . This fact could be 
explained by surface reconstruction and changing of the passivation layer to the 
Hydrogen desorption. 

4. Hydrogen effect to the short order structure for liquid, amorphous and 
crystal silicon 
Due to its semiconductor properties, Silicon had been found wide application in the 
recent microelectronics and electronic technique. Hydrogen has been generally recognized 
to play impotent function in the different complex formation in the amorphous Silicon. 
Attention to the Hydrogen behavior in Silicon is explained by its affect to physical-
chemical properties, which gives opportunity of new materials with necessary properties 
development.  

Hydrogen diffusion in crystal Si was researched by TBMD (tight binding molecular 
dynamics) method (Panzarini. & Colombo, 1994). The model considered single Hydrogen 
atom in 64-atoms super-cell of Silicon. On the TBMD data the authors supposed, that 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

286 

(when thermal desorption is negligible) is estimated as 1018 at/cm3 (Grashin et.al, 1982, 
Sokolov et.al, 1984). In assumption, that С2 – concentration n on output side much less than 
Ci, for stationary penetrating stream, we obtain following expression   

 J = A·exp(-Ed/RT)/(1 + B·exp(-Ei/RT)) (8) 

where Ed – diffusion activation energy. The rates of diffusant capture and release are equal 
in stationary state and do not affect to stationary stream intensity. Thus equation (8) doesn’t 
include interaction parameters of Hydrogen with traps. Approximation results are 
displayed by solid curves at fig. 3. Energy values Edam = 40.8, Eiam = 86.7 kj/mol for 
amorphous, and Еdcr = 71.2, Eicr = 51.7 kj/mol for crystal specimens give good agreement 
with experiment data. 

Concentration calculation on input membrane side by (6) and (7) equations accounting 
thermodesorption activation energies is illustrated by fig. 4. Parameter Cmax , used in 
calculation does not any effect to activation energies, but affects only to pre-exponent 
factors.  

 
Fig. 3. Stable (stationary) Hydrogen stream through amorphous membrane.  

Surface processes and correlation of Ed and Ei values define stationary stream temperature 
dependence. Concentration Cam for an amorphous alloy has Сmax value up to 175°С 
temperature and penetration rate is defined by diffusion, at that stream increases. Following 
temperature increase leads to exponential Ci concentration decrease, and Ed<Ei correlation 
leads to stream decreasing. Input Ccr concentration for recrysallyzed alloy decreases in all 
temperature interval (fig. 4, curve 2), and Еd > Ei relation leads to classic Arrhenius 
dependence  

 J  exp(-Ea/RT) (9) 

where Ea=Ed-Ei ~ 19.6 kj/mol in our calculation, that is close to Еа = 17.9 kj/mol, obtained 
experimentally.  

Molecular Dynamic Simulation of Short Order and  
Hydrogen Diffusion in the Disordered Metal Systems 

 

287 

 
Fig. 4. Temperature Hydrogen concentration dependence at input side of membrane  
(1- amorphous alloy, 2- recrystallized alloy). 

Diffusion activation energies related to specimens structure, obviously. Excess free 
volume presence in the amorphous alloy provides less energy consumption for the 
Hydrogen atom jumps from one interstice to another. Besides some part of interstices may 
perhaps be wrong Bernal cavities, i.e. be deformed. Thermodesorption activation energy 
in recrystallized alloy is less than in amorphous one Eicr < Eiam . This fact could be 
explained by surface reconstruction and changing of the passivation layer to the 
Hydrogen desorption. 

4. Hydrogen effect to the short order structure for liquid, amorphous and 
crystal silicon 
Due to its semiconductor properties, Silicon had been found wide application in the 
recent microelectronics and electronic technique. Hydrogen has been generally recognized 
to play impotent function in the different complex formation in the amorphous Silicon. 
Attention to the Hydrogen behavior in Silicon is explained by its affect to physical-
chemical properties, which gives opportunity of new materials with necessary properties 
development.  

Hydrogen diffusion in crystal Si was researched by TBMD (tight binding molecular 
dynamics) method (Panzarini. & Colombo, 1994). The model considered single Hydrogen 
atom in 64-atoms super-cell of Silicon. On the TBMD data the authors supposed, that 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

288 

Hydrogen diffusion mechanism in crystal Silicon acts according to Arrhenius low, and there 
are not other “anomalous” mechanisms but, for example, the single skips. Amorphous 
Silicon short order structure had been researched in the works of (Pastukhov et.al, 2003, 
Gordeev et.al, 1980). It had been found, that amorphous Silicon retains covalent bond type 
with coordination number Z=4.2, in difference with melt, where the bond has metallic 
character (Z=6.4).  

The data of experimentally estimated values for Hydrogen diffusion factors in amorphous Si 
are limited, and published results are not in good agreement. The experimental research 
data on amorphous Silicon Hydrogen permeability are presented in the work (Gabis, 1997). 
For Hydrogen transfer through amorphous Silicon film the author used model, where 
besides diffusion, low rate of the processes on surface, as well as capture and temporal 
keeping of the Hydrogen diffusing atoms in traps had been taken into consideration. It’s the 
author's opinion that Hydrogen transfer related to local bonds Silicon-Hydrogen 
reconstruction. 

Physics-chemical properties of computer models (containing thousands atoms) for 
amorphous Silicon, could be described in terms of empiric potentials (Tersoff, 1986,  
Stillimger & Weber, 1985).   

We used interparticle potential (Tersoff, 1986) and MD method to calculate structure 
parameters and diffusion factors of Si and H in crystal, amorphous and liquid Silicon 
(Pastukhov, 2008).  

Calculations had been carried out for system, containing 216 Silicon and 1 Hydrogen atoms 
in basic cube using periodic boundary conditions. Cube edge length had been had been 
taken according to experimental density system under consideration at 298К temperature. 
Molecular dynamic calculation results are presented on fig. 5, 6 and in table 1. Valent angles 
mean values were found from first and second coordination sphere radii using following 
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Experimental data analysis obtains, that, in certain approximation, there is one metastable 
equilibrium configuration of atoms with coordination number 4 in the c-Si и a-Si materials 
with Hydrogen as well as without it. First peak sharpness of intensity curve (fig. 6) indicates 
comparatively large ordering in а-Si. First and second maxima of RDF curve practically 
coincide. Differences are observed in consequent part of curves. Third maximum of RDF for 
а-Si is practically absent.  

Computer calculations for Si-H model found, that Hydrogen diffusion mechanism in crystal 
Si with n – conductivity type is realized by electro-neutral Hydrogen atoms migration 
through tetrahedral interstices according to the same principle as screened proton diffusion 
in the amorphous transition metals (Vatolin et.al, 1988). However Hydrogen atom moving 
path trough matrix nodes accompanied by Si-Si bond breakage due to Si atom 0.05nm shift 
from the node occupied and formation of chemical bond Si-H and free Si bond, left in the 
lattice node.   
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Silicon phases 
structure 
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inter-bonds φ 
Diff. factors 

D, cm2/s 

Density 
ρ, g/cm3. 
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Liquid Si 
(1700К)   6,4 103,9±26,8 6,4·10-5  

a-Si 
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a-Si, (298K) 
Our data 

MD-model 
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а-Si+H, (298K) 
Our data 
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(Si-Si) 
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(Si-H) 
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(Si-Si) 
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(Si-H) 
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(φSi-Si) 
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(φSi-H) 
90 

DSi 

1.94·10-5 

DH 
4.83·10-4 

2.10 

c-Si+H, (298K) 
Our data 

MD-model 

(Si-Si) 
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(Si-H) 
0.15 

(Si-Si) 
0,380 
(Si-H) 

0.215/0.27 

4 

(φSi-Si) 
110 

(φSi-H) 
90 

DSi 
2.45·10-6 

 
2.33 

Table 1. Short order parameters for crystal (c-Si), liquid (l-Si) and amorphous Silicon (a-Si). 
(Pastukhov et.al, 2003,  Gordeev et.al, 1980). 

5. Hydrogen diffusion in the amorphous Pd-Si alloy 
Model system (Pastukhov et.al, 2009), used in MD method for Hydrogen behavior research 
in the amorphous Pd-Si alloy at Т=300К temperature, was presented by 734 Palladium 
particles, 130 Silicon particles and 8 Hydrogen particles in the cubic cell with 2.44869nm 
edge length. Motion equation integration was carried out with 1.8·10-15s time steps. Short 
order structure analysis of the amorphous Pd materials (Sidorov & Pastukhov, 2006) and 
Pd-Si (15 ат.%) with Hydrogen had been carried out using partial functions gij (r) of Pd-Pd,  
Pd-Si and Pd-H pairs (Pastukhov et.al, 2009) (fig. 7 and 8).  

Second peak of gij(r) curve for Pd-H (fig. 7) has change symmetry shoulder in comparison 
with gij(r) curve for Pd-Pd.     

Refer to (Herst, 1962), distances, related to second g(r) peak are formed by 3 types of contact: 
a) two Pd atoms through Pd atom (г = 2r0); b) two Pd atoms trough через two Pd atoms (r = 
1.732r0); c) two Pd atoms through three Pd atoms (r = 1.633r0). More easy Hydrogen affected 
turns contact of Pd-Pd atoms, realized by b) - type. Amorphous Palladium structure 
changes, due to Hydrogen presence, are caused by re-distribution of formed distances to its 
increasing (right sub-peak of RDF second peak). Observed second peak splitting inversion 
of gij(r) for amorphous Palladium with Hydrogen obtains information about short order 
reforming of metal. Second peak differences of gij(r) for Pd-Pd and   Pd-H indicate strong 
Hydrogen affect to Palladium matrix structure. 
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Partial RDF for Si-Si indicates to preferential Silicon atoms distribution relatively each other 
in the second coordination sphere, i.e. Palladium atoms cover Silicon atoms by the first 
coordination shell (fig. 8).  

The effects observed in MD – model allow assumption about micro-grouping presence, 
which are identified as stable hydride structures, indicating to high degree of dissipative 
structures of Pd-H, Si-H - types presence (Ivanova et.al,, 1994, Avduhin et.al, 1999). 

Hump, observed close to 3.44nm-1 (fig. 9) on our calculated and experimental (Polukhin 
1984) structure factor curves for amorphous state with Hydrogen as well as its absence, 
hasn’t so far interpretation. Authors (Polukhin & Vatolin, 1985) have shown by statistic 
geometry method, that most often Voronoy-polyhedrons occurred in the amorphous metals 
are recognized as polyhedrons with 12, 13, 14, 15 coordination numbers for given sties-atom.       

  
Fig. 9. Structure factor for amorphous Pd-Si with Hydrogen obtained by MD – model 
calculation.  

Mixed type micro-groupings occurred, in Рd85Si15 alloy, are formed with most presence of 
BCC and FCC polyhedron type. Particles number does not exceed 13-14 in one cluster.  

Amorphous Pd-Si alloy structure model is supposed to consist from Palladium micro-
groupings, characterized by distorted triangle pyramid form with 2.5Å leg (Pd-Si) and 
regular 2.71Å leg (Pd-Pd) base triangle (Polukhin, 1984) 

Separately chosen Pd, Si and H atoms motion in our model is different by its character. 

Calculated diffusion factors values for Pd-H system were:  DH = 18.8·10-6 cm2·s-1, DPd = 
3.4·10-6 cm2·s-1, and DH = 6.67·10-6 cm2·s-1, DPd = 2.0·10-6 cm2·s-1 for amorphous Pd-Si-H alloy.  
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As MD model calculation show, not only Silicon atoms can affect Hydrogen mobility, but 
Hydrogen itself can change considerably diffusion of the other components of alloy. For 
example, Pd-Si system without Hydrogen has DSi = 4.93·10-6 cm2·s-1, but DSi = 2.53·10-6 cm2·s-

1 with Hydrogen presence. There are different energy zones in an amorphous system, which 
lead to different time mode of Hydrogen diffusion.  

Therefore low of defunding particle energy change in the amorphous metals should be 
statistic nature and be defined by the cavities type distribution type. Due to little part of the 
octahedron cavities, three types  of diffusion process are possible in the amorphous metals. 
That are octahedron-octahedron, octahedron-tetrahedron-octahedron, octahedron-
octahedron, tetrahedron-tetrahedron. Due to volume changing in the hydrogenization 
process for crystal is similar to that for amorphous alloys (Kircheim et.al, 1982), this fact 
indirectly proves, that hydrogen occupies similar Bernal polyhedrons (tetrahedrons and 
octahedrons). Interstice diffusion factors in disordered material can be calculated as 
temperature and concentration function with hydrogen energies distribution and constant 
saddle point energy according to Kircheim formalism (Kircheim et.al, 1985). 
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Here D0* - pre-exponent factor, E0- mean activation energy, equal to difference between 
mean Hydrogen energy, calculated, from energy distribution function and saddle point 
constant energy E0 - Eg, (if energy distribution is Gaussian). 

Hydrogen diffusion factors are calculated from equation (11) dependent on its concentration 
for amorphous Pd83Si17 alloy at T=298K temperature. It was obtained, that DH increases 
depending on its concentration increase.  

For example DH value is 7.85·10-6cm2·s-1 at Т=298К and СН(Н/Ме)=10-3 for amorphous 
Pd83Si17 alloy.  

Basing on DH temperature dependence, diffusion activation energy value was estimated as 
E0 = 18.9 kj/mol. It should be noted, that for crystal alloy activation energy is higher. It’s 
equal to 26kj/mol independently on Hydrogen concentration.  

According to Richards theory (Richards, 1983), there is Hydrogen probability to occupy low 
energy interstices, that are large faces polyhedrons.   

Due to Hydrogen concentration increase, it occupies low energy interstices forcing H atoms 
to overcome higher energy potential barriers. Thus it neutralizes one of the factors, which 
decreases diffusion mobility.  

On the other hand, Hydrogen atoms location in the higher energy interstices leads to 
activation energy decrease.  

Described mechanism does not affect to diffusion, due to most part of Hydrogen atoms, 
absorbed by metal, have been found in low energy interstices (which are traps for H atoms). 
Sharp diffusion factor increase takes place only after traps saturation by Hydrogen. 
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6. Hydrogen diffusion in the amorphous Ni-Zr alloys 
Computer calculation of the amorphous Ni-Zr and Ni-Zr-H alloys structure and properties 
are presented by fig. 10, 11 and table 2. The model system unlike (Pastukhov et.al, 2009, 
2010) contained 640 (360)particles of nickel, 360 (640) particles of zirconium and 1(2) 
particles of hydrogen in the cubic cell. The movement equations integrating were carried out 
by time steps of 1.1・10-15 s. General structure factors for Ni64Zr36 (alloy 1, curve 4) и Ni36Zr64 
(alloy 2, curve 1), with Hydrogen and without it are presented on fig. 10. All curves have 
diffused interferential maxima proper to amorphous state, which indicates, that amorphous 
state is saved with Hydrogen absorption at low as well as at high hydrate-forming element 
and Hydrogen concentration in an alloy. Increasing the number of H - atoms in a MD model 
for 1- alloy initially results in structural factor peaks displacement to the low dispersion 
vectors (S) and in main peak height (h) increasing. Then the displacement vice versa results 
in the high S- and low h-values. It testifies to the quantity of H-atoms affects to amorphous 
alloys structure. All peaks of a(s) became more relief, oscillations extend to higher scattering 
vectors. The authors (Sadoc et.al, 1973, Maeda & Takeuchi 1979) proved, that icosahedrons 
type of atoms packing is dominating in amorphous metals structure, where high 
polyhedron concentration with coordination number 12 takes place. The main structural 
factor maximum height and form of the bifurcated second peak are determined by 
contacting polyhedrons quantity and their type of bond (Brine & Burton, 1979). The 
amorphous alloy short order therefore can be described with the help of a coordinating 
icosahedron cluster, which is the basic structural unit of NiZr2 crystal. 

Hydrogen in such a structure can be located in numerous tetra-cavities, formed by Ni and 
Zr atoms (Kircheim et.al, 1988). For 2 - alloy, that is close to NiZr2 composition (curve 1), 
two first maxima location of a(s) curve corresponds to averaged location of the 
interference lines for crystal NiZr2 compound. Hydrogen atom including in the MD-
model (curve 2) leads to strong diffusion and height decreasing of relatively good 
resolved structure factor peaks due to Hydrogen penetration into numerous cavities of 
the amorphous structure. Hydrogen atoms probably form with Zr some kind of quasi 
crystal ZrH2 lattice ( Sudzuki et.al, 1987). This assumption reveals in a better resolution of 
short and long diffraction maxima (3, 6 curves) of structure factors for alloys with high 
contents of Zr and H atoms.  

Partial gij(r) radial distribution functions of model systems and short order parameters are 
presented in Fig. 11 and in the table 2. For all low and zero hydrogen alloys, the shortest 
inter-atomic distance of Ni-Ni pair remains constant (0.240nm), decreasing up to 0.230nm 
when H increases up to two atoms. Inter-atomic distances of N-Zr and Zr-Zr pairs 
considerably decrease with growth of Zr and H concentration. We note that rNi-Ni and rZr-
Zr are close to Ni and Zr atoms diameters (0.244 nm and 0.324 nm) correspondently, and the 
distance between Ni-Zr atoms is somewhat less than the sum of the Ni and Zr atoms radii, 
that is confirmed by diffraction experiment results (Buffa et.al, 1992). This fact confirms 
bond formation between these elements due to hybridization of vacant 3d – electron band of 
Ni and 4d-band of Zr Hafiuer et.al, 1993). Calculated diffusion coefficients of hydrogen for 
amorphous Ni-Zr-H alloys are presented in the Table 2. The value of DH varies from 2·10-4 
up to 1.2·10-5сm2·s-1, in the same limits, as diffusion coefficients of H atoms in an 
icosahedron TiNiZr alloy (Morozov et.al, 2006). As it follows from the Table 2, DH grows  
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Fig. 10. Amorphous Ni-Zr alloys structure factors with hydrogen and without: 
a) Ni36Zr64(1), Ni36Zr64+1H(2), Ni36Zr64+2H(3);   
b)Ni64Zr36(4), Ni64Zr36+1H(5), Ni64Zr36+2H(6).  
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Fig. 10. Amorphous Ni-Zr alloys structure factors with hydrogen and without: 
a) Ni36Zr64(1), Ni36Zr64+1H(2), Ni36Zr64+2H(3);   
b)Ni64Zr36(4), Ni64Zr36+1H(5), Ni64Zr36+2H(6).  
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Fig. 11. Radial distribution functions gij ( r)  of Ni64Zr36 alloy: (а) - no hydrogen; (b) - one 
hydrogen atom. Partial gij (r): 1,5- general; 2,8 - Ni-Ni; 3,7 - Ni-Zr; 4,6 - Zr-Zr; 9 - H-H.   
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with increase of hydride forming element Zr concentration and H atoms in the MD-model. 
The activation energy of hydrogen diffusion for amorphous Ni64Zr36 alloy was estimated in 
the 298-768К temperature interval. A value of Е=0.1еV was obtained. This result on H atoms 
diffusion may be explained by various energy position (Richards, 1983, Kircheim et.al, 1988) 
in the disordered materials. Deep potential wells acts like traps (octa-cavities) and are 
occupied by hydrogen initially. Then hydrogen occupies interstices with high energy values 
(tetra-cavities) and an abrupt increase of DH is observed. 
 

System 

Partial RDF  
DH 

at 298К Ni-Ni Ni-Zr Zr-Zr 

r, nm r, nm r, nm cm2s-1 
Ni64Zr36 0.238 0.270 0.301  
Ni36Zr64 0.240 0.261 0.290  

Ni64Zr36 < 1H2 > 0.240 0.266 0.310 1.2·10-5 

Ni64Zr36 < 2H2 > 0.240 0.26 0.29 1.7·10-4 

Ni36Zr64 <1H2 > 0.241 0.265 0.297 8.9·10-5 

Ni36Zr64 < 2H2 > 0.230 0.250 0.280 2.1·10-4 

Table 2. Short order parameters for amorphous alloy in the  Ni-Zr and Ni-Zr-H systems. 

7. Hydrogen and electric field effect to Iron impurities diffusion in  
the Zr-Fe melt 
Iron and Zirconium diffusion factor dependence on electric field intensity and Hydrogen 
presence in the molten Zirconium had been analyzed in the terms of molecular dynamics 
(MD) method. Model system for research of Iron and Hydrogen ions behavior in the Zr-Fe-
H melt at Т=2273К temperature and electric field presence contained 516 Zirconium 
particles, 60 Iron particles and 1Hydrogen particle in cubic cell with a=2.44195 nm cube 
edge. Integration of the motion equation was carried out by 1.1·10-15s time steps. Inter-
particle potentials and its parameters had been taken from (Varaksin & Kozyaichev, 1991, 
Zhou et.al, 2001). Calculation results of impurities migration in the molten Zirconium are 
compared to experimental data (Lindt et.al, 1999, Ajaja et.al, 2002, Mimura et.al, 1995). 
Partial radial distribution functions gij(r) for Zirconium-Iron melt are presented on fig. 12. 
Most probable inter-atomic distance in first coordination sphere is close to sum of atomic 
radii for Iron and Zirconium (rZr-Fe= 0.29nm, rFe= 0.130nm, rZr= 0.162nm).  

This results comparison to computer simulation data for Ta-Fe melt (Pastukhov et.al, 2010, 
Vostrjakov  et.al, 2010) reveals sufficiently close character of the radial distribution function 
for large dimension atoms, namely Ta-Ta (0.29 nm, rTa = 0.145nm) and  Zr-Zr (0.324nm, 
rZr=0.162nm). Iron and Zirconium diffusion factors in the Zirconium melt in the presence, as 
well as absence of electric field and Hydrogen at 2273K had been calculated by means of 
MD method (fig. 13 and 14). Diffusion factor of Iron (DFe) in the Zirconium melts with 
Hydrogen linearly depends on electric field intensity (E) and Iron concentration (СFe). 
Hydrogen diffusion factor negligibly decreases from 2.16·10-4 cm2·s-1 to 1.94·10-4 cm2·s-1, if 
electric field intensity increases from 900 to 1020 v/m. Hydrogen inducing into system at 
СFe≈0.1% decreases DFe value from 7.86·10-5 to 6.36·10-5cm2s-1,  and electric field 1020 v/m 
intensity applying decreases DFe to 5.23·10-5cm2·s-1 (fig.14).  
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with increase of hydride forming element Zr concentration and H atoms in the MD-model. 
The activation energy of hydrogen diffusion for amorphous Ni64Zr36 alloy was estimated in 
the 298-768К temperature interval. A value of Е=0.1еV was obtained. This result on H atoms 
diffusion may be explained by various energy position (Richards, 1983, Kircheim et.al, 1988) 
in the disordered materials. Deep potential wells acts like traps (octa-cavities) and are 
occupied by hydrogen initially. Then hydrogen occupies interstices with high energy values 
(tetra-cavities) and an abrupt increase of DH is observed. 
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Ni36Zr64 <1H2 > 0.241 0.265 0.297 8.9·10-5 

Ni36Zr64 < 2H2 > 0.230 0.250 0.280 2.1·10-4 

Table 2. Short order parameters for amorphous alloy in the  Ni-Zr and Ni-Zr-H systems. 

7. Hydrogen and electric field effect to Iron impurities diffusion in  
the Zr-Fe melt 
Iron and Zirconium diffusion factor dependence on electric field intensity and Hydrogen 
presence in the molten Zirconium had been analyzed in the terms of molecular dynamics 
(MD) method. Model system for research of Iron and Hydrogen ions behavior in the Zr-Fe-
H melt at Т=2273К temperature and electric field presence contained 516 Zirconium 
particles, 60 Iron particles and 1Hydrogen particle in cubic cell with a=2.44195 nm cube 
edge. Integration of the motion equation was carried out by 1.1·10-15s time steps. Inter-
particle potentials and its parameters had been taken from (Varaksin & Kozyaichev, 1991, 
Zhou et.al, 2001). Calculation results of impurities migration in the molten Zirconium are 
compared to experimental data (Lindt et.al, 1999, Ajaja et.al, 2002, Mimura et.al, 1995). 
Partial radial distribution functions gij(r) for Zirconium-Iron melt are presented on fig. 12. 
Most probable inter-atomic distance in first coordination sphere is close to sum of atomic 
radii for Iron and Zirconium (rZr-Fe= 0.29nm, rFe= 0.130nm, rZr= 0.162nm).  

This results comparison to computer simulation data for Ta-Fe melt (Pastukhov et.al, 2010, 
Vostrjakov  et.al, 2010) reveals sufficiently close character of the radial distribution function 
for large dimension atoms, namely Ta-Ta (0.29 nm, rTa = 0.145nm) and  Zr-Zr (0.324nm, 
rZr=0.162nm). Iron and Zirconium diffusion factors in the Zirconium melt in the presence, as 
well as absence of electric field and Hydrogen at 2273K had been calculated by means of 
MD method (fig. 13 and 14). Diffusion factor of Iron (DFe) in the Zirconium melts with 
Hydrogen linearly depends on electric field intensity (E) and Iron concentration (СFe). 
Hydrogen diffusion factor negligibly decreases from 2.16·10-4 cm2·s-1 to 1.94·10-4 cm2·s-1, if 
electric field intensity increases from 900 to 1020 v/m. Hydrogen inducing into system at 
СFe≈0.1% decreases DFe value from 7.86·10-5 to 6.36·10-5cm2s-1,  and electric field 1020 v/m 
intensity applying decreases DFe to 5.23·10-5cm2·s-1 (fig.14).  
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Calculation results of DFe changing in dependence on E value had been compared to 
evaporation constant rate for the Fe-ions from Zr, calculated by equation (Pogrebnyak et.al, 
1987, Vigov et.al, 1987)   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Partial radial distribution functions gij(r) for Zr-Fe melt at 2273К, calculated in terms 
of MD model. 
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where  ν – ion vibration frequency (1013·s-1), СFe – impurity concentration,  λ – Fe evaporation 
heat,  I – first ionization potential (V/Å), E – electric field intensity, W – electron exit work,  
q – ion charge. Values of λ, I, W, R had taken in electron-volt, E – in volt per angstrom. 
Diffusion factor D directly depends on rate (k) and time (t) evaporation of main metal 
(Kuznetsov et.al, 1968). The log k and log DFe on Е dependences (fig. 15) are relatively similar.  

Thus assumption is possible, that limiting factor of Fe removal from the Zr melt is diffusion of 
Fe. The Hydrogen is considered as light intrusion impurity into metals with different cell type. 
Therefore Hydrogen diffusion is significant problem in researching of high temperature metals 
refining. Impurities have less action upon Incoherent diffusion. Therefore this kind of diffusion 
becomes dominating at high temperature (Maximov et.al, 1975).  

We had compared Hydrogen diffusion factors in Ta at 3400K (Pastukhov et.al, 2010) and in 
Zr at 2273K (Ajaja et.al, 2002). This values are 1,7 10-5  and  5,01 10-4 cm2·s-1 respectively. The 
authors (Maximov et.al, 1975) explain such difference due to Hydrogen diffusion activation 
energy (Ea) dependence on atomic metal mass, its Debye frequency, modulus of elasticity and 
volume change at Hydrogen addition.   
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Fig. 13. Dependencies of DFe and DZr on Iron concentration at 2273К (MD - calculation).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Iron (СFe =0.1mas.%) diffusion factor dependence on electric field intensity at 1173K 
temperature (MD – calculation).   

Calculated values of Еа for different metals (Flynn et.al, 1970) are in quantity agreement 
with experimental data. Temperature dependence DH at high temperatures is described in 
the term of theory (Flynn et.al, 1970). Authors (Shmakov et.al, 1998) calculated DH in 
Zirconium at 2273K without electric field influence as 3.862·10-4cm2·s-1, which low differ 
from our calculated value DH=5.01·10-4cm2·s-1.   
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Fig. 15. Dependence of lgDFe (curve 1) and lgk (curve 2) on electric field intensity.  

We have estimated diffusion layer thickness (x) by (13) equation (Flynn et.al, 1970). 
Calculation were carried out basing on СFe - experimental time – dependence (Mimura et.al, 
1995). Value of DFe we calculated by MD – method. 
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In the equation С0 and С(х,t) are impurity concentrations in initial and refined Zirconium 
(Flynn et.al, 1970) and t is time of refining. Calculated (x) value is equal 7·10-2cm. By the 
order of value it’s close to data on Silicon borating (Filipovski et.al, 1994), which is 1.6-1.8·10-

2cm. It should be noted, that zone thickness of Zirconium shell interaction with molten 
Uranium is 0.2·10-2cm (Belash et.al, 2006). 

We carried out calculation of Iron removal rate (G) from Zirconium by Iron concentration 
decrease during matched time intervals of plasma-arc-melting (PAM) with Hydrogen 
basing on the experimental data of (Mimura et.al, 1995) for 9.5 Pa and 50% of Hydrogen 
concentration in residual Argon. The data are shown in table 3. Mean residual Iron 
concentration at 15, 90 and 165 minutes of melting compiled 0.46, 0.01 and 2.2·10-4 mas.% 
respectively. These calculations had been compared with Iron evaporation rate from 
Zirconium melt obtained from Langmuir equation: 

 0.0583 Fe
ML C cp
T

  (14) 

This equation parameters are following: Iron activity coefficient in Zirconium (γ) is equal to 
0.052 from [43], (СFe) - concentration of Iron in Zr, ( р ) – Iron vapor pressure at 2273K, (M) – 
Iron atomic mass, (T) – Kelvin temperature. Temperature of melting [46] is indicated in the 
2350 – 2450К limits. Calculation of L by these temperatures founds L < G in both cases. Ratio 
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G/L decreases at temperature increase. Obtained G/L ≈ 1.15 value at СFe= 0.46 and Т = 
2450К may indicate, that close to 15% of Iron is being removed due to electro-magnetic 
forces affect, rather than evaporation.     
 

Т,К СFe, mas.% logG logL G/L Remark Issue 
2350 0.46 -4.572 -5.066 3.115 L<G [4] 

 0.01 -6.09 -6.728 4.348   
 2.2·10-4 -7.902 -8.386 3.047   

2450 0.46 -4.572 -4.755 1.153 L<G [4] 
 0.01 -6.09 -6.418 2.128   
 2.2·10-4 -7.902 -8.076 1.491   

2900 7.82·10-3 -6.967 -5.406 0.027 L>G [2] 
 2.68·10-3 -7.44 -5.871 0.027   
 0.92·10-3 -7.903 -6.335 0.028   

2450 7.82·10-3 -6.967 -6.525 0.361 L >G [2] 
 2.68·10-3 -7.44 -6.990 0.355   
 0.92·10-3 -7.903 -7.454 0.356   

2300 7.82·10-3 -6.967 -7.001 1.081 L < G [2] 
 2.68·10-3 -7.44 -7.466 1.062   
 0.92·10-3 -7.903 -7.930 1.065   

Table 3. Dependences of L and G on mean residual Iron content in Zirconium for PAM 
process. CFe – mean Iron concentration: initial (15min.), middle (90min.), and final (165min.) 
stage of melt. 

8. Hydrogen and electric field effect to Iron impurities diffusion in Ta-Fe melt   
Hydrogen and Iron atoms radial distribution functions and diffusion constants had been 
found by MD method in the Tantalum melt at 3400K in the presence and absence of outer 
electric field (fig. 16). 

The model system was presented by 486 tantalum, 1 iron and 1hydrogen atoms in a cubic 
cell of 2.13572 nanometers cube edge length. Computer experiment data have found short 
order of Ta-Fe-H system at 3400K is close to Tantalum structure: first maximum at RTa-Ta ≈ 
0.29 nm corresponds to Tantalum atom radius ≈ 0.292 nm. All RDF maxima diffusion is 
observed at electric field and Hydrogen in the Ta-Fe system. This fact may indicate liquid 
transition to more disordered structure.  

Unusual kind of RDF curve for Ta-H atoms pairs obtained at electric field 1020v/m intensity 
(fig. 17): first maximum of the curve is bifurcated, besides first sub-peak at r1 = 0.22nm 
corresponds to one of most probable distance Ta-H and second sub-peak at r2 = 0.24nm 
corresponds to Ta-Fe without electric field.  

Dynamics and local structure of the close to Hydrogen surrounding for the ternary 
interstitial alloy should depend on Hydrogen concentration, temperature and solvent 
structure short order. There is no conventional opinion about Hydrogen location in such 
systems. Since the Hydrogen atom radius is 0.032 nm, it can occupy octahedron (0.0606 nm), 
as well as tetrahedron (0.0328нм) (Geld et.al, 1985) location. System Ta – H particularity is 
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as well as tetrahedron (0.0328нм) (Geld et.al, 1985) location. System Ta – H particularity is 
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octahedron interstice centre in Tantalum cell more, than Ta (0.146nm) and Н (0.032nm) radii 
sum. Distance Ta – H remains less than equilibrium distance, and Hydrogen not always 
occupies interstice centre. 

 
Fig. 16. Radial distribution function g (r) for Ta-Fe melt at 3400 K temperature, obtained in 
MD model at 15.4 g/sm3 liquid Ta density. 1. No electric field, no hydrogen, 2. Electric field 
85 [V/m], no hydrogen, 3. Hydrogen, no electric field, 4. Electric field 85 [V/m], Hydrogen, 
5. Electric field 1020 [V/m], Hydrogen. 

At the same time, distance from the octahedron interstice centre to the second neighbors, 
R2=a/√2=0.234nm is more than Tantalum plus Hydrogen distance. That leads to Hydrogen 
atoms shift from octahedron centre to whatever neighbor of Tantalum atom.  
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Hydrogen shift from geometric centre of octahedron position during heating of researched 
system is possible. According to computer experiment data, distance between nearest 
Tantalum and Hydrogen atoms changes at electric field and Hydrogen presence, but Ta-Fe 
remains constant (table 4).  
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Fig. 17. Partial distribution function of the atomic Ta-H pair  in electric field 1020 v/m 
(dashed curve)  and Ta-Fe without electric field (solid curve), obtained by MD model.  

After Hydrogen induction into MD cell, Tantalum diffusion constant increases from 1.7·10-4 
до 7.·10-4 cm2 s-1, which some less, than Iron diffusion constant increase:   from 1.3·10-5 to 
1.5·10-4cm2 s-1.           

Thus, Hydrogen increases Iron atoms mobility more than electric field. This fact is in god 
agreement with Ta-H and Ta-Fe bonds strength.  
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Amorphous and liquid systems structure for Fe, Pd, Zr, Ta, Si with presence and absence of 
Hydrogen atoms had been researched by means of x-rays diffraction and molecular 
dynamic methods. Strong affect of H atoms to amorphous matrixes Fe-Ni-Si-b-C-P, Pd-Si 
and Ni-Zr structure had been obtained.  

Observed RDF changing at Hydrogen presence had been revealed in better resolution of the 
close and distant maxima could indicate to stable hydride bonds like Pd-H, Si-H, Zr-H formation. 

Calculated by MD model Hydrogen diffusion constants increase on H concentration and 
hydride forming element presence in alloy (system Ni-Zr-H). Not only  amorphous  alloy 
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component (Pd-Si-H)  affects to H atoms  mobility, but Hydrogen atoms can considerably 
change other components (Si) diffusion. Refining processes of the liquid high-melting metals, 
like Zr, Ta, containing Fe impurities can be analyzed by MD method for PAM and EBM 
melting technologies. The method gives opportunity to estimate limiting stage of process, 
electric field affect and Hydrogen presence in system to Fe diffusion constant in the melts. 

The researches had been carried out with financial support of Minobrnayka. Federal 
contract 16.552.11.7017, science equipment of CKP “Ural-M” had been used.  
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1. Introduction 

Dissociative adsorption phenomena often occur in various fields of engineering, such as 
oxidation-reduction reactions, cleaning, adhesion, plating, plasma etching, sputtering, and 
tribology. These phenomena that involve surface reactions have attracted much attention 
and are analyzed both experimentally and numerically. However, when the surface has 
structures on the molecular scale, and the scale is not small enough compared to the system, 
the characteristics of a surface reaction cannot be sufficiently expressed macroscopically, for 
example by the rate equation. It is extremely difficult to analyze the characteristics of a 
nanoscale system experimentally due to the scale. Therefore, analysis by numerical 
calculation, in which the system structure and its electronic state are treated 
comprehensively, is more effective.  

To analyze the surface reaction of these systems accurately, it is necessary to solve the 
electronic state by the first principle calculation based on quantum mechanics and to then 
obtain the energy state. The Molecular Orbital (MO) method is most accurate one. However 
it takes much calculation time and it is impossible to analyze the dissociation phenomena of 
gas molecule on metal surface because metal has many electrons. Recently, density 
functional theory (DFT) is one of the most commonly used methods for this process (Parr & 
Yang, 1989; Satoko & Onishi,1994). Based on the theory that the state of a system is 
expressed by the functional of the density distribution of the electron, this method can 
calculate a system state faster than methods that calculate the wave functions of each 
electron like MO. In the process of surface reaction analysis, this method is applied in 
various situations, such as specifying the reaction paths from the potential energy surface 
obtained by the method and calculating the reaction probability at the surface by the value 
of the absorption/activation energy and the transition state theory (Steinfeld et al., 1989). 
However, the effects of the motion of gas molecules impinging on the surface and the 
motion of surface atoms on the surface reaction cannot be considered because this method is 
applied under the assumption that the temperature is 0 K (fixed atom). , In order to analyze 
the flow dynamics, including the surface reaction, accurately, a method that considers the 
interaction between the electronic state of the system and the motion of atoms or molecules 
for which the time/space scale is distant, must be used.  
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Molecular Dynamics (MD) is one of the most suitable method for simulating the motion of 
atoms. In this method, the force between atoms is first obtained, and then the positions or 
velocities of the atoms are simulated by a time marching scheme. The quantum molecular 
dynamics (QMD) method, in which the interaction between atoms of a system is obtained 
according to the quantum calculation mentioned above, is the most precise method. In 
particular, the Car-Parrinello method (Car & Parrinello, 1985), in which the potential force of 
a system is calculated using the DFT to calculate the electronic state, is applied to analyze 
the process of oxidation-reduction reaction at the platinum surface (Wang & Balbuena, 2004; 
Jinnouchi & Okazaki, 2003). In general, the Car-Parrinello method is known as a  
first principle quantum molecular dynamics method. However, despite its precision, the 
Car-Parrinello method is not practical for analyzing a flow phenomenon as a statistical 
behavior of numerous motions of atoms or molecules because of the enormous calculation 
load. For the analysis of flow phenomena with surface reaction, the application of the multi-
scale method, in which only smaller-scale systems are analyzed by precise quantum 
calculation and the characteristics that affect surface reaction are modeled, is more 
appropriate. Flow phenomena with larger-scale surface reactions can then be analyzed by 
the MD method using this model, rather than treating the entire system using quantum 
calculation.  

The tight binding (TB) method, which greatly improves the computation speed, is contrived 
by simplifying the first principle quantum molecular dynamics method. Regarding this 
method, as mentioned later, it has been reported that the computation speed was improved 
5,000 times beyond that of the first principle quantum molecular dynamics method by 
calculating the electronic state using the extended Hückel method (Yonezawa et al, 2001a, 
2001b). Since this method enables faster computation and still has the characteristics of 
calculating the electronic state of a system according to quantum theory, the tight binding 
method is often applied within the field of chemistry for analyzing the surface reaction 
dynamics of relatively large systems. Using the tight binding method, the process of the 
production reaction of water in a fuel cell at the solid-gas interface has been simulated 
(Ishimoto et al., 2006). In addition, a hybrid method, which combines the tight binding 
method and the classical molecular dynamics method, is also being developed.   

The tight binding method is still not sufficient for large-scale calculations that deal with the 
“flow” of a system because the calculation procedure is complicated because the electronic 
state of a system is calculated according to quantum theory. For calculations that deal with 
the statistical quantity of atomic motion, another method that determines the potential 
function, which is used in the classical molecular dynamics method using the results of the 
density functional theory, is also applied frequently. For instance, the potential, which is a 
function of the position or the orientation of an impinging molecule, is contrived by fitting 
the potential energy surface of a diatomic molecule on a transient metal surface at various 
orientations obtained by the density functional theory using an analytic function. The 
potential is often used to analyze the dissociation phenomena of hydrogen on a Pt or Pd 
surface (Beutl et al., 1995; Olsen et al., 1999, 2002). In this method, however, the motion of 
surface atoms cannot be considered, and therefore the effect of thermal motion of surface 
atoms on dissociation phenomena cannot be analyzed using this method. Owing to this 
defect, it has often been reported that the dissociation probability obtained by this method 
cannot be used to reproduce experimentally obtained data (Vincent et al., 2004).  
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The embedded atom method (EAM) is a scheme that treats the interaction between gas 
atoms and a metal surface by considering the effects of the surface electrons (Daw & Baskes, 
1983; 1984). The method is based on DFT, and the potential energy of the system is 
expressed as a sum of the energy embedded an atom in the electron density of the surface 
and pair-interaction energy. In EAM, the electron density of the system can be reflected in 
the interaction potential, and therefore the motion of an atom on a metal surface can be 
simulated accurately. Moreover, the method has the advantage of a smaller computational 
load than quantum molecular dynamics (QMD), which is also based on DFT. EAM has often 
been used to analyze the motion of atoms on a transient metal surface (Baskes, 1992; Baskes 
et al., 2007). However, there has been little research of the application of EAM to 
dissociation phenomena. To apply EAM to the analysis of dissociation probability, 
incorporating the motion of the metal surface atoms, brings the simulations closer to the real 
system. Moreover, this method can be easily expanded to a more complicated surface. 

In this chapter, the methods used for multi-scale analysis of flow phenomena including a 
surface reaction are described, and a typical example in which these methods are applied to 
the analysis of flow phenomena including a surface reaction is presented. In Section 2, the 
simulation method of Density Functional Theory and Embedded Atom Method are 
described. In Section 3, the analysis of dissociation phenomena by the EAM is discussed. 
Section 4 summarized the chapter.  

2. Simulation methods 
This section describes the simulation method which was used in this chapter. Especially 
Density Functional Theory (DFT) and Embedded Atom Method (EAM) are described.  

2.1 Density Functional Theory (DFT) 

The density functional theory (DFT) is the method in which various values obtained by 
wave functions of a system and operators are expressed by the functional of electron density 
of the system. In this method, the energy of the system is obtained exactly. In the analysis of 
the surface reaction, macroscopic values such as dissociation probability are obtained from 
the potential energy surface of the system obtained by this method. Moreover, this method 
is effective for obtaining the database necessary to determine the parameters for the tight 
binding method or the embedded atom method mentioned below. In this subsection, the 
outline of the theory of the method is explained below. For details, the reader should refer to 
some references (Parr & Yang, 1989; Satoko & Onishi,1994).   

Let us consider the system that consists of M nuclei and N electrons. Thus, the nuclei are 
fixed and only the state of the electron is considered (Born- Oppenheimer approximation). 
The Schrödinger equation, which expresses the ground state of a system, is given by: 

 o o oH E     (1) 

where Ψo and Eo denote a wave function that expresses the ground state of a system without 
degeneracy and the energy of electron at this state, respectively, and H denotes an operator, 
called the Hamiltonian, that expresses the total energy of the system. The operator is 
expressed using the kinetic energy of the electron, K, the Coulomb interaction between 
electrons, Vee, and the interaction with the external force field, Vex, as  
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 o o oH E     (1) 

where Ψo and Eo denote a wave function that expresses the ground state of a system without 
degeneracy and the energy of electron at this state, respectively, and H denotes an operator, 
called the Hamiltonian, that expresses the total energy of the system. The operator is 
expressed using the kinetic energy of the electron, K, the Coulomb interaction between 
electrons, Vee, and the interaction with the external force field, Vex, as  
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 ee exH K V V    (2) 

The external force field, Vex, in Eq. (2) is expressed as the sum of a function of only the 
position of each electron, v(r). The formula of the function, for instance, is expressed in 
atomic units as 
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assuming that v(r) is a Coulomb interaction from the nuclei of the system. In Eq. (3), ri and 
Rk denotes the position of electron i and that of nucleus k reduced by the Bohr radius, 
respectively, and Zk denotes the charge of nucleus k reduced by elementary electric charge 
(e=1.602×10−19 C). The Coulomb interaction between electrons is expressed as the sum of the 
Coulomb interaction between electron i and j as 
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The solution of Eq. (1) satisfies the equation below:  

   Min
o

o oE H


                                (5) 

where <Φ|Φ>=1, Φ is an eigenfunction of H, Ψo is a function that minimizes the total energy 
of the system among the eigenfunctions of H. As mentioned above, when the formula of the 
interaction from the external force field, v(r), is determined, the Hamiltonian is obtained by 
Eq. (2), and therefore the wave function Ψo and the total energy Eo of the system are 
obtained by Eq. (5). Namely, the state of the system is a functional of the interaction with the 
external force field, v(r). Moreover, the electron density at position r is obtained by  

    2
o  r r  (6) 

The basic principle of the density functional theory is that an interaction with the external 
force field, v(r), corresponds to a certain electron density, ρ(r), and vice versa, at the ground 
state without degeneracy. That is, an interaction from the external force field, v(r), is 
obtained by a functional of electron density, ρ(r) (Parr & Yang, 1989). The electron density at 
the ground state, ρ(r), is obtained as described below, rather than by Eq. (5), so as to 
minimize the total energy of the system.  
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In density functional theory, the electron density is obtained by Eq. (7). The total energy of 
the system, E[ρ], is expressed as 

        E F v d     r r r                                (8) 
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where the sum of the kinetic energy, K[ρ], and the interaction between electrons, Vee[ρ], is 
expressed by F[ρ]. The electron density at the ground state, ρ(r), minimizes E[ρ] in Eq. (8) 
and satisfies the following Euler equation:  
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while considering the conservation of the number of electron as  

  d N  r r                                      (10) 

where μ is Lagrange’s undetermined multiplier. In other words, it is necessary to solve the 
electron density, ρ(r), that satisfies Eq. (9) in the density functional theory. However, it is 
difficult to solve Eq. (9) because the interaction between electrons is included in the 
functional F[ρ]. In the density functional theory, the electron density of the system, ρ(r), is 
obtained by solving formula of a virtual system in which a certain effective potential, veff, 
affects electrons, and an interaction between electrons is not considered in the self-consistent 
field method.  

Let us consider a system that consists of N electrons without interaction between electrons. 
The Hamiltonian of the system is expressed as  
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where vv(r) denotes an interaction from an external force field and is a function of only the 
electron position. The wave function of the system at the ground state is expressed by the 
Slater determinant of the one-electron wave function, φi, as  

  1 2
1 det
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            (12) 

The one-electron wave function, φi, corresponds to the function in which the eigenenergy is 
lowest among all of the wave functions satisfying Eq. (13).  
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The electron density of the system at the ground state, ρ(r), is obtained by Eq. (6) using the 
wave functions obtained by Eq. (12). According to the theory mentioned above, the total 
energy of the system is a functional of electron density, ρ(r), and is obtained by  

        v v vE K v d     r r r  (14) 

However, the electron density, ρ(r), obtained from the wave function in Eq. (12) is that 
which minimizes the energy of Eq. (14) and satisfies the following Euler equation:  
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interaction from the external force field, v(r), is determined, the Hamiltonian is obtained by 
Eq. (2), and therefore the wave function Ψo and the total energy Eo of the system are 
obtained by Eq. (5). Namely, the state of the system is a functional of the interaction with the 
external force field, v(r). Moreover, the electron density at position r is obtained by  
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The basic principle of the density functional theory is that an interaction with the external 
force field, v(r), corresponds to a certain electron density, ρ(r), and vice versa, at the ground 
state without degeneracy. That is, an interaction from the external force field, v(r), is 
obtained by a functional of electron density, ρ(r) (Parr & Yang, 1989). The electron density at 
the ground state, ρ(r), is obtained as described below, rather than by Eq. (5), so as to 
minimize the total energy of the system.  
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In density functional theory, the electron density is obtained by Eq. (7). The total energy of 
the system, E[ρ], is expressed as 
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where the sum of the kinetic energy, K[ρ], and the interaction between electrons, Vee[ρ], is 
expressed by F[ρ]. The electron density at the ground state, ρ(r), minimizes E[ρ] in Eq. (8) 
and satisfies the following Euler equation:  
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while considering the conservation of the number of electron as  

  d N  r r                                      (10) 

where μ is Lagrange’s undetermined multiplier. In other words, it is necessary to solve the 
electron density, ρ(r), that satisfies Eq. (9) in the density functional theory. However, it is 
difficult to solve Eq. (9) because the interaction between electrons is included in the 
functional F[ρ]. In the density functional theory, the electron density of the system, ρ(r), is 
obtained by solving formula of a virtual system in which a certain effective potential, veff, 
affects electrons, and an interaction between electrons is not considered in the self-consistent 
field method.  

Let us consider a system that consists of N electrons without interaction between electrons. 
The Hamiltonian of the system is expressed as  
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where vv(r) denotes an interaction from an external force field and is a function of only the 
electron position. The wave function of the system at the ground state is expressed by the 
Slater determinant of the one-electron wave function, φi, as  

  1 2
1 det
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The one-electron wave function, φi, corresponds to the function in which the eigenenergy is 
lowest among all of the wave functions satisfying Eq. (13).  
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The electron density of the system at the ground state, ρ(r), is obtained by Eq. (6) using the 
wave functions obtained by Eq. (12). According to the theory mentioned above, the total 
energy of the system is a functional of electron density, ρ(r), and is obtained by  

        v v vE K v d     r r r  (14) 

However, the electron density, ρ(r), obtained from the wave function in Eq. (12) is that 
which minimizes the energy of Eq. (14) and satisfies the following Euler equation:  
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because the electron density is that at the ground state, where Kv[ρ] in Eq. (14) or Eq. (15) 
shows the term of the kinetic energy of the virtual system. Namely, if Eq. (9), which includes 
the interaction between electrons in the functional F[ρ], can be changed to Eq. (15), the 
electron density of the system can be obtained by Eqs. (6), (12), and (13) using an interaction 
with the external force field of the virtual system, vv(r).  

The functional in Eq. (9), F[ρ], is expressed as  

        v xcF K J E       (16) 

where J[ρ] denotes a classical Coulomb interaction between electrons and is expressed as  
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and the functional,  

                  xc v v eeE F K J K K V J               (18) 

denotes the sum of the non-classical terms of interactions between electrons, (Vee[ρ]-J[ρ]) and 
the difference in kinetic energy between the real system and virtual system, (K[ρ]-Kv[ρ]). The 
functional, Exc[ρ], is called the exchange-correlation energy. Using Eqs.(9) and (16), we obtain 
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denotes the Coulomb interaction of the electrons and  
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denotes the exchange-correlation energy. Assuming the value in Eq. (19), v(r)+(r)+vxc(r), to 
be an interaction with the external force field in the virtual system, vv(r) in Eq. (15) (referred 
to as effective potential, veff(r)), namely, 

          eff v xcv v v v   r r r r r  (22) 

Equation (19) is the same as Eq. (15), and the electron density of the real system can be 
obtained using Eqs. (6), (12), and (13). In order to obtain the effective potential, veff(r), in Eq. 
(22), the term of the exchange-correlation energy, vxc(r), must be determined. The values are 

 
Molecular Simulation of Dissociation Phenomena of Gas Molecule on Metal Surface 

 

313 

given as a functional of electron density. Several types of functional have been proposed in 
previous studies. The local density approximation (LDA), which is the most well known of 
these functionals, is obtained by assuming that the electron is uniformly distributed at a 
small region of the system. Other functionals, such as the generalized gradient 
approximation (GGA), which includes the information of the gradient of the electron 
density, or the local spin density approximation (LSDA), which is applied to the case of spin 
polarization, are developed considering the compensation between the accuracy and the 
calculation time. After the exchange-correlation energy is determined, the electron density is 
obtained by Eqs. (6), (12), (13), (20) and (22). However, it is necessary to obtain the electron 
density by the convergence scheme because (r) and vxc(r) are functionals of electron 
density. A flowchart of this scheme is shown in Fig. 1.  
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Fig. 1. Flowchart for the calculation of electron density by the density functional theory. 

The advantage of this method is the dramatic decrease in the calculation time needed to 
directly calculate the energy from the electron density without solving the wave functions of 
the system. Namely, the exact solution can be obtained from the electron density of an 
independent N-electron system without solving the Schrödinger equations of the 3N space 
including the interaction between electrons by including the interaction between electrons in 
the empirical exchange-correlation energy.  

2.2 Embedded Atom Method (EAM) 

DFT can calculate the energy barrier accurately and the dissociation probability can be 
obtained from the information of energy barrier. However, it is based on static transition 
state theory (TST), while in real system atoms and molecules move. To consider the motion 
of atoms, the FPMD must be used. However it costs too much calculation load to analyze 
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because the electron density is that at the ground state, where Kv[ρ] in Eq. (14) or Eq. (15) 
shows the term of the kinetic energy of the virtual system. Namely, if Eq. (9), which includes 
the interaction between electrons in the functional F[ρ], can be changed to Eq. (15), the 
electron density of the system can be obtained by Eqs. (6), (12), and (13) using an interaction 
with the external force field of the virtual system, vv(r).  

The functional in Eq. (9), F[ρ], is expressed as  
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denotes the sum of the non-classical terms of interactions between electrons, (Vee[ρ]-J[ρ]) and 
the difference in kinetic energy between the real system and virtual system, (K[ρ]-Kv[ρ]). The 
functional, Exc[ρ], is called the exchange-correlation energy. Using Eqs.(9) and (16), we obtain 
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denotes the exchange-correlation energy. Assuming the value in Eq. (19), v(r)+(r)+vxc(r), to 
be an interaction with the external force field in the virtual system, vv(r) in Eq. (15) (referred 
to as effective potential, veff(r)), namely, 

          eff v xcv v v v   r r r r r  (22) 

Equation (19) is the same as Eq. (15), and the electron density of the real system can be 
obtained using Eqs. (6), (12), and (13). In order to obtain the effective potential, veff(r), in Eq. 
(22), the term of the exchange-correlation energy, vxc(r), must be determined. The values are 
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given as a functional of electron density. Several types of functional have been proposed in 
previous studies. The local density approximation (LDA), which is the most well known of 
these functionals, is obtained by assuming that the electron is uniformly distributed at a 
small region of the system. Other functionals, such as the generalized gradient 
approximation (GGA), which includes the information of the gradient of the electron 
density, or the local spin density approximation (LSDA), which is applied to the case of spin 
polarization, are developed considering the compensation between the accuracy and the 
calculation time. After the exchange-correlation energy is determined, the electron density is 
obtained by Eqs. (6), (12), (13), (20) and (22). However, it is necessary to obtain the electron 
density by the convergence scheme because (r) and vxc(r) are functionals of electron 
density. A flowchart of this scheme is shown in Fig. 1.  
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Fig. 1. Flowchart for the calculation of electron density by the density functional theory. 

The advantage of this method is the dramatic decrease in the calculation time needed to 
directly calculate the energy from the electron density without solving the wave functions of 
the system. Namely, the exact solution can be obtained from the electron density of an 
independent N-electron system without solving the Schrödinger equations of the 3N space 
including the interaction between electrons by including the interaction between electrons in 
the empirical exchange-correlation energy.  

2.2 Embedded Atom Method (EAM) 

DFT can calculate the energy barrier accurately and the dissociation probability can be 
obtained from the information of energy barrier. However, it is based on static transition 
state theory (TST), while in real system atoms and molecules move. To consider the motion 
of atoms, the FPMD must be used. However it costs too much calculation load to analyze 
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the statistical characteristics of dissociation phenomena. It is necessary to use a faster 
method to analyze flow phenomena obtained as the statistical characteristics of the motion 
of atoms of the system. In this subsection, an outline of the embedded atom method  
is presented. The theory of this method is based on density functional theory, and  
this method is often applied to the analysis of the motion of atoms on a metal surface (Daw 
and Baskes, 1984).  

In the embedded atom method, the energy of a system is expressed as the sum of the energy 
necessary to embed an atom into the background electron density and interaction between 
nuclei. The former corresponds to the energy from the electrons of the system, and the latter 
corresponds to the energy from the nuclei of the system. The energy of a system is then 
expressed as 
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N N
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i i j i
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where Fi() denotes the energy necessary to embed atom i into the background electron 
density ρ, and ij(Rij) denotes the core-core pair repulsion between atoms i and j separated 
by the distance Rij. In addition, ρi denotes the electron density at atom i due to the remaining 
atoms of the system. The electron density is expressed by the superposition of the electron 
density of each atom as 
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where ρja is the electron density contributed by atom j. It is necessary to determine the 
functions, Fi(ρ), ij(Rij), and ρja (Rij) included in Eqs. (23) and (24) in order to use the 
embedded atom method. An example of how to determine these functions or parameters is 
described below.  

The electron density can be obtained by a quantum chemical calculation, such as the DFT  
or molecular orbital calculation. McLean and Clementi calculated the wave functions  
of various atoms by the Roothaan-Hartree- Fock method and generated a data table 
(Clementi & Roetti, 1974; McLean & McLean, 1981). The reader can obtain the electron 
density by the data table and Eq. (6). With respect to the function, Fi(ρi), the energy  
of various atoms embedded in a homogeneous electron density as a function of electron  
gas density have been obtained by the density functional theory (Puska et al, 1981;  
Norskov, 1982). The core-core pair-repulsion, ij(Rij), is often determined such that  
the crystal structure of the bulk system can be reproduced by the EAM using the 
determined values of ρja (Rij) and Fi(ρi). These functions are determined for every type  
of atom.  

The force acting on atom i is obtained by differentiating Eq. (23), as follows: 
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3. Results and discussion 
In this section the example of the analysis of dissociation phenomena of gas molecule on 
metal surface is introduced. We use the dissociation of H2 molecule on Pt(111) surface, 
which is important not only for the fundamental system of dissociation phenomena but also 
for the reaction at anode side in Polymer Electrolyte Fuel Cell. 

3.1 Potential energy surface 

Analysis of the potential energy surface is important when discussing dissociation 
phenomena on a metal surface. From this potential energy surface, the values of the 
dissociation path or the dissociation barrier are calculated, and the dissociation probability 
is then obtained. In this subsection, a method for calculating the potential energy surface of 
a platinum-hydrogen system according to the density functional theory and the above-
described analysis will be shown. All the calculations were conducted using the commercial 
density functional theory (DFT) program, DMol3. LDA/VWN and GGA/PBE were used as 
exchange-correlation functionals for geometry optimization and energy calculations, 
respectively. The double-numerical plus polarization functions (DNP) were used as the 
basis sets for all atoms. All electrons were considered in the calculation. The convergence 
tolerance for the self-consistent field (SCF) calculation was set at 1.010-6 Ha and the 
convergence tolerance for geometry was set at 1.010-5 Ha. Smearing was set at 5.010-3 Ha 
for both calculations to improve convergence of the calculations. Spin was unrestricted 
during calculations. 

Figure 2 shows the calculation model. In the calculation of the typical density functional 
theory, the surface is often expressed by three molecular layers in order to have a reasonable 
calculation load. At each layer, a platinum atom is placed at a location to its Miller indices 
correspond. Figure 2 shows the arrangement of the (111) surface. Because the calculation 
load determines the number of atoms representing one layer of the surface, the calculation 
of the direction of the surface is generally performed under the assumption of the periodic 
boundary condition, expressing the surface with 22 = 4 atoms. In the same figure, the basic 
cell is denoted by the white line. In the density functional theory, calculation is performed 
with periodic boundary condition in all directions. Figure 2 shows the technique used to 
avoid interactions normal to the surface by setting a long vacuum region. 

Sometimes the calculation model that passed through the process described above is applied 
as a metal surface, but this causes instability when using the structure of bulk as is for the 
surface. At the actual surface, the structure changes slightly, causing surface relaxation. In 
the case of calculating a more realistic surface, reconstruction of the surface atom 
arrangement to achieve the most stable state after geometry optimization is one option. The 
LDA method is usually used for geometry optimization. 

The orientation of molecule toward the surface is determined by locating the center of the 
molecule on a particular site on the surface (location of the molecule on a surface) and then 
defining the Euler angle of the molecular axis (, θ) in the space coordinate system. For the 
determined orientation, the energy of a system is calculated by changing the distance 
between nuclei, r, and the distance between the first surface layer and the center of the 
molecule, Z. The GGA method is most commonly used for the energy calculation. Repeated 
energy calculation while changing the values of r and Z enables the contour of the energy 
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the statistical characteristics of dissociation phenomena. It is necessary to use a faster 
method to analyze flow phenomena obtained as the statistical characteristics of the motion 
of atoms of the system. In this subsection, an outline of the embedded atom method  
is presented. The theory of this method is based on density functional theory, and  
this method is often applied to the analysis of the motion of atoms on a metal surface (Daw 
and Baskes, 1984).  

In the embedded atom method, the energy of a system is expressed as the sum of the energy 
necessary to embed an atom into the background electron density and interaction between 
nuclei. The former corresponds to the energy from the electrons of the system, and the latter 
corresponds to the energy from the nuclei of the system. The energy of a system is then 
expressed as 
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where Fi() denotes the energy necessary to embed atom i into the background electron 
density ρ, and ij(Rij) denotes the core-core pair repulsion between atoms i and j separated 
by the distance Rij. In addition, ρi denotes the electron density at atom i due to the remaining 
atoms of the system. The electron density is expressed by the superposition of the electron 
density of each atom as 
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where ρja is the electron density contributed by atom j. It is necessary to determine the 
functions, Fi(ρ), ij(Rij), and ρja (Rij) included in Eqs. (23) and (24) in order to use the 
embedded atom method. An example of how to determine these functions or parameters is 
described below.  

The electron density can be obtained by a quantum chemical calculation, such as the DFT  
or molecular orbital calculation. McLean and Clementi calculated the wave functions  
of various atoms by the Roothaan-Hartree- Fock method and generated a data table 
(Clementi & Roetti, 1974; McLean & McLean, 1981). The reader can obtain the electron 
density by the data table and Eq. (6). With respect to the function, Fi(ρi), the energy  
of various atoms embedded in a homogeneous electron density as a function of electron  
gas density have been obtained by the density functional theory (Puska et al, 1981;  
Norskov, 1982). The core-core pair-repulsion, ij(Rij), is often determined such that  
the crystal structure of the bulk system can be reproduced by the EAM using the 
determined values of ρja (Rij) and Fi(ρi). These functions are determined for every type  
of atom.  

The force acting on atom i is obtained by differentiating Eq. (23), as follows: 
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3. Results and discussion 
In this section the example of the analysis of dissociation phenomena of gas molecule on 
metal surface is introduced. We use the dissociation of H2 molecule on Pt(111) surface, 
which is important not only for the fundamental system of dissociation phenomena but also 
for the reaction at anode side in Polymer Electrolyte Fuel Cell. 

3.1 Potential energy surface 

Analysis of the potential energy surface is important when discussing dissociation 
phenomena on a metal surface. From this potential energy surface, the values of the 
dissociation path or the dissociation barrier are calculated, and the dissociation probability 
is then obtained. In this subsection, a method for calculating the potential energy surface of 
a platinum-hydrogen system according to the density functional theory and the above-
described analysis will be shown. All the calculations were conducted using the commercial 
density functional theory (DFT) program, DMol3. LDA/VWN and GGA/PBE were used as 
exchange-correlation functionals for geometry optimization and energy calculations, 
respectively. The double-numerical plus polarization functions (DNP) were used as the 
basis sets for all atoms. All electrons were considered in the calculation. The convergence 
tolerance for the self-consistent field (SCF) calculation was set at 1.010-6 Ha and the 
convergence tolerance for geometry was set at 1.010-5 Ha. Smearing was set at 5.010-3 Ha 
for both calculations to improve convergence of the calculations. Spin was unrestricted 
during calculations. 

Figure 2 shows the calculation model. In the calculation of the typical density functional 
theory, the surface is often expressed by three molecular layers in order to have a reasonable 
calculation load. At each layer, a platinum atom is placed at a location to its Miller indices 
correspond. Figure 2 shows the arrangement of the (111) surface. Because the calculation 
load determines the number of atoms representing one layer of the surface, the calculation 
of the direction of the surface is generally performed under the assumption of the periodic 
boundary condition, expressing the surface with 22 = 4 atoms. In the same figure, the basic 
cell is denoted by the white line. In the density functional theory, calculation is performed 
with periodic boundary condition in all directions. Figure 2 shows the technique used to 
avoid interactions normal to the surface by setting a long vacuum region. 

Sometimes the calculation model that passed through the process described above is applied 
as a metal surface, but this causes instability when using the structure of bulk as is for the 
surface. At the actual surface, the structure changes slightly, causing surface relaxation. In 
the case of calculating a more realistic surface, reconstruction of the surface atom 
arrangement to achieve the most stable state after geometry optimization is one option. The 
LDA method is usually used for geometry optimization. 

The orientation of molecule toward the surface is determined by locating the center of the 
molecule on a particular site on the surface (location of the molecule on a surface) and then 
defining the Euler angle of the molecular axis (, θ) in the space coordinate system. For the 
determined orientation, the energy of a system is calculated by changing the distance 
between nuclei, r, and the distance between the first surface layer and the center of the 
molecule, Z. The GGA method is most commonly used for the energy calculation. Repeated 
energy calculation while changing the values of r and Z enables the contour of the energy 
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(potential energy surface) to be drawn under the condition that the lateral axis is r and the 
longitudinal axis is Z. Examples are shown in Fig. 3. The left-hand side represents the PES at 
=0° and θ=90° of top site, and the right-hand side represents that at =0° and θ=90° of brg 
site. In this calculation, r is changed at 0.5 Å intervals in the range between 0.5 Å and 2.5 Å, 
and Z is changed at 0.5 Å intervals in the range between 0.5 Å and 2.5 Å.  
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Fig. 2. Simulation system for the potential energy surface.  
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Fig. 3. Contour of the potential energy surface. The contour is plotted at 0.2 eV intervals. The 
white dashed lines show the dissociation path. 

From the PES, the dissociation path or the height of the dissociation barrier is obtained as 
described below. Assuming that the hydrogen molecule passes through the route of lowest 
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energy from the state before dissociation (State A) to that after dissociation (State B) in Fig. 3, 
the route corresponds to a ridge of the potential energy surface. Therefore, the route of 
reaction is determined by obtaining the ridge from State A to State B. The white dashed lines 
in Fig. 3 show the dissociation path of each potential energy surface. The energy on the 
dissociation path is calculated by defining the energy of State A as 0. The potential energy 
increases as the molecule approaches the surface. The maximum energy on the dissociation 
path is called the “dissociation barrier”. Molecules of less energy than the dissociation 
barrier cannot dissociate.  

In the transient state theory, the dissociation probability is obtained from the height of the 
dissociation barrier. The probability that the kinetic energy of molecules impinging on the 
surface is in the range of [etr, etr+detr] is obtained by Boltzmann distribution as 
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where k denotes the Boltzmann’s constant. In this theory, all of the molecules that have a 
more energy than the dissociation barrier are considered to dissociate. This probability is 
obtained by integrating Eq. (26) in the range of [Eb, ∞], as follows:  
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3.2 Energy transfer between gas molecule and solid atoms 

In the analysis of dissociation probability by the transient state theory and the density 
functional theory mentioned above, the molecules that are reflected from the surface without 
dissociation after passing over the dissociation barrier are not considered when obtaining the 
dissociation probability because in this theory all molecules that have an energy greater than 
the dissociation barrier are considered to dissociate. Moreover, the effect of the direction of the 
motion or the rotational energy of molecules on the dissociation probability is not considered 
because the dissociation probability is determined by only the magnitude of the translational 
energy of the molecule. However, the potential energy surface is likely to change due to the 
motion of surface atoms. It is necessary to consider these motions of atoms in order to make 
the analysis more real. In this subsection, the method used to obtain the dissociation 
probability while considering the motion of atoms is described. The embedded atom method 
is used as the simulation method. The method used to determine the embedded function or 
the core-core pair-repulsion function is also described.  

In the EAM, the potential energy, Epot, of the system, which consists of a Pt surface of N 
atoms and an H2 molecule, is obtained by  
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         (28) 

where subscripts i and j denote the given number of Pt atoms, subscript k denotes the given 
number of H atoms, and R denotes the distance between atoms. The functions FPt(ρi) and 
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(potential energy surface) to be drawn under the condition that the lateral axis is r and the 
longitudinal axis is Z. Examples are shown in Fig. 3. The left-hand side represents the PES at 
=0° and θ=90° of top site, and the right-hand side represents that at =0° and θ=90° of brg 
site. In this calculation, r is changed at 0.5 Å intervals in the range between 0.5 Å and 2.5 Å, 
and Z is changed at 0.5 Å intervals in the range between 0.5 Å and 2.5 Å.  
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Fig. 2. Simulation system for the potential energy surface.  
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Fig. 3. Contour of the potential energy surface. The contour is plotted at 0.2 eV intervals. The 
white dashed lines show the dissociation path. 

From the PES, the dissociation path or the height of the dissociation barrier is obtained as 
described below. Assuming that the hydrogen molecule passes through the route of lowest 
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energy from the state before dissociation (State A) to that after dissociation (State B) in Fig. 3, 
the route corresponds to a ridge of the potential energy surface. Therefore, the route of 
reaction is determined by obtaining the ridge from State A to State B. The white dashed lines 
in Fig. 3 show the dissociation path of each potential energy surface. The energy on the 
dissociation path is calculated by defining the energy of State A as 0. The potential energy 
increases as the molecule approaches the surface. The maximum energy on the dissociation 
path is called the “dissociation barrier”. Molecules of less energy than the dissociation 
barrier cannot dissociate.  

In the transient state theory, the dissociation probability is obtained from the height of the 
dissociation barrier. The probability that the kinetic energy of molecules impinging on the 
surface is in the range of [etr, etr+detr] is obtained by Boltzmann distribution as 
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where k denotes the Boltzmann’s constant. In this theory, all of the molecules that have a 
more energy than the dissociation barrier are considered to dissociate. This probability is 
obtained by integrating Eq. (26) in the range of [Eb, ∞], as follows:  

 
2

tr
tr tr

12 exp
bE

eP e de
kT kT

                                              (27) 

3.2 Energy transfer between gas molecule and solid atoms 

In the analysis of dissociation probability by the transient state theory and the density 
functional theory mentioned above, the molecules that are reflected from the surface without 
dissociation after passing over the dissociation barrier are not considered when obtaining the 
dissociation probability because in this theory all molecules that have an energy greater than 
the dissociation barrier are considered to dissociate. Moreover, the effect of the direction of the 
motion or the rotational energy of molecules on the dissociation probability is not considered 
because the dissociation probability is determined by only the magnitude of the translational 
energy of the molecule. However, the potential energy surface is likely to change due to the 
motion of surface atoms. It is necessary to consider these motions of atoms in order to make 
the analysis more real. In this subsection, the method used to obtain the dissociation 
probability while considering the motion of atoms is described. The embedded atom method 
is used as the simulation method. The method used to determine the embedded function or 
the core-core pair-repulsion function is also described.  

In the EAM, the potential energy, Epot, of the system, which consists of a Pt surface of N 
atoms and an H2 molecule, is obtained by  
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pot Pt H Pt Pt Pt H H H 12
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         (28) 

where subscripts i and j denote the given number of Pt atoms, subscript k denotes the given 
number of H atoms, and R denotes the distance between atoms. The functions FPt(ρi) and 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

318 

FH(ρi) denote the energy necessary to embed a Pt atom or an H atom, respectively, into the 
background electron density, ρi, and Pt-Pt(Rij), H-H(R12) and Pt-H(Rik), denote the core-core 
pair-repulsion potential between Pt atoms, between H atoms, and between a Pt atom and an 
H atom, respectively. In addition, ρi and ρk denote the electron density at Pt atom i or H 
atom k, respectively, by the remaining atoms. By defining these functions such that the 
results obtained by the EAM reproduce those obtained by the DFT, calculation by the EAM 
is faster, and the accuracy in the EAM is sufficient. The details of the form of the function are 
omitted herein. For these details, the reader should refer to some references (Tokuamsu and 
Ito, 2007; 2011).  

Next, an example of simulating the dissociation phenomena of H2 on the Pt surface by the 
EAM potential determined mentioned above is described. A schematic diagram is shown in 
Fig. 4. The Pt(111) surface consists of 10103 = 300 Pt atoms in the x, y, and z direction, 
respectively. A periodic boundary condition is imposed in the x and y directions. The initial 
position of atoms is the same as that of a bulk crystal structure of Pt. The lattice constant of 
Pt is set at 3.92 Å.  

When the temperature of the surface is controlled, it is often used to control the velocity of 
the atoms of the system. However, this method affects the motion of dissociating molecules 
because the velocity of atoms that directly interact with the dissociating molecules is 
changed artificially. For this reason, in this example, the temperature of the surface is 
controlled by phantom molecules (Blomer and Beylich, 1996). The initial velocities of the Pt 
atoms and the phantom atoms are given at random, according to the Boltzmann distribution 
at the temperature of T [K], and the system is relaxed toward the equilibrium state when the 
temperature of the system is controlled. The spring constant for phantom atoms, k, was set 
at 46.8 N/m, and the coefficient of the dumper, , was set at 5.184×10-12 kg/s. The cutoff 
distance of the interaction was set at 15 Ǻ. Time integration was calculated by the leap-frog 
method(Allen & Tildesley, 1986) with a time interval, Δt, of 1 fs. 
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Fig. 4. Schematic diagram of simulation system. 

Before simulating the dissociation of H2 molecules, the relaxed Pt(111) surface, whose 
temperature was controlled to a target temperature, had to be obtained. The simulation was 
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performed until the system reached equilibrium at the target temperature. In this 
simulation, the target temperature was set at T=350 K.  

H2 molecules impinged upon the top, brg, or fcc sites of the relaxed Pt(111) surface from a 
height of 5 Ǻ. An initial translational energy, Etr, was given to the H2 molecule normal to the 
surface as the impinging energy. Neither rotational nor vibrational energy was given to the 
H2 molecule. The orientation of the impinging H2 molecule was given at random.  

A typical example of the difference from the initial energy of kinetic energy of Pt atoms, 
kinetic energy of the impinging H2 molecule, potential energy obtained in Eq. (28) and total 
energy are shown in Fig. 5. Bold line shows the total energy of the system and square, circle 
and triangle denotes the Epot obtained in Eq. (28), kinetic energy of Pt atoms and that of the 
impinging H2 molecule, respectively. As shown in this figure, the energy transfers between 
each degree of freedom but total energy of the system was well conserved relative to the 
difference from initial energy of each degree of freedom. Simulations were performed for 
40,000 steps or 10,000 steps, depending upon whether the impinging energy was smaller or 
larger than 0.1 eV, respectively, because an H2 molecule with a smaller impinging energy 
takes more time to reach the surface. Typical examples of the behavior of an H2 molecule on 
a Pt(111) surface upon collision are shown in Fig. 6. Fig. 6 (a) and (b) show the dissociation 
case and no dissociation case, respectively. Both the distance of the center of mass of the H2 
molecule from the surface and the distance between H atoms in the H2 molecule are shown.  
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Fig. 5. Typical example of differential from initial energy of degree of freedom. Bold line 
denotes the difference of initial energy of total energy. Square, circle and triangle denote 
those of potential energy, kinetic energy of Pt atoms and kinetic energy of H2 molecule, 
respectively. 

In Fig. 6 (a), the impinging energy was set at Etr=0.25 eV. In this case, the velocity of 
impinging molecule decreases during t=5060 fs and the molecule collide with the Pt 
surface, which implies that the molecule passes over a dissociation barrier. The distance 
between H atoms becomes longer while the H2 molecule migrates on the surface. In the 
present simulations, H2 molecules having a distance between H atoms larger than 3.5 Ǻ 
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FH(ρi) denote the energy necessary to embed a Pt atom or an H atom, respectively, into the 
background electron density, ρi, and Pt-Pt(Rij), H-H(R12) and Pt-H(Rik), denote the core-core 
pair-repulsion potential between Pt atoms, between H atoms, and between a Pt atom and an 
H atom, respectively. In addition, ρi and ρk denote the electron density at Pt atom i or H 
atom k, respectively, by the remaining atoms. By defining these functions such that the 
results obtained by the EAM reproduce those obtained by the DFT, calculation by the EAM 
is faster, and the accuracy in the EAM is sufficient. The details of the form of the function are 
omitted herein. For these details, the reader should refer to some references (Tokuamsu and 
Ito, 2007; 2011).  

Next, an example of simulating the dissociation phenomena of H2 on the Pt surface by the 
EAM potential determined mentioned above is described. A schematic diagram is shown in 
Fig. 4. The Pt(111) surface consists of 10103 = 300 Pt atoms in the x, y, and z direction, 
respectively. A periodic boundary condition is imposed in the x and y directions. The initial 
position of atoms is the same as that of a bulk crystal structure of Pt. The lattice constant of 
Pt is set at 3.92 Å.  

When the temperature of the surface is controlled, it is often used to control the velocity of 
the atoms of the system. However, this method affects the motion of dissociating molecules 
because the velocity of atoms that directly interact with the dissociating molecules is 
changed artificially. For this reason, in this example, the temperature of the surface is 
controlled by phantom molecules (Blomer and Beylich, 1996). The initial velocities of the Pt 
atoms and the phantom atoms are given at random, according to the Boltzmann distribution 
at the temperature of T [K], and the system is relaxed toward the equilibrium state when the 
temperature of the system is controlled. The spring constant for phantom atoms, k, was set 
at 46.8 N/m, and the coefficient of the dumper, , was set at 5.184×10-12 kg/s. The cutoff 
distance of the interaction was set at 15 Ǻ. Time integration was calculated by the leap-frog 
method(Allen & Tildesley, 1986) with a time interval, Δt, of 1 fs. 
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Fig. 4. Schematic diagram of simulation system. 

Before simulating the dissociation of H2 molecules, the relaxed Pt(111) surface, whose 
temperature was controlled to a target temperature, had to be obtained. The simulation was 
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performed until the system reached equilibrium at the target temperature. In this 
simulation, the target temperature was set at T=350 K.  

H2 molecules impinged upon the top, brg, or fcc sites of the relaxed Pt(111) surface from a 
height of 5 Ǻ. An initial translational energy, Etr, was given to the H2 molecule normal to the 
surface as the impinging energy. Neither rotational nor vibrational energy was given to the 
H2 molecule. The orientation of the impinging H2 molecule was given at random.  

A typical example of the difference from the initial energy of kinetic energy of Pt atoms, 
kinetic energy of the impinging H2 molecule, potential energy obtained in Eq. (28) and total 
energy are shown in Fig. 5. Bold line shows the total energy of the system and square, circle 
and triangle denotes the Epot obtained in Eq. (28), kinetic energy of Pt atoms and that of the 
impinging H2 molecule, respectively. As shown in this figure, the energy transfers between 
each degree of freedom but total energy of the system was well conserved relative to the 
difference from initial energy of each degree of freedom. Simulations were performed for 
40,000 steps or 10,000 steps, depending upon whether the impinging energy was smaller or 
larger than 0.1 eV, respectively, because an H2 molecule with a smaller impinging energy 
takes more time to reach the surface. Typical examples of the behavior of an H2 molecule on 
a Pt(111) surface upon collision are shown in Fig. 6. Fig. 6 (a) and (b) show the dissociation 
case and no dissociation case, respectively. Both the distance of the center of mass of the H2 
molecule from the surface and the distance between H atoms in the H2 molecule are shown.  
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Fig. 5. Typical example of differential from initial energy of degree of freedom. Bold line 
denotes the difference of initial energy of total energy. Square, circle and triangle denote 
those of potential energy, kinetic energy of Pt atoms and kinetic energy of H2 molecule, 
respectively. 

In Fig. 6 (a), the impinging energy was set at Etr=0.25 eV. In this case, the velocity of 
impinging molecule decreases during t=5060 fs and the molecule collide with the Pt 
surface, which implies that the molecule passes over a dissociation barrier. The distance 
between H atoms becomes longer while the H2 molecule migrates on the surface. In the 
present simulations, H2 molecules having a distance between H atoms larger than 3.5 Ǻ 
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were considered to dissociate. Figure 6 (b) shows the case not dissociating after collision. 
The impinging energy was set at Etr=0.1 eV. As shown in this figure, the molecule can pass 
over the dissociation barrier and collides with the surface. However, the molecule reflects 
and departs again directly. In this case the vibrational energy is excited because of the 
strong interaction to the surface.  
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Fig. 6. Distance from surface of the center of mass of the H2 and the distance between H 
atoms. (a) the impinging H2 molecule dissociates. (b) the impinging H2 molecule does not 
dissociate.  

3.3 Dissociation probability 

The simulations mentioned in Sec. 3.2 were performed 640 times, fixing the impinging 
energy and the site on the Pt(111) surface, and changing the orientation of the H2 molecule 
at random. The dissociation probability was obtained against impinging energy at top, brg, 
and fcc sites from the ratio of dissociated to all cases. The initial configuration of the Pt(111) 
surface was changed in every simulation. The impinging energy was varied from 0.01 to 0.5 
eV. The “dynamic” dissociation probabilities, Pd, against impinging energy are shown in 
Fig. 7 (a).  

By the way, the “static” dissociation probabilities, Ps, can be obtained from the interaction 
potential between an H2 atoms and a Pt surface. The detailed method was described in a 
reference (Tokumasu and Ito, 2011). The static dissociation probability is shown in Fig. 7 (b). 
Fig. 7 (a) shows that at brg and fcc sites, the dynamic dissociation probability increases with 
increasing impinging energy of the H2 molecule, and becomes nearly constant at higher 
impinging energy. The tendency is similar to the static dissociation probability shown in Fig. 
7 (b), implying that dynamic effects are not important to the dissociation at brg or fcc sites. 
The dissociation probability at top site, however, decreased with increasing impinging 
energy. This tendency is very different from the static dissociation probability shown in Fig. 
7 (b). Moreover, Fig. 7 (b) shows that the dissociation probability when the impinging 
energy is near 0 is about 25 %, which means that 75 % of the impinging molecules cannot 
pass over the dissociation barrier. However, Fig. 7 (a) shows that 90 % of the impinging 
molecules dissociates when the impinging energy is near 0. This contradiction shows the 
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“dynamic effects“ on the dissociation probability (Tokumasu & Ito, 2011), and therefore the 
effects at the top site are larger than that at brg or fcc sites. This contradiction was analyzed 
in detail. 
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Fig. 7. The dissociation probabilities at each site. Circles, squares, and triangles show the 
results at top, brg, and fcc sites, respectively. (a) Dynamic dissociation probability, (b) Static 
dissociation probability.  

Initially, the probability that an impinging H2 molecule reaches the chemisorption layer, Pc, 
was obtained for the top site. The result is shown in Fig. 8. As shown in this figure, all 
impinging molecules reach the chemisorption layer, even at very low impinging energy, 
unlike the results shown in Fig. 7 (b). The behavior of the impinging H2 molecules clearly 
shows that H2 molecules with very low impinging energy can reach the chemisorption layer 
by changing their orientation via interaction with the Pt(111) surface. These impinging 
molecules have no dissociation barrier, even if they have an initial orientation at which the 
dissociation barrier is large. The change in orientation of an impinging molecule  
via interaction with the surface to reduce the dissociation barrier is called the "steering effect 
(Darling & Holoway, 1994; Darling et al, 1998; Gross et al. 1995). Previous research indicated 
that an impinging molecule is easier to dissociate than expected in a static manner due  
to this effect when the impinging energy and rotational energy of the impinging molecule  
is very small (Darling et al, 1998). The steering effect is also observed at brg and fcc sites. 
The impinging molecules with very low impinging energy, however, cannot pass over  
the dissociation barrier regardless of orientation at brg or fcc sites, because the minimum 
dissociation barrier is more than 0.1 eV at these sites. For this reason, the steering effect  
is unimportant to dissociation phenomena at brg or fcc sites. The steering effect becomes 
remarkable only at sites where a molecule can reach the chemisorption layer with a  
very small dissociation barrier (or no dissociation barrier) at specific orientations, such as  
at the top site.  

The dissociation probability, however, decreases rapidly with increasing impinging energy, 
although all impinging molecules reach the chemisorption layer. The tendency is different 
from that of brg and fcc sites, where almost all molecules that reach the chemisorption layer 
dissociate. The distribution of orientation of impinging molecules at the top site, when the 
molecules pass over the dissociation barrier and when the molecules dissociate, were 
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were considered to dissociate. Figure 6 (b) shows the case not dissociating after collision. 
The impinging energy was set at Etr=0.1 eV. As shown in this figure, the molecule can pass 
over the dissociation barrier and collides with the surface. However, the molecule reflects 
and departs again directly. In this case the vibrational energy is excited because of the 
strong interaction to the surface.  
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Fig. 6. Distance from surface of the center of mass of the H2 and the distance between H 
atoms. (a) the impinging H2 molecule dissociates. (b) the impinging H2 molecule does not 
dissociate.  

3.3 Dissociation probability 

The simulations mentioned in Sec. 3.2 were performed 640 times, fixing the impinging 
energy and the site on the Pt(111) surface, and changing the orientation of the H2 molecule 
at random. The dissociation probability was obtained against impinging energy at top, brg, 
and fcc sites from the ratio of dissociated to all cases. The initial configuration of the Pt(111) 
surface was changed in every simulation. The impinging energy was varied from 0.01 to 0.5 
eV. The “dynamic” dissociation probabilities, Pd, against impinging energy are shown in 
Fig. 7 (a).  

By the way, the “static” dissociation probabilities, Ps, can be obtained from the interaction 
potential between an H2 atoms and a Pt surface. The detailed method was described in a 
reference (Tokumasu and Ito, 2011). The static dissociation probability is shown in Fig. 7 (b). 
Fig. 7 (a) shows that at brg and fcc sites, the dynamic dissociation probability increases with 
increasing impinging energy of the H2 molecule, and becomes nearly constant at higher 
impinging energy. The tendency is similar to the static dissociation probability shown in Fig. 
7 (b), implying that dynamic effects are not important to the dissociation at brg or fcc sites. 
The dissociation probability at top site, however, decreased with increasing impinging 
energy. This tendency is very different from the static dissociation probability shown in Fig. 
7 (b). Moreover, Fig. 7 (b) shows that the dissociation probability when the impinging 
energy is near 0 is about 25 %, which means that 75 % of the impinging molecules cannot 
pass over the dissociation barrier. However, Fig. 7 (a) shows that 90 % of the impinging 
molecules dissociates when the impinging energy is near 0. This contradiction shows the 
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“dynamic effects“ on the dissociation probability (Tokumasu & Ito, 2011), and therefore the 
effects at the top site are larger than that at brg or fcc sites. This contradiction was analyzed 
in detail. 
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Fig. 7. The dissociation probabilities at each site. Circles, squares, and triangles show the 
results at top, brg, and fcc sites, respectively. (a) Dynamic dissociation probability, (b) Static 
dissociation probability.  

Initially, the probability that an impinging H2 molecule reaches the chemisorption layer, Pc, 
was obtained for the top site. The result is shown in Fig. 8. As shown in this figure, all 
impinging molecules reach the chemisorption layer, even at very low impinging energy, 
unlike the results shown in Fig. 7 (b). The behavior of the impinging H2 molecules clearly 
shows that H2 molecules with very low impinging energy can reach the chemisorption layer 
by changing their orientation via interaction with the Pt(111) surface. These impinging 
molecules have no dissociation barrier, even if they have an initial orientation at which the 
dissociation barrier is large. The change in orientation of an impinging molecule  
via interaction with the surface to reduce the dissociation barrier is called the "steering effect 
(Darling & Holoway, 1994; Darling et al, 1998; Gross et al. 1995). Previous research indicated 
that an impinging molecule is easier to dissociate than expected in a static manner due  
to this effect when the impinging energy and rotational energy of the impinging molecule  
is very small (Darling et al, 1998). The steering effect is also observed at brg and fcc sites. 
The impinging molecules with very low impinging energy, however, cannot pass over  
the dissociation barrier regardless of orientation at brg or fcc sites, because the minimum 
dissociation barrier is more than 0.1 eV at these sites. For this reason, the steering effect  
is unimportant to dissociation phenomena at brg or fcc sites. The steering effect becomes 
remarkable only at sites where a molecule can reach the chemisorption layer with a  
very small dissociation barrier (or no dissociation barrier) at specific orientations, such as  
at the top site.  

The dissociation probability, however, decreases rapidly with increasing impinging energy, 
although all impinging molecules reach the chemisorption layer. The tendency is different 
from that of brg and fcc sites, where almost all molecules that reach the chemisorption layer 
dissociate. The distribution of orientation of impinging molecules at the top site, when the 
molecules pass over the dissociation barrier and when the molecules dissociate, were 
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investigated at very low impinging energy. The results showed that the orientation of the 
impinging molecule at which the dissociation barrier is very low is normal to the surface, 
and the orientation at which the molecules dissociate is parallel to the surface at the top site. 
Almost all the molecules can dissociate at the top site when the impinging energy is very 
low, because the molecules can change their orientation by the steering effect to easily pass 
over the dissociation barrier to reach the chemisorption layer (by aligning normal to the 
surface). They can then readjust their orientation, again by the steering effect, such that they 
can easily dissociate (by aligning parallel to the surface). With increasing impinging energy, 
however, the molecules have sufficient energy to reach the chemisorption layer without the 
steering effect, and do not have time to change their orientation to one in which they can 
easily dissociate. Therefore, they depart from the surface without dissociation after collision. 
In dissociation at the top site, two steering effects are important: once when the molecule 
reaches the chemisorption layer, and again when the molecule dissociates. Therefore, the 
dominant factor in dissociation at the top site is the motion of the H2 molecule at the 
chemisorption layer by steering effect, not the probability that the H2 molecule reaches the 
chemisorption layer. The dynamic effects on dissociation probability are very important 
when dissociation phenomena at the top site are considered.  
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Fig. 8. Dissociation probability at brg and fcc sites, Pd, and the probability of reaching the 
chemisorption layer, Pc (top site). Circles and squares show Pd and Pc, respectively. 

3.4 Comparison with experimental results 

To check the valildity of the simulation, the dissociatino probability against the impinging 
angle was simulated and the resuts were compared with experimental results (Luntz et al., 
1990). In this study, D2 molecules were used as impinging gas molecules because in the 
experimental study with which we compared our results, D2 molecules were used. The 
EAM potential constructed for the H2 molecule was used for the D2 molecule since the state 
of electrons can be regarded as the same for both of these molecules. Simulation system 
were almost the same as that obtained in Sec. 3.1, but the incident angle was given to the 
impinging molecule. The incident polar angle was varied from 0o (normal to the surface) to 
60o and the incident azimuthal angle was varied in a uniform random manner. Moreover, 
the initial position of H2 molecule is given at random. The rotational energies were given 
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according to Boltzmann distribution. The detailed method was described in a reference 
(Koido et al., 2011).  

The results of MD simulations are shown in Fig. 9. The dissociation probability, Pd, for each 
incident angle against initial translational energy is shown. It shows that Pd increases along 
with the initial translational energy at all level of polar angle of incidence. When the angle is 
normal to the surface (θi = 0°), even at very low translational energy, Pd has a certain value 
and it increases along with the initial translational energy. This shows that there is no 
obvious translational energy threshold for dissociation probability to rise. It means that 
there is no energy barrier for dissociation when a gas molecule approaches to the surface 
with the orientation that takes the minimum potential among its possible potential energy 
surfaces. At a larger initial translational energy than Etr = 0.25 eV, Pd does not increase.  

At larger angles of incidence, Pd increases more slowly with initial translational energy 
similar to the normal incidence case and stops increasing at higher initial translational 
energy. It should be noted that when the polar angle of incidence is off normal to  
the surface, at the lowest initial translational energy calculated (Etr=0.0025 eV), Pd is a  
little higher than the value at little higher translational energy. The rise at very low 
translational energy suggests that the "Steering Effect" at the top site (Tokumasu and Ito, 
2011) is important. When translational energy is very low, the possibility of a molecule to 
have both low translational energy and low rotational energy is relatively high. Moreover,  
it allows good chance for a molecule to rotate to the orientation that experiences low energy 
barrier to dissociate near the surface. It can be said that even though the result is the 
average of collisions on all the surface area, the “Steering Effect” at a particular site cannot 
be neglected. 

These MD results are compared with experimental data (Luntz, 1990) at each incident polar 
angle. Although the MD results and the experimental data do not agree very well, they  
both show the following trends: Pd increases along with initial translational energy, Pd 
decreases along with increasing polar angle of incidence, and no initial translational energy 
threshold for dissociation probability is observed when the molecules approach along the 
surface normal.  

If we see the hydrogen dissociation on other metal surfaces, the trends may be quite 
different. It was reported that hydrogen dissociation on Cu(111) surface requires at least 
around 0.5 eV of large activation energy (Luntz, 2009; Gross, 1998). Moreover, it was also 
reported both theoretically and experimentally that the dissociation probability is high at 0 
translational energy and decreases along with the translational energy and increases at 
higher energy again on Pd(100) surface (Luntz, 2009; Gross, 1998). From the above 
discussion, MD simulations using the constructed EAM potential are capable of simulating 
molecular beam experiments to a certain degree. 

The rise in the dissociation probability observed at low translational energies in the MD 
results cannot be compared with the experiments due to lack of experimental data.  

4. Summary 
In order to analyze the dissociation phenomena of gas molecule on metal surface which 
includes chemical reactions, it is necessary to perform quantum mechanical calculations 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

322 

investigated at very low impinging energy. The results showed that the orientation of the 
impinging molecule at which the dissociation barrier is very low is normal to the surface, 
and the orientation at which the molecules dissociate is parallel to the surface at the top site. 
Almost all the molecules can dissociate at the top site when the impinging energy is very 
low, because the molecules can change their orientation by the steering effect to easily pass 
over the dissociation barrier to reach the chemisorption layer (by aligning normal to the 
surface). They can then readjust their orientation, again by the steering effect, such that they 
can easily dissociate (by aligning parallel to the surface). With increasing impinging energy, 
however, the molecules have sufficient energy to reach the chemisorption layer without the 
steering effect, and do not have time to change their orientation to one in which they can 
easily dissociate. Therefore, they depart from the surface without dissociation after collision. 
In dissociation at the top site, two steering effects are important: once when the molecule 
reaches the chemisorption layer, and again when the molecule dissociates. Therefore, the 
dominant factor in dissociation at the top site is the motion of the H2 molecule at the 
chemisorption layer by steering effect, not the probability that the H2 molecule reaches the 
chemisorption layer. The dynamic effects on dissociation probability are very important 
when dissociation phenomena at the top site are considered.  
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Fig. 8. Dissociation probability at brg and fcc sites, Pd, and the probability of reaching the 
chemisorption layer, Pc (top site). Circles and squares show Pd and Pc, respectively. 

3.4 Comparison with experimental results 

To check the valildity of the simulation, the dissociatino probability against the impinging 
angle was simulated and the resuts were compared with experimental results (Luntz et al., 
1990). In this study, D2 molecules were used as impinging gas molecules because in the 
experimental study with which we compared our results, D2 molecules were used. The 
EAM potential constructed for the H2 molecule was used for the D2 molecule since the state 
of electrons can be regarded as the same for both of these molecules. Simulation system 
were almost the same as that obtained in Sec. 3.1, but the incident angle was given to the 
impinging molecule. The incident polar angle was varied from 0o (normal to the surface) to 
60o and the incident azimuthal angle was varied in a uniform random manner. Moreover, 
the initial position of H2 molecule is given at random. The rotational energies were given 
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according to Boltzmann distribution. The detailed method was described in a reference 
(Koido et al., 2011).  

The results of MD simulations are shown in Fig. 9. The dissociation probability, Pd, for each 
incident angle against initial translational energy is shown. It shows that Pd increases along 
with the initial translational energy at all level of polar angle of incidence. When the angle is 
normal to the surface (θi = 0°), even at very low translational energy, Pd has a certain value 
and it increases along with the initial translational energy. This shows that there is no 
obvious translational energy threshold for dissociation probability to rise. It means that 
there is no energy barrier for dissociation when a gas molecule approaches to the surface 
with the orientation that takes the minimum potential among its possible potential energy 
surfaces. At a larger initial translational energy than Etr = 0.25 eV, Pd does not increase.  

At larger angles of incidence, Pd increases more slowly with initial translational energy 
similar to the normal incidence case and stops increasing at higher initial translational 
energy. It should be noted that when the polar angle of incidence is off normal to  
the surface, at the lowest initial translational energy calculated (Etr=0.0025 eV), Pd is a  
little higher than the value at little higher translational energy. The rise at very low 
translational energy suggests that the "Steering Effect" at the top site (Tokumasu and Ito, 
2011) is important. When translational energy is very low, the possibility of a molecule to 
have both low translational energy and low rotational energy is relatively high. Moreover,  
it allows good chance for a molecule to rotate to the orientation that experiences low energy 
barrier to dissociate near the surface. It can be said that even though the result is the 
average of collisions on all the surface area, the “Steering Effect” at a particular site cannot 
be neglected. 

These MD results are compared with experimental data (Luntz, 1990) at each incident polar 
angle. Although the MD results and the experimental data do not agree very well, they  
both show the following trends: Pd increases along with initial translational energy, Pd 
decreases along with increasing polar angle of incidence, and no initial translational energy 
threshold for dissociation probability is observed when the molecules approach along the 
surface normal.  

If we see the hydrogen dissociation on other metal surfaces, the trends may be quite 
different. It was reported that hydrogen dissociation on Cu(111) surface requires at least 
around 0.5 eV of large activation energy (Luntz, 2009; Gross, 1998). Moreover, it was also 
reported both theoretically and experimentally that the dissociation probability is high at 0 
translational energy and decreases along with the translational energy and increases at 
higher energy again on Pd(100) surface (Luntz, 2009; Gross, 1998). From the above 
discussion, MD simulations using the constructed EAM potential are capable of simulating 
molecular beam experiments to a certain degree. 

The rise in the dissociation probability observed at low translational energies in the MD 
results cannot be compared with the experiments due to lack of experimental data.  

4. Summary 
In order to analyze the dissociation phenomena of gas molecule on metal surface which 
includes chemical reactions, it is necessary to perform quantum mechanical calculations 
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considering the electronic states of materials. However, since this is not practical due to the 
large calculation time and therefore the analysis based on molecular dynamics, which needs 
dramatically small calculation time than quantum calculation, is desired. Therefore, a 
quantum mechanical method is first used to analyze the (nanoscale) electronic state, which 
dominates the reaction phenomena, and, using the obtained information, the empirical 
parameter applied to molecular dynamics is determined. The behavior of the molecule or its 
statistical (micro-scale) quantity is then analyzed. This analysis is referred to as “multi-scale 
analysis”. In multi-scale analysis, it is important to properly understand the nanoscale 
phenomena that dominate the micro-scale phenomena. 
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Fig. 9. Dissociation probability predicted by MD simulations (black symbols) as a function of 
initial translational energy, Etr for surface temperature, Ts = 295 K, for different incident 
polar angles ((a) θi=0o, (b) θi=30o, (c) θi=45o, (d) θi=60o) are compared with experimental 
results by Luntz et al. (white symbols). 
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quantum mechanical method is first used to analyze the (nanoscale) electronic state, which 
dominates the reaction phenomena, and, using the obtained information, the empirical 
parameter applied to molecular dynamics is determined. The behavior of the molecule or its 
statistical (micro-scale) quantity is then analyzed. This analysis is referred to as “multi-scale 
analysis”. In multi-scale analysis, it is important to properly understand the nanoscale 
phenomena that dominate the micro-scale phenomena. 
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Fig. 9. Dissociation probability predicted by MD simulations (black symbols) as a function of 
initial translational energy, Etr for surface temperature, Ts = 295 K, for different incident 
polar angles ((a) θi=0o, (b) θi=30o, (c) θi=45o, (d) θi=60o) are compared with experimental 
results by Luntz et al. (white symbols). 
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1. Introduction

In three dimensions, polymer dynamics exhibits a rich and complex behavior which depends
on the solvent conditions and polymer concentration (1; 2). That the dynamics of polymer
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The knowledge about the adsorption dynamics and the thermodynamics of the equilibrium
adsorption is crucial to understand and furthermore improve the property of the final product.
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2 Molecular Dynamics

2-D chain models. On the other hand, Maier and Rädler found much weaker scaling, namely
N−1, when studying adsorbed DNA in a lipid bilayer (3; 4). In the simulations, Milchev and
Binder (23) showed that D scales with the chain length as N−1.1; Azuma and Takayama (24)
obtained D ∼ N−3/2; but Falck et al. (25) found that D should scale as N0. Therefore, the
dynamics behavior of a confined polymer on a surface is still an interesting research topic.

Computer simulations for the mechanism of a single polymer chain adsorbed and diffusing
on a surface are important, as experimental studies on an isolated polymer chain are difficult
in most cases. Many simulations had been performed for different polymeric systems with
multiple chains (or a single chain) adsorbing and diffusing on the surface (24–27).

Binder and coworkers successfully studied polymer films in different conditions via computer
simulations (28–31). Lu and Kim observed the surface pattern of a thin polymer film by using
a three-dimensional electrostatic model. The competition between the electrostatic energy
and the surface energy leads to a characteristic pillar size. Furthermore, the film thickness
significantly influences the growth rate and the distance between pillars (32). Recently,
Kumar and coworkers found that a non-wetting solvent aids adsorption of the polymer
chain at low sticking energies compared to wetting solvent by the aid of molecular dynamics
simulations (33). However, there was no literature about the adsorption and diffusion of
the PDMS (polydimethylsiloxane) single chain on the silicon surface. In this research, our
main objective is to study the adsorption and diffusion processes of a hydrophobic chain
on a hydrophobic surface. The similar hydrophobic-hydrophobic systems usually appears
in the wetting, surface adhesion and flow in confined geometries are examples of such
systems. Because we have completed some research about the poly (vinyl alcohol) adsorbing
on the hydroxylated β-cristobalite (34), polyethylene chain adsorbing on the hydroxylated
β-cristobalite (35), and the polyethylene chain adsorbing on the silicon (111) surface (36), then
the results of the polydimethylsiloxane adsorbing on the silicon (111) surface may be helpful
and enriching for further understanding of the configuration change and the dynamics of the
hydrophobic polymer chain adsorbed on a hydrophobic surface.

We consider a single PDMS chain adsorbed on the rigid (111) silicon surface in a vacuum and
in mimetic good solvent condition. The adsorption and diffusion processes of the chain are
investigated through energy minimizations and molecular dynamics simulations with all the
molecular degrees of freedom being taken into account. Only one single chain is adopted
in a simulation because it relates directly to 2-D polymer diffusion in very dilute solution.
In addition, PDMS is a widely available polymeric material, comes in a range of molecular
weights, and is easy to use. The hydrophobic silicon is chosen because of its relative simplicity
and rigidity, so it can be treated as a fully rigid body for our purposes. We follow a two-step
strategy: first, we carry out direct energy minimizations of the PDMS chain close to the
silicon surface with different initial configurations in order to relax the model; second, we
use the most stable configuration after minimization to perform MD (Molecular Dynamics)
simulation. In the theory of dynamical scaling the two key quantities are the radius of gyration
(Rg) and the center-of-mass diffusion coefficient D of the chain. We thus use them to describe
the characteristics for the system in this paper. We also change the effective dielectric constant
to 78.0 to mimic good solvent condition. The results are compared with the systems in a
vacuum (which can be taken as in bad solvent condition). The chain configurations show
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similar, but the diffusion coefficients vary greatly, showing strong dependence on the solvent
condition.

2. Models and simulation details

The MD simulation is carried out in a box with 3-D periodic boundary conditions. The PDMS
chain is embedded into the simulation box with a fixed (111) silicon surface parallel to the XY
plane. We choose N for the chain as 10, 20, 30, 40, 50 and 60. The thickness of the surface
is around 12 Å. The length of the simulation box in the Z direction is 80 Å, which is large
enough so that the interactions between the adsorbed PDMS chain and the periodic images of
silicon in the top plane can be ignored. In this way, the 3-D periodicity inherent in the model
is transformed into an actual 2-D periodicity thus simulating an infinitely extended surface.

A high-quality force field COMPASS (condensed-phase optimized molecular potentials for
atomistic simulation studies) (37; 38) is adopted in the simulation. In contrast to early force
fields which were mostly parameterized based on gas-phase data or ab initio calculations,
COMPASS combines ab initio and empirical parametrization procedures. In addition, it
adds cross terms to potential in order to consider the influence of all atoms close-by and
distortions of bond length or bond angle. It enables accurate and simultaneous prediction
of structural, conformational, vibrational and thermophysical properties for a broad range of
molecules in isolation and in condensed phases. The energy calculation with COMPASS is
a combination of bonding and non-bonding terms. The bonding terms include stretching,
bending and torsion energy as well as the diagonal and off-diagonal cross coupling terms.
The van der Waals interactions are truncated at rc=12 Å by using a spline function
from 11 Å. The Coulomb interactions are calculated via Ewald summation (39). Before
the MD simulations, energy minimizations are performed to relax the local unfavorable
structure of the chain. Subsequently, MD simulations with 5 ns are performed under NVT
thermodynamics ensemble. Every simulation is performed three times to ensure the reliability
of the results. The equations of motion are integrated with a time step of 1 fs. The constant
temperature T=300 K is controlled through the Berendsen thermostat (40) with a relaxation
time of 0.1 ps.

In these simulations, the total and potential energies show an initial decrease, possibly
with a few separate kinetic stages, and then fluctuate around a constant value, indicating
the achievement of the equilibrium state. This process corresponds to the adsorption and
diffusion dynamics of the PDMS chain from the initial configuration. We then change the
dielectric constant to 78.0 to mimic the good solvent condition. Of course in this way the
explicit solvation effects cannot be considered. Nevertheless, we can directly study the effects
by simply changing the bad to the good solvent condition on the chain configurations and
dynamics.

3. Simulation results and discussion

In this section, we show the simulation results, such as the chain configurations, the
diffusion coefficient and the adsorption energy. All simulations are run until the chain
reaches its equilibrium structure, i.e., until the simulated chain lost its memory of the initial
configuration, and running the program further results in no discernible changes in the
structural properties and energy beyond natural fluctuations.
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3.1 In vacuum (or bad solvent)

3.1.1 Configuration change of PDMS during adsorption

Fig.1 shows the simulation snapshots of the PDMS chains with N=40. Furthermore, it shows
good adsorption during the simulation time on the silicon (111) surface. Interestingly, the
sequent configurations present curved not straight, and they all present 2-D adsorption
configuration from the side view when the single chain has adsorbed well on the surface.
With time evolution, the chain configuration changes from initially isolated “random-coil” in a

Fig. 1. We take the case of N=40 for example, extract the snapshots of the configurations
during its adsorption process.

vacuum to a compact form adsorbed on the surface. In the first several hundred picoseconds,
chain adsorption occurs accompanied by diffusion. When the energy dynamically reaches
constant, the chain dynamics is mainly dominated by the diffusion process. Fig.2 shows
the simulation snapshots of the PDMS chains with N=10, 40, 50 and 60 in equilibrium, but
the configurations of longer chain like N=50 and 60 present partial arched part. However,
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it shows good adsorption of no matter short or long PDMS single chain on this silicon
surface. Interestingly, these configurations present curved, especially the long chains. Finally,
they all present 2-D adsorption configuration from the side view when they reach both
thermodynamic and kinetic equilibrium state. To show the chain configuration change during

Fig. 2. Snapshots for PDMS chains adsorbed on the silicon surface with N=10, 40, 50 and 60
are displayed. The gray color denotes carbon and the white denotes hydrogen. Red denotes
oxygen, orange denotes silicon.

the adsorption, we calculate the mean radius of gyration which is defined as

< Rg >=

√√√√<
1
A

N

∑
i=1

(ri − rcm)2 > (1)

where ri and rcm denote the position vector of each atom in a chain and the center-of-mass for
the whole chain, respectively, and A represents the number of atoms. Fig.3 shows the change
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of calculated < Rg > with increasing A. We fit this curve with the first order exponential
decay function as Rg = A1exp(−x/t1) + y0, therein y0 = 6.82 ± 0.35, A1 = −9.62 ± 0.55
and t1 = 18.76 ± 2.9.. By seeing the simulation snapshots, we can find that all the PDMS
chain are ultimately well-adsorbed on the silicon surface with 2-D configurations. It appears
increasing trend of < Rg > during the increase in the N values, then it’s amplitude becomes
smaller and smaller, especially for the longer chains. For the sake of characterizing the

Fig. 3. The mean radius of gyration Rg vs the chain length N. The symbols are MD simulation
results. The error bars are the standard deviation measured in three parallel simulations.

anisotropic configuration of the polymer and interpreting the configuration change during
adsorption, we calculate two ratios such as (R2

x + R2
y)/R2

z and Rmax/Rmin. Rx, Ry and Rz
are the components in three principal directions of Rg. Rmax and Rmin correspond to the
large and small magnitude between Rx and Ry, respectively. The results are shown in Fig.4,
panels a and b. The component of Rg along the Z axis that is perpendicular to the surface
is strongly reduced during the adsorption. The components of Rg along the X and Y axes
display significant increase due to the chain spreading on the surface. All the chains are well
adsorbed on the surface and therefore present 2-D configurations. Thus Rx and Ry are larger
and Rz is very small.

3.1.2 Diffusion of PDMS chain on the surface

After the adsorption process, which is monitored by the interaction energy between the chain
and the surface starting to fluctuate only around a constant value, the dynamics of PDMS is
mainly dominated by the chain diffusion on the surface. We calculate the diffusion coefficients
of the chains via the Einstein relation. Fig.5 shows the change of D with the varying degree
of polymerization. There is apparent scaling between D and N, that is, D ∼ N−3/2. The
dependence of D on N can be explained by the change of interaction energy between the
chain and surface with increasing N. This adsorption energy can be calculated via

Eint = Etot − (E f rozen + Eplane) (2)
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Fig. 4. These two ratios are calculated from the three principal components of Rg. Panel a
shows the ratio of (R2

x+R2
y)/R2

z vs N and panel b shows the ratio of Rmax/Rmin vs N, where
Rmax denotes the larger one of Rx or Ry, and Rmin denotes the other.

Fig. 5. Diffusion coefficients, D, are plotted against degree of polymerization of the PDMS
chain, N.

where Etot is the potential energy of the chain plus the surface system in equilibrium, E f rozen is
the potential energy of the adsorbed chain isolated in a vacuum with the geometry unchanged,
and Eplane is the potential energy of the surface. Larger molecular configuration deformation
allows for better adsorption of the chain onto the surface; however, this will break the
intramolecular interaction which causes a free energy penalty. Therefore such an interaction
competition results in all the adsorption energy with increasing N, which can be seen in Fig.6.
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Fig. 4. These two ratios are calculated from the three principal components of Rg. Panel a
shows the ratio of (R2

x+R2
y)/R2

z vs N and panel b shows the ratio of Rmax/Rmin vs N, where
Rmax denotes the larger one of Rx or Ry, and Rmin denotes the other.

Fig. 5. Diffusion coefficients, D, are plotted against degree of polymerization of the PDMS
chain, N.

where Etot is the potential energy of the chain plus the surface system in equilibrium, E f rozen is
the potential energy of the adsorbed chain isolated in a vacuum with the geometry unchanged,
and Eplane is the potential energy of the surface. Larger molecular configuration deformation
allows for better adsorption of the chain onto the surface; however, this will break the
intramolecular interaction which causes a free energy penalty. Therefore such an interaction
competition results in all the adsorption energy with increasing N, which can be seen in Fig.6.
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We fit this curve with the linear function, and the average adsorption energy per segment
(Eint/N) is -0.42 kcal/mol.

Fig. 6. Adsorption energy Eint vs chain length N.

3.2 In good solvent

We change the dielectric constant to 78.0 to mimic the good solvent condition (41). Of course
in this way the explicit solvation effects cannot be considered. Nevertheless, we can directly
study the effects by simply changing the bad to the good solvent condition on the chain
configurations and dynamics.

The PDMS chain also can be adsorbed onto the hydrophobic surface in good solvent
environment, showing 2-D configurations, no matter how many monomers the chain
contains. The adsorption takes place very fast and the equilibrium is attained around about
200 ps. Sequentially, 2-D chain configurations are always retained in the successive diffusion
process. At last, the chain possesses the most stable configuration as one layer on the surface.
For saving time and avoiding repetitious work, we have only chosen one special chains with
the same length as N = 10. Compared to the relative results in a vacuum, we can find that the
contact area between the chain and the surface decrease, also the interaction energy increases,
which results the data of Eint and diffusion coefficients both increase. The results are shown
in Table 1. Also the configurations are both changed: the configuration of N = 10 turns from
“coil pancake” to more extended configuration; and the configuration from the side view
can be seen contains stacking part, which can be attributed to its lower diffusion coefficient
value in good solvent compared with it in bad solvent. The equilibrium configuration of these
two cases are present in Fig.7. In summary, it is clear that solvent effect has an important
influence on the configurations and the dynamics of the hydrophobic-hydrophobic system
from the discussion above. It can change not only the equilibrium chain configuration after
the adsorption, but also the dynamics behavior of the chain on the surface.
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Fig. 7. Snapshots for PDMS chains adsorbed on the silicon Surface with N=10 are displayed
in bad (in vacuum) and good (in solution) solvent environment, respectively. The gray color
denotes carbon and the white denotes hydrogen. Red denotes oxygen, orange denotes
silicon.

Eint(kcal/mol) D(cm2/s)
in vacuum -0.91 4.76 ×10−5

in good solvent -0.85 7.42 ×10−5

Table 1. Details of Adsorption Energy and Diffusion Coefficient for the Adsorption Behavior
of N=10 PDMS Single Chain on Silicon surface.

4. Conclusions

In this paper, MD simulations are used to investigate the adsorption and diffusion behavior of
a single flexible hydrophobic PDMS chain on a hydrophobic silicon surface. Because of their
similar characteristics, the PDMS chains are all adsorbed well onto the surface and possess
2-D configurations.

In a vacuum (or bad solvent), the PDMS chains are well adsorbed onto the hydrophobic
surface and displays 2-D configuration. The calculated results of mean radius of gyration and
two ratios such as (R2

x + R2
y)/R2

z and Rmax/Rmin manifest the chain length dependence of
the adsorption configuration. The adsorption energies are linearly scaled with N, therein the
average Eint/N value is -0.42 kcal/mol. In addition, the data of their diffusion coefficient obey
scaling law with N−3/2 for the considered chain lengths, which is the same as polyethylene
on Si (111) surface (45).

In good solvent, the PDMS chain also can be adsorbed very well on the surface and displays
2-D configuration, especially for the chains with less monomers; when the chains become
longer, it would present quasi 2-D configurations, owing to its larger adsorption energy and
larger diffusion coefficient in good solvent environment, compared with that in bad solvent
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environment with the same chain length. Owing to the decrease of adsorption energy and
diffusion coefficients, the configuration of N = 10 in good solvent changes to be more
extended with less folded number, compared with that in a vacuum environment. The
lower adsorption energy determines the larger diffusion coefficient, which means the higher
diffusion rate.

The above results show that a single PDMS chain can be adsorbed onto the hydrophobic
surface well. This is affected by the solvent conditions. By changing from the bad to good
solvent, the chain can be worse adsorbed, which means it is good for desorption in good
solvent environment, accordingly, it is good for adsorption in bad solvent enviroment. Thus
by fine-tuning the solvent quality, one can manipulate the behavior of the chain.
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diffusion rate.

The above results show that a single PDMS chain can be adsorbed onto the hydrophobic
surface well. This is affected by the solvent conditions. By changing from the bad to good
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solvent environment, accordingly, it is good for adsorption in bad solvent enviroment. Thus
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1. Introduction 
1.1 Solid state ionics and SOFC 

Solid ionic compounds normally form insulating compounds because each ion usually has a 
closed-shell electronic configuration, which prevents delocalization of electrons and thus 
electronic conduction in the system. In an appropriate temperature regime, charge can be 
transported in these solid materials, however, by the motion of highly mobile ionic species 
(e.g. Li+, Na+, O2-, etc.) (Fig. 1 Top) (Chu et al., 2006). This phenomenon is termed “ionic 
conductivity”. Such ionic compounds exhibit liquid-like conductivities whilst still in the 
solid state, i.e. at temperatures are well below their melting points (Hull, 2004). Exploiting 
this unusual property, considerable progress has been made in recent years in fuel cells and 
batteries, which are promising key technologies to meet our rising energy and 
environmental needs.   

Using  “superionic conductivity” (e.g. typically ~ 10-1 Scm-1) (Fig. 1 Top),  high temperature 
fuel cells, e.g. solid oxide fuel cells (SOFC) operate between 600 and 1200 C. Compared to 
batteries which are electrochemical energy storage devices, SOFC’s are energy conversion 
device that produces electricity by electrochemically combining fuel (e.g. H2, CH4, CO, 
hydrocarbon etc.) and oxidant (e.g. air, O2) chemical reactions at anode and cathode 
respectively (Fig. 1 Middle), with high thermodynamic efficiency and low environmental 
impact (Andersson et al., 2010; Etsell et al., 1970; Lashtabeg et al., 2006). A SOFC is a 
complex ceramic-solid-based electrochemical device consisting of three main components: 
an anode, electrolyte and cathode. The main component requiring fast ion transport and 
diffusion is the solid electrolyte. With external electron transfer, oxygen is reduced to 
oxygen ions (O2−) at the cathode side through the oxygen reduction reaction (ORR): ½ O2 
+2e−  O2−. Then the oxygen ions are incorporated into the oxygen ion conductor, the SOFC 
electrolyte. The oxygen ions (O2−) are transported through the electrolyte, but electrons are 
not. An ideal electrolyte in a SOFC is an electronic insulator, but an ionic conductor, and 
therefore permits only the oxygen ions to pass through to the anode. At the anode, the 
oxygen ions will combine with the fuel (e.g. H2) to form water: H2 + O2-  H2O + 2e−.  

Through this oxidation process, electrons are released and lead via an external circuit to the 
cathode where the ORR occurs again, and thus electrical power is generated (Andersson et  
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Fig. 1. (Top) Temperature dependence of the best solid ionic conductors of Ag+, Na+, Li+, 
and O2− ions (adapted from Chu et al., 2006). The ionic conductivities fall within ranges 
which are highlighted by the shaded areas. (Middle)  A simple atomistic model of SOFC that 
consists of three basic components: anode, cathode and electrolyte. (Bottom)  The basic 
properties of solid electrolyte of SOFC can be simulated using standard atomistic modeling.  
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al., 2010). In short, the overall electrochemical cell reaction is built upon the chemical 
potential difference between the cathode and anode sides, which is given by the Nernst 
equation in the simplest approach.  

To maximize this superionic conductivity in a SOFC, alloying zirconia (ZrO2) with various 
metal oxides (e.g. Y2O3, Sc2O3, La2O3, MgO, CaO, etc) is a plausible approach (Lashtabeg et 
al., 2006). In certain regimes, alloying can stabilize the highly symmetric cubic-fluorite phase 
of zirconia, which consequently facilitates the ionic conductivity through the introduction of 
oxygen vacancies as the host Zr4+ cations are replaced by dopant aliovalent cations. Above 
all, yttria-stabilized zirconia, YSZ (i.e. the Zr1−xYxO2−x/2 system, with x/2 being the Y2O3 
dopant concentration), is the most common choice for the electrolyte (Fig. 1 Top), due to its 
good oxide ion conductivity over a wide range of oxygen partial pressures, its stability 
under oxidizing and reducing conditions, and its good high-temperature mechanical 
properties (Ralph et al., 2001). This versatility ultimately arises from atomic defects (i.e. 
oxide ion vacancies) in the cubic zirconia crystalline lattices. The vacancies, through the 
coupled interactions among the vacancies and ions in these different alloys can dramatically 
affect the structural, thermal, mechanical and electrical properties of the system. 
Furthermore, the optimum ionic conductivity of each alloy varies with synthesis route and 
sintering conditions due to the resultant diverse local morphologies and microstructures 
(Badwal et al., 1992; Butz et al., 2006; Chen et al., 2002; Fukui et al., 2004; Ioffe et al., 1978; 
Korte et al., 2008; Zhang et al., 2007; Zhu et al., 2005). Thus a variety of different 
morphologies and microstructures of YSZ can be found in experiments (Badwal et al., 1992; 
Butz et al., 2006; Chen et al., 2002; Cheng et al., 2011; Etsell et al., 1970; Fukui et al., 2004; 
Ioffe et al., 1978; Korte et al., 2008; Lashtabeg et al., 2006; Zhang et a., 2007; Zhu et al., 2005). 
Non-cubic crystalline phases, grain boundaries, and disordered lattices of amorphous 
features can commonly be found. To understand how the local microstructures and system 
morphologies affect the ionic conductivity and degradation of the electrolyte (YSZ) upon 
SOFC operation, theoretical simulation can provide detailed in situ atomistic information 
that is difficult to obtain experimentally.  

To increase the basic understanding of the scientific phenomena that underlie current 
experimental findings, which could most dramatically affect engineering design, atomistic 
modeling based on quantum mechanics (e.g. first-principles or ab initio methods), molecular 
dynamics and Monte Carlo simulation (Fig. 2) are particularly useful. They provide relevant 
predictions of crystal structure, energetics, and vibrational frequencies through detailed 
atomistic descriptions that complement the standard analytical continuum model of ion 
diffusion at the macroscopic scale (Andersson et al., 2010; Cheng et al., 2011). Furthermore, 
various fundamental physical processes and chemical reactions can be described via 
quantum mechanics. The most accurate quantum mechanical atomistic descriptions, first-
principles or ab initio methods, however are limited to small system size (less than  about 
1000 atoms) and short times (less than  a few nanoseconds). For long-time-scales and larger 
length scales in atomistic modeling, recent sophisticated studies use kinetic Monte Carlo 
(KMC) (Gatewood et al., 2011; Lau et al., 2008, 2009; Pornprasertsuk et al., 2007; Turner et al., 
2010; Wang et al., 2010, 2011) simulations. KMC can treat the longest time scales for 
chemical reactions, because reactants are not followed to products in time. Instead, chemical 
reactions are stochastically chosen to occur at the assigned rates. This is important for SOFC 
modeling, because charge-separating electrochemical reactions tend to have slower  
rates. KMC has modeled the ionic transport in a SOFC under various operating conditions  
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Fig. 2. Computational methods at different length and time scales to model a SOFC material 
adopted from Cheng et.al. 2011. (Adapted figure reproduced from Cheng et.al. 2011. 
Copyright 2011 RSC Publishing.) 

(Gatewood et al., 2011; Lau et al., 2008, 2009; Pornprasertsuk et al., 2007; Turner et al., 2010; 
Wang et al., 2010, 2011). Specifically, KMC can probe SOFC performance by simultaneously 
capturing various reaction pathways of electrochemical and physicochemical reactions in 
the electrolyte and at the three-phase boundary (TPB), i.e. the interface where the gas 
reactants, electrolyte, and electrode meet. The electrical current through the YSZ is 
simulated in direct current (dc) and alternating current (ac), as electrochemical impedance 
spectra under various operating conditions using a minimal set of uniform chemical 
reaction rates on an assumed cubic YSZ lattice via KMC (Gatewood et al., 2011; Lau et al., 
2008, 2009; Pornprasertsuk et al., 2007; Turner et al., 2010; Wang et al., 2010, 2011). Despite 
the robustness of KMC simulation, this approach is based on a rigid lattice gas model and 
can not predict the experimentally observed ionic conductivity maximum as a function of 
Y2O3 dopant concentration (Hull, 2009). Beyond the kinetics driven atomic motion as 
implemented in minimal KMC models, the complex dynamics of real lattices and the real-
time multi-particle ion-vacancy interactions at a finite temperature can be computed ‘on-the-
fly’ in simulation. However simple or complex, the ionic conductivity of any atomistic 
model of solid YSZ is, the conductivity can accurately be derived from standard equilibrium 
classical MD simulation (Frenkel & Smit, 1996). Thus to explore and understand the nature 
of unique ionic conductivity in the solid electrolytes of SOFC’s, YSZ solids have been 
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intensively studied using classical MD simulations (Devanathan et al., 2006; Fisher et al., 
1998, 1999; Khan et al., 1998; Kilo et al., 2003; Lau et al., 2011; Li et al., 1995; Okazaki et al., 
1994; Sawaguchi et al., 2000; Schelling et al., 2001; Shimojo et al., 1992; van Duin et al., 2008; 
Yamamura et al., 1999) in the past few years.  

1.2 Basic justification of classical MD  

In crystalline solids, ionic conductivity is fundamentally different from electronic 
conductivity. Electronic conduction in a metal, for example, occurs on a three-dimensional 
array of ion cores whose excess valence electrons have dissociated to form a continuous “sea 
of free electrons” partially filling the electronic bands around the Fermi-level. Because the 
electron has a small mass, its de Broglie wavelength is large and therefore quantum 
mechanical effects force the electrons into those bands. As ions are much heavier than 
electrons, their motion is far less governed by quantum mechanics. Below the typical atomic 
vibrational frequencies (< 100 GHz), ionic motion is best described by thermally activated 
hopping between (usually) charge-compensating sites (Dyre et al., 2009).  

The dynamics of mobile ions in a disordered inorganic ionic conductor (e.g. amorphous 
YSZ) is clearly a complex multi-particle problem. Unlike a perfect crystal, the potential-
energy landscape experienced by an ion in a disordered solid is irregular and contains a 
distribution of depths and barrier heights. The ions’ interaction with the dynamic atomic 
lattice network is fundamental: first, because the lattice supplies a persistent disordered 
potential energy landscape for the mobile anions and second, because the local fluctuations 
of the lattice atoms promote anionic jumps. Additional multi-particle behavior stems from 
the interaction among the mobile ions and vacancies. All these distinct coupled interactions 
contribute to the complete theoretical description of ionic conductivity in amorphous solids 
(Dyre et al., 2009; Lammert et al., 2010). A complete analytical microscopic theory is not 
available by now and, due to the complexity of the problem, would be extremely difficult to 
formulate without some basic understanding at the atomistic level. The direct approach to 
ionic conduction in the YSZ electrolyte of the SOFC is via molecular dynamics (MD) 
simulations. From the time-evolved atomic trajectories detailed microscopic information 
about the underlying mechanisms is available. Understanding them would make theoretical 
prediction possible.  

2. The model of classical MD for YSZ 
2.1 Interatomic potentials 

It is possible to model a few thousands to millions of particles in classical MD using 
phenomenological interatomic and intermolecular potentials. They are obtained by using 
the phenomenological approach of selecting a parameterized mathematical form for the 
interaction between atoms, and fitting its unknown parameters to various experimental or 
higher-level theoretical (e.g. ab initio quantum mechanics simulation) properties. In general, 
the flexibility, accuracy, transferability, and computational efficiency of the interatomic 
potentials each have to be carefully considered (Frenkel & Smit, 1996). 

For the YSZ electrolyte in a SOFC, the simplest, relevant interatomic potentials are those 
commonly used to describe rigid ionic compounds (Lewis et al., 1985). Under the rigid ion 
model, the potential energy is a simple function of the distance between the ions. It consists 
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of a Coulomb term to describe the long-range electrostatic interactions between the ions of 
YSZ (i.e. Zr4+, Y3+, and O2−), and a Born–Meyer–Buckingham (BMB) potential to describe the 
short-ranged interactions between the ions. The potential energy between ions i and j 
separated by a distance ri j with ionic charges Qi and Qj is then given by: 

 Ei j = Qi Qj/rij + Aij exp(−rij/ρij)−(Ci j/r6ij) (1) 

The exponential term of the short-ranged BMB potential takes account of Pauli repulsion, 
whereas the r-6 term takes account of the attractive dispersion or van der Waals interaction. 
To calculate the long-range Coulomb interactions between the ions in the 3D periodically 
repeated simulation cell, Ewald summations must be used. To maximize the accuracy of 
these interatomic potentials and have more reliable energy landscape features, these 
parameters are usually fitted empirically to more accurate ab initio quantum mechanical 
calculations, i.e. density functional theory (DFT) or quantum chemistry methods, and 
relevant experimental findings on some known physical properties (Gale et al., 2003).  

Of the several sets of interatomic potential parameters available in the literature (Bush et al., 
1994; Dwivedi et al., 1990; Lewis et al., 1985; Minervini et al., 2000; Schelling et al., 2001; 
Zacate et al., 2000), the parameters proposed by Lewis et al (Lewis et al., 1985) and Minervini 
et al (Minervini et al., 2000; Zacate et al., 2000)  were chosen for the initial guess potential 
functions in the fitting of interatomic potentials for ZrO2 and Y2O3 crystals. To better capture 
the correct dielectric constants and lattice vibrational frequencies as described in the system 
(Gale et al., 2003; Lindan et al., 1993), the effects of environment-dependent electronic 
polarizability of the ions (Lau et al., 2009) can be included in the fiting of the interationic 
potential through the shell model (Gale et al., 2003; Lau, 2011; Lindan et al., 1993). In the 
core-shell model, the ionic core and shell are coupled through harmonic spring force 
constants, k (Gale et al., 2003; Lau et al., 2011) which take into account interactions of 
different types: between ions, between ions and outer shell electrons, and between outer 
electrons. Such an approach allows one to take into account the electronic polarizability of 
ions that is caused by the forces acting between the ion cores and shells. However to probe 
the basic structural properties and ionic motion at high temperatures at a reasonable cost of 
computation, the electronic polarizability within the core-shell model mentioned can be 
ignored (i.e. all the core–shell spring constants kZr, kY and kO mentioned are set to zero). This 
is appropriate in MD simulations in which no electric field is applied, as in the case of 
superionic conduction at high temperature in SOFC. The explicit effect of the core-shell 
model was found to be small (Lindan et al., 1993), and therefore the approximate description 
of rigid ions (Eq. 1) without core–shell interaction in molecular dynamics should be 
sufficient. 

Stabilized YSZ in its cubic fluorite structure has cations occupying an fcc lattice and oxygen 
anions occupying its tetrahedral interstices. A finely tuned ZrO2 and Y2O3 interatomic 
potential that describes the entire Zr1−xYxO2−x/2 system, with x/2 being the Y2O3 dopant 
concentration of YSZ has to be established. According to the reported literature (Bush et al., 
1994; Devanathan et al., 2006; Dwivedi et al., 1990; Fisher et al., 1998, 1999; Khan et al., 1998; 
Kilo et al., 2003; Lau et al., 2011; Lewis et al., 1985; Li et al., 1995; Minervini et al., 2000; 
Okazaki et al., 1994; Sawaguchi et al., 2000; Schelling et al., 2001; Shimojo et al., 1992; ; van 
Duin et al., 2008; Yamamura et al., 1999; Zacate et al., 2000), the typical “semi-empirically” 
fitted properties of ZrO2 and Y2O3 crystals that are chosen for the fitting dataset can be the 
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lattice parameters, lattice elastic properties, dielectric constants, defect formation energies 
(e.g. vacancies and interstitials), and phonon frequencies of cubic (c-ZrO2, space group 
Fm3m), tetragonal (t-ZrO2, space group P42/nmc) (Ackermann et al., 1975; Aldebert et al., 
1985; Boysen et al., 1991; Dash et al., 2004; Howard et al., 1988; Smith et al., 1965; Zhao et al., 
2002;), monoclinic (m-ZrO2, space group P21/c ), and yttria (Baller et al., 2000; Lau et al., 
2009) (Y2O3, space group Ia3).  

Compared to determining the geometry and energetics of the competing phases of ZrO2 
polymorphs, searching for ground state atomic arrangements across a composition range of 
ZrO2–Y2O3 is definitely more complicated. The YSZ solid inherits the complexity of the 
competing phases of ZrO2 and adds the possiblility that any Zr atom can be replaced by a Y 
atom and half of a vacancy. The structures and lattices are not merely determined by 
different composition at different ambient condition, but also dictated by intrinsic long- and 
short-range order in the system (Bogicevic et al., 2001). Fortunately, under normal 
conditions, the cubic fluorite scaffold is found to be stable for yttria (Y2O3) content in the 
range of 8 – 40 mol% (Bogicevic et al., 2001; Ostanin et al., 2002, 2003; Predith et al., 2008). 
For the SOFC application, the ionic conductivity (and oxygen self-diffusivity) of YSZ does 
not increase monotonically with increasing vacancy concentration; rather, it exhibits a 
maximum between 8 and 15 mol% Y2O3. These unique characteristics must also determine 
the basic parameter “tune-up” of the interatomic potential for the MD simulation of YSZ. To 
ensure neutrality of the simulation cell and that it obeys chemical stoichiometry, the cations 
and anions of YSZ are typically chosen to be Zr4+, Y3+ and O2− ions.  

To simplify the simulation further, the interaction of Zr4+–Y3+ in YSZ is assumed to be 
governed by the Coulomb interaction of the two ionic charges. This assumption is based on 
the fact that at the low Y2O3 dopant concentrations of this study, a very strong first-neighbor 
interaction between Zr4+ and Y3+ in the lattice is very unlikely compared to the first-
neighbor interactions between oxygen anions and vacancies (Pietrucci et al., 2008; Schelling 
et al., 2001; Stapper et al., 1999). This approach has been widely adopted in previous studies 
literature (Bush et al., 1994; Devanathan et al., 2006; Dwivedi et al., 1990; Fisher et al., 1998, 
1999; Khan et al., 1998; Kilo et al., 2003; Lau et al., 2011; Lewis et al., 1985; Li et al., 1995; 
Minervini et al., 2000; Okazaki et al., 1994; Sawaguchi et al., 2000; Schelling et al., 2001; 
Shimojo et al., 1992; ; van Duin et al., 2008; Yamamura et al., 1999; Zacate et al., 2000) In this 
dilute Y2O3 concentration limit of YSZ, the local environments of oxygen atoms in cubic YSZ 
crystals are assumed to be more like that in ZrO2 than in Y2O3, therefore the O–O potential 
adopted throughout the simulation can be approximated to be identical to the O–O potential 
of ZrO2 (Lau et al., 2011). As one of the “semi-empirical fitted” BMB potentials that can be 
found in the literatures, the relevant interatomic potentials (Lau et al., 2011) is shown in 
Table 1. Besides describing the cubic ZrO2 phase (i.e. c-ZrO2) well, these potentials can also 
describe the tetragonal phase of ZrO2 (i.e. t-ZrO2) and the Y2O3 crystalline phase well, as 
pointed out in a recent paper (Lau et al., 2011).  

2.2 Atomistic models for YSZ solids  

For SOFC, the challenges that delay the full commercialization include materials 
degradation, materials selection, materials function, and coupled interactions with other cell 
components. For the ion-conducting electrolyte like YSZ, the main problems can be 
attributed to the need for chemical, mechanical, and thermodynamic stability over a wide 
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of a Coulomb term to describe the long-range electrostatic interactions between the ions of 
YSZ (i.e. Zr4+, Y3+, and O2−), and a Born–Meyer–Buckingham (BMB) potential to describe the 
short-ranged interactions between the ions. The potential energy between ions i and j 
separated by a distance ri j with ionic charges Qi and Qj is then given by: 

 Ei j = Qi Qj/rij + Aij exp(−rij/ρij)−(Ci j/r6ij) (1) 

The exponential term of the short-ranged BMB potential takes account of Pauli repulsion, 
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lattice parameters, lattice elastic properties, dielectric constants, defect formation energies 
(e.g. vacancies and interstitials), and phonon frequencies of cubic (c-ZrO2, space group 
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1985; Boysen et al., 1991; Dash et al., 2004; Howard et al., 1988; Smith et al., 1965; Zhao et al., 
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ensure neutrality of the simulation cell and that it obeys chemical stoichiometry, the cations 
and anions of YSZ are typically chosen to be Zr4+, Y3+ and O2− ions.  

To simplify the simulation further, the interaction of Zr4+–Y3+ in YSZ is assumed to be 
governed by the Coulomb interaction of the two ionic charges. This assumption is based on 
the fact that at the low Y2O3 dopant concentrations of this study, a very strong first-neighbor 
interaction between Zr4+ and Y3+ in the lattice is very unlikely compared to the first-
neighbor interactions between oxygen anions and vacancies (Pietrucci et al., 2008; Schelling 
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dilute Y2O3 concentration limit of YSZ, the local environments of oxygen atoms in cubic YSZ 
crystals are assumed to be more like that in ZrO2 than in Y2O3, therefore the O–O potential 
adopted throughout the simulation can be approximated to be identical to the O–O potential 
of ZrO2 (Lau et al., 2011). As one of the “semi-empirical fitted” BMB potentials that can be 
found in the literatures, the relevant interatomic potentials (Lau et al., 2011) is shown in 
Table 1. Besides describing the cubic ZrO2 phase (i.e. c-ZrO2) well, these potentials can also 
describe the tetragonal phase of ZrO2 (i.e. t-ZrO2) and the Y2O3 crystalline phase well, as 
pointed out in a recent paper (Lau et al., 2011).  

2.2 Atomistic models for YSZ solids  

For SOFC, the challenges that delay the full commercialization include materials 
degradation, materials selection, materials function, and coupled interactions with other cell 
components. For the ion-conducting electrolyte like YSZ, the main problems can be 
attributed to the need for chemical, mechanical, and thermodynamic stability over a wide 
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range of operating conditions. In addition, the optimum ionic conductivity of the electrolyte 
varies with different synthesis routes and sintering conditions due to the resultant diverse 
local morphologies, grain boundaries, and microstructures. To facilitate the engineering 
design, determine materials functionality, and extend experimental findings, classical MD 
simulation has a unique role within the multi-scale atomistic modeling to provide the 
relevant predictions that complement standard continuum modeling. One example is its 
ability to generate a large-scale atomistic structure exhibiting different morphologies and 
microstructures precisely with reasonable computation cost. 
 

Interaction Ai j (eV) ρi j (Å) Ci j (eV Å6) 
Zr4+–O2− 1.29285x103 3.58388x10−1 1.93646x101 
Y3+–O2− 1.642724x103 3.53197x10−1 1.04180x102 
O2−–O2− 1.30989x104 2.19670x10−1 4.92998x101 
System Property This Work DFT 
Ω-YSZ a (Å) 6.26 6.40 

 b (Å) 6.30 6.20 
 c (Å) 6.29 6.30 
 α (deg) 100.71 99.96 
 β (deg) 100.13 100.75 
 γ (deg) 99.69 98.57 
 ωmin (cm-1) 101 114 
 ωmax (cm-1) 696 719 

Δ-YSZ a (Å) 6.23 6.37 
 b (Å) 6.29 6.28 
 c (Å) 6.37 6.48 
 α (deg) 81.23 81.53 
 β (deg) 99.49 99.59 
 γ (deg) 80.59 79.98 
 ωmin (cm-1) 146 115 
 ωmax (cm-1) 678 707 

Table 1. Short-range interatomic BMB potential for the YSZ solids and their predicted 
properties compared to ab initio DFT planewave calculations within the Local Density 
Approximation (LDA) (Lau et al., 2009). Here, the Ω-YSZ (i.e. Zr5Y2O13 solid) consists of 17 
mol% yttria, whereas the Δ-YSZ (i.e. Zr3Y4O12) consists of 40 mol% yttria. The ωmin and ωmax 
refer to the lowest and highest vibration frequency of phonons for the corresponding YSZ 
system.  

Within the rigid-ion approximation validated in Table 1, various types of YSZ solids that 
arise from different experimental synthesis routes and sintering conditions can be modeled 
using the appropriate spatial boundary conditions under realistic thermodynamic 
conditions (Sect. 2.1). Those include the perfect crystal, amorphous structures, grain 
boundaries, thin-film surfaces, and nanocrystals of Fig. 3. For the YSZ systems shown in that 
figure, the number of Zr4+, Y3+, and O2− ions depends on the chosen Y2O3 dopant 
concentration. Initially, the cubic fluorite lattice of ZrO2 was constructed, and yttrium  
Y3+ ions were generated by random replacements of zirconium Zr4+ ions according  
to the predefined chemical composition. To keep stoichiometry and the neutrality of the  
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Fig. 3. Various morphologies of YSZ solids (i.e. Zr4+ is blue, Y3+ is yellow and O2- is red ion) 
that can be modeled using classical MD simulation (a) crystal, (b) amorphous structure, (c) 
grain boundary, (d) crystalline thin film structure, and (e) the finite nanocrystalline 
structure. 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

348 

range of operating conditions. In addition, the optimum ionic conductivity of the electrolyte 
varies with different synthesis routes and sintering conditions due to the resultant diverse 
local morphologies, grain boundaries, and microstructures. To facilitate the engineering 
design, determine materials functionality, and extend experimental findings, classical MD 
simulation has a unique role within the multi-scale atomistic modeling to provide the 
relevant predictions that complement standard continuum modeling. One example is its 
ability to generate a large-scale atomistic structure exhibiting different morphologies and 
microstructures precisely with reasonable computation cost. 
 

Interaction Ai j (eV) ρi j (Å) Ci j (eV Å6) 
Zr4+–O2− 1.29285x103 3.58388x10−1 1.93646x101 
Y3+–O2− 1.642724x103 3.53197x10−1 1.04180x102 
O2−–O2− 1.30989x104 2.19670x10−1 4.92998x101 
System Property This Work DFT 
Ω-YSZ a (Å) 6.26 6.40 

 b (Å) 6.30 6.20 
 c (Å) 6.29 6.30 
 α (deg) 100.71 99.96 
 β (deg) 100.13 100.75 
 γ (deg) 99.69 98.57 
 ωmin (cm-1) 101 114 
 ωmax (cm-1) 696 719 

Δ-YSZ a (Å) 6.23 6.37 
 b (Å) 6.29 6.28 
 c (Å) 6.37 6.48 
 α (deg) 81.23 81.53 
 β (deg) 99.49 99.59 
 γ (deg) 80.59 79.98 
 ωmin (cm-1) 146 115 
 ωmax (cm-1) 678 707 

Table 1. Short-range interatomic BMB potential for the YSZ solids and their predicted 
properties compared to ab initio DFT planewave calculations within the Local Density 
Approximation (LDA) (Lau et al., 2009). Here, the Ω-YSZ (i.e. Zr5Y2O13 solid) consists of 17 
mol% yttria, whereas the Δ-YSZ (i.e. Zr3Y4O12) consists of 40 mol% yttria. The ωmin and ωmax 
refer to the lowest and highest vibration frequency of phonons for the corresponding YSZ 
system.  

Within the rigid-ion approximation validated in Table 1, various types of YSZ solids that 
arise from different experimental synthesis routes and sintering conditions can be modeled 
using the appropriate spatial boundary conditions under realistic thermodynamic 
conditions (Sect. 2.1). Those include the perfect crystal, amorphous structures, grain 
boundaries, thin-film surfaces, and nanocrystals of Fig. 3. For the YSZ systems shown in that 
figure, the number of Zr4+, Y3+, and O2− ions depends on the chosen Y2O3 dopant 
concentration. Initially, the cubic fluorite lattice of ZrO2 was constructed, and yttrium  
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simulation box, an O2− ion was removed from randomly selected anion sites for every two 
Y3+ dopant ions in the system. An amorphous structure, which is different from crystalline 
YSZ, was generated via standard structural relaxation, the “amorphization and 
recrystallization (A&R) strategy” proposed by Sayle et al. (Sayle et al., 1999, 2002, 2005). By 
adopting the standard MD techniques that are implemented in the standard classical MD 
codes e.g. LAMMPS and DL_POLY, a thermal well-equilibrated amorphous solid of YSZ as 
shown in Fig. 3b can be obtained (Lau et al., 2011). 

3. Static and dynamic properties of YSZ bulk solids 
In this section, we present a brief discussion of the principal static and dynamic properties 
of the YSZ bulk solids that primarily focuses on the unique characteristics of YSZ in 
crystalline (Fig. 3a) and disordered bulk lattices (Fig. 3b). In particular, the accuracy of the 
simple atomic potential (Table 1) will be validated, and the implications of these MD 
predictions will be discussed. For abbreviation, all YSZ crystals will be termed n-YSZc, 
where n gives the mol% doping (e.g. 8-YSZc is a crystal with 8.0 mol% Y2O3 dopant). The 
corresponding amorphous YSZ structures will be termed n-YSZa. Both the crystal and 
amorphous structures referred to together will be termed n-YSZ systems 

3.1 Static properties 

3.1.1 Lattices 

In contrast to the disordered lattice of the amorphous structure, the YSZ crystals that are 
typically found in the cubic fluorite structure can be fully characterized by a single lattice 
constant, a. From Fig. 4, the computed lattice parameters of cubic YSZ as a function of 
doping and temperature are generally consistent with experimental observation (Hayashi et 
al., 2005; Pascual et al., 1983). This further validates the interatomic potentials we employed 
in Table 1. Because of the larger size of the dopant Y3+ cation, which yields larger Y-O bond 
distances in the lattice, the cell volume of YSZ crystals generally increase with increased 
doping with Y2O3. However at low temperature, this trend is not uniform. From Fig. 4, the 
lattice constant a of 3-YSZc is ~ 5.125 Å, is larger than 8-YSZc (a ~ 5.121 Å), but less than 12-
YSZc (a ~ 5.128 Å). These discrepancies might be a signature of mixing the low-temperature 
tetragonal ZrO2 ground state and high-temperature cubic structures for the 3-YSZc (or any 
other low mol% of Y2O3 YSZ crystals in the dilute regime) at low temperature or of the 
limitation of the current fitted atomic potential used (Table 1), which is unable to capture 
accurately the phase stability of all YSZ polymorphism at low mol% of Y2O3 dopant in the 
low-temperature regime.  

Within the linear response regime, the thermal expansion of a cubic crystal lattice can be 
described as a(T ) = a(300)[1 + α(T − 300)], where a(300) is the lattice constant for YSZ solid 
at 300 K and α is the linear thermal expansion coefficient of the system. From a linear fit of 
MD results, the coefficients of linear thermal expansion are found to lie in the range ~ 6.0–
7.0x10-6 K-1 (Lau, 2011), close to the reported experimental (Hayashi et al., 2005; Ingel et al., 
1986; Pascual et al., 1983) values of ~9.6–10.8x10-6 K-1 and other theoretical values 
(Devanathan et al., 2006) of 6.8–8.0x10-6 K-1 for other Y2O3 doping. For the amorphous YSZ, 
the low symmetry yields the irregularity in local structure that gives distinct lattice 
properties (i.e. a, b and c). Under the homogeneous quenching via Hoover barostats and  
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Fig. 4. (Top) Lattice constant (in Å) of YSZ crystals with various Y2O3 mol% dopant 
concentrations as a function of temperature (Lau et al., 2011) , compared with reported 
experimental values  (Hayashi et al., 2005; Pascual et al., 1983) (in triangles) at 300 K. 
(Bottom) Relative volume expansion (in %) referenced to 300 K of 3-YSZc (green dots), 8-
YSZc (yellow dashes), 12-YSZc (red lines) systems and corresponding amorphous solids 
(lines with points) over the temperature range 300–1000 K.  
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thermostats (NPT) for further solidification and recrystallization, the MD simulation will 
generally yield a cubic structure (Lau et al., 2011). In the case of 8.0% Y2O3 doping in 
amorphous YSZ (i.e. 8-YSZa), the temperature dependence of the 8-YSZa lattice can be fitted 
to the expression  a(T)=a(300)[1+αa(T−300)], and c(T)=c(300)[1+αc(T−300)], with αa and αc 
corresponding to linear thermal expansion coefficients along the a and c lattice directions. 
The αa and αc are found to be nearly identical for each n-YSZa system. Overall, the α for the 3-
YSZa, 8-YSZa and 12-YSZa solids are found to be ~1.5–2.2×10-6 K-1, which are significantly 
smaller than for the corresponding YSZ crystals (Lau et al., 2011). The amorphous YSZ 
solids generally have a much smaller volume expansion over the temperature range shown 
in Fig. 4, which might be attributed to extra flexibility in spatial rearrangements for the ions 
in disordered solids.  

3.1.2 Structural features    

i. Crystallographic direction views 

Besides the different thermal responses of the lattices, a more illuminating way of exhibiting 
the qualitative differences between the YSZ crystals and amorphous YSZ solids can be 
shown by the structural features determined by the ion distribution within the lattices of 
these solids.  

Bulk YSZ is a solid solution on a cubic fluorite lattice with yttrium and zirconium 
distributed on a face-centered cubic cation lattice and oxygen and vacancies distributed on a 
simple-cubic anion lattice. Its fully dense solid features are revealed at the top of Fig. 5. To 
differentiate a dense crystalline lattice with a disordered solid lattice, the Miller index that 
defines a crystallographic direction for the planes and directions in the crystal lattice can be 
very useful. By randomly distributing the Y3+ within a cubic Zr(1−x)YxO(2−x/2) phase, the 
distribution of the Y3+ ions in both the YSZ crystals (e.g. 8-YSZc) and the amorphous solids 
(e.g. 8-YSZa) are found to be nearly isotropic as shown in Fig. 5. For 8-YSZc in its cubic 
fluorite structure, the ionic distributions in all three cubic (001), (010), and (001) directions 
are found to be equivalent in all cases. These directions for the amorphous cases correspond 
to those directions in the original crystal that was made amorphous by heating in vacuum 
and then repeatedly heating and cooling under hydrostatic pressure.  In contrast to the YSZ 
amorphous systems, the YSZ crystals (e.g. 8-YSZc in Fig. 5) exhibit comparatively clear Zr4+ 
(cation), O2− (anion) crystalline planes in both directions shown in Fig. 5 for the crystal 
lattice. The dopant (Y3+) ions have a similar distribution to that of the Zr4+ ions that they 
replace in the crystal of YSZ (Fig. 5). For both systems (i.e. the crystal and amorphous 
structure), the ratio of Zr4+/O2−~ 1/2 can be found in all crystallographic planes, analogous 
to the ZrO2 stoichiometry which acts as a host lattice. In addition, these similar features are 
also found in the YSZ systems with other Y2O3 concentrations (i.e. ~ 3.0 - 12.0 mol%) and for 
elevated temperatures, as long as there is no grain boundary in the crystal. 

ii. Radial distribution function 

We analyze the bonding features of the simulated n-YSZc and n-YSZa systems. Even for 
ions in a disordered-network of an amorphous solid with no long range order, the short 
range order, however, can be obtained from the distribution of coordination number, bond 
length, and bond angles. Interpreting the static equilibrium structural features of these YSZ 
systems in another way, we calculated the radial distribution function (RDF), g(r) of the 
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constituent ions, which describes the average spatial organization of cations and anions in 
the lattice. A Fourier transform of the radial distribution function results in the structure 
factor S(q), which is experimentally measurable from X-ray or neutron scattering. Therefore, 
it is an important result from the predicted static structure of a material. Based on the 
prominent peaks within the short-range order (i.e. < 6 Å), the average local connectivity of 
the Zr4+, Y3+ and O2- ions in the system can be determined. From the RDF, the successive 
peaks correspond to the nearest-, the second- and the next-neighboring atomic distributions 
inside a YSZ system. The distinct RDFs of the YSZ crystal and YSZ amorphous solid (Fig. 6) 
are due to their unique local ion distributions and system densities. 

 
Fig. 5. The 8-YSZc crystal (top) and the 8-YSZa amorphous structure (bottom). Arrows show 
the projection vectors in the (001) and (111) directions of these simulation cells. The right 
two columns of figures give the distribution of the three ions binned by atomic planes, every 
two angstroms, along these two crystallographic directions (Lau et al., 2011). 

For 8-YSZc at ~ 300 K, the average nearest-neighbor Zr-O, Y-O, O-O, and Zr-Y bond 
distances are ~ 2.08, 2.33, 2.58, and 3.58 Å, respectively (Fig. 6a). These features generally are  
very similar to the RDF features of 14-YSZc computed using the more sophisticated ReaxFF 
Reactive Force Field method (van Duin et al., 2008) (Fig. 6b). For the prediction of the Zr-O 
distance in YSZ crystals, both interatomic potentials yield excellent agreement with EXAFS 
(i.e. 2.13 Å) and neutron diffraction (i.e. 2.08 Å) for the 15-YSZ crystal (van Duin et al., 2008). 
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thermostats (NPT) for further solidification and recrystallization, the MD simulation will 
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constituent ions, which describes the average spatial organization of cations and anions in 
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it is an important result from the predicted static structure of a material. Based on the 
prominent peaks within the short-range order (i.e. < 6 Å), the average local connectivity of 
the Zr4+, Y3+ and O2- ions in the system can be determined. From the RDF, the successive 
peaks correspond to the nearest-, the second- and the next-neighboring atomic distributions 
inside a YSZ system. The distinct RDFs of the YSZ crystal and YSZ amorphous solid (Fig. 6) 
are due to their unique local ion distributions and system densities. 

 
Fig. 5. The 8-YSZc crystal (top) and the 8-YSZa amorphous structure (bottom). Arrows show 
the projection vectors in the (001) and (111) directions of these simulation cells. The right 
two columns of figures give the distribution of the three ions binned by atomic planes, every 
two angstroms, along these two crystallographic directions (Lau et al., 2011). 

For 8-YSZc at ~ 300 K, the average nearest-neighbor Zr-O, Y-O, O-O, and Zr-Y bond 
distances are ~ 2.08, 2.33, 2.58, and 3.58 Å, respectively (Fig. 6a). These features generally are  
very similar to the RDF features of 14-YSZc computed using the more sophisticated ReaxFF 
Reactive Force Field method (van Duin et al., 2008) (Fig. 6b). For the prediction of the Zr-O 
distance in YSZ crystals, both interatomic potentials yield excellent agreement with EXAFS 
(i.e. 2.13 Å) and neutron diffraction (i.e. 2.08 Å) for the 15-YSZ crystal (van Duin et al., 2008). 
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Fig. 6. (a) The RDF of 8-YSZc at 300 K based on the Buckingham (BMB) potential as defined 
in Eq. 1 using parameters from Table 1. (b) The RDF of 14-YSZc at 1000 K based on the 
ReaxFF Reactive Force Field adopted from van Duin et al. (van Duin et al., 2008). (c) The 
RDF of 8-YSZa at 300 K based on the BMB potential from Table 1.  

Integrating the Zr-O RDF up to the first minimum ~ 3.27 Å past the peak at 2.08 Å, gives  
an average coordination number NZr = 7.6, in between that of Nzr = 7 for the monoclinic 
ZrO2, and NZr = 8 for the tetragonal ZrO2 phase. From ReaxFF computed 14-YSZc, the RDF 
for the Y-O indicates an average Y-O distance to be ~ 2.32 Å (Fig. 6b), which is close to Y-O 
distance of 8-YSZc (i.e. ~ 2.33 Å) computed based on the BMB potential and experimental 
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EXAFS data, 2.32 Å (Ishizawa et al., 1999). Integrating the Y-O RDF to its first minimum 
(~3.22 Å), gives coordination number NY = 6.6, slightly larger than the NY = 6 of the cubic 
Y2O3 crystal.  

For the O-O pair distribution, its more diffusive behavior compared the heavier cations 
yields a broader pair distribution over the range of O-O distances of g(r) that is plotted (Fig. 
6a). With its O-O average distance found to be ~ 2.58 Å at T = 300 K, the average oxygen 
atom has NO = 6.24 (integrating up to the first O-O minimum at 2.98 Å), which is almost the 
same as in both ZrO2 and Y2O3. As the temperature rises, all the ions tend to move on 
average farther away from their equilibrium positions which give the thermal volume 
expansion of the system. All the peaks of g(r) in the RDF are generally lowered relative to 
room temperature for all the ionic pairs in a system, as a result of thermal broadening and 
increased mobility. 

Similar observations are found in the ReaxFF-computed RDF of 14-YSZc (Fig. 6b). For the O-
O pair distributions in 14-YSZc at T =1000 and 2000 K, the average O-O bond distance is ~ 
2.67 Å at T = 1000 K, increasing to ~ 2.77 Å at T = 2000 K. Thus this suggested that for both 
the Buckingham potential and the ReaxFF Reactive Force Field, the description of static 
structural features is found to be equivalent for heavy ions (Zr4+ and Y3+) and mobile ions 
(O2−). As shown from Fig. 6a and Fig. 6b, for different Y2O3 compositions (from 3.0 to 14.0 
mol% Y2O3), their ion pair distributions generally remain similar, as the cubic crystal lattice 
features are preserved. However, higher concentration of the Y3+ dopant means more Zr4+ 
ions were substituted; hence, the heights of the Zr-Zr g(r ) peaks are reduced with increasing 
Y3+ concentration. Consistent with NO ~ 6.24 for both ZrO2 and Y2O3, the first peak height for 
the O-O g(r) profile is independent of dopant concentration, but higher Y3+ concentration 
requires more oxygen vacancies in the system, and therefore lowers the height of g(r) for 
more distant O-O pairs.  

For the YSZ amorphous solid, disordered structural features are reflected in its RDF. In 
general, the peaks of the RDF spectrum for all ion pairs at small interatomic separations are 
broadened relative to the crystal. This broadening increases with separation, and structure 
almost disappears at the largest separations plotted. This is a clear indication of disorder, 
which increases with distance. Instead of having several pronounced peaks which preserve 
long-range order in a perfect crystal, there is no significant structure beyond ~ 8.0 Å for the 
Zr-O, Y-O, Zr-Y, and O-O pair separations (Fig. 6c). The broad profile of these ion pairs 
indicates that these amorphous solids have no long-range order for ions separated beyond ~ 
8.0 Å. Based on the discrete peaks within the short-range order (i.e. < 8.0 Å), the local 
connectivity of these ions however can be examined. For these ion pairs, the average 
nearest-neighbor Zr-O, Y-O, O-O, and Zr-Y bond distances are found to be 1.98, 2.18, 2.78, 
and 3.53 Å, respectively, for the 8-YSZa solid. Despite having the same Y3+ composition as 8-
YSZc in Fig. 6a, the substantial increase in volume (i.e. 8.6% volume swelling) together with 
loss of long-range order cause the average coordination number of Zr, NZr to be ~ 5.9, 
substantially less than NZr = 7.6 for the crystal represented by 8-YSZc. Similarly for NY (i.e. 
by integrating the Y-O RDF to the minimum at ~3.03 Å), the NY is 5.6, less than both NY ~ 6.6 
in 8-YSZc and NY = 6 in the cubic Y2O3 crystal, which also might attributed to the slight 
expansion in the volume of amorphous YSZ. However, with increased temperature the 
peaks of g(r) for the amorphous state broaden as they do in the perfect crystal. 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

354 

 
Fig. 6. (a) The RDF of 8-YSZc at 300 K based on the Buckingham (BMB) potential as defined 
in Eq. 1 using parameters from Table 1. (b) The RDF of 14-YSZc at 1000 K based on the 
ReaxFF Reactive Force Field adopted from van Duin et al. (van Duin et al., 2008). (c) The 
RDF of 8-YSZa at 300 K based on the BMB potential from Table 1.  

Integrating the Zr-O RDF up to the first minimum ~ 3.27 Å past the peak at 2.08 Å, gives  
an average coordination number NZr = 7.6, in between that of Nzr = 7 for the monoclinic 
ZrO2, and NZr = 8 for the tetragonal ZrO2 phase. From ReaxFF computed 14-YSZc, the RDF 
for the Y-O indicates an average Y-O distance to be ~ 2.32 Å (Fig. 6b), which is close to Y-O 
distance of 8-YSZc (i.e. ~ 2.33 Å) computed based on the BMB potential and experimental 

 
The Roles of Classical Molecular Dynamics Simulation in Solid Oxide Fuel Cells 

 

355 

EXAFS data, 2.32 Å (Ishizawa et al., 1999). Integrating the Y-O RDF to its first minimum 
(~3.22 Å), gives coordination number NY = 6.6, slightly larger than the NY = 6 of the cubic 
Y2O3 crystal.  

For the O-O pair distribution, its more diffusive behavior compared the heavier cations 
yields a broader pair distribution over the range of O-O distances of g(r) that is plotted (Fig. 
6a). With its O-O average distance found to be ~ 2.58 Å at T = 300 K, the average oxygen 
atom has NO = 6.24 (integrating up to the first O-O minimum at 2.98 Å), which is almost the 
same as in both ZrO2 and Y2O3. As the temperature rises, all the ions tend to move on 
average farther away from their equilibrium positions which give the thermal volume 
expansion of the system. All the peaks of g(r) in the RDF are generally lowered relative to 
room temperature for all the ionic pairs in a system, as a result of thermal broadening and 
increased mobility. 

Similar observations are found in the ReaxFF-computed RDF of 14-YSZc (Fig. 6b). For the O-
O pair distributions in 14-YSZc at T =1000 and 2000 K, the average O-O bond distance is ~ 
2.67 Å at T = 1000 K, increasing to ~ 2.77 Å at T = 2000 K. Thus this suggested that for both 
the Buckingham potential and the ReaxFF Reactive Force Field, the description of static 
structural features is found to be equivalent for heavy ions (Zr4+ and Y3+) and mobile ions 
(O2−). As shown from Fig. 6a and Fig. 6b, for different Y2O3 compositions (from 3.0 to 14.0 
mol% Y2O3), their ion pair distributions generally remain similar, as the cubic crystal lattice 
features are preserved. However, higher concentration of the Y3+ dopant means more Zr4+ 
ions were substituted; hence, the heights of the Zr-Zr g(r ) peaks are reduced with increasing 
Y3+ concentration. Consistent with NO ~ 6.24 for both ZrO2 and Y2O3, the first peak height for 
the O-O g(r) profile is independent of dopant concentration, but higher Y3+ concentration 
requires more oxygen vacancies in the system, and therefore lowers the height of g(r) for 
more distant O-O pairs.  

For the YSZ amorphous solid, disordered structural features are reflected in its RDF. In 
general, the peaks of the RDF spectrum for all ion pairs at small interatomic separations are 
broadened relative to the crystal. This broadening increases with separation, and structure 
almost disappears at the largest separations plotted. This is a clear indication of disorder, 
which increases with distance. Instead of having several pronounced peaks which preserve 
long-range order in a perfect crystal, there is no significant structure beyond ~ 8.0 Å for the 
Zr-O, Y-O, Zr-Y, and O-O pair separations (Fig. 6c). The broad profile of these ion pairs 
indicates that these amorphous solids have no long-range order for ions separated beyond ~ 
8.0 Å. Based on the discrete peaks within the short-range order (i.e. < 8.0 Å), the local 
connectivity of these ions however can be examined. For these ion pairs, the average 
nearest-neighbor Zr-O, Y-O, O-O, and Zr-Y bond distances are found to be 1.98, 2.18, 2.78, 
and 3.53 Å, respectively, for the 8-YSZa solid. Despite having the same Y3+ composition as 8-
YSZc in Fig. 6a, the substantial increase in volume (i.e. 8.6% volume swelling) together with 
loss of long-range order cause the average coordination number of Zr, NZr to be ~ 5.9, 
substantially less than NZr = 7.6 for the crystal represented by 8-YSZc. Similarly for NY (i.e. 
by integrating the Y-O RDF to the minimum at ~3.03 Å), the NY is 5.6, less than both NY ~ 6.6 
in 8-YSZc and NY = 6 in the cubic Y2O3 crystal, which also might attributed to the slight 
expansion in the volume of amorphous YSZ. However, with increased temperature the 
peaks of g(r) for the amorphous state broaden as they do in the perfect crystal. 
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3.2 Dynamic properties 

From MD simulation, the time-dependent trajectories of the ions of a system within a time 
interval often provide a lot of useful information, e.g. ion diffusion patterns, ion hopping 
mechanisms, vibrational frequencies, transport properties (e.g. ionic and thermal), etc., that 
govern the diverse phenomena and the evolution of the dynamic properties of a system. For 
the YSZ, the most useful property is the ionic transport property that determines the 
electrical conductivity of an operating SOFC. The method to compute this property will be 
discussed in this section.   

3.2.1 Ion diffusion and ionic transport in YSZ solids 

i. Temperature-dependent self diffusion and ionic conductivity of O2- ions 

As we know, diffusion means “spreading”. This quantity can be either observable (physical) 
or abstract and probabilistic (stochastic) in nature. In the context of YSZ, diffusion refers  
to the basic dynamic properties of the collective motion of its different constituent ions  
in response to temperature, which are governed by the self-diffusion of the ions. In general, 
the self-diffusion of each type of ion is governed by thermally activated random walks in  
the local structure, which for oxygen ions are primarily determined by the surrounding 
occupied and vacant sites. At low frequencies, the existence of direct-current  
(dc) conductivity implies that the mean square displacement (MSD) of ions is linear, i.e. 
<r2(t)>dc ~ Dt (Sidebottom, 2009). Linear time-dependent behavior is just a reflection of 
random diffusion of the ions as they migrate from site to site stochastically, which is a 
hallmark of uncorrelated motion. To relate experimental observation and computed atomic 
trajectories, MSD is a key quantity of interest in quantifying the motion of ions, and it is 
defined as follows:   

 <r2i(t)> = ΣNi[ri(t)-ri(0)]2/N (2) 

Within the linear response regime (Dyre et al., 2009) for an isotropic medium such as a cubic 
lattice of YSZ, one can extract the diffusion constant Di for species i from the MSD using the 
Einstein relation, <r2i (t) > = 6Dit+C. Thus, the diffusion coefficients can be evaluated from 
the slope of the MSD curves versus elapsed time in a steady-state MD simulation. The direct 
current (dc) ionic conductivity, σi, of ion species i can be estimated using the Nernst–Einstein 
relation: σi = Niq2iDi/HrkBT, where Ni is the charge density of charge carriers, qi, per unit 
volume, HR is the Haven ratio (March, 1982) (for simplicity, we chose HR = 1.0 in this work), 
kB is the Boltzmann constant, and T is the system temperature. 

At low temperature (e.g. T << 300 K), all constituent ions within the YSZ lattices (i.e. both 
crystalline and amorphous solids) are mostly found to be ‘frozen’ at a metastable lattice sites 
with negligible hopping. However, the thermally activated ionic hopping within the lattices 
is essentially governed by the kinetic energy, which in turn is determined by system 
temperature and ionic mass. At a given temperature the heavier species (e.g. cations like 
Zr4+, Y3+) are less mobile than the anions (e.g. O2-, or equivalently its vacancy). As an 
oxygen-ion conductor at elevated temperatures, the basic feature of oxygen-ion transport 
within YSZ is generally well described by the Arrhenius relationship for activated processes, 
relationship Di = D0exp(-ΔEact/kT). Based on the simple BMB potential (Table 1), the least-
squares linear fit to the computed self-diffusion of oxygen in the 8-YSZc system over the 
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temperature range is found consistent with the reported experimental data (Kilo et al., 2003), 
as highlighted in Fig. 7a. From the data points of the present MD simulations for a period up 
to 2.5 ns for 300–1400 K, the pre-exponential diffusion constant, D0, and activation energy, 
ΔEact, for oxygen-ion diffusion in 8-YSZc are found to be ~5.83±0.47×10-5 cm2s-1 and 0.59±0.05 
eV, respectively, in close agreement with previously reported 6.08×10-5 cm2s-1, and 0.60 eV 
theoretical results (Devanathan et al., 2006), but slightly smaller than ~ 1.0 eV for 10.0 mol% 
Y2O3 YSZ reported from experiment (Kilo et al., 2003). Similarly for the other YSZ crystals in 
the range of 3.0-12.0 mol% Y2O3 of this study, the predicted activation energy, ΔEact, for 
oxygen ions is ~0.57–0.68 eV, within the range ~0.2–1.0 eV of those reported in previous 
theoretical studies (Devanathan et al., 2006; Khan et al., 1998; Kilo et al., 2003; Li et al., 1995; 
van Duin et al., 2008) at various Y2O3 concentrations, including the prediction obtained from 
the more accurate ReaxFF Reactive Force Field (van Duin et al., 2008). From Fig. 7b our ionic 
conductivity is maximal at 8 mol% Y2O3. 

 
Fig. 7. The predicted oxygen ion transport properties of YSZ crystals and amorphous solids 
within the range ~ 300-1400 K based on the simple interatomic potential (BMB potential) 
from Table 1. (a) The self-diffusion coefficient Di (in cm2s-1) of O2− for 8-YSZc as a function of 
reciprocal temperature, 1/T (in K-1) compared to the reported experimental observation for 
10.0 mol% Y2O3 YSZ. (b) The temperature-dependent ionic conductivity, σ (in Scm-1) of YSZ-
a and YSZ-c compared to experimental values of dc electrical conductivity measured on 8.0 
mol% YSZ amorphous (i.e. 8-YSZ Exp. I) and crystalline YSZ thin films (i.e. 8-YSZ Exp. II) 
(Lau et al., 2011).  

Based on the MD simulations for periods up to the same 2.5 ns for 300–1000 K, the oxygen-
ion conductivity in amorphous YSZ solids is generally found to be comparable to that of the 
corresponding YSZ crystals. This trend is also found to be consistent with the reported 
temperature-dependent dc-electrical conductivity measured on the YSZ crystalline and 
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temperature range is found consistent with the reported experimental data (Kilo et al., 2003), 
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Based on the MD simulations for periods up to the same 2.5 ns for 300–1000 K, the oxygen-
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corresponding YSZ crystals. This trend is also found to be consistent with the reported 
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amorphous thin films (Heiroth et al., 2008). Fitting to the Arrhenius relationship over the 
temperature range, a pre-exponential D0 for the 8-YSZa of ~3.56±0.29×10-5 cm2s-1 is obtained, 
whereas ~5.83±0.47×10-5 cm2s-1 was found for crystalline 8-YSZc (Lau et al., 2011). In general, 
the pre-exponential D0 of amorphous YSZ solids are found to be slightly less compared to 
their respective perfect crystals. This might be attributed to their distinct local structural 
properties, which subsequently affect the underlying random walks of the mobile O2− ions. 
Specifically, the Zr4+ and Y3+ ions are found to be lower in coordination number to the O2− 
ions in the irregular structural geometries (Sect. 3.1.2.II). Thus the effective probability of an 
oxygen ion finding a vacant site, relative to these reduced cation coordination numbers, in 
the amorphous lattices is increased relative to a highly coordinated, compact perfect cubic 
YSZ crystal. The effective activation energy, ΔEact, of these YSZ amorphous (3.0, 8.0 and 12.0 
mol% Y2O3) solids is ~ 0.45–0.61 eV, comparable to YSZ crystals with the same Y2O3 
concentration. For the 8-YSZa solid, the ΔEact is slightly smaller (i.e. 0.45±0.03 eV) compared 
to its crystal counterpart. The differences might be due to a slight variation in ionic transport 
within the lattices. For YSZ crystals, the ion diffusion is mainly dominated by thermally 
activated hopping processes of the mobile anions and vacancies, whereas for YSZ 
amorphous solids, there is an additional, non-negligible mutual diffusion that involves 
cations and anions moving together in the expanded lattices (Sect. 3.2.3). 

ii. Y2O3-dopant concentration dependent self diffusion and ionic conductivity of  
O2- ions 

As anticipated in Fig. 7, the high ionic conductivity in YSZ solids (both crystalline and 
amorphous) generally occur at rather elevated temperatures. Facilitated by increasing 
temperature, the isolated anion and its vacancy become mobile at T > 800 K. At very high 
temperatures 1000 K or above, all the YSZ crystals exhibit exceptionally high values of 
ionic conductivity (σ) and reach the order of 0.1 S cm-1 (Fig. 7), consistent with the range 
of reported ionic conductivity in experiment (Hull, 2004; Nakamura et al., 1986) at T  
1000–1250 K. As an anion-deficient fluorite, the oxygen ion and its vacancy migration 
kinetics in YSZ crystal, however, cannot be described solely by a simple vacancy assisted 
diffusion model (Hull, 2004; Krishnamurthy et al., 2004). At elevated temperature, the 
vacancy diffusion rate is not always simply proportional to fractional vacancy 
concentration, Di  x (with x defining Y2O3 dopant concentration) in the Zr1−xYxO(2-x/2) 
system. The MSD of oxygen ions cannot increase proportional to molar concentration of 
the mol% Y2O3 because Y2O3 is an insulator. An optimal concentration of Y2O3 dopant 
exists and it is not predicted by a simple vacancy assisted diffusion mechanism. In many 
cases, maximum ionic conductivity occurs between ~ 8 and 15.0 mol% Y2O3 (Fig. 8) 
(Casselton, 1970; Hull, 2004; Krishnamurthy et al., 2004). Interestingly, this trend in ionic 
conductivity/diffusivity is also commonly observed in a wide range of oxide materials 
having the same fluorite structure.  

Several investigations have addressed the origin of this unusual trend in ionic 
conductivity/diffusivity. Casselton, et al., (Casselton, 1970) attributes this conductivity 
anomaly to Coulomb attraction between dopant cations (i.e. Y3+) and oxygen vacancies. 
They propose that at higher dopant (and vacancy) concentrations, vacancies will be 
trapped in defect complexes, thus resulting in a decrease in the conductivity. 
Experimental studies of dopant–vacancy interactions were not unambiguous. X-ray and 
neutron scattering studies (Morinaga et al., 1979, 1980; Steele et al., 1974) indicate that the 
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oxygen vacancy preferentially occupies interstitial sites adjacent to the dopant ions, 
implying significant dopant–vacancy attraction. However the extended X-ray absorption 
fine structure spectroscopy (EXAFS) and electron microscopy  (Allpress et al., 1975; 
Catlow et al., 1986; Veal et al., 1988) studies indicates that  oxygen vacancies (i.e. 
positively charged) have a greater preference for sitting in the first neighbor shell of Zr4+ 
ions than Y3+  ions. Hence, the dopant ion has a higher oxygen coordination number than 
the host Zr4+ ions. This argument suggests that the oxygen vacancy–Y-ion interaction is 
also dominated by size effects rather than a simple Coulomb interactions (note, the 
vacancy is positively charged and the Y3+-ion is negatively charged, relative to the host 
lattice, Zr4+-ion). Therefore to capture the Y2O3-dopant dependent ionic conductivity 
behavior, a small simulation cell might not be sufficient. In the meantime for YSZ, when 
an oxygen vacancy is formed, the lattice contracts in the vicinity of the vacancy. Because 
Zr4+ ions are smaller than Y3+ ions, Zr4+ ions can better accommodate this contraction. In 
this case, a simple lattice statics calculations based on a Born–Mayer interatomic potential 
also support this view (Dwivedi et al., 1990).  

As shown in Fig. 8c, the simple interatomic potential from Table 1 can provide a consistent 
qualitative feature, a conductivity maximum, which is observed in experiments (Arachi et 
al., 1999; Badwal et al., 1992; Hull, 2009; Ioffe, 1978) and Kinetic Monte Carlo simulation in 
Fig. 8a (Krishnamurthy et al., 2004). For all three temperatures in the range 800–1200 K, the 
variation of conductivity, σ, with dopant concentration shows a maximum close to 8.0 mol% 
Y2O3 (or x ~0.16 in Zr(1−x)YxO(2-x/2)), consistent with finding the maximum close to the lower 
limit of the amount of doping required to stabilize the cubic YSZ phase (i.e. c*-YSZ) (Arachi 
et al., 1999; Hull, 2009; Nakamura et al., 1986).  

For YSZ amorphous solids, a similar trend of the optimal Y2O3 concentration governing 
ionic conductivity is also supported by a recent MD simulation (Lau et al., 2011). Of the 3.0, 
8.0 and 12.0 mol% Y2O3 systems (i.e. n-YSZa) studied; it was found that σmax occurs at ~ 8.0 
mol% Y2O3 similar to the maximum found for the YSZ crystals. To account for this 
intriguing result, one simple, yet direct explanation can be the local Y3+ aggregation within 
the system (Lau et al., 2011). The diffusion pathways of an ion are essentially determined by 
the local interactions with the surrounding ions in YSZ at a given temperature. Due to the 
cooperative effects of larger attractive terms (Aij and ρij in Tables 1) in the BMB potential, 
larger bond length (i.e. RY−O from RDF at Fig. 6) and larger Y3+ ion relative to Zr4+ ion in the 
lattice, steeper potential wells among Y3+–O2− relative to Zr4+–O2− are expected. Thus, this 
will hinder the mobility of O2− (or its vacancy), if the local Y3+ aggregation is large enough. 
At a given temperature, the local Y3+ aggregation can be defined qualitatively by comparing 
to the degree of Y3+-clustering, η (Table 2), based on the thermal equilibrium structures of 
each system. For each of the NY atoms, we count the number of other Y atoms less than 3.7Å 
away. If Nc is the number of these Y atoms that have four or more neighboring Y atoms, then 
η = Nc/N×100.0%. As shown in Table 2, η increased as the mol% of Y2O3 increased regardless 
of crystal or amorphous geometry. As the system temperature goes up, η generally 
decreases due to thermal expansion of the lattice. Despite this change with temperature, the 
relative comparison of each system remains the same. Therefore, this suggests that YSZ 
ionic conductivity is a thermally activated process as shown in Fig. 7 and 8, but the subtle 
interplay between the vacancy concentration and the intrinsic ionic diffusion pathways that 
are defined by local structures and local orderings cannot be ignored. 
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amorphous thin films (Heiroth et al., 2008). Fitting to the Arrhenius relationship over the 
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oxygen vacancy preferentially occupies interstitial sites adjacent to the dopant ions, 
implying significant dopant–vacancy attraction. However the extended X-ray absorption 
fine structure spectroscopy (EXAFS) and electron microscopy  (Allpress et al., 1975; 
Catlow et al., 1986; Veal et al., 1988) studies indicates that  oxygen vacancies (i.e. 
positively charged) have a greater preference for sitting in the first neighbor shell of Zr4+ 
ions than Y3+  ions. Hence, the dopant ion has a higher oxygen coordination number than 
the host Zr4+ ions. This argument suggests that the oxygen vacancy–Y-ion interaction is 
also dominated by size effects rather than a simple Coulomb interactions (note, the 
vacancy is positively charged and the Y3+-ion is negatively charged, relative to the host 
lattice, Zr4+-ion). Therefore to capture the Y2O3-dopant dependent ionic conductivity 
behavior, a small simulation cell might not be sufficient. In the meantime for YSZ, when 
an oxygen vacancy is formed, the lattice contracts in the vicinity of the vacancy. Because 
Zr4+ ions are smaller than Y3+ ions, Zr4+ ions can better accommodate this contraction. In 
this case, a simple lattice statics calculations based on a Born–Mayer interatomic potential 
also support this view (Dwivedi et al., 1990).  

As shown in Fig. 8c, the simple interatomic potential from Table 1 can provide a consistent 
qualitative feature, a conductivity maximum, which is observed in experiments (Arachi et 
al., 1999; Badwal et al., 1992; Hull, 2009; Ioffe, 1978) and Kinetic Monte Carlo simulation in 
Fig. 8a (Krishnamurthy et al., 2004). For all three temperatures in the range 800–1200 K, the 
variation of conductivity, σ, with dopant concentration shows a maximum close to 8.0 mol% 
Y2O3 (or x ~0.16 in Zr(1−x)YxO(2-x/2)), consistent with finding the maximum close to the lower 
limit of the amount of doping required to stabilize the cubic YSZ phase (i.e. c*-YSZ) (Arachi 
et al., 1999; Hull, 2009; Nakamura et al., 1986).  
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ionic conductivity is also supported by a recent MD simulation (Lau et al., 2011). Of the 3.0, 
8.0 and 12.0 mol% Y2O3 systems (i.e. n-YSZa) studied; it was found that σmax occurs at ~ 8.0 
mol% Y2O3 similar to the maximum found for the YSZ crystals. To account for this 
intriguing result, one simple, yet direct explanation can be the local Y3+ aggregation within 
the system (Lau et al., 2011). The diffusion pathways of an ion are essentially determined by 
the local interactions with the surrounding ions in YSZ at a given temperature. Due to the 
cooperative effects of larger attractive terms (Aij and ρij in Tables 1) in the BMB potential, 
larger bond length (i.e. RY−O from RDF at Fig. 6) and larger Y3+ ion relative to Zr4+ ion in the 
lattice, steeper potential wells among Y3+–O2− relative to Zr4+–O2− are expected. Thus, this 
will hinder the mobility of O2− (or its vacancy), if the local Y3+ aggregation is large enough. 
At a given temperature, the local Y3+ aggregation can be defined qualitatively by comparing 
to the degree of Y3+-clustering, η (Table 2), based on the thermal equilibrium structures of 
each system. For each of the NY atoms, we count the number of other Y atoms less than 3.7Å 
away. If Nc is the number of these Y atoms that have four or more neighboring Y atoms, then 
η = Nc/N×100.0%. As shown in Table 2, η increased as the mol% of Y2O3 increased regardless 
of crystal or amorphous geometry. As the system temperature goes up, η generally 
decreases due to thermal expansion of the lattice. Despite this change with temperature, the 
relative comparison of each system remains the same. Therefore, this suggests that YSZ 
ionic conductivity is a thermally activated process as shown in Fig. 7 and 8, but the subtle 
interplay between the vacancy concentration and the intrinsic ionic diffusion pathways that 
are defined by local structures and local orderings cannot be ignored. 
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Fig. 8. (a) Oxygen diffusivity as a function of the Y2O3 mole fraction, y, and yttrium ion 
concentration, x, in YSZ at different temperatures, adopted from Krishnamurthy et. al. 
(Krishnamurthy et al., 2004). (b) The variation of the ionic conductivity σi of Zr1−xYxO(2-x/2) 
with dopant concentration x at three different temperatures. The maximum in σi occurs close 
to the lower limit of stability of the stabilized cubic form (c*), adopted from Hull, 2009. (c) 
The predicted ionic conductivity, σ (in Scm−1), of 3.0–12.0 mol% Y2O3 YSZ crystal over 800–
1200 K, with the conductivity maxima as a function of Y2O3 concentration based on the 
simple interatomic potential (Lau et al., 2011) of Table 1.  

3.2.2 Why can ionic transport in YSZ crystal and YSZ amorphous be different? 

As we have seen from previous sections, the basic static structural features and dynamics of 
ions in both YSZ crystals (n-YSZc) and amorphous solids (n-YSZa) can be well-described 
through the simple BMB potentials (Table 1). For both systems, the key-elements are almost 
the same: the system consists of a rigid ordered (i.e. crystalline lattice) or disordered (i.e. 
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amorphous lattice) matrix through which the ions travel together. The charge-compensating 
cation sites are fixed to the matrix about which the ions are loosely bonded by the weaker-
than covalent ionic bonds. Because of these ionic bonds, often the thermal energy in the 
solids can provide the energy needed for the ion to dissociate from its site and “hop” to an 
adjacent site. These phenomena lead to a so-called “activation energy” (i.e. ΔEact in Fig. 7), 
which defines the mean effective energy associated with the hop of an ion between adjacent 
sites. The rate of hopping is mostly controlled by the temperature and is given by the 
Boltzmann factor (or Arrhenius law) as anticipated in Fig. 7. MD simulations enable us to 
understand in depth this interesting mechanism. We can track the position of these ions 
over time, but we may need to utilize some ensemble-averaged quantities such as the mean-
square displacement <r2(t)> (MSD) as a key to understanding these motions, and elucidating 
the slight differences of ionic motion between the YSZ-c (crystals) and YSZa (amorphous) 
structures as we found in Fig. 7.  
 

System η (T = 300K) η (T = 1000K) 
Crystal (mol%) 

3.0 2.46 3.36 
8.0 20.52 15.26 

12.0 25.93 17.69 
Amorphous (mol%) 

3.0 1.37 0.73 
8.0 16.67 12.82 

12.0 22.62 24.44 

Table 2. The degree of Y3+-clustering, η (in %), of 3.0, 8.0 and 12.0 mol% Y2O3 YSZ crystals 
and amorphous solids at T = 300 and 1000 K. (Note: only the Y3+-clusters with the size ≥ 4 
ions are counted. By assuming the cluster cut-off radius [R(Y3+−Y3+)] to be ~ 3.7 Å as found 
by RDF, we define η = Nc/N×100.0%, where Nc is the number of clusters with ≥ 4 Y3+-ions 
and N is the total number of Y3+-clusters in a system adopted from Lau et al.  
(Lau et al., 2011). 

i. Information given by the mean-square displacement  

As we suspected, diffusion in atomistic scale in a lattice can be mainly determined by the 
internal structure of a material. Thus the elements of the underlying random walks are 
often biased on the detailed local microstructure of the material, and the strength of the 
interatomic forces. In the high-temperature regime, the MSD corresponding to the 
diffusion of the dominant charge carriers (i.e. oxygen ions O2−) will grow linearly in time, 
analogous to ionic transport in a liquid (Fig. 9). This linear diffusive regime typically can 
also be found in other reported literature, which used interatomic potentials (Bush et al., 
1994; Devanathan et al., 2006; Dwivedi et al., 1990; Fisher et al., 1998, 1999; Khan et al., 
1998; Kilo et al., 2003; Lau et al., 2011; Lewis et al., 1985; Li et al., 1995; Minervini et al., 
2000; Okazaki et al., 1994; Sawaguchi et al., 2000; Schelling et al., 2001; Shimojo et al., 1992; 
; van Duin et al., 2008; Yamamura et al., 1999; Zacate et al., 2000) different from those of 
Table 1. For the much heavier cations (Zr4+ and Y3+) in YSZ crystals, the MSD generally 
decays and saturates over a period of time, as the kinetic energy is not sufficient to reach 
monotonic diffusive behavior, and therefore the path is bounded in the fixed crystal 
lattice (Fig. 9). This unique feature, however, is not found in YSZ amorphous solids. In the 
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amorphous lattice) matrix through which the ions travel together. The charge-compensating 
cation sites are fixed to the matrix about which the ions are loosely bonded by the weaker-
than covalent ionic bonds. Because of these ionic bonds, often the thermal energy in the 
solids can provide the energy needed for the ion to dissociate from its site and “hop” to an 
adjacent site. These phenomena lead to a so-called “activation energy” (i.e. ΔEact in Fig. 7), 
which defines the mean effective energy associated with the hop of an ion between adjacent 
sites. The rate of hopping is mostly controlled by the temperature and is given by the 
Boltzmann factor (or Arrhenius law) as anticipated in Fig. 7. MD simulations enable us to 
understand in depth this interesting mechanism. We can track the position of these ions 
over time, but we may need to utilize some ensemble-averaged quantities such as the mean-
square displacement <r2(t)> (MSD) as a key to understanding these motions, and elucidating 
the slight differences of ionic motion between the YSZ-c (crystals) and YSZa (amorphous) 
structures as we found in Fig. 7.  
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by RDF, we define η = Nc/N×100.0%, where Nc is the number of clusters with ≥ 4 Y3+-ions 
and N is the total number of Y3+-clusters in a system adopted from Lau et al.  
(Lau et al., 2011). 

i. Information given by the mean-square displacement  

As we suspected, diffusion in atomistic scale in a lattice can be mainly determined by the 
internal structure of a material. Thus the elements of the underlying random walks are 
often biased on the detailed local microstructure of the material, and the strength of the 
interatomic forces. In the high-temperature regime, the MSD corresponding to the 
diffusion of the dominant charge carriers (i.e. oxygen ions O2−) will grow linearly in time, 
analogous to ionic transport in a liquid (Fig. 9). This linear diffusive regime typically can 
also be found in other reported literature, which used interatomic potentials (Bush et al., 
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Table 1. For the much heavier cations (Zr4+ and Y3+) in YSZ crystals, the MSD generally 
decays and saturates over a period of time, as the kinetic energy is not sufficient to reach 
monotonic diffusive behavior, and therefore the path is bounded in the fixed crystal 
lattice (Fig. 9). This unique feature, however, is not found in YSZ amorphous solids. In the 
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YSZ amorphous phase, the heavy cations are not simply bound to a rigid crystal lattice as 
in YSZ crystals (Fig. 9).  

 
Fig. 9. The MSD of different ions (Zr4+, Y3+, O2-) in YSZ system (crystal and amorphous) that 
were obtained from MD simulation through the averaging over the ensemble of the 
trajectories of respective ions. The systems shown are 3-YSZc and 3-YSZa at 800 K for 2.5 ns 
trajectories from Lau et al. (Lau et al., 2011). Representative superposed pictures of the 
different motions are shown to the upper left (van Duin et al., 2008).  

Instead of fixed in the rigid “stationary” lattices, substantial motions can be observed 
through the MSD. Comparable to the negligible motion of the cations in YSZ crystals (i.e. 
<r2> ~ 0.2 Å2), the displacements of Zr4+ and Y3+ ions are rather substantial (i.e. <r2>~ 0.5 Å2 

at 800 K within 2.5 ns), are almost as diffusive (Fig. 9) as the mobile O2− anions. For YSZ 
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amorphous structure from MD trajectories, the three constituent ions (Zr4+, Y3+, O2−) have 
similar slopes over a long period of simulation time, indicating that mutual diffusion driven 
by correlated motion between anions and cations might be substantial in the YSZ 
amorphous structure.  

In this case, the difference can become more evident if temperature is raised. Here it is 
noteworthy to point out a limit due to finite computer resources. This subtle phenomenon 
can also attributed to the fact that the simulated YSZ amorphous systems are mostly 
metastable and are continuously crystallizing at a slow rate even at elevated temperatures, 
analogous to crystallization of amorphous YSZ film which was reported in a recent 
experiment (Heiroth et al., 2008). Unlike that of a perfect crystal, the potential-energy 
landscape experienced by an ion in a disordered amorphous solid is irregular, containing a 
distribution of stationary points, wells, barrier heights, and saddle point energies. Thus, the 
residence sites for an ion in an amorphous system are more vulnerable to thermal 
fluctuations, and possibly are even metastable. Thus, a much longer simulation time might 
be needed to achieve thermal equilibrium for an amorphous YSZ structure compared to YSZ 
crystals as pointed out in a recent study (Lau et al., 2011). In real experiments, the stability of 
amorphous YSZ often depends on the crystallization process and is directly correlated to 
grain size and different local environments (Heiroth et al., 2008). This suggests that besides 
short-distance thermal vibrations, the dynamics of both the cation and anion can be 
responsible for the observed slow crystallization process and related ionic conductivity 
fluctuation seen in experiments (Heiroth et al., 2008).  

ii. Information given by van hove correlation functions 

To capture the intriguing observation as shown in MSD (Fig. 9), the physics behind the time-
dependent mutual diffusion and structural variations observed particularly in YSZ 
amorphous structure can be analyzed based on the van Hove correlation function, G(r,t) 
(Frenkel, 1996; Lau, 2011, Rapaport, 2004). By following the definition (Frenkel & Smit, 1996; 
Rapaport, 2004), G(r,t)  can be represented separately by the self:  

 Gs(r,t) = <Σjδ(r+rj(0)-rj(t))>/Nj  (3) 

and the distinct part: 

 Gd(r,t) = <Σi≠jδ(r+ri(0)-rj(t))>/Ni  (4) 

which are determined by the space- and time-dependent density correlations of the 
constituent ions in the system. As defined, Gs(r,t) compares the position of a particle to its 
position within a time interval. In thermal equilibrium, Gs(r,t) depends only on the time 
difference, and provides information about the hopping and diffusion processes of the 
separated ions. Whereas Gd(r,t) compares the positions of a particle to the position of 
another particle at different time, and yields information about the correlated motions 
within a time interval.  

As expected for a diffusion process, Gs(r,t) decreases generally with increasing distance at 
each time and reflects the nature of Brownian motion, which is proportional to the system 
temperature. For a mobile ion, the width of Gs(r,t) generally are broader than the stationary 
ion. At low temperature, the Gs(r,t) are generally found to be more localized, with longer 
residence time for the individual ions. Thus for a YSZ crystal (YSZc) and a YSZ amorphous 
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YSZ amorphous phase, the heavy cations are not simply bound to a rigid crystal lattice as 
in YSZ crystals (Fig. 9).  
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amorphous structure from MD trajectories, the three constituent ions (Zr4+, Y3+, O2−) have 
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(YSZa) structure, their differences in MSD over a simulation time can also be highlighted  
in the van Hove correlation as shown in Fig. 10. To capture the time-evolution of ions’  
hopping and diffusion process in both the YSZ crystals and amorphous structures, a  
direct comparison of Gs(r,t) with a Gaussian form of diffusive motion can be very useful  
(Lau et al., 2011).     

For a diffusion process, Fick’s laws apply when there is a concentration gradient in a system. 
However as a typical thermodynamic equilibrium system, these MD calculations have no 
long-range gradient. To better analyze the features in Gs (r,t), a comparison of Gs(r,t) with the 
diffusion transport character in Gaussian form is particularly useful. By applying the 
Laplace transform to Fick’s second law (D2C =∂C/∂t), subject to the initial condition at time 
C(x, y, z, t = 0) for all x, y, z = 0 and the boundary condition C(±∞, t) = 0 so that a finite 
number of diffusive ions cannot alter the charge composition of the system, the diffusion 
process is subject to the diffusion solution in Gaussian form, with concentration field 

 C(x,y,z,t) = exp(-(x2+y2+z2)/4Dt)/(4πDt)3/2= exp(-r2/4Dt)/(4πDt)3/2  (5) 

where r2 = x2+y2+z2. Assuming that the time response of the van Hove self-correlation 
function Gs(r, t) of ions in the YSZ crystal and amorphous solid (i.e. 3-YSZc and 3-YSZa in 
Fig. 10) is reminiscent of C(x, y, z, t) [or C(r, t)], the evolution of the self-part of the van Hove 
function 4πr2Gs(r, t) as a function of r with time (i.e. 10 and 2500 ps shown in Fig. 10) at 800 K 
can be compared with an ideal Gaussian distribution of diffusive motion of ions, 4πr2C(r, t) 
with C(r, t) = exp(−r 2/4Dt)/(4π Dt)3/2 where  <r2> ~ 6Dt is assumed and D is the diffusion 
coefficient of the corresponding ion. 

As shown by C(r, t), its normal distribution is essentially governed by the ionic motion 
under thermal equilibrium at a given temperature that is analogous to a ‘drifting wave-
packet’ under the thermal motion. Basically, the drifting ‘wave-packet’ of charged carriers is 
determined by the mobility of the ions in the ensemble, which can be captured by <r2>. As 
time develops, the Gaussian-shaped wave-packet widens as it travels due to the ion 
diffusion about the mean (Fig. 10). Compared to the Gaussian form diffusive motion, 4πr2 

C(r, t) in Fig. 10, the decay of the profile and variation found in 4πr2Gs (r, t) of the YSZ 
system is prominent as time develops. From its initial localized ‘impulse-like’ distribution 
(e.g. 4 πr2Gs(r, t) at 10 ps in Fig. 10a) analogous to a localized δ-function (Frenkel & Smit, 
1996; Rapaport, 2004), the variation of Gs(r, t) for the ions is obviously less uniform 
compared to C(r, t) in Gaussian form. Here neither of the ionic motions in the two YSZ 
systems is fitted perfectly by a Gaussian distribution, and strong deviation from the 
Gaussian form is prominent as time develops (Fig. 10). In this case, the both YSZ crystals 
and amorphous solid share similar features in Gs (r, t) up to 2500 ps, yet are not perfectly 
identical. In both cases, the non-Gaussian features of the mobile O2− in Gs(r,t) can be 
attributed to a non- uniform distribution of the mobility of the carriers which varies over a 
wide range of velocity caused by the coexistence of hopping processes and ‘liquid-like’ 
diffusivity. As time evolves, the multiple satellite peaks which represent the hopping 
processes are evident in both YSZ systems for all the constituent ions. For YSZ crystal (e.g. 3-
YSZc in Fig. 10), we can see only the mobile anions attain the significant diffusive features, 
namely a decaying peak accompanied by a tail part of the Gs(r, t) function that develops 
with time. The long tail at large r is related to the long-range motion found in the time-
dependent trajectory, i.e. by fast mobile anions with successive hopping motions. For YSZ  
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Fig. 10. The self-part of the van Hove correlation function 4πr2Gs(r, t) (lines with symbols) 
for both 3-YSZc (crystal) and 3-YSZa (amorphous) at 800 K. The functions develop from top 
to bottom with time, and are compared with Gaussian diffusion motion 4πr2C(r,t) with C(r,t) 
(plane lines) determined by the steady-state diffusion constant D at 10 ps (a) and at 2500 ps 
(b) for crystal (left) and amorphous solid (center). (c) A schematic figure that illustrates a 
time-evolving ion’s hopping (large fluctuations) and diffusion (small fluctuations) processes 
in both YSZ crystal and amorphous solid that can be captured through the van Hove 
correlation function.   

amorphous solids (e.g. 3-YSZa in Fig. 10), the coexistence of the ‘liquid-like’ features of 
diffusive cations (Zr4+, Y3+) and anions (O2−) however is more obvious, with the long 
dispersive tails of Gs(r,t) spreading to large r. Instead of the localization of the maximum at 
the origin as the initial stage, substantial drifting (Δr ~ 0.4–0.7 Å) of the maximum for both 
cations and anions in YSZ amorphous solids after 2500 ps can be seen (Fig. 10b). This 
suggests that the residence sites in a metastable disordered amorphous solid of YSZ are 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

364 

(YSZa) structure, their differences in MSD over a simulation time can also be highlighted  
in the van Hove correlation as shown in Fig. 10. To capture the time-evolution of ions’  
hopping and diffusion process in both the YSZ crystals and amorphous structures, a  
direct comparison of Gs(r,t) with a Gaussian form of diffusive motion can be very useful  
(Lau et al., 2011).     

For a diffusion process, Fick’s laws apply when there is a concentration gradient in a system. 
However as a typical thermodynamic equilibrium system, these MD calculations have no 
long-range gradient. To better analyze the features in Gs (r,t), a comparison of Gs(r,t) with the 
diffusion transport character in Gaussian form is particularly useful. By applying the 
Laplace transform to Fick’s second law (D2C =∂C/∂t), subject to the initial condition at time 
C(x, y, z, t = 0) for all x, y, z = 0 and the boundary condition C(±∞, t) = 0 so that a finite 
number of diffusive ions cannot alter the charge composition of the system, the diffusion 
process is subject to the diffusion solution in Gaussian form, with concentration field 

 C(x,y,z,t) = exp(-(x2+y2+z2)/4Dt)/(4πDt)3/2= exp(-r2/4Dt)/(4πDt)3/2  (5) 

where r2 = x2+y2+z2. Assuming that the time response of the van Hove self-correlation 
function Gs(r, t) of ions in the YSZ crystal and amorphous solid (i.e. 3-YSZc and 3-YSZa in 
Fig. 10) is reminiscent of C(x, y, z, t) [or C(r, t)], the evolution of the self-part of the van Hove 
function 4πr2Gs(r, t) as a function of r with time (i.e. 10 and 2500 ps shown in Fig. 10) at 800 K 
can be compared with an ideal Gaussian distribution of diffusive motion of ions, 4πr2C(r, t) 
with C(r, t) = exp(−r 2/4Dt)/(4π Dt)3/2 where  <r2> ~ 6Dt is assumed and D is the diffusion 
coefficient of the corresponding ion. 

As shown by C(r, t), its normal distribution is essentially governed by the ionic motion 
under thermal equilibrium at a given temperature that is analogous to a ‘drifting wave-
packet’ under the thermal motion. Basically, the drifting ‘wave-packet’ of charged carriers is 
determined by the mobility of the ions in the ensemble, which can be captured by <r2>. As 
time develops, the Gaussian-shaped wave-packet widens as it travels due to the ion 
diffusion about the mean (Fig. 10). Compared to the Gaussian form diffusive motion, 4πr2 

C(r, t) in Fig. 10, the decay of the profile and variation found in 4πr2Gs (r, t) of the YSZ 
system is prominent as time develops. From its initial localized ‘impulse-like’ distribution 
(e.g. 4 πr2Gs(r, t) at 10 ps in Fig. 10a) analogous to a localized δ-function (Frenkel & Smit, 
1996; Rapaport, 2004), the variation of Gs(r, t) for the ions is obviously less uniform 
compared to C(r, t) in Gaussian form. Here neither of the ionic motions in the two YSZ 
systems is fitted perfectly by a Gaussian distribution, and strong deviation from the 
Gaussian form is prominent as time develops (Fig. 10). In this case, the both YSZ crystals 
and amorphous solid share similar features in Gs (r, t) up to 2500 ps, yet are not perfectly 
identical. In both cases, the non-Gaussian features of the mobile O2− in Gs(r,t) can be 
attributed to a non- uniform distribution of the mobility of the carriers which varies over a 
wide range of velocity caused by the coexistence of hopping processes and ‘liquid-like’ 
diffusivity. As time evolves, the multiple satellite peaks which represent the hopping 
processes are evident in both YSZ systems for all the constituent ions. For YSZ crystal (e.g. 3-
YSZc in Fig. 10), we can see only the mobile anions attain the significant diffusive features, 
namely a decaying peak accompanied by a tail part of the Gs(r, t) function that develops 
with time. The long tail at large r is related to the long-range motion found in the time-
dependent trajectory, i.e. by fast mobile anions with successive hopping motions. For YSZ  

 
The Roles of Classical Molecular Dynamics Simulation in Solid Oxide Fuel Cells 

 

365 

 

 
 
Fig. 10. The self-part of the van Hove correlation function 4πr2Gs(r, t) (lines with symbols) 
for both 3-YSZc (crystal) and 3-YSZa (amorphous) at 800 K. The functions develop from top 
to bottom with time, and are compared with Gaussian diffusion motion 4πr2C(r,t) with C(r,t) 
(plane lines) determined by the steady-state diffusion constant D at 10 ps (a) and at 2500 ps 
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time-evolving ion’s hopping (large fluctuations) and diffusion (small fluctuations) processes 
in both YSZ crystal and amorphous solid that can be captured through the van Hove 
correlation function.   

amorphous solids (e.g. 3-YSZa in Fig. 10), the coexistence of the ‘liquid-like’ features of 
diffusive cations (Zr4+, Y3+) and anions (O2−) however is more obvious, with the long 
dispersive tails of Gs(r,t) spreading to large r. Instead of the localization of the maximum at 
the origin as the initial stage, substantial drifting (Δr ~ 0.4–0.7 Å) of the maximum for both 
cations and anions in YSZ amorphous solids after 2500 ps can be seen (Fig. 10b). This 
suggests that the residence sites in a metastable disordered amorphous solid of YSZ are 
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always influenced by interactions with the migrating cations, and therefore change with 
time. By involving the mutual diffusion (i.e. sites previously occupied by cations can be 
visited by anions and vice versa), the hopping processes of ions will therefore be influenced 
greatly by the changing intermediate surroundings, which makes fast diffusive ions with 
successive hopping jumps less probable. Therefore the MSD of the mobile O2− in the 
amorphous solid will be less compared to the crystal (Fig. 9).  

4. Conclusion  
During recent decades, it has become feasible to simulate a complicated system on a 
computer due to rapid progress in parallel computing. Within the scale of atomistic and 
molecular simulation, the application of the classical molecular dynamics (MD) 
simulation method covers a vast variety of systems undergoing current scientific 
development. The method of MD solves the classical equations of motion for an ensemble 
of atoms. It results in time-dependent trajectories for all atoms in a system. From  
these atomistic trajectories, MD can provide detailed in situ atomistic information that  
is difficult to obtain experimentally. As one of the robust and well-developed simulation 
techniques, MD simulation is an ideal scientific tool to complement experimental 
observations to properly characterize a complicated system. Those that involve a  
vast time and spatial dimension, and heterogeneous materials interfaces can be modeled 
using a multi-scale framework. One of the best such examples that are becoming 
appropriate for MD is the study of the inner workings of a solid oxide fuel cell  
(SOFC), which is important as an electrochemical energy conversion and clean energy 
storage.  

SOFC is a new alternative clean energy device that converts the energy of combustion and 
electrochemical interactions into electricity, which utilizes the superionic conductivity (> 10-1 
Scm-1) of special materials at high temperature. Despite the advantages over conventional 
power generation technologies, there remain a number of challenges that delay the full 
commercialization of the SOFC and one of the challenges is to understand the basis of ionic 
transport in its solid electrolyte (e.g. YSZ, the Zr1−xYxO2−x/2 system, with x/2 being the Y2O3 
dopant concentration). For YSZ, the optimum ionic conductivity can vary with different 
synthesis routes and sintering conditions due to the resultant diverse local morphologies, 
grain boundaries, and microstructures.  

Within the rigid ion model approximation, we have shown a systematic study of the static 
and dynamic properties of YSZ crystals and amorphous solids within the typical dilute 
Y2O3 concentration limit (i.e. 3.0 – 12.0 mol% Y2O3) in the temperature range 300 – 1400 K 
based on a simple semi-empirical Born–Meyer–Buckingham (BMB) interatomic potential 
through the standard techniques in classical MD. The results suggest that the vacancy 
assisted ion conductivity of YSZ as a function of mol% of Y2O3 at a given temperature 
seems to be a universal feature of YSZ electrolytes, regardless of varying local structures. 
Whether it is an amorphous or a crystal, the oxygen ionic conductivity shows a maximum 
at 8.0mol%Y2O3, close to the lower limit of the cubic YSZ phase stability that is 
confirmed by experiments. For YSZ amorphous solids, their lower absolute ionic 
conductivity relative to YSZ crystals is consistent with the trends observed in YSZ 
crystalline and stabilized amorphous thin films reported from experiments. For the YSZ 
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amorphous solids, the mobile anions and the slowly migrating cations are strongly 
coupled in their motion. This mutual diffusion (cations and anions) found in the 
amorphous phases contributes considerably to the dynamics as seen through the time-
dependent van Hove correlation functions. This reduces the effective oxygen-ion 
conductivity. These moving ions carry charges, and thus produce an electrical response. It 
is expected that the intriguing features of mutual diffusion found in amorphous YSZ 
solids can therefore be detected by current experimental techniques at frequencies below 
the typical vibrational frequencies (>100 GHz). To gain further insight into the different 
correlated motions in various YSZ system and its interfaces, richness in morphologies, 
longer equilibration, better statistical methods and better atomic potentials are highly 
desirable.  

5. Acknowledgements 
This work was supported and by the Office of Naval Research, both directly and through 
the Naval Research Laboratory. 

6. References  
Ackermann, R J; Rauh, E G. & Alexander, C A. (1975) High Temp. Sci. Vol. 7, pp. 305. 
Aldebert, P. & Traverse, J P. (1985) J. Am. Ceram. Soc. Vol. 68, pp. 34. 
Allpress, J. G. & Rossell, H. J. J. Solid State Chem. Vol. 15, pp. 68–78. 
Andersson, M.; Yuan, J. & Sundén, B. (2010) Applied Energy, Vol. 87, pp. 1461-1476.  
Arachi, Y; Sakai, H; Yammoto, O; Takeda, Y. & Imanishai, N. (1999) Solid State Ion. Vol. 121, 

pp. 133. 
Badwal, S. P. S. (1992) Solid State Ion. Vol. 52, pp. 23.  
Baller, J; Krüger J K; Birringer, R. & Prousi, C. (2000) J. Phys.:Condens. Matter Vol. 12, pp. 

5403. 
Bogicevic, A; Wolverton, C; Crosbie, G M. & Stechel E B. (2001) Phys. Rev. B Vol. 64, pp. 

014106. 
Boysen, H; Frey, F. & Vogt, T. (1991) Acta Crystallogr. B Vol. 47, pp. 881. 
Butz, B.; Kruse, P.; Störmer, H.; Gerthsen, D.; Müller, A.; Weber, A. & Ivers-Tiffée, E. (2006) 

Solid State Ion. Vol. 177, pp. 3275. 
Bush, T.S.; Gale, J.D.; Catlow, C.R.A. & Battle, P.D. (1994) J. Mater. Chem. Vol. 4, pp.  

831. 
Casselton, R. E. W. (1970) Phys. Status Solidi A Vol. 2, pp. 571–585. 
Catlow, C. R. A.; Chadwick, A. V.; Greaves, G. N. & Moroney, L. M. J. Am. Ceram. Soc. Vol. 

69, pp. 272–277 . 
Chen, X. J.; Khor, K A.; Chan, S H. & Yu, L G. (2002) Mater. Sci. Eng. A, Vol. 335, pp.  

246. 
Cheng, Z.; Wang, J-H.; Choi, Y.; Yang, L; Lin, M.C. & Liu, M. (2011) Energy Environ. Sci. 

Vol. DOI: 10.1039/c1ee01758f. 
Chu, W-F; Thangadurai, V. & Weppner, W. (2006). Ionics, Vol. 12, pp. 1-6.  
Dash, L K; Vast, N; Baranek, P; Cheynet M C. & Reining, L. (2004) Phys. Rev. B Vol. 70, pp. 

245116. 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

366 

always influenced by interactions with the migrating cations, and therefore change with 
time. By involving the mutual diffusion (i.e. sites previously occupied by cations can be 
visited by anions and vice versa), the hopping processes of ions will therefore be influenced 
greatly by the changing intermediate surroundings, which makes fast diffusive ions with 
successive hopping jumps less probable. Therefore the MSD of the mobile O2− in the 
amorphous solid will be less compared to the crystal (Fig. 9).  

4. Conclusion  
During recent decades, it has become feasible to simulate a complicated system on a 
computer due to rapid progress in parallel computing. Within the scale of atomistic and 
molecular simulation, the application of the classical molecular dynamics (MD) 
simulation method covers a vast variety of systems undergoing current scientific 
development. The method of MD solves the classical equations of motion for an ensemble 
of atoms. It results in time-dependent trajectories for all atoms in a system. From  
these atomistic trajectories, MD can provide detailed in situ atomistic information that  
is difficult to obtain experimentally. As one of the robust and well-developed simulation 
techniques, MD simulation is an ideal scientific tool to complement experimental 
observations to properly characterize a complicated system. Those that involve a  
vast time and spatial dimension, and heterogeneous materials interfaces can be modeled 
using a multi-scale framework. One of the best such examples that are becoming 
appropriate for MD is the study of the inner workings of a solid oxide fuel cell  
(SOFC), which is important as an electrochemical energy conversion and clean energy 
storage.  

SOFC is a new alternative clean energy device that converts the energy of combustion and 
electrochemical interactions into electricity, which utilizes the superionic conductivity (> 10-1 
Scm-1) of special materials at high temperature. Despite the advantages over conventional 
power generation technologies, there remain a number of challenges that delay the full 
commercialization of the SOFC and one of the challenges is to understand the basis of ionic 
transport in its solid electrolyte (e.g. YSZ, the Zr1−xYxO2−x/2 system, with x/2 being the Y2O3 
dopant concentration). For YSZ, the optimum ionic conductivity can vary with different 
synthesis routes and sintering conditions due to the resultant diverse local morphologies, 
grain boundaries, and microstructures.  

Within the rigid ion model approximation, we have shown a systematic study of the static 
and dynamic properties of YSZ crystals and amorphous solids within the typical dilute 
Y2O3 concentration limit (i.e. 3.0 – 12.0 mol% Y2O3) in the temperature range 300 – 1400 K 
based on a simple semi-empirical Born–Meyer–Buckingham (BMB) interatomic potential 
through the standard techniques in classical MD. The results suggest that the vacancy 
assisted ion conductivity of YSZ as a function of mol% of Y2O3 at a given temperature 
seems to be a universal feature of YSZ electrolytes, regardless of varying local structures. 
Whether it is an amorphous or a crystal, the oxygen ionic conductivity shows a maximum 
at 8.0mol%Y2O3, close to the lower limit of the cubic YSZ phase stability that is 
confirmed by experiments. For YSZ amorphous solids, their lower absolute ionic 
conductivity relative to YSZ crystals is consistent with the trends observed in YSZ 
crystalline and stabilized amorphous thin films reported from experiments. For the YSZ 

 
The Roles of Classical Molecular Dynamics Simulation in Solid Oxide Fuel Cells 

 

367 

amorphous solids, the mobile anions and the slowly migrating cations are strongly 
coupled in their motion. This mutual diffusion (cations and anions) found in the 
amorphous phases contributes considerably to the dynamics as seen through the time-
dependent van Hove correlation functions. This reduces the effective oxygen-ion 
conductivity. These moving ions carry charges, and thus produce an electrical response. It 
is expected that the intriguing features of mutual diffusion found in amorphous YSZ 
solids can therefore be detected by current experimental techniques at frequencies below 
the typical vibrational frequencies (>100 GHz). To gain further insight into the different 
correlated motions in various YSZ system and its interfaces, richness in morphologies, 
longer equilibration, better statistical methods and better atomic potentials are highly 
desirable.  

5. Acknowledgements 
This work was supported and by the Office of Naval Research, both directly and through 
the Naval Research Laboratory. 

6. References  
Ackermann, R J; Rauh, E G. & Alexander, C A. (1975) High Temp. Sci. Vol. 7, pp. 305. 
Aldebert, P. & Traverse, J P. (1985) J. Am. Ceram. Soc. Vol. 68, pp. 34. 
Allpress, J. G. & Rossell, H. J. J. Solid State Chem. Vol. 15, pp. 68–78. 
Andersson, M.; Yuan, J. & Sundén, B. (2010) Applied Energy, Vol. 87, pp. 1461-1476.  
Arachi, Y; Sakai, H; Yammoto, O; Takeda, Y. & Imanishai, N. (1999) Solid State Ion. Vol. 121, 

pp. 133. 
Badwal, S. P. S. (1992) Solid State Ion. Vol. 52, pp. 23.  
Baller, J; Krüger J K; Birringer, R. & Prousi, C. (2000) J. Phys.:Condens. Matter Vol. 12, pp. 

5403. 
Bogicevic, A; Wolverton, C; Crosbie, G M. & Stechel E B. (2001) Phys. Rev. B Vol. 64, pp. 

014106. 
Boysen, H; Frey, F. & Vogt, T. (1991) Acta Crystallogr. B Vol. 47, pp. 881. 
Butz, B.; Kruse, P.; Störmer, H.; Gerthsen, D.; Müller, A.; Weber, A. & Ivers-Tiffée, E. (2006) 

Solid State Ion. Vol. 177, pp. 3275. 
Bush, T.S.; Gale, J.D.; Catlow, C.R.A. & Battle, P.D. (1994) J. Mater. Chem. Vol. 4, pp.  

831. 
Casselton, R. E. W. (1970) Phys. Status Solidi A Vol. 2, pp. 571–585. 
Catlow, C. R. A.; Chadwick, A. V.; Greaves, G. N. & Moroney, L. M. J. Am. Ceram. Soc. Vol. 

69, pp. 272–277 . 
Chen, X. J.; Khor, K A.; Chan, S H. & Yu, L G. (2002) Mater. Sci. Eng. A, Vol. 335, pp.  

246. 
Cheng, Z.; Wang, J-H.; Choi, Y.; Yang, L; Lin, M.C. & Liu, M. (2011) Energy Environ. Sci. 

Vol. DOI: 10.1039/c1ee01758f. 
Chu, W-F; Thangadurai, V. & Weppner, W. (2006). Ionics, Vol. 12, pp. 1-6.  
Dash, L K; Vast, N; Baranek, P; Cheynet M C. & Reining, L. (2004) Phys. Rev. B Vol. 70, pp. 

245116. 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

368 

Devanathan, R; Weber, W J; Singhal, S C. & Gale, J D. (2006) Solid State Ion. Vol. 177, pp. 
1251. 

Dwivedi, A. & Cormack, A N. (1990) Phil. Mag. A Vol. 61, pp. 1. 
Dyre, J.C.; Maass, P.; Roling, B. & Sidebottom, D.L. (2009) Rep. Prog. Phys. Vol. 72, pp. 

046501. 
Etsell, T H. & Flengas S N. (1970) Chem. Rev. Vol. 70, pp. 339.  
Frenkel, D. & Smit, B. (1996) Understanding Molecular Simulation: From Algorithms to 

Applications (New York: Academic). 
Fisher, C A J. & Matsubara, H. (1998) Solid State Ion. Vol. 115, pp. 311. 
Fisher, C A J. & Matsubara, H. (1999) Comput. Mater. Sci. Vol. 14, pp. 177.  
Fukui, T; Murata, K.; Ohara, S.; Abe, H.; Naito M. & Nogi, K. (2004) J. Power Sources, Vol. 

125, pp. 17. 
Gale, J. & Rohl, A.L. (2003) Mol. Simul. Vol. 29, pp. 291. 
Gatewood, D.S.; Turner, C.H. & Dunlap, B.I. (2011) ECS Transactions, Vol. 35, “Solid-Oxide 

Fuel Cells 12”, pp. 1055–1063. 
Hayashi, H; Saito, T; Maruyama, N; Inaba, H; Kawamura, K. & Mori, M. (2005) Solid State 

Ion. Vol. 176, pp. 613. 
Heiroth, S; Lippert Th; Wokaum, A. & Döbeli M. (2008) Appl.Phys. A Vol. 93 pp. 639. 
Howard, C J; Hill, R J. & Reichert B E. (1988) Acta Crystallogr. B Vol. 44, pp. 116. 
Hull, S. (2004) Rep. Prog. Phys. Vol. 67, pp. 1233-1314.  
Ingel, R P. & Lewis D. (1986) J. Am. Ceram. Soc. Vol. 69, pp. 325. 
Ioffe, A. J; Rutman, D. S. & Karpachov, S.V. (1978) Electrochim. Acta Vol. 23, pp. 141. 
Ishizawa, N.; Matsushima, Y.; Hayashi, M. & Ueki, M. (1999) Acta Crystallogr., Sect. B Vol. 

55, pp. 726. 
Khan, M S; Islam, M S. & Bates, D R. (1998) J. Mater. Chem. Vol. 8, pp. 2299. 
Kilo, M; Argirusis, C; Borchardt, G. & Jackson, R A. (2003) Phys. Chem. Chem. Phys. Vol. 5, 

pp. 2219. 
Korte, C.; Peters, A.; Janek, J.; Hesse, D. & Zakharov, N. (2008) Phys. Chem. Chem. Phys. 

Vol. 10, pp. 4623.  
Krishnamurthy, R.; Yoon, Y G.; Srolovitz, D J. & Car, R. (2004) J. Am. Ceram. Soc. Vol. 87 pp. 

1821. 
Lammert, H. & Heuer, A. (2010) Phys. Rev. Lett. Vol. 104, pp. 125901. 
Lau, K. C.; Turner, C.H. & Dunlap, B. I. (2008) Solid State Ion. Vol. 179, pp. 1912. 
Lau, K. C.; Turner, C.H. & Dunlap, B. I. (2009) Chem. Phys. Lett. Vol. 471, pp. 326. 
Lau, K. C. & Dunlap, B. I. (2009) J. Phys.: Condens. Matter Vol. 21, pp. 145402. 
Lau, K. C. & Dunlap, B. I. (2011) J. Phys.: Condens. Matter Vol. 23, pp. 035401. 
Lashtabeg, A. & Skinner, S J. (2006) J. Mater. Chem. Vol. 16, pp. 3161.  
Lewis, G V. & Catlow, C R A. (1985) J. Phys. C: Solid State Phys. Vol. 18, pp. 1149. 
Li, X. & Hafskjold, B. (1995) J. Phys.: Condens. Matter Vol. 7, pp. 1255. 
Lindan, P J D. & Gillan, M J (1993) J. Phys.: Condens. Matter Vol. 5, pp. 1019. 
March, G E. (1982) Solid State Ion. Vol. 7 pp. 177. 
Minervini, L; Grimes, R W. & Sickafus, K E. (2000) J. Am.Ceram. Soc. Vol. 83, pp.  

1873. 
Morinaga, M.; Cohen, J. B. & Faber, J. Jr. (1979) Acta Crystallogr. Vol. A35, pp. 789– 

795. 

 
The Roles of Classical Molecular Dynamics Simulation in Solid Oxide Fuel Cells 

 

369 

Morinaga, M.; Cohen, J. B. & Faber, J. Jr. (1980) Acta Crystallogr. Vol. A36, pp. 520– 
530.  

Nakamura, A. & Wagner, J B Jr. (1986) J. Electrochem. Soc. Vol. 133 pp. 1542. 
Okazaki, H; Suzuki, H. & Ihata, K. (1994) Phys. Lett. A Vol. 188, pp. 291. 
Ostanin, S; Salamatov E; Craven, A J; McComb, D W. & Vlachos D. (2002) Phys. Rev. B Vol. 

66, pp.132105. 
Ostanin, S. & Salamatov E. (2003) Phys. Rev. B Vol. 68, pp. 172106. 
Pascual, C. & Duran, P. (1983) J. Am. Ceram. Soc. Vol. 66 pp. 23. 
Pornprasertsuk, R.; Cheng, J.; Huang, H. & Prinz, F. B. (2007) Solid State Ion. Vol. 178, pp. 

195. 
Pietrucci, F; Bernasconi, M; Laio, A. & Parrinello, M. (2008) Phys. Rev. B Vol. 78, pp.  

094301. 
Predith, A; Ceder, G; Wolverton, C; Persson K. & Mueller T. (2008) Phys. Rev. B Vol. 77, pp. 

144104. 
Ralph, M.; Schoeler, A. C. & Krumpelt, M. (2001) J. Mater. Sci. Vol. 36, pp. 1161.  
Rapaport, D.C. 2004 The Art of Molecular Dynamics Simulation 2nd Edn (Cambridge: 

Cambridge University Press). 
Sayle, D C. (1999) J. Mater. Chem. Vol. 9, pp. 2961.  
Sayle, D C; Doig, J A; Parker, S C; Watson, G W. & Sayle, T X T. (2005) Phys. Chem. Chem. 

Phys. Vol. 7 pp. 16. 
Sayle, D C; Maicaneannu, S A. & Watson, G W. (2002) J. Am. Chem. Soc. Vol. 124, pp.  

11429. 
Sidebottom, D.L. (2009) Rev. Mod. Phys. Vol. 81, pp. 999.  
Turner, C.H.; W. An.; Dunlap. B.I.; Lau, K.C. & Wang, X. (2010) Annual Reports in 

Computational Chemistry, Vol. 6, pp. 201-234. 
van Duin, A C T.; Merinov, B V; Jang, S S. & Goddard, W A III. (2008) J. Phys. Chem. A Vol. 

112, pp. 3133. 
Veal, B. W.; McKale, A. G.; Paulikas, A. P.; Rothman, S. J. & Nowicki, L. J. Physica B. Vol 

150, pp. 234–240. 
Wang, X.; Lau, K. C.; Turner, C. H. & Dunlap, B.I. (2010) J. Electrochem. Soc. Vol. 157, pp. 

B90–8. 
Wang, X.; Lau, K. C.; Turner, C. H. & Dunlap, B.I. (2010) J. Electrochem. Soc. Vol. 195, pp. 

4177. 
Sawaguchi, N. & Ogawa, H. (2000) Solid State Ion. Vol. 128 pp. 183. 
Schelling, P K; Phillpot, S.R. & Wolf, D. (2001) J. Am. Ceram. Soc. Vol. 84, pp. 1609. 
Shimojo, F.; Okabe, T.; Tachibana, F.; Kobayashi, M. & Okazaki, H. (1992) J. Phys. Soc. Japan 

Vol. 61, pp. 2848. 
Smith, D K. & Newkirk, H W. (1965) Acta Crystallogr. Vol. 18 pp. 983. 
Stapper, G; Bernasconi, M; Nicoloso, N. & Parrinello, M. (1999) Phys. Rev. B Vol. 59, pp.  

797. 
Steele, D. & Fender, B. E. F. (1974) J. Phys. C: Solid State Phys. Vol. 7, pp. 1–11. 
Yamamura, Y; Kawasaki, S. & Sakai H. (1999) Solid State Ion. Vol. 126 pp. 181. 
Zacate, M.O.; Minervini, L.; Bradfield, D J.; Grimes, R W. & Sickafus, K E. (2000) Solid State 

Ion. Vol. 128, pp. 243. 
Zhang, C; Li, C J.; Zhang, G.; Ning, X J.; Li, C X.; Li, H. & Coddet, C. (2007) Mater. Sci. Eng. B 

Vol. 137, pp. 24. 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

368 

Devanathan, R; Weber, W J; Singhal, S C. & Gale, J D. (2006) Solid State Ion. Vol. 177, pp. 
1251. 

Dwivedi, A. & Cormack, A N. (1990) Phil. Mag. A Vol. 61, pp. 1. 
Dyre, J.C.; Maass, P.; Roling, B. & Sidebottom, D.L. (2009) Rep. Prog. Phys. Vol. 72, pp. 

046501. 
Etsell, T H. & Flengas S N. (1970) Chem. Rev. Vol. 70, pp. 339.  
Frenkel, D. & Smit, B. (1996) Understanding Molecular Simulation: From Algorithms to 

Applications (New York: Academic). 
Fisher, C A J. & Matsubara, H. (1998) Solid State Ion. Vol. 115, pp. 311. 
Fisher, C A J. & Matsubara, H. (1999) Comput. Mater. Sci. Vol. 14, pp. 177.  
Fukui, T; Murata, K.; Ohara, S.; Abe, H.; Naito M. & Nogi, K. (2004) J. Power Sources, Vol. 

125, pp. 17. 
Gale, J. & Rohl, A.L. (2003) Mol. Simul. Vol. 29, pp. 291. 
Gatewood, D.S.; Turner, C.H. & Dunlap, B.I. (2011) ECS Transactions, Vol. 35, “Solid-Oxide 

Fuel Cells 12”, pp. 1055–1063. 
Hayashi, H; Saito, T; Maruyama, N; Inaba, H; Kawamura, K. & Mori, M. (2005) Solid State 

Ion. Vol. 176, pp. 613. 
Heiroth, S; Lippert Th; Wokaum, A. & Döbeli M. (2008) Appl.Phys. A Vol. 93 pp. 639. 
Howard, C J; Hill, R J. & Reichert B E. (1988) Acta Crystallogr. B Vol. 44, pp. 116. 
Hull, S. (2004) Rep. Prog. Phys. Vol. 67, pp. 1233-1314.  
Ingel, R P. & Lewis D. (1986) J. Am. Ceram. Soc. Vol. 69, pp. 325. 
Ioffe, A. J; Rutman, D. S. & Karpachov, S.V. (1978) Electrochim. Acta Vol. 23, pp. 141. 
Ishizawa, N.; Matsushima, Y.; Hayashi, M. & Ueki, M. (1999) Acta Crystallogr., Sect. B Vol. 

55, pp. 726. 
Khan, M S; Islam, M S. & Bates, D R. (1998) J. Mater. Chem. Vol. 8, pp. 2299. 
Kilo, M; Argirusis, C; Borchardt, G. & Jackson, R A. (2003) Phys. Chem. Chem. Phys. Vol. 5, 

pp. 2219. 
Korte, C.; Peters, A.; Janek, J.; Hesse, D. & Zakharov, N. (2008) Phys. Chem. Chem. Phys. 

Vol. 10, pp. 4623.  
Krishnamurthy, R.; Yoon, Y G.; Srolovitz, D J. & Car, R. (2004) J. Am. Ceram. Soc. Vol. 87 pp. 

1821. 
Lammert, H. & Heuer, A. (2010) Phys. Rev. Lett. Vol. 104, pp. 125901. 
Lau, K. C.; Turner, C.H. & Dunlap, B. I. (2008) Solid State Ion. Vol. 179, pp. 1912. 
Lau, K. C.; Turner, C.H. & Dunlap, B. I. (2009) Chem. Phys. Lett. Vol. 471, pp. 326. 
Lau, K. C. & Dunlap, B. I. (2009) J. Phys.: Condens. Matter Vol. 21, pp. 145402. 
Lau, K. C. & Dunlap, B. I. (2011) J. Phys.: Condens. Matter Vol. 23, pp. 035401. 
Lashtabeg, A. & Skinner, S J. (2006) J. Mater. Chem. Vol. 16, pp. 3161.  
Lewis, G V. & Catlow, C R A. (1985) J. Phys. C: Solid State Phys. Vol. 18, pp. 1149. 
Li, X. & Hafskjold, B. (1995) J. Phys.: Condens. Matter Vol. 7, pp. 1255. 
Lindan, P J D. & Gillan, M J (1993) J. Phys.: Condens. Matter Vol. 5, pp. 1019. 
March, G E. (1982) Solid State Ion. Vol. 7 pp. 177. 
Minervini, L; Grimes, R W. & Sickafus, K E. (2000) J. Am.Ceram. Soc. Vol. 83, pp.  

1873. 
Morinaga, M.; Cohen, J. B. & Faber, J. Jr. (1979) Acta Crystallogr. Vol. A35, pp. 789– 

795. 

 
The Roles of Classical Molecular Dynamics Simulation in Solid Oxide Fuel Cells 

 

369 

Morinaga, M.; Cohen, J. B. & Faber, J. Jr. (1980) Acta Crystallogr. Vol. A36, pp. 520– 
530.  

Nakamura, A. & Wagner, J B Jr. (1986) J. Electrochem. Soc. Vol. 133 pp. 1542. 
Okazaki, H; Suzuki, H. & Ihata, K. (1994) Phys. Lett. A Vol. 188, pp. 291. 
Ostanin, S; Salamatov E; Craven, A J; McComb, D W. & Vlachos D. (2002) Phys. Rev. B Vol. 

66, pp.132105. 
Ostanin, S. & Salamatov E. (2003) Phys. Rev. B Vol. 68, pp. 172106. 
Pascual, C. & Duran, P. (1983) J. Am. Ceram. Soc. Vol. 66 pp. 23. 
Pornprasertsuk, R.; Cheng, J.; Huang, H. & Prinz, F. B. (2007) Solid State Ion. Vol. 178, pp. 

195. 
Pietrucci, F; Bernasconi, M; Laio, A. & Parrinello, M. (2008) Phys. Rev. B Vol. 78, pp.  

094301. 
Predith, A; Ceder, G; Wolverton, C; Persson K. & Mueller T. (2008) Phys. Rev. B Vol. 77, pp. 

144104. 
Ralph, M.; Schoeler, A. C. & Krumpelt, M. (2001) J. Mater. Sci. Vol. 36, pp. 1161.  
Rapaport, D.C. 2004 The Art of Molecular Dynamics Simulation 2nd Edn (Cambridge: 

Cambridge University Press). 
Sayle, D C. (1999) J. Mater. Chem. Vol. 9, pp. 2961.  
Sayle, D C; Doig, J A; Parker, S C; Watson, G W. & Sayle, T X T. (2005) Phys. Chem. Chem. 

Phys. Vol. 7 pp. 16. 
Sayle, D C; Maicaneannu, S A. & Watson, G W. (2002) J. Am. Chem. Soc. Vol. 124, pp.  

11429. 
Sidebottom, D.L. (2009) Rev. Mod. Phys. Vol. 81, pp. 999.  
Turner, C.H.; W. An.; Dunlap. B.I.; Lau, K.C. & Wang, X. (2010) Annual Reports in 

Computational Chemistry, Vol. 6, pp. 201-234. 
van Duin, A C T.; Merinov, B V; Jang, S S. & Goddard, W A III. (2008) J. Phys. Chem. A Vol. 

112, pp. 3133. 
Veal, B. W.; McKale, A. G.; Paulikas, A. P.; Rothman, S. J. & Nowicki, L. J. Physica B. Vol 

150, pp. 234–240. 
Wang, X.; Lau, K. C.; Turner, C. H. & Dunlap, B.I. (2010) J. Electrochem. Soc. Vol. 157, pp. 

B90–8. 
Wang, X.; Lau, K. C.; Turner, C. H. & Dunlap, B.I. (2010) J. Electrochem. Soc. Vol. 195, pp. 

4177. 
Sawaguchi, N. & Ogawa, H. (2000) Solid State Ion. Vol. 128 pp. 183. 
Schelling, P K; Phillpot, S.R. & Wolf, D. (2001) J. Am. Ceram. Soc. Vol. 84, pp. 1609. 
Shimojo, F.; Okabe, T.; Tachibana, F.; Kobayashi, M. & Okazaki, H. (1992) J. Phys. Soc. Japan 

Vol. 61, pp. 2848. 
Smith, D K. & Newkirk, H W. (1965) Acta Crystallogr. Vol. 18 pp. 983. 
Stapper, G; Bernasconi, M; Nicoloso, N. & Parrinello, M. (1999) Phys. Rev. B Vol. 59, pp.  

797. 
Steele, D. & Fender, B. E. F. (1974) J. Phys. C: Solid State Phys. Vol. 7, pp. 1–11. 
Yamamura, Y; Kawasaki, S. & Sakai H. (1999) Solid State Ion. Vol. 126 pp. 181. 
Zacate, M.O.; Minervini, L.; Bradfield, D J.; Grimes, R W. & Sickafus, K E. (2000) Solid State 

Ion. Vol. 128, pp. 243. 
Zhang, C; Li, C J.; Zhang, G.; Ning, X J.; Li, C X.; Li, H. & Coddet, C. (2007) Mater. Sci. Eng. B 

Vol. 137, pp. 24. 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

370 

Zhao, X. & Vanderbilt, D. (2002) Phys. Rev. B Vol. 65, pp. 075105.  
Zhu, Q. & Fan, B. (2005) Solid State Ion. Vol. 176, pp. 889. 18 

Molecular Dynamics Simulation and 
Conductivity Mechanism in Fast Ionic  

Crystals Based on Hollandite NaxCrxTi8-xO16 
Kien Ling Khoo1,2 and Leonard A. Dissado2 

1Invion Technologies Sdn Bhd 
2Engineering Department, University of Leicester, Leicester  

1Malaysia 
2UK 

1. Introduction 
Fast ion conductors are keystone materials in the development of high performance solid 
oxide fuel cells and solid electrolytes. In spite the significant contributions in this area a 
fundamental understanding of the correlation between crystal structure and ionic 
conductivity is still lacking. In this chapter we report our recent computer simulation results 
on Hollandite ionic crystals. The objective of this work is to provide the structural 
parameters which will lead to the design and synthesis of high performance ionic 
conductors. 

Hollandites are ionic crystals of a rather unusual kind, in which the ions of one type are in a 
disordered and highly mobile state (Dixon & Gillan, 1982). Such materials often have rather 
special crystal structures in that there are open tunnels or layers through which the mobile 
ions may move (West, 1988). Their crystal structure corresponds to a family of compounds 
of general formula AxM4-xNyO8. The basic formula of the Hollandite structure used in the 
research is Nax(Ti8-xCrx)O16, (Michiue & Watanabe, 1995a, 1996). The chromium and 
titanium ions are randomly placed in unit cells according to the relative proportions of 
titanium and chromium ions with a corresponding amount of sodium ions to compensate 
for the smaller charge on the chromium ions (+3) compared to the titanium ions (+4). 

The main interest of this Na-priderite is its structure as a promising (1-D) Na ion conductor 
(Michiue & Watanabe, 1995b). Priderites, titania-based hollandites, are typical one-
dimensional ion conductors in which the 1-D tunnels are available for transport of cations in 
the tunnel (hereafter the “tunnel ion”) (Michiue & Watanabe, 1995a). Priderites are generally 
represented by AxMyTi8-yO16, where A is the alkali or alkaline earth ions and M, di- or 
trivalent cations (Michiue & Watanabe, 1995a; A. Byström & A.M. Byström, 1950). The host 
structure for the hollandite being used mainly consists of titanium ions and oxygen ions. 
These titanium ions are each octahedrally bonded to six oxygen ions. Two such octahedra 
are joined by sharing an edge, and these doubled groups share further edges above and 
below to form extended double strings parallel to the growth axis. Four such double strings 
are joined by corner sharing to form a unit tunnel. The sodium ions are situated in the 
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tunnels, and each is ionically bonded to eight oxygen ions of the host structure at the corners 
of a slightly distorted cube. These cubes form a string of ion cages along the axis of a tunnel, 
and since not all cages have a chromium ion in the place of a titanium ion not all cages 
contain a sodium ion. The availability of vacant sites into which the sodium ion can move is 
what allows ion transport to be possible. A typical hollandite structure is shown in figure 1. 

 
Fig. 1. A typical hollandite structure projected along the c-axis. 

The behaviour of the tunnel ion is usually complicated because it interacts not only with the 
ions in the lattice sites but also with the other tunnel ions. The main two interactions are 
Lennard-Jones potential for the short range and Coulomb potential for the long range. 
Although the ions at the lattice sites give a potential surface for the tunnel ions, which the 
sodium ions move on, the interactions with other sodium ions in the tunnel is a many body 
problem like a liquid. 

Herein, we investigate the response of the sodium ions under the effect of electric field. The 
dielectric behaviour of the hollandites is typically studied in the low frequency region [102-
109 Hz]. Dryden and Wadsley (Dryden & Wadsley, 1958), in the first publication on the 
structure and electrical properties of a hollandite, reported the existence of a dielectric 
relaxation in several BaMg hollandites, which had a maximum absorption at room 
temperature in the radio frequency region of the spectrum (105-108 Hz). They reported that 
the dielectric absorption was only detected when the electric field was in the direction of the 
tunnel. The activation energy for the peak frequency representing the energy barrier to be 
overcome for ion displacement was found to be 0.17eV. Cheary and Dryden (Cheary & 
Dryden, 1991) reported that the mobility of the tunnel ion in Ba hollandite is very low except 
in limited regions and the activation energy that they obtained is 0.24eV. Activation energies 
of the order 0.05eV claimed by others was only detected in some samples with the presence 
of impurity TiO2 as a second phase. Since then there have been further experimental work 
on the dielectric properties of hollandites published by Singer et al (Singer et al., 1973). 
Yoshikado et al (Yoshikado et al., 1982) emphasize the loss factor (”) at low frequencies 
which increases with decreasing frequency and usually depends on frequency as f-n where 
n<1. Jonscher (Jonscher, 1983) concluded that the response of fast ion conductors follows the 
“universal law” for the charge carriers. He showed that strong low-frequency dispersion 
occurs at high temperature, 373K, in the hollandite (K1.8Mg0.9Ti7.1O16). The behaviour in the 
high frequency region is not well understood. Michiue and Watanabe (Michiue & Watanabe, 
1999) reported that the strong response observed for the imaginary part of the dielectric 
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permittivity for K-hollandites around 100-300 cm-1 (3x1012 – 9x1012 Hz) is due to the 
vibration of the framework structure. Not much work has been done in investigation for the 
frequency range around 1.2-70 cm-1 (3.6x1010 – 2.1x1012 Hz). 

Dissado and Hill (Dissado & Hill, 1983) predicted that particles moving in a flexible local 
environment experienced a cooperative interaction between the particle and their 
environment leading to a specific form of dielectric response, the constant phase angle 
response, '( ) "( ) pC f C f f   . Dissado and Alison (Dissado & Alison, 1993) showed that 
this form of response included a Poley absorption peak in the far infra-red region of the 
spectrum. This form of absorption peak was observed by Poley (Poley, 1955), Davies (Davies 
et al, 1969) and some others (Johari, 2002; Chantry, 1977) in both liquids and solids and was 
named after Poley. The “liquid-like” hollandite structure is similar in form to the materials 
in which the Poley peak is observed, and hence such a peak can be expected. The theories 
(Dissado & Alison, 1993; Poley, 1955) suggest that this peak will be caused by the 
cooperative librations of the dipole produced by the sodium ions and their environmental 
counter-charges as the sodium ions displace under the many-body interactions of one 
another. It is the intention here to use molecular dynamics simulations to see if the predicted 
Poley absorption will be produced by such motions even in the absence of vibrations and 
flexible displacement in the surrounding crystal. 

2. Molecular dynamics (MD) simulation 
Molecular dynamics (MD) simulations technique has been used in this research to perform 
the atomistic calculations, of frequency dependent electrical conductivity in Nax(Ti8-xCrx)O16, 
(x = 1.7). MD simulation is generally carried out to compute the motions of individual 
molecules in models of solids, liquids and gases. The key idea is motion, which describes 
how positions, velocities, and orientation change with time (Haile, 1992). The MD 
simulation method is carried out in such a way that atoms are represented by point particles 
and the classical (Newton) equations of motion, “force equals mass times acceleration or F = 
ma” are integrated numerically. The motions of these large numbers of atoms are governed 
by their mutual interatomic interaction. MD simulations are limited largely by the speed 
and storage constraints of available computers. Hence, simulations are usually done on 
system containing 100-1000 particles, with a time step of 1x10-15 s. This technique for 
simulating the motions of a system of particles when applied to biological macromolecules 
gives the fluctuations in the relative positions of the atoms in a protein or in DNA as a 
function of time. Knowledge of these motions provides insights into biological phenomena. 
MD is also being used to determine protein structure from NMR, to refine protein X-ray 
crystal structures faster from poorer starting models, and to calculate the free energy 
changes resulting from mutation in proteins (Karpus & Petsko, 1990). 

The construction of the molecular dynamics model involved mainly model development 
and the use of the Molecular Dynamics simulation technique to solve the equation of motion 
iteratively. In model development, firstly the interaction between ions and the interaction 
between ion and environment have to be defined. The interaction between ions comprises 
three components: Lennard-Jones potential, Coulomb potential and Van der Waals’ 
attraction. The rigid lattice approximation is being used in the simulation. This describes the 
interaction between the ions and the environment. In the rigid lattice approximation only 
the tunnel ions are allowed to displace from their equilibrium position. The environment 
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tunnels, and each is ionically bonded to eight oxygen ions of the host structure at the corners 
of a slightly distorted cube. These cubes form a string of ion cages along the axis of a tunnel, 
and since not all cages have a chromium ion in the place of a titanium ion not all cages 
contain a sodium ion. The availability of vacant sites into which the sodium ion can move is 
what allows ion transport to be possible. A typical hollandite structure is shown in figure 1. 

 
Fig. 1. A typical hollandite structure projected along the c-axis. 
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1999) reported that the strong response observed for the imaginary part of the dielectric 
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permittivity for K-hollandites around 100-300 cm-1 (3x1012 – 9x1012 Hz) is due to the 
vibration of the framework structure. Not much work has been done in investigation for the 
frequency range around 1.2-70 cm-1 (3.6x1010 – 2.1x1012 Hz). 

Dissado and Hill (Dissado & Hill, 1983) predicted that particles moving in a flexible local 
environment experienced a cooperative interaction between the particle and their 
environment leading to a specific form of dielectric response, the constant phase angle 
response, '( ) "( ) pC f C f f   . Dissado and Alison (Dissado & Alison, 1993) showed that 
this form of response included a Poley absorption peak in the far infra-red region of the 
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2. Molecular dynamics (MD) simulation 
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molecules in models of solids, liquids and gases. The key idea is motion, which describes 
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function of time. Knowledge of these motions provides insights into biological phenomena. 
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crystal structures faster from poorer starting models, and to calculate the free energy 
changes resulting from mutation in proteins (Karpus & Petsko, 1990). 

The construction of the molecular dynamics model involved mainly model development 
and the use of the Molecular Dynamics simulation technique to solve the equation of motion 
iteratively. In model development, firstly the interaction between ions and the interaction 
between ion and environment have to be defined. The interaction between ions comprises 
three components: Lennard-Jones potential, Coulomb potential and Van der Waals’ 
attraction. The rigid lattice approximation is being used in the simulation. This describes the 
interaction between the ions and the environment. In the rigid lattice approximation only 
the tunnel ions are allowed to displace from their equilibrium position. The environment 
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ions still give an interaction with the tunnel ions, i.e. they produce a constant potential 
surface for the tunnel ions. The tunnel ions interact with one another and are allowed to 
displace. After this has been done, the equations of motion are developed. A program, 
Gretep (LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments) is used 
to generate the positions of all the ions by keying in parameters such as space group, unit 
cell dimensions, atomic parameters and etc. Then titanium ions are replaced by chromium 
ions randomly placed in unit cells along the tunnel according to the relative proportions of 
titanium and chromium. A tunnel ion, which is the sodium ion, is added to the model 
structure for every chromium ion, in order to preserve charge neutrality. 

2.1 Modeling of ion-ion interactions 

The molecular interactions are based on the intermolecular potential energy function. The 
total potential energy between two ions is the sum of the Lennard-Jones potential and 
Coulomb potential (West, 1988), 
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where p is about 10 and the values for  are different for different ion-pairs, e is the electron 
charge and r is the distance between two ions. The values for lambda for each ion-pair have 
to be found for the calculations of the equations of force. The method used is presented 
elsewhere (Khoo, 2003; Dissado and Khoo, 2006; Khoo et al., 2004, 2007). The relationship 
between the tunnel system and its surroundings is defined by using boundary conditions. 
These describe the interactions between the molecules with their surroundings. Rigid lattice 
approximation has been used in the simulation to simplify the simulation process and to 
reduce the simulation executable time. Rigid lattice approximation is done in such a way 
that only the tunnel ions, which are the sodium ions, are free to displace. All other ions in 
the lattice sites would remain static. However, there will still be interaction between sodium 
ions and the ions in the lattice sites. 

Reflective boundary conditions are used at the two ends of the tunnel. Rebound is a special 
type of collision involving a direction change; the result of the direction change is a large 
velocity change. Collisions in which particles rebound with the same speed are known as 
elastic collisions. Thus, the velocity of the ion that bounds back from the boundary should 
have the opposite sign and equal in magnitude with that velocity of ion which hits the 
boundary. The angle of the velocity hitting the boundary is the same as the angle leaving the 
boundary. Force is the derivative of potential energy. Therefore, the component of the force 
along the a-axis is given by equation 2. 
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where |Aion1 – Aion2| is the absolute value of the displacement in a-axis for ion1 and ion2 
and r is the distance between ion1 and ion2. The expressions for the component of forces in 
the b and c-axes are equivalent in form. The tunnel wall is made up by alternate stacking of 
two different oxygen-square layers which consist of four oxygen atoms denoted O1 at z = 0 
(square-plane) and four oxygen atoms denoted O2 at z = 0.5 (cavity). The number and the 
positions of the basic tunnel ions are obtained from the x-ray analysis (Michiue & Watanabe, 
1995a). There will be six sodium ions in the seven cavities, in other words in the 14 oxygen-
square layers. This is shown in figure 2. The position of the sodium ion will depend on the 
position of the chromium ion. 

 
Fig. 2. Schematic representation of a probable local arrangement for sodium ions in the 
tunnel of NaxCrxTi8-xO16. In the 7 x Cavity (indicated by the rectangular box), there are six 
sodium ions. 

From figure 2, it is clearly shown that there are three possible equilibrium positions for the 
sodium ions, Na1 (0.72,0.14,0.5), Na2 (0,0,0.2) and Na3 (0,0,0) (Michiue & Watanabe, 1995a). 
The three positions are very close to each other and therefore it is impossible for Na ions to 
occupy these positions simultaneously. The positions for the sodium ion are dependent on the 
position of the chromium ion. When a titanium ion in the square-plane is substituted by a 
chromium ion, a sodium ion (either Na2 or Na3) will be placed in the hollandite model as 
shown in the figure 3. The site of the chromium ion is chosen randomly from the titanium ions 
in the four corners, A, B, C or D. The Na2 and Na3 differ slightly in their position along the c-
axis. The atomic parameters for Na2 and Na3 in c-axis or z-axis shown in figure 3 are 0.2 and 0 
respectively. When a titanium ion in the cavity is substituted by a chromium ion, there will be 
four possible positions for the sodium ion (Na1). The chromium ion is chosen randomly from 
the titanium ions in the four corners, A, B, C or D. The sodium ion preferentially resides at an 
interstitial site within the same unit cell that contains a chromium ion (Michiue & Watanabe, 
1996) shown by the arrow in figure 3. In this work, 24 sodium ions have been considered. 
Therefore, four sets of the six sodium ions shown in figure 2 are stacked up together to form a 
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ions still give an interaction with the tunnel ions, i.e. they produce a constant potential 
surface for the tunnel ions. The tunnel ions interact with one another and are allowed to 
displace. After this has been done, the equations of motion are developed. A program, 
Gretep (LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments) is used 
to generate the positions of all the ions by keying in parameters such as space group, unit 
cell dimensions, atomic parameters and etc. Then titanium ions are replaced by chromium 
ions randomly placed in unit cells along the tunnel according to the relative proportions of 
titanium and chromium. A tunnel ion, which is the sodium ion, is added to the model 
structure for every chromium ion, in order to preserve charge neutrality. 

2.1 Modeling of ion-ion interactions 

The molecular interactions are based on the intermolecular potential energy function. The 
total potential energy between two ions is the sum of the Lennard-Jones potential and 
Coulomb potential (West, 1988), 

 
2

0
( )

4p
eV r

rr



   (1) 

where p is about 10 and the values for  are different for different ion-pairs, e is the electron 
charge and r is the distance between two ions. The values for lambda for each ion-pair have 
to be found for the calculations of the equations of force. The method used is presented 
elsewhere (Khoo, 2003; Dissado and Khoo, 2006; Khoo et al., 2004, 2007). The relationship 
between the tunnel system and its surroundings is defined by using boundary conditions. 
These describe the interactions between the molecules with their surroundings. Rigid lattice 
approximation has been used in the simulation to simplify the simulation process and to 
reduce the simulation executable time. Rigid lattice approximation is done in such a way 
that only the tunnel ions, which are the sodium ions, are free to displace. All other ions in 
the lattice sites would remain static. However, there will still be interaction between sodium 
ions and the ions in the lattice sites. 

Reflective boundary conditions are used at the two ends of the tunnel. Rebound is a special 
type of collision involving a direction change; the result of the direction change is a large 
velocity change. Collisions in which particles rebound with the same speed are known as 
elastic collisions. Thus, the velocity of the ion that bounds back from the boundary should 
have the opposite sign and equal in magnitude with that velocity of ion which hits the 
boundary. The angle of the velocity hitting the boundary is the same as the angle leaving the 
boundary. Force is the derivative of potential energy. Therefore, the component of the force 
along the a-axis is given by equation 2. 

 
2

1 2
0

( )
4a p

pdV r dr dr eF
da da da rr


     (2) 

 
2 2 2( 1 2) ( 1 2) ( 1 2)r Aion Aion Bion Bion Cion Cion       (3) 

 

| 1 2|dr Aion Aion
da r


  (4) 

Molecular Dynamics Simulation and Conductivity  
Mechanism in Fast Ionic Crystals Based on Hollandite NaxCrxTi8-xO16 

 

375 

where |Aion1 – Aion2| is the absolute value of the displacement in a-axis for ion1 and ion2 
and r is the distance between ion1 and ion2. The expressions for the component of forces in 
the b and c-axes are equivalent in form. The tunnel wall is made up by alternate stacking of 
two different oxygen-square layers which consist of four oxygen atoms denoted O1 at z = 0 
(square-plane) and four oxygen atoms denoted O2 at z = 0.5 (cavity). The number and the 
positions of the basic tunnel ions are obtained from the x-ray analysis (Michiue & Watanabe, 
1995a). There will be six sodium ions in the seven cavities, in other words in the 14 oxygen-
square layers. This is shown in figure 2. The position of the sodium ion will depend on the 
position of the chromium ion. 

 
Fig. 2. Schematic representation of a probable local arrangement for sodium ions in the 
tunnel of NaxCrxTi8-xO16. In the 7 x Cavity (indicated by the rectangular box), there are six 
sodium ions. 

From figure 2, it is clearly shown that there are three possible equilibrium positions for the 
sodium ions, Na1 (0.72,0.14,0.5), Na2 (0,0,0.2) and Na3 (0,0,0) (Michiue & Watanabe, 1995a). 
The three positions are very close to each other and therefore it is impossible for Na ions to 
occupy these positions simultaneously. The positions for the sodium ion are dependent on the 
position of the chromium ion. When a titanium ion in the square-plane is substituted by a 
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respectively. When a titanium ion in the cavity is substituted by a chromium ion, there will be 
four possible positions for the sodium ion (Na1). The chromium ion is chosen randomly from 
the titanium ions in the four corners, A, B, C or D. The sodium ion preferentially resides at an 
interstitial site within the same unit cell that contains a chromium ion (Michiue & Watanabe, 
1996) shown by the arrow in figure 3. In this work, 24 sodium ions have been considered. 
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longer tunnel. C++ is used as a tool to carry out the molecular dynamics simulation, to 
perform the complicated calculations and to store the required results in the specified text files. 
A total of five C++ programs have been written and the flow chart is shown in figure 4. Details 
of the calculations can be found in reference (Khoo, 2003). 

 
Fig. 3. Hollandite model projected slightly off the c-axis to give a clearer view of the 3-
dimensional structure. When TiA4+ is replaced by Cr3+, the preferable location for the Na1A+ 
ions is shown by the arrow, a similar situation is found for TiB4+, TiA4+ & TiD4+ as shown by 
Na1B+, Na1C+ and Na1D+. 

 
Fig. 4. Flow chart showing the five program codes written to perform the MD simulation, to 
carry out the complicated calculations and to generate the data required in text files. 
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3. Results 
3.1 Position of sodium ions in c-axis without applied field 

After ten runs have been carried out with different initial velocities for the individual 
sodium ions with their average value being set by the defined temperature, the  
average positions for each of the sodium ions in the c-axis are then calculated. Figure 5a 
shows the average position for the first six sodium ions along the c-axis with the initial 
conditions of 273K, 100000 intervals and time step=10-15s. This gives a good comparison  
of the positions of the sodium ions throughout the 100000 intervals. The sodium ions  
only vibrate in their equilibrium positions depending upon where their equilibrium 
positions were. For example, the sixth sodium ion (pink) only vibrates around the cavity  
it belongs to. 

 
Fig. 5. (a) The average position along the c-axis for the first six sodium ions (b) The 
arrangement for the first six sodium ions in the tunnel. The arrows show the alignment of 
the cavities in the tunnel and the graphs. 

3.2 Position of sodium ions in c-axis with applied field 

An electric field in the range of 7.43MV/m to 74.3GV/m was applied along the c-axis to the 
hollandite model at the 5001th time interval. The initial conditions for the results shown 
below were temperature=273K, time step=10-15s, 100,000 intervals and electric 
field=743MV/m. Figure 6 shows the positions of the first six sodium ions as a function of 
time. Over the initial 5000 intervals, which was in the absence of the electric field, the 
sodium ions just vibrate around their equilibrium positions. Starting from 5001th intervals, 
the positions of the sodium ions change dramatically. For example, the sixth sodium ion 
(pink) moved to the next cavity at some points and then back to the original cavity and then 
to the next cavity again. 
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Fig. 6. Position of the first six sodium ions in c-axis when electric field of 743MV/m was 
applied along the c-axis to the hollandite model at 5001th time interval. 

3.3 The polarisation 

The polarisation along the c-axis was calculated for a range of electric fields and 
temperatures. Figure 7 shows the polarisation as a function of time. Over the initial 5000  

 
Fig. 7. The polarisation in c-axis with an applied field of 743MV/m as a function of time.  
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intervals, the polarisation tends to fluctuate around zero. Once the electric field is applied at 
5001th interval, the polarisation increases rapidly to around 0.7 C/m2 and after that sudden 
increase, the polarisation remains at an average of that value for the rest of the time 
intervals. The results under different electric field are similar, but a smaller field gives a 
smaller polarisation. A running average of the polarisation was taken over 100 intervals and 
only the results starting from 5001th intervals are taken into account. This is because the 
results of interest are those under the effect of electric field. 

Figure 8 gives the continuous average for the polarisation as a function of time. The plot 
obtained was not as noisy as the polarisation plot shown in figure 7, as the running average 
over 100 intervals eliminates vibration periods at 10-13 s and shorter. 

 
Fig. 8. Continuous average for the polarisation with an applied field of 743MV/m as a 
function of time. 

3.4 Fast Fourier Transform (FFT) – Susceptibility 

The Fast Fourier Transform (FFT) is performed in order to calculate the behaviour of the 
hollandite model in the frequency domain. The continuous average of the polarisation is 
imported to “Origin” program. A graph of polarisation versus time is plotted. Only the data 
between the 5001th and 100000th gives the polarisation since the electric field is switched on 
at the 5000th interval. The time derivative of the polarisation is then obtained via the 
program, and is plotted. The one-sided Fourier Transform of   0/ /dP dt Ee  gives the 
frequency dependent dielectric susceptibility for comparison with experiment. The easier 
way to carry out the FFT in “Origin” software is by performing FFT on the /dP dt , the 
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results obtained are then divided by electric field, E and permittivity of free space, 0 to give 
the real and imaginary parts of the susceptibility. The FFT mathematical description is 
shown as follows: 
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with /kF k N  , where FFT transforms x[n] into X[k]. The input data set is x[n] with index 
n in the range 0 1n N   . It is easy to convert the index into “time” t n , where   is the 
(time) interval, and /kF k N  into “frequency” /kf k N . 

Curve fitting is important, as it will give the best curve fit to the graph obtained. Firstly, the 
Real and Imaginary part of the susceptibility (the results generated by the FFT from the 
previous section) are plotted against frequency in two different graphs. This is to ease the 
fitting procedure as the two graphs are of different shape hence two different fitting functions 
are defined. If the results exhibit relaxation behaviour, then we would expect the loss peak to 
be characterised by power law frequency dependencies above and below the peak frequency. 

If the results show a resonance character then we have to fit them to an appropriate 
expression. Two types of expressions are commonly used. 

1. A Gaussian absorption function. This relates to a superposition of oscillator resonances 
with each oscillator vibrating independently of one another at a specific frequency, with 
the probability of a given frequency being defined by the Gaussian function. In our case 
the vibrations are those of the sodium ions, and these are not independent of one 
another, so the Gaussian form should not apply. 

2. A Lorentzian function. This relates to an oscillator whose oscillations are damped by 
interaction with its surroundings. In our case we can think of a chosen sodium ion 
oscillator as being damped by its interaction with the other sodium ions. So the function 
may approximate to our situation. However, the other sodium ions also contribute to 
the response via group motions, so the Lorentzian is at the best an approximation to our 
hollandite model. Nonetheless the Lorentzian will be fitted to the data to see how good 
an approximation it is, and to determine in what respect it fails. 

The real part of the susceptibility given in term of x (frequency) and w (damping factor) is 
shown in equation 6: 
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The imaginary part of the susceptibility given in term of x and w is shown in equation 7: 
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xc, w and A  are the parameters used for the resonant frequency, full width at ½ maximum 
and amplitude factor respectively. 

The real part of the susceptibility, ’(f) and the imaginary part of the susceptibility, ”(f) 
were then obtained by dividing the results generated from the FFT by the applied field and 
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permittivity of free space. The ’ (f) and ”(f), obtained from the FFT, are plotted as a 
function of frequency (f) as shown in figure 9. 

The real and imaginary part of the susceptibility vs Frequency (first 50 intervals)
field=743MV/m, 273K, 100000 intervals, time step=10-15s

 
Fig. 9. The real and imaginary parts of the susceptibility as a function of frequency with an 
electric field of 743MV/m. 

The simulation was run for 100ps (100000 x 10-15s), which correspond to 1010 Hz. The 
susceptibility at frequencies below 4x1010Hz is unreliable as it relates to FFT 
extrapolations to regions, which are not consistent with the largest time (10-10s) reached by 
the computation. At the higher frequency range, the smoothing process has removed the 
frequency higher than 2x1011 Hz; hence, frequency higher than 2x1011 Hz is similarly 
unreliable. Figure 9 shows ’(f) and ”(f) as a function of frequency. ’(f) goes to a positive 
value, then drops to a negative value and then starts to fluctuate around a smaller 
negative value. ”(f) shows a peak at about 1x1011 Hz and the frequency of the peak  
lies about half way along the slope of the ’(f). From the overall non-monotonic behaviour 
of ’(f), it is clear that the response is not that of a dielectric relaxation; hence the  
curve fitting to the Lorenzian function which is the resonance response would have to be 
carried out. 

3.5 Depolarisation 

An electric field was applied to the hollandite model at the start of the simulation for 5000 
intervals. Then the field was switched off at 5001th interval. The depolarisation, continuous 
average for the depolarisation, FFT and curve fitting were obtained similarly to the procedures 
outlined above. Depolarisation was carried out with initial conditions of temperature=297K, 
time step=10-15s, 100000 intervals and electric field=7.43GV/m. The results of the curve fitting 
to equations 6 and 7 for ’(f) and ”(f) (obtained from the depolarisation) respectively as a 
function of frequency are shown in the figure 10 and 11 below. 
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with /kF k N  , where FFT transforms x[n] into X[k]. The input data set is x[n] with index 
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The imaginary part of the susceptibility given in term of x and w is shown in equation 7: 
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xc, w and A  are the parameters used for the resonant frequency, full width at ½ maximum 
and amplitude factor respectively. 

The real part of the susceptibility, ’(f) and the imaginary part of the susceptibility, ”(f) 
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Fig. 10. The ’(f) plot with the best fitting curve (red) to equation 6 as a function of 
frequency. 

From figure 10, it is clearly shown that the equation 6 does not fit well to ’(f) at all. For a 
resonance response, the magnitude for the lower frequency range should not be lower than 
the magnitude in the higher frequency range. Figure 11 shows that the equation 7 does not 
fit well with the simulation values of ”(f) either. The fitted curve fits nicely in the higher 
frequency range but in the lower frequency range, the gradient of ”(f) is much bigger than 
the fitting curve. It seems that the hollandite model had not reached an equilibrium state 
when the electric field was taken off. From the figure 12, the ’(f) and the ”(f) for the 
polarisation and the depolarisation were different although they should be identical for a 
linear response. Both the magnitude of the ’(f) and ”(f) for the depolarisation are bigger 
than the ’(f) and ”(f) of the polarisation. The resonance frequency of ”(f) for the 
polarisation is lower compared to the resonance frequency of ”(f) for the depolarisation. 

3.6 Results obtained at the temperatures of 200K to 373K and with electric fields 
between 7.43MV/m and 74.3GV/m 

The simulation has also been carried out with initial conditions of temperature between 
200K and 373K, which were 200K, 250K, 273K, 297K and 373K. At each temperature, six 
different electric fields were investigated between 7.43MV/m and 74.3GV/m, which were 
7.43MV/m, 74.3MV/m, 371.5MV/m, 743MV/m, 7.43GV/m and 74.3GV/m. On each of the 
results the procedures described in section 3.4 were carried out for the data analysis. The  

Molecular Dynamics Simulation and Conductivity  
Mechanism in Fast Ionic Crystals Based on Hollandite NaxCrxTi8-xO16 

 

383 

 
Fig. 11. The ”(f) plot with the best curve fitting (red) to equation 7 as a function of 
frequency. 

 
Fig. 12. The results of the curve fitting to equation 6 and 7 for both the ’(f) and the ”(f) of 
polarisation and the depolarisation respectively with an electric field of 7.43GV/m. 
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real part of the susceptibility does not fit well with equation 6. Hence, only the values for the 
parameters used (xc, w, A0) for the imaginary parts of the susceptibility are shown in table 1. 

For all five temperatures (200K to 373K), the imaginary parts of the susceptibility (fitted to 
equation 7) for the electric field in the range of 7.43MV/m to 7.43GV/m show an absorption 
peak. The magnitude of the absorption peak differs with temperature and electric field. At 
an electric field of 74.3GV/m the polarisation was found to oscillate between two values. 
The time period can be determined from the polarisation plot. An example of the 
polarisation plot at 200 K is given in figure 13 which is just a part of the polarisation plot 
(5500th-5530th intervals) with initial conditions of 200K, 74.3GV/m and time step=10-15s. The 
polarisation plot of 100000 intervals is the replication of the plot shown above. There are two 
and a half oscillations highlighted between the two red lines in the figure and the period of 
the oscillation is 4x10-15s. The time step for the simulation is 10-15s, and the period of the 
oscillation is four times the time step. Therefore, at high electric field, all the sodium ions 
were driven by this force field to move as a group and they show a single frequency 
vibration caused by reflections from the tunnel boundaries according to the input boundary 
conditions. 

 
Fig. 13. The polarisation in c-axis (5500th-5530th intervals) with an applied field of 74.3GV/m 
and at temperature=200K. 
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Table 1. The values for the parameters used (xc, w and A) for the curve fitting for the 
imaginary part of the susceptibility. 
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4. Discussion 
4.1 Position and trajectories of movement for the sodium ions 

Five different temperatures (200K to 373K) have been set as an initial condition but even at 
the highest temperature 373K, the sodium ions still have not gained enough energy to leave 
the equilibrium positions for the next available sites in the absence of an electric field. A 
comparison of the average position for the first and second sodium ions at 200K and 373K is 
shown in the figure 14. At 373K, the sodium ions have more energy as the fluctuations are 
bigger compared to the average positions at 200K, but the sodium ions still do not have 
enough energy to go into the next available site. 

 
Fig. 14. A comparison of the average positions along c-axis for the first and second sodium 
ions at 200K and 373K as a function of time. 

The next part of the research was to introduce the electric field to the hollandite model. The 
field was applied from 5001th interval to 100000th interval; it was clearly shown in figure 6 
that the fluctuations of the sodium ions increase dramatically at 5001th interval. This is due 
to the extra energy obtained by the sodium ions from the applied field. In figure 6, take the 
sixth sodium (pink) for example; it gained enough energy from the applied field to hop into 
the next available site, which is the next cavity. It then vibrates in this new site for about 
2000 intervals until it gained enough energy to hop back to the original cavity. This can be 
seen in figure 15. From the conservation of energy, in a closed system; the total energy is 
constant although energy may be transferred between kinetic and potential energy and from 
one group of sodium ions to another. In the case of the hollandite model, the energy is being 
swapped around between the sodium ions and this is clearly shown in the figure 16. Only 
three sodium ions have been shown here, the rest of the sodium ions would behave in a 
similar way. 
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Fig. 15. Trajectories of movement in three-dimensions of the 6th sodium ion in the hollandite 
model with field of 743MV/m. 

 
Fig. 16. A comparison of the position in c-axis for the 5th, 6th and 7th sodium ions with field of 
743MV/m. The light blue line represents the position of the cavity. 
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Figure 17 shows that when the dc-field was applied at 5001th interval, the sixth sodium ion 
starts to gain energy to move into the next empty site. With the applied field of 743MV/m, 
the sodium ion hops into the next cavity almost as soon as the field is applied, whereas with 
a lower applied field which is 7.43MV/m, about 9x10-12 s is needed for the first hop of the 
sodium ion. As the electric field increases, the number of hops into the neighbouring sites 
increases as well. 

 
Fig. 17. A comparison of the position in c-axis for the 6th sodium ion with field of 7.43MV/m 
and 743MV/m. The light blue line represents the cavity. 

This movement of the sodium ion is like a dipole moving around, as the sodium ion 
represents the positive part and the ions at the lattice site that formed the cage is the 
negative part. A relaxation behaviour would usually be expected to be obtained as the 
sodium ions hopping between equilibrium positions are like re-orienting dipoles. 

4.2 Frequency dependence of ’ and ” 

Frequency dependence of ’ and ” for a range of temperature and a range of field were 
obtained from the FFT procedure. The values for the frequency ’(f) and ”(f) obtained in 
our simulations are too high and this is because the hollandite model used (1 tunnel with 60 
layers) is only a small section of the whole crystal. If a bigger model had been considered, 
the average displacement of the ions would be much smaller because the movement of the 
sodium ions are affected by the sodium ions in the other tunnels, and a smaller polarisation 
and smaller value of ’(f) and ”(f) would be obtained. 

From the ’(f) obtained (figure 9); it is clearly shown that ’(f) is not a relaxation response as 
part of ’(f) gives negative values. Hence the results obtained for ’(f) and ”(f) would be more 
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likely to relate to a resonance response. The peak frequency for ”(f) is in the range of (2.7x1010 
– 8.8x1010 Hz). Ions hopping between equilibrium sites usually give a relaxation response, 
whereas in the case of hollandite model, a resonance response is obtained. What seems to be 
happening is that the movement of the sodium ions between sites change the vibration of the 
other sodium ions, so that the vibrations of each sodium ion in a group is coupled together and 
the hopping of one them to a new site destroys the group motion and acts like a damping 
effect on the resonance that is due to it, i.e. the motion of the system of dipoles behaves like a 
damped libration. This gives a good agreement to the prediction by Fröhlich (Fröhlich, 1958) 
who suggested that the absorption due to displacement of charges bound elastically to an 
equilibrium position is of resonance character, although in our case the ability of the sodium 
ions to displace from site to site adds a visco-elastic dimension to the situation. 

In order to fit ’(f) an additional resonance of amplitude y0 can be added in equation 6. y0 
relates to the isolated higher frequency oscillations which had been removed by the 
smoothing process. Figure 18 below shows the real and imaginary parts of the susceptibility 
with a smoothing level of 2000 (that is 2000 points have been used as the number of data 
points considered to be smoothed at a time). It is clearly shown that adding a higher 
frequency resonance improves the fit to the data, and hence that oscillations in the form of 
additional resonance absorptions are present. The lowest resonance absorption was at the 
same position as in the results shown in figure 9. 

The real and imaginary part of the susceptibility vs Frequency (first 70 intervals)
field=743MV/m, 273K, 100000 intervals, time step=10-15s, Smoothing level=2000

 
Fig. 18. The real and imaginary parts of the susceptibility as a function of frequency with an 
electric field of 743MV/m. 

A single Lorentzian function does not fit both ’(f) and ”(f) well. Equation 7 does not fit ”(f) 
well as it gives a symmetrical peak curve whereas ”(f) is not symmetrical. The simulated ”(f) 
data shows a steeper gradient at frequencies below the resonance absorption compared to the 
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fitted curve (equation 7). Similarly, equation 6 would not fit ’(f) as equation 6 would give a 
symmetrical plot in magnitude where the maximum and the minimum points have the same 
value in magnitude but different sign. This is understandable as the Lorentzian function is 
generated when a single oscillator is damped by the surroundings whereas in the hollandite 
model the movement of the sodium ions between sites depend on the other sodium ions. The 
hopping of any of the sodium ions would damp the libration of the rest of the sodium ions. 
Hence, there is no specific frequency, which can be considered as a resonance since the 
number of sodium ions taking part in a group oscillation can change, with each number 
involved having a different group-oscillator frequency and hence different resonance 
frequency. However, the Lorenzian function has been used because there is no general non-
linear frequency dependent expression available and we have to try to find some ways of 
expressing the results. As shown in figure 18 increasing the number of resonances improves 
the fit and hence we can expect when enough resonances have been included a good fit will be 
obtained within the limitations imposed by the time window of the simulation. 

4.3 Temperature dependence 

Simulations have been carried out for a range of electric field between 7.43MV/m and 
7.43GV/m and temperatures between 200K and 373K. The absorption peak frequency, 
which is also the resonance frequency, and the resonance peak height, has been plotted as a 
function of temperature for a range of electric field in figures 19 and 20. 

 
Fig. 19. The resonance frequency as a function of temperature for a range of electric field 
(7.43MV/m – 7.43GV/m). 

From figure 19 the resonance frequency is independent of temperature for all the different 
electric field applied, and from figure 20 the resonance peak height does not change 
significantly as the temperature increases. This behaviour is not what would be expected of 
a dielectric relaxation but is what would be expected from the oscillatory behaviour of 
groups of sodium atoms whose vibrations are coupled together, where the temperature 
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would affect the lifetime of the group oscillation and hence the half-width of the peak but 
not the frequency of the group oscillation. 

 
Fig. 20. The peak of the imaginary part of the susceptibility as a function of temperature for 
a range of electric field (7.43MV/m – 7.43GV/m). 

4.4 Poley absorption 

The imaginary part of the susceptibility has been plotted for a range of electric field 
(7.43MV/m – 7.43GV/m) at 297K as shown in figure 21 below. When the applied field gets 
higher, ” becomes smaller. This indicates that the higher the field, the less ions are involved 
in the group site-libration modes and more in damping (i.e. hopping between sites). The 
hopping of the sodium ions damp the libration of other sodium ions similar to the friction 
between the disc and annulus damps the libration in the Itinerant Oscillator (IO) model 
(Coffey et al., 1987). 

This IO model does not explain the process that happens in the hollandite model well 
enough as the IO model is a harmonic model and does not take into account the effect of 
molecular translations upon the potentials and forces controlling the motion, a factor that 
our molecular dynamics simulation have shown to be important. The periodic potential 
model (Vij & Hufnagel, 1985; Praestgaard & van Kampen, 1981) is also not a good 
approximation for the same reason. On the other hand, the process in the hollandite model 
has a good agreement with the cluster model presented by Dissado and Alison (Dissado & 
Alison, 1993), where the cluster model takes into account the translations of the dipole. The 
displacements (translations) of the solute molecule was affected by the positions of its 
surrounding solvent molecules (solvent cage) and vice versa to bring the group (cluster) into 
an equilibrium configuration. This will cause the deformation of the solvent cage so that 
reorientations of the solute dipole will also involve reorganisation of the solvent cage 
deformations. A parameter n was defined such that when n=0 the solute did not deform the 
cage and its dipole reorientation was overdamped giving a relaxation peak with the 
vibrations of the solvent providing the viscous damping. When n=1 the solute and solvent 
formed a single cooperative system giving a Poley absorption and no relaxation peak. When 
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fitted curve (equation 7). Similarly, equation 6 would not fit ’(f) as equation 6 would give a 
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Fig. 19. The resonance frequency as a function of temperature for a range of electric field 
(7.43MV/m – 7.43GV/m). 

From figure 19 the resonance frequency is independent of temperature for all the different 
electric field applied, and from figure 20 the resonance peak height does not change 
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would affect the lifetime of the group oscillation and hence the half-width of the peak but 
not the frequency of the group oscillation. 

 
Fig. 20. The peak of the imaginary part of the susceptibility as a function of temperature for 
a range of electric field (7.43MV/m – 7.43GV/m). 
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enough as the IO model is a harmonic model and does not take into account the effect of 
molecular translations upon the potentials and forces controlling the motion, a factor that 
our molecular dynamics simulation have shown to be important. The periodic potential 
model (Vij & Hufnagel, 1985; Praestgaard & van Kampen, 1981) is also not a good 
approximation for the same reason. On the other hand, the process in the hollandite model 
has a good agreement with the cluster model presented by Dissado and Alison (Dissado & 
Alison, 1993), where the cluster model takes into account the translations of the dipole. The 
displacements (translations) of the solute molecule was affected by the positions of its 
surrounding solvent molecules (solvent cage) and vice versa to bring the group (cluster) into 
an equilibrium configuration. This will cause the deformation of the solvent cage so that 
reorientations of the solute dipole will also involve reorganisation of the solvent cage 
deformations. A parameter n was defined such that when n=0 the solute did not deform the 
cage and its dipole reorientation was overdamped giving a relaxation peak with the 
vibrations of the solvent providing the viscous damping. When n=1 the solute and solvent 
formed a single cooperative system giving a Poley absorption and no relaxation peak. When 
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0<n<1, the solute motions were partitioned between the Poley absorption and relaxation 
peak. In our model the sodium ion system forms both solute (with ions able to hop to new 
sites) and solvent (with ions vibrating around their equilibrium sites). The surrounding 
lattice is held rigid and cannot be involved in the cage motions. 

 
Fig. 21. The imaginary part of the susceptibility has been plotted for a range of electric field 
(7.43MV/m – 7.43GV/m) at 297K. 

The kinetic energy of the sodium ions (defined by the temperature) would initially cause the 
librations of the sodium ions under the action of the forces from the ions in the fixed lattice 
sites. Forces from the environment (which is the other sodium ions with respect to a 
particular sodium ion, and the ions in the lattice sites) causes the sodium ions themselves to 
produce a force acting on each other, so that the displacement of each sodium ion would be 
adjusted according to the new equilibrium configuration at each interval, and hence 
translations changing the potentials occurs on top of the librations. The cluster model would 
suggest that since all sodium ion motions act cooperatively the parameter n1 and there 
would be a Poley peak with either a weak relaxation peak or none at all. Although the 
simulations have not been carried through to times longer than ~10-10s, this seems to be 
what is happening, as the ion motions include both hopping and vibration and give just a 
damped resonance without any evidence of a relaxation peak. 

At 297K, the resonance frequency is in the range of about 4.5x1010 – 8.8x1010 Hz for a range 
of electric field (7.43MV/m – 7.43GV/m). Poley (Poley, 1955) predicted that there is  
a significant power absorption in dipolar liquids at the ambient temperature in the  
1.2 - 70 cm-1 (3.6x1010 – 2.1x1012 Hz) region and Davies (Davies et al, 1969) named the broad 
peak as ‘Poley absorption’. The absorption peaks obtained for the hollandite model lie at the 
lower end of Poley’s prediction range. This absorption is due to the libration of the sodium 
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ions confined to the host structure undergoing displacement under the effect of electric field. 
The absorptions calculated lie below the resonance frequency of a single sodium ion, which 
defines the edge of the quantum region. They correspond to coupled displacements of 
sodium ion groups. It would be reasonable to assume that our calculated absorption 
corresponds to what would be the Poley absorption for this material. A similar process 
happens in ice clathrate materials as shown by Johari (Johari, 2002), where an absorption 
peak was seen in the far-infrared region (7.5x1011 and 1.14x1012 Hz) and was contributed by 
the rotational oscillation of the tetrahydrofuran molecule, while confined to the cages of the 
ice clathrate crystal. 

From figure 19, the resonance frequency is independent of temperature for all the different 
electric field applied. This is different from the deduction made by Johari (Johari, 2002) on 
the ice clathrate crystal and Nouskova et al (Novskova et al., 1986) on the model of a 
restricted rotator where the resonance frequency decreases with the increase in temperature 
due to the increase of the libration magnitude. From figure 20, the resonance peak height 
does not change much as the temperature increases. This is also different from  
the deduction made by both Johari (Johari, 2002) and Nouskova (Novskova et al., 1986). 
Johari reported that the resonance peak height increases with the increase in temperature 
whereas Nouskova said that the resonance peak height decreases with the increase in 
temperature. In our hollandite model, the sodium ion group motions take place in a rigid 
lattice unlike the experimental situation for ice clathrates. Therefore the libration amplitude 
of an individual sodium ion dipole is unaffected by temperature and the oscillation 
frequency of a specific group should not be affected unlike the situation in (Johari, 2002; 
Novskova et al., 1986). The resonance peak magnitude will be dependent upon the number 
of sodium ions taking part in a coupled group oscillation at a specific frequency and this 
will not be affected by temperature. The effect of temperature in our model is expected to lie 
in the half-width of the absorption peaks, since this is due to the hopping of sodium ions 
between oscillating groups. 

4.5 Group oscillation at very high field 

From figure 13, it is clearly shown that at high electric field, which is 74.3GV/m for the 
hollandite model, all the sodium ions were driven by the field to move as a group and show 
a single frequency vibration. The period of the oscillation is 4x10-15s. Since we use specular 
boundary conditions for the tunnel (i.e. the tunnel ends are reflective) this oscillation period 
is what would be expected if the sodium ions moved as a whole and were reflected from the 
boundaries after the first and third time-steps (i.e at 90 degree and 270 degree phases in the 
cycle). In the case of a smaller field, the sodium ion would just hop between empty sites next 
to the original site where it belongs. At bigger fields the sodium ions would have enough 
energy to move to the empty sites located furthest away. Figure 22 shows an example of 
three sodium ions in a tunnel. When the applied field is small, the sodium ions will hop 
between the available empty sites next to them. The only available site for Ion1 is the one on 
its right, whereas Ion2 and Ion3 will have two available sites to go to and this depends on 
the direction of the force acting on that particular sodium ion at that moment. As shown in 
Figure 21 increasing the field reduces the number of sodium ions taking part in coupled 
local group site-motions (reduced peak amplitude) in favour of sodium ion hopping 
between sites. For this reason a trend towards higher resonance frequencies and broader 
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0<n<1, the solute motions were partitioned between the Poley absorption and relaxation 
peak. In our model the sodium ion system forms both solute (with ions able to hop to new 
sites) and solvent (with ions vibrating around their equilibrium sites). The surrounding 
lattice is held rigid and cannot be involved in the cage motions. 

 
Fig. 21. The imaginary part of the susceptibility has been plotted for a range of electric field 
(7.43MV/m – 7.43GV/m) at 297K. 
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sites. Forces from the environment (which is the other sodium ions with respect to a 
particular sodium ion, and the ions in the lattice sites) causes the sodium ions themselves to 
produce a force acting on each other, so that the displacement of each sodium ion would be 
adjusted according to the new equilibrium configuration at each interval, and hence 
translations changing the potentials occurs on top of the librations. The cluster model would 
suggest that since all sodium ion motions act cooperatively the parameter n1 and there 
would be a Poley peak with either a weak relaxation peak or none at all. Although the 
simulations have not been carried through to times longer than ~10-10s, this seems to be 
what is happening, as the ion motions include both hopping and vibration and give just a 
damped resonance without any evidence of a relaxation peak. 

At 297K, the resonance frequency is in the range of about 4.5x1010 – 8.8x1010 Hz for a range 
of electric field (7.43MV/m – 7.43GV/m). Poley (Poley, 1955) predicted that there is  
a significant power absorption in dipolar liquids at the ambient temperature in the  
1.2 - 70 cm-1 (3.6x1010 – 2.1x1012 Hz) region and Davies (Davies et al, 1969) named the broad 
peak as ‘Poley absorption’. The absorption peaks obtained for the hollandite model lie at the 
lower end of Poley’s prediction range. This absorption is due to the libration of the sodium 
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ions confined to the host structure undergoing displacement under the effect of electric field. 
The absorptions calculated lie below the resonance frequency of a single sodium ion, which 
defines the edge of the quantum region. They correspond to coupled displacements of 
sodium ion groups. It would be reasonable to assume that our calculated absorption 
corresponds to what would be the Poley absorption for this material. A similar process 
happens in ice clathrate materials as shown by Johari (Johari, 2002), where an absorption 
peak was seen in the far-infrared region (7.5x1011 and 1.14x1012 Hz) and was contributed by 
the rotational oscillation of the tetrahydrofuran molecule, while confined to the cages of the 
ice clathrate crystal. 

From figure 19, the resonance frequency is independent of temperature for all the different 
electric field applied. This is different from the deduction made by Johari (Johari, 2002) on 
the ice clathrate crystal and Nouskova et al (Novskova et al., 1986) on the model of a 
restricted rotator where the resonance frequency decreases with the increase in temperature 
due to the increase of the libration magnitude. From figure 20, the resonance peak height 
does not change much as the temperature increases. This is also different from  
the deduction made by both Johari (Johari, 2002) and Nouskova (Novskova et al., 1986). 
Johari reported that the resonance peak height increases with the increase in temperature 
whereas Nouskova said that the resonance peak height decreases with the increase in 
temperature. In our hollandite model, the sodium ion group motions take place in a rigid 
lattice unlike the experimental situation for ice clathrates. Therefore the libration amplitude 
of an individual sodium ion dipole is unaffected by temperature and the oscillation 
frequency of a specific group should not be affected unlike the situation in (Johari, 2002; 
Novskova et al., 1986). The resonance peak magnitude will be dependent upon the number 
of sodium ions taking part in a coupled group oscillation at a specific frequency and this 
will not be affected by temperature. The effect of temperature in our model is expected to lie 
in the half-width of the absorption peaks, since this is due to the hopping of sodium ions 
between oscillating groups. 

4.5 Group oscillation at very high field 

From figure 13, it is clearly shown that at high electric field, which is 74.3GV/m for the 
hollandite model, all the sodium ions were driven by the field to move as a group and show 
a single frequency vibration. The period of the oscillation is 4x10-15s. Since we use specular 
boundary conditions for the tunnel (i.e. the tunnel ends are reflective) this oscillation period 
is what would be expected if the sodium ions moved as a whole and were reflected from the 
boundaries after the first and third time-steps (i.e at 90 degree and 270 degree phases in the 
cycle). In the case of a smaller field, the sodium ion would just hop between empty sites next 
to the original site where it belongs. At bigger fields the sodium ions would have enough 
energy to move to the empty sites located furthest away. Figure 22 shows an example of 
three sodium ions in a tunnel. When the applied field is small, the sodium ions will hop 
between the available empty sites next to them. The only available site for Ion1 is the one on 
its right, whereas Ion2 and Ion3 will have two available sites to go to and this depends on 
the direction of the force acting on that particular sodium ion at that moment. As shown in 
Figure 21 increasing the field reduces the number of sodium ions taking part in coupled 
local group site-motions (reduced peak amplitude) in favour of sodium ion hopping 
between sites. For this reason a trend towards higher resonance frequencies and broader 
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peaks (i.e. higher damping) can be expected. When the applied field is high enough all the 
sodium ions will take part in hopping between sites, and the field will force all the sodium 
ions to move to the furthest available sites as shown in figure 22c. The reflective boundary 
condition at the two ends of the tunnel cause the sodium ions to vibrate between the two 
ends and this coherent group oscillation was generated. It can be speculated that this 
behaviour corresponds to a flow of sodium ions (i.e. a sodium ion dc current) when the 
boundaries regenerate the sodium ion concentration as would an ion exchange membrane. 

Ion2
Ion3

Ion1

(a)

(b) (c)

Along c-axis

Field
High Field

 
Fig. 22. The position of three sodium ions along c-axis (a) without electric field (b) with low 
electric field (c) with high electric field. The square denotes the available sites for the sodium 
ions to move to. 

The oscillatory motion is of frequency 2.5x1014 Hz and this falls into the infrared frequency 
region. With a longer tunnel, a higher electric field would be needed to give a coherent 
group oscillation, as higher force is required to push all the sodium ions to the furthest 
distance. When all the sodium ions move to one end of the tunnel under the high field, it is 
just like ALL the dipoles being forced to align in one direction by the electric field, i.e. it is a 
state of motion that cannot exist without the presence of the field and is thus a non-linear 
response. 

The motion of a group of charges as a whole in the Coulomb field of their counter charges 
defines a plasma oscillation, and it has a natural frequency that would apply for the sodium 
ions in an infinitely long tunnel. This plasma oscillation frequency is given in equation 8 
below (Ziman, 1960), 
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where mNa is the mass for the sodium ion, which is 3.81361x10-26 kg, e is the electron charge, 
0 is the permittivity of free space and n is the concentration of sodium ions (number of 
sodium ions in a volume of 1m3). The plasma oscillation frequency that we could expect for 
our Hollandite model in the absence of the reflective boundaries can be obtained by 
calculating n as follows: The Hollandite model consists of 60 layers with 24 sodium ions, the 
volume 1.54475x10-27 m3 is the volume for the 24 sodium ions (Khoo, 2003). The average 
volume for one sodium ion is: 
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and n becomes 

 28 31 / 1.5536 10n volume m    (10) 

Substituting equations 9 and 10 into equation 8, the obtained fp is 5.469x1012 Hz. This value 
is the upper limit for the group oscillations that our simulations show occur in the 
Hollandite system. The estimated plasma frequency is much lower than the high-field group 
oscillation frequency (~1/46), but is ten times higher than the frequency of the ”peak 
calculated for lower field. This is consistent with an interpretation of the simulations at low 
fields in which local site vibrations of the sodium ions (equivalent to dipole librations) are 
coupled together but cannot extend to all the sodium atoms because hopping of an ion 
between sites destroys the coupled motion, thus giving oscillation frequencies below the 
plasma oscillation limit. High fields produce a field driven coupled hopping that oscillates 
the ions between the reflective boundaries at higher frequencies than the plasma oscillation 
frequency. 

5. Conclusions 

We have presented a detailed description of the molecular dynamics computational 
methods applied to the fast-ion conductor Hollandite together with the fundamental 
concepts needed for interpreting our results. This study focused on the calculation of  
the sodium ion positions at a range of temperature and electric fields and the resulting 
frequency dependence of the conductivity mechanism and susceptibility. In the 
simulation the lattice surrounding the tunnel was held rigid and only the sodium ions in 
the tunnel were allowed to move. The ac dielectric response was calculated from the  
rate of change of polarisation, dP/dt, under the action of a dc step-field (i.e. dielectric 
response function) of 7.43MV/m to 74.3GV/m, at temperatures between 200K and  
373K. Our hollandite model shows that the dielectric response due to the motion of the 
sodium ions in the tunnels behaves approximately like that of polar liquids in the  
far-infrared frequency region. The susceptibility shows an absorption peak ”(f)peak in  
the frequency region between 4.5x1010 and 8.8x1010 Hz at 297K. This fitted very well with 
Poley’s prediction of an absorption typically observed in polar liquids in the 1.2 - 70 cm-1 
(3.6x1010 – 2.1x1012 Hz) region at room temperature. The frequency dependence of the  
real and imaginary susceptibility components ’ and ” obtained show resonance 
behaviour. This is due to the vibration of sodium ions coupled together in groups  
in which the motion of each sodium ion is centred around a local site. This mode of 
motion is equivalent to the coupled libration of a group of dipoles. Transfer of a sodium 
ion between sites destroys the coupling for any particular group and acts as a damping on 
the resonance behaviour associated with its group oscillation. This is in agreement with 
the prediction by Fröhlich who suggested that the absorption due to displacement of 
charges bound elastically to an equilibrium position is of resonance character. The 
absorption peaks in ” at the resonance frequency lie between 4.5x1010 and 8.8x1010 Hz at 
297K which matches very well with the Poley absorption which is typically observed in 
polar liquids in the 1.2 - 70 cm-1 (3.6x1010 – 2.1x1012 Hz) region at room temperature.  
The resonance frequency and the resonance peak height are independent of temperature. 
The absorption peak was associated with cooperative motions of the sodium ions  
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peaks (i.e. higher damping) can be expected. When the applied field is high enough all the 
sodium ions will take part in hopping between sites, and the field will force all the sodium 
ions to move to the furthest available sites as shown in figure 22c. The reflective boundary 
condition at the two ends of the tunnel cause the sodium ions to vibrate between the two 
ends and this coherent group oscillation was generated. It can be speculated that this 
behaviour corresponds to a flow of sodium ions (i.e. a sodium ion dc current) when the 
boundaries regenerate the sodium ion concentration as would an ion exchange membrane. 
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Fig. 22. The position of three sodium ions along c-axis (a) without electric field (b) with low 
electric field (c) with high electric field. The square denotes the available sites for the sodium 
ions to move to. 

The oscillatory motion is of frequency 2.5x1014 Hz and this falls into the infrared frequency 
region. With a longer tunnel, a higher electric field would be needed to give a coherent 
group oscillation, as higher force is required to push all the sodium ions to the furthest 
distance. When all the sodium ions move to one end of the tunnel under the high field, it is 
just like ALL the dipoles being forced to align in one direction by the electric field, i.e. it is a 
state of motion that cannot exist without the presence of the field and is thus a non-linear 
response. 

The motion of a group of charges as a whole in the Coulomb field of their counter charges 
defines a plasma oscillation, and it has a natural frequency that would apply for the sodium 
ions in an infinitely long tunnel. This plasma oscillation frequency is given in equation 8 
below (Ziman, 1960), 
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where mNa is the mass for the sodium ion, which is 3.81361x10-26 kg, e is the electron charge, 
0 is the permittivity of free space and n is the concentration of sodium ions (number of 
sodium ions in a volume of 1m3). The plasma oscillation frequency that we could expect for 
our Hollandite model in the absence of the reflective boundaries can be obtained by 
calculating n as follows: The Hollandite model consists of 60 layers with 24 sodium ions, the 
volume 1.54475x10-27 m3 is the volume for the 24 sodium ions (Khoo, 2003). The average 
volume for one sodium ion is: 
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and n becomes 

 28 31 / 1.5536 10n volume m    (10) 

Substituting equations 9 and 10 into equation 8, the obtained fp is 5.469x1012 Hz. This value 
is the upper limit for the group oscillations that our simulations show occur in the 
Hollandite system. The estimated plasma frequency is much lower than the high-field group 
oscillation frequency (~1/46), but is ten times higher than the frequency of the ”peak 
calculated for lower field. This is consistent with an interpretation of the simulations at low 
fields in which local site vibrations of the sodium ions (equivalent to dipole librations) are 
coupled together but cannot extend to all the sodium atoms because hopping of an ion 
between sites destroys the coupled motion, thus giving oscillation frequencies below the 
plasma oscillation limit. High fields produce a field driven coupled hopping that oscillates 
the ions between the reflective boundaries at higher frequencies than the plasma oscillation 
frequency. 

5. Conclusions 

We have presented a detailed description of the molecular dynamics computational 
methods applied to the fast-ion conductor Hollandite together with the fundamental 
concepts needed for interpreting our results. This study focused on the calculation of  
the sodium ion positions at a range of temperature and electric fields and the resulting 
frequency dependence of the conductivity mechanism and susceptibility. In the 
simulation the lattice surrounding the tunnel was held rigid and only the sodium ions in 
the tunnel were allowed to move. The ac dielectric response was calculated from the  
rate of change of polarisation, dP/dt, under the action of a dc step-field (i.e. dielectric 
response function) of 7.43MV/m to 74.3GV/m, at temperatures between 200K and  
373K. Our hollandite model shows that the dielectric response due to the motion of the 
sodium ions in the tunnels behaves approximately like that of polar liquids in the  
far-infrared frequency region. The susceptibility shows an absorption peak ”(f)peak in  
the frequency region between 4.5x1010 and 8.8x1010 Hz at 297K. This fitted very well with 
Poley’s prediction of an absorption typically observed in polar liquids in the 1.2 - 70 cm-1 
(3.6x1010 – 2.1x1012 Hz) region at room temperature. The frequency dependence of the  
real and imaginary susceptibility components ’ and ” obtained show resonance 
behaviour. This is due to the vibration of sodium ions coupled together in groups  
in which the motion of each sodium ion is centred around a local site. This mode of 
motion is equivalent to the coupled libration of a group of dipoles. Transfer of a sodium 
ion between sites destroys the coupling for any particular group and acts as a damping on 
the resonance behaviour associated with its group oscillation. This is in agreement with 
the prediction by Fröhlich who suggested that the absorption due to displacement of 
charges bound elastically to an equilibrium position is of resonance character. The 
absorption peaks in ” at the resonance frequency lie between 4.5x1010 and 8.8x1010 Hz at 
297K which matches very well with the Poley absorption which is typically observed in 
polar liquids in the 1.2 - 70 cm-1 (3.6x1010 – 2.1x1012 Hz) region at room temperature.  
The resonance frequency and the resonance peak height are independent of temperature. 
The absorption peak was associated with cooperative motions of the sodium ions  
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as suggested by the cluster model. The itinerant oscillator model does not allow for such 
many-body motions. On increasing the applied field ” becomes smaller and, more 
switches of sodium ions between sites are obtained. This indicates that the higher the 
field, the fewer ions are involved in coupled libration motions and more in  
damping through hopping between sites. At very high field, which is 74.3GV/m in our 
simulation, all the sodium ions were driven by the field to move as a group i.e. to transfer 
collectively from site to site giving a single frequency vibration due to our reflective 
boundary conditions. 
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1. Introduction 
Sodium, calcium and magnesium ions are essential for the biological activity of many 
polyelectrolytes. This activity depends on a condensation of the metal ions. There are 
several clues, which suggest that interactions between the polyelectrolyte and metal ions 
depend on a hydration of the ion. This accounts for the great interest in the hydration of 
metal ions, particularly in the systems containing hydrophobic groups. In aqueous solutions 
the hydration of Na+, Mg2+ and Ca2+ differs. The first hydration shells of Na+ and Mg2+ 
consists of six water molecules and have octahedral symmetry (Dietz et al, 1982; Hawlicka & 
Swiatla-Wojcik, 1995). The first shell of Ca2+ is larger; it contains eight or more water 
molecules and does not show any regularity (Owczarek et al., 2007). X-ray diffraction 
studies (Tamura et al., 1992, Megyes et al., 2004) have suggested that all these cations are six-
coordinated in methanolic solutions thus their shells are  octahedral.  

Various experimental techniques can be employed to gain insight into a coordination shell 
of the ion, but a lack of theory renders even a term ‘preferential solvation’ misleading. The 
concept of the preferential solvation has been introduced to explain non-linear changes of 
solution properties, but now this term is commonly used to emphasise a difference of the 
compositions of the coordination shell and the bulk solvent. Preferential solvation is usually 
expected if the ion interacts stronger with one of the solvent components. There are however 
experimental clues that the selective solvation might be due to a microheterogeneity of the 
binary solvent.  

Methanol-water mixture is a suitable model to study structural aspects of solvation in 
binary systems, particularly when hydrophobic effects may occur. Both net components are 
highly associated liquids, but their hydrogen-bonded networks are inconsistent. Water 
molecules form a 3-dimensional, tetrahedrally coordinated structure, where cavities are 
filled with monomers (Soper & Phillips, 1986). Extension of the hydrogen bonds over 1 nm 
causes that liquid water, even at room temperature, behaves like a gel  (Dore et al., 2000). 
Hydrogen-bonded molecules of methanol form zig-zag polymer chains (Narten & 
Habenschuss, 1984). Though in binary mixture the molecules of methanol and water may 
form a common hydrogen-bonded network the bulky methyl group causes that methanol 
molecule cannot simply replace the water molecule in the tetrahedral structure. In 
consequence the methanol-water mixture may become heterogeneous on the molecular 
level. Neutron diffraction (Dughan et al., 2004) and X-ray spectroscopy (Guo et al. 2004) 
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have confirmed that supposition. Despite apparent miscibility of both components, 
methanol and water clusters are observed over whole concentration range. At particular 
concentration, near 25-27 mol% of methanol, where transport and thermodynamic 
properties exhibit extrema, water and methanol form separate, percolating structures 
(Dughan et al. 2004).  

Several experimental techniques were employed to investigate solvation of ions in 
methanol-water mixtures. Results are, however, inconsistent and lead to contradict 
conclusions. Therefore both a preferential hydration (Convington & Dunn, 1989; Hawlicka, 
1995), as well as a lack of preferences (Holtz et al., 1977) have been postulated for alkali and 
halide ions in methanol-water mixtures. Though X-ray and neutron scattering 
measurements should provide a direct insight into the ion coordination shell, their results 
cannot be decisive for methanol-water mixture, because distances between these ions and 
the oxygens of either water (Neilson & Enderby, 1979; Licheri et al, 1975) or methanol 
(Megyes, 2004) are almost the same. Moreover a direct correlation between the alkali earth 
cations and the methyl group is lacking (Radnai et al., 1995). In such case the scattering 
techniques are not enough sensitive to investigate the preferential solvation in methanol-
water mixture. Thus a molecular dynamics simulation seems to be a useful tool to provide 
additional information concerning the structure of the ion shell.  

A quality of the simulation results depends on the methods used to describe all 
interactions in the solutions. Ab initio quantum mechanics would be the most accurate 
method, but its application to systems containing ions and a few hundred water 
molecules could not be expected for the near future. Therefore QM/MM MD simulation 
seems to be an elegant approach for investigating the aqueous solutions of electrolytes. 
The ion and its nearest water molecules are treated quantum mechanically. Such approach 
includes many-body interactions between particles within the solvation shell. QM/MM 
MD simulations were carried out for aqueous solutions of various ions (Tongraar & Rode, 
2003, Rode et al., 2004, Öhrn & Karlström, 2004; Tongraar & Rode, 2005, Payaka et al., 
2009; Tongraar et al., 2010). Their results evidenced a significant role of the many-body 
interactions on structural and dynamical properties of the hydrated ions. These 
simulations concerned, however, the systems, which contain only one ion, either cation or 
anion, and a few water molecules. Thus this technique is useless for studies more 
concentrated solutions, where an association of the ions occurs. The formation of the 
various types of the ionic pairs, solvent separated, solvent shared and contact pairs, is 
frequently observed in binary solvents. This phenomenon may affect significantly the 
solvation of ions.  

Classical MD simulations are usually carried out for NVE or NVT ensembles. The volume is 
fixed and it depends on a number of the particles, temperature, composition of the system. 
Particles are placed into a periodic cube. The size of the periodic box results from the 
experimental density of the simulated system. Initial coordinates of particles are frequently 
chosen from the crystal lattice (Heyes, 1998), however the random distribution of the 
particles in the cube is better, because it reduces a time of equilibration.  

In classical simulations the interactions between molecules are represented by a sum of the 
pair potentials and many-body interactions are neglected. Usually the pair potential consists 
of Coulomb term, for which the Ewald summation is applied, and of short-range parts, for 
which shifted-force potential method (Allen & Tidesly, 1987) is used.   
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2. Effective pair potentials  
Several potentials have been proposed to describe the interaction of the water molecules, but 
this molecule still remains ‘a challenge to model, because it is polar, polarizable, has light H 
atoms and is flexible’ (Heyes, 1998). Only a few of the models consider the water molecule 
as a flexible body and permit internal vibrations. Most of them are a modification of the 
simple point charge potential of Berendsen (Berendsen et al., 1981) They use a potential of 
the spectroscopic type (Zhu & Wong, 1993; Ferguson, 1995) to describe an intramolecular 
interaction. Unfortunately SPC model neglects non-Coulomb interactions of hydrogen 
atoms, which seem to be important in hydrogen-bonded systems.  

In simulations presented here the interactions of the water molecules has been described by 
the BJH potential (Bopp et al., 1983; Jancso & Bopp, 1983)  which treats the intermolecular 
interactions of oxygens and hydrogens by mean of the central force model (CF) (Stillinger & 
Rahman, 1978) and uses a three body description of intermolecular interactions. This model 
has been frequently employed to simulate aqueous solutions of electrolytes, both in classical 
(Dietz et al., 1982; Jancso et al. 1985; Probst et al., 1985, Probst et al., 1991; Hawlicka & 
Swiatla-Wojcik, 1995, Lavenstein et al. 2000; Ibuki & Bopp, 2009) and in QM/MM MD 
(Tongraar & Rode, 2003, Rode et al., 2004, Öhrn & Karlström, 2004; Tongraar & Rode, 2005, 
Payaka et al., 2009; Tongraar et al., 2010) simulations. The BJH potential is appropriate to 
simulate the methanol-water mixtures, because it is fully consistent with the PHH flexible 
model (Palinkas et al. 1987) of the methanol molecule. The BJH and PHH, potentials 
reproduce properly the structure, energies and dynamic properties of the methanol-water 
mixtures (Palinkas et al., 1991a; Palinkas et al., 1991a, Hawlicka & Swiatla-Wojcik, 2000). An 
advantage of the flexible models is, that they permit a distortion of the solvent molecules 
from their equilibrium geometry. In consequence a molecular polarizability is incorporated.   

The BJH and PHH potentials consist of two parts, which describe the inter- and 
intramolecular interactions respectively: 

 intra inter( , ) ( ) ( )i iV r V V r     (1) 

The intermolecular parts are the sum of Coulombic and non-Coulombic terms. The 
Coulombic terms result from the partial charges of the interacting sites. In water molecule 
the partial charges are located on oxygen (-0.66 e) and hydrogen (+0.33 e) atoms.  Methanol 
molecule consists of the charged oxygen (-0.6 e), hydroxyl hydrogen (+0.35 e) and the 
methyl group (+0.25 e), considered as the pseudo-atom. Non-Coulombic intermolecular O-
O, O-H and H-H interactions of the water and methanol molecules are the same as in CF2 
model for water (Stillinger & Rahman, 1978) The non-Coulomb interaction of the methyl 
group with the hydroxyl hydrogens has been neglected and that with oxygens and methyl 
groups has been represented by the Lennard-Jones potential (Jorgensen, 1981).  

Intramolecular potentials for water and methanol are based on the formulation proposed by 
Carney et al. (Carney et al, 1976). They are expressed as power series of the internal 
coordinates, i, ‘stretch’ and ‘bend’ and the three-body interactions are included: 

 ( )             i ij i j ijk i j k ijkl i j k lV L L L  (2) 

Usually in classical MD simulations the ion potentials are represented by the Coulomb and 
the Lennard-Jones terms. These potentials overestimate, however, the number of the solvent 
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the BJH potential (Bopp et al., 1983; Jancso & Bopp, 1983)  which treats the intermolecular 
interactions of oxygens and hydrogens by mean of the central force model (CF) (Stillinger & 
Rahman, 1978) and uses a three body description of intermolecular interactions. This model 
has been frequently employed to simulate aqueous solutions of electrolytes, both in classical 
(Dietz et al., 1982; Jancso et al. 1985; Probst et al., 1985, Probst et al., 1991; Hawlicka & 
Swiatla-Wojcik, 1995, Lavenstein et al. 2000; Ibuki & Bopp, 2009) and in QM/MM MD 
(Tongraar & Rode, 2003, Rode et al., 2004, Öhrn & Karlström, 2004; Tongraar & Rode, 2005, 
Payaka et al., 2009; Tongraar et al., 2010) simulations. The BJH potential is appropriate to 
simulate the methanol-water mixtures, because it is fully consistent with the PHH flexible 
model (Palinkas et al. 1987) of the methanol molecule. The BJH and PHH, potentials 
reproduce properly the structure, energies and dynamic properties of the methanol-water 
mixtures (Palinkas et al., 1991a; Palinkas et al., 1991a, Hawlicka & Swiatla-Wojcik, 2000). An 
advantage of the flexible models is, that they permit a distortion of the solvent molecules 
from their equilibrium geometry. In consequence a molecular polarizability is incorporated.   

The BJH and PHH potentials consist of two parts, which describe the inter- and 
intramolecular interactions respectively: 

 intra inter( , ) ( ) ( )i iV r V V r     (1) 

The intermolecular parts are the sum of Coulombic and non-Coulombic terms. The 
Coulombic terms result from the partial charges of the interacting sites. In water molecule 
the partial charges are located on oxygen (-0.66 e) and hydrogen (+0.33 e) atoms.  Methanol 
molecule consists of the charged oxygen (-0.6 e), hydroxyl hydrogen (+0.35 e) and the 
methyl group (+0.25 e), considered as the pseudo-atom. Non-Coulombic intermolecular O-
O, O-H and H-H interactions of the water and methanol molecules are the same as in CF2 
model for water (Stillinger & Rahman, 1978) The non-Coulomb interaction of the methyl 
group with the hydroxyl hydrogens has been neglected and that with oxygens and methyl 
groups has been represented by the Lennard-Jones potential (Jorgensen, 1981).  

Intramolecular potentials for water and methanol are based on the formulation proposed by 
Carney et al. (Carney et al, 1976). They are expressed as power series of the internal 
coordinates, i, ‘stretch’ and ‘bend’ and the three-body interactions are included: 

 ( )             i ij i j ijk i j k ijkl i j k lV L L L  (2) 

Usually in classical MD simulations the ion potentials are represented by the Coulomb and 
the Lennard-Jones terms. These potentials overestimate, however, the number of the solvent 
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molecules in the ion shells (Hawlicka & Swiatla-Wojcik, 2002) and underestimate a stability 
of the ion shells (Hawlicka & Swiatla-Wojcik, 2002, Bujnicka & Hawlicka, 2006). Moreover 
such potentials are inconsistent with flexible models of the solvent molecules. Therefore the 
ion-water and ion-methanol potentials were evaluated from ab initio calculations and fitted 
to the BJH and PHH models. 

The potential energy for the complexes of the ion and the solvent molecule was computed 
for several hundred configurations of the complexes. Then the potential surfaces were fitted 
to the analytical form: 

 
3

i
i i i

1

AV (r) B exp( C r)
r r
i

n
Q  

  


        
  (3) 

where Qi represents the Coulombic interactions, which are defined by the ion charge and 
partial charges of the water or methanol molecules. The energies of the Coulombic 
interactions were subtracted from the potential surfaces.  Parameters Ai, Bi and Ci, were 
adjusted to the non-Coulomb part of the energy surface. They have no physical meaning. 
Parameters derived for ions, Na+(Marks et all, 1991; Hawlicka & Swiatla-Wojcik, 1995), Mg2+ 
(Dietz et al., 1982; Tamura et al., 1992), Ca2+( Probst et al., 185; Owczarek & Hawlicka, 2006), 
Cl- (Marks et all, 1991; Hawlicka & Swiatla-Wojcik, 1995) and the flexible molecules of BJH 
water and PHH methanol are summarized in Table 1.   

The pair potentials for ions and solvent molecules are displayed in Figure 1 as a function of 
the ion-oxygen distance for the coplanar orientation shown in the insertion.  

 
Fig. 1. Fitted pair potentials for the ion-water (solid) and ion-methanol (dashed) as function 
of the ion-oxygen distance for the orientation shown in the insertion. 
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i  Qiα 
[kJ Ǻ mol-1] 

Aiα 
[kJ Ǻn mol-1] 

Biα 
[kJ mol-1] 

Ciα 
[Ǻ-1] 

Na Om -833.61 -172.23 2.5328× 105 4.1501 

Na Hm 486.27 593.40 -8.3289× 102 0.9591 

Na Me 347.34 -274.90 5.1674× 104 2.7930 

Na Ow -916.28 -352.20 3.5555× 105 4.2988 

Na Hw 458.14 151.60 5.1867× 104 5.3919 

Ca Om -1667.30 -1372.63 2.5971× 105 3.4900 

Ca Hm 972.58 933.29 8.3277× 102 0.9600 

Ca Me 694.70 -474.95 5.1666× 104 2.7930 

Ca Ow -1832.56 -1572.66 2.5972× 105 3.4900 

Ca Hw 916.28 626.41 1.2022× 105 6.7900 

Mg Om -1667.30 -721.86 4.0778× 105 4.3937 

Mg Hm 972.58 -7.21 4.2904× 101 0.2749 

Mg Me 694.70 -232.28 1.8277× 104 2.6485 

Mg Ow -1832.56 -890.83 2.6954× 105 4.0800 

Mg Hw 916.28 82.04 7.3844× 101 0.3490 

Cl Om 833.61 127.02 1.4532× 105 3.1999 

Cl Hm -486.27 -193.41 2.5091× 104 3.3082 

Cl Me -347.34 6.77 5.9262× 105 3.2984 

Cl Ow 916.28 9.34 1.1750× 105 2.6727 

Cl Hw -458.14 -68.27 9.0210× 104 4.5420 

Table 1. Parameters Qi, Ai, Bi and Ci in equation (3) for the interactions of ions with PHH 
methanol and BJH water. 

As seen the interactions of the ion with molecules of the solvent components are similar. The 
lowest binding energies for ion-water and ion-methanol complexes are observed at the same 
distances. This position of the energy minimum is shifted to larger distance as the ionic 
radius increases (Marcus & Hefter, 2004) As might be expected the energy minimum 
becomes deeper when the charge density increases. The binding energy of Na+ and Ca2+ 
ions with water is about 3% lower than that with methanol. An opposite features are found 
for of Mg2+ and Cl- ions, because their interactions with methanol are stronger than those 
with water. For Mg2+ ions the difference is about 10%, but for Cl- ions is less than 2%. 

The pair potentials for interactions between ions were also derived from ab initio 
calculations. The potential energy surfaces were constructed from hundred configurations. 
Then they were fitted to the equation (3). Parameters were summarized in Table 2. 
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molecules in the ion shells (Hawlicka & Swiatla-Wojcik, 2002) and underestimate a stability 
of the ion shells (Hawlicka & Swiatla-Wojcik, 2002, Bujnicka & Hawlicka, 2006). Moreover 
such potentials are inconsistent with flexible models of the solvent molecules. Therefore the 
ion-water and ion-methanol potentials were evaluated from ab initio calculations and fitted 
to the BJH and PHH models. 

The potential energy for the complexes of the ion and the solvent molecule was computed 
for several hundred configurations of the complexes. Then the potential surfaces were fitted 
to the analytical form: 
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where Qi represents the Coulombic interactions, which are defined by the ion charge and 
partial charges of the water or methanol molecules. The energies of the Coulombic 
interactions were subtracted from the potential surfaces.  Parameters Ai, Bi and Ci, were 
adjusted to the non-Coulomb part of the energy surface. They have no physical meaning. 
Parameters derived for ions, Na+(Marks et all, 1991; Hawlicka & Swiatla-Wojcik, 1995), Mg2+ 
(Dietz et al., 1982; Tamura et al., 1992), Ca2+( Probst et al., 185; Owczarek & Hawlicka, 2006), 
Cl- (Marks et all, 1991; Hawlicka & Swiatla-Wojcik, 1995) and the flexible molecules of BJH 
water and PHH methanol are summarized in Table 1.   

The pair potentials for ions and solvent molecules are displayed in Figure 1 as a function of 
the ion-oxygen distance for the coplanar orientation shown in the insertion.  

 
Fig. 1. Fitted pair potentials for the ion-water (solid) and ion-methanol (dashed) as function 
of the ion-oxygen distance for the orientation shown in the insertion. 
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i  Qiα 
[kJ Ǻ mol-1] 

Aiα 
[kJ Ǻn mol-1] 

Biα 
[kJ mol-1] 

Ciα 
[Ǻ-1] 

Na Om -833.61 -172.23 2.5328× 105 4.1501 

Na Hm 486.27 593.40 -8.3289× 102 0.9591 

Na Me 347.34 -274.90 5.1674× 104 2.7930 

Na Ow -916.28 -352.20 3.5555× 105 4.2988 

Na Hw 458.14 151.60 5.1867× 104 5.3919 

Ca Om -1667.30 -1372.63 2.5971× 105 3.4900 

Ca Hm 972.58 933.29 8.3277× 102 0.9600 

Ca Me 694.70 -474.95 5.1666× 104 2.7930 

Ca Ow -1832.56 -1572.66 2.5972× 105 3.4900 

Ca Hw 916.28 626.41 1.2022× 105 6.7900 

Mg Om -1667.30 -721.86 4.0778× 105 4.3937 

Mg Hm 972.58 -7.21 4.2904× 101 0.2749 

Mg Me 694.70 -232.28 1.8277× 104 2.6485 

Mg Ow -1832.56 -890.83 2.6954× 105 4.0800 

Mg Hw 916.28 82.04 7.3844× 101 0.3490 

Cl Om 833.61 127.02 1.4532× 105 3.1999 

Cl Hm -486.27 -193.41 2.5091× 104 3.3082 

Cl Me -347.34 6.77 5.9262× 105 3.2984 

Cl Ow 916.28 9.34 1.1750× 105 2.6727 

Cl Hw -458.14 -68.27 9.0210× 104 4.5420 

Table 1. Parameters Qi, Ai, Bi and Ci in equation (3) for the interactions of ions with PHH 
methanol and BJH water. 

As seen the interactions of the ion with molecules of the solvent components are similar. The 
lowest binding energies for ion-water and ion-methanol complexes are observed at the same 
distances. This position of the energy minimum is shifted to larger distance as the ionic 
radius increases (Marcus & Hefter, 2004) As might be expected the energy minimum 
becomes deeper when the charge density increases. The binding energy of Na+ and Ca2+ 
ions with water is about 3% lower than that with methanol. An opposite features are found 
for of Mg2+ and Cl- ions, because their interactions with methanol are stronger than those 
with water. For Mg2+ ions the difference is about 10%, but for Cl- ions is less than 2%. 

The pair potentials for interactions between ions were also derived from ab initio 
calculations. The potential energy surfaces were constructed from hundred configurations. 
Then they were fitted to the equation (3). Parameters were summarized in Table 2. 
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i  Qi 

[kJ Ǻ mol-1] 
Ai 

[kJ Ǻn mol-1] 
Bi 

[kJ mol-1] 

Ci 

[Ǻ-1] 
n 

Na Na 1389.4 -9.9154× 102 1.0180× 106 5.5909 6 

Na Cl -1389.4 -7.9000× 101 1.7172× 105 3.1940 2 

Ca Ca 5557.6 -1.5198× 104 2.6010× 106 4.4870 6 

Ca Cl -2778.8 -3.5301× 102 3.6608× 105 3.0100 2 

Mg Mg 5557.6 -1.4799× 103 1.8226× 106 6.3600 6 

Mg Cl -2778.8 -2.0069× 103 1.1854× 105 2.6500 2 

Cl Cl 1389.4 -2.8672× 104 9.1704× 105 3.3863 6 

Table 2. Parameters Qi, Ai, Bi and Ci in equation (3) for the ion-ion interactions.  

3. Radial distribution functions for the ions 
Radial distribution function gion-(r) represents the probability of finding the ion and -site 
of the solvent molecule in a distance r, relative to the probability expected for a random 
distribution with the same density. These functions provide clear information about a 
structure of the ion surrounding. At room temperature the order is short-range thus the pair 
distribution function exhibits no more than two peaks. Positions of these peaks reflect 
average distances of neighbours in the first and second coordination shells.  

Though the peak area is proportional to the number of the molecules in the shell, its height 
and width depend on a balance between the ion-solvent attraction and thermal motions of 
the solvent molecules. The first peak of the pair distribution functions increases with the 
increasing charge density, therefore it is generally higher and sharper for the cations than 
that for the anions and for the divalent ions than for the monovalent ions (Yu et al., 2010)  

A surrounding of the ion in the methanol-water mixtures can be described by five radial 
distribution functions, two of them for the sites of water (Ow and Hw) and three for the sites 
of methanol (Om, Hm and Me). The characteristic parameters of these functions are listed in 
Tables 3 and 4. There are positions of the first (Rmax1) and second (Rmax2) maxima, the 
positions of the first (rmin1) and second (rmin2) minima and the numbers of the particles in the 
first (n1) and second (n2) coordination shells.  

The radial distribution functions of cation-oxygen in water, methanol and equimolar 
methanol-water mixture are shown in Figure 2. In aqueous solutions of MgCl2 and CaCl2 the 
cation-oxygen functions exhibit a sharp first peak, followed by broad second maximum. 
Positions of the first and second peaks coincide with the average distances of the first and 
second neighbours deduced from diffraction experiments (Ohtaki & Radnai, 1993). The 
gNaOw(r) function shows only one peak.  As might be expected the position of the first peak 
is shifted to larger distances as the radius of the cation increases. The peak height depends 
on the charge density and the Mg2+Ow radial distribution function shows the highest peak.   

Addition of methanol does not affect the position of the first maximum of the gionOw(r) 
function. However the methanol addition increases the first peak, particularly that of the  
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xM ion Rmax1 g(Rmax1) rmin1 n1 Rmax2 g(Rmax2) rmin2 n2 

 oxygen 

0.0 

Na 0.232 8.66 0.320 6.05 - - - - 
Ca 0.237 15.65 0.340 10 0.430 2.82 0.552 27 
Mg 0.199 21.14 0.270 6.2 0.452 1.75 0.512 16 
Cl 0.335 2.98 0.398 8 - - - - 

0.1 

Na 0.230 8.54 0.297 4.76 - - - - 
Ca 0.240 18.67 0.300 9.70 0.440 2.80 0.564 23 
Mg 0.199 24.04 0.270 5.40 0.452 1.34 0.507 10 
Cl 0.337 2.23 0.410 5.80 - - - - 

0.5 

Na 0.231 10.37 0.297 2.27 - - - - 
Ca 0.237 35.88 0.305 6.80 0.450 2.38 0.558 7 
Mg 0.199 38.33 0.270 3 0.394 1.29 0.504 3 
Cl 0.344 1.10 0.386 1.04 - - - - 

0.9 

Na 0.230 24.19 0.295 0.75 - - - - 
Ca 0.232 105.93 0.310 2.30 - - - - 
Mg 0.199 46.67 0.270 0.60 0.397 1.86 0.500 0.6 
Cl - - - - - - - - 

 hydrogen 

0.0 

Na 0.300 3.41 0.375 13.3 - - - - 
Ca 0.307 5.93 0.380 20.0 0.500 1.41 0.620 59 
Mg 0.274 6.42 0.337 12.5 0.492 1.05 0.575 40 
Cl 0.242 2.50 0.310 7.38 - - - - 

0.1 

Na 0.295 3.27 0.367 9.96 - - - - 
Ca 0.312 7.57 0.382 19.4 0.512 2.28 0.620 51 
Mg 0.274 7.03 0.337 10.8 0.497 1.10 0.575 22 
Cl 0.242 1.86 0.310 4.96 - - - - 

0.5 

Na 0.301 4.08 0.374 4.6 - - - - 
Ca 0.312 30.69 0.382 13.6 0.518 3.50 0.623 15 
Mg 0.274 11.11 0.337 6.2 0.496 0.90 0.567 7 
Cl 0.251 0.87 0.306 1.06 - - - - 

0.9 

Na 0.300 9.38 0.392 1.52 - - - - 
Ca 0.310 42.35 0.370 4.5 - - - - 
Mg 0.274 15.48 0.339 1.2 0.472 1.22 0.557 1 
Cl - - - - - - - - 

Table 3. Characteristic parameters of the ion-water  radial distribution functions: positions 
(in nm) of the first (Rmax1) and second (Rmax2) maxima, the first (rmin1) and second (rmin2) 
minima, heights of the first g(Rmax1) and second g(Rmax2) maxima and the first (n1) and 
second (n2) coordination numbers.  

Mg2+Ow and Ca2+Ow functions. This may suggest that in mixed solvent the interactions of 
the cations with water molecules are favoured, despite similar binding energies of Ca2+ and 
Na+ ions with methanol and water. This preference for water is observed also for Mg2+ ion, 
despite its stronger interactions with methanol than with water (see Figure 1 b). Moreover 
the first peak of the gionOw(r) function increases, when the water content decreases. This is 
particularly remarkable for the Ca2+ ions and in the water deficit mixture, when the water  
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i  Qi 

[kJ Ǻ mol-1] 
Ai 

[kJ Ǻn mol-1] 
Bi 

[kJ mol-1] 

Ci 

[Ǻ-1] 
n 

Na Na 1389.4 -9.9154× 102 1.0180× 106 5.5909 6 

Na Cl -1389.4 -7.9000× 101 1.7172× 105 3.1940 2 

Ca Ca 5557.6 -1.5198× 104 2.6010× 106 4.4870 6 

Ca Cl -2778.8 -3.5301× 102 3.6608× 105 3.0100 2 

Mg Mg 5557.6 -1.4799× 103 1.8226× 106 6.3600 6 

Mg Cl -2778.8 -2.0069× 103 1.1854× 105 2.6500 2 

Cl Cl 1389.4 -2.8672× 104 9.1704× 105 3.3863 6 

Table 2. Parameters Qi, Ai, Bi and Ci in equation (3) for the ion-ion interactions.  

3. Radial distribution functions for the ions 
Radial distribution function gion-(r) represents the probability of finding the ion and -site 
of the solvent molecule in a distance r, relative to the probability expected for a random 
distribution with the same density. These functions provide clear information about a 
structure of the ion surrounding. At room temperature the order is short-range thus the pair 
distribution function exhibits no more than two peaks. Positions of these peaks reflect 
average distances of neighbours in the first and second coordination shells.  

Though the peak area is proportional to the number of the molecules in the shell, its height 
and width depend on a balance between the ion-solvent attraction and thermal motions of 
the solvent molecules. The first peak of the pair distribution functions increases with the 
increasing charge density, therefore it is generally higher and sharper for the cations than 
that for the anions and for the divalent ions than for the monovalent ions (Yu et al., 2010)  

A surrounding of the ion in the methanol-water mixtures can be described by five radial 
distribution functions, two of them for the sites of water (Ow and Hw) and three for the sites 
of methanol (Om, Hm and Me). The characteristic parameters of these functions are listed in 
Tables 3 and 4. There are positions of the first (Rmax1) and second (Rmax2) maxima, the 
positions of the first (rmin1) and second (rmin2) minima and the numbers of the particles in the 
first (n1) and second (n2) coordination shells.  

The radial distribution functions of cation-oxygen in water, methanol and equimolar 
methanol-water mixture are shown in Figure 2. In aqueous solutions of MgCl2 and CaCl2 the 
cation-oxygen functions exhibit a sharp first peak, followed by broad second maximum. 
Positions of the first and second peaks coincide with the average distances of the first and 
second neighbours deduced from diffraction experiments (Ohtaki & Radnai, 1993). The 
gNaOw(r) function shows only one peak.  As might be expected the position of the first peak 
is shifted to larger distances as the radius of the cation increases. The peak height depends 
on the charge density and the Mg2+Ow radial distribution function shows the highest peak.   

Addition of methanol does not affect the position of the first maximum of the gionOw(r) 
function. However the methanol addition increases the first peak, particularly that of the  
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xM ion Rmax1 g(Rmax1) rmin1 n1 Rmax2 g(Rmax2) rmin2 n2 

 oxygen 

0.0 

Na 0.232 8.66 0.320 6.05 - - - - 
Ca 0.237 15.65 0.340 10 0.430 2.82 0.552 27 
Mg 0.199 21.14 0.270 6.2 0.452 1.75 0.512 16 
Cl 0.335 2.98 0.398 8 - - - - 

0.1 

Na 0.230 8.54 0.297 4.76 - - - - 
Ca 0.240 18.67 0.300 9.70 0.440 2.80 0.564 23 
Mg 0.199 24.04 0.270 5.40 0.452 1.34 0.507 10 
Cl 0.337 2.23 0.410 5.80 - - - - 

0.5 

Na 0.231 10.37 0.297 2.27 - - - - 
Ca 0.237 35.88 0.305 6.80 0.450 2.38 0.558 7 
Mg 0.199 38.33 0.270 3 0.394 1.29 0.504 3 
Cl 0.344 1.10 0.386 1.04 - - - - 

0.9 

Na 0.230 24.19 0.295 0.75 - - - - 
Ca 0.232 105.93 0.310 2.30 - - - - 
Mg 0.199 46.67 0.270 0.60 0.397 1.86 0.500 0.6 
Cl - - - - - - - - 

 hydrogen 

0.0 

Na 0.300 3.41 0.375 13.3 - - - - 
Ca 0.307 5.93 0.380 20.0 0.500 1.41 0.620 59 
Mg 0.274 6.42 0.337 12.5 0.492 1.05 0.575 40 
Cl 0.242 2.50 0.310 7.38 - - - - 

0.1 

Na 0.295 3.27 0.367 9.96 - - - - 
Ca 0.312 7.57 0.382 19.4 0.512 2.28 0.620 51 
Mg 0.274 7.03 0.337 10.8 0.497 1.10 0.575 22 
Cl 0.242 1.86 0.310 4.96 - - - - 

0.5 

Na 0.301 4.08 0.374 4.6 - - - - 
Ca 0.312 30.69 0.382 13.6 0.518 3.50 0.623 15 
Mg 0.274 11.11 0.337 6.2 0.496 0.90 0.567 7 
Cl 0.251 0.87 0.306 1.06 - - - - 
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Na 0.300 9.38 0.392 1.52 - - - - 
Ca 0.310 42.35 0.370 4.5 - - - - 
Mg 0.274 15.48 0.339 1.2 0.472 1.22 0.557 1 
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Table 3. Characteristic parameters of the ion-water  radial distribution functions: positions 
(in nm) of the first (Rmax1) and second (Rmax2) maxima, the first (rmin1) and second (rmin2) 
minima, heights of the first g(Rmax1) and second g(Rmax2) maxima and the first (n1) and 
second (n2) coordination numbers.  

Mg2+Ow and Ca2+Ow functions. This may suggest that in mixed solvent the interactions of 
the cations with water molecules are favoured, despite similar binding energies of Ca2+ and 
Na+ ions with methanol and water. This preference for water is observed also for Mg2+ ion, 
despite its stronger interactions with methanol than with water (see Figure 1 b). Moreover 
the first peak of the gionOw(r) function increases, when the water content decreases. This is 
particularly remarkable for the Ca2+ ions and in the water deficit mixture, when the water  
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xM ion Rmax1 g(Rmax1) rmin1 n1 Rmax2 g(Rmax2) rmin2 n2 

 oxygen 

0.1 

Na 0.237 15.46 0.317 1.25 - - - - 
Ca - - - - 0.652 1.90 0.760 ~5 
Mg 0.202 26.66 0.270 0.7 0.397 7.33 0.519 5 
Cl 0.325 14.09 0.410 2.25 - - - - 

0.5 

Na 0.234  14.24  0.316 3.56 - - - - 
Ca 0.252 5.75 0.332 1.7 0.478 3.05 0.555 8 
Mg 0.202 34.57 0.270 2.92 0.392 3.55 0.495 8 
Cl 0.324  9.84  0.414 6.10 - - - - 

0.9 

Na 0.235 13.72 0.312 5.61 - - - - 
Ca 0.250 15.60 0.347 5.7 0.480 3.47 0.565 ~10 
Mg 0.202 46.67 0.270 5.4 0.399 3.17 0.472 7 
Cl 0.325 6.84 0.418 7.1 - - - - 

1.0 

Na 0.238 15.90 0.340 5.8 - - - - 
Ca 0.247 22.03 0.362 7.6 0.488 3.05 0.565 9 
Mg 0.202 50.22 0.270 6 0.397 3.35 0.472 7 
Cl 0.328 7.00 0.430 7.2 - - - - 

 hydroxyl hydrogen 

0.1 

Na 0.282 7.29 0.380 1.25 - - - - 
Ca - - - - 0.732 1.58 0.825 ~5 
Mg 0.259 9.81 0.259 0.7 0.444 4.74 0.580 5 
Cl 0.227 27.12 0.312 2.20 - - - - 

0.5 

Na 0.300 4.07  0.380 4.60 -  -  -  - 
Ca 0.337 2.96 0.419 1.7 0.545 2.38 0.623 ~6.5 
Mg 0.262 11.91 0.262 2.92 0.492 2.28 0.574 9 
Cl 0.231  18.26  0.326 5.32 -  -  -  - 

0.9 

Na 0.290 5.86 0.385 5.59 - - - - 
Ca 0.335 8.46 0.440 5.7 0.550 2.41 0.635 ~12 
Mg 0.262 16.73 0.262 5.4 0.510 2.16 0.530 8 
Cl 0.235 13.56 0.335 6.70 - - - - 

1.0 

Na 0.295 6.90 0.380 5.90 - - - - 
Ca 0.332 11.90 0.400 7.6 0.562 2.19 0.635 ~11 
Mg 0.262 17.98 0.262 6 0.505 2.19 0.522 8 
Cl 0.235 12.70 0.340 7.00 - - - - 

Table 4. Characteristic parameters of the ion-methanol radial distribution functions: 
positions (in nm) of the first (Rmax1) and second (Rmax2) maxima, the first (rmin1) and second 
(rmin2) minima, heights of the first g(Rmax1) and second g(Rmax2) maxima and the first (n1) and 
second (n2) coordination numbers.  

content does not exceed 10 mol%, the first peaks of the Ca2+Ow function is about 7 times 
higher than that in aqueous solution (see Table 3). This suggests that in methanol rich 
solvents the Ca2+ shell contains several water molecules. The second maximum of the 
gCaOw(r) function shows also a distinct behaviour. In aqueous solution it is split into two 
peaks of similar heights, at 0.43 and 0.49 nm, respectively. When the methanol is added this 
splitting becomes less visible and vanishes in equimolar mixture.  
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Fig. 2. Cation-oxygen radial distribution functions in solutions of NaCl (solid), MgCl2 
(dashed) and CaCl2 (dotted) in water (a), methanol (c) and equimolar water-methanol 
mixture: oxygen of water (b) and methanol (d). 

A comparison of the radial distribution functions for the cations in aqueous and methanolic 
solutions shows that the average distance to the methanol’s oxygen is almost the same as to 
the water’s oxygen. Such feature is in good agreement with the experimental results 
(Megyes et al., 2004; Neilsen & Enderby, 1979).  The first peaks of all ion-oxygen functions in 
methanolic solutions are higher that those in aqueous solutions. This suggests that positions 
of the methanol molecules in the cation shells are more restricted than those of water 
molecules. As seen from Table 4 the height of the gionOm(r) peak decreases when the 
methanol content decreases. A striking behaviour has been notice for calcium ions. In water 
rich mixture, for the methanol content 10 mol%, the first and second maxima of the gCaOm(r) 
function, expected at 0.25 and 0.49 nm, are absent. This suggests that the methanol 
molecules do not enter the first and even the second coordination shell of Ca2+ ions, despite 
very similar energy of interactions (see Figure 1c).   

Radial distribution functions of the cations and the hydroxyl hydrogens of water and 
methanol are shown in Figure 3.  

The cation-hydroxyl hydrogen functions coincide with the cation-oxygen pair distribution 
functions. Therefore is not surprising that the positions of the sharp first peak of gionH(r) do 
not depend on the methanol content. As seen from Tables 3 and 4 the cation-hydroxyl 
hydrogen distance is longer, by about 0.07 nm, than that of the water’s and methanol ‘s 
oxygen. This suggests an antidipole orientation of the solvent molecules in the first 
coordination shells of the cations. The radial distribution functions for the cations and the 
methyl group are not shown, because a direct correlation between these sites is lacking.  

Radial distribution functions computed for chloride ions in the solutions of NaCl, MgCl2 
and CaCl2 are very similar, therefore the pair distribution functions, computed for CaCl2 
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xM ion Rmax1 g(Rmax1) rmin1 n1 Rmax2 g(Rmax2) rmin2 n2 

 oxygen 

0.1 

Na 0.237 15.46 0.317 1.25 - - - - 
Ca - - - - 0.652 1.90 0.760 ~5 
Mg 0.202 26.66 0.270 0.7 0.397 7.33 0.519 5 
Cl 0.325 14.09 0.410 2.25 - - - - 

0.5 

Na 0.234  14.24  0.316 3.56 - - - - 
Ca 0.252 5.75 0.332 1.7 0.478 3.05 0.555 8 
Mg 0.202 34.57 0.270 2.92 0.392 3.55 0.495 8 
Cl 0.324  9.84  0.414 6.10 - - - - 

0.9 

Na 0.235 13.72 0.312 5.61 - - - - 
Ca 0.250 15.60 0.347 5.7 0.480 3.47 0.565 ~10 
Mg 0.202 46.67 0.270 5.4 0.399 3.17 0.472 7 
Cl 0.325 6.84 0.418 7.1 - - - - 

1.0 

Na 0.238 15.90 0.340 5.8 - - - - 
Ca 0.247 22.03 0.362 7.6 0.488 3.05 0.565 9 
Mg 0.202 50.22 0.270 6 0.397 3.35 0.472 7 
Cl 0.328 7.00 0.430 7.2 - - - - 

 hydroxyl hydrogen 

0.1 

Na 0.282 7.29 0.380 1.25 - - - - 
Ca - - - - 0.732 1.58 0.825 ~5 
Mg 0.259 9.81 0.259 0.7 0.444 4.74 0.580 5 
Cl 0.227 27.12 0.312 2.20 - - - - 

0.5 

Na 0.300 4.07  0.380 4.60 -  -  -  - 
Ca 0.337 2.96 0.419 1.7 0.545 2.38 0.623 ~6.5 
Mg 0.262 11.91 0.262 2.92 0.492 2.28 0.574 9 
Cl 0.231  18.26  0.326 5.32 -  -  -  - 

0.9 

Na 0.290 5.86 0.385 5.59 - - - - 
Ca 0.335 8.46 0.440 5.7 0.550 2.41 0.635 ~12 
Mg 0.262 16.73 0.262 5.4 0.510 2.16 0.530 8 
Cl 0.235 13.56 0.335 6.70 - - - - 

1.0 

Na 0.295 6.90 0.380 5.90 - - - - 
Ca 0.332 11.90 0.400 7.6 0.562 2.19 0.635 ~11 
Mg 0.262 17.98 0.262 6 0.505 2.19 0.522 8 
Cl 0.235 12.70 0.340 7.00 - - - - 

Table 4. Characteristic parameters of the ion-methanol radial distribution functions: 
positions (in nm) of the first (Rmax1) and second (Rmax2) maxima, the first (rmin1) and second 
(rmin2) minima, heights of the first g(Rmax1) and second g(Rmax2) maxima and the first (n1) and 
second (n2) coordination numbers.  

content does not exceed 10 mol%, the first peaks of the Ca2+Ow function is about 7 times 
higher than that in aqueous solution (see Table 3). This suggests that in methanol rich 
solvents the Ca2+ shell contains several water molecules. The second maximum of the 
gCaOw(r) function shows also a distinct behaviour. In aqueous solution it is split into two 
peaks of similar heights, at 0.43 and 0.49 nm, respectively. When the methanol is added this 
splitting becomes less visible and vanishes in equimolar mixture.  
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Fig. 2. Cation-oxygen radial distribution functions in solutions of NaCl (solid), MgCl2 
(dashed) and CaCl2 (dotted) in water (a), methanol (c) and equimolar water-methanol 
mixture: oxygen of water (b) and methanol (d). 

A comparison of the radial distribution functions for the cations in aqueous and methanolic 
solutions shows that the average distance to the methanol’s oxygen is almost the same as to 
the water’s oxygen. Such feature is in good agreement with the experimental results 
(Megyes et al., 2004; Neilsen & Enderby, 1979).  The first peaks of all ion-oxygen functions in 
methanolic solutions are higher that those in aqueous solutions. This suggests that positions 
of the methanol molecules in the cation shells are more restricted than those of water 
molecules. As seen from Table 4 the height of the gionOm(r) peak decreases when the 
methanol content decreases. A striking behaviour has been notice for calcium ions. In water 
rich mixture, for the methanol content 10 mol%, the first and second maxima of the gCaOm(r) 
function, expected at 0.25 and 0.49 nm, are absent. This suggests that the methanol 
molecules do not enter the first and even the second coordination shell of Ca2+ ions, despite 
very similar energy of interactions (see Figure 1c).   

Radial distribution functions of the cations and the hydroxyl hydrogens of water and 
methanol are shown in Figure 3.  

The cation-hydroxyl hydrogen functions coincide with the cation-oxygen pair distribution 
functions. Therefore is not surprising that the positions of the sharp first peak of gionH(r) do 
not depend on the methanol content. As seen from Tables 3 and 4 the cation-hydroxyl 
hydrogen distance is longer, by about 0.07 nm, than that of the water’s and methanol ‘s 
oxygen. This suggests an antidipole orientation of the solvent molecules in the first 
coordination shells of the cations. The radial distribution functions for the cations and the 
methyl group are not shown, because a direct correlation between these sites is lacking.  

Radial distribution functions computed for chloride ions in the solutions of NaCl, MgCl2 
and CaCl2 are very similar, therefore the pair distribution functions, computed for CaCl2 
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solutions are displayed in Figure 4 as the example of the Cl- -oxygen and Cl- -hydroxyl 
hydrogen pair distribution functions. 

 
Fig. 3. Cation-hydroxyl hydrogen radial distribution functions in solutions of NaCl (solid), 
MgCl2 (dashed) and CaCl2 (dotted) in water (a), methanol (c) and equimolar water-methanol 
mixture: oxygen of water (b) and methanol (d). 

In aqueous and methanolic solutions of NaCl, MgCl2 and CaCl2 the first peak of the Cl- Ow 
and Cl- Om functions is centred at 0.33 nm. This agrees with the average distance, deduced 
from X-ray diffraction, from the Cl- ion to oxygens in aqueous (Yu et al., 2010) and 
methanolic (Megyes et al., 2004; Neilsen & Enderby, 1979) solutions. Position of the gClHw(r) 
and gClHm(r) functions, at 0.242 nm, coincides with the anion-oxygen distance. This shorter, 
by about 0.09 nm, distance suggests almost linear hydrogen bond between the anion and the 
solvent molecules. In aqueous solutions the first peaks of the gClOw(r) and gClHw(r) functions 
are not distinctly separated from the bulk. This evidences a high flexibility of the hydrated 
anion and suggests an easy exchange of the water molecules between the coordination shell 
and the bulk solvent. In methanolic solutions the peaks of the gClOm(r) and gClHm(r) functions 
are higher and better pronounced. This may indicate that the coordination shell of the anion 
in methanolic solutions is more stable. 

The composition of the mixed solvent does not affect the peak positions, but it influences 
remarkably the peak height. The changes of the peak height follows the changes of the 
solvent components, therefore the gClOm(r) and gClHm(r) peaks increase and the gClOw(r) and 
gClHw(r) peaks should decrease with the increasing methanol content. However the influence 
of the solvent composition on the Cl- -water radial distribution function is more dramatic. In 
equimolar mixture the first peaks of the gClOw(r) gClHw(r) functions, expected at 0.33 and 
0.242 nm, respectively, are absent. This means that the coordination shells of the anions do 
not contain the water molecules. This is observed despite the very similar energy 
interactions of the Cl- ion with water and methanol molecules (see Figure 1d). 
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Fig. 4. Radial distribution functions for Cl- and water and methanol sites: oxygen (solid) and 
hydroxyl hydrogen (dotted). Solutions of CaCl2 in water (a), methanol (c) and equimolar 
water-methanol mixture: water’s (b) and methanol’s (d) sites.  

4. Coordination numbers of the ions 
The numbers of the -sites in the coordination shells are equal to the running integration 
numbers, which have been computed by the integration of the gion(r) function within the 
boundaries of the shell, r1 and r2, respectively.  
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where  denotes the number density of the -sites. The boundaries of the shells correspond 
to the minima of the g(r) functions. Well-separated peaks of the radial distribution functions 
for the cations permit to compute unambiguously the number of the molecules in the first 
and even in the second shell. The number of the solvent molecules in the Cl- shell is not 
certain, because the peaks are badly pronounced.   

Diffraction experiments have shown that sodium and magnesium ions are six-coordinated 
both in aqueous (Ohtaki&Radnai,1993) and methanolic (Megyes et al., 2004) solutions. The 
hydration number of Ca2+ is greater, it strongly depends on the salt concentration and 
covers a wide interval, from 10.7 to 5.5 (Yamagouchi et al., 1989). The salt concentration 
influences also the number of the methanol molecules coordinated by Ca2+, but this 
dependence is weaker  (Megyes et al., 2004). 

Coordination numbers of Na+ and Mg2+, obtained from MD simulations, agree with the 
experimental results. Despite higher charge density of Mg2+ both cations, Na+ and Mg2+, are 
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solutions are displayed in Figure 4 as the example of the Cl- -oxygen and Cl- -hydroxyl 
hydrogen pair distribution functions. 

 
Fig. 3. Cation-hydroxyl hydrogen radial distribution functions in solutions of NaCl (solid), 
MgCl2 (dashed) and CaCl2 (dotted) in water (a), methanol (c) and equimolar water-methanol 
mixture: oxygen of water (b) and methanol (d). 

In aqueous and methanolic solutions of NaCl, MgCl2 and CaCl2 the first peak of the Cl- Ow 
and Cl- Om functions is centred at 0.33 nm. This agrees with the average distance, deduced 
from X-ray diffraction, from the Cl- ion to oxygens in aqueous (Yu et al., 2010) and 
methanolic (Megyes et al., 2004; Neilsen & Enderby, 1979) solutions. Position of the gClHw(r) 
and gClHm(r) functions, at 0.242 nm, coincides with the anion-oxygen distance. This shorter, 
by about 0.09 nm, distance suggests almost linear hydrogen bond between the anion and the 
solvent molecules. In aqueous solutions the first peaks of the gClOw(r) and gClHw(r) functions 
are not distinctly separated from the bulk. This evidences a high flexibility of the hydrated 
anion and suggests an easy exchange of the water molecules between the coordination shell 
and the bulk solvent. In methanolic solutions the peaks of the gClOm(r) and gClHm(r) functions 
are higher and better pronounced. This may indicate that the coordination shell of the anion 
in methanolic solutions is more stable. 

The composition of the mixed solvent does not affect the peak positions, but it influences 
remarkably the peak height. The changes of the peak height follows the changes of the 
solvent components, therefore the gClOm(r) and gClHm(r) peaks increase and the gClOw(r) and 
gClHw(r) peaks should decrease with the increasing methanol content. However the influence 
of the solvent composition on the Cl- -water radial distribution function is more dramatic. In 
equimolar mixture the first peaks of the gClOw(r) gClHw(r) functions, expected at 0.33 and 
0.242 nm, respectively, are absent. This means that the coordination shells of the anions do 
not contain the water molecules. This is observed despite the very similar energy 
interactions of the Cl- ion with water and methanol molecules (see Figure 1d). 
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Fig. 4. Radial distribution functions for Cl- and water and methanol sites: oxygen (solid) and 
hydroxyl hydrogen (dotted). Solutions of CaCl2 in water (a), methanol (c) and equimolar 
water-methanol mixture: water’s (b) and methanol’s (d) sites.  

4. Coordination numbers of the ions 
The numbers of the -sites in the coordination shells are equal to the running integration 
numbers, which have been computed by the integration of the gion(r) function within the 
boundaries of the shell, r1 and r2, respectively.  
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where  denotes the number density of the -sites. The boundaries of the shells correspond 
to the minima of the g(r) functions. Well-separated peaks of the radial distribution functions 
for the cations permit to compute unambiguously the number of the molecules in the first 
and even in the second shell. The number of the solvent molecules in the Cl- shell is not 
certain, because the peaks are badly pronounced.   

Diffraction experiments have shown that sodium and magnesium ions are six-coordinated 
both in aqueous (Ohtaki&Radnai,1993) and methanolic (Megyes et al., 2004) solutions. The 
hydration number of Ca2+ is greater, it strongly depends on the salt concentration and 
covers a wide interval, from 10.7 to 5.5 (Yamagouchi et al., 1989). The salt concentration 
influences also the number of the methanol molecules coordinated by Ca2+, but this 
dependence is weaker  (Megyes et al., 2004). 

Coordination numbers of Na+ and Mg2+, obtained from MD simulations, agree with the 
experimental results. Despite higher charge density of Mg2+ both cations, Na+ and Mg2+, are 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

410 

six-coordinated in aqueous and methanolic solutions. Thus the coordination number should 
be independent of the solvent composition. Though the charge density of Ca2+ is smaller 
than that of Mg2+ , the first shell of Ca2+ is larger. In aqueous solution the Ca2+ shell consists 
of 10 water molecules. In methanolic solution the Ca2+ shell contains less molecules. The 
coordination number is 7.6. This means that the Ca2+ shells contain either seven or eight 
methanol molecules. Thus one may expect that the methanol addition will slightly reduce 
the coordination number of Ca2+.  

In aqueous solutions of NaCl, MgCl2 and CaCl2 the chloride ion coordinates about eight 
water molecules. Smaller hydration number, about 6, was deduced from the X-ray 
experiments (Yu et al., 2010)  Such discrepancy can be understood, because the hydration 
shell of the anion is badly pronounced. In methanolic solution the Cl- ion coordinates less 
molecules, about 7. Different coordination numbers of Cl-, six (Megyes et al., 2004) and more 
than seven (Yamagouchi et al., 1989) have been deduced from X-ray scattering in methanol 
solutions of CaCl2 and MgCl2. The discrepancy might be due to the higher concentration of 
the experimentally examined solution.  

Interactions of the ions with water and methanol are very similar (see Figure 1) therefore a 
selective solvation of the ions has been not expected. The inspection of the results listed in 
Tables 3 and 4 shows, however, that the influence of the methanol addition on the 
composition of the ion shells can be dramatic. To describe this effect the real composition of 
the ion shells has been compared with the expected composition. 

 The ‘real’ methanol mole fraction in the first and second coordination shells of the ions has 
been computed as follows: 
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where (nw)k and (nm)k are the running integration numbers of the methanol and water 
molecules, respectively, computed for the first or second coordination shells. 

The number density of the methanol and water molecules in the mixture depends 
nonlinearly on the methanol mole fraction. Therefore even when the preferential solvation 
of ions does not occur, the methanol concentrations in the coordination shell and the  
bulk solvent are not the same.  Assuming a lack of the selective solvation, the expected  
mole fraction of methanol in the ion shell can be calculated as follows (Hawlicka & Switla-
Wojcik, 2000): 
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(nw)o and (nm)o are the numbers of the coordinated solvent molecules in pure water  
and methanol, (w)o and (m)o denote the number densities of the solvent components in  
the aqueous and methanolic solutions of the salts, while w(xm) and m(xm) are the  
number densities of water and methanol, respectively, in ternary systems: salt-methanol-
water.  
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The non-linear changes of the mixed solvent density should give a slight excess of methanol 
in the primary coordination shells of the ions. The results of MD simulation show, however, 
significant deviations of the real composition of the ion shells. This suggests a selective 
solvation of the ions. To demonstrate the preferences of the ions the observed methanol 
mole fraction, (xm)obs, is shown as the function of the expected methanol mole fraction (xm)exp 
in Figure 5. 

The content of methanol in the first coordination shells of Ca2+ and Mg2+ ions is remarkably 
smaller than expected. Thus the Ca2+ and Mg2+ ions favour water molecules in their shells. 
As seen from Figure 5 the preferential hydration of these cations is observed over whole 
range of the mixture composition. The Na+ ion also favours the water molecules in its 
primary shell, but this inclination is weaker, therefore the preferential hydration occurs only 
in the water deficit mixtures. This agrees with experiments, which have shown the equality 
of the self-diffusion coefficients of water and Na+ ions in water deficit mixtures (Hawlicka, 
1986).  The self-diffusion experiments have also shown that the addition of CaCl2 to the 
methanol water-mixture does not influence the methanol self-diffusion coefficient, but it 
reduces strongly the water self-diffusion coefficient (Palka & Hawlicka, 2004) . This means 
that translations of the cation and water molecules are correlated, because these species 
form an aggregate.     

 
Fig. 5. The dependence of the observed methanol mole fraction in the primary shell of Na+ 

(), Mg2+ (), Ca2+ () and Cl- () ions on the expected methanol mole fraction.  

Though all cations favour water molecules in the nearest surrounding, some difference 
should be noticed.  The  Mg2+ shells contain about 10% more water than expected, the 
significant excess is observed only in equimolar mixture. The Ca2+ ions exhibit the stronger 
preference for water, because in the water deficit region the calcium ion coordinates most of 
the water molecules. Moreover the Ca2+ ion favours the water molecules also in its second 
shell. In water rich mixture both shell of the Ca2+ ions consist only of the water molecules. 
Preferences of the Mg2+ and Na+ ions in their second shells are opposite and an excess of the 
methanol content is observed.  
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six-coordinated in aqueous and methanolic solutions. Thus the coordination number should 
be independent of the solvent composition. Though the charge density of Ca2+ is smaller 
than that of Mg2+ , the first shell of Ca2+ is larger. In aqueous solution the Ca2+ shell consists 
of 10 water molecules. In methanolic solution the Ca2+ shell contains less molecules. The 
coordination number is 7.6. This means that the Ca2+ shells contain either seven or eight 
methanol molecules. Thus one may expect that the methanol addition will slightly reduce 
the coordination number of Ca2+.  

In aqueous solutions of NaCl, MgCl2 and CaCl2 the chloride ion coordinates about eight 
water molecules. Smaller hydration number, about 6, was deduced from the X-ray 
experiments (Yu et al., 2010)  Such discrepancy can be understood, because the hydration 
shell of the anion is badly pronounced. In methanolic solution the Cl- ion coordinates less 
molecules, about 7. Different coordination numbers of Cl-, six (Megyes et al., 2004) and more 
than seven (Yamagouchi et al., 1989) have been deduced from X-ray scattering in methanol 
solutions of CaCl2 and MgCl2. The discrepancy might be due to the higher concentration of 
the experimentally examined solution.  

Interactions of the ions with water and methanol are very similar (see Figure 1) therefore a 
selective solvation of the ions has been not expected. The inspection of the results listed in 
Tables 3 and 4 shows, however, that the influence of the methanol addition on the 
composition of the ion shells can be dramatic. To describe this effect the real composition of 
the ion shells has been compared with the expected composition. 

 The ‘real’ methanol mole fraction in the first and second coordination shells of the ions has 
been computed as follows: 
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where (nw)k and (nm)k are the running integration numbers of the methanol and water 
molecules, respectively, computed for the first or second coordination shells. 

The number density of the methanol and water molecules in the mixture depends 
nonlinearly on the methanol mole fraction. Therefore even when the preferential solvation 
of ions does not occur, the methanol concentrations in the coordination shell and the  
bulk solvent are not the same.  Assuming a lack of the selective solvation, the expected  
mole fraction of methanol in the ion shell can be calculated as follows (Hawlicka & Switla-
Wojcik, 2000): 
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(nw)o and (nm)o are the numbers of the coordinated solvent molecules in pure water  
and methanol, (w)o and (m)o denote the number densities of the solvent components in  
the aqueous and methanolic solutions of the salts, while w(xm) and m(xm) are the  
number densities of water and methanol, respectively, in ternary systems: salt-methanol-
water.  
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The non-linear changes of the mixed solvent density should give a slight excess of methanol 
in the primary coordination shells of the ions. The results of MD simulation show, however, 
significant deviations of the real composition of the ion shells. This suggests a selective 
solvation of the ions. To demonstrate the preferences of the ions the observed methanol 
mole fraction, (xm)obs, is shown as the function of the expected methanol mole fraction (xm)exp 
in Figure 5. 

The content of methanol in the first coordination shells of Ca2+ and Mg2+ ions is remarkably 
smaller than expected. Thus the Ca2+ and Mg2+ ions favour water molecules in their shells. 
As seen from Figure 5 the preferential hydration of these cations is observed over whole 
range of the mixture composition. The Na+ ion also favours the water molecules in its 
primary shell, but this inclination is weaker, therefore the preferential hydration occurs only 
in the water deficit mixtures. This agrees with experiments, which have shown the equality 
of the self-diffusion coefficients of water and Na+ ions in water deficit mixtures (Hawlicka, 
1986).  The self-diffusion experiments have also shown that the addition of CaCl2 to the 
methanol water-mixture does not influence the methanol self-diffusion coefficient, but it 
reduces strongly the water self-diffusion coefficient (Palka & Hawlicka, 2004) . This means 
that translations of the cation and water molecules are correlated, because these species 
form an aggregate.     

 
Fig. 5. The dependence of the observed methanol mole fraction in the primary shell of Na+ 

(), Mg2+ (), Ca2+ () and Cl- () ions on the expected methanol mole fraction.  

Though all cations favour water molecules in the nearest surrounding, some difference 
should be noticed.  The  Mg2+ shells contain about 10% more water than expected, the 
significant excess is observed only in equimolar mixture. The Ca2+ ions exhibit the stronger 
preference for water, because in the water deficit region the calcium ion coordinates most of 
the water molecules. Moreover the Ca2+ ion favours the water molecules also in its second 
shell. In water rich mixture both shell of the Ca2+ ions consist only of the water molecules. 
Preferences of the Mg2+ and Na+ ions in their second shells are opposite and an excess of the 
methanol content is observed.  
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Interactions of the chloride ions with methanol and water are weaker than those of cations. 
The coordination shell of Cl- is flexible, but its composition differs significantly from that of 
the bulk solvent. The chloride ions favour methanol molecules in their coordination shells. 
This preference is observed in solutions of NaCl, CaCl2 and MgCl2, over the whole range of 
the composition of the mixed solvent. The preferential solvation of Cl- by methanol has been 
postulated from self-diffusion coefficients. The diffusion experiments have shown that in 
methanol rich solvents translations of the chloride ions and methanol molecules are strongly 
correlated (Hawlicka, 1986). The Cl- ion favours the methanol molecules in its primary shell 
despite very similar binding energies of the anion with the solvent components. 

5. Orientation of the solvent molecules in the first coordination shell 
Orientation of the molecules around the ion can be characterised by an angle  between the 
vector connecting the ion with the oxygen and the dipole moment of the solvent molecule. 
The angular distribution functions are shown in Figure 6.  

 
Fig. 6. Distribution functions of angular orientation of the nearest neighbours of Na+ (solid), 
Mg2+(dashed), Ca2+ () and Cl- (dotted) in water (a), methanol (c) and equimolar mixture  
(b, d). The angle  defined in the inset.  

Distribution functions of the angular orientation of the water molecules in the primary 
shells of Na+, Mg2+ and Ca2+ ions show the peak centred at cos = -1. This indicates that the 
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antidipole orientation of the water molecules in the cation shells dominates. The distribution 
of the  angle for Mg2+ is narrower than those for Na+ and Ca2+. This is not surprising that 
the water molecules are better oriented in the field of Mg2+, which is stronger than the fields 
of Na+ and Ca2+. The primary shell of Ca2+ contains more water molecules than the shells of 
the six-coordinated Na+ and Mg2+ions, therefore the angular distribution for Ca2+ shows a 
shoulder for cos  -0.7. This means that the dipole moments of a few water molecules in the 
Ca2+ shell are tilted, by about 45o, from the antidipole orientation. This ‘improper’ 
orientation vanishes in equimolar mixture when the coordination number decreases from 10 
to 7. This suggests that the coordination shell of Ca2+ is compact.      

The antidipole orientation of the methanol molecules is also observed in the Na+ and Mg2+ 
shells. A different orientation has been noticed for the methanol molecules in the Ca2+ shell. 
The distribution of the O-Ca2+O angles, shows the dominant peak at cos =-0.9. Thus the 
dipole moments of the methanol molecules in the Ca2+vicinity are tilted by about 25o.  

As might be expected the orientation of the solvent molecules in the vicinity of chloride ions 
is different. The distance from the anion to oxygen is longer than that to hydrogen. This 
suggests a hydrogen bond between the anion and the nearest solvent molecules. In aqueous 
and methanolic solutions the dominant peaks of the angular distributions are centred at 
cos=0.68. This confirms that H-bond between the anion and solvent molecules is almost 
linear. As might be expected the orientation of the solvent molecules in the anion shell for all 
studied solutions is independent of the solvent composition. 

To describe a geometrical arrangement of the solvent molecules in the solvation shells two 
angles can be defined. The  angle is the angle between two vectors pointing from the ion to 
the nearest oxygens. The  angle, which is the angle between the three oxygens, permits to 
deduce a difference between the order of the water molecules in the coordination shells and 
the tetrahedral structure of water. The distributions of the  angles have been computed 
without any distinction between oxygens belonging to water and methanol molecules. The 
results are displayed in Figure 7.   

 
Fig. 7. Distribution of  angles, for the water (a) and methanol (b) molecules in the primary 
shells of Na+ (solid), Mg2+(dashed), Ca2+() and Cl- (dotted). 

The distribution of  angles computed for the coordination shells of the Na+ and Mg2+ ions 
is independent of the solvent composition. Two peaks, centred at 90o and 180o, indicate that 
the water and methanol molecules form an octahedron around the cation. The distribution 
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Interactions of the chloride ions with methanol and water are weaker than those of cations. 
The coordination shell of Cl- is flexible, but its composition differs significantly from that of 
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5. Orientation of the solvent molecules in the first coordination shell 
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vector connecting the ion with the oxygen and the dipole moment of the solvent molecule. 
The angular distribution functions are shown in Figure 6.  

 
Fig. 6. Distribution functions of angular orientation of the nearest neighbours of Na+ (solid), 
Mg2+(dashed), Ca2+ () and Cl- (dotted) in water (a), methanol (c) and equimolar mixture  
(b, d). The angle  defined in the inset.  

Distribution functions of the angular orientation of the water molecules in the primary 
shells of Na+, Mg2+ and Ca2+ ions show the peak centred at cos = -1. This indicates that the 
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antidipole orientation of the water molecules in the cation shells dominates. The distribution 
of the  angle for Mg2+ is narrower than those for Na+ and Ca2+. This is not surprising that 
the water molecules are better oriented in the field of Mg2+, which is stronger than the fields 
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and methanolic solutions the dominant peaks of the angular distributions are centred at 
cos=0.68. This confirms that H-bond between the anion and solvent molecules is almost 
linear. As might be expected the orientation of the solvent molecules in the anion shell for all 
studied solutions is independent of the solvent composition. 

To describe a geometrical arrangement of the solvent molecules in the solvation shells two 
angles can be defined. The  angle is the angle between two vectors pointing from the ion to 
the nearest oxygens. The  angle, which is the angle between the three oxygens, permits to 
deduce a difference between the order of the water molecules in the coordination shells and 
the tetrahedral structure of water. The distributions of the  angles have been computed 
without any distinction between oxygens belonging to water and methanol molecules. The 
results are displayed in Figure 7.   

 
Fig. 7. Distribution of  angles, for the water (a) and methanol (b) molecules in the primary 
shells of Na+ (solid), Mg2+(dashed), Ca2+() and Cl- (dotted). 

The distribution of  angles computed for the coordination shells of the Na+ and Mg2+ ions 
is independent of the solvent composition. Two peaks, centred at 90o and 180o, indicate that 
the water and methanol molecules form an octahedron around the cation. The distribution 
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of the angles between three oxygens of the solvent molecules in the Na+ and Mg2+ shells 
shows two peaks at 60 and 90o, respectively. This confirms the octahedral arrangement of 
the coordination shells.   

The Ca2+ shell, which contains more molecules, does not show any symmetry. As seen from 
Figure 7 in aqueous solution the distribution of O-Ca2+-O angles exhibits two peaks, around 
67o and 135o, respectively. The former angle is close to the value, which can be expected for 
tetrahedral or hexahedral symmetry, but the latter angle cannot be correlated with any of 
the polyhedra. This means that the Ca2+ shell is irregular. When the coordination number of 
Ca2+ decreases with the increasing methanol content, the most probable O-Ca2+-O angle 
increases. In methanolic solution the distribution of  angles shows two peaks around 75o or 
145o, respectively. This means that the cation shell remains irregular. The distribution of the 
O-O-O angles confirms a lack of symmetry of the Ca2+ shell, because in all studied solutions 
these angles are either 55o or 107o.  

The O-Cl- -O angles, computed for the solutions of NaCl, MgCl2 and CaCl2, are very similar. 
As seen from Figure 7 the distribution of the O-Cl- -O angle is almost uniform. This means 
that the coordination shell does not show any symmetrical arrangement. A lack of the 
symmetry of the Cl- shell causes that in aqueous solution the distribution of the O-O-O 
angles is almost uniform, except a small peak at about 54o. It is worthy to notice that such 
peak is believed to be a distinctive feature of the tetrahedral arrangement of pure water 
(Gallanger & Sharp, 2003).  This means that in the coordination shell of Cl-  the water 
structure partially remains.  

6. Residence time of the solvent molecules in the coordination shells 
An important feature of ions in solutions is a persistence of the coordination shell, because a 
dynamics of an exchange process may determine a reaction rate. A residence time of the 
solvent molecules in the coordination shells of the ions has been calculated from a time 
correlation function R(t), proposed previously (Impeay et al., 1983). The time correlation 
function is defined as follows: 
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where N and N denote the number of ions and the solvent molecules in the sphere of the 
radius defined by the first minimum of the gionO(r) function, respectively. ij(t) is the step 
function; ij(t)=1, if the solvent molecule j is in the ion shell and ij(t)=0 otherwise. The 
calculations of the R(t) functions were performed for at least 500 randomly chosen initial 
configurations. The calculations were done for several time intervals t within the range 
0.01-0.5 ps.  

The solvent molecules could leave the ion shell for a period, which was shorter than t, 
otherwise they were neglected in further calculations. Variations of t and the solvent 
composition do not influence the character of R(t) functions. For all simulated systems the 
time correlation functions for Mg2+ and Ca2+ ions decrease rapidly in the period shorter than 
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1 ps, afterward, independently of the time interval, they reach a constant value close to 0.95. 
This means that about 95% of the solvent molecules do not leave the coordination shells of 
the cations during the whole simulation time. The coordination shells of the divalent cations 
are very stable, with the lifetime remarkably exceeding 150 ps, and being independent of the 
solvent composition. The long lifetime of the primary hydration shells has been reported 
previously for Ca2+, about 700 ps, and Mg2+ , about 422 ps (Konesham et al., 1998). The long 
residence time of the solvent molecules has been expected, because the hydrodynamic radii 
of both cations noticeably exceed the ion radii in crystal (Hawlicka, 1995). This means that 
the cations move with their coordination shells together, because the ion filed controls the 
translations of all nearest neighbours.  

The R(t) functions for the Na+ and Cl- ions decrease monotonously and they can be fitted to 
a second-order exponential decay: 
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The first term describes an escape of the solvent molecules located close to the border of the 
coordination shell, whereas the second term concerns the persistence of the shell. 
Parameters A1 and A2 reflect fractions of the solvent molecules involved in both processes. 
The first process is rather fast and its characteristic time 1 is shorter than 1 ps. The residence 
time 2 of the solvent molecules in the Cl- shell and the methanol molecules in the Na+ shell 
increase with the time interval t. Such dependence it is shown in Figure 8. 

 
Fig. 8. Influence of the time interval t. on the residence time 2 of the methanol molecules in 
the Cl- shell. 

As seen the residence time reaches the constant value when t is not shorter than 0.2ps. 
Thus the 2 values discussed below were computed for t=0.2 ps. This means that the 
solvent molecules leaving the ion shell for the time longer than 0.2 ps were neglected in 
further calculations.  

In aqueous solution the lifetime of the coordination shell of Na+ is long, more than 170 ps, 
but in methanolic solution this time is much shorter, about 45 ps. Therefore is not surprising 
that the lifetime of the Na+ shell decreases when the methanol content increases.   
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of the angles between three oxygens of the solvent molecules in the Na+ and Mg2+ shells 
shows two peaks at 60 and 90o, respectively. This confirms the octahedral arrangement of 
the coordination shells.   

The Ca2+ shell, which contains more molecules, does not show any symmetry. As seen from 
Figure 7 in aqueous solution the distribution of O-Ca2+-O angles exhibits two peaks, around 
67o and 135o, respectively. The former angle is close to the value, which can be expected for 
tetrahedral or hexahedral symmetry, but the latter angle cannot be correlated with any of 
the polyhedra. This means that the Ca2+ shell is irregular. When the coordination number of 
Ca2+ decreases with the increasing methanol content, the most probable O-Ca2+-O angle 
increases. In methanolic solution the distribution of  angles shows two peaks around 75o or 
145o, respectively. This means that the cation shell remains irregular. The distribution of the 
O-O-O angles confirms a lack of symmetry of the Ca2+ shell, because in all studied solutions 
these angles are either 55o or 107o.  

The O-Cl- -O angles, computed for the solutions of NaCl, MgCl2 and CaCl2, are very similar. 
As seen from Figure 7 the distribution of the O-Cl- -O angle is almost uniform. This means 
that the coordination shell does not show any symmetrical arrangement. A lack of the 
symmetry of the Cl- shell causes that in aqueous solution the distribution of the O-O-O 
angles is almost uniform, except a small peak at about 54o. It is worthy to notice that such 
peak is believed to be a distinctive feature of the tetrahedral arrangement of pure water 
(Gallanger & Sharp, 2003).  This means that in the coordination shell of Cl-  the water 
structure partially remains.  

6. Residence time of the solvent molecules in the coordination shells 
An important feature of ions in solutions is a persistence of the coordination shell, because a 
dynamics of an exchange process may determine a reaction rate. A residence time of the 
solvent molecules in the coordination shells of the ions has been calculated from a time 
correlation function R(t), proposed previously (Impeay et al., 1983). The time correlation 
function is defined as follows: 
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where N and N denote the number of ions and the solvent molecules in the sphere of the 
radius defined by the first minimum of the gionO(r) function, respectively. ij(t) is the step 
function; ij(t)=1, if the solvent molecule j is in the ion shell and ij(t)=0 otherwise. The 
calculations of the R(t) functions were performed for at least 500 randomly chosen initial 
configurations. The calculations were done for several time intervals t within the range 
0.01-0.5 ps.  

The solvent molecules could leave the ion shell for a period, which was shorter than t, 
otherwise they were neglected in further calculations. Variations of t and the solvent 
composition do not influence the character of R(t) functions. For all simulated systems the 
time correlation functions for Mg2+ and Ca2+ ions decrease rapidly in the period shorter than 
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1 ps, afterward, independently of the time interval, they reach a constant value close to 0.95. 
This means that about 95% of the solvent molecules do not leave the coordination shells of 
the cations during the whole simulation time. The coordination shells of the divalent cations 
are very stable, with the lifetime remarkably exceeding 150 ps, and being independent of the 
solvent composition. The long lifetime of the primary hydration shells has been reported 
previously for Ca2+, about 700 ps, and Mg2+ , about 422 ps (Konesham et al., 1998). The long 
residence time of the solvent molecules has been expected, because the hydrodynamic radii 
of both cations noticeably exceed the ion radii in crystal (Hawlicka, 1995). This means that 
the cations move with their coordination shells together, because the ion filed controls the 
translations of all nearest neighbours.  

The R(t) functions for the Na+ and Cl- ions decrease monotonously and they can be fitted to 
a second-order exponential decay: 
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The first term describes an escape of the solvent molecules located close to the border of the 
coordination shell, whereas the second term concerns the persistence of the shell. 
Parameters A1 and A2 reflect fractions of the solvent molecules involved in both processes. 
The first process is rather fast and its characteristic time 1 is shorter than 1 ps. The residence 
time 2 of the solvent molecules in the Cl- shell and the methanol molecules in the Na+ shell 
increase with the time interval t. Such dependence it is shown in Figure 8. 

 
Fig. 8. Influence of the time interval t. on the residence time 2 of the methanol molecules in 
the Cl- shell. 

As seen the residence time reaches the constant value when t is not shorter than 0.2ps. 
Thus the 2 values discussed below were computed for t=0.2 ps. This means that the 
solvent molecules leaving the ion shell for the time longer than 0.2 ps were neglected in 
further calculations.  

In aqueous solution the lifetime of the coordination shell of Na+ is long, more than 170 ps, 
but in methanolic solution this time is much shorter, about 45 ps. Therefore is not surprising 
that the lifetime of the Na+ shell decreases when the methanol content increases.   
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The exchange of the water molecules between the Cl- shell and the bulk is fast. Though  
the size and composition of the anion shell in solutions of CaCl2, MgCl2 and NaCl are the 
same, the persistence of the shells is different. In solutions of CaCl2 and MgCl2 the anion 
shells are more flexible than those in NaCl solutions. In solutions of the alkali earth 
chlorides about 85% of the water molecules stay in the primary shell of the anion less than 5 
ps. This means that the water residence time is shorter than the characteristic time of the 
water translations, about 6 ps (Hawlicka & Switla-Wojcik, 2000). This explains why  
the hydrodynamic radius of Cl- in aqueous solution is like its radius in crystal  (Hawlicka, 
1986).  In NaCl solution the lifetime of the anion shell is longer. About 75% of the water 
molecules stay in the shell about 19 ps.   

The residence time of the methanol molecules in the Cl- shell is longer than that of the water 
molecules. In methanolic solutions of CaCl2 and MgCl2 the lifetime of the Cl- shell exceeds 
50 ps. Shorter lifetime, about 25 ps, has been found for the methanolic solution of NaCl. 
However even this shortest residence time, 25 ps, exceeds significantly the characteristic 
time of methanol translations, about 9 ps (Hawlicka & Switla-Wojcik, 2000). This explains 
why the hydrodynamic radius of Cl- in net methanol is greater than the radius in crystal 

(Hawlicka, 1986).   

7. H-bonds of the solvent molecules in the first coordination shell 
Comparison of the number of the solvent molecules in the first and second coordination 
shells suggests that in aqueous solutions and water rich mixtures, almost any water 
molecule in the primary shell of Mg2+ has at least two neighbours in the second shell. Such 
result seems to be consistent with the antidipole orientation of these molecules. The 
orientation of the water molecules in the first shell of Ca2+ is less restricted therefore it is not 
surprising that they have three neighbours in the second shell. Number of the second 
neighbours of Na+ is difficult to determine, because the  second shell is not stable and the 
second peak of the Na+O radial distribution function is lacking.  

With increasing methanol content the number of the neighbours in the second shells of Mg2+ 
and Ca2+ decreases rapidly and in equimolar mixture the water or methanol molecule in the 
first shell has only one neighbour in the second shell. A question is whether the molecules in 
the primary shell are hydrogen bonded with those in the second shell or in the bulk.  

In MD simulation all pair interactions change continuously as a function of the separation 
and orientation of the molecules therefore there is no unambiguous definition of the 
hydrogen bond. Usually two definitions, either energetic or geometric, of the H-bond are 
considered.  The energetic criterion of H-bond, based on the pair interaction energy, treats 
two molecules as H-bonded, if their interaction energy is less than –8 kJ.mol-1. This criterion 
coincides with the geometric definition, which considers two molecules as H-bonded, if the 
distances between two oxygens and between the hydrogen and oxygen of the H-bond 
acceptor do not exceed 0.350 and 0.250 nm, respectively, and if the angle between the OH 
intramolecular bond of the H-donor and the line connecting the oxygens is less than 30o 
(Hawlicka & Swiatla-Wojcik, 1998).  

The average numbers of the H-bonds were computed in 0.001 ps intervals over the whole 
simulation runs. The average number of H-bonds per water molecule in pure water is  
<nHB>w=3.5.  Addition of electrolytes, NaCl, MgCl2 and CaCl2 , reduces slightly this number. 
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In all studied solutions the H-bond numbers are the same, <nHB>w=3.1. Thus this influence 
is slight and only in CaCl2 solutions it extends beyond the first coordination shells of the 
ions (Owczarek et al., 2007).  

Differences between the electrolyte solutions appear when the H-bonds of the molecules in 
first coordination shell of the cations are compared. The Mg2+ and Na2+ ions are six-
coordinated and the angular distributions show, that all water molecules are properly 
oriented to form two H-bonds as H-donors. Though the average number of H-bonds per the 
water molecule in the Na+ shell is two, [<nHB>w]Na+=2, a detailed analysis shows that about 
65% of the water molecules in the Na+ shell form 2 H-bonds, whereas the reminder of them 
has either one, about 15%, or three, about 20%, H-bonded neighbours. Most of the water 
molecules in the Mg2+ shell, about 70%, have two H-bonded neighbours, but 30% of the 
molecules form only one H-bond. Though both cations coordinate six water molecules the 
radius of Mg2+ shell is smaller, about 0.27 nm, than that of the Na+ shell, about 0.32 nm. 
Thus the Mg2+ shell must be more compact and there is probably not enough space for H-
bonded neighbours of all water molecules. The water molecules in the Ca2+ shell have also 
less H-bonded neighbours. Most of them, about 80%, has only one H-bonded neighbour and 
only 20%of the molecules form two H-bonds with their neighbours in the second shell. The 
radii of Ca2+ and Na+ ions in crystal, 0.096 and 0.102 nm (Marcus & Hefter, 2004) and their 
shells, 0.34 and 0.32 nm respectively (see Table 3), are similar. The first shell of Ca2+ consists 
however of 10 water molecules. Though most of them are oriented properly to have the H-
bonded neighbours the shell is compact and only 20% of the molecules have enough space 
for two H-bonded neighbours in the second shell.   

In mixed solvent the number of H-bonds per water molecule in the shells of Na+ and Mg2+ 
ions remains unchanged. Such behaviour might be expected, because neither the 
coordination number nor the orientation of the molecules depends on the solvent 
composition. In methanol-water mixtures the water molecules from the first shells of Na+ 
and Mg2+ prefer the methanol molecules as H-bonded neighbours in the next sphere. Such 
preference can be understood, because the H-bond between the H-donor water molecule 
and the H-acceptor methanol molecule is energetically favourable (Palinkas et al. 1991).    

As seen from Tables 3 and 4 the number of the molecules in the first and second shells of 
Ca2+ decrease with the increasing methanol content. The radii of both shells are, however, 
independent of the mixture composition. Thus the first shell becomes less compact. This 
improves the orientation of the water molecules as H-donors. In consequence all water 
molecules have two H-bonded neighbours. However they have water molecules as the H-
bonded neighbours despite the unfavourable energy of H-bond between two water 
molecules. The methanol molecules appear in the first shells of Ca2+ in methanol rich 
solvents, when there is a lack of water to form the coordination shell. Their antidipole 
orientation causes that they have only one H-bonded neighbour.  

The chloride ion is H-bond acceptor and in aqueous solution the water molecules form 
almost linear H-bond with Cl- shell. About 80% of the water molecules coordinated by the 
anion form three H-bonds with the neighbours in the bulk solvent. In mixed solvent the 
methanol molecules replace the water molecules in the anion shell. The molecules form the 
linear H-bond with Cl- therefore they are H-acceptors and have only one H-bonded 
neighbour in the bulk solvent. 
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The exchange of the water molecules between the Cl- shell and the bulk is fast. Though  
the size and composition of the anion shell in solutions of CaCl2, MgCl2 and NaCl are the 
same, the persistence of the shells is different. In solutions of CaCl2 and MgCl2 the anion 
shells are more flexible than those in NaCl solutions. In solutions of the alkali earth 
chlorides about 85% of the water molecules stay in the primary shell of the anion less than 5 
ps. This means that the water residence time is shorter than the characteristic time of the 
water translations, about 6 ps (Hawlicka & Switla-Wojcik, 2000). This explains why  
the hydrodynamic radius of Cl- in aqueous solution is like its radius in crystal  (Hawlicka, 
1986).  In NaCl solution the lifetime of the anion shell is longer. About 75% of the water 
molecules stay in the shell about 19 ps.   

The residence time of the methanol molecules in the Cl- shell is longer than that of the water 
molecules. In methanolic solutions of CaCl2 and MgCl2 the lifetime of the Cl- shell exceeds 
50 ps. Shorter lifetime, about 25 ps, has been found for the methanolic solution of NaCl. 
However even this shortest residence time, 25 ps, exceeds significantly the characteristic 
time of methanol translations, about 9 ps (Hawlicka & Switla-Wojcik, 2000). This explains 
why the hydrodynamic radius of Cl- in net methanol is greater than the radius in crystal 

(Hawlicka, 1986).   

7. H-bonds of the solvent molecules in the first coordination shell 
Comparison of the number of the solvent molecules in the first and second coordination 
shells suggests that in aqueous solutions and water rich mixtures, almost any water 
molecule in the primary shell of Mg2+ has at least two neighbours in the second shell. Such 
result seems to be consistent with the antidipole orientation of these molecules. The 
orientation of the water molecules in the first shell of Ca2+ is less restricted therefore it is not 
surprising that they have three neighbours in the second shell. Number of the second 
neighbours of Na+ is difficult to determine, because the  second shell is not stable and the 
second peak of the Na+O radial distribution function is lacking.  

With increasing methanol content the number of the neighbours in the second shells of Mg2+ 
and Ca2+ decreases rapidly and in equimolar mixture the water or methanol molecule in the 
first shell has only one neighbour in the second shell. A question is whether the molecules in 
the primary shell are hydrogen bonded with those in the second shell or in the bulk.  

In MD simulation all pair interactions change continuously as a function of the separation 
and orientation of the molecules therefore there is no unambiguous definition of the 
hydrogen bond. Usually two definitions, either energetic or geometric, of the H-bond are 
considered.  The energetic criterion of H-bond, based on the pair interaction energy, treats 
two molecules as H-bonded, if their interaction energy is less than –8 kJ.mol-1. This criterion 
coincides with the geometric definition, which considers two molecules as H-bonded, if the 
distances between two oxygens and between the hydrogen and oxygen of the H-bond 
acceptor do not exceed 0.350 and 0.250 nm, respectively, and if the angle between the OH 
intramolecular bond of the H-donor and the line connecting the oxygens is less than 30o 
(Hawlicka & Swiatla-Wojcik, 1998).  

The average numbers of the H-bonds were computed in 0.001 ps intervals over the whole 
simulation runs. The average number of H-bonds per water molecule in pure water is  
<nHB>w=3.5.  Addition of electrolytes, NaCl, MgCl2 and CaCl2 , reduces slightly this number. 
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In all studied solutions the H-bond numbers are the same, <nHB>w=3.1. Thus this influence 
is slight and only in CaCl2 solutions it extends beyond the first coordination shells of the 
ions (Owczarek et al., 2007).  

Differences between the electrolyte solutions appear when the H-bonds of the molecules in 
first coordination shell of the cations are compared. The Mg2+ and Na2+ ions are six-
coordinated and the angular distributions show, that all water molecules are properly 
oriented to form two H-bonds as H-donors. Though the average number of H-bonds per the 
water molecule in the Na+ shell is two, [<nHB>w]Na+=2, a detailed analysis shows that about 
65% of the water molecules in the Na+ shell form 2 H-bonds, whereas the reminder of them 
has either one, about 15%, or three, about 20%, H-bonded neighbours. Most of the water 
molecules in the Mg2+ shell, about 70%, have two H-bonded neighbours, but 30% of the 
molecules form only one H-bond. Though both cations coordinate six water molecules the 
radius of Mg2+ shell is smaller, about 0.27 nm, than that of the Na+ shell, about 0.32 nm. 
Thus the Mg2+ shell must be more compact and there is probably not enough space for H-
bonded neighbours of all water molecules. The water molecules in the Ca2+ shell have also 
less H-bonded neighbours. Most of them, about 80%, has only one H-bonded neighbour and 
only 20%of the molecules form two H-bonds with their neighbours in the second shell. The 
radii of Ca2+ and Na+ ions in crystal, 0.096 and 0.102 nm (Marcus & Hefter, 2004) and their 
shells, 0.34 and 0.32 nm respectively (see Table 3), are similar. The first shell of Ca2+ consists 
however of 10 water molecules. Though most of them are oriented properly to have the H-
bonded neighbours the shell is compact and only 20% of the molecules have enough space 
for two H-bonded neighbours in the second shell.   

In mixed solvent the number of H-bonds per water molecule in the shells of Na+ and Mg2+ 
ions remains unchanged. Such behaviour might be expected, because neither the 
coordination number nor the orientation of the molecules depends on the solvent 
composition. In methanol-water mixtures the water molecules from the first shells of Na+ 
and Mg2+ prefer the methanol molecules as H-bonded neighbours in the next sphere. Such 
preference can be understood, because the H-bond between the H-donor water molecule 
and the H-acceptor methanol molecule is energetically favourable (Palinkas et al. 1991).    

As seen from Tables 3 and 4 the number of the molecules in the first and second shells of 
Ca2+ decrease with the increasing methanol content. The radii of both shells are, however, 
independent of the mixture composition. Thus the first shell becomes less compact. This 
improves the orientation of the water molecules as H-donors. In consequence all water 
molecules have two H-bonded neighbours. However they have water molecules as the H-
bonded neighbours despite the unfavourable energy of H-bond between two water 
molecules. The methanol molecules appear in the first shells of Ca2+ in methanol rich 
solvents, when there is a lack of water to form the coordination shell. Their antidipole 
orientation causes that they have only one H-bonded neighbour.  

The chloride ion is H-bond acceptor and in aqueous solution the water molecules form 
almost linear H-bond with Cl- shell. About 80% of the water molecules coordinated by the 
anion form three H-bonds with the neighbours in the bulk solvent. In mixed solvent the 
methanol molecules replace the water molecules in the anion shell. The molecules form the 
linear H-bond with Cl- therefore they are H-acceptors and have only one H-bonded 
neighbour in the bulk solvent. 
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An interesting question is how does the ionic field influence a strength and persistency of 
the H-bonds. To describe this effect the average H-bond energy of the molecules in the ion 
shells was calculated and it was compared with the average H-bond energy computed for 
the mixed solvent. The average energy of two H-bonded molecules in liquid BJH water, 
<EHB>w= -17.3 kJ.mol-1, is of about 10% higher than the energy of two H-bonded molecules 
in liquid PHH methanol, <EHB>w= -19.2 kJ.mol-1. Such feature agrees with the difference of 
the binding energies of water and methanol dimers (Palinkas et al. 1991).  In gas phase the 
binding energies for the dimer of unlike molecules depends on the configuration of the 
water and methanol molecules. The H-bond between the H-acceptor methanol molecule and 
H-donor water molecule is energetically favourable (Palinkas et al., 1991). Therefore the 
average energy of the H-bond in the methanol-water mixtures decreases with the increasing 
methanol content (Owczarek et al., 2009). In liquid mixtures the energies of two different 
configurations are slightly different and the energy of the H-acceptor methanol and H-
donor water is lower by about 7%.  

The influence of the anionic field on the strength of H-bonds is negligible and the H-bond 
energy of the water and methanol molecules, coordinated by the Cl- ions, does not differ 
from the H-bond energy in the bulk solvent. A lack of the influence can be understood, 
because the charge density of the chloride ion is small, therefore the anion field does not 
polarise the solvent molecules.   

The charge densities of the cations are higher, particularly of Mg2+, and their field polarises 
the solvent molecules. In such case a strengthening of the H-bonds might be expected. 
Indeed the energies of the H-bonds of the water molecules coordinated by the cations are 
lower than the energy of the H-bonds in the bulk solvent. As might be expected the 
influence of the Mg2+ field is the strongest one and the H-bond energy is lower by about 
20%, than that in the bulk. The H-bond energy of the water molecules coordinated by Na+ 
and Ca2+ ions is lower, by about 10%, as compared with that in the bulk solvent. The 
influence of the Ca2+ and Na+ fields seems to be very similar, despite different charge 
densities, but it is worthy to stress that the second neighbours of these cations are different. 
The Ca2+ ion favours the water molecules in both shells and such H-bonds are weaker as 
compared with those between the water molecules in the Na+ shell and its second 
neighbours, the methanol molecules.  

To describe an influence of the ionic field on a persistence of the H-bonds a lifetime of H-
bonds of the molecules in the first shells was computed and compared with that in binary 
solvent. From among various concepts of the H-bond lifetime an approach proposed 
previously (Rappaport, 1983) was adopted. The concept of so-called ‘continuous lifetime’ 
takes into account only the unbroken H-bonds. This means that the H-bond once broken 
and then renewed is neglected. The lifetime of H-bonds was computed from the time 
correlation function R(t), defined above by the equation (7). In these calculations N and N 
denote the number of ions and the H-bonds, respectively, and ij(t) is the step function. If the 
solvent molecule j was H-bonded than ij(t)=1 and otherwise ij(t)=0. The calculations of the 
R(t) functions were performed for at least 500 randomly chosen initial configurations. The 
H-bonds were monitored in 0.001 time intervals. This short time interval is consistent with 
hindered rotations of the solvent molecules (Roberts et al., 2009), which may destroy the H-
bond. The R(t) functions can be fitted to the first-order exponential decay.  

At room temperature the continuous lifetime of H-bonds in pure water is about 0.3 ps, it 
increases linearly with the increasing methanol content and reaches about 1.5 ps in pure 
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methanol.  The influence of the ionic field on the H-bond lifetime is minor. The cationic field 
slightly stabilizes the persistence of the H-bonds. The lifetime of the H-bonds of the water 
and methanol molecules in the cation shells is by about 20% longer. The influence of the 
anion filed is opposite and the lifetime of the H-bonds is slightly shorter than in the bulk 
solvent.      

8. Influence of the ions on intramolecular vibrations  
Total spectral densities S() of water and methanol have been calculated as the sum of 
partial densities S() of sites  (= O, H, H for water and O, H, Me for methanol): 
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where  denotes the frequency of vibrations given in wave number (cm-1). The partial 
densities S() have been obtained via Fourier transform of the normalized velocity 
autocorrelation function:  
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where m is mass of the  site, c and k denote the light velocity and Bolzmann’s constant, 
respectively. The normalized velocity autocorrelation function is defined as follows: 
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where Nt and N denote the numbers of the time averages and sites, respectively, vj
(ti) is 

the velocity of the site j of the kind  at the time ti and (0)vvC  represents the normalization 
factor.  

Basic frequencies obtained from MD simulation for the liquid BJH water are 1716 cm-1 and 
3533 cm-1 for the HOH bending and OH stretching modes. These results agree reasonably 
with the experimental frequencies of bending, 1670 cm-1, and stretching, 3557 cm-1 (Falk & 
Walley, 1961). MD simulation reproduces correctly the shape of the density profile. As 
expected the sharper maximum, with the half-width about 200 cm-1, has been obtained for 
the bending vibrations. A broader band has been found for the OH stretching. Its half-with, 
about 300 cm-1 (Hawlicka & Swiatla-Wojcik,1997), is in good agreement with the 
experimental half-width, about 260 cm-1 (Roberts et al. 2009). 

MD simulations of the liquid PHH methanol yielded accurate frequencies of the  
basic modes; 1055 cm-1 for the CO stretching, 1407 cm-1 for the bending of the COH  
angle and 3342 cm-1 for the OH stretching. These results are in very good agreement  
with the experimental frequencies, 1029, 1420 and 3337 cm-1, respectively (Lindgren et  
al, 1993). 

Addition of electrolytes does not affect the CO stretching mode of methanol and their 
influence on bending modes, of methanol COH and water HOH,  is minor (Stangret & 
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An interesting question is how does the ionic field influence a strength and persistency of 
the H-bonds. To describe this effect the average H-bond energy of the molecules in the ion 
shells was calculated and it was compared with the average H-bond energy computed for 
the mixed solvent. The average energy of two H-bonded molecules in liquid BJH water, 
<EHB>w= -17.3 kJ.mol-1, is of about 10% higher than the energy of two H-bonded molecules 
in liquid PHH methanol, <EHB>w= -19.2 kJ.mol-1. Such feature agrees with the difference of 
the binding energies of water and methanol dimers (Palinkas et al. 1991).  In gas phase the 
binding energies for the dimer of unlike molecules depends on the configuration of the 
water and methanol molecules. The H-bond between the H-acceptor methanol molecule and 
H-donor water molecule is energetically favourable (Palinkas et al., 1991). Therefore the 
average energy of the H-bond in the methanol-water mixtures decreases with the increasing 
methanol content (Owczarek et al., 2009). In liquid mixtures the energies of two different 
configurations are slightly different and the energy of the H-acceptor methanol and H-
donor water is lower by about 7%.  

The influence of the anionic field on the strength of H-bonds is negligible and the H-bond 
energy of the water and methanol molecules, coordinated by the Cl- ions, does not differ 
from the H-bond energy in the bulk solvent. A lack of the influence can be understood, 
because the charge density of the chloride ion is small, therefore the anion field does not 
polarise the solvent molecules.   

The charge densities of the cations are higher, particularly of Mg2+, and their field polarises 
the solvent molecules. In such case a strengthening of the H-bonds might be expected. 
Indeed the energies of the H-bonds of the water molecules coordinated by the cations are 
lower than the energy of the H-bonds in the bulk solvent. As might be expected the 
influence of the Mg2+ field is the strongest one and the H-bond energy is lower by about 
20%, than that in the bulk. The H-bond energy of the water molecules coordinated by Na+ 
and Ca2+ ions is lower, by about 10%, as compared with that in the bulk solvent. The 
influence of the Ca2+ and Na+ fields seems to be very similar, despite different charge 
densities, but it is worthy to stress that the second neighbours of these cations are different. 
The Ca2+ ion favours the water molecules in both shells and such H-bonds are weaker as 
compared with those between the water molecules in the Na+ shell and its second 
neighbours, the methanol molecules.  

To describe an influence of the ionic field on a persistence of the H-bonds a lifetime of H-
bonds of the molecules in the first shells was computed and compared with that in binary 
solvent. From among various concepts of the H-bond lifetime an approach proposed 
previously (Rappaport, 1983) was adopted. The concept of so-called ‘continuous lifetime’ 
takes into account only the unbroken H-bonds. This means that the H-bond once broken 
and then renewed is neglected. The lifetime of H-bonds was computed from the time 
correlation function R(t), defined above by the equation (7). In these calculations N and N 
denote the number of ions and the H-bonds, respectively, and ij(t) is the step function. If the 
solvent molecule j was H-bonded than ij(t)=1 and otherwise ij(t)=0. The calculations of the 
R(t) functions were performed for at least 500 randomly chosen initial configurations. The 
H-bonds were monitored in 0.001 time intervals. This short time interval is consistent with 
hindered rotations of the solvent molecules (Roberts et al., 2009), which may destroy the H-
bond. The R(t) functions can be fitted to the first-order exponential decay.  

At room temperature the continuous lifetime of H-bonds in pure water is about 0.3 ps, it 
increases linearly with the increasing methanol content and reaches about 1.5 ps in pure 
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methanol.  The influence of the ionic field on the H-bond lifetime is minor. The cationic field 
slightly stabilizes the persistence of the H-bonds. The lifetime of the H-bonds of the water 
and methanol molecules in the cation shells is by about 20% longer. The influence of the 
anion filed is opposite and the lifetime of the H-bonds is slightly shorter than in the bulk 
solvent.      

8. Influence of the ions on intramolecular vibrations  
Total spectral densities S() of water and methanol have been calculated as the sum of 
partial densities S() of sites  (= O, H, H for water and O, H, Me for methanol): 
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where  denotes the frequency of vibrations given in wave number (cm-1). The partial 
densities S() have been obtained via Fourier transform of the normalized velocity 
autocorrelation function:  
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where m is mass of the  site, c and k denote the light velocity and Bolzmann’s constant, 
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where Nt and N denote the numbers of the time averages and sites, respectively, vj
(ti) is 

the velocity of the site j of the kind  at the time ti and (0)vvC  represents the normalization 
factor.  

Basic frequencies obtained from MD simulation for the liquid BJH water are 1716 cm-1 and 
3533 cm-1 for the HOH bending and OH stretching modes. These results agree reasonably 
with the experimental frequencies of bending, 1670 cm-1, and stretching, 3557 cm-1 (Falk & 
Walley, 1961). MD simulation reproduces correctly the shape of the density profile. As 
expected the sharper maximum, with the half-width about 200 cm-1, has been obtained for 
the bending vibrations. A broader band has been found for the OH stretching. Its half-with, 
about 300 cm-1 (Hawlicka & Swiatla-Wojcik,1997), is in good agreement with the 
experimental half-width, about 260 cm-1 (Roberts et al. 2009). 

MD simulations of the liquid PHH methanol yielded accurate frequencies of the  
basic modes; 1055 cm-1 for the CO stretching, 1407 cm-1 for the bending of the COH  
angle and 3342 cm-1 for the OH stretching. These results are in very good agreement  
with the experimental frequencies, 1029, 1420 and 3337 cm-1, respectively (Lindgren et  
al, 1993). 

Addition of electrolytes does not affect the CO stretching mode of methanol and their 
influence on bending modes, of methanol COH and water HOH,  is minor (Stangret & 



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

420 

Gampe, 2002). Only stretching OH vibrations of water and methanol are very sensitive to 
the local environment of the molecules. These modes have been used to investigate the ionic 
solvation. The experimental spectra are composed, however, of several components. Even in 
the diluted solution of the electrolyte three components of the OH band must be considered: 
vibrations of molecules coordinated by cations and anions, as well as the vibrations of the 
bulk molecules. In concentrated solutions the spectra become more complex, because a 
solvent shared ion pair cannot be neglected. Therefore it is difficult to interpret the 
experimental spectra and to deduce the contributions of the anions and cations without 
additional assumptions. The MD simulation may provide additional information, because 
the frequency of the OH stretching can be computed independently for the solvent 
molecules in the ion coordination shells.  

Density profiles of the OH stretching bands of water and methanol in the coordination 
shells of the ions in aqueous and methanolic solutions are displayed in Figure 9.  
For comparison the OH bands computed for pure water and pure methanol are also  
shown.  

 
Fig. 9. Density profile of the OH stretching band of water (a) and methanol (b) in net 
solvents () and coordination shells of Na+ (solid), Mg2+ (dashed), Ca2+() and Cl- (dotted). 

As seen the influence of the Cl- ion on the OH frequency of water and methanol is minor. 
Despite almost linear H-bond between the anion and water molecule the red-shift of the OH 
frequency, observed for the water molecules in the Cl- shell, is minor (OHw = -27 cm-1). 
Moreover the influence of the Cl- ion on the OH frequency of the methanol is opposite and a 
small blue-shift (= +25 cm-1) is found.    

The influence of the cations on the OH vibrations of the water and methanol molecules is 
remarkable. The frequencies of the OH stretching of the water and methanol molecules in 
the cation shells are shifted to lower wave numbers. This agrees with the red-shift of the 
molecules in the cation shells, deduced from experimental infrared spectra in HDO 

(Kristiansson & Lindgren, 1995; Roberts et al., 2009) .  As seen from Figure 9 the OH bands 
of water molecules in the Na+ and Mg2+ shells are broader than in pure water and the basic 
modes are shifted to lower wave numbers by – 125 and 265 cm-1, respectively.  Usually the 
broad OH mode, observed in pure water, is ascribed to large distribution of the 
configurations of the H-bonds (Lindgren et al, 1993). 
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The change of the OH band of the water molecules coordinated by the calcium ions is 
dramatic. The OH density profile is very broad; moreover it consists of two bands, centred 
at 3200 and 2740 cm-1, respectively. As mentioned above the water molecules in the Ca2+ 
shell show two different orientations: most of 10 water molecules in the Ca2+ shell exhibit 
the antidipole orientation, but the dipole moment of some molecules is tilted by about 45o. 
Probably the split of the OH band reflects the vibrations of the water molecules differently 
orientated towards Ca2+.  

The cation field affects remarkably the stretching OH of the methanol molecules. The OH 
stretching bands, computed for the cation shells, are broader than that in pure methanol and 
shifted to lower frequencies. The red-shifts increases in order Na+ (–57cm-1) > Mg2+ (– 
432cm-1) > Ca2+(-800 cm-1). One should notice that the OH band for the Ca2+ shell is not split, 
because all methanol molecules prefer similar orientation (see Figure 6 c). 

The water and methanol molecules, coordinated by the cations, favoured the antidipole 
orientation towards the ion therefore they form less H-bonds than the molecules in net 
liquid component. This means that in aqueous solution about 14% of the water molecules in 
the Na+ shell, more than 40% of the molecules in the Mg2+ shell and about 80% of molecules 
in the and Ca2+shell have one non-bonded OH group. In methanolic solutions most of the 
molecules coordinated by the cations have also non-bonded OH group. The frequencies of 
the non-bonded OH groups of water and methanol are higher.  Thus the observed red-shift 
of the OH frequency of the molecules coordinated by the cations is usually ascribed to the 
strengthening of the H-bonds (Lindgren et al, 1993; Stangret & Gampe, 2002; Kristiansson & 
Lindgren, 1995).   This might be the consequence of a polarisation  (Collahan et al. 2010) of 
the solvent molecules.  

The BJH water and PHH methanol molecules are flexible thus their geometry and, in 
consequence, their dipole moments can be changed. Indeed the dipole moments of the 
water and methanol molecules coordinated by the cations are greater of about 10% than 
that of the molecules in the net solvents. However the increase of the dipole moment does 
not influence remarkably the H-bond energy. The Na+ filed does not influence the H-bond 
energy, whereas the field of Ca2+ and Mg2+ lowers the H-bond energy, but this decrease, 
by about 20%, thus it cannot be responsible for the large red-shifts observed in MD 
simulation. 

9. Conclusions 
MD simulations of the electrolyte solutions improve the understanding of a nature of the 
solvation in methanol-water mixtures. Despite very similar interactions of the ions with both 
solvent components the compositions of the ion shells and the bulk solvent may be different. 
This leads to the conclusion that the solvation of ions does not depend  only on the ion-
solvent interactions, but it is affected by the interactions between the solvent molecules. 
Particularly in highly associated solvents a strong tendency to prevent the H-bonded 
network of the solvent competes with the ion-solvent interactions and it may lead to a 
selective solvation of the ions.  

The H-bonds between the H-donor water and H-acceptor methanol molecules are 
energetically favourable. The molecules in the cationic shells exhibit the antidipole 
orientation, which favours the H-donor water molecules, whereas the almost linear H-bond 
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Gampe, 2002). Only stretching OH vibrations of water and methanol are very sensitive to 
the local environment of the molecules. These modes have been used to investigate the ionic 
solvation. The experimental spectra are composed, however, of several components. Even in 
the diluted solution of the electrolyte three components of the OH band must be considered: 
vibrations of molecules coordinated by cations and anions, as well as the vibrations of the 
bulk molecules. In concentrated solutions the spectra become more complex, because a 
solvent shared ion pair cannot be neglected. Therefore it is difficult to interpret the 
experimental spectra and to deduce the contributions of the anions and cations without 
additional assumptions. The MD simulation may provide additional information, because 
the frequency of the OH stretching can be computed independently for the solvent 
molecules in the ion coordination shells.  

Density profiles of the OH stretching bands of water and methanol in the coordination 
shells of the ions in aqueous and methanolic solutions are displayed in Figure 9.  
For comparison the OH bands computed for pure water and pure methanol are also  
shown.  

 
Fig. 9. Density profile of the OH stretching band of water (a) and methanol (b) in net 
solvents () and coordination shells of Na+ (solid), Mg2+ (dashed), Ca2+() and Cl- (dotted). 

As seen the influence of the Cl- ion on the OH frequency of water and methanol is minor. 
Despite almost linear H-bond between the anion and water molecule the red-shift of the OH 
frequency, observed for the water molecules in the Cl- shell, is minor (OHw = -27 cm-1). 
Moreover the influence of the Cl- ion on the OH frequency of the methanol is opposite and a 
small blue-shift (= +25 cm-1) is found.    

The influence of the cations on the OH vibrations of the water and methanol molecules is 
remarkable. The frequencies of the OH stretching of the water and methanol molecules in 
the cation shells are shifted to lower wave numbers. This agrees with the red-shift of the 
molecules in the cation shells, deduced from experimental infrared spectra in HDO 

(Kristiansson & Lindgren, 1995; Roberts et al., 2009) .  As seen from Figure 9 the OH bands 
of water molecules in the Na+ and Mg2+ shells are broader than in pure water and the basic 
modes are shifted to lower wave numbers by – 125 and 265 cm-1, respectively.  Usually the 
broad OH mode, observed in pure water, is ascribed to large distribution of the 
configurations of the H-bonds (Lindgren et al, 1993). 
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The change of the OH band of the water molecules coordinated by the calcium ions is 
dramatic. The OH density profile is very broad; moreover it consists of two bands, centred 
at 3200 and 2740 cm-1, respectively. As mentioned above the water molecules in the Ca2+ 
shell show two different orientations: most of 10 water molecules in the Ca2+ shell exhibit 
the antidipole orientation, but the dipole moment of some molecules is tilted by about 45o. 
Probably the split of the OH band reflects the vibrations of the water molecules differently 
orientated towards Ca2+.  

The cation field affects remarkably the stretching OH of the methanol molecules. The OH 
stretching bands, computed for the cation shells, are broader than that in pure methanol and 
shifted to lower frequencies. The red-shifts increases in order Na+ (–57cm-1) > Mg2+ (– 
432cm-1) > Ca2+(-800 cm-1). One should notice that the OH band for the Ca2+ shell is not split, 
because all methanol molecules prefer similar orientation (see Figure 6 c). 

The water and methanol molecules, coordinated by the cations, favoured the antidipole 
orientation towards the ion therefore they form less H-bonds than the molecules in net 
liquid component. This means that in aqueous solution about 14% of the water molecules in 
the Na+ shell, more than 40% of the molecules in the Mg2+ shell and about 80% of molecules 
in the and Ca2+shell have one non-bonded OH group. In methanolic solutions most of the 
molecules coordinated by the cations have also non-bonded OH group. The frequencies of 
the non-bonded OH groups of water and methanol are higher.  Thus the observed red-shift 
of the OH frequency of the molecules coordinated by the cations is usually ascribed to the 
strengthening of the H-bonds (Lindgren et al, 1993; Stangret & Gampe, 2002; Kristiansson & 
Lindgren, 1995).   This might be the consequence of a polarisation  (Collahan et al. 2010) of 
the solvent molecules.  

The BJH water and PHH methanol molecules are flexible thus their geometry and, in 
consequence, their dipole moments can be changed. Indeed the dipole moments of the 
water and methanol molecules coordinated by the cations are greater of about 10% than 
that of the molecules in the net solvents. However the increase of the dipole moment does 
not influence remarkably the H-bond energy. The Na+ filed does not influence the H-bond 
energy, whereas the field of Ca2+ and Mg2+ lowers the H-bond energy, but this decrease, 
by about 20%, thus it cannot be responsible for the large red-shifts observed in MD 
simulation. 

9. Conclusions 
MD simulations of the electrolyte solutions improve the understanding of a nature of the 
solvation in methanol-water mixtures. Despite very similar interactions of the ions with both 
solvent components the compositions of the ion shells and the bulk solvent may be different. 
This leads to the conclusion that the solvation of ions does not depend  only on the ion-
solvent interactions, but it is affected by the interactions between the solvent molecules. 
Particularly in highly associated solvents a strong tendency to prevent the H-bonded 
network of the solvent competes with the ion-solvent interactions and it may lead to a 
selective solvation of the ions.  

The H-bonds between the H-donor water and H-acceptor methanol molecules are 
energetically favourable. The molecules in the cationic shells exhibit the antidipole 
orientation, which favours the H-donor water molecules, whereas the almost linear H-bond 
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between the Cl- ions and the solvent molecules favours the H-acceptor methanol molecules. 
In consequence the preferential hydration of the Mg2+ and Ca2+ ions and the selective 
solvation of Cl- by methanol are observed over the whole range of the methanol 
concentration. 

The first coordination shells of Mg2+ and Ca2+ are very stable. Though the residence time 
of the solvent molecules in the cationic shells is long their H-bonds are short living. It is 
worthy to notice than most of the molecules in the cation shells have less H-bonded 
neighbours than expected. Moreover the influence of the ionic field on the H-bond 
strength is minor. Therefore the observed red-shift of the OH-stretching frequency for 
water and methanol molecules reflects neither the strengthening nor stabilizing of the H-
bonds. This red-shift results probably from the increase of the dipole moment of the 
solvent molecules.  
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between the Cl- ions and the solvent molecules favours the H-acceptor methanol molecules. 
In consequence the preferential hydration of the Mg2+ and Ca2+ ions and the selective 
solvation of Cl- by methanol are observed over the whole range of the methanol 
concentration. 

The first coordination shells of Mg2+ and Ca2+ are very stable. Though the residence time 
of the solvent molecules in the cationic shells is long their H-bonds are short living. It is 
worthy to notice than most of the molecules in the cation shells have less H-bonded 
neighbours than expected. Moreover the influence of the ionic field on the H-bond 
strength is minor. Therefore the observed red-shift of the OH-stretching frequency for 
water and methanol molecules reflects neither the strengthening nor stabilizing of the H-
bonds. This red-shift results probably from the increase of the dipole moment of the 
solvent molecules.  
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