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Bio-inspired computational algorithms are always hot research topics in artificial 
intelligence communities. Biology is a bewildering source of inspiration for the 

design of intelligent artifacts that are capable of efficient and autonomous operation 
in unknown and changing environments. It is difficult to resist the fascination of 

creating artifacts that display elements of lifelike intelligence, thus needing techniques 
for control, optimization, prediction, security, design, and so on. Bio-Inspired 

Computational Algorithms and Their Applications is a compendium that addresses 
this need. It integrates contrasting techniques of genetic algorithms, artificial 

immune systems, particle swarm optimization, and hybrid models to solve many 
real-world problems. The works presented in this book give insights into the creation 
of innovative improvements over algorithm performance, potential applications on 

various practical tasks, and combination of different techniques. The book provides a 
reference to researchers, practitioners, and students in both artificial intelligence and 

engineering communities, forming a foundation for the development of the field.
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Preface 

In recent years, there has been a growing interest in the use of biology as a source of 
inspiration for solving practical problems. These emerging techniques are often 
referred to as “bio-inspired computational algorithms”. The purpose of bio-inspired 
computational algorithms is primarily to extract useful metaphors from natural
biological systems. Additionally, effective computational solutions to complex 
problems in a wide range of domain areas can be created. The more notable
developments have been the genetic algorithm (GA) inspired by neo-Darwinian 
theory of evolution, the artificial immune system (AIS) inspired by biological immune 
principles, and the swarm intelligence (SI) inspired by social behavior of gregarious
insects and other animals. It has been demonstrated in many areas that the bio-
inspired computational algorithms are complementary to many existing theories and 
technologies. 

In this research book, a small collection of recent innovations in bio-inspired 
computational algorithms is presented. The techniques covered include genetic 
algorithms, artificial immune systems, particle swarm optimization, and hybrid 
models. Twenty-four chapters are contained, written by leading experts from
researchers of computational intelligence communities, practitioners from industrial
engineering, the Air Force Academy, and mechanical engineering. The objective of this
book is to present an international forum for the synergy of new developments from
different research disciplines. It is hoped, through the fusion of diverse techniques and
applications, that new and innovative ideas will be stimulated and shared.

This book is organized into four sections. The first section shows seven innovative 
works that give a flavor of how genetic algorithms can be improved from different
aspects. In Chapter 1, a sophisticated variant of genetic algorithms was presented. The 
characteristic of the proposed successive zooming genetic algorithm was that it can 
predict the possibility of the solution found to be an exact optimum solution which 
aims to accelerate the convergent speed of the algorithm. In the second chapter, based 
on the newly introduced data structure named “network operator”, a genetic
algorithm was used to search the structure of an appropriate mathematical expression 
and its parameters. In the third chapter, two kinds of newly developed mechanisms 
were incorporated into genetic algorithms for optimizing the trajectories generation in
closed chain mechanisms, and planning the effects that it had on the mechanism by 
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relaxing some parameters. These two mechanisms are as follows: the forced 
inheritance mechanism and the regeneration mechanism. The fourth chapter 
examines an empirical investigation on the roles of crossover and mutation operators 
in real-coded genetic algorithms. The fifth chapter summarizes custom processing 
architectures for genetic algorithms, and it presents a proposal for a scalable parallel 
array, which is adequate enough for implementation on field-programmable gate 
array technology. In the sixth chapter, a novel genetic algorithm with splicing and 
decomposable encoding representation was proposed. One very interesting 
characteristic of this representation is that it can be spliced and decomposed to 
describe potential solutions of the problem with different precisions by different 
numbers of uniform-salient building-blocks. Finally, a comprehensive overview on 
genetic algorithms, including the algorithm history, the algorithm architecture, a 
classification of genetic algorithms, and applications on evolvable hardware as 
examples were well summarized in the seventh chapter. 

The second section is devoted to ten different real world problems that can be 
addressed by adapted genetic algorithms. The eighth chapter shows an effective 
clustering tool based on genetic algorithms to group documentary collections, and 
suggested taxonomy of parameters of the genetic algorithm numerical and structural. 
To solve a well-defined project portfolio selection problem, a hybrid model was 
presented in the ninth chapter by combining the genetic algorithm and functional-
normative (multi-criteria) approach. In the 10th chapter, wide applications on 
astrophysics, rocket engine engineering, and energy distribution of genetic algorithms 
were illustrated.These applications proposed a new formal methodology (i.e., the 
inverted model of input problems) when using genetic algorithms to solve the 
abundances problems. In the 11th chapter, a continuous genetic algorithm was 
investigated to integrate a pair of registered and enhanced visual images with an 
infrared image. The 12th chapter showed a very efficient and robust self-adaptive 
genetic algorithm to build linear modeling of time series. To deal with the restricted 
vocabulary speech recognition problem, the 13th chapter presented a novel method 
based on the genetic algorithm and the fisher’s linear discriminate ratio (FLDR). The 
genetic algorithm was used to handle the optimal feature generation task, while FLDR 
acted as the separability criterion in the feature space. In the 14th chapter, a very 
interesting application of genetic algorithms under the dynamic online auctions 
environment was illustrated. The 15th chapter examines the use of a parallel genetic 
algorithm for finding frequent itemsets over recent data streams investigated, while a 
breeder genetic algorithm, used to design power system stabilizer for damping low 
frequency oscillations in power systems, was shown in the 16th chapter. The 17th 
chapter discusses genetic algorithms utilized to optimize pulse patterns in 
synchronous machines at high power ratings. 

The third section compiles two artificial immune systems and a particle swarm 
optimization. The 18th chapter in the book proposes a negative selection scheme, which 
mimics the self/non-self discrimination of the natural immune system to solve the 

Preface XI 

change detection problem in dynamic fitness landscapes. In the 19th chapter, the
dynamics of the innate immune response to Lipopolysaccharide in a microscopic 
section of tissue were formulated and modelled, using a set of partial differential
equations. The 20th chapter analyzes swarm intelligence, i.e. the particle swarm
optimization was used to deal with the identical parallel machine scheduling problem.
The main characteristic of the algorithm was that its search strategy is perturbed by 
stochastic factors.

The fourth section includes four hybrid models by combing different meta-heuristics.
Hybridization is nowadays recognized to be an essential aspect of high performing 
algorithms. Pure algorithms are always inferior to hybridizations. This section shows
good examples of hybrid models. In the 21st chapter, three immune functions (immune
memory, antibody diversity, and self-adjusting) were incorporated into the genetic 
algorithm to quicken its search speed and improve its local/global search capacity. The
22nd chapter focuses on the combination of genetic algorithm and culture algorithm.
Performance on multidimensional knapsack problem verified the effectiveness of the
hybridization. Chapter 23 studies the genetic algorithm that was incorporated into the 
Benders’ Decomposition Algorithm to solve the capacitated plant location problem. To 
solve the constrained multiple-objective supply chain optimization problem, two bio-
inspired algorithms, involving a non-dominated sorting genetic algorithm and a novel
multi-objective particle swarm optimizer, were investigated and compared in the 24th

chapter. 

Because the chapters are written by many researchers with different backgrounds 
around the world, the topics and content covered in this book provides insights which
are not easily accessible otherwise. It is hoped that this book will provide a reference
to researchers, practicing professionals, undergraduates, as well as graduate students
in artificial intelligence communities for the benefit of more creative ideas.

The editor would like to express his utmost gratitude and appreciation to the authors 
for their contributions. Thanks are also due to the excellent editorial assistance by the
staff at InTech.

Shangce Gao
Associate Research Fellow

The Key Laboratory of Embedded System and Service Computing,
Ministry of Education 

Tongji University 
Shanghai  
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The Successive Zooming Genetic Algorithm  
and Its Applications 

Young-Doo Kwon1 and Dae-Suep Lee2 
1School of Mechanical Engineering & IEDT, Kyungpook National University, 

2Division of Mechanical Engineering, Yeungjin College, Daegu, 
Republic of Korea 

1. Introduction  
Optimization techniques range widely from the early gradient techniques 1 to the latest 
random techniques 16, 18, 19 including ant colony optimization 13, 17. Gradient techniques are 
very powerful when applied to smooth well-behaved objective functions, and especially, 
when applied to a monotonic function with a single optimum. They encounter certain 
difficulties in problems with multi optima and in those having a sharp gradient, such as a 
problem with constraint or jump. The solution may converge to a local optimum, or not 
converge to any optimum but diverge near a jump. 

To remedy these difficulties, several different techniques based on random searching have 
been developed: full random methods, simulated annealing methods, and genetic 
algorithms. The full random methods like the Monte Calro method are perfectly global but 
exhibit very slow convergence. The simulated annealing methods are modified versions of 
the hill-climbing technique; they have enhanced global search ability but they too have slow 
convergence rates. 

Genetic algorithms 2-5 have good global search ability with relatively fast convergence rate. 
The global search ability is relevant to the crossover and mutations of chromosomes of the 
reproduced pool. Fast convergence is relevant to the selection that takes into account the 
fitness by the roulette or tournament operation. Micro-GA 3 does not need to adopt 
mutation, for it introduces completely new individuals in the mating pool that have no 
relation to the evolved similar individuals. The pool size is smaller than that used by the 
simple GA , which needs a big pool to generate a variety of individuals. 

Versatile genetic algorithms have some difficulty in identifying the optimal solution that is 
correct up to several significant digits. They can quickly approach to the vicinity of the 
global optimum, but thereafter, march too slowly to it in many cases. To enhance the 
convergence rate, hybrid methods have been developed. A typical one obtains a rough 
optimum using the GA first, and then approaches the exact optimum by using a gradient 
method. Other one finds the rough optimum using the GA first, and then searches for the 
exact optimum by using the GA again in a local domain selected based on certain logic 7. 

The SZGA (Successive Zooming Genetic Algorithm) 6, 8-12 zooms the search domain for a 
specified number of steps to obtain the optimal solution. The tentative optimum solutions 
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are corrected up to several significant digits according to the number of zooms and the 
zooming rate. The SZGA can predict the possibility that the solution found is the exact 
optimum solution. The zooming factor, number of sub-iteration populations, number of 
zooms, and dimensions of a given problem affect the possibility and accuracy of the 
solution. In this chapter, we examine these parameters and propose a method for selecting 
the optimal values of parameters in SZGA. 

2. The Successive Zooming Genetic Algorithm 
This section briefly introduces the successive zooming genetic algorithm 6 and provides the 
basis for the selection of the parameters used. The algorithm has been applied successively 
to many optimization problems. The successive zooming genetic algorithm involves the 
successive reduction of the search space around the candidate optimum point. Although 
this method can also be applied to a general Genetic Algorithm (GA), in the current study it 
is applied to the Micro-Genetic Algorithm (MGA). The working procedure of the SZGA is as 
follows. First, the initial solution population is generated and the MGA is applied. 
Thereafter, for every 100 generations, the elitist point with the best fitness is identified. Next, 
the search domain is reduced to (XOPT-αk/2, XOPT+αk/2), and then the optimization 
procedure is continued on the reduced domain (Fig. 1). This reduction of the search domain 
increases the resolution of the solution, and the procedure is repeated until a satisfactory 
solution is identified. 

 
Fig. 1. Flowchart of SZGA and schematics of successive zooming algorithm 

The SZGA can assess the reliability of the obtained optimal solution by the reliability 
equation expressed with three parameters and the dimension of the solution NVAR.  

 1[1 (1 ( / 2) ) ]VAR SP ZOOMN N N
SZGA AVGR α β −= − − ×    (1) 
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where,  

α: zooming factor,                         β: improvement factor 
NVAR: dimension of the solution,  NZOOM: number of zooms 
NSUB: number of sub-iterations,   NPOP: number of populations 
NSP: total number of individuals during the sub-iterations (NSP=NSUB×NPOP) 

Three parameters control the performance of the SZGA: the zooming factor α, number of 
zooming operations NZOOM, and sub-iteration population number NSP. According to 
previous research, the optimal parameters for SZGA, such as the zooming factor, number of 
zooming operations, and sub-iteration population number, are closely related to the number 
of variables used in the optimization problem. 

2.1 Selection of parameters in the SZGA 

The zooming factor α, number of sub-iteration population NSP, and number of zooms NZOOM 
of SZGA greatly affect the possibility of finding an optimal solution and the accuracy of the 
found solution. These parameters have been selected empirically or by the trial and error 
method. The values assigned to these parameters determine the reliability and accuracy of 
the solution. Improper values of parameters might result in the loss of the global optimum, 
or may necessitate a further search because of the low accuracy of the optimum solution 
found based on these improper values. We shall optimize the SZGA itself by investigating 
the relation among these parameters and by finding the optimal values of these parameters. 
A standard way of selecting the values of these parameters in SZGA, considering the 
dimension of the solution, will be provided. . 

The SZGA is optimized using the zooming factor α, number of sub-iteration population NSP, 
and the number of zooms NZOOM, for the target reliability of 99.9999% and target accuracy of 
10-6. The objective of the current optimization is to minimize the computation load while 
meeting the target reliability and target accuracy. Instead of using empirical values for the 
parameters, we suggest a standard way of finding the optimal values of these parameters 
for the objective function, by using any optimization technique, to find the optimal values of 
these parameters which optimize the SZGA itself. Thus, before trying to solve any given 
optimization problem using SZGA, we shall optimize the SZGA itself first to find the 
optimal values of its parameters, and then solve the original optimization problem to find 
the optimal solution by using these parameters. 

After analyzing the relation among the parameters, we shall formulate the problem for the 
optimization of SZGA itself. The solution vector is comprised of the zooming factor α, the 
number of sub-iteration population NSP, and the number of zooms NZOOM. The objective 
function is composed of the difference of the actual reliability to the target reliability, 
difference of the actual accuracy to the target accuracy, difference of the actual NSP to the 
proposed NSP, and the number of total population generated as well. 

 ( ,  ,  ) ( )SP ZOOM SZGA SP SP ZOOMF N N R A N N Nα = Δ + Δ + Δ + ×    (2) 

where, 

SZGARΔ : difference to the target reliability 
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AΔ    : difference to the target accuracy 
Δ NSP  : difference to the proposed NSP 

The problem for optimzation of SZGA itself can be formulated by using this objective 
function as follows: 

 Minimize F(X)   (3) 

where, 

{ },  , T
SP ZOOMX N Nα=     

0 < α < 1 
NSP ~ 100 
NZOOM > 1 

The difference of the actual reliability to the target reliability is the difference between RSZGA 

and 99.9999%, where reliability RSZGA is rewritten with an average improvement factor as 

 1[1 (1 ( / 2) ) ]VAR SP ZOOMN N N
SZGA AVGR α β −= − − ×     (4) 

Here, we can see the average improvement factor βAVG, which is to be regressed later on. 
The difference of realized accuracy to the target accuracy is the difference between accuracy  
A and 10-6, where accuracy A is actually the upper limit and may be written as, 

 1ZOOMNA α −=      (5) 

The difference of the actual NSP to the proposed NSP is difference between NSP and 100 7 . In 
organizing the optimization algorithm, each element in the objective function is given 
different weights according to its importance. Thus, the target reliability and target accuracy 
are met first, and then the number of total population generated is minimized. Although 
any optimization technique could have been used to slove eq.(3), one can adopt the SZGA in 
optimizing the SZGA itself to obtain a solution fast and accurately. 

The parameters in SZGA have been optimized by using the objective function and 
improvement factor averaged after regression for a test function 9. The target reliability is 
99.9999% and target accuracy of solution is 10-6. The proposed number of sub-iteration 
population NSP is 100. Table 1 shows the optimized values for the SZGA parameters for four 
cases of different number of design variables. 

We found a similar tendency to Table 1 for test functions of various numbers of design 
variables. We also found that the recommended number of sub-iteration population NSP 

would no longer be acceptable to assure reliability and accuracy for the cases whose number 
of design variables is over 1. A much greater number of sub-iteration population is needed 
to obtain an optimal solution with the proper reliability (99.9999%) and accuracy (10-6). 

To confirm our optimized result, we fixed two parameters in the feasible domain that satisfy 
the target reliability and target accuracy, and checked the change in the objective function as 
a function of the remaining parameter. Examples of the change in the objective function for 
the case of four design variables showed the validity of the obtained optimal values of the 
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parameters. Although these values may not be valid for all the other cases, they can be used 
as a good reference for new problems. Some other ways of choosing the  values of these 
parameters will be given later on. 
 

No. of 
Variables 2 4 8 16 

Zooming 
Factor α .02573 .1303 .4216 .5176 

NZOOM 5 8 17 22 

NSP 1,000 2,000 9,510 1,479,230 
No. of 

Function 
Evaluation 

5,000 16,000 161,670 32,543,060 

Table 1. Result of optimized parameters in SZGA for different number of design variables 

2.2 Programming for successive zooming and pre-zoning algorithms 

Programming the SZGA is simple, as explained below. This zooming philosophy may not 
be confined only in GA, but can be applied to most other global search algorithms. Let Y(I) 
be the global variables ranging YMIN(I) ~ YMAX(I), where I is the design variable number. 
Z(I) consists of local normalized variables ranging 0~1. Thus, the relation between them is as 
follows in FORTRAN; 

DO 10 I=1,NVAR ! NVAR=NO. of VARIABLES  
10 Y(I)=YMIN(I)+(YMAX(I)-YMIN(I))*Z(I) 

The relation between local variable Z(I) and local variable X(I) (0~1) in the zoomed region is 
as follows; 

DO 12 I=1,NVAR 
12 Z(I)=ZOPT(I,JWIN)+ALP**(JWIN-1)*(X(I)-0.5) 

Where, ZOPT(I,JWIN) is the elitist in the zoom step (JWIN-1), and ALP is the zooming 
factor. Note that ZOPT(I,JWIN-1) is more logical. However, the argument is increased by 
one to meet old versions of FORTRAN, which require a positive integer as a dimension 
argument. Based on the elitist in step (JWIN-1), we are seeking variables in step JWIN. 
Please note that ZOPT(I,1)=0. 

A pre-zoning algorithm adjusts the gussed initial zone to a very reasonable zone after one 
set of generation. 

DO 14 I=1,NVAR 
   YMIN(I)=YINP(I)-BTA*ABS(YINP(I)) 
14 YMAX(I)=YINP(I)+BTA*ABS(YINP(I)) 

Where, YINP(I)is the elitist obtained after one set of generation. Thus, we eliminate the 
assumed initial boundary, and establish a new reasonable boundary. The coefficient BTA 
may be properly selected, say 0.5. 
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2.3 Hybrid genetic algorithm 

Genetic algorithms are stochastic global search methods based on the mechanism of natural 
selection and natural reproduction. GAs have been applied to structural optimization 
problems because they can solve optimization problems that involve mixing continuous, 
discontinuous, and non-convex regions etc. The SGA (simple GA) has been improved to 
MGA by using some techniques like tournament selection as well as the elitist strategy. Yet, 
GAs have some difficulty in fast searching the exact optimum point at a later stage. The DPE 
(Dynamic Parameter Encoding) GA 4 uses a digital zooming technique, which does not 
change a digit of a higher rank further after a certain stage. The SZGA (Successive Zooming 
GA) zooms the searching area successively, and thus the convergence rate is greatly 
increased. A new hybrid GA technique, which guarantees to find the optimum point, has 
been proposed 7, 14. 

The hybrid GA first identifies a quasi optimal point using an MGA, which has better 
searching ability than the simple genetic algorithm. To solve the convergence problem at the 
later stage, we employed hybrid algorithms that combine the global GA with local search 
algorithms (DFP 1 or MGA). The hybrid algorithm using the DFP (Davidon Fletcher Powell) 
method incorporates the advantages of both a genetic algorithm and the gradient search 
technique. The other hybrid algorithm of global GA and local GA at the zoomed area is 
called LGA (Locally zoomed GA), checks the concavity condition near the quasi minimum 
point. The enhancement of the above hybrid algorithms is verified by application of these 
algorithms to the gate optimization problem. 

In this hybrid algorithm of minimization problem, an MGA is performed generation-by-
generation until there is no further change of the objective function, and then the 
approximate optimum solution is found at ZMCA. The gradients of the objective function as a 
function of the design variables are checked, if the concavity condition 1 is satisfied at the 
boundary of a small zoomed area (Fig. 2). If the condition is not satisfied, the small zoomed 
area is increased by δ. After several iterations, concavity conditions are finally achieved at 
the boundary of the final zoomed area (κδ × κδ) centered at ZMCA. With the elitist solution 
from the global GA (approximate optimum solution, ZMCA) and the concavity condition, the 
optimum point is found within the final zoomed area [Z(i) : (ZMCA(i) - κδ) ~ (ZMCA(i) + κδ)]. 
From this point, a local GA is performed for the small finally zoomed area, which probably 
contains the optimum point. Usually, this area is much smaller than the original are, so the 
convergence rate increases considerably (note that the first approximate solution 
prematurely converged to an inexact but near optimum point). 

Water gates need to be installed in dams to regulate the flow-rate and to ensure the 
containing function of dams. Among these gates, the radial gate is widely used to regulate 
the flow-rate of huge dams because of its accuracy, easy opening and closing, endurance etc. 
Moreover, 3-arm type radial gate has better performance than 2-arm type, in connection 
with the section size of girders and the vibration characteristics during discharging 
operation. Table 2 compares the optimized results for a 3-arm type radial gate, which 
considers the reactions to the minimized main weight of the structure including vertical 
girders with or without arms. The hybrid algorithm (MGA+DFP, MGA+LGA) obtained the 
exact optimal solution of 0.690488E+10 after far fewer generations of 4100 than the 9000 by 
MGA, which result in a close but not the exact solution of 0.690497E+10. 
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Fig. 2. Confirmed zoomed region after checking the concavity condition 

3-arm type Micro GA MGA+DFP MGA+LGA 

Convergence 
Generation 9000 4000+α 4100 

Objection Function 0.690497E+10 0.690488E+10 0.690488E+10 

Table 2. Comparison of results: MGA, MGA+DFP, MGA+LGA 

3. Example of the SZGA 
The value of the zooming factor α, an optimal parameter was obtained in reference [8], and 
was found to show good match with the empirical one. Using this zooming factor in SZGA, 
the displacement of a truss structure was derived by minimizing the total potential energy 
of the system. The capacity of the servomotor, which operates the wicket gate mounted in a 
Kaplan type turbine of the electric power generator, was optimized using SZGA with the 
value of zooming factor 8.  

This is just one parameter among the full optimal parameters discussed in sec.2.1 9. 
Therefore, the analysis done with this factor 8 is a simplified analysis. As commented in 
section 2.1, the values of the parameters of a well-behaved test model suggested in the Table 
1 can be used for an optimization, or the values of the parameters obtained in another way 
as discussed in the next section can be used. 

Several additional examples of SZGA optimization are presented in the following sections to 
provide more insight on SZGA and to find another way of choosing the values of the SZGA 
parameters. The first example finds the Moony-Rivlin coefficients of a rubber material to 
compare with those from the least square method. The second example is a damage 
detection problem in which the difference between the measured natural frequencies and 
those of the assumed damage in the structure is minimized. The third example finds the 
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provide more insight on SZGA and to find another way of choosing the values of the SZGA 
parameters. The first example finds the Moony-Rivlin coefficients of a rubber material to 
compare with those from the least square method. The second example is a damage 
detection problem in which the difference between the measured natural frequencies and 
those of the assumed damage in the structure is minimized. The third example finds the 
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optimal link specification (lengths and initial angular positions of members) to control the 
double link system with one motor in an automotive diesel engine. The fourth and last 
example finds an optimal specification (parametric sizes at specified positions) of a ceramic 
jar that satisfies the required holding capacity. 

3.1 Determination of Mooney-Rivlin coefficients 

The rubber is a very important mechanical material in everyday life, used widely in 
mechanical engineering and automotive engineering. Rubber has low production cost and 
many advantages such as its characteristic softness, processability, and hyper-elasticity. The 
development of the rubber parts including most process of the shape design, product 
process, test evaluation, ingredient blending for the required property has used the 
empirical methods. CAE based on advances in computer-aided structural analysis software 
is applied to many products. FEM method is applied on various models of rubber parts to 
evaluate the non-linearity property and the theoretical hyper-elastic behavior of rubber, and 
to develop analysis codes for large, non-linear deformation. 

The structure of rubber-like materials are difficult to analyze because of their material non-
linearity and geometric non-linearity as well as their incompressibility. Furthermore, unlike 
other linear materials, rubber materials have hyper-elasticity, which is expressed by the 
strain energy function. The representative strain energy functions in the finite element 
analysis of rubber are the extension ratio invariant function (Mooney-Rivlin model) and the 
principal extension ratio function (Ogden model). This case uses the Mooney-Rivlin model 
to investigate the behavior of a rubber material. 

The value of the zooming factor changes according to the number of variables and the 
population number of a generation. If the population number is large, more exact solution 
can be obtained than the approach with smaller one. For a large population number, which 
is inevitable in the case of many design variables, longer computation time is needed. In this 
case, because six design valuables are used to solve the six material properties, nine 
hundred population units per one generation are used. At this time, whenever zooming is 
needed, the function is calculated 90,000 times, where, 900 is the population number per one 
generation and 100 is generation number per one zooming because zooming is implemented 
after 100 generations . So the point number searched per one valuable is 6 units (=90,0001/6). 
To search the optimum point, the zooming factor must be not less than 1/6. Therefore, the 
zooming factor of 0.2 is used.  

The maximum generation number must be decided after the zooming factor is chosen. If the 
zooming factor is large, the exact solution can be solved as increasing zooming step. 
Generation numbers have to be decided by the user because they affect the amount of 
calculation like the population numbers do. For example, when zooming factor of 0.3 is 
chosen and Maxgen (maximum allowed generation number) is decided as 1000  
(NZOOM = 10), the accuracy of the final searching range becomes ZRANGE = α(Nzoom-1) = 0.3(10-1) 
= 1.97E-05, and if Maxgen is decided by 1500 (NZOOM = 15) the final searching range 
becomes ZRANGE = α(Nzoom-1) = 0.3(15-1) = 4.78E-08, where ZRANGE is the value related with the 
resolution of solution and is the searching range after N steps of zooming. The smaller this 
value is, the more exact the solution becomes. In this case, Maxgen=900 is adopted. SZGA  
minimized the total error better than the other two methods. 
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Errors to be minimized Haines & Wilson Least Square SZGA 

Simple extension 0.757932 0.709209 0.921277 

Pure shear 0.702015 0.620089 0.370579 

Equi-biaxial 13.2580 0.242475 0.139983 

Total error 14.7180 1.57177 1.43184 

Table 3. Comparisons of errors among the different methods for obtaining Mooney-Rivlin 6 
coefficients 

3.2 Damage detection of structures 

Structures can sometimes experience failures far earlier than expected, due to fabrication 
errors, material imperfections, fatigue, or design mistakes, of which fatigue failure is 
perhaps the most common . Therefore, to protect a structure from any catastrophic failure, 
regular inspections that include knocking, visual searches, and other nondestructive testing 
are conducted. However, these methods are all localized and depend strongly on the skill 
and experience of the inspector. Consequently, smart and global ways of searching for 
damages have recently been investigated by using rational algorithms, powerful computers, 
and FEM. 

 The objective function of the difference between the measured data and the computed data 
is minimized according to an assumed structural damage to find the locations and 
intensities of possible damages in a structure. The measured data can be the displacement of 
certain points or the natural frequencies of the structure, while the computed data are 
obtained by FEM using an assumed structural damage, whose severity is graded between 0 
and 1. For example, Chou et al. used static displacements at a few locations in a discrete 
structure composed of truss members, and adopted a kind of mixed string scheme as an 
implicit redundant representation. Meanwhile, Rao adopted a residual force method, where 
the fitness is the inverse of an objective function, which is the vector sum of the residual 
forces, and Koh adopted a stacked mode shape correlation that could locate multiple 
damages without incorporating sensitivity information 11. 

Yet, a typical structure can be sub-divided into many finite elements and has many degrees 
of freedom. Thus, FEM for a static analysis, as well as for a frequency analysis, takes a long 
time. For a GA, the analysis time is related to the number of functions used for evaluating 
fitness. This number can become uncontrollable when monitoring a full structure, and as a 
result, the RAM or memory space required becomes too large and the access rate too slow 
when handling so much data. 

Accordingly, the proposed SZGA is very effective in this case, as it does not require so many 
chromosomes, even as few as 4, thereby overcoming the slow-down of the convergence rate 
of the conventional GA, which need many chromosomes in determining the extent of a 
damage. Furthermore, the issue of many degrees of freedom can also be solved by sub-
dividing the monitoring problem into smaller sub-problems because the number of 
damages will likely be between 1~4, as long as the structure was designed properly. 
Moreover, the fact that cracks usually initiate at the outer and tensile stressed locations of a 
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of the conventional GA, which need many chromosomes in determining the extent of a 
damage. Furthermore, the issue of many degrees of freedom can also be solved by sub-
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Moreover, the fact that cracks usually initiate at the outer and tensile stressed locations of a 
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structure is also an advantage. As a result, the number of sub-problems becomes 
manageable, and the required time is much reasonable. 

Several tests were performed first to determine the effectiveness of the SZGA for structure 
monitoring, where regional zooming is not necessary. Next, the procedure used to sub-
divide the monitoring problem is presented, along with a comparison of the amount of 
computation required between a full-scale monitoring analysis and a sub--divide 
monitoring analysis according to the number of probable damage sites. The optimization 
problem for various cases of structural damage detection was solved by using three or six 
variables, zooming factor of 0.2 or 0.3, and total number of function evaluations of 100,000 
or 150,000, which is NZOOM × sub-iteration population number. The sub-iteration 
population number means the total population number in a sub-generation of one 
zooming. 

 
Fig. 3. Zooming factor with respect to the number of variables 

 
Fig. 4. Number of sub-iteration population with respect to the number of variables 

Fig. 3, Fig. 4 and Fig. 5 are the fitting curves of ‘NVAR -α ’, ‘NVAR - NSP’ and ‘NVAR - Number 
of function calculation’ relationship data, respectively, based on Table 1. These figures are 
prepared for the data point not shown in Table 1 for interpolation purpose. 
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Fig. 5. Number of function calculations with respect to the number of variables  

The SZGA can pinpoint an optimal solution by searching a successively zoomed domain. 
Yet, in addition to its fine-tuning capability, the SZGA only requires several chromosomes 
for each zoomed domain, which is a very useful characteristic for structural damage 
detection of a large structure that has a great number of solution variables. In the present 
study, just four or six digits of chromosomes were used. The accuracy of optimal solution is 
guaranteed by the successively zoomed infinitesimal range. 

Most structures have few cracks, which may exist at different locations. Therefore, a 
combinational search method is suggested to search for separate cracks by choosing 
probable damage site as nCk. n denotes the number of total elements and k denotes the 
number of possible crack sites (1~4). Thus, up to four cracks (k) were considered in a 
continuum structure modelled with n ( = 20) elements, and the number of function 
calculations between the combinational search and the full scale search was compared. 
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No. of cracks nCk 
No. of function calculation Ratio 

(Combinational/Full) Combinational search Full scale search 

1 20 0.580671×105 0.578096×109 0.100445×10-3 

2 190 0.950000×106 0.578096×109 0.164332×10-2 

3 1140 0.990843×107 0.578096×109 0.171398×10-1 

4 4845 0.740788×108 0.578096×109 0.128143 

Table 4. Result of combinational searching method to reduce amount of calculation in SZGA  

When monitoring the entire structure, the number of function calculations became about six 
hundred million based on the relation between the number of variables and the number of 
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function calculations. However, when the combinational searching method was used, the 
number of function calculations was reduced by about 10-1~10-4 times when compared to the 
full-scale monitoring case, as shown in Table 4. Table 5 shows the good detection of the 
damage using the combination method and SZGA. 
 

Element No. 19 20 25 26 31 32 

Actual 
soundness factor 1 1 0.5 1 1 1 

Damage 
detection result 1.0 1.0 0.499999 1.0 1.0 1.0 

Table 5. Result of structural damage detection using the combination method and SZGA 

3.3 Link system design using weighting factors 

This section presents a procedure involving the use of a genetic algorithm for the optimal 
designs of single four-bar link systems and a double four-bar link system used in diesel 
engines. Studies concerning the optimal design of the double link system comprised of both 
an open single link system and a closed single link system which are rare, and moreover the 
application of the SZGA in this field is hard to find, where the shape of objective function 
have a broad, flat distribution 12. 

During the optimal design of single four-bar link systems, one can find that for the case of 
equal IO angles, the initial and final configurations show certain symmetry. In the case of 
open single link systems, the radii of the IO links are the same and there is planar symmetry. 
In the case of closed single systems, the radii of the IO links are the same and there is point 
symmetry. 

To control the Swirl Control Valve in small High Speed Direct Injection engines, there are 
two types of actuating systems. The first uses a single DC motor controlled by Pulse Width 
Modulation, while the second uses two DC motors. However, this study uses the first type 
of actuator for the simultaneous control of two Swirl Control Valves using a double link 
system. When two intake valves in a diesel engine are controlled by a single motor, they 
usually exhibit quite different angular responses when the design variables for the control 
link system are not properly selected. Therefore, in order to ensure balanced performance in 
diesel engines with two intake valves, an optimization problem needs to be formulated and 
solved to find the best set of design variables for the double four-bar link system, which in 
turn can be used to minimize the different responses to a single input. 

Two weighting factors are introduced into the objective function to maintain balance 
between the multi-objective functions. The proper ratios of weighting factors between 
objective functions are chosen graphically. The optimal solutions provided by the SZGA and 
developed FORTRAN Link programs can be confirmed by monitoring the fitness. The 
reduction in the objective functions is listed in the tables. The responses of the output links 
that follow the simultaneously acting input links are verified by experiment and the 
Recurdyn 3-D kinematic analysis package. The experimental and analysis results show  
good correspondence. 
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The proposed optimal design process was successfully applied to a recently launched 
luxury Sports Utility Vehicle model. Table 6 shows the original response and that of the 
optimized model. The optimal model exhibits almost the exact left and right outputs, and 
the difference between the left and right responses of 0.603 is thought to be a least value for 
the given positions of the link centers and the double control system adopting a single input 
motor. 
 

Model Input 
( degree ) 

Output( degree ) 

Left Right Max. 
Difference 

Original 0-90 0-89.144 0-91.958 2.044 

Optimal 0-90 0-89.999 0-89.999 0.603 

Table 6. Comparison of original and optimal models 

3.4 Proper band width for equality constraints 

In a problem having an equality constraint, it is not so simple for GA to satisfy the constraint 
while maintaining efficiency. Optimal solution lies on the line of equality constraint. It is 
very important to gernerate individuals on or near the equality line. However, the desirable 
narrow area including the equality line is very small compared with the whole area. The 
number of individual generated in this narrow area is much less than those in the outer area 
of the desirable narrow area including the equality line. Therefore, the convergence rate of 
GA or SZGA is significantly slow for the problems with equality constraints. The bandwidth 
method is proposed to overcome this kind of slow convergence rate. 

For the minimization problems, we added a basic penalty function to meet the equality 
constraint, which will be explained soon. For this problem with the basic constraint, we can 
not expect a rapid convergence rate as mentioned above. Therefore, we added an additional 
penalty function to the region, located out of the desirable narrow area including the 
equality line, to make an infeasible area of a very highly increased objective function. The 
bandwidth denotes the half width of the narrow region with the basic penalty only. 

There are three methods to handle the equality constraints using GA. One is to give both 
sides the penalty functions along the equality condition. The other is to give one side the 
monotonic function and other side the even (jump) penalty function along the equality 
constraint. However, the one side with the monotonic penalty should be feasible. And, the 
final one is to apply one side with no penalty function and the other side with the even 
(jump) penalty function along the equality constraint, and the one side of no penalty 
function should be feasible. 

The penalty methods provided in Fig. 6 only with original penalty, is the basic technique for 
handling the equality constraint 15. With this kind of basic technique only, however, the 
convergence rate would be too slow to reach the optimal point. Many generated individuals 
are wasted because they mostly too far from the equality constraint line. Therefore we need 
an additional penalty function to increase the effectiveness of GA. That is an additional 
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function calculations. However, when the combinational searching method was used, the 
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damage using the combination method and SZGA. 
 

Element No. 19 20 25 26 31 32 

Actual 
soundness factor 1 1 0.5 1 1 1 

Damage 
detection result 1.0 1.0 0.499999 1.0 1.0 1.0 

Table 5. Result of structural damage detection using the combination method and SZGA 

3.3 Link system design using weighting factors 

This section presents a procedure involving the use of a genetic algorithm for the optimal 
designs of single four-bar link systems and a double four-bar link system used in diesel 
engines. Studies concerning the optimal design of the double link system comprised of both 
an open single link system and a closed single link system which are rare, and moreover the 
application of the SZGA in this field is hard to find, where the shape of objective function 
have a broad, flat distribution 12. 

During the optimal design of single four-bar link systems, one can find that for the case of 
equal IO angles, the initial and final configurations show certain symmetry. In the case of 
open single link systems, the radii of the IO links are the same and there is planar symmetry. 
In the case of closed single systems, the radii of the IO links are the same and there is point 
symmetry. 

To control the Swirl Control Valve in small High Speed Direct Injection engines, there are 
two types of actuating systems. The first uses a single DC motor controlled by Pulse Width 
Modulation, while the second uses two DC motors. However, this study uses the first type 
of actuator for the simultaneous control of two Swirl Control Valves using a double link 
system. When two intake valves in a diesel engine are controlled by a single motor, they 
usually exhibit quite different angular responses when the design variables for the control 
link system are not properly selected. Therefore, in order to ensure balanced performance in 
diesel engines with two intake valves, an optimization problem needs to be formulated and 
solved to find the best set of design variables for the double four-bar link system, which in 
turn can be used to minimize the different responses to a single input. 

Two weighting factors are introduced into the objective function to maintain balance 
between the multi-objective functions. The proper ratios of weighting factors between 
objective functions are chosen graphically. The optimal solutions provided by the SZGA and 
developed FORTRAN Link programs can be confirmed by monitoring the fitness. The 
reduction in the objective functions is listed in the tables. The responses of the output links 
that follow the simultaneously acting input links are verified by experiment and the 
Recurdyn 3-D kinematic analysis package. The experimental and analysis results show  
good correspondence. 

 
The Successive Zooming Genetic Algorithm and Its Applications 

 

15 

The proposed optimal design process was successfully applied to a recently launched 
luxury Sports Utility Vehicle model. Table 6 shows the original response and that of the 
optimized model. The optimal model exhibits almost the exact left and right outputs, and 
the difference between the left and right responses of 0.603 is thought to be a least value for 
the given positions of the link centers and the double control system adopting a single input 
motor. 
 

Model Input 
( degree ) 

Output( degree ) 

Left Right Max. 
Difference 

Original 0-90 0-89.144 0-91.958 2.044 

Optimal 0-90 0-89.999 0-89.999 0.603 

Table 6. Comparison of original and optimal models 

3.4 Proper band width for equality constraints 

In a problem having an equality constraint, it is not so simple for GA to satisfy the constraint 
while maintaining efficiency. Optimal solution lies on the line of equality constraint. It is 
very important to gernerate individuals on or near the equality line. However, the desirable 
narrow area including the equality line is very small compared with the whole area. The 
number of individual generated in this narrow area is much less than those in the outer area 
of the desirable narrow area including the equality line. Therefore, the convergence rate of 
GA or SZGA is significantly slow for the problems with equality constraints. The bandwidth 
method is proposed to overcome this kind of slow convergence rate. 

For the minimization problems, we added a basic penalty function to meet the equality 
constraint, which will be explained soon. For this problem with the basic constraint, we can 
not expect a rapid convergence rate as mentioned above. Therefore, we added an additional 
penalty function to the region, located out of the desirable narrow area including the 
equality line, to make an infeasible area of a very highly increased objective function. The 
bandwidth denotes the half width of the narrow region with the basic penalty only. 

There are three methods to handle the equality constraints using GA. One is to give both 
sides the penalty functions along the equality condition. The other is to give one side the 
monotonic function and other side the even (jump) penalty function along the equality 
constraint. However, the one side with the monotonic penalty should be feasible. And, the 
final one is to apply one side with no penalty function and the other side with the even 
(jump) penalty function along the equality constraint, and the one side of no penalty 
function should be feasible. 

The penalty methods provided in Fig. 6 only with original penalty, is the basic technique for 
handling the equality constraint 15. With this kind of basic technique only, however, the 
convergence rate would be too slow to reach the optimal point. Many generated individuals 
are wasted because they mostly too far from the equality constraint line. Therefore we need 
an additional penalty function to increase the effectiveness of GA. That is an additional 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

16

penalty to the objective function if the condition is located in outer region of a certain 
bandwidth centered with the equality constraint. 

 
 (a)   (b)   (c) 

Fig. 6. Three methods to handle the equality constraint in GA. 

Using the type (c) equality constraint and additional bandwidth penalty, the design of a 
ceramic jar was optimized for three values of zooming factors and various bandwidths of 
equality constraint, as shown in Fig. 7 and Table 7. The result showed a proper range of 
bandwidth for the equality constraint. In Table 7, the optimal solutions were found for the 
jar, satisfying the equality constraint of 2 liter volume. 

   
 (Zooming factor 0.1)   (Zooming factor 0.2) (Zooming factor 0.3) 

Fig. 7. Best fitness for band-width of an equality constraint and numbers of generation. 

Zooming 
factors 

Proper 
band-width 

Weight 
(kg) 

Volume 
(liter) Z1 Z2 

0.1 0.15~0.3 0.0802 2.000 0.4790 1.000 
0.2 0.15~0.3 0.0802 2.000 0.4790 1.000 
0.3 0.15~0.3 0.0802 2.000 0.4790 1.000 

Table 7. Proper bandwidths and the optimal solutions for three zooming factors 

This optimization problem does not converge below 0.15 of the band-width of an equality 
constraint, because the objective function is rather complicated and the band-width is 
relatively too narrow to give the most candidated optimal individual out of feasible region. 
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When the band-width is bigger than about 0.3, the best fitness dropped rapidly. In other 
words, if we open the full range as the feasible solution range, the optimal ridge would be 
too narrow to be chosen by GA. In conclusion, a too narrow bandwidth may lead to a 
divergence and a too wide bandwidth may result in inefficiency. 

4. Further studies and concluding remarks 
The SZGA explained in the foregoing sections may be applied to more fields of interest, 
such as, the optimal design of ceramic pieces considering important factors like beauty, 
usage, stability, strength, lid, and exact volume. Prediction of a long -term performance of a 
rubber seal installed in an automotive engine is another possible application.  

The most dominant characteristics of SZGA are its accuracy up to the required significant 
digits, and its rapid convergence rate even in the later stage. However, users have to 
properly select the parameters, namely, the zooming factor, number of zooms, and number 
of sub-domain population. A useful reference can be found in Table 1, Fig. 3, Fig. 4, and Fig. 
5. The number of zooms can be determined by eq.(5) for a given upper limit of accuracy.  
The number of sub-domain population has been recommended as a fixed number until 
now, however, it may be varied as a function of the zooming step. 
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1. Introduction 
For many applied and research problems it is necessary to find solution in the form of 
mathematical equation. These problems are the selection of function at approximation of 
experimental data, identification of control object model, control synthesis in the form of 
state space coordinates function, the inverse problem of kinetics and mathematical physics, 
etc. The main method to receive mathematical equations for solution of these problems 
consists in analytical transformations of initial statement formulas of the problem. A few 
problems have the exact analytical solution, therefore mathematicians use various 
assumptions, decomposition, and special characteristics of solutions. Usually 
mathematicians set the form of mathematical equation, and the optimal parameters are 
found using numerical methods and PC. Such methods as the least-square method have 
been applied to the problems of approximation for many years (Kahaner D. et al., 1989).  

Recently the neural networks have been used to solve complex problems when the 
mathematical equation cannot be found analytically. The structure of any neural network is 
also given within the values of parameters or weight coefficients. In problems of function 
approximation and the neural network training the form of mathematical equation is set by 
the researcher, and the computer searches for optimum values of parameters in these 
equations (Callan, 1999; Demuth et al., 2008). 

In 1992 a new method of genetic programming was developed. It allows to solve the 
problem of search of the most suitable mathematical equation. In genetic programming 
mathematical equations are represented in the form of symbol strings. Each symbol string 
corresponds to a computation graph in the form of a tree. The nodes of this graph contain 
operations, and the leaves contain variables or parameters ( Koza, 1992, 1994; Koza, Bennett 
et al., 1999 & Koza, Keane et al., 2003).  

Genetic programming solves the problems by applying genetic algorithm. To perform the 
crossover it is necessary to find symbol substrings that correspond to brunches of trees. The 
analysis of symbol strings increases the operating time of the algorithm. If the same 
parameter or variable is included in the required mathematical equation several times, then 
to solve the problem effectively the genetic programming needs to crossover the trees so 
that the leaves contain no less than the required number of parameters or variables. 
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Limitations of the genetic programming revealed at the solution of the problem of suitable 
mathematical equation search, have led to creation of the network operator. 

In this work we introduce a new data structure which we called a network operator. 
Network operator is a directed graph that contains operations, arguments and all 
information for calculations of mathematical equation. 

Network operator method was used for the problems of control synthesis (Diveyev & 
Sofronova, 2008; Diveev, 2009; Diveev & Sofronova, 2009a,b). 

2. Program notations of mathematical equations 
Mathematical equations consist of variables, parameters, unary and binary operations that 
form four constructive sets.  

Set of variables  

 ( )1X , , Nx x=  , 1Rix ∈ , 1,i N= . (1) 

Set of parameters  

 ( )1Q , , Pq q=  , 1Riq ∈ , 1,i P= . (2) 

Unary operations set 

 ( ) ( ) ( )( )1 1 2O , , , Wz z z zρ ρ ρ= =  . (3) 

Binary operations set 

 ( ) ( )( )2 0 1O , , , ,Vz z z zχ χ −′ ′′ ′ ′′=  . (4) 

Unary operations set must have an identity operation   

 ( )1 z zρ = .    (5) 

Binary operations must be commutative  

 ( ) ( ), ,i iz z z zχ χ′ ′′ ′′ ′= , 0, 1i V= − ,   (6) 

associative  

 ( )( ) ( )( )i iz z z z z z, , , ,χ χ′ ′′ ′′′ ′ ′′ ′′′= , i V0, 1= − ,    (7) 

and have a unit element 

  ie∃    ( ),i ie z zχ = , 0, 1i V= − .    (8) 

A program notation of mathematical equation is a notation of equation with the help of 
constructive sets (1) – (4). 
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3. Graphic notations of mathematical equations 

To present mathematical equation as a graph we use a program notation. Let us enlarge the 
program notation by additional unary identity operation ( )1 z zρ =  and binary operation 
with a unit element ( ),i ie z zχ = . These operations do not influence the result of calculation 
but they set a definite order of operations in the notation, so that binary operations have 
unary operations or unit elements as their arguments, and unary operations have only 
binary operations, parameters or variables as their arguments. 

A graphic notation of mathematical equation is a notation of binary operation that fulfills 
the following conditions: 

а. binary operation can have unary operations or unit element of this binary operation as 
its arguments; 

b. unary operation can have binary operation, parameter or variable as its argument; 
c. binary operation cannot have unary operations with the same constants or variables as 

its arguments. 

Any program notation can be transformed into a graphic notation.  

4. Network operator of mathematical expression 
To construct a graph of the mathematical expression we use a graphic notation. The graphic 
notation can be transformed into the graph if unary operations of mathematical expression 
correspond to the edges of the graph, binary operations, parameters or variables correspond 
to the nodes of the graph.  

Suppose that in graphic notation we have a substring where two unary operations are 
arguments to binary operation ( ) ( )( ),k l mχ ρ ρ     This substring is presented as a graph 
on Fig. 1 

 
Fig. 1. The graph for substring ( ) ( )( ),k l mχ ρ ρ     

Suppose we have a substring where binary operation is an argument to unary operation 
( )( )k lρ χ   . This substring is presented as a graph on Fig. 2. 

 
Fig. 2. The graph for substring ( )( )k lρ χ    
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Let us have a substring where parameter or variable is an argument to unary operation 
( )k aρ  , where a  is an argument or parameter of mathematical equation, X Qa ∈ ∪ . The 

graph for this substring is presented on Fig. 3. 

 
Fig. 3. The graph for substring ( )k aρ  , X Qa ∈ ∪  

If graphic notation contains a substring where binary operation with a unit element is an 
argument to unary operation  ( )( )( ),0k l mρ χ ρ  We do not depict this unit elements and 
the node has only one incoming edge as shown on Fig. 4. 

 

Fig. 4. The graph for substring ( )( )( ),0k l mρ χ ρ    

5. Properties of network operators 
Network operator is a directed graph that has the following properties: 

a. graph has no loops; 
b. any nonsource node has at least one edge from the source node; 
c. any non sink node has at least one edge to sink node; 
d. every source node corresponds to the element from the set of variables X  or the set of 

parameters Q ; 
e. every node corresponds to binary operation from the set of binary operations 2O ; 
f. every edge corresponds to unary operation from the set of unary operations 1O . 

To calculate mathematical expression we have to follow certain rules: 

a. unary operation is performed only for the edge that comes out from the node with no 
incoming edges; 

b. the edge is deleted from the graph once the unary operation is performed; 
c. the binary operation in the node is performed right after the unary operation of the 

incoming edge is performed;  
d. the calculation is terminated when all edges are deleted from the graph. 

To construct most of mathematical expressions we use the sets of unary and binary 
operations that are given in Table 1 and Table 2.  

Consider the construction of the network operator for the following mathematical equation 

( ) 2
1 1 1 1sin xy x x q x e−= + + . 
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Let us have a substring where parameter or variable is an argument to unary operation 
( )k aρ  , where a  is an argument or parameter of mathematical equation, X Qa ∈ ∪ . The 

graph for this substring is presented on Fig. 3. 

 
Fig. 3. The graph for substring ( )k aρ  , X Qa ∈ ∪  

If graphic notation contains a substring where binary operation with a unit element is an 
argument to unary operation  ( )( )( ),0k l mρ χ ρ  We do not depict this unit elements and 
the node has only one incoming edge as shown on Fig. 4. 

 

Fig. 4. The graph for substring ( )( )( ),0k l mρ χ ρ    

5. Properties of network operators 
Network operator is a directed graph that has the following properties: 

a. graph has no loops; 
b. any nonsource node has at least one edge from the source node; 
c. any non sink node has at least one edge to sink node; 
d. every source node corresponds to the element from the set of variables X  or the set of 

parameters Q ; 
e. every node corresponds to binary operation from the set of binary operations 2O ; 
f. every edge corresponds to unary operation from the set of unary operations 1O . 

To calculate mathematical expression we have to follow certain rules: 

a. unary operation is performed only for the edge that comes out from the node with no 
incoming edges; 

b. the edge is deleted from the graph once the unary operation is performed; 
c. the binary operation in the node is performed right after the unary operation of the 

incoming edge is performed;  
d. the calculation is terminated when all edges are deleted from the graph. 

To construct most of mathematical expressions we use the sets of unary and binary 
operations that are given in Table 1 and Table 2.  

Consider the construction of the network operator for the following mathematical equation 

( ) 2
1 1 1 1sin xy x x q x e−= + + . 
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Operation Unit element 

( )0 ,z z z z′ ′′ ′ ′′χ = +  0 

( )1 ,z z z z′ ′′ ′ ′′χ =  1 

( ) { }2 , max z ,zz z′ ′′ ′ ′′χ =  1−
ε

 

( ) { }3 , min z ,zz z′ ′′ ′ ′′χ =  1
ε

 

( )4 ,z z z z z z′ ′′ ′ ′′ ′ ′′χ = + −  0 

( ) ( ) ( ) ( )2 2
5 , sgnz z z z z z′ ′′ ′ ′′ ′ ′′χ = + +  0 

( ) ( )( )6 , sgnz z z z z z′ ′′ ′ ′′ ′ ′′χ = + +  0 

( ) ( ) { }7 , sgn max z , zz z z z′ ′′ ′ ′′ ′ ′′χ = +  0 

Table 2. Binary operations 

First we set parentheses to emphasize the arguments of functions. Then using Table 1 and 
Table 2 we find appropriate operations and replace functions by operations 

( ) 2
1 1 1 1sin xy x x q x e−= + + ( )( )( )2

1 1 1 1sin xx x q x e−= + + = ( )( )( )xx x q x e 2
0 1 1 1 1sin , −χ +

( )( )( )2
0 0 1 1 1 1,sin , xx x q x e−= χ χ = ( )( ) ( )( )( )0 0 1 12 1 1 1 1 6 2, , ,x x q x xχ χ ρ χ ρ −

( )( ) ( ) ( )( )( )( )0 0 1 12 1 1 1 1 1 6 3 2, , , ,x x q x x= χ χ ρ χ χ ρ ρ . 

As a result we obtain a program notation of mathematical equation 

( )( ) ( ) ( )( )( )( )0 0 1 12 1 1 1 1 1 6 3 2, , , ,y x x q x x= χ χ ρ χ χ ρ ρ . 

We can see that this program notation does not meet the requirements to graphic notation.  
These requirements are necessary for further construction of the graph. According to the 
definition of the network operator binary operations correspond to the nodes of the graph, 
unary operations correspond to the edges, thus binary and unary operations must be 
arguments of each other in the graphic notation of mathematical equation.  

When a binary operation has as its argument in program notation then we cannot construct 
the graph, because there is no edge, in other words no unary operation, between two nodes. 

To meet the requirements for graphic notation let us introduce additional unary identity 
operations.  For example in the given program notation we have a substring 

( ) ( )( )0 0 1,y = χ χ χ  . 

Here binary operation has two binary operations as its arguments. It does not satisfy 
condition «а» of graphic notation. If we use additional identity operation, then we have  
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( )( ) ( )( )( )0 1 0 1 1,y = χ ρ χ ρ χ  . 

Unary identity operation ( )1 zρ  does not change the value of argument and this operation is 
necessary for the construction of the graph by graphic notation. 

Since graphic notation should contain binary operations with unary operations as their 
arguments then we additional unary identity operations. We get  

( ) ( )( )( )(0 1 0 1 1 12 1, ,y x x= χ ρ χ ρ ρ ( ) ( )( )( ) ( )( )( )( ))1 1 1 1 1 1 1 1 6 3 2, ,q x xρ χ ρ χ ρ ρ ρ ρ . 

This notation is not a graphic one, because it does not satisfy condition «b» of graphic 
notation. Here unary operation has unary operation as its argument 

( )( )6 3 2xρ ρ   

We use additional binary operation with a unit element as its second argument, for example 
( )0 ,0χ  . According to Table 2 binary operation ( )0 ,z z′ ′′χ  is addition. A unit element for 

addition is 0 and it does not influence the result of calculation. Thus we get  

( )( )( )6 0 3 2 ,0xρ χ ρ   

We obtain the graphic notation of mathematical equation 

( ) ( )( )( )(0 1 0 1 1 12 1, ,y x x= χ ρ χ ρ ρ ( ) ( )( )( ) ( )( )( )( )( ))1 1 1 1 1 1 1 1 6 0 3 2, , ,0q x xρ χ ρ χ ρ ρ ρ χ ρ . 

This notation does not satisfy condition «c» of graphic notation, because it contains a 
substring where binary operation has two unary operations with the same variable as its 
arguments 

( ) ( )( )0 1 1 12 1,x xχ ρ ρ   

We add a binary operation with a unit element and a unary identity operation to the 
substring  

( )( )( ) ( )( )0 1 0 1 1 12 1,0 ,x xχ ρ χ ρ ρ   

As a result we get the following notation of mathematical equation 

( )( )( ) ( )( )( )(0 1 0 1 0 1 1 12 1,0 , ,y x x= χ ρ χ ρ χ ρ ρ ( ) ( )( )( ) ( )( )( )( )( ))1 1 1 1 1 1 1 1 6 0 3 2, , ,0q x xρ χ ρ χ ρ ρ ρ χ ρ . 

This notation has all properties of graphic notation and we can construct the graph of 
equation by this notation. To construct the graph we use the rules presented on Fig. 1 - 4. 
The graph is shown on Fig. 5.  

Fig. 5 shows the numeration of nodes on the top of each node in the graph. We see that the 
numbers of the nodes where the edges come out from are less than the numbers of nodes 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

24

Operation Unit element 
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( ) { }2 , max z ,zz z′ ′′ ′ ′′χ =  1−
ε

 

( ) { }3 , min z ,zz z′ ′′ ′ ′′χ =  1
ε

 

( )4 ,z z z z z z′ ′′ ′ ′′ ′ ′′χ = + −  0 

( ) ( ) ( ) ( )2 2
5 , sgnz z z z z z′ ′′ ′ ′′ ′ ′′χ = + +  0 

( ) ( )( )6 , sgnz z z z z z′ ′′ ′ ′′ ′ ′′χ = + +  0 

( ) ( ) { }7 , sgn max z , zz z z z′ ′′ ′ ′′ ′ ′′χ = +  0 

Table 2. Binary operations 

First we set parentheses to emphasize the arguments of functions. Then using Table 1 and 
Table 2 we find appropriate operations and replace functions by operations 

( ) 2
1 1 1 1sin xy x x q x e−= + + ( )( )( )2

1 1 1 1sin xx x q x e−= + + = ( )( )( )xx x q x e 2
0 1 1 1 1sin , −χ +

( )( )( )2
0 0 1 1 1 1,sin , xx x q x e−= χ χ = ( )( ) ( )( )( )0 0 1 12 1 1 1 1 6 2, , ,x x q x xχ χ ρ χ ρ −

( )( ) ( ) ( )( )( )( )0 0 1 12 1 1 1 1 1 6 3 2, , , ,x x q x x= χ χ ρ χ χ ρ ρ . 

As a result we obtain a program notation of mathematical equation 

( )( ) ( ) ( )( )( )( )0 0 1 12 1 1 1 1 1 6 3 2, , , ,y x x q x x= χ χ ρ χ χ ρ ρ . 

We can see that this program notation does not meet the requirements to graphic notation.  
These requirements are necessary for further construction of the graph. According to the 
definition of the network operator binary operations correspond to the nodes of the graph, 
unary operations correspond to the edges, thus binary and unary operations must be 
arguments of each other in the graphic notation of mathematical equation.  

When a binary operation has as its argument in program notation then we cannot construct 
the graph, because there is no edge, in other words no unary operation, between two nodes. 

To meet the requirements for graphic notation let us introduce additional unary identity 
operations.  For example in the given program notation we have a substring 

( ) ( )( )0 0 1,y = χ χ χ  . 

Here binary operation has two binary operations as its arguments. It does not satisfy 
condition «а» of graphic notation. If we use additional identity operation, then we have  
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( )( ) ( )( )( )0 1 0 1 1,y = χ ρ χ ρ χ  . 

Unary identity operation ( )1 zρ  does not change the value of argument and this operation is 
necessary for the construction of the graph by graphic notation. 

Since graphic notation should contain binary operations with unary operations as their 
arguments then we additional unary identity operations. We get  

( ) ( )( )( )(0 1 0 1 1 12 1, ,y x x= χ ρ χ ρ ρ ( ) ( )( )( ) ( )( )( )( ))1 1 1 1 1 1 1 1 6 3 2, ,q x xρ χ ρ χ ρ ρ ρ ρ . 

This notation is not a graphic one, because it does not satisfy condition «b» of graphic 
notation. Here unary operation has unary operation as its argument 

( )( )6 3 2xρ ρ   

We use additional binary operation with a unit element as its second argument, for example 
( )0 ,0χ  . According to Table 2 binary operation ( )0 ,z z′ ′′χ  is addition. A unit element for 

addition is 0 and it does not influence the result of calculation. Thus we get  

( )( )( )6 0 3 2 ,0xρ χ ρ   

We obtain the graphic notation of mathematical equation 

( ) ( )( )( )(0 1 0 1 1 12 1, ,y x x= χ ρ χ ρ ρ ( ) ( )( )( ) ( )( )( )( )( ))1 1 1 1 1 1 1 1 6 0 3 2, , ,0q x xρ χ ρ χ ρ ρ ρ χ ρ . 

This notation does not satisfy condition «c» of graphic notation, because it contains a 
substring where binary operation has two unary operations with the same variable as its 
arguments 

( ) ( )( )0 1 1 12 1,x xχ ρ ρ   

We add a binary operation with a unit element and a unary identity operation to the 
substring  

( )( )( ) ( )( )0 1 0 1 1 12 1,0 ,x xχ ρ χ ρ ρ   

As a result we get the following notation of mathematical equation 

( )( )( ) ( )( )( )(0 1 0 1 0 1 1 12 1,0 , ,y x x= χ ρ χ ρ χ ρ ρ ( ) ( )( )( ) ( )( )( )( )( ))1 1 1 1 1 1 1 1 6 0 3 2, , ,0q x xρ χ ρ χ ρ ρ ρ χ ρ . 

This notation has all properties of graphic notation and we can construct the graph of 
equation by this notation. To construct the graph we use the rules presented on Fig. 1 - 4. 
The graph is shown on Fig. 5.  

Fig. 5 shows the numeration of nodes on the top of each node in the graph. We see that the 
numbers of the nodes where the edges come out from are less than the numbers of nodes 
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where the edges come in. Such numeration is always possible for directed graphs without 
loops.  

 
Fig. 5. Graph of mathematical equation 

To calculate the mathematical equation which is presented as a graph we use additional 
vector of nodes z  for storage of intermediate results. Each element of vector z  is associated 
with the definite node in the graph. Initially elements of vector iz  that are associated with 
the source nodes have the values of variables and parameters. For example for the graph 
presented at Fig. 5 we have  

[ ]1 9
Tz z=z  , 

where  9 is the number of nodes in the graph. For the source nodes we set 1 1z x= , 2 1z q= , 
3 2z x= . Values of other elements iz  are equal to the unit elements for binary operations. As 

a result we get an initial value of vector of nodes 

[ ]1 1 2 0 1 0 1 0 0 Tx q x=z . 

In the given example we use addition and multiplication. Unit element for addition is 0 and 
for multiplication is 1.  

According to the rules of calculation, we calculate unary operation that corresponds to the 
edge that comes out from the node that has no incoming edges. For the edge ( ),i j  node i  
has no incoming edges at the moment. Unary operation kρ  corresponds to the edge ( ),i j . 
Binary operation lχ  corresponds to the node j . Then we perform the following calculations 

 ( )( ),j l j k iz z z= χ ρ ,  (9) 

where jz  in the right part of the equation is the value on the previous step. 

After calculation of (9) we delete the edge ( ),i j  from the graph.   

If we numerate the nodes so that the number of the node where the edge comes out from is 
less than the number of the node that it comes in, then the calculation can be done just 
following the numbers of the nodes. 
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For the given example we have the following steps:  

- edge (1,4), ( )( )4 0 1 1 4 1 1, 0z z z x x= χ ρ = + = ; 
- edge (1,8), ( )( ) ( ) ( )8 0 12 1 8 1 1, sin 0 sinz z z x x= χ ρ = + = ; 
- edge (1,5), ( )( )5 1 1 1 5 1 1, 1z z z x x= χ ρ = = ; 
- edge (2,5), ( )( )5 1 1 1 5 1 1,z q z q x= χ ρ = ; 
- edge (3,6), ( )( )6 0 3 2 6 2 2, 0z x z x x= χ ρ = − + = − ; 
- edge (4,8), ( )( ) ( )8 0 1 4 8 1 1, sinz z z x x= χ ρ = + ; 
- edge (5,7), ( )( )7 1 1 5 7 1 1 1 1, 1z z z q x q x= χ ρ = = ; 
- edge (6,7), ( )( ) 2

7 1 6 6 7 1 1, xz z z e q x−= χ ρ = ; 
- edge (7,9), ( )( ) 2 2

9 0 1 7 9 1 1 1 1, 0x xz z z e q x e q x− −= χ ρ = + = ; 
- edge (8,9), ( )( ) ( ) 2

9 0 1 8 9 1 1 1 1, sin xz z z x x e q x−= χ ρ = + + . 

When the calculations on the edge (8,9) are performed we obtain the result of initial 
mathematical expression. 

Nodes 8 and 9 in the graph can be united since binary operations are associative and 
commutative. A reduced graph of mathematical equation is given on Fig. 6.  

 
Fig. 6. Reduced graph of mathematical equation  

The results of calculation for graphs presented on Fig. 5 and Fig. 6 are the same. 

The result of calculation will not change if we unite two nodes that are linked by the edge 
that corresponds to unary identical operation and the edges that are linked to that nodes do 
not come in or out from the same node. 

To construct the graph of mathematical equation we need as many nodes as the sum of 
parameters, variables and binary operations in its graphic notation. This number is enough 
for construction but not minimal.  

The result of calculation will not change if to the sink node of the graph we add an edge 
with a unary identical operation and a node with binary operation and a unit element. An 
enlarged graph for given example is shown on Fig. 7. 

A directed graph constructed form the graphic notation of mathematical equation is a 
network operator. One network operator can be associated with several mathematical 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

26

where the edges come in. Such numeration is always possible for directed graphs without 
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where jz  in the right part of the equation is the value on the previous step. 
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If we numerate the nodes so that the number of the node where the edge comes out from is 
less than the number of the node that it comes in, then the calculation can be done just 
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Nodes 8 and 9 in the graph can be united since binary operations are associative and 
commutative. A reduced graph of mathematical equation is given on Fig. 6.  
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The results of calculation for graphs presented on Fig. 5 and Fig. 6 are the same. 

The result of calculation will not change if we unite two nodes that are linked by the edge 
that corresponds to unary identical operation and the edges that are linked to that nodes do 
not come in or out from the same node. 

To construct the graph of mathematical equation we need as many nodes as the sum of 
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for construction but not minimal.  

The result of calculation will not change if to the sink node of the graph we add an edge 
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A directed graph constructed form the graphic notation of mathematical equation is a 
network operator. One network operator can be associated with several mathematical 
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equations. It depends on the numbers of sink nodes that are set by the researcher. In the 
given example if we numerate the sink nodes with numbers 7, 8, 9 then we will get three 
mathematical equations  

2
1 7 1 1

xy z e q x−= = , 

( )2 8 1 1siny z x x= = + , 

( ) 2
3 9 1 1 1 1sin xy z x x e q x−= = + + . 

This feature of the graphic notation allows using the network operator for presentation of 
vector functions. 

 
Fig. 7. Enlarged graph of mathematical equation 

6. Network operator matrices 

To present a network operator in the PC memory we use a network operator matrix (NOM). 
NOM is based on the incident matrix of the graph  ija =  A , { }0,1ija ∈ , , 1,i j L= , where 
L  is the number of nodes in the graph.  

If we replace diagonal elements of the incident matrix with numbers of binary operations 
that correspond to appropriate nodes and nonzero nondiagonal elements with numbers of 
unary operations, we shall get NOM  ij = ψ Ψ , , 1,i j L= . 

For the network operator shown on the Fig. 6 we have the following NOM 

0 0 0 1 1 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

 
 
 
 
 =  
 
 
 
  

A . 
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NOM for the graph on Fig. 6 is the following 

0 0 0 1 1 0 0 12
0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 0 6 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

 
 
 
 
 =  
 
 
 
  

Ψ . 

NOM ,i j = ψ Ψ , , 1,i j L=  is upper-triangular because of the numeration of nodes. NOM is 
not enough for calculation of mathematical equation since it does not contain information 
about parameters and variables. This information is kept in the initial values of vector of nodes  

 [ ]1
T

Lz z=z  .  (10) 

Then the calculation of mathematical equation can be done by  

 ( )( ), ,  if  0
jj ijj i j ijz z z ψψ ψ= χ ρ ≠ , 1, 1i L= − , 1,j i L= + . (11) 

To calculate the mathematical equation by its NOM we need to look through all rows 
consequently, 1, 1i L= − . In each row i  we consider the elements that follow the diagonal 
element, 1,j i L= + . If among them we find nonzero element then we perform calculation 
according equation (11). 

For the given NOM we get  

[ ]1 1 2 0 1 0 1 0 Tx q x=z , 

1,4 1ψ = , 4,4 0ψ = , ( )( )4 0 1 1 4 1 1, 0z z z x x= χ ρ = + = ; 
1,5 1ψ = , 5,5 1ψ = , ( )( )5 1 1 1 5 1 1, 1z z z x x= χ ρ = = ; 
1,8 12ψ = , 8,8 0ψ = , ( )( ) ( ) ( )8 0 12 1 8 1 1, sin 0 sinz z z x x= χ ρ = + = ; 
2,5 1ψ = , 5,5 1ψ = , ( )( )5 1 1 1 5 1 1,z q z q x= χ ρ = ; 
3,6 3ψ = , 6,6 0ψ = , ( )( )6 0 3 2 6 2 2, 0z x z x x= χ ρ = − + = − ; 
4,8 1ψ = , 8,8 0ψ = , ( )( ) ( )8 0 1 4 8 1 1, sinz z z x x= χ ρ = + ; 
5,7 1ψ = , 7 ,7 1ψ = , ( )( )7 1 1 5 7 1 1 1 1, 1z z z q x q x= χ ρ = = ; 
6,7 6ψ = , ( )( ) 2

7 1 6 6 7 1 1, xz z z e q x−= χ ρ = ; 
7 ,8 1ψ = , 8,8 0ψ = , ( )( ) ( )2

8 0 1 7 8 1 1 1 1, sinxz z z e q x x x−= χ ρ = + + . 

7. Variations of network operators  
Similar network operators are network operators that satisfy the following conditions: 

a. have the same  source nodes; 
b. have the same  constructive sets. 

Alike network operators are similar network operators that have equal numbers of nodes. 
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Network operators of alike structure are alike network operators that differ in unary and 
binary operations. 

Variation of network operator is the change of network operator that leads to a similar 
network operator. 

Simple variation of network operator is a variation that cannot be presented as a complex 
of other variations. 

Simple variations of network operator are given in Table 3.  
 

Number of simple 
variation 

Simple variation 

0 replacement of unary operation on the edge 

1 replacement of binary operation in the node 

2 addition of the edge with a unary operation 

3 deletion of the edge if the node where this edge comes in has at least 
one more incoming edge 

4 Increase of the node number 

5 Decrease of the node number  

6 addition of the node with a binary operation and incoming edge 
with unary operation 

7 deletion of the sink node with incoming edge if this edge is single. 

Table 3. Simple variations of network operator 

Structural variation of network operator is a variation that changes the set of edges of 
network operator.  

Structural variations change the incident matrix of the graph. In the Table 3 structural 
variations are 2 – 5. Variations 0, 1 do not change the incident matrix and lead to network 
operators of alike structure. 

A complete network operator is a network operator in which we cannot perform variation 2.  

A complete network operator contains L  nodes in which the number of source nodes is 
N P+ , maximum number of edges is equal to  

 ( )( )1
C

2
L N P L N P− − + + −

= .  (12) 

If we apply variation 2, addition of an edge,  to any network operator, then we can construct 
a full network operator which is alike initial network operator. 

If we apply variation 3, deletion of an edge, to the complete network operator, then we can 
construct any alike network operator. 

Any variation of network operator can be performed by a finite number of simple variations. 
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An eigen variation of network operator is a variation that does not change the number of 
nodes in the network operator. 

In the Table 3 eigen variations are 0 – 5. 

Any eigen variation of the network operator can be performed by a finite number of simple 
eigen variations. 

To present any simple variation we use a variation vector 

 [ ]1 2 3 4
Tw w w w=w ,   (13) 

where 1w  is the number of variation from Table 3, 2 3 4, ,w w w  are elements that integer 
values depend on the number of variation.  

Values of elements of variation vector are given in Table 4. In case the values of elements are 
not defined they can take any values. For example when 1 1w =  element 2w  can keep the 
number of the node where this edge comes in 2 3w w= . 

Variation of network operator is presented as  

=Ψ w Ψ  , 

where Ψ  is the NOM before variation is performed, Ψ  is the NOM after variation was 
performed. 
 

Number of 
variation 

1w  

Number of the 
node where 

the edge 
comes out 

Number of the 
node where 

the edge 
comes in 

Number of 
unary 

operation 

Number of 
binary 

operation 

0 2w  3w  4w  - 
1 - 3w  - 4w  
2 2w  3w  4w  - 
3 2w  3w  - - 
4 2w  - - - 
5 2w  - - - 
6 2w  - 3w  4w  
7 - 3w  - - 

Table 4. Elements of variation vector  

Consider examples of variations of network operator. We have a network operator that 
describes mathematical equation 

3
1 1

2 23
1 2

q xy
x x

=
+

. 
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1 1

2 23
1 2

q xy
x x

=
+
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Network operator matrix for the given equation is  

0 0 0 1 0 0 0
0 0 0 14 2 0 0
0 0 0 0 2 0 0
0 0 0 1 0 0 1
0 0 0 0 0 15 0
0 0 0 0 0 0 5
0 0 0 0 0 0 1

 
 
 
 
 =
 
 
 
  

Ψ . 

Suppose we have a variation vector [ ]2 4 6 2 T=w . Element 1 2w =  shows that we perform 
addition of the edge. According to Table 3 a new edge should come out from the node 4, 
come in the node 6 and have unary operation 2. 

As a result we have NOM 

0 0 0 1 0 0 0
0 0 0 14 2 0 0
0 0 0 0 2 0 0
0 0 0 1 0 2 1
0 0 0 0 0 15 0
0 0 0 0 0 0 5
0 0 0 0 0 0 1

 
 
 
 
 = =
 
 
 
  

Ψ w Ψ  . 

NOM Ψ  corresponds to the following mathematical equation 

( )
3

1 1
22 2 33

1 2 1 1

q xy
x x q x

=
+ +

. 

Suppose variation vectors [ ]1 0 4 7 11 T=w  and [ ]2 0 6 7 1 T=w  are given. The first 
component of these vectors 1 0w =  shows the replacement of unary operation on the edge. 
The second and the third components show the edge between the nodes. The first vector 
points to the edge ( )4,7 , the second – to the edge ( )6,7 . The forth element contains the 
number of new unary operation. According to Table 1 this operation for vector 1w  is 

( ) ( )11 cosz zρ = , for vector 2w  is ( )1 z zρ = . As a result we obtain NOM 

2 1

0 0 0 1 0 0 0
0 0 0 14 2 0 0
0 0 0 0 2 0 0
0 0 0 1 0 0 11
0 0 0 0 0 15 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1

 
 
 
 
 = =
 
 
 
 
 

Ψ w w Ψ   . 

NOM Ψ  corresponds to  
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( )3 2 23
1 1 1 2cosy q x x x= + . 

Consider the examples of improper variations that change the number of nodes in the 
network operator. We have a variation vector [ ]6 4 7 0 T=w . Number of variation 1 6w =  
shows that we add the node with binary operation 4 0w =  and an outcoming edge with 
unary operation 3 7w = . After variation we obtain the NOM 

0 0 0 1 0 0 0 0
0 0 0 14 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 1 0 0 1 7
0 0 0 0 0 15 0 0
0 0 0 0 0 0 5 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 
 
 
 
 = =  
 
 
 
  

Ψ w Ψ  . 

This NOM corresponds to the graph with two sink nodes and it presents at least two 
mathematical equations 

3 2
2

2
1

3
11

1
xx

xq
y

+
= , 3

112 xqy ln= . 

Let us given variation vectors [ ]1 3 6 7 0 T=w  and [ ]2 5 7 0 0 T=w . In the first vector 1
1 3w = , 

that is why we delete the edge between nodes 1
2 6w =  and 1

3 7w = . In the second vector 
2
1 5w = , and we delete the node 2

2 7w =  with its incoming edge. As a result we have  

2 1

0 0 0 1 0 0
0 0 0 14 2 0
0 0 0 0 2 0
0 0 0 1 0 0
0 0 0 0 0 15
0 0 0 0 0 0

 
 
 
 = =  
 
 
  

Ψ w w Ψ   . 

This NOM corresponds to two mathematical equations  

3
1 1 1y q x= , 2 23

2 1 2y x x= + . 

Since we have changed the graph we obtain two mathematical equations. Network operator 
is presented on Fig. 8. 

Performance of variations is not always possible. If variation cannot be done then it is 
omitted. For example we have a variation vector [ ]0 4 6 2 T=w . The first component shows 
variation 0, replacement of unary operation. However there is no edge between nodes 

2 4w =  and 3 6w = , that is why this variation is not performed and NOM is not changed 

=Ψ w Ψ . 
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For proper variations variation 1 3w =  is not performed if one of the following conditions is 
fulfilled: 

- edge ( )2 3,w w  is absent; 
- there are no other incoming edges to the node where the edge ( )2 3,w w  comes in; 
- there are no other outcoming edges from the node where the edge ( )2 3,w w  comes out. 

A structural distance between two similar network operators is a minimal number of single 
variations that should be performed to obtain one network operator from the other. A 
structural distance between network operator 1Ψ  and network operator 2Ψ  is equal to a 
structural distance between network operators  2Ψ  and  1Ψ . 

 
Fig. 8. Network operator after variations 

8. Search of optimal mathematic equation  

Let us formulate the problem of search of optimal mathematical equation ( ),g x q .  It is 
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To solve the problem (14), (15) we need to define a finite set of network operators, and in 
this set find the best solution accoding to (14).  

In the set of network operators we choose a basic network operator. Basic network operator 
corresponds to the basic NOM 0Ψ  and the basic mathematical equation ( )0 0,g x q , where 

0 0 0
1

T
Pq q =  q   is a vector of parameters. 

Let us introduce a finite ordered set of variation vectors  

 ( )1W , , l= w w ,  (17) 

where l  is a cardinal number of  W , 
Ti i iw w1 4 =  w   is a variation vector, 1,i l= . 

To construct the set of network operators we use a basic matrix 0Ψ  and all possible sets W  
of variation vectors. 

9. Genetic algorithm for method of variations of basic solution 
Consider genetic algorithm that searches both structure and parameters of mathematical 
equation. 

Initially we set the basic solution  

 0 0
ij = ψ Ψ , , 1,i j L= .  (18) 

We generate the ordered sets of variation vectors 

 ( )i i i l,1 ,W , ,= w w , 1,i H= ,  (19) 

 
Ti j i j i j i j i jw w w w, , , , ,

1 2 3 4 =  w , 1,i H= , 1,j l= , (20) 

where H is a number of possible solutions in the population.  

We generate bit strings for parameters 

 ( )
T

i i i
P c ds s1 +

 =  s  , 1,i H= ,  (21) 

where P  is the number of parameters, c  is the number of bits for the integer part of the 
value, and d  is the number of bits for the fractional part. 

For each chromosome ( )W ,i is , 1 i H≤ ≤ , we define the values of object functions. We 
construct NOM using ( ),1 ,W , ,i i i l= w w  and  0Ψ   

 , ,1 0i i l i=Ψ w w Ψ  .  (22) 

We present parametrical part of the chromosome ( )
T

i i i
P c ds s1 +

 =  s  , 1 i H≤ ≤ , as a vector of 
parameters. We present a bit string is  from the Gray code to the binary code 

 ( )
T

i i i
P c db b1 +

 =  b  ,  (23) 
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For proper variations variation 1 3w =  is not performed if one of the following conditions is 
fulfilled: 

- edge ( )2 3,w w  is absent; 
- there are no other incoming edges to the node where the edge ( )2 3,w w  comes in; 
- there are no other outcoming edges from the node where the edge ( )2 3,w w  comes out. 

A structural distance between two similar network operators is a minimal number of single 
variations that should be performed to obtain one network operator from the other. A 
structural distance between network operator 1Ψ  and network operator 2Ψ  is equal to a 
structural distance between network operators  2Ψ  and  1Ψ . 
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 ( ) ( )
1

,  if  1  mod 0
,   otherwise

i
ji

j i i
j j

s j c d
b

s b −

 − + ==  ⊕
, ( )j P c d1,= + .  (24) 

From the binary code we obtain the vector of parameters  

 
Ti i i

Pq q1 =  q  ,  (25) 

 ( )( )1
1
2

c d
c ji i

k j k c d
j

q b
+

−
+ − +

=
=  , k P1,= .  (26) 

To estimate each possible solution iΨ  and iq  we use parameter which is called a distance 
to a Pareto set. 

A distance to a Pareto set is a number of possible solutions that are better in terms of Pareto 
than the current solution.  

For each solution ( )W ,j js , 1 j H≤ ≤  we find mathematical equation ( ),j jg x q  and 
calculate the values of object functions (14) 

 
Tj j j

Df f0 =  f  ,  (27) 

In the set we find the number of possible solutions that are better than the solution ( )W ,j js  

 ( )
1

H
j

j i
i=

Λ = λ f ,  (28) 

where 

 ( ) 1, if
0,   otherwise

ji
j

i

 ≤λ = 


f ff .  (29) 

To construct new solutions we perform genetic operations of selection, crossover and 
mutation. 

We randomly choose two solutions ( )1 1W ,i is , ( )2 2W ,i is  and perform a crossover with 
probability  

 1 2

1 2

1 1
max ,

1 1
i i

c
i i

p
 + γΛ + γΛ =  + Λ + Λ  

, (30) 

where γ  is a given crossover parameter, 0 1< γ < . 

After crossover is performed in two points pk , sk  we obtain four new solutions 
( )1 1W ,H H+ +s , ( )2 2W ,H H+ +s , ( )2 3W ,H H+ +s , ( )4 4W ,H H+ +s  

 11W W iH + = ,  (31) 
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 ( )p p

T
i i iiH
k k P c ds s s s1 2 211

1 1
+

+ +
 =  s   , (32) 

 22W W iH + = ,  (33) 

 ( )p p

T
i i iiH
k k P c ds s s s2 1 122

1 1
+

+ +
 =  s   , (34) 

 ( )1 21 2, 1 ,,1 ,3W , , , , ,s si k i ki i lH −+ = w w w w  , (35) 

 ( )p p

T
i i iiH
k k P c ds s s s1 2 213

1 1
+

+ +
 =  s   , (36) 

 ( )2 12 1, 1 ,,1 ,4W , , , , ,s si k i ki i lH −+ = w w w w  , (37) 

 ( )p p

T
i i iiH
k k P c ds s s s2 1 124

1 1
+

+ +
 =  s   . (38) 

For each new solution ( )W ,H i H i+ +s , 1,4i = , we perform a mutation with probability 
[ ]0,1mp ∈ . We find the points of mutation sm , pm  for both parts of new solutions. In the 

new chromosome ( )W ,H i H i+ +s , 1 4i≤ ≤ , we randomly generate a variation vector 
s

H i
m

+w  
with structural and parametric parts. For each new solutions we calculate the functions (14)  

 
TH i H i H i

Df f0
+ + + =  f  , 1,4i = .  (39) 

For a new solution j  we find the distance to Pareto set H j+Λ  according to (28). Then we 
find the solution with a maximum distance to Pareto set 

 { }max , 1,i i i H
+

Λ = Λ = ,  (40) 

where  i+  is a number of solution with maximum distance to Pareto set. 

We compare new solution to the solution that has maximum distance to Pareto set 

 H j i++Λ < Λ .  (41) 

If (41) is fulfilled then we replace the solution with a maximum distance by the first new 
solution W WH ji+ += , H ji+ +=s s , H ji+ +=f f , and recalculate the distances for all solutions in 
the set. 

These steps are performed for each new possible solution ( )W ,H j H j+ +s , 1,4j = . 

The steps are repeated starting from the selection of possible solutions. After several given 
E  iterations, where E  is called epoch, we change basic solution 0Ψ .  

As a new basic solution we can take the solution that has minimum of function 

 ( )
D

i i
j

j
f

2_

0
min

=

  =  
  
f  ,  (42) 
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where i−  is the number of new basic solution, 
Ti i i

Df f0 =  f   , 1,i H= , 
i
j ji

j
j j

f f
f

f f

−

+ −

−
=

−
 , 

j D0,= , { }max , 1,i
j jf f i H+ = = , { }min , 1,i

j jf f i H− = = , j D0,= . 

For the more rapid search we use a subset of elite solutions ( )W ,e ei is , 1 ei H≤ ≤ . In this 
subset we calculate the values of functional after each variation ( ), ,e e ei i k if Ψ s ,  

 , , ,1 0e e ei k i k i=Ψ w w Ψ  , 1 k d≤ ≤ . (43) 

We find variation of the solution that leads to minimum distance to Pareto set ( ),e
e

i k
iΛ f .  

 ( ) ( ){ }dkki
i

ki
i e

e
e

e ,,min ,, 1=Λ=Λ − ff , (44) 

where k−  is the number of desired variation. Other variations for possible solution ei  are 
replaced by zeros. The calculation is terminated after given number of loops. 

Consider an example. It is necessary to find inverse function for mathematical equation 

( )2 3cosx y y= + . 

The solution is presented in the form ( ),y g x= q , where q  is a vector of parameters. 

After substitution of found mathematical equation ( ),g x q  in initial function we should 
obtain the identity 

( )( ) ( )2 3cos , ,x g x g x≡ +q q . 

Let us set a finite number of points 

{ }jT x j S: 1,= =  

and define two object functions 

( )( ) ( )( )
2

2 3
1

1
cos , , min

S
j j j

j
f x g x g x

=
= − − → q q , 

( )( ) ( ){ }2 3
2 max cos , , : 1, minj j j

j
f x g x g x j S= − − = →q q . 

Note that for exact solution we have 1 0f =  and  2 0f = . 

Let us choose the following basic solution 

1 2y q x q= + , 

where 1 1q = , 2 1q = . 

Network operator for basic solution is presented on Fig. 9. 
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Fig. 9. Example of basic network operator 

To construct a basic network operator we need 5 nodes, but if we want to enlarge the search 
space we add 3 nodes with addition operations and its unit elements. We get the network 
operator presented on Fig. 10.  

 
Fig. 10. An expanded basic network operator 

NOM for graph shown on Fig. 10 is  

0

0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

 
 
 
 
 

=  
 
 
 
 
 

Ψ . 

A genetic algorithm had the following values of parameters: number of chromosomes in 
initial population 1024H = , number of crossing couples in one generation 256, number of 
generations 128, number vectors of variations in one chromosome 8, number of generations 
between the change of basic solutions 22, number of elite chromosomes 8, probability of 
mutation 0.8mp = , parameter for crossing 0.4γ = , number of parameters 2, number of bits 
for integer part 2c = , number of bits for fractional part 6d = , number of points 11S = . We 
obtained a Pareto set which is represented on Fig 11 and in the Table 5. 

For example we take the solution no 310.  

( )( )310
1 , 0.32447275f g x =q , ( )( )310

2 , 0.121647f g x =q . 

For this solution we have obtained the following values of parameters 1 3.14063q = , 
2 0.84375q = . 

The solution 310 is the network operator  
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mutation 0.8mp = , parameter for crossing 0.4γ = , number of parameters 2, number of bits 
for integer part 2c = , number of bits for fractional part 6d = , number of points 11S = . We 
obtained a Pareto set which is represented on Fig 11 and in the Table 5. 
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The solution 310 is the network operator  
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or the function  
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Fig. 11. A Pareto set 

If we substitute our solution in initial mathematical expression then we have to obtain 
identity,  

( )( )( ) ( )( )2310 3103cos g , g ,x x x= +q q . 

The graphs of the functions x~  and identity function are represented on the Fig 12 
 

 
Fig 12. The graph of the function for the solution no 310 
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No No of solution 1f  2f  

1 27 0.31208313 0.12743371 
2 469 0.3124092 0.12701286 
3 36 0.31248842 0.12695655 
4 366 0.31317121 0.12657987 
5 492 0.3132807 0.12652959 
6 122 0.31423625 0.12614932 
7 412 0.31526313 0.12581255 
8 173 0.31617553 0.12555099 
9 868 0.31630362 0.12551643 
10 472 0.31719342 0.12528834 
11 494 0.31731617 0.12525837 
12 18 0.31815508 0.12506176 
13 106 0.31826894 0.1250361 
14 624 0.31903468 0.12486921 
15 54 0.31981169 0.12470895 
16 180 0.31989995 0.12469127 
17 132 0.32046985 0.12457951 
18 560 0.32054244 0.12456557 
19 539 0.32099647 0.12447971 
20 205 0.32105204 0.12446936 
21 288 0.321382 0.12440861 
22 141 0.32141958 0.12440176 
23 696 0.32161979 0.12436553 
24 658 0.32163874 0.12436213 
25 621 0.32170585 0.12435009 
26 310 0.32447275 0.121647 

Table 5. 

10. Conclusion  
In this work the new approach to the problem of automatic search of mathematical 
equations was considered. The researcher defines the sets of operations, variables and 
parameters. The computer program generates a number of mathematical equations that 
satisfy given restrictions. Then the optimization algorithm finds the structure of appropriate 
mathematical expression and its parameters. The approach is based on the new data 
structure the network operator.  

If we replace the set of unary and binary operations in the network operator by the set of 
logic operations, then we can perform the search of the most suitable logic function 
(Alnovani et al. 2011). 

11. Limitations & development  
Presentation of the network operator as a matrix is limited by its dimension. 
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In the problems where mathematical equations have many variables and parameters, it is 
necessary to use big network operator matrices with many zero elements. 

To exclude this limitation it is possible to divide one network operator with a considerable 
number of nodes into some small network operators. We receive the multilayer network 
operator and some matrices of smaller dimensions. Each layer of the network operator 
describes a part of mathematical equation. 

Further development of the network operator is a creation of a special data structure for 
presentation of the network operator in memory of the computer. Such structure can be 
multilayered and provide effective parallel calculation. 
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1. Introduction 
Genetic Algorithms (GA) are powerful tools to solve large scale design optimization 
problems. The research interests in GA lie in both its theory and application. On one hand, 
various modifications have been made to allow them to solve problems faster, more 
accurately and more reliably. 

Genetic Algorithms are a search paradigm that applies principles of evolutionary biology 
(crossover, mutation, natural selection) in order to deal with intractable search spaces. The 
power and success of GA are mostly achieved by the diversity with the individuals of a 
population which evolve, in parallel, following the principle of the survival of the fittest. In 
general, the genetic algorithms resolve combinatorial optimization problems that in 
(Goldberg, 1989) are mentioned, this implies a large number of responses associated with an 
exponential growth in solutions potentially feasible according to the magnitude of the 
problem. In a standard GA the diversity of the individuals is obtained and maintained using 
the genetic operators crossover and mutation which allow the GA to find feasible solutions 
and avoid premature convergence to a local maximum (Holland, 1975). 

The performance of a genetic algorithm, like any global optimization algorithm, depends on 
the mechanism for balancing the two conflicting objectives, which are exploiting the best 
solutions found so far and at the same time exploring the search space for promising 
solutions. The power of genetic algorithms comes from their ability to combine both 
exploration and exploitation in an optimal way (Holland, 1975). However, although this 
optimal utilization may be theoretically true for a genetic algorithm, there are problems in 
practice. These arise because of Holland assumed that the population size is infinite, that the 
fitness function accurately reflects the suitability of a solution, and that the interactions 
between genes are very small (Beasley et al., 1993).  

The evolutionary algorithm proposed in this paper is composed by a classic genetic 
algorithms along with the forced inheritance mechanism proposed by (Merchán-Cruz, 2005, 
Merchán-Cruz et al., 2008, Merchán-Cruz et al., 2007) and the regeneration mechanisms by 
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(Ramírez-Gordillo, 2010, Lugo González, 2010), for optimizing the trajectory generation in 
closed chain mechanisms and planning the effects that it has on the mechanism by relaxing 
some parameters. The objective is to show the behavior of relaxing the parameters of the 
GA’s, observing what advantages and disadvantages appear when varying some parameter 
exceeding the recommended values established in the literature. 

2. Genetic Algorithm description 
Once the problem encoding and the fitness functions have been chosen, the evolution 
process begin. To evolve new solutions, an initial population of encoded solutions is created 
randomly or using some problem-specific knowledge. This population is subjected to 
genetic operators to create new promising solutions.  

A typical genetic algorithm starts with a randomly generated population composed by 
genes, locus, allele, chromosome, genotype, variables and phenotype (Holland, 1975, 
Goldberg, 1989, Michalewicz, 1999, Coello-Coello, 2007), figure 1.  

 
Fig. 1. Chromosome binary representation. 

Individuals are probabilistically selected by evaluating the objective function. This gene has 
converged when at least 95% of individuals in the population share the same value of that 
genes. The population converges when all the genes have converged. 

Different operators exist in GA´s, being the most popular (1) selection, (2) crossover, and (3) 
mutation, The steps to make a genetic algorithm, as defined in (Goldberg, 1989), are shown 
in the diagram of figure 2. 

Initial Population is created randomly and it is encoded within the chromosome of an array 
with variable length. The coding can be done in a binary representation (Goldberg, 1989), 
based on the domain of each variable (figure 3).  

In the decodification is necessary to have a representation of the genotype to assign the 
parameters within a chain of symbols known as genes. The evaluation uses the fitness 
function that reflect the value of the individual in terms of the real value of the variable in 
the problem’s domain, but in many optimization combinatorial cases, where a great amount 
of restrictions exists; there is a probability in which part of the points of the search space 
represents no valid individuals. For example, the equation for the synthesis of planar 
mechanisms are: 

 ( ) ( )( ) ( ) ( )( )2 2i i i i
xd xg yd ygF C v C v C v C v= − + −  (1) 
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Where i
xdC is a set of specific points indicated by the designer and i

xgC are the points 
generated by the coupler of the mechanism, and v = r1, r2, r3, r4, rcx, rcy,θ0, x0, y0, the angles

1 2
2 2 2, , Nθ θ θ are values for the variable θ2, i is the rest of the quotient. The genetic algorithm 

maximizes solely, but the minimization can be made easily using the reciprocal of the 
function to avoid singularity problems (2): 

 1fitnessoptimum
fitness

=  (2) 

In order to improve the results, approaches such as elitism, regeneration stages and the 
forced inheritance mechanism can be inserted in the process of the algorithms:  

 
Fig. 2. Flowchart of genetic algorithms. 
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Domain=[ -60 60  -60 60 0 60 ……………0 360] 

[X0min X0max  Y0min Y0max…………. θminθmax] 

Fig. 3. Structure Chromosome. 

Elitism: In this case the best individual of the population at a certain time is selected like 
father, this reserve two slots in the next generation for the highest scoring chromosome of 
the current generation, without allowing that chromosome to be crossed over in the next 
generation. One of those slots, the elite chromosome will also not be subject to mutation in 
the next generation. 

Regeneration Mechanism: The investigations on some alive organisms that use strategies for 
their renovation in physiological conditions or before a damage, demonstrate the possibility 
of incorporating cells that appear and which are specialized in providing reserve cells of an 
adult organism, thanks to a particular hereditary mechanism and, under this condition, the 
algorithm can be considered like an evolutionary process within the population. Therefore, 
a small percentage of the population can be renewed, which allows increasing the formation 
of construction blocks with better possibilities of finding an optimal value, but as inconvenient  
the problem of premature convergence of an evolutionary algorithm explained by (Hidalgo 
and Lanchares, 2000) and (Wen-Jyi et al., 2003) is presented. Nevertheless, the biological 
evolution process and its mimetization, can validate the use of a regeneration factor and  its 
fundamental preservation in the genetic operators of selection, crosses and mutation.  

Forced Inheritance Mechanism: Proposed by (Merchán-Cruz, 2005), is a complementary part of 
the regeneration mechanism as a strategy to introduce specialized chromosomes on the 
basis of the elitism during the crossing process and mutation. Unlike elitism, where the 
aptest individuals of a population pass to the following generation without no alteration, 
the FIM is introduced in the process of regeneration, selection, crossover and mutation, 
guaranteeing that the aptest individual of the previous generation undergoes a minimal 
change increasing its aptitude value of consistent method. This mechanism is very useful 
when the number of variables to solve in the problem is considerably large.  

In the same way that the best obtained chromosome is carried  among generations in a 
simple GA, the best set of chromosomes is also carried to the GA search for the next 
trajectory parameters. By introducing the best set of chromosomes from the previous 
trajectory segment of the initial population of the current GA search, the required number of 
generations to produce a new trajectory segment is reduced, provided that the trajectory is 
stable in that particular instant, since the optimum or the near optimum solution is already 
coded into the initial population. If the mechanism has to change its trajectory due to 
kinematic constrains or any other circumstance, the carried set of chromosomes does not 
affect the search for a new optimum set  since this one is evaluated and ranked accordingly 
to its corresponding fitness. Figure 4 illustrates this mechanism called Forced Inheritance 
Mechanism, FIM, (Merchán-Cruz, 2005). 

The necessary operations for regeneration and the forced inheritance are:  

1. Percentage of the population to regenerate.  
2. Chose again the number of individuals, the length of the chromosome and therefore the 

size of the population.  
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3. Regeneration takes the value from the individuals by the percentage to be regenerated.   
4. This population is converted to binary representation.  
5. The position that will occupy the regenerated ones in the original population is 

determined without altering the number of individuals.  
6. Reinsert the regenerated population into a sector of the original population.  
7. The best individual in the regenerated population introduces itself, looking forward not 

to alter the number of individuals.  

Following the development of the genetic algorithm, taking the best individuals from the 
population will pay the selection of those who have been outfitted as parents of the new 
generations. 

 
Fig. 4. Forced Inheritance Mechanism (Merchán-Cruz, 2005). 

For the Parent Selection exists several techniques, but the most used is the proportional 
selection proposed by (Goldberg, 1989) in this each individual have a probability of being 
selected like parents, that is proportional to the value estimated by means of the objective 
function. 

Crossover is based on taking two individuals correctly adapted to obtain descendants that 
share genes of both. There are several types of crossover mechanisms that are used 
depending on the scheme that is analyzed. According to (Kuri-Morales and Galaviz-Casas, 
2002) the most popular are: single point crossover, two points and uniform crossover. 

Mutation is an operator that is applied with probability pm and has the effect to invert a 
single bit using a probability of mutation of bit l -1, being l the length of the chain of the 
chromosome. 

While crossover needs large populations to effectively combine the necessary information, 
mutation works best when applied to small populations during a large number of 
generations. Mutation is usually a secondary search operator which performs a random 
search locally around a solution and therefore has received far less attention. However, in 
evolutionary strategies where crossover is the primary search operator, significant attention 
has been paid to the development of mutation operators. Several mutation operators, 
including adaptive techniques, have been proposed by (Lima, 2005). Clearly, mutation 
cannot perform this role as well as crossover.  
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Fig. 3. Structure Chromosome. 
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Fig. 4. Forced Inheritance Mechanism (Merchán-Cruz, 2005). 
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search locally around a solution and therefore has received far less attention. However, in 
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has been paid to the development of mutation operators. Several mutation operators, 
including adaptive techniques, have been proposed by (Lima, 2005). Clearly, mutation 
cannot perform this role as well as crossover.  
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By other hand Crossover Probability indicates how often will be crossover performed. If there 
is no crossover, offspring is an exact copy of parents. If there is a crossover, offspring is 
made from parts of parent’s chromosome. If crossover probability is 100%, then all offspring 
is made by crossover. If it is 0%, a whole new generation is made from exact copies of 
chromosomes from old population (but this does not mean that the new generation is the 
same). Crossover is made expecting that new chromosomes will have good parts of old 
chromosomes and perhaps this will be better. However it is good to allow some part of the 
population survive to next generation.  

Mutation probability says how often will be parts of chromosome mutated. If there is no 
mutation, the offspring is taken after crossover (or copy) without any change. If mutation is 
performed, part of a chromosome is changed. If mutation probability is 100%, whole 
chromosome is changed, if it is 0%, nothing is changed. Mutation is made to prevent falling 
GA into local extreme, but it should not occur very often, because then GA will in fact 
change to random search. 

Each operator allows that the evolutionary process progress toward promising regions in 
the area of search and can carry on diversity within the population and inhibit the 
premature convergence to an optimal local by means of new individuals sampled randomly. 
On the other hand is required to manipulate the information through a metric that 
quantifies the evolutionary process, this can be done through the design of a function that 
gets the more suitable individuals. This metric is known as a function of ability and it 
increases the ability of this individual to operate with a good performance and to get an 
unbeatable quality. 

Problems typically contain restrictions, such as the non-linearity and inequality, which 
makes  necessary to incorporate information on the violation of restrictions on some of the 
functions and the most known are Criminalization role, this restricts the fitness role by 
extending its domain by a factor of criminalization to any restriction raped. It can penalize 
for not being feasible or to make feasible an individual. The penalty function design must 
take into account how distant is an individual from the feasible area, the cost of fulfillment 
and the cost of expected compliance. Some of these penalties are: 

• Death Penalty. It assigns a suitability of zero to the individual not feasible, avoiding 
calculate again restrictions or objective function. However, the algorithm may be 
truncated if the initial population does not contain any feasible individual. 

• Static Criminalization. It defines levels of violation and chooses a coefficient of 
violation to each one of them. 

• Dynamic Criminalization. The factors of criminalization change with time; they are 
susceptible to the values of the parameters and converge prematurely when these are 
not selected properly. 

• Adaptive Criminalization: Adjusting the penalty on the basis of a feedback process. 

The adaptive criminalization is used in this work. 

2.1 Efficiency enhancement of GA  

Goldberg categorized the efficiency enhancement techniques of GA into four broad classes: 
parallelization, hybridization, time continuation, and evaluation relaxation (Goldberg, 2002): 
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1. Parallelization: GAs are executed on several processors and the computational load is 
distributed among these Processors (Cantu-Paz, 2000). This leads to significant speed-
up when solving large scale problems. Parallelization can be achieved through different 
ways. A simple way is to have part of the GA operations such as evaluation running 
simultaneously on multiple processors (Bethke, 1976). Another way is to create several 
subpopulations and allow them evolve separately at the same time, while spreading 
good solutions across the subpopulations (Grosso, 1985).  

2. Hybridization: Local search methods or domain-specific knowledge is coupled with 
GA. This are powerful in global search. However, they are not as efficient as local 
search methods in reaching the optimum on micro-scale. Therefore, hybridization 
which incorporates local search methods into GA will facilitate local convergence. A 
common form of hybridization is to apply a local search operator to each member of the 
population after each generation in GA (Sinha, 2002).  

3. Time Continuity: The capabilities of both mutation and recombination are utilized to 
obtain a solution of as high quality as possible with a given limited computational 
resource (Srivastava, 2002). Time continuation exploits the tradeoff between the search 
for solutions with a large population and a single convergence epoch or using a small 
population with multiple convergence epochs.  

4. Relaxation Evaluation: An accurate, but computationally expensive fitness evaluation 
is replaced with a less accurate, but computationally inexpensive fitness estimate. The 
low-cost, less-accurate fitness estimate can either be 1) exogenous, as in the case of 
surrogate (or approximate) fitness functions, where external means that it can be used 
to develop the fitness estimate; or 2) endogenous, as in the case of fitness inheritance 
(Smith, 1995) where the fitness estimate is computed internally and is based on parental 
fitness. 

3. Adjustment in the performance of the parameters of the GA 
Some authors such as (Holland, 1975), have looked into the effect of varying GA’s 
parameters which have to be taken into account to exploit the full potential in particular 
applications. Accordingly to this, for a search algorithm to perform well online, one has to 
decide quickly which are the most promising search regions in order to concentrate the 
search efforts there, the off-line performance does not penalize the search algorithm to 
explore poor regions of the search space, provided that this will help to achieve the best 
possible solutions (in terms of fitness), abig generation interval and the use of an elitist 
strategy also improve the performance of the GA’s, in which the usual recommended 
mutation rates between 0.001 and 0.01 for the binary representation (Goldberg, 1989), or in 
general, much smaller value of the crossover probability (Cabrera et al., 2002).  

The main parameters that can be adjusted, by the degree of importance within the GA are:  

• Population size  
• Percentage of crosses  
• Percentage of mutation 

The design of the algorithm is limited to choose and determine the degree of control or the 
strategies of parameters such as the ranges and the likelihood of a mutation, crossing and 
extent of the population. (Sanchéz-Marín, 2000) supported their research in the 
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determination of control parameters, experimenting with different values and selecting 
those that gave better results. (De Jong, 1975) recommended, after experimenting, values for 
the probability of the interbreeding of simple point and the movement of a bit in the 
mutation. In this work, the following parameters are defined: a population-based measure 
of 50 individuals, probability of crossing 0.6, probability of mutation of 0.001 and elitist 
selection; however, it presents the disadvantage that these parameters only worked for a 
particular problem with very specific restrictions. 

(De Jong, 1975) described that the operation on-line is based on the monitoring of the best 
solution in every generation, while the operation off-line  takes into account all the solutions 
in the population to obtain the optimum value. (Grefenstette, 1986) used the meta-
algorithms as a method of optimization, in order to obtain values with similar parameters 
for the operation on-line and off-line of the algorithm. 

In order to have a good performance on-line of a search algorithm, it must quickly decide 
where the most promising search region is and concentrate their efforts there. The 
performance off-line does not always penalize the search algorithm to explore poor regions of 
the search space, since this will contribute to achieving the best possible solutions (in terms of 
fitness). The best sets of parameters analyzed on and off- line  were population of 30 and 80 
individuals, probability of crossing 0.95 and 0.45, probability of mutation 0.01 for both, either 
using  a strategy of elitist selection for the on-line case  or not elitist for the off-line case . 

(Smith, 1993) proposes a genetic algorithm which adjusts the extent of the population taking 
into account the likelihood of error. This is linked with the number of generations, if under 
the conditions of little use is determined a small value (20 to 50) to the number of 
evaluations, the convergence will be quick, but it is not ensured an optimum result.  

(Endre Eiben et al., 1999) expose technical drawbacks of the analysis of parameters on the 
basis of experimentation, observing the following points: 

• Parameters are not independent, but trying all possible combinations of these 
systematically it is almost impossible. 

• The process of tuning parameters is time-consuming, but if the parameters are 
optimized one by one, it is possible to handle their interactions. 

• For a given problem, the values for the selected parameters are not necessarily the best, 
but if they are used to analyze uniformly, more meaningful values will be obtained. 

In general, here are listed some important observations made by authors such as (Holland, 
1975),with respect to the genetic algorithms that must be considered for the use of this tool, 
such as:  

• A high generational interval and the use of an elitist strategy also improve the 
performance of the GA.  

• The use of large populations (> 200) with a high percentage of mutation (> 0.05) does 
not improve the performance of a GA.  

• The use of small populations (< 20) with low percentage of mutation (< 0.002) does not 
improve the performance of a GA. 

• The mutation seems to have greater importance in the performance of a GA.  
• If the size of the population is increased, the effect of crosses seems to be diluted.  
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With reference to the mutation, it has been deeply analyzed the value of the probability, but 
the results vary with each researcher, for example (De Jong, 1975) recommend pm=0.001, 
(Grefenstette, 1986, Goldberg, 1989) recommend  0.1, (Fogarty, 1989) indicates 0.005 to 0.01.  

In the  research of (Fogarty, 1989) and (Coello-Coello, 2007) have been developed some 
formulas in order determine the mutation, where its main contribution is considering  the 
time and making a change of this during the execution of the GA. If the mutation percent is 
0, does not exist any alteration, if is 1, the mutation creates always add-ons of the original 
individual and if it is 0.5, there is a high probability of altering strongly the schema of an 
individual. In conclusion, it is possible to control the power of alteration of the mutation and 
its capabilities for exploration, to have an equivalent weight within the AG as the crossing. 

On the other hand for the crossing some common values for this are 0.6 indicated by (De Jong, 
1975), 0.95 by (Grefenstette, 1986), 0.75 to 0.95 by (Fogarty, 1989). (Endre Eiben et al., 1999) 
specify that is more common to use the results obtained in own experimentation and is rarely 
used a value less than 0.6. When it is looking for locating the global optimum of a problem, the 
mutation may be more useful, but when it is in the cumulative gain, crossing offers greater 
benefits. From these research works it can be said that there are needs of large populations in 
the crossing, to combine effectively the necessary information, but in mutation best results are 
obtained when applied to small populations in a large number of generations. 

Evolutionary strategies, where the mutation is the principal search operator, include several 
operators of mutation,  as well as  technical adaptation, proposed by (Lima et al., 2005, 
Rechenberg, 1973). (Whitley et al., 1998) reported comparative studies between the operators 
of crossover and mutation, demonstrating that there were important features of each 
operator that were not captured by the other. 

In this work is demonstrated, through experimentation, that the maximum limit for 
individuals have an acceptable performance of the GA is 3000, this depends completely on 
study cases, since as it increases the number of variables in the problem to be analyzed it is 
necessary an increase in the population. With this amount of individuals the process of 
analysis is very slow, but it is in direct function of the mechanism type, the trajectory and 
the precision points required, in addition to the restrictions on the domain to get the angles 
and the links dimensions. 

4. Study cases 
The case of study is based on mechanisms synthesis, for that reason the basic concepts are 
presented.  

A mechanism is a set of rigid members that are jointed together in order to develop a 
specific function. The mechanisms design, which is described by (Varbanov et al., 2006), 
consists of two parts: the analysis and synthesis. The first one consists of techniques to 
determine position, velocities and accelerations of points onto the members of mechanisms 
and the angular position, velocities and accelerations of those members. The second type 
explains the determination of the optimal length of the bars and the spatial disposition that 
best reproduces the desired movement of the coupler link. The optimal dimensional 
synthesis problem of mechanisms can be seen as a minimization process, since it is required 
that the structural error being as small as possible. The point of the coupler link will have to be 
able to generate a trajectory defined through separate points, with a minimum error. The 
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generation of a desired trajectory consists controlling a point of the coupler link, figure 5 (case I 
four-bar mechanism and case II six-bar mechanism), so that its described trajectory drives the 
coupler through a discreet set of giving points, known as precision points (Norton, 1995). In 
order to determine this point it is necessary to obtain the open and close chain mechanism. 

In the last century, have been developing a variety of mechanisms synthesis methods. These 
are usually based on graphical procedures originally developed by (Freudenstein, 1954); or 
on analytical methods of research of (Denavit and Hartenberg, 1964). Other techniques 
include the application of least squares in the finite synthesis of four-bar spatial synthesis 
proposed by (Levitski and Shakvazian, 1960), or on the mathematical model and simulation 
for the exact mechanisms synthesis as is described in (A. K. Mallik and A. Ghosh, 1994) and 
(Tzong-Mou and Cha'o-Kuang, 2005). However while these works have represented major 
contributions in the area, the principal restriction are the number of points of precision that 
can be taken into account to define the desired path. The foregoing refers to the fact that 
each point of precision defined for the desired path represents a new set of equations to be 
solved. For example, the synthesis of a four- bar mechanism involves a set of 7 holonomics 
restrictions that describe the kinematic relationship of the links that make it up; if the 
designer consider 4 points of accuracy, the problem to be solved is a set of 28 non-linear 
equations with 29 unknowns, which represents a non-linear indeterminate problem with an 
infinite number of possible solutions. 

With all these arguments in mind and taking into account that exist a wide variety of 
applications that require a large number of precision points to define more accurately the 
trajectory to be reproduced by the mechanism, the synthesis of these can be seen as an 
optimization multi-objective problem. For this purpose, researchers have developed 
different methodologies that include non-linear optimization (Levitski and Shakvazian, 
1960), genetic algorithms (Quintero-R et al., 2004, Laribi et al., 2004, Cabrera et al., 2002, 
Michalewicz, 1999, Roston and Sturges, 1996), neuronal networks (Vasiliu and Yannou, 
2001), (Starosta, 2006), (Walczak, 2006)), Monte Carlo optimization (Kalnas and Kota, 2001), 
or the controlled method (Bulatovic and Djordjevic, 2004). All the above methods have been 
used for four-bar mechanisms synthesis and have helped to identify the constraints of space 
that lead to the synthesis of mechanisms and programs developed for applications. 
 

 
a) Coupler point on the coupler link of a four 

bar linkage 
b) Type 6-bar Watt mechanism. 

Fig. 5. Diferent mechanisms configuration. 
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4.1 Optimal design in the mechanisms synthesis 

The formulation of this problem demands the definition of several aspects like the space of 
design, the objective function, the algorithm of optimization and the restrictions (Lugo-
Gonzalez et al., 2010). In the case corresponding to the synthesis of mechanisms, it is desired 
to diminish the error between the desired and generated trajectories besides analyzing the 
changes in the response of the algorithm when modifying parameters like the probability of 
mutation and crossing, the number of individuals and the maximum of generations, that 
will be evaluated by the proposed equation (3)  that has characteristics applied to the 
approximated evaluation of the function, that involves the addition of the penalty to the 
presented original version in the works of (Goldberg, 1989), which is:  
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Applying a division of the number of individuals ni in addition to a factor of division by the 
reciprocal of N, that is the number of precision points, it adds a penalty  whose objective is 
to recover the individuals that do not fulfill the initial restrictions  known as the conditions 
of Grashof.  

In order to finalize, the optimization algorithm uses four criteria of convergence that are 
defined as:  

reng= Is the first restriction, this one is the first evaluation in which it is verified if the 
population fulfills the restrictions of Grashof (specific condition of mechanism synthesis). 

maximogen = Defines the maximum number of times that the algorithm can evaluate the 
objective function. An additional call to this implies the conclusion of the search without 
reaching a solution.  

minimerror = Defines the minimum value of error allowed in the objective function to being 
compared with the generated function. A change of value in the parameter of minimum 
error implies the conclusion of the search without reaching a solution.  

condrep = Defines the number of times that the same value can be repeated into the 
evaluation before proceeding to the following operation.  

Being fulfilled these last conditions to the evaluation; the algorithm will stop its search 
having presented the optimal values that better satisfy the restrictions and conditions.  

4.2 Elliptical trajectory with parameters optimization of GA, 18 precision points, and a  
four- bar mechanism  

The obtained research results in (Cabrera et al., 2002, Laribi et al., 2004, Starosta, 2006) are 
taken as a basis for describing an elliptical path with a four-link mechanism. The study case 
was proposed for the first time by (Kunjur and Krishnamurty, 1997). The synthesis was 
carried out using some variants of application using genetic algorithms or combining these 
with tools such as fuzzy logic. In the table 1 is shown the desired precision points to be 
followed by the mechanism. In the figure 6 is showed the corresponding graphic. 
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Point 1 2 3 4 5 6 7 8 9 
X 0.5 0.4 0.3 0.2 0.1 0.005 0.02 0.0 0.0 
Y 1.1 1.1 1.1 1.0 0.9 0.75 0.6 0.5 0.4 
Point 10 11 12 13 14 15 16 17 18 
X 0.03 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.6 
y 0.3 0.25 0.2 0.3 0.4 0.5 0.7 0.9 1.0 

Table 1. Precision points of desired elliptical trajectory by(Kunjur and Krishnamurty, 1997). 

 
Fig. 6. Elliptical trajectory, by(Kunjur and Krishnamurty, 1997). 

The realized parameters change is presented in table 2 and the results obtained by (Kunjur 
and Krishnamurty, 1997, Cabrera et al., 2002, Laribi et al., 2004, Starosta, 2006)  and our 
results are shown in table 3. The analysis procedure is shown in figures 7 and 8. But this 
indicates that is necessary to make a change of value in the parameters of crossover and 
mutation. The changes are the number of individuals, crossover and mutation, affecting 
with this time and the number of generations for the convergence. It has a maximum 
number of 1500 generations and a precision of 6 digits.   

Of this series of tests one concludes that:  

The individual number is an important factor for the convergence, since although a response 
time with a small number of individuals is obtained, it does not make sure that the result is 
the optimal one. With a greater number of individuals the response time increases but the 
possibility of obtaining a better result also increases. As it has been mentioned previously, 
the program will have an optimal rank of individuals to operate satisfactorily, but this must 
be verified by trial and error, being a program that has as a basis the random generation of 
the population. However, the performance of the algorithm when the FIM is implemented 
only registers a minor reduction compared with the one obtained for the previously 
considered systems. 

Do not exist a rule to determine the optimal value for the crossing and the mutation 
probability. Not always the maximum values, that produce a total change in the individual, 
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give the best results, as it is observed in table 2. For this study case, the best result appears in 
interjection k with the value of minimum error. This value is affected directly by the 
dominion of the variables and in addition to the number of individuals.  

The dominion is a determining value to obtain the optimal result, since all the variables are 
related to each other by the calculations required for the synthesis. For example if the 
restriction of some angles are modified, it changes the value of lengths of the links and by 
consequence the value of the error, since perhaps the bars must increase or decrease them 
length to cover the specified trajectory. Although the parameters are designed well, if this 
definition of variables are incorrect, it does not fulfilled the objective.  
 

  
a) b) c) 

 
d) e) f) 

 
g) h) i) 

 
j) k) l) 

Fig. 7. Different parameters in elliptical trajectory. 
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dominion of the variables and in addition to the number of individuals.  

The dominion is a determining value to obtain the optimal result, since all the variables are 
related to each other by the calculations required for the synthesis. For example if the 
restriction of some angles are modified, it changes the value of lengths of the links and by 
consequence the value of the error, since perhaps the bars must increase or decrease them 
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 Population 
number 

Pc Pm Error Generation Time (S) 

a) 500 0.6 0.01 0.12607 974 124.70116 
b) 1000 0.6 0.01 0.116874 992 200.83390 
c) 1000 0.8 0.8 0.146653 994 281.61255 
d) 1000 0.8 0.7 0.140036 992 318.54909 
e) 1500 0.8 0.7 0.128140 992 499.81671 
f) 1500 0.85 0.85 0.113155 979 384.667514 
g) 2000 0.3 0.1 0.253548 992 416.934751 
h) 2000 0.6 0.2 0.2020683 988 374.043950 
i) 2000 0.6 0.4 0.1852588 991 431.125409 
j) 2000 0.7 0.2 0.0986130 988 335.516387 
k) 2000 0.7 0.4 0.0854537 995 402.078071 
l) 2000 0.85 0.85 0.09922667 989 776.17100 

Table 2. The parameters modification for a generated elliptical figure by a four bar 
mechanism. 

In table 3 is presented the comparison of the researchers mentioned above with the 
proposed algorithm. With these results it can be seen that there is a correspondence of 
values in the bars length, angles and among desired and generated trajectory. Another 
variable not found in the mentioned investigation is time, a factor that is critical for the 
optimization. This will depend on the crossover probability, mutation parameters, 
individuals and generation number. Varying a small value to these parameters can mean a 
short time in convergence but not always the optimal value is guaranteed. With the specific 
parameters, the time elapsed by the GA optimization analysis is 280.508318 seconds. 
 
Autor Xo Yo R2 R1 R4 R3 R5 
Kunjur 1.132062 0.663433 0.274853 1.180253 2.138209 1.879660 0.91 
Cabrera 1.776808 -0.641991 0.237803 4.828954 2.056456 3.057878 2 
Laribi -3.06 -1.3 0.42 2.32 3.36 4.07 3.90 
Starosta 0.074 0.191 0.28 0.36 0.98 1.01 0.36 
A-G 
prop. 

3.88548 0.907087 0.286753 4.52611 3.59121 4.29125 3.613847 

Autor Error No. Eval.
Kunjur 0.62 5000 
Cabrera 0.029 5000 
Laribi 0.20  
Starosta 0.0377 200 
A-G 
prop. 

0.0152 2000 

Table 3. Dimensions and angles definition of an elliptical path obtained by some authors. 
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In spite of applying more generations that in the last researcher work, satisfactory results are 
obtained.  Due to the high amount of generations, computation time is more demanding, 
but this offers less error among the generated and desired path, and therefore, greater 
precision. 

Figure 8 shows how the error behavior decreases at the beginning of the path and at the end 
of the evaluation in each generation (a and b). Figures c and d illustrates the four-bar 
mechanism along the path, covering the first and sixth precision point, which were 
randomly chosen to display the specified path. 
 

 
Generation 

 
Generation

a) b) 

 
c) d) 

Fig. 8. Four-bar mechanism evolution to cover 18 precision points. 

4.3 Six bar mechanisms optimization 

There are two main six-link configuration mechanisms Watt and Stephenson type, whose 
features make them suitable for the manufacture of polycentric prostheses such as 
(Radcliffe, 1977, Dewen et al., 2003). 

The first example illustrates a six-bar mechanism for covering 21 precision points. To 
evaluate the effectiveness of the analyzed mechanism a Watt-I type will follow a path with 
arbitrarily proposed restrictions on the initial 18 points, being the conditions reported in 
table 4. 

Figure 9 presents the proposed path to be followed by the Watt-I type mechanism. As in the 
previous cases, settings in population, crossing and mutation probability, time and number 
of generation analysis, will be varied in order to demonstrate that these adjustments are not 
independent and that they are affected each other. 
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but this offers less error among the generated and desired path, and therefore, greater 
precision. 
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Polycentric Mechanisms Description 
 Characteristic 

Desired points 
Variables limits 

xd=[ 25  10   5  10  20 10   5  10  15  25   40   43   50   55   
50   40 50   55   50   40  25] 

yd=[[ 130 120 100  80  65  55  35  20  15  10  10  15  20  
40   55  65   80  100  120  130  130] 

Restriction for each links r1,r2,r3,r4,r5,r6,r7,r8,r9,r10∈ [−60,60] inmm 
x0,y0∈ [−60,60]  in  mm 

Movements range 0º to 360º  degrees 
Population numbers niindividuals 200 

Crossover probability Proportional type varied 
Mutation probability Only one point varied 

Precision Digits after point 6 
Maximum number of 

generations 
1000 generations 

Table 4. Six-bar mechanism restriction. 

The path is obtained as a result of the evolution of the synthesis of the genetic mechanism 
(figure 10). In the subsequent figures and in table 5 it can be seen how decrease the error, 
while passing generations and changing some parameters to obtain the best adjustment.  

 
Fig. 9. Trajectory of 20 points for a six-bar Watt-I type mechanism. 

This path was proposed with the objective of demonstrating that a six-link mechanism can 
follow paths that would be difficult to follow by a four-bar mechanism. 

From this analysis it is concluded that: 

• An increase in precision points is directly proportional to the number of individuals in 
the population, since to obtain a minor error, it is necessary to have a greater field of 
search. 
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• A small number of individuals decreases the search and does not offer satisfactory 
results. 

• In order to obtain the optimal values is necessary to increase the value of the probability 
of crossing at least greater than 0.6. 

• The rate of mutation can vary up to a maximum of 0.9, because if it increases to 1, it 
would be completely changing the individual without having a real meaning of the best 
for the evaluation, which was obtained with the elitism and the forced inheritance 
mechanism. 

• High values of probability of crossover and mutation do not ensure that the best value 
of convergence is achieved.   

 

 
a) b) c) d) 

e) f) g) h) 

 
i) j) k) l) 

  
m) n) o) p) 

  

 q) r)  

Fig. 10. Adjustment of parameters for a specific path. 
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Polycentric Mechanisms Description 
 Characteristic 

Desired points 
Variables limits 

xd=[ 25  10   5  10  20 10   5  10  15  25   40   43   50   55   
50   40 50   55   50   40  25] 

yd=[[ 130 120 100  80  65  55  35  20  15  10  10  15  20  
40   55  65   80  100  120  130  130] 

Restriction for each links r1,r2,r3,r4,r5,r6,r7,r8,r9,r10∈ [−60,60] inmm 
x0,y0∈ [−60,60]  in  mm 

Movements range 0º to 360º  degrees 
Population numbers niindividuals 200 

Crossover probability Proportional type varied 
Mutation probability Only one point varied 

Precision Digits after point 6 
Maximum number of 

generations 
1000 generations 

Table 4. Six-bar mechanism restriction. 

The path is obtained as a result of the evolution of the synthesis of the genetic mechanism 
(figure 10). In the subsequent figures and in table 5 it can be seen how decrease the error, 
while passing generations and changing some parameters to obtain the best adjustment.  

 
Fig. 9. Trajectory of 20 points for a six-bar Watt-I type mechanism. 

This path was proposed with the objective of demonstrating that a six-link mechanism can 
follow paths that would be difficult to follow by a four-bar mechanism. 

From this analysis it is concluded that: 

• An increase in precision points is directly proportional to the number of individuals in 
the population, since to obtain a minor error, it is necessary to have a greater field of 
search. 
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• A small number of individuals decreases the search and does not offer satisfactory 
results. 

• In order to obtain the optimal values is necessary to increase the value of the probability 
of crossing at least greater than 0.6. 

• The rate of mutation can vary up to a maximum of 0.9, because if it increases to 1, it 
would be completely changing the individual without having a real meaning of the best 
for the evaluation, which was obtained with the elitism and the forced inheritance 
mechanism. 

• High values of probability of crossover and mutation do not ensure that the best value 
of convergence is achieved.   

 

 
a) b) c) d) 

e) f) g) h) 

 
i) j) k) l) 

  
m) n) o) p) 

  

 q) r)  

Fig. 10. Adjustment of parameters for a specific path. 
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 ni Pc Pm error time generations 

a) 200 0.6 0.01 0.4530713342399 180.693674 978 

b) 200 0.6 0.4 0.2088516234 162.480752 991 

c) 200 0.8 0.8 0.1039548356200 168.681711 996 

d) 500 0.6 0.01 0.1441113 250.446997 981 

e) 500 0.6 0.4 0.07266868 282.191 960 

f) 500 0.8 0.8 0.0558228894 290.697 987 

g) 1000 0.6 0.01 0.059796068 468.693084 999 

h) 1000 0.6 0.4 0.0532988776 480.819397 947 

i) 1000 0.7 0.5 0.119467646451 457.490696 999 

j) 1000 0.7 0.7 0.03260650948 524.067239 989 

k) 1000 0.8 0.5 0.099396876739 536.369984 993 

l) 1000 0.85 0.8 0.0311870033413 550.612374 972 

m) 1500 0.6 0.1 0.1962062488 619.52535 981 

n) 1500 0.6 0.4 0.090105144 672.77304 990 

o) 1500 0.95 0.85 0.163192355 1046.2808 968 

p) 2000 0.7 0.7 0.08380448 1116.16188 999 

q) 2000 0.85 0.8 0.0114246856933 1295.874818 987 

r) 2000 0.95 0.85 0.0277589482798 1306.641231 1000 

Table 5. Adjustment of six-bar mechanism parameters for a specific path. 

5. Discussion 
The optimization process is iterative, and it was demonstrated with the tests that were 
realized varying the parameters of the genetic algorithm to analyze the behavior of the 
system, which means that they can be modified until finding a system whose behavior 
satisfies the expectations and requirements of the designer. The parameters of the GA 
usually interact with each other in a nonlinear relation, that’s why they cannot be optimized 
in an independent way, been demonstrated in the presented study cases. When existing a 
change in the population size, this fact will be reflected in time of convergence and accuracy 
in the path generation.  

It was demonstrated that the diversity of individuals in the population is obtained and it 
remains along with the operator of crossing and the genetic mutation, since in all the analysis, 
they allow to find better solutions and avoid premature convergence to the maximum 
premises. Although also it must be mentioned that the elitism and the forced inheritance help 
to limit the number of individuals that will cover the imposed restrictions. On the other hand, 
it was observed that the GA has few possibilities of making considerable or necessary a 
number of reproductions for the optimal solution if it has an insufficient or small population. 
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Besides, the excessive population causes that the algorithm requires of a greater time of 
calculation to process and to obtain a new generation. In fact, there is not a limit wherein it 
is inefficient to increase the size of the population since it neither obtains a faster speed in 
the resolution of the problem, nor the convergence makes sure. For the referred study cases 
in this chapter, when increasing the population to 3500 individuals no acceptable results are 
presented and the program became extremely slow. If the population remains so large, like 
for example 1000 individuals, this means that it can improve the performance of the 
algorithm, although this is affected by slower initial responses. It is important to do 
emphasis on the relation that exists among the population size and the probabilistic relation 
in the solution space of the problem.   

The study cases of this work are over determined and nonlinear type, which implies by 
necessity a space of multidimensional, nonlinear and non-homogenous solution, therefore, 
large initial values cover different regions of the solution space wherein the algorithm could 
converge prematurely to a solution that implies optimal premises costs, but when 
maintaining a low probability of mutation is not possible to assure that the population, 
although extensive in the number of individuals, continues being probabilistic  
representative of the problem solution. With this in mind and considering that the 
computation time to evaluate and to generate a new population of individuals from the 
present initial or, directly is the bound to the number of individuals of this one, requires a 
greater number of operations to obtain a new generation of possible solutions.  

6. Conclusions  
When operating with a population reduced in number of individuals, a sufficient 
representative quantity of the different regions of the solution space is not achieved, but the 
necessary computation time to create a new generation of possible solutions diminishes 
dramatically. When considering a high percentage of the probability of mutation in the 
algorithm, one assures a heuristic search made in different regions of the solution space, this 
combined with the forced inheritance mechanism has demonstrated that for the problem 
treated in this work, it is a strategy that power the heuristic capacities of the GA, for 
nonlinear multidimensional problems, non-homogenous, becoming the algorithm meta-
heuristic; it is demonstrated then that  an important improvement in the diminution of the 
error is obtained, around 20% with respect to the reported works previously.  Also it was 
observed that the increase in the percentage of mutation improves the off-line performance, 
since all the solutions in the population are taken into account to obtain the optimal value. The 
off-line performance does not penalize the algorithm to explore poor regions of the search 
space, as long as it contributes to reach the best possible solutions in terms of aptitude. 

It was verified that for the crossover the rule is fulfilled of which applying values smaller to 
0.6, the performance is not optimal and it does not change the expected result for a specific 
problem. In the case of mutation, one demonstrated that this one can change  no mattering 
the number of times and increasing its value to obtain optimal results, reaching almost at the 
unit, but avoiding to muter totally all the chromosomes eliminating the benefits created by 
the elitism and the forced inheritance mechanism. 

By means of the trial and error, also one concludes that the parameters are not independent, 
and searching systematically to obtain all the possible combinations of these, is almost 
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Table 5. Adjustment of six-bar mechanism parameters for a specific path. 

5. Discussion 
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system, which means that they can be modified until finding a system whose behavior 
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usually interact with each other in a nonlinear relation, that’s why they cannot be optimized 
in an independent way, been demonstrated in the presented study cases. When existing a 
change in the population size, this fact will be reflected in time of convergence and accuracy 
in the path generation.  

It was demonstrated that the diversity of individuals in the population is obtained and it 
remains along with the operator of crossing and the genetic mutation, since in all the analysis, 
they allow to find better solutions and avoid premature convergence to the maximum 
premises. Although also it must be mentioned that the elitism and the forced inheritance help 
to limit the number of individuals that will cover the imposed restrictions. On the other hand, 
it was observed that the GA has few possibilities of making considerable or necessary a 
number of reproductions for the optimal solution if it has an insufficient or small population. 
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is inefficient to increase the size of the population since it neither obtains a faster speed in 
the resolution of the problem, nor the convergence makes sure. For the referred study cases 
in this chapter, when increasing the population to 3500 individuals no acceptable results are 
presented and the program became extremely slow. If the population remains so large, like 
for example 1000 individuals, this means that it can improve the performance of the 
algorithm, although this is affected by slower initial responses. It is important to do 
emphasis on the relation that exists among the population size and the probabilistic relation 
in the solution space of the problem.   

The study cases of this work are over determined and nonlinear type, which implies by 
necessity a space of multidimensional, nonlinear and non-homogenous solution, therefore, 
large initial values cover different regions of the solution space wherein the algorithm could 
converge prematurely to a solution that implies optimal premises costs, but when 
maintaining a low probability of mutation is not possible to assure that the population, 
although extensive in the number of individuals, continues being probabilistic  
representative of the problem solution. With this in mind and considering that the 
computation time to evaluate and to generate a new population of individuals from the 
present initial or, directly is the bound to the number of individuals of this one, requires a 
greater number of operations to obtain a new generation of possible solutions.  
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representative quantity of the different regions of the solution space is not achieved, but the 
necessary computation time to create a new generation of possible solutions diminishes 
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combined with the forced inheritance mechanism has demonstrated that for the problem 
treated in this work, it is a strategy that power the heuristic capacities of the GA, for 
nonlinear multidimensional problems, non-homogenous, becoming the algorithm meta-
heuristic; it is demonstrated then that  an important improvement in the diminution of the 
error is obtained, around 20% with respect to the reported works previously.  Also it was 
observed that the increase in the percentage of mutation improves the off-line performance, 
since all the solutions in the population are taken into account to obtain the optimal value. The 
off-line performance does not penalize the algorithm to explore poor regions of the search 
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0.6, the performance is not optimal and it does not change the expected result for a specific 
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the number of times and increasing its value to obtain optimal results, reaching almost at the 
unit, but avoiding to muter totally all the chromosomes eliminating the benefits created by 
the elitism and the forced inheritance mechanism. 

By means of the trial and error, also one concludes that the parameters are not independent, 
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impossible; but if the parameters were optimized one at the time, it is then possible to 
handle its interactions and, for a given problem, the values of the selected parameters are 
not necessarily the optimal ones, but if they are analyzed uniformly they will generate more 
significant values.   
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1. Introduction

We recognized that the roles of crossover and mutation in real encoding are quite different
from those in binary encoding during performing previous work with real-coded genetic
algorithms (Yoon et al., 2012). In this study, we are to argue the distinct roles of genetic
operators in real encodings.

Recently many studies on evolutionary algorithms using real encoding have been done.
They include ant colony optimization (Socha & Dorigo, 2008), artificial bee colony algorithm
(Akay & Karaboga, 2010; Kang et al., 2011), evolution strategies (ES) (Beyer, 2001), differential
evolution (Das & Suganthan, 2011; Dasgupta et al., 2009; Kukkonen & Lampinen, 2004; 2005;
Mezura-Montes et al., 2010; Noman & Iba, 2005; Rönkkönen et al., 2005; Storn & Price, 1997;
Zhang et al., 2008), particle swarm optimization (Chen et al., 2007; Huang et al., 2010; Juang
et al., 2011; Krohling & Coelho, 2006; l. Sun et al., 2011), and so on. In particular, in the field of
ES, we can find many studies based on self-adaptive techniques (Beyer & Deb, 2001; Hansen
& Ostermeier, 2001; Igel et al., 2007; 2006; Jägersküpper, 2007; Kita, 2001; Kramer, 2008a;b;
Kramer et al., 2007; Meyer-Nieberg & Beyer, 2007; Wei et al., 2011).

Many researchers have also concentrated on using real-valued genes in genetic algorithms
(GAs), as in (Ripon et al., 2007). It is reported that, for some problems, real-coded
representation and associated techniques outperform conventional binary representation
(Eshelman & Schaffer, 1993; Herrera et al., 1998; Janikow & Michalewicz, 1991; Lozano et al.,
2004; Ono et al., 1999; Ono & Kobayashi, 1997; Surry & Radcliffe, 1996; Wright, 1991). Several
theoretical studies of real-coded GAs have also been performed (Goldberg, 1991; Higuchi
et al., 2000; Kita et al., 1998; Qi & Palmieri, 1994a;b). However, the role and behavior of genetic
operators in real-coded GAs are fundamentally different from those in binary encodings
although motivation of the operators and the framework of GAs are similar.

In this chapter, we try to verify different properties of crossover and mutation in real
encodings from those in binary encodings through various experiments. We especially
concentrate on the effect of genetic operators (the bias and functions of crossover and
mutation) when they are used in real-coded GAs.

*Corresponding author: Yong-Hyuk Kim
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The remainder of this chapter is organized as follows. Traditional and recent genetic operators
in real encoding are introduced in Section 2. Previous genetic operators are presented in
Section 2.1 and ones we used in real encoding in this study are described in Section 2.2. In
Section 3, we describe the concept of bias of genetic operators and analyze that in the case of
crossover and mutation for GAs. In Section 4, experimental results for various combinations of
crossover and mutation are provided and analyzed. Finally, we make conclusions in Section 5.

2. Genetic operators in real encoding

2.1 Previous operators

The roles of crossover and mutation may change according to the selection of the operators.
We reviewed the most frequently used crossover and mutation operators for real-code
representation. We are to analyze how the roles of crossover and mutation can change by
studying various combinations of crossover and mutation operators.

In literature many crossover operators for real-code representation are found. Traditional
crossover operators for the real-code representation are described in (Bäck et al., 2000). The
two main families of traditional crossover operators (Mühlenbein & Schlierkamp-Voosen,
1993) are discrete crossovers1 (Reed et al., 1967) and blend crossovers (Michalewicz, 1996).
Blend crossover operators can be distinguished into line crossovers and box crossovers.
Important variations of the last two crossover operators are the extended-line crossover and
the extended-box crossover (Mühlenbein, 1994).

The discrete recombination family is the straightforward extension to real vectors of the family
of mask-based crossover operators for binary strings including n-point and uniform crossover.

1 It is also called dominant crossover.
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box-crossover(x, y)
{

for i ← 1 to n
zi ← a random real number in [min(xi, yi), max(xi, yi)];

return z = (z1, z2, . . . , zn);
}

Fig. 2. Pseudo-code of box crossover

extended-box-crossover(x, y)
{

for i ← 1 to n
m ← min(xi, yi), M ← max(xi, yi);
em ← m − α(M − m), eM ← M + α(M − m);
zi ← a random real number in [min(em, li), max(eM, ui)];

return z = (z1, z2, . . . , zn);
}
// α is extension rate.

Fig. 3. Pseudo-code of extended-box crossover

The mask is still a binary vector dictating for each position of the offspring vector from which
parent the (real) value for that position is taken.

The blend recombination family does not exchange values between parents like discrete
recombinations but it averages or blends them. Line recombination returns offspring on the
(Euclidean) line segment connecting the two parents. Box recombination returns offspring in
the box (hyper-rectangle) whose diagonally opposite corners are the parents. Extended-line
recombination picks offspring on an extended segment passing through the parent vectors but
extending beyond them and not only in the section between them. Analogously extended-box
recombination picks offspring on an extended box whose main diagonal passes through the
parents but extends beyond them.

Recently several new crossovers for the real-coded representation have been designed.
Several non-traditional crossover operators for real-coded representation are found in the
recent literature. They include SBX (simulated binary crossover) (Ballester & Carter, 2003;
2004b; Deb & Agrawal, 1995; Deb & Beyer, 1999; Deb & Kumar, 1995; Deb et al., 2007), UNDX
(unimodal normal distribution crossover) (Kita et al., 1998; 1999; Ono et al., 1999; Ono &
Kobayashi, 1997), SPX (simplex crossover) (Higuchi et al., 2000; Tsutsui & Goldberg, 2002;
Tsutsui et al., 2001; 1999), PCX (parent-centric crossover) (Ballester & Carter, 2004a; Deb et al.,
2002), etc (Herrera et al., 2003; 2005; Takahashi & Kita, 2001). Most of them are complex
and based on the specific probability distribution of the offspring (SBX, UNDX, and PCX),
self-adaptivity (SBX and UNDX), or multiple parents (UNDX and SPX). Some of them, e.g.,
include the function of mutation operators. In this study, we focus on traditional crossover
that does not consider the specific probability distribution of the offspring but only what
offspring can be generated with a probability greater than zero, given the two parents.
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and based on the specific probability distribution of the offspring (SBX, UNDX, and PCX),
self-adaptivity (SBX and UNDX), or multiple parents (UNDX and SPX). Some of them, e.g.,
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line-crossover(x, y)
{

λ ← a random real number in [0, 1];
for i ← 1 to n

zi ← λxi + (1 − λ)yi;
return z = (z1, z2, . . . , zn);

}

Fig. 4. Pseudo-code of line crossover

extended-line-crossover(x, y)
{

m ← −∞, M ← ∞;
for i ← 1 to n

if xi �= yi
tl ← (li − yi)/(xi − yi), tu ← (ui − yi)/(xi − yi);
tm ← min(tl , tu), tM ← max(tl , tu);
m ← max(m, tm), M ← min(M, tM);

λ ← a random real number in [max(m,−α), min(M, 1 + α)];
for i ← 1 to n

zi ← λxi + (1 − λ)yi;
return z = (z1, z2, . . . , zn);

}
// α is extension rate.

Fig. 5. Pseudo-code of extended-line crossover

The most common form of mutation for real-code vectors generates an offspring vector by
adding a vector M of random variables with expectation zero to the parent vector. There are
two types of mutations bounded and unbounded depending on the fact that the range of the
random variable is bounded or unbounded. The most frequently used bounded mutations
are the creep mutation and the single-variable mutation and for the unbounded case is the
Gaussian mutation. For the creep (or hyper-box) mutation M ∼ U([−a, a]n) is a vector of
uniform random variables, where a is a parameter defining the limits of the offspring area.
This operator yields offspring within a hyper-box centered in the parent vector. For the
single-variable mutation M is a vector in which all entries are set to zero except for a random
entry which is a uniform random variable ∼ U([−a, a]). Bounded mutation operators may
get stuck in local optima. In contrast, unbounded mutation operators guarantee asymptotic
global convergence. The primary unbounded mutation is the Gaussian mutation for which M
is a multivariate Gaussian distribution.

2.2 Adopted operators for this study

As crossover operators for our analysis, we adopted four representative crossovers: box,
extended-box, line, and extended-line crossovers. Their pseudo-codes are shown in Figures 2,
3, 4, and 5, respectively and the possible range for each crossover is represented in Figure 1.

68 Bio-Inspired Computational Algorithms and Their Applications The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 5

mutation(z, p)
{

for i ← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, (ui − li)/10);
return z = (z1, z2, . . . , zn);

}

Fig. 6. Pseudo-code of mutation

// x and y are parents.
fine-mutation(x, y, z, p)
{

for i ← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, |xi − yi|);
return z = (z1, z2, . . . , zn);

}

Fig. 7. Pseudo-code of fine mutation

And, as mutation operators for our analysis, we adopted two kinds of mutation: Gaussian
mutation and fine mutation. Their pseudo-codes are shown in Figures 6 and 7, respectively.
The Gaussian mutation is a simple static Gaussian mutation, the same as in Tsutsui &
Goldberg (2001). The i-th parameter zi of an individual is mutated by zi = zi + N(0, σi) with
a mutation rate p, where N(0, σi) is an independent random Gaussian number with the mean
of zero and the standard deviation of σi. In our study, σi is fixed to (ui − li)/10 - the tenth of
width of given area. The fine mutation is a simple dynamic Gaussian mutation inspired from
Ballester & Carter (2004b). In different with Gaussian mutation, it depends on the distance
between parents and, as population converges, the strength of the mutation approaches zero.

3. Bias of genetic operators

Pre-existing crossovers for the real-coded representation have an inherent bias toward the
center of the space. Some boundary extension techniques to reduce crossover bias have been
extensively studied (Someya & Yamamura, 2005; Tsutsui, 1998; Tsutsui & Goldberg, 2001). The
concept of crossover bias first appeared in (Eshelman et al., 1997) and it has been extensively
used in (Someya & Yamamura, 2005; Tsutsui & Goldberg, 2001), in which they tried to remove
the bias of real-coded crossover heuristically (and theoretically incompletely).

Notice that the notion of bias of a crossover operator has different definitions depending upon
the underlying representation considered. The bias toward the center of the space considered
in real-coded crossovers conceptually differs from the crossover biases on binary strings,
which focus on how many bits are passed to the offspring and from which positions, which, in
turn conceptually differs from the bias considered in Genetic Programming focusing on bloat.

The notion of bias so defined can be understood as being the inherent preference of a search
operator for specific areas of the search space. This is an important search property of a search
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adding a vector M of random variables with expectation zero to the parent vector. There are
two types of mutations bounded and unbounded depending on the fact that the range of the
random variable is bounded or unbounded. The most frequently used bounded mutations
are the creep mutation and the single-variable mutation and for the unbounded case is the
Gaussian mutation. For the creep (or hyper-box) mutation M ∼ U([−a, a]n) is a vector of
uniform random variables, where a is a parameter defining the limits of the offspring area.
This operator yields offspring within a hyper-box centered in the parent vector. For the
single-variable mutation M is a vector in which all entries are set to zero except for a random
entry which is a uniform random variable ∼ U([−a, a]). Bounded mutation operators may
get stuck in local optima. In contrast, unbounded mutation operators guarantee asymptotic
global convergence. The primary unbounded mutation is the Gaussian mutation for which M
is a multivariate Gaussian distribution.

2.2 Adopted operators for this study

As crossover operators for our analysis, we adopted four representative crossovers: box,
extended-box, line, and extended-line crossovers. Their pseudo-codes are shown in Figures 2,
3, 4, and 5, respectively and the possible range for each crossover is represented in Figure 1.
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mutation(z, p)
{

for i ← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, (ui − li)/10);
return z = (z1, z2, . . . , zn);

}

Fig. 6. Pseudo-code of mutation

// x and y are parents.
fine-mutation(x, y, z, p)
{

for i ← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, |xi − yi|);
return z = (z1, z2, . . . , zn);

}

Fig. 7. Pseudo-code of fine mutation

And, as mutation operators for our analysis, we adopted two kinds of mutation: Gaussian
mutation and fine mutation. Their pseudo-codes are shown in Figures 6 and 7, respectively.
The Gaussian mutation is a simple static Gaussian mutation, the same as in Tsutsui &
Goldberg (2001). The i-th parameter zi of an individual is mutated by zi = zi + N(0, σi) with
a mutation rate p, where N(0, σi) is an independent random Gaussian number with the mean
of zero and the standard deviation of σi. In our study, σi is fixed to (ui − li)/10 - the tenth of
width of given area. The fine mutation is a simple dynamic Gaussian mutation inspired from
Ballester & Carter (2004b). In different with Gaussian mutation, it depends on the distance
between parents and, as population converges, the strength of the mutation approaches zero.

3. Bias of genetic operators

Pre-existing crossovers for the real-coded representation have an inherent bias toward the
center of the space. Some boundary extension techniques to reduce crossover bias have been
extensively studied (Someya & Yamamura, 2005; Tsutsui, 1998; Tsutsui & Goldberg, 2001). The
concept of crossover bias first appeared in (Eshelman et al., 1997) and it has been extensively
used in (Someya & Yamamura, 2005; Tsutsui & Goldberg, 2001), in which they tried to remove
the bias of real-coded crossover heuristically (and theoretically incompletely).

Notice that the notion of bias of a crossover operator has different definitions depending upon
the underlying representation considered. The bias toward the center of the space considered
in real-coded crossovers conceptually differs from the crossover biases on binary strings,
which focus on how many bits are passed to the offspring and from which positions, which, in
turn conceptually differs from the bias considered in Genetic Programming focusing on bloat.

The notion of bias so defined can be understood as being the inherent preference of a search
operator for specific areas of the search space. This is an important search property of a search
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(a) Box crossover (b) Extended-box crossover (α = 0.5)

(c) Line crossover (d) Extended-line crossover (α = 0.5)

Fig. 8. Crossover bias in one-dimensional bounded real space

operator: an evolutionary algorithm using that operator, without selection, is attracted to the
areas the search operator prefers. Arguably, also when selection is present, the operator bias
acts as a background force that makes the search keener to go toward the areas preferred
by the search operator. This is not necessarily bad if the bias is toward the optimum or an
area with high-quality solutions. However, it may negatively affect performance if the bias
is toward an area of poor-quality solutions. If we do not know the spatial distribution of the
fitness of the problem, we may prefer not to have any a priori bias of the search operator, and
instead use only the bias of selection, which is informed by the fitness of sampled solutions
that constitute empirical knowledge about promising areas obtained in the search, and which
is better understood.

In this chapter, we investigate the bias caused by crossover itself and crossover combined
with mutation in real-coded GAs. Intuitively, box and line crossover are biased toward the
center on the Euclidean space. This intuition is easy to verify experimentally by picking a
large number of pairs (ideally infinitely many) of random parents and generating offspring
uniformly at random in the boxes (or lines) identified by the pairs of parents.

70 Bio-Inspired Computational Algorithms and Their Applications The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 7

Function n Range of xi: [li, ui]

Shifted sphere
n

∑
i=1

(xi − oi)
2 − 450 30 [−100, 100]

Shifted Schwefel
n

∑
i=1

(
i

∑
j=1

(xj − oj))
2 − 450 30 [−100, 100]

Shifted Rosenbrock
n−1

∑
i=1

(100((xi − oi + 1)2 − (xi+1 − oi+1 + 1))2 + (xi − oi)
2) + 390 30 [−100, 100]

Shifted Rastrigin
n

∑
i=1

((xi − oi)
2 − 10 cos(2π(xi − oi)) + 10)− 330 30 [−5, 5]

Table 1. Test Functions
o = (o1, o2, . . . , on) is the optimal solution, which is randomly located in the domain.

In the Hamming space, the distribution of the offspring of uniform crossover tends in the limit
to be uniform on all space, whereas in the Euclidean space the distribution of the offspring
tends to be unevenly distributed on the search space and concentrates toward the center of
the space. One way to compensate, but not eliminate, such bias is using extended-line and
extended-box crossovers. Figure 8 visualizes the crossover bias in the one-dimensional real
space by plotting frequency rates of 107 offspring randomly generated by each type crossover.
As we can see, box and line crossover are biased toward the center of the domain. We could
also observe that extended-box and extended-line crossover largely reduce the bias but they
are still biased toward the center.2

For analyzing the effect of mutation in relation with the bias, we also performed the same
test using crossover combined with Gaussian mutation. We picked 107 pairs of random
parents, generated offspring randomly using each type crossover, and then applied Gaussian
mutation. The tests are performed for various mutation rates from 0.0 to 1.0. The results
for box, extended-box, line, and extended-line crossover are shown in Figures 9, 10, 11, and
12, respectively. Interestingly, for all cases, we could observe that the higher mutation rate
reduces the bias more largely. However, even high mutation rates cannot eliminate the bias
completely.

4. Combination of crossover and mutation

In this section, we try to figure out the properties of crossover and mutation through
experiments using their various combinations. For our experiments, four test functions are
chosen from Suganthan et al. (2005). They are described in Table 1.

We mainly followed the genetic framework by Tsutsui & Goldberg (2001). Its basic
evolutionary model is quite similar to that of CHC (Eshelman, 1991) and (μ + λ)-ES (Beyer,
2001).

2 We can find consistent results with this in Someya & Yamamura (2005); Yoon et al. (2012).
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In the Hamming space, the distribution of the offspring of uniform crossover tends in the limit
to be uniform on all space, whereas in the Euclidean space the distribution of the offspring
tends to be unevenly distributed on the search space and concentrates toward the center of
the space. One way to compensate, but not eliminate, such bias is using extended-line and
extended-box crossovers. Figure 8 visualizes the crossover bias in the one-dimensional real
space by plotting frequency rates of 107 offspring randomly generated by each type crossover.
As we can see, box and line crossover are biased toward the center of the domain. We could
also observe that extended-box and extended-line crossover largely reduce the bias but they
are still biased toward the center.2

For analyzing the effect of mutation in relation with the bias, we also performed the same
test using crossover combined with Gaussian mutation. We picked 107 pairs of random
parents, generated offspring randomly using each type crossover, and then applied Gaussian
mutation. The tests are performed for various mutation rates from 0.0 to 1.0. The results
for box, extended-box, line, and extended-line crossover are shown in Figures 9, 10, 11, and
12, respectively. Interestingly, for all cases, we could observe that the higher mutation rate
reduces the bias more largely. However, even high mutation rates cannot eliminate the bias
completely.

4. Combination of crossover and mutation

In this section, we try to figure out the properties of crossover and mutation through
experiments using their various combinations. For our experiments, four test functions are
chosen from Suganthan et al. (2005). They are described in Table 1.

We mainly followed the genetic framework by Tsutsui & Goldberg (2001). Its basic
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(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 9. Bias of box crossover with mutation
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(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 10. Bias of extended-box crossover (α = 0.5) with mutation
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Fig. 10. Bias of extended-box crossover (α = 0.5) with mutation

73The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms



10 Will-be-set-by-IN-TECH

(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 11. Bias of line crossover with mutation
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(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 12. Bias of extended-line crossover (α = 0.5) with mutation
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Let N the population size. A collection of N/2 pairs is randomly composed, and crossover
and mutation are applied to each pair, generating N/2 offspring. Parents and newly generated
offspring are ranked and the best N individuals among them are selected for the population
in the next generation. The population size was 400 for all experiments. If the population has
no change during n× r × (1.0− r) generations, it is reinitialized except for the best individual.
Here, r is a divergence rate and we set it to 0.25 as in Eshelman (1991). The used GA terminates
when it finds the global optimum.

For crossover, we used four crossover operators: box crossover, extended-box crossover
(extension rate α: 0.5), line crossover, and extended-line crossover (extension rate α: 0.5). After
crossover, we either mutate the offspring or do not. We used two different mutation operators;
Gaussian mutation and fine mutation. Different mutation rates were applied to each crossover
type and the rates decrease as the number of generations increases.

Table 2 shows the results from 30 runs. Each value in ‘Ave’ means the average function value
from 30 runs. The smaller, the better. The limit of function evaluations is 50,000, i.e., the
genetic algorithm terminates after 50,000 evaluations and outputs the best solution among
evaluated ones so far over generations. In the table, k = 1 + �numberOfGenerations/100� and
the rate of fine mutation is 0.5/k.

From these experiments we can obtain the following properties.

• There is no superior operator combination for all over the problem instances. For the
shifted sphere, box crossover with fine mutation showed the best performance. For
the shifted Schwefel, line crossover with Gaussian mutation, for the shifted Rosenbrock,
extended-box crossover without mutation, and for the shifted Rastrigin, box crossover
with fine mutation showed the best performances, respectively. So we can know that
suitable crossover and mutation can be varied depending on the property of given
problem.

• Without mutation, extended-box crossover showed the best performance. That is, when
we do not know the characteristic of given problem, it is a general choice that we use
extended-box crossover as a crossover operator in real-coded genetic algorithms. It is
convenient since parameter tuning with mutation is not required. However, it is possible
to surpass the performance of extended-box crossover using well-designed combination
of crossover and mutation.

• Unusually, for extended-box crossover, the results without mutation is the best and the
performance becomes worse as mutation rate increases. However, for box crossover,
moderate rate of mutation has a good effect to the performance. For all cases, box crossover
with mutation showed better performance than that without mutation. From this fact, we
can infer that extended-box crossover contains the function of mutation in itself but box
crossover does not.

• Except for extended-box crossover, the results of crossover with mutation were better than
those of crossover without mutation. In particular, fine mutation was better than Gaussian
mutation. Fine mutation depends on the distance between parents so, as population
converges, the strength of the mutation approaches zero. That is, the amount of mutation
becomes very fine as population converges. In binary encodings, the main role of mutation
is perturbation effect to prevent premature convergence. However, we can know that,
in real encoding, the function of fine tuning by mutation is also important from this
experiment.
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Function Shifted Sphere Shifted Schwefel Shifted Rosenbrock Shifted Rastrigin
Crossover Mutation Ave (σ/

√
n) Ave (σ/

√
n) Ave (σ/

√
n) Ave (σ/

√
n)

0.05/k 5.46e+02 (4.59e+01) 1.68e+04 (9.05e+02) 1.87e+07 (1.70e+06) -2.66e+02 (1.91e+00)
0.10/k 6.40e+01 (2.17e+01) 1.16e+04 (5.33e+02) 4.64e+06 (3.86e+05) -2.68e+02 (1.65e+00)

None 0.20/k 1.37e+02 (1.55e+01) 7.99e+03 (4.79e+02) 4.74e+06 (2.34e+05) -2.64e+02 (1.58e+00)
0.50/k 9.87e+02 (3.13e+01) 7.87e+03 (3.18e+02) 1.89e+07 (8.19e+05) -2.27e+02 (1.28e+00)
1.00/k 2.38e+03 (6.45e+01) 1.24e+04 (3.76e+02) 7.12e+07 (2.45e+06) -1.91e+02 (1.72e+00)

None 2.46e+04 (4.46e+02) 2.47e+04 (3.03e+02) 5.36e+09 (1.69e+08) -1.83e+02 (1.64e+00)
0.05/k -3.61e+02 (1.81e+00) 1.44e+04 (1.96e+02) 2.66e+05 (8.26e+03) -2.53e+02 (1.51e+00)
0.10/k -4.02e+02 (1.13e+00) 1.22e+04 (1.42e+02) 7.86e+04 (2.26e+03) -2.60e+02 (1.11e+00)
0.20/k -4.25e+02 (6.96e-01) 9.98e+03 (1.40e+02) 4.34e+04 (1.57e+03) -2.48e+02 (2.37e+00)
0.50/k -3.40e+02 (3.04e+00) 8.10e+03 (1.17e+02) 2.16e+05 (1.02e+04) -1.94e+02 (1.90e+00)

Box 1.00/k 2.81e+02 (1.54e+01) 8.68e+03 (2.05e+02) 5.55e+06 (2.53e+05) -1.71e+02 (1.48e+00)
crossover Fine -4.50e+02 (4.63e-03) 8.74e+03 (1.16e+02) 1.40e+03 (7.16e+01) -3.03e+02 (1.60e+00)

Fine + 0.05/k -4.50e+02 (2.54e-02) 8.43e+03 (1.36e+02) 1.99e+03 (8.59e+01) -2.77e+02 (3.16e+00)
Fine + 0.10/k -4.48e+02 (8.07e-02) 8.10e+03 (1.42e+02) 3.33e+03 (1.59e+02) -2.39e+02 (3.26e+00)
Fine + 0.20/k -4.37e+02 (5.19e-01) 7.83e+03 (1.06e+02) 1.78e+04 (8.37e+02) -2.07e+02 (1.87e+00)
Fine + 0.50/k -2.11e+02 (6.63e+00) 8.83e+03 (1.72e+02) 8.47e+05 (3.91e+04) -1.82e+02 (1.64e+00)
Fine + 1.00/k 6.67e+02 (2.51e+01) 1.20e+04 (2.27e+02) 1.08e+07 (5.26e+05) -1.68e+02 (1.65e+00)

None -4.50e+02 (2.72e-04) 8.78e+03 (1.90e+02) 7.45e+02 (3.21e+01) -2.21e+02 (2.33e+00)
0.05/k -4.49e+02 (3.17e-02) 9.63e+03 (2.20e+02) 3.14e+03 (1.67e+02) -2.00e+02 (1.97e+00)
0.10/k -4.40e+02 (2.52e-01) 1.07e+04 (2.50e+02) 2.24e+04 (9.14e+02) -1.95e+02 (1.75e+00)
0.20/k -3.59e+02 (2.22e+00) 1.25e+04 (2.45e+02) 3.35e+05 (1.86e+04) -1.81e+02 (1.66e+00)

Extended 0.50/k 2.54e+02 (1.91e+01) 1.60e+04 (3.92e+02) 6.93e+06 (3.35e+05) -1.63e+02 (1.68e+00)
box 1.00/k 1.60e+03 (5.17e+01) 2.10e+04 (4.98e+02) 4.65e+07 (1.85e+06) -1.50e+02 (2.26e+00)

crossover Fine -4.23e+02 (7.81e-01) 1.76e+04 (3.62e+02) 2.07e+05 (1.21e+04) -1.75e+02 (1.71e+00)
(α = 0.5) Fine + 0.05/k -3.67e+02 (2.09e+00) 1.80e+04 (4.84e+02) 7.16e+05 (2.99e+04) -1.68e+02 (1.56e+00)

Fine + 0.10/k -2.72e+02 (3.48e+00) 1.85e+04 (4.39e+02) 1.55e+06 (6.25e+04) -1.68e+02 (1.83e+00)
Fine + 0.20/k -2.18e+01 (1.03e+01) 1.84e+04 (5.26e+02) 5.45e+06 (2.49e+05) -1.63e+02 (2.22e+00)
Fine + 0.50/k 9.07e+02 (3.03e+01) 2.24e+04 (5.74e+02) 2.69e+07 (1.32e+06) -1.52e+02 (1.92e+00)
Fine + 1.00/k 2.47e+03 (5.56e+01) 2.55e+04 (5.66e+02) 9.84e+07 (3.94e+06) -1.37e+02 (2.26e+00)

None 4.29e+04 (6.09e+02) 3.44e+04 (8.72e+02) 1.22e+10 (4.00e+08) -7.32e+01 (3.09e+00)
0.05/k -2.11e+02 (4.61e+00) 1.45e+04 (3.04e+02) 1.30e+06 (4.48e+04) -2.24e+02 (2.19e+00)
0.10/k -3.55e+02 (2.03e+00) 1.26e+04 (2.19e+02) 2.12e+05 (7.95e+03) -2.32e+02 (1.56e+00)
0.20/k -4.00e+02 (1.76e+00) 1.00e+04 (1.80e+02) 9.66e+04 (3.77e+03) -2.24e+02 (3.13e+00)
0.50/k -3.37e+02 (3.29e+00) 7.26e+03 (1.59e+02) 2.33e+05 (1.30e+04) -1.91e+02 (1.62e+00)

Line 1.00/k 2.37e+02 (2.04e+01) 6.93e+03 (1.46e+02) 4.34e+06 (2.80e+05) -1.73e+02 (1.50e+00)
crossover Fine -4.48e+02 (1.22e-01) 9.38e+03 (1.38e+02) 1.07e+04 (8.87e+02) -2.87e+02 (2.31e+00)

Fine + 0.05/k -4.47e+02 (1.52e-01) 8.81e+03 (1.73e+02) 8.13e+03 (4.91e+02) -2.58e+02 (4.68e+00)
Fine + 0.10/k -4.43e+02 (4.00e-01) 8.16e+03 (1.54e+02) 1.10e+04 (6.89e+02) -2.30e+02 (3.34e+00)
Fine + 0.20/k -4.32e+02 (5.20e-01) 7.79e+03 (1.37e+02) 2.95e+04 (1.63e+03) -2.05e+02 (1.97e+00)
Fine + 0.50/k -2.27e+02 (7.78e+00) 7.71e+03 (1.70e+02) 7.95e+05 (3.23e+04) -1.82e+02 (1.50e+00)
Fine + 1.00/k 5.76e+02 (2.37e+01) 9.91e+03 (1.62e+02) 9.54e+06 (5.55e+05) -1.62e+02 (1.68e+00)

None 3.85e+04 (9.05e+02) 3.11e+04 (6.79e+02) 9.81e+09 (5.11e+08) -1.17e+02 (3.40e+00)
0.05/k -1.37e+02 (1.20e+01) 1.21e+04 (2.97e+02) 2.97e+06 (2.14e+05) -2.40e+02 (2.59e+00)
0.10/k -3.27e+02 (4.22e+00) 9.46e+03 (2.92e+02) 5.23e+05 (3.33e+04) -2.37e+02 (2.16e+00)
0.20/k -3.67e+02 (3.37e+00) 8.19e+03 (2.09e+02) 2.02e+05 (1.00e+04) -2.13e+02 (2.53e+00)

Extended 0.50/k -2.41e+02 (6.38e+00) 7.03e+03 (1.43e+02) 6.22e+05 (3.95e+04) -1.88e+02 (1.40e+00)
line 1.00/k 4.60e+02 (2.41e+01) 8.00e+03 (1.61e+02) 7.43e+06 (3.58e+05) -1.69e+02 (1.61e+00)

crossover Fine -4.46e+02 (2.66e-01) 7.67e+03 (1.98e+02) 1.88e+04 (2.14e+03) -2.44e+02 (5.08e+00)
(α = 0.5) Fine + 0.05/k -4.39e+02 (4.12e-01) 7.69e+03 (1.76e+02) 2.28e+04 (1.56e+03) -2.26e+02 (3.84e+00)

Fine + 0.10/k -4.29e+02 (1.03e+00) 7.52e+03 (1.90e+02) 3.51e+04 (2.50e+03) -2.09e+02 (1.96e+00)
Fine + 0.20/k -3.92e+02 (2.23e+00) 7.24e+03 (1.57e+02) 1.42e+05 (7.84e+03) -1.92e+02 (1.67e+00)
Fine + 0.50/k -4.34e+01 (1.06e+01) 8.62e+03 (1.56e+02) 1.93e+06 (8.59e+04) -1.73e+02 (1.65e+00)
Fine + 1.00/k 8.69e+02 (3.33e+01) 1.10e+04 (2.63e+02) 1.51e+07 (9.43e+05) -1.57e+02 (1.86e+00)

Table 2. Results
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Let N the population size. A collection of N/2 pairs is randomly composed, and crossover
and mutation are applied to each pair, generating N/2 offspring. Parents and newly generated
offspring are ranked and the best N individuals among them are selected for the population
in the next generation. The population size was 400 for all experiments. If the population has
no change during n× r × (1.0− r) generations, it is reinitialized except for the best individual.
Here, r is a divergence rate and we set it to 0.25 as in Eshelman (1991). The used GA terminates
when it finds the global optimum.

For crossover, we used four crossover operators: box crossover, extended-box crossover
(extension rate α: 0.5), line crossover, and extended-line crossover (extension rate α: 0.5). After
crossover, we either mutate the offspring or do not. We used two different mutation operators;
Gaussian mutation and fine mutation. Different mutation rates were applied to each crossover
type and the rates decrease as the number of generations increases.

Table 2 shows the results from 30 runs. Each value in ‘Ave’ means the average function value
from 30 runs. The smaller, the better. The limit of function evaluations is 50,000, i.e., the
genetic algorithm terminates after 50,000 evaluations and outputs the best solution among
evaluated ones so far over generations. In the table, k = 1 + �numberOfGenerations/100� and
the rate of fine mutation is 0.5/k.

From these experiments we can obtain the following properties.

• There is no superior operator combination for all over the problem instances. For the
shifted sphere, box crossover with fine mutation showed the best performance. For
the shifted Schwefel, line crossover with Gaussian mutation, for the shifted Rosenbrock,
extended-box crossover without mutation, and for the shifted Rastrigin, box crossover
with fine mutation showed the best performances, respectively. So we can know that
suitable crossover and mutation can be varied depending on the property of given
problem.

• Without mutation, extended-box crossover showed the best performance. That is, when
we do not know the characteristic of given problem, it is a general choice that we use
extended-box crossover as a crossover operator in real-coded genetic algorithms. It is
convenient since parameter tuning with mutation is not required. However, it is possible
to surpass the performance of extended-box crossover using well-designed combination
of crossover and mutation.

• Unusually, for extended-box crossover, the results without mutation is the best and the
performance becomes worse as mutation rate increases. However, for box crossover,
moderate rate of mutation has a good effect to the performance. For all cases, box crossover
with mutation showed better performance than that without mutation. From this fact, we
can infer that extended-box crossover contains the function of mutation in itself but box
crossover does not.

• Except for extended-box crossover, the results of crossover with mutation were better than
those of crossover without mutation. In particular, fine mutation was better than Gaussian
mutation. Fine mutation depends on the distance between parents so, as population
converges, the strength of the mutation approaches zero. That is, the amount of mutation
becomes very fine as population converges. In binary encodings, the main role of mutation
is perturbation effect to prevent premature convergence. However, we can know that,
in real encoding, the function of fine tuning by mutation is also important from this
experiment.
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Function Shifted Sphere Shifted Schwefel Shifted Rosenbrock Shifted Rastrigin
Crossover Mutation Ave (σ/

√
n) Ave (σ/

√
n) Ave (σ/

√
n) Ave (σ/

√
n)

0.05/k 5.46e+02 (4.59e+01) 1.68e+04 (9.05e+02) 1.87e+07 (1.70e+06) -2.66e+02 (1.91e+00)
0.10/k 6.40e+01 (2.17e+01) 1.16e+04 (5.33e+02) 4.64e+06 (3.86e+05) -2.68e+02 (1.65e+00)

None 0.20/k 1.37e+02 (1.55e+01) 7.99e+03 (4.79e+02) 4.74e+06 (2.34e+05) -2.64e+02 (1.58e+00)
0.50/k 9.87e+02 (3.13e+01) 7.87e+03 (3.18e+02) 1.89e+07 (8.19e+05) -2.27e+02 (1.28e+00)
1.00/k 2.38e+03 (6.45e+01) 1.24e+04 (3.76e+02) 7.12e+07 (2.45e+06) -1.91e+02 (1.72e+00)

None 2.46e+04 (4.46e+02) 2.47e+04 (3.03e+02) 5.36e+09 (1.69e+08) -1.83e+02 (1.64e+00)
0.05/k -3.61e+02 (1.81e+00) 1.44e+04 (1.96e+02) 2.66e+05 (8.26e+03) -2.53e+02 (1.51e+00)
0.10/k -4.02e+02 (1.13e+00) 1.22e+04 (1.42e+02) 7.86e+04 (2.26e+03) -2.60e+02 (1.11e+00)
0.20/k -4.25e+02 (6.96e-01) 9.98e+03 (1.40e+02) 4.34e+04 (1.57e+03) -2.48e+02 (2.37e+00)
0.50/k -3.40e+02 (3.04e+00) 8.10e+03 (1.17e+02) 2.16e+05 (1.02e+04) -1.94e+02 (1.90e+00)

Box 1.00/k 2.81e+02 (1.54e+01) 8.68e+03 (2.05e+02) 5.55e+06 (2.53e+05) -1.71e+02 (1.48e+00)
crossover Fine -4.50e+02 (4.63e-03) 8.74e+03 (1.16e+02) 1.40e+03 (7.16e+01) -3.03e+02 (1.60e+00)

Fine + 0.05/k -4.50e+02 (2.54e-02) 8.43e+03 (1.36e+02) 1.99e+03 (8.59e+01) -2.77e+02 (3.16e+00)
Fine + 0.10/k -4.48e+02 (8.07e-02) 8.10e+03 (1.42e+02) 3.33e+03 (1.59e+02) -2.39e+02 (3.26e+00)
Fine + 0.20/k -4.37e+02 (5.19e-01) 7.83e+03 (1.06e+02) 1.78e+04 (8.37e+02) -2.07e+02 (1.87e+00)
Fine + 0.50/k -2.11e+02 (6.63e+00) 8.83e+03 (1.72e+02) 8.47e+05 (3.91e+04) -1.82e+02 (1.64e+00)
Fine + 1.00/k 6.67e+02 (2.51e+01) 1.20e+04 (2.27e+02) 1.08e+07 (5.26e+05) -1.68e+02 (1.65e+00)

None -4.50e+02 (2.72e-04) 8.78e+03 (1.90e+02) 7.45e+02 (3.21e+01) -2.21e+02 (2.33e+00)
0.05/k -4.49e+02 (3.17e-02) 9.63e+03 (2.20e+02) 3.14e+03 (1.67e+02) -2.00e+02 (1.97e+00)
0.10/k -4.40e+02 (2.52e-01) 1.07e+04 (2.50e+02) 2.24e+04 (9.14e+02) -1.95e+02 (1.75e+00)
0.20/k -3.59e+02 (2.22e+00) 1.25e+04 (2.45e+02) 3.35e+05 (1.86e+04) -1.81e+02 (1.66e+00)

Extended 0.50/k 2.54e+02 (1.91e+01) 1.60e+04 (3.92e+02) 6.93e+06 (3.35e+05) -1.63e+02 (1.68e+00)
box 1.00/k 1.60e+03 (5.17e+01) 2.10e+04 (4.98e+02) 4.65e+07 (1.85e+06) -1.50e+02 (2.26e+00)

crossover Fine -4.23e+02 (7.81e-01) 1.76e+04 (3.62e+02) 2.07e+05 (1.21e+04) -1.75e+02 (1.71e+00)
(α = 0.5) Fine + 0.05/k -3.67e+02 (2.09e+00) 1.80e+04 (4.84e+02) 7.16e+05 (2.99e+04) -1.68e+02 (1.56e+00)

Fine + 0.10/k -2.72e+02 (3.48e+00) 1.85e+04 (4.39e+02) 1.55e+06 (6.25e+04) -1.68e+02 (1.83e+00)
Fine + 0.20/k -2.18e+01 (1.03e+01) 1.84e+04 (5.26e+02) 5.45e+06 (2.49e+05) -1.63e+02 (2.22e+00)
Fine + 0.50/k 9.07e+02 (3.03e+01) 2.24e+04 (5.74e+02) 2.69e+07 (1.32e+06) -1.52e+02 (1.92e+00)
Fine + 1.00/k 2.47e+03 (5.56e+01) 2.55e+04 (5.66e+02) 9.84e+07 (3.94e+06) -1.37e+02 (2.26e+00)

None 4.29e+04 (6.09e+02) 3.44e+04 (8.72e+02) 1.22e+10 (4.00e+08) -7.32e+01 (3.09e+00)
0.05/k -2.11e+02 (4.61e+00) 1.45e+04 (3.04e+02) 1.30e+06 (4.48e+04) -2.24e+02 (2.19e+00)
0.10/k -3.55e+02 (2.03e+00) 1.26e+04 (2.19e+02) 2.12e+05 (7.95e+03) -2.32e+02 (1.56e+00)
0.20/k -4.00e+02 (1.76e+00) 1.00e+04 (1.80e+02) 9.66e+04 (3.77e+03) -2.24e+02 (3.13e+00)
0.50/k -3.37e+02 (3.29e+00) 7.26e+03 (1.59e+02) 2.33e+05 (1.30e+04) -1.91e+02 (1.62e+00)

Line 1.00/k 2.37e+02 (2.04e+01) 6.93e+03 (1.46e+02) 4.34e+06 (2.80e+05) -1.73e+02 (1.50e+00)
crossover Fine -4.48e+02 (1.22e-01) 9.38e+03 (1.38e+02) 1.07e+04 (8.87e+02) -2.87e+02 (2.31e+00)

Fine + 0.05/k -4.47e+02 (1.52e-01) 8.81e+03 (1.73e+02) 8.13e+03 (4.91e+02) -2.58e+02 (4.68e+00)
Fine + 0.10/k -4.43e+02 (4.00e-01) 8.16e+03 (1.54e+02) 1.10e+04 (6.89e+02) -2.30e+02 (3.34e+00)
Fine + 0.20/k -4.32e+02 (5.20e-01) 7.79e+03 (1.37e+02) 2.95e+04 (1.63e+03) -2.05e+02 (1.97e+00)
Fine + 0.50/k -2.27e+02 (7.78e+00) 7.71e+03 (1.70e+02) 7.95e+05 (3.23e+04) -1.82e+02 (1.50e+00)
Fine + 1.00/k 5.76e+02 (2.37e+01) 9.91e+03 (1.62e+02) 9.54e+06 (5.55e+05) -1.62e+02 (1.68e+00)

None 3.85e+04 (9.05e+02) 3.11e+04 (6.79e+02) 9.81e+09 (5.11e+08) -1.17e+02 (3.40e+00)
0.05/k -1.37e+02 (1.20e+01) 1.21e+04 (2.97e+02) 2.97e+06 (2.14e+05) -2.40e+02 (2.59e+00)
0.10/k -3.27e+02 (4.22e+00) 9.46e+03 (2.92e+02) 5.23e+05 (3.33e+04) -2.37e+02 (2.16e+00)
0.20/k -3.67e+02 (3.37e+00) 8.19e+03 (2.09e+02) 2.02e+05 (1.00e+04) -2.13e+02 (2.53e+00)

Extended 0.50/k -2.41e+02 (6.38e+00) 7.03e+03 (1.43e+02) 6.22e+05 (3.95e+04) -1.88e+02 (1.40e+00)
line 1.00/k 4.60e+02 (2.41e+01) 8.00e+03 (1.61e+02) 7.43e+06 (3.58e+05) -1.69e+02 (1.61e+00)

crossover Fine -4.46e+02 (2.66e-01) 7.67e+03 (1.98e+02) 1.88e+04 (2.14e+03) -2.44e+02 (5.08e+00)
(α = 0.5) Fine + 0.05/k -4.39e+02 (4.12e-01) 7.69e+03 (1.76e+02) 2.28e+04 (1.56e+03) -2.26e+02 (3.84e+00)

Fine + 0.10/k -4.29e+02 (1.03e+00) 7.52e+03 (1.90e+02) 3.51e+04 (2.50e+03) -2.09e+02 (1.96e+00)
Fine + 0.20/k -3.92e+02 (2.23e+00) 7.24e+03 (1.57e+02) 1.42e+05 (7.84e+03) -1.92e+02 (1.67e+00)
Fine + 0.50/k -4.34e+01 (1.06e+01) 8.62e+03 (1.56e+02) 1.93e+06 (8.59e+04) -1.73e+02 (1.65e+00)
Fine + 1.00/k 8.69e+02 (3.33e+01) 1.10e+04 (2.63e+02) 1.51e+07 (9.43e+05) -1.57e+02 (1.86e+00)

Table 2. Results
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5. Conclusions

In this chapter, we tried to analyze distinct roles of crossover and mutation when using real
encoding in genetic algorithms. We investigated the bias of crossover and mutation. From this
investigation, we could know that extended crossover and mutation can reduce the inherent
bias of traditional crossover in real-coded genetic algorithms.

We also studied the functions of crossover and mutation operators through experiments
for various combinations of both operators. From these experiments, we could know
that extended-box crossover is good in the case of using only crossover without mutation.
However, it is possible to surpass the performance of extended-box crossover using
well-designed combination of crossover and mutation. In the case of other crossover
operators, not only the function of perturbation but also that of fine tuning by mutation is
important, but extended-box crossover contains the fine tuning function in itself.

There are many other test functions defined on real domains. We conducted experiments
with limited test functions. We may obtain more reliable conclusions through experiments
with more other functions. So, more extended experiments on more various test functions are
needed for future work. We may also find other useful properties from those empirical study.
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5. Conclusions

In this chapter, we tried to analyze distinct roles of crossover and mutation when using real
encoding in genetic algorithms. We investigated the bias of crossover and mutation. From this
investigation, we could know that extended crossover and mutation can reduce the inherent
bias of traditional crossover in real-coded genetic algorithms.

We also studied the functions of crossover and mutation operators through experiments
for various combinations of both operators. From these experiments, we could know
that extended-box crossover is good in the case of using only crossover without mutation.
However, it is possible to surpass the performance of extended-box crossover using
well-designed combination of crossover and mutation. In the case of other crossover
operators, not only the function of perturbation but also that of fine tuning by mutation is
important, but extended-box crossover contains the fine tuning function in itself.

There are many other test functions defined on real domains. We conducted experiments
with limited test functions. We may obtain more reliable conclusions through experiments
with more other functions. So, more extended experiments on more various test functions are
needed for future work. We may also find other useful properties from those empirical study.
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82 Bio-Inspired Computational Algorithms and Their Applications

1. Introduction

Most of the real-world problems could be encoded by different representations, but genetic
and evolutionary algorithms (GEAs) may not be able to successfully solve the problems based
on their phenotypic representations, unless we use some problem-specific genetic operators.
Therefore, a proper genetic representation is necessary when using GEAs on the real-world
problems (Goldberg, 1989; Liepins, 1990; Whitley, 2000; Liang, 2011).

A large number of theoretical and empirical investigations on genetic representations were
made over the last decades. Earlier work (Goldberg, 1989c; Liepins & Vose, 1990) has shown
that the behavior and performance of GEAs is strongly influenced by the representation used.
As a result many genotypic representations were made for proper GEAs searching. Among of
them, the binary, integer, real-valued, messy and tree structure representations are the most
important and widely used by many GEAs.

To investigate the performance of the genetic representations, originally, the schema theorem
proposed by Holland (1975) to model the performance of GEAs to process similarities between
binary bitstrings. Using the definition of the building blocks (BBs) as being highly fit
solutions to sub-problems, which are decomposed by the overall problem, the building block
hypothesis (Goldberg, 1989c) states that GEAs mainly work due to their ability to propagate
short, low order and highly fit BBs. During the last decade, (Thierens, 1995; Miller, 1996;
Harik, 1997; Sendhoff, 1997; Rothlauf, 2002) developed three important elements towards
a general theory of genetic representations. They identified that redundancy, the scaling
of Building Blocks (BBs) and the distance distortion are major factors that influence the
performance of GEAs with different genetic representations.

A genetic representation is denoted to be redundant if the number of genotypes is higher than
the number of phenotypes. Investigating redundant representation reveals that give more
copies to high quality solutions in the initial population result in a higher performance of
GEAs, whereas encodings where high quality solutions are underrepresented make a problem
more difficult to solve. Uniform redundancy, however, has no influence on the performance
of GEAs.

The order of scaling of a representation describes the different contribution of the BBs to the
individual’s fitness. It is well known that if the BBs are uniformly scaled, GEAs solve all BBs
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2 S/D Binary Encoding and Its Operators

implicitly in parallel. In contrast, for non-uniformly scaled BBs, domino convergence occurs
and the BBs are solved sequentially starting with the most salient BB (Thierens, 1995). As
a result, the convergence time increases and the performance is decreasing due to the noise
from the competing BBs.

The distance distortion of a representation measures how much the distance between
individuals are changed when mapping the phenotypes to the genotypes, and the locality of
the representation means that whether similar genotypes correspond to similar phenotypes.
The theoretical analysis shows that representation where the distance distortion and locality
are equal to zero, that means the distances between the individuals are preserved, do not
modify the difficulty of the problems they are used for, and guarantee to solve problems of
bounded complexity reliably and predictably.

The importance of choosing proper representations for the performance of GAs is already
recognized, but developing a general theory of representations is a formidable challenge.
Up to now, there is no well set-up theory regarding the influence of representations on the
performance of GAs. To help users with different tasks to search good representations, over
the last few years, some researchers have made recommendations based on the existing
theories. For example, Goldberg (Goldberg, 1989) proposed two basic design principles for
encodings:

• Principle of minimal alphabets: The alphabet of the encoding should be as small as possible
while still allowing a natural representation of solutions.

• Principle of meaningful building blocks: The schemata should be short, of low order, and
relatively unrelated to schemata over other fixed positions.

The principle of minimal alphabets advises us to use bit string representation. Combining
with the principle of meaningful building blocks (BBs), we construct uniform salient BBs,
which include equal scaled and splicing/decomposable alleles.

The purpose of this chapter is to introduce our novel genetic representation — a
splicing/decomposable (S/D) binary encoding, which was proposed based on some
theoretical guidance and existing recommendations for designing efficient genetic
representations. The S/D binary representation can be spliced and decomposed to
describe potential solutions of the problem with different precisions by different number
of uniform-salient BBs. According to the characteristics of the S/D binary representation,
GEAs can be applied from the high scaled to the low scaled BBs sequentially to avoid
the noise from the competing BBs and improve GEAs’ performance. Our theoretical and
empirical investigations reveal that the S/D binary representation is more proper than other
existing binary encodings for GEAs searching. Moreover, a new genotypic distance dg on the
S/D binary space Φg is proposed, which is equivalent to the Euclidean distance dp on the
real-valued space Φp during GEAs convergence. Based on the new genotypic distance dg ,
GEAs can reliably and predictably solve problems of bounded complexity and the methods
depended on the phenotypic distance dp for solving different kinds of optimization problems
can be directly used on the S/D binary space Φg.

This chapter is organized as follows. Section 2 describes three most commonly used binary
representations — binary, gray and unary encodings, and their theoretical analysis of the effect
on the performance of GEAs. Section 3 introduces our proposed splicing/decomposable
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(S/D) binary representation and its genotypic distance. Section 4 proposes the new genetic
algorithm based on the S/D binary representation, the splicing/Decompocable genetic
algorithm (SDGA). Section 5 discusses the performance of the SDGA and compares the S/D
binary representation with other existing binary encodings from the empirical studies. The
chapter conclusion are drawn in Section 6.

2. Background

Binary encodings are the most commonly used and nature-inspired representations for
GEAs, especially for genetic algorithms (GAs) (Goldberg, 1989). When encoding real-valued
problems by binary representations, different types of binary representations assign the
real-value in different ways to the binary strings. The most common binary representations
are the binary, gray and unary encodings. According to three aspects of representation theory
(redundancy, scaled building block and distance distortion), Rothlauf (Rothlauf, 2002) studied
the performance differences of GAs by different binary representations for real encoding.

2.1 The unary encoding and redundancy

In the unary encoding, a string of length l = s − 1 is necessary to represent s different
phenotypic values. The ith phenotypic value is encoded by the number of ones i − 1 in
the corresponding genotypic string. Thus, 2s−1 different genotypes only encode s different
phenotypes. Analysis on the unary encoding by the representation theory reveals that
encoding is redundant, and does not represent phenotypes uniformly. Therefore, the
performance of GAs with the unary encoding depends on the structure of the optimal
solution. Unary GAs fail to solve integer one-max, deceptive trap and BinInt (Rothlauf, 2002)
problems, unless larger population sizes are used, because the optimal solutions are strongly
underrepresented for these three types of problems. Thus, the unary GAs perform much
worse than GAs using the non-redundant binary or gray encoding (Julstrom, 1999; Rothlauf,
2002).

2.2 The binary encoding, scaled building blocks and hamming cliff

The binary encoding uses exponentially scaled bits to represent phenotypes. Each phenotypic
value xp ∈ Φp = {x1, x2, ..., xs} is represented by a binary string xg of length l = log2(s).
Therefore, the genotype-phenotype mapping of the binary encoding is one-to-one mapping
and encodes phenotypes redundancy-free.

However, for non-uniformly binary strings and competing Building Blocks (BBs) for high
dimensional phenotype space, there are a lot of noise from the competing BBs lead to a
reduction on the performance of GAs. The performance of GAs using the binary encoding
is not only affected by the non-uniformly scaling of BBs, but also by problems associated
with the Hamming cliff (Schaffer, 1989b). The binary encoding has the effect that genotypes
of some phenotypical neighbors are completely different. For example, when we choose the
phenotypes xp = 7 and yp = 8, both individuals have a distance of one, but the resulting
genotypes xg = 0111 and yg = 1000 have the largest possible genotypic distance �x− y�g = 4.
As a result, the locality of the binary representation is partially low. In the distance distortion
theory, an encoding preserves the difficulty of a problem if it has perfect locality and if it does
not modify the distance between individuals. The analysis reveals that the binary encoding
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implicitly in parallel. In contrast, for non-uniformly scaled BBs, domino convergence occurs
and the BBs are solved sequentially starting with the most salient BB (Thierens, 1995). As
a result, the convergence time increases and the performance is decreasing due to the noise
from the competing BBs.

The distance distortion of a representation measures how much the distance between
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The principle of minimal alphabets advises us to use bit string representation. Combining
with the principle of meaningful building blocks (BBs), we construct uniform salient BBs,
which include equal scaled and splicing/decomposable alleles.

The purpose of this chapter is to introduce our novel genetic representation — a
splicing/decomposable (S/D) binary encoding, which was proposed based on some
theoretical guidance and existing recommendations for designing efficient genetic
representations. The S/D binary representation can be spliced and decomposed to
describe potential solutions of the problem with different precisions by different number
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the noise from the competing BBs and improve GEAs’ performance. Our theoretical and
empirical investigations reveal that the S/D binary representation is more proper than other
existing binary encodings for GEAs searching. Moreover, a new genotypic distance dg on the
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real-valued space Φp during GEAs convergence. Based on the new genotypic distance dg ,
GEAs can reliably and predictably solve problems of bounded complexity and the methods
depended on the phenotypic distance dp for solving different kinds of optimization problems
can be directly used on the S/D binary space Φg.

This chapter is organized as follows. Section 2 describes three most commonly used binary
representations — binary, gray and unary encodings, and their theoretical analysis of the effect
on the performance of GEAs. Section 3 introduces our proposed splicing/decomposable
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(S/D) binary representation and its genotypic distance. Section 4 proposes the new genetic
algorithm based on the S/D binary representation, the splicing/Decompocable genetic
algorithm (SDGA). Section 5 discusses the performance of the SDGA and compares the S/D
binary representation with other existing binary encodings from the empirical studies. The
chapter conclusion are drawn in Section 6.
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Binary encodings are the most commonly used and nature-inspired representations for
GEAs, especially for genetic algorithms (GAs) (Goldberg, 1989). When encoding real-valued
problems by binary representations, different types of binary representations assign the
real-value in different ways to the binary strings. The most common binary representations
are the binary, gray and unary encodings. According to three aspects of representation theory
(redundancy, scaled building block and distance distortion), Rothlauf (Rothlauf, 2002) studied
the performance differences of GAs by different binary representations for real encoding.

2.1 The unary encoding and redundancy

In the unary encoding, a string of length l = s − 1 is necessary to represent s different
phenotypic values. The ith phenotypic value is encoded by the number of ones i − 1 in
the corresponding genotypic string. Thus, 2s−1 different genotypes only encode s different
phenotypes. Analysis on the unary encoding by the representation theory reveals that
encoding is redundant, and does not represent phenotypes uniformly. Therefore, the
performance of GAs with the unary encoding depends on the structure of the optimal
solution. Unary GAs fail to solve integer one-max, deceptive trap and BinInt (Rothlauf, 2002)
problems, unless larger population sizes are used, because the optimal solutions are strongly
underrepresented for these three types of problems. Thus, the unary GAs perform much
worse than GAs using the non-redundant binary or gray encoding (Julstrom, 1999; Rothlauf,
2002).

2.2 The binary encoding, scaled building blocks and hamming cliff

The binary encoding uses exponentially scaled bits to represent phenotypes. Each phenotypic
value xp ∈ Φp = {x1, x2, ..., xs} is represented by a binary string xg of length l = log2(s).
Therefore, the genotype-phenotype mapping of the binary encoding is one-to-one mapping
and encodes phenotypes redundancy-free.

However, for non-uniformly binary strings and competing Building Blocks (BBs) for high
dimensional phenotype space, there are a lot of noise from the competing BBs lead to a
reduction on the performance of GAs. The performance of GAs using the binary encoding
is not only affected by the non-uniformly scaling of BBs, but also by problems associated
with the Hamming cliff (Schaffer, 1989b). The binary encoding has the effect that genotypes
of some phenotypical neighbors are completely different. For example, when we choose the
phenotypes xp = 7 and yp = 8, both individuals have a distance of one, but the resulting
genotypes xg = 0111 and yg = 1000 have the largest possible genotypic distance �x− y�g = 4.
As a result, the locality of the binary representation is partially low. In the distance distortion
theory, an encoding preserves the difficulty of a problem if it has perfect locality and if it does
not modify the distance between individuals. The analysis reveals that the binary encoding
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changes the distance between the individuals and therefore changes the complexity of the
optimization problem. Thus, easy problems can become difficult, and vice versa. The binary
GAs are not able to reliably solve problems when mapping the phenotypes to the genotypes.

2.3 The gray encoding and modification of problem difficulty

The non-redundant gray encoding (Schaffer, 1989a) was designed to overcome the problems
with the Hamming cliff of the binary encoding (Schaffer, 1989b). In the gray encoding, every
neighbor of a phenotype is also a neighbor of the corresponding genotype. Therefore, the
difficulty of a problem remains unchanged when using mutation-based search operators that
only perform small step in the search space. As a result, easy problems and problems of
bounded difficulty are easier to solve when using the mutation-based search with the gray
coding than that with the binary encoding. Although the gray encoding has high locality,
it still changes the distance correspondence between the individuals with bit difference of
more than one. When focused on crossover-based search methods, the analysis of the average
fitness of the schemata reveals that the gray encoding preserves building block complexity
less than the binary encoding. Thus, a decrease in performance of gray-encoded GAs is
unavoidable for some kind of problems (Whitley, 2000).

3. A novel splicing/decomposable binary genetic representation

The descriptions in above section show that the existing binary genetic representations are
not proper for GAs searching and cannot guarantee that using GAs to solve problems of
bounded complexity reliably and predictably. According to the theoretical analysis and
recommendations for the design of an efficient representation, there are some important
points that a genetic representation should try to respect. Common representations for
GAs often encode the phenotypes by using a sequence of alleles. The alleles can separated
(decomposed) into building blocks (BBs) which do not interact with each other and which
determine one specific phenotypic property of the solution. The purpose of the genetic
operators is to decompose the whole sequence of alleles by detecting which BBs influence
each other. GAs perform well because they can identify best alleles of each BB and combine
them to form high-quality over-all solution of the problem.

Based on above investigation results and recommendations, we have proposed a new genetic
representation, which is proper for GAs searching. In this section, first we introduce a novel
splicing/decomposable (S/D) binary encoding, then we define the new genotypic distance
for the S/D encoding, finally we give the theoretical analysis for the S/D encoding based
on the three elements of genetic representation theory (redundancy, scaled BBs and distance
distortion).

3.1 A splicing/decomposable binary encoding

In (Leung, 2002; Xu, 2003a), we have proposed a novel S/D binary encoding for real-value
encoding. Assuming the phenotypic domain Φp of the n dimensional problem can be
specified by

Φp = [α1, β1]× [α2, β2]× · · · × [αn, βn ].
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Fig. 1. A graphical illustration of the splicing/decomposable representation scheme, where
(b) is the refined bisection of the gray cell (10) in (a) (with mesh size O(1/2) ), (c) is the
refined bisection of the dark cell (1001) in (b) (with mesh size O(1/22) ), and so forth.

Given a length of a binary string l, the genotypic precision is hi(l) =
(βi−αi)
2(�/n) , i =

1, 2, · · · , n. Any real-value variable x = (x1, x2, ..., xn) ∈ Φp can be represented by
a splicing/decomposable (S/D) binary string b = (b1, b2, .., bl), the genotype-phenotype
mapping fg is defined as

x = (x1, x2, · · · , xn) = fg(b) = (
l/n

∑
j=0

2(l/n−j) × bj×n+1,

l/n

∑
j=0

2(l/n−j)× bj×n+2, · · · ,
l/n

∑
j=0

2(l/n−j) × bj×(n+1)),

where
l/n

∑
j=0

2(l/n−j)× bj×n+i ≤ xi − αi
hi(l)

<
l/n

∑
j=0

2(l/n−j) × bj×n+i + 1.

That is, the significance of each bit of the encoding can be clearly and uniquely interpreted
(hence, each BB of the encoded S/D binary string has a specific meaning). As shown in
Figure 1, take Φp = [0, 1] × [0, 1] and the S/D binary string b = 100101 as an example (in
this case, l = 6, n = 2, and the genotypic precisions h1(l) = h2(l) = 1

8 ). Let us look how
to identify the S/D binary string b and see what each bit value of b means. In Figure 1-(a),

the phenotypic domain Φp is bisected into four Φ
1
2
p (i.e., the subregions with uniform size

1
2 ). According to the left-0 and right-1 correspondence rule in each coordinate direction, these

four Φ
1
2
p then can be identified with (00), (01), (10) and (11). As the phenotype x lies in the
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changes the distance between the individuals and therefore changes the complexity of the
optimization problem. Thus, easy problems can become difficult, and vice versa. The binary
GAs are not able to reliably solve problems when mapping the phenotypes to the genotypes.

2.3 The gray encoding and modification of problem difficulty

The non-redundant gray encoding (Schaffer, 1989a) was designed to overcome the problems
with the Hamming cliff of the binary encoding (Schaffer, 1989b). In the gray encoding, every
neighbor of a phenotype is also a neighbor of the corresponding genotype. Therefore, the
difficulty of a problem remains unchanged when using mutation-based search operators that
only perform small step in the search space. As a result, easy problems and problems of
bounded difficulty are easier to solve when using the mutation-based search with the gray
coding than that with the binary encoding. Although the gray encoding has high locality,
it still changes the distance correspondence between the individuals with bit difference of
more than one. When focused on crossover-based search methods, the analysis of the average
fitness of the schemata reveals that the gray encoding preserves building block complexity
less than the binary encoding. Thus, a decrease in performance of gray-encoded GAs is
unavoidable for some kind of problems (Whitley, 2000).

3. A novel splicing/decomposable binary genetic representation

The descriptions in above section show that the existing binary genetic representations are
not proper for GAs searching and cannot guarantee that using GAs to solve problems of
bounded complexity reliably and predictably. According to the theoretical analysis and
recommendations for the design of an efficient representation, there are some important
points that a genetic representation should try to respect. Common representations for
GAs often encode the phenotypes by using a sequence of alleles. The alleles can separated
(decomposed) into building blocks (BBs) which do not interact with each other and which
determine one specific phenotypic property of the solution. The purpose of the genetic
operators is to decompose the whole sequence of alleles by detecting which BBs influence
each other. GAs perform well because they can identify best alleles of each BB and combine
them to form high-quality over-all solution of the problem.

Based on above investigation results and recommendations, we have proposed a new genetic
representation, which is proper for GAs searching. In this section, first we introduce a novel
splicing/decomposable (S/D) binary encoding, then we define the new genotypic distance
for the S/D encoding, finally we give the theoretical analysis for the S/D encoding based
on the three elements of genetic representation theory (redundancy, scaled BBs and distance
distortion).

3.1 A splicing/decomposable binary encoding

In (Leung, 2002; Xu, 2003a), we have proposed a novel S/D binary encoding for real-value
encoding. Assuming the phenotypic domain Φp of the n dimensional problem can be
specified by

Φp = [α1, β1]× [α2, β2]× · · · × [αn, βn ].
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Fig. 1. A graphical illustration of the splicing/decomposable representation scheme, where
(b) is the refined bisection of the gray cell (10) in (a) (with mesh size O(1/2) ), (c) is the
refined bisection of the dark cell (1001) in (b) (with mesh size O(1/22) ), and so forth.

Given a length of a binary string l, the genotypic precision is hi(l) =
(βi−αi)
2(�/n) , i =

1, 2, · · · , n. Any real-value variable x = (x1, x2, ..., xn) ∈ Φp can be represented by
a splicing/decomposable (S/D) binary string b = (b1, b2, .., bl), the genotype-phenotype
mapping fg is defined as

x = (x1, x2, · · · , xn) = fg(b) = (
l/n

∑
j=0

2(l/n−j) × bj×n+1,

l/n

∑
j=0

2(l/n−j)× bj×n+2, · · · ,
l/n

∑
j=0

2(l/n−j) × bj×(n+1)),

where
l/n

∑
j=0

2(l/n−j)× bj×n+i ≤ xi − αi
hi(l)

<
l/n

∑
j=0

2(l/n−j) × bj×n+i + 1.

That is, the significance of each bit of the encoding can be clearly and uniquely interpreted
(hence, each BB of the encoded S/D binary string has a specific meaning). As shown in
Figure 1, take Φp = [0, 1] × [0, 1] and the S/D binary string b = 100101 as an example (in
this case, l = 6, n = 2, and the genotypic precisions h1(l) = h2(l) = 1

8 ). Let us look how
to identify the S/D binary string b and see what each bit value of b means. In Figure 1-(a),

the phenotypic domain Φp is bisected into four Φ
1
2
p (i.e., the subregions with uniform size

1
2 ). According to the left-0 and right-1 correspondence rule in each coordinate direction, these

four Φ
1
2
p then can be identified with (00), (01), (10) and (11). As the phenotype x lies in the
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subregion (10) (the gray square), its first building block (BB) should be BB1 = 10. This leads
to the first two bits of the S/D binary string b. Likewise, in Figure 1-(b), Φp is partitioned

into 22×2 Φ
1
4
p , which are obtained through further bisecting each Φ

1
2
p along each direction.

Particularly this further divides Φ
1
2
p = (BB1) into four Φ

1
4
p that can be respectively labelled

by (BB1, 00), (BB1, 01), (BB1, 10) and (BB1, 11). The phenotype x is in (BB1, 01)-subregion
(the dark square), so its second BB should be BB2 = 01 and the first four positions of its
corresponding S/D binary string b is 1001.

In the same way, Φp is partitioned into 22×3 Φ
1
8
p as shown in Figure 1-(c), with Φ

1
4
p =

(BB1, BB2) particularly partitioned into four Φ
1
8
p labelled by (BB1, BB2, 00), (BB1, BB2, 01),

(BB1, BB2, 10) and (BB1, BB2, 11). The phenotype x is found to be (BB1, BB2, 01), that is,
identical with S/D binary string b. This shows that for any three region partitions, b =
(b1, b2, b3, b4, b5, b6), each bit value bi can be interpreted geometrically as follows: b1 = 0
(b2 = 0) means the phenotype x is in the left half along the x-coordinate direction (the
y-coordinate direction) in Φp partition with 1

2 -precision, and b1 = 1 (b2 = 1) means x is
in the right half. Therefore, the first BB1 = (b1, b2) determine the 1

2 -precision location of x.

If b3 = 0 (b4 = 0), it then further indicates that when Φ
1
2
p is refined into Φ

1
4
p , the x lies in the

left half of Φ
1
2
p in the x-direction (y-direction), and it lies in the right half if b3 = 1 (b4 = 1).

Thus a more accurate geometric location (i.e., the 1
4 -precision location) and a more refined BB2

of x is obtained. Similarly we can explain b5 and b6 and identify BB3, which determine the
1
8 -precision location of x. This interpretation holds for any high-resolution l bits S/D binary
encoding.

3.2 A new genotypic distance on the splicing/decomposable binary representation

For measuring the similarity of the binary strings, the Hamming distance (Hamming, 1980) is
widely used on the binary space. Hamming distance describes how many bits are different
in two binary strings, but cannot consider the scaled property in non-uniformly binary
representations. Thus, the distance distortion between the genotypic and the phenotypic
spaces make phenotypically easy problem more difficult. Therefore, to make sure that GAs
are able to reliably solve easy problems and problems of bounded complexity, the use of
equivalent distances is recommended. For this purpose, we have defined a new genotypic
distance on the S/D binary space to measure the similarity of the S/D binary strings.

Definition 1: Suppose any binary strings a and b belong to the S/D binary space Φg, the
genotypic distance �a − b�g is defined as

�a − b�g =
n

∑
i=1

|
l/n−1

∑
j=0

aj×n+i − bj×n+i

2j+1 |,

where l and n denote the length of the S/D binary strings and the dimensions of the
real-encoding phenotypic space Φp respectively.
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Fig. 2. The genotypic and phenotypic distances between ∗ ∗ ∗∗ and 0000 in the S/D binary
representation.

For any two S/D binary strings a, b ∈ Φg, we can define the Euclidean distance of their
correspond phenotypes:

�a − b�p =

√√√√ n

∑
i=1

(
l/n−1

∑
j=0

aj×n+i

2j+1 −
l/n−1

∑
j=0

bj×n+i

2j+1 )2,

as the phenotypic distance between the S/D binary strings a and b. The phenotypic distance
� · �p and the genotypic distance � · �g are equivalents in the S/D binary space Φg when we
consider the convergence process of GAs. We state this as the following theorem.

Theorem 1: The phenotypic distance � · �p and the genotypic distance � · �g are equivalents
in the S/D binary space Φg because the inequation:

� · �p ≤ � · �g ≤ √
n × � · �p

is satisfied in the the S/D binary space Φg, where n is the dimensions of the real-encoding
phenotypic space Φp.

Proof : For ∀a, b ∈ Φg:

�a − b�g =
n

∑
i=1

|
l/n−1

∑
j=0

aj×n+i − bj×n+i

2j+1 |

=

√√√√(
n

∑
i=1

|
l/n−1

∑
j=0

aj×n+i − bj×n+i

2j+1 |)2

=

√√√√√√√√

∑n
i=1(∑

l/n−1
j=0

aj×n+i−bj×n+i

2j+1 )2

+∑1≤i1,i2≤n
i1 �=i2

(2× | ∑l/n−1
j=0

aj×n+i−bj×n+i1
2j+1 |

×|∑l/n−1
j=0

aj×n+i−bj×n+i2
2j+1 |)
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subregion (10) (the gray square), its first building block (BB) should be BB1 = 10. This leads
to the first two bits of the S/D binary string b. Likewise, in Figure 1-(b), Φp is partitioned

into 22×2 Φ
1
4
p , which are obtained through further bisecting each Φ

1
2
p along each direction.

Particularly this further divides Φ
1
2
p = (BB1) into four Φ

1
4
p that can be respectively labelled

by (BB1, 00), (BB1, 01), (BB1, 10) and (BB1, 11). The phenotype x is in (BB1, 01)-subregion
(the dark square), so its second BB should be BB2 = 01 and the first four positions of its
corresponding S/D binary string b is 1001.

In the same way, Φp is partitioned into 22×3 Φ
1
8
p as shown in Figure 1-(c), with Φ

1
4
p =

(BB1, BB2) particularly partitioned into four Φ
1
8
p labelled by (BB1, BB2, 00), (BB1, BB2, 01),

(BB1, BB2, 10) and (BB1, BB2, 11). The phenotype x is found to be (BB1, BB2, 01), that is,
identical with S/D binary string b. This shows that for any three region partitions, b =
(b1, b2, b3, b4, b5, b6), each bit value bi can be interpreted geometrically as follows: b1 = 0
(b2 = 0) means the phenotype x is in the left half along the x-coordinate direction (the
y-coordinate direction) in Φp partition with 1

2 -precision, and b1 = 1 (b2 = 1) means x is
in the right half. Therefore, the first BB1 = (b1, b2) determine the 1

2 -precision location of x.

If b3 = 0 (b4 = 0), it then further indicates that when Φ
1
2
p is refined into Φ

1
4
p , the x lies in the

left half of Φ
1
2
p in the x-direction (y-direction), and it lies in the right half if b3 = 1 (b4 = 1).

Thus a more accurate geometric location (i.e., the 1
4 -precision location) and a more refined BB2

of x is obtained. Similarly we can explain b5 and b6 and identify BB3, which determine the
1
8 -precision location of x. This interpretation holds for any high-resolution l bits S/D binary
encoding.

3.2 A new genotypic distance on the splicing/decomposable binary representation

For measuring the similarity of the binary strings, the Hamming distance (Hamming, 1980) is
widely used on the binary space. Hamming distance describes how many bits are different
in two binary strings, but cannot consider the scaled property in non-uniformly binary
representations. Thus, the distance distortion between the genotypic and the phenotypic
spaces make phenotypically easy problem more difficult. Therefore, to make sure that GAs
are able to reliably solve easy problems and problems of bounded complexity, the use of
equivalent distances is recommended. For this purpose, we have defined a new genotypic
distance on the S/D binary space to measure the similarity of the S/D binary strings.

Definition 1: Suppose any binary strings a and b belong to the S/D binary space Φg, the
genotypic distance �a − b�g is defined as

�a − b�g =
n

∑
i=1

|
l/n−1

∑
j=0

aj×n+i − bj×n+i

2j+1 |,

where l and n denote the length of the S/D binary strings and the dimensions of the
real-encoding phenotypic space Φp respectively.
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Fig. 2. The genotypic and phenotypic distances between ∗ ∗ ∗∗ and 0000 in the S/D binary
representation.

For any two S/D binary strings a, b ∈ Φg, we can define the Euclidean distance of their
correspond phenotypes:

�a − b�p =

√√√√ n

∑
i=1

(
l/n−1

∑
j=0

aj×n+i

2j+1 −
l/n−1

∑
j=0

bj×n+i

2j+1 )2,

as the phenotypic distance between the S/D binary strings a and b. The phenotypic distance
� · �p and the genotypic distance � · �g are equivalents in the S/D binary space Φg when we
consider the convergence process of GAs. We state this as the following theorem.

Theorem 1: The phenotypic distance � · �p and the genotypic distance � · �g are equivalents
in the S/D binary space Φg because the inequation:

� · �p ≤ � · �g ≤ √
n × � · �p

is satisfied in the the S/D binary space Φg, where n is the dimensions of the real-encoding
phenotypic space Φp.

Proof : For ∀a, b ∈ Φg:

�a − b�g =
n

∑
i=1

|
l/n−1

∑
j=0

aj×n+i − bj×n+i

2j+1 |

=

√√√√(
n

∑
i=1

|
l/n−1

∑
j=0

aj×n+i − bj×n+i

2j+1 |)2

=

√√√√√√√√

∑n
i=1(∑

l/n−1
j=0

aj×n+i−bj×n+i

2j+1 )2

+∑1≤i1,i2≤n
i1 �=i2

(2× | ∑l/n−1
j=0

aj×n+i−bj×n+i1
2j+1 |

×|∑l/n−1
j=0

aj×n+i−bj×n+i2
2j+1 |)
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�a − b�p ≤ �a − b�g ≤ √

n × �a − b�p.

Figure 2 shows the comparison of the genotypic distance � · �g and phenotypic distance � · �p
between S/D binary strings and 0000 in 2 dimensional phenotypic space, where the length of
the S/D binary string l = 4. For any two S/D binary strings a and b, if �a − 0�p > �b − 0�p,
then �a − 0�g > �b − 0�g is also satisfied. This means that � · �p and � · �g are equivalent
for considering the points’ sequence converge to 0. The searching process of GAs can be
recognized to explore the points’ sequence, which sequentially converge to optimum of the
problem. So we can use the new genotypic distance to measure the similarity and convergence
of the individuals on the S/D binary place.

The other advantage of the new genotypic distance � · �g is that its computational complexity
is O(l) and much lower than the computational complexity O(l2) of the phenotypic distance
� · �p. So using the new genotypic distance � · �g can guarantee GA to reliably and predictably
solve problems of bounded complexity and improve their performance when consider the
similarity of the individuals.

3.3 Theoretical analysis of the splicing/decomposable binary encoding

The above interpretation reveals an important fact that in the new genetic representation
the significance of the BB contribution to fitness of a whole S/D binary string varies as
its position goes from front to back, and, in particular, the more in front the BB position
lies, the more significantly it contributes to the fitness of the whole S/D binary string. We
refer such delicate feature of the new representation to as the BB-significance-variable property.
Actually, it is seen from the above interpretation that the first n bits of an encoding are
responsible for the location of the n dimensional phenotype x in a global way (particularly,
with O( 1

2 )-precision); the next group of n bits is responsible for the location of phenotype
x in a less global (might be called ‘local’) way, with O( 1

4 )-precision, and so forth; the last
group of n-bits then locates phenotype x in an extremely local (might be called ‘microcosmic’)
way (particularly, with O( 1

2�/n )-precision). Thus, we have seen that as the encoding length l
increases, the representation

(b1, b2, · · · , bn, bn+1, bn+2, · · · , b2n, · · · ,

b(�−n), b(�−n+1), · · · , bl)

= (BB1, BB2, · · · , BBl/n)

can provide a successive refinement (from global, to local, and to microcosmic), and more and
more accurate representation of the problem variables.
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Fig. 3. Domino genotypic at the S/D encodings.

In each BBi of the S/D binary string, which consists of the bits (bi×n+1, bi×n+2, · · · , b(i+1)×n),
i = 0, · · · , l/n − 1, these bits are uniformly scaled and independent each other. We refer
such delicate feature of BBi to as the uniform-salient BB (USBB). Furthermore, the splicing
different number of USBBs can describe the potential solutions of the problem with different
precisions. So, the intra-BB difficulty (within building block) and inter-BB difficulty (between
building blocks) (Goldberg, 2002) of USBB are low. The theoretical analysis reveals that GAs
searching on USBB can explore the high-quality bits faster than GAs on non-uniformly scaled
BB.

The S/D binary encoding is redundancy-free representation because using the S/D binary
strings to represent the real values is one-to-one genotype-phenotype mapping. The whole
S/D binary string is constructed by a non-uniformly scaled sequence of USBBs. The domino
convergence of GAs occurs and USBBs are solved sequentially from high to low scaled.

The BB-significance-variable and uniform-salient BB properties of the S/D binary
representation embody many important information useful to the GAs searching. We will
explore this information to design new GA based on the S/D binary representation in the
subsequent sections.

4. A new S/D binary Genetic Algorithm (SDGA)

The existing exponentially scaled representations including binary and gray encodings consist
of non-uniformly scaled BBs. For non-uniformly and competing BBs in the high dimensional
phenotype space, there are a lot of noise from the competing BBs lead to a reduction on the
performance of GAs. Moreover, by increasing the string length, more and more lower salient
BBs are randomly fixed due to the noise from the competing BBs, causing GAs performance to
decline. Using large population size can reduce the influence of the noise from the competing
BBs. However, in real-world problem, long binary string is necessary to encode a large search
space with high precision, and hence we cannot use too large population size to solve the
noise problem. Thus, GAs will be premature and cannon converge to the optimum of the
problem.

To avoid the noise from the competing BBs of GAs, we have proposed a new
splicing/decomposable GA (SDGA) based on the delicate properties of the S/D binary
representation. The whole S/D binary string can be decomposed into a non-uniformly scaled
sequence of USBBs. Thus, in the searching process of GAs on S/D binary encoding, the
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strings to represent the real values is one-to-one genotype-phenotype mapping. The whole
S/D binary string is constructed by a non-uniformly scaled sequence of USBBs. The domino
convergence of GAs occurs and USBBs are solved sequentially from high to low scaled.

The BB-significance-variable and uniform-salient BB properties of the S/D binary
representation embody many important information useful to the GAs searching. We will
explore this information to design new GA based on the S/D binary representation in the
subsequent sections.

4. A new S/D binary Genetic Algorithm (SDGA)

The existing exponentially scaled representations including binary and gray encodings consist
of non-uniformly scaled BBs. For non-uniformly and competing BBs in the high dimensional
phenotype space, there are a lot of noise from the competing BBs lead to a reduction on the
performance of GAs. Moreover, by increasing the string length, more and more lower salient
BBs are randomly fixed due to the noise from the competing BBs, causing GAs performance to
decline. Using large population size can reduce the influence of the noise from the competing
BBs. However, in real-world problem, long binary string is necessary to encode a large search
space with high precision, and hence we cannot use too large population size to solve the
noise problem. Thus, GAs will be premature and cannon converge to the optimum of the
problem.

To avoid the noise from the competing BBs of GAs, we have proposed a new
splicing/decomposable GA (SDGA) based on the delicate properties of the S/D binary
representation. The whole S/D binary string can be decomposed into a non-uniformly scaled
sequence of USBBs. Thus, in the searching process of GAs on S/D binary encoding, the
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Fig. 4. The genetic crossover and selection in SDGA.

domino convergence occurs and the length of the convergence window is equal to n, the
length of USBB. As shown in Figure 3 for 4 dimensional case, the high scaled USBBs are
already fully converged while the low scaled USBBs did not start to converge yet, and length
of the convergence window is 4.

In the SDGA, genetic operators apply from the high scaled to the low scaled USBBs
sequentially. The process of the crossover and selection in SDGA is shown in Figure 4. For
two individuals x1 and x2 randomly selected from current population, The crossover point
randomly set in the convergence window USBB and the crossover operator two children c1,
c2. The parents x1, x2 and their children c1, c2 can be divided into two pairs {x1, c1} and {x2, c2}.
In each pair {xi, ci}(i = 1, 2), the parent and child have the same low scaled USBBs. The select
operator will conserve the better one of each pair into next generation according to the fitness
calculated by the whole S/D binary string for high accuracy. Thus, the bits contributed to high
fitness in the convergence window USBB will be preserved, and the diversity at the low scaled
USBBs’ side will be maintain. The mutation will operate on the convergence window and not
yet converged USBBs according to the mutation probability to increase the diversity in the
population. These low salient USBBs will converge due to GAs searching to avoid the noise
from the competing BBs. The implementation pseudocode for SDGA algorithm is shown in
Figure 5.

Since identifying high-quality bits in the convergence window USBB of GAs is faster than that
GAs on the non-uniform BB, while no noise from the competing BBs occurs. Thus, population
can efficiently converge to the high-quality BB in the position of the convergence window
USBB, which are a component of overrepresented optimum of the problem. According to
theoretical results of Thierens (Thierens, 1995), the overall convergence time complexity of the
new GA with the S/D binary representation is approximately of order O(l/

√
n), where l is

the length of the S/D binary string and n is the dimensions of the problem. This is much faster
than working on the binary strings as a whole where GAs have a approximate convergence
time of order O(l). The gain is especially significant for high dimension problems.

5. Empirical verification

In this section we present an empirical verification of the performance differences between the
different genetic representations and operators we described in the previous sections.
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Input: N—population size, m—number of USBBs,
g—number of generations to run;

Termination condition: Population fully converged;
begin

g ←− 0;
m ←− 1;
Initialize Pg;
Evaluate Pg;
while (not termination condition) do
for t ←− 1 to N/2;
randomly select two individuals x1

t and x2
t from Pg;

crossover and selection x1
t , x2

t into Pg+1;
end for
mutation operation Pg+1;
Evaluate Pg+1;
if (USBBm fully converged) m ←− m + 1;

end while
end

Fig. 5. Pseudocode for SDGA algorithm.

5.1 Two integer benchmark optimization problems

In our experimentation, we use integer-specific variations of the one-max and the
fully-deceptive trap problems for a comparison of different genetic representations defined
on binary strings.

The integer one-max problem is defined as

f1(x1, x2, · · · , xn) =
n

∑
i=1

xi,

and the integer deceptive trap is

f2(x1, x2, · · · , xn) =

{
∑n

i=1 xi : if each i, xi = xi,max
∑n

i=1 xi,max − ∑n
i=1 xi − 1 : else.

where x ∈ Φp and n is the dimension of the problems. In our implementation, we set n = 30.
For the binary representation, the integer one-max problem is equal to the BinInt problem
[Rudnick, 1992]. These two problems have an exponential salience or fitness structure for
binary strings. The integer one-max problem is a fully easy problem, whereas the integer
deceptive trap should be fully difficult to solve for GAs.

5.2 Comparison of the performance of GAs with different representations

In the first set of experiments we applied a standard GA (SGA) using binary, gray, unary, S/D
encodings and SDGA on the integer one-max and deceptive trap problems to compare their
performance. We performed 50 runs and each run was stopped after the population was fully
converged. That means that all individuals in the population are the same. For fairness of
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from the competing BBs. The implementation pseudocode for SDGA algorithm is shown in
Figure 5.
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n), where l is
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[Rudnick, 1992]. These two problems have an exponential salience or fitness structure for
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Fig. 6. Integer one-max problem of order 3.
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Fig. 7. Integer one-max problem of order 5.

comparison, we implemented SGA with different binary encodings and SDGA with the same
parameter setting and the same initial population. For SGA, we used one-point crossover
operator (crossover probability=1) and tournament selection operator without replacement
of size two. We used no mutation as we wanted to focus on the influence of genetic
representations on selectorecombinative GAs.

For the one-max problem, we used 30 dimensional problem for order 2 (in each dimension,
the number of different phenotypes s = 22 = 4), 3 (s = 23 = 8), 4 (s = 24 = 16) and 5
(s = 25 = 32). Because in our implementation, the global optima of deceptive trap problems
with low orders cannon be explored by all GAs we used. The deceptive trap problems with
high orders are more difficult than those with low orders and are not solvable by GAs. Here,
we only present results for the 30 dimensional deceptive trap problems of order 2 (s = 22 = 4)
and 3 (s = 23 = 8). Using binary, gray and S/D encoding results for the order 2 problems in
a string length l = 60, for order 3 in l = 90, for order 4 in l = 120, and for order 5 in l = 150.
When using unary encoding we need 30 × 3 = 90 bits for order 2, 30 × 7 = 210 bits for order
3, 30 × 15 = 450 bits for order 4 and 30 × 31 = 930 bits for order 5 problems.

Figures 6-7 present the results for the integer one-max problem of orders 3 and 5 respectively,
and Figures 8-9 show the results for integer deceptive trap problems of orders 2 and 3
respectively. The plots show for SGA with different representations and SDGA the best fitness
at the end of the run (left) and the run duration — fully converged generation (right) with
respect to the population size N.
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Fig. 8. Deceptive trap problem of order 2.
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Fig. 9. Deceptive trap problem of order 3.

SGA with different scaled binary representations including binary, gray and S/D encodings
complies the noise from the competing BBs. For small population sizes, the noise from the
competing BBs strongly occurs and many bits in the binary strings are randomly fixed, so
SGA fully converged faster but the best fitness is too bad. That means SGA is premature using
small population sizes. For larger population sizes, SGA can explore better solutions, but its
run duration is significantly increasing due to the noise from the competing BBs. Furthermore,
for these high dimensional problems, the population size increases to 300 still not enough
to avoid the noise from the competing BBs, so SGA cannot converge to the optima of the
problems, which are overrepresented by BBs.

Due to the problems of the unary encoding with redundancy, which result in an
underrepresentation of the optimal solution, SGA using unary encoding perform increasingly
badly with increasing problem orders. Therefore, for one-max and deceptive trap problems
of order more than three the performance of SGA using unary encoding performance is
significantly worse than when using binary, gray and S/D encodings. SGA with gray
encoding performs worse than the binary encoding for the one-max problems, and better
for the deceptive trap problems.

As expected, SGA using S/D encoding performs better than that using binary and gray
encodings for the one-max and the deceptive trap problems. Because in S/D encoding, more
salient bits are continuous to construct short and high fit BBs, which are easily identified
by SGA. This reveals that the S/D encoding is proper for GAs searching. However, lower
salient bits in S/D binary string are randomly fixed by the noise from the competing BBs, the
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Fig. 6. Integer one-max problem of order 3.
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Fig. 7. Integer one-max problem of order 5.

comparison, we implemented SGA with different binary encodings and SDGA with the same
parameter setting and the same initial population. For SGA, we used one-point crossover
operator (crossover probability=1) and tournament selection operator without replacement
of size two. We used no mutation as we wanted to focus on the influence of genetic
representations on selectorecombinative GAs.

For the one-max problem, we used 30 dimensional problem for order 2 (in each dimension,
the number of different phenotypes s = 22 = 4), 3 (s = 23 = 8), 4 (s = 24 = 16) and 5
(s = 25 = 32). Because in our implementation, the global optima of deceptive trap problems
with low orders cannon be explored by all GAs we used. The deceptive trap problems with
high orders are more difficult than those with low orders and are not solvable by GAs. Here,
we only present results for the 30 dimensional deceptive trap problems of order 2 (s = 22 = 4)
and 3 (s = 23 = 8). Using binary, gray and S/D encoding results for the order 2 problems in
a string length l = 60, for order 3 in l = 90, for order 4 in l = 120, and for order 5 in l = 150.
When using unary encoding we need 30 × 3 = 90 bits for order 2, 30 × 7 = 210 bits for order
3, 30 × 15 = 450 bits for order 4 and 30 × 31 = 930 bits for order 5 problems.

Figures 6-7 present the results for the integer one-max problem of orders 3 and 5 respectively,
and Figures 8-9 show the results for integer deceptive trap problems of orders 2 and 3
respectively. The plots show for SGA with different representations and SDGA the best fitness
at the end of the run (left) and the run duration — fully converged generation (right) with
respect to the population size N.
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Fig. 8. Deceptive trap problem of order 2.
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Fig. 9. Deceptive trap problem of order 3.

SGA with different scaled binary representations including binary, gray and S/D encodings
complies the noise from the competing BBs. For small population sizes, the noise from the
competing BBs strongly occurs and many bits in the binary strings are randomly fixed, so
SGA fully converged faster but the best fitness is too bad. That means SGA is premature using
small population sizes. For larger population sizes, SGA can explore better solutions, but its
run duration is significantly increasing due to the noise from the competing BBs. Furthermore,
for these high dimensional problems, the population size increases to 300 still not enough
to avoid the noise from the competing BBs, so SGA cannot converge to the optima of the
problems, which are overrepresented by BBs.

Due to the problems of the unary encoding with redundancy, which result in an
underrepresentation of the optimal solution, SGA using unary encoding perform increasingly
badly with increasing problem orders. Therefore, for one-max and deceptive trap problems
of order more than three the performance of SGA using unary encoding performance is
significantly worse than when using binary, gray and S/D encodings. SGA with gray
encoding performs worse than the binary encoding for the one-max problems, and better
for the deceptive trap problems.

As expected, SGA using S/D encoding performs better than that using binary and gray
encodings for the one-max and the deceptive trap problems. Because in S/D encoding, more
salient bits are continuous to construct short and high fit BBs, which are easily identified
by SGA. This reveals that the S/D encoding is proper for GAs searching. However, lower
salient bits in S/D binary string are randomly fixed by the noise from the competing BBs, the
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performance of SGA with S/D encoding cannot significantly better than those with binary
and gray encodings.

As shown Figure 6-9, the performance of SDGA is significantly better than SGA with different
encodings. Using small population size, the explored solutions when SDGA fully converged
are much better than those of SGA because each bit is identified by the searching process
of SDGA, and not randomly fixed by the noise from the competing BBs. According to the
same reason, the run duration of SDGA is longer than that of SGA. That means there no
premature and drift occur. For larger population sizes, the performance of SDGA is much
better than that of SGA due to the high-quality solutions and short run duration, because
GAs search on USBBs of S/D binary encoding faster than the non-uniformly scaled BBs and
domino converge, which occurs only on the non-uniformly sequence of USBBs, is too weak.

one-max (order 2) one-max (order 3) one-max (order 4)
Pm best fit. run dur. best fit. run dur. best fit. run dur.

(St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.)

SDGA 89.6 383.1 209.2 577.3 448.1 768.7
(1.24) (43.6) (2.9) (77.4) (6.8) (107.2)

S/D 81.1 446.1 180.9 597 375.9 694.9
coding (9.8) (187.4) (21.16) (287) (54.3) (377.2)
Binary 80.1 473.7 177.7 651 370.5 748.8

(10.3) (192.7) (21.9) (316.8) (42.2) (398)
Gray 78.3 496.9 173.1 691.2 365.2 803.6

(9.6) (196.3) (20.5) (328.5) (42.2) (434.8)
Unary 76.1 536.8 150.5 844.2 281.5 1006

(10.6) (218.5) (21.3) (416.7) (26.6) (558.4)

one-max (order 5) decep. (order 2) decep. (order 3)
SDGA 926.6 952.9 88.74 380 208.1 573.1

(9.8) (118.2) (0.78) (48) (2.8) (75.6)
S/D 777.1 761.8 80.02 428 182.9 602.9

coding (101) (422.4) (9.7) (173) (21.6) (285.4)
Binary 752.6 838.6 77.16 482 172.8 690.1

(91) (481.6) (9.1) (192) (21.1) (334.8)
Gray 719.8 909.5 78.76 453 177.9 647

(87.9) (502) (9.4) (183) (21.8) (309.5)
Unary 560.8 1216 74.18 549 150.7 882.7

(72.4) (726.9) (10.5) (221) (20.6) (451.9)

Table 1. Comparison of results of SGA with different binary representations and SDGA for
the one-max and deceptive problems.

Table 1 summarizes the experimental results for the one-max and the deceptive trip problems.
The best fitness ( run duration) of each problem is calculated as the average of the fitness
(generations) GAs fully converged with different population sizes.

The average fitness of SDGA is much better than that of other SGA. The standard deviations
of best fitness and run duration of SDGA for different problems are significantly smaller than
other SGA. That reveals the population size is important parameter for SGA searching, but
does not the significant parameter for SDGA searching. The run durations of SDGA for
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Fig. 10. Convergence process of SDGA without the noise from the competing BBs.

one-max problems with orders 4 and 5 are longer than those of SGA because SGA is strongly
premature for the long binary string and small population sizes.

As in Table 1 described, for one-max and deceptive trap problems, all GAs converge to
sidewise of the optima, which are overrepresented by BBs. But SGA with different binary
representation cannot explore the optima of the problems. The ability of SDGA to explore
optima, which are overrepresented by BBs, is significantly better than SGA. To explore the
global optimum of the deceptive trap problems, we need use other niche methods to divide
the whole population into some sub-populations. In each subpopulation, the global optimum
is overrepresented by BBs, thus SDGA can efficiently explore this global optimum of the
deceptive trap problems.

5.3 Avoid the noise from the competing BBs

To validate the predictions about avoiding the noise from the competing BBs, We have
implemented our SDGA to solve 30 dimensional integer one-max problem of order 3. We
have counted the number of generations it takes before each of bits fully converges. Results
are averaged over 50 independent runs. Figure 10 shows the bits convergence for a string of
length l = 90, and the population sizes are 20, 100, 200, 300 respectively. The experimental
results are summered in Table 2. The run duration of each USBBi, (i = 1, 2, 3) is an average of
the fully converged generations of the bits, which belong to the USBBi.

As shown in Figure 10 and Table 2, the whole S/D binary string includes three USBBs. In each
USBB, the bits converge uniformly at almost same generations. For a non-uniform scaled
sequence of USBBs, the domino converge occurs sequentially from high scaled to low scaled
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performance of SGA with S/D encoding cannot significantly better than those with binary
and gray encodings.

As shown Figure 6-9, the performance of SDGA is significantly better than SGA with different
encodings. Using small population size, the explored solutions when SDGA fully converged
are much better than those of SGA because each bit is identified by the searching process
of SDGA, and not randomly fixed by the noise from the competing BBs. According to the
same reason, the run duration of SDGA is longer than that of SGA. That means there no
premature and drift occur. For larger population sizes, the performance of SDGA is much
better than that of SGA due to the high-quality solutions and short run duration, because
GAs search on USBBs of S/D binary encoding faster than the non-uniformly scaled BBs and
domino converge, which occurs only on the non-uniformly sequence of USBBs, is too weak.
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Unary 76.1 536.8 150.5 844.2 281.5 1006

(10.6) (218.5) (21.3) (416.7) (26.6) (558.4)

one-max (order 5) decep. (order 2) decep. (order 3)
SDGA 926.6 952.9 88.74 380 208.1 573.1

(9.8) (118.2) (0.78) (48) (2.8) (75.6)
S/D 777.1 761.8 80.02 428 182.9 602.9

coding (101) (422.4) (9.7) (173) (21.6) (285.4)
Binary 752.6 838.6 77.16 482 172.8 690.1

(91) (481.6) (9.1) (192) (21.1) (334.8)
Gray 719.8 909.5 78.76 453 177.9 647

(87.9) (502) (9.4) (183) (21.8) (309.5)
Unary 560.8 1216 74.18 549 150.7 882.7

(72.4) (726.9) (10.5) (221) (20.6) (451.9)

Table 1. Comparison of results of SGA with different binary representations and SDGA for
the one-max and deceptive problems.

Table 1 summarizes the experimental results for the one-max and the deceptive trip problems.
The best fitness ( run duration) of each problem is calculated as the average of the fitness
(generations) GAs fully converged with different population sizes.

The average fitness of SDGA is much better than that of other SGA. The standard deviations
of best fitness and run duration of SDGA for different problems are significantly smaller than
other SGA. That reveals the population size is important parameter for SGA searching, but
does not the significant parameter for SDGA searching. The run durations of SDGA for
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Fig. 10. Convergence process of SDGA without the noise from the competing BBs.

one-max problems with orders 4 and 5 are longer than those of SGA because SGA is strongly
premature for the long binary string and small population sizes.

As in Table 1 described, for one-max and deceptive trap problems, all GAs converge to
sidewise of the optima, which are overrepresented by BBs. But SGA with different binary
representation cannot explore the optima of the problems. The ability of SDGA to explore
optima, which are overrepresented by BBs, is significantly better than SGA. To explore the
global optimum of the deceptive trap problems, we need use other niche methods to divide
the whole population into some sub-populations. In each subpopulation, the global optimum
is overrepresented by BBs, thus SDGA can efficiently explore this global optimum of the
deceptive trap problems.

5.3 Avoid the noise from the competing BBs

To validate the predictions about avoiding the noise from the competing BBs, We have
implemented our SDGA to solve 30 dimensional integer one-max problem of order 3. We
have counted the number of generations it takes before each of bits fully converges. Results
are averaged over 50 independent runs. Figure 10 shows the bits convergence for a string of
length l = 90, and the population sizes are 20, 100, 200, 300 respectively. The experimental
results are summered in Table 2. The run duration of each USBBi, (i = 1, 2, 3) is an average of
the fully converged generations of the bits, which belong to the USBBi.

As shown in Figure 10 and Table 2, the whole S/D binary string includes three USBBs. In each
USBB, the bits converge uniformly at almost same generations. For a non-uniform scaled
sequence of USBBs, the domino converge occurs sequentially from high scaled to low scaled
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population run duration run duration run duration
size of USBB1 of USBB2 of USBB3

20 47.3(8.2) 193.7(12.7) 365.6(13.8)
100 116.6(6.8) 263.2(7.8) 470.8(12.1)
200 167.4(7.7) 366.5(6.7) 559.6(13.9)
300 220.3(7.0) 430.8(6.6) 633.6(7.8)

Table 2. Comparison of the run durations of USBBs fully converged with different
population sizes.(Standard Deviation)

USBBs. Thus, no less salient bit converges with more salient bit at same generations and no
noise from the competing BBs occurs.

On the other hand, we know the noise from the competing BBs strongly occurs when GAs
using a small population size. In our implementations, when the population size of SDGA is
small to 20, the convergence process of bits is as same as SDGA using large population size.
The low scaled USBBs converge during long generations by SDGA and no noise from the
competing BBs occurs.

It is clear form Figure 10 and Table 2 that the predictions and the experimental results coincide
very well.

5.4 SDGA with the mutation operator

In this subsection we have consider the action of the mutation operator for SDGA
searching. We have implemented our SDGA with different mutation probabilities to
solve 30 dimensional integer one-max problem of order 3. Results are averaged over 50
independent runs. Figure 11 presents the experimental results where mutation probabilities
are 0.001, 0.005, 0.01, 0.05 and 0.1 respectively. The plots show for SDGA the run duration —
fully converged generations with respect to the population size N.

As shown in Figure 11, when the mutation probabilities are smaller than 0.01, SDGA can fully
converge with small and large population sizes and the run durations do not increase too
long. When the mutation probabilities increase larger than 0.01, SDGA with large population
sizes are difficult to fully converge, and only when using small population sizes, SDGA can
fully converge, but the run durations increase significantly.

Table 3 summaries the experimental results with population sizes 20, 40 and 60. For small
population sizes (20 and 40), the mutation operators can improve the performance of SDGA,
because it can find some high-quality bits, which are not included in current population. For
large population sizes (≥ 60), all high-quality bits are included in the initial population, so
mutation operator cannot improve the best fitness when SDGA fully converged. Furthermore,
when the mutation probability is large than 0.01, SDGA cannot fully converge in a reasonable
time (here we set the upper bound of the run duration equal to 106 generations).

5.5 Genotypic distance on the S/D binary representation

To validate the predictions about the methods depended on the distance of real-valued space,
can be directly used on the S/D binary space based on our new defined genotypic distance, we
have combined SGA with the S/D binary encoding and the dynamic niche sharing methods
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N = 20 N = 40 N = 60
Pm best fit. run dur. best fit. run dur. best fit. run dur.

(St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.)

0 198.6 393 208.9 470 210 488
(5.7) (72) (1.2) (55) (0) (54)

0.001 201.7 411 209.4 472 210 517
(100) (49) (1.2) (43) (0) (54)

0.005 202.7 422 208.9 492 210 535
(2.9) (55) (1.3) (82) (0) (89)

0.01 203.8 415 209.1 504 210 545
(2.2) (59) (1.2) (76) (0) (80)

0.05 209.3 534 209.9 739 210 1202
(1) (158) (0.3) (202) (0) (317)

0.1 209.8 688 210 5629 210 66514
(0.6) (133) (0) (1857) (0) (21328)

0.2 209.8 10981 − − − −
(0.4) (7668) (−) (−) (−) (−)

Table 3. Comparison of results of SDGA with different mutation probabilities for one-max
problem of order 3. (“-": cannot fully converged during 106 generations)
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Fig. 11. SDGA with the mutation operator by different mutation probabilities for one-max
problem of order 3.
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population run duration run duration run duration
size of USBB1 of USBB2 of USBB3
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100 116.6(6.8) 263.2(7.8) 470.8(12.1)
200 167.4(7.7) 366.5(6.7) 559.6(13.9)
300 220.3(7.0) 430.8(6.6) 633.6(7.8)

Table 2. Comparison of the run durations of USBBs fully converged with different
population sizes.(Standard Deviation)

USBBs. Thus, no less salient bit converges with more salient bit at same generations and no
noise from the competing BBs occurs.

On the other hand, we know the noise from the competing BBs strongly occurs when GAs
using a small population size. In our implementations, when the population size of SDGA is
small to 20, the convergence process of bits is as same as SDGA using large population size.
The low scaled USBBs converge during long generations by SDGA and no noise from the
competing BBs occurs.

It is clear form Figure 10 and Table 2 that the predictions and the experimental results coincide
very well.

5.4 SDGA with the mutation operator

In this subsection we have consider the action of the mutation operator for SDGA
searching. We have implemented our SDGA with different mutation probabilities to
solve 30 dimensional integer one-max problem of order 3. Results are averaged over 50
independent runs. Figure 11 presents the experimental results where mutation probabilities
are 0.001, 0.005, 0.01, 0.05 and 0.1 respectively. The plots show for SDGA the run duration —
fully converged generations with respect to the population size N.

As shown in Figure 11, when the mutation probabilities are smaller than 0.01, SDGA can fully
converge with small and large population sizes and the run durations do not increase too
long. When the mutation probabilities increase larger than 0.01, SDGA with large population
sizes are difficult to fully converge, and only when using small population sizes, SDGA can
fully converge, but the run durations increase significantly.

Table 3 summaries the experimental results with population sizes 20, 40 and 60. For small
population sizes (20 and 40), the mutation operators can improve the performance of SDGA,
because it can find some high-quality bits, which are not included in current population. For
large population sizes (≥ 60), all high-quality bits are included in the initial population, so
mutation operator cannot improve the best fitness when SDGA fully converged. Furthermore,
when the mutation probability is large than 0.01, SDGA cannot fully converge in a reasonable
time (here we set the upper bound of the run duration equal to 106 generations).

5.5 Genotypic distance on the S/D binary representation

To validate the predictions about the methods depended on the distance of real-valued space,
can be directly used on the S/D binary space based on our new defined genotypic distance, we
have combined SGA with the S/D binary encoding and the dynamic niche sharing methods
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Fig. 12. Comparison of results of the dynamic niche sharing methods with S/D genotypic
distance and Hamming distance for f3(x). (key: “o" — the optima in the final population)

[Miller] for multimodal function optimization to solve 4 benchmark multimodal optimization
problems as listed in Table 4. To assess the effectiveness of the new genotypic distance on
the S/D binary space, its performance is compared with the combination of SGA with S/D
binary representation and the dynamic niche sharing methods based on Hamming distance.
In applying SGA, we set the initial population size N = 100, the maximal generations gmx =
1000, the length of S/D binary string for each dimension l/n = 32, the crossover probability
pc = 0.8 and the mutation probability pm = 0.005.

Two-peak trap function (2 peaks):

f3(x) =

⎧⎨
⎩

200
2 (2 − x), for 0 ≤ x < 2;

190
18 (x − 2), for 2 ≤ x ≤ 20;

Deb’s function (5 peaks):

f4(x) = sin6(5πx), x ∈ [0, 1];

Deb’s decreasing function (5 peaks):

f5(x) = 2−2((x−0.1)/0.9)2
sin6(5πx), x ∈ [0, 1];

Roots function (6 peaks):

f6(x) =
1

1 + |x6 − 1| , where x ∈ C, x = x1 + ix2 ∈ [−2, 2];

Table 4. The test suite of multimodal functions used in our experiments.

Figures 12 - 15 show the comparison results of the dynamic niche sharing methods with the
S/D genotypic distance and Hamming distance for f3(x)− f6(x), respectively. Table 5 lists the
solution quality comparison results in terms of the numbers of multiple optima maintained.
We have run each algorithm 10 times. The dynamic niche sharing methods with the S/D
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Fig. 13. Comparison of results of the dynamic niche sharing methods with S/D genotypic
distance and Hamming distance for f4(x). (key: “o" — the optima in the final population)

genotypic distance can explore all optima in f3(x) − f6(x) at each run. Contrary, for the
niche methods with Hamming distance, the final population converged to a single optimum
of the multimodal problem and cannot find multiply optima. That means the niche method
cannon work due to the distance distortion between genotypic space (S/D binary space) and
phenotypic space (real-valued space) when using Hamming distance.

The experimental investigations reveal that the methods depended on the Euclidean distance
on the real-valued space can be directly used on the S/D binary space with our new defined
genotypic distance.

Distance S/D genotypic distance Hamming distance
threshold Optima No. Success rate Optima No. Success rate

f3 2.0 2 100% 1 0%
f4 0.16 5 100% 1 0%
f5 0.16 5 100% 1 0%
f6 0.8 6 100% 1 0%

Table 5. Comparison of results of the dynamic niche sharing methods with the S/D
genotypic distance and Hamming distance.

6. Discussion

This paper has given for the first time a uniform-salient building block (USBB) in the S/D
binary representation, which include uniformly scaled bits. This assumes that the phenotypic
space Φp is uniformly scaled in each dimension. If the assumption is not be satisfied, we need
to normalize the phenotypic space Φp first, then encoding the normalized phenotypic space
Φ�

p into the S/D binary space Φg to guarantee that the bits in each USBB have same scaled.

SDGA applies on the S/D binary representation and converges from high scaled to low
scaled USBBs sequentially. However, when the convergence window USBB cannon converge
to single high-quality BB, there maybe are some high-quality BBs existing to describe
different optima of the problem. At this time, we need to use some other methods (e.g.
the niche methods) to divide the whole population into several sub-populations and each
sub-population focus on each optimum. Thus, each optimum will be overrepresented by
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Fig. 12. Comparison of results of the dynamic niche sharing methods with S/D genotypic
distance and Hamming distance for f3(x). (key: “o" — the optima in the final population)

[Miller] for multimodal function optimization to solve 4 benchmark multimodal optimization
problems as listed in Table 4. To assess the effectiveness of the new genotypic distance on
the S/D binary space, its performance is compared with the combination of SGA with S/D
binary representation and the dynamic niche sharing methods based on Hamming distance.
In applying SGA, we set the initial population size N = 100, the maximal generations gmx =
1000, the length of S/D binary string for each dimension l/n = 32, the crossover probability
pc = 0.8 and the mutation probability pm = 0.005.
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f6(x) =
1

1 + |x6 − 1| , where x ∈ C, x = x1 + ix2 ∈ [−2, 2];

Table 4. The test suite of multimodal functions used in our experiments.

Figures 12 - 15 show the comparison results of the dynamic niche sharing methods with the
S/D genotypic distance and Hamming distance for f3(x)− f6(x), respectively. Table 5 lists the
solution quality comparison results in terms of the numbers of multiple optima maintained.
We have run each algorithm 10 times. The dynamic niche sharing methods with the S/D
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genotypic distance can explore all optima in f3(x) − f6(x) at each run. Contrary, for the
niche methods with Hamming distance, the final population converged to a single optimum
of the multimodal problem and cannot find multiply optima. That means the niche method
cannon work due to the distance distortion between genotypic space (S/D binary space) and
phenotypic space (real-valued space) when using Hamming distance.

The experimental investigations reveal that the methods depended on the Euclidean distance
on the real-valued space can be directly used on the S/D binary space with our new defined
genotypic distance.

Distance S/D genotypic distance Hamming distance
threshold Optima No. Success rate Optima No. Success rate

f3 2.0 2 100% 1 0%
f4 0.16 5 100% 1 0%
f5 0.16 5 100% 1 0%
f6 0.8 6 100% 1 0%

Table 5. Comparison of results of the dynamic niche sharing methods with the S/D
genotypic distance and Hamming distance.

6. Discussion

This paper has given for the first time a uniform-salient building block (USBB) in the S/D
binary representation, which include uniformly scaled bits. This assumes that the phenotypic
space Φp is uniformly scaled in each dimension. If the assumption is not be satisfied, we need
to normalize the phenotypic space Φp first, then encoding the normalized phenotypic space
Φ�

p into the S/D binary space Φg to guarantee that the bits in each USBB have same scaled.

SDGA applies on the S/D binary representation and converges from high scaled to low
scaled USBBs sequentially. However, when the convergence window USBB cannon converge
to single high-quality BB, there maybe are some high-quality BBs existing to describe
different optima of the problem. At this time, we need to use some other methods (e.g.
the niche methods) to divide the whole population into several sub-populations and each
sub-population focus on each optimum. Thus, each optimum will be overrepresented by
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Fig. 14. Comparison of results of the dynamic niche sharing methods with S/D genotypic
distance and Hamming distance for f5(x). (key: “o" — the optima in the final population)
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Fig. 15. Comparison of results of the dynamic niche sharing methods with S/D genotypic
distance and Hamming distance for f6(x). (key: “o" — the optima in the final population)

BBs in its sub-population and SDGA can efficiently explore all the optima using these
sub-populations.

7. Conclusions

In this paper, we introduce a new genetic representation — a splicing/decomposable
(S/D) binary encoding, which was proposed based on some theoretical guidance and
existing recommendations for designing efficient genetic representations. The S/D binary
representation can be spliced and decomposed to describe potential solutions of the problem
with different precisions by different number of uniform-salient building blocks (USBBs).
According to the characteristics of the S/D binary representation, genetic and evolutionary
algorithms (GEAs) can be applied from the high scaled to the low scaled BBs sequentially to
avoid the noise from the competing BBs and improve GEAs’ performance. Our theoretical and
empirical investigations reveal that the S/D binary representation is more proper than other
existing binary encodings for GEAs searching. Moreover, we define a new genotypic distance
on the S/D binary space, which is equivalent to the Euclidean distance on the real-valued
space during GEAs convergence. Based on the new genotypic distance, GEAs can reliably
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and predictably solve problems of bounded complexity and the methods depended on the
Euclidean distance for solving different kinds of optimization problems can be directly used
on the S/D binary space.
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BBs in its sub-population and SDGA can efficiently explore all the optima using these
sub-populations.

7. Conclusions

In this paper, we introduce a new genetic representation — a splicing/decomposable
(S/D) binary encoding, which was proposed based on some theoretical guidance and
existing recommendations for designing efficient genetic representations. The S/D binary
representation can be spliced and decomposed to describe potential solutions of the problem
with different precisions by different number of uniform-salient building blocks (USBBs).
According to the characteristics of the S/D binary representation, genetic and evolutionary
algorithms (GEAs) can be applied from the high scaled to the low scaled BBs sequentially to
avoid the noise from the competing BBs and improve GEAs’ performance. Our theoretical and
empirical investigations reveal that the S/D binary representation is more proper than other
existing binary encodings for GEAs searching. Moreover, we define a new genotypic distance
on the S/D binary space, which is equivalent to the Euclidean distance on the real-valued
space during GEAs convergence. Based on the new genotypic distance, GEAs can reliably
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1. Introduction 
The genetic algorithm (GA) is an optimization and search technique based on the principles 
of genetics and natural selection. A GA allows a population composed of many individuals 
to evolve under specified selection rules to a state that maximizes the “fitness” (i.e., 
minimizes the cost function). The fundamental principle of natural selection as the main 
evolutionary principle has been formulated by Charles Darwin, without any knowledge 
about genetic mechanism. After many years of research, he assumed that parents qualities 
mix together in the offspring organism. Favorable variations are preserved, while the 
unfavorable are rejected. There are more individuals born than can survive, so there is a 
continuous struggle for life. Individuals with an advantage have a greater chance for 
survive i.e., the “survival of the fittest”. This theory arose serious objections to its time, even 
after the discovering of the Mendel’s laws, and only in 1920s “was it proved that Mendel’s 
genetics and Darwin’s theory of natural selection are in no way conflicting and that their 
happy marriage yields modern evolutionary theory” (Michalewicz, 1996). 

The dynamical principles underlying Darwin’s concept of evolution have been used to 
provide the basis for a new class of algorithms that are able to solve some difficult problems 
in computation. These “computational equivalents of natural selection, called 
evolutionary algorithms, act by successively improving a set or generation of candidate 
solutions to a given problem, using as a criterion how fit or adept they are at solving the 
problem.” (Forbes, 2005). Evolutionary algorithms (EAs) are highly parallel, which makes 
solving these difficult problems more tractable, although usually the computation effort is 
huge.  

In this chapter we focus on some applications of the GAs in Digital Electronic Design, using 
the concept of extrinsic Evolvable Hardware (EHW). But first of all, we present the genesis 
of the main research directions in Evolutionary Computation, the structure of a Simple 
Genetic Algorithm (SGA), and a classification of GAs, taking into account the state of the art 
in this field of research.  

2. A brief history of evolutionary computation  
In the 1950s and the 1960s several computer scientists independently studied evolutionary 
systems with the idea that evolution could be used as an optimization tool for engineering 
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1. Introduction 
The genetic algorithm (GA) is an optimization and search technique based on the principles 
of genetics and natural selection. A GA allows a population composed of many individuals 
to evolve under specified selection rules to a state that maximizes the “fitness” (i.e., 
minimizes the cost function). The fundamental principle of natural selection as the main 
evolutionary principle has been formulated by Charles Darwin, without any knowledge 
about genetic mechanism. After many years of research, he assumed that parents qualities 
mix together in the offspring organism. Favorable variations are preserved, while the 
unfavorable are rejected. There are more individuals born than can survive, so there is a 
continuous struggle for life. Individuals with an advantage have a greater chance for 
survive i.e., the “survival of the fittest”. This theory arose serious objections to its time, even 
after the discovering of the Mendel’s laws, and only in 1920s “was it proved that Mendel’s 
genetics and Darwin’s theory of natural selection are in no way conflicting and that their 
happy marriage yields modern evolutionary theory” (Michalewicz, 1996). 

The dynamical principles underlying Darwin’s concept of evolution have been used to 
provide the basis for a new class of algorithms that are able to solve some difficult problems 
in computation. These “computational equivalents of natural selection, called 
evolutionary algorithms, act by successively improving a set or generation of candidate 
solutions to a given problem, using as a criterion how fit or adept they are at solving the 
problem.” (Forbes, 2005). Evolutionary algorithms (EAs) are highly parallel, which makes 
solving these difficult problems more tractable, although usually the computation effort is 
huge.  

In this chapter we focus on some applications of the GAs in Digital Electronic Design, using 
the concept of extrinsic Evolvable Hardware (EHW). But first of all, we present the genesis 
of the main research directions in Evolutionary Computation, the structure of a Simple 
Genetic Algorithm (SGA), and a classification of GAs, taking into account the state of the art 
in this field of research.  

2. A brief history of evolutionary computation  
In the 1950s and the 1960s several computer scientists independently studied evolutionary 
systems with the idea that evolution could be used as an optimization tool for engineering 
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problems. The idea in all these systems was to evolve a population of candidate solutions to 
a given problem, using operators inspired by natural genetic variation and natural selection. 

In the 1960s, two german scientists, Ingo Rechenberg and Hans-Paul Schwefel introduced 
"evolution strategies", a method they used to optimize real−valued parameters for the shape 
of airplane wings. The field of evolution strategies “has remained an active area of research, 
mostly developing independently from the field of genetic algorithms (although recently the 
two communities have begun to interact)” (Mitchell, 1997). Around the same time, 
completely independently, american scientist Lawrence Fogel developed a method of 
computational problem solving he termed “evolutionary programming”, a technique in 
which candidate solutions to given tasks were represented as finite−state machines, which 
were evolved by randomly mutating their state−transition diagrams and selecting the fittest 
(Forbes, 2005). 

Genetic algorithms (GAs) “were invented by John Holland in the 1960s and were developed 
by Holland and his students and colleagues at the University of Michigan in the 1960s and 
the 1970s. In contrast with evolution strategies and evolutionary programming, Holland's 
original goal was not to design algorithms to solve specific problems, but rather to formally 
study the phenomenon of adaptation as it occurs in nature and to develop ways in which 
the mechanisms of natural adaptation might be imported into computer systems. Holland's 
1975 book Adaptation in Natural and Artificial Systems presented the genetic algorithm as an 
abstraction of biological evolution and gave a theoretical framework for adaptation under 
the GA. Holland's GA is a method for moving from one population of "chromosomes" (e.g., 
strings of ones and zeros, or "bits") to a new population by using a kind of "natural 
selection" together with the genetics−inspired operators of crossover, mutation, and 
inversion. (…) Holland's introduction of a population−based algorithm with crossover, 
inversion, and mutation was a major innovation” (Mitchell, 1997). Rechenberg's evolution 
strategies generate a single offspring, which is a mutated version of the parent. 

“Holland was the first to attempt to put computational evolution on a firm theoretical 
footing. Until recently this theoretical foundation, based on the notion of "schemas," was the 
basis of almost all subsequent theoretical work on genetic algorithms. In the last several 
years there has been widespread interaction among researchers studying various 
evolutionary computation methods, and the boundaries between GAs, evolution strategies, 
evolutionary programming, and other evolutionary approaches have broken down to some 
extent. Today, researchers often use the term "genetic algorithm" to describe something very 
far from Holland's original conception” (Mitchell, 1997). 

Current techniques are more sophisticated and combine the basic algorithms with other 
heuristics. Koza developed in 1992 “genetic programming”, which applies a GA to writing 
computer programs. “The variables are various programming constructs, and the output is a 
measure of how well the program achieves its objectives. The GA operations of mutation, 
reproduction (crossover) and cost calculation require only minor modifications. GP is a 
more complicated procedure because it must work with the variable length structure of the 
program or function. A GP is a computer program that writes other computer programs” 
(Haupt & Haupt, 2004). “Genetic Programming uses evolution-inspired techniques to 
produce not just the fittest solution to a problem, but an entire optimized computer program.” 
(Forbes, 2005). 
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Fig. 1. Increasing the number of works in the field over the past 20 years 

Figure 1 represents the number of papers in the field of GAs, in the last 20 years, in two of 
the most popular databases: SpringerLink from Springer, which contain 81187 papers on 
GAs, from a total amount of 5276591, and IEEExplore Digital Library from IEEE, which 
contain 32632 papers on GAs, from a total amount of 2926204.  

3. A simple Genetic Algorithm 
The set of all the solutions of an optimization problem constitutes the search space. The 
problem consists in finding out the solution that fits the best, from all the possible solutions. 
When the search space becomes huge, we need a specific technique to find the optimal 
solution. GAs provides one of these methods. Practically they all work in a similar way, 
adapting the simple genetics to algorithmic mechanisms. GA handles a population of 
possible solutions. Each solution is represented through a chromosome, which is just an 
abstract representation.  

Coding all the possible solutions into a chromosome is the first part, but certainly not the 
most straightforward one of a GA. A set of reproduction operators has to be determined, 
too. Reproduction operators are applied directly on the chromosomes, and are used to 
perform selection of the parents, by using a fitness function (usually the most fitted, with 
some likelihood), recombinations (crossover) and mutations and over solutions of the 
problem. “Appropriate representation and reproduction operators are really something 
determinant, as the behavior of the GA is extremely dependant on it. Frequently, it can be 
extremely difficult to find a representation, which respects the structure of the search space 
and reproduction operators, which are coherent and relevant according to the properties of 
the problems” (Sivanandam & Deepa, 2008). 
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problems. The idea in all these systems was to evolve a population of candidate solutions to 
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Procedure Genetic Algorithm 
begin 
 generate randomly the initial population of chromosomes; 
 repeat 
  calculate the fitness of chromosomes in population; 
  repeat  
   select 2 chromosomes as parents;  
   apply crossover to the selected parents; 
   apply mutation to the new chromosomes; 
   calculate the fitness of new child chromosomes; 
  until end of the number of new chromosomes 
  update the population;  
 until end of the number of generations 
end  

Fig. 2. Pseudocode description of the Procedure Genetic Algorithm 

Once the reproduction and the fitness function have been properly defined, a GA is evolved 
according to the same basic structure (see source above in pseudocode). It starts by 
generating an initial population of chromosomes, which is generated randomly to ensure 
the genetic diversity. Then, the GA loops over an iteration process to make the next 
generation. Each iteration consists of fitness evaluation, selection, reproduction, new 
evaluation of the offsprings, and finally replacement in population. Stopping criterion may 
be the number of iterations (called here generations), or the convergence of the best 
chromosome toward the optimal solution.  

4. Classification of Genetic Algorithms 
Sometimes the cost function is extremely complicated and time-consuming to evaluate. As a 
result some care must be taken to minimize the number of cost function evaluations. An 
idea was to use parallel execution of various Simple GAs, and these algorithms are called 
Parallel Genetic Algorithms (PGAs). PGAs have been developed to reduce the large 
execution times that are associated with simple genetic algorithms for finding near-optimal 
solutions in large search spaces. They have also been used to solve larger problems and to 
find better solutions. PGAs have considerable gains in terms of performance and scalability. 
There are a lot of methods of PGAs (Independent PGA, Migration PGA, Partition PGA, 
Segmentation PGA) which are fully described in (Sivanandam & Deepa, 2008). 

Hybrid Genetic Algorithms (HGAs) produce another important class of GAs. A hybrid GA 
combines the power of the GA with the speed of a local optimizer. The GA excels at 
gravitating toward the global minimum. It is not especially fast at finding the minimum 
when in a locally quadratic region. Thus the GA finds the region of the optimum, and then 
the local optimizer takes over to find the minimum. Some examples of HGAs used in Digital 
Electronics Design will be presented in the next section. 

Adaptive genetic algorithms (AGAs) are GAs whose parameters, such as the population 
size, the crossing over probability, or the mutation probability are varied while the GA is 
running. “The mutation rate may be changed according to changes in the population; the 
longer the population does not improve, the higher the mutation rate is chosen. Vice versa, 
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it is decreased again as soon as an improvement of the population occurs” (Sivanandam & 
Deepa, 2008). 

Fast Messy Genetic Algorithm (FmGA) is a binary, stochastic, variable string length, 
population based approach to solving optimization problems. The main difference between 
the FmGA and other genetic approaches is the ability of the FmGA to explicitly manipulate 
building blocks (BBs) of genetic material in order to obtain good solutions and potentially 
the global optimum. Some works, like (Haupt & Haupt, 2004), use only the term of Messy 
Genetic Algorihms (mGAs).   

Finally, Independent Sampling Genetic Algorithm (ISGA) are more robust GAs, which  
manipulate building blocks to avoid the premature convergence in a GA. Implicit 
parallelism and the efficacy of crossover are enhanced and the ISGAs have been shown to 
outperform several different GAs (Sivanandam & Deepa, 2008). Other classes of efficient 
GAs may be implemented for different specific applications. 

5. Applications of Genetic Algorithms 
“GAs have been applied in science, engineering, business and social sciences. Number of 
scientists has already solved many engineering problems using genetic algorithms. GA 
concepts can be applied to the engineering problem such as optimization of gas pipeline 
systems. Another important current area is structure optimization. The main objective in 
this problem is to minimize the weight of the structure subjected to maximum and minimum 
stress constrains on each member. GA is also used in medical imaging system. The GA is 
used to perform image registration as a part of larger digital subtraction angiographies. It can 
be found that GAs can be used over a wide range of applications” (Sivanandam & Deepa, 
2008). GAs can also be applied to production planning, air traffic problems, automobile, 
signal processing, communication networks, environmental engineering and so on. In (Bentley 
& Corne, 2002), Evolutionary Creativity is discussed, using a lot of examples from music, art in 
general, architecture and engineering design. Evolutionary Electronics, both Analog and 
Digital, have been investigated in many publications (Bentley & Corne, 2002; Popa, 2004; Popa 
et al., 2005). (Higuchi et al., 2006)  is a very good book on Evolvable Hardware.  

Evolvable Hardware (EHW) is a hardware built on software reconfigurable Programmable 
Logic Devices (PLDs). In these circuits the logic design is compiled into a binary bit string 
and, by changing the bits, arbitrary hardware structures can be implemented instantly. The 
key idea is to regard such a bit string as a chromosome of a Genetic Algorithm (GA). 
Through genetic learning, EHW finds the best bit string and reconfigures itself according to 
rewards received from the environment (Iba et al., 1996).  

In the rest of this section we present three applications in evolutionary design of digital 
circuits developed by the author, using GAs. First of them describes a method of synthesis 
of a Finite State Machine (FSM) in a Complex Programmable Logic Device (CPLD), using a 
standard GA. The other two applications use different techniques of hybridisation of a 
standard GA: first of them with two other optimisation techniques (inductive search and 
simulated annealing), to solve the Automatic Test Pattern Generation for digital circuits, a 
problem described in (Bilchev & Parmee, 1996), and the second one to improve the 
convergence of the standard GA in evolutionary design of digital circuits, using the new 
paradigm of Quantum Computation (Han & Kim, 2002).  
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standard GA. The other two applications use different techniques of hybridisation of a 
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5.1 Implementation of a FSM using a standard GA 

This first example uses extrinsic hardware evolution, that is uses a model of the hardware 
and evaluates it by simulation in software. The FSM represented in the figure 3 is a 
computer interface for serial communication between two computers. A transition from one 
state to another depends  from only one of the 4 inputs , 1, 4ix i = . The circuit has 4 outputs, 
each of them beeing in 1 logic only in a single state. The FSM has 6 states and has been 
presented in (Popa, 2004).  
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Fig. 3. A FSM described as state transition graph and manual state assignment 

With the state assignment given in the figure 3, the traditional design with D flip-flops gives 
the following equations for the excitations functions: 

   2 3 1 0 2 1D x Q Q Q Q= ⋅ ⋅ + ⋅             (1) 

 1 2 1 0 4 2 1 0D x Q Q x Q Q Q= ⋅ ⋅ + ⋅ + ⋅       (2) 

 0 1 2 0 2 1 0 1 0D x Q Q x Q Q Q Q= ⋅ ⋅ + ⋅ ⋅ + ⋅   (3) 

The output functions, are given by the following equations: 

   1 1 0y Q Q= ⋅     (4) 

 2 2 1 0y Q Q Q= ⋅ ⋅     (5) 

 3 2 1y Q Q= ⋅     (6) 

 4 2 1y Q Q= ⋅    (7) 
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For the evolutionary design of this circuit we take into account that each boolean function 
has a maximum number of 5 inputs and a maximum number of 4 minterms. If we want to 
implement these functions in a PLD structure (an AND array and logic cells configurable as 
OR gate), then the number of fuse array links is 2 5 4 40⋅ ⋅ = , and we may to consider this 
number as the total length of the chromosome (Iba et al., 1996).  

Our GA is a standard one, with the population size of 30 chromosomes. One point crossover 
is executed with a probability of 80% and the mutation rate is 2%. Six worse chromosomes 
are replaced each generation. The stop criterion is the number of generations. 

 
Fig. 4. The evolution of the excitation functions of the computer interface 

Figure 4 reflects the evolution of the circuit for the first 3 functions, called excitation 
functions, which generate the subcircuit A. However, this circuit is built from 3 independent 
circuits, each generating one output bit. Therefore, the evolution of a circuit with one output 
bit is repeated 3 times. The Y axis is the correct answer rate. If it reaches 100%, then the 
hardware evolution succeeds.  

In the same way, figure 5 reflects the evolution of the circuit for the output functions, which 
generate the subcircuit B. The evolution succeeds after a less number of generations because 
the total search space is in this case much lower than in previous case (all the output 
functions have only 3 variables). 

Evolution may provide some non-minimal expressions for these boolean functions, but 
minimization is not necessary for PLD implementations. The length of the chromosomes is 
greater than the optimal one, and the evolved equations are much more complicated than 
the given equations (1-7). The complete cost of the whole combinational circuit is consisted 
of 15 gates and 37 inputs for traditional design, and 30 gates and 102 inputs for evolutionary 
design.  
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Fig. 5. The evolution of the output functions of the computer interface 

We have implemented both the traditional design and the evolved circuit in a real Xilinx 
XCR3064 CoolRunner CPLD by using the Xilinx ISE 6.1i software. In traditional design, that 
is using equations (1-7), the FSM used only 7 macrocells from a total number of 64 
macrocells, 11 product terms from a total number of 224 product terms, and 7 function block 
inputs, from a total number of 160. Surprising is the fact that, although evolutionary design, 
with the same state assignment, provides more complicated equations, the implementation 
of this circuit in XCR3064XL CPLD also used 7 macrocells from a total number of 64, 10 
product terms from a total number of 224, and 7 function block inputs, from a total number 
of 160. This is even a better result than in preceding case, because the number of product 
terms is less with 1. Both implementations have used the same number of flip-flops (that is 
3/64) and the same number of pins used like inputs/outputs (that is 9/32). We have 
preserved the state assignment of the FSM, and the subcircuits A and B are in fact as pure 
combinational circuits. The interesting fact is that our GA have supplied a better solution 
than the one given by the minimization tool used for this purpose by the CAD software.  

5.2 Multiple hybridization of a GA  

Hybrid Genetic Algorithms (HGAs) combine the power of the GA with the speed of a local 
optimizer. Usually the GA finds the region of the optimum, and then the local optimizer 
takes over to find the minimum. (Bilchev & Parmee, 1996) developed a search space 
reduction methodology, which was called the Inductive Search. The problem of global 
optimisation is partitioned into a sequence of subproblems, which are solved by searching 
of partial solutions in subspaces with smaller dimensions.  

This method has been used to solve the Automatic Test Pattern Generation Problem in 
Programmable Logic Arrays (PLAs), that is to find an effective set of input test vectors, 
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which are able to cover as many as possible faults in the circuit (we have taken into account 
two PLA structures with a total number of 50 and respective 200 stuck-at 0 possible faults).  

(Wong & Wong, 1994) designed a HGA using the algorithm of Simulated Annealing as local 
optimizer. The optimisation process in Simulated Annealing is essentially a simulation of 
the annealing process of a molten particle. Starting from a high temperature, a molten 
particle is cooled slowly. As the temperature reduces, the energy level of the particle also 
reduces. When the temperature is sufficiently low, the molten particle becomes solidified. 
Analogous to the temperature level in the physical annealing process is the iteration number 
in Simulated Annealing. In each iteration, a candidate solution is generated. If this solution 
is a better one, it will be accepted and used to generate yet another candidate solution. If it is 
a deteriorated solution, the solution will be accepted with some probability.  

Each of this two methods of hybridisation discussed above have some advantages. The 
inductive search effort at each inductive step controls the trade-off between the  

Procedure MHGA 
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Initialize a partial solution for N = 1 and establish the initial temperature 0T ; 
 for k = 2 to N ,  

Generate randomly the initial population of chromosomes; 
repeat  

append each chromosome to the partial solution, and evaluate it; 
repeat  

select, proportional with fitness, 2 parents;  
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calculate the fitness of new chromosomes; 
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until  end of the number of chromosomes 
update the population, according with the fitness; 
the temperature is decreased; 

until end of the number of generations 
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computational complexity and the expected quality of results, while Simulated Annealing 
avoids the premature convergence and reduces the adverse effects of the mutation 
operation. In (Popa et al., 2002) we proposed a HGA that cumulates all these advantages in a 
single algorithm, through a double hybridisation of  the Genetic Algorithm: with Inductive 
Search on the one hand, and with Simulated Annealing technique on the other hand. The 
structure of the Multiple Hybridated Genetic Algorithm is presented in figure 6. 

We have conducted the experiments with all three HGAs described above, in the purpose to 
find the maximum fault coverage with a limited number of test vectors. We have tested first 
a PLA structure with 50 potential "stuck-at 0" faults, taking into account the maximum 
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Fig. 5. The evolution of the output functions of the computer interface 
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coverage with the faults with only 6 test vectors, and results may be seen in the figure 7. 
Then, we repeated the same algorithm for a more complicated PLA structure, with 200 
potential "stuck-at 0" faults, and we tried to cover the maximum number of faults with 24 
test vectors. The evolutions of these three algorithms may be seen in figure 8.  

 
Fig. 7. Fault Coverage Problem of 50 possible faults solved with three HGAs in 500 iterations 

If n is the number of covered faults and N is the number of all faults in the fault population, 

the associated fitness function is 100%nf
N

= ⋅ . There may also be a number of constraints 

concerning the possible combinations of input signals. The designers of the circuit define the 
set of legal combinations in terms of the legal states of a number of channels. The set of all 
legal templates defines the feasible region. The main genetic parameters used in these 
algorithms are: a population size of 20 chromosomes, uniform crossover with 100% rate, 
uniform mutation with 1% rate. The maximum fault coverage achieved with the Multiple 
Hybridated Genetic Algorithm after 500 iterations was about 69%, while the maximum fault 
coverage achieved with the Inductive Genetic Algorithm, the best of the two single 
hybridated genetic algorithms, was about 66%. These results represent the average values of 
5 succesive runnings. We have tried even with 10 or more number of runnings, but the 
results are basically the same.  

Another set of experiments were made on a more complex digital structure of PLA type 
with 200 possible faults. Figure 8 shows the comparative performances of the three HGAs 
on this fault coverage problem. The number of input test vectors is 24. After 250 fitness 
function calls, that is 25 iterations, each with 10 generations per inductive step, the fault 
coverage of the Multiple Hybridated Genetic Algorithm is with about 1% better than the 
fault coverage of the Inductive Genetic Algorithm.  
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Fig. 8. Fault Coverage Problem of 200 possible faults solved with three HGAs  

These experiments show that the proposed MHGA seems to offer a better performance than 
the two other HGAs: the Inductive Genetic Algorithm and the Genetic Algorithm 
hybridated by Simulated Annealing. We have proved on two different examples, with 
different complexities, that MHGA offers the greatest value of fault coverage in Automatic 
Test Pattern Generation Problem in digital circuits of PLA type. 

5.3 A Quantum Inspired GA for EHW  

Quantum Inspired Genetic Algorithm (QIGA) proposed in (Popa et al., 2010) uses a single 
chromosome, which is represented like a string of qubits, as is described in (Han & Kim, 
2002; Zhou & Sun, 2005). A quantum chromosome which contains n qubits may be 
represented as: 

 1 2

1 2
  ....  n

n
q

α α α
β β β
 =   

,    (8) 

where each couple iα , iβ , for 1,...,i n= , are the probability amplitudes associated with the 
0  state and the 1  state such that 2 2 1i iα β+ =  and the values 2

iα  and 2
iβ  represent the 

probability of seeing a conventional gene, 0 or 1, when the qubit is measured. 

A quantum chromosome can be in all the 2n  states at the same time, that is: 

 0 1 2 1
00...0 00...1 ... 11...1nq a a a

−
= + + ,       (9) 

where ia  represents the quantum probability amplitude, and 2
ia  is the probability of seeing 

the i-th chromosome from the all 2n  possible classic chromosomes (Zhou & Sun, 2005). 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

114 

coverage with the faults with only 6 test vectors, and results may be seen in the figure 7. 
Then, we repeated the same algorithm for a more complicated PLA structure, with 200 
potential "stuck-at 0" faults, and we tried to cover the maximum number of faults with 24 
test vectors. The evolutions of these three algorithms may be seen in figure 8.  

 
Fig. 7. Fault Coverage Problem of 50 possible faults solved with three HGAs in 500 iterations 

If n is the number of covered faults and N is the number of all faults in the fault population, 

the associated fitness function is 100%nf
N

= ⋅ . There may also be a number of constraints 

concerning the possible combinations of input signals. The designers of the circuit define the 
set of legal combinations in terms of the legal states of a number of channels. The set of all 
legal templates defines the feasible region. The main genetic parameters used in these 
algorithms are: a population size of 20 chromosomes, uniform crossover with 100% rate, 
uniform mutation with 1% rate. The maximum fault coverage achieved with the Multiple 
Hybridated Genetic Algorithm after 500 iterations was about 69%, while the maximum fault 
coverage achieved with the Inductive Genetic Algorithm, the best of the two single 
hybridated genetic algorithms, was about 66%. These results represent the average values of 
5 succesive runnings. We have tried even with 10 or more number of runnings, but the 
results are basically the same.  

Another set of experiments were made on a more complex digital structure of PLA type 
with 200 possible faults. Figure 8 shows the comparative performances of the three HGAs 
on this fault coverage problem. The number of input test vectors is 24. After 250 fitness 
function calls, that is 25 iterations, each with 10 generations per inductive step, the fault 
coverage of the Multiple Hybridated Genetic Algorithm is with about 1% better than the 
fault coverage of the Inductive Genetic Algorithm.  

 
Genetic Algorithms: An Overview with Applications in Evolvable Hardware 

 

115 

 
Fig. 8. Fault Coverage Problem of 200 possible faults solved with three HGAs  

These experiments show that the proposed MHGA seems to offer a better performance than 
the two other HGAs: the Inductive Genetic Algorithm and the Genetic Algorithm 
hybridated by Simulated Annealing. We have proved on two different examples, with 
different complexities, that MHGA offers the greatest value of fault coverage in Automatic 
Test Pattern Generation Problem in digital circuits of PLA type. 

5.3 A Quantum Inspired GA for EHW  

Quantum Inspired Genetic Algorithm (QIGA) proposed in (Popa et al., 2010) uses a single 
chromosome, which is represented like a string of qubits, as is described in (Han & Kim, 
2002; Zhou & Sun, 2005). A quantum chromosome which contains n qubits may be 
represented as: 

 1 2

1 2
  ....  n

n
q

α α α
β β β
 =   

,    (8) 

where each couple iα , iβ , for 1,...,i n= , are the probability amplitudes associated with the 
0  state and the 1  state such that 2 2 1i iα β+ =  and the values 2

iα  and 2
iβ  represent the 

probability of seeing a conventional gene, 0 or 1, when the qubit is measured. 

A quantum chromosome can be in all the 2n  states at the same time, that is: 

 0 1 2 1
00...0 00...1 ... 11...1nq a a a

−
= + + ,       (9) 

where ia  represents the quantum probability amplitude, and 2
ia  is the probability of seeing 

the i-th chromosome from the all 2n  possible classic chromosomes (Zhou & Sun, 2005). 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

116 

Due to this superposition of states in a quantum chromosome, we use a single chromosome 
in population.  In Conventional Genetic Algorithm (CGA) or Simple Genetic Algorithm with 
the structure given in figure 2, the population has always a number of chromosomes, and 
the efficiency of the algorithm depends usually on the size of population. But a quantum 
chromosome can represent all the possible conventional chromosomes at the same time, and 
so, it may generates an arbitrary population of conventional chromosomes each generation. 
Quantum population will be transformed to conventional population when the fitness is 
evaluated. 

Single Chromosome Quantum Genetic Algorithm (SCQGA) is described in (Zhou & Sun, 
2005). In the first step, a quantum chromosome is generated using (8). A random number is 
compared with probabilities of each qubit, and it collapses to 0, or to 1. The conventional 
population of N chromosomes is obtained by repeating this process N times. In the next 
step, the fitness value is calculated for each conventional chromosome. It requires a lot of 
time, that involves the speed performance of the algorithm. The same problem of fitness 
evaluation and the low speed of the algorithm subsists also in CGAs. 

Our idea, which was implemented in QIGA, was to initiate the collapse of the quantum 
chromosome each generation but, from time to time to generate a whole population of 
conventional chromosomes, and in the remaining iterations to generate only a single 
conventional chromosome. A new parameter, which we called the probability of collapse, 
establishes the rate of generating a conventional population during the evolution. The last 
important step of the algorithm is to establish a method of updating the quantum 
chromosome from the current generation to the next one. QIGA uses the same method 
described in (Han, 2003). The idea is to modify the probabilities of each quantum gene (or 
qubit) from the quantum chromosome using quantum rotation gate. This operator changes 
the probability amplitude by altering the quantum phase θ  to θ θ+ Δ . The idea for the 
construction of the rotation gate is to make the changing of the entire population (quantum 
chromosome) to the direction of the best individual. Each bit from the best conventional 
chromosome is compared with the adequate bit from the average version of the quantum 
chromosome (this version is build using a probability of 0.5 for each qubit). If the two bits 
are equal with 0 or 1, then 0θΔ = . If the bit of the best chromosome is 1 and the other one is 
0, then aθΔ = , otherwise aθΔ = − . The angle parameter of the rotation gate θΔ  may be 0, -
a, or a, depending on the position of each qubit in chromosome. The parameter a is a 
positive small parameter, which decides the evolving rate (Zhou & Sun, 2005). 

Basic structure of QIGA is given in figure 9. q(t) is the quantum chromosome in the iteration 
t, and P(t) is the population in the same iteration t. This population may contain a lot of 
chromosomes, or only one, depending on the probability of collapse in  q(t). These three 
algorithms, CGA, SCQGA and QIGA have been compared on the same problem, which 
consists on synthesis of a boolean function with 4 variables, using different logic gates. The 
chromosomes define the connection in the network between the primary inputs and 
primary outputs of the gates, and decide the logic operators of the gates. The population of 
CGA has 64 chromosomes, 20 of them being changed each generation, and genetic operators 
use a single point 100% crossover and 5% rate mutation. 

Figure 10 illustrates the average of evolutions of the three algorithms after 10 successful 
runnings on 300 generations. A successful running presumes a fitness evaluation of 100%, 
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that is the truth table of the evolved function must be identical with the truth table of the 
specified function. We can see some similarities in these evolutions, but significant 
differences may be seen in Table 1.  

Procedure QIGA 
begin 
 t ← 0 

Initialize a quantum chromosome q(t); 
if the collaps of q(t) is likely 
 generate multiple chromosomes in population P(t); 
else 
 generate a single chromosome in population P(t); 
end 
evaluate all the chromosomes in population P(t); 
store the best solution b among P(t); 
while (not termination condition) do 
 begin  

   t ← t + 1 
   if the collapse of q(t-1) is likely 

   generate multiple chromosomes in population P(t); 
   else 

   generate a single chromosome in population P(t); 
  

   end 
   evaluate all the chromosomes in population P(t);  
   update q(t) using quantum gates; 
   store the best result b among P(t); 
  end 
 end 
end  

Fig. 9. The structure of the QIGA 

In CGA, global time of a successful run is about 74 seconds, and this value consists of both 
self time and the time spent for multiple evaluations of chromosomes in different  
populations. Self time is the time spent in an algorithm, excluding the time spent in its child 

functions. Self time also includes overhead resulting from the process of profiling, but this 
additional time is not important in our case. Evaluation time is almost 60 seconds, because 
the number of appeals to the evaluation function is elevated (25200 calls, that is evaluation 
of 64 plus 20 chromosomes in 300 generations). 

In SCQGA, global time is less than 40 seconds, because the number of calls to the evaluation 
function is less than above (only 19200 calls, that is evaluation of 64 chromosomes in 300 
generations), and this quantum algorithm doesn't use anymore genetic operators like 
crossover and mutation. Finally, our QIGA has a global time less than 20 seconds, as a 
consequence of the insignificant number of calls to the evaluation function (only 4836 calls, a 
random number given by the probability of collapse). Self time is comparable with SCQGA, 
and evaluation time is less than 12 seconds. Taking into account all these times, QIGA has 
the best ratio between evaluation and global time.  
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Fig. 10. The evolutions of CGA, SCQGA and QIGA 
 

Parameter CGA SCQGA QIGA 
Global time 73.990 s 38.599 s 19.263 s 

Self time 2.447 s 1.417 s 1.390 s 
Evaluation time 59.561 s 31.536 s 11.750 s 

Calls of evaluation function 25200 19200 4836 
Ratio between evaluation and global time 80.5 % 81.7 % 60.9 % 

Number of generations 300 300 300 
Successful runnings in 10 attempts (with fitness 

of 100%) 
 

7 
 
6 

 
6 

Table 1. A comparison between CGA, SCQGA and IQGA 

Unfortunately, the number of successful runs in 300 generations is only in the order of 70% 
for CGA, and 60% for the rest two algorithms. It occurs due to the constraint that only 100% 
in fitness evaluation is accepted. In other applications, this constraint may be not critical.  

6. Conclusion 
In this chapter we did a summary outline of GAs and discussed some possible applications. 
We presented three extrinsic evolutionary designs of digital circuits at gate level using GAs.  

Future research must be done in this area. Firstly it is important to find a better 
representation of the circuit in chromosomes, because complex functions need a great 
number of architecture bits, which directly influences the GA search space. EHW 
successfully succeeds only when fitness reaches 100% and in huge search spaces this 
condition may be not always possible. This is the main reason that for the time being the 
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complexity of evolved circuits is so far small. In our opinion, conclusion drawn in the paper 
(Yao & Higuchi, 1999) is still available: “EHW research needs to address issues, such as 
scalability, online adaptation, generalization, circuit correctness, and potential risk of 
evolving hardware in a real physical environment. It is argued that a theoretical foundation 
of EHW should be established before rushing to large-scale EHW implementations”.  

Recently appeared the idea of hybridization of a GA with elements of quantum computation 
(Han & Kim, 2002; Han, 2003). We have proposed a new quantum inspired genetic 
algorithm (QIGA) considerably faster than other similar algorithms, based on the idea of 
introducing a new parameter, which we called the probability of collapse, and to initiate the 
collapse of the quantum chromosome in order to generate a conventional population of 
chromosomes from time to time, and not each generation, as usually is done. We believe 
that some improvements in this method may be found in a future research, by establishing 
of a new method of updating the quantum chromosome from the current generation to the 
next one. Finally, some hybridization techniques may be useful for new quantum inspired 
evolutionary algorithms. (Rubinstein, 2001) used Genetic Programming to evolve quantum 
circuits with various properties, and (Moore & Venayagamoorthy, 2005) has developed an 
algorithm inspired from quantum evolution and Particle Swarm to evolve conventional 
combinational logic circuits.   
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complexity of evolved circuits is so far small. In our opinion, conclusion drawn in the paper 
(Yao & Higuchi, 1999) is still available: “EHW research needs to address issues, such as 
scalability, online adaptation, generalization, circuit correctness, and potential risk of 
evolving hardware in a real physical environment. It is argued that a theoretical foundation 
of EHW should be established before rushing to large-scale EHW implementations”.  

Recently appeared the idea of hybridization of a GA with elements of quantum computation 
(Han & Kim, 2002; Han, 2003). We have proposed a new quantum inspired genetic 
algorithm (QIGA) considerably faster than other similar algorithms, based on the idea of 
introducing a new parameter, which we called the probability of collapse, and to initiate the 
collapse of the quantum chromosome in order to generate a conventional population of 
chromosomes from time to time, and not each generation, as usually is done. We believe 
that some improvements in this method may be found in a future research, by establishing 
of a new method of updating the quantum chromosome from the current generation to the 
next one. Finally, some hybridization techniques may be useful for new quantum inspired 
evolutionary algorithms. (Rubinstein, 2001) used Genetic Programming to evolve quantum 
circuits with various properties, and (Moore & Venayagamoorthy, 2005) has developed an 
algorithm inspired from quantum evolution and Particle Swarm to evolve conventional 
combinational logic circuits.   
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1. Introduction 
Both in  industry and science there are some real problems regarding the optimization of 
difficult solution characterized by  computational complexity, because the available exact 
algorithms are inefficient or simply impossible to implement. The metaheuristics   (MHs) are 
a family of approximate methods of general purpose consisting in  iterative procedures  that 
guide heuristics, intelligently combining different concepts to explore and exploit properly 
the search space [12]. Therefore, there are two important factors when designing MHs 
: intensification and diversification. The diversification generally refers to the ability to visit 
many different regions of search space, while intensification refers to the ability to obtain 
high quality solutions in these regions. A search algorithm must achieve a balance between 
these two factors so as to successfully solve the problem addressed. 

On the other hand,  Information Retrieval (IR) can be defined as the problem of 
information selection through a storage mechanism in response to user queries [3]. The 
Information Retrieval Systems (IRS) are a class of information systems that deal with 
databases composed of documents, and process user's queries by allowing access to 
relevant information in an appropriate time interval. Theoreticly, a document is a set of 
textual data, but technological development has led to the proliferation of multimedia 
documents [4].  

Genetic Algorithms (GAs) are inspired by MHs in the genetic processes of natural 
organisms and in the principles of natural evolution of populations [2]. The basic idea is to 
maintain a population of chromosomes, which represent candidate solutions to a specific 
problem , that evolve over time through a process of competition and controlled variation. 
One of the most important components of GAs is the crossover operator [7]. Considering all 
GA  must have a balance between intensification and diversification that is capable of 
augmenting the search for the optimal, the crossover operator is often regarded as a key 
piece to improve the intensification of a local optimum. Besides, through the evolutionary 
process, every so often there are species that have undergone a change (mutation) of 
chromosome, due to certain evolution factors, as the mutation operator is a key factor in 
ensuring that diversification, and finding all the optimum feasible regions.  

Efficiently assigning GA parameters optimizes both the quality of the solutions and the 
resources required by the algorithm [13]. This way, we can obtain a powerful search 
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algorithm and domain independent, which may be applied to a wide range of learning 
tasks. One  of the many possible applications to the field of IR might be solving a basic 
problem faced by an IRS: the need to find the groups that best describe the documents, and 
allow each other to place all  documents by affinity. The problem that arises is in the 
difficulty of finding the group that best describes a document,since they do not address a 
single issue, and even if they did, the manner the topic is approached can also make it 
 suitable for  another group. Therefore, this task is complex and even subjective as two 
people could easily assign the same document to different groups using valid criteria.  

Clustering is an important tool in data mining and knowdledge discovery because the 
ability to automatically group similar items together enables one to discover hidden 
similarity and key concepts [10]. This enables the users to comprehend a large amount of 
data. One example is searching the World Wide Web, because it is a large repository of 
many kinds of information, many search engines allow users to query the Web, usually via 
keyword search. However, a typical keyword search returns a large number of Web pages, 
making it hard for the user to comprehend the results and find the information that really 
needs. A challenge in document clustering is that many documents contain multiple 
subjects.  

This  paper presents a GA  applied to the field of documentation, the algorithm improved 
itself by refining its parameters, offering a balance between intensification and diversity that 
ensures an acceptable optimal fitness along an unsupervised document cluster.  

2. Documentary base 
In this study we make use of two collections, the "Reuters 21578" collection and a Spanish 
documentary base that includes editorials of  "El Mundo" from  2006 and 2007 in an open 
access format. 

Reuters Documentary Base consists of real news wires that appeared in Reuters in 1987, this 
collection is becoming a standard within the domain of the automatic categorization of 
documents and is used by many authors in this area. The collection consists of 21578 
documents distributed in 22 files. We developed a documentary process named NZIPF [6] 
[11] to generate  documentary vectors that feed the system. 

The documentary process consists of several stages of document processing, each of which 
represents a process that was developed on the base document to obtain documentary 
vectors more efficiently.  

The first step is the called process of Filter whose main objective is to define the documents 
of the documental base with the purpose of having documents that belong to a single 
category, that which will allow to have a smaller complexity in the treatment of the 
documents. Then, the purpose of the process of Zonning on the documents is the one of 
obtaining the free text of each document. Next, we use a process of Stop List, we extract the 
terms of the text of the document where each one of the extracted words will be compared 
with a list of empty words that will eliminate the words that don't have interest or they lack 
own meaning. Then, the words will be able to suffer a process of cutting of their roots 
“Stemming”, in our case, we have implemented and used an algorithm of Porter in English 
and another in Spanish. In this step, the frequency of the obtained terms is calculated, for all 
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the documents of our documental base, with the purpose of being able to know that terms 
are more used in each one of the documents; and then with this information to be able to 
carry out a process of selection of those terms that are more representative. The following 
step will consist on selecting those terms with discriminatory bigger power to proceed to its 
normalization We apply the law of Zipf, we calculate the Point of Goffman [3] and the 
transition area that it allows us to obtain the terms of the documental base. Finally, we 
assign weight using a function IDF (Invert Document Frecuency) developed for Salton [4] 
that uses the frequency of a word in the document. After all these processes, we obtain the 
characteristic vectors of documents in the collection document. 

The process is outlined in Figure 1. 

 
Fig. 1. Documentary process conducted 

On the other hand, within the testing environment there should be a user to provide 
documents that are meant to be grouped. The role of the user who provides documents will 
be represented by the samples of  "very few (20), few (50), many (80) and enough (150)" 
documents, with the requirement that belonged to only two categories of Reuters or 
distribution of Editorials in Spanish represented by their feature vectors stemmer. Figure 2 
shows the documentary environment [10] that we used for the experiments, it is important 
to note that, unlike the algorithms of the type monitored, where the number obtained 
groups needs to be known, our algorithm will evolve to find the most appropriate structure, 
forming the groups by itself. 

Due to the nature of simulation of GA, its evolution is pseudo-random, this translates into 
the need for multiple runs with different seeds to reach the optimal solution. The generation 
of the seed is carried out according to the time of the system. For this reason, the 
experiments with GA were made by carrying out five executions to each of the samples 
taken from experimental collections [1]. The result of the experiment will be the best fitness 
obtained and their convergence. To measure the quality of the algorithm, the best solution 
obtained and the average of five runs of the GA must be analized. 
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Fig. 2. Experimental environment used in the tests with the GA. 

3. Genetic algorithm for document clustering 
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Fig. 3. Initial Population of Individuals GA (generation "0") 

3.2 Production operators 

The production operators are applied to each new generation. One or two individuals can be 
taken to produce new individuals for next generation by applying the transformations 
imposed by the operator. Both mutation operators and crossover will be implemented 
indistinctably. Both operators depend on a mutation probability and / or cross that is 
assigned to GA [7]. 

A mutation operator is applied on nodes (documents), selecting an individual from the 
population using the tournament  method, and then randomly select a pair of terminal 
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Fig. 2. Experimental environment used in the tests with the GA. 
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Fig. 3. Initial Population of Individuals GA (generation "0") 
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For the crossover operator, an operator based on   mask crossover  [9] is applied, which selects 
through tournament method two parent individuals, randomly chooses the chromosome of 
one parent to be used as "crossover mask of the selected individual¨. The crossing is done by 
analyzing the chromosome of both parents. If both chromosomes have at least one function 
node (node 0), the chosed father mask is placed, but if we find documents in the 
chromosomes of both parents, then, the father "not elected"  document will be selected and 
 we'll use it as pivot on the father "elected" (mask) to make the crossing that corresponds to 
the mentioned father, while interchanging the chromosomes of the mentioned father. 
This creates a new individual, and ensure that in the given chromosome set there are the same 
structural characteristics of the parents but we only incorporate it in the population if the 
child has a better fitness than their parents. (see figure 5). 

 
Fig. 5. Crossover operator (crossover mask) 
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but the overall performance of the algorithm does not depend exclusively on a single 
parameter but on a combination of all parameters. Many researchers pay more attention to 
some parameters than others, but most agree that  the parameters that should be under 
controlare: selection schemes, population size, genetic variation operators and rates of their 
chances. 

Because GA have several parameters that must be carefully chosen to obtain a good 
performance and avoid premature convergence, in our case and after much testing, we opted 
for the control of parameters, and some strategies such as: 

To control the population size we use the strategy called GAVAPS (Genetic variation in 
population size) proposed by Michalewicz [9] using the concept of age and lifetime. When 
creating the first generation all individuals are assigned a zero age, referring to the birth of 
the individual, and every time a new generation is born the age of each individual increases 
by one. At the same time an individual is born it is assigned a lifetime, which represents 
how long it will live within. Therefore, the individual will die when it will reach the given 
age. The lifetime of each individual depends on the value of its fitness compared to the 
average of the entire population. Thus, if an individual has better fitness will have more 
time to live, giving it greater ability to generate new individuals with their features. In our 
case, we allow each generation to generate new individuals with similar characteristics with 
this strategy.  

Therefore, we adopt this approach essentially the best individuals from each generation, 
and apply it to maintain elitism in the following generations, thus ensuring optimum 
intensification of available space, while keeping them during their lifetime [9]. However, to 
ensure diversity we randomly generate the remaining individuals in each generation. This way, 
we explore many different regions of the search space and allow for balance between 
intensification and diversity of feasible regions. 

In all cases, the population size has been set at 50 individuals for the experiments conducted 
with samples following the suggestion of [1], which advises working with a population size 
between l and 2l in most practical applications (the length of chromosome l) In our case, "l" 
the length of our chromosome is always equal to:    

2 * number of documents to cluster -1. 

On the hand, we use two measures of function fitness to calculate the distance and similarity 
between documents and to be able to form better cluster (see table 1). 
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but the overall performance of the algorithm does not depend exclusively on a single 
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with  xi  and xj  the characteristic vectors of the documents that we are grouping,  “n” the 
number of examples and  σxi , σxj  are the standard deviation of  xi  and  xj  and where:  α: it 
will be the parameter that adjustment the distance and similarity. The fitness function is 
used to minimize the distance between the documents and maximize the similarity between 
them. 

Therefore, for the experiments with our experimental environment, we used samples of 
documents "very few (20), few (50), many (80) and enough (150)" documents with the 
requirement that they belonged only to two categories of Reuters collections  or Editorials. 
Each of the samples processed with five different seeds, and each of the results are 
compared with the method "Kmeans." Then, each experiment was repeated by varying the 
rate of probability of genetic algorithm operators, using all the parameters shown in table 
2 up to find that value of α that best fit the two metrics hat combine in our function 
fitness.  
 

Parameters Values 

Population size (tree number) 50  

Número de evaluaciones (Generaciones) 5000 maximum 

Tournament size 2 

Mutation Probability (Pm) 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0, 5, 0.7 

Crossover Probability       (Pc) 0.70,0.75,0.80,0.85,0.90,0.95 

Document cuantity Very Few, Few,  Many, enough 

α coefficients 0.85  (best value found) 

Depth Threshold 7 /10 

Table 2. Parameters taken into consideration for the Genetic algorithm with composite 
function 

4.1 Studies to determine the value of α in the GA 

We use the distribution Reuters 21 of be that greater dispersion across your documents 
and apply the GA varying the value of α in each of the tests with the usual parameters, 
always trying to test the effectiveness of the GA. We analyzed the relationship between 
fitness and the value of α using the values in table 2. (the results are shown in table 3 and 
figure 6).  

In figure 6, we can see that there is an increased dispersion of fitness values over 0.85, due to 
the increased contribution of Euclidean distance which makes it insensitive to fitness to find 
the clusters. The results, suggest that a value of α close to 0.85, provides better results 
because it gives us more effective in terms of number of hits, and a better fitness of the 
algorithm. This was corroborates with other distribution. 
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Documents α Generatión Best 
Fitness 

Average Middle 
Fitness 

Hits Effectiviness 
(%) 

20 0,75 1436 0,25291551 0,46489675 15 75,0 
20 0,80 1592 0,20298477 0,47026890 16 80,0 
20 0,85 2050 0,15255487 0,24504483 17 85,0 
20 0,90 3694 0,15266796 0,25909582 17 85,0 
20 0,95 1520 0,15319261 0,24596829 17 85,0 
50 0,75 3476 0,25290429 0,28744261 35 70,0 
50 0,80 3492 0,20285265 0,27862528 36 72,0 
50 0,85 3355 0,15312467 0,29128428 36 72,0 
50 0,90 2256 0,15318358 0,28347470 36 72,0 
50 0,95 2222 0,15345986 0,27863789 36 72,0 
80 0,75 3049 0,25704660 0,36871676 61 76,2 
80 0,80 1371 0,20782096 0,33303315 61 76,2 
80 0,85 2131 0,15784449 0,34447947 62 77,5 
80 0,90 1649 0,15815252 0,32398087 62 77,5 
80 0,95 2986 0,17796620 0,36009861 61 76,2 
150 0,75 2279 0,26194273 0,29866150 91 60,6 
150 0,80 1273 0,20636391 0,22933754 93 62,0 
150 0,85 3257 0,15468909 0,27518240 94 62,6 
150 0,90 1136 0,25482251 0,28218144 94 62,6 
150 0,95 2452 0,25456480 0,26788158 91 60,6 
250 0,75 3617 0,25754282 0,31144435 120 48,0 
250 0,80 3274 0,20844638 0,25112189 121 48,4 
250 0,85 3066 0,15805103 0,19299910 121 48,4 
250 0,90 2343 0,20634355 0,20432140 121 48,4 
250 0,95 2047 0,25541276 0,27844937 120 48,0 

Table 3. Results of tests with GA, takong different samples of documents with the 
distribution 21 of the Reuters collection, to determine the best value for  

 
Fig. 6. Best Fitness versus α values for different samples of documents of the Reuters 
Collection: Distribution 21 
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with  xi  and xj  the characteristic vectors of the documents that we are grouping,  “n” the 
number of examples and  σxi , σxj  are the standard deviation of  xi  and  xj  and where:  α: it 
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4.2 Tests to determine the value of the rate of mutation operator and crossover 
operator rate 

We began conducting an analysis of system behavior by varying the rate of mutation operator 
in a wide range of values to cover all possible situations. During experiments using different 
samples distribution Reuters. Thus, for the rate of mutation operator discussed a wide range of 
values in the range of: 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0, 5, 0.7; that allowed us to apply the 
mutation operator of GA in different circumstances and study their behavior.  For the study to 
determine the optimal value of the rate of crossover operator, is traced the interval from 0.70 to 
0.95; value high, but oriented to frequently apply the operator we designed because that an 
optimum value for the mutation probability is much more important than the crossover 
probability, and choose to make a more detailed study of the odds ratio in our experiments. As 
a quality index value of the operator was given to the number of hits of the GA.  

As for the size of the tournament,  the value 2 has been chosen, because the binary tournament 
has shown a very good performance in a large number of applications of EAs. 
Although determining a optimal fitness function is not one of the fundamental objectives of 
this experiment, we have tried to add in a single value the measuring results as powerful 
and distinct as are the Euclidean distance and the Pearson correlation coefficient (based on 
cosine similarity).  

Therefore, to find and the adjustment coefficient α that governs the weight that is to be 
given to both the distance as the inverse of similarity of the cluster documents, we've made 
many parameter controlled tests in order to obtain a value that allows an adequate 
contribution of both metrics with respect to fitness., finally finding a value for of 0.85.  

The number of maximum generations the system has been set to is 5000, but this parameter 
may vary depending on the convergence of the algorithm. As for the number of stemmer 
terms to be used for representing the feature vectors of each of the documents we have used 
the terms, which have been selected through the NZIPF processing method [6][11].  

Finally, we have established a limit called the threshold of depth for individuals (trees). 
Such a threshold, in the case of "very few and few documents" take the value of 7, and for 
the"many and enough documents"   is set 10.  To analyze the results, and to verify their 
effectiveness, we compared the results of the GA with the existing real groups of the 
document collection [6], and also compared the results with another  supervised type of 
clustering algorithm  in optimal conditions (Kmeans). We analized the following:  

a. Cluster efectiveness: It is the most important indicator of the comparison of results 
considering the quality of the cluster. An analyzing process was carried out to see the 
successes achieved with the best fitness of GA, and also the average scores in all 
executions of the GA.  

b. Fitness evolution. Analysis was carried out to see the evolving fitness in each of the 
performances, assessing their behaviour and successes of the GA when varying the 
probability rate.  

c. Convergence of the algorithm: In which process the GA obtains the best fitness (best 
cluster).  

Since, the GA parameters directly affect the fitness behavior, before the experiments, we 
performed a comprehensive analysis of all GA performances, in order to determine its 
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robustness and adjusting each of its parameters. Finally, we experimentally used the 
parameters discussed in Table 1 and analyzed the behavior of the algorithm. We show in 
Figure 7 the average number of hits returned by the GA for samples of 20, 80 and 150 
documents, changing the mutation rate, and show the hit factor of the GA against the 
mutation rate. We appreciate that we got the best performance with a rate of 0.03, this result 
shows that the best medium fitness could also be obtained by using this rate. We 
corroborated that conduct with another collection. 
 

 

 
Fig. 7. Hits average of GA with samples 20, 80 and 150 documents varying mutation rate 
and hit the GA. 

In addition, we analyzed the incidence of crossover operator on the final results. The figures 
8 show the behavior of the crossover rate versus hits average with very few samples (20), 
many (80) and many documents (150) respectively. Besides a comparative analysis is the 
success factor of GA varying the crossover rate.  It makes clear, the GA performed better 
when using a rate of 0.80 for the crossover operator, regardless of the sample. Therefore, this 
value appears to be ideal if we maximize the efficiency of the algorithm, which is why we 
conclude that is the rate that gives us better results. 
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4.2 Tests to determine the value of the rate of mutation operator and crossover 
operator rate 

We began conducting an analysis of system behavior by varying the rate of mutation operator 
in a wide range of values to cover all possible situations. During experiments using different 
samples distribution Reuters. Thus, for the rate of mutation operator discussed a wide range of 
values in the range of: 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0, 5, 0.7; that allowed us to apply the 
mutation operator of GA in different circumstances and study their behavior.  For the study to 
determine the optimal value of the rate of crossover operator, is traced the interval from 0.70 to 
0.95; value high, but oriented to frequently apply the operator we designed because that an 
optimum value for the mutation probability is much more important than the crossover 
probability, and choose to make a more detailed study of the odds ratio in our experiments. As 
a quality index value of the operator was given to the number of hits of the GA.  

As for the size of the tournament,  the value 2 has been chosen, because the binary tournament 
has shown a very good performance in a large number of applications of EAs. 
Although determining a optimal fitness function is not one of the fundamental objectives of 
this experiment, we have tried to add in a single value the measuring results as powerful 
and distinct as are the Euclidean distance and the Pearson correlation coefficient (based on 
cosine similarity).  

Therefore, to find and the adjustment coefficient α that governs the weight that is to be 
given to both the distance as the inverse of similarity of the cluster documents, we've made 
many parameter controlled tests in order to obtain a value that allows an adequate 
contribution of both metrics with respect to fitness., finally finding a value for of 0.85.  

The number of maximum generations the system has been set to is 5000, but this parameter 
may vary depending on the convergence of the algorithm. As for the number of stemmer 
terms to be used for representing the feature vectors of each of the documents we have used 
the terms, which have been selected through the NZIPF processing method [6][11].  

Finally, we have established a limit called the threshold of depth for individuals (trees). 
Such a threshold, in the case of "very few and few documents" take the value of 7, and for 
the"many and enough documents"   is set 10.  To analyze the results, and to verify their 
effectiveness, we compared the results of the GA with the existing real groups of the 
document collection [6], and also compared the results with another  supervised type of 
clustering algorithm  in optimal conditions (Kmeans). We analized the following:  

a. Cluster efectiveness: It is the most important indicator of the comparison of results 
considering the quality of the cluster. An analyzing process was carried out to see the 
successes achieved with the best fitness of GA, and also the average scores in all 
executions of the GA.  

b. Fitness evolution. Analysis was carried out to see the evolving fitness in each of the 
performances, assessing their behaviour and successes of the GA when varying the 
probability rate.  

c. Convergence of the algorithm: In which process the GA obtains the best fitness (best 
cluster).  

Since, the GA parameters directly affect the fitness behavior, before the experiments, we 
performed a comprehensive analysis of all GA performances, in order to determine its 
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robustness and adjusting each of its parameters. Finally, we experimentally used the 
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Fig. 8. Hits average of GA with samples 20, 80 and 150 documents varying crossover rate 
and hit the GA. 

To corroborate the results of the GA, we compare their results with the Kmeans algorithm, 
which was processed with the same samples, passing as input the number of groups that 
needed to be obtained. This algorithm used exclusively as a function of the Euclidean 
distance measure and being a supervised algorithm, the only adjustment of parameters was 
the number of groups to process, and is therefore executed on Kmeans in optimal conditions. 
We proved that the medium effectiveness of the GA is very acceptable, being in most cases 
better than Kmeans supervised algorithm [10] when using these parameters of mutation and 
crossover, but with the added advantage that we processed the documents in an 
unsupervised way, allowing evolution perform clustering with our adjustment. So, details 
of such behavior, we show graphically in figure 7 and 8, even showing a comparison of the 
same for each type of operator used in our experiments the evolutionary algorithm 
processed proposed for this work. 

Then, in the table 4, 5, 6 and 7 show comparative results obtained with our algorithm using 
the optimal parameters of mutation and crossover with major documentary collection 
distribution Reuters 21578. 
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Distribution 2 
Reuters 

Documents 
Categoríes: Acq  y Earn 
Best Result 

Best Average 
 Collection 1 

Samples of 
documents 

Fitness Effectiveness Convergence Average 
Fitness 

Deviation
Fitness 

Average 
Convergence 

 
Kmeans 

Very Few documents  
(20 documents) 

0,155447570 
 

85%
(18 hits) 

886 
 

0,15545476
 

0,00000828
 

1086 16,6 

Few Documents 
 (50 documents) 

0,156223280 
 

94%
(47 hits) 

3051 0,15624280
 

0,00002329
 

2641 45,8 

Many Documents 
(80 documents) 

0,159009400 
 

89%
(71 hits) 

2500 0,15921181
 

0,00020587
 

2246 67,8 

Enough Documents 
(150 documents) 

0,165013920 
 

77%
(115 hits) 

2342 0,16508519
 

0,00007452
 

2480 121,6 

More Documents 
(246 documents) 

0,174112100 
 

69%
(170 hits) 

2203 0,17430502
 

0,00033602
 

2059 202,8 

Table 4. Comparative results Evolutionary System with various samples of documents 
showing the best results and the average results of evaluations with the “Distribution 2” of 
the Reuters 21578 collection. 

Distributión 8 
Reuters 
Collection 2 

Documents
Categoríes: Acq  y Earn 
Best Result 

Best Average 

Samples of 
documents 

Fitness Effectiveness Convergence Average 
Fitness 

Deviation
Fitness 

Average 
Convergence 

 
Kmeans 

Very Few documents  
(20 documents) 

0,151163560 
 

85%
(17 hits) 

555 
 

0,15116356
 

0,00000000
 

679 15,8 

Few Documents 
 (50 documents) 

0,154856500 
 

96%
(48 hits) 

1615 0,15485650
 

0,00000000 1334 43,8 

Many Documents 
(80 documents) 

0,157073880 
 

85%
(68 hits) 

746 0,15708362
 

0,00000898
 

1360 66,2 

Enough Documents 
(150 documents) 

0,162035070 
 

69,3%
(104 hits) 

1989 0,16242664
 

0,00033091
 

2283 117,6 

More Documents 
(188 documents) 

0,163014600 
 

68,63%
(129 hits) 

2293 0,16334198
 

0,00027325
 

1773 140,6 

Table 5. Comparative results Evolutionary System with various samples of documents 
showing the best results and the average results of evaluations with the “Distribution 8” of 
the Reuters 21578 collection. 

Distribution 20 
Reuters 
Collection 3 

Documents 
Categoríes: Acq  y Earn 
Best Result 

Best Average

Samples of 
documents 

Fitness Effectiveness Convergence Average 
Fitness 

Deviation
Fitness 

Average 
Convergence 

 
Kmeans 

Very Few documents  
(20 documents) 

0,153027060 85%
(17 hits) 

1092 
 

0,15321980
 

0,00018398
 

1108 16,8 

Few Documents 
 (50 documents) 

0,156198620 
 

92%
(46 hits) 

2173 0,15666137
 

0,00030077
 

2635 44,8 

Many Documents 
(80 documents) 

0,158069980 
 

81,25%
(65 hits) 

2196 0,15810383
 

0,00001884
 

1739 66,8 

Enough Documents 
(108 documents) 

0,159031080 
 

69.4%
(75 hits) 

1437 0,15927630 0,00026701
 

2636 82,2 

Table 6. Comparative results Evolutionary System with various samples of documents 
showing the best results and the average results of evaluations with the “Distribution 20” of 
the Reuters 21578 collection. 
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Documents 
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(17 hits) 

1092 
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Distribution 21 
Reuters 

Documents 
Categoríes: Acq  y Earn 
Best Result 

Best Average 
 Collection 4 

Samples of 
documents 

Fitness Effectiveness Convergence. Average 
Fitness 

Deviation
Fitness 

Average 
Convergence 

 
Kmeans 

Very Few documents  
(20 documents) 

0,152048900 
 

90%
(18 hits) 

1163 
 

0,15206069
 

0,00001601
 

1165 17,8 

Few Documents 
 (50 documents) 

0,153006650 92%
(46 hits) 

2079 0,15304887 0,00004569
 

2736 45,6 

Many Documents 
(80 documents) 

0,156029510 
 

81%
(65 hits) 

2787 0,15637693
 

0,00025014
 

2810 66,4 

Enough Documents 
(132 documents) 

0,157012180 
 

70,4%
(93 hits) 

3359 0,15720766
 

0,00024132
 

1980 98,6 

Table 7. Comparative results Evolutionary System with various samples of documents 
showing the best results and the average results of evaluations with the “Distribution 21” of 
the Reuters 21578 collection 

To then display the results  graphically in figure 9. 

 
Fig. 9. Graphs compare the results obtained with the composite function against Kmeans 
(four collection Reuters) 

Finally, to corroborate the results,we compare their results with the other collection in 
Spanish, which was processed in the same way, using all values of table 2. (see figure 10). 

 
Tune Up of a Genetic Algorithm to Group Documentary Collections 

 

137 

 
Fig. 10. Graphs compare the results obtained with the composite function against Kmeans 
(Spain collection) 

5. Conclusion 
In this study, we have proposed a new taxonomy of parameters of GA numerical and 
structural, and examine the effects of numerical parameters of the performance of the 
algorithm in GA based simulation optimization application by the use of a test clustering 
problem. We start with the characteristics of the problem domain.  

The main characteristic features of our problem domain are: 

• There is a dominance of a set of decision variables with respect to the objective function 
value of the optimization problem: The objective function value is directly related with 
the combination of this dominant set of variables equal a value of α close to 0.85. 

• The good solutions are highly dominant over other solutions with respect to the 
objective function value, but not significantly diverse among each other. 

These properties of the problem domain generate a rapid convergent behavior of GA. 
According to our computational results lower mutation rates give better performance. GA 
mechanism creates a lock-n effect in the search space, hence lower mutation rates decreases 
the risk of premature convergence and provides diversification in the search space in this 
particular problem domain. Due to the dominance crossover operator does not have 
significant impact on the performance of GA. Moreover, starting with a seeded population 
generates more efficient results.  

We can conclude that the GA had a favourable evolution, offering optimal document cluster 
in an acceptable and robust manner, based on a proper adjust of the parameters. We proved 
that the medium effectiveness of the GA is very acceptable, being in most cases better than 
Kmeans supervised algorithm, but with the added advantage that we processed the 
documents in an unsupervised way, allowing evolution perform clustering with our 
adjustment. As a result of our experiments, we appreciate that we got the best performance 
with a rate of 0.03 for the mutation operator and using a rate of 0.80 for the crossover 
operator, this values appears to be ideal if we maximize the efficiency of the genetic 
algorithm.  
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As a future research direction, the same analyses can be carried out for different problem 
domains, and with different structural parameter settings, and even the interaction between 
the numerical and structural parameters could be investigated. 
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1. Introduction 
A central and frequently contentious issue in public policy analysis is the allocation of funds 
to competing projects. Public resources for financing social projects are particularly scarce. 
Very often, the cumulative budget being requested ostensibly overwhelms what can be 
granted. Moreover, strategic, political and ideological criteria pervade the administrative 
decisions on such assignments (Peterson, 2005). To satisfy these normative criteria, that 
underlie either prevalent public policies or governmental ideology, it is obviously 
convenient both to prioritize projects and to construct project-portfolios according to 
rational principles (e.g., maximizing social benefits). Fernandez et al. (2009a) assert that 
public projects may be characterized as follows. 

• They may be undoubtedly profitable, but their benefits are indirect, perhaps only long-
term visible, and hard to quantify. 

• Aside from their potential economic contributions to social welfare, there are intangible 
benefits that should be considered to achieve an integral view of their social impact. 

• Equity, regarding the magnitude of the projects’ impact, as well as the social conditions 
of the benefited individuals, must also be considered.  

Admittedly, the main difficulty for characterizing the “best public project portfolio” is 
finding a mechanism to appropriately define, evaluate, and compare social returns. 
Regardless of the varying definitions of the concept of social return, we can assert the 
tautological value of the following proposition.  

Proposition 1: Given two social projects, A and B, with similar costs and budgets, A should be 
preferred to B if A has a better social return.  

Ignoring, for a moment, the difficulties for defining the social return of a project portfolio, 
given two portfolios, C and D, with equivalent budgets, C should be preferred to D if and 
only if C has a better social return. Thus, the problem of searching for the best project-
portfolio can be reduced to finding a method for assessing social-project returns, or at least a 
comparative way to analyze alternative portfolio proposals. 

The most commonly used method to examine the efficiency impacts of public policies is 
“cost-benefit” analysis (e.g. Boardman, 1996). Under this approach, the assumed 
consequences of a project are “translated” into equivalent monetary units where positive 
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As a future research direction, the same analyses can be carried out for different problem 
domains, and with different structural parameter settings, and even the interaction between 
the numerical and structural parameters could be investigated. 
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public projects may be characterized as follows. 

• They may be undoubtedly profitable, but their benefits are indirect, perhaps only long-
term visible, and hard to quantify. 

• Aside from their potential economic contributions to social welfare, there are intangible 
benefits that should be considered to achieve an integral view of their social impact. 

• Equity, regarding the magnitude of the projects’ impact, as well as the social conditions 
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Admittedly, the main difficulty for characterizing the “best public project portfolio” is 
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Regardless of the varying definitions of the concept of social return, we can assert the 
tautological value of the following proposition.  

Proposition 1: Given two social projects, A and B, with similar costs and budgets, A should be 
preferred to B if A has a better social return.  

Ignoring, for a moment, the difficulties for defining the social return of a project portfolio, 
given two portfolios, C and D, with equivalent budgets, C should be preferred to D if and 
only if C has a better social return. Thus, the problem of searching for the best project-
portfolio can be reduced to finding a method for assessing social-project returns, or at least a 
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consequences are considered “benefits” and negative consequences are considered “loses” 
or “costs”. The temporal distribution of costs and benefits, modeled as net-cash-flows and 
adjusted by applying a “social discount rate”, allows computing the net present-value of 
individual projects. A positive net present-value indicates that a project should be approved 
whenever enough resources are available (Fernandez et al., 2009a). Therefore, the net 
present-value of a particular project can be used to estimate its social return. As a 
consequence, the social impact of a project portfolio can be computed as the sum of the net-
present-value of all the projects in the portfolio. The best portfolio can then be found by 
maximizing the aggregated social return (portfolio net-present-social benefit) using 0-1 
mathematical programming (e.g. Davis and Mc Keoun, 1986). 

This cost-benefit approach is inadequate for managing the complex multidimensionality of 
the combined outcome of many projects, especially when it is necessary to assess intangibles 
that have no well-defined market values. In extreme cases, this approach favors 
unacceptable practices (either socially or morally) such as pricing irreversible ecological 
damages, or even human life. Aside from ethical concerns, setting a price to intangibles for 
which a market value is highly controversial can hardly be considered a good practice. For a 
detailed analysis on this issue, the reader is referred to the works by French (1993), Dorfman 
(1996), and Bouyssou et al. (2000). 

Despite this drawback, cost-benefit analysis is the preferred method for evaluating social 
projects (Abdullah and Chandra, 1999). Besides, not using this approach for modeling the 
multi-attribute impacts of projects leave us with no other method for solving portfolio 
problems with single objective 0-1 programming. A contending approach to cost-benefit is 
multi-criteria analysis. This approach encompasses a variety of techniques for exploring 
the preferences of the Decision Makers (DM), as well as models for analyzing the 
complexity inherent to real decisions (Fernandez et al., 2009a). Some of the most broadly 
known multi-criteria approaches are MAUT (cf. Keeney and Raiffa, 1976), AHP (cf. Saaty, 
2000, 2005), and outranking methods (Roy, 1990; Figueira et al., 2005; Brans and 
Mareschal, 2005). 

Multi-criteria analysis represents a good alternative to overcome the limitations of cost-
benefit analysis as it can handle intangibles, ambiguous preferences, and veto conditions. 
Different multi-criteria methods have been proposed for addressing project evaluation and 
portfolio selection (e.g.  Santhanam and Kyparisis, 1995 ; Badri et al., 2001 ; Fandel and Gal, 
2001 ; Lee and Kim, 2001 ; Gabriel et al., 2006; Duarte and Reis, 2006; Bertolini et al., 2006; 
Mavrotas et al., 2006; Sugrue et al., 2006;  Liesio et al., 2007 ; Mavrotas et al., 2008; Fernandez 
et al., 2009a,b). The advantages of these methods are well documented in the research 
literature and the reader is referred to Kaplan y Ranjithan (2007) and to Liesio et al. (2007) 
for an in-depth study on the topic. 

Multi-criteria analysis offers techniques for selecting the best project or a small set of 
equivalent “best” projects (this is known as the Pα problem, according to the known 
classification by Roy (1996)), classifying projects into several predefined categories (e.g. 
“good”, “bad”, “acceptable”), known as the Pβ problem, and ranking projects according to 
the preferences or priorities given by the decision maker (the Pγ problem).  

Given a set of ranked projects, funding resources may be allocated following the priorities 
implicit in the ranking until no resources are left (e.g. Martino, 1995). This is a simple but 
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rigid process that has been questioned by several authors (e.g. Gabriel et al., 2006, 
Fernandez et al., 2009 a,b). According to our perspective, the decision on which projects 
should receive financing must be made based on the best portfolio, rather than on the best 
individual projects. Therefore, it is insufficient to compare projects to one another. Instead, it 
is essential to compare portfolios. Selecting a portfolio based on individual projects’ ranking 
guarantees that the set of the best projects will be supported. However, this set of projects 
does not necessarily equals the best portfolio. In fact, these two sets might be disjoint. Under 
this scenario, it is reasonable to reject a relatively good (in terms of its social impact) but 
expensive project if it requires disproportionate funding (Fernandez et al. 2009 a,b). 
Therefore, obtaining the best portfolio is, we argue, equivalent to solving the Pα problem 
defined over the set of all feasible portfolios. 

Mavrotas et al. (2008) argue that, when the portfolio is optimized, good projects can be 
outranked by combinations of low-cost projects with negligible impact. However, this is not 
a real shortcoming whenever the following conditions are satisfied. 

• Each project is individually acceptable 
• The decision maker can define his/her preferences over the set of feasible portfolios (by 

using some quality measure, or even by intuition) 
• The decision maker prefers the portfolio composed of more projects with lower costs. 

In order to solve the selection problem over the set of feasible portfolios, the following issues 
should be addressed. 

• The nature of the decision maker should be defined. It must be clear that this entity can 
address social interest problems in a legit way. In addition, the following questions 
should be answered. Is the decision-maker a single person? Or is it a collective with 
homogeneous preferences such that these can be captured by a decision model? Or is it, 
instead, a heterogeneous group with conflicting preferences? How is social interest 
reflected on the decision model? 

• A computable model of the DM’s preferences on the social impacts of portfolios is 
required. 

• Portfolio selection is an optimization problem with exponential complexity. The set of 
possible portfolios is the power set of the projects applying for funding. The 
cardinality of the set of portfolios is 2N, where N is the number of projects. The 
complexity of this problem increases significantly if we consider that each project can 
be assigned a support level. That is, projects can be partially supported. Under these 
conditions, the optimization problem is not only about identifying which projects 
constitute the best portfolio but also about defining the level of support for each of 
these projects.  

• If effects of synergetic projects or temporal dependencies between them are considered, 
the complexity of the resulting optimization model increases significantly. 

The first issue is related to the concepts of social preferences, collective decision, democracy, 
and equity. The second issue, on the other hand, constitutes mathematical decision analysis’ 
main area of influence. These capabilities for building preference models that incorporate 
different criteria and perspectives is what makes these techniques useful (albeit with some 
limitations) for constructing multidimensional models of conflicting preferences. 
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The DM´s preferences on portfolios (or their social impacts) can be modeled from different 
perspectives, using different methods, and to achieve different goals. Selecting one of these 
options depends on who the DM is (e.g., a single person or a heterogeneous group), as well 
as on how much effort this DM is willing to invest in searching for the solution to the 
problem. Therefore, the information about the impact and quality of the projects that 
constitute a portfolio can be obtained from the DM using one of several available 
alternatives. This requires us to consider different modeling strategies and, in consequence, 
different approaches for finding the solution to this problem. We should note that the DM’s 
preferences can be modelled using different and varying perspectives; ranging from the 
normative approach that requires consistency, rationality, and cardinal information, to a 
totally relaxed approach requiring only ordinal information. The chosen model will depend 
on the amount of time and effort the decision maker is willing to invest during the 
modelling process, and on the available information on the preferences. Here, we are 
interested in constructing a functional-normative model of the DM’s preferences on the set 
of portfolios. 

Evolutionary algorithms are powerful tools for handling the complexity of the problem 
(third and fourth issues listed above). Compared with conventional mathematical 
programming, evolutionary algorithms are less sensitive to the shape of the feasible region, 
the number of decision variables, and the mathematical properties of the objective function 
(e.g., continuity, convexity, differentiability, and local extremes). Besides, all these issues are 
not easily addressed using mathematical programming techniques (Coello, 1999). While 
evolutionary algorithms are not more time-efficient than mathematical programming, they 
are often more effective, generally achieving satisfactory solutions to problems that cannot 
be addressed by conventional methods (Coello et al., 2002).  

Evolutionary algorithms provide the necessary instruments for handling both the 
mathematical complexity of the model and the exponential complexity of the problem. In 
addition, mathematical decision analysis methods are the main tools for modelling the DM´s 
preferences on projects and portfolios, as well as for constructing the optimization model 
that will be used to find the best portfolio.  

The rest of this chapter is organized as follows. An overview of the functional-normative 
approach to decision making, as well as its use as support for solving selection, ranking and 
evaluation problems is considered in Section 2. In Section 3, we study the public portfolio 
selection problem where a project’s impact is characterized by a project evaluation, and the 
DM uses a normative approach to find the optimal portfolio (i.e., the case where maximal 
preferential information is provided). In the same section we also describe an evolutionary 
algorithm for solving the optimization problem. An illustrative example is provided in 
Section 4. Finally, some conclusions are presented in Section 5. 

2. An outline of the functional approach for constructing a global preference 
model 
Mathematical decision analysis provides two main approaches for constructing a global 
preference model using the information provided by an actor involved in a decision-making 
process. The first of these approaches is a functional model based on the normative axiom of 
perfect and transitive comparability. The second approach is a relational model better 
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known for its representation of preferences as a fuzzy outranking relation. In this work, 
however, we will focus on the functional approach only.  

When using the functional model, also known as the functional-normative approach (e.g. 
French, 1993), the Decision Maker must establish a weak preference relation, known as the 
at least as good as relation and represented by the symbol ≿.This relation is a weak order (a 
complete and transitive relation) on the decision set A. The statement “a is at least as good as 
b” (a ≿ b) is considered a logical predicate with truth values in the set {False, True}. If a ≿ b is 
false then b ≿ a must be true, implying a strict preference in favor of b over a. Given the 
transitivity of this relation, if the DM simultaneously considers that predicates a ≿ b and b ≿ 
c are true, then, the predicate a ≿ c is also set to true. This approach does not consider the 
situation where both predicates, a ≿ b and b ≿ a, are false, a condition known as 
incomparability. Because of this, the functional model requires the DM to have an unlimited 
power of discrimination. 

The relation ≿ can be defined over any set whose elements may be compared to each other 
and, as a result of such comparison, be subject to preferences. Of particular interest is the 
situation where the decision maker considers risky events and where the consequences of 
the actions are not deterministic but rather probabilistic. To formally describe this situation, 
let us introduce the concept of lottery at this point.  

Definition 1. A lottery is a 2N-tuple of the form (p1, x1; p2, x2;… pN, xN), where xi ∈ ℜ 
represents the consequence of a decision, pi is the probability of such consequence , and  the 
sum of all probabilities equals 1. 

Given that the relation ≿ is complete and transitive, it can be proven that a real-valued 
function V can be defined over the decision set A (V: A → ℜ), such that for all a, b ∈ A, 
V(a) ≥ V(b) ⇔ a ≿ b. This function is known as a value or utility function in risky cases 
(French, 1993). If the decision is being made over a set of lotteries, the existence of a utility 
function U can be proven such that Ū(L1) ≥ Ū(L2) ⇔ L1 ≿ L2, where L1 and L2 are two 
lotteries from the decision set and Ū is the expected value of the utility function (French, 
1993).  

The value, or utility, function represents a well formed aggregation model of preferences. 
This model is constructed around the set of axioms that define the rational behavior of the 
decision maker. In consequence, it constitutes a formal construct of an ideal behavior. The 
task of the analyst is to conciliate the real versus the ideal behavior of the decision maker 
when constructing this model. Once the model has been created, we have a formal problem 
definition. This is a selection problem that is solved by maximizing either V or Ū over the set 
of feasible alternatives. From this, a ranking can be obtained by simply sorting the values of 
these functions. By dividing the range of these values into M contiguous intervals, discrete 
ordered categories can be defined for labeling the objects in the decision set A (for instance, 
Excellent, Very Good, Good, Fair, and Poor). These categories are considered as equivalence 
classes to which the objects are assigned to. 

When building a functional model, compatibility with the DM’s preferences must be 
guaranteed. The usual approach is to start with a mathematical formulation that captures 
the essential characteristics of the problem. Parameters are later added to the model in a 
way that they reflect the known preferences of the decision maker. Hence, every time the 
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DM indicates a preference for object a over object b, the model (i.e., the value function V) 
must satisfy condition V(a) > V(b). Otherwise, the model should satisfy condition V(a) = 
V(b), indicating that the DM has no preference of a over b, nor has the DM a preference of b 
over a. This situation is known as indifference on the pair (a, b). If V is an elemental function, 
these preference/indifference statements on the objects become mathematical expressions 
that yield the values of V’s parameters. To achieve this, usually the DM provides the truth 
values of several statements between pairs of decision alternatives (ai, bi). Then, the model’s 
parameter values are obtained from the set of conditions V(ai) = V(bi). Finally, the value and 
utility functions are generally expressed in either additive or product forms, and, in the 
most simple cases, as weighted-sum functions. 

The expected gain in a lottery is the average of the observed gains in the lottery’s history. If 
the DM plays this lottery a sufficiently large number of times, the resulting gain should be 
close the lottery’s expected gain. However, it is not realistic to assume that a DM will face 
(play) the same decision problem several times as decision problems are, most of the times, 
unique and unrepeatable. Therefore it is essential to model the DM’s behavior towards risk. 
Persons react differently when facing risky situations. In real life, a DM could be risk prone, 
risk averse, or even risk neutral. Personal behavior for confronting risk is obviously a 
subjective characteristic depending on all of the following. 

• The DM’s personality  
• The specific situation of the DM as this determines the impact of failing or succeeding. 
• The amount of the gain or loses that will result from making a decision. 
• The relationship of the DM with these gains and loses.  

All these aspects are closely related. While the first of them is completely subjective, the 
remaining three have evident objective features. 

The ability for modeling the decision maker’s behavior when facing risk is one of the most 
interesting properties of the functional approach. At this point, it is necessary to introduce 
the concept of certainty equivalence in a lottery.  

Definition 2. Certainty equivalence is the “prize” that makes an individual indifferent 
between choosing to participate in a lottery or to receive the prize with certainty. 

A risk averse DM will assign a lottery a certainty equivalence value lower than the expected 
value of the lottery. A risk prone DM, on the other hand, will assign the lottery a certainty 
equivalence value larger than the lottery’s expected gain. We say a DM is risk neutral when 
the certainty equivalence value assigned to a lottery matches the lottery’s expected gain. 
This behavior of the DM yields quite interesting properties on the utility function. For 
instance, it can be proven that a risk averse utility function is concave, a risk prone utility 
function is convex, and a risk neutral function is linear. 

Let us conclude this section by summarizing both the advantages and disadvantages of 
the functional approach. We start by listing the main advantages of the functional 
approach. 

• It is a formal and elegant model of rational decision making. 
• Once the model exists, obtaining its prescription is a straight forward process. 
• It can model the DM’s behavior towards risk. 
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Now, we provide a list of drawbacks we have identified on the functional approach. 

• It cannot incorporate ordinal or qualitative information. 
• In real life, DM’s do not exactly follow a rational behavior. 
• When decisions are made by a collective, the transitivity of the preference relation 

cannot be guaranteed. 
• It cannot precisely model threshold effects, nor can it use imprecise information. 
• In most cases, the DM does not have the time to refine the model until a precise utility 

function is obtained. 

3. A functional model for public portfolio optimization using genetic 
algorithms 
Let us consider a set Pr of public projects whose consequences can be estimated by the DM. 
These projects have been considered acceptable after some prior evaluation. That is, the DM 
would support all of them, given that enough funds are available and that no mutually 
exclusive projects are members of the set. However, projects are not, in general, mutually 
independent. In fact, they can be redundant or synergetic. Furthermore, they may establish 
conflicting priorities, or compete for material or human resources, which are indivisible, 
unique, or scarce. 

For the sake of generality, let us consider a planning horizon partitioned in T adjacent time 
intervals. When T=1, this problem is known as the stationary budgeting problem (one 
budgeting cycle) (Chan et al., 2005). In non-stationary cases, there could be different levels of 
available funds for each period. 

In its more general form, a portfolio is a finite set of pairs of projects and periods {(pi, t(pi))}, 
where pi∈ Pr and t(pi) ∈T denotes the period when pi starts. A portfolio is feasible whenever 
it satisfies financial and scheduling restrictions, including precedence, and it does not 
contain redundant or mutually exclusive projects. These restrictions may also be influenced 
by equity, efficiency, geographical distribution, and the priorities imposed by the DM. In 
particular, if only one budgeting cycle is considered, the portfolios are subsets of Pr. 

The set of projects is partitioned in different areas, according to their knowledge domain, 
their social role, or their geographic zone of action. One project can only be assigned to one 
area. Such partition is usually due to the DM’s interest for obtaining a balanced portfolio. 
Given a set of areas A = {A1, A2, …, An}, the DM can set the minimum and maximum 
amounts of funding that will be assigned to projects belonging to area Ai ∈ A. 

The general problem is to determine which projects should be supported, in what period 
should the support start, and the amount of funds that each project should receive, provided 
that the overall social benefit from the portfolio is maximised. 

In order to have a formal problem statement, we should answer the following questions. 

• How can the return of a public project-portfolio be formally defined? 
• How can objective and subjective criteria be incorporated for optimizing project-

portfolio returns? 
• Under what conditions can the return of a portfolio be effectively maximized? 
• What methods can be used to select the best portfolio? 
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To achieve the goal of maximizing social return we need to formally define a real-valued 
function, Vsocial, that does not contravene the relation ≿social. The construction of such 
function is, however, problematical due to the following reasons. 

i. A set of well defined social preferences must exist. 
ii. This set of preferences must be revealed.  

The preference-indifference social relation is required to be transitive and complete over 
social states (premise i). However, due to the known limitations for constructing collective 
rational-preferences (e.g., Condorcet’s Paradox, Arrow’s Impossibility Theorem, and 
context-dependent preferences), (Bouyssou et. al., 2000; Tversky and Simonson, 1993; 
French, 1993), and to the difficulty in obtaining valid information about social preferences 
from the decision maker, premises i and ii are rarely fulfilled  in real-world cases (Sen, 2000, 
2008). 

The success of public policies is measured in terms of their contribution to social equity and 
social “efficiency”. A project’s social impact should be an integrated assessment of such 
criteria. In the research literature, it is possible to find several methods that have been 
proposed for estimating a project contribution to social well-fare. Unfortunately, they all 
show serious limitations for handling intangible attributes. Furthermore, these methods’ 
objectivity for measuring the contribution of each project or public policy is questionable.  In 
any society, a wide variety of interests and ideologies can coexist. This human condition 
makes it complicated to reach a consensus on what an effective measure of social benefit 
should be. In turn, the absence of consensus leads to a lack of objectivity on any defined 
measure. This lack of objectivity is closely related to a nonexistent function of social 
preference and to the ambiguity of collective preferences as reported by Condorcet, Arrow, 
and Sen (Bouyssou et al., 2000; Sen, 2000, 2008).  

While the social impact is objective, its assessment is highly subjective as it depends on the 
ideology, preferences and values of the person measuring the impact. This subjectivity, 
however, does not necessarily constitute a drawback as it is not arbitrary. In the end, 
decision making does not lack of subjective elements. The set of criteria upon which the 
decision making is based should strive to be objective. However, the assessment of the 
combined effect of such criteria, some of them in conflict with each other, is subjective in 
nature as it depends on the perception of the decision maker. The objectivity of decision 
making theory is not based on eliminating all subjective elements. Instead, it is based on 
creating a model that reflects the system of values of the decision maker. 

In every decision problem it is necessary to identify the main actor whose values, priorities, 
and preferences, are to be satisfied. In this context (the problem of efficiently and effectively 
allocating public resources), we will call “supra-decision-maker” (SDM) to this single or 
collective actor. For the rest of the discussion, we drop the idea of modeling public returns 
from a social perspective in favor of modeling the SDM’s preferences. 

Focusing exclusively on the SDM’s preferences is a pragmatic representation of the problem 
that raises ethical concerns. This is particularly true when the SDM is elected democratically 
and, as such, his/her decisions formally represent the preferences of the society. In real life, 
an SDM may possibly have a very personal interpretation of social welfare and subjective 
parameters to evaluate project returns that do not necessarily represent the generalized 
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social values but rather the ambition of a certain group. Thus, even under the premise of 
ethical behavior, the SDM ⎯who is supposed to distribute resources according to social 
preferences⎯ can only act in response to his/her own preferences. The reasons for this are 
that either the SDM hardly knows the actual social preferences, or he/she pursues his/her 
own satisfaction ⎯according to his/her preferences⎯ in an honest attempt to achieve what 
he/she thinks is socially better. Unethical behavior or lack of information can cause the 
SDM’s preferences to significantly deviate from the predominant social interests. In turn, 
this situation might trigger events such as social protests claiming to reduce the distance 
between the SDM’s preferences and social interests. Therefore, solving a public project-
portfolio selection problem is about finding the best solution from the SDM’s perspective. 
This solution (under the premise of ethical behavior) should be close to the portfolio with 
the highest social return. 

3.1 A Functional model of the subjective return 

In order to maximize the portfolio’s subjective return (that is, the return from the SDM 
perspective), we must build a value function that satisfies relation ≿portfolios. For a starting 
analogy, let us accept that each project’s return can be expressed by a monetary value,  
in a similar way as cost-benefit analysis. If no synergy and no redundancy exist (or they 
can be neglected) among the projects, the overall portfolio’s return can be calculated as 
follows. 

 Rt = x1 c1 + x2 c2 + …+ xN cN (1) 

In Equation 1, N is the cardinality of Pr. The value of xi is set to 1 whenever the i-th project is 
supported, otherwise xi = 0. Finally, ci is the return value of the i-th project. 

Let Mi denote the funding requirements for the i-th project. Let d be an N-dimensional 
vector of real values. Each value, di, of vector d is associated to the funding given to the i-th 
project. If a project is not supported, then the corresponding value in d associated to such 
project will be set to zero. With this, we can now formally define the problem of portfolio 
selection. 

Problem definition 1. Portfolio selection optimization can be obtained after maximizing Rt, 
subject to d ∈ RF, where RF is a feasible region determined by the available budget, 
constraints for the kind of projects allowed in the portfolio, social roles, and geographic zones. 

Problem 1 is a variant of the knapsack problem, which can be efficiently solved using 0-1 
programming. Unfortunately, this definition is an unrealistic model for most social portfolio 
selection problems due to the following issues. 

1. For Equation 1 to be valid, the monetary value associated to each project’s social impact 
must be known. Monetary values can be added to produce a meaningful figure. 
However, due to the existence of indirect as well as intangible effects on such projects, it 
is unrealistic to assume that such monetary equivalence can be defined for all projects. 
If we cannot guarantee that every ci in Equation 1 is a monetary value, then the 
expression becomes meaningless. 

2. Most of the times, the decision is not about accepting or rejecting a project but rather 
about the feasibility of assigning sufficient funds to it. 
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3. The effects of synergy between projects can be significant on the portfolio social return. 
Therefore, they must be modeled. For instance consider the following two projects, one 
for building a hospital and the other for building a road that will enhance access to such 
hospital. Both of such projects have, individually, an undeniable positive impact. 
However their combined social impact is superior. 

4. Time dependences between projects are not considered by Problem definition 1. 
5. It is possible that for a pair of projects (i and j) ci >> cj and Mi >> Mj, the solution to this 

problem indicates that project i should not be supported (xi = 0) whereas project j is 
supported (xj = 1). The SDM might not agree to this solution, as it fails to support a 
high-impact project while it provides funds to a much less important project. 
Furthermore, such situation will be difficult to explain to the public opinion. 

The functional normative approach presented in Section 2 is used to address the first issue 
on this list. Here, we present a new approach based on the work of Fernandez and Navarro 
(2002), Navarro (2005), Fernandez and Navarro (2005), and Fernandez et al. (2009). 
Addressing issues 2 to 5 on the list above requires using a heuristic search and optimization 
methods. 

This new approach is constructed upon the following assumptions. 

Assumption 1: Every project has an associated value subjectively assigned by the SDM. This 
value increases along with the project’s impact.  

Assumption 2: This subjective value reflects the priority that the SDM assigns to the 
project. Each project is assigned to a category from a set of classes sorted in increasing 
order of preference. These categories can be expressed qualitatively (e.g., {poor, fair,  
good, very good, excellent}) or numerically in a monotonically increasing scale of 
preferences. 

Assumption 3: Projects assigned to the same category have about the same subjective value 
to the SDM. Therefore, the granularity of the discrete scale must be sufficiently fine so that 
no two projects are assigned to the same class if the SMD can establish a strict preference 
between them. 

Assumption 4 (Additivity): The sum of the subjective values of the projects belonging to a 
portfolio is an ordinal-valued function that satisfies relation ≿portfolios. 

Fernandez et al. (2009) rationalize this last assumption by considering that each project is a 
lottery. A portfolio is, in consequence, a “giant” lottery being played by a risk-neutral SDM. 
Under this scenario, the subjective value of projects and portfolios corresponds to their 
certainty equivalent value. 

Under Assumption 4, the interaction between projects cannot be modeled. Synergy and 
redundancy in the set of projects are characteristics that require special consideration that 
will be introduced later. 

Under Assumptions 1 and 4, the SDM assess a subjective value to portfolio given by the 
following equation. 

 V= x1 c1 + x2 c2 + …+ xN cN (2) 
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In Equation 2, ci represents the subjective value of the i-th project. Equations 1 and 2 are 
formally equivalent. However, the resulting value of V only makes sense if there is a process 
to assign meaningful values to ci.  

Before we proceed to the description of the rest of the assumptions, we need to introduce 
the concept of elementary portfolio. 

Definition 3: An elementary portfolio is a portfolio that contains only projects of the same 
category. It will be expressed in the form of a C-dimensional vector, where C is the number 
of discrete categories. Each dimension is associated to one particular category. The value in 
each dimension corresponds to the number of projects in the associated category. 
Consequently, the C-dimensional vector of an elementary portfolio with n projects will have 
the form (0, 0, …, n, 0, …, 0). 

Assumption 5: The SDM can define a complete relation ≿ on the set of elementary 
portfolios. That is, for any pair of elementary portfolios, P and Q, one and only one of the 
following propositions is true. 

• Portfolio P is preferred to portfolio Q 
• Portfolio Q is preferred to portfolio P 
• Portfolios P and Q are indifferent. 

Assumption 6 (Essentiality): Given two elementary portfolios, P and Q, defined over the 
same category. Let P = (0, 0, …, n, 0, …, 0) and Q = (0, 0,…, m, 0, …, 0). P is preferred to Q if 
an only if n > m. 

From the set of discrete categories, let C1 be the lowest category, CL be the highest, and Cj  a 
category preferred to C1. 

Assumption 7 (Archimedean): For any category Cj,  there is always an integer value n such 
that the SDM would prefer a portfolio composed of n projects in the C1 category to any 
portfolio composed of a single project in the Cj category. 

Assumption 8 (Continuity): If an elementary portfolio P = (x, 0, …, 0,…, 0) is preferred to an 
elementary portfolio Q = (0,…, 1, 0,…, 0), defined over category j for 1 < j ≤ L, there is always 
a pair of integers values n and m (n > m) such that an elementary portfolio with n projects of 
the lowest category is indifferent to another elementary portfolio with m projects of the j-th 
category. 

Assumption 5 characterizes the normative claim of the functional approach for decision-
making. Assumption 6 is a consequence of Assumption 4 (additivity) combined with the 
premise that all projects satisfy minimal acceptability requirements. Assumption 7 is a 
consequence of both essentiality and the non-bounded character of the set of natural 
numbers. Assumption 8 simulates the way in which a person balances a scale using a set of 
two types of weights whose values are relative primes. 

Let us say that c1 is a number representing the subjective value of the projects belonging to 
the lower category C1. Similarly, let us use cj to represent the value of projects in category Cj. 
Now, suppose that the elementary portfolios P (containing n projects in C1) and Q 
(integrated by m projects in Cj) are indifferent. That is, P and Q have the same V value. If we 
combine Assumption 8 with Equation 2, we obtain the following expression. 
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n c1= m cj ⇔ cj= (n/m)c1 

If V is a value function, then every proportional function is also a value function satisfying 
the same preferences. Therefore, we can arbitrarily set c1=1 to obtain Equation 3 below.  

 cj= n/m (3) 

In consequence, Equation 2 can now be re-stated as follows. 

 U= Σi,k wikxik (4) 

In Equation 4, the variable j is used to index categories, whereas variable k indexes projects. 
The value of w1k is set to 1, and wjk= n/mj, where mj denotes the cardinality of an 
elementary portfolio defined over category Cj. Additionally, factors wik might be interpreted 
as importance factors. These weights express the importance given by the SDM to projects 
within certain category. Therefore, they should be calculated from the SDM’s preferences, 
expressed while solving the indifference equations between elementary portfolios, as stated 
by Assumption 8 and according to Equation 3. A weight must be calculated for every 
category. If the cardinality of the set of categories is too large, the resolution of such 
categories can be reduced to simplify the model. A temporary set of weights is obtained 
using these coarse categories. By interpolation on such set, the values of the original (finer 
resolution) set can be obtained. 

3.2 Fuzziness of requirements 

Another important issue is the imprecise estimation of the monetary resources required by 
each project. If dk are the funds assigned to the k-th project, then there is an interval [mk, Mk] 
for dk where the SDM is uncertain about whether or not the project is being adequately 
supported. Therefore, the proposition “the k-th project is adequately supported” may be 
seen as a fuzzy statement. If we consider that the set of projects with adequate funds is 
fuzzy, then the SDM can define a membership function μk(dk) representing the degree of 
truth of the previous proposition. This is a monotonically increasing function on the interval 
[mk ,Mk], such that μk(Mk) = 1, μk(mk) > 0, and μk(dk) = 0 when dk < mk.  

The subjective value assigned by the SDM to the k-th project is based on the belief that the 
project receives the necessary funding for its operation. When dk<mk the SDM is certain that 
the project is not sufficiently funded. When mk ≤ dk < Mk, the SDM hesitates about the truth 
of that statement. This uncertainty affects the subjective value of the project, because it 
reduces the feasible impact of the project, which had been subjectively estimated under the 
premise that funding was sufficient. The reduction of the project’s subjective value can be 
modeled by the product of the original value and a feasibility factor f. This factor is a 
monotonically increasing function with μk as an argument such that f(0) = 0 and f(1) = 1. 
Equation 5 below, is generated by introducing this factor into Equation 4, and assuming that 
f(μik) >0 ⇔ xik=1.  

 U = Σik f(μik) wik (5) 

The simplest definition of the feasibility factor is to make f(μik) = μik. This is equivalent to a 
fuzzy generalization of Equation 4. In such case, xik can be considered as the indicator 
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function of the set of supported projects. When a non-fuzzy model includes the binary 
indicator function of a crisp set, the fuzzy generalization provided by classical “fuzzy 
technology” is made substituting this function with a membership function expressing “the 
degree of membership” to the more general fuzzy set. In this way, Equation 5 becomes 
Equation 6 shown below. 

 U = Σik wik μik (6) 

Equation 6 was proposed by Fernandez and Navarro (2002) as a measure of a portfolio’s 
subjective value. 

3.3 Synergy and redundancy 

Redundancy between projects can be addressed using constraints. For every pair of 
redundant projects, (pi, pj), i < j, condition μi(di) × μj(dj) = 0 should be enforced. 

Let S = {S1, S2, …, Sk} be the set of coalitions of synergetic projects. In a model like the one 
represented by Equation 5, each of these coalitions should be treated as an (additional) 
individual project. As a result, each coalition has an associated cost (i.e., the sum of the costs 
of the individual projects in the coalition), and an evaluation. This evaluation should be 
better than the evaluation of any of the projects in the coalition. Let us assume that coalitions 
Si and Sj become projects PN+i and PN+j, respectively. If Si is a subset of Sj, then it does not 
make sense to include them both in a portfolio. Therefore, PN+i and PN+j must be considered 
redundant projects. Furthermore, if project pn is a member of Si, then the pair (pn, pN+i) is 
also redundant (since the value of pn is included in the value of pN+i). 

3.4 A Genetic algorithm for optimizing public portfolio subjective value 

Suppose that a feasible region of portfolios, RF, is defined by constraints on the total budget 
and on the distribution of projects by area. In addition, the SDM could include further 
constraints on the portfolios due to following reasons. 

• The particular budget distribution of the portfolio could be very difficult to justify. Let 
us suppose that the SDM asserts that “project pj is much better than project pi”. In 
consequence, any portfolio in which μi is greater than μj could be unacceptable. This 
implies the existence of some veto situations that can be modeled with the following 
constraint. For every project pi and pj, being si, and sj their corresponding evaluations, if 
(si – sj ) ≥ vs, then (μi (di) - μj (dj)) must be greater than (or equal to) 0, where vs is a veto 
threshold. In the following they will be called veto constraints.  

• A possible redundancy exists between projects.  

Let us use R’F, R’F ⊂ RF, to denote the set of values for the decision variables that make every 
portfolio acceptable. All the veto constraints are satisfied in R’F and there are no redundant 
projects in the portfolios belonging to this region. The optimization problem can now be 
defined as follows. 

Problem definition 2. An optimal portfolio can be selected by maximizing U = Σik f(μik(dik)) 
wik,  subject to  d ∈ R’F , where dik indicates the financial support assigned to the k-th project 
belonging to the i-th category. 
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Solving this problem requires a complex non linear programming algorithm. The number of 
decision variables involved can be in the order of thousands. Due to the discontinuity of μi, 
the objective function is discontinuous on the hyper planes defined by dik = mik. Therefore, 
its continuity domain is not connected. The shape of the feasible region R’F is too 
convoluted, even more if synergy and redundancy need to be addressed. R’F hardly has the 
mathematical properties generally required by non linear programming methods. Note that 
veto constraints on the pairs of projects (pi, pk) and (pj, pk’) are discontinuous on the hyper 
planes defined by dik = mik and djk’ = mjk’. In a real world scenario, where hundreds or 
even thousands of projects are considered, non-linear programming solutions cannot 
handle these situations. Using Equation 6, a simplified form of Problem definition 2, was 
efficiently solved by Fernandez et al. (2009) and later by Litvinchev et al. (2010) using an 
integer-mixed programming model. Unfortunately, this approach cannot handle synergy, 
redundancy, veto constraints, nor can it handle the non-linear forms of function f in 
Problem definition 2. 

Evolutionary algorithms are less sensitive to the shape of the feasible region, the number of 
decision variables, and the mathematical properties of the objective function (e.g., 
continuity, convexity, differentiability, and local extremes). In contrast, all of these issues are 
a real concern for mathematical non linear programming techniques (Coello, 1999). While 
evolutionary algorithms are not time-efficient, they often find solutions that closely 
approximate the optimal. Problem definition 2 represents a relatively rough model. 
However, the main interest is not on fine tuning the optimization process but rather on the 
generality of the model and on the ability to reach the optimal solution or a close 
approximation. 

In Figure 1, we illustrate the genetic algorithm used for solving the optimization problem 
stated in Problem definition 2. This algorithm is based on the work of Fernandez and 
Navarro (2005). As in any genetic algorithm, a fundamental issue is defining a 
codification for the set of feasible solutions to the optimization problem. In this case, each 
individual represents a portfolio and each chromosome contains N genes, where N is the 
number of projects. For the chromosome, we use a floating point encoding representing 
the distribution of funding among the set of projects in the portfolio. The financial 
support for each project is represented by its membership function, μj(dj), which is real-
valued with range in [0, 1]. That is, a floating point number represents each project’s 
membership value. This membership value is a gene in our definition of chromosomes. As 
discussed earlier, the number of genes can be increased in order to address the effects of 
synergetic projects. 

The fitness value of each individual is calculated based on function U given by Equation 5. 
Remember that this is a subjective value that captures the SDM’s certainty that the project 
receives the necessary funding for its operation. The SDM’s idea that a project has been 
assigned sufficient funds is modeled using two parameters, α and β. The domain for both 
parameters is the continuous interval [0, 1].The first parameter, α, can be interpreted as the 
degree of truth of the assertion “the project has sufficient financial support if it receives m 
monetary units of funding”. When this financial support reaches the value βM, the predicate 
“the project has sufficient funding” is considered true. The value of these two parameters is 
needed to establish models for function μj in order to calculate the value of U. To generate 
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these models, we propose to choose parameters α and β (0< α <1, m/M < β ≤1) for 
modelling μ as shown in Figure 2. For the experiments presented here, the values of α = 0.5 
and β = 1 have been used. The most promising values for these parameters are reasonably 
found in the intervals [0.5, 0.7] and [0.9, 1], respectively.  

 
Fig. 1. A Genetic Algorithm for Project Portfolio Selection 

For the selection stage, the roulette wheel technique was used. That is, the probability that a 
particular individual is selected for reproduction is proportional to its fitness value. For the 
experiments, the crossover rate was set to 0.2. Therefore twenty percent of the population is 
selected for crossover in any given reproductive trial. The crossover operator takes genes 
from each parent string and combines them to produce the offspring of the next generation. 
The main reason for doing this is that by creating new strings from fit parent strings, new 
and promising zones of the search space will be explored. While many crossover techniques 

Algorithm 1. A Genetic Algorithm for Project Portfolio Selection. 
Input:  
 

cycles, the number of iterations before the algorithm converges 
generations 
c_r, the Crossover rate 
m_r, the Mutation rate 

Output: best_solution, the best solution found 
1 
2 
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Set best_solution ← any feasible portfolio. // this is the best so far 
Set Ν ← the number of projects (chromosomes) 
 

Set Population ← {best_solution} 
 

for (i = 1 to cycles) do 
for (j = 1 to Ν - 1) do 

set new_solution ← best_solution 
randomly select a gene in new_solution and mutate it 
set Population ← Population ∪ {new_solution} 

end 
 

evaluate every individual ∈ Population 
set best_solution ← the fittest individual ∈ Population 
 

for (k = 1 to generations) do 
perform crossover on (Ν × c_r) individuals ∈ Population 
perform mutation on (Ν × m_r) individuals ∈ Population 
 

set Population ← Population ∪ {best_solution} 
evaluate every individual ∈ Population 
set best_solution ← the fittest individual ∈ Population 

end 
end 
 

return best_solution 
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set Population ← Population ∪ {best_solution} 
evaluate every individual ∈ Population 
set best_solution ← the fittest individual ∈ Population 

end 
end 
 

return best_solution 
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have been reported, in this algorithm the classic crossover technique based on a random cut 
point was used. The number of offspring resulting from this process is one fifth the size of 
the population. 

The replacing process dictates how to update the current population with the individuals 
obtained by crossover. A random replacement approach (every individual has the same 
probability to be replaced) is used for reducing selective pressure. A similar approach is 
used for implementing an elitist policy. That is, an individual is randomly chosen from the 
current population and is replaced by the individual with the highest evaluation. 
Consequently, the presence of the best individual (best_solution in Algorithm 1) in the 
updated population is guaranteed. 

Algorithm 1 uses a constant mutation rate that is set a priori. Each individual in the 
population is considered for mutation, and all the individuals have the same probability of 
mutating, which is defined by the mutation rate. Once an individual has been selected for 
mutation, one of its genes is randomly chosen. This gene will change by adding to it a 
random value in the [-0.2, 0.2] interval, excluding zero. The resulting gene value, however is 
limited to the [0, 1] interval.  

Redundancy is addressed in a very simple way. If, as the result of some genetic operator an 
individual (i.e., a portfolio) containing redundant projects is generated, this individual is 
immediately “killed”. That is, its incorporation to the current population is denied. 
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3.5 An illustrative example 

Let us now consider the following example taken from (Fernandez and Navarro, 2005). The 
goal is to distribute a budget of 50 million dollars among of 400 R&D projects. These projects 
are distributed in four areas, namely engineering, life sciences, formal sciences, and social 
sciences. There are 140 projects in the first area (engineering), 80 projects in the second one 
(life sciences), 100 projects in the third area (formal sciences), and 80 project in the last area 
(social sciences). No synergetic effects are considered. 

The classification of the projects, according to their evaluations and areas, is described in 
Table 1. The projects subjective values corresponding to each category and area are shown 
in Table 2. These values were obtained taking a social sciences project evaluated as Below 
Average as baseline (w = 1). These values define a ranking on the set of projects that can be 
used to allocate funds according to the conventional heuristic described in Section 1 (with all 
its known limitations).  
 

 Area 1 Area 2 Area 3 Area 4 

Very Good 54 28 13 12

Good 23 9 18 24

Above Average 62 32 36 28

Average 1 9 17 11

Below Average 0 2 16 5

Total 140 80 100 80

Table 1. Distribution of Projects by Area. 
 

 Area 1 Area 2 Area 3 Area 4 

Very Good 5.838 4.3785 3.892 2.9190

Good 4.540 3.4055 3.027 2.2700

Above Average 3.027 2.2700 2.018 1.5135

Average 2.108 1.5810 1.405 1.0540

Below Average 2.000 1.5000 1.333 1.0000

Table 2. Projects Subjective Values. 

Four different instances of the problem were generated by assigning random budget ranges 
to each area. For each project, random values of mik, and Mik were defined, representing its 
minimum and maximum funding requirements. The proposed evolutionary algorithm was 
run 30 times to optimize the expression given by Problem definition 2. For simplicity f(μik) 
was taken to be identical to μik . 
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The algorithm was coded using Visual C++. Its execution time was about 25 minutes for one 
million generations running on a Pentium-4 processor with a, 2.1 GHz clock cycle. This 
architecture was complemented with 256 MB of physical memory and a 74.5-GB hard disk 
drive. The experimental results shown in Table 3 indicate a significant improvement in the 
value of the optimized portfolio with respect to conventional approaches. 

These results represent an average saving of 6.514 million dollars, equivalent to 13.02% of 
the total budget. This improvement has a positive impact on the number of supported 
projects, as Table 4 reveals. The average number of supported projects is 12.5 % higher than 
when conventional methods were used. 
 

Instance Value of the portfolio funding following 
the ranking given by project evaluations 

Value of the 
optimized portfolio 

Improvement 

1 1406.80 1533.95 9% 

2 1282.36 1496.16 16.67% 

3 1279.58 1458.48 14% 

4 1393.58 1566.97 12.44% 

Table 3. Traditional Funding versus our Approach. 
 

Instance Number of supported projects 
funding following the ranking given 
by project evaluations 

Number of supported 
projects in the optimized 
portfolio 

Increment 

1 237 267 12.76% 

2 257 285 10.89% 

3 265 299 12.83% 

4 246 279 13.41% 

Table 4. Traditional Funding versus our Approach (portfolio’s cardinality). 

3.6 Modeling temporal dependencies 

The model described in Problem definition 2 can be generalized to incorporate temporal 
restrictions.  

Problem definition 3. An optimal portfolio of projects with temporal dependencies can be 
selected by maximizing U= Σik f(μik(dik)) wik, subject to (d, t)∈ R’’F , where vector t =(t(p1), 
t(p2),…) denotes the decision variables valid during the period of time when each project 
starts. R’’F contemplates time-precedence restrictions, restrictions on the time projects can 
start, and the available funds for each time interval. 
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This problem can be solved using a genetic algorithm similar to the one previously 
presented. However, a different encoding for individuals must be devised. Our proposal is 
to encode individuals as a 2N-dimensional vector of the form (μ1, t1, μ2, t2, …, μN, tN). As 
before, genes corresponding to μi have domain defined by the continuous interval [0, 1]. 
Genes corresponding to ti have a domain defined by the set {1, 2, 3, …, T}, where T is the 
maximum number of time periods. Crossover can only occur between genes of the same 
kind. However, mutations may occur at any gene. Restrictions such as time precedence and 
the earliest time a project can start are controlled by constraints as described by Carazo et al. 
(2010). 

4. Concluding remarks 
Given a set of premises, it is possible to create a value model for selecting optimal portfolios 
from an SDM perspective. While this problem is Turing-decidable, finding its exact solution 
requires exponential time. However, the use of genetic algorithms for solving this problem 
can closely approximate the optimal portfolio selection. 

Inspired by a normative approach, the set of premises presented here is based on the 
following assumptions.  

• To the SMD, every project and every portfolio has a subjective value that depends on its 
social impact. This value exists even if it cannot be initially quantified.  

• The SDM either has already defined a consistent system of preferences, or has the 
aspiration of doing so. 

• The SDM is willing to invest a considerable amount of mental effort in order to define 
this consistent set of preferences and produce the aforementioned value model. 

As for the algorithmic solution to the portfolio problem, its computational complexity can 
increase considerably when synergic effects and temporal dependencies are considered. 
However strategic planning requires a high quality model. The problems defined in this 
scenario are so important that they justify the use of computational intensive solutions. 
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1. Introduction 
Genetic Algorithms (GAs) can help solving a great variety of complex problems, and the 
characterization of these problems as possible subject for GA is the first step in applying this 
technique. After some years, we have used this strong tool to solve problems from 
astronomy and engineering, and both fields demand complex models and simulations. 

With the aim of improving previous models and test new ones, we have developed a 
methodology generate solutions based on GAs. From a first analysis, one must establish the 
model input and output parameters, and then workout on the inversion of the problem, 
what we called the inverted model. This concept leads to the final formalism that can be 
subject to the GA implementation. 

After a brief presentation of the main concerns and ideas, it will be described some 
applications and their results and discussions. Some details on implementation are also given 
together with the particularities of each model/solution. A special section regarding error bars 
estimates is also provided. The GA method gives a good quality of fit, but the range of input 
parameters must be chosen with caution, as unrealistic parameters can be derived. 

GAs can also be used to verify if a given model is better than another for solving a problem. 
Even considering the limitation of the derived parameters, the automatic fitting process 
provides an interesting tool for the statistical analysis large samples of data and the models 
considered. 

2. Characterization of NP-Complete problems 
In this section, the NP-Complete problems are presented as the main targets of GAs. Before 
starting to project a GA, it is of greatest importance to study and characterize the problem to 
justify the technique to use. 

The early first notion of NP-completeness was proposed by Stephen Cook (1971), in his 
famous paper The complexity of theorem proving procedures. The main ideas presented in this 
section  have their origins in the excelent works of Garey & Johnson (1979) and Papadimitriu 
(1995). 
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Deep inside any GA code there is a model of the inverted problem to be solved. This routine 
works like I don’t know what the correct answer is, but I kwon if a candidate to an answer is 
good or bad. So, the problem to be solved by a GA must have the property that any 
proposed solution to an instance must be quickly checked for correctness. For one thing, the 
solution must be concise, with length polynomially bounded by that of the instance. 

To formalize the notion of quick checking, we will say that there is a polynomial-time 
algorithm that takes as input instance and the solution and decides whether or not it is a 
solution. If a problem demands a nondeterministic polynomial time to be solved, it is said a 
NP-problem, as defined by complexity theory researchers. It means that a solution to any 
search problem can be found and verified in polynomial time by nondeterministic 
algorithm. 

2.1 Inverting the problem 

The most remarkable characteristic of a NP-complete problem is the lack known algorithms 
to find its solution. In a P-Problem, any given candidate to solution can be verified quickly 
for its accuracy or validity. On the other hand, the time required to solve a NP-problem 
using any currently known search algorithm increases exponentially with the size of the 
problem grows. As a consequence, one of the principal unsolved problems in computer 
science today is determining whether or not it is possible to solve these problems quickly, 
called the P versus NP problem. 

Then, suppose one has a problem M to be solved and asks if a GA based program could 
solve it. The steps to be followed are: 

1. To write down formally the set of parameters to be found, something like  
S={p1, p2, p3, …, pn}, where the pi set is a representation of the input parameters. Each pi 
must be a single number (float or integer), so the S set could be interpreted as a 
chromosome and each pi as a gene. 

2. To express the problem as a function of the set of parameters: M=f(S), with  
M={q1, q2, q3, …, qm}, where the qi set is the representation of the output (desired) 
parameters. 

3. Obtain the inverse problem, or the formalities need to compute S= g(M) =f-1(M). 

If the g(M) function can be translated to a writable algorithm, and this algorithm is 
computable in a finite time, then the g(M) is a P-problem. If the f(S) function cannot be 
translated to a writable algorithm, or this algorithm is computable only with by verifying all 
possibilities in the S space, then the f(S) is a NP-problem. 

With both answers: the f(S) function is a NP-problem, and its inverse, g(M) is a P-problem, 
then the problem can be solved by a GA. 

3. Applications on astrophysics 
Astrophysics is a field of research very rich in NP-complete problems. Many of actual 
astrophysicists deal with non-linear systems and unstable conditions. In some cases, the 
comparative data, or the environment in GA jargon, is an image originated in telescopes or 
instruments placed in deep space. It is common the need for fit models with multi-spectral 
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data, like radio, infrared, visible and gamma-rays. All these solution constraints lead to an 
incredible variety of possibilities for using GA tools. 

In this section, it will be presented how GAs were used to model protoplanetary discs, an 
application that involves non-linear radiative-density profile relations. The model combines 
spectral energy distribution, observed in a wide range of the electromagnetic spectrum, and 
emissivity behaviour of different dust grain species. 

Another interesting application is the use of GAs together with and spectral synthesis in the 
calculation of abundances and metallicities of T Tauri stars. In this problem, the model is 
outside the GA code, as one of the conditions imposed is to use a standard, well tested, 
spectral generator. It is presented how to deal with the challenge of changing a ready to use 
tool into a NP-complete problem and invert it. 

3.1 Using GA to model protoplanetary discs 

This subsection is based on the published work The use of genetic algorithms to model 
protoplanetary discs (Hetem & Gregorio-Hetem 2007). 

During its formation process, a young star object (YSO) can be surrounded by gas, dust 
grains and debris, that shall be gravitationally (and also electrostatically) agglomerate in the 
future solar system bodies. This material receives the energy brought from the star surface 
and re-irradiates it in other wavelengths. The contribution of this circumstellar matter to the 
spectral energy distribution (SED) slope is often used to recognize different categories of 
young YSOs by following an observational classification based on the near-infrared spectral 
index (Lada & Wilking 1984; Wilking, Lada & Young 1989; André, Ward-Thompson & 
Barsony 1993). Actually, this classification suggests a scenario for the evolution of YSOs, 
from Class 0 to Class III, which is well established for TTs. 

Here, the adopted model is a flared configuration, according to Dullemond et al. (2001) 
modelling of a passively irradiated circumstellar disc with an inner hole. We used this 
model as the P-problem core of a GA based optimization method to estimate the 
circumstellar parameters. 

3.1.1 Presenting the problem 

In this subsection we describe the implementation of the GA method for the flared-disc 
model. 

The SED for a given set of parameters is evaluated according to Dullemond et al. (2001) 
model equations. The disc is composed by three components: the inner rim, the shadowed 
region, and the flared region with two layers: an illuminated hot layer and an inner cold 
layer. The disc parameters are: radius, RD; mass, MD; inclination, θ; density power law index, 
p; and inner rim temperature, Trim. The stellar parameters are: distance, d; mass, M


; 

luminosity, L


; and temperature, T


. 

The model starts by establishing a vertical boundary irradiated directly by the star, which 
considers the effect arising from shadowing from the rim, and the variations in scale height 
as a function of the radius. Figure 1 presents the obtained SED for the star AB Aurigae, as 
presented in Hetem & Gregorio-Hetem (2007). 
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
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
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
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Fig. 1. Results from Dullemond et al. (2001) model applied to the star AB Aurigae. The 
Synthetic SED is the sum of its components: star emission (continuous thin line); rim 
emission (dashed line); disc cold layer emission (dot–dashed line); and the disc hot layer 
emission (dotted line). The observational data in various wavelengths is represented by 
squares (Hetem & Gregorio-Hetem 2007). 

3.1.2 Implementation 

The GA code was designed and built to find the best disk parameters, namely S= {RD; MD; θ; 
p; Trim, d; M


; L


; T


}, as discussed in subsection 2.1.  However, some of these parameters 

are already known: the stellar parameters d, L


; and T


 are adopted from observations and 
easily found in literature. Essentially, the GA method used implements a χ2 minimization of 
the SED fitting provided by the Dullemond et al. (2001) model. The main structures used to 
manipulate the data are linked lists containing the solutions (parameter set, adaptation level, 
χ2i, and the genetic operator, Φi), expressed by 

 ( ) ( ){ }2
i Di i Di i i i iM R ,θ ,M ,p ,T , χ ,Φ=  (1) 

where Si denotes the ith solution, and Ti is the ith Trim. Following Goldberg (1989), the code 
starts with the construction of the first generation, where all parameters are randomly 
chosen within an allowed range (for example, 50 ≤ RD ≤ 1000 AU). We chose as the number 
of individuals (parameter sets) in all the generations to be 100. In the following interactions 
loops, the evaluation function runs the Dullemond et al. (2001) model for each individual, 
and compares the synthetic SED with the observed data through a χ2 measure, using the 
modified expression (Press et al. 1995): 

 ( )22 1 N

i j ij
j

F
N

χ ϕ= −  (2) 

where Fj is the observed flux at wavelength λj, N is the number of observed data points, and 
φi j is the calculated flux for the solution Si. The smallest χ2 is assumed to be the gof, the 
goodness-of-fit measure for that generation. The evaluation function is applied to all 
individuals, and then the judgement procedure sorts the list by increasing χ2. It also sets one 
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of the genetic operators to the field Φi: copy, crossover, mutation or termination. Each Φ is 
attributed to a fraction of the number of individuals following the values suggested by Koza 
(1994), Bentley & Corne (2002) and references therein. 

With the genetic operators chosen, the next generation is evaluated by applying specific 
rules according to the genetic operators. The copy operator uses an elitist selection, as the 
solutions with the smallest χ2i are copied to the next generation. For the crossover operator, 
a random mix of two distinct individuals’ genes is built. The mutation operator copies the 
original individual, except for one of the genes, which is randomly changed. The process 
loop continues to build new generations until the end condition is reached, as illustrated by 
the schematic view in figure. 2. 

 
Fig. 2. Main steps of a generic GA (adapted from Hetem & Gregorio-Hetem 2007). 

We also can estimate the error bars in the final results by analysing the χ2 behaviour as a 
function of the parameter variation. Then one can determine the confidence levels of a given 
parameter, as suggested by Press et al. (1995). Once the GA end condition has been reached, 
one can evaluate the inverse of the Hessian matrix [C] ≡ [α]-1 whose components are given 
by 

 
1

( ) ( )N
k k

ij
k i j

y y
a a
λ λα

=

 ∂ ∂
=   ∂ ∂ 
  (3) 

where ∂y(λk)/∂ai is the partial derivative of the SED with respect to parameter ai at λ = λk , 
and N is the number of observed data points. The main diagonal of C can be used to 
estimate the error bars on each parameter by σi ≅ C1/2/N. We estimated the error bars for the 
1σ confidence level and the respective disc parameters for AB Aurigae, resulting in  
MD = 0.1 ± 0.004M


, RD =400±44 AU, θ =65±3o, and Trim =1500±26 K, and these results are in 

agreement with the error-bar estimation provided by the surface contour levels described 
below. Fig. 3 presents the contour levels of the gof(MD, RD) surface calculated for a set of 400 
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random pairs of disc mass and radius around the parameters for the AB Aurigae model 
taken from Dominik et al. (2003). The result at the minimum is gof ~ 0.046, what means that 
the error bar estimation converged to a narrow range around the parameter set. 

 
Fig. 3. Contour levels gof(MD, RD) estimated for AB Aurigae presenting the confidence levels 
χ2(68%)= 0.082 (continuous line), χ2(90%)= 0.15 (dashed) and χ2(99%)= 0.21 (dot–dashed) 
(Hetem & Gregorio-Hetem 2007). 

We also applied the described GA method to a four other stars, in order to verify the quality 
of the fitting for objects showing different SED shapes and different levels of infrared excess. 
Our set was chosen by the slope of their near-infrared SED. The infrared excess in Herbig Be 
stars is the result of a spherical dusty envelope (van den Ancker et al. 2001), whereas a thick-
edge flared disc are characteristic of Herbig Ae. With this in mind, we selected A-type or 
late-B-type stars from the Pico dos Dias Survey sample (Gregorio-Hetem et al. 1992; Torres 
et al. 1995; Torres 1998) to apply the GA SED fitting. The results are presented in table 1 
together with their corresponding gofs (see figure 4). 

 
Fig. 4. GA SEDs obtained the stars BD-14 1319, IRAS 07394-1953, IRAS 06475-0735 and HD 
141569. The plots are given as log[λFλ(Wm-2)] versus log[λ(μm)] (Hetem & Gregorio-Hetem 
2007). 
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PDS Name M


 (M


) RD (AU) MD (M


) Trim (K) θ (o) p gof 

398 HD 141569 2.4 13 0.06 1085 0.6 -2.0 0.006 

022 BD−14 1319 2.8 690 0.003 380 40 -10. 0.006 

130 IRAS 06475−0735 2.0 309 0.20 1705 53 -1.5 0.016 

257 IRAS 07394−1953 2.0 859 0.64 1838 47 -2.0 0.098 

Table 1. Obtained parameters for the chosen stars (Hetem & Gregorio-Hetem 2007). 

3.2 Abundances and Metallicities of young stars via Spectral Synthesis 

This subsection is based on the published work The use of Genetic Algorithms and Spectral 
Synthesis in the Calculation of Abundances and Metallicities of T Tauri stars (Hetem & 
Gregorio-Hetem 2009). 

In the previous subsection, we presented a method that uses a calculation technique based 
on GA aiming to optimize the parameters estimation of protoplanetary disks of T Tauri 
stars. Inspired by the success of that application, which gives accurate and efficient 
calculations, we decided to develop a similar method to determine atomic stellar 
abundances. 

3.2.1 Artificial spectra as a measurement tool 

In astrophysics, the absorption spectra are obtained and employed as an analytical 
chemistry tool to determine the presence of atoms and ions in stellar atmospheres and, if 
possible, to quantify the amount of the atoms present. In stellar atmospheres, each element 
produces a number of spectrum absorption lines, at wavelengths which can be measured 
with extreme accuracy when compared to spectra emission tables provided by laboratory 
experiments. 

The presence of a given element in the star atmosphere can be verified (and measured) by 
looking for its absorption lines at the correct wavelength. The hydrogen is present in all 
stars by its Balmer absorption lines, and is often used to calibrate the measurements. An 
example of a high-resolution spectrum is presented in figure 5. 

The way astrophysics use to calculate the abundances of atoms in stars follows the steps: 

1. Obtain the star spectrum in a given range (or ranges) of wavelength, where the lines of 
the elements in study should be; 

2. Generate an artificial spectrum, considering the lines whose origin are the desired 
elements and the known physics of absorption line production; 

3. Compare the artificial and observed spectra. Here a simple χ2 test is enough to compute 
a general comparison index; 

4. Use a GA methodology to optimize the artificial spectrum in order to minimize the 
differences with the observed spectrum (the inverted problem, subsection 2.1); 

5. Once the optimization methodology reaches its goals, consider the elemental 
parameters (density, temperature, ionization, etc) as the measures of the elements in the 
stellar atmospheres. 
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random pairs of disc mass and radius around the parameters for the AB Aurigae model 
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Fig. 3. Contour levels gof(MD, RD) estimated for AB Aurigae presenting the confidence levels 
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Fig. 4. GA SEDs obtained the stars BD-14 1319, IRAS 07394-1953, IRAS 06475-0735 and HD 
141569. The plots are given as log[λFλ(Wm-2)] versus log[λ(μm)] (Hetem & Gregorio-Hetem 
2007). 
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PDS Name M


 (M


) RD (AU) MD (M


) Trim (K) θ (o) p gof 
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3.2.2 Inverting the problem 

From our discussion on section 2, one can see that generating a synthetic spectrum is a P-
problem, as the result is obtained from a set of parameters, and no more computing is need. 
The generation time is obviously finite, and there are a number of very efficient software 
tools that do that. The only care to be taken is to assure that the artificial spectrum has the 
same wavelength resolution of the observed spectrum, in order to simplify the future 
comparison. 

The above mentioned step 4, a methodology to optimize the artificial spectrum, is the trick 
point. If one wants to use GA so solve the abundances problem, it is necessary to invert the 
P-problem, that is, it is necessary to use the artificial spectrum generation tool as an external 
routine of a bigger and more complex algorithm. The algorithm used to this task is 
presented in figure 6. 

 
Fig. 5. FEROS spectrum for star PDS054 (Rojas et al. 2008). 

 
Fig. 6. Main blocks of a GA code to fit multi-band spectra of T Tauri stars (adapted from 
Hetem & Gregorio-Hetem 2009). 
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Establishing the abundances of each element as the parameters to be found, one 
individual in the GA terminology is the set of all elemental abundances added to some 
atmospheric parameters. The initial parameter set is used to build the first generation 
with 100 individuals. The evaluator routine creates a synthetic spectrum whose entries are 
the genetic data in each chromosome. This task is performed by calling the elected 
spectral tool. 

There are a number of very efficient software tools that can be chosen. In our application, 
the abundances of chemical species are determined by using the spectral synthesis software 
SPECTRUM provided by Corbally (Gray & Corbally 1994) and the atmosphere model 
software ATLAS9 from Kurucz (1993). 

3.2.3 Results 

In this section we present the results of the GA method for three stars, whose high-
resolution spectra were obtained at European Southern Observatory (ESO) in La Silla, Chile, 
with the Fibber Extended Range Optical Spectrograph (FEROS) at the 1.52m telescope. The 
stellar parameters (effective temperature and gravity) were calculated by excitation and 
ionization equilibrium of iron absorption lines (Rojas et al. 2008). The atomic and molecular 
line data were mainly from the National Institute of Standards and Technology1 and the 
Kurucz site2. The solar atomic abundances are from Grevesse & Sauval (1998), and the 
hyperfine structure constants were taken from Dembczyński et al. (1979) and Luc & 
Gerstenkorn (1972). The atmosphere models where obtained from the Kurucz library. 
Specific atmosphere models were calculated through a GNU-Linux porting of the ATLAS9 
program (Kurucz 1993). 

The method performs a multi-range fitting of specific regions of the observed spectrum, 
looking for best fit. The demands and commands to SPECTRUM are only those for 
generating the specific regions of interest, but the χ2 comparing index is evaluated over all 
wavelength ranges.  Figures 7 and 8 present the results for some stars on chosen lines. 

The metallicities and abundances found for the stars are compatible with those previously 
obtained for this particular sample. These preliminary results, achieved by using the GA 
technique, indicate the efficiency of the method. In the future, we intend to use the method 
in a larger sample of T Tauri stars. 

4. Applications on Rocket Engine engineering 
This section presents two solutions in applying GAs in the aerospace area, both concerning 
the fuel pumping in liquid propellant rocket engines. There are many choices to be done in 
the design of a high performance fuel pump, being one of them the type of pump. 

Two different types of pumps were modelled: the Harrington pumps and the turbo pumps. 
Both present a complex design methodology, which includes: tabled functions 
interpolations, numerical integrals and constructive material choices. 

                                                 
1 http://physics.nist.gov/PhysRefData/ASD/index.html 
2 http://kurucz.harvard.edu 4 and  http://wwwuser.oat.ts.astro.it/castelli/ 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

168 

3.2.2 Inverting the problem 

From our discussion on section 2, one can see that generating a synthetic spectrum is a P-
problem, as the result is obtained from a set of parameters, and no more computing is need. 
The generation time is obviously finite, and there are a number of very efficient software 
tools that do that. The only care to be taken is to assure that the artificial spectrum has the 
same wavelength resolution of the observed spectrum, in order to simplify the future 
comparison. 

The above mentioned step 4, a methodology to optimize the artificial spectrum, is the trick 
point. If one wants to use GA so solve the abundances problem, it is necessary to invert the 
P-problem, that is, it is necessary to use the artificial spectrum generation tool as an external 
routine of a bigger and more complex algorithm. The algorithm used to this task is 
presented in figure 6. 

 
Fig. 5. FEROS spectrum for star PDS054 (Rojas et al. 2008). 

 
Fig. 6. Main blocks of a GA code to fit multi-band spectra of T Tauri stars (adapted from 
Hetem & Gregorio-Hetem 2009). 

The Search for Parameters and Solutions:  
Applying Genetic Algorithms on Astronomy and Engineering 

 

169 

Establishing the abundances of each element as the parameters to be found, one 
individual in the GA terminology is the set of all elemental abundances added to some 
atmospheric parameters. The initial parameter set is used to build the first generation 
with 100 individuals. The evaluator routine creates a synthetic spectrum whose entries are 
the genetic data in each chromosome. This task is performed by calling the elected 
spectral tool. 

There are a number of very efficient software tools that can be chosen. In our application, 
the abundances of chemical species are determined by using the spectral synthesis software 
SPECTRUM provided by Corbally (Gray & Corbally 1994) and the atmosphere model 
software ATLAS9 from Kurucz (1993). 

3.2.3 Results 

In this section we present the results of the GA method for three stars, whose high-
resolution spectra were obtained at European Southern Observatory (ESO) in La Silla, Chile, 
with the Fibber Extended Range Optical Spectrograph (FEROS) at the 1.52m telescope. The 
stellar parameters (effective temperature and gravity) were calculated by excitation and 
ionization equilibrium of iron absorption lines (Rojas et al. 2008). The atomic and molecular 
line data were mainly from the National Institute of Standards and Technology1 and the 
Kurucz site2. The solar atomic abundances are from Grevesse & Sauval (1998), and the 
hyperfine structure constants were taken from Dembczyński et al. (1979) and Luc & 
Gerstenkorn (1972). The atmosphere models where obtained from the Kurucz library. 
Specific atmosphere models were calculated through a GNU-Linux porting of the ATLAS9 
program (Kurucz 1993). 

The method performs a multi-range fitting of specific regions of the observed spectrum, 
looking for best fit. The demands and commands to SPECTRUM are only those for 
generating the specific regions of interest, but the χ2 comparing index is evaluated over all 
wavelength ranges.  Figures 7 and 8 present the results for some stars on chosen lines. 

The metallicities and abundances found for the stars are compatible with those previously 
obtained for this particular sample. These preliminary results, achieved by using the GA 
technique, indicate the efficiency of the method. In the future, we intend to use the method 
in a larger sample of T Tauri stars. 

4. Applications on Rocket Engine engineering 
This section presents two solutions in applying GAs in the aerospace area, both concerning 
the fuel pumping in liquid propellant rocket engines. There are many choices to be done in 
the design of a high performance fuel pump, being one of them the type of pump. 

Two different types of pumps were modelled: the Harrington pumps and the turbo pumps. 
Both present a complex design methodology, which includes: tabled functions 
interpolations, numerical integrals and constructive material choices. 

                                                 
1 http://physics.nist.gov/PhysRefData/ASD/index.html 
2 http://kurucz.harvard.edu 4 and  http://wwwuser.oat.ts.astro.it/castelli/ 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

170 

 
Fig. 7. Main screen of the program GASpectrum after five generations. The upper panel 
presents the spectra: the blue line represents the observed spectrum and the red line 
represents the best individual spectrum (adapted from Hetem & Gregorio-Hetem 2009). 

 
Fig. 8. Main results for stars HD202746, PDS054 and TW Hydra, on calcium, iron, titanium 
and cobalt lines (adapted from Hetem & Gregorio-Hetem 2009). 
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4.1 Using GA to parameterize the design of Harrington pumps 

This subsection is based on the published work Artificial Intelligence Parametrization of 
Harrington Pumps (Caetano & Hetem 2011). 

Since the beginning of liquid engine spacecraft history, the choices on pumping were the 
turbo pumps (Neufeld 1995). However, turbo pumps present many difficulties to design 
and to achieve their optimum performance. Good and experienced designers can project 
specialized turbo pumps that can deliver 70-90% efficiency, but figures less than half that 
are not uncommon. Low efficiency may be acceptable in some applications, but in rocketry 
this is a severe problem. Common problems include: 1) excessive flow from the high 
pressure rim back to the low pressure inlet along the gap between the casing of the pump 
and the rotor; 2) excessive recirculation of the fluid at inlet; 3) excessive vortexing of the 
fluid as it leaves the casing of the pump; 4) damaging cavitation to impeller blade surfaces 
in low pressure zones; and 5) critical shaping of the rotor itself is hardly precise (see the 
many examples and demonstrations presented by Dixon & Hall (2010) for a better 
understanding of these concerns). 

On the other end, the options are the pressurized tanks. In this choice, the fuel and oxidizer 
reservoir are filled charged with a high pressure gas (helium or nitrogen) that pushes the 
fluid to the thrust chamber. So, it is easy to see that the tank output fuel pressure drops as 
the rocket engine consumes its content. As an option, the designer can increase the inside 
pressure, but this came also with a high cost in material (due to tank thickness) and 
instability. Actually, pressurized propellant tanks are used on small rockets like the last 
stages on space missions. 

As an elegant intermediate solution between these two extremes, Harrington (2003) 
presented a design fills the gap between the pressure fed and the turbo pumps. This 
solution also has the advantage of lowering the costs of a rocket project, keeping low weight 
and without the high complexity of a turbo pump, whose operation, theoretical concerns 
and constructive details are explained in next section. 

4.1.1 Pump description and operation 

The construction consists of two chambers (B1 and B2 on figure 9) and a set of 8 valves. The 
chambers are connected to the main tank (Mt) through valves k3 and k4. These chambers 
also deliver propellant to the combustion chamber (CB) through valves k5 and k6. There is a 
high pressure gas generator (Hp) that is connected to the chambers through valves k1 and 
k2. Valves k7 and k8 serve as ventilation for the chambers. 

The pumps work alternating two states. In state 1, B1 is being filled by Mt and B2 is feeding 
the combustion chamber; and in state 2 their role is inverted, say B2 is being filled by Mt and 
B1 is feeding the combustion chamber. The state change is done by opening and closing the 
valves, as presented in figure 9 and table 2. The opening and closing of the valves is 
controlled by a small processor. 

4.1.2 The model: Pump constructive details 

Designing a Harrington pump is simple, but the optimization process is not (as expected: a 
P-problem and a NP-problem respectively). A pump with a small chamber must be filled 
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and vented quickly, with minimal head loss through the gas and liquid valves and 
plumbing. Making the pump cycle as fast as possible would make it lightweight, but higher 
flow velocities cause problems (Harrington 2003). 

 
Fig. 9. Schematic view and operation of a Harrington pump, with its chambers (B1 and 
B2) and valves (k1-8). The main rocket fuel tank is represented by Mt whereas Hp 
represents a high pressure gas generator. The two states are presented. Left: B1 is being 
filled by Mt while B2 is feeding the combustion chamber. Right: B1 is feeding the 
combustion chamber while B2 is being filled by Mt. the arrows indicate the flow. (Caetano 
& Hetem 2011). 

valve state 1 state 2 

k1 closed open 

k2 open closed 

k3 open closed 

k4 closed open 

k5 closed open 

k6 open closed 

k7 open closed 

k8 closed open 

Table 2. Derived model parameters for the sample (Caetano & Hetem 2011). 
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The choice of pump tanks material plays an important role, as its mass density and stress 
coefficients are the main keys in the pump design. The main tank pressure (about 300 kPa) 
and the area of the inlet valves set up the limits for the maximum inflow rate. If the inflow 
velocity is increased this can cause the propellant to be aerated, what is not desirable for the 
proper working of the engine. The extra volume of pressurized gas in the pump chamber 
should be small to minimize gas usage, but if it is too small, there will be a loss of propellant 
through the vent. 

The primary parameters for the calculations are the state changing cycle, tcy, the volume 
flow determined by the rocket engine needs, Q, the specific impulse of the propellants, Isp, at 
the fuel pressure, Pf, the fuel mass density, ρf, the thrust, T, and the material properties: the 
mass density, ρc, and stress coefficient, σc. From these parameters, considering the pump 
chambers are spherical, one can instantly obtain the diameter of one chamber: 

 3 06
cyt

c

Qdt
D

π
=  , (4) 

where the integral results in the chamber volume, and for the simplest case of steady flow, it 
resumes to Vc=Q.tcy. Knowing the diameter and applying the stress formulae from Young 
(1989), the chamber walls thickness can be obtained by 

 f c
w

c

P D
t

σ
= , (5) 

and the total chamber mass by 

 2
c w c cM t Dπ ρ= . (6) 

To obtain the thrust, one can apply the momentum equation for the case of ideal expansion, 
and: 

 sp fT gQI ρ= , (7) 

where g represents the gravity acceleration. 

Manipulation of these expressions and an estimative of the relative weight of the valves and 
other accessories lead to expression 7 from Harrington (2003), the pump thrust to weight 
ratio: 

 0.43 sp f c

f cy c

gIT
W P T

ρ σ
ρ

= , (8) 

that is to be optimized. The total pump mass is Mp=1.56 Mc, and the mass flow can be easily 
obtained by fm Qρ= . The expressions (4)-(8) were coded in a program to test the feasibility 
of this set of equations as a model. Table 3 presents the results obtained for typical 
parameter values. These results are in agreement with rocket engine pump literature 
(Griffinand & French 1991; Sutton 1986). 
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Entry parameters Model results 
tcy 5 s Vc 0,016667 m3 
Q 200 l/min Dc 31,69203 cm 
Isp 285 s tw 0,090549 cm 
ρf 1 935 kg/m3 Mc 0,8 kg 
Pf 4 Mpa Mp 1,248 kg 
T 8800 N T 8704,85 N 
σc 2 350 MPa T/W 8718,8 
ρc 2 2,8 g/cm3 m  3,116667 kg/s

1 Propellant mixture: LOX/RP-1 
2 2219 Aluminum alloy 

Table 3. Test values for the pump model and results. 

4.1.3 GA optimization method 

Here we describe de Genetic Algorithm (GA) optimization method and the formalism 
applied to code the problem to its needs. 

The pump parameters we want to find are a subset of those described as primary 
parameters: the state changing cycle, tcy, the fuel pressure, Pf, the fuel mass density, ρf, and 
the material properties: the mass density, ρc, and stress coefficient, σc. These are the GA free 
parameters, formally 

 { , , , }cy f c ct P ρ σΛ = , (9) 

known as the parameter set. The technique used to work with the material parameters, ρc 
and σc, are explained in sub-section 4.1.4. 

The obtained pump must deliver a desired mass rate, , of a given propellant, ρf, and must be 
made of a given material, ρc and σc. Some variables are project dependent, like the volume 
flow, Q, the specific impulse of the propellants, Isp, at the fuel pressure, and the thrust, T. 
These three parameters are those the rocket engine designer should define to specify the 
pump he needs. Differently from the first parameters described on the above paragraph, 
these values cannot be altered by the algorithm, and can be included in another group, the 
constant set: 

 { , , }spQ I TΨ = . (10) 

Another group of variables is need: the result set. These are the values that are obtained by 
running the model code: 

 { }c c w c pV ,D ,t ,M ,M ,T,T / W,mΓ =  . (11) 

To satisfy the GA formalism, one must write down the model that describes the necessary 
transformations to obtain Γ from Ψ and Λ, or ( , )fΛ = Ψ Γ . 
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Now we explain how the GA method was implemented in the Harrington pump model 
described above. We first clarify the GA nomenclature in the field of pump design. A 
parameter (e.g. volume flow) corresponds to the concept of a ‘gene’, and a change in a 
parameter is a ‘mutation’. A parameter set that yields a possible solution corresponds to a 
‘chromosome’, our Λ. An ‘individual’ is a solution that is composed of one parameter set 
and two additional GA control variables. One of these variables is χ2, which refers to the 
‘adaptation’ level. The other control variable is Φ, the genetic operator. The term 
‘generation’ means ‘all the individuals’ (or all the solutions) present in a given iteration. 

The code uses the parameters described in (9), namely { , , , }cy f c ct P ρ σΛ = . Essentially, the GA 
method presented herein implements a χ2 minimization of the comparison between the 
desired results 0 { }c c w c pV ,D ,t ,M ,M ,T,T / W,mΓ =  , and the results obtained by the 
application of expressions (4) to (8), the model results. There are three main advantages of 
using a GA for this task: (i) the GA method potentially browses the whole permitted 
parameter space, better avoiding the ‘traps’ of local minima; (ii) the method is not affected 
by changes in the model; (iii) the GA implementation does not need to compute the 
derivatives of χ2 (such as ∂χ2/∂Pf, for example) required by the usual methods. This fact 
simplifies the code and minimizes computer errors caused by gradient calculations. 

The main structures used to manipulate the data are linked lists containing the solutions 
(parameter set, adaptation level, 2

iχ , and the genetic operator, Φi, expressed by 
2{ , , ,( , )}i i i i iS χ= Ψ Λ Γ Φ , where Si denotes the ith solution. Following Goldberg (1989) and 

Hetem & Gregorio-Hetem (2007), the code starts with the construction of the first 
generation, where all parameters are randomly chosen within an allowed range (for 
example, 15 cm < Dc < 30 cm). Here, the number of parameter sets in the first generation is 
assumed to be 100. In the next step, the evaluation function runs the model for each 
solution, and compares the synthetic Γi with the desired data, Γ0, to find χ2, using a modified 
expression given by Press et al. (1995): 
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where np is the number of values in the result set, Γ0j, is the desired value on position j (e.g. 
Γ01=Vc), and Γij is the calculated value for the solution Si. The smallest χ2 corresponds to the 
goodness-of-fit, or simply gof. The gof values express how each individual is adapted, or 
how close each solution is, to the best solution (Bentley & Corne 2002). For the value of T/W, 
which we want to optimize, it is enough to establish a corresponding to Γ0j very high. 

A judgment function then determines the genetic operator Φ to be applied to a solution. Its 
values can be ‘copy’: the individual remains the same in the next generation; ‘crossover’: the 
individual is elected to change a number of genes (parameters) with another individual, 
creating a new one; ‘mutation’: one of its genes is randomly changed; or ‘termination’: none 
of the genes continue to subsequent generations. The chosen action is expressed by the Φi 
variable, associated with each individual. The next step is to evolve the current generation 
(k) to the next (k + 1) one, which is done through a multi-dimensional function β that 
considers the solutions and the genetic operators. Formally, 
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Entry parameters Model results 
tcy 5 s Vc 0,016667 m3 
Q 200 l/min Dc 31,69203 cm 
Isp 285 s tw 0,090549 cm 
ρf 1 935 kg/m3 Mc 0,8 kg 
Pf 4 Mpa Mp 1,248 kg 
T 8800 N T 8704,85 N 
σc 2 350 MPa T/W 8718,8 
ρc 2 2,8 g/cm3 m  3,116667 kg/s

1 Propellant mixture: LOX/RP-1 
2 2219 Aluminum alloy 

Table 3. Test values for the pump model and results. 

4.1.3 GA optimization method 

Here we describe de Genetic Algorithm (GA) optimization method and the formalism 
applied to code the problem to its needs. 

The pump parameters we want to find are a subset of those described as primary 
parameters: the state changing cycle, tcy, the fuel pressure, Pf, the fuel mass density, ρf, and 
the material properties: the mass density, ρc, and stress coefficient, σc. These are the GA free 
parameters, formally 

 { , , , }cy f c ct P ρ σΛ = , (9) 

known as the parameter set. The technique used to work with the material parameters, ρc 
and σc, are explained in sub-section 4.1.4. 

The obtained pump must deliver a desired mass rate, , of a given propellant, ρf, and must be 
made of a given material, ρc and σc. Some variables are project dependent, like the volume 
flow, Q, the specific impulse of the propellants, Isp, at the fuel pressure, and the thrust, T. 
These three parameters are those the rocket engine designer should define to specify the 
pump he needs. Differently from the first parameters described on the above paragraph, 
these values cannot be altered by the algorithm, and can be included in another group, the 
constant set: 

 { , , }spQ I TΨ = . (10) 

Another group of variables is need: the result set. These are the values that are obtained by 
running the model code: 

 { }c c w c pV ,D ,t ,M ,M ,T,T / W,mΓ =  . (11) 

To satisfy the GA formalism, one must write down the model that describes the necessary 
transformations to obtain Γ from Ψ and Λ, or ( , )fΛ = Ψ Γ . 
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As soon as a new generation is ready, the evaluation function is reapplied, and the 
algorithm repeats the described actions until an end-of-loop condition is reached. The end 
condition can be based on the number of iterations or the quality (a low level for the 2

iχ  
values). 

4.1.4 The choice of chamber constructive material 

The main material properties, the mass density, ρc, and stress coefficient, σc, can also be 
chosen by the GA. Instead of working directly with these parameters, it was created a 
material parameter, Kc, an integer that points to a density-stress database. So, our new 
parameter set becomes 

 { , , ( ), ( )}cy f c c c ct P K Kρ σΛ = , (14) 

or simply 

 { , , }cy f ct P KΛ = . (15) 

As Kc is a discrete value, it was needed to build special routines to manipulate the genes in 
the first generation and in mutation events. 

4.1.5 Results and conclusion 

Table 4 presents the main results for a GA run of 20 generations. The values are in 
agreement with the expected for the pump. The material chosen for the chambers was 
cooper 99.9%. A typical running with about 100 generation is achieved in ~5 seconds in a 
simple laptop computer. 
 

tcy 8.2 s Vc 0.00393786 m3 

Q 200 l/min Dc 0.195924 cm 

Isp 285 s tw 0,089 cm 

ρf 1 935 kg/m3 Mc 0.957973 kg 

Pf 4 Mpa Mp 1.49444 kg 

σc 2 350 MPa T/W 843.227 

ρc 2 2,8 g/cm3 m  0.448098 kg/s 
1 Propellant mixture: LOX/RP-1 
2 Copper 99.9% Cu 

Table 4. GA result values for the pump model. 

The GA proved to be efficient, and due to the method itself being independent of model 
complexity, it certainly can be used in future implementations of pump design. Future 
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evolutions and increasing complexity of the model, like thermal transfer and realistic valves, 
can benefit of GA robustness and reliability. 

The next step in this work is to enhance the model with more realistic and specific trends. It 
is expected to incorporate non-linear functions, differential equations and integrals. Also 
tabled functions are not far from what can be found in a pump project, with its intrinsic 
interpolations. The overall problem of finding parameters for a pump design can easily turn 
to a NP-Problem, that is a problem that is very difficult to find a solution, but, once one has 
a candidate to solution it is easy to verify if it is a good solution. 

4.2 Using GA to parameterize the design of turbo pumps to be used in rocket engines 

This subsection is based on the published work Parametric Design of Rocket Engine Turbo 
pumps with Genetic Algorithms (Burian et al. 2011). 

Turbo pumping in high-thrust, long-duration liquid propellant rocket engine applications, 
generally results in lower weights and higher performance when compared to pressurized 
gas feed systems. Turbo pump feed systems require only relatively low pump-inlet 
pressures, and thus propellant-tank pressures, while the major portion of the pressure 
required at the thrust chamber inlets is supplied by the pumps, saving considerable 
vehicle weight. As stated by Huzel & Huang (1967) the best performing turbo pump 
system is defined as that which affords the heaviest payload for a vehicle with a given 
thrust level, range or velocity increment: gross stage take-off weight; and thrust chamber 
specific impulse (based on propellant combination, mixture ratio, and chamber operating 
efficiency). 

The particular arrangement or geometry of the major turbo pump components is related to 
their selection process (Logan & Roy 2003). Some complex designs, like the SSME-Space 
Shuttle Main Engine, have a multiple stage pump, but most propellant pumps have a single-
stage main impeller. Eventually, one or more design limits are reached which requires more 
iteration, each with a new changed parameter or approach. For a better example, see table 5 
which presents some data from the V2 (II world war German missile) alcohol pump. 
 

Parameter value 

impeller diameter 34 cm

rotation 5000 rpm

performance 265 kW

delivery 50 kg/s

delivery pressure 25 atm

Table 5. Parameters from the alcohol V2 pump, adapted from Sutton & Biblarz (2001). 

This subsection considers the development of a software tool based on GA to assist the 
determination of the excellent parameters for the configuration of turbo pumps in engines 
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evolutions and increasing complexity of the model, like thermal transfer and realistic valves, 
can benefit of GA robustness and reliability. 

The next step in this work is to enhance the model with more realistic and specific trends. It 
is expected to incorporate non-linear functions, differential equations and integrals. Also 
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to a NP-Problem, that is a problem that is very difficult to find a solution, but, once one has 
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determination of the excellent parameters for the configuration of turbo pumps in engines 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

178 

for liquid propellant rockets. We present the first version, which considers the calculation of 
the main parameters of a compressor stage. 

4.2.1 The model 

The pump compressor model used in this work is based on chapter 10 of Sutton & Biblarz 
(2001). This model provides a coherent basis for the modeling, and is sufficiently complex to 
be used as a valid test on the further parameter optimizing step. 

The pump parameters we want to find are: the inlet compressor diameter, d1, the 
compressor outlet diameter, d2, the fluid input velocity, v1, the suction specific speed, S, the 
shaft cross section, AS1, the pressure in the main tank, Pt, the total fluid friction (viscosity 
included) due to flow through the pipes, valves, etc, Pf, the pressure due to the tank 
elevation from the pump inlet, Pe. In particular, this last parameter leads to project insights 
concerning the pump position inside the rocket. These are the GA free parameters, formally 
Λ= {d1,d2,v1,S,dS1,Pt,Pf,Pe}, known as the parameter set. The obtained compressor must 
deliver a desired mass rate, m , and, from an input pressure P1, generate a flow with an 
output pressure P2. Some constants shall be considered, like the fluid mass density, ρ, and 
the external gravity, g0. We assumed as fluid the ethanol (C2H6OH) due to its green 
properties and green results. These three parameters are those the rocket engine designer 
should define to specify the compressor he needs. Differently from the first eight parameters 
described on the above paragraph, these values cannot be altered by the algorithm, and can 
be included in another group, the result set 1 2{ , , }m P PΓ =  . 

To satisfy the GA formalism, one must write down the model, or the formalism that 
describes the necessary transformations to obtain Γ from Λ, or Γ=f (Λ). One can obtain these 
expressions following Sutton & Biblarz (2001) model and converting their expressions. First, 
the pressures should be converted to heads, or the height necessary to the fluid to cause a 
given pressure, so we define Ht, He and Hf, the tank head, the elevation head and the friction 
head, respectively, that can be obtained by 

 0
t

t
H

P g dhρ=  , (16) 

 0
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The effective area of the inlet is given by 
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Then, the absolute positive head can be obtained by 

 1 t e fH H H H= + −  (21) 

and the net positive suction head or available suction head above vapor pressure can be 
obtained by 

 s t e f vH H H H H= + − − , (22) 

where Hv is the combustible vapor pressure. The required suction head will be taken as 80% 
of the available suction head in order to provide a margin of safety for cavitation, or 
HSR=0.8H1. To avoid pump cavitation, Hs has to be higher than HSR. If additional head is 
required by the pump, the propellant may have to be pressurized by external means, such as 
by the addition of another pump in series (a booster pump) or by gas pressurization of the 
propellant tanks. A small value of HSR is desirable because it may permit a reduction of the 
requirements for tank pressurization and, therefore, a lower inert tank mass. 

The shaft speed is given by 

 SR
rpm

SI

SHN
u Q

φ

= , (22) 

where ϕ=3/4 and uSI=17.827459 are constants. uSI is necessary due to SI convertions (see 
Sutton & Biblarz 2001, eq. 10-7). This last expression allows us to obtain Nrad/s, the shaft 
speed in radians per second. The impeller vane tip speed is given by 

 2 /
1
2 rad su d N= . (23) 

With u, we can evaluate the head delivered by the pump 
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uH
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Δ = , (24) 

where ψ has values between 0.90 and 1.10 for different designs. As for many pumps, ψ = 1.0, 
we adopt this value. 

At this point, we are able to obtain all the final results, 1 2{ , , } :m P PΓ =   

 1 1 0P H g ρ= , (25) 

 2 1 0( )P H H g ρ= Δ + , (26) 

and 

 m Qρ= . (27) 
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It is also interesting to evaluate the shaft specific speed 

 SI
s

SR

u QN
Hφ= , (28) 

which, with the aid of table 10-2 of Sutton & Biblarz (2001), defines the pump and impeller 
type. 

4.2.2 Results and conclusion 

We built a computer code to optimize equations in the same way it was done to the 
Harrington pumps (see subsection 4.1). The resulting parameters obtained from the GA 
code where in good agreement with what is expected for this kind of project. Some 
comparisons between GA results and correct results are presented in table 6. 
 

m  (kg/s) P1 (Pa) P2 (Pa) mean error  
(%) Correct answer 226,8 342669 6816870

generations 

10 228,1 342345 6816450 0,22 

20 227,5 342360 6816440 0,13 

50 227,1 342601 6816890 0,05 

100 226,9 342670 6816880 0,01 

Table 6. Comparison between obtained results (GA) and correct answer (Γ0) for an ethanol 
compressor. 

Evidently, for the simple definitions presented for this model, one does not need a 
sophisticated method as described to obtain a good result. But, as all designers know very 
well, there are no simple projects, especially concerning rocket engine pumps. The next step 
in this work is to enhance the model with more realistic and specific trends. It is expected to 
incorporate non-linear functions, differential equations and integrals. Also tabled functions 
are not far from what can be found in a pump project, with its intrinsic interpolations. The 
overall problem of finding parameters for a pump design can easily turn to a NP-Problem, 
that is a problem that is very difficult to find a solution, but, once one has a candidate to 
solution it is easy to verify if it is a good solution. Again, the GA proved to be efficient, and 
due to the method itself being independent of model complexity, it certainly can be used in 
future implementations. Future evolutions and increasing complexity of the model can 
benefit of GA robustness and reliability. 

5. Applications on energy distribution 
The application described in this section solves the problem of allocation of protective 
devices in electric power distribution plants. For a given power plant distribution, it is 
necessary to choose in which points one must place equipment for the net protection, or 
not. 
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This problem is entirely based on discrete elements – there are no floating point parameters. 
So, the main discussion here is how to build a chromosome syntax that can be used under 
the GA rules, and still be meaningful for the model. Besides, as the problem is fully 
discretized, there are high probabilities of finding different solutions that are equally 
evaluated in their adaptation function. This leads to new enhancements in the model to 
better evaluate the solutions, enhancing the separation between different individuals. 

5.1 Using GA in the allocation of electric power protective devices 

This subsection is based on the published work Automatic Allocation of Electric Power 
Distribution Protective Devices (Burian et al. 2010). 

The measurement of how well the electric power distribution system can provide a secure 
and adequate supply of power to satisfy the customer's requirements is called “reliability”. 
Regarding electric power distribution systems, the electric utilities companies are 
responsible for the most reliable service as possible, reflecting the most advanced state of 
technology with reasonable cost to the end product that is the electric power3. Most 
utilities record outage information such as the number of outages, elapse time, and the 
number of customers interrupted. These data and statistics may be reported for each 
circuit or operating division, for comparison purposes, using the standard performance 
indices. 

The performance indices provide historical datum which can be used to determine 
increasing or decreasing trends and to measure whether system improvement plans have 
yielded expected results. 

The quality model we consider in this subsection uses the following indices, based on the 
sustained outage data: the SAIDI and SAIFI indexes, explained as follows: 

1. SAIDI (System Average Interruption Duration Index): defined by the rate of average 
interruption duration per customer served per year. This index is commonly referred to 
as minutes of interruption per customer. 

 Sum of Customer Interruption DurationsSAIDI
Total Number of Customers Served

=  (29) 

2. SAIFI (System Average Interruption Frequency Index): that defined by the rate of 
average number of times that a customer's service is interrupted during a reporting 
period per customer served in a given period (usually one year). A customer 
interruption is defined as one sustained interruption to one customer: 

 Total Number of Customer InterruptionsSAIFI
Total Number of Customers Served

=  (30) 

It is easy to see that what is desired is a circuit with minimal SAIDI and SAIFI with the 
smaller cost in protective installed devices. The resulting circuit with these characteristics 
will the optimized circuit. 
                                                 
3 instead of guarantying continuous service to their customers… 
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It is also interesting to evaluate the shaft specific speed 

 SI
s

SR

u QN
Hφ= , (28) 

which, with the aid of table 10-2 of Sutton & Biblarz (2001), defines the pump and impeller 
type. 
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Fig. 10. Circuit with Circuit Breaker in the Electric Power Substation without Reclosing 
Capability, based on Bishop (1997). 

5.1.1 The model 

The chosen model was based in the work developed by Bishop (1997) whose circuit has 
multiple laterals with customer’s numbers and load KVA values seen on the figure 10. To 
perform the analysis one needs some statistics, like: number of customers; placement of 
protective devices on the electric power utility; good possibilities to implement protective 
devices; distribution circuit response to the quality indices; and traditional values of repair 
and recover in accordance with Bishop's indices. 

The initial circuit used to the analysis is presented by figure 10, where it was considered the 
values of Bishop (1997) to the indices in circuits of electric power distribution with similar 
features in North American solutions. The used general statistical parameters are presented 
in table 7. As a base case analysis, the system was modelled with no reclosing of substation 
device. This is intended only to yield values for relative comparison with other circuits, with 
protective devices like recloses and fuses placed on the circuit, achieving the comparison 
landscape with the SAIDI and SAIFI indices. 
 

Faults per circuit mile per year 0.22 

Percent of permanent faults 20% 

Percent of temporary faults 80% 

Manual restoration time 2.0 hours  

Repair time for 30 lines 3.0 hours 

Repair time for 10 lines 2.5 hours 

Table 7. General statistical parameters used in the model. 
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Fig. 11. Representation of the circuit of figure 10 with the nodes with all the possible 
locations for protective devices (adapted from Burian et al. 2010). 

5.1.2 The methodology: Converting to a GA application 

The first step is to provide formalism in such a way that the protective devices net could be 
represented by a set of genes in a chromosome Λ, and that the Bishop (1997) model could be 
expressed as a P-problem whose parameters are given by Λ. 

The solution chosen was to code the circuit as a series of nodes, designed by Ni, with i being 
an integer number, and to build a list of links between the nodes (see figure 11). The special 
node N0 is the main protective switch in the substation (which is present in all solutions). 
Each link between nodes can have a protective device, and its location is designed as Pi,j, 
with i and j being the two nodes that define the link. Special data structure is provided to 
the nodes to storage information about the number of phases, number of consumers, 
distance to neighbours nodes, etc. 

The adopted solution considers S as a ordered list of tokens, and the position in the ordered 
list corresponds to a location as Pi,j. Then, for the circuit of figure 11, one has 

 
0,1 1,2 1,3 2 ,4 2 ,5 2 ,6 6,7 6,12 7 ,8

7 ,9 9,10 9,11 12 ,13 12 ,14 14,15 14,16

, , , , , , , , ,

, , , , , ,

P P P P P P P P P

P P P P P P P

  Λ =  
  

. (31) 

So, Λ is a finite set of tokens, and its number of elements is much smaller than the number of 
nodes squared4, that assumes the role of parameter set in the P-problem. These tokens can 
represent a protective device to be placed in its respective circuit position. The possible 
devices are: main substation switch, only possible in location P0,1 (S); fuse (F), automatic 
reclose switch (R) and nothing (no device).  

                                                 
4 Of course! When representing an electric circuit one does not link one node to all the other nodes… 
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The kind of device defines the algorithm to be used to obtain the overall cost of protective 
devices, and the SAIDI and SAIFI indexes according to Bishop (1997). So, each set Λi 
represents a different circuit, and applying the Bishop’s algorithms one obtains a result set 

 ( ) {SAIDI ,SAIFI , , , }i i i i Si Ri fic c cΓ Λ = . (32) 

where cS, cR and cf are the costs of the main switch reclose switch and fuses, which are 
expressed in monetary “units”, being one unit the cost of the a monophasic fuse.  

As the set Γi itself cannot express the degree of adaptation the individual Λi to the problem 
we want to solve, we must provide an expression to summarize Γi in a more convenient, 
single valued variable, like the gof value, described in subsection 3.1. The definition of this 
gof should have a monotonic behaviour as the costs and the SAIDI and SAIFI index increase. 
We adopted the simple expression 

 ( ) ( )SAIDI SAIFIa b S R fgof c c cκ κ= + + + + . (33) 

where κa and κb are constant scale converters. Then, one can say that optimized circuit will 
be that one that offers the smaller gof. With this, our inverted NP-problem can be solved by 
looking for the individual Λi that presents the smaller gof. As all the parameters are limited 
range integer numbers (tokens), some special care must be taken in the GA routines that 
deal with new individuals and mutation. So, these routines where rebuild taking into 
account the discrete character of the chromosomes. The overall behaviour of the GA 
optimization code follows the algorithm proposed in figure 2. 

5.1.3 Results and conclusion 

The resulting optimized circuit is shown in figure 12, and its corresponding indexes are 
presented in table 8. The GA code performed the ranging of large number of solutions and 
configurations, within the universe of about 50 generations of configurations. This 
demonstrates the GA potential in this kind of analysis and application to discrete allocation 
equipment’s. GA optimization techniques has been showed to be an effective technique to 
optimize the allocation of protective devices inside the electrical distribution systems. 
 

Index value 
SAIDI 2.7694 
SAIFI 1.04385 
Cost S 60 units 

Number S 1 
Cost R 280 units 

Number R 3 
Cost F 25 units 

Number F 9 
Total Cost 365 units 

Table 8. Indexes values for optimized circuit. 
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Fig. 12. Optimized circuit obtained with the GA method (adapted from Burian et al. 2010). 

6. Acknowledgments 
The author wants to thank UFABC/CECS - Engineering, Modeling and Social Sciences 
Center of Federal University do ABC; AEB – Brazilian Space Agency / UNIESPAÇO 
Program; FAPESP and CNPq. 

7. References 
André P., Ward-Thompson D., Barsony M., (1993), ApJ, 406, 122 
Bentley, P.J., & Corne D.W. (2002) Creative Evolutionary Systems. Morgan-Kaufmann, San 

Francisco. 
Bishop, M.T. (March 1997) Establishing Realistic Reliability Goals. The Tech Advantage 97 

Conference & Electric Expo. 
Burian, R.; Hetem, A.,  Caetano, C. A. C. Automatic Allocation of Electric Power Distribution 

Protective Devices (2010) Opatija. 33rd International Convention on Information and 
Communication Technology, Electronics and Microelectronics. Opatija / Abbazia : 
IEEE, 2010. v. 1. p. 22-22. 

Caetano, C.A.C., & Hetem, A. (2011) Artificial Intelligence Parametrization of Harrington 
Pumps, to be submitted to International Journal of Heat and Fluid (in preparation). 

Cook, Stephen (1971) The complexity of theorem proving procedures. Proceedings of the Third 
Annual ACM Symposium on Theory of Computing. pp. 151–158.Dembczyński, J., 
Ertmer, W., Johann, U., Penselin, S., & Stinner, P. 1979, Z. Phys. A, 291, 207 

Dixon, S. L.,Hall,C. A. (2010) Fluid mechanics and thermodynamics of turbomachinery 6th ed. 
ISBN 978-1-85617-793-1. 

Dominik C., Dullemond C. P., Waters L. B. F. M., Walch S. (2003) A&A, 398, 607 
Dullemond C. P., Dominik C., Natta A. (2001) ApJ, 560, 957 
Garey, M. R., & Johnson, D. S. (1979) Computers and Intractability: A Guide to the Theory of NP-

completeness. W. H. Freeman. 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

184 

The kind of device defines the algorithm to be used to obtain the overall cost of protective 
devices, and the SAIDI and SAIFI indexes according to Bishop (1997). So, each set Λi 
represents a different circuit, and applying the Bishop’s algorithms one obtains a result set 

 ( ) {SAIDI ,SAIFI , , , }i i i i Si Ri fic c cΓ Λ = . (32) 

where cS, cR and cf are the costs of the main switch reclose switch and fuses, which are 
expressed in monetary “units”, being one unit the cost of the a monophasic fuse.  

As the set Γi itself cannot express the degree of adaptation the individual Λi to the problem 
we want to solve, we must provide an expression to summarize Γi in a more convenient, 
single valued variable, like the gof value, described in subsection 3.1. The definition of this 
gof should have a monotonic behaviour as the costs and the SAIDI and SAIFI index increase. 
We adopted the simple expression 

 ( ) ( )SAIDI SAIFIa b S R fgof c c cκ κ= + + + + . (33) 

where κa and κb are constant scale converters. Then, one can say that optimized circuit will 
be that one that offers the smaller gof. With this, our inverted NP-problem can be solved by 
looking for the individual Λi that presents the smaller gof. As all the parameters are limited 
range integer numbers (tokens), some special care must be taken in the GA routines that 
deal with new individuals and mutation. So, these routines where rebuild taking into 
account the discrete character of the chromosomes. The overall behaviour of the GA 
optimization code follows the algorithm proposed in figure 2. 

5.1.3 Results and conclusion 

The resulting optimized circuit is shown in figure 12, and its corresponding indexes are 
presented in table 8. The GA code performed the ranging of large number of solutions and 
configurations, within the universe of about 50 generations of configurations. This 
demonstrates the GA potential in this kind of analysis and application to discrete allocation 
equipment’s. GA optimization techniques has been showed to be an effective technique to 
optimize the allocation of protective devices inside the electrical distribution systems. 
 

Index value 
SAIDI 2.7694 
SAIFI 1.04385 
Cost S 60 units 

Number S 1 
Cost R 280 units 

Number R 3 
Cost F 25 units 

Number F 9 
Total Cost 365 units 

Table 8. Indexes values for optimized circuit. 

The Search for Parameters and Solutions:  
Applying Genetic Algorithms on Astronomy and Engineering 

 

185 

 
Fig. 12. Optimized circuit obtained with the GA method (adapted from Burian et al. 2010). 

6. Acknowledgments 
The author wants to thank UFABC/CECS - Engineering, Modeling and Social Sciences 
Center of Federal University do ABC; AEB – Brazilian Space Agency / UNIESPAÇO 
Program; FAPESP and CNPq. 

7. References 
André P., Ward-Thompson D., Barsony M., (1993), ApJ, 406, 122 
Bentley, P.J., & Corne D.W. (2002) Creative Evolutionary Systems. Morgan-Kaufmann, San 

Francisco. 
Bishop, M.T. (March 1997) Establishing Realistic Reliability Goals. The Tech Advantage 97 

Conference & Electric Expo. 
Burian, R.; Hetem, A.,  Caetano, C. A. C. Automatic Allocation of Electric Power Distribution 

Protective Devices (2010) Opatija. 33rd International Convention on Information and 
Communication Technology, Electronics and Microelectronics. Opatija / Abbazia : 
IEEE, 2010. v. 1. p. 22-22. 

Caetano, C.A.C., & Hetem, A. (2011) Artificial Intelligence Parametrization of Harrington 
Pumps, to be submitted to International Journal of Heat and Fluid (in preparation). 

Cook, Stephen (1971) The complexity of theorem proving procedures. Proceedings of the Third 
Annual ACM Symposium on Theory of Computing. pp. 151–158.Dembczyński, J., 
Ertmer, W., Johann, U., Penselin, S., & Stinner, P. 1979, Z. Phys. A, 291, 207 

Dixon, S. L.,Hall,C. A. (2010) Fluid mechanics and thermodynamics of turbomachinery 6th ed. 
ISBN 978-1-85617-793-1. 

Dominik C., Dullemond C. P., Waters L. B. F. M., Walch S. (2003) A&A, 398, 607 
Dullemond C. P., Dominik C., Natta A. (2001) ApJ, 560, 957 
Garey, M. R., & Johnson, D. S. (1979) Computers and Intractability: A Guide to the Theory of NP-

completeness. W. H. Freeman. 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

186 

Goldberg D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. 
Addison-Wesley Longman, Boston, MA 

Gray, R.O., & Corbally, C.J. (1994) AJ, 107, 742. 
Gregorio-Hetem J., Lépine J. R. D., Quast G. R., Torres C. A. O., de la Reza R. (1992) AJ, 103, 

549 
Grevesse, N. & Sauval, A.J. (1998) Space Science Reviews 85, 161 
Griffinand, M.D., & French, J.R. (1991) Space Vehicle Design, AIAA. 
Harrington, S. (2003) Pistonless Dual Chamber Rocket Fuel Pump, 39th 

AIAA/ASME/SAE/ASEE Hoint Propulsion Conference and Exhibit. AIAA 2003-
4479. 

Hetem, A., & Gregorio-Hetem, J. (2007) The use of genetic algorithms to model 
protoplanetary discs, MNRAS 382, 1707–1718 (2007) doi:10.1111/j.1365-
2966.2007.12442.x 

Hetem Jr, A. ; Gregorio-Hetem, J. (2009) The use of Genetic Algorithms and Spectral Synthesis in 
the Calculantion of Abundances and Metallicities of T Tauri stars. In: Young stars, 
Brown Dwarfs and Protoplanetary Disks Special Session 7 - IAU XXVII General 
Assembly, 2009, Rio de Janeiro - RJ. IAU XXVII General Assembly Abstract Book. 
Paris - France : International Astronomical Union, 2009. v. 1. p. 481-481. 

Huzel, D.K. & Huang, D.H. (1967) Design of Liquid Propellant Rocket Engines, Rocketdyne 
Division, North American Aviation, Inc. 

Koza J. R. (1994) Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press. 
Kurucz, R. L. (1993) CD-ROM 13, Atlas9 Stellar Atmosphere Programs and 2 km/s Grid 

(Cambridge: Smithsonian Astrophys. Obs.) 
Lada C. J., Wilking B. A. (1984) ApJ, 287, 610 
Logan, E., Jr., & Roy, R, (eds) (2003) Handbook of Turbomachinery (Second Edition Revised and 

Expanded), Marcel Dekker, Inc. 
Luc, P. & Gerstenkorn, S. (1972) AA, 18, 209 
Neufeld, M. J. (1995) The Rocket and the Reich. The Smithsonian Institution. pp. 80–1, 156, 172. 

ISBN 0-674-77650-X. 
Papadimitriou, C. H. (1995) Computational Complexity. Addison-Wesley, Reading 

Massachusetts. 
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. (1995) Numerical Recipes in C, 

2nd edn. Cambridge Univ. Press, New York 
Rojas, G., Gregorio-Hetem, J., Hetem, A. (2008) MNRAS, 387, Issue 3, pp. 1335-1343. 
Sutton, G.P., & Biblarz, O. (2001) Rocket Propulsion Elements 7th editon, JOHN WILEY & 

SONS, INC. 
Sutton, G.P. (1986) Rocket Propulsion Elements an Introduction to Engineering of Rockets, John 

Wiley & Sons. 
Torres C. A. O. (1998) Publicação Especial do Observatório Nacional, No. 10/99. Observatório 

Nacional, Rio de Janeiro 
Torres C. A. O., Quast G. R., de la Reza R., Gregorio-Hetem J., Lépine J. R. D. (1995) AJ, 109, 

2146 
van den Ancker M. E., Meeus G., Cami J., Waters L. B. F. M.,Waelkens C. (2001) A&A, 369, 

217 
Wilking B. A., Lada C. J., Young E. T. (1989) ApJ, 340, 823 
Young, W. C. (1989) Roark's formulas for stress and strain, McGraw-Hill 

10 

Fusion of Visual and Thermal Images 
 Using Genetic Algorithms  

Sertan Erkanli1,2, Jiang Li2 and Ender Oguslu1,2  
1Turkish Air Force Academy,  

2Old Dominion University, 
1Turkey 

2USA  

1. Introduction  
Biometric technologies such as fingerprint, hand geometry, face and iris recognition are 
widely used to identify a person's identity. The face recognition system is currently one of 
the most important biometric technologies, which identifies a person by comparing 
individually acquired face images with a set of pre-stored face templates in a database. 

Though the human perception system can identify faces relatively easily, face 
reorganization using computer techniques is challenging and remains an active research 
field. Illumination and pose variations are currently the two obstacles limiting performances 
of face recognition systems. Various techniques have been proposed to overcome those 
limitations in recent years. For instance, a three dimensional face recognition system has 
been investigated to solve the illumination and pose variations simultaneously [Bowyer et 
al., 2004;  S. Mdhani et al., 2006]. The illumination variation problem can also be mitigated 
by additional sources such as infrared (IR) images [D. A. Socolinsky & A. Selinger, 2002].  

Thermal face recognition systems have received little attention in comparison with 
recognition in visible spectra partially due to the high cost associated with IR cameras. 
Recent technological advances of IR cameras make it practical for face recognition. While 
thermal face recognition systems are advantageous for detecting disguised faces or when 
there is no control over illumination, it is challenging to recognize faces in IR images 
because 1) it is difficult to segment faces from background in low resolution IR images and 
2) intensity values in IR images are not consistent due to the fact that different body 
temperatures result in different intensity values in IR images.  

The overall goal of this research is to develop computational methods for obtaining 
efficiently improved images. The research objective will be accomplished by integrating 
enhanced visual images with IR Images through the following steps: 1) Enhance optical 
images, 2) Register the enhanced optical images with IR images, and 3) Fuse the optical and 
IR images with the help of Genetic Algorithm. 

Section 2 surveys related work for IR imaging, image enhancement, image registration and 
image fusion. Section 3 discusses the proposed nonlinear image enhancement methods. 
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1. Introduction  
Biometric technologies such as fingerprint, hand geometry, face and iris recognition are 
widely used to identify a person's identity. The face recognition system is currently one of 
the most important biometric technologies, which identifies a person by comparing 
individually acquired face images with a set of pre-stored face templates in a database. 

Though the human perception system can identify faces relatively easily, face 
reorganization using computer techniques is challenging and remains an active research 
field. Illumination and pose variations are currently the two obstacles limiting performances 
of face recognition systems. Various techniques have been proposed to overcome those 
limitations in recent years. For instance, a three dimensional face recognition system has 
been investigated to solve the illumination and pose variations simultaneously [Bowyer et 
al., 2004;  S. Mdhani et al., 2006]. The illumination variation problem can also be mitigated 
by additional sources such as infrared (IR) images [D. A. Socolinsky & A. Selinger, 2002].  

Thermal face recognition systems have received little attention in comparison with 
recognition in visible spectra partially due to the high cost associated with IR cameras. 
Recent technological advances of IR cameras make it practical for face recognition. While 
thermal face recognition systems are advantageous for detecting disguised faces or when 
there is no control over illumination, it is challenging to recognize faces in IR images 
because 1) it is difficult to segment faces from background in low resolution IR images and 
2) intensity values in IR images are not consistent due to the fact that different body 
temperatures result in different intensity values in IR images.  

The overall goal of this research is to develop computational methods for obtaining 
efficiently improved images. The research objective will be accomplished by integrating 
enhanced visual images with IR Images through the following steps: 1) Enhance optical 
images, 2) Register the enhanced optical images with IR images, and 3) Fuse the optical and 
IR images with the help of Genetic Algorithm. 

Section 2 surveys related work for IR imaging, image enhancement, image registration and 
image fusion. Section 3 discusses the proposed nonlinear image enhancement methods. 
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Section 4 presents the proposed image fusion algorithm. Section 5 reports the experimental 
results of the proposed algorithm. Section 6 concludes this research.   

2. Literature survey 
In this section, we will present related work in IR Image technology, nonlinear image 
enhancement algorithms, image registration and image fusion.  

2.1 IR tecnology   

One type of electromagnetic radiation that has received a lot of attention recently is Infrared 
(IR) radiation. IR refers to the region beyond the red end of the visible color spectrum, a region 
located between the visible and the microwave regions of the electromagnetic spectrum.  

Today, infrared technology has many exciting and useful applications. In the field of 
infrared astronomy, new and fascinating discoveries are being made about the Universe and 
medical imaging as a diagnostic tool.  

Humans, at normal body temperature, radiate most strongly in the infrared, at a wavelength 
of about 10 microns. The area of the skin that is directly above a blood vessel is, on average, 
0.1 degrees Celsius warmer than the adjacent skin. Moreover, the temperature variation for 
a typical human face is in the range of about 8 degrees Celsius [F. Prokoski, 2000].  

In fact, variations among images from the same face due to changes in illumination, viewing 
direction, facial expressions, and pose are typically larger than variations introduced when 
different faces are considered. Thermal IR imagery is invariant to variations introduced by 
illumination facial expressions since it captures the anatomical information. However, 
thermal imaging has limitations in identifying a person wearing glasses because glass is a 
material of low emissivity, or when the thermal characteristics of a face have changed due to 
increased body temperature (e.g., physical exercise) [G. S. Kong et al., 2005]. Combining the 
IR and visual techniques will benefit face detection and recognition. 

2.2 Nonlinear image enhancement techniques   

2.2.1 The nonlinear log transform  

The non-linear log transform converts an original image g into an adjusted image g′ by 
applying the log function to each pixel g[m, n] in the image,  

 g′[m, n] = klog(g[m, n])         (1) 

where k=L/log(L) is a scaling factor that preserve the dynamic range and L is intensity. The 
log transformis typically applied either to dark images where the overall contrast is low, or 
to images that contain specular reflections or glints. In the former case, the brightening of 
the dark pixels leads to an overall increase in brightness. In the latter case, the glints are 
suppressed thus increasing the effective dynamic range of the image. 

The log function as defined in equation 1 is not parameterized, i.e. it is a single input/output 
transfer function. A modified parameterized function was proposed by Schreiber in [W. F. 
Schreiber, 1978] as: image,  
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where α  parameterizes the non-linear transfer function. 

2.3 Registration  

Image registration is a basic task in image processing to align two or more images, usually 
refereed as a reference, and a sensed image [R. C. Gonzalez et al., 2004]. Registration is 
typically a required process in remote sensing [L. M. G. Fonseca & B. S. Manjunath, 1996], 
medicine and computer vision. Registration can be classified into four main categories 
according to the manner how the image is obtained [B. Zitova & J. Flusser, 2003]: 

• Different viewpoints : Images of the same scene taken from different viewpoints.  
• Different times : Images of the same scene taken at different times. 
• Different sensors : Images of the same scene taken by different sensors.  
• Scene to model registration : Images of a scene taken by sensors and images of the same 

scene but from a model (digital elevation model). 

It is impossible to implement a comprehensive method useable to all registration tasks and 
there are many different registration algorithms. The focus is on the feature based 
registration techniques in this research and they usually consist of the following three steps 
[B. Zitova & J. Flusser, 2003]. 

• Feature detection: The step tries to locate a set of control points such as edges, line 
intersections and corners in the image. They could be manually or automatically 
detected.  

• Feature matching: The second step is to establish the correspondence between the 
features detected in the sensed image and those detected in the reference image.  

• Transform model estimation, Image resampling and Geometric transformation: The 
sensed image is transformed and resampled to match the reference image by proper 
interpolation techniques [B. Zitova & J. Flusser, 2003]. 

Each registration step has its specific problems. In the first step, features that can be used for 
registration must spread over the images and be easily detectable. The determined feature 
sets in the reference and sensed images must have enough common elements, even though 
the both images do not cover exactly the same scene. Ideally, the algorithm should be able to 
detect the same features [B. Zitova & J. Flusser, 2003]. 

In the second step, known as feature matching, physically corresponded features can be 
dissimilar because of the different imaging conditions and/or the different spectral 
sensitivities of the sensors. The choice of the feature description and measuring of similarity 
has to take into account of these factors. The feature descriptors should be efficient and 
invariant to the assumed degradations. The matching algorithm should be robust and 
efficient. Single features without corresponding counterparts in the other image should not 
affect its performance [B. Zitova & J. Flusser, 2003]. 

In the last step, the selection of an appropriate resampling technique is restricted by the 
trade-off between the interpolation accuracy and the computational complexity. In the 
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Section 4 presents the proposed image fusion algorithm. Section 5 reports the experimental 
results of the proposed algorithm. Section 6 concludes this research.   
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literature, there are popular techniques such as the nearest-neighbor and bilinear 
interpolation [B. Zitova & J. Flusser, 2003]. 

2.4 Genetic Algorithm 

2.4.1 Introduction 

Optimization can be distinguished by either discrete or continuous variables. Discrete 
variables have only a finite number of possible values, whereas continuous variables have 
an infinite number of possible ones. Discrete variable optimization is also known as 
combinatorial optimization, because the optimum solution consists of a certain combination 
of variables from the finite pool of all possible variables. However, when trying to find the 
minimum value of f(x) on a number line, it is more appropriate to view the problem as 
continuous [J. H. Holland, 1975; S. K. Mitra et al., 1998]. 

Genetic algorithms manipulate a population of potential solutions for the problem to be 
solved. Usually, each solution is coded as a binary string, equivalent to the genetic material 
of individuals in nature. Each solution is associated with a fitness value that reflects how 
good it is, compared with other solutions in the population. The higher the fitness value of 
an individual, the higher its chances of survival and reproduction in the subsequent 
generation. Recombination of genetic material in genetic algorithms is simulated through a 
crossover mechanism that exchanges portions between strings. 

Another operation, called mutation, causes sporadic and random alteration of the bits in 
strings. Mutation has a direct analogy in nature and plays the role of regenerating lost 
genetic material [M. Srinivas & L. M. Patnaik, 1994]. GAs have found applications in many 
fields including image processing [J. Zhang , 2008; L. Yu et al., 2008].  

2.4.2 Continuous Genetic Algorithm (CGA)  

GAs typically represent solution as binary strings. For many applications, it is more 
convenient to denote solutions as real numbers known as continuous Genetic algorithms 
(CGA). CGAs have the advantage of requiring less storage and are faster than the binary 
counterparts. Figure 1 shows the flowchart of simple CGA [Randy L. Haupt & Sue Ellen 
Haupt, 2004]. 

2.4.2.1 Components of a Continuous Genetic Algorithm 

The various elements in the flowchart are described below [D.Patnaik, 2006]. 

2.4.2.1.1 Cost function  

The goal of GAs is to solve an optimization problem defined as a cost function with a set of 
parameters involved. In CCA, the parameters are organized as a vector known as a 
chromosome. If the chromosome has varN  variables (an N-dimensional optimization 
problem) given by 

var1 2 3, , ,...., ,Np p p p  then the chromosome is written as an array with 1x
varN elements as [Randy L. Haupt & Sue Ellen Haupt, 2004]:  

 chromosome =[
var1 2 3, , ,...., Np p p p ]                  (3) 

 
Fusion of Visual and Thermal Images Using Genetic Algorithms 

 

191 

 
Fig. 1. Flowchart of CGA 

In this case, the variable values are represented as floating-point numbers. Each 
chromosome has a cost found by evaluating the cost function f at the variables 

var1 2 3, , ,...., ,Np p p p
    

 

 cost = f (chromosome) = f (
var1 2 3, , ,...., Np p p p )    (4) 

Equations (3) and (4) along with applicable constraints constitute the problem to be solved. 
Since the GA is a search technique, it must be limited to exploring a reasonable region of 
variable space. Sometimes this is done by imposing a constraint on the problem. If one does 
not know the initial search region, there must be enough diversity in the initial population 
to explore a reasonably sized variable space before focusing on the most promising regions.  

2.4.2.1.2 Initial population 

To begin the CGA process, an initial population of popN  must be defined, a matrix 
represents the population, with each row being a 1x varN  chromosome of continuous values 
[D.Patnaik, 2006]. Given an initial population of popN  chromosomes, the full matrix of popN x

varN  random values is generated by: 

 var( , )poppop rand N N=     (5) 

All variables are normalized to have values between 0 and 1. If the range of values is 
between lop  and hip , then the normalized values are given by: 

 ( )hi lo norm lop p p p p= − +   (6) 

where 

Define cost function, variables 

Generate initial population

Find cost for each chromosome

Select mates

Mating

Mutation

Converge Check

done
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lop  = highest number in the variable range 
hip  = lowest number in the variable range 
normp  = normalized value of variable  

This society of chromosomes is not a democracy: the individual chromosomes are not all 
created equal. Each one’s worth is assessed by the cost function. So at this point, the 
chromosomes are passed to the cost function for evaluation [Randy L. Haupt & Sue Ellen 
Haupt, 2004]. 

Now is the time to decide which chromosomes in the initial population are good enough to 
survive and possibly reproduce offspring in the next generation. As done for the binary 
version of the algorithm, the popN costs and associated chromosomes are ranked from lowest 
cost to highest cost. This process of natural selection occurs in each iteration to allow the 
population of chromosomes to evolve. Of the popN chromosomes in a given generation, only 
the top keepN are kept for mating and the rest are discarded to make room for the new 
offspring [Randy L. Haupt & Sue Ellen Haupt, 2004]. 

2.4.2.1.3 Pairing 

A set of eligible chromosomes is randomly selected as parents to generate next generation. 
Each pair produces two offspring that contain traits from each parent. The more similar the 
two parents, the more likely are the offspring to carry the traits of the parents. 

2.4.2.1.4 Mating 

As for the binary algorithm, two parents are chosen to produce offsprings. Many different 
approaches have been tried for crossing over in continuous GAs. The simplest method is to 
mark a crossover points first, then parents exchange their elements between the marked 
crossover points in the chromosomes. Consider two parents: 

 var

var

1 1

2 1

[ ,....., ]

[ ,....., ]
m mN

d dN

parent p p

parent p p

=

=
 (7) 

two offspring's might be produced as: 

 var

var

1 1 2 3 4 5 6

2 1 2 3 4 5 6

[ , , , , , ,....., ]

[ , , , , , ,....., ]
m m d d m m mN

d d m m d d dN

offspring p p p p p p P

offspring p p p p p p P

=

=
  (8) 

2.4.2.1.5 Natural selection 

The extreme case is selecting varN  points and randomly choosing which of the two parents 
will contribute its variable at each position. Thus one goes down the line of the 
chromosomes and, at each variable, randomly chooses whether or not to swap information 
between the two parents. This method is called uniform crossover [Randy L. Haupt & Sue 
Ellen Haupt, 2004]: 

 var

var

1 1 2 3 4 5 6

2 1 2 3 4 5 6

[ , , , , , ,....., ]

[ , , , , , ,....., ]
m d d d d m dN

d m m m m d mN

offspring p p p p p p P

offspring p p p p p p P

=

=
   (9) 
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The problem with these point crossover methods is that no new information is introduced: 
each continuous value that was randomly initiated in the initial population is propagated to 
the next generation, only in different combinations. Although this strategy worked fine for 
binary representations, in case of continuous variables, we are merely interchanging two 
data points. These approaches totally rely on mutation to introduce new genetic material. 
The blending methods remedy this problem by finding ways to combine variable values 
from the two parents into new variable values in the offspring [Randy L. Haupt & Sue Ellen 
Haupt, 2004]. A single offspring variable value, pnew, comes from a combination of the two 
corresponding offspring variable values:  

 (1 )mn dnpnew p pβ β= + −   (10) 

where 

β  = random number in the interval [0, 1] 
mnp  = the nth variable in the mother chromosome 
dnp  = the nth variable in the father chromosome 

The same variable of the second offspring is merely the complement of the first (i.e., 
replacing β  by 1 - β ). If β  = 1, then mnp  propagates in its entirety and dnp  dies. In contrast, 
if β  = 0, then dnp  propagates in its entirety and mnp  dies. When β  = 0.5, the result is an 
average of the variables of the two parents. This method is demonstrated to work well on 
several interesting problems in [Randy L. Haupt & Sue Ellen Haupt, 2004]. 

Choosing which variables to blend is the next issue to be solved. Sometimes, this linear 
combination process is done for all variables to the right or to the left of some crossover 
point. Any number of points can be chosen to blend, up to varN  values where all variables 
are linear combinations of those of the two parents. The variables can be blended by using 
the same β  for each variable or by choosing different β ’s for each variable. These blending 
methods effectively combine the information from the two parents and choose values of the 
variables between the values bracketed by the parents; however, they do not allow 
introduction of values beyond the extremes already represented in the population. The 
simplest way is the linear crossover [Randy L. Haupt & Sue Ellen Haupt, 2004], where three 
offspring are generated from two parents by  
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Any variable outside the bounds is discarded. Then the best two offspring are chosen to 
propagate. Of course, the factor 0.5 is not the only one that can be used in such a method. 
Heuristic crossover [Randy L. Haupt & Sue Ellen Haupt, 2004] is a variation where some 
random number, β , is chosen on the interval [0, 1] and the variables of the offspring are 
formed by: 

 ( )mn dn mnpnew p p pβ= − +   (12) 
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lop  = highest number in the variable range 
hip  = lowest number in the variable range 
normp  = normalized value of variable  
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2.4.2.1.5 Natural selection 
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The problem with these point crossover methods is that no new information is introduced: 
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the next generation, only in different combinations. Although this strategy worked fine for 
binary representations, in case of continuous variables, we are merely interchanging two 
data points. These approaches totally rely on mutation to introduce new genetic material. 
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Any variable outside the bounds is discarded. Then the best two offspring are chosen to 
propagate. Of course, the factor 0.5 is not the only one that can be used in such a method. 
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Variations on this theme include choosing any number of variables to modify and generate 
different β  for each variable. This method also allows generations of offspring outside the 
value ranges of the two parent variables. If this happens, the offspring is discarded and the 
algorithm tries to use another b. The blend crossover (BLX-α ) method [Randy L. Haupt & 
Sue Ellen Haupt, 2004] begins by choosing some parameters that determine the distance 
outside the bounds of the two parent variables that the offspring variable may lay. This 
method allows new values outside of the range of the parents without letting the algorithm 
stray too far.  

The algorithm is a combination of an extrapolation method with a crossover method. The 
goal was to find a way to closely mimic the advantages of the binary GA mating scheme. 
It begins by randomly selecting a variable in the first pair of parents to be the crossover 
point: 
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where the m and d subscripts discriminate between the mom and the dad parent. Then the 
selected variables are combined to form new variables that will appear in the children: 
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where β is a random value between 0 and 1. The final step is to complete the crossover with 
the rest of chromosome:  
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where β  is also a random value between 0 and 1. The final is to complete the crossover with 
the rest of the chromosome as before: 

If the first variable of the chromosomes is selected, then only the variables to the right of the 
selected variable are swapped. If the last variable of the chromosomes is selected, then only 
the variables to the left of the selected variable are swapped. This method does not allow 
offspring variables outside the bounds set by the parent unless β  > 1. 

2.4.2.1.6 Mutation 

If care is not taken, the GA can converge too quickly into one region on the cost surface. If 
this area is in the region of the global minimum, there is no problem. However, some 
functions have many local minima. To avoid overly fast convergence, other areas on the cost 
surface must be explored by randomly introducing changes, or mutations, in some of the 
variables. Random numbers are used to select the row and columns of the variables that are 
to be mutated [Randy L. Haupt & Sue Ellen Haupt, 2004].  

 
Fusion of Visual and Thermal Images Using Genetic Algorithms 

 

195 

2.4.2.1.7 Next generation 

After all these steps, the chromosomes in the starting population are ranked and the bottom 
ranked chromosomes are replaced by offspring from the top ranked parents to produce the 
next generation. Some random variables are selected for mutation from the bottom ranked 
chromosomes. The chromosomes are then ranked from lowest cost to highest cost. The 
process is iterated until a global solution is achieved.  

2.5 Image fusion  

In last decades, the rapid developments of image sensing technologies make multisensory 
systems popular in many applications. Researchers have begun to work on the fields of 
these systems such as medical imaging, remote sensing and the military applications 
[D.Patnaik, 2006]. The outcome of using these techniques is a great increase of the amount 
of diversity data available. Multi-sensor image data often present complementary 
information about the region surveyed so that image fusion provides an effective method 
to enable comparison and analysis of such data [H. Wang, 2004]. Image fusion is defined 
as the process of combining information in two or more images of a scene to enhance 
viewing or understanding of the scene. The fusion process must preserve all relevant 
information in the fused image [A. Mumtaz & A. Majid, 2008; S. Erkanli & Zia-Ur 
Rahman, 2010].  

Image fusion can be done at pixel, feature and decision levels. Out of these, the pixel level 
fusion method is the simplest technique, where average/weighted averages of individual 
pixel intensities are taken to construct a fused image [K. Kannan & S. Perumal, 2007]. 
Despite their simplicity, these methods are not used nowadays because of some serious 
disadvantages they possess. For instance, the contrast of the fused information is reduced 
and also redundant information is introduced in the fused image, which may mask the 
useful information. These disadvantages are overcomed by feature level and decision level 
fusion methods. Feature and decision level fusion methods are based on human vision 
system. Decision level fusion combines the results from multiple algorithms to yield a 
final fused image. Several pyramid transform methods for feature level fusion have been 
suggested [A. Wang et al., 2006]. Recently, developed methods based on the wavelet 
transform become popular [A. Wang et al., 2006]. In the method source images are 
decomposed into subimages of different resolutions and in each subimage different 
features become prominent. To fuse the original source images, the corresponding 
subimages of different source images are combined based some criteria to form composite 
subimages. Inverse pyramid transform of composite transform gives the final fused 
image.   

3. Enhancing poor visibility images 
3.1 Introduction 

The human visual system (HVS) allows individuals to assimilate information from their 
environment [S. Erkanli & Zia-Ur Rahman, 2010b; H. Kolb, 2003]. The HVS perceives colors 
and detail across a wide range of photometric intensity levels much better than electronic 
cameras. The perceived color of an object, additionally, is almost independent of the type of 
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where β is a random value between 0 and 1. The final step is to complete the crossover with 
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where β  is also a random value between 0 and 1. The final is to complete the crossover with 
the rest of the chromosome as before: 

If the first variable of the chromosomes is selected, then only the variables to the right of the 
selected variable are swapped. If the last variable of the chromosomes is selected, then only 
the variables to the left of the selected variable are swapped. This method does not allow 
offspring variables outside the bounds set by the parent unless β  > 1. 

2.4.2.1.6 Mutation 

If care is not taken, the GA can converge too quickly into one region on the cost surface. If 
this area is in the region of the global minimum, there is no problem. However, some 
functions have many local minima. To avoid overly fast convergence, other areas on the cost 
surface must be explored by randomly introducing changes, or mutations, in some of the 
variables. Random numbers are used to select the row and columns of the variables that are 
to be mutated [Randy L. Haupt & Sue Ellen Haupt, 2004].  
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process is iterated until a global solution is achieved.  

2.5 Image fusion  

In last decades, the rapid developments of image sensing technologies make multisensory 
systems popular in many applications. Researchers have begun to work on the fields of 
these systems such as medical imaging, remote sensing and the military applications 
[D.Patnaik, 2006]. The outcome of using these techniques is a great increase of the amount 
of diversity data available. Multi-sensor image data often present complementary 
information about the region surveyed so that image fusion provides an effective method 
to enable comparison and analysis of such data [H. Wang, 2004]. Image fusion is defined 
as the process of combining information in two or more images of a scene to enhance 
viewing or understanding of the scene. The fusion process must preserve all relevant 
information in the fused image [A. Mumtaz & A. Majid, 2008; S. Erkanli & Zia-Ur 
Rahman, 2010].  

Image fusion can be done at pixel, feature and decision levels. Out of these, the pixel level 
fusion method is the simplest technique, where average/weighted averages of individual 
pixel intensities are taken to construct a fused image [K. Kannan & S. Perumal, 2007]. 
Despite their simplicity, these methods are not used nowadays because of some serious 
disadvantages they possess. For instance, the contrast of the fused information is reduced 
and also redundant information is introduced in the fused image, which may mask the 
useful information. These disadvantages are overcomed by feature level and decision level 
fusion methods. Feature and decision level fusion methods are based on human vision 
system. Decision level fusion combines the results from multiple algorithms to yield a 
final fused image. Several pyramid transform methods for feature level fusion have been 
suggested [A. Wang et al., 2006]. Recently, developed methods based on the wavelet 
transform become popular [A. Wang et al., 2006]. In the method source images are 
decomposed into subimages of different resolutions and in each subimage different 
features become prominent. To fuse the original source images, the corresponding 
subimages of different source images are combined based some criteria to form composite 
subimages. Inverse pyramid transform of composite transform gives the final fused 
image.   

3. Enhancing poor visibility images 
3.1 Introduction 

The human visual system (HVS) allows individuals to assimilate information from their 
environment [S. Erkanli & Zia-Ur Rahman, 2010b; H. Kolb, 2003]. The HVS perceives colors 
and detail across a wide range of photometric intensity levels much better than electronic 
cameras. The perceived color of an object, additionally, is almost independent of the type of 
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illumination, i.e., the HVS is color constant. Electronic cameras suffer, by comparison, from 
limited dynamic range and the lack of color constancy and current imaging and display 
devices such as CRT monitors and printers have limited dynamic range of about two orders 
of magnitude, while the best photographic prints can provide contrast up to 310 : 1.  
However; real world scenes can have a dynamic range of six orders of magnitude [S. Erkanli 
& Zia-Ur Rahman, 2010b; L. Tao et al., 2005]. This can result in overexposure that causes 
saturation in high contrast images, or underexposure in dark images [Z. Rahman, 1996]. The 
idea behind enhancement techniques are to bring out details in images that are otherwise 
too dim to be perceived either due to insufficient brightness or insufficient contrast [Z. 
Rahman, 1997]. A large number of image enhancement methods have been developed, like 
log transformations, power law transformations, piecewise-linear transformations and 
histogram equalization. However these enhancement techniques are based on global 
processing which results in a single mapping between the input and the output intensity 
space. These techniques are thus not sufficiently powerful to handle images that have both 
very bright and very dark regions. Other image enhancement techniques are local in nature, 
i.e., the output value depends not only on the input pixel value but also on pixel values in 
the neighborhood of the pixel. These techniques are able to improve local contrast under 
various illumination conditions.  

Single-Scale Retinex (SSR), is a modification of the Retinex algorithm introduced by Edwin 
Land [G. D. Hines et al., 2004; E. Land, 1986]. It provides dynamic range compression 
(DRC), color constancy, and tonal rendition. SSR gives good results for DRC or tonal 
rendition but does not provide both simultaneously. Therefore, the Multi-Scale Retinex 
(MSR) was developed by Rahman et al. The MSR combines several SSR outputs with 
different scale constants to produce a single output image, which has good DRC, color 
constancy and good tonal rendition. The outputs of MSR display most of the detail in the 
dark pixels but at the cost of enhancing the noise in these pixels and the tonal rendition is 
poor in large regions of slowly changing intensity. As a result, Multi-Scale Retinex with 
Color Restoration (MSRCR) was developed by Jobson et al., for synthesizing local contrast 
improvement, color constancy and lightness/color rendition. Other non-linear enhancement 
models include the Illuminance Reflectance Model for Enhancement (IRME) proposed by 
Tao et al. [L. Tao et al., 2005], and the Adaptive and Integrated Neighborhood-Dependent 
Approach for Nonlinear Enhancement (AINDANE) described by Tao [L.Tao, 2005]. Both use 
a nonlinear function for luminance enhancement and tune the intensity of each pixel based 
on its relative magnitude with respect to the neighboring pixels. 

In this section, a new image enhancement approach is described: Enhancement Technique 
for Nonuniform and Uniform-Dark Images (ETNUD). The details of the new algorithm are 
given in Section 3.2, respectively. Sections 3.3 describe experimental results and compare 
our results with other techniques for image enhancement. Finally in Section 3.4, conclusions 
are presented.  

3.2 Enhancement Technique for Nonuniform and Uniform-Dark Images (ETNUD) 

The major innovation in ETNUD is in the selection of the transformation parameters for 
DRC, and the surround scale and color restoration parameters. The following sections 
describe the selection mechanisms.  
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3.2.1 Selection of transformation parameters for DRC 

The intensity I of the color image cI  can be determined by: 

  ( , ) 0.2989 ( , ) 0.587 ( , ) 0.114 ( , )I m n r m n g m n b m n= + +     (17) 

where r, g, b are the red, green, and blue components of cI  respectively, and m and n are the 
row and column pixel locations respectively. Assuming I to be 8-bits per pixel, nI  is the 
normalized version of I, such that: 

 ( , ) ( , ) / 255nI m n I m n=    (18) 

Using linear input-output intensity relationships typically does not produce a good visual 
representation compared with direct viewing of the scene. Therefore, nonlinear 
transformation for DRC is used, which is based on some information extracted from the 
image histogram. To do this, the histogram of the intensity images is subdivided into four 
ranges: 

1r  =0–63, 2r = 64–127, 3r  = 128–191 and 4r  = 192–255. nI  is mapped to drc
nI  using the 

following: 
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The first mapping pulls out the details in the dark regions, and the second suppresses the 
bright overshoots. The value of x is given by 
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where ( )f a refers to number of pixels between the range (a), 1 2 1 2( ) ( ) ( )f a a f a f a+ = + , and Λ  
is the logical AND operator. α  is the offset parameter, helping to adjust the brightness of 
image. The determination of the x values and their association with the range-relationships 
as given in Equation 20 was done experimentally using a large number of non-uniform and 
uniform dark images and x value can be also determined manually. The DRC mapping of 
the intensity image performs a visually dramatic transformation. However, it tends to have 
poor contrast, so a local, pixel dependent contrast enhancement method is used to improve 
the contrast. 

3.2.2 Selection of surround parameter and color restoration 

Many local enhancement methods rely on center/surround ratios [L. Tao, 2005]. Hurlbert 
[A. C. Hulbert, 1989] investigated the Gaussian as the optimal surround function. Other 
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The first mapping pulls out the details in the dark regions, and the second suppresses the 
bright overshoots. The value of x is given by 
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where ( )f a refers to number of pixels between the range (a), 1 2 1 2( ) ( ) ( )f a a f a f a+ = + , and Λ  
is the logical AND operator. α  is the offset parameter, helping to adjust the brightness of 
image. The determination of the x values and their association with the range-relationships 
as given in Equation 20 was done experimentally using a large number of non-uniform and 
uniform dark images and x value can be also determined manually. The DRC mapping of 
the intensity image performs a visually dramatic transformation. However, it tends to have 
poor contrast, so a local, pixel dependent contrast enhancement method is used to improve 
the contrast. 

3.2.2 Selection of surround parameter and color restoration 

Many local enhancement methods rely on center/surround ratios [L. Tao, 2005]. Hurlbert 
[A. C. Hulbert, 1989] investigated the Gaussian as the optimal surround function. Other 
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surround functions proposed by [E. Land, 1986] were compared with the performance of the 
Gaussian proposed by [D. J. Jobson, et al., 1997]. Both investigations determined that the 
Gaussian form produced good dynamic range compression over a range of space constants. 
Therefore, the luminance information of surrounding pixels is obtained by using 2D discrete 
spatial convolution with a Gaussian kernel, G(m, n) defined as: 
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where sσ  is the surround space constant equal to the standard deviation of G(m, n), and K is 
determined under the constraint that
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The center-surround contrast enhancement is defined as: 
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where, E(m, n) is given by: 
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where ( ), ( , ) * ( , )filtI m n I m n G m n=    (24) 

S is an adaptive contrast enhancement parameter related to the global standard deviation of 
the input intensity image, I(m, n),  and ‘*’ is the convolution operator, I(m, n) is defined by: 
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σ  is the contrast—standard deviation—of the original intensity image. If σ  < 7, the image 
has poor contrast and the contrast of the image will be increased. If σ ≥ 20, the image has 
sufficient contrast and the contrast will not be changed. Finally, the enhanced image can be 
obtained by linear color restoration based on chromatic information contained in the 
original image as:   
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where { }, ,j r g b∈ represents the RGB spectral band and jλ  is a parameter which adjusts the 
color hue. 

3.2.3 Evaluation citeria 

In this work, following evaluation criteria was used. 
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3.2.3.1 A new metric 

There are some metrics such as brightness and contrast to characterize an image. Another 
such metric is sharpness. Sharpness is directly proportional to the high-frequency content of 
an image. So the new metric is defined as [Z. Rahman, 2009]: 
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where h is a high-pass filter, periodic with period 1 2M xM and h
∧

 is its direct Discrete  
Fourier Transform (DFT). I is also DFT of Image I.  The role of h

∧
(or h) is to weight the 

energy at the high frequencies relative to the low frequencies, thereby emphasizing the 
contribution of the high frequencies to S. The larger the value of S, the greater the sharpness 
of I and conversely. 

Equation 27 defines how the sharpness should be computed and defined as: 
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where σ  is the parameter at which the attenuation coefficient 11.0 2 / 3e−= − ≈ . A smaller 
value of σ implies that fewer frequencies are attenuated and vice versa. For this research  
σ =0.15.  

3.2.3.2 Image qality asessment 

The overall quality of images can be measured by using the brightness ,μ contrast σ  and 
sharpness S, where brightness and contrast are assumed to be the mean and the standard 
deviation. However, instead of using global statistics, it is used regional statistics. In order 
to do this [Z. Rahman, 2009]: 

1. Divide the 1 2M xM image I into 1 2( / 10) ( / 10)M x M non-overlapping blocks, ,iI
i=1,…,100, such that 1 ,N

i iI I=≈ ∪ (Total Number of Regions are 100). 
2. For each block compute the measures, ,μ σ and S, 
3. Classify the block as either GOOD or POOR based on the computed measure (will be 

discussed with the following). 
4. Classify the image as a whole as GOOD or POOR based upon the classification of 

regions (will be discussed with the following). 

The following criteria are used for brightness, contrast and sharpness [Z. Rahman, 2009]: 

1.  Let nμ be normalized brightness parameter, such that:  
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A region is considered to have sufficient brightness when 0.4 0.6.nμ≤ ≤  
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2. Let nσ be normalized contrast parameter, such that: 
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           (30) 

A region is considered to have sufficient contrast when 0.25 0.5.nσ≤ ≤ When 0.25,nσ <  
the region has poor contrast, and when 0.5,nσ >  the region has too much contrast.  

3. Let nS be normalized sharpness parameter, such that nS =min(2.0,S/100).  When nS >0.8, 
the region has sufficient sharpness. Image Quality is evaluated using by:  

   0.5 0.1n n nQ Sμ σ= + +    (31) 

where 0 1.0Q< < is the quality factor. A region is classified as good when 0.55,Q >  
and poor when 0.5.nσ ≤  An image is classified as GOOD when the total number of 
regions classified as GOOD, 0.6 .GN N>  

3.3 Experimental result 

The image samples for ETNUD were selected to be as diverse as possible so that the result 
would be as general as possible. MATLAB was used for AINDANE and IRME algorithms 
and their codes were developed by the author and research team. MSRCR enhancement was 
done with commercial software, Photo Flair. From visual experience, the following 
statements are made about the proposed algorithm: 

1. In the Luminance enhancement part it has been shown that ETNUD works well for 
darker images and the technique adjusts itself to the image (Figure 2). 

2. In the contrast enhancement part it is clear that unseen or barely seen features of low 
contrast images are made visible. 

3. In Figure 2 Gamma Correction with γ  = 1.4 does not provide good visual 
enhancement. IRME and MSRCR bring out the details in the dark but have some 
enhancement of noise in the dark regions, which can be considered objectionable. 
AINDANE does not bring out the finer details of the image. The ETNUD algorithm 
gives good result and outperforms the other algorithms if the results are compared (in 
Table 1) due to the Evaluation Criteria. The ETNUD provides better visibility 
enhancement the best sharpness can be adjusted by the α  parameter in Equation 19. 

 

Figure 2 Original 
Image Gamma Irme Aindane Msr Etnud 

Number of  
Good Regions 32 52 95 90 90 99 

Number of 
 Poor Regions 68 48 5 10 10 1 

Table 1. The Results of Evaluation Criteria for Figure 2. 
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3.4 Conclusion 

The ETNUD image enhancement algorithms provide high color accuracy and better balance 
between the luminance and contrast in images. 

4. Entropy-based image fusion with Continuous Genetic Algorithm 
4.1 Introduction 

Image fusion is defined as the process of combining information from two or more images 
of a scene to enhance the viewing or understanding of that scene. The images that are to be 
fused can come from different sensors, or have been acquired at different times, or from 
different locations. Hence, the first step in any image fusion process is the accurate 
registration of the image data.  This is relatively straightforward if parameters such as the 
instantaneous field-of-view (IFOV), and locations and orientations from which the images 
are acquired are known, especially when the sensor modalities produce images that use the 
same coordinate space. This is more of a challenge when sensor modalities differ 
significantly and registration can only be accomplished at the information level.  Hence, the 
goal of the fusion process is to preserve all relevant information in the component images 
and place it in the fused image (FI).  This requires that the process minimize the noise and 
other artifacts in the FI. Because of this, the fusion process can be also regarded as an 
optimization problem [K. Kannan and S. Perumal, 2002]. In recent years, image fusion has 
been applied to a number of diverse areas such as remote sensing [T. A.Wilson, and S. K. 
Rogers,1997], medical imaging [C. S. Pattichis and M. S. Pattichis, 2001], and military 
applications [B. V. Dasarathy, 2002]. 

 
Fig. 2. Comparisons of Enhancement Techniques: (top-left) Original; (top-right) IRME; 
(middle-left) Gamma correction, g = 1.4; (middle-right) MSR; (bottom-left) 
AINDANE;(bottom-right) ETNUD. 

Image fusion can be divided into three processing levels: pixel, feature and decision. These 
methods increase in abstraction from pixel to feature to decision levels. In the pixel-level 
approach, simple arithmetic rules like average of individual pixel intensities or more 
sophisticated combination schemes are used to construct the fused image.  At the feature-
level, the image is classified into regions with known labels, and these labeled regions from 
different sensor modalities are used to combine the data.  At the decision level, a 
combination of rules can be used to include part of the data or not. 
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2. Let nσ be normalized contrast parameter, such that: 
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3.4 Conclusion 

The ETNUD image enhancement algorithms provide high color accuracy and better balance 
between the luminance and contrast in images. 
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Image fusion can be divided into three processing levels: pixel, feature and decision. These 
methods increase in abstraction from pixel to feature to decision levels. In the pixel-level 
approach, simple arithmetic rules like average of individual pixel intensities or more 
sophisticated combination schemes are used to construct the fused image.  At the feature-
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different sensor modalities are used to combine the data.  At the decision level, a 
combination of rules can be used to include part of the data or not. 
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Genetic algorithms (GA) are an optimization technique that seeks the optimum solution of a 
function based on the Darwinian principles of biological evolution. Even though there are 
several methods of performing and evaluating image fusion, there are still many open 
questions. In this section, a new measure of image fusion quality is provided and compared 
with many existing ones. The focus is on pixel-level image fusion (PLIF) and a new image 
fusion technique that uses GA is proposed. 

The GA is used to optimize the parameters of the fusion process to produce an FI that 
contains more information than either of the individual images. The main purpose of this 
section is in finding the optimum weights that are used to fuse images with the help of 
CGA. The techniques for GA and image fusion are given in Section 4.2. Section 4.3 
describes the evaluation criteria. Section 4.4 describes the experimental results, and 
compares our results with other image fusion techniques. In Section 4.5, conclusion is 
provided. 

4.2 The techniques of GA and image fusion 

4.2.1 Genetic Algorithm 

As stated earlier, GA is a non-linear optimization technique that seeks the optimum solution 
of a function via a non-exhaustive search among randomly generated solutions. GAs use 
multiple search points instead of searching one point at a time and attempt to find global, 
near-optimal solutions without getting stuck at local optima. Because of these significant 
advantages, GAs reduce the search time and space. However, there are disadvantages of 
using GAs as well: they are not generally suitable for real-time applications since the time to 
converge to an optimal solution cannot be predicted.  The convergence time depends on the 
population size, and the GA crossover and mutation operators. In this fusion process, a 
continuous genetic algorithm has been selected.  

4.2.2 Continuous Genetic Algorithm (CGA) 

GAs typically operates on binary data.  For many applications, it is more convenient to work 
in the analog, or continuous, data space rather than in the binary space of most GAs.  Hence, 
CGA is used because they have the advantage of requiring less storage and are faster than 
binary. CGA inputs are represented by floating-point numbers over whatever range is 
deemed appropriate. Figure 6 shows the flowchart of a simple CGA [Randy L. Haupt & Sue 
Ellen Haupt, 2004]. The various elements in the flowchart are described below: 

i. Definition of the cost function and the variables: The variable values are represented as 
floating point numbers 1( ).p  In each chromosome, the basic GA processing vector, there 
are number of value depending on the parameters 1 var( ,..., ).Np p  Each chromosome has a 
cost determined by evaluating the cost function [Randy L. Haupt & Sue Ellen Haupt, 
2004]. 

ii. Initial Population:  To begin the CGA process, an initial population must be defined. A 
matrix represents the population, with each row being a var1 N×  chromosome of 
continuous values. The chromosomes are passed to the cost function for evaluation 
[Randy L. Haupt & Sue Ellen Haupt, 2004]. 
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iii. Natural Selection:  The chromosomes are ranked from the lowest to highest cost. Of the 
total of chromosomes in a given generation, only the top KeepN are kept for mating and 
the rest are discarded to make room for the new offspring . 

iv. Mating:  Many different approaches have been tried for crossover in continuous GAs. In 
crossover, all the genes to the right of the crossover point are swapped. Variables are 
randomly selected in the first pair of parents to be the crossover point: ( )var(0,1)U Nα =
, where U(0,1) is the uniform distribution.  The parents are given by [Randy L. Haupt & 
Sue Ellen Haupt, 2004]: 
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where subscripts m and d represent the mom and dad parent. Then the selected 
variables are combined to form new variables that will appear in the children.  

 
1

2

[ ]

[ ]

m m d

d m d

pnew p P P

pnew p P P

α α α

α α α

β

β

= − −

= + −
        (33) 

where β is a random value between 0 and 1. The final step is to complete the crossover 
with the rest of chromosome: 
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v. Mutation: If care is not taken, the GA can converge too quickly into one region of the 
cost surface. If this area is in the region of the global minimum, there is no problem.  
However, some functions have many local minima. To avoid overly fast convergence, 
other areas of the cost surface must be explored by randomly introducing changes, or 
mutations, in some of the variables. Multiplying the mutation rate by the total number 
of variables that can be mutated in the population gives the amount of mutation. 
Random numbers are used to select the row and columns of the variables that are to be 
mutated. 

vi. Next Generation: After all these steps, the starting population for the next generation is 
ranked. The bottom ranked chromosomes are discarded and replaced by offspring from 
the top ranked parents. Some random variables are selected for mutation from the 
bottom ranked chromosomes. The chromosomes are then ranked from lowest cost to 
highest cost. The process is iterated until a global solution is achieved [Randy L. Haupt 
& Sue Ellen Haupt, 2004].  

4.2.3 Image fusion 

A set of input images of a scene, captured at a different time or captured by different kinds 
of sensors at the same time, reveals different information about the scene. The process of 
extracting and combining data from a set of input images to form a new composite image 
with extended information content is called image fusion.  
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ii. Initial Population:  To begin the CGA process, an initial population must be defined. A 
matrix represents the population, with each row being a var1 N×  chromosome of 
continuous values. The chromosomes are passed to the cost function for evaluation 
[Randy L. Haupt & Sue Ellen Haupt, 2004]. 
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iii. Natural Selection:  The chromosomes are ranked from the lowest to highest cost. Of the 
total of chromosomes in a given generation, only the top KeepN are kept for mating and 
the rest are discarded to make room for the new offspring . 

iv. Mating:  Many different approaches have been tried for crossover in continuous GAs. In 
crossover, all the genes to the right of the crossover point are swapped. Variables are 
randomly selected in the first pair of parents to be the crossover point: ( )var(0,1)U Nα =
, where U(0,1) is the uniform distribution.  The parents are given by [Randy L. Haupt & 
Sue Ellen Haupt, 2004]: 
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where subscripts m and d represent the mom and dad parent. Then the selected 
variables are combined to form new variables that will appear in the children.  
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where β is a random value between 0 and 1. The final step is to complete the crossover 
with the rest of chromosome: 
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v. Mutation: If care is not taken, the GA can converge too quickly into one region of the 
cost surface. If this area is in the region of the global minimum, there is no problem.  
However, some functions have many local minima. To avoid overly fast convergence, 
other areas of the cost surface must be explored by randomly introducing changes, or 
mutations, in some of the variables. Multiplying the mutation rate by the total number 
of variables that can be mutated in the population gives the amount of mutation. 
Random numbers are used to select the row and columns of the variables that are to be 
mutated. 

vi. Next Generation: After all these steps, the starting population for the next generation is 
ranked. The bottom ranked chromosomes are discarded and replaced by offspring from 
the top ranked parents. Some random variables are selected for mutation from the 
bottom ranked chromosomes. The chromosomes are then ranked from lowest cost to 
highest cost. The process is iterated until a global solution is achieved [Randy L. Haupt 
& Sue Ellen Haupt, 2004].  

4.2.3 Image fusion 

A set of input images of a scene, captured at a different time or captured by different kinds 
of sensors at the same time, reveals different information about the scene. The process of 
extracting and combining data from a set of input images to form a new composite image 
with extended information content is called image fusion.  
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4.3 Evaluation criteria 

In this section, the following criteria were defined to evaluate the performance of the image 
fusion algorithm. 

4.3.1 Image quality assessment 

This evaluation criterion was discussed in Section 3.2.3. 

4.3.2 Entropy 

Entropy is often defined as the amount of information contained in an image. 
Mathematically, entropy is usually given as: 
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where L is the total number of grey levels, and { }0 1,....., Lp p p −= is  the  probability  of  
occurrence of each level. An increase in entropy after fusion can be interpreted as an overall 
increase in the information content.  Hence, one can assess the quality of fusion by assessing 
entropy of the original data, and the entropy of the fused data. 

4.3.3 Mutual information indices 

Mutual Information Indices are used to evaluate the correlative performances of the fused 
image and the source images. Let A and B be random variables with marginal probability 
distributions ( )Ap a and ( )Bp b and the joint probability distribution ( , )ABp a b .  The mutual 
information is then defined as: 

  ( , )log[ ( , ) /( ( ) ( ))]AB AB AB A BI p a b p a b p a p b=     (36) 

A higher value of Mutual Information (MI) indicates that the fused image, F, contains fairly 
good quantity of information present in both the source images, A and B. The MI can be 
defined as .AF BFMI I I= +  
A high value of MI does not imply that the information from the both images is 
symmetrically fused. Therefore, information symmetry (IS) is introduced. IS is the indication 
of how symmetrically distributed is the information in the fused image, with respect to 
input images. The higher the value of IS, the better the fusion result.  IS is given by : 

 2 [ /( ) 0.5]AF AF BFIS abs I I I= − + −      (37) 

4.4 Experimental results 

The goal of this experiment is to fuse visual and IR images. To minimize registration issues, 
it is important that the visual and the thermal images are captured at the same time. 
Pinnacle software was used to capture the visual and the thermal images simultaneously. 
Although radiometric calibration is important, the thermal camera can not always be 
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calibrated in field conditions because of constraints on time.  Figure 3 shows an example 
where the IR and visual image were captured at the same time.  It is obvious from the figure 
that the images need to be registered before they can be fused since the field-of-view and the 
pixel resolution are obviously different. 

The performance of the proposed algorithm was tested and compared with different PLIF 
methods. The IR and visual images were not previously registered as shown in Figure 3. The 
registered image, base image (IR Image) and fused image with CGA are shown in Figure 4. 
The cost function is very simple and defined as: 

 ( )a bEntropy F w V w IR= +   (38) 

where V and IR are the visual and IR images, wa and wb are the respective associated 
weights, and F is the fused image. The initial population size is 100×3. The first and second 
columns in population matrix represent waV, and wbIR and the last column represents the 
cost function which is the entropy of F. Then initial population has been ranked based on 
the cost. In each iteration of the GA, 20 of the 100 rows are kept for mating and the rest are 
discarded. The crossover has been applied based on the Equation 35. The mutation rate was 
set to 0.20, hence the total number of mutated variables is 40. The value of a mutated 
variable is replaced by a new random value in the same range. 

 
Fig. 3. Visual and IR Images: Left: Visual Image, Right: IR Image. 

 
Fig. 4. The Result of Fusion: Left: Registered Images, Middle: IR Image Right: Fused Image 
with GA.  

The CGA results after 50 iterations of the GA such that the CGA maximize the cost and find 
optimum weights of images.  In the 2nd, 8th, and 25th iterations, the cost increased but was 
not associated with the global solution. The optimum solution was determined in 45th 
iteration and remained unchanged because it is optimum solution. Figure 4 shows the 
fusion results of point-rules based PLIF. After registering IR and visual data, we determined 
that wa = 0.9931 and wb = 0.0940 provide the optimum values for maximizing the entropy 
cost function for the F specified in Equation 38. The evaluation of these weights results is 
shown in Table 2. Table 2 shows that CGA based fusion method gives better results 

Registered Image IR Image Fused Image
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(optimum weights for maximizing the entropy of F) for entropy and IS from which it can 
concluded that CGA performs better than other PLIFs.  

 
Fig. 5. Fusion Results: (top-left) highest value from IR or Visual Images; (top-right) lowest 
value form IR or Visual Images; (bottom-left) average of IR and Visual Images; (bottom-
right) threshold value. 

4.5 Conclusion 

In this section, CGA based image fusion algorithm was introduced and compared with 
other classical PLIFs. The results show that CGA based image fusion gives better result than 
other PLIFs.  

5. Experimental results 
5.1 Introduction 

With face recognition, a database usually exists that stores a group of human faces with 
known identities. In a testing image, once a face is detected, the face is cropped from the 
image or video as a probe to check with the database for possible matches. The matching 
algorithm produces a similarity measure for each of the comparing pairs.  

Variations among images from the same face due to changes in illumination are typically 
larger than variations rose from a change of face identity. In an effort to address the 
illumination and camera variations, a database was created, considering these variations to 
evaluate the proposed techniques.  

Besides the regular room lights, four additional spot lights are located in the front of the 
person that can be turned off and on in sequence to obtain face images under different 
illumination conditions. Note that it is important to capture visual and thermal images at 
the same time in order to see the variations in the facial images. Visual and thermal images 
are captured almost at the same time. Although radiometric calibration is important, the 
thermal camera can not be calibrated because of current IR camera characteristics.The 
Pinnacle (Pinnacle Systems Ltd.) software has been implemented to capture 16 visual and 
thermal images at the same time. Figure 6 (a) and (e) shows an example of visual and 
thermal images taken at the same time. 
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 Highest 
(Fig 5) 

Lowest 
(Fig 5) 

Average 
(Fig 5) 

Threshold 
(Fig 5) 

GA_based 
(Fig 4) 

Entropy 6.91 3.14 6.56 6.93 7.28 

Image 
Quality 100 70 100 100 100 

IS 1.90 1.63 1.96 1.91 1.96 

Table 2. Performance Comparision of Image Fusion Methods for Figure 4 and Figure 5. 

In this chapter, the focus is on visual image enhancement. Then the visual images will be 
registered with the IR images based landmark registration algorithm. Finally, the registered 
IR and visual images  are fused for face recognition.  

5.2 Enhancement of visual images 

The ETNUD algorithm was applied to 16 visual images as shown in Figure 6 under different 
illumination conditions. In all figures besides the regular room lights, the four extra spot 
lights located in the front of the person were turned off and on for creating different 
illumination conditions. To enhance those visual images, the luminance is first balanced, 
then image contrast is enhanced and finally, the enhanced image is obtained by a linear 
color restoration based on chromatic information contained in the original image. The 
results in the luminance enhancement part showed that the algorithms work well for dark 
images. All the details, which cannot be seen in the original image, become evident. The 
experiment results have shown that for all color images, the proposed algorithms work 
sufficiently well.  

5.3 IR and visual images registration 

First, the IR and visual images taken from different sensors, viewpoints, times and 
resolution were resized for the same size. The correspondence between the features 
detected in the IR image and those detected in the visual image were then established. 
Control points were picked manually from those corners detected by the Harris corner 
detection algorithm from both images, where the corners were in the same positions in the 
two images.  

In the second step, a spatial transformation was computed to map the selected corners in 
one image to those in another image.  Once the transformation was established, the image to 
be registered was resampled and interpolated to match the reference image. For RGB and 
intensity images, the bilinear or bicubic interpolation method is recommended since they 
lead to better results. In the experiments, the bicubic interpolation method was used.  

5.4 Discussion  

Experimental results have been applied on the database, which is created by the research 
team. This algorithm is categorized into four steps, which are described respectively. In the 
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first step, there is enhancement of visual images, as described in Section 3. The fused image 
should be more suitable for human visual perception and computer-processing tasks. The 
experience of image processing has prompted the research to consider fundamental aspects 
for good visual presentation of images, requiring nonlinear image enhancement techniques 
of visual recorded images to get a better image, which has more information from the 
original images.  In the second step, the corners of visual and IR images were determined 
with the help of Harris Detection algorithm for registration purpose to use as control points. 
In the third step, because the source images are obtained from different sensors, they 
present different resolution, size and spectral characteristic, the source images have to be 
correctly registered. In the last step, an image fusion process is performed, which was 
described in Section 4.  

The registered images were overlapped at an appropriate transparency. The pixel value in 
the fused image was a weighted submission of the corresponding pixels in the IR and 
visual images. In the next section, results from advanced image fusion approaches are 
presented.  

5.5 Fusion of visual and IR images  

The Image fusion algorithm was applied with the help of Genetic Algorithm to the database. 
One of the issues is the determination of the quality of image fusion results. As part of the 
general theme of fusion evaluation there is a growing interest to develop methods that 
address the scored performance of image fusion algorithms as described in Section 4. Given 
the diversity of applications and various methods of evaluation metrics, there are still open 
questions concerning when to perform image fusion. There is an interest in exploring mean, 
standard deviation, entropy, mutual information, peak signal to noise ratio and image 
quality as described in Section 4. Because source images have different spectrum, they show 
quite distinct characters and have complementary information. It can be seen in Figure 6 (a 
and c) that the visual image does not have enough information to see the faces and is very 
dark. Figure 6 (b) shows that the luminance enhancement part works well for dark images 
and the technique adjusts itself to the image. In the contrast enhancement part it is clear that 
unseen or barely seen features of low contrast images were made visible. Enhancement 
algorithms were developed to improve the images before the fusion process. After 
enhancement it was found that the corners of the enhanced image and the IR image then 
registered the enhanced image as shown in Figure 6 (d). Then, the enhanced image was 
fused with the IR image in Figure 6 (f).  

Figures 6 show the result of CGA after 100 iterations. The optimum solution was 
determined with a population size of 100x3 after 76 iterations. It was determined that  
wa = 0.99 and wb = 0.47 are the optimum values for maximizing the entropy cost function 
which is 7.58 for the F specified in Equation 38. The evaluation of these weights results is 
shown in Table 3. By inspection, the faces and the details in the fused image are clearer as 
compared to either the original IR image or the visual image.  

Table 3 shows the detailed comparison results of the fused images. A is the fused image by 
averaging the visual and IR images. B is the fused image by the proposed approach. The 
total images used in this experiment were from the created database. The results show that 
this approach is better than the averaging fusion result.  
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 MEAN ENTROPY PSNR IQ 
Database
Images 

A B A B A B A B 

1(Fig.19) 101.61 153.50 7.03 7.58 14.16 35.73 85 94 
2 111.78 144.92 7.26 7.68 13.64 35.73 90 95 
3 105.35 124.06 7.25 7.42 13.84 28.13 87 96 
4 118.91 140.72 7.33 7.53 13.21 28.33 97 96 
5 104.2 117.17 7.41 7.82 14.12 29.40 91 94 
6 106.82 117.41 7.46 7.78 14.10 29.15 97 94 
7 115.76 137.67 7.37 7.68 14.12 29.26 98 98 
8 116.18 137.02 7.56 7.83 14.50 29.64 97 96 
9 93.22 134.03 7.29 7.63 15.22 33.41 87 83 

10 114.05 143.26 7.23 7.60 14.64 36.17 99 98 
11 111.50 131.12 7.34 7.51 13.92 28.25 93 99 
12 117.51 142.50 7.37 7.66 13.60 30.10 96 95 
13 114.65 139.16 7.34 7.51 14.18 30.05 94 96 
14 116.47 141.82 7.29 7.54 15.08 30.94 99 99 
15 115.81 132.06 7.53 7.60 14.39 28.75 98 97 
16 118.57 137.00 7.34 7.68 14.93 28.90 99 99 

Table 3. The Statistics of Database. 

 
Fig. 6. Fusion Results for Image 1: (top-left-(a)) Original; (top-right-(b)) Enhanced; (middle-
left-(c)) Original; (middle-right-(d)) Enhanced; (bottom-left-(e)) IR;(bottom-right-(f)) Fused 
Images; Graph-Genetic Algorithm result after 100 iterations. 
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first step, there is enhancement of visual images, as described in Section 3. The fused image 
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left-(c)) Original; (middle-right-(d)) Enhanced; (bottom-left-(e)) IR;(bottom-right-(f)) Fused 
Images; Graph-Genetic Algorithm result after 100 iterations. 
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6. Conclusions  
In this chapter, a database for visual and thermal images was created and several techniques 
were developed to improve image quality as an effort to address the illumination challenge 
in face recognition.  

Firstly, one image enhancement algorithm was designed to improve the images' visual 
quality. Experimental results showed that the enhancement algorithm performed well and 
provided good results in terms of both luminance and contrast enhancement. In the 
luminance enhancement part, it has been shown that the proposed algorithm worked well 
for both dark and bright images. In the contrast enhancement part, it was proven that the 
proposed nonlinear transfer functions could make unseen or barely seen features in low 
contrast images clearly visible.  

Secondly, the IR and enhanced visual images taken from different sensors, viewpoints, 
times and resolution were registered. A correspondence between an IR and a visual image 
was established based on a set of image features detected by the Harris Corner detection 
algorithm in both images. A spatial transformation matrix was determined based on some 
manually chosen corners and the transformation matrix was utilized for the registration.  

Finally, a continuous genetic algorithm was developed for image fusion. The continuous GA 
has the advantage of less storage requirements than the binary GA and is inherently faster 
than the binary GA because the chromosomes do not have to be decoded prior to the 
evaluation of the cost function. 

Data fusion provides an integrated image from a pair of registered and enhanced visual and 
thermal IR images. The fused image is invariant to illumination directions and is robust 
under low lighting conditions. They have potentials to significantly boost the performances 
of face recognition systems. One of the major obstacles in face recognition using visual 
images is the illumination variation. This challenge can be mitigated by using infrared (IR) 
images. On the other hand, using IR images alone for face recognition is usually not feasible 
because they do not carry enough detailed information. As a remedy, a hybrid system is 
presented that may benefit from both visual and IR images and improve face recognition 
under various lighting conditions.  
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6. Conclusions  
In this chapter, a database for visual and thermal images was created and several techniques 
were developed to improve image quality as an effort to address the illumination challenge 
in face recognition.  

Firstly, one image enhancement algorithm was designed to improve the images' visual 
quality. Experimental results showed that the enhancement algorithm performed well and 
provided good results in terms of both luminance and contrast enhancement. In the 
luminance enhancement part, it has been shown that the proposed algorithm worked well 
for both dark and bright images. In the contrast enhancement part, it was proven that the 
proposed nonlinear transfer functions could make unseen or barely seen features in low 
contrast images clearly visible.  

Secondly, the IR and enhanced visual images taken from different sensors, viewpoints, 
times and resolution were registered. A correspondence between an IR and a visual image 
was established based on a set of image features detected by the Harris Corner detection 
algorithm in both images. A spatial transformation matrix was determined based on some 
manually chosen corners and the transformation matrix was utilized for the registration.  

Finally, a continuous genetic algorithm was developed for image fusion. The continuous GA 
has the advantage of less storage requirements than the binary GA and is inherently faster 
than the binary GA because the chromosomes do not have to be decoded prior to the 
evaluation of the cost function. 

Data fusion provides an integrated image from a pair of registered and enhanced visual and 
thermal IR images. The fused image is invariant to illumination directions and is robust 
under low lighting conditions. They have potentials to significantly boost the performances 
of face recognition systems. One of the major obstacles in face recognition using visual 
images is the illumination variation. This challenge can be mitigated by using infrared (IR) 
images. On the other hand, using IR images alone for face recognition is usually not feasible 
because they do not carry enough detailed information. As a remedy, a hybrid system is 
presented that may benefit from both visual and IR images and improve face recognition 
under various lighting conditions.  
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1. Introduction

In this work it is developed a methodological proposal to build linear models of Time Series
(TS) from setting out the problem of obtaining a good linear model, such as solving a problem
of nonlinear optimization with bounded variables. It is worth to mention that to build these
problems are taken some ideas of the traditional statistical approach.

As product of the methodology here presented, it will be developed two heuristic algorithms
for the treatment of TS, which allow building several models for the same problem, where the
accuracy of these can be increased by increasing the number of terms of the model, situation
that does not happen with the traditional statistical approach. Thus, with this algorithms it
can be obtained several proposals of solution for the same problem, of which it can be selected
the one that presents the best results in the forecasting. In addition, the algorithms proposed
in this work allow building different linear versions, but equivalent to the Autoregressive
(AR) and the classic Autoregressive with Moving Average (ARMS) models, with the added
advantage of the possibility of obtaining models for not stationary TS, and with non stationary
variance, in cases where the traditional methodology does not work.

Since optimization problems set out here may present multiple local minimums, it is needed
to use a special technique to solve them. With this end it was developed a version of the
Self Adaptive Genetic Algorithms (SAGA), encoded on real numbers that allows, without
intervention of the user, to find satisfactory solutions for different problems without making
changes in the parameters of the code.

On the other hand, among the principal points of this methodology it is the fact that in many
cases, these linear versions present a phenomenon that has been named ’forecasting delay’,
which allows to modify the linear model obtained to find a more accurate forecasting.

It is important to notice that the first AR version of the algorithms developed for the TS were
tested in the examples of the international competition:

"NN3 Artificial Networks & Computational Intelligence Forecasting Competition"

that from now on it will be called NN3, which was realized in 2006-2007
(http://www.neural-forecasting-competition.com/NN3/results.htm). This competition is
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1. Introduction

In this work it is developed a methodological proposal to build linear models of Time Series
(TS) from setting out the problem of obtaining a good linear model, such as solving a problem
of nonlinear optimization with bounded variables. It is worth to mention that to build these
problems are taken some ideas of the traditional statistical approach.

As product of the methodology here presented, it will be developed two heuristic algorithms
for the treatment of TS, which allow building several models for the same problem, where the
accuracy of these can be increased by increasing the number of terms of the model, situation
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can be obtained several proposals of solution for the same problem, of which it can be selected
the one that presents the best results in the forecasting. In addition, the algorithms proposed
in this work allow building different linear versions, but equivalent to the Autoregressive
(AR) and the classic Autoregressive with Moving Average (ARMS) models, with the added
advantage of the possibility of obtaining models for not stationary TS, and with non stationary
variance, in cases where the traditional methodology does not work.

Since optimization problems set out here may present multiple local minimums, it is needed
to use a special technique to solve them. With this end it was developed a version of the
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intervention of the user, to find satisfactory solutions for different problems without making
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On the other hand, among the principal points of this methodology it is the fact that in many
cases, these linear versions present a phenomenon that has been named ’forecasting delay’,
which allows to modify the linear model obtained to find a more accurate forecasting.

It is important to notice that the first AR version of the algorithms developed for the TS were
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that from now on it will be called NN3, which was realized in 2006-2007
(http://www.neural-forecasting-competition.com/NN3/results.htm). This competition is
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2 Will-be-set-by-IN-TECH

held annually to evaluate the accuracy of methods in the area of Computational Intelligence
in diverse problems of TS. In this edition the problem at hand was to forecast with the same
methodology 18 future values of a set of series where the majority are measurements of real
phenomena. The competition has two categories: the NN3-Complete has 111 problems and
the NN3-Reduced consists of 11 problems. In this competition using only models with four
terms it was obtained the third place in the category NN3-Complete from 29 competitors, and
the sixth in the category NN3-Reduced from 53 competitors. This work will be referenced in
various sections in relation to the examples of this competition. An analysis of the results of
NN3 can be found in (Crone & Hibon & Nikolopoulos, 2011)

2. Methodology

The forecasting process consists in calculating or predicting the value of some event that is
going to happen in the future. To realize adequately this process it is needed to analyze
the event data in question and build a model that allows the incorporation of the behavior
patterns that have occurred in the past under the assumption that they can happen again in
the future. It is important to note that there is not interest in explaining how the mechanism
that produces the events works, but to predict their behavior.

The TS models are used for studying the behavior of data that varies with time.
The data can be interpreted as measurements of some value (observable variable) of
a phenomenon, realized at time intervals equal and consecutive. There are several
methods to construct TS models and an overview of the most important can be found in
(Weigend & Gershenfeld, 1994). In (Palit & Popovic, 2005) it is shown an overview of
the methodologies most used in the area of computational intelligence. One of the most
used methods is based on considering the TS as a realization of a stochastic process. This
approach is the basis of statistical treatment of TS that can be found in (Box & Jenkins,
1976) and (Guerrero, 2003). Nowadays the construction of model for TS is an area of
great development as evidenced by the articles of the Journal of Time Series Analysis
(http://www.wiley.com/bw/journal.asp?ref=0143-9782&site=1) in addition to the papers
presented in international competitions on time series modelling such as NN3. Nevertheless
the existence of GA papers in which are used the TS (Alberto et all, 2010; Battaglia &
Protopapas, 2011; Chiogna & Gaetan & Masarotto, 2008; Hansen et all, 1999; Mateo & Sovilj &
Gadea, 2010; Szpiro, 1997; Yadavalli et all, 1999), it is important to note that it was not found
any reference to the use of SAGA for this purpose.

The data will be represented by {Zt} with the implicit assumption that t takes the values
1, 2, ..., N where the parameter N indicates up to what moment the information is had. When
it is had a model for the data set, then it can be estimated values for the TS, which are denoted
by {Ft}. In addition in order to consider a model as a good one, it is required that the values
of {Ft} be "similar" to those of {Zt}. The main purpose of this work is to build linear models
for the data set to have good estimates of the K unknown values of the phenomenon being
studied in the moments N + 1, N + 2, ..., N + K.

In the forecasting subject, when it is had a TS with these N + K data, the set of the first N is
called training set, and is used to construct the model of the series and realize the estimation
of its parameters. The set of the last K terms in the series is called training set, and is used for
the comparison of different models to choose the most suitable. Especially, it is been interested
in building automated Autoregressive models of order p (AR (p)). For the TS are expressions
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of the form:
Zt = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p + at (1)

Where Zt is the observable variable in question,δ and φi are the parameters to be determined
and the variable at represents a random variable of noise called residual. The expression (1)
means that to predict what will happen at the time t are required the p values previous to t,
these values are called delays or lags.

In the classic theory of linear models is set the restriction that at represents a white noise, but
in this work it was not included this boundary, which will allow to find AR expressions for
the residuals with which it will be possible to increase the accuracy of the models.

The interest in this type of models is originated in the fact that they represent the most
important information about the behavior of the series eliminating the noise that may appear.
It should also be added that, for these models, it is important that in the expression (1)
only appears a number of terms set in advance. This will allow finding models for a TS,
controlling the accuracy of the approximation of the same series according to the number of
terms utilized.

Problem 1: If {Zt} is the original TS and {Ft} is the forecasting obtained of the form

Ft = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p (2)

with t > p.

It is necessary to find the values for δ and φi that minimize the function:
√√√√ N

∑
i=p

(Zi − Fi)2 (3)

This function will be called Root of the Sum of Squares (RSS). It is necessary to add that for
rapidity in calculation it is preferable to use the square of this function obtaining the same
results.

In this initial setting out the construction of the model is presented as if a linear interpolation
problem was solved, and given that the values for δ and φi will not be arbitrary but will be
looked at certain intervals are necessary methods to solve the Problem 1 working in addition
with bounded variables.

The RSS function can have multiple local optima, and to solve this problem it was developed
an original version of SAGA algorithms, which allows to solve real nonlinear optimization
problems and with bounded variables. The selection of a self Adaptive version was carried
out by the fact that it is wanted to automate as much as possible the process of building these
models.

3. Self adaptive genetic algorithms

The SAGA algorithms were developed by Thomas Bäck (Bäck, 1992a, 1992b) and have the
characteristic that they alone look for the best parameters for their operation. In them, the
parameters that will be self Adaptive are encoded in the representation of the individual,
for which they are altered by the actions of the genetic operators. With this, the best
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for the data set to have good estimates of the K unknown values of the phenomenon being
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the comparison of different models to choose the most suitable. Especially, it is been interested
in building automated Autoregressive models of order p (AR (p)). For the TS are expressions
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of the form:
Zt = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p + at (1)

Where Zt is the observable variable in question,δ and φi are the parameters to be determined
and the variable at represents a random variable of noise called residual. The expression (1)
means that to predict what will happen at the time t are required the p values previous to t,
these values are called delays or lags.

In the classic theory of linear models is set the restriction that at represents a white noise, but
in this work it was not included this boundary, which will allow to find AR expressions for
the residuals with which it will be possible to increase the accuracy of the models.

The interest in this type of models is originated in the fact that they represent the most
important information about the behavior of the series eliminating the noise that may appear.
It should also be added that, for these models, it is important that in the expression (1)
only appears a number of terms set in advance. This will allow finding models for a TS,
controlling the accuracy of the approximation of the same series according to the number of
terms utilized.

Problem 1: If {Zt} is the original TS and {Ft} is the forecasting obtained of the form

Ft = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p (2)

with t > p.

It is necessary to find the values for δ and φi that minimize the function:
√√√√ N

∑
i=p

(Zi − Fi)2 (3)

This function will be called Root of the Sum of Squares (RSS). It is necessary to add that for
rapidity in calculation it is preferable to use the square of this function obtaining the same
results.

In this initial setting out the construction of the model is presented as if a linear interpolation
problem was solved, and given that the values for δ and φi will not be arbitrary but will be
looked at certain intervals are necessary methods to solve the Problem 1 working in addition
with bounded variables.

The RSS function can have multiple local optima, and to solve this problem it was developed
an original version of SAGA algorithms, which allows to solve real nonlinear optimization
problems and with bounded variables. The selection of a self Adaptive version was carried
out by the fact that it is wanted to automate as much as possible the process of building these
models.

3. Self adaptive genetic algorithms

The SAGA algorithms were developed by Thomas Bäck (Bäck, 1992a, 1992b) and have the
characteristic that they alone look for the best parameters for their operation. In them, the
parameters that will be self Adaptive are encoded in the representation of the individual,
for which they are altered by the actions of the genetic operators. With this, the best
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values of these parameters will produce better individuals, which have major probability of
surviving, and in consequence, will spread towards the whole population the best values of
the parameters. There are several versions of SAGA that differ especially in the parameters
that will be adjusted automatically (Eiben at all, 1999). In the case of this work four self
Adaptive parameters are used: individual probability of crossing pc, repetition of crossing rc,
individual probability of mutation pm and repetition of mutation rm as presented in (4). The
selection of these parameters and its values is based on the idea that genetic operations of
crossing and mutation can be multiple, but they cannot have very large values. A binary
version of this algorithm already had been used by one of the authors of this work in other
problems (Flores, 1999; Garduño, 2000; Garduño, 2001; Sanchez, 2004), and this, as well as
the presented one here (with the representation of real numbers) according to the literature
reviewed, are original of himself.

The individuals for these problems will be proposed as solutions to them, and in addition will
have four more components, where it will be represented the values of: individual probability of
crossing pc, repetition of crossing rc, individual probability of mutation pm and repetition of mutation
rm. To this section of the individual it is called section of the self Adaptive parameters, and
with this, our entire individual is represented by:

(δ, φ1, φ2, ..., φp, pc, rc, pm, rm) (4)

The above mentioned is necessary, so in this model, the probability of crossing and mutation
will be characteristic of each individual (not of the population as is traditional in the GA), and
in addition it is considered that the crossing and the mutation can be multiple, that is to say,
to operate several times in the same time. The multiple crossing and mutation are repetitions
of the crossing and mutation that are used in the GA, when are used individuals represented
by vectors of real components. The way of operating with these parameters is similar to that
presented in (Bäck, 1992a, 1992b).

The limits that were used in the code of this work for the self Adaptive parameters are:
individual probability of crossing pc that changes in the interval (0.5, 0.95), repetition of crossing rc
in (1.0, 4.0) what means that only can be crossed from one to three times, individual probability
of mutation pm that varies in (0.5, 0.85) and repetition of mutation rm in (1.0, 5.0) what means
that just it is possible to mutated from one to four times. The limits of these self Adaptive
parameters were chosen on the basis of the experience of other works (Flores, 1999; Garduño,
2000; Garduño, 2001; Sanchez, 2004) , where they proved to give good results.

Later there are detailed the procedures of crossing and mutation.

3.1 Crossing and mutation

Given two individual, the crossing is realized taking as probability of crossing the average of
the values of the individual crossings. Once it has been decided if the individuals cross, it is
taken the integer part of the average individual crossing, and that is the number of times they
cross. The crossing of two individuals consists of exchanging the coordinates of both vectors
from a certain coordinate chosen at random. The multiple crossing is the result of applying
this procedure several times to the same vectors.

For the mutation it is taken the individual probability of mutation of the individual, and
accordingly to this it is decided whether mutated or not. As soon as has been decided that
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an individual mutates, this is mutated as many times as the value of the integer part that has
in the repetition of mutation of himself. To apply the mutation to an individual a coordinate of
the vector is chosen at random, and it is changed its value for another (chosen also at random)
between the limits established for the above mentioned coordinate. The multiple mutation is
the application of this procedure to the same individual several times.

3.2 Use of the self adaptive genetic algorithms

Since SAGA are random, it is common to realize several runs on the same problem and choose
the best result from them. These algorithms are applied in three stages to solve our problems.
In the first two stages are defined which are the important variables to solve the problem, and
in the third stage, it is where the solution is calculated properly. It is important to note that
the individuals have two parts, but in this section only there is born in mind the first part of
the individual, which corresponds to the Autoregressive components. Here is the procedure
based on SAGA, which is performed to obtain a solution to the problem.

In the first stage are used SAGA to explore the space of solutions and later to define which
variables among δ, φ1, φ2, ..., φp, are the most important for the problem in question. For this
were done 10 repetitions of 1000 iterations each, and with the solutions of each repetition, a
vector is constructed by the sum of the absolute values of δ, φ1, φ2, ..., φp. (see Figure 1)

Fig. 1. Solution using all variables.

In this first stage, the aim is to realize an exploration of the space of solutions, and for that are
performed 10 iterations with all variables to consider. Then, with the 10 solutions obtained, a
vector is built by adding the 10 solutions with all its positive components, and it is assumed
that the largest values of these components are the most important.

In the second stage the SAGA are applied to find solutions by considering only the important
variables of the problem. For this is defined in advance how many variables are required
(this will be seen to detail below), and are chosen those which correspond to larger values
of the first stage. In this stage 5 repetitions are realized, where each one is finished until
the optimum is not modified in the last 200 iterations. Of these 5 repetitions the best result
obtained is chosen (see Figure 2).

In this second stage, only are considered the variables that had greatest values in the part of
the autoregressive components of the individual, and for them are kept the original intervals
of its values: For all the other variables in this part of the individual, it is stated that the upper
and lower limits are zero. In this stage 5 repetitions are realized and from them is chosen the
one that has lower value of RSS.

In the third stage it will be found the solution in which only are taken into account the
important variables obtained in the previous stage. For this are extended the boundaries
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Fig. 2. Solution using the most important values.

of the variables of the solution obtained in the previous stage, which absolute value is grater
than 0.01. The upper limits of the variables considered are the nonzero values obtained in the
previous best solution of more than 1.0 and the lower with less than 1.0. The upper and lower
limits of the other variables of the autoregressive components of the individual will be zero.
With these limits is solved once until the optimum is not improved in 250 iterations. Since the
GA are random for each problem were performed 5 iterations, and of them it was chosen the
best.

The main characteristics of the SAGA version used in this work that make them original are:

• Real coding is used for the variables of the problem. This allows a more simple code that
can easily pass from one stage to another of those presented here.

• The probabilities of crossing and mutation are characteristics of each individual and
the crossing and mutation procedures are established on the basis of these individual
characteristics.

• The repetitions of crossing and mutation are multiple though the values that take are not
very big.

• It was introduced a control mechanism that prevents the proliferation within the
population of the best individual copies, thus eliminating the risk of premature
convergence.

Above all, the last three features are inspired by the fact that the nature behavior is more
flexible than rigid, and therefore should be allowed more variability within the SAGA.

The main disadvantage that has the use of SAGA, is the major computational cost compared
with traditional versions, but the advantage that is obtained is that with the same code it is
possible to solve automatically all the problems of nonlinear modelling of TS.

4. Autoregressive models

The TS linear models are important because there are many applications where linear
estimations are sufficient, besides they have a wide use in industrial situations. On the other
hand, are also important because there are other methodologies that use forecasting (Medeiros
& Veiga, 2000,2005). The classic reference for the treatment of linear models is (Box & Jenkins,
1976).

In the specific case of the AR that we care for TS, the value at a certain time should be
calculated as a linear expression of the values of a certain number of previous measurements,
as described in (Box & Jenkins, 1976). The AR models developed here fulfill the stochastic
process of the residuals {at} associated with them; it is not a white noise. The latter will allow

218 Bio-Inspired Computational Algorithms and Their Applications Self Adaptive Genetic Algorithms for Automated Linear Modelling of Time Series 7

that once it is built a good AR model of TS, it can be build for it another AR model for residuals
{at}, which together with the original one allow obtaining the equivalent of an ARMA model,
but with major forecasting possibilities.

On the other hand, to solve the problem 1 it is first necessary to address the following
questions, taking into account that is necessary to find an AR model with K terms, where
K is established beforehand:

1. How many p terms must be considered?
2. At what intervals are the coefficients of the linear expression?
3. What K terms are most appropriate to solve this problem?
4. What are the values of this K terms that minimize the function (3)?

The following summarizes the results of the BJ methodology that is used in our proposal.

4.1 Main results of the Box Jenkins methodology

Univarieted TS were analyzed by the Box-Jenkins (BJ) methodology from the formulation of
equations in differences with a random additive component denominated white noise. For
these BJ models the conditions in which is presented the stationarity property of the series
and the scheme that has to be follow to determine the parameters of the particular model
were studied.

The most general model is denominated ARMA(p,q) (Autoregressive Moving Average) and
indicates the presence of autoregressive components both in the observable variable {Zt} as
well as in the white noise {at}. A particular class of model for stationary series corresponds
to the Autoregressive models AR(p) (that are denoted as AR), which is represented by the
expression:

Zt = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p + at (5)

When the series is stationary δ and φi are constants that satisfy the following relations:

|φ1| < 1, (6)

μ =
δ

1 − ∑ φi

and
∑ φi < 1

Where μ represents the average of the series { Ft }. The relations in (6) are a consequence of the
stationarity property and can be consulted in (Box & Jenkins, 1976).

The correlation structure presented by a TS related to an AR model for separate observations
k time units is given by the autocorrelation function:

pk = φ1 pk−1 + φ2 pk−2 + ... + φp pk−p

where pk is the autocorrelation for data of series separated k time units. From the initial
conditions that satisfy this equation in differences are presented the following possible
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behaviors: exponential or sinusoidal decay. This permits to determine if a series is stationary
or not.

The most general model is the model ARIMA (p, d, q) (AutoRegressive Integrated Moving
Average processes) that includes not stationary series for which apply differences of order d
to stationarize it:

φp(B)∇dzt = δ + θq(B)at

Where φp(B), θq(B) and B are operators that satisfy the following relations:

φp(B)zt = (1 − φ1B − φ2B2 − ... − φpBp) = zt − φ1zt−1 − ... − φpzt−p

and
θq(B)at = (1 − θ1B − θ2B2 − ... − θqBq)at = at − θ1at−1 − ... − θqat−q

Bkzt = zt−k

∇dzt = (1 − B)dzt

Similarly, there is a general model that considers the presence of stationarity or cyclic
movement of short term of longitude s modeled by the expression:

φP(Bs)φp(B)∇dzt = δ + θQ(Bs)θq(B)at

Where φP(Bs) y θQ(Bs) are polynomial operators similar to the above mention, but its powers
are multiples of s, {at} are residuals in the moment t and θt are its components in the part of
moving averages.

BJ methodology satisfies the following stages:

(a). Identification of a possible model among the ARIMA type models. To accomplish this
first is necessary to determine if the series is stationary or not. When an observed series is
not stationary the difference operator is applied:

∇zt = zt − zt−1

as many times as it will be necessary up to stationarity. To avoid overdifferentiation it is
calculated the variances of the new obtained series choosing the one with the smallest
value.

When a series is stationary in its mean, but its variance is increasing or decreasing
according to BJ methodology it should be applied a transformation (generally logarithmic)
for the stability of the variance. It is important to notice that this is not necessary in our
proposal.

Given a stationary series the behavior pattern of the autocorrelation function and the
partial autocorrelation indicate the possible number of parameters i and j that the model
should have.

Besides the presence of stationarity in a temporal series there is other property that is
required in the ARIMA models denominated invertibility, which permits to represent the
series as an autoregressive model of infinite extension that satisfy the condition:
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lim
i→∞

φi = 0

The above mention allows that with a finite number of terms could be obtained an
expression that satisfies the form (1) for the series. This means that only the ARIMA models
that have the invertibility property can be approximated by an AR model of the form (1).

(b). Estimation of the model parameters by means of non linear estimation techniques.
(c). Checking that the model provides an adequate fitting and that the basic assumptions

implied in the model are satisfied through the analysis of the residuals behavior. Is
important to mention that our proposal does not need such analysis because the residuals
do not correspond, in general, to the white noise.

(d). Use of the model.

Next are presented the characteristics of the heuristic proposed algorithms. Note that these
algorithms are used to build models AR of TS since the ARMA models are built from these.

4.2 Proposed algorithms

The heuristic algorithms built in this work are based in the following assumptions:

(a). Regardless the original series type (stationary or non stationary) the model looked will
always be of the form AR presented in (1).

(b). To determine how many delays p are required, first is necessary to choose the differences
series that will be used to estimate these, afterwards it is defined the number of delays
according to the behavior of the autocorrelation sample function of the difference series
chosen. This implies a difference with the BJ methodology, which applies the number of
delays under the terms of the information that provides both the autocorrelation function
as well as the partial autocorrelation function and the hypothesis of the random component
as white noise. This choice has as consequence in the models developed here that at will
not be white noise.

(c). The conditions of (6) become more relax, since in spite of be satisfied it in the stationary
series, in this work these will be applied to series that could not be stationary.

It is necessary to add that the heuristic algorithms presented here allow the treatment of
series with trend and variance time-dependant, since they do not require the conditions that
traditionally are asked to the TS, as is the fact that they are stationary or of stationary variance
or that they result from applying a logarithmic transformation or moving averages.

The first algorithm that we propose builds a linear approximation for the series of differences
(of first, second or third order) that could be stationary. Then, from this linear approximation
and using the result 1, it is built another linear model of the original series.

4.2.1 First algorithm

In this stage, first it is decided which series will be used to work with among the original, the
first differences, the second differences and in our case it is included the possibility of working
with third differences series. In order to decide this it is chosen the series that have the lowest
variance, which we consider as an indication of having a stationary series (Box & Jenkins,
1976).
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lim
i→∞

φi = 0

The above mention allows that with a finite number of terms could be obtained an
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(a). Regardless the original series type (stationary or non stationary) the model looked will
always be of the form AR presented in (1).
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as well as the partial autocorrelation function and the hypothesis of the random component
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(c). The conditions of (6) become more relax, since in spite of be satisfied it in the stationary
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The first algorithm that we propose builds a linear approximation for the series of differences
(of first, second or third order) that could be stationary. Then, from this linear approximation
and using the result 1, it is built another linear model of the original series.

4.2.1 First algorithm

In this stage, first it is decided which series will be used to work with among the original, the
first differences, the second differences and in our case it is included the possibility of working
with third differences series. In order to decide this it is chosen the series that have the lowest
variance, which we consider as an indication of having a stationary series (Box & Jenkins,
1976).
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Once that was chosen the series to work with it will be estimated how many terms are
necessary for the linear approximation of the series with base in the autocorrelation function.
In this work were calculated 30 values for the autocorrelation function and for selecting how
many terms are required two cases were utilized. If the function is decreasing a value of 4 is
taken, on the contrary a value equal to the value in which the first maximum of this function is
observed it will be chosen (see Figure 3). With this procedure if the series presents stationarity
and the period is smaller than 30 the models that are built here can represent appropriately
such stationarity.

Fig. 3. Possible autocorrelation function graphs.

With this information are built the limits for the coefficients intervals of the chosen series, for
that are taken all the φi in [−1, 1] except the independent term δ which limits are calculated
between zero an the average value of the series. The reason why these limits are established is
obtained from the equations presented in (6) With all the previous information it is complete
the proposal of the p number of terms required and that are the limits of its coefficients. From
this information is solved the problem 1 applying the SAGA in the first two stages depicted
in section 3.2 with base on the following:

Result 1. If {yt} is a difference series for {xt} with a model

yt = h0 + h1yt−1 + h2yt−2 + ... ++hkyt−k

then, for the difference series with terms yt = xt − xt−1 must be

xt = h0 + (1 + h1)xt−1 + (h2 − h1)xt−2 + ... + (hk − hk−1)yt−k − hkyt−k−1 (7)

is a model for the series {xt}.

From this result two important consequences are obtained:

• The model for the series {xt} has one term more than the series {yt}
• If yt has a coefficient value between −1.0 and 1.0, the coefficient of xt may not be in this

range.

Applying the result 1 as many times as necessary, it can be obtained a model for the original
series, and to this model it is applied the stage three of section 3.2 to obtain a linear model for
the TS. Note that if it is had a model AR for some series of differences, the model built for the
original series has more terms than the series of differences, so if K terms are needed for the
original series, then must be found models for the series of differences of less terms that K.
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4.2.2 Second algorithm

The second algorithm only utilizes of the BJ methodology the estimation of how many
terms are necessary in the linear approximation of the series of differences, which could be
stationary, thus, from this is determined the numbers of terms that will be used in the original
series.

From now on, are applied the stages presented in section 3.2, taking the limits of all the
coefficients in [−1, 1], but always working with the original series. There is not a result that
justifies the use of these limits, and only it has been found a reference (Cortez at all, 2004)
where it is used. On the other hand is a fact that a high percentage of cases in the NN3
presented better results with this algorithm than with the first. As an example of this the
second algorithm outperformed the first in 46 of the 111 examples of NN3-Complete.

5. NN3 results

The international competition NN3 Artificial Neural Network & Computational Intelligence
Forecasting Competition 2007 aims at assessing the latest methodologies for the forecasting of
TS. This competition is open to use methods based on Neural Networks, Fuzzy Logic, Genetic
Algorithms and others in the area of artificial intelligence. The problems in question are
presented in two groups called NN3-Complete (with 111 examples of TS) and NN3-Reduced
(with 11 examples), and the purpose of the competition is to obtain the best models for each
example of the two sets using the same methodology. The notation of this section is similar to
that used in NN3.

To evaluate the performance of a model in some example s, it is estimated the forecasting
F and it is measured the performance with the average of the indicator Symmteric Mean
Absolute Percent Error SMAPE in all the values of the series. The SMAPE measures the
absolute symmetric error in percentage between the real values of the original series Z and
the forecasting F for all observations t of the test set of size n for each series s with SMAPE
equal to:

1
n

n

∑
t=1

|zt − ft|
(zt + ft)/2

∗ 100 (8)

and finally it is averaged over all examples in the same set of data. Other measures of
forecasting accuracy of a model can be found in (Hyndman & Koehler, 2006).

This indicator can evaluate the performance of applying different methodologies on the same
set of data and the methodology that produces the lowest value is considered the best. In
the set NN3-Complete the best result was of 14.84% and applying the algorithms developed
in this work was of 16.31%. In the NN3-Reduced the results were 13.07% and 15.00%
respectively. However, it is possible to build linear models with the methodology presented
in this work to improve these results because:

• Although the competition was intended to determine the best model for each example in
this work was found an AR model with 4 terms for each example. It is expected that if it
is divided the series in a training set and in other set of test it can be found models with
higher forecasting capacity that improve the results obtained.

• It were not used ARMA models that include the behavior of the residuals or the
advancement of forecasting that substantially improve the results.
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To build the NN3 competition models were conducted several activities. First it was worked
the NN3-Reduced problems where, with the two algorithms developed, were realized 50 runs
of every algorithm in each example looking for linear models with 4 terms. Table 1 presents
the results of linear expressions and calculation of RSS.

After reviewing the behavior of the 50 solutions of these examples it was concluded that five
runs were enough to obtain satisfactory results. For this reason only five runs were realized
for the examples of the NN3-Complete using each algorithm and it was chosen the best of
these. The results of the NN3-Complete examples are not presented.

Problem Linear Model RSS
101 Ft = 1269.3358 + 0.3467Zt−1 + 0.6978Zt−12 − 0.2921Zt−13 1713.55
102 Ft = 1.9987 + 0.9218Zt−1 + 0.9574Zt−12 − 0.8792Zt−13 5440.262
103 Ft = 1.9989 + 0.9218Zt−1 + 0.8124Zt−12 − 0.3734Zt−13 80019.738
104 Ft = 9.113 + 0.7252Zt−1 + 0.8316Zt−12 − 0.5592Zt−13 7321.538
105 Ft = 1.998 + 0.9099Zt−1 + 0.3104Zt−11 − 0.2225Zt−13 1513.984
106 Ft = 2821.9541 + 0.2673Zt−2 − 0.1699Zt−7 + 0.3422Zt−12 4464.87
107 Ft = 0.9978 + 0.7937Zt−1 + 0.3152Zt−12 − 0.1125Zt−13 1387.011
108 Ft = 2000.5819 + 0.2885Zt−2 − 0.1456Zt−4 + 0.2379Zt−5 10417.433
109 Ft = 1.9988 + 0.9951Zt−1 2297.306
110 Ft = 1863.0699 + 0.2520Zt−1 − 0.1058Zt−5 + 0.2359Zt−11 18593.279
111 Ft = 474.1106 + 0.2420Zt−11 − 0.3319Zt−12 + 0.2688Zt−13 7248.281

Table 1. Linear models for the NN3-REDUCED.

5.1 NN3 graphs

In this section are showed some of the graphs of the series obtained with the best result of
some heuristic algorithms here presented. The values correspondent to the last 18 points on
the graph are the result of the forecasting obtained on having evaluated the expressions of the
linear models that appear in Table 1.

Fig. 4. Example 101.

6. ARMA models for time series

In this section the methodology already developed is applied to obtain AR components of the
error series obtained by subtracting from the original series the values that are assigned by
the AR model. With this is obtained a new model by adding these two components, thus it is
obtained the equivalent in our methodology of the traditional ARMA models.
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Fig. 5. Example 102.

Fig. 6. Example 103.

Fig. 7. Example 104.

Fig. 8. Example 105.

In the first part of this section is presented, as an example, the Fig. 10 of the error obtained
with our methodology for a certain series for a particular series that for its behavior it can
be concluded that is not a white noise. Note that when are realized tests of white noise to
the errors obtained with this methodology it was not observed that this was a white noise.
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Fig. 9. Example 106.

Therefore it can be built AR models for these error series, which will have the capability to
adequately model the error, which allows, when considering these two models, to obtain a
bigger forecasting capability.

6.1 Building of the ARMA models

The most general models used in this work are the Autoregressive Moving Averages ARMA
(p, q) that contain the presence of autoregressive components in the observable variable Zt
and in the error at, where:

at = Zt − (δ +
p

∑
i=1

φiZt−i)

and

Ft = δ +
p

∑
i=1

φiZt−i +
q

∑
j=1

γjat−j

Once the AR model is obtained for a series it can be built an ARMA model from the acquiring
other AR model for the series obtained when considering the at errors between the original
series and its AR model. When is added to the AR model an additional component that
considers the autoregressive terms corresponding to the error is obtained the complete ARMA
model. Figure. 10 shows an example of the error for the series.

Fig. 10. Example of a TS corresponding to the error.

The procedure to build the ARMA models is realized in two stages. First is built an AR model
for the original series, afterwards it is considered the error series at to which it is found other
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AR model. In both procedures the most important stage is to define how many terms are
required for each model.

From know on the ARMA notation for a series changes, for this it will be indicated to which
part of the expression of AR or MA corresponds, and the constants φi and γj will represent
the terms of the corresponding expression, in other words the terms Ft−i and at−j it will not
be written.

7. The forcasting delay phenomenon

Analyzing the graphs of the built models with this methodology for the examples of the
NN3-complete it was detected a phenomenon that visually appears as if the graph of the
model were almost the same that the original series, but with a displacement of one unit to
the right. This phenomenon was observed in the NN3-Complete in 20 examples: 51, 64, 66,
74, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 100, 105, 107 and 109.

Given that the first 50 examples of the competition corresponded to series of 50 values
(apparently built by experts) and the last 61 examples were series of 150 terms (seemingly
of real phenomenon) it was supposed that the 34% of the real examples of the NN3 present
this behavior. From this information we can assume that this phenomenon appears in a large
percentage of the models built with this metodology and, for this reason the model built with
this methodology will give better results when applying to these series. Following is showed
in Fig. 11 an example of this phenomenon corresponding to the AR model of the example 74
obtained with the methodology of this work.

Fig. 11. Example 74 of the NN3-Complete.

This phenomenon was called in this work as forecasting delay (FD), since is equivalent to
forecast in a certain moment what happen in the previous moment.

8. The procedure of advancement of forecasting

The FD phenomenon can be used by modifying the graph of the linear models obtained by
applying a displacement of one unit to the left of its graph. This procedure was defined as
advancement of forecasting (AF) and it is formalized next.
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Definition: Be a time series with model AR or ARMA

Ft = δ +
p

∑
i=1

φiZt−i +
q

∑
j=1

γjat−j

The advancement of the forecasting was denominated as the following operation:

Ft = Ft−1, f or, t > max (p, q) (9)

When is applied to an AR or ARMA this operation it is said that is a linear model AR or linear
ARMA with AF respectively. In figure 12 is shown the linear model of the example 74 with
AF.

Fig. 12. Example 74 of NN3-Complete to which it was applied the advancement of
forecasting.

A first result obtained is that if a series that presents FD it is applied the AF, then the value of
RSS for these models is smaller than the error of the original ARMA models. This is caused
because when is displaced the graph of a model one unit to the left, which is what means the
operation (9), almost it is superimposed to the graph of the original series. Extrapolating this
behavior to the region of forecasting it is expected that the same effect occurs and that the
values of the linear model with AF be a better approximation than those of the linear models.
Due to the above it is supposed that the linear models with AF will have a better forecasting
capacity. As an example, in Table 2 is showed the improvement of the linear models with AF
for 10 examples of NN3 that present DF.

The improvement (imp) in the models here presented ranges from 10.28% to 97.27% with
an average of 48.48%, and it is expected that as the percentage is greater the ability of the
forecasting model increases by a similar proportion. It should be noted that when it is had
an AR model with four terms it is very difficult to improve substantially the value of RSS by
incrementing the terms of the AR model or including terms of the part of the moving averages.
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Example AR RSS RSS AF imp %
51 0.9968 + 0.81291 + 0.659412 − 0.479913 3767.009 3379.4502 10.28
64 0.3894 + 0.91991 + 0.677812 − 0.599913 3899.114 3495.0649 10.36
66 0.9984 + 0.92021 + 0.585812 − 0.510313 3893.0544 2803.1406 27.99
74 0.9993 + 0.94481 + 0.522612 − 0.480013 4894.1655 3340.5911 31.74
86 −0.9991 + 0.62351 + 0.21612 + 0.190717 4114.1499 1917.1523 53.40
88 0.9979 + 0.70011 + 0.153111 + 0.143818 2449.5383 1265.7606 48.32
89 0.9995 + 0.89141 + 0.216912 − 0.107913 1247.8290 339.8757 97.27

105 1.9980 + 0.90991 + 0.310411 − 0.222513 1513.984 664.8109 56.08

Table 2. Comparison of RSS for linear and linear with AF models.

9. Comparisons with other methodologies

To evaluate the performance of a model on a TS data is divided into two sets called training
set and test set. The training set has the first values of the series (approximately 90% of the
total) and the test set the last 10%. The information of the training set model is used to choose
the model and evaluate the parameters. Once chosen the corresponding model is evaluated
its ability to forecast the test set, and when it is had different model proposals it is common
to choose the best result of the test set. For this assessment can be used several measures of
performance (Hyndman & Koehler, 2006). In this work preferably is used RSS.

To build the models with the methodology of this wok it is proceeded as follows:

(a). In this first stage is calculated the AR part of the model. For this, from K = 2 are built
the models AR with K terms and is tested the performance on the test set. As soon as the
first K value is obtained where the RSS of the model is less than the values obtained for the
K − 1 and K + 1 is considered that the AR part of the model has the already found K terms
and passes to the second stage.

(b). It is calculated the error series obtained from the original series and the ones calculated
by the model obtained in the previous stage. On this new series it is applied the same
procedure above mention and it is obtained the part corresponding to the component of
the MA moving average of the ARMA model. It may be the case that by including the MA
components of the model it will be had the worst approximations in the test set than those
obtained with the AR part. In this case the model would only have the AR component.

(c). It is checked if the model AR obtained in the stage 1 presents the FD phenomenon occurs,
and if so to realize the displacement of the graph one unit to the left according to (9) as
long as with this procedure the result is improved.

To test the performance of our models of (8) we used the series A, B, C, D, E and F appearing
in (Box & Jenkins, 1976), used and presented in chapter 3.

In (Hansen at all, 1999) are shown the results of building several linear models for these series.
The first is the classic BJ, and others apply when BJ model do not satisfy the postulate that the
error is a white noise. In (McDonald & Yexiao, 1994) it is indicated that the use of these latest
models improved from 8% to 13% the capability of prediction of the model when the error
is not white noise. Immediately it is presented the relationship of these models for the linear
models.

229Self Adaptive Genetic Algorithms for Automated Linear Modelling of Time Series



16 Will-be-set-by-IN-TECH

Definition: Be a time series with model AR or ARMA

Ft = δ +
p

∑
i=1

φiZt−i +
q

∑
j=1

γjat−j
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an average of 48.48%, and it is expected that as the percentage is greater the ability of the
forecasting model increases by a similar proportion. It should be noted that when it is had
an AR model with four terms it is very difficult to improve substantially the value of RSS by
incrementing the terms of the AR model or including terms of the part of the moving averages.
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• Standard ARIMA model. Here applies the traditional methodology of BJ where the main
components are the autoregressive models with moving averages that are linear in the time
series {Zt} and white noise {at} (Box & Jenkins, 1976).

• Ordinary least squares (OLS). These are used when the distribution of the error presents
the leptokurtosis problem and allows diminishing the error in the forecasting (Huber,
2004).

• Least Absolute Deviation (LAD). It is used to minimize the sum of the absolute values
rather the sum of squares. This is done to reduce the influence of the extreme errors (Huber,
2004).

• Generalized t-distribution (GT). Here is minimized the objective function in relation to the
parameters but assuming that the error has a t-distribution (McDonald & Newey, 1988).

• Exponential Generalized beta distribution of the second kind (EGB2). Here it is supposed
that the errors have a distribution of this kind (McDonald & Newey, 1988).

Additionally in (Hansen at all, 1999) are presented the results of two models of neural
networks, one heuristic (Heuristic NN), and another based on genetic algorithms (GANN),
which are included in the commercial software BioComp Systemt’s NeuroGenetic Optimizer
®.

To make comparisons with the models described above, it will be used the same size of
training set and test sets shown in (Hansen at all, 1999), where if the number of elements
of the series is greater than 100 the sizes of test sets are set to 10. In the event that they are less
than or equal to 100 the test sets will have size five. The size of the training sets is the original
size of the series minus the number of elements of the test set.

With the methodology of this work were obtained the models of the Table 3, where for each
example is presented the component AR and if necessary the MA. Note that when it is shown
"AF" in the last column of the table it was applied the displacement presented in (9).

Series AR MA AF
A 1.1035 + 0.56481 + 0.19196 + 0.12459 −0.22711 + 0.10462 + 0.05143 No

+0.054413
B 0.8302 + 1.12741 − 0.16852 + 0.06444 0.04602 − 0.05765 + 0.13816 Yes

−0.02586 +0.05877
C 0.84251 − 0.84882 No
D 0.7609 + 0.89971 + 0.051112 − 0.033516 Yes
E 1.9993 + 1.00511 − 0.25903 + 0.153810 Yes
F 1.9996 + 0.65552 + 0.29383 No

Table 3. Solution to the Box Jenkins problems.

In Table 4 are shown the results of the different methodologies presented in (Hansen at all,
1999) and those obtained with the algorithm proposed in this work. Table 4 is used as a
criterion of comparison of the sum of absolute values of errors. The results of our model are
presented in the line called "Linear AF" and the place obtained when confronted with other
models is in the line called "Place." It should be noted that each group of comparisons, except
in one instance", the results obtained with our methodology are better than those obtained
with the confronted statistical methods and also have good results when compared with those
obtained by neural networks.
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Table 5 presents the results of comparing the method proposed in this work with those
reported in (Cortez at all, 2004). In this paper are confronted the methodologies:

• Holt-Winters Methodology. This methodology is widely used due to its simplicity and
accuracy of its forecasting’s especially with periodic time series. It is based on four basic
equations that represent the regularity, trend, periodicity and forecasting of the series
(Chatfield, 2000).

• Box-Jenkins Methodology that already was widely commented in previous sections (Box
& Jenkins, 1976).

• Evolutionary forecasting method. It is a methodology based on evolutionary
programming (Cortez at all, 2004).

• Evolutionary meta algorithms. It is a metaheuristic that uses two architecture levels, in
the first is chosen the ARMA model in question, and in the second the corresponding
parameters are estimated (Cortez at all, 2004).

To test the performance of the models, were used some of the series in (Hyndman, 2003).
which are known as: Passengers, which is a series (144 data) that represents the number of
monthly passengers on an airline; Paper, this series (120 data) represents the paper monthly
sales in France; Deaths, which is a series (169 data) that represents the death and injury on
roads of Germany; Maxtemp represents the maximum temperatures (240 data) in Melbourne,
Australia; and Chemical, which is a series (198 data) of readings of the concentrations of a
chemical reactor. The training sets of these series contain 90% of the data and remaining 10%
are in the test set.

Series A Series B Series C Series D Series E Series F Series G
Linear AF 3.9 75 5.9 2.87 87 46 173

Heuristic NN 4.519 88.312 9.138 2.942 98.873 43.966
GA NN 3.705 72.398 6.684 2.952 69.536 36.4

ARIMA ML 4.005 78.855 11.247 3.114 3.114 49.161
OLS 3.937 83.17 10.74 3.08 114.8 45.5
LAD 3.96 79.47 10.3 3.066 117.6 44.46
GT 3.937 80.68 10.25 3.064 106.5 44.59

EBG2 4.017 81.01 10.3 3.066 111.8 44.5
PLACE 1 2 1 1 2 6

Table 4. Comparison of the models with regard to a sum of values of absolute errors.

Using the method proposed in this work it were obtained the models that are shown in table
5. Note that form this examples none presents DF.

In Table 6 were confronted the results for these TS. The results of our models are shown in
the column called "Linear AF" and the place gotten when comparing with the other models is
shown in the column "Place".

From the results presented in the tables of this section it can be concluded that the model
built with our methodology outperform all the models obtained with statistical methods
and are competitive with non-linear methods presented here. In addition, it must be added
that this methodology is fully automated and allows modelling TS than other traditional
methodologies can not.
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1999) and those obtained with the algorithm proposed in this work. Table 4 is used as a
criterion of comparison of the sum of absolute values of errors. The results of our model are
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models is in the line called "Place." It should be noted that each group of comparisons, except
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Table 5 presents the results of comparing the method proposed in this work with those
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• Holt-Winters Methodology. This methodology is widely used due to its simplicity and
accuracy of its forecasting’s especially with periodic time series. It is based on four basic
equations that represent the regularity, trend, periodicity and forecasting of the series
(Chatfield, 2000).

• Box-Jenkins Methodology that already was widely commented in previous sections (Box
& Jenkins, 1976).

• Evolutionary forecasting method. It is a methodology based on evolutionary
programming (Cortez at all, 2004).

• Evolutionary meta algorithms. It is a metaheuristic that uses two architecture levels, in
the first is chosen the ARMA model in question, and in the second the corresponding
parameters are estimated (Cortez at all, 2004).

To test the performance of the models, were used some of the series in (Hyndman, 2003).
which are known as: Passengers, which is a series (144 data) that represents the number of
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Table 4. Comparison of the models with regard to a sum of values of absolute errors.

Using the method proposed in this work it were obtained the models that are shown in table
5. Note that form this examples none presents DF.

In Table 6 were confronted the results for these TS. The results of our models are shown in
the column called "Linear AF" and the place gotten when comparing with the other models is
shown in the column "Place".

From the results presented in the tables of this section it can be concluded that the model
built with our methodology outperform all the models obtained with statistical methods
and are competitive with non-linear methods presented here. In addition, it must be added
that this methodology is fully automated and allows modelling TS than other traditional
methodologies can not.
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Series AR MA
Passengers 1.3400 + 0.90871 + 1.061212 − 0.963313

Paper 6.2323 + 0.958312
Deaths 1.9941 + 0.905312 + 0.083214 4.3636 + 0.4052

Maxtemp 0.7046 + 0.33621 − 0.06687 + 0.406011 18.662 + 0.10455 − 0.185711
+0.291012 −0.193012

Chemical 0.5419 + 0.60811 + 0.37537 − 0.014415

Table 5. Solutions with the methodology proposed in this work.

Series Holt Box Heuristic Meta Linear Place
Winter Jenkings Evolutionay Evolutionay AF

Passengers 16.5 17.8 21.9+ -1.2 17.2+ - 0.2 16.3 1
Paper 49.2 61 60.2+ - 2.2 52.5+ - 0.1 5.59 1

Deaths 135 144 135.9+ - 1.7 137+ - 2 140 3
Maxtemp 0.72 1.07 0.95+ - 0.02 0.93+ - 0.4 0.94 2
Chemical 0.35 0.36 0.36+ - 0.0 0.34+ -0.0 0.34 1

Table 6. Comparison with other methodologies.

10. Conclusions

From the above it can be obtained several conclusions. The first is that the methodology
developed here based on setting out the building of linear models as an optimization problem,
where the construction of the problem is guided by the classical TS theory, is correct because
allows to build better models than those obtained by the traditional methods.

Another conclusion is that the fact of choosing the SAGA as an alternative to solve the
problems set out here is very important since allows exploring the solution space of our
problem and finding the most significant variables to solve it. In addition, the SAGA
version developed has proved to be very robust in solving many different problems with
out adjustment of parameters.

As a result not contemplated it was found that the phenomenon of FD, which allowed us to
construct new linear models for TS, which in some cases are better alternatives compared to
other linear and nonlinear models. In addition, these new models have great potential for
application in areas such as industrial control, economics, finance, etc. In particular, we think
that the FD is a characteristic of the phenomenon in question, but that is only detected if the
model is built with an appropriate methodology, particularly in the selection and setting limits
of variables.

Finally, it should be noted that having a fully automated methodology with the ability to
model phenomena that other methodologies can not open a whole world of possibilities in
the development of computer systems for modelling and process control.
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model is built with an appropriate methodology, particularly in the selection and setting limits
of variables.

Finally, it should be noted that having a fully automated methodology with the ability to
model phenomena that other methodologies can not open a whole world of possibilities in
the development of computer systems for modelling and process control.

11. References

Alberto I. & Beamonte A. & Gargallo P. & Mateo P. & Salvador M.(2010). Variable selection
in STAR models with neighbourhood effects using genetic algorithms. Journal of
Forecasting, Vol 29, Issue 8, page numbers (728-750), ISSN 0277-6693.

232 Bio-Inspired Computational Algorithms and Their Applications Self Adaptive Genetic Algorithms for Automated Linear Modelling of Time Series 21

Bäck T. (1992).The interaction of mutation rate, selection, and self-adaptation within genetic
algorithm. Proc. 2nd Conf. on Parallel Problem Solving from Nature, (Brussels,1992),
ISBN 0444897305, Elsevier Amsterdam.

Bäck T. (1992). Self-adaptation in genetic algorithms. Proc. 1st Eur. Conf. on Artificial Life. MIT
Press. Cambridge, MA.

Battaglia F. & Protopapas M.(2011). Time-varying multi-regime models fitting by genetic
algorithms. Journal of Time Series Analysis, Vol 32, Issue 3. page numbers (237-252),
ISSN 1467-9892.

Box G. & Jenkins G. (1976). Time Series Analysis: Forecasting and Control.Holden-Day, INC. ISBN
0-13-060774-6, Oakland, California USA 1976.

Chatfield C. (2000). The Series Forecasting. CRC Press. ISBN 1584880635, USA.
Chiogna M. & Gaetan C. & Masarotto G.(2008). Automatic identification of seasonal transfer

function models by means of iterative stepwise and genetic algorithms. Journal of
Time Series Analysis, Vol 29, Issue 1, page numbers (37-50), ISSN 1467-9892.

Cortez P. & Rocha M. & Neves J. (1996). Evolving Time Series Forecasting ARMA Models.
Journal of Heuristics, Vol 10., No 4., page numbers (415-429), ISSN 1381-1231.

Eiben Á. E. & Hinterding R. & Michalewicz Z. (1999). Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation, Vol 3., No 2., page
numbers ( 124-141), ISSN 1089-778X.

Flores P. & Garduño R. & Morales L. & Valdez M. (1999). Prediction of Met-enkephalin
Conformation using a Sieve Self Adaptive Genetic Algorithm. Proceedings of the
Second International Symposium on Artificial Intelligence: Adaptive Systems ISSAS’99.,
page numbers ( 186-190)

Garduño R. & Morales L. & Flores P. (2000). Dinámica de Procesos Biológicos no Covalentes
a Nivel Molecular. Revista Mexicana de Física, Vol 46., Suplemento 2., page numbers (
135-141), ISSN 0035-001X.

Garduño R. & Morales L. B. & Flores P. (2001). About Singularities at the Global Minimum
of Empiric Force Fields for Peptides. Journal at Molecular Structure (Theochem), page
numbers ( 277-284), ISSN 0166-1280.

Guerrero V. (2003). Análisis Estadístico de Series de Tiempo Económicas,Thomson Editores, ISBN
9706863265, México DF.

Hansen J. & McDonald J. & Nelson R. (1999). Time Series Prediction with Genetic Algorithms
designed neural networks, an empirical comparison with modern statistical models.
Computational Intelligence, Vol 15., No 3., page numbers ( 171-184), ISSN 0824-7935.

Huber P. (2004). Robust Statistics. Wiley-IEEE. ISBN 978-0-521-88068-8, USA.
Hyndman R.& Koehler A. (2006). Another look at measures of forecast accuracy. International

Journal of Forecasting, Vol 22, Issue 4, page numbers ( 679-688), ISSN 0169-2070.
Hyndman R. (2003). Time Series Data Library.Available in http;//www.robjhyndman.com/TSDL
Mateo F. & Sovilj D. & Gadea R.(2010). Approximate k -NN delta test minimization method

using genetic algorithms; Application to time series. Neurocomputing, Vol 73, Issue
10-12. page numbers (2017-2029), ISSN 0925-2312.

McDonald J. & Newey W. (1988). Partially adaptive estimation of regression models via the
generalized t distribution.Econometric Theory, Vol 4., page numbers ( 428-457), ISSN
0266-4666.

McDonald J. & Yexiao X. (1994). Some forecasting applications of partially adaptive estimators
of ARIMA models. Economics Letters, Vol 45., Issue 4., page numbers ( 155-160), ISSN
0165-1765.

233Self Adaptive Genetic Algorithms for Automated Linear Modelling of Time Series



22 Will-be-set-by-IN-TECH

Medeiros C. & Veiga Á. (2000). A Hybrid Linear-Model for Time Series Forecasting. IEEE
Transactions on Neural Networks, Vol 11., No 6., page numbers (1402-1412), ISSN
1045-9227.

Medeiros C. & Veiga Á. (2005). A Flexible Coefficient Smooth Transition Time Series Model.
IEEE Transactions on Neural Networks, Vol 16., No 1., page numbers (97-113), ISSN
1045-9227.

Miller B. & Goldberg D. (1995). Genetic Algorithms, Tournament Selection, and the Effects of
Noise. Complex Systems, Vol 9., page numbers (193-212), ISSN 0891-2513.

Journal of Time Series Analysis. available in http;//www.blackwellpublishing.com/journal.asp?ref=
0143-9782

Palit A. & Popovic D. (2005). Computational Intelligence in Time Series Forecasting, theory and
engineering applications. Springe-Verlag. ISBN 1852339489, London.

Sánchez V. & Flores P. & Valera J. & Pérez M. (2004). Mass Balance Calculations in Copper
Flash Smelting by Means of Genetic Algorithms. Journal of Metals, Vol 56., No 12.,
page numbers ( 29-32), ISSN 1047-4838.

Szpiro G. (1997). Forecasting chaotic time series with genetic algorithms. Physical Review E, Vol
5., No 3., page numbers (2557-2568), ISSN 1539-3755.

Weigend A. & Gershenfeld N. (1994). Time Series Prediction, Forecasting the future and
Undestanding the Past. Addison-Wesley Publishing Company. ISBN 9780201626025,
USA.

Yadavalli V. & Dahule R. & Tambee S. & Kulkarni B. (1999). Obtaining functional form for
chaotic time series using genetic algorithm. CHAOS, Vol 9., No 3., page numbers
(789-794), ISSN 1054-1500.

234 Bio-Inspired Computational Algorithms and Their Applications

12 

Optimal Feature Generation with  
Genetic Algorithms and FLDR in a Restricted-

Vocabulary Speech Recognition System 
Julio César Martínez-Romo1, Francisco Javier Luna-Rosas2,  

Miguel Mora-González3, Carlos Alejandro de Luna-Ortega4  
and Valentín López-Rivas5 

1,2,5Instituto Tecnológico de Aguascalientes 
3Universidad de Guadalajara, Centro Universitario de los Lagos 

4Universidad Politécnica de Aguascalientes 
Mexico 

1. Introduction 
In every pattern recognition problem there exist the need for variable and feature selection 
and, in  many cases, feature generation.  In pattern recognition, the term variable is usually 
understood as the  raw measurements or raw values taken from  the subjects to be classified, 
while the term feature is used to refer to the result of the transformations applied to the 
variables in order to transform them into another domain or space, in which a bigger 
discriminant capability of the new calculated features is expected; a very popular cases of 
feature generation are the use of principal component analysis (PCA), in which the variables 
are projected into a lower dimensional space in which the new features  can be used to 
visualize the underlying class distributions in the original data [1], or the Fourier Transform, 
in which a  few of its coefficients can represent new features [2], [3]. Sometimes, the 
literature does not make any distinction between variables and features, using them 
indistinctly [4], [5].  

Although many variables and features can be obtained for classification, not all of them 
posse discriminant capabilities; moreover, some of them could cause confusion to a 
classifier. That is the reason why the designer of the classification system will require to 
refine his choice of variables and features. Several specific techniques for such a purpose are 
available [1], and some of them will be reviewed later on in this chapter.  

Optimal feature generation is the generation of the features under some optimality criterion, 
usually embodied by a cost function to search the solutions’ space of the problem at hand 
and providing the best option to the classification problem.  Examples of techniques like 
these are the genetic algorithms [6] and the  simulated annealing [1]. In particular, genetic 
algorithms are used in this work.  

Speech recognition has been a topic of high interest in the research arena of the pattern 
recognition community since the beginnings of the current computation age [7], [8]; it is due, 
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partly, to the fact that it is capable of  enabling many practical applications in artificial 
intelligence, such as natural language understanding [9], man-machine interfaces, help for 
the impaired, and others; on the other hand, it is an intriguing intellectual challenge in 
which new mathematical methods for feature generation and new and more sophisticated 
classifiers appear nearly every year [10], [11]. Practical problems that arise in the 
implementation of speech recognition algorithms include real-time requirements, to lower 
the computational complexity of the algorithms, and noise cancelation in general or specific 
environments [12]. Speech recognition can be user or not-user dependant.    

A specific case of speech recognition is word recognition, aimed at recognizing isolated 
words from a continuous speech signal; it find applications in system commanding as in 
wheelchairs, TV sets, industrial machinery, computers, cell phones, toys, and many others. 
A particularity of this specific speech processing niche is that usually the vocabulary is 
comprised of a relatively low amount of words; for instance, see [13] and [14].   

In this chapter we present an innovative method for the restricted-vocabulary speech 
recognition problem in which a genetic algorithm is used to optimally generate the design 
parameters of a set of bank filters by searching in the frequency domain for a specific set of 
sub-bands and using the Fisher’s linear discriminant ratio as the class separability criterion 
in the features space.  In this way we use genetic algorithms to create optimum feature 
spaces in which the patterns from N classes will be distributed in distant and compact 
clusters. In our context, each class {ω0, ω1, ω2,…, ωN-1} represents one word of the lexicon.  
Another important part of this work is that the algorithm is required to run in real time on 
dedicated hardware, not necessarily a personal computer or similar platform, so the 
algorithm developed should has low computational requirements. 

This chapter is organized as follows:  the section 2 will present the main ideas behind the 
concepts of variable and feature selection; section 3 presents an overview of the most 
representative speech recognition methods. The section 4 is devoted to explain some of the 
mathematical foundations of our method, including the Fourier Transform, the Fisher’s 
linear discriminant ratio and the Parseval’s theorem. Section 5 shows our algorithmic 
foundations, namely the genetic algorithms and the backpropagation neural networks, a 
powerful classifier   used here for performance comparison purposes. The implementation 
of our speech recognition approach is depicted in section 6 and, finally, the conclusions and 
the future work are drawn in section 7.  

2. Optimal variable and feature selection 
Feature selection refers to the problem of selecting features that are most predictive of a 
given outcome. Optimal feature generation, however, refers to the derivation of features 
from input variables that are optimal in terms of class separability in the feature space. 
Optimal feature generation is of particular relevance to pattern recognition problems 
because it is the basis for achieving high correct classification rates: the better the 
discriminant features  are represented, the better the classifier will categorize new  incoming 
patterns. Feature generation is responsible for the way the patterns lay in the features space, 
therefore, shaping the decision boundary of every pattern recognition problem; linear as 
well as non-linear classifiers can be beneficiaries of well-shaped feature spaces.  
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The recent apparition of new and robust classifiers such as support vector machines (SVM), 
optimum margin classifiers and relevance vector machines [4], and other robust kernel 
classifiers seems to demonstrate that the new developments are directed towards 
classifiers which, although powerful, must be preceded by reliable feature generation 
techniques.  In some cases, the classifiers use a filter that consists of a stage of feature 
selection, like in the Recursive Feature Elimination Support Vector Machine [15], which 
eliminates features in a recursive manner, similar to the backward/forward variable 
selection methods [1]. 

2.1 Methods for variable and feature selection and generation 

The methods for variable and feature selection are based on two approaches: the first is to 
consider the features as scalars -scalar feature selection-, and the other is to consider the 
features as vectors –feature vector selection-. In both approaches a class separability 
measurement criteria must be adopted; some criteria include the receiver operating curve  
(ROC), the Fisher Discriminant Ratio (FDR) or the one-dimensional divergence [1]. The goal 
is to select a subset of k from a total of K variables or features. In the sequel, the term 
features is used to represent variables and features. 

2.1.1 Scalar feature selection 

The first step is to choose a class separability measuring criterion, C(K). The value of the 
criterion C(K) is computed for each of the available features,  then the features are ranked in 
descending order of the values of C(K).  The k features corresponding to the k best C(K) 
values are selected to form the feature vector. This approach is simple but it does not take 
into consideration existing correlations between features.  

2.1.2 Vector feature selection  

The scalar feature selection may not be effective with features with high mutual correlation; 
another disadvantage is that if one wishes to verify all possible combinations of the features 
–in the spirit of optimality- then it is evident that the computational burden is a major 
limitating factor. In order to reduce the complexity some suboptimal procedures have been 
suggested [1]: 

Sequential Backward Selection. The following steps comprise this method:  

a. Select a class separability criterion, and compute its value for the feature vector of all the 
features.  

b. Eliminate one feature and for each possible combination of the remaining features 
recalculate the corresponding criterion value. Select the combination with the best 
value. 

c. From the selected K-1 feature vector eliminate one feature and for each of the resulting 
combinations compute the criterion value and select the one with the best value.  

d. Continue until the feature vector consists of only the k features, where k is  the 
predefined size. 

The number of computations can be calculated from: 1+1/2 ((K+1)K – k(k+1)). 
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Sequential Forward Selection. The reverse of the previous method is as follows:  

a. Compute the criterion value for each individual feature; select the feature with the 
“best” value, 

b. From all possible two-dimensional vectors that contains the winner from the previous 
step. Compute the criterion value for each of them and select the best one.  

2.1.3 Floating search methods 

The methods explained suffer from the nesting effect, which means that once a feature (or 
variable) has been discarded it can’t be reconsidered again. Or, on the other hand, once a 
feature (or variable) was chosen, it can’t be discarded.  To overcome these problems, a 
technique known as floating search method, was introduced by Pudin and others in 1994 [1], 
allowing the features to enter and leave the set of the k chosen features. There are two ways 
to implement this technique: one springs from the forward selection and the other from de 
backward selection rationale. A three steps procedure is used, namely inclusion, test, and  
exclusion. Details of the implementation can be found in [1], [16].   

2.1.4 Some trends in feature selection 

Recent work in feature selection are, for instance, the one of Somol et al., [17], where besides 
of optimally selecting a subset of features, the size of the subset is also optimally selected.  
Sun and others [18] faced the problem of feature selection in conditions of a huge number or 
irrelevant features, using machine learning and numerical analysis methods without making 
any assumptions  about the underlying data distributions. In other works, the a feature 
selection technique is accompanied by instance selection; instance selection refers to the 
“orthogonal version of the problem of feature selection” [19], involving the discovery of a 
subset of instances that will provide the classifier with a better predictive accuracy than 
using the entire set of instances in each class.  

2.2 Optimal feature generation 

As can be seen from section 2.1, the class separability measuring criterion in feature 
selection is used just to measure the effectiveness of the k features chosen out of a total of K 
features, with independence of how the features were generated.  The topic of optimal 
feature generation refers to involving the class separability criterion as an integral part of the 
feature generation process itself. The task can be expressed as: If x is an m-dimensional 
vector of measurement samples, transform it into another l-dimensional vector andso that 
some class separability criterion is optimized. Consider, to this end, the linear 
transformation y=ATx.  

By now, it will suffice to note the difference between feature selection and feature generation.  

3. Speech recognition 
For speech processing, the electrical signal obtained from an electromechanoacoustic 
transducer is digitized and quantized at a fixed rate (the sampling frequency, Fs), and 
subsequently segmented into small frames of a typical duration of  10 milliseconds. 
Regarding to section 2, the raw digitized values of the voice signal will be considered here 

Optimal Feature Generation with  
Genetic Algorithms and FLDR in a Restricted-Vocabulary Speech Recognition System 

 

239 

as the input variable; the mathematical transformations that will be applied to this variable 
will produce the features.  

Two important and widely used techniques for speech recognition will be presented in this 
section due to its relevance to this field. Linear Predictive Coding, or LPC, is a predictive 
technique in which a linear combination of some K coefficients and the last K samples from 
the signal will predict the value of the next one; the K coefficients will represent the 
distinctive features. The following section will explain the LPC method in detail.  

3.1 Linear Predictive Coding (LPC) 

LPC is one of the most advanced analytical techniques used in the estimation of patterns, 
based on the idea that the present sample can be predicted from a linear combination of 
some past samples, generating a spectral description based on short segments of signal 
considering a signal s[n] to be a response of  an all-pole filter excitation u[n]. 

 
Fig. 1. LPC model of speech. 

Figure 1 shows the model the LPC is based on, considering that the excitation u[n] is the 
pattern waiting to be recognized. The transfer function of the filter is described as [3]: 
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For speech processing, the electrical signal obtained from an electromechanoacoustic 
transducer is digitized and quantized at a fixed rate (the sampling frequency, Fs), and 
subsequently segmented into small frames of a typical duration of  10 milliseconds. 
Regarding to section 2, the raw digitized values of the voice signal will be considered here 
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as the input variable; the mathematical transformations that will be applied to this variable 
will produce the features.  

Two important and widely used techniques for speech recognition will be presented in this 
section due to its relevance to this field. Linear Predictive Coding, or LPC, is a predictive 
technique in which a linear combination of some K coefficients and the last K samples from 
the signal will predict the value of the next one; the K coefficients will represent the 
distinctive features. The following section will explain the LPC method in detail.  

3.1 Linear Predictive Coding (LPC) 

LPC is one of the most advanced analytical techniques used in the estimation of patterns, 
based on the idea that the present sample can be predicted from a linear combination of 
some past samples, generating a spectral description based on short segments of signal 
considering a signal s[n] to be a response of  an all-pole filter excitation u[n]. 

 
Fig. 1. LPC model of speech. 

Figure 1 shows the model the LPC is based on, considering that the excitation u[n] is the 
pattern waiting to be recognized. The transfer function of the filter is described as [3]: 
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where G is a gain parameter, ak are the coefficients of filter and p determines the order of the 
filter. In Figure 1,  the samples s[n] are related to the excitation u[n] by the equation: 
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Considering that the linear combination of past samples is calculated by using an estimator 
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the error in the prediction is determined by the lack of accuracy with respect to s[n], which is 
defined as [20]:  
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from equation (5), it is possible to recognize that the sequence of prediction of the error has 
in its components a FIR-type filter system which is defined by: 
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equations (2) and (4) show that e[n]=Gu[n]. The estimation of the prediction coefficients is 
obtained by minimizing the error in the prediction. Where e[n]2 denotes the square error of  
the prediction and E is the total error over a time interval (m). The prediction error in a short 
time segment is defined as: 
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the coefficients {ak} minimize the prediction of error E on the fragment obtained by the 
partial derivatives of E with respect to such coefficients; this means that: 
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Through equations (7) and (8) the final equation is obtained:  
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this equation is written in terms of least squares and is known as a normal equation. For any 
definitions of the signal s[n], equation (9) forms a set of p equations with p unknowns that 
must be solved for coefficients {ak}, trying to reduce the error E of equation (7). The 
minimum total squared error, denoted by Ep, is obtained by expanding equation (7) and 
substituting the result in equation (9), this is: 
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using the autocorrelation method to solve it [8]. 

For application, it is assumed that the error of equation (7) is minimized for infinite duration 
defined as -∞<n<∞, thus equations (9) and (10) are simplified as: 
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which is the autocorrelation function of the signal s[n], with R(i) as an even function. The 
coefficients R(i-k) generate auto-correlation matrix, which is a symmetric Toeplitz matrix; ie, 
all elements in each diagonal are equal. For practical purposes, the signal s[n] is analyzed in 
a finite interval. One popular method of approach this is by multiplying the signal s[n] times 
a window function w[n] in order to obtain an s‘[n] signal:  

 
[ ] [ ], 0 1

'[ ] ,0, otherwise
s n w n n N

s n
≤ ≤ −= 


 (14) 

Using equation 14, the auto-correlation function is given by: 
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One of the most common ways to find the coefficients {ak}, is by computational methods, 
where the equation (11) is expanded to a matrix with the form: 
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and it is necessary to use an algorithm to find these coefficients; one of the most commonly 
used, is the Levinson-Durbin one, which is described below [21]: 
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the error in the prediction is determined by the lack of accuracy with respect to s[n], which is 
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An important feature of this algorithm is that, when making the recursion, an estimation of 
the half-quadratic prediction error must be made. This prediction satisfies the system 
function given in equation (17), which corresponds to the term A (z) of equation (1); namely: 
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iA z A z k z A z− −− −= −  (17) 

where the fundamental part for the characterization of the signal in coefficients of 
prediction, is met by establishing an adequate number of coefficients p, according to the 
sampling frequency (fs) and based on the resonance in kHz  [3]  which is: 

 4
1000

sfp = +  (18) 

where the optimal number of LPC coefficients is the one that represents the lowest mean 
square error possible. Figure 2 shows the calculation of LPC in a voice signal with 8 kHz 
sampling rate and the effect of varying the number of coefficients in a segment (frame). 

 
Fig. 2. Comparison of the original signal spectrum and LPC envelope with different 
numbers of coefficients. 

3.2 Dynamic Time Warping (DTW) 

Another commonly used technique used in speech recognition is the dynamic time warping. 
Is presented here, again, for it relevance to the this field. Dynamic time warping  is a 
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technique widely used in pattern recognition, particularly oriented to temporal 
distortions between vectors, such as the time of writing, speed of video camera, the 
omission of a letter, etc. These temporal variations are not proportional and vary 
accordingly to each person, object or event, and those situations are not repetitive in any 
aspects. DTW uses dynamic programming to find similarities and differences between two 
or more vectors. 

This method considers two sequences representing feature vectors defined by a(i), i=1,2,…,I 
and b(j), j=1,2,…,J, where, in general, the number of elements differs in each vector (I≠J). The 
aim of DTW is to find an appropriate distance between the two sequences and in a two-
dimensional plane, where each sequence represents one axis, and each point corresponds to 
the local relationship between two sequences. The nodes (i,j) of the plane are associated with 
a cost that is defined by the function d(c)=d(i,j)=a(i)-b(j), which represents the distance 
between the elements a(i) and b(j). 

The collection of points begins in the starting point (i0,j0) and finishes in the (ik,jk) nodes, and 
it being an ordered pair of size k, where k is the number of nodes along the way. Every path 
established with the points is associated with a total cost D and defined by 
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and the distance between the two sequences is defined as the minimum value D of all the 
possible paths 
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There are normalization and temporary limitations in the search for the minimum distance 
between patterns to compare [22], [1]. These limitations are: endpoint, monotonicity 
conditions, local continuity, global path and slope weight. 

The final point is bounded by the size of windowing and performed in each pattern, at most 
cases is empirical and defined to extremes, that is: 
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Figure 3 shows an example in which it is only partially considered one of the sequences, a 
situation that is not allowed to search the minimum cost. 

The monotonicity conditions try to maintain the temporal order of the normalization of the 
time, and avoid negative slopes, by 

 1k ki i+ ≥  (22) 

and 

 k kj j1 .+ ≥  (23) 
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Figure 3 shows an example in which it is only partially considered one of the sequences, a 
situation that is not allowed to search the minimum cost. 

The monotonicity conditions try to maintain the temporal order of the normalization of the 
time, and avoid negative slopes, by 
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Fig. 3. Example of a sequence  that violates the rule of the endpoint. 

Figure 4 shows an example without monotonicity paths, which are not allowed to find the 
optimal path. 

 
Fig. 4. Without monotonicity path example. 

The continuity conditions  
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are defined by maintaining the relationship between two consecutive points of the form: 
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Global limitations define a region of nodes where the optimal path is found, and is based on 
a parallelogram that offers a feasible region [7], thereby avoiding unnecessary regions 
involved in processing. Figure 5 shows the values of the key points of the parallelogram. 
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Fig. 5. Global region and determination of slopes. 

The optimal path layout defined a measure of dissimilarity between the two sequences of 
features, whose general form is 
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where d(c(k)) and w(k) are the local distance between the windows i(k) of the reference vector 
and j(k) of the recognize vector, and a weighting function in k to maintain a flexible way and 
improve alignment, respectively. The simplified computational algorithm for calculating the 
distance of DTW is shown below [1] : 
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4. Mathematical foundations 
4.1 Fisher’s Linear Discriminant Ratio FLDR 

Fisher’s Linear Discriminant Ratio, is used as an optimization criterion in several research 
fields, including speech recognition, handwriting recognition, and others [1]. Consider the 
following definitions: 

Within-class scatter matrix. 
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where Si is the covariance matrix for class ωi, and Pi the a priori probability of class ωi. 
Trace{Sw} is a measure of the average variance of the features, or descriptive elements of the 
class.  

Between-class scatter matrix 
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where μ0 is the global mean vector 
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Trace{Sb} is a measure of the average distance of the mean of each individual class from the 
respective global value. 

Mixture scatter matrix 
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Sm is the covariance matrix of the feature vector with respect to the global mean, and E[.] is 
the mathematical operator of the expected mean value. Based on the just given definitions, 
the following criteria can be expressed: 
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It can be shown that J1 and J2 take large values when the samples in the l-dimensional are 
well clustered around their mean, within each class, and the clusters of different classes are 
well separated. Criteria in equation (31) can be used to guide an optimization process, since 
they measure the goodness of data clustered; the data to be clustered could be the set of 
features representative of the items of a class.  Trace{Sb} is a measure of the average distance 
of the mean of each individual class from the respective global value. 
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Figure 6 shows an example in which the FLDR is evaluated using equation (31); FLDR and 
the respective values are displayed. Notice that the more the blue clusters are separated 
from the red cluster, the bigger FLDR value is.  

 
Fig. 6. Example of the FLDR values for two clusters. 

4.2 Parseval’s theorem and the Fourier Transform 

Parseval’s theorem states, in an elegant manner,  that the energy of a discrete signal in the 
time domain can be calculated in the frequency domain by a simple relation [2], [3]:  
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where  

   N    is the number of samples of the discrete signal,  
x[i]    is the i-th sample of the discrete signal,  
X[k]   is the k-th sample of the Fourier transform of x[i].  

For  a discrete signal x[i], the Fourier transform can be computed using the well known 
Discrete Fourier Transform via the efficient algorithm for its implementation, the  FFT [2], [3]:  
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The implication of the Parseval’s theorem is that an algorithm can search for specific 
energetic properties of a signal in the frequency domain off-line, and then use the 
information obtained off-line to configure a bank of digital filters to look for the same 
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Figure 6 shows an example in which the FLDR is evaluated using equation (31); FLDR and 
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energetic properties in the time domain on-line, in real time. The link between both domains 
is the energetic content of the signal.  

5. Algorithmic foundations 
This section is devoted to describe two important figures in pattern recognition:  
backpropagation  neural networks  BPNN and genetic algorithms GA. The BPNN is used as a 
reference classifier to compare the performance of the approach presented here to the word 
recognition problem. The GA is an integral part of the generation of the features in the 
proposed technique.  

5.1 Learning paradigms  

There are several major paradigms, or approaches, to machine learning. These include 
supervised, unsupervised, and reinforcement learning. In addition, many researchers and 
application developers combine two o more of these learning approaches into one system 
[23].  

Supervised learning is the most common form of learning and is sometimes called 
programming by example. The learning system is trained by showing it examples of the 
problem state or attributes along with the desired output or action. The learning system 
make a prediction based on the inputs and if the output differs from the desired output, 
then the system is adjusted or adapted to produce the correct output. This process is 
repeated over and over until the system learns to make accurate classifications or 
predictions. Historical data from databases, sensor logs, or trace logs is often used as the 
training or example data.  

Unsupervised learning is used when the learning system needs to recognize similarities 
between inputs or to identify features in the input data. The data is presented to the system, 
and it adapts so that it partitions the data into groups. The clustering or segmenting process 
continues until the system places the same data into the same group on successive passes 
over the data. An unsupervised learning algorithm performs a type of feature detection 
where important common attributes in the data are extracted. 

Reinforcement learning is a type of supervised learning used when explicit input/output 
pairs of training data are not available. It can be used in cases where there is a sequence of 
inputs and the desired output is only known after the specific sequence occurs. This 
process of identifying the relationship between a series of input values and a later output 
value is called temporal credit assignment. Because we provide less specific error 
information, reinforcement learning usually takes longer than supervised learning and is 
less efficient. However, in many situations, having exact prior information about the 
desired outcome is not possible. In many ways, reinforcement learning is the most 
realistic form of learning. 

Another important distinction in learning systems is whether the learning is done on-line or 
off-line. On-line learning means that the system is sent out to perform its tasks and that it 
can learn or adapt after each transaction is processed. On-line learning is like on the job 
training and places severe requirements on the learning algorithms. It must be very fast and 
very stable. Off-line learning, on the other hand, is more like a business seminar. You take 
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your salespeople off the floor and place them in an environment where they can focus on 
improving their skills without distractions. After a suitable training period, they are sent out 
to apply their new found knowledge and skills. In an intelligent system context, this means 
that we would gather data from situations that the systems have experienced. We could then 
augment this data with information about the desired system response to build a training data 
set. Once we have this database we can use it to modify the behavior of our system. 

5.2 Backpropagation Neural Networks 

Backpropagation is the most popular neural network architecture for supervised learning. It 
features a feed-forward connection topology, meaning that data flow through the network in 
a single direction, and uses a technique called the backward propagation of errors to adjust the 
connection weights Rumelhart, Hinton, and Williams 1986 in [23]. In addition to a layer of 
input and output units, a back-propagation network can have one or more layers of hidden 
units, which receive inputs only from other units, and not from the external environment. A 
backpropagation network with a single hidden layer or processing units can learn to model 
any continuous function when given enough units in the hidden layer. The primary 
applications of backpropagation networks are for prediction and classification. 

Figure 7 shows the diagram of a backpropagation neural network and illustrates the three 
major steps in the training process.  

 
Fig. 7. Topology of a backpropagation neural network. 

First, input data is presented to the units of the input layer on the left, and it flows through 
the network until it reaches the network output units on the right. This is called the forward 
pass. 

Second, the activations or values of the output units represent the actual or predicted 
output of the network, because this is supervised learning.  
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Third, the difference between the desired and the actual output is computed, producing the 
network error. This error term is then passed backwards through the network to adjust the 
connection weights. 

Each network input unit takes a single numeric value, ix , which is usually scaled or 
normalized to a value between 0.0 and 1.0. This value becomes the input unit activation. 
Next, we need to propagate the data forward, through the neural network. For each unit in 
the hidden layer,  we compute the sum of the products of the input unit activations and the 
weights connecting those input layer units to the hidden layer. This sum is the inner product 
(also called the dot or scalar product) of the input vector and the weights in the hidden unit. 
Once this sum is computed, we add a threshold value and then pass this sum through a 
nonlinear activation function, f , producing the unit activation iy . The formula for 
computing the activation of any unit in a hidden or output layer in the network is 

 ( )i j i ij iy f sum x w θ= = +  (34) 

where i ranges over all the units leading into the j-th unit, and the activation function is  

 ( ) 1
1 jj sumf sum

e−=
+

 (35) 

As mentioned earlier, we use the S-shape sigmoid or logistic function for f.  The formula for 
calculating the changes of the weights is 

 ij j iw yηδΔ =  (36) 

where ijw is the weight connecting unit i to unit j, η  is the learn rate parameter, jδ
 
is the 

error signal for that unit, and iy is the output or activation value of unit i. For units in the 
output layer, the error signal is the difference between the target output jt and the actual 
output iy multiplied by the derivative of the logistic activation function. 

 ( ) ( ) ( ) ( )´ 1j j j j j j j j jt y f sum t y y yδ = − = − −  (37) 

For each unit in the hidden layer, the error signal is the derivative of the activation function 
multiplied by the sum of the products of the outgoing connection weights and their 
corresponding error signals. So for the hidden unit j. 

 ( )´
j j j k jkf sum wδ δ=   (38) 

where k ranges over the indices of the units receiving j-th unit´s output signal. 

A common modification of the weight update rule is the use of a momentum term α , to cut 
down on oscillation of the weight change becomes a combination of the current weight 
change, computed as before, plus some fraction ( α ranges from 0 to 1) of the previous 
weight change. This complicates the implementation because we now have to store the 
weight changes from the prior step. 
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 ( ) ( )1ij j i ijw n y w nηδ αΔ + = + Δ  (39) 

The mathematical basis for backward propagation is described in detail in [23]. When the 
weight changes are summed up (or batched) over an entire presentation of the training set, 
the error minimization function performed is called gradient descent. 

5.3 Genetic Algorithms 

In this section a brief description of a simple genetic algorithm is given. Genetic algorithms 
are based on concepts and methods observed in nature for the evolution of the species. 
Genetic algorithms were brought to the artificial intelligence arena by Goldberg [6], [24]. 
They apply certain operators to a population of solutions of the problem to be solved, in a 
such a way that the new population is improved compared to the previous one according to 
a certain criterion function J [5], [1], [6], [24]. Repetition of this procedure for a preselected 
number of iterations will produce a last generation whose best solution is the optimal 
solution to the problem. 

The solutions of the problem to be solved are coded in the chromosome and the following 
operations are applied to the coded versions of the solutions, in this order: 

Reproduction. Ensures that, in probability, the better a solution in the current population is, 
the more replicates it has in the next population, 

Crossover. Selects pair of solutions randomly, splits them in a random position, and 
exchanges their second parts. 

Mutation. Selects randomly an element of a solution and alters it with some probability. It 
helps to move away from local minima. 

Besides the coding of the solutions, some parameters must be set up:  

N, number of solutions in a population. Fixed or varied. 
p, probability with which two solutions are selected for crossover. 
m, probability with which an element of a solution is mutated. 

The performance of the GA depends greatly on these parameters, as well as on the coding of 
the solutions in the chromosome. The solutions can be coded in some of the following 
formats: 

Binary. Bit strings represent the solution(s) of the problem. For instance, a chromosome 
could represent a series of integer indexes to address a database, or the value of a variable(s) 
that must be integer, or each bit could represent the state (present-absent) of a part of an 
architecture that is being optimized, and so on. 

Real valued. The bit strings represent the value of a real valued variable, in fixed of floating 
point. 

The aspect of one chromosome could be like this: C = {100101010101010101}; the 
interpretation will vary in accordance with the coding scheme selected to represent the 
knowledge domain of the problem. For instance, it might represent a set of six indices of 
three bits each one; or it could have a meaning with all the bits together, representing an 18 
bit code.  
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The primary reason of the success of genetic algorithms is its wide applicability, easy use 
and global perspective [6], [24], [25].  The next is the listing of a simple genetic algorithm. 

 
The genetic algorithms find application in the field of speech processing via the solution to 
the problem of variable and feature selection  [11], [14], [26], [27], [28], [29], [30]. 

6. Restricted-vocabulary speech recognition system 
The expression restricted-vocabulary speech recognition refers to the recognition of 
repetitions of spoken words that belongs to a limited set of words within a semantic field. 
This means that the words have connected meanings, for instance, the digits = {0,1,2,…, 9} or 
the days of the week={Saturday,  Monday,…, Friday}. The applications of the recognition of 
limited size word-sets include voice-commanded systems, spoken entry and search for 
computer databases in warehouse systems, voice-assisted telephone dialing, man-machine 
interfaces, and others. The advantage of a system developed for a specific semantic field is 
that it can be built to be much more accurate than those constructed for the general speech 
recognition, also requiring less extensive training sets.  

Restricted-vocabulary speech recognition is also an important research topic because of the 
intricacies involved in the underlying pattern recognition problem: variable selection, 
feature generation/selection and classifier selection. Variable selection is mostly restricted to 
select the raw digitized voice signal as the variable; alternatively, the surrounding 
environmental noise could be used as another variable  for noise cancelation purposes. 
Feature generation has been carried out by obtaining linear predictive coefficients (LPC), 
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AR/ARMA coefficients, Fourier coefficients, Cepstral coefficients, Mel Spectral Coefficients, 
and others [31]. In many the cases, the coefficients are computed over a short-time window 
(typically 10 ms) and over the voiced segments of the speech signal.  As well as for the 
feature generation, for the classifier several options are available: Hidden Markov Models 
HHM (perhaps the most popular), neural networks (backpropagation, self-organizing maps, 
radial basis, etc.), support vector and other kernel machines,  Gaussian mixtures, Bayesian 
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Lexicon Acquisition and Normalization. In this stage, the set L = {w0,w1,w2,…, wM-1} of M 
words that will comprise the lexicon to be recognized is acquired from the speaker(s) that 
will use the system; vectors containing the digitized versions of the voice signals will be at 
the disposal of the next stage.  

Power Spectrum. The power spectrum has been traditionally the source of features for 
speech recognition; here, the power spectrum of the voice signals will be used by the genetic 
algorithm to determinate discriminant frequency bands. 

Optimal Feature Generation. The features selected here are a) the energy E of eight to twelve  
frequency regions (sub-bands) of the spectrum, b) the bandwidth (BW) of each sub-band, 
and c) the central frequency (FC) of the sub-bands. See Figure 9.  Sub-band processing in 
speech have been previously used, but in different manners [32], [33], [34]. A genetic 
algorithm with elitism is used here to select each bandwidth (BW) its central frequency 
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The primary reason of the success of genetic algorithms is its wide applicability, easy use 
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Parameter Value 

     Population      20-120  

     Mutation       Gaussian ( 1-2 , 1-2)   (scale,shrink) 

     Selection       Elitism 

     Crossover       Scattered, one-point and two-points 

Table 1. Parameters of the Genetic Algorithm. 

increasing both, class separability and cluster compactness between classes ω0 and ω1, being 
ω0 the class of the word to be recognized and ω1 the class of the rest of the M-1 words. The 
FLDR was described here in section  4.1, and the expression adopted here is the equation 
(31):  
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where |Sb| is the determinant of the inter-class covariance matrix and  |Sb|is the 
determinant of the intra-class covariance class. At the end of the evolutionary process the 
genetic algorithm produced a set of vectors with the parameters [E, BW, Fc] and the number 
of sub-bands, between 8 and 12. 

 
Fig. 9. Sub-band spectrum division to separate the power spectra in discriminant regions. 

Bank-filter Design. During the operation phase, the calculation of the power espectrum of the 
incoming voice signals is not practical for real-time response because the discrete Fourier 
transform (DFT  [2], [3]) requires too much time to be calculated, and the fast Fourier 
Transform (FFT [2], [3]) requires that the number of samples to be a power of 2, requiring 
zero padding most of the times. Instead of using the power spectrum, in this application it is 
used the Parseval’s theorem, described in section 4.2, which  states that the energy in time 
and frequency is equal. In discrete form, we recall equation (32): 
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where x[i] is the time domain signal with and X[k] is its modified frequency espectrum, 
which is found by taking the DFT of the signal and dividing the first and last frequencies by 
the square rooth of two. Therefore, all that have to be done is to filter the sub-bands out  of 
the time signals and then to calculate the energy in each sub-band. This can be perfectly 
accomplished by a bank of digital band-pass filters whose parameters match the parameters 
found by the genetic algorithm, and the advantage is that at the end of the last sample of 
voice in real-time a word can be immediately recognized.  

In the Operation Phase, the three first stages operate simultaneously at each time a sample 
of the voice is acquired, and occur between two successive sampling intervals; in the first 
stage the voice signal is acquired and a normalization coefficient Nc is updated with the 
maximum value of the signal; the block labeled filtering represent the action of the filter 
bank and the outgoing signal is squared and added sample by sample. At the end of a 
voiced segment of sound, the third block provides to a classifier with the set of features for 
word classification.  

6.2 System design 

In this section the details of the system design will be presented.  

6.2.1 Characterization of the frequency spectrum using sub-bands 

Consider the Fourier Transform of a signal:  

 ( ) ( )( )=S F s tω         (40) 

Now consider the frequency spectrum split in sub-bands, as shown in Figure 9. Please notice 
in Figure  9 that S(w) has been normalized to unitary amplitude. For each sub-band, the 
energy can be calculated as: 

 ( )( )2
0= 

ub

i
lb

E k S ω     (41) 

where Ei, is the energy of the i-th sub-band, k0  is a constant proportional to the bandwidth 
(BWi) of the i-th sub-band, lb and ub are the lower and upper bounds of the i-th sub-band. 
The feature vector of the n-th utterance of s(t) in the frequency domain becomes:  

 ( ) [ ]1 2 3 4= n MSr ω E  E  E  E   E   (42) 

In which M is the number of sub-bands, and Srn is the reduced version of the n-th S(ω). In 
order to characterize a word in the vocabulary, N samples of s(t) must be entered. From the 
example in Figure 9 and without loss of generality, the set of parameters of the respective 
filter bank that will operate in the time domain is: 

    1 1 2 2 3 3[               ]=  L LBF C BW C BW C BW C BW   (43) 

The number of filters to be applied in the time-domain signal in this case is L. For a 
vocabulary of K words (K small), the spectra in which the solution must be searched is given 
by K matrices of N rows and 2000 columns. 
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where x[i] is the time domain signal with and X[k] is its modified frequency espectrum, 
which is found by taking the DFT of the signal and dividing the first and last frequencies by 
the square rooth of two. Therefore, all that have to be done is to filter the sub-bands out  of 
the time signals and then to calculate the energy in each sub-band. This can be perfectly 
accomplished by a bank of digital band-pass filters whose parameters match the parameters 
found by the genetic algorithm, and the advantage is that at the end of the last sample of 
voice in real-time a word can be immediately recognized.  

In the Operation Phase, the three first stages operate simultaneously at each time a sample 
of the voice is acquired, and occur between two successive sampling intervals; in the first 
stage the voice signal is acquired and a normalization coefficient Nc is updated with the 
maximum value of the signal; the block labeled filtering represent the action of the filter 
bank and the outgoing signal is squared and added sample by sample. At the end of a 
voiced segment of sound, the third block provides to a classifier with the set of features for 
word classification.  

6.2 System design 

In this section the details of the system design will be presented.  

6.2.1 Characterization of the frequency spectrum using sub-bands 

Consider the Fourier Transform of a signal:  
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Now consider the frequency spectrum split in sub-bands, as shown in Figure 9. Please notice 
in Figure  9 that S(w) has been normalized to unitary amplitude. For each sub-band, the 
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where Ei, is the energy of the i-th sub-band, k0  is a constant proportional to the bandwidth 
(BWi) of the i-th sub-band, lb and ub are the lower and upper bounds of the i-th sub-band. 
The feature vector of the n-th utterance of s(t) in the frequency domain becomes:  

 ( ) [ ]1 2 3 4= n MSr ω E  E  E  E   E   (42) 

In which M is the number of sub-bands, and Srn is the reduced version of the n-th S(ω). In 
order to characterize a word in the vocabulary, N samples of s(t) must be entered. From the 
example in Figure 9 and without loss of generality, the set of parameters of the respective 
filter bank that will operate in the time domain is: 

    1 1 2 2 3 3[               ]=  L LBF C BW C BW C BW C BW   (43) 

The number of filters to be applied in the time-domain signal in this case is L. For a 
vocabulary of K words (K small), the spectra in which the solution must be searched is given 
by K matrices of N rows and 2000 columns. 
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6.2.2 Genetic algorithm set up 

6.2.2.1 Coding the chromosome 

The chromosome is comprised of the parameters of the filter bank described in equation 43. 
The number of sub-bands is fixed, and each one of the centers and bandwidths are subject to 
the genetic algorithm. Real numbers are used. 

6.2.2.2 The cost function 

The cost function is given by equation (32), criterion J2. The goal is to maximize J2 as a 
function of the centers and bandwidths. 

6.2.2.3 Restrictions 

The following restrictions apply: 
R1. Sub-bands overlapping < = 50Hz, 
R2. Bandwidth is limited to range from 40 to 400 Hz, varying according to the 
performance of the genetic algorithm. 

6.2.2.4 Operating parameters of the genetic algorithm 

The main parameters of the genetic algorithm are summarized in the Table 1. The values of 
the parameters are given according to the best results obtained by experimentation. The 
genetic algorithm was ran in Matlab®, using the genetic algorithms toolbox and the gatool 
guide. The nomenclature of the parameters in Table 1 is the one used by Matlab®. 

6.2.2.5 Application’s algorithm 

To make operational de methodology described so far, the following steps apply: 

1. Vocabulary definition. 2 to K words. In many real life applications, K in 8 to 15 words do 
the job. 

2. Database acquisition. 15 to 20 utterances of each word from the vocabulary, for learning  
purposes. The sampling frequency can be set from 6000 to 8000 Hz. Human voice 
accommodates easily here. 

3. s(t) to S(w) transformation. Apply Fourier transform to the data, normalize to unitary 
amplitude and to a fixed length of 2000. 

4. Data preparation for the GA. Set-up the size (eq. 43) and restrictions (subsection 6.2.2.3) of 
the filter bank (chromosome). 

5. Running the GA. Run the GA to find the sub-bands whose J2 (eq. (32)) is the maximum. 
6. Filters realization. For each sub-band, compute the coefficients of the respective 

bandpass filters. For real-time implementation, order from 4 to 8 is recommended, type 
IIR, elliptic. Elliptic filters  achieve great discrimination and selectivity. Implementation 
details can be found in [2]. 

7. Modeling the commands. To make comparisons and therefore classification, a Gaussian 
statistical  model of each word is to be constructed for each command in the vocabulary. 
Proceed as follows for each command: 
a. Construct a matrix C of 15-20 rows of Srn(w) and M columns (one row  per sample 

of the command, one column per sub-band selected by the AG), 
b. Compute the mean value overall the samples, to find the average energy per sub-

band, this is the feature vector of the command (μi) 
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c. Compute the covariance matrix, Si = cov(Ci). 
d. At any time, the Mahalanobis distance between the model of the i-th command and 

the feature vector x of an incoming command is:  

 dM(x,μi) = (x-μi)*Σi-1*(x-μi)-1   (44) 

To make the real-time implementation, a digital system must sample the input microphone 
continuously. Each sample of a command must  be filtered by each filter (sub-band 
extraction). The integral of the energy of the signal leaving each filter over the period of the 
command is used to create the feature  vector of that command, that is, x in equation 44. The 
feature vector is compared to each model in the vocabulary, and the command is recognized 
as the one with the minimum dM score. This is the so-called “minimum distance classifier” 
[5]. 

7. Results 
To test the system, the following lexicons were used: L0={faster,  slower, left, right, stop, 
forward, reverse, brake}, L1={zero, one, two, three, four, five, six, seven, eigth, nine}, 
L2={rápido,  lento, izquierda, derecha, alto, adelante, reversa, freno}, L3 = {uno, dos, tres, 
cuatro, cinco}. In all the lexicons, 3 male and 3 female volunteers were enrolled. They 
donated 116 samples of each word, 16 for training and 100 for testing. To demostrate the 
power of our approach we used the minimum distance classifier with the Mahalanobis 
distance. In all the cases, the genetic algorithm was ran 30 times to find the best response in 
the training set. During the training phase, the leave-one-out method was used to exploit the 
limited size of the training set [1]. Table 2 summarizes the results. In columns 5 and 7 are 
shown the comparison against a backpropagation neural network using as features Cepstral 
coefficients. The experiments were done using Matlab(R)  and its associated toolboxes of 
genetic algorithms, neural networks and digital signal processing. The real-time 
implementation was done with a TMS320LF2407 Texas Instruments(R) Digital Signal 
Processor mounted on an experimentation card.  
 

 Simulations Real-time on DSP 
MDC3 BPNN4 MDC3 BPNN4 

G1 L2 Training 
Set

Testing 
Set

Testing 
Set

Real 
scenario 

Real 
scenario 

Fe
m

al
e 0 100 97 92 94 90 

1 100 98 90 95 90 
2 100 100 97 94 89 
3 100 100 91 95 88 

M
al

e 

0 100 100 94 96 89 
1 100 100 90 95 90 
2 100 99 92 94 90 
3 100 98 92 93 88 

  1Gender,  2 Lexicon, 3Minimum distance classifier, 4Backpropagation neural network  [1]  8-32-K 
neurons per layer, K according to the experiment, one neuron for each word in L. 

Table 2. Percentage (%) of correct classification with 4 lexicons, 2  languages, 6 persons, male 
and female voices, 2 classifiers. Simulations and real time implementation. 
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details can be found in [2]. 
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Proceed as follows for each command: 
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c. Compute the covariance matrix, Si = cov(Ci). 
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the feature vector x of an incoming command is:  
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extraction). The integral of the energy of the signal leaving each filter over the period of the 
command is used to create the feature  vector of that command, that is, x in equation 44. The 
feature vector is compared to each model in the vocabulary, and the command is recognized 
as the one with the minimum dM score. This is the so-called “minimum distance classifier” 
[5]. 

7. Results 
To test the system, the following lexicons were used: L0={faster,  slower, left, right, stop, 
forward, reverse, brake}, L1={zero, one, two, three, four, five, six, seven, eigth, nine}, 
L2={rápido,  lento, izquierda, derecha, alto, adelante, reversa, freno}, L3 = {uno, dos, tres, 
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power of our approach we used the minimum distance classifier with the Mahalanobis 
distance. In all the cases, the genetic algorithm was ran 30 times to find the best response in 
the training set. During the training phase, the leave-one-out method was used to exploit the 
limited size of the training set [1]. Table 2 summarizes the results. In columns 5 and 7 are 
shown the comparison against a backpropagation neural network using as features Cepstral 
coefficients. The experiments were done using Matlab(R)  and its associated toolboxes of 
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7.1 Results  and discussion 

7.1.1 Results in the L3 Spanish vocabulary 

The genetic algorithm was executed 30 times, and the maximum Fisher’s ratio obtained was 
62. The resulting best chromosome was: 

BF = [254 180 526 132 744 118 1196 141 1483 115 2082 86 2295 171 2828 46] 

From which the corresponding center and bandwidth were: 

[ ]
[ ]

C   254 526 744 1196 1483 2082 2295 2828
BW   180 132 118 141 115 86 171 46

=

=
 

The recognition rates in the training and testing sets were 100% and 99%, respectively. In 
real conditions the correct classification rate was 93.5% in 40 repetitions of each word to the 
microphone.  

7.1.2 The genetic algorithm in L3 

Consecutive executions of the GA produced variable Fisher’s ratios. It was observed here 
that the population size is critical, since a population of 20 chromosomes produced Fisher’s 
ratios between 35 and 42, while a population of 120 individuals easily produced Fisher’s 
ratios above 58.  It was noticed during experimentation that specific values for restrictions 
R1 and R2 also have a strong influence in the outcome. 

Comparing the results over a traditional approach with neural networks and cepstral 
coefficients it is evident a higher performance and, more important, the system exhibits real-
time operation and very low computational effort compared to neural networks and real-
time computation of the Cepstral coefficients. 

7.1.3 Results in the L0 English vocabulary 

The genetic algorithm was executed 30 times, varying population size, probability of 
mutation, restrictions, number of sub-bands, and other parameters. The initial number of 
sub-bands was 8, then it was scaled to 9 and 12; in this scenario, the Fisher‘s ratio varied 
from 23 (8 sub-bands, population size = 20) to 48 (12 sub-bands, population size = 200). The 
resulting centers and bandwidths were: 

[ ]
[ ]

C  250 446 648 1283 1483 1776 2018 2506 2737 3197 3383 3833
BW   5 138 187 157 139 43 207 106 105 98 148 224

=

=
 

Intra-class repeatability and inter-class differences 

The performance in the training set was 100%; the performance in the testing set was 99%. 
The correct classification per word was  {100%  100% 98% 100% 97% 100% 98% 99%} for the 
respective words {‘faster‘,‘slower‘,‘left‘,‘right‘,‘stop‘,‘forward‘,‘reverse‘,‘brake‘}, respectively. 
Figure 10 shows the normalized espectra of two utterances of the word ‘faster‘ and the word 
‘slower‘. In both cases notice the repeatability in the frequency domain, as well as the 
difference between both sets of spectra. 
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Fig. 10. Normalized spectra of the words “faster” and “slower”. 

7.1.4 Results of the real-time implementation 

A minimum distance classifier was implemented in a digital signal processor 
TMS320LF2407 for each of the four lexicons L={L0, L1, L2, L3} from Texas Instruments, in 
order to verify the performance using in a nearly real-life application. The voiced/no-voiced 
segmentation was performed using a push-button to start and finish capturing the voice. 
The DSP has a built-in 10-bit analog to digital converter facilitating the interfacing task. The 
digital filters used were IIR topology, elliptic type, 8th order. The filter coefficients (A, B) 
were calculate using the Matlab® Software. The analog-to-digital conversion was set-up to 
acquire one sample every T seconds, (T=1/6000); each time a sample came into de device, 
the filters actuated and the respective output was squared and accumulated to calculate the 
energy of the signal. Scaling issues had to be solved since the model was created in a real 
valued [-1 , 1] scale, while the DSP just “see“ integer values. Once a whole command was 
processed, it was just a matter of a few miliseconds to apply the minimum distance classifier 
and provide the classification. The correct classification rate was in this case of the order of 
94.5%, in a total of 1200  repetitions  of the words in L. 

8. Conclusions and future work 
In this chapter was presented a method to implement a high performance, real-time, 
restricted-vocabulary speech  recognition system, combining a genetic algorithm and the 
Fisher’s Linear Discriminant Ratio (FLDR) in its matrix formulation. A review of the 
concepts of variable and feature selection as well as feature generation was made; also were 
presented some concepts related with speech processing, like the LPC formulation and the 
DTW method for template matching.  

One of the conceptual tools used here was the energy of the signal in certain sub-bands in 
the frequency domain; thanks to the Parseval’s theorem, the same amounts of energy can be 
calculated in the time domain via a bank of digital filters, enabling thus a very fast way to 
apply the recognizer, since the process goes on at the same time as the occurrence of the 
word is exerted. Mainly, two experiments were shown, in Spanish and English, with male 
and female participants; in both cases high performance was attained, beyond 94% at the 
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7.1 Results  and discussion 
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[ ]
[ ]

C   254 526 744 1196 1483 2082 2295 2828
BW   180 132 118 141 115 86 171 46

=

=
 

The recognition rates in the training and testing sets were 100% and 99%, respectively. In 
real conditions the correct classification rate was 93.5% in 40 repetitions of each word to the 
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7.1.2 The genetic algorithm in L3 
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[ ]
[ ]

C  250 446 648 1283 1483 1776 2018 2506 2737 3197 3383 3833
BW   5 138 187 157 139 43 207 106 105 98 148 224

=

=
 

Intra-class repeatability and inter-class differences 

The performance in the training set was 100%; the performance in the testing set was 99%. 
The correct classification per word was  {100%  100% 98% 100% 97% 100% 98% 99%} for the 
respective words {‘faster‘,‘slower‘,‘left‘,‘right‘,‘stop‘,‘forward‘,‘reverse‘,‘brake‘}, respectively. 
Figure 10 shows the normalized espectra of two utterances of the word ‘faster‘ and the word 
‘slower‘. In both cases notice the repeatability in the frequency domain, as well as the 
difference between both sets of spectra. 
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worst case. Compared to a typical implementation with backpropagation neural networks 
and cepstral coefficients, this approach was at least 10% more effective in near real-life 
application.  

The genetic algorithm consistently maximized the criteria of inter-class separability and 
intra-class compactness, under different conditions of population, probability of mutation, 
etc., and also varying the restriction set. It is remarkable and worth to mention that the 
genetic algorithm didn’t gave the best result in its first execution, which means that the 
execution must be repeated to achieve good results; increasing the population and 
manipulating the restriction set demonstrated that it is possible to obtain a variety of 
different outcomes, so it is important to experiment carefully.  

The future work will consist of developing the voice/unvoiced detection in noisy 
environments, investigate an adapt more features that can be easily computed in time and 
with a dual in frequency, start working on the non-dependant speaker approach, making 
use of more robust classifiers, and finally, increase the vocabulary size, although still 
restricted to a specific semantic field, like in [35].  Another interesting venue is the one in 
which the user aging process is taken into account by the speech recognition system  [36]. 
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1. Introduction  
Genetic algorithm is one of the successful optimization algorithm used in computing to find 
exact or approximate solutions for certain complex problems. This novel algorithm was first 
introduced by John Holland in 1975 (Holland, 1975). Besides Holland, many other 
researchers have also contributed to genetic algorithm (Davis, 1987; Davis, 1991; 
Grefenstte, 1986; Goldberg, 1989; Michalewicz, 1992). This is an algorithm that imitates 
the evolutionary process concept based on the Darwinian Theory which emphasizes on 
the law of “the survival of the fittest”. This algorithm used techniques which are inspired 
from evolution biology such as inheritance, selection, crossover and mutation 
(Engelbrecht, 2002).  

There are several important components in genetic algorithm which includes representation, 
fitness function, and selection operators (parent selection and survivor selection, crossover 
operator and mutation operator). Genetic algorithm starts by generating an initial 
population of individuals randomly. The individuals are represented as a set of parameter 
which is the solution to the problem domain. Normally, individuals are fixed length binary 
string. The individuals are then evaluated using fitness functions. The evaluation will give 
a fitness score to individuals indicating how well the solutions perform in the problem 
domain. The individuals that have been evaluated using the fitness function will be 
selected to be parents to produce offspring through the crossover and mutation operators. 
The genetic algorithms will repeat the above process except for the population 
initialization until the termination criteria is met. Fig. 1 shows the structure of a genetic 
algorithm. 

GAs have been applied successfully in many applications including job shop scheduling 
(Uckun et al. 1993), the automated design of fuzzy logic controllers and systems (Karr 1991; 
Lee & Takagi, 1993), hardware-software co-design and VLSI design (Catania et al. 1997; 
Chandrasekharam et al. 1993). In this chapter, variations of genetic algorithms are applied in 
optimizing the bidding strategies for a dynamic online auctions environment.  

Auction is defined as a bidding mechanism and is expressed by a set of auction rules that 
specify how the winner is determined and how much he or she has to pay (Wolfstetter, 
2002). Jansen defines an online auction as an Internet-based version of a traditional auction 
(Jansen, 2003). In today’s e-commerce market, online auction has acted as an important tool 
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(Engelbrecht, 2002).  
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which is the solution to the problem domain. Normally, individuals are fixed length binary 
string. The individuals are then evaluated using fitness functions. The evaluation will give 
a fitness score to individuals indicating how well the solutions perform in the problem 
domain. The individuals that have been evaluated using the fitness function will be 
selected to be parents to produce offspring through the crossover and mutation operators. 
The genetic algorithms will repeat the above process except for the population 
initialization until the termination criteria is met. Fig. 1 shows the structure of a genetic 
algorithm. 

GAs have been applied successfully in many applications including job shop scheduling 
(Uckun et al. 1993), the automated design of fuzzy logic controllers and systems (Karr 1991; 
Lee & Takagi, 1993), hardware-software co-design and VLSI design (Catania et al. 1997; 
Chandrasekharam et al. 1993). In this chapter, variations of genetic algorithms are applied in 
optimizing the bidding strategies for a dynamic online auctions environment.  

Auction is defined as a bidding mechanism and is expressed by a set of auction rules that 
specify how the winner is determined and how much he or she has to pay (Wolfstetter, 
2002). Jansen defines an online auction as an Internet-based version of a traditional auction 
(Jansen, 2003). In today’s e-commerce market, online auction has acted as an important tool 
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in the services for procuring goods and items either for commercialize purposed or for 
personal used. Online auctions have been reported as one of the most popular and effective 
ways of trading goods over the Internet (Bapna et al. 2001). Electronic devices, books, 
computer software, and hardware are among the thousands items sold in the online 
auctions every day. To date, there are 2557 auction houses that conduct online auctions as 
listed on the Internet (Internet Auction List, 2011). These auction houses conduct different 
types of auctions according to a variety of rules and protocols. eBay, as one of the largest 
auction house alone has more than 94 million registered users and had transacted more than 
USD 92 billion worth of goods during 2010 (eBay, 2010). These figures clearly show the 
importance of online auctions as an essential method for procuring goods in today’s e-
commerce market.  
 

Begin 
Generation = 0 
Randomly Initialize Population 
While termination criteria are not met 
         Evaluate Population Fitness 
         Crossover Process 
         Mutation Process 
         Select new population 
         Generation = Generation + 1 
End 

Fig. 1. The structure of a Genetic Algorithm 

The auction environment is highly dynamic in nature. Since there are a large number of 
online auction sites that can be readily accessed, bidders are not constrained to participate in 
only one auction; they can bid across several alternative auctions for the same good 
simultaneously. As the number of auction increases, difficulties such as monitoring the 
process of auction, tracking bid and bidding in multiple auctions arise when the number 
of auctions increases. The user needs to monitor many auctions sites, pick the right 
auction to participate, and make the right bid in order to have the desired item. All of 
these tasks are somewhat complex and time consuming. The task gets even more 
complicated when there are different start and end times and when the auctions employ 
different protocols. For this reasons, a variety of software support tools are provided 
either by the online auction hosts or by third parties that can be used to assist consumers 
when bidding in online auctions.  

The software tools include automated bidding software, bid sniping software, and auction 
search engines. Automated bidding software or proxy bidders act on the bidder's behalf and 
place bids according to a strict set of rules and predefined parameters. Bid sniping software, 
on the other hand, is a practice of placing of bid a few minutes or seconds before an auction 
closes. These kinds of software, however, have some shortcomings. Firstly, they are only 
available for an auction with a particular protocol. Secondly, they can only remain in the 
same auction site and will not move to other auction sites. Lastly, they still need the 
intervention of the user, that is, the user still needs to make decision on the starting bid 
(initially) and the bid increments.  

 
Performance of Varying Genetic Algorithm Techniques in Online Auction 

 

265 

To address the shortcomings mentioned above, an autonomous agent was developed that 
can participate in multiple heterogeneous auctions. It is empowered with trading 
capabilities and it is able to make purchases autonomously (Anthony, 2003; Anthony & 
Jennings, 2003b). Two primary values that heavily influenced the bidding strategies of this 
agent are the k and β. These two values correspond to the polynomial function of the four 
bidding constraints, namely the remaining time left, the remaining auction left, the user’s 
desire for bargain and the user’s level of desperateness. Further details on the strategies will 
be discussed in Section 3. The k value ranges from 0 to 1 while the β value is from 0.005 to 
1000. The possible combinations between these two values are endless and thus, the search 
space for the solution strategies is very large. Hence, genetic algorithms were used to find 
the nearly optimal bidding strategy for a given auction environment.  

This work is an extension of the solution above, which has been successfully employed to 
evolve effective bidding strategies for particular classes of environment. This work is to 
improve the existing bidding strategy through the optimization techniques. Three 
different variations of genetic algorithm techniques are used to evolve the bidding 
strategies in order to search for the nearly optimal bidding solution. The three techniques 
are parameter tuning, deterministic dynamic adaptation, and self-adaptation. Each of this 
method will be detailed in Section 4, 5 and 6. The remainder of the chapter is organized as 
follow. Section 2 discusses related work. The bidding strategy framework is discussed in 
Section 3. The parameter tuning experiment is discussed in Section 4. Section 5 and 6 
discussed the deterministic adaptive experiment and self-adaptive experiment. A 
comparison between all the schemes is discussed in Section 7. Finally, the conclusion is 
discussed in Section 8. 

2. Related work 
Genetic algorithm has shown to perform well in the complex system by which the old 
search algorithm has been solved. This is due to the nature of the algorithms that is able to 
discover optimal areas in a large search space with little priori information. Many researches 
in auctions have used genetic algorithm to design or enhance the auction’s bidding 
strategies. The following section discusses works related to evolving bidding strategies. 

An evolutionary approach was proposed by Babanov (2003) to study the interaction of 
strategic agents with the electronic marketplace. This work describes the agents’ strategies 
based on different methodologies that employ incompatible rules in collecting information 
and reproduction. This work used the information collected from the evolutionary 
framework for economic studies as many researches have attempted to use evolutionary 
frameworks for economics studies (Nelson, 1995; Epstein & Axtell, 1996; Roth, 2002; 
Tesfatsion, 2002). This evolutionary approach allows the strategies to be heterogeneous 
rather than homogenous since only a particular evolutionary approach is applied. This work 
has shown that the heterogeneous strategies evolved from this framework can be used as a 
useful research data.  

ZIP, introduced by Cliff, is an artificial trading agent that uses simple machine learning to 
adapt and operate as buyers or sellers in online open-outcry auction market environments 
(Cliff, 1997). The market environments are similar to those used in Smith’s (Smith, 1962) 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

264 

in the services for procuring goods and items either for commercialize purposed or for 
personal used. Online auctions have been reported as one of the most popular and effective 
ways of trading goods over the Internet (Bapna et al. 2001). Electronic devices, books, 
computer software, and hardware are among the thousands items sold in the online 
auctions every day. To date, there are 2557 auction houses that conduct online auctions as 
listed on the Internet (Internet Auction List, 2011). These auction houses conduct different 
types of auctions according to a variety of rules and protocols. eBay, as one of the largest 
auction house alone has more than 94 million registered users and had transacted more than 
USD 92 billion worth of goods during 2010 (eBay, 2010). These figures clearly show the 
importance of online auctions as an essential method for procuring goods in today’s e-
commerce market.  
 

Begin 
Generation = 0 
Randomly Initialize Population 
While termination criteria are not met 
         Evaluate Population Fitness 
         Crossover Process 
         Mutation Process 
         Select new population 
         Generation = Generation + 1 
End 

Fig. 1. The structure of a Genetic Algorithm 

The auction environment is highly dynamic in nature. Since there are a large number of 
online auction sites that can be readily accessed, bidders are not constrained to participate in 
only one auction; they can bid across several alternative auctions for the same good 
simultaneously. As the number of auction increases, difficulties such as monitoring the 
process of auction, tracking bid and bidding in multiple auctions arise when the number 
of auctions increases. The user needs to monitor many auctions sites, pick the right 
auction to participate, and make the right bid in order to have the desired item. All of 
these tasks are somewhat complex and time consuming. The task gets even more 
complicated when there are different start and end times and when the auctions employ 
different protocols. For this reasons, a variety of software support tools are provided 
either by the online auction hosts or by third parties that can be used to assist consumers 
when bidding in online auctions.  

The software tools include automated bidding software, bid sniping software, and auction 
search engines. Automated bidding software or proxy bidders act on the bidder's behalf and 
place bids according to a strict set of rules and predefined parameters. Bid sniping software, 
on the other hand, is a practice of placing of bid a few minutes or seconds before an auction 
closes. These kinds of software, however, have some shortcomings. Firstly, they are only 
available for an auction with a particular protocol. Secondly, they can only remain in the 
same auction site and will not move to other auction sites. Lastly, they still need the 
intervention of the user, that is, the user still needs to make decision on the starting bid 
(initially) and the bid increments.  

 
Performance of Varying Genetic Algorithm Techniques in Online Auction 

 

265 

To address the shortcomings mentioned above, an autonomous agent was developed that 
can participate in multiple heterogeneous auctions. It is empowered with trading 
capabilities and it is able to make purchases autonomously (Anthony, 2003; Anthony & 
Jennings, 2003b). Two primary values that heavily influenced the bidding strategies of this 
agent are the k and β. These two values correspond to the polynomial function of the four 
bidding constraints, namely the remaining time left, the remaining auction left, the user’s 
desire for bargain and the user’s level of desperateness. Further details on the strategies will 
be discussed in Section 3. The k value ranges from 0 to 1 while the β value is from 0.005 to 
1000. The possible combinations between these two values are endless and thus, the search 
space for the solution strategies is very large. Hence, genetic algorithms were used to find 
the nearly optimal bidding strategy for a given auction environment.  

This work is an extension of the solution above, which has been successfully employed to 
evolve effective bidding strategies for particular classes of environment. This work is to 
improve the existing bidding strategy through the optimization techniques. Three 
different variations of genetic algorithm techniques are used to evolve the bidding 
strategies in order to search for the nearly optimal bidding solution. The three techniques 
are parameter tuning, deterministic dynamic adaptation, and self-adaptation. Each of this 
method will be detailed in Section 4, 5 and 6. The remainder of the chapter is organized as 
follow. Section 2 discusses related work. The bidding strategy framework is discussed in 
Section 3. The parameter tuning experiment is discussed in Section 4. Section 5 and 6 
discussed the deterministic adaptive experiment and self-adaptive experiment. A 
comparison between all the schemes is discussed in Section 7. Finally, the conclusion is 
discussed in Section 8. 

2. Related work 
Genetic algorithm has shown to perform well in the complex system by which the old 
search algorithm has been solved. This is due to the nature of the algorithms that is able to 
discover optimal areas in a large search space with little priori information. Many researches 
in auctions have used genetic algorithm to design or enhance the auction’s bidding 
strategies. The following section discusses works related to evolving bidding strategies. 

An evolutionary approach was proposed by Babanov (2003) to study the interaction of 
strategic agents with the electronic marketplace. This work describes the agents’ strategies 
based on different methodologies that employ incompatible rules in collecting information 
and reproduction. This work used the information collected from the evolutionary 
framework for economic studies as many researches have attempted to use evolutionary 
frameworks for economics studies (Nelson, 1995; Epstein & Axtell, 1996; Roth, 2002; 
Tesfatsion, 2002). This evolutionary approach allows the strategies to be heterogeneous 
rather than homogenous since only a particular evolutionary approach is applied. This work 
has shown that the heterogeneous strategies evolved from this framework can be used as a 
useful research data.  

ZIP, introduced by Cliff, is an artificial trading agent that uses simple machine learning to 
adapt and operate as buyers or sellers in online open-outcry auction market environments 
(Cliff, 1997). The market environments are similar to those used in Smith’s (Smith, 1962) 



 
Bio-Inspired Computational Algorithms and Their Applications 

 

266 

experimental economics studies of the CDA and other auction mechanisms. The aim of each 
zip agent is to maximize the profit generated by trading in the market. A standard genetic 
algorithm is then applied to optimize the values of the eight parameters governing the 
behavior of the ZIP traders which previously must be set manually. The result showed that 
GA-optimized traders performed better than those populated by ZIP traders with manually 
set parameter values (Cliff, 1998a; Cliff, 1998b). This work is then extended to 60 parameters 
to be set correctly. The experiment showed promising result when compared to the ZIP 
traders with eight parameters (Cliff, 2006). Genetic algorithm is also used to optimize the 
auction market parameters setting. Many tests have been conducted on ZIP to improve the 
agent traders and the auction market mechanism using genetic algorithm (Cliff, 2002a; Cliff, 
2002b). Thus, ZIP was able to demonstrate that genetic algorithm can perform well in 
evolving the parameters of bidding agents and the strategies.  

In another investigation, a UDA (utility-based double auction) mechanism is presented 
(Choi et, al. 2008). In UDA, a flexible synchronous double auction is implemented where the 
auctioneer maximizes all traders’ diverse and complex utility functions through 
optimization modeling based on genetic algorithm. It is a double auction mechanism based 
on dynamic utility function integrating the notion of utility function and genetic algorithm. 
The GA-optimizer is used to maximize total utility function, composed of all participants’ 
dynamic utility functions, and matches the buyers and sellers. Based on the experimental 
result, it performance is better than a conventional double auction.  

3. The bidding strategy framework  
As mentioned, this work is an extension of Anthony’s work (Anthony, 2003) to tackle the 
problem of bidding in multiple auctions that employ varying auctions protocols. This 
section details the electronic marketplace simulation, the bidding strategies and the genetic 
algorithm implemented in the previous work. 

3.1 The electronic market place simulation 

The market simulation employed three different auction protocols, English, Vickrey and 
Dutch that run simultaneously in order to simulate the real auction environment. The 
market simulation is used in this work to evaluate the performance of the evolved bidding 
strategies. The following section explains how the market simulation works. 

The marketplace simulator shown in Fig. 2 consists of concurrent running auctions that 
employ different protocols.  These protocols are English, Dutch and Vickrey. All of these 
auctions have a known starting time and only English and Vickrey auctions have a known 
ending time. The bidding agent is given a deadline (tmax) by when it must obtain the desired 
item and it is told about the consumer’s private valuation (pr) for this item. The agent must 
only buy an instance of the desired item.  

The marketplace announces the current bid values and the current highest bids for English 
auctions and the current offers for Dutch auctions at each time step. At the end of a given 
auction, it determines the winning bid and announces the winner. This set of information is 
used by the agent when deciding in which auction to participate, at what value to bid and in 
which time to bid. 

 
Performance of Varying Genetic Algorithm Techniques in Online Auction 

 

267 

 
Fig. 2. The Marketplace Simulator 

3.2 Bidding strategy 

The bidding algorithm for this framework is shown in Fig. 3. Let Item_NA be a boolean flag 
to indicate whether the target item has already been purchased by the agent. Assume that 
the value of pr is based on the current reliable market prices observed from past auctions 
and that the marketplace is offering the item which the agent is interested in. While the 
bidder agent has not obtained the desired item, the bidder agent needs to build an active 
auctions list in order to keep track of the current active auction. Active auction is defined as 
auction that is ongoing or just started but has not reach the ending time yet. 
 

while (t ≤ tmax ) and (Item_NA = true) 
       Build active auction list; 
       Calculate current maximum bid using the agent’s strategy; 
       Select potential auctions to bid in, from active auction list; 
       Select target auction as one that maximizes agent’s expected utility; 
       Bid in the target auction using current maximum bid as reservation price at this time; 
Endwhile 

Fig. 3. The bidding agent’s algorithm 

for all i є A 
     if ((t ≥ σi ) and (t ≤ ηi ) or (Si (t) = ongoing) 
          add i to L(t) 
    endif 
endfor 

Fig. 4. Building active auction list algorithms 

In order to build the active auction list, the bidder agent follows the algorithm as shown in 
Fig. 4. Si (t) is a boolean flag representing the status of auction i at time t, such that i є A and 
Si (t) є (ongoing; completed). Each auction i є A, has a starting time σi, and its own ending time 
ηi. The active auction list is built by taking all the auctions that are currently running at time 
t. In English and Vickrey auctions, any auction that has started but has not reached its 
ending time is considered as active. Si (t) is used in Dutch auctions since the ending time of 
this type of auction is not fixed. 
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After the bidder agent builds the active auctions list, the bidder agent will start calculating 
the current maximum bid based on the agent strategy. The current maximum bid is defined 
as the amount of the agent willing to bid at the current time that is lesser than or equal to the 
agent’s private valuation. Four bidding constraints are used to determine the current 
maximum bid namely the remaining time left, the remaining auction left, the desire for 
bargain and the level of desperateness. 

The remaining time tactic considers the amount of bidding time the bidder agent has to 
obtain the desire item. This tactic determines the bid value based on the bidding time left. 
Assuming that the bidding time t is between 0 and tmax (0 ≤ t ≤ tmax), the current bid value is 
calculated based on the following expression: 

 ( )rt rt rf t P= α   (1) 

where ( )rt tα  is a polynomial function of the form: 

 ( ) ( )
1

max

1rt rt rt
tt k k

t
 

= + −  
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β
α     (2) 

This function is a time dependent polynomial function where the main consideration is the 
time left from the maximum time allocated. krt is a constant that determines the value of the 
starting bid of the agent in any auction multiplied by the size of the interval. This time 
dependent functions can be defined as those that start bidding near pr rapidly to those only 
bid near pr right at the end along with all the possibilities in between with variation of the 
value ( )rt tα . Different shapes of curve can be obtained by varying the values of β by using 
the equation defined above. There are unlimited numbers of possible tactics for each value 
of β.  In this tactic, β value is defined between 0.005 ≤ β ≤ 1000. It is possible to have two 
different behaviors for β. When β < 1, the tactic will bid with a low value until the deadline 
is almost reached, whereby this tactic concedes by suggesting the private valuation as the 
recommended bid value. When β > 1, the tactic starts with a bid value close to the private 
valuation and quickly reaches the private valuation long before the deadline is reached. Fig. 
5 shows the different shape of the curves with varying β values.  

 
Fig. 5. The curve with varying β value. (Anthony, 2003) 
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The remaining auction left tactic, on the other hand, considers the number of remaining 
auctions that the bidder agent is able to participate in order to obtain the item. This tactic 
bids closer to pr as the number of the remaining auctions decreases when the bidder agent is 
running out of opportunities to obtain the desired item. The current bid value is calculated 
based on the following expression: 

 ( )ra ra rf t p= α   (3) 

where ( )ra tα  is a polynomial function of form: 

 ( ) ( )
1

1
| |ra ra ra
c t

k k
A

 
= + −  
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β
α   (4) 

The polynomial function raα  is quite similar to the terms use in rtα , whereby the only 
difference between the two function is the c(t).  c(t) is a list of auctions that have been 
completed between time 0 and t. The β value for this tactic is identical to the remaining time 
tactic between 0.005 ≤ β ≤ 1000. 

The desire for a bargain tactic is the bidder agent that is interested in getting a bargain for 
obtaining the desired item. In this scenario, the bidder agent needs to take into account all 
the ongoing auctions and the time left to obtain the item. The current bid value is calculated 
based on the following expression: 

 ( ) ( ) ( )( )ba ba rf t t p t= + −ω α ω    (5) 

In the expression above, the variable ( )tω  takes into account all the ongoing auctions along 
with the current bid value. The Dutch and English are considered solely in this expression as 
only these two auctions have current bid value. As a consequence, the minimum bid value is 
calculated based on the current bid value and also the proportion of the time left in the 
auction. These values are summed and averaged with respect to the number of active 
auctions at that particular time. The expression for ( )tω  is calculated based on the formula 
as below: 
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where vi is the current highest bid value in an auction I at time t, and I є L(t); 

σi, and ηi is the start and end time of auction i 

The expression for ( )ba tα  is defined as: 
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where vi is the current highest bid value in an auction I at time t, and I є L(t); 

σi, and ηi is the start and end time of auction i 
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The valid range for the constant kba is 0.1 ≤ kba ≤ 0.3 and the β value is 0.005 ≤ β ≤ 0.5. The β 
value is lower than 1 as bidder agent that is looking for bargain will never bid with the 
behavior of β >1. The β value is, therefore, constantly lower than 1 in order to maintain a low 
bid until the closes to the end time. Hence, the value of β < 0.5 is used. 

The level of desperateness tactic is the bidder agent’s desperateness to obtain the target item 
within a given period and thus, the bidder agent who possesses this behavior tend to bid 
aggressively. This tactic utilizes the same minimum bid value and the polynomial function 
as the desire for bargain tactic but with a minor variation to the β and kde value.  The valid 
range for the constant kde for this tactic is 0.7 ≤ kde ≤ 0.9 while the β value is 1.67 ≤ β ≤ 1000. 
The β value is higher than 1 in this case as the bidder agent that is looking for bargain will 
never bid with the behavior of β <1. As a result, the β value is always higher than 0.7 since 
the bidder agent will bid close to the private valuation. 

There is a weight associated to each of this tactic and this weight is to emphasize which 
combination of tactics that will be used to bid in the online auction. The final current 
maximum bid is based on the combination of the four tactics by making use of the weight. 
Fig. 6 shows various combinations of the bidding constraints based on the different weight 
associated to the bidding tactics. It can also be seen that different bidding patterns are 
generated by varying the value of weights of the bidding constraints. 

 
Fig. 6. Various combinations of the bidding constraints 

3.3 Genetic algorithm 

3.3.1 Representation 

Floating point encoding is applied in this particular work as floating point encoding has 
shown to produce faster, more consistent and more accurate results (Janikow & 
Michalewicz, 1991). The floating encoding is, therefore, represented using an array of 
structure. The individuals that are represented in a floating point array structure are shown 
in Table 1. 

 
Performance of Varying Genetic Algorithm Techniques in Online Auction 

 

271 

pr Agent’s private valuation 
tmax Deadline given to the agent to obtain the desired item 
krt k for the remaining time tactic 
βrt β for the remaining time tactic 
kra k for the remaining auction tactic 
βra β for the remaining auction tactic 
kba k for the desire for a bargain tactic 
βba β for the desire for a bargain tactic 
kde k for the desperateness tactic 
βde β for the desperateness tactic 
wrt Relative weight for the remaining time tactic 
wra Relative weight for the remaining auction tactic 
wba Relative weight for the desire for a bargain tactic 
wde Relative weight for the desperateness tactic 
fitness Fitness score for the individual 

Table 1. Bidding strategies representation 

3.3.2 Representation 

Fitness function is an objective function that quantifies the optimality of a solution in a 
genetic algorithm so that the particular chromosome may be ranked against all the other 
chromosomes. The main focus of the strategies evaluation in this work is the success rate 
and average utility of the strategies. Three fitness equations are used to evaluate the 
performance of the strategies namely the success rate, the agent’s utility function and 
agent’s utility with penalty. The success rate is the rate in obtaining the desired item and the 
second fitness function is the agent’s utility 
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where v represents the winning bid and c is an arbitrary constant 0.001 to ensure that the 
agent receives some value when the winning bid is equivalent to its private valuation. The 
third fitness equation involves a variation of the agent utility. If the agent fails to get the 
item, a penalty that ranges from 0.01 to 0.05 is incurred. Basically, Fitness Equation 1 is used 
if the delivery of the item is of utmost importance to the user. Fitness Equation 2 is used 
when the agent is looking for a bargain. Fitness Equation 3 is used when both the delivery of 
the item and looking for a bargain are equally important. The fitness score is then computed 
by taking the average utility from a total of 2000 runs. 

3.3.3 Selection operators 

Elitism is an operator used to retain some number of the best individuals in each generation 
to the next generation in order to ensure that the fittest individual is not lost during the 
evolution process (Obitko, 1998). Elitism is applied in this work to retain ten percent of the 
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best individuals to the new population and to ensure that a significant number of the fitter 
individuals will make it to the next generation. Tournament selection is applied in the 
genetic algorithm for selecting the individuals to the mating pools for the remaining ninety 
percent of the population (Blickle & Thiele, 2001). Tournament selection technique was 
chosen because it is known to perform well in allowing a diverse range of fitter individuals 
to populate the mating pool (Blickle & Thiele, 1995). By implementing the tournament 
selection, fitter individuals can contribute to the next generation genetic construction and 
the best individual will not dominate in the reproduction process compared to the 
proportional selection. 

3.3.4 Crossover process 

The extension operator floating point crossover operator is used this work (Beasley et al. 
1993b). This operator works by taking the differences between the two values, adding it to 
the higher value (giving the maximum range), and subtracting it from the lower value 
(giving the minimum range). The new values for the genes are then generated between the 
minimum and the maximum range that were derived using this operator (Anthony & 
Jennings, 2002).  

3.3.5 Mutation process 

Since the encoding is a floating point, the mutation operator used in this work must be a 
non-binary mutation operator. Beasley has suggested a few non-binary mutation operators 
such as random replacement, creep operator and geometric creep (Beasley et al. 1993b) that 
can be used. The creep operator which adds or subtracts a small randomly generated amount 
from selected gene is used to allow a small constant of 0.05 to be added or subtracted from 
the selected gene depending on the range limitation of the parameter (Anthony & Jennings, 
2002).   

3.3.6 Stopping criteria 

The genetic algorithm will repeat the process until the termination criteria are met. In this 
work, the evolution stops after 50 iterations. An extensive experiment was conducted to 
determine the point at which the population converges. It was decided to choose 50 as the 
stopping criterion since it is was observed that the population will always converge before 
or at the end of the 50 iterations. 

Anthony’s work has some shortcoming where the crossover and mutation rate used in the 
work is based on literature review recommended values. However, researches have shown 
that the crossover rate and mutation rate applied in the application are application 
dependent, thus, simulation need to be conducted in order to find the suitable crossover and 
mutation rate. Besides that, other variations of genetic algorithm have proven to perform 
better that traditional genetic algorithm which is worthwhile to be investigated.  

4. Parameter tuning  
Many researchers such De Jong, Grefenstte, Schaffer and others have contributed 
considerable efforts into finding the parameters values which are good for a number of 
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numerical test problems. The evolution of the bidding strategies by Anthony and Jennings 
(Anthony & Jennings, 2002) employed a fixed crossover and mutation probability based on 
the literatures. However, these recommended values may not perform at its best in the 
genetic algorithm as it has been proven that the parameter values are dependent on the 
nature of problems to be solved (Engelbrecht, 2002). In this experiment, the crossover and 
mutation rates are fine tuned with different combination of probabilities in order to discover 
the best combination of genetic operators’ probabilities. Thus, the main objective of this 
experiment is to improve the effectiveness of the bidding strategies by “hand tuning” the 
values of the crossover rate and mutation rate to allow a new combination of static crossover 
and mutation rates to be discovered. By improving the algorithm, more effective bidding 
strategies can be found during the exploration of the solution. 

The experiment is subdivided to two parts. The first one varies the crossover rate and the 
second one varies the mutation rate. At the end of this experiment, the combination rate 
discovered is compared and empirically evaluated with the bidding strategies evolved in 
Anthony’s work (Anthony, 2003). 

4.1 Experimental setup 

Table 2 and 3 show the evolutionary and parameter setting for the genetic algorithm. The 
parameters setting in the simulated environment for the empirical evaluations are shown 
in Table 4. These parameters include the agent’s reservation price; the agent’s bidding 
time and the number of active auctions. The agent’s reservation price is the maximum 
amount that the agent is willing to pay for the item while the bidding time is the time 
allocated for the agent to obtain the user’s required item. The active auctions are the list of 
auctions that is ongoing before time tmax. Fig. 7 shows the pseudocode of the genetic 
algorithm. 
 

Representation Real Values Number 
Crossover Extension Combination Operator 
Mutation Creep Operator 
Selection Tournament Selection 

Table 2. Genetic algorithm evolutionary setting 

Number of Generations 50 

Number of Individuals 50 

Elitism 10% 

Crossover Probability 0.2, 0.4, 0.6, 0.8 

Mutation Probability 0.2, 0.02, 0.002 

Termination Criteria After 50 Generation 

Number of Run 10 

Table 3. Genetic algorithm parameter setting 
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Agent reservation price 73 ≤ pr ≤ 79 

Bidding time for each auction 21 ≤ tmax ≤ 50

Number of active auction 20 ≤ L(t) ≤ 45

Table 4. Configurable parameters for the simulated marketplace 

Begin 
     Randomly create initial bidder populations; 
     While not (Stopping Criterion) do 
        Calculate fitness of each individual by running the 
        marketplace 2000 times; 
        Create new population 
           Select the fittest individuals (HP); 
           Create mating pool for the remaining population; 
           Perform crossover and mutation in the mating   
           pool to create new generation(SF); 
           New generation is HP + SF; 
    Gen = Gen + 1 
    End while 
End 

Fig. 7. Genetic algorithm 

4.2 Experimental evaluation 

The performance of the evolved strategies is evaluated based on three measurements. 
Firstly, the average fitness is the fitness of the population at each generation over 50 
generations. The average fitness shows how well the strategy converges over time to find 
the best solution.  

Secondly, success rate is the percentage of time that an agent succeeds in acquiring the item 
by the given time at any price less than or equal to its private valuation. This measure will 
determine the efficiency of the agent in terms of guaranteeing the delivery of the requested 
item. Individual will be selected from each of the data set to compete in the simulated 
marketplace for 200 times. The success is calculated based on the number of time the 
agent is able to win the item over 200 runs. The formula below is used to calculate the 
success rate. 

 (Number of winning) x 200Success Rate= 
100

  (9) 

Finally, the third measurement is the average payoff which is defined as  
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where pr is the agent’s private valuation, n is the number of runs, vi is the winning bid value 
for auction i. This value is then divided by the agent’s private valuation, summed and 
average over the number of runs. The agent’s payoff is 0 if it is not successful in obtaining 
the item. 

A series of experiments was conducted using the set of crossover and mutation rate 
described in Table 2. It was found that 0.4 crossover rate and 0.02 mutation rate performed 
better than the other combinations (Gan et al, 2008a, Gan et al, 2008b). An experiment was 
conducted with the newly discovered crossover rate pc = 0.4 and mutation rate pm = 0.02. The 
result was then compared with the original combination of the genetic operators’ (pc = 0.6 
and pm = 0.02). Figures 8, 9 and 10 shows the comparison between the strategies evolved 
using a combination of crossover rate 0.4 and a mutation rate of 0.02 and the combination of 
crossover rate 0.6 with a mutation rate of 0.02. The new strategies evolved from the 
combination of the crossover rate of 0.4 and mutation rate of 0.02 produced better result in 
terms of the average fitness, the success rate and the average payoff. It can be observed that 
the mutation rate of 0.02 evolved better strategies when compared to other mutation rates as 
well (0.2 and 0.002). This rate is similar to the research outcome by Cervantes (Cervantes & 
Stephen, 2006) in which a mutation rate below the 1/N and error threshold is 
recommended. Besides, the results of the comparison showed that the combination of 0.4 
crossover rate and 0.02 mutation rate can achieve better balance in the exploration and 
exploitation in evolving the bidding strategies as well. T-test is performed to show the 
significant improvement of this newly discovered combination of genetic operator 
probabilities. The symbol of ⊕  in Table 5 indicates that the P-value is less than 0.05 and has 
significant improvement. 
 

 P Value 
Average Fitness ⊕  
Success Rate ⊕  
Average Payoff ⊕  

Table 5. P value of the t-test statistical analysis for comparison between newly discovered 
genetic operator probabilities with the old set of genetic operator probabilities 

 
Fig. 8. Comparison of Average Fitness between the benchmark and the newly discovered rate. 
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where pr is the agent’s private valuation, n is the number of runs, vi is the winning bid value 
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Fig. 9. Success rate for strategies evolved with the benchmark and the newly discovered rate 

 
Fig. 10. Average payoff for strategies evolved with the benchmark and the newly discovered 
rate 

This section investigated the performance of various combinations of predetermined sets of 
genetic operators’ rates in genetic algorithm on a flexible and configurable heuristic decision 
making framework that is capable to tackle the problem of bidding across multiple auctions 
that applied different protocols (English, Vickrey and Dutch). As mentioned earlier, the 
optimal combinations of operators’ probabilities of applying these operators are problem 
dependent. Thus, experiments have to be conducted in order to discover a new operator of 
combinations genetic operator probability which can improve the effectiveness of the 
bidding strategy. This experiment has proven that the crossover rate and mutation rate 
which were applied in the previous work are not the best value to be used in this 
framework. With this new combination of genetic operators, the experimental evaluation 
has also shown that the strategies evolved performed better than the other strategies 
evolved from the other combinations in terms of success rate and average payoff when 
bidding in the online auction marketplace. By discovering a better combination of genetic 
operator’s probabilities, the improved performance of the bidding strategies as shown in 
Fig. 8, 9, and 10 are achieved. From this parameter tuning experiment, it can be confirmed 
that the parameters are problem dependent. However, trying out all of the different 
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combinations systematically is practically impossible as hand tuning the parameter is very 
time consuming. Therefore, in the second stage of the experiment, deterministic dynamic 
adaptation is applied to genetic algorithm to evolve the bidding strategies in order to 
overcome the manual tuning problem. 

5. Deterministic dynamic adaptation 
Many researchers have applied deterministic dynamic adaptation in evolutionary 
algorithms as a method to improve the limitation in the performance of evolutionary 
algorithms. This type of adaptation alters the value of strategy parameter by using some 
deterministic rule (Fogarty, 1989; Hinterding et al. 1997). The value of the strategy parameter 
is modified by the deterministic rule which is normally a time-varying schedule. It is 
different from the standard genetic algorithm since GA applies a fixed mutation rate over 
the evolutionary process. Most of the practical applications often favor larger or non-
constant settings of the genetic operators’ probabilities. (Back & Schutz, 1996). Some of the 
studies have proved the usefulness and effectiveness of larger, varying mutation rates (Back, 
1992; Muhlenbein, 1992). 

In this work, a time-variant dependent control rule is applied to change the control 
parameters over time without taking into account any present information by the 
evolutionary process itself (Eiben et al. 1999; Hinterding et al. 1997). Several studies have 
shown that a time dependent schedule is able to perform better than a fixed constant control 
parameter (Fogarty, 1989; Hesser & Manner, 1990; Hesser & Manner, 1992; Back & Schutz, 
1996). The control rule is used to change the control parameter over the generation of the 
evolutionary process. The newly discovered crossover and mutation rates from the first 
experiment will be used in this particular schedule to serve as the midpoint in the time 
schedule. The parameter step size will change equally over the generation of the 
evolutionary process as well. This experiment is intended to discover the best deterministic 
dynamic adaptation by varying the genetic operators’ probability scheme in exploring the 
bidding strategies. 

The deterministic increasing and decreasing schemes for the crossover and mutation are 
different due to the changing scale of the values.  The newly discovered crossover rates 
obtained from Section 3 is used as the midpoint for the time variant schedule because the 
convergence period of the evolution occur around the 25th generation. Consequently, the 
deterministic increasing scheme for the crossover rate will change progressively from pc = 
0.2 to pc = 0.6 over the generation whereas the decrease scheme for the crossover rate is vice 
versa.  The mutation rate obtained from the previous experiment is used as the midpoint of 
the time variant schedule for the increasing and decreasing schemes. The deterministic 
increasing scheme for the mutation rate, in contrast, will change progressively from pm = 
0.002 to pm = 0.2 over the generation and vice versa for the deterministic decreasing schemes. 
The changing scale during each generation is decided by taking the difference between 
ranges of the rate divided by the total number of generation. 

5.1 Experimental setup 

Table 6 shows the parameter setting for the deterministic dynamic adaptation genetic 
algorithm. The evolutionary setting and parameter setting in the simulated environment is 
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Fig. 9. Success rate for strategies evolved with the benchmark and the newly discovered rate 

 
Fig. 10. Average payoff for strategies evolved with the benchmark and the newly discovered 
rate 
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ranges of the rate divided by the total number of generation. 

5.1 Experimental setup 

Table 6 shows the parameter setting for the deterministic dynamic adaptation genetic 
algorithm. The evolutionary setting and parameter setting in the simulated environment is 
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the same as Tables 2 and 4. Fig. 11 shows the pseudocode of the deterministic dynamic 
adaptive genetic algorithm.  
 

Representation Floating Points Number 
Number of Generations 50 
Number of Individuals 50 
Elitism 10% 
Selection Operator Tournament Selection 
Crossover Operator Extension Combination Operator 
Crossover Probability Change(Range from 0.4 to 0.6) / Fixed (0.4) 
Mutation Operator Creep Operator 
Mutation Probability Change (Range from 0.2 to 0.002) / Fixed (0.02) 
Termination Criteria After 50 Generation 
Numbers of Repeat Run 30 

Table 6. Deterministic dynamic adaptation parameter setting 
 

Begin 
     Randomly create initial bidder populations; 
     While not (Stopping Criterion) do 
        Calculate fitness of each individual by running the 
        marketplace 2000 times; 
        Create new population 
           Select the fittest individuals (HP); 
           Create mating pool for the remaining population; 
           Perform crossover and mutation in the mating   
           pool to create new generation(SF); 
           New generation is HP + SF; 
    Change the control parameter value (Crossover / Mutation) 
    Gen = Gen + 1 
    End while 
End 

Fig. 11. The Deterministic Dynamic Adaptation Genetic Algorithm 

Crossover Rate Mutation Rate Abbreviation
Fixed Increase CFMI 
Fixed Decrease CFMD 
Increase Fixed CIMF 
Decrease Fixed CDMF 
Increase Increase CIMI 
Decrease Decrease CDMD 
Increase Decrease CIMD 
Decrease Increase CDMI 

Table 7. The Deterministic Dynamic Adaptation testing sets 
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5.2 Experimental evaluation 

The performance of the evolved bidding strategies is evaluated based on three 
measurements discussed in Section 4.2. As before, the average fitness of the each population 
is calculated over 50 generations. The success rate of the agent’s strategy and the average 
payoff is observed over 200 runs in the market simulation. 

A series of experiments were conducted with the deterministic dynamic adaptation using 
the testing sets in Table 7. From the experiments, CFMD and CDMI performed better than 
the other combinations (Gan et al, 2008a, Gan et al, 2008b). Fig. 12 shows that the population 
evolved with deterministic dynamic adaptation is able to perform a lot better than the fixed 
constant crossover and mutation rates. This result is similar to the ones observed by other 
researches where non-constant control parameter performed better than fixed constant 
control parameter (Back 1992; Back 1993; Back & Schutz 1996; Fogarty 1989; Hesser & 
Manner, 1991; Hesser & Manner, 1992). Even though, the point of convergence for the 
different dynamic deterministic scheme is similar, the population with CDMI achieved a 
higher average fitness when compared to the populations with CFMD. The CDMI scheme 
with the increase mutation rate is able to maintain exploration velocity in the search space 
till the end of the run with the decreasing crossover rate achieving a balance between 
exploitation with the exploration in the search space and also to achieve a balance between 
exploration and exploitation in this setting.  
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Fig. 12. Comparisons between the average fitness of CFMF, CFMD, and CDMI 

Based on Fig. 13 and Fig. 14 CDMI outperformed CFMF and CFMD in both the success rate 
and the average payoff. This shows that the strategy evolved by using the CDMI does not 
only generate a better average fitness but also evolves better effective strategies compared to 
the strategy evolved for the other deterministic schemes and they are able to gain a higher 
profit when procuring the item at the end of the auction. It achieved a higher average fitness 
function during the evolution process as well.  
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the other combinations (Gan et al, 2008a, Gan et al, 2008b). Fig. 12 shows that the population 
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constant crossover and mutation rates. This result is similar to the ones observed by other 
researches where non-constant control parameter performed better than fixed constant 
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Fig. 12. Comparisons between the average fitness of CFMF, CFMD, and CDMI 

Based on Fig. 13 and Fig. 14 CDMI outperformed CFMF and CFMD in both the success rate 
and the average payoff. This shows that the strategy evolved by using the CDMI does not 
only generate a better average fitness but also evolves better effective strategies compared to 
the strategy evolved for the other deterministic schemes and they are able to gain a higher 
profit when procuring the item at the end of the auction. It achieved a higher average fitness 
function during the evolution process as well.  
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Fig. 13. Success rate comparison between CFMF, CFMD and CDMI 

 
Fig. 14. Average payoff comparison between CFMF, CFMD and CDMI 

This experiment has proven that non-constant genetic probabilities are more favorable than 
constant genetic probabilities. However, the deterministic dynamic adaptation may change 
the control parameter without taking into account the current evolutionary process as it 
does not take feedback from the current state evolutionary process whether the genetic 
operators’ probabilities performed best at that current state of evolutionary process. The 
third stage of the experiment applies another adaptation method known as self-
adaptation. The self-adaptation method is different from the deterministic dynamic 
adaptation where the self-adaptation evolves the parameter based on the current status of 
the evolutionary process. The self-adaptation method incorporates the control parameters 
into the chromosomes, thereby, subjecting them to evolution. In the last stage of the 
experiment, the self-adaptation is applied to genetic algorithm in order to evolve the 
bidding strategies. 
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6. Self-adaptation 
The idea of self-adaptation is based upon the evolving of evolution. Self-adaptation has been 
used as one of the method to regulate the control parameter. As the name implies, the 
algorithm controls the adjustment of the parameters itself. This is done by encoding the 
parameter into the individual genomes by undergoing mutation and recombination. The 
control parameters can be any of the strategy parameters in evolutionary algorithm such as 
mutation rate, crossover rate, population size, selection operators and others (Back et al. 
1997). However, the encoded parameters do not affect the fitness of the individuals directly, 
but rather, “better” values will lead to “better” individuals and these individuals will be 
more likely to survive and produce offspring and hence, proliferating these “better” 
parameter values. The goal of the self-adaptation is not only to find the suitable adjustment 
but also to execute it efficiently. The task is further complicated when the optimizer faced by 
a dynamic problem is taken into account since a parameter setting that was optimal at the 
beginning of an EA-run might become unsuitable during the evolution process. This 
scenario has been shown in some of the researches that different values of parameters might 
be optimal at different stages of the evolutionary process (Back, 1992a; Back, 1992b; Back, 
1993; Davis, 1987; Hesser & Manner, 1991). Self-adaptation aims at biasing the distribution 
towards appropriate regions of search space and maintains sufficient diversity among 
individuals in order to enable further evolvability (Angeline, 1995; Meyer-Nieberg & Beyer, 
2006). 

The self-adaptation method has been commonly used in evolutionary programming (Fogel, 
1962; Fogel, 1966) and evolutionary strategies (Rechenberg, 1973; Schwefel, 1977) but it is 
rarely used in genetic algorithms (Holland, 1975). This work applies self-adaptation in 
genetic algorithm which aims to adjust the crossover rate and mutation rate. The optimal 
rate for different phases of the evolution is obtained when different self-adaptation is 
capable in improving the algorithm by adjusting the crossover rate and mutation rate based 
on the current phase of the algorithm. Researchers have shown that the self-adaptation is 
able to improve the crossover in genetic algorithm (Schaffer & Morishima, 1987; Spears, 
1995). In addition, studies also showed that the self-adaptive mutation rate does perform 
better than fixed constant mutation rate by incorporating the mutation rate into the 
individual genomes (Back, 1992a; Back, 1992b). In this section, three different self-adaptation 
schemes will be tested to discover the best self-adaptation scheme from this testing set. The 
self-adaptation requires the crossover and mutation rates to be encoded into the individual’s 
genomes. Thus, some modification the encoding representation needs to be performed. The 
crossover and mutation rate become part of the genomes which will go through the 
crossover and mutation processes similar to the other alleles.  

6.1 Experimental setup 

Table 8 shows the parameter setting for the self-adaptive genetic algorithm. The 
evolutionary setting and parameter setting in the simulated environment is same as Table 2 
and 4. Fig. 15 shows the pseudocode of the deterministic dynamic adaptive genetic 
algorithm. Fig. 16 shows the different encoding representation of the individual genome 
that will be used in the experiment. The crossover and mutation rate are encoded into the 
representation in order to go through the evolution process. 
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Fig. 14. Average payoff comparison between CFMF, CFMD and CDMI 
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constant genetic probabilities. However, the deterministic dynamic adaptation may change 
the control parameter without taking into account the current evolutionary process as it 
does not take feedback from the current state evolutionary process whether the genetic 
operators’ probabilities performed best at that current state of evolutionary process. The 
third stage of the experiment applies another adaptation method known as self-
adaptation. The self-adaptation method is different from the deterministic dynamic 
adaptation where the self-adaptation evolves the parameter based on the current status of 
the evolutionary process. The self-adaptation method incorporates the control parameters 
into the chromosomes, thereby, subjecting them to evolution. In the last stage of the 
experiment, the self-adaptation is applied to genetic algorithm in order to evolve the 
bidding strategies. 
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Representation Floating Points Number 

Number of Generations 50 

Number of Individuals 50 

Elitism 10% 

Selection Operator Tournament Selection 

Crossover Operator Extension Combination Operator 

Crossover Probability Self-Adapted / Fixed (0.4) 

Mutation Operator Creep Operator 

Mutation Probability Self-Adapted / Fixed (0.02) 

Termination Criteria After 50 Generation 

Numbers of Repeat Run 30 

Table 8. Self-adaptation genetic algorithm parameter setting 

Generation = 0 
Random initialize population 
While generation not equal 50 
         Evaluate population fitness 
         Select the top 10% to next generation 
         Tournament Selection Parents to Mating Pool 
         Check Parents Crossover Rate 
         Generating offspring through crossover process 
         Check Individual Mutation Rate 
         Mutate the offspring 
         Select offspring to the next generation 
         Generation = Generation + 1 

Fig. 15. The self adaptation algorithm both genetic operators 
 

krt βrt kra βra kba βba kde βde wrt wra wba wde pc pm 

Fig. 16. Encoding of a bidding strategy for self-adaptation crossover and mutation rate 
 

Crossover Rate Mutation Rate Abbreviation

Fixed Self-Adapted SAM 

Self-Adapted Fixed SAF 

Self-Adapted Self-Adapted SACM 

Table 9. Self-adaptation testing sets 
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6.2 Experimental evaluation 

The performance of the evolved bidding strategies is also evaluated based on the three 
measurements discussed in Section 4.2. As before, the average fitness of the each population 
is calculated over 50 generations. The success rate of the agent’s strategy and the average 
payoff is observed over 200 runs in the market simulation. 

A series of experiments were conducted with the self-adaptive testing sets described in 
Table 10. From the experiments, self-adapting both crossover and mutation rates performed 
better than the other combinations (Gan et al, 2009). The population with self adaptive 
crossover and mutation (SACM) achieved a higher average fitness compared to the 
population of self-adaptive crossover (SAC) and self –adaptive mutation schemes (SAM) as 
shown in Fig. 17. This scenario implies that the population with self adaptive crossover and 
mutation perform at its best among other populations and this is due to the self-adaptation 
crossover and mutation scheme which has combined the advantageous of the self-adaptive 
crossover and self-adaptive mutation scheme together. By having the two parameters to 
self-adapt, the control parameter can be adjusted to find the solution in different stages with 
the best control parameter which have been shown in the previous study indicating that 
different evolution stages will possess different optimal parameter values (Eiben et al. 1999). 
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Fig. 17. Average fitness for different self-adaptation schemes 

 
Fig. 18. Success rate for strategies evolved from different self-adaptation schemes 
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Fig. 17. Average fitness for different self-adaptation schemes 

 
Fig. 18. Success rate for strategies evolved from different self-adaptation schemes 
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Fig. 19. Average payoff for strategies evolved from different self-adaptation schemes 

All of the individuals generated a 4% increase in success rate and average payoff after 
employing the self adaptive crossover and mutation schemes as shown in Fig. 18 and Fig. 19 
This has proven that the strategy evolved by using the self adaptive crossover and mutation 
does not only generate a better average fitness and success rate but also evolves better 
effective strategies compared to the strategy evolved for other self adaptive schemes. 

7. Comparison between variations of genetic algorithm 
In order to determine which of the three approaches perform the best in improving the 
effectiveness of the bidding strategies, the best result of each experiment is compared. The 
comparison is made by choosing the best performing schemes from the parameter tuning, 
deterministic dynamic adaptation and self-adaptation experiments. The main objective of 
this work is to improve the effectiveness of the existing bidding strategies by using different 
disciplines of the genetic algorithm.  
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Fig. 20. Average fitness population with different genetic algorithm disciplines 

Fig. 20 shows the average fitness for the evolving bidding strategy with different disciplines 
of the genetic algorithm. It can be seen clearly that there is an obvious differences between 
the convergence points in the different genetic algorithm disciplines. Self-adaptation 
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achieves a higher average fitness compared to benchmark, the newly discovered static rate 
and deterministic dynamic adaptation. Although average fitness of the self-adaptation and 
deterministic dynamic adaption is similar, self-adaptation achieves a higher average fitness 
when compared to deterministic dynamic adaptation. 

 
Fig. 21. Success rate for strategies evolved from different genetic algorithm disciplines 

 
Fig. 22. Average payoff for strategies evolved from different genetic algorithm disciplines 

The individuals evolved from the self adaptive genetic algorithm outperformed the other 
individuals from the other disciplines by delivering a more promising success rate. The 
strategy evolved is 1% higher than the strategies evolved from the deterministic dynamic 
adaptation. When compared to the benchmark value, an increase of 4% in the success rate is 
generated by the strategy which that employed the self-adaptation method. As a result, the 
strategy evolved from the self adaptive genetic algorithm can evolve better strategies and 
deliver higher success rate when bidding in online auctions which will eventually, improve 
the GA in searching for better bidding strategies. 

All of the strategies evolved from the self adaptive genetic algorithm outperformed the rest 
with 2% higher average payoff when compared to the strategies which applied deterministic 
dynamic adaptation and 4% higher when compared to the strategies from the benchmark. 
This result obtained indicates that the strategy evolved by using the self adaptive genetic 
algorithm does not only produce a better average fitness and success rate but also evolves 
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Fig. 19. Average payoff for strategies evolved from different self-adaptation schemes 

All of the individuals generated a 4% increase in success rate and average payoff after 
employing the self adaptive crossover and mutation schemes as shown in Fig. 18 and Fig. 19 
This has proven that the strategy evolved by using the self adaptive crossover and mutation 
does not only generate a better average fitness and success rate but also evolves better 
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this work is to improve the effectiveness of the existing bidding strategies by using different 
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better effective strategies compared to the other strategies evolved for other disciplines and 
they have gained higher profit when procuring the item.  
 

SA Benchmark Newly Discovered Static Rate DDA 
Success Rate ⊕  ⊕  ⊕  
Average Payoff ⊕  ⊕  ⊕  

Table 10. P value for the comparison between different disciplines in term of success rate 
and average payoff 

The symbol ⊕  in Table 10 indicates that the P-value is less than 0.05 and has significant 
improvement. The result of P value in the t-test in Table 10 shows the improvement 
generated by the self-adaptation is more significant compared to the other disciplines. 
Hence, it can be confirmed that self-adaptation is the best discipline in improving the 
effectiveness of the bidding strategies. 

8. Conclusion 
Based on the results of the experiments, the strategies evolved with self adaptive genetic 
algorithm achieved the most ideal result in terms of success rate and average payoff in an 
online auction environment setting. The strategies have also achieved a higher average 
fitness function during the evolution process.  

The result in Figure 20, 21, 22 and Table 10 confirmed this conclusion by empirically proving 
that self adaptive genetic algorithm can evolve better bidding strategies compared to the 
other genetic algorithm disciplines. Among these different methods, the self-adaptation 
outperformed all of the other methods due to the nature of the method. In order to achieve 
better bidding strategies, the self-adaptation crossover and mutation scheme can be used to 
ensure better bidding strategies which in turn produces higher success rate, average fitness 
and average payoff. 

Further investigation can be conducted by evolving the bidding strategies with two other 
evolution methods which are the evolution strategies and evolution programming. Evolving 
the bidding strategies with the evolution programming and evolution strategies may 
generate interesting result which different from genetic algorithm. A comparison between 
performances the evolutions strategies, evolution programming and genetic algorithm may 
produce interesting results. 
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1. Introduction 
Data stream is massive sequence of data elements generated at a rapid rate which is 
characterized by continuously flowing, high arrival rate, unbounded size of data and real-
time query requests. The knowledge embedded in a data stream is more likely to be 
changed as time goes by. Identifying the recent change of a data stream, especially for an 
online data stream, can provide valuable information for the analysis of the data stream. 
Frequent patterns on a data stream can provide an important basis for decision making and 
applications. Because of the data stream’s fluidity and continuity, the information of 
frequent patterns changes with the new data coming. 

Mining over data streams is one of the most interesting issues of data mining in recent years.  
Online mining of data streams is an important technique to handle real-world applications, 
such as traffic flow management, stock tickers monitoring and analysis, wireless 
communication management, etc. In most of the data stream applications, users tend to pay 
more attention to the mode information of the recent data stream. Therefore, mining 
frequent patterns in recent data stream is a challenging work. The mining process should 
have one-pass algorithm, high efficiency of updating, limited space cost and online response 
of queries. However, most of mining algorithms or frequency approximation algorithms 
over a data stream could not have high efficiency to differentiate the information of recently 
generated data elements from the obsolete information of old data elements which may be 
no longer useful or possibly invalid at present.  

Many previous studies contributed to efficient mining of the frequent itemsets over the 
streams. Generally, three processing models are used which are the landmark model, the 
sliding window model and the damped model[1]. The landmark model analyzes the stream 
in a particular window, which starts from a fixed timestamp called landmark and ends up 
with the current timestamp. For the sliding window model case, the mining process is 
performed over a sliding window of a fixed length. Based on the sliding window model, the 
oldest data is pruned immediately when a new data arrives. The damped model uses the 
entire stream to compute the frequency with a decay factor d, which makes the recent data 
more important than the previous ones.  
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Mining frequent patterns on a data stream has been studied in many ways and the mining 
methods include Dstree[2,3,4], FP-tree[5,6,7]as well as estDec[11] algorithm. 

FP-Tree structure is generated by reading data from the transaction database. Each tree node 
contains an item marker and a count. The count shows transaction numbers which is 
mapped in the path. Initially FP-Tree contains only one root node, marked with the symbol 
null. First of all it scans the data set to determine the support count of each item to discard 
non-frequent items, and list the frequent items in descending order according to their 
support count. Then, it scans data set secondly to construct FP-Tree. After reading the first 
transaction data, it can create a node and the path of the first transaction and give the 
transaction a code. We design the frequency count as 1 to all of the nodes on the path. Then, 
it should read each of the other transaction data in order to form different paths and nodes. 
The frequency count will be adjusted until each transaction is mapped to a path on FP-Tree. 
After reading all the transaction formation to construct the FP-Tree, the FP-Stream algorithm 
could be used on FP-Tree to mine its frequent itemsets. 

DStree algorithm is a relatively new algorithm for mining frequent itemsets which have the 
concept of nested sub windows in sliding window. DStree algorithm separates the current 
transaction database data into blocks, then statistic frequent itemsets in the current window. 
When a next block of data comes to the moment, the prior block data becomes the historical 
data. The second block of data replace the first one. Some of the information are available in 
current DStree and prepare for the next generation of a DStree  

estDec algorithm is a effective way to mine frequent itemsets of current on-line data stream. 
Each node of estDec algorithm model tree contains a triple (count, error, Id). For the relevant 
item e, its number is shown by count. The maximum error count of e is shown with error and 
Id is the determined factor of e wich contains the most recent transactions. estDec algorithm 
is divided into four parts: update parameter, update count, the delay difference and choose 
frequent items. 

As using model tree in FP-Tree , DStree and estDec algorithm, it is difficult to make the 
algorithm computing parallel and the algorithm run time is also difficult to reduce. 

With the development of the card, GPU (Graphic Process Unit) become more and more 
powerful. It has transcended the CPU computation not only on graphic but also on scientific 
computing. CUDA is a parallel computation framework which is introduced by NVIDIA. 
The schema makes GPU be able to solve complex calculations. It contains the schema CUDA 
instruction set and internal computation engine. GPU is characterized by processing parallel 
computation and dense data, so CUDA suites large-scale parallel computation field very 
well[12]. 

This work proposes a NSWGA (Nested Sliding Window Genetic Algorithm) algorithm. 
Firstly, NSWGA gets the current data stream through the sliding window and uses a nested 
sub-window dividing up the data stream in current window into sub-blocks; then, the 
parallel idea of genetic algorithm and parallel computation ability of GPU are used to seek 
frequent itemsets in the nested sub-window; at last, NSWGA gets the frequent patterns in 
the current window through the frequent patterns of the nested sub-windows. 

This chapter is organized as follows. Theoretical foundation is described in Section 2. The 
algorithm is designed for Nested Sliding Window Genetic Algorithm of mining frequent 
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itemsets in data streams in Section3. In Section 4, comprehensive experiments for the 
algorithm are implemented in built environment and give the comparison with other 
methods. Moreover, algorithm analysis is also proposed for mining time-sensitive sliding 
windows in this section.. Finally, we summarize the work in Section 5. 

2. Theoretical foundation 
The study combines the sliding window techniques, frequent itemsets,  genetic algorithm 
and parallel processing technology. 

Sliding window has been used in the network communication, time-series data mining, data 
stream mining and so on. This algorithm uses the sliding window [9,10] to obtain the 
current data stream. 

Definition 1   sliding window: For a positive number ω1, a certain time T, data sets  
D = (d0, d1 ,..., dn) fall into the window SW(the size of window SW is ω1), the window SW is 
called the sliding window. 

Definition 2    nested sub-window: For a positive number ω2, a certain time T, the newest 
data set dn in sliding window SW falls into the nested window NSW ( the size of NSW is 
ω2), the nested window NSW is called the nested sub-window. 

As shown in Figure 1, the application of sliding window for dynamic updating of data sets 
is explained. 

 
Fig. 1. Dynamic updating of the data in sliding window 
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Definition 3   frequent itemsets in sliding window: For the current data in sliding window, 
a collection of items I = {i1, i2, ..., in} , transaction iterm data set S = {s1, s2 ,..., sn}, each 
transaction iterm is a collection of items, s⊆I。If X⊆S, then X is an itemset. If there are k 
elements in X, we call X the k-itemsets. With respect to an itemset X, if its support degree is 
greater than or equal to the minimum support threshold given by the user, then X is called 
the frequent itemsets. 

Genetic algorithm starts the search process from an initial population. Each individual in the 
population is a possible frequent pattern. We use the genetic algorithm to achieve the result 
mainly through crossover, mutation and selection [8]. After several generations of selection, 
we achieve a final frequent itemsets. The major rules and operators in genetic algorithm are 
as follows: 

1. Coding rule: this work codes with the integer. For example, each transaction item has 
ABCDE five attributes in a data stream, the transaction item which is coded 21530 
expresses that we take the second value of A attribute, take the first value of B attribute, 
and  analogizes in turn, we use 0 to express that we do not consider the value of E 
attribute.  

2. The fitness function: Fi=Wi/WZ, Fi is the support degree of transaction item i, Wi is the 
number of the transaction items which have the same value for each attribute, WZ is the 
total number of transaction items in the window. 

3. The selection operator: This algorithm uses the Roulette Wheel Selection. For individual 
i, its fitness degree Fi, the population size M, then its probability of being selected is 

expressed as
1

/
M

i i i
i

p F F
=

=  , (i=1, 2, … , M). 

4. Crossover: This algorithm uses One Point Crossover. If the parent chromosomes are A 
(a1a2a3 ... ai ... an) and B (b1b2b3 ... bi ... bn), after cross operation, the daughter 
chromosomes are A1 (a1a2a3 ... bi ... bn) and B1 (b1b2b3 ... ai ... an). 
Crossover operator is mainly used to interchange some genes between the parent 
chromosomes. Through the operation between two individuals of parent generation, 
we get the daughter generation. Thus, daughter generation would inherit the effective 
models of the parent generation.  

5. Mutation Operator: The algorithm uses the Simple Mutation. If the parent chromosome 
is A (a1a2a3 ... ai ... an), after the variation, the daughter chromosome becomes A1 (a1a2a3 
... bi ... an). 

Mutation operation changes some genes randomly to generate new individuals. Mutation 
operation is an important cause to obtain global optimization. It helps to increase the 
population diversity, but in this algorithm, the corresponding genes which are required to 
generate the frequent itemsets already exist, so we use a lower mutation rate. 

When we establish the parallel part in the program, we can let this part run into GPU. The 
function which runs in GPU is called kernel (kernel function). A kernel function is not a 
complete program, but the parallel part of the entire CUDA program[13,14]. A complete 
CUDA program execution is shown in figure 2. The graph shows that in a kernel function 
there are two parallel levels, the parallel blocks in the grid and the parallel threads in the 
block. 
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Fig. 2. CUDA programme model 
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In the first part, the current frequent itemsets in NSW is obtained. The process is shown as 
figure 3. 
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ω2.Window sizes are determined by the properties of the data stream. ω1 depends 
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The iteration times T depends on the number of attributes that a transaction iterm 
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role of nested sub-window is to avoid repeatedly processing the data which is still 
in the sliding window after the old data out of the sliding window. 
Let the crossover probability is P, the individual mutation probability is Q. To 
implement parallel computing, the data in the nested sub-window is divided into Z 
segments. 

 
Fig. 3. The generation of initial population. 
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patterns of data stream. Make Roulette Wheel Selection according to the fitness 
degree. Make crossover with the Crossover probability P. Carry on the variation with 
the variation probability Q. Ascertain the individual fitness degree after scanning the 
data. Join the individual which satisfies the condition into the frequent itemsets. 
Relying on the powerful parallel computing capability of GPU, parallel matching with 
Z sections, that will reduce a lot of running time, the process is shown in Figure 5. 

 
Fig. 4. The generation of initial population 

 
Fig. 5. Parallel computing fitness degree 

Step 4. If the number of iterative times is smaller than T, the algorithm jumps to the step 3. 
After T times of iterative computation, finish iterative and obtain the frequent 
itemsets in current nested sub-window; 
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In the second part, the final frequent itemsets in sliding window is obtained. The 
process is shown as step5. 

Step 5. Constitute the mode sets with the frequent itemsets that we obtained this time and 
the previous frequent itemsets obtained in the last M (M = ω1/ω2-1) times. Carry 
on a search to determine the final frequent itemsets in the sliding window. 
1 For i = 1: M+1 
2 Constitute the mode sets; 
3 End 
4 Make a parallel search in the sliding window SW; 
5 When a mode’s support degree is greater than or equal to S, identify it as a final 

frequent mode; 
The process is shown in Figure 6 (a) (b). 

  
(a)  The generation of mode sets 

d1 d3d2 d4 … … … dn-1 dn

Parallel matching
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(b)  The generation of final frequent patterns 

Fig. 6. The process of obtaining frequent patterns 
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In the third part, repeat the above two operations dynamically. The process is 
shown as step6. 

Step 6. With the data stream flowing, this algorithm continues to deal with the new 
incoming data and discard the old data, transfer to step 2 and continue the above 
operations until the data stream coming to the end. 

3.2 NSWGA algorithm analysis 

Comparing with other algorithms which use pattern tree to maintain the historical 
information of data stream, NSWGA processes a quantity of data parallelly at one time, 
while the pattern tree algorithms process a single transaction item at one time, each 
transaction item needs match repeatedly. Mining the frequent itemsets of the data in the 
current window, the time of whole process is not only dependent on the times of scanning 
the data in the window, but also dependent on the internal basic operation - the number of 
matching. 

Suppose a data stream has N transaction items, each transaction item has V attributes; each 
attribute has K possible values. The pattern tree algorithms may have KV frequent pattern 
search paths. Let the window size is N. When the entire data stream in the window flow 
over, the necessary calculated amount to get frequent itemsets is N * K * V. 

For fp-tree algorithm, when the fp-tree has L paths, the calculated amount is  
2 * N * V + V * L, the number L will increase with the threshold of support degree reducing. 

When the support degree is S, iteration times of genetic algorithms is T, the number of 
parallel computing is Z (Z according to the amount of data, in this case set Z 200),the sliding 
window size is N, the necessary calculated amount to get frequent itemsets is P = P1 + P2 + 
P3. Thereinto: 

P1 = N * V   the calculated amount to get 1 - frequent itemsets; 

P2 = V * T * N / S * Z   the calculated amount to get the frequent itermsets in the nested sub-
window; 

P3= α *V*N/S*Z*M (1<= α <=1/S)   the calculated amount to get the final frequent itemsets. 

When the property value K is large, this algorithm has obvious advantage in time 
complexity. When the number of Z is larger, the runtime will become shorter. 

4. Experiment and analysis 
4.1 Experiment 

In this experiment, we use artificial data sets and the MATLAB and CUDA C language to 
implement NSWGA algorithm. We use the computer with 2.61GHZ CPU, 2GMB memory, 
Nvidia GPU C1060, windows XP operating system to test the performance of the algorithm. 

The size of the sliding window is 100k. The size of the data set is 200K.With the data 
flowing, we make statistic every 10K of the data.  

1. The analog data stream has three attributes. Each attribute has 10 possible values. The 
running results of the algorithms are shown in Table 1. 
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algorithm suport degree average runtime
fp-tree 
fp-tree 
fp-tree 
NSWGA 
NSWGA 
NSWGA 

10% 
20% 
30% 
10% 
20% 
30% 

0.156 
0.087 
0.029 
0.087 
0.032 
0.015 

Table 1. The comparison of fp-tree algorithm and NSWGA algorithm 

2. The analog data stream is the same as above. The running results of the algorithms are 
shown in Table 2. 

 

algorithm suport degree average runtime
Dstree 
Dstree 
Dstree 
NSWGA 
NSWGA 
NSWGA 

10% 
20% 
30% 
10% 
20% 
30% 

0.138 
0.139 
0.141 
0.087 
0.032 
0.015 

Table 2. The comparison 1 of Dstree algorithm and NSWGA algorithm 

3. The analog data stream has three attributes. Each attribute has 20 possible values. The 
running results of the algorithms are shown in Table 3. 

 

algorithm suport degree average runtime
Dstree 
Dstree 
Dstree 
NSWGA 
NSWGA 
NSWGA 

10% 
20% 
30% 
10% 
20% 
30% 

0.406 
0.397 
0.402 
0.090 
0.041 
0.017 

Table 3. The comparison 2 of Dstree algorithm and NSWGA algorithm 

4.2 Analysis of the experimental results 

As shown in Table 1, with the support degree increasing, the frequent patterns of these two 
algorithms are rapidly reducing, the number of matching is reduced and eventually the 
runtime will be reduced. However, fp-tree algorithm not only needs to maintain the global 
frequent pattern tree, but also requires additional time to build a sub-pattern tree for each 
data segment. Then this algorithm saves the information of the sub-pattern tree to the global 
frequent pattern tree. With the times of process increasing，the runtime of fp-tree algorithm 
is becoming longer than NSWGA. 

Table 2 shows that, with the support degree increasing, the algorithms which use pattern 
tree to maintain the information of the frequent patterns such as Dstree algorithm can not 
reduce the runtime, but NSWGA algorithm is able to save a lot of runtime. 
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In Table 2, the attribute of analog data has 10 possible property values, and in Table 3 there 
are 20. With the number of possible property values increasing, the runtime of Dstree 
algorithm will be greatly increased, while the runtime of NSWGA algorithm almost has no 
change. 

5. Summary 
It is important for prediction and decision-making to find frequent items among huge data 
stream. This chapter presents an approach, namely NSWGA (Nested Sliding Window 
Genetic Algorithm), about mining frequent itemsets on data stream within the current 
window. NSWGA uses the parallelism of genetic algorithm to search for the frequent 
itemset of the latest data in the nested sub-window. The final frequent itemsets of the sliding 
window is obtained by the integrated treatment of this series of frequent itemsets in nested 
sub-window. NSWGA captures the latest frequent itemsets accurately and timely on data 
stream. At the same time the expired data is deleted periodically. As the use of nested 
windows and the parallel processing capability of genetic algorithm, this method reduced 
the time complexity. 

In this chapter, an algorithm about mining frequent patterns of data stream- NSWGA 
algorithm is proposed. The main contributions of this algorithm: (1) The parallelism of 
genetic algorithm is used to mine the frequent patterns of data stream , which reduces the 
runtime; (2) The algorithm combines the sliding window with genetic algorithm to propose 
an improved method to obtain initial population; (3) This algorithm gurantees the speed of 
implementation and query precision.  
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1. Introduction  
Genetic Algorithms (GAs) have recently found extensive applications in solving global 
optimization problems (Mitchell, 1996). GAs are search algorithms that use models based on 
natural biological evolution (Goldberg, 1989). They are intrinsically robust search and 
optimization mechanisms and offer several advantages over traditional optimization 
techniques, including the ability to effectively search large space without being caught in 
local optimum. GAs do not require the objective function to have properties such as 
continuity or smoothness and make no use of hessians or gradient estimates.  

In the last few years, Genetic Algorithms (GAs) have shown their potentials in many fields, 
including in the field of electrical power systems. Although GAs provide robust and 
powerful adaptive search mechanism, they have several drawbacks (Mitchell, 1996). Some 
of these drawbacks include the problem of “genetic drift” which prevents GAs from 
maintaining diversity in its population. Once the population has converged, the crossover 
operator becomes ineffective in exploring new portions of the search space. Another 
drawback is the difficulty to optimize the GAs’ operators (such as population size, crossover 
and mutation rates) one at a time. These operators (or parameters) interact with one another 
in a nonlinear manner. In particular, optimal population size, crossover rate, and mutation 
rate are likely to change over the course of a single run (Baluja, 1994). From the user’s point 
of view, the selection of GAs’ parameters is not a trivial task. Since the ‘classical’ GA was 
first proposed by Holland in 1975 as an efficient, easy to use tool which can be applicable to 
a wide range of problems (Holland, 1975), many variant forms of GAs have been suggested 
often tailored to specific problems (Michalewicz, 1996). However, it is not always easy for 
the user to select the appropriate GAs parameters for a particular problem at hand because 
of the huge number of choices available. At present, there is a little theoretical guidance on 
how to select the suitable GAs parameters for a particular problem (Michalewicz, 1996). Still 
another problem is that the natural selection strategy used by GAs is not immune from 
failure. To cope with the above limitations, an extremely versatile and effective function 
optimizer called Breeder Genetic Algorithm (BGA) was recently proposed (Muhlenbein, 1994). 
BGA is inspired by the science of breeding animals. The main idea is to use a selection strategy 
based on the concept of animal breeding instead of “natural selection” (Irhamah & Ismail, 
2009). The assumption behind this strategy is as follows: “mating two individuals with high fitness 
is more likely to produces an offspring of high fitness than mating two randomly selected individuals”.  
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how to select the suitable GAs parameters for a particular problem (Michalewicz, 1996). Still 
another problem is that the natural selection strategy used by GAs is not immune from 
failure. To cope with the above limitations, an extremely versatile and effective function 
optimizer called Breeder Genetic Algorithm (BGA) was recently proposed (Muhlenbein, 1994). 
BGA is inspired by the science of breeding animals. The main idea is to use a selection strategy 
based on the concept of animal breeding instead of “natural selection” (Irhamah & Ismail, 
2009). The assumption behind this strategy is as follows: “mating two individuals with high fitness 
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Some of the features of BGA are: 

• BGA uses real-valued representation as opposed to binary representation used in 
classical GAs.  

• BGA only requires a few parameters to be chosen by the user.  
• The selection technique used is (always) truncation, whereby a selected top T% of the 

fittest individuals are chosen from the current generation and goes through 
recombination and mutation to form the next generation. The rest of the individuals are 
discarded.  

The main advantage of using BGA is its simplicity with regard to the selection method 
(Irhamah & Ismail, 2009) and the fewer parameters to be chosen by the user. However, there 
is a price to pay for this simplicity. Since only the best individuals are selected in each 
generation to produce the children for the next generation, there is a likelihood of premature 
convergence. As a result, BGA may converge to local optimum rather than the desired 
global one. It should be mentioned that most of the Evolutionary Algorithms including GA 
have problems with premature convergence to a certain degree. The general way to deal 
with this problem is to apply mutation to a few randomly selected individuals in the 
population. In this work, instead of a fixed mutation rate, we have used adaptive mutation 
strategy (Green, 2005), (Sheetekela & Folly, 2010). This means that the mutation rate is not 
fixed but varies according to the convergence and performance of the population.  In 
general, even with fixed mutation rate, BGA may still perform better than GA as discussed 
in (Irhamah & Ismail, 2009). 

The application of Evolutionary Algorithm to design power system stabilizer for damping 
low frequency oscillations in power systems has received increasing attention in recent 
years, see for example, (Wang, et al 2008), (Chuang, & Wu, 2006), (Chuang, & Wu, 2007), 
(Eslami, et al 2010), (Hongesombut, et al 2005), (Folly, 2006), and (Hemmati, et al 2010).   

Low frequency oscillations in power systems arise due to several causes. One of these is the 
heavy transfer of power over long distance. In the last few years, the problems of low 
frequency oscillations are becoming more and more important. Some of the reasons for this 
are: 

a. Modern power systems are required to operate close to their stability margins. A small 
disturbance can easily reduce the damping of the system and drive the system to 
instability. 

b. The deregulation and open access of the power industry has led to more power transfer 
across different regions. This has the effect of reducing the stability margins. 

For several years, traditional control methods such as phase compensation technique 
(Hemmati et al, 2010), root locus (Kundur, 1994), pole placement technique (Shahgholian & 
Faiz, 2010), etc. have been used to design Conventional PSSs (CPSSs). These (CPSSs) are 
widely accepted in the industry because of their simplicity. However, conventional 
controllers cannot provide adequate damping to the system over a wide range of operating 
conditions. To cover a wide range of operating conditions when designing the PSSs several 
authors have proposed to use multi-power conditions, whereby the PSS parameters are 
optimized over a set of specified operating conditions using various optimization 
techniques such as sensitivity technique (Tiako & Folly, 2009),  (Yoshimura& Uchida, 2000), 
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Differential Evolutionary (Wang, et al 2008), hybrid Differential Evolutionary (Chuang, & 
Wu, 2006), (Chuang, & Wu, 2007), Particle Swarm Optimization (Eslami, et al 2010), 
Population-Based Incremental Learning (Folly,2006), (Sheetekela, 2010), etc. 

In this chapter, Breeder Genetic Algorithm (BGA) with adaptive mutation is used for the 
optimization of the parameters of the Power System Stabilizer (PSSs). An eigenvalue based 
objective function is employed in the design such that the algorithm maximizes the lowest 
damping ratio over specified operating conditions. A single machine infinite bus system is 
used to show the effectiveness of the proposed method. For comparison purposes, Genetic 
Algorithms (GAs) based PSS and the Conventional PSS (CPSS) are included. Frequency and 
time domain simulations show that BGA-PSS performs better than GA-PSS and CPSS under 
both small and large disturbances for all operating conditions considered in this work. 
GA-PSS in turn gives a better performance than the Conventional PSS (CPSS).   

2. Background theory to breeder genetic algorithm 
BGA is a relatively new evolution algorithm. It is similar to GAs with the exception that it 
uses artificial selection and has fewer parameters. Also, BGA uses real-valued 
representation as opposed to GAs which mainly uses binary and sometimes floating or 
integer representation. In this work, a modified version of BGA called Adaptive Mutation 
BGA is used (Green, 2005), (Sheetekela & Folly, 2010). Truncation selection method is 
adopted whereby a top T% of the fittest individuals are chosen from the current population 
of N individuals and goes through recombination and mutation to form the next generation. 
The rest of the individuals are discarded. In truncation method, the fittest individual in the 
population called an ellist is guaranteed a place in the next generation. The other top (T-1) % 
goes through recombination and mutation to form up the rest of the individuals in the next 
generation. The process is repeated until an optimal solution is obtained or the maximum 
number of iteration is reached.  

2.1 Recombination 

Recombination is similar to crossover in GAs (Michalewicz, 1996). The Breeder Genetic 
Algorithm proposed in this work allows various possible recombination methods to be 
used, each of them searching the space with a particular bias. Since there is no prior 
knowledge as to which bias is likely to suit the task at hand, it is better to include several 
recombination methods and allow selection to do the elimination. Two recombination 
methods were used in this work: volume and line recombination (Sheetekela, 2010). 

In volume recombination, a random vector r of the same length as the parent is generated 
and the child zi is produced by the following expression. 

  (1) 

where xi and yi are the two parents. 

In other words, the child can be said to be located at a point inside the hyper box defined by 
the parents as shown in Fig. 1. 

In line recombination, a single uniformly random number r is generated between 0 and 1, 
and the child is obtained by the following expression (Green, 2005). 
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where xi and yi are the two parents. 
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the parents as shown in Fig. 1. 
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where xi and yi are  the two parents. 

In light of this, a child can be said to be located at a randomly chosen point on a line 
connecting the two parents as shown in Fig.2.  

  
Fig. 1. Volume recombination 

 
Fig. 2. Line recombination 

2.2 Mutation 

One problem that has been of concern in GAs is premature convergence, whereby a good 
but not optimal solution will come to dominate the population. In other words, the search 
may well converge to local optimum than the desired global one. This problem can be 
eliminated by adding a small vector of normally-distributed zero-mean random numbers 
(say with a standard deviation R) to each child before inserting it into the population. The 
magnitude of the standard deviation R of the vector is very critical, as small R might lead to 
premature converge and large R might impair the search and reduce its ability to converge 
optimally. Therefore, it’s better to use an adaptive approach whereby the rate of mutation is 
modified during the course of the search. We set R to the nominal rate Rnom. The population 
is divided into two halves X and Y. A mutation rate of 2Rnom is applied to X whereas a 
mutation of Rnom/2 is applied to Y. The mutation rate Rnom is adjusted depending on the 
population (X or Y) that is producing better and fitter solutions on average. If X individuals 
are fitter, then the mutation rate Rnom is increased slightly by say l0%. If Y is fitter then the 
mutation rate, Rnom is reduced by a similar amount. 
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3. Test model 
The power system considered is a single machine infinite bus (SMIB) system as shown in 
Fig. A. 1 of Appendix 8.2.1. The generator is connected to the infinite bus through a double-
circuit transmission line. The generator is modeled using a 6th order machine model, and is 
equipped with an automatic voltage regulator (AVR) which is represented by a simple 
exciter of first order differential equation as given in the Appendix 8.1.4. The block diagram 
of the AVR is shown in Fig. A. 2 of Appendix 8.2.2. A supplementary controller also known 
as power system stabilizer (PSS) is to be designed to damp the system’s oscillations. The 
block diagram of the PSS is shown in Fig. A.3 of Appendix 8.2.3. 

The non-linear differential equations of the system are linearized around the nominal 
operating condition to form a set of linear equations as follows: 

 
d x Ax Bu
dt

y Cx Du

 = +

 = +

 (3) 

where: 

A is the system state matrix, B is the system input matrix, C is the system output matrix and 
D is the feed-forward matrix 
x is the vector of the system states, u is the vector of the system inputs and y is the vector of 
the system outputs.  

In this work, x= [Δδ  Δω  Δψfd  Δψ1d  Δψ1q  Δψ2q  ΔEfd ]; u = [ΔTm  ΔVref ]; y = Δω; where, Δδ  is 
the rotor angle deviation, Δω is the speed deviation, Δψfd  is the field flux linkage deviation,  
Δψ1d is d-axis amortisseur flux linkage deviation, Δψ1q is the 1st q-axis amortisseur flux 
linkage deviation, Δψ2q is the 2nd q-axis amortisseur flux linkage deviation, ΔEfd is the exciter 
output voltage deviation. ΔTm is the mechanical torque deviation and ΔVref is the voltage 
reference deviation. 

Several operating conditions were considered for the design of the controllers. These 
operating conditions were obtained by varying the active power output, Pe and the reactive 
power Qe of the generator as well as the line reactance, Xe. However, for simplicity, only 
three operating conditions will be presented in this paper. These operating conditions are 
listed in the Table 1 together with the open loop eigenvalues and their respective damping 
ratios in % in brackets. 
 

case Active Power 
Pe [p.u] 

Reacctive Power 
Qe [p.u] 

Line reactance 
Xe [p.u] 

Eigenvalues 
(Damping ratio) 

1 1.1000 0.4070 0.7000 -0.2894 ± j5.2785 
(0.0547) 

2 0.5000 0.1839 1.1000 -0.3472 ± j4.3271 
(0.0800) 

3 0.9000 0.3372 0.9000 -0.2704 + j4.7212 
(0.0572) 

Table 1. Selected operating conditions with open-loop eigenvalues 
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4. Fitness function 
The fitness function is used to provide the measure of how individuals performed. In 
this instance, the problem domain was that the PSS parameters should stabilize the 
system simultaneously over a certain range of specified operating conditions. The PSS 
which parameters are to be optimized has a structure similar to the conventional PSS 
(CPSS) as shown in Fig. A. 3. of Appendix 8.2.3. There are three parameters KS, T1 and T2 
that are to be optimized, where Ks is the PSS gain and T1 and T2 are lead-lag time 
constants. Tw is the washout time constant which is not critical and therefore has not 
been optimized. 

The fitness function that was used is to maximize the lowest damping ratio. Mathematically 
the objective function is formulated as follows: 

 max(min( ))i jval ς=   (4) 

where 

i = 1,2, … n , j =1, 2, ….m 

2 2

ij
ij

ij ij

σ
ς

σ ω

−
=

+
 

ζi j is the damping ratio of the th  eigenvalue of the jth  operating conditions. The number of 
the eigenvalues is n, and m is the number of operating conditions. 

σij and ωij are the real part and the imaginary part (frequency) of the eigenvalue, 
respectively.  

5. PSS design   
The following parameter domain constraints were considered when designing the PSS.  

0 < Ks ≤ 20 

0.001 ≤ Ti ≤ 5 

where  Ks and Ti denote the controller gain and the lead lag time constants, respectively . 

5.1 BGA-PSS  

The following BGA parameters have been used during the design 

- Population: 100 
- Generation: 100 
- Selection: Truncation selection (i.e., selected the best 15% of the population) 
- Recombination: Line and volume  
- Mutation initial Rnom: 0.01 

The parameters of the BGA-PSS are given in Table A.1 of Appendix 8.2.3. 
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5.2 GA-P15 Folly_secondSS  

The following GA parameters have been used during the design 

- Population: 100 
- Generation: 100 
- Selection: Normalized geometric  
- Crossover: Arithmetic  
- Mutation: Non-uniform 

More information on the selection, crossover and mutation can be found in (Michalewicz, 
1996), (Sheetekela & Folly, 2010).  

The parameters of the GA-PSS are given in Table A.1 of Appendix 8.2.3. 

5.3 Conventional-PSS  

The Conventional PSS (CPSS) was designed at the nominal operating condition using the 
phase compensation method. The phase lag of the system was first obtained, which was 
found to be 20o, thus only a single lead-lag block was used for the PSS. After obtaining the 
phase lag, a PSS with a phase lead was designed using the phase compensation technique. 
The final phase lead obtained was approximately 18o, thus giving the system a slight phase 
lag of 2o. Once the phase lag is improved, then the damping needed to be improved as well 
by varying the gain KS. The parameters of the CPSS are given in Table A.1 of Appendix 8.2.3. 

6. Simulation results  
6.1 Eigenvalue analysis  

Under the assumption of small-signal disturbance (i.e, small change in Vref or Tm), the 
eigenvalues of the system are obtained and the stability of the system investigated. Table 2 
shows the eigenvalues of the system for the different PSSs. The damping ratios are shown in 
brackets. For all of the cases, it can be seen that on average, BGA-PSS provides more 
damping to the system than GA-PSS. On the other hand, GA-PSS performs better than 
CPSS. For example for case 1, BGA-PSS provides a damping ratio of 50% as compared to 
48.85% for GA-PSS and 44.93% for CPSS. This means that, BGA gives the best performance. 
Likewise, BGA provides better damping ratios for cases 2 and 3. 
 

case BGA-PSS GA-PSS CPSS 

1 -3.0664 ±j 5.3117 
(0.5000) 

-2.9208 ± j5.2172 
(0.4885) 

-1.9876 ± j3.9516 
(0.4493) 

2 -1.2793 ± j4.3024 
(0.2850) 

-1.2305±  j4.2616 
(0.2774) 

-0.9529 ± j3.9443 
(0.2348) 

3 -2.1245 + j4.6503 
(0.4155) 

-2.0268 + j4.5784 
(0.4048) 

-1.3865 + j3.8881 
(0.3359) 

Table 2. Closed-loop eigenvalues 
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48.85% for GA-PSS and 44.93% for CPSS. This means that, BGA gives the best performance. 
Likewise, BGA provides better damping ratios for cases 2 and 3. 
 

case BGA-PSS GA-PSS CPSS 

1 -3.0664 ±j 5.3117 
(0.5000) 
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(0.4885) 

-1.9876 ± j3.9516 
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-1.2305±  j4.2616 
(0.2774) 
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Table 2. Closed-loop eigenvalues 
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It should be mentioned that a maximum damping ratio of 50% was imposed on the BGA 
and GA, otherwise, their damping ratios could have been higher. If the damping of  
the electromechanical mode is too high this could negatively affect other modes in the 
system. 

6.2 Large disturbance 

A large disturbance was considered by applying a three-phase fault to the system at 0.1 
seconds. The fault was applied at the sending-end of the system (near bus 1 on line 2) for 
200ms. The fault was cleared by disconnecting line 2. Fig. 3 to Fig. 5 show the speed 
responses of the system. 

Figure 3 shows the speed responses of the generator for case 1. When the system is 
equipped with GA-PSS and BGA-PSS it settles around 3 seconds. On the other hand, the 
settling time of the system equipped with the CPSS is more than doubled (6 seconds). In 
addition, the subsequent oscillations are larger than those of BGA and GA PSSs.   

Figure 4 shows the speed responses for case 2. The system equipped with CPSS is seen to 
have bigger oscillations as compared to the system equipped with BGA-PSS and GA-PSS. 
With both BGA and GA PSSs, the system settled in approximately 3.5 sec., whereas CPSS 
takes more than 6 sec. to settle down. The performances of the BGA-PSS and GA-PSS are 
quite similar, even though the BGA-PSS performs slightly better than the GA- PSS.  

Figure 5 shows the speed responses of the system for case 3. It can be seen that the system 
equipped with BGA and GA PSS settled in less than 4 sec compared to more than 6 sec. for 
the CPSS. With CPSS, the system has large overshoots and undershoots.  

 
Fig. 3. Speed response of case 1 under three-phase fault 
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genetic parameters. In this work, adaptive mutation has been used to deal with the problem 
of premature convergence in BGA. The effectiveness of the proposed approach was 
demonstrated by  the time and frequency domain simulation results. Eigenvalue analysis 
shows that the BGA based controller provides a better damping to the system for all 
operating conditions considered than a GA based controller. The conventional controller 
provides the least damping to all the operating conditions considered. The robustness of the 
BGA controller under large disturbance was also investigated by applying a three-phase 
fault to the system. Further research will be carried out in the direction of using multi-
objective functions in the optimization and using a more complex power system model. 

8. Appendix 
8.1 Generator and Automatic Voltage Regulator (AVR) equations 

8.1.1 Swing equations 

1 ( )
2 m e D

d T T K
dt H

ω ωΔ = − − Δ  

0
d
dt

δ ω ωΔ = Δ  

where  

δ is the rotor angle in rad 
ω is the synchronous speed in per-unit (p.u.) 
ω0 is the synchronous speed in rad/sec 
H is the inertia constant in sec. 
Tm  is the mechanical torque in p.u. 
Te  is the mechanical torque in p.u. 
KD  is the damping coefficient in torque/ p.u. 

8.1.2 Rotor circuit equations  
 

0( )fd
fd fd fd

fd

Rd E i
dt L

ψ ω= −  

1 0 1 1d d d
d R i
dt

ψ ω= −  

1 0 1 1q q q
d R i
dt

ψ ω= −  

2 0 2 2q q q
d R i
dt

ψ ω= −  
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where  

ψfd, ψ1d, ψ1q, ψ2q, Efd are the same as defined in section 3. 
Rfd,, Lfd, are the field winding resistance and inductance, respectively. 
R1d, is the d-axix amortisseur resistance. 
R1q,, is the 1st q-axix amortisseur resistance. 
R2q is the 2nd q-axix amortisseur resistance. 

The rotor currents are expressed a follows: 

1 ( )fd fd ad
fd

i
L

ψ ψ= −  

1 1
1

1 ( )d d ad
d

i
L

ψ ψ= −  

1 1
1

1 ( )q q aq
q

i
L

ψ ψ= −  

2 2
2

1 ( )q q aq
q

i
L

ψ ψ= −  

where  

ψfd, ψ1d, ψ1q, ψ2q are defined as before 
ψad, ψaq, are the mutual flux linkages in the d and q axis, respectively. 
L1d is the d-axix amortisseur inductance. 
L1q is the 1st q-axix amortisseur inductance. 
L2q is the 2nd q-axix amortisseur inductance. 

8.1.3 Electrical torque  

The electrical torque is expressed by the following: 

e d q q dT i iψ ψ= −  

where ψd, and ψq are the d and q axis flux linkages, respectively. 

8.1.4 AVR equations  

( ) fdA
fd ref t

A A

EKd E V V
dt T T

= − −  

where KA and TA are the gain and time constant of the AVR. Vt is the terminal voltage of the 
generator. 

In this work KA=200 and TA = 0.05 sec. 
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8.2 Power system model, AVR parameters and PSS block diagram and parameters 

8.2.1 Power system model diagram 

 
Fig. A1. System model- Single-Machine Infinite Bus (SMIB) 

8.2.2 Block diagram of the Automatic Voltage Regulator (AVR) 

 
Fig. A2. Automatic voltage regulatore structure 

8.2.3 Block diagram and parameters of the PSSs 

 
Fig. A3. Power system stabilizer structure  

In Fig. A3, VPSS is the output signal of the PSS, while ∆ω(s) is the input signal, which in this 
case is the speed deviation.  
 

PSSs Ks T1 T2 Tw 
CPSS 9.7928 1.1686 0.2846 2.5000 

GA-PSS 13.7358     3.5811     1.2654        2.5000 

BGA-PSS 18.8838     3.7604      1.7390        2.5000 

Table A1. PSS parameters. 
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8.3 Generator’s parameters 

Xl =0.0742 p.u,  , Xd=1.72 p.u,, X’d=0.45 p.u,, X”d=0.33 p.u,T’d0=6.3sec., T”d0 = 0.033 p.u,,  
Xq =1.68 p.u,, X’q =0.59 p.u,, X”q =0.33 p.u, T’q0 =0.43 sec  

T”q0 = 0.033sec., H = 4.0sec 

8.4 Pseudo code for BGA generator’s parameters 

Begin 
Randomly initialize a population of N individuals; 
Initialize mutation rate Rnom 
While termination criterion not met 

evaluate goodness of each individuals  
save the best individual in the new population 
select the best T%  individuals and discarding the rest; 
for I =1 to N-1 do  

randomly select two individuals among the T% best individual 
recombine the two parents to obtain one offspring 

end 
divide the new population into two halves (X and Y) 
apply mutation rate rnom/2 to X and  2 Rnom to Y 
evaluate the average fitness value for the two half population (X and Y) 
If X performs better than Y; assign r= Rnom -0.1 rnom; 
If Y performs better than X; assign r= Rnom + 0.1 rnom; 

end 
end 
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1. Introduction

Distinctive features of synchronous machines like constant operation-speed, producing
substantial savings by supplying reactive power to counteract lagging power factor caused by
inductive loads, low inrush currents, and capabilities of designing the torque characteristics
to meet the requirements of the driven load, have made them optimal options for a multitude
of industries. Economical utilization of these machines and also increasing their efficiencies
are issues that should receive significant attention.

At high power rating operations, where high switching efficiency in the drive circuits is of
utmost importance, optimal pulsewidth modulation (PWM) is the logical feeding scheme
(Holtz, 1992). Application of optimal PWM decreases overheating in machine and therefore
results in diminution of torque pulsation. Overheating, resulted from internal losses, is
a major factor in rating a machine. Moreover, setting up an appropriate cooling method
is a particularly serious issue, increasing in intricacy with machine size. Among various
approaches for achieving optimal PWM, harmonic elimination method is predominant ((Mohan
et al., 1995), (Enjeti et al., 1990), (Sun et al., 1996), (Chiasson et al., 2004), (Czarkowski et al.,
2002), (Sayyah et al., 2006c)). Since copper losses are fundamentally determined by current
harmonics, defining a performance index related to undesirable effects of the harmonics is of
the essence in lieu of focusing on specific harmonics (Bose, 2002). Herein, the total harmonic
current distortion (THCD) is the objective function for minimization of machine losses.

Possessing asymmetrical structure in direct (d) and quadrature (q) axes makes a great
difference in modeling of synchronous machines relative to induction ones. Particularly, it
will be shown that the THCD in high-power synchronous machines is dependent upon some
internal parameters of the machine; particularly lq and ld, the inductances of q and d axes,
respectively. Based on gathered input and output data at a specific operating point, these
parameters are determined using online identification methods (Ljung & Söderström, 1983).
In light of the identified parameters, the problem is redrafted as an optimization task, and the
optimal pulse patterns are sought through genetic algorithm (GA). Indeed, the complexity
and nonlinearity of the proposed objective function increases the probability of trapping the
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1. Introduction

Distinctive features of synchronous machines like constant operation-speed, producing
substantial savings by supplying reactive power to counteract lagging power factor caused by
inductive loads, low inrush currents, and capabilities of designing the torque characteristics
to meet the requirements of the driven load, have made them optimal options for a multitude
of industries. Economical utilization of these machines and also increasing their efficiencies
are issues that should receive significant attention.

At high power rating operations, where high switching efficiency in the drive circuits is of
utmost importance, optimal pulsewidth modulation (PWM) is the logical feeding scheme
(Holtz, 1992). Application of optimal PWM decreases overheating in machine and therefore
results in diminution of torque pulsation. Overheating, resulted from internal losses, is
a major factor in rating a machine. Moreover, setting up an appropriate cooling method
is a particularly serious issue, increasing in intricacy with machine size. Among various
approaches for achieving optimal PWM, harmonic elimination method is predominant ((Mohan
et al., 1995), (Enjeti et al., 1990), (Sun et al., 1996), (Chiasson et al., 2004), (Czarkowski et al.,
2002), (Sayyah et al., 2006c)). Since copper losses are fundamentally determined by current
harmonics, defining a performance index related to undesirable effects of the harmonics is of
the essence in lieu of focusing on specific harmonics (Bose, 2002). Herein, the total harmonic
current distortion (THCD) is the objective function for minimization of machine losses.

Possessing asymmetrical structure in direct (d) and quadrature (q) axes makes a great
difference in modeling of synchronous machines relative to induction ones. Particularly, it
will be shown that the THCD in high-power synchronous machines is dependent upon some
internal parameters of the machine; particularly lq and ld, the inductances of q and d axes,
respectively. Based on gathered input and output data at a specific operating point, these
parameters are determined using online identification methods (Ljung & Söderström, 1983).
In light of the identified parameters, the problem is redrafted as an optimization task, and the
optimal pulse patterns are sought through genetic algorithm (GA). Indeed, the complexity
and nonlinearity of the proposed objective function increases the probability of trapping the
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conventional optimization methods in suboptimal solutions. The GA provided with salient
features [3]-[5], can cope effectively with shortcomings of the deterministic optimization
methods.

The mentioned parameters are affected by several factors like modification in operating point,
aging and temperature rise. Variations in these parameters invalidate the pre-calculated
optimal pulse patterns and therefore impose excessive computational and processing burden;
to carry out identification procedure, and subsequently optimization process to determine
new optimal pulse patterns. Notwithstanding of accepting this computational burden and
storing the accomplished optimal pulse patterns in read-only memories (ROMs) to serve as
look-up tables (LUTs), substitution in LUTs provokes an adverse transient condition, which
make it a formidable task (Rezazadeh et al., 2006).

In this study, optimal pulse patterns of induction machine (Sayyah et al., 2006b), whose total
harmonic current distortion is independent of its parameters, as established in (Sun, 1995), are

applied to current harmonic model of synchronous machines with different values of lq
ld

. The
results are compared with corresponding minimum power losses. Based on the demonstrated
comparisons, if deviation from the minimum power losses is acceptable, application of
optimal pulse patterns of induction machine (the so-called suboptimal solutions), is an
appropriate alternative to preceding methods considering their excessive processing burdens.

2. Preliminaries and problem formulation

In this section, we examine the prerequisites for developing the approach of this study. Since
the content has been set forth in preceding works (Rezazadeh et al., 2006), (Sayyah et al.,
2006a), (Sayyah et al., 2006b), (Sayyah et al., 2006c), the discussions are provided for the sake
of reproducibility.

2.1 Waveform representation

For the scope of this paper, a PWM waveform is a 2π-periodic function f (θ) with two distinct
normalized levels of −1,+1 for 0 ≤ t ≤ π/2 and has the symmetries f (θ) = f (π − θ) and
f (θ) = − f (2π − θ).
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Fig. 1. A typical normalized PWM structure.
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Owing to the symmetries in normalized PWM waveform of Fig. 1, only the odd harmonics
exist. As such, f (θ) can be written with the Fourier series as

f (θ) = ∑
k=1,3,5,...

uk sin(kθ) (1)

with

uk =
4
π

∫ π
2

0
f (θ) sin(kθ)

=
4

kπ

(− 1 + 2
N

∑
i=1

(−1)i−1 cos(kαi)
)
. (2)

2.2 THCD formulation in induction machine

The harmonic equivalent circuit and its approximation of an induction motor operating in
steady-state conditions is illustrated in Fig. 2 (Sun, 1995).

1kR 1 1k L

1 mk L

1 2k L

2 /k kR s 1 21( )k L L

a b

Fig. 2. Equivalent circuit of an induction motor operating in steady-state conditions: (a) The
kth order harmonic equivalent circuit, (b) Approximation of (a), (k > 1).

The approximation of the equivalent circuit is deduced regarding the fact that inductive
reactances increase linearly with frequency, while the stator and rotor resistances are almost
constant. Since sk is approximately unity, circuit resistance is negligible in comparison with
reactance at the harmonic frequency. In addition, the magnetizing inductance Lm is much
larger than the rotor leakage inductance L2 and may be omitted. Hence, the motor impedance
presented to the kth-order harmonic input voltage is kω1(L1 + L2) and the kth-order current
harmonic would be:

Ik =
uk

kω1(L1 + L2)
∝

uk
k

. (3)

Thus, the objective function of this optimization can be stated as:

σind
i =

√
∑

k∈S3

(uk/k)2, (4)

where S3 = {5, 7, . . . , 6l − 1, 6l + 1, . . .} stands for the set of triple harmonics in consideration.

Throughout the optimization procedure, it is desired to maintain the fundamental output
voltage at a constant level: V1 = M. M so-called the modulation index may be assumed
to have any value between 0 and 4

π . It can be shown that αN is dependent on modulation
index and the rest of N − 1 switching angles. As such, one decision variable can be eliminated
explicitly (Sayyah et al., 2006b).
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kth order harmonic equivalent circuit, (b) Approximation of (a), (k > 1).

The approximation of the equivalent circuit is deduced regarding the fact that inductive
reactances increase linearly with frequency, while the stator and rotor resistances are almost
constant. Since sk is approximately unity, circuit resistance is negligible in comparison with
reactance at the harmonic frequency. In addition, the magnetizing inductance Lm is much
larger than the rotor leakage inductance L2 and may be omitted. Hence, the motor impedance
presented to the kth-order harmonic input voltage is kω1(L1 + L2) and the kth-order current
harmonic would be:
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Thus, the objective function of this optimization can be stated as:

σind
i =

√
∑

k∈S3

(uk/k)2, (4)

where S3 = {5, 7, . . . , 6l − 1, 6l + 1, . . .} stands for the set of triple harmonics in consideration.

Throughout the optimization procedure, it is desired to maintain the fundamental output
voltage at a constant level: V1 = M. M so-called the modulation index may be assumed
to have any value between 0 and 4

π . It can be shown that αN is dependent on modulation
index and the rest of N − 1 switching angles. As such, one decision variable can be eliminated
explicitly (Sayyah et al., 2006b).
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2.3 THCD formulation in synchronous machine

In this section, we formulate the THCD in high-power synchronous machines. Some
simplifications and assumptions are considered in modeling of these machines; space
harmonics of the flux linkage distribution are neglected, linear magnetics due to operation
in linear portion of magnetization curve prior to experiencing saturation knee is assumed,
iron losses are neglected, and slot harmonics and deep bar effects are not considered.

Synchronous machine model equations can be written as follows (Holtz, 1995):

uR
S = rSi

S
R + jωΨR

S +
dΨR

S
dτ

, (5)

0 = RDiD +
dΨD
dτ

, (6)

ΨR
S = lSi

R
S + ΨR

m, (7)

ΨR
m = lm(iD + iF), (8)

ΨD = lDiD + lm(iS + iF), (9)

where:

lS = llS + lm =

(
ld 0
0 lq

)
, iF =

(
1
0

)
iF, (10)

and

lm =

(
lmd 0
0 lmq

)
, lD =

(
lDd 0
0 lDq

)
, (11)

where ld and lq are inductances of the motor in d and q axes; iD is damper winding current; uR
S

and iR
S are stator voltage and current space vectors, respectively; lD is the damper inductance;

lmd is the d-axis magnetization inductance; lmq is the q-axis magnetization inductance; lDd is
the d-axis damper inductance; lDq is the q-axis damper inductance; Ψm is the magnetization
flux; ΨD is the damper flux; iF is the field excitation current and j �

√−1. Time is also
normalized τ = ωt, where ω is the angular frequency. The total harmonic current distortion
is defined as follows:

σ
synch
i =

√
1
T

∫

T
[iS(t)− iS1(t)]2dt, (12)

in which iS1 is the fundamental component of stator current.

Assuming that the steady state operation of machine makes a constant exciting current, the
dampers current in the system can be neglected. Therefore, we have the machine model in
rotor coordinates as:

uR
S = rSi

R
S + jωlSi

R
S + jωlmiF + lS

diR
S

dτ
. (13)

With the Park transformation, we have the machine model in stator coordinates (the so-called
α − β coordinates) as:

uαβ = RSiαβ + ω(ld − lq)
(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
iαβ +

ld − lq
2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

) diαβ

dτ

+
ld + lq

2
diαβ

dτ
+ ωlmd

(− sin θ
cos θ

)
iF, (14)
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in which θ is the rotor angle. Neglecting the ohmic terms in (14), we have:

uαβ =
d

dτ
(lS(θ)iαβ) + lmd

d
dτ

��
cos θ

sin θ

�
iF

�
, (15)

in which:

lS(θ) =
ld + lq

2
I2 +

ld − lq
2

�
cos 2θ sin 2θ

sin 2θ − cos 2θ

�
. (16)

I2 is the 2 × 2 identity matrix. Hence:

iαβ = l−1
S (θ) ·

� �
uαβdτ − lmd

�
cos θ
sin θ

�
iF

�

=

⎛
⎝

ld+lq
2ld lq

− ld−lq
2ld lq

cos 2θ − ld−lq
2ld lq

sin 2θ

− ld−lq
2ld lq

sin 2θ
ld+lq
2ld lq

+
ld−lq
2ld lq

cos 2θ

⎞
⎠ ·

� �
uαβdτ − lmd

�
cos θ

sin θ

�
iF

�

=
� ld + lq

2ldlq
I2 −

ld − lq
2ldlq

�
cos 2θ sin 2θ

sin 2θ − cos 2θ

��
·
� �

uαβdτ − lmd

�
cos θ
sin θ

�
iF

�
. (17)

With further simplification, we have iαβ as:

iαβ =
ld + lq
2ldlq

�
uαβdτ + J1 −

ld − lq
2ldlq

J2, (18)

in which:

J1 = −lmd
ld + lq
2ldlq

�
cos θ

sin θ

�
iF + lmd

ld − lq
2ldlq

�
cos 2θ sin 2θ

sin 2θ − cos 2θ

�
·
�

cos θ

sin θ

�
, (19)

and

J2 =

�
cos 2θ sin 2θ

sin 2θ − cos 2θ

�
·
�

uαβdτ. (20)

Using the trigonometric identities, cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2 and sin(θ1 −
θ2) = sin θ1 cos θ2 − cos θ1 sin θ2, the term J1 in Equation 18 can be simplified as:

J1 = −lmd
ld + lq
2ldlq

�
cos θ

sin θ

�
iF + lmd

ld − lq
2ldlq

�
cos 2θ · cos θ + sin 2θ · sin θ

sin 2θ · cos θ − cos 2θ · cos θ

�
iF

= −lmd
ld + lq
2ldlq

�
cos θ

sin θ

�
iF + lmd

ld − lq
2ldlq

�
cos θ

sin θ

�
iF

=
lmd
ld

�
cos θ
sin θ

�
iF. (21)
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On the other hand, writing the phase voltages in Fourier series:

uA = ∑
s∈S3

u2s+1 sin((2s + 1)θ),

uB = ∑
s∈S3

u2s+1 sin((2s + 1)(θ − 2π

3
)),

uC = ∑
s∈S3

u2s+1 sin((2s + 1)(θ − 4π

3
)),

and using 3-phase to 2-phase transformation, we have:

(
uα

uβ

)
=

(
uA

1√
3
(uB − uC)

)
=

(
∑s∈S3

us sin(sθ)

∑s∈S3
us sin(s(θ − 2π

3 ) + ϕs)

)
(22)

in which:

ϕs =

{
π
6 for s = 1, 7, 13, · · ·

−π
6 for s = 5, 11, 17, · · · .

As such, we have:

uαβ =

(
∑∞

l=0 u6l+1 sin((6l + 1)θ)
∑∞

l=0 u6l+1 sin((6l + 1)(θ − 2π
3 ) + π

6 )

)
+

(
∑∞

l=0 u6l+5 sin((6l + 5)θ)
∑∞

l=0 u6l+5 sin((6l + 5)(θ − 2π
3 )− π

6 )

)
.

(23)
Integration of uαβ yields:

∫
uαβdτ = − 1

ω
×

{(
∑∞

l=0
u6l+1
6l+1 cos((6l + 1)θ)

∑∞
l=0

u6l+1
6l+1 cos((6l + 1)θ − 4πl − π

2 )

)

+

(
∑∞

l=0
u6l+5
6l+5 cos((6l + 5)θ)

∑∞
l=0

u6l+5
6l+5 cos((6l + 5)θ − 4πl − 3π

2 )

)}

= − 1
ω

×
(

∑∞
l=0[

u6l+1
6l+1 cos((6l + 1)θ) + u6l+5

6l+5 cos((6l + 5)θ)]
∑∞

l=0[
u6l+1
6l+1 sin((6l + 1)θ)− u6l+5

6l+5 sin((6l + 5)θ)]

)
(24)

By substitution of
∫
uαβdτ in Equation 18, the term J2 can be written as:

J2 =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
·
∫

uαβdτ = − 1
ω

×
{(

∑∞
l=0

u6l+1
6l+1 cos((6l + 1)θ) · cos 2θ

∑∞
l=0

u6l+1
6l+1 cos((6l + 1)θ) · sin 2θ

)
+

(
∑∞

l=0
u6l+1
6l+1 sin((6l + 1)θ) · sin 2θ

−∑∞
l=0

u6l+1
6l+1 sin((6l + 1)θ) · cos 2θ

)

+

(
∑∞

l=0
u6l+5
6l+5 cos((6l + 5)θ) · cos 2θ

∑∞
l=0

u6l+5
6l+5 cos((6l + 5)θ) · sin 2θ

)
+

(−∑∞
l=0

u6l+5
6l+5 sin((6l + 5)θ) · sin 2θ

∑∞
l=0

u6l+5
6l+5 sin((6l + 5)θ) · cos 2θ

)}

= − 1
ω

(
∑∞

l=0[
u6l+1
6l+1 cos((6l − 1)θ) + u6l+5

6l+5 cos((6l + 7)θ)]
∑∞

l=0[− u6l+1
6l+1 sin((6l − 1)θ) + u6l+5

6l+5 sin((6l + 7)θ)]

)
. (25)
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Considering the derived results, we can rewrite iA = iα as:

iA =
(
− ld + lq

2ldlqω

)
·

∞

∑
l=0

[
u6l+1
6l + 1

cos((6l + 1)θ) +
u6l+5
6l + 5

cos((6l + 5)θ)]

+
( ld − lq

2ldlqω

)
·

∞

∑
l=0

[
u6l+1
6l + 1

cos((6l − 1)θ) +
u6l+5
6l + 5

cos((6l + 7)θ)]− lmd
ld

iF cos θ. (26)

Using the appropriate dummy variables l = l� + 1 and l = l�� − 1, we have:

iA =
(
− ld + lq

2ldlqω

)
·
{ ∞

∑
l=0

u6l+1
6l + 1

cos((6l + 1)θ) +
∞

∑
l=0

u6l+5
6l + 5

cos((6l + 5)θ)
}
+

( ld − lq
2ldlqω

)
·
{ ∞

∑
l�=−1

u6l�+7
6l� + 7

cos((6l� + 5)θ) +
∞

∑
l��=1

u6l��−1
6l�� − 1

cos((6l�� + 1)θ)
}

− lmd
ld

iF cos θ

=
(
− ld + lq

2ldlqω

)
·
{ ∞

∑
l=0

u6l+1
6l + 1

cos((6l + 1)θ) +
∞

∑
l=0

u6l+5
6l + 5

cos((6l + 5)θ)
}

+
( ld − lq

2ldlqω

)
·
{ ∞

∑
l=0

u6l+7
6l + 7

cos((6l + 5)θ) +
∞

∑
l=0

u6l−1
6l − 1

cos((6l + 1)θ) + u1 cos θ
}

− lmd
ld

iF cos θ. (27)

Thus, we have iA as:

iA =
(
− 1

2ldlqω

)
·
{ ∞

∑
l=0

[(ld + lq)
u6l+1
6l + 1

− (ld − lq)
u6l−1
6l − 1

] · cos((6l + 1)θ) +

∞

∑
l=0

[(ld + lq)
u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

] · cos((6l + 1)θ)− (ld − lq)u1 cos θ
}

− lmd
ld

iF cos θ. (28)

Removing the fundamental components from Equation 28, we have:

iAh =
(
− 1

2ldlqω

)
·
{ ∞

∑
l=1

[{
(ld + lq)

u6l+1
6l + 1

− (ld − lq)
u6l−1
6l − 1

} · cos((6l + 1)θ)
]
+

∞

∑
l=0

[{
(ld + lq)

u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

} · cos((6l + 5)θ)
]}

=
(
− 1

2ldlqω

)
·
{ ∞

∑
l=0

{
(ld + lq)

u6l+7
6l + 7

− (ld − lq)
u6l+5
6l + 5

} · cos((6l + 7)θ) +

∞

∑
l=0

{
(ld + lq)

u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

} · cos((6l + 5)θ)
}

. (29)
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On the other hand, writing the phase voltages in Fourier series:

uA = ∑
s∈S3

u2s+1 sin((2s + 1)θ),

uB = ∑
s∈S3

u2s+1 sin((2s + 1)(θ − 2π

3
)),

uC = ∑
s∈S3

u2s+1 sin((2s + 1)(θ − 4π

3
)),

and using 3-phase to 2-phase transformation, we have:

(
uα

uβ

)
=

(
uA

1√
3
(uB − uC)

)
=

(
∑s∈S3

us sin(sθ)

∑s∈S3
us sin(s(θ − 2π

3 ) + ϕs)

)
(22)

in which:

ϕs =

{
π
6 for s = 1, 7, 13, · · ·

−π
6 for s = 5, 11, 17, · · · .

As such, we have:

uαβ =

(
∑∞

l=0 u6l+1 sin((6l + 1)θ)
∑∞

l=0 u6l+1 sin((6l + 1)(θ − 2π
3 ) + π

6 )

)
+

(
∑∞

l=0 u6l+5 sin((6l + 5)θ)
∑∞

l=0 u6l+5 sin((6l + 5)(θ − 2π
3 )− π

6 )

)
.

(23)
Integration of uαβ yields:

∫
uαβdτ = − 1

ω
×

{(
∑∞

l=0
u6l+1
6l+1 cos((6l + 1)θ)

∑∞
l=0

u6l+1
6l+1 cos((6l + 1)θ − 4πl − π

2 )

)

+

(
∑∞

l=0
u6l+5
6l+5 cos((6l + 5)θ)

∑∞
l=0

u6l+5
6l+5 cos((6l + 5)θ − 4πl − 3π

2 )

)}

= − 1
ω

×
(

∑∞
l=0[

u6l+1
6l+1 cos((6l + 1)θ) + u6l+5

6l+5 cos((6l + 5)θ)]
∑∞

l=0[
u6l+1
6l+1 sin((6l + 1)θ)− u6l+5

6l+5 sin((6l + 5)θ)]

)
(24)

By substitution of
∫
uαβdτ in Equation 18, the term J2 can be written as:

J2 =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
·
∫

uαβdτ = − 1
ω

×
{(

∑∞
l=0

u6l+1
6l+1 cos((6l + 1)θ) · cos 2θ

∑∞
l=0

u6l+1
6l+1 cos((6l + 1)θ) · sin 2θ

)
+

(
∑∞

l=0
u6l+1
6l+1 sin((6l + 1)θ) · sin 2θ

−∑∞
l=0

u6l+1
6l+1 sin((6l + 1)θ) · cos 2θ

)

+

(
∑∞

l=0
u6l+5
6l+5 cos((6l + 5)θ) · cos 2θ

∑∞
l=0

u6l+5
6l+5 cos((6l + 5)θ) · sin 2θ

)
+

(−∑∞
l=0

u6l+5
6l+5 sin((6l + 5)θ) · sin 2θ

∑∞
l=0

u6l+5
6l+5 sin((6l + 5)θ) · cos 2θ

)}

= − 1
ω

(
∑∞

l=0[
u6l+1
6l+1 cos((6l − 1)θ) + u6l+5

6l+5 cos((6l + 7)θ)]
∑∞

l=0[− u6l+1
6l+1 sin((6l − 1)θ) + u6l+5

6l+5 sin((6l + 7)θ)]

)
. (25)
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Considering the derived results, we can rewrite iA = iα as:

iA =
(
− ld + lq

2ldlqω

)
·

∞

∑
l=0

[
u6l+1
6l + 1

cos((6l + 1)θ) +
u6l+5
6l + 5

cos((6l + 5)θ)]

+
( ld − lq

2ldlqω

)
·

∞

∑
l=0

[
u6l+1
6l + 1

cos((6l − 1)θ) +
u6l+5
6l + 5

cos((6l + 7)θ)]− lmd
ld

iF cos θ. (26)

Using the appropriate dummy variables l = l� + 1 and l = l�� − 1, we have:

iA =
(
− ld + lq

2ldlqω

)
·
{ ∞

∑
l=0

u6l+1
6l + 1

cos((6l + 1)θ) +
∞

∑
l=0

u6l+5
6l + 5

cos((6l + 5)θ)
}
+

( ld − lq
2ldlqω

)
·
{ ∞

∑
l�=−1

u6l�+7
6l� + 7

cos((6l� + 5)θ) +
∞

∑
l��=1

u6l��−1
6l�� − 1

cos((6l�� + 1)θ)
}

− lmd
ld

iF cos θ

=
(
− ld + lq

2ldlqω

)
·
{ ∞

∑
l=0

u6l+1
6l + 1

cos((6l + 1)θ) +
∞

∑
l=0

u6l+5
6l + 5

cos((6l + 5)θ)
}

+
( ld − lq

2ldlqω

)
·
{ ∞

∑
l=0

u6l+7
6l + 7

cos((6l + 5)θ) +
∞

∑
l=0

u6l−1
6l − 1

cos((6l + 1)θ) + u1 cos θ
}

− lmd
ld

iF cos θ. (27)

Thus, we have iA as:

iA =
(
− 1

2ldlqω

)
·
{ ∞

∑
l=0

[(ld + lq)
u6l+1
6l + 1

− (ld − lq)
u6l−1
6l − 1

] · cos((6l + 1)θ) +

∞

∑
l=0

[(ld + lq)
u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

] · cos((6l + 1)θ)− (ld − lq)u1 cos θ
}

− lmd
ld

iF cos θ. (28)

Removing the fundamental components from Equation 28, we have:

iAh =
(
− 1

2ldlqω

)
·
{ ∞

∑
l=1

[{
(ld + lq)

u6l+1
6l + 1

− (ld − lq)
u6l−1
6l − 1

} · cos((6l + 1)θ)
]
+

∞

∑
l=0

[{
(ld + lq)

u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

} · cos((6l + 5)θ)
]}

=
(
− 1

2ldlqω

)
·
{ ∞

∑
l=0

{
(ld + lq)

u6l+7
6l + 7

− (ld − lq)
u6l+5
6l + 5

} · cos((6l + 7)θ) +

∞

∑
l=0

{
(ld + lq)

u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

} · cos((6l + 5)θ)
}

. (29)
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On the other hand, σ2
l can be written as:

σ2
l =

(
(ld + lq)

u6l+7
6l + 7

− (ld − lq)
u6l+5
6l + 5

)2
+

(
(ld + lq)

u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

)2

= 2(l2
d + l2

q )
( u6l+7

6l + 7

)2
+ 2(l2

d + l2
q )
( u6l+5

6l + 5

)2 − 4(l2
d − l2

q )
u6l+5u6l+7

(6l + 5)(6l + 7)
. (30)

With normalization of σ2
l ; i.e. σ̃2

l =
σ2

l
l2
d+l2

q
and also the definition of the total harmonic current

distortion as σ2
i = ∑∞

l=0 σ̃2
l , we have:

σ2
i =

∞

∑
l=0

{( u6l+5
6l + 5

)2
+

( u6l+7
6l + 7

)2− 2
l2
d − l2

q

l2
d + l2

q

( u6l+5
6l + 5

)( u6l+7
6l + 7

)}
.

Considering the set S3 = {5, 7, 11, 13, · · · } and with more simplification, σi in high-power
synchronous machines can be explicitly expressed as:

σi =

√√√√ ∑
k∈S3

(uk
k

)2 − 2
l2
d − l2

q

l2
d + l2

q

∞

∑
l=1

( u6l−1
6l − 1

)
·
( u6l+1

6l + 1

)
. (31)

As mentioned earlier, THCD in high-power synchronous machines depends on ld and lq, the
inductances of d and q axes, respectively.

3. Switching scheme

Switching frequency in high-power systems, due to the use of gate turn-off thyristor (GTO)
in the inverter is limited to several hundred hertz. In this work, the switching frequency
has been set to fs = 200 Hz. Considering the frequency of the fundamental component of
PWM waveform to be variable with maximum value of 50 Hz (i.e. f1max = 50 Hz), we have:

fs
f1max

= 4. This condition forces a constraint on the number of switches, since we have:

fs

f1
= N. (32)

On the other hand, in electrical machines with rotating magnetic field, in order to maintain
the torque at a constant level, the fundamental frequency of the PWM should be proportional
to its amplitude (modulation index is also proportional to the amplitude) (Leonhard, 2001).
That is:

M = k f1 =
k
N

· fs = k · f1max
N

· fs

f1max
. (33)

Also, we have:

M = k f1| f1= f1max
= 1 ⇒ k =

1
f1max

. (34)

Considering Equations (33) and (34), the following equation is resulted:

fs

f1max
= M · N. (35)

324 Bio-Inspired Computational Algorithms and Their Applications On the Application of Optimal PWM of Induction Motor in Synchronous Machines at High Power Ratings 9

The value of fs
f1max

is plotted versus modulation index in Figure 3.

Fig. 3. Switching scheme

Figure 3 shows that as the number of switching angles increases and M declines from unity,
the curve moves towards the upper limit fs

f1max
. The curve, however, always remains under the

upper limit. When N increases and reaches a large amount, optimization procedure and its
accomplished results are not effective. Additionally, it does not show a significant advantage
in comparison with space vector PWM (SVPWM). Based on this fact, in high power machines,
the feeding scheme is a combination of optimized PWM and SVPWM.

At this juncture, feedforward structure of PWM fed inverter is emphasized. Presence of
current feedback path means that the switching frequency is dictated by the current which
is the follow-on of system dynamics and load conditions. This may give rise to uncontrollable
high switching frequencies that indubitably denote colossal losses. Furthermore, utilization
of current feedback for PWM generation intensifies system instability and results in chaos.

4. Optimization procedure

A numerical optimization algorithm is expected to perform the task of global optimization of
an objective function. However, as objective function may possess numerous local optima,
algorithms are prone to get trapped in local solutions. The genetic algorithms (GAs) among
the numerical algorithms, have been extensively used as search and optimization tools in
dealing with global optimization problems, due to their capability of avoiding local solutions
from terminating the optimization process. There are certain other advantages to GAs such
as their indifference to system specific information, especially the derivative information, the
versatility of application, the ease with which heuristics can be incorporated in optimization,
the capability of learning and adapting to changes over time, the implicitly parallel directed
random exploration of the search space, and the ability to accommodate discrete variables in
the search process, to name a few (Bäck et al., 1997).

GAs operate on a population of potential solutions to generate close approximations to
the optimal solution through evolution. The population is a set of chromosomes, and the
basic GA operators are selection, crossover and mutation. At each generation, a new set
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On the other hand, σ2
l can be written as:

σ2
l =

(
(ld + lq)

u6l+7
6l + 7

− (ld − lq)
u6l+5
6l + 5

)2
+

(
(ld + lq)

u6l+5
6l + 5

− (ld − lq)
u6l+7
6l + 7

)2

= 2(l2
d + l2

q )
( u6l+7

6l + 7

)2
+ 2(l2

d + l2
q )
( u6l+5

6l + 5

)2 − 4(l2
d − l2

q )
u6l+5u6l+7

(6l + 5)(6l + 7)
. (30)

With normalization of σ2
l ; i.e. σ̃2

l =
σ2

l
l2
d+l2

q
and also the definition of the total harmonic current

distortion as σ2
i = ∑∞

l=0 σ̃2
l , we have:

σ2
i =

∞

∑
l=0

{( u6l+5
6l + 5

)2
+

( u6l+7
6l + 7

)2− 2
l2
d − l2

q

l2
d + l2

q

( u6l+5
6l + 5

)( u6l+7
6l + 7

)}
.

Considering the set S3 = {5, 7, 11, 13, · · · } and with more simplification, σi in high-power
synchronous machines can be explicitly expressed as:

σi =

√√√√ ∑
k∈S3

(uk
k

)2 − 2
l2
d − l2

q

l2
d + l2

q

∞

∑
l=1

( u6l−1
6l − 1

)
·
( u6l+1

6l + 1

)
. (31)

As mentioned earlier, THCD in high-power synchronous machines depends on ld and lq, the
inductances of d and q axes, respectively.

3. Switching scheme

Switching frequency in high-power systems, due to the use of gate turn-off thyristor (GTO)
in the inverter is limited to several hundred hertz. In this work, the switching frequency
has been set to fs = 200 Hz. Considering the frequency of the fundamental component of
PWM waveform to be variable with maximum value of 50 Hz (i.e. f1max = 50 Hz), we have:

fs
f1max

= 4. This condition forces a constraint on the number of switches, since we have:

fs

f1
= N. (32)

On the other hand, in electrical machines with rotating magnetic field, in order to maintain
the torque at a constant level, the fundamental frequency of the PWM should be proportional
to its amplitude (modulation index is also proportional to the amplitude) (Leonhard, 2001).
That is:

M = k f1 =
k
N

· fs = k · f1max
N

· fs

f1max
. (33)

Also, we have:

M = k f1| f1= f1max
= 1 ⇒ k =

1
f1max

. (34)

Considering Equations (33) and (34), the following equation is resulted:

fs

f1max
= M · N. (35)
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The value of fs
f1max

is plotted versus modulation index in Figure 3.

Fig. 3. Switching scheme

Figure 3 shows that as the number of switching angles increases and M declines from unity,
the curve moves towards the upper limit fs

f1max
. The curve, however, always remains under the

upper limit. When N increases and reaches a large amount, optimization procedure and its
accomplished results are not effective. Additionally, it does not show a significant advantage
in comparison with space vector PWM (SVPWM). Based on this fact, in high power machines,
the feeding scheme is a combination of optimized PWM and SVPWM.

At this juncture, feedforward structure of PWM fed inverter is emphasized. Presence of
current feedback path means that the switching frequency is dictated by the current which
is the follow-on of system dynamics and load conditions. This may give rise to uncontrollable
high switching frequencies that indubitably denote colossal losses. Furthermore, utilization
of current feedback for PWM generation intensifies system instability and results in chaos.

4. Optimization procedure

A numerical optimization algorithm is expected to perform the task of global optimization of
an objective function. However, as objective function may possess numerous local optima,
algorithms are prone to get trapped in local solutions. The genetic algorithms (GAs) among
the numerical algorithms, have been extensively used as search and optimization tools in
dealing with global optimization problems, due to their capability of avoiding local solutions
from terminating the optimization process. There are certain other advantages to GAs such
as their indifference to system specific information, especially the derivative information, the
versatility of application, the ease with which heuristics can be incorporated in optimization,
the capability of learning and adapting to changes over time, the implicitly parallel directed
random exploration of the search space, and the ability to accommodate discrete variables in
the search process, to name a few (Bäck et al., 1997).

GAs operate on a population of potential solutions to generate close approximations to
the optimal solution through evolution. The population is a set of chromosomes, and the
basic GA operators are selection, crossover and mutation. At each generation, a new set
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of approximations is created by the process of selecting individuals and breeding them
together using crossover and mutation operators which are conceptually borrowed from
natural genetics. This process leads to the evolution of better individuals with near-optimum
solutions over time.

The GA methodology structure for the problem considered herein is as follows:

1. Feasible individuals are generated randomly for initial population. That is a n × (N − 1)
random matrix, in which the rows’ elements are sorted in ascending order, lying in [0, π

2 ]
interval.

2. Objective-function-value of all members of the population is evaluated by σi. This allows
estimation of the probability of each individual to be selected for reproduction.

3. Selection of individuals for reproduction is done. When selection of individuals
for reproduction is done, crossover and mutation are applied, based on forthcoming
arguments. New population is created and this procedure continues from step (2). This
procedure is repeated until a termination criterion is reached.

Whether the algorithm will find a near-optimum solution and whether it will find such a
solution efficiently is determined through proper choosing of GA parameters. In the sequel,
some arguments for strategies in setting the components of GA can be found.

Population size plays a pivotal role in the performance of the algorithm. Large sizes of
population decrease the speed of convergence, but help maintain the population diversity and
therefore reduce the probability for the algorithm to trap into local optima. Small population
sizes, on the contrary, may lead to premature convergences. With choosing the population
size as �(10 · N)1.2�, in which the bracket �·� marks that the integer part is taken, satisfying
results are yielded.

Gaussian mutation step size (Eiben et al., 1999) is used with arithmetical crossover to produce
offspring for the next generation. Mutations are realized by replacing components of the
vector α by

α�i = αi +N (0, σ) (36)

where N (0, σ) is a random Gaussian number with mean zero and standard deviation σ. We
replaced the static parameter σ by a dynamic parameter, a function σ(t) defined as

σ(t) = 1 − t
T

(37)

where t is the current generation number varying from zero to T, which is the maximum
generation number.

Here, the mutation step size σ(t) will decrease slowly from one at the beginning of the run
(t = 0) to 0 as the number of generations t approaches T. We set the mutation probability (Pm)
to a fixed value of 0.2 throughout all stages of optimization process. One purpose of having a
relatively high mutation rate is to maintain the population diversity, explore the search space
effectively and prevent premature convergence. Arithmetical crossover (Michalewicz, 1996) is
considered herein, and probability of this operator is set to 0.8. When two parent individuals
are denoted as αk = (αk

1, . . . , αk
M), k ∈ {1, 2}, two offspring α�k = (α�k1 , . . . , α�kM) are reproduced
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as interpolations of both parents’ genes:

α�1m = λα1
m + (1 − λ)α2

m

α�2m = (1 − λ)α1
m + λα2

m (38)

where the parameter λ, is a randomly chosen number in the interval [0,1].

There are different selection methods that can be used in the GAs algorithm. Tournament
selection (Goldberg, 1989) with size 2 is one of these methods which is used as the selection
mechanism in this study. An elitist strategy is also enabled during the replacement operation.
Elitism usually brings about a more rapid convergence of the population and also improves
the chances of locating the optimal individual. Elite count considered in this study is 5%
of population size. In this study the termination criteria is reaching 500th generation, which
stated that the algorithm is repeated until a predetermined number of generations is reached.
It should be noted that to increase the precision of the optimal solutions accomplished by the
algorithm, we used a local search function which finds the minimum of a scalar function of
several variables, starting at initial estimate which is the outcome of the GA.

5. Optimal pulse patterns for synchronous machines

The characteristics of electric machines depend decisively upon the use of magnetic
materials. These materials are required to form the magnetic circuit and are used by
the machine designers to obtain specific desired characteristics. Striving to attain optimal
usage of magnetic material, and consequently reduce its dimensions, volume and cost,
has concentrated endeavors in the design of electric machines on locating machine’s rated
operating point near the saturation knee of magnetization curve. Furthermore, modifications
in operating point, probably caused by various factors, results in substantial changes in
machine’s inductances. Considering the disproportion between the air gaps in d- and q-axis
(q-axis air gap is larger), d-axis inductance experiences saturation region more quickly. This

appreciably influences the value of lq
ld

. Other factors, namely aging and temperature rise
should also be taken into account in studying the variations of machine’s inductances.

Based on discussion above, online identification of machine’s inductances seems
indispensable. Either an optimization procedure is to be performed or pre-determined lq

ld
s

are to be used for addressing the corresponding LUT and switching patterns to control the
inverter. The latter is possible only in case various LUTs are available for different values of
lq
ld

.

Regarding identification algorithms for synchronous machines, unavailability of numerous
machine variables, like dampers current, leads to negligence of such dynamics. As a
result, bias in identified parameters, and deviation from their real values are quite possible.

Considering the sensitivity of the problem to lq
ld

, presence of bias in these parameters leads
to arriving at switching patterns that are different from optimal ones. As observed, online
identification procedure and offline calculation of optimal pulse patterns, both, require
immoderate processing burden. Substitution in LUTs, causes transient conditions. The
drawbacks associated with transient conditions can briefly be stated as follows:

1. Power losses increase during transition and reduction in THCD is not realized.
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several variables, starting at initial estimate which is the outcome of the GA.
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The characteristics of electric machines depend decisively upon the use of magnetic
materials. These materials are required to form the magnetic circuit and are used by
the machine designers to obtain specific desired characteristics. Striving to attain optimal
usage of magnetic material, and consequently reduce its dimensions, volume and cost,
has concentrated endeavors in the design of electric machines on locating machine’s rated
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(q-axis air gap is larger), d-axis inductance experiences saturation region more quickly. This

appreciably influences the value of lq
ld
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should also be taken into account in studying the variations of machine’s inductances.
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indispensable. Either an optimization procedure is to be performed or pre-determined lq
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are to be used for addressing the corresponding LUT and switching patterns to control the
inverter. The latter is possible only in case various LUTs are available for different values of
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.

Regarding identification algorithms for synchronous machines, unavailability of numerous
machine variables, like dampers current, leads to negligence of such dynamics. As a
result, bias in identified parameters, and deviation from their real values are quite possible.

Considering the sensitivity of the problem to lq
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, presence of bias in these parameters leads
to arriving at switching patterns that are different from optimal ones. As observed, online
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2. Intensification of transient conditions may reach an unacceptable level and cause system
to trip.

Hence, considerable efforts to compensate transient conditions, while keeping system’s
operating point fixed, enhance system’s cost.

6. Comparison results

Accomplished optimal pulse patterns for induction motor, which are the fundamental
components for the performed comparison, are shown in Fig. 4.
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Fig. 4. Optimal pulse patterns of induction motor.

To distinguish between suboptimal and global solutions, the insight on the distribution
scheme of switching angles over the considered interval (i.e. [0, π

2 ]), along with tracing the
increase in the number of switching angles, were of significant assistances. Also, optimal

pulse patterns in synchronous machines for lq
ld
= 0.3 are shown in Fig. 5.

Minimized THCD and resulted THCD using optimal pulse patterns of induction motor

(suboptimal solutions) are illustrated in Fig. 6 for lq
ld
= 0.3.

For comparison, an index is defined:

Error Percentage =
σ

synch∗
i − σ

synch
i

σ
synch
i

× 100%, (39)

in which σ
synch∗
i denotes the resulted THCD of synchronous machines using optimal switches

of induction motor. For lq
ld

= 0.3 to 0.8 with increments of 0.1, the Error Percentages are
illustrated in Fig. 7. Since the resulted system is intended for use in high modulation indices,
the proposed approach is quite justifiable, considering these comparison results.
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7. Conclusions

This paper presents an efficient alternative approach for minimization of harmonic losses in
high-power synchronous machines. The proposed current harmonic model in these machines
is dependent on the inductances of d and q axes, the inductances in direct and quadrature
axes, respectively. As high power application is of concern, finding the global optimum
solution to have minimum losses in every specific operating point is of great consequence.
For an identified typical machine, with specified characteristics, the problem is redrafted as
an optimization task, and the optimal pulse patterns are sought through genetic algorithm
(GA) in order to minimize the total harmonic current distortion (THCD). Optimal pulsewidth
modulation (PWM) waveforms are accomplished up to 12 switches (per quarter period of
PWM waveform), in which for more than this number of switching angles, space vector
PWM (SVPWM) method, is preferred to optimal PWM approach. Selection of GA as the
optimization method seems completely defensible considering its salient features which
can cope with shortcomings of the deterministic optimization methods, particularly when
decision variables increase, more probability of finding the global optimum solution, and also
nonlinearity and complexity of the proposed objective function.

The aforementioned inductances are appreciably influenced by modifications in operating
point, aging, and temperature rise. As such, in-progress switching patterns are no longer
global optimum patterns, therefore performing optimization process to determine new
optimal pulse patterns from among prior identification procedure results, is indispensable.
Substitution in switching patterns provokes an unfavorable transient condition. Optimal
pulse patterns of induction motor, whose current harmonic model is independent of its
parameters, are applied to harmonic model of synchronous machine with distinct values of
lq
ld

. Effectiveness of the proposed approach is noteworthy, particularly in large values of lq
ld

and
high modulation indices.
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7. Conclusions

This paper presents an efficient alternative approach for minimization of harmonic losses in
high-power synchronous machines. The proposed current harmonic model in these machines
is dependent on the inductances of d and q axes, the inductances in direct and quadrature
axes, respectively. As high power application is of concern, finding the global optimum
solution to have minimum losses in every specific operating point is of great consequence.
For an identified typical machine, with specified characteristics, the problem is redrafted as
an optimization task, and the optimal pulse patterns are sought through genetic algorithm
(GA) in order to minimize the total harmonic current distortion (THCD). Optimal pulsewidth
modulation (PWM) waveforms are accomplished up to 12 switches (per quarter period of
PWM waveform), in which for more than this number of switching angles, space vector
PWM (SVPWM) method, is preferred to optimal PWM approach. Selection of GA as the
optimization method seems completely defensible considering its salient features which
can cope with shortcomings of the deterministic optimization methods, particularly when
decision variables increase, more probability of finding the global optimum solution, and also
nonlinearity and complexity of the proposed objective function.

The aforementioned inductances are appreciably influenced by modifications in operating
point, aging, and temperature rise. As such, in-progress switching patterns are no longer
global optimum patterns, therefore performing optimization process to determine new
optimal pulse patterns from among prior identification procedure results, is indispensable.
Substitution in switching patterns provokes an unfavorable transient condition. Optimal
pulse patterns of induction motor, whose current harmonic model is independent of its
parameters, are applied to harmonic model of synchronous machine with distinct values of
lq
ld

. Effectiveness of the proposed approach is noteworthy, particularly in large values of lq
ld

and
high modulation indices.

8. Acknowledgments

The authors would like to thank Professor Joachim Holtz of the University of Wuppertal for
apposite suggestion of the approach developed in this study.

9. References

Bäck, T.; Hammel, U. & Schwefel, H. P. (1997). Evolutionary computation: comments on the
history and current state. IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1,
April 1997, 3-17.

Boldea, I. & Nasar, S. A. (1992). Vector Control of AC Drives, CRC Press, Boca Raton, FL.
Bose, B. K. (2002). Modern Power Electronics and AC Drives, Prentice Hall, Upper Saddle River,

NJ.
Chiasson, J.; Tolbert, L. M.; McKenzie, K. & Du, Z.: (2004). A complete solution to the

harmonic elimination problem. IEEE Transactions on Power Electronics, Vol. 19, No.
2, March 2004, 491-499.

Czarkowski, D.; Chudnovsky, D. V.; Chudnovsky, G. V. & Selesnick, I. W. (2002). Solving the
optimal PWM problem for single-phase inverters. IEEE Transactions on Circuits and
Systems–I, Vol. 49, No. 4, April 2002, 465-475.

Davis, L. (1991). Handbook of genetic algorithms, Van Nostrand Reinhold, New York.

331
On the Application of Optimal PWM 
of Induction Motor in Synchronous Machines at High Power Ratings



16 Will-be-set-by-IN-TECH
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1. Introduction

To let biological processes, behaviors and structures inspire the design of problem solving
algorithms and devices has been a prominent and persistent theme in engineering and
applied sciences in the last few decades. Within this context, bio–inspired computing has
taken a pioneering role. Fields such as evolutionary computing (1; 8; 25), artificial immune
systems (4; 6; 43), membrane computing (29) or swarm systems (9; 22) have outgrown their
infancy and found theoretical ground as well as important applications. The fact that and the
way how these fields advanced into its current form is due to three major developments: (i) the
upcoming of cheap, fast and reliable computational power in form of digital computers, (ii)
the understanding that computational power in connection with implementing an algorithmic
approach creates potent problem solvers, and (iii) the insight that biological systems can be
fruitfully understood as information–processing units and can hence frequently be employed
for computational and/or algorithmic proposes. This trend is of course not to be confused
with computational biology, but it is highly related and probably unthinkable without
the fundamental progress towards algorithmization and mathematization in biology, see
e.g. (5; 16; 21; 38) for some recent discussion. Among the mentioned fields of bio–inspired
computing, evolutionary algorithms and artificial immune systems play a unique role as their
history is particularly long and the maturity reached is notably high. In this paper we will
use both schemes in connection to solve the intertwined problem of maximum tracking and
change detection in dynamic optimization.

For successfully solving dynamic optimization problems by evolutionary computation, there
is a need for additions to the standard algorithmic structure, namely by operators maintaining
and enhancing population diversity. Dynamic optimization here means that the topology
of the associated fitness landscape changes with time. A considerable number of these
operators for diversity management (for instance memory schemes, random immigrants or
hyper–mutation (24; 26; 30; 33; 35; 39; 45)) can only be provoked and hence made to work
properly if the points in time are known where the changes in the fitness landscape occur. So,
the problem of change detection is of high practical relevance in solving dynamic optimization
problems (3; 19; 27).

In principle, change detection is based on using information about the fitness values of points
in the search space extracted from the fitness landscape. This extraction of information can
be done in two ways. One is to use the fitness evaluations of the evolutionary algorithm’s
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population, which is called population–based detection, the other is to use additional
measurement of the landscape’s fitness on prescribed points (26), which is called sensor–based
detection. Recently, a study (34) compared both types of methods. It has been shown that in
populations–based detection there is no need for additional fitness function evaluation, but
elaborate statistical tests have to be carried out. On the other hand, sensor–based detection can
forgo these tests but at the cost of redoing measurements in the fitness landscape. Irrespective
of the quality of the change detection, using statistical tests on population–based fitness data
is sometimes generally objectionable. Although using non–parametric statistical tests fits the
non-Gaussian nature of the fitness distribution, the tests require independent samples to be
accurately employed. This independence might not be given for fitness distributions from
sequential generations. The fitness values of next generation’s population have their origin
in the current generation and are only partly affected by the stochastic influence driving the
evolutionary algorithm. This situation might be different if a (randomly induced) change
in the fitness landscape has occurred, but again there is no guarantee that the resulting
fitness distributions are statistically independent. Because of these reasons, it would be
desirable to have alternative methods. A promising option is the use of methods from artificial
immune systems, particularly negative selection (4; 7; 13; 18; 44). These algorithms have been
successfully employed to solve similar problems, for instance network security, computer
virus detection, network intrusion detection and fault diagnosis, see e.g. (13; 18; 43). In
this paper, we present an immunological approach to change detection in dynamic fitness
landscapes.

The paper is organized like this. In the next two sections, dynamic fitness landscapes
are introduced and the change detection problem is defined. Then, in section 4, the
immunological change detection scheme is given and its main components, shape space,
affinity function, detector generation and detection processing, are described. In section 5, we
present numerical experiments with the scheme and use receiver–operating characteristics
(ROC) as well as the area under the ROC curve (AUC) as an analyzing tool. We end with
summarizing the findings and pointing at future work.

2. Dynamics and fitness landscapes

The concept of fitness landscapes is an important approach to foster theoretical understanding
in evolutionary computation (20; 40; 41). Such landscapes are traditionally considered to be
static and can be obtained from either a genotype–to–fitness mapping or more generally by
encoding all possible solutions of the optimization problem and giving a fitness value to each
solution. All the possible solutions span a search space S , while a fitness function f (s) : S →
R provides every point s ∈ S with a fitness value. In case of a genotype–to–fitness mapping,
S coincides with the genotypical space. If the search space S is not metric, we must explain
which solutions we would obtain if we were to slightly modify a possible solution s ∈ S (and
hence were to move it locally in the search space). This is done by a neighborhood structure
n(s) which gives every point in the search space a set of direct and possibly also more distant
neighbors.

If the fitness landscape is dynamic all of its three defining ingredients – search space S, fitness
function f (s), neighborhood structure n(s) – can, in principle, be changing with time. So, we
additionally need for description a time set and mappings that tell how S, f (s) and/or n(s)
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evolve with time (31; 32; 37). Dynamic optimization problems considered in the literature so
far address all these possibilities of change to some extend. Whereas a real alteration of the
fundamental components of a search space such as dimensionality or representation (binary,
integer, discrete, real, etc.) is really rare, a change in the feasibility of individuals is another and
less substantial kind of a dynamic search space and is discussed within the problem setting of
dynamic constraints (28; 36). The works on dynamic routing can partially be interpreted as a
changing neighborhood structures (2; 15), while most of the work so far has been devoted to
time–dependent fitness function (24; 26; 30; 33; 35; 39; 45), which will also be the focus of this
paper.

In dynamic optimization problems (DOPs), the fitness landscape

f (x, k), k ≥ 0 (1)

defined over a fixed bounded search space M ⊂ Rn with x ∈ M, changes with discrete time
k ∈ N0. The DOP is solved by an evolutionary algorithm (EA) with population P ∈ Rn

and generational time t ∈ N0. Its population dynamics can be described by the generation
transition function

P(t + 1) = ψ (P(t)) , t ≥ 0, (2)

which explains how a population P(t + 1) at generation t + 1 originates from the population
P(t) at generation t. Both the time scales t and k work as a measuring and ordering tool for
changes (t for changes in the population from one generation to the next, k for changes in the
dynamic fitness landscape). As μ individuals pi(t) ∈ P(t), i = 1, 2, . . . , μ, populate the fitness
landscape (1), they can be labeled with a fitness value f (pi(t), k). Both time scales are related
in the solving process of the DOP by the change frequency γ ∈ N with

t = γk. (3)

Usually, γ is considered to be constant for all generations t, but it might also be a function
of k and even be different (for instance a positive integer realization of a random process) for
every k. Note that we require more than one generation in between landscape changes, γ > 1,
and hence k = �γ−1t�.

3. The change detection problem

From (3), we see that the fitness landscape changes every γ generations. As the temporal
patterns of these changes are assumed to be not explicitly known, our interest is now to infer
from the fitness values

fi(k) = f (pi, k) (4)

of the individuals pi(t) ∈ P(t)|t=γk if a change in the fitness landscape has occurred or not.
This we call the change detection problem in dynamic fitness landscapes using fitness data
from the population. More explicitly, we want to detect the change point tcp with the property
∃x ∈ M for which

f (x, �γ−1(tcp − 1)�) �= f (x, �γ−1tcp�). (5)

Our convention is to define the change point tcp in the generational time scale t as we base
the detection solely on the fitness values f (x, �γ−1t�) of the population P(t). From (3) follows
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�γ−1(tcp − 1)� = k − 1 and �γ−1tcp� = k, that is for every integer γ−1t there is a change in
the fitness landscape (1).

The change point definition (5) says that a change in the fitness landscape has happened no
matter how small and insignificant the alteration in the landscape’s topology actually is. From
a computational point of view this raises some problems regarding practical detectability.
Change detection based on population data assumes that a change in the fitness landscape
affects a substantial number of its points and makes them to increase or decrease their
fitness values. Moreover, generally there is P(t) �= P(t − 1) so that we cannot check if
f (pi, �γ−1(t − 1)�) �= f (pi, �γ−1t�) as pi(t − 1) �= pi(t).

Another aspect is that the given framework is unsuitable for discriminating between small
but gradual changes and larger but abrupt changes. Such a distinction can only be made in
terms of the fitness landscape considered. The treatment and discussion presented here is
intended to apply for fitness landscapes that undergo abrupt and substantial changes in their
topology. Hence, it can reasonably be assumed that these changes are practically detectable.
We exclude small but gradual changes in the fitness landscape (for instance those resulting
from the presence of noise and/or other perturbations in the fitness evaluation process). This
is in line with the application context of the change detection scheme considered here. It
should help to trigger and control the diversity enhancement and maintenance of the EA. For
fitness landscapes with small but gradual changes an additional change–activated diversity
management does not play a prominent role anyway; other types of EAs (particularly those
emphasizing robustness such as self–adaption) are found to be more apt here.

As shown above it is generally not possible to verify condition (5) directly. The basic idea
behind using the fitness values f (pi, k)|k=�γ−1t� of the population’s individuals pi(t) ∈ P(t) is
that these quantities form a fitness distribution

F(t) = ( f1(t), f2(t), . . . , fμ(t)) (6)

that can be analyzed by itself or compared to the � preceding ones, that is creating a time
window of width �, (F(t− 1), F(t− 2), . . . , F(t− �)). The fitness distributions can be regarded
as a data stream and monitoring this data stream should make visible the normal optimum
finding mode of the EA but also reflect that this normal mode is disrupted if a change in
the fitness landscape has occurred (and hence results in a different pattern when evaluating
F(t) and F(t − 1), respectively). Statistically speaking, the considered data set F(t) can be
regarded as coming from an unknown distribution D(t). This transforms the problem of
change detection into the problem of testing whether the data sets F(t) and F(t − 1) or any
data set created from any time window including F(t) are coming from different distributions
or not, which is known as statistical hypothesis testing. This connection is widely applied in
solving change detection problems, e.g. (14; 23). The obvious question here is which test can
tell us whether D(t) is different from D(t− 1) and if this difference necessarily and sufficiently
implies that a change has occurred. In the language of statistical hypothesis testing, the
test should ideally show only true changes, that is have no false positives and indicate all of
them, that is have no false negatives. However, statistical hypothesis testing methods regularly
require that the samples F(t) are independent from F(t − 1). This most likely is not the
case if the samples come form a moving population of an evolutionary algorithm. The data
set F(t) includes the fitness value of an evolving population and represents two types of
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interfering population dynamics. An evolving population moves (ideally and in the best case)
monotonically towards the optima and in doing so changes its mean and standard deviation.
Such a convergence behavior of the EA which is desired and the intended working mode
is again a statistical phenomenon. Moreover, the fitness values of F(t) are a direct result of
the values of F(t − 1) and therefore can hardly be regarded as independent of each other. A
second aspect is the reaction of a change in the fitness landscape, which more likely can be
seen as independent if the dynamics is a stochastic process. For all these reasons we look
for an alternative to statistical hypothesis testing. So, we intend to use ideas from artificial
immunology for solving the change detection problem in dynamic fitness landscapes.

4. The immunological change detector

Artificial immune systems (AIS) are soft computing algorithms that take their inspiration from
and mimicking working principles and functions of their biological counterparts (43; 44).
AIS date back to the 80s (11) and were initiated by an increasing theoretical understanding
of the natural immune system in connection with a strong interest in utilizing biological
processes for computational proposes. These algorithms are capable of adaption, learning
and memory and have been applied to problem solving in areas as different as classification,
pattern recognition and data mining/analysis (6; 13; 18; 43). Among the different types of
AIS, negative selection algorithms acclaimed a prominent role in solving so–called anomaly
detection (7; 10; 13; 18; 42). Here, anomaly detection means to distinguish the normal behavior
of a dynamic process, usually characterized by some (external) model, from anomalies defined
by deviations from that model. In the following, we review negative selection and show how
it can be used for detecting change in dynamic fitness landscapes.

Negative selection is anchored at the concept of a shape space that represents the observable
features of the dynamic process for which a change in behavior needs to be detected. Within
that shape space, we define a set of self elements that stem from the normal behavior. From
these self elements, in turn, a set of detectors is derived that must not match any sample
of the self set, usually by using some training data. Subsequently, the detectors are taken
to decide if an incoming new feature data from the dynamic process is normal (self) or not
(non–self). Thus, negative selection mimics the self/non–self discrimination of the natural
immune system, see Fig. 1 which shows self and non–self elements in a two–dimensional
shape space. We now describe the main components of the negative selection algorithm:
shape space, affinity measure, detector generation and detection process.

i.) Shape space. The shape space of a negative selection algorithm is a representation of the
data coming from the dynamic process under study and can be either a string over a finite
alphabet (for instance a binary string, which has been used in a large number of previous
works, see e.g. (18)) or real–valued (13). As the base for the change detection, the fitness
distribution F(t), is real–valued it seems straightforward to use a real–valued shape space
S = [0, 1]m here, where m is its dimension. Dimensionality of the shape space is an important
parameter influencing computational effort and performance of the detection scheme (42).
The dimensionality of the fitness distribution F(t) equals the number of individuals in the
population μ. So, for the reason given above, it appears sensible to pre–process the data from
the fitness distribution with the aims of both reducing dimensionality and extracting the most
meaningful information about when the landscape has changed.
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of the self set, usually by using some training data. Subsequently, the detectors are taken
to decide if an incoming new feature data from the dynamic process is normal (self) or not
(non–self). Thus, negative selection mimics the self/non–self discrimination of the natural
immune system, see Fig. 1 which shows self and non–self elements in a two–dimensional
shape space. We now describe the main components of the negative selection algorithm:
shape space, affinity measure, detector generation and detection process.

i.) Shape space. The shape space of a negative selection algorithm is a representation of the
data coming from the dynamic process under study and can be either a string over a finite
alphabet (for instance a binary string, which has been used in a large number of previous
works, see e.g. (18)) or real–valued (13). As the base for the change detection, the fitness
distribution F(t), is real–valued it seems straightforward to use a real–valued shape space
S = [0, 1]m here, where m is its dimension. Dimensionality of the shape space is an important
parameter influencing computational effort and performance of the detection scheme (42).
The dimensionality of the fitness distribution F(t) equals the number of individuals in the
population μ. So, for the reason given above, it appears sensible to pre–process the data from
the fitness distribution with the aims of both reducing dimensionality and extracting the most
meaningful information about when the landscape has changed.
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Fig. 1. Self and non–self elements and detectors for a two–dimensional shape space.

Among the several conceivable ways to do the pre–processing, we here consider the following
scheme. The distributions F(t) and F(t − 1) are independently sorted according to their
fitness values. Then the m

2 highest and m
2 lowest ranked elements of both sorted distributions

are taken, the elements coming from F(t − 1) are subtracted from the ones from F(t) and
finally these calculated quantities (which reflect the difference between two consecutive
fitness distributions) are normalized to the interval [0, 1]. Hence, the result is a point in the
m–dimensional shape space. The given procedure of pre–processing the data is motivated by
the common sense arguments that a change in the fitness landscape particularly affects the
magnitude of the best and the worst fitness values and also that their relative difference from
one generation to the subsequent one is telling if either a standard evolutionary search or a
reaction to a landscape change has taken place. Note that by this pre–processing a metric on
the fitness distributions is defined.

ii.) Affinity measure. The affinity measure states the degree of matching and recognition
between elements (that are points) in the shape space. In other words, the affinity measure
describes to what degree elements in the shape space differ. Every element in the shape space
is defined by its center point c ∈ [0, 1]m and a matching radius r. According to their function
in the immunological detection and classification process, there are three types of elements in
the shape space:

(a) self elements se = (cs, rs) that are samples known to belong to the self space (usually from
a training data set),

(b) detectors dt = (cd, rd) that are derived from the self elements and must not match them,
and

(c) incoming data samples id = (ci, ri) that must be classified as belonging to either the self
set or not.

Self elements, detectors and incoming data are also known by their immunological motivated
terms self cells, antibodies and antigens, respectively. There is a large number of different
affinity measures, see e.g. (18) for an overview. We here use Euclidean distance so that there
is a match if �ci − cj� < ri + rj, with the indices i, j denoting different elements of the shape
space.
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iii.) Detector generation. In detector generation, self elements that come from training data
with known self/non-self discrimination are used to calculate detector center points and radii.
Similarly to the situation in computing the affinity measure, there is a multitude of different
detector generation mechanisms, see e.g. (18). In some initial experiments (which are not
reported here for sake of brevity), a scheme mainly using ideas from v–detectors (17) had
shown best results and is considered here. This scheme has the advantage to address the
problem of coverage of the non–self space in the generation process and to maximize the size
of individual detectors to achieve a larger coverage. This comes at the cost of making the
number of detectors actually created a (not predicable) result of the generation process and
not a parameter to be set initially.

The scheme works like this. Input is a collection of self elements sej, with j = 1, 2, . . . #se,
and #se the total number of self elements. Further, we set a target coverage α and calculate a
quantity h = 1

1−α . Then, the following steps are repeated. A candidate detector point and its
radius are generated as a realization of a uniformly distributed random variable. It is tested
if the detector matches any of the self elements. If so, its radius is shrunk so that any match
is abolished. If not so, the radius is enhanced to the limit of any match. After that it is tested
if the candidate detector with its updated radius is entirely covered by a detector that already
passed this test. If so, the candidate is discarded, otherwise it is saved to the set of detectors
that passed the coverage test. These steps are repeated until candidate detectors cannot pass
the coverage test h times in a row. The saved detector candidates are accepted for the change
detection process.

iv.) Detection process. After the training time in which detectors are generated as described
above, the immunological change detector can be used for deciding if a change point
according to eq. (5) has been reached or not by monitoring a metric defined on the fitness
distributions F(t) and F(t − 1). The necessary pre–processing is the same as the one given for
the training phase above in Sec. 4.i. So, an incoming data sample id(t) = (ci(t), ri) is produced
every generation t, where the center point comes from the pre–processing and the self–radius
ri is a quantity that defines the sensitivity of the detector, is to be set in initializing the
immunological change detector and will be examined in the numerical experiments reported
below. The affinity function is calculated by using a Euclidean distance measure

w(t) =
#det

∑
j=1

aff(id(t), dtj), (7)

where #det is the total number of detectors dtj, the individual affinities

aff(id(t), dtj) =

{
β�ci(t)− cdj� if �ci(t)− cdj� < rdj
|ri − rdj| if �ci(t)− cdj� < rdj + ri

and β is a weighting factor. From the values w(t), a change point can be concluded. Therefore,
a threshold value w̄ has to be set and a w(t) > w̄ indicates a change.

v.) Performance evaluation. To evaluate the success and the quality of the change
detection, the method of receiver–operating characteristics (ROC) curves can be used, e.g. (12).
ROC curves are a tool for organizing and visualizing classifications together with their
performances. So, they can be used to analyze and depict the relative trade–offs between
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a threshold value w̄ has to be set and a w(t) > w̄ indicates a change.

v.) Performance evaluation. To evaluate the success and the quality of the change
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performances. So, they can be used to analyze and depict the relative trade–offs between
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benefits of the schemes (correctly identified instances according to the classification) and costs
(incorrect identifications). That makes them particularly useful to assess change detection
schemes. The classification here is between positive and negative change detections. Hence,
we can define the following performance metrics. If there is a positive detection and a change
in the fitness landscape has happened, it is counted as true positive (tp), if a change happened
but is not detected, it is a negative positive (np). If, on the other hand, no change has happened
and the detection is negative, it is a true negative (tn), a positive detection in this situation yields
a false negative ( f n). For this two–by–two change classification, we obtain as the elements of
performance metrics: the tp rate

tp ≈ correctly identified changes
total changes

(8)

and f n = 1 − tp as well as the f p rate

f p ≈ incorrectly identified changes
total non changes

(9)

and tn = 1 − f p. In the ROC plot, the tp rate is given (on the ordinate) versus the f p rate (on
the abscissa). Hence, the tp and f p rates for the immunological change detector for a given
threshold value w̄ give a point in the ROC space; ROC curves are obtained by plotting the
rates for varying the threshold value w̄.

5. Experimental results

In the following we report numerical experiments with the change detection schemes
described above. In the experiments, we use as dynamic fitness landscape a “field of cones on
a zero plane”, where N cones with coordinates ci(k), i = 1, · · · , N, are moving with discrete
time k ∈ N0. These cones are distributed across the landscape and have randomly chosen
initial coordinates ci(0), heights hi, and slopes si, see Fig. 2. So, we get

f (x, k) = max
{

0 , max
1≤i≤N

[hi − si�x − ci(k)�]
}

, (10)

where the number of cones is N = 50 and its dimension n = 2. The dynamics of the moving
sequence for the cones’ coordinates is mostly normally random, that is each ci(k) for each k
is an independent realization of a normally distributed random variable. In the last set of
experiments we also consider different kinds of dynamics, namely regular, circle–like (and
hence completely predictable) dynamics where the cones’ coordinates form a circle and so
return to the same place in search space after a certain amount of time, and chaotic dynamics
where the cones’ coordinates follow the trajectory of a nonlinear dynamical system with
chaotic behavior, see (30) for details of this kind of setting of landscape dynamics.

Further, we employ an EA with a fixed number of λ = 48 individuals that uses tournament
selection of tournament size 2, a fitness–related intermediate sexual recombination (which is
operated λ times and works by choosing two individuals randomly to produce offspring that
is the fitness–weighted arithmetic mean of both parents) and a standard mutation with the
mutation rate 0.1. Note that the choice of the EA is of secondary importance as long as it
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Fig. 2. Fitness landscape (10) for n = 2 and N = 4.

solves the DOP with some success. The immunological change detector was implemented as
described in Sec. 4; we set β = 5.

Fig. 3 shows the detection process by monitoring the affinity function w(t) calculated
according to eq. (7), for shape space dimension m = 8, coverage α = 0.999 and self radius
ri = 0.2. We here use a training time of 20 generations. We see that even for this small
training set, spikes in w(t) can be used as indication for changes in the fitness landscape. As
results of a second set of experiments, we give the ROC curves for varying dimension m and
coverage α, see Fig. 4. Here, training time is 400 generations with total 1000 generations taken
into account, self radius is ri = 0.2 and change frequency γ = 20. The tp and f p rates are
calculated according to the eqs. (8) and (9) and are means over 100 repetitions. From the
ROC curves we can deduce that the lower left point (0, 0) represents a change detection that
never produces any positive decision. It makes neither a false positive error nor yields any
true positives. Likewise but opposite, a detection represented by the upper right point (1, 1)
only produces positive decisions with only true positives but also false positive errors in all
cases. The line between these two points in the ROC space can be regarded as expressing a
purely random guessing strategy to decide on whether or not a change has happened. Any
classification that is represented by a point below that line is worse than random guessing,
while classifications above are better, the more so if the point is more north–westwards of
another, with the point (0, 1) expressing perfect classification.

With this in mind, we see from Fig. 4 that good detection results are achieved as we obtain
curves that climb from the point (0, 0) vertically for a considerable amount of threshold values
towards (0, 1) before bending off to (1, 1). Further, it can be seen in Fig. 4a that a higher
coverage rate produces slightly better results, but the differences are not dramatic. Also,
varying the shape space dimension leads to no substantial increasing in the detection success.
The curve for m = 8 is even slightly lower than that for m = 6.

An important feature of the v–detector design used in this paper is that we get detectors with
variable size but also that their exact number is not known beforehand. The number is a
statistically varying result of the creating process and thus becomes a quantity that can be
verified and studied experimentally. Fig. 5a shows the number of detectors #det depending
on the shape space dimension m, while Fig. 5b gives #det over the average detector radii
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Fig. 3. Detection process for γ = 20, shape space dimension m = 8, coverage α = 0.999 and
self radius ri = 0.2.
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Fig. 4. ROC curves for: a) varying coverage α; b) varying shape space dimension m.
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rd. Both figures show a scatter plot for 20 subsequent detector generations each. It can
be seen that generally the larger the coverage α and the dimension m the more detectors
are produced. Both facts appear quite logical as higher coverage requires more detectors,
and higher dimension means larger generalized volume to be filled by the detectors. For
dimensions becoming larger also the actual numbers of detectors are more spread, that is they
increase in their range of variation. For m = 8, for instance, and α = 0.900 the difference
between the lowest value (#det = 15) and the highest (#det = 33) is 18, while for m = 4
the maximal difference is 8. Results that allow a similar interpretation can also be found for
the number of detectors over the average detector radii rd, see Fig. 5b. Smaller coverage
α produces not only a smaller number of detectors but also detectors with smaller average
radii, albeit the range of radii overlap. A possible explanation is that for a higher coverage a
larger number of detectors candidates are produced and tested, and hence it becomes more
likely that such with larger radii are finally found and selected.
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Fig. 5. Number of detectors #det for different coverage α depending on: a) shape space
dimension m; b) average detector radius mean(rd) .

In a next experiment we study the effect of varying the self radius ri together with the
influence of different kind of landscape dynamics. To get a numerical evaluation of the ROC
curves, we calculate the area under the ROC curve (AUC), which is a measure for the detection
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Fig. 3. Detection process for γ = 20, shape space dimension m = 8, coverage α = 0.999 and
self radius ri = 0.2.
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In a next experiment we study the effect of varying the self radius ri together with the
influence of different kind of landscape dynamics. To get a numerical evaluation of the ROC
curves, we calculate the area under the ROC curve (AUC), which is a measure for the detection
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success (12). Since the AUC is a fraction of the unit square, its values are 0 ≤ AUC ≤ 1.
Moreover, since random guessing gives the diagonal line in the unit square, a well–working
change detection should have values AUC > 0.5. Fig. 6 shows the AUC over the self radius
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Fig. 6. AUC over self radius ri for different γ and different kinds of landscape dynamics,
shape space dimension m = 8 and coverage α = 0.999: a) random landscape dynamics; b)
cyclic landscape dynamics; c) chaotic landscape dynamics.
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ri for different change frequencies γ, shape space dimension m = 8 and coverage α = 0.999,
with Fig. 6a giving the results for random landscape dynamics, and Fig. 6b and Fig. 6c for
regular dynamics (circle) and chaotic dynamics. The AUC is again the mean over 100 runs.
We can generally see a reverse bath tube curve that indicates that a certain interval of ri is
best. In some cases there is no significant differences in the performance within this interval,
for instance for random dynamics and γ = 20, while for others, for instance random dynamics
and γ = 5, a clear maximum can be observed. Further, the performance is generally better
for random dynamics than for regular or chaotic, and a very fast landscape dynamics, γ = 5,
may produce rather inferior detection results. These results appear to be a little bit surprising
as it is know that for the optimization results for regular and chaotic dynamics we do not find
such significant differences (33; 35). A possible explanation is that for random dynamics in
the landscape the composition of the population is more homogeneous and the population
dynamics more random–like. This in turn leads to better detector design and hence more
effective change detection.

6. Conclusions

We have presented an immunological approach for solving the change detection problem in
dynamic fitness landscape. A negative selection algorithm has been used to decide on whether
or not the fitness landscape has changed. This is solely done with fitness information from
the population on a sample base. Numerical experiments evaluated by receiver–operating
characteristics (ROC) curves have shown the efficiency of the scheme. An important feature
of the approach is that it does not directly uses any statistical test on which requirements
could be imposed regarding the independence of the samples. In future work it would be
interesting to compare and combine the immunological change detector with statistical tests.
This could be connected with a study of dynamic fitness landscapes with higher dimension
and complexity.
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success (12). Since the AUC is a fraction of the unit square, its values are 0 ≤ AUC ≤ 1.
Moreover, since random guessing gives the diagonal line in the unit square, a well–working
change detection should have values AUC > 0.5. Fig. 6 shows the AUC over the self radius
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ri for different change frequencies γ, shape space dimension m = 8 and coverage α = 0.999,
with Fig. 6a giving the results for random landscape dynamics, and Fig. 6b and Fig. 6c for
regular dynamics (circle) and chaotic dynamics. The AUC is again the mean over 100 runs.
We can generally see a reverse bath tube curve that indicates that a certain interval of ri is
best. In some cases there is no significant differences in the performance within this interval,
for instance for random dynamics and γ = 20, while for others, for instance random dynamics
and γ = 5, a clear maximum can be observed. Further, the performance is generally better
for random dynamics than for regular or chaotic, and a very fast landscape dynamics, γ = 5,
may produce rather inferior detection results. These results appear to be a little bit surprising
as it is know that for the optimization results for regular and chaotic dynamics we do not find
such significant differences (33; 35). A possible explanation is that for random dynamics in
the landscape the composition of the population is more homogeneous and the population
dynamics more random–like. This in turn leads to better detector design and hence more
effective change detection.

6. Conclusions

We have presented an immunological approach for solving the change detection problem in
dynamic fitness landscape. A negative selection algorithm has been used to decide on whether
or not the fitness landscape has changed. This is solely done with fitness information from
the population on a sample base. Numerical experiments evaluated by receiver–operating
characteristics (ROC) curves have shown the efficiency of the scheme. An important feature
of the approach is that it does not directly uses any statistical test on which requirements
could be imposed regarding the independence of the samples. In future work it would be
interesting to compare and combine the immunological change detector with statistical tests.
This could be connected with a study of dynamic fitness landscapes with higher dimension
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1. Introduction

The Human Immune System (HIS) is a complex network composed of specialized cells,
tissues, and organs that is responsible for protecting the organism against diseases caused
by distinct pathogenic agents, such as viruses, bacteria and other parasites. The first line
of defence against pathogenic agents consists of physical barriers of skin and the mucous
membranes. If the pathogenic agents breach this first protection barrier, the innate immune
system will be ready for recognize and combat them. The innate immune system is therefore
responsible for powerful non-specific defences that prevent or limit infections by most
pathogenic microorganisms.

The understanding of the innate system is therefore essential, not only because it is the first
line of defence of the body, but also because of its quick response. However, its complexity and
the intense interaction among several components, make this task extremely complex. Some
of its aspects, however, may be better understood if a computational model is used. Modelling
and simulation help to understand large complex processes, in particular processes with
strongly coupled influences and time-dependent interactions as they occur in the HIS. Also, in
silico simulations have the advantage that much less investment in technology, resources and
time is needed compared to in vivo experiments, allowing researchers to test a large number
of hypotheses in a short period of time.

A previous work (Pigozzo et al. (2011)) has developed a mathematical and computational
model to simulate the immune response to Lipopolysaccharide (LPS) in a microscopic section
of a tissue. The LPS endotoxin is a potent immunostimulant that can induce an acute
inflammatory response comparable to that of a bacterial infection. A set of Partial Differential
Equations (PDEs) were employed to reproduce the spatial and temporal behaviour of antigens
(LPS), neutrophils and cytokines during the first phase of the innate response.

Good modelling practices require the evaluation of the confidence in the new proposed
model. An important tool used for this purpose is the sensitivity analysis. The sensitivity
analysis consists of the study of the impact caused by the variation of input values of a model
on the output generated by it. However, this study can be a time consuming task due to
the large number of scenarios that must be evaluated. This prohibitive computational cost
leads us to develop a parallel version of the sensitivity analysis code using General-purpose
Graphics Processing Units (GPGPUs). GPGPUs were chosen because of their ability to
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responsible for powerful non-specific defences that prevent or limit infections by most
pathogenic microorganisms.

The understanding of the innate system is therefore essential, not only because it is the first
line of defence of the body, but also because of its quick response. However, its complexity and
the intense interaction among several components, make this task extremely complex. Some
of its aspects, however, may be better understood if a computational model is used. Modelling
and simulation help to understand large complex processes, in particular processes with
strongly coupled influences and time-dependent interactions as they occur in the HIS. Also, in
silico simulations have the advantage that much less investment in technology, resources and
time is needed compared to in vivo experiments, allowing researchers to test a large number
of hypotheses in a short period of time.

A previous work (Pigozzo et al. (2011)) has developed a mathematical and computational
model to simulate the immune response to Lipopolysaccharide (LPS) in a microscopic section
of a tissue. The LPS endotoxin is a potent immunostimulant that can induce an acute
inflammatory response comparable to that of a bacterial infection. A set of Partial Differential
Equations (PDEs) were employed to reproduce the spatial and temporal behaviour of antigens
(LPS), neutrophils and cytokines during the first phase of the innate response.

Good modelling practices require the evaluation of the confidence in the new proposed
model. An important tool used for this purpose is the sensitivity analysis. The sensitivity
analysis consists of the study of the impact caused by the variation of input values of a model
on the output generated by it. However, this study can be a time consuming task due to
the large number of scenarios that must be evaluated. This prohibitive computational cost
leads us to develop a parallel version of the sensitivity analysis code using General-purpose
Graphics Processing Units (GPGPUs). GPGPUs were chosen because of their ability to
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process many streams simultaneously. This chapter describes the GPU-based implementation
of the sensitivity analysis and also presents some of the sensitivity analysis results. Our
experimental results showed that the parallelization was very effective in improving the
sensitivity analysis performance, yielding speedups up to 276.

The remainder of this chapter is organized as follows. Section 2 includes the background
necessary for understanding this chapter. Section 3 describes the mathematical model
implemented. Section 4 describes the implementation of the GPU version of the sensitivity
analysis. Section 5 presents some of the results of the sensitivity analysis and the speedup
obtained. Section 7 presents related works. Our conclusions and plans of future works are
presented in Section 8.

2. Background

2.1 Biological background

The initial response of the body to an acute biological stress, such as a bacterial infection, is
an acute inflammatory response (Janeway et al. (2001)). The strategy of the HIS is to keep
some resident macrophages on guard in the tissues to look for any signal of infection. When
they find such a signal, the macrophages alert the neutrophils that their help is necessary. The
cooperation between macrophages and neutrophils is essential to mount an effective defence,
because without the macrophages to recruit the neutrophils to the location of infection, the
neutrophils would circulate indefinitely in the blood vessels, impairing the control of huge
infections.

The LPS endotoxin is a potent immunostimulant that can induce an acute inflammatory
response comparable to that of a bacterial infection. After the lyse of the bacteria by the action
of cells of the HIS, the LPS can be released in the host, intensifying the inflammatory response
and activating some cells of the innate system, such as neutrophils and macrophages.

The LPS can trigger an inflammatory response through the interaction with receptors on the
surface of some cells. For example, the macrophages that reside in the tissue recognize a
bacterium through the binding of a protein, TLR4, with LPS. The commitment of this receptor
activates the macrophage to phagocyte the bacteria, degrading it internally and secreting
proteins known as cytokines and chemokines, as well as other molecules.

The inflammation of an infectious tissue has many benefits in the control of the infection.
Besides recruiting cells and molecules of innate immunity from blood vessels to the location
of the infected tissue, it increases the lymph flux containing microorganisms and cells that
carry antigens to the neighbours’ lymphoid tissues, where these cells will present the antigens
to the lymphocytes and will initiate the adaptive response. Once the adaptive response is
activated, the inflammation also recruits the effectors cells of the adaptive HIS to the location
of infection.

2.2 General-Purpose computation on Graphics Processing Units - GPGPUS

NVIDIA’s Compute Unified Device Architecture (CUDA)(NVIDIA (2007)) is perhaps the
most popular platform in use for General-Purpose computation on Graphics Processing Units
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(GPGPUs). CUDA includes C software development tools and libraries to hide the GPGPU
hardware from programmers.

In CUDA, a parallel function is called kernel. A kernel is a function callable from the CPU
and executed on the GPU simultaneously by many threads. Each thread is run by a stream
processor. They are grouped into blocks of threads or just blocks. A set of blocks of threads
form a grid. When the CPU calls a kernel, it must specify how many threads will be created
at runtime. The syntax that specifies the number of threads that will be created to execute a
kernel is formally known as the execution configuration, and is flexible to support CUDA’s
hierarchy of threads, blocks of threads, and grids of blocks.

Some steps must be followed to use the GPU: first, the device must be initialized. Then,
memory must be allocated in the GPU and data transferred to it. The kernel is then called.
After the kernel has finished, results must be copied back to the CPU.

3. Mathematical model

The model proposed in this chapter is based on a set of Partial Differential Equations (PDEs)
originally proposed by Pigozzo et al. (2011). In the original work, a set of PDEs describe the
dynamics of the immune response to LPS in a microscopic section of tissue. In particular,
the interactions among antigens (LPS molecules), neutrophils and cytokines were modelled.
In this chapter, a simplified model of the innate immune system using ODEs is presented to
simulate the temporal behaviour of LPS, neutrophils, macrophages and cytokines during the
first phase of the immune response. The main differences between our model and the original
one (Pigozzo et al. (2011)) are: a) the current model does not consider the spatial dynamics
of the cells and molecules and b) the macrophages in two stages of readiness, resting and
activated, are introduced in the current model.
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Figure 1 presents schematically the relationship between macrophages, neutrophils,
proinflammatory cytokines and LPS. LPS cause a response in both macrophages and
neutrophils, that recognize LPS and phagocyte them. The process of phagocytosis induces,
in a rapid way, the apoptosis of neutrophils. This induction is associated with the generation
of reactive oxygen species (ROS) (Zhang et al. (2003)). The resting macrophages become
activated when they find LPS in the tissue. The pro-inflammatory cytokine is produced by
both active macrophages and neutrophils after they recognize LPS. It induces an increase in
the endothelial permeability allowing more neutrophils to leave the blood vessels and enter
the infected tissue.

Our set of equations is given below, where RM, AM, A, N and CH represent the population
of resting macrophages, activated macrophages, LPS, neutrophils and pro-inflammatory
cytokines, respectively. The dynamics of LPS is modelled with Equation 1.

�
dA
dt = −μA A − (λN|A.N + λAM|A.AM + λRM|A.RM).A

A(0) = 20
(1)

The term μA A models the decay of LPS, where μA is its decay rate. The term
−(λN|A.N + λAM|A.AM + λRM|A.RM).A models the phagocytosis of LPS by macrophages
and neutrophils, where λN|A is the phagocytosis rate of neutrophils, λAM|A is the
phagocytosis rate of active macrophages, and λRM|A is the phagocytosis rate of resting
macrophages.

Neutrophils are modelled with Equation 2.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

permeabilityN = (Pmax
N − Pmin

N ). CH
CH+keqch + Pmin

N

sourceN = permeabilityN .(Nmax − N)
dN
dt = −μN N − λA|N A.N + sourceN

N(0) = 0

(2)

The term permeabilityN uses a Hill equation (Goutelle et al. (2008)) to model how permeability
of the endothelium of the blood vessels depends on the local concentration of cytokines. Hill
equations are also used, for example, to model drug dose-response relationships (Wagner
(1968)).

The idea is to model the increase in the permeability of the endothelium according to
the concentration of the pro-inflammatory cytokines into the endothelium. In the Hill
equation, Pmax

N represents the maximum rate of increase of endothelium permeability to
neutrophils induced by pro-inflammatory cytokines, Pmin

N represents the minimum rate of
increase of endothelium permeability induced by pro-inflammatory cytokines and keqch is
the concentration of the pro-inflammatory cytokine that exerts 50% of the maximum effect
in the increase of the permeability. The term μN N models the neutrophil apoptosis, where
μN is the rate of apoptosis. The term λA|N A.N models the neutrophil apoptosis induced by
the phagocytosis, where λA|N represent the rate of this induced apoptosis. The term sourceN
represents the source term of neutrophil, that is, the number of neutrophils that is entering
the tissue from the blood vessels. This number depends on the endothelium permeability
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(permeabilityN) and the capacity of the tissue to support the entrance of neutrophils (Nmax),
that can also represent the blood concentration of Neutrophils.

The dynamics of cytokine is presented in Equation 3.
�

dCH
dt = −μCHCH + (βCH|N N + βCH|AM AM).A.(1 − CH

chIn f )

CH(0) = 0
(3)

The term μCHCH models the pro-inflammatory cytokine decay, where μCH is the decay rate.
The term (βCH|N N + βCH|AM AM).A models the production of the pro-inflammatory cytokine
by the neutrophils and activated macrophages, where βCH|N and βCH|AM are the rate of this
production by neutrophils and macrophages, respectively.

Equation 4 presents the dynamics of the resting macrophages.
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

permeabilityRM = (Pmax
RM − Pmin

RM ). CH
CH+keqch + Pmin

RM

sourceRM = permeabilityRM.(Mmax − (RM + AM))
dRM

dt = −μRMRM − λRM|A.RM.A + sourceRM

RM(0) = 1

(4)

The term permeabilityRM models how permeability of the endothelium of the blood vessels to
macrophages depends on the local concentration of cytokines. The term μRMRM models the
resting macrophage apoptosis, where μRM is the rate of apoptosis.

Finally, the dynamics of activate macrophages is presented in Equation 5.
�

dAM
dt = −μAM AM + λRM|A.RM.A

AM(0) = 0
(5)

The term μAMRM models the activated macrophage apoptosis, where μRM is the rate of
apoptosis.

4. Implementation

The sensitivity analysis consists in the analysis of impacts caused by variations of parameters
and initial conditions of the mathematical model against its dependent variables (Saltelli et al.
(2008)). If a parameter causes a drastic change in the output of the problem, after suffering a
minor change in its initial value, it is thought that this parameter is sensitive to the problem
studied. Otherwise, this variable has little impact in the model. The sensitivity analysis is
used to improve the understanding of the mathematical model as it allows us to identify input
parameters that are more relevant for the model, i.e. the values of these parameters should be
carefully estimated. In this chapter we use a brute force approach to exam the influence of the
19 parameters present in the equation and two of the initial conditions. A small change in the
value of each parameter is done, and then the model is solved again for this new parameter
set. This process is done many times, since all combinations of distinct values of parameters
and initial conditions must be considered. We analyse the impact of changing one coefficient
at a time. The parameters and initial conditions were adjusted from -100% to + 100% (in steps
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minor change in its initial value, it is thought that this parameter is sensitive to the problem
studied. Otherwise, this variable has little impact in the model. The sensitivity analysis is
used to improve the understanding of the mathematical model as it allows us to identify input
parameters that are more relevant for the model, i.e. the values of these parameters should be
carefully estimated. In this chapter we use a brute force approach to exam the influence of the
19 parameters present in the equation and two of the initial conditions. A small change in the
value of each parameter is done, and then the model is solved again for this new parameter
set. This process is done many times, since all combinations of distinct values of parameters
and initial conditions must be considered. We analyse the impact of changing one coefficient
at a time. The parameters and initial conditions were adjusted from -100% to + 100% (in steps
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of 2%) of their initial values, except for some parameters, that were also adjusted from -100%
to + 100%, but in steps of 20%. The combination of all different set of parameters and initial
conditions give us a total of 450,000 system of ODEs that must be evaluated in this work.

The sequential code that implements the sensitivity analysis was first implemented in C.
Then the code was parallelized using CUDA. The parallel code is based on the idea that
each combination of distinct values of parameters and initial conditions can be computed
independently by a distinct CUDA thread. The number of threads that will be used during
computation depends on the GPU characteristics. In particular, the number of blocks and
threads per block are chosen taking into account two distinct values defined by the hardware:
a) the warp size and b) the maximum number of threads per block.

The forward Euler method was used for the numerical solution of the systems of ODEs with
a time-step of 0.0001 days. The models were simulated to represent a total period equivalent
to 5 days after the initial infection.

5. Experimental evaluation

In this section the experimental results obtained by the execution of both versions of our
simulator of the innate system, sequential and parallel, are presented. The experiments
were performed on a 2.8 GHz Intel Core i7-860 processor, with 8 GB RAM, 32 KB L1 data
cache, 8 MB L2 cache with a NVIDIA GeForce 285 GTX. The system runs a 64-bits version
of Linux kernel 2.6.31 and version 3.0 of CUDA toolkit. The gcc version 4.4.2 was used to
compile all versions of our code. The NVIDIA GeForce 285 GTX has 240 stream processors,
30 multiprocessors, each one with 16KB of shared memory, and 1GB of global memory. The
number of threads per block are equal to 879, and each block has 512 threads. The codes were
executed 3 times to all versions of our simulator, and the average execution time for each
version of the code is presented in Table 1. The standard deviation obtained was negligible.
The execution times were used to calculate the speedup factor. The speedup were obtained
by dividing the sequential execution time of the simulator by its parallel version.

Sequential 285 GTX Speedup Factor
4,315.47s 15.63s 276.12

Table 1. Serial and parallel execution times. All times are in seconds.

The results reveal that our CUDA version was responsible for a significant improvement
in performance: a speedup of 276 was obtained. This expressive gain was due to the
embarrassingly parallel nature of computation that must be performed. In particular, the same
computation must be performed for a huge amount of data, and there are no dependency
and/or communication between parallel tasks.

6. Simulation

To study the importance of some cells, molecules and processes in the dynamics of the innate
immune response, a set of simulations were performed for distinct values of parameters and
initial conditions. Table 2 presents the initial conditions and the values of the parameters used
in the simulations of all cases. Exceptions to the values presented in Table 2 are highlighted in
the text.
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The complete set of equations that has been simulated, including the initial values used, are
presented by Equation 6:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA
dt = −μA A − (λN|A.N + λAM|A.AM + λRM|A.RM).A

A(0) = 20|40

permeabilityN = (Pmax
N − Pmin

N ). CH
CH+keqch + Pmin

N

sourceN = permeabilityN .(Nmax − N)
dN
dt = −μN N − λA|N A.N + sourceN

N(0) = 0

permeabilityRM = (Pmax
RM − Pmin

RM ). CH
CH+keqch + Pmin

RM

sourceRM = permeabilityRM.(Mmax − (RM + AM))
dRM

dt = −μRMRM − λRM|A.RM.A + sourceRM

RM(0) = 1

dAM
dt = −μAM AM + λRM|A.RM.A

AM(0) = 0

dCH
dt = −μCHCH + (βCH|N N + βCH|AM AM).A.(1 − CH

chIn f )

CH(0) = 0

(6)

It should be noticed that in this case two distinct initial values for A(0) will be used: A(0) =
20 and A(0) = 40.

The sensitivity analysis has shown that two parameters are relevant to the model: the capacity
of the tissue to support the entrance of new neutrophils (Nmax) and the phagocytosis rate of
LPS by neutrophils (λN|A).

Nmax is the most sensitive parameter in the model. The capacity of the tissue to support
the entrance of new neutrophils is directed related to the permeability of the endothelial
cells, which form the linings of the blood vessels. If a positive adjustment is made in the
parameter related to the permeability, then there are more neutrophils entering into the tissue.
This larger amount of neutrophils into the tissue has many consequences: first, more cells
are phagocyting, so the amount of LPS reduces faster. Second, a smaller amount of resting
macrophages becomes active, because there is less LPS into the tissue. Third, a larger amount
of cytokines are produced, since neutrophils are the main responsible for this production. If
a negative adjustment is made, the inverse effect can be observed: with a smaller amount of
neutrophils in the tissue, more resting macrophages become active. Also, a smaller amount of
cytokines are produced.

Figures 2 to 6 illustrate this situation. It can be observed that the LPS decays faster when Nmax

achieves its maximum value.
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20 and A(0) = 40.

The sensitivity analysis has shown that two parameters are relevant to the model: the capacity
of the tissue to support the entrance of new neutrophils (Nmax) and the phagocytosis rate of
LPS by neutrophils (λN|A).

Nmax is the most sensitive parameter in the model. The capacity of the tissue to support
the entrance of new neutrophils is directed related to the permeability of the endothelial
cells, which form the linings of the blood vessels. If a positive adjustment is made in the
parameter related to the permeability, then there are more neutrophils entering into the tissue.
This larger amount of neutrophils into the tissue has many consequences: first, more cells
are phagocyting, so the amount of LPS reduces faster. Second, a smaller amount of resting
macrophages becomes active, because there is less LPS into the tissue. Third, a larger amount
of cytokines are produced, since neutrophils are the main responsible for this production. If
a negative adjustment is made, the inverse effect can be observed: with a smaller amount of
neutrophils in the tissue, more resting macrophages become active. Also, a smaller amount of
cytokines are produced.

Figures 2 to 6 illustrate this situation. It can be observed that the LPS decays faster when Nmax

achieves its maximum value.
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Parameter Value Unit Reference
N0 0 cell estimated

CH0 0 cell estimated
A0 20 cell estimated

RM0 1 cell estimated
AM0 0 cell estimated
μCH 7 1/day estimated
μN 3.43 1/day estimated
μA 0 1/day Su et al. (2009)

μRM 0.033 1/day Su et al. (2009)
μAM 0.07 1/day Su et al. (2009)
λN|A 0.55 1

cell.day Su et al. (2009)

λA|N 0.55 1
cell.day Su et al. (2009)

λAM|A 0.8 1
cell.day Su et al. (2009)

βCH|N 1 1
cell.day estimated

βCH|AM 0.8 1
cell.day estimated

Nmax 8 cell estimated
MRmax 6 cell estimated

Pmax
N 11.4 1

day based on Price et al. (1994)

Pmin
N 0.0001 1

day estimated

Pmax
RM 0.1 1

day estimated

Pmin
RM 0.01 1

day estimated
chIn f 3.6 cell based on de Waal Malefyt et al. (1991)
keqch 1 cell estimated

λRM|A 0.1 1
cell.day estimated

Table 2. Initial conditions, parameters and units.

Fig. 2. Temporal evolution of cytokines with A(0) = 20 and for distinct values of Nmax.
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Fig. 3. Temporal evolution of neutrophils with A(0) = 20 and for distinct values of Nmax.

Fig. 4. Temporal evolution of LPS with A(0) = 20 and for distinct values of Nmax.

In the second scenario, with the double of LPS and starting with just one resting macrophage,
it can be observed that bringing more neutrophils into the tissue do not reduce the number of
resting macrophages that become active. This happens due to the larger amount of LPS in this
scenario when compared to the previous one. The larger amount of activated macrophages
also explains why the amount of cytokines in this scenario is larger than in the previous one.
Figures 7 to 11 present the complete scenario.

The third scenario presents the results obtained when the initial amount of LPS is again
equal to 20. This scenario revels that the second most sensitive parameter is λN|A. λN|A is
responsible for determining how effective is the phagocitosis of the neutrophils in tissue. It
can be observed in Figures 12 to 16 that a negative adjustment in this tax makes the neutrophil
response to be less effective against LPS, while a positive adjustment in the tax makes the
neutrophil response to be more effective. Resting macrophages and activated macrophages
are also affected by distinct values of λN|A. Increasing the value of λN|A causes the neutrophils
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Figures 7 to 11 present the complete scenario.
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equal to 20. This scenario revels that the second most sensitive parameter is λN|A. λN|A is
responsible for determining how effective is the phagocitosis of the neutrophils in tissue. It
can be observed in Figures 12 to 16 that a negative adjustment in this tax makes the neutrophil
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Fig. 5. Temporal evolution of resting macrophages with A(0) = 20 and for distinct values of
Nmax.

Fig. 6. Temporal evolution of activate macrophages with A(0) = 20 and for distinct values of
Nmax.

to produced more cytokines, so more macrophages can migrate into the tissue through blood
vessel, and also there are more cells into the tissue that can phagocyte LPS.

The last scenario is presented by Figures 17 to 21. In this scenario, the amount of LPS is
doubled when compared to the previous one. It can be observed that distinct values used as
initial conditions for LPS only changes how long it takes to the complete elimination of LPS.
It can also be observed that both macrophages populations are affected by the larger amount
of LPS. In particular, the amount of macrophages is slightly higher in this scenario due to the
larger amount of LPS.

7. Related works

This section presents some models and simulators of the HIS found in the literature. Basically
two distinct approaches are used: ODEs and PDEs.

360 Bio-Inspired Computational Algorithms and Their Applications Modelling the Innate Immune System 11

Fig. 7. Temporal evolution of cytokines with A(0) = 40 and for distinct values of Nmax.

Fig. 8. Temporal evolution of neutrophils with A(0) = 40 and for distinct values of Nmax.

7.1 ODEs models

A model of inflammation composed by ODEs in a three-dimensional domain considering
three types of cells/molecules has been proposed by Kumar et al. (2004): the pathogen and
two inflammatory mediators. The model was able to reproduce some experimental results
depending on the values used for initial conditions and parameters. The authors described
the results of the sensitivity analysis and some therapeutic strategies were suggested from this
analysis. The work was then extended (Reynolds et al. (2006)) to investigate the advantages of
an anti-inflammatory response dependent on time. In this extension, the mathematical model
was built from simpler models, called reduced models. The mathematical model (Reynolds
et al. (2006)) consists of a system of ODEs with four equations to model: a) the pathogen; b)
the active phagocytes; c) tissue damage; and d) anti-inflammatory mediators.

A new adaptation of the first model (Kumar et al. (2004)) was proposed to simulate many
scenarios involving repeated doses of endotoxin (Day et al. (2006)). In this work the results
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Fig. 9. Temporal evolution of LPS with A(0) = 40 and for distinct values of Nmax.

Fig. 10. Temporal evolution of resting macrophages with A(0) = 40 and for distinct values of
Nmax.

obtained through experiments with mouse are used to guide the in silico experiments seeking
to recreate these results qualitatively.

A one-dimensional model to show if and when leukocytes successfully defend the body
against a bacterial infection is presented in Keener & Sneyd (1998). A phase-plane method
is then used to study the influence of two parameters, the enhanced leukocyte emigration
from bloodstream and the chemotactic response of the leukocytes to the attractant.

Finally, one last work (Vodovotz et al. (2006)) developed a more complete system of ODEs of
acute inflammation, including macrophages, neutrophils, dendritic cells, Th1 cells, the blood
pressure, tissue trauma, effector elements such as iNOS, NO−

2 and NO−
3 , pro-inflammatory

and anti-inflammatory cytokines, and coagulation factors. The model has proven to be useful
in simulating the inflammatory response induced in mice by endotoxin, trauma and surgery
or surgical bleeding, being able to predict to some extent the levels of TNF, IL-10, IL-6 and
reactive products of NO (NO−

2 and NO−
3 ).
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Fig. 11. Temporal evolution of activate macrophages with A(0) = 40 and for distinct values
of Nmax.

Fig. 12. Temporal evolution of cytokines with A(0) = 20 and for distinct values of λN|A.

7.2 PDEs models

The model proposed by Su et al. (2009) uses a system of partial differential equations (PDEs) to
model not only the functioning of the innate immune system, as well as the adaptive immune
system. The model considers the simplest form of antigen, the molecular constituents of
pathogens patterns, taking into account all the basic factors of an immune response: antigen,
cells of the immune system, cytokines and chemokines. This model captures the following
stages of the immune response: recognition, initiation, effector response and resolution of
infection or change to a new equilibrium state (steady state). The model can reproduce
important phenomena of the HIS such as a) temporal order of arrival of cells at the site of
infection, b) antigen presentation by dendritic cells, macrophages to regulatory T cells d)
production of pro-inflammatory and anti-inflammatory cytokines and e) the phenomenon of
chemotaxis.
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Fig. 13. Temporal evolution of neutrophils with A(0) = 20 and for distinct values of λN|A.

Fig. 14. Temporal evolution of LPS with A(0) = 20 and for distinct values of λN|A.

Pigozzo et al. (2011) present a PDE model to simulate the immune response to
lipopolysaccharide (LPS) in a microscopic section of a tissue, reproducing, for this purpose,
the initiation, maintenance and resolution of immune response.

7.3 Other works

Several proposals which attempt to model both the innate and the adaptive HIS can be found
in the literature. An ODE model is used to describe the interaction of HIV and tuberculosis
with the immune system (Denise & Kirschner (1999)). Other work focus on models of HIV
and T-lymphocyte dynamics, and includes more limited discussions of hepatitis C virus
(HCV), hepatitis B virus (HBV), cytomegalovirus (CMV) and lymphocytic choriomeningitis
virus (LCMV) dynamics and interactions with the immune system (Perelson (2002)). An ODE
model of cell-free viral spread of HIV in a compartment was proposed by Perelson et al. (1993).
Another interesting work tries to integrate the immune system in the general physiology
of the host and considers the interaction between the immune and neuroendocrine system
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Fig. 15. Temporal evolution of resting macrophages with A(0) = 20 and for distinct values of
λN|A.

Fig. 16. Temporal evolution of activate macrophages with A(0) = 20 and for distinct values
of λN|A.

(Muraille et al. (1996)). Klein (1980) presents and compares three mathematical models of B
cell differentiation and proliferation.

ImmSim (Bezzi et al. (1997); Celada & Seiden (1992)) is a simulator of the HIS that
implements the following mechanisms: immunological memory, affinity maturation, effects
of hypermutation, autoimmune response, among others. CAFISS (a Complex Adaptive
Framework for Immune System Simulation) (Tay & Jhavar (2005)) is a framework used for
modelling the immune system, particularly HIV attack. SIMMUNE (Meier-Schellersheim
& Mack (1999)) allows users to model cell biological systems based on data that describes
cellular behaviour on distinct scales. Although it was developed to simulate immunological
phenomena, it can be used in distinct domains. A similar tool is CyCells (Warrender (2004)),
designed to study intercellular relationships.
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Fig. 17. Temporal evolution of cytokines with A(0) = 40 for distinct values of λN|A.

Fig. 18. Temporal evolution of neutrophils with A(0) = 40 for distinct values of λN|A.

Fig. 19. Temporal evolution of LPS with A(0) = 40 for distinct values of λN|A.
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Fig. 20. Temporal evolution of resting macrophages with A(0) = 40 for distinct values of
λN|A.

Fig. 21. Temporal evolution of activate macrophages with A(0) = 40 for distinct values of
λN|A.

8. Conclusion and future works

In this chapter we presented the sensitivity analysis of a mathematical model that simulates
the immune response to LPS in a microscopic section of a tissue. The results have shown that
the two most relevant parameters of the model are: the capacity of the tissue to support the
entrance of more neutrophils and the phagocytosis rate of LPS by neutrophils.

The sensitivity analysis can be a time consuming task due to the large number of scenarios that
must be evaluated. This prohibitive computational cost leads us to develop a parallel version
of the sensitivity analysis code using GPGPUs. Our experimental results showed that the
parallelization was very effective in improving the sensitivity analysis performance, yielding
speedups up to 276.
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the immune response to LPS in a microscopic section of a tissue. The results have shown that
the two most relevant parameters of the model are: the capacity of the tissue to support the
entrance of more neutrophils and the phagocytosis rate of LPS by neutrophils.

The sensitivity analysis can be a time consuming task due to the large number of scenarios that
must be evaluated. This prohibitive computational cost leads us to develop a parallel version
of the sensitivity analysis code using GPGPUs. Our experimental results showed that the
parallelization was very effective in improving the sensitivity analysis performance, yielding
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As future works, we plan to implement a more complete mathematical model including,
for example, new cells (Natural Killer, dendritic cells and the complement system), others
proinflammatory cytokines, anti-inflammatory cytokine, molecules and others processes
involved in the immune responses.
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As future works, we plan to implement a more complete mathematical model including,
for example, new cells (Natural Killer, dendritic cells and the complement system), others
proinflammatory cytokines, anti-inflammatory cytokine, molecules and others processes
involved in the immune responses.
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1. Introduction 
Identical parallel machine scheduling (PMS) problems with the objective of minimizing 
makespan (Cmax) is one of the well known NP-hard [1] combinatorial optimization 
problems. It is unlikely to obtain optimal schedule through polynomial time-bounded 
algorithms. Small size instances of PMS problem can be solved with reasonable 
computational time by exact algorithms such as branch-and-bound [2, 3], and the cutting 
plane algorithm [4]. However, as the problem size increases, the computation time of 
exact methods increases exponentially. On the other hand, heuristic algorithms generally 
have acceptable time and memory requirements, but do not guarantee optimal solution. 
That is, a feasible solution is obtained which is likely to be either optimal or near optimal. 
The well-known longest processing time (LPT) rule of Graham [5] is a sort of so called list 
scheduling algorithm. It is known that the rule works very well when makespan is taken 
as the single criterion [6]. Later, Coffman et al. [7] proposed MULTIFIT algorithm that 
considers the relation between bin-packing and maximum completion time problems.  
Yue [8] showed that the MULTIFIT heuristic is not guaranteed to perform better than LPT 
for every problem. Gupta and Ruiz-Torres [9] developed a LISTFIT algorithm that 
combines the bin packing method of the MULTIFIT heuristic with multiple lists of jobs. 
Min and Cheng [10] introduced a genetic algorithm (GA) that outperformed simulated 
annealing (SA) algorithm. Lee et al. [11] proposed a SA algorithm for the PMS problems and 
compared their results with the LISTFIT algorithm. Tang and Luo [12] developed a new 
iterated local search (ILS) algorithm that is based on varying number of cyclic exchanges.  

Particle swarm optimization (PSO) is based on the metaphor of social interaction and 
communication among different spaces in nature, such as bird flocking and fish schooling. 
It is different from other evolutionary methods in a way that it does not use the genetic 
operators (such as crossover and mutation), and the members of the entire population are 
maintained through out the search procedure. Thus, information is socially shared among 
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individuals to direct the search towards the best position in the search space. In a PSO 
algorithm, each member is called a particle, and each particle moves around in the multi-
dimensional search space with a velocity constantly updated by the particle’s experience, 
the experience of the particle’s neighbours, and the experience of the whole swarm.  
PSO was first introduced to optimize various continuous nonlinear functions by Eberhart 
and Kennedy [13]. PSO has been successfully applied to a wide range of applications such 
as automated drilling [14], home care worker scheduling [15], neural network training 
[16], permutation flow shop sequencing problems [17], job shop scheduling problems [18], 
and task assignment [19]. More information about PSO can be found in Kennedy et al. 
[20].  

The organization of this chapter is as follows: Section II introduces PMS problem, the way 
how to represent the problem, lower bound of the problem and overview of the classical 
PSO algorithm. The third section reveals the proposed heuristic algorithm. The 
computational results are reported and discussed in the fourth section, while the fifth 
section includes the concluding remarks. 

2. Background 
2.1 Problem description 

The problem of identical parallel machine scheduling is about creating schedules for a set J 
={J1, J2 , J3 ,..., Jn} of n independent jobs to be processed on a set M={M1, M2, M3,..., Mm} of m 
identical machines. Each job should be carried out on one of the machines, where the time 
required for processing job i on a machine is denoted by pi. The subset of jobs assigned to 
machine Mi in a schedule is denoted by

iMS . Once a job begins processing, it must be 
completed without interruption. Furthermore, each machine can process one job at a time, 
and there is no precedence relation between the jobs. The aim is to find a permutation for 
the n jobs to machines from set M so as to minimize the maximum completion time, in other 
words the makespan. The problem is denoted as P||Cmax , where P represents identical 
parallel machines, the jobs are not constrained, and the objective is to obtain the minimum 
length schedule. An integer programming formulation of the problem that minimize the 
makespan is as follows: [5] 

min y 

subject to: 
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ij
j

x
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− ≥ ,  1 j m≤ ≤  (2) 

where the optimal value of y is Cmax and xij=1 when job i is assigned to machine j, otherwise 
xij=0. 
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2.2 Solution representation and lower bound 

The solution for the PMS problem is represented as a permutation of integers Π= {1,..., n} 
where Π defines the processing order of the jobs. As mentioned in the text above, three 
versions of the PSO algorithm are compared in terms of solution quality and CPU time.  

In continuous based PSO by Tasgetiren et al. [17], PSOspv , particles themselves do not present 
permutations. Instead, the SPV rule is used to derive a permutation from the position values 
of the particle. In discrete PSO by Pan et al.[21] and the proposed algorithm (SPPSO), on the other 
hand, the particles present permutations themselves.    
 

Jobs 1 2 3 4 5 6 7 8 9 

pi 7 7 6 6 5 5 4 4 4 

Table 1. An example of 9-job × 4-machine PMS problem 

For all of the three algorithms, the process of finding makespan value for a particle can be 
illustrated by an example.  Namely, let’s assume a permutation vector of Π= {1 8 3 4 5 6 7 2 
9}. By considering 4 parallel machines and 9 jobs, whose processing times are given in Table 
1, the makespan value of the given vector is depicted in Figure 1. 

 
Fig. 1. Shedule generated from random sequence 

According to the schedule, each value of the vector is iteratively assigned to the most 
available machine. First four elements of the permutation vector (1,8,3,4) are assigned to the 
four machines respectively. The remaining jobs are assigned one by one to the first machine 
available. For instance, 5 goes to second machine (M2), since it is the first machine released. 
If there is more than one available machine at the time, the job will be assigned randomly 
(ties can be broken arbitrarily). The makespan value of the given sequence is Cmax(Π)=14, as 
can easily be seen in figure 1. 

The lower bound for P||Cmax is calculated as follows [22]: 

 { }max
1

1( ) max ; max
n

i iii
LB C p p

m =

  =   
  
  (3) 

It is obtained by assuming that preemption is not allowed. If Cmax(Π)=LB(Cmax), the current 
solution(Π) is optimum. So, lower bound will be used as one of the termination criteria 
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throughout this chapter. The lower bound of the example presented in Table 1 can be 
calculated as:  

{ }
9

max
1

1( ) max ; max max(12;7) 12
4 i iii

LB C p p
=

  = = =  
  
  

2.3 Classic Particle Swarm Optimization 

In PSO, each single solution, called a particle, is considered as an individual, the group 
becomes a swarm (population) and the search space is the area to explore. Each particle has 
a fitness value calculated by a fitness function, and a velocity to fly towards the optimum. 
All particles fly across the problem space following the particle that is nearest to the 
optimum. PSO starts with an initial population of solutions, which is updated iteration-by-
iteration. The principles that govern PSO algorithm can be stated as follows:  

• n dimensional position ( 1 2( , , ..., )i i i inX x x x= ) and velocity vector ( 1 2( , ,..., )i i i inV v v v= for 
ith particle starts with a random position and velocity.  

• Each particle knows its position and value of the objective function for that position. 
The best position of ith particle is donated as 1 2( , ,..., )i i i inP p p p= , and the best position of 
the whole swarm as, 1 2( , ,..., )nG g g g= respectively. The PSO algorithm is governed by 
the following main equations: 

 
1

1 1 2 2
1 1

( ) ( ),t t t t t t
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x v x

+

+ +

= + − + −
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 (4) 

where t represents the iteration number, w is the inertia weight which is a coefficient to 
control the impact of the previous velocities on the current velocity. c1 and c2 are called 
learning factors. r1 and r2 are uniformly distributed random variables in [0,1].  

The original PSO algorithm can optimize problems in which the elements of the solution 
space are continuous real numbers. The major obstacle for successfully applying PSO to 
combinatorial problems in the literature is due to its continuous nature. To remedy this 
drawback, Tasgetiren et al. [17] presented the smallest position value (SPV) rule. Another 
approach to tackle combinatorial problems with PSO is done by Pan et al. [21]. They 
generate a similar PSO equation to update the particle’s velocity and position vectors using 
one and two cut genetic crossover operators.   

3. The proposed Stochastically Perturbed Particle Swarm Optimization 
algorithm 
In this chapter, a stochastically perturbed particle swarm optimization algorithm (SPPSO) is 
proposed for the PMS problems. The initial population is generated randomly. Initially, each 
individual with its position, and fitness value is assigned to its personal best (i.e., the best 
value of each individual found so far). The best individual in the whole swarm with its 
position and fitness value, on the other hand, is assigned to the global best (i.e., the best 
particle in the whole swarm). Then, the position of each particle is updated based on the 
personal best and the global best. These operations in SPPSO are similar to classical PSO 
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algorithm. However, the search strategy of SPPSO is different. That is, each particle in the 
swarm moves based on the following equations. 
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 (5) 

At each iteration, the position vector of each particle, its personal best and the global best are 
considered.  First of all, a random number of U(0,1) is generated to compare with the inertia 
weight to decide whether to apply Insert function(η ) to the particle or not.  

Insert function(η ) implies the insertion of a randomly chosen job in front (or back 
sometimes) of another randomly chosen job. For instance, for the PMS problem, suppose a 
sequence of {3, 5, 6, 7, 8, 9, 1, 2, 4}. In order to apply Insert function, we also need to derive 
two random numbers; one is for determining the job to change place and the other is for the 
job in front of which the former job is to be inserted. Let’s say those numbers are 3 and 5 
(that is, the third job will move in front of the fifth. In other words, job no.6 will be inserted 
in front of job no.8 {3, 5, 6, 7, 8, 9, 1, 2, 4}). The new sequence will be {3, 5, 7, 8, 6, 9, 1, 2, 4}.  

If the random number chosen is less than the inertia weight, the particle is manipulated with 
this Insert function, and the resulting solution, say s1, is obtained. Meanwhile, the inertia 
weight is discounted by a constant factor at each iteration, in order to tighten the 
acceptability of the manipulated particle for the next generation, that is, to diminish the 
impact of the randomly operated solutions on the swarm evolution.  

The next step is to generate another random number of U(0,1) to be compared with c1, 
cognitive parameter, to make a decision whether to apply Insert function to personal best of 
the particle considered. If the random number is less than c1, then the personal best of the 
particle undertaken is manipulated and the resulting solution is spared as s2. Likewise, a 
third random number of U(0,1) is generated for making a decision whether to manipulate 
the global best with the Insert function. If the random number is less than c2, social 
parameter, then Insert is applied to the global best to obtain a new solution of s3.  Unlike the 
case of inertia weight, the values of c1 and c2 factors are not increased or decreased 
iteratively, but are fixed at 0.5. That means the probability of applying Insert function to the 
personal and global bests remains the same. The new replacement solution is selected 
among s1, s2 and s3, based on their fitness values. This solution may not always be better 
than the current solution. This is to keep the swarm diverse. The convergence is traced by 
checking the personal best of each new particle and the global best. As it is seen, proposed 
equations have all major characteristics of the classical PSO equations. The following 
pseudo-code describes in detail the steps of the SPPSO algorithm. 

It can be seen from the pseudo-code of the algorithm that the algorithm has all major 
characteristics of the classical PSO, the search strategy of the algorithm is different in a way 
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throughout this chapter. The lower bound of the example presented in Table 1 can be 
calculated as:  

{ }
9

max
1

1( ) max ; max max(12;7) 12
4 i iii

LB C p p
=

  = = =  
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2.3 Classic Particle Swarm Optimization 

In PSO, each single solution, called a particle, is considered as an individual, the group 
becomes a swarm (population) and the search space is the area to explore. Each particle has 
a fitness value calculated by a fitness function, and a velocity to fly towards the optimum. 
All particles fly across the problem space following the particle that is nearest to the 
optimum. PSO starts with an initial population of solutions, which is updated iteration-by-
iteration. The principles that govern PSO algorithm can be stated as follows:  

• n dimensional position ( 1 2( , , ..., )i i i inX x x x= ) and velocity vector ( 1 2( , ,..., )i i i inV v v v= for 
ith particle starts with a random position and velocity.  

• Each particle knows its position and value of the objective function for that position. 
The best position of ith particle is donated as 1 2( , ,..., )i i i inP p p p= , and the best position of 
the whole swarm as, 1 2( , ,..., )nG g g g= respectively. The PSO algorithm is governed by 
the following main equations: 
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where t represents the iteration number, w is the inertia weight which is a coefficient to 
control the impact of the previous velocities on the current velocity. c1 and c2 are called 
learning factors. r1 and r2 are uniformly distributed random variables in [0,1].  

The original PSO algorithm can optimize problems in which the elements of the solution 
space are continuous real numbers. The major obstacle for successfully applying PSO to 
combinatorial problems in the literature is due to its continuous nature. To remedy this 
drawback, Tasgetiren et al. [17] presented the smallest position value (SPV) rule. Another 
approach to tackle combinatorial problems with PSO is done by Pan et al. [21]. They 
generate a similar PSO equation to update the particle’s velocity and position vectors using 
one and two cut genetic crossover operators.   

3. The proposed Stochastically Perturbed Particle Swarm Optimization 
algorithm 
In this chapter, a stochastically perturbed particle swarm optimization algorithm (SPPSO) is 
proposed for the PMS problems. The initial population is generated randomly. Initially, each 
individual with its position, and fitness value is assigned to its personal best (i.e., the best 
value of each individual found so far). The best individual in the whole swarm with its 
position and fitness value, on the other hand, is assigned to the global best (i.e., the best 
particle in the whole swarm). Then, the position of each particle is updated based on the 
personal best and the global best. These operations in SPPSO are similar to classical PSO 
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algorithm. However, the search strategy of SPPSO is different. That is, each particle in the 
swarm moves based on the following equations. 
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At each iteration, the position vector of each particle, its personal best and the global best are 
considered.  First of all, a random number of U(0,1) is generated to compare with the inertia 
weight to decide whether to apply Insert function(η ) to the particle or not.  

Insert function(η ) implies the insertion of a randomly chosen job in front (or back 
sometimes) of another randomly chosen job. For instance, for the PMS problem, suppose a 
sequence of {3, 5, 6, 7, 8, 9, 1, 2, 4}. In order to apply Insert function, we also need to derive 
two random numbers; one is for determining the job to change place and the other is for the 
job in front of which the former job is to be inserted. Let’s say those numbers are 3 and 5 
(that is, the third job will move in front of the fifth. In other words, job no.6 will be inserted 
in front of job no.8 {3, 5, 6, 7, 8, 9, 1, 2, 4}). The new sequence will be {3, 5, 7, 8, 6, 9, 1, 2, 4}.  

If the random number chosen is less than the inertia weight, the particle is manipulated with 
this Insert function, and the resulting solution, say s1, is obtained. Meanwhile, the inertia 
weight is discounted by a constant factor at each iteration, in order to tighten the 
acceptability of the manipulated particle for the next generation, that is, to diminish the 
impact of the randomly operated solutions on the swarm evolution.  

The next step is to generate another random number of U(0,1) to be compared with c1, 
cognitive parameter, to make a decision whether to apply Insert function to personal best of 
the particle considered. If the random number is less than c1, then the personal best of the 
particle undertaken is manipulated and the resulting solution is spared as s2. Likewise, a 
third random number of U(0,1) is generated for making a decision whether to manipulate 
the global best with the Insert function. If the random number is less than c2, social 
parameter, then Insert is applied to the global best to obtain a new solution of s3.  Unlike the 
case of inertia weight, the values of c1 and c2 factors are not increased or decreased 
iteratively, but are fixed at 0.5. That means the probability of applying Insert function to the 
personal and global bests remains the same. The new replacement solution is selected 
among s1, s2 and s3, based on their fitness values. This solution may not always be better 
than the current solution. This is to keep the swarm diverse. The convergence is traced by 
checking the personal best of each new particle and the global best. As it is seen, proposed 
equations have all major characteristics of the classical PSO equations. The following 
pseudo-code describes in detail the steps of the SPPSO algorithm. 

It can be seen from the pseudo-code of the algorithm that the algorithm has all major 
characteristics of the classical PSO, the search strategy of the algorithm is different in a way 
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that the new solution is selected among s1, s2 and s3, based on their fitness values. The 
selected particle may be worse than the current solution that keep the swarm diverse. The 
convergence is obtained by changing the personal best of each new particle and the global 
best. 

 
Fig. 2. Pseudo code of the proposed SPPSO algorithm for PMS problem 

4. Computational results 
In this section, a comparison study is carried out on the effectiveness of the proposed SPPSO 
algorithm. SPPSO was exclusively tested in comparison with two other recently introduced 
PSO algorithms: PSOspv algorithm of Tasgetiren et al. [17] and DPSO algorithm of Pan et al. 
[21]. Two experimental frameworks, namely E1 and E2, are considered implying the type of 
discrete uniform distribution used to generate job-processing times. That is, the processing 
time of each job is generated by using uniform distribution of U[1,100] and U[100,800] for 
experiments E1 and E2 respectively. All SPPSO, PSOspv and DPSO algorithms are coded in C 
and run on a PC with the configuration of 2.6 GHz CPU and 512MB memory. The size of the 
population considered by all algorithms is the number of jobs (n).  

For SPPSO and DPSO, the social and cognitive parameters were taken as 1 2 0.5c c= = , initial 
inertia weight is set to 0.9 and never decreased below 0.40, and the decrement factor β  is 
fixed at 0.999. For the PSOspv algorithm, the social and cognitive parameters were fixed at 

1 2 2c c= = , initial inertia weight is set to 0.9 and never decreased below 0.40, and the 
decrement factor β  is selected as 0.999.  The algorithms were run for 20000/n iterations. All 
the there algorithms were applied without embedding any kind of local search.  

The instances of problems were generated for 3, 4, 5, 10, 20, 30, 40, 50 machines and 20, 50, 
100, 200, and 500 jobs. In order to allow for the variations, 10 instances are generated for 
each problem size. Hence, the overall number of instances added up to 350. The measures 
considered in this chapter are mainly about the solution quality. The performance measure 
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is a relative quality measure, C/LB, where C is the result achieved (makespan) by the 
algorithm and LB is the lower bound of the instance which is calculated in Eq.(3). Once C 
catches LB, the index results 1.0, otherwise remains larger.  
 

 PSOspv DPSO SPPSO 
m n min avg max min avg max min avg max 
3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
4 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
5 20 1.000 1.001 1.005 1.000 1.001 1.005 1.000 1.001 1.005 
 50 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
10 20 1.050 1.091 1.168 1.050 1.091 1.168 1.050 1.091 1.168 
 50 1.000 1.002 1.004 1.004 1.005 1.008 1.000 1.001 1.004 
 100 1.000 1.001 1.002 1.002 1.003 1.005 1.000 1.000 1.002 
 200 1.001 1.002 1.002 1.001 1.002 1.002 1.000 1.001 1.001 
 500 1.001 1.001 1.002 1.001 1.001 1.001 1.000 1.000 1.001 
20 50 1.015 1.026 1.050 1.033 1.043 1.053 1.009 1.024 1.050 
 100 1.007 1.009 1.013 1.025 1.029 1.037 1.004 1.009 1.013 
 200 1.006 1.007 1.010 1.013 1.015 1.018 1.004 1.006 1.008 
 500 1.004 1.006 1.007 1.006 1.007 1.009 1.002 1.003 1.005 
30 50 1.066 1.154 1.266 1.076 1.161 1.266 1.066 1.154 1.266 
 100 1.013 1.022 1.028 1.043 1.061 1.072 1.019 1.029 1.039 
 200 1.009 1.017 1.021 1.032 1.037 1.043 1.014 1.017 1.020 
 500 1.009 1.011 1.015 1.011 1.016 1.021 1.008 1.009 1.011 
40 50 1.282 1.538 1.707 1.282 1.538 1.707 1.282 1.538 1.707 
 100 1.033 1.047 1.067 1.084 1.115 1.142 1.042 1.055 1.061 
 200 1.021 1.028 1.034 1.054 1.067 1.075 1.028 1.035 1.042 
 500 1.016 1.019 1.022 1.025 1.030 1.031 1.016 1.020 1.026 
50 100 1.070 1.088 1.114 1.156 1.184 1.220 1.070 1.097 1.140 
 200 1.036 1.044 1.053 1.081 1.096 1.106 1.049 1.057 1.065 
 500 1.023 1.027 1.030 1.034 1.043 1.046 1.028 1.032 1.035 
Average 1.019 1.033 1.046 1.029 1.044 1.058 1.020 1.034 1.048 

Table 2. Results for experiment E1:p~U(1,100) 
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that the new solution is selected among s1, s2 and s3, based on their fitness values. The 
selected particle may be worse than the current solution that keep the swarm diverse. The 
convergence is obtained by changing the personal best of each new particle and the global 
best. 

 
Fig. 2. Pseudo code of the proposed SPPSO algorithm for PMS problem 

4. Computational results 
In this section, a comparison study is carried out on the effectiveness of the proposed SPPSO 
algorithm. SPPSO was exclusively tested in comparison with two other recently introduced 
PSO algorithms: PSOspv algorithm of Tasgetiren et al. [17] and DPSO algorithm of Pan et al. 
[21]. Two experimental frameworks, namely E1 and E2, are considered implying the type of 
discrete uniform distribution used to generate job-processing times. That is, the processing 
time of each job is generated by using uniform distribution of U[1,100] and U[100,800] for 
experiments E1 and E2 respectively. All SPPSO, PSOspv and DPSO algorithms are coded in C 
and run on a PC with the configuration of 2.6 GHz CPU and 512MB memory. The size of the 
population considered by all algorithms is the number of jobs (n).  

For SPPSO and DPSO, the social and cognitive parameters were taken as 1 2 0.5c c= = , initial 
inertia weight is set to 0.9 and never decreased below 0.40, and the decrement factor β  is 
fixed at 0.999. For the PSOspv algorithm, the social and cognitive parameters were fixed at 

1 2 2c c= = , initial inertia weight is set to 0.9 and never decreased below 0.40, and the 
decrement factor β  is selected as 0.999.  The algorithms were run for 20000/n iterations. All 
the there algorithms were applied without embedding any kind of local search.  

The instances of problems were generated for 3, 4, 5, 10, 20, 30, 40, 50 machines and 20, 50, 
100, 200, and 500 jobs. In order to allow for the variations, 10 instances are generated for 
each problem size. Hence, the overall number of instances added up to 350. The measures 
considered in this chapter are mainly about the solution quality. The performance measure 
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is a relative quality measure, C/LB, where C is the result achieved (makespan) by the 
algorithm and LB is the lower bound of the instance which is calculated in Eq.(3). Once C 
catches LB, the index results 1.0, otherwise remains larger.  
 

 PSOspv DPSO SPPSO 
m n min avg max min avg max min avg max 
3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
4 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
5 20 1.000 1.001 1.005 1.000 1.001 1.005 1.000 1.001 1.005 
 50 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
10 20 1.050 1.091 1.168 1.050 1.091 1.168 1.050 1.091 1.168 
 50 1.000 1.002 1.004 1.004 1.005 1.008 1.000 1.001 1.004 
 100 1.000 1.001 1.002 1.002 1.003 1.005 1.000 1.000 1.002 
 200 1.001 1.002 1.002 1.001 1.002 1.002 1.000 1.001 1.001 
 500 1.001 1.001 1.002 1.001 1.001 1.001 1.000 1.000 1.001 
20 50 1.015 1.026 1.050 1.033 1.043 1.053 1.009 1.024 1.050 
 100 1.007 1.009 1.013 1.025 1.029 1.037 1.004 1.009 1.013 
 200 1.006 1.007 1.010 1.013 1.015 1.018 1.004 1.006 1.008 
 500 1.004 1.006 1.007 1.006 1.007 1.009 1.002 1.003 1.005 
30 50 1.066 1.154 1.266 1.076 1.161 1.266 1.066 1.154 1.266 
 100 1.013 1.022 1.028 1.043 1.061 1.072 1.019 1.029 1.039 
 200 1.009 1.017 1.021 1.032 1.037 1.043 1.014 1.017 1.020 
 500 1.009 1.011 1.015 1.011 1.016 1.021 1.008 1.009 1.011 
40 50 1.282 1.538 1.707 1.282 1.538 1.707 1.282 1.538 1.707 
 100 1.033 1.047 1.067 1.084 1.115 1.142 1.042 1.055 1.061 
 200 1.021 1.028 1.034 1.054 1.067 1.075 1.028 1.035 1.042 
 500 1.016 1.019 1.022 1.025 1.030 1.031 1.016 1.020 1.026 
50 100 1.070 1.088 1.114 1.156 1.184 1.220 1.070 1.097 1.140 
 200 1.036 1.044 1.053 1.081 1.096 1.106 1.049 1.057 1.065 
 500 1.023 1.027 1.030 1.034 1.043 1.046 1.028 1.032 1.035 
Average 1.019 1.033 1.046 1.029 1.044 1.058 1.020 1.034 1.048 

Table 2. Results for experiment E1:p~U(1,100) 
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 PSOspv DPSO SPPSO 

m n min avg max min avg max min avg max 

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
4 20 1.000 1.001 1.001 1.000 1.000 1.001 1.000 1.000 1.001 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
5 20 1.001 1.002 1.003 1.001 1.002 1.003 1.001 1.001 1.002 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
10 20 1.046 1.071 1.128 1.040 1.068 1.128 1.040 1.068 1.128 
 50 1.001 1.003 1.005 1.003 1.006 1.010 1.001 1.002 1.003 
 100 1.000 1.001 1.001 1.003 1.004 1.004 1.001 1.001 1.001 
 200 1.000 1.000 1.001 1.001 1.002 1.003 1.000 1.001 1.001 
 500 1.000 1.000 1.000 1.000 1.001 1.002 1.000 1.000 1.001 
20 50 1.022 1.067 1.113 1.026 1.037 1.054 1.011 1.019 1.025 
 100 1.012 1.016 1.021 1.012 1.023 1.029 1.006 1.006 1.007 
 200 1.002 1.005 1.010 1.011 1.014 1.017 1.003 1.003 1.004 
 500 1.000 1.001 1.002 1.005 1.007 1.009 1.001 1.002 1.003 
30 50 1.080 1.122 1.195 1.096 1.128 1.195 1.080 1.123 1.195 
 100 1.016 1.029 1.043 1.038 1.055 1.065 1.012 1.015 1.016 
 200 1.012 1.017 1.022 1.027 1.033 1.037 1.008 1.010 1.012 
 500 1.005 1.006 1.007 1.012 1.015 1.017 1.005 1.007 1.008 
40 50 1.268 1.378 1.534 1.268 1.378 1.534 1.268 1.378 1.534 
 100 1.024 1.069 1.095 1.077 1.093 1.102 1.022 1.029 1.036 
 200 1.016 1.022 1.028 1.046 1.057 1.066 1.015 1.019 1.021 
 500 1.009 1.010 1.011 1.022 1.025 1.027 1.011 1.012 1.014 
50 100 1.034 1.052 1.084 1.121 1.154 1.166 1.047 1.060 1.084 
 200 1.007 1.011 1.022 1.076 1.086 1.099 1.026 1.032 1.035 
 500 1.001 1.003 1.007 1.034 1.039 1.044 1.015 1.019 1.022 
Average 1.016 1.025 1.038 1.026 1.035 1.046 1.016 1.023 1.033 

Table 3. Results for experiment E2:p~U(100,800) 
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 PSOspv DPSO SPPSO 

  p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800) 

m n nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU 
3 20 10 0.008 10 0.266 10 0.014 10 0.308 10 0.005 10 0.241 
 50 10 0.015 10 0.571 10 0.008 10 0.077 10 0.003 10 0.029 
 100 10 0.038 9 2.020 10 0.010 10 0.091 10 0.005 10 0.023 
 200 10 0.310 9 8.054 10 0.044 10 0.239 10 0.019 10 0.062 
  500 10 3.172 10 57.143 10 0.259 10 1.437 10 0.083 10 0.180 

4 20 10 0.112 1 1.007 10 0.201 3 0.383 10 0.096 4 0.406 
 50 10 0.013 2 0.836 10 0.055 7 0.294 10 0.024 10 0.202 
 100 10 0.027 9 1.676 10 0.059 8 0.355 10 0.019 10 0.126 
 200 10 0.202 9 4.391 10 0.115 7 0.865 10 0.053 10 0.239 
  500 10 3.169 10 11.438 10 1.085 10 3.635 10 0.234 10 0.485 

5 20 7 0.206 0 0.603 8 0.218 0 0.363 9 0.233 0 0.430 
 50 9 0.084 8 0.678 10 0.134 1 0.274 10 0.052 5 0.286 
 100 8 0.028 5 2.308 10 0.199 3 0.424 10 0.072 9 0.255 
 200 9 0.408 9 4.877 10 0.397 2 1.023 10 0.127 9 0.357 
  500 6 3.177 9 15.739 10 2.502 3 4.576 10 0.453 9 0.720 

10 20 0 0.414 0 0.429 0 0.374 0 0.401 0 0.559 0 0.449 
 50 5 0.799 0 0.922 0 0.322 0 0.329 8 0.344 0 0.399 
 100 4 0.778 1 2.853 0 0.512 0 0.542 8 0.354 0 0.435 
 200 0 0.208 1 10.314 0 1.189 0 1.259 5 0.630 0 0.673 
  500 0 3.194 5 52.414 0 4.869 0 5.207 2 1.347 0 1.439 

20 50 0 0.960 0 1.514 0 0.438 0 0.446 0 0.450 0 0.471 
 100 0 2.840 0 2.883 0 0.627 0 0.650 0 0.510 0 0.551 
 200 0 10.385 0 10.671 0 1.397 0 1.451 0 0.806 0 0.862 
  500 0 52.525 0 67.284 0 5.334 0 5.643 0 1.750 0 1.853 

30 50 0 1.636 0 1.631 0 0.459 0 0.469 0 0.485 0 0.504 
 100 0 2.842 0 2.898 0 0.643 0 0.674 0 0.561 0 0.607 
 200 0 10.495 0 11.330 0 1.455 0 1.532 0 0.906 0 0.972 
  500 0 59.247 0 66.154 0 5.550 0 5.940 0 1.978 0 2.324 

40 50 0 1.684 0 1.636 0 0.497 0 0.522 0 0.518 0 0.590 
 100 0 2.984 0 2.873 0 0.699 0 0.742 0 0.620 0 0.726 
 200 0 10.625 0 10.531 0 1.568 0 1.667 0 1.022 0 1.164 
  500 0 59.573 0 65.551 0 5.829 0 6.292 0 2.244 0 2.548 

50 100 0 3.658 0 3.626 0 0.813 0 0.861 0 0.697 0 0.745 
 200 0 10.702 0 10.556 0 1.680 0 1.763 0 1.140 0 1.247 
  500 0 65.759 0 65.793 0 6.117 0 6.465 0 2.521 0 2.844 

Total 148 117 148 94 172 126  

Average  8.922 14.385 1.305 1.634 0.598  0.727 

Table 4. Results for both experiments 
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 PSOspv DPSO SPPSO 

m n min avg max min avg max min avg max 

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
4 20 1.000 1.001 1.001 1.000 1.000 1.001 1.000 1.000 1.001 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
5 20 1.001 1.002 1.003 1.001 1.002 1.003 1.001 1.001 1.002 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
10 20 1.046 1.071 1.128 1.040 1.068 1.128 1.040 1.068 1.128 
 50 1.001 1.003 1.005 1.003 1.006 1.010 1.001 1.002 1.003 
 100 1.000 1.001 1.001 1.003 1.004 1.004 1.001 1.001 1.001 
 200 1.000 1.000 1.001 1.001 1.002 1.003 1.000 1.001 1.001 
 500 1.000 1.000 1.000 1.000 1.001 1.002 1.000 1.000 1.001 
20 50 1.022 1.067 1.113 1.026 1.037 1.054 1.011 1.019 1.025 
 100 1.012 1.016 1.021 1.012 1.023 1.029 1.006 1.006 1.007 
 200 1.002 1.005 1.010 1.011 1.014 1.017 1.003 1.003 1.004 
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40 50 1.268 1.378 1.534 1.268 1.378 1.534 1.268 1.378 1.534 
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Average 1.016 1.025 1.038 1.026 1.035 1.046 1.016 1.023 1.033 

Table 3. Results for experiment E2:p~U(100,800) 
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 PSOspv DPSO SPPSO 

  p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800) 

m n nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU 
3 20 10 0.008 10 0.266 10 0.014 10 0.308 10 0.005 10 0.241 
 50 10 0.015 10 0.571 10 0.008 10 0.077 10 0.003 10 0.029 
 100 10 0.038 9 2.020 10 0.010 10 0.091 10 0.005 10 0.023 
 200 10 0.310 9 8.054 10 0.044 10 0.239 10 0.019 10 0.062 
  500 10 3.172 10 57.143 10 0.259 10 1.437 10 0.083 10 0.180 
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5 20 7 0.206 0 0.603 8 0.218 0 0.363 9 0.233 0 0.430 
 50 9 0.084 8 0.678 10 0.134 1 0.274 10 0.052 5 0.286 
 100 8 0.028 5 2.308 10 0.199 3 0.424 10 0.072 9 0.255 
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 200 0 0.208 1 10.314 0 1.189 0 1.259 5 0.630 0 0.673 
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20 50 0 0.960 0 1.514 0 0.438 0 0.446 0 0.450 0 0.471 
 100 0 2.840 0 2.883 0 0.627 0 0.650 0 0.510 0 0.551 
 200 0 10.385 0 10.671 0 1.397 0 1.451 0 0.806 0 0.862 
  500 0 52.525 0 67.284 0 5.334 0 5.643 0 1.750 0 1.853 

30 50 0 1.636 0 1.631 0 0.459 0 0.469 0 0.485 0 0.504 
 100 0 2.842 0 2.898 0 0.643 0 0.674 0 0.561 0 0.607 
 200 0 10.495 0 11.330 0 1.455 0 1.532 0 0.906 0 0.972 
  500 0 59.247 0 66.154 0 5.550 0 5.940 0 1.978 0 2.324 

40 50 0 1.684 0 1.636 0 0.497 0 0.522 0 0.518 0 0.590 
 100 0 2.984 0 2.873 0 0.699 0 0.742 0 0.620 0 0.726 
 200 0 10.625 0 10.531 0 1.568 0 1.667 0 1.022 0 1.164 
  500 0 59.573 0 65.551 0 5.829 0 6.292 0 2.244 0 2.548 

50 100 0 3.658 0 3.626 0 0.813 0 0.861 0 0.697 0 0.745 
 200 0 10.702 0 10.556 0 1.680 0 1.763 0 1.140 0 1.247 
  500 0 65.759 0 65.793 0 6.117 0 6.465 0 2.521 0 2.844 

Total 148 117 148 94 172 126  

Average  8.922 14.385 1.305 1.634 0.598  0.727 

Table 4. Results for both experiments 
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The results for the instances with different sizes are shown in Table 3 and Table 4, where the 
minimum, average and maximum of the C/LB ratio are presented. Each line summarizes 
the values for the 10 instances of each problem size, where 10 replications are performed for 
each instance.  

The result for the experiment E1, in which processing times are generated by using U(1,100) 
are summarized in Table 2. In this experiment, it is found that the minimum, average and 
maximum values of the ratios are quite similar for SPPSO and PSOspv. On the other hand, 
SPPSO and PSOspv performed better than DPSO. 

The result for the experiment E2 in which processing times are generated by using 
U(100,800) are summarized in Table 3. In this experiment, there is also no significant 
difference between SPPSO and PSOspv. However, in terms of max ratio performance SPPSO 
performed slightly better than PSOspv. In addition, PSOspv and SPPSO are also better than 
DPSO for all the three ratios in this experiment.  

Table 4 shows the number of times the optimum is reached within the group (nopt) for each 
algorithm and their average CPU times in seconds for each experiment. Total number of 
optimum solutions obtained by PSOspv, DPSO and SPPSO for the both experiment are 
summarized as (148,148,172) and (117, 94,126) respectively. Here, the superiority of SPPSO 
over PSOspv and DPSO is more pronounced in terms of number of total optimum solutions 
obtained.  

In terms of the average CPU, SPPSO shows better performance than PSOspv and DSPO. 
SPPSO (0.598, 0.727) is about 15 times faster than PSOspv (8.922, 14,395) and about 2 times 
faster than DPSO (1.305, 1.634) in both experiments.  

5. Conclusion 
In this chapter, a stochastically perturbed particle swarm optimization algorithm (SPPSO) is 
proposed for identical parallel machine scheduling (PMS) problems. The SPPSO has all 
major characteristics of the classical PSO. However, the search strategy of SPPSO is 
different. The algorithm is applied to (PMS) problem and compared with two recent PSO 
algorithms. The algorithms are kept standard and not extended by embedding any local 
search. It is concluded that SPPSO produced better results than DPSO and PSOspv in terms of 
number of optimum solutions obtained. In terms of average relative percent deviation, there is 
no significant difference between SPPSO and PSOspv. However, they are better than DPSO.  

It also should be noted that, since PSOspv considers each particle based on three key vectors; 
position (Xi), velocity (Vi), and permutation (Πi), it consumes more memory than SPPSO. In 
addition, since DPSO uses one and two cut crossover operators in every iteration, 
implementation of DPSO to combinatorial optimization problems is rather cumbersome. 
The proposed algorithm can be applied to other combinatorial optimization problems such 
as flow shop scheduling, job shop scheduling etc. as future work. 
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1. Introduction 
Evolutionary Computation (EC) is inspired from by evolution that explores the solution 
space by gene inheritance, mutation, and selection of the fittest candidate solutions. Since 
their inception in the 1960s, Evolutionary Computation has been used in various hard and 
complex optimization problems in search and optimization such as: combinatorial 
optimization, functions optimization with and without constraints, engineering problems 
and others (Adeyemo, 2011). This success is in part due to the unbiased nature of their 
operations, which can still perform well in situations with little or no domain knowledge 
(Reynolds, 1999). The basic EC framework consists of fairly simple steps like definition of 
encoding scheme, population generation method, objective function, selection strategy, 
crossover and mutation (Ahmed & Younas, 2011). In addition, the same procedures utilized 
by EC can be applied to diverse problems with relatively little reprogramming. 

Cultural Algorithms (CAs), as well as Genetic Algorithm (GA), are evolutionary models that 
are frequently employed in optimization problems. Cultural Algorithms (CAs) are based on 
knowledge of an evolutionary system and were introduced by Reynolds as a means of 
simulating cultural evolution (Reynolds, 1994). CAs algorithms implements a dual 
mechanism of inheritance where are inherited characteristics of both the level of the 
population as well as the level of the area of belief space (culture). Algorithms that use social 
learning are higher than those using individual learning, because they present a better and 
faster convergence in the search for solutions (Reynolds, 1994). In CAs the characteristics 
and behaviors of individuals are represented in the Population Space. This representation 
can support any population-based computational model such as Genetic Algorithms, 
Evolutionary Programming, Genetic Programming, Differential Evolution, Immune 
Systems, among others (Jin & Reynolds, 1999).  

Multidimensional Knapsack Problem (MKP) is a well-known nondeterministic-polynomial 
time-hard combinatorial optimization problem, with a wide range of applications, such as 
cargo loading, cutting stock problems, resource allocation in computer systems, and 
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economics (Tavares et al., 2008). MKP has received wide attention from the operations 
research community, because it embraces many practical problems. In addition, the MKP 
can be seen as a general model for any kind of binary problems with positive coefficients 
(Glover & Kochenberger, 1996).  

Many researchers have proposed the high potential of the hybrid-model for the solution of 
problems (Gallardo et al., 2007). The algorithms presented in this work to solve MKP are a 
combination of CAs with a Multi Population model. The Multi Population model is the 
division of a population into several smaller ones, usually called the island model. Each 
sub-population runs a standard sequential evolution proceeds, as if it were isolated from 
the rest, with occasional migration of individuals between sub-populations (Tomassini, 
2005). 

In order to conduct an investigation to discover improvements for MKP, this work is 
centered in the knowledge produced from CAs through the evolutionary process that 
utilizes a population-based Genetic Algorithm model, using various MKP benchmarks 
found in the literature. In addition, there is an interest in investigating how to deal with the 
Cultural Algorithms considering a population-based in Genetic Algorithms.  

So as to compare test results, we implemented the follows algorithms: the standard cultural 
algorithm with Single Population (also known as standard CA or CA-S) and Cultural 
Algorithm with Multi Population defined as CA-IM with two versions: CA-IM_1 which has 
fixed values for genetic operators (recombination and mutation) and CA-IM_2 which does 
not have fixed values for genetic operators because these values are generated randomly. In 
order to evaluate the performance of the CA-IM algorithms, some comparison testing will 
be conducted with other two algorithms based on Distributed GA, called DGA and DGA-
SRM (Aguirre et al., 2000). 

The outline of the paper is as follows: in Section 2, a description with formal denition of the 
MKP problem and an overview of Cultural Algorithms are presented. Section 3 shows an 
alternative approach that explores the multi population model with Cultural Algorithms 
and explores how the interaction process occurs among various sub-populations. Our 
experimental results are shown in Section 4 and finally we show some conclusions in 
Section 5.  

2. Background 
Since the introduction of the Knapsack problems some algorithm techniques such as brute 
force, conventional algorithms, dynamic programming, greedy approach and 
approximation algorithm have been proposed (Ahmed & Younas, 2011). 

Evolutionary algorithms (EAs) have been widely applied to the MKP and have shown to be 
effective for searching and finding good quality solutions (Chu & Beasley, 1998). It is 
important to note that MKP is considered a NP hard problem; hence any dynamic 
programming solution will produce results in exponential time. In the last few years, 
Genetic Algorithms (GAs) have been used to solve the NP-complete problems and have 
shown to be very well suited for solving larger Knapsack Problems (Fukunaga & Tazoe, 
2009; Gunther, 1998; Sivaraj & Ravichandran, 2011). For larger knapsack problems, the 
efficiency of approximation algorithms is limited in both solution quality and computational 
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cost (Ahmed & Younas, 2011). Spillman’s experiment, which applies the GA to the knapsack 
problem, shows that the GA does not have a good performance in relatively small size 
problem, but works quite well in problems that include a huge number of elements 
(Spillman, 1995). There are many packing problems where evolutionary methods have 
been applied. The simplest optimization problem and one of the most studied is the one-
dimensional (zero–one or 0-1) knapsack problem (Ahmed & Younas, 2011), which given a 
knapsack of a certain capacity, and a set of items, each one having a particular size and 
value, nds the set of items with maximum value which can be accommodated in the 
knapsack. Various real-world problems are of this type: for example, the allocation of 
communication channels to customers who are charged at different rates (Back et al., 
1997).  

During a study of 0-1 knapsack, a number of extensions and variants have been developed 
such as (Ahmed & Younas, 2011): Multiple Knapsack Problems (MKP), Multidimensional 
Knapsack Problems (MDKP), Multi Choice Knapsack Problems (MCKP) and Multiple 
Choice Multidimensional Knapsack Problems (MMKP). It is also important to consider other 
extensions such as (Chu & Beasley, 1998): Multiconstraint Knapsack Problem, and also the 
term “Multidimensional Zero-one Knapsack Problem”. Using alternative names for the 
same problem is potentially confusing, but since, historically, the designation MKP has been 
the most widely used (Chu & Beasley, 1998). Consequently, Multidimensional Knapsack 
Problem (MKP) is the designation selected for this work. In our previous research it was 
introduced a Multi Population Model on the cultural structure identified as “Multi 
Population Cultural Genetic Algorithm” (MCGA) (Silva & Oliveira, 2009). In MCGA model 
several sub-populations are connected with as ring structure, where the migration of 
individuals occurs after a generation interval (according to the migration based on 
parameter interval) with best-worst migration policy implementation. The results were 
satisfactory in relation to other algorithms in the literature. In another research two versions 
of Distributed GA (DGA) are presented as follows: standard Distributed GA (DGA) and an 
improved DGA (DGA-SRM), which two genetic operators are applied in parallel mode to 
create offspring. The term SRM represents “Self-Reproduction with Mutation”, that is 
applied to various 0/1 multiple knapsack problems so as to improve the search performance 
(Aguire et al., 2000). Hybridization of memetic algorithms with Branch-and-Bound 
techniques (BnB) is also utilized for solving combinatorial optimization problems (Gallardo 
et al., 2007). BnB techniques use an implicit enumeration scheme for exploring the search 
space in an “intelligent” way. Yet another research utilizes adaptive GA for 0/1 Knapsack 
problems where special consideration is given to the penalty function where constant and 
self-adaptive penalty functions are adopted (Zoheir, 2002). Fitness landscape analysis 
techniques are used to better understand the properties of different representations that 
are commonly adopted when evolutionary algorithms are applied to MKP (Tavares et al., 
2008). Other investigation utilizes multiple representations in a GA for the MKP 
(Representation-Switching GA) know as RSGA (Fukunaga, 2009). Other recent works 
consider two heuristics and utilize them for making comparisons to the well-known 
multiobjective evolutionary algorithms (MOEAs) (Kumar & Singh, 2010). While 
comparing MOEAs with the two heuristics, it was observed that the solutions obtained by 
the heuristics are far superior for larger problem instances than those obtained by 
MOEAs.  
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2.1 Multidimensional Knapsack Problem 

As mentioned earlier, the MKP is a well-known nondeterministic-polynomial time-hard 
combinatorial optimization problem, with a wide range of applications (Tavares et al., 
2008). The classical 0-1 knapsack problem is one of the most studied optimization and 
involves the selection of a subset of available items having maximum profit so that the 
total weight of the chosen subset does not exceed the knapsack capacity. The problem can 
be described as follows: given two sets of n items and m knapsacks constraints (or 
resources), for each item j, a prot pj is assigned, and for each constraint i, a consumption 
value rij is designated. The goal is to determine a set of items that maximizes the total 
prot, not exceeding the given constraint capacities ci. Formally, this is stated as follows 
(Tavares et al., 2008): 

Maximize 
1
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j j
j

p x
=
 , (1) 
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n

i j j i
j

r x c
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≤   i =1,…,m  (2) 

 {0,1},jx ∈   j =1,….,n (3) 

With   0jp > , , 0i jr ≥  and 0ic ≥   (4) 

The knapsack constraint is represented by each of the m constraints described in Eq. (2). 
The decision variable is the binary vector x =(x1,...,xn). Each item j is mapped to a bit and 
when xj =1, the corresponding item is considered to be part of the solution. The special 
case of m =1 is generally known as the Knapsack Problem or the Unidimensional 
Knapsack Problem.  

For single constraint the problem is not strongly NP-hard and effective approximation 
algorithms have been developed for obtaining near-optimal solutions. A review of the single 
knapsack problem and heuristic algorithms is given by Martello and Toth (Martello & 
Toth, 1990). Exact techniques and exhaustive search algorithms, such as branch-and-
bound, are only of practical use in solving MKP instances of small size since they are, in 
general, too time-consuming (e.g., instances with 100 items or less, and depending on the 
constraints). 

2.2 Evolutionary approach for the MKP 

In a resolution of specific problems that implements an Evolutionary Algorithm, as for 
example, a simple Genetic Algorithm (GA), it is necessary the definition of five components 
(Agapie et al., 1997). The first component is the genotype or a genetic representation of the 
potential problem (individual representation scheme). The second is a method for creating 
an initial population of solutions. The third is a function verifying the fitness of the solution 
(objective function or fitness function). The fourth are genetic operators and the fifth are some 
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constant values for parameters that are used by the algorithm (such as population size, 
probability of applying an operator, etc.). 

2.2.1 Genotype 

The natural representation of the MKP would be the binary representation, in which every 
bit represents the existence or not of a certain element in the Knapsack. A bit set to 1 
indicates that the corresponding item is packed into the knapsack and a bit set to 0 indicates 
that it is not packed. Hence a typical population of two individuals for a six elements in 
Knapsack would be represented as showed in Figure 1. Thus, each element has an 
identification that is given by the bit index. 

In Figure 1 (a) there are three elements in the knapsack, corresponding to the following 
positions: 1, 4 and 6. In Figure 1 (b) there are four elements in the knapsack, whose positions 
are: 2, 3, 5 and 6. 

 
Fig. 1. Knapsack example for two chromosomes. 

2.2.2 Initial population 

The population is the solution representation that consists of a set of codified chromosomes. 
There are many ways to generate the initial population such as random chromosome or 
chromosome with the solution closer to the optimum. In most applications the initial 
population is generated at random. 

2.2.3 Evaluation function 

In GA each individual is evaluated by fitness function. Some individuals produce more 
children than others due to their fitness. By this mechanism, individuals that have 
chromosomes with better fitness have better chances of leaving their genes. This leads to 
better average performance of the whole population as generations proceed (Ku & Lee, 
2001). A feasible vector solution x needs to satisfy constraint (2), otherwise it is infeasible. 
Hence, a penalty is applied to all infeasible solutions in order to decrease their 
corresponding “fitness”. Therefore, the two types of evaluation functions used in this 
research are based on static (constant) and adaptive penalty functions. The standard 
evaluation function for each individual is given by the following expressions: 

 Evaluation (x) = 
1
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A vector solution x is optimal when Evaluation (x) =MaxP. 
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2.2.4 Genetic operators 

To implement the GA process, many factors should be considered such as the representation 
scheme of chromosomes, the mating strategy, the size of population, and the design of the 
genetic operators such as selection, mutation and recombination (Ku & Lee, 2001). 

i. Selection - is an operator that prevents low fitness individuals from reproduction and 
permits high fitness individuals to offspring more children to improve average fitness 
of population over generations. There are various selections types, such as stochastic 
remainder, elitism, crowding factor model, tournament, and roulette wheel.  

ii. Recombination or Crossover - is an operator that mixes the chromosomes of two 
individuals. Typically two children are generated by applying this operator, which are 
similar to the parents but not same. Crossover causes a structured, yet randomized 
exchange of genetic material between solutions, with the possibility that the “fittest” 
solutions generate “better” ones. A crossover operator should preserve as much as 
possible from the parents while creating an offspring. 

iii. Mutation - introduces totally new individuals to population. It helps extend the domain 
of search and will restrain the diversity of the population. Mutation involves the 
modification of each bit of an individual with some probability Pm. Although the 
mutation operator has the effect of destroying the structure of a potential solution, 
chances are it will yield a better solution. Mutation in GAs restores lost or unexplored 
genetic material into the population to prevent the premature convergence of the GA. 

The tournament is the selection type chosen for this work since it is more used and it 
presents good performance. For a binary representation, classical crossover and mutation 
operators can be used, such as n-point crossover or uniform crossover, and bit-ip mutation. 
In CAs the influence of information from Belief Space on recombination and mutation 
process such as: best chromosome or set of best chromosomes information is expected. 

2.2.5 Constant values parameters 

An Evolutionary Algorithm involves different strategy parameters, e.g.: mutation rate, 
crossover rate, selective pressure (e.g., tournament size) and population size. Good 
parameter values lead to good performance. There are three major types of parameter 
control (Eiben & Smith, 2008): 

• deterministic: a rule modifies strategy parameter without feedback from the search 
(based on some type of a counter);  

• adaptive: a feedback rule based on some measure monitoring search progress (quality); 
• self-adaptative: parameter values evolve along with the solutions; encoded onto 

chromosomes they undergo variation and selection. 

The implementation of a deterministic parameter control is easier, provided that the 
parameter values used are tested to verify the best performance. 

2.3 Cultural algorithms 

Cultural Algorithms (CAs) have been developed so as to model the evolution of the cultural 
component of an evolutionary computational system over time as it accumulates experience 
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(Reynolds & Chung, 1996). As a result, CAs can provide an explicit mechanism for global 
knowledge and a useful framework within which to model self-adaptation in an EC system. 
The CAs are based on knowledge of an evolutionary system that implements a dual 
mechanism of inheritance. This mechanism allows the CAs to explore as much 
microevolution as macroevolution. Microevolution is the evolution that happens in the 
population level. Macroevolution occurs on the culture itself, i.e. the belief space evolution. 
The belief space is the place where the information on the solution of the problem is refined 
and stored. It is acquired through the population space over the evolutionary process. The 
belief space has the goal to guide individuals in search of better regions. In the CAs 
evolution occurs more quickly than in population without the mechanism of 
macroevolution. The characteristics and behaviors of individuals are represented in the 
Population Space and as mentioned earlier the population space can support any 
population-based computational model such as Genetic Algorithms among others (Jin & 
Reynolds, 1999). The communications protocols dictate the rules about individuals that can 
contribute to knowledge in the Belief Space (function of acceptance) and how the Belief 
Space will influence new individuals (Function of Influence), as shown in Figure 2.  

 
Fig. 2. Framework of Cultural Algorithm (Reynolds & Peng, 2004). 

The two most used ways to represent knowledge in the belief space are (Reynolds & Peng, 
2004): Situational Knowledge and Normative Knowledge. Situational Knowledge represents 
the best individuals found at a certain time of evolution and it contains a number of 
individuals considered as a set of exemplars to the rest of the population. The number of 
exemplars may vary according to the implementation, but it is usually small. For example, 
the structure used to represent this type of knowledge is shown in Figure 3. Each individual 
is stored within its parameters and fitness value (Iacoban et al. 2003). 

 
Fig. 3. Representation of Situational Knowledge. 

The Situational Knowledge is updated when the best individual of the population is found. 
This occurs when its fitness value exceeds the fitness value of the worst individual stored. 
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Normative Knowledge represents a set of intervals that characterize the range of values 
given by the features that make the best solutions (Iacoban et al., 2003).  

Figure 4 shows the structure used by Reynolds and his students, where are stored the 
minimum and maximum values on the individual’s characteristics. 

 
Fig. 4. Representation of Normative knowledge 

These intervals are used to guide the adjustments (mutations) that occur in individuals. 
With these minimum values, (li) and maximum (ui), the fitness values are also stored. This 
value results from the individuals that produced each extreme Li and Ui respectively. 

The adjustment of the range of Normative Knowledge varies according to the best 
individual. That is, if the individual was accepted by the acceptance function and its range is 
less than the range stored in the belief space, the range is adjusted, and vice versa. 

The resolution of problems produces experiences from individuals in the population space, 
which are selected to contribute to the acceptance by the belief space, where the knowledge 
is generalized and stored. In the initial population, the individuals are evaluated by the 
fitness function. Then, the information on the performance of the function is used as a basis 
for the production of generalizations for next generations. The experiences of the 
individuals selected will be used to make the necessary adjustments on the knowledge of 
the current belief space. 

2.4 Parallel Genetic Algorithms  

The definition of Parallel Genetic Algorithms (PGAs) is related with execution of various 
GAs in parallel mode. The main goal of PGAs is to reduce the large execution times that are 
associated with simple genetic algorithms for nding near-optimal solutions in large search 
spaces and to nd better solutions. 

The PGAs can be implemented through two approaches (Sivanandam, 2007): standard 
parallel approach and the decomposition approach. In the rst approach, the sequential GA 
model is implemented on a parallel computer by dividing the task of implementation 
among the processors. The standard parallel approaches are also known as master-slave GAs. 
In the decomposition approach, the full population exists in distributed form. Other 
characteristic in the decomposition approach is that the population is divided into a number 
of sub-populations called demes. Demes are separated from one another and individuals 
compete only within a deme. An additional operator called migration is used to move the 
individuals from one deme to another. If the individuals can migrate to any other deme, the 
model is called island model or Multiple-population GAs when implemented in parallel or 
distributed environments (Braun, 1991). Migration can be controlled by various parameters 
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like migration rate, topology, migration scheme like best/worst/random individuals to 
migrate and the frequency of migrations (Sinvanadam, 2007). 

Other authors classify Parallel Genetic Algorithm in four main categories (Aguirre & 
Tanaka, 2006): global master-slave, island, cellular, and hierarchical parallel GAs. In a global 
master-slave GA there is a single population and the evaluation of tness is distributed 
among several processors. The important characteristic in a global master-slave GA is that 
the entire population is considered by genetic operators as selection, crossover and 
mutation. An island GA, also known as coarse-grained or distributed GA, consists of several 
sub-populations evolving separately with occasional migration of individuals between sub-
populations. A cellular category also known as “ne-grained GA” consists of one spatially 
structured population, whose selection and mating are restricted to a small neighborhood. 
The neighborhoods are allowed to overlap permitting some interaction among individuals. 
Finally, a hierarchical parallel GA category, combines an island model with either a master-
slave or cellular GA. The global master-slave GA does not affect the behavior of the 
algorithm and can be considered only as a hardware accelerator. However, the other parallel 
formulations of GAs are very different from canonical GAs, especially, with regard to 
population structure and selection mechanisms. These modications change the way the GA 
works, affecting its dynamics and the trajectory of evolution. For example, the utilization of 
parameters as sub-population size, migration rate and migration frequency are crucial to the 
performance of island models. Cellular, island and hierarchical models perform as well as or 
better than canonical versions and have the potential of being more than just hardware 
accelerators (Aguirre & Tanaka, 2006). A new taxonomy about PGAs is also presented by 
Nowostawski and Poli (Nowostawski & Poli, 1999). 

In recent studies about MKP Silva and Oliveira (Silva & Oliveira, 2009) have shown that 
good results are reached in the benchmark tests when taking into consideration the 
implementation of sub-populations and the migration process from the island model. The 
results presented were better than canonical version of Cultural Algorithm in most cases. 

2.5 Island model (Multi Population Genetic Algorithms)  

Multi population Genetic Algorithms (MGAs) or Island Model, is an extension of traditional 
single-population Genetic Algorithms (SGAs) by dividing a population into several sub-
populations within which the evolution proceeds and individuals are allowed to migrate 
from one sub-population to another. Different values for parameters such as selection, 
recombination and mutation rate can be chosen for each sub-population. Normally, the 
basic island model uses the same values for these parameters in all sub-populations.  

In order to control the migration of individuals, several parameters were defined such as: (i) 
the communication topology that defines the connections between sub-populations, (ii) a 
migration rate that controls how many individuals migrate, and (iii) a migration interval 
that affects the frequency of migration. In addition, migration must include strategies for 
migrant selection and for their inclusion in their new sub-populations (Aguire, 2000). 

The sub-populations size, communication topology (its degree of connectivity), migration 
rate and migration frequency are important factors related to the performance of 
distributed GAS. In general, it has been shown that distributed GAs can produce solutions 
with similar or better quality than single population GAs, while reducing the overall time 
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Normative Knowledge represents a set of intervals that characterize the range of values 
given by the features that make the best solutions (Iacoban et al., 2003).  

Figure 4 shows the structure used by Reynolds and his students, where are stored the 
minimum and maximum values on the individual’s characteristics. 

 
Fig. 4. Representation of Normative knowledge 
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to completion in a factor that is almost in reciprocal proportion to the number of processors 
(Aguire, 2000). 

In the island model GA, the sub-populations are isolated during selection, breeding and 
evaluation. Islands typically focus on the evolutionary process within sub-populations 
before migrating individuals to other islands, or conceptual processors, which also carry out 
an evolutionary process. At predetermined times, during the search process, islands send 
and receive migrants to other islands. There are many variations of distributed models, e.g. 
islands, demes, and niching methods, where each requires numerous parameters to be 
dened and tuned (Gustafson, 2006).  

An example of the communication topology, can be defined as a graph in which the sub-
populations Pi (i = 0, 1,..., K - 1) are the vertices and each defined edge Li,j specifies a 
communication link between the incident vertices Pi and Pj (neighbor sub-populations) 
(Aguire, 2000). In general, assuming a directed graph for each defined link Li,j we can 
indicate the number of individuals Ri,j that will migrate from P to Pj (migration rate) and the 
number of generations M between migration events (migration interval). The 
communication topology and migration rates could be static or dynamic and migration 
could be asynchronous or synchronous. 

Various strategies for choosing migrants have been applied. Two strategies often used to 
select migrants are selection of the best and random selection. For example, the migration 
can implement a synchronous elitist broadcast strategy occurring every M generation. Each 
sub-population broadcasts a copy of its R best individuals to all its neighbor sub-
populations.  

Hence, every sub-population in every migration event receives migrants. Figure 5 illustrates 
a communication topology +l+2 island model in which each sub-population is linked to two 
neighbors (L = 2). In this example, the sub-population P0 can send individuals only to P1 
and P2 and receive migrants only from P4 and P5. 

 
Fig. 5. +1+2 communication topology. 

3. Cultural Island Model (CA-IM) 
In this section is presented an approach about the communication topology for migration 
process implemented in a Cultural Algorithm based on the island model. As noted earlier in 
the classical island model implementation, there are sub-populations connected with as ring 
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structure. Individuals in classical island model are migrated after every migration-interval 
(M) among generations and the best-worst migration policy is used.  

The approach utilized in this work is an adaption and implementation of the island model 
on the cultural structure here identified as “Cultural Island Model” (CA-IM), briey 
introduced in Silva & Oliveira (Silva & Oliveira, 2009). The implementations have become 
simple because the same CAs structures were used as much the evolutionary structure as 
the belief space that is the main characteristic present in CAs. 

 The main characteristic present in CA-IM is the link between main belief spaces (from main 
population) and secondary belief space (from multi population). They store information 
about independent evolution for main population and sub-populations respectively, i.e. the 
cultural evolutions occur in parallel among the main population and the sub-populations of 
the islands. The link of communication between two Belief Spaces, allows migration between 
the best individuals stored in the cultural knowledge structure implemented. Figure 6 
shows the framework correspondent to the proposed structure. 

 
Fig. 6. Framework of model proposed 

Migrations from islands occur through Belief Space Multipopulation structure that perform the 
communication process among sub-populations and send the best individuals through 
Accept Migration. It occurs in a predefined interval whose parameter is M (every M 
generation) where the best individuals are evaluated by acceptance function and updated in 
each belief space. The migration from Belief Space Multipopulation to Main Belief Space is 
implemented as a number of individuals which are considered as a set of exemplars to the 
rest of the population (Situational Knowledge).  

It is important to note that CA-IM provides a continuous verification between the last 
solution (optimum value) found and the current solution. Then, it computes the number of 
generations where don't occur improvements. Thus, if the distance between the last 
generation, where the current solution was found, and the current generation is high then 
the sub-populations are eliminated and recreated randomly. As for CA-IM, there is a fixed 
difference for this occurrence in the range of 60 to 100 generations. If a new solution is not 
found in this range, then the sub-populations of the islands (Multipopulation Space) as well 
as the cultural information about all sub-populations (Belief Space Multipopulation) are 
recreated randomly by algorithm.  
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3.1 Mutation and recombination 

In mutation operation the cultural knowledge (such as situational knowledge) as well as the 
standard binary mutation operation (known as “bit-flip mutation”) is utilized. If the cultural 
knowledge is utilized during the mutation process, the mutated chromosome genes are 
replaced by the best genes from chromosome stored in situational knowledge with PM 
probability, otherwise, the genes are inverted by bit-flip mutation. The chromosome chosen 
among a set of chromosomes from situational knowledge can be the best chromosome or a 
random chromosome. 

The bit-ip mutation is a common operation applied in evolutionary algorithms to solve a 
problem with binary representation. Consequently, each bit from current mutated 
chromosome is ipped, i.e. the value of the chosen gene is inverted also with probability of 
mutation PM. Figure 7 shows the pseudo-code of mutation utilized by CA-IM. 

 

Fig. 7. Mutation pseudo-code. 

In recombination operation the cultural knowledge as well as the standard binary 
recombination operation (known as “uniform recombination”) is also utilized. In the 
uniform recombination the bits are randomly copied from the first or from the second 
parent to genes in the offspring chromosomes, in any sequence of ones and zeros. Figure 8 
shows the pseudo-code of CA-IM recombination. 

If the cultural knowledge is utilized during the recombination process, the chromosome 
genes are replaced by the best genes from chromosome stored in situational knowledge with 
PR probability. Otherwise, the genes are replaced with genes from their parents. Here only 
the best chromosome is chosen from situational knowledge during the recombination 
process. 
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Fig. 8. Recombination pseudo-code. 

4. Experimental results and discussion 
To evaluate the performance of the proposed algorithm CA-IM, a comparison of various 
tests with Distributed Genetic Algorithms utilizing the same knapsack problems was carried 
out. To make a comparison two kinds of algorithms based in Distributed GAs (Aguirre et 
al., 2000): (i) A Distributed canonical GA (denoted as DGA), and (ii) a Distributed GA-SRM 
(denoted as DGA-SRM) were utilized. The SRM term means “Self-Reproduction with 
Mutation”, and introduces diversity by means of mutation inducing the appearance of 
beneficial mutations. 

For the CA-IM algorithm there are two versions: CA-IM_1 and CA-IM_2. The only 
difference is that CA-IM_1 has a fixed rate for mutation and recombination, while CA-IM_2 
has a random rate for mutation and recombination. The standard CA (CAs) is the Cultural 
Algorithm with single population. 

4.1 DGA and DGA-SRM  

The DGA works with various 0/1 multiple knapsack problems (NP hard combinatorial) 
which from previous efforts seem to be fairly difficult for GAs (Aguirre et al., 2000). Those 
algorithms were evaluated on test problems which are taken from the literature. The 
problem sizes range from 15 objects to 105 and from 2 to 30 knapsacks and can be found in 
OR-Library (Beasley, 1990). The knapsack problems are defined by: problem (n, m) where n 
represents the number of objects and m represents the number of knapsacks. Each knapsack 
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has a specific capacity as well each object has a specific weight. For example, Weing7 (105, 2) 
represents a MKP with 105 objects and 2 knapsacks. 

Every experiment presented here has a similar capacity to the work described in DGA and 
DGA-SRM (Aguire et al., 2000) such as: population size, number of function evaluations in 
each run and a total of 100 independent runs. Each run uses a different seed for the random 
initial population. To improve understanding of DGA and DGA-SRM algorithms, some 
parameters and symbols are presented:  

• The maximum size of the population is represented by totalλ (fixed in 800); 
• The parent and offspring population sizes are represented by μ  and λ  respectively; 
• The parameter K represents the number of sub-populations (partitions). Hence,  

λ *K= totalλ  (maximum=800); 
• The parameter M is the number of generations between migration events (migration 

interval) ; 
• The symbol N represents the number of times the global optimum was found in the 100 

runs; 
• The symbolτ represents a threshold (utilized for control of a normalized mutant’s 

survival ratio).  
• The symbol T represents the number of function evaluations in each run; 
• Average is the average of the best solutions and Stdev is the standard deviation around 

Average, respectively; 

In DGA and DGA-SRM, each sub-population broadcasts a copy of its R best individuals to 
all of its neighbor sub-populations. Hence, every sub-population in every migration event 
receives mλ = L x R migrants, where L is the number of links. When there is no migration 
and the sub-populations evolve in total isolation, the values corresponding to such a 
characteristic are denoted by X in the table. The results for knapsack problem Weing7 for 
DGA and DGA-SRM is shown in the Table 1 (Aguirre et al., 2000). 
 
K /mλ λ  DGA DGA-SRM 

L R λ  M N Average Stdev μ λ  M N Average Stdev 

8 0.10 5 2 100 5 0 1094423.4 433.38 50 100 80 63 1095421.44 30.84 
8 0.05 5 1 100 5 0 1093284.95 733.24 50 100 100 66 1095423.58 29.84 
8 0.01 1 1 100 5 0 1089452.96 1082.41 50 100 80 77 1095430.51 26.51 
8 X X 100 X 0 1087385.56 1729.4 50 100 X 60 1095419.80 30.86 

Table 1.The best results for Weing7 (105, 2) by DGA and DGA–SRM ( totalλ =800; T=8x105 ). 

According to Table 1 the best value found in Average is equal to 1094423.4, for DGA and 
1095430.51 for DGA-SRM. Table 1 also indicates that the DGA-SRM improves the results 
in relation to DGA. Table 2 shows the results found for others knapsack problems by 
DGA and DGA-SRM. In order to simplify the results shown in Table 2, the following 
configuration parameters should be considered: K = 16 sub-populations and 25μ =
(Aguirre et al., 2000). 
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Problem (n, m) /mλ λ DGA DGA-SRM (τ =0.35) 
LR λ M N Average Stdev λ M N Average Stdev 

Petersen6 (39,5) 0.01 1 1 50 5 0 10506.90 26.11 50 140 77 10614.82 5.82 
Petersen7 (50,5) 0.10 5 1 100 5 0 1093284.95 733.24 50 40 89 16535 5.94 
Sento1 (60, 30) 0.10 5 1 100 5 0 1089452.96 1082.41 50 40 98 7771.78 1.54 
Sento2 (60, 30) 0.10 5 1 100 5 0 1087385.56 1729.4 50 40 84 8721.32 2.11 

Table 2. The best results for other problems by DGA and DGA-SRM ( totalλ = 800; T=4x105).  

4.2 CA-IM_1  

For the algorithm proposed (CA-IM) various parameters and symbols are also considered 
such as: 

• The parameter P is the size of main population; 
• The parameter PM is the probability of mutation and PR probability of recombination. 
• The number of islands is K (number of sub-populations); 
• The parameter α  is the percentage which defines the size of the population of each 

island at function of P.  
• The sub-population size in each island is SI, since SI = α *P.  
• The percentage of best individuals in Situational Knowledge on population space is 

represented by SKP and the percentage of best individuals in Situational Knowledge on 
multi population space is represented by SKM.  

• The parameter M is the number of generations between migration events (migration 
interval). Here M determines the interval of influence from the islands population 
through the Situational Knowledge. 

• The symbol T represents the number of function evaluations in each run; 
• The symbol N represents the number of times the global optimum was found in the 100 

runs.  
• Average is the average of the best solutions and Stdev is the standard deviation around 

Average; 
• Average of generations is the average of the generations whose best solution was found in 

each run. 

For the tests carried out for CA-IM_1, the selection chosen was tournament, whose value is 
3, the mutation rate (PM) is 0.025 and recombination rate (PR) is 0.6. The situational 
knowledge configurations are: SKP=0.2 and SKM=0.5. Table 3 shows the results found by 
CA-IM_1, whose best value found in Average is 1095445 (the optimal value) and in the 
Average of Generations is 44.49. All values reached have optimum value. However, if Average 
of Generations is low in relation to total of generations, then this means that the optimum is 
found in few generations. 

As it is shown in Table 3, it is possible to observe that CA-IM outperforms DGA-SRM for 
any configuration such as the number of sub-populations (islands) and size of sub-
population. Similarly, CA-IM also exhibits higher convergence reliability than DGA-SRM 
with higher values for N and Average with smaller Stdev. These results show that the CA-IM 
produces higher performance for all utilized parameters.  
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has a specific capacity as well each object has a specific weight. For example, Weing7 (105, 2) 
represents a MKP with 105 objects and 2 knapsacks. 

Every experiment presented here has a similar capacity to the work described in DGA and 
DGA-SRM (Aguire et al., 2000) such as: population size, number of function evaluations in 
each run and a total of 100 independent runs. Each run uses a different seed for the random 
initial population. To improve understanding of DGA and DGA-SRM algorithms, some 
parameters and symbols are presented:  

• The maximum size of the population is represented by totalλ (fixed in 800); 
• The parent and offspring population sizes are represented by μ  and λ  respectively; 
• The parameter K represents the number of sub-populations (partitions). Hence,  

λ *K= totalλ  (maximum=800); 
• The parameter M is the number of generations between migration events (migration 

interval) ; 
• The symbol N represents the number of times the global optimum was found in the 100 

runs; 
• The symbolτ represents a threshold (utilized for control of a normalized mutant’s 

survival ratio).  
• The symbol T represents the number of function evaluations in each run; 
• Average is the average of the best solutions and Stdev is the standard deviation around 

Average, respectively; 

In DGA and DGA-SRM, each sub-population broadcasts a copy of its R best individuals to 
all of its neighbor sub-populations. Hence, every sub-population in every migration event 
receives mλ = L x R migrants, where L is the number of links. When there is no migration 
and the sub-populations evolve in total isolation, the values corresponding to such a 
characteristic are denoted by X in the table. The results for knapsack problem Weing7 for 
DGA and DGA-SRM is shown in the Table 1 (Aguirre et al., 2000). 
 
K /mλ λ  DGA DGA-SRM 

L R λ  M N Average Stdev μ λ  M N Average Stdev 

8 0.10 5 2 100 5 0 1094423.4 433.38 50 100 80 63 1095421.44 30.84 
8 0.05 5 1 100 5 0 1093284.95 733.24 50 100 100 66 1095423.58 29.84 
8 0.01 1 1 100 5 0 1089452.96 1082.41 50 100 80 77 1095430.51 26.51 
8 X X 100 X 0 1087385.56 1729.4 50 100 X 60 1095419.80 30.86 

Table 1.The best results for Weing7 (105, 2) by DGA and DGA–SRM ( totalλ =800; T=8x105 ). 

According to Table 1 the best value found in Average is equal to 1094423.4, for DGA and 
1095430.51 for DGA-SRM. Table 1 also indicates that the DGA-SRM improves the results 
in relation to DGA. Table 2 shows the results found for others knapsack problems by 
DGA and DGA-SRM. In order to simplify the results shown in Table 2, the following 
configuration parameters should be considered: K = 16 sub-populations and 25μ =
(Aguirre et al., 2000). 
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Problem (n, m) /mλ λ DGA DGA-SRM (τ =0.35) 
LR λ M N Average Stdev λ M N Average Stdev 

Petersen6 (39,5) 0.01 1 1 50 5 0 10506.90 26.11 50 140 77 10614.82 5.82 
Petersen7 (50,5) 0.10 5 1 100 5 0 1093284.95 733.24 50 40 89 16535 5.94 
Sento1 (60, 30) 0.10 5 1 100 5 0 1089452.96 1082.41 50 40 98 7771.78 1.54 
Sento2 (60, 30) 0.10 5 1 100 5 0 1087385.56 1729.4 50 40 84 8721.32 2.11 

Table 2. The best results for other problems by DGA and DGA-SRM ( totalλ = 800; T=4x105).  

4.2 CA-IM_1  

For the algorithm proposed (CA-IM) various parameters and symbols are also considered 
such as: 

• The parameter P is the size of main population; 
• The parameter PM is the probability of mutation and PR probability of recombination. 
• The number of islands is K (number of sub-populations); 
• The parameter α  is the percentage which defines the size of the population of each 

island at function of P.  
• The sub-population size in each island is SI, since SI = α *P.  
• The percentage of best individuals in Situational Knowledge on population space is 

represented by SKP and the percentage of best individuals in Situational Knowledge on 
multi population space is represented by SKM.  

• The parameter M is the number of generations between migration events (migration 
interval). Here M determines the interval of influence from the islands population 
through the Situational Knowledge. 

• The symbol T represents the number of function evaluations in each run; 
• The symbol N represents the number of times the global optimum was found in the 100 

runs.  
• Average is the average of the best solutions and Stdev is the standard deviation around 

Average; 
• Average of generations is the average of the generations whose best solution was found in 

each run. 

For the tests carried out for CA-IM_1, the selection chosen was tournament, whose value is 
3, the mutation rate (PM) is 0.025 and recombination rate (PR) is 0.6. The situational 
knowledge configurations are: SKP=0.2 and SKM=0.5. Table 3 shows the results found by 
CA-IM_1, whose best value found in Average is 1095445 (the optimal value) and in the 
Average of Generations is 44.49. All values reached have optimum value. However, if Average 
of Generations is low in relation to total of generations, then this means that the optimum is 
found in few generations. 

As it is shown in Table 3, it is possible to observe that CA-IM outperforms DGA-SRM for 
any configuration such as the number of sub-populations (islands) and size of sub-
population. Similarly, CA-IM also exhibits higher convergence reliability than DGA-SRM 
with higher values for N and Average with smaller Stdev. These results show that the CA-IM 
produces higher performance for all utilized parameters.  
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P K α SI M N Average of Generations Average Stdev 
400 8 0.125 50 20 100 52.9 1095445 0.0 
400 8 0,125 50 05 100 44.49 1095445 0.0 
100 7 1.0 100 05 100 68.87 1095445 0.0 

Table 3. The best results for Weing7 (105, 2) by CA-IM_1 ( totalλ =800 and T=8x105). 

A new result “Average of Generations” was introduced so as to evaluate other type other 
type of performance whose value represents the average of generations that the optimum 
value was found for 100 independent runs for each problem presented. Particularly, it 
occurs when M is low and K is high (see result for Average of Generations). This means that 
a larger number of islands with small populations produce better convergence.  

According to Table 3 the best value found in Average is 1095445 (the optimal value) while 
the Average of generations is 44.49 that means a low value, considering that 500 generations 
was utilized in each run which T=4x105. This represents 500 generations with a population 
size equal to 800 (including all subpopulations). Table 4 shows the results for others MKPs 
found by algorithm CA-IM_1.  
 

Problem (n, m) P K α SI M N Average of 
Generations

Average Stdev. 

Petersen6 (39,5) 400 8 0.125 50 20 100 30.22 10618.0 0.0 
Petersen6 (39,5) 400 4 0,25 100 05 100 26.29 10618.0 0.0 
Petersen7 (50,5) 400 8 0.125 50 20 100 78.49 16537.0 0.0 
Petersen7 (50,5) 400 4 0,25 100 05 100 71.51 16537.0 0.0 
Sento1 (60,30) 400 8 0.125 50 20 100 100.21 7772.0 0.0 
Sento1 (60,30) 400 4 0,25 100 05 100 87.44 7772.0 0.0 
Sento2 (60,30) 400 8 0.125 50 20 99 185.19 8721.81 0.099 
Sento2 (60,30) 400 4 0,25 100 05 100 166.12 87722.0 0.0 

Table 4. The best results for other problems by CA-IM_1 ( totalλ = 800, T=4x105). 

Thereby, it is possible to observe that CA-IM_1 outperforms DGA-SRM. Similarly, CA-IM_1 
also exhibits higher convergence reliability (higher values of N and Average with smaller 
Stdev) than DGA-SRM. These results show that the CA-IM_1 is able to find global optimal 
for MKP, taking into consideration the tests results with 100% success. 

The problem that presented greater difficulty was Sento2, that presented in some cases 
optimal values near to 100% such as N=98 and N=99. Even with results of N < 100 they are 
still better than the results obtained in the chosen benchmarks. In the meantime, the 
implementation of some adjustments allows CA-IM_1 to reach N=100 for Sento2. 

4.3 CA-IM_2  

For the tests carried out for CA-IM_2 the selection chosen was tournament whose value is 3. 
The mutation rate (PM) is a random value in a specific interval: PM= [0.01, 0.5]. The 
Recombination rate (PR) is also a random value in an interval: PR= [0.1, 0.99]. The situational 
knowledge configurations are: SKP=0.2 and SKM=0.5. The CA-IM_2 results are presented in 
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Table 5 that shows the results for Weing7 and in Table 6 that shows the results for others 
knapsack problems. 
 

P K α  SI M N Average of Generations Average Stdev 
400 8 0.125 50 20 100 70.48 1095445 0.0 
400 8 0,125 50 05 100 72.72 1095445 0.0 
100 7 1.0 100 05 100 107.11 1095445 0.0 

Table 5. The best results for Weing7 (105,2) by CA-IM_2 ( totalλ =800, T=8x105). 

Problem (n, m) P K α  SI M N Average of 
Generations Average Stdev. 

Petersen6 (39,5) 400 8 0.125 50 20 100 37.89 10618.0 0.0 
Petersen6 (39,5) 400 4 0,25 100 05 100 33.39 10618.0 0.0 

Petersen7(50,5) 400 8 0.125 50 20 100 81.46 16537.0 0.0 
Petersen7(50,5) 400 4 0,25 100 05 100 74.38 16537.0 0.0 

Sento1(60,30) 400 8 0,25 50 20 98 112.55 7771.75 1.7717 

Sento1(60,30) 400 4 0,25 100 05 100 126.46 7772.0 0.0 

Sento2(60,30) 400 8 0.125 50 20 71 183.35 8720.0 3.7199 
Sento2(60,30) 400 4 0,25 100 05 88 173.53 8721.38 2.1732 

Table 6. The best results for other problems by CA-IM_2 ( totalλ = 800, T=4x105). 

The implementation of random rate for mutation and recombination in CA-IM_2 doesn’t 
produce satisfactory results in comparison to CA-IM_1, as it is shown in Table 6. In 
addition, the Average of Generations from algorithm CA-IM_2 is greater than CA-IM_1 for all 
knapsack problems. However, in comparison to CA-IM_1, there are few differences in 
results for Weing7 as is shown in Table 3 and Table 5. 

4.4 CA-S (Standard CA) 

For CA-S we also utilized the same configuration such as: tournament value=3, PM= 0.025 
and PR = 0.6. The situational knowledge configuration is equal to 0.2 (SKP=0.2). Every 
experiment presented here also consists of 100 independent runs and each run uses a 
different seed for the random initial population.  
 

Problem (, m) P N Average Stdev. 
Petersen6   (39,5) 800 97 10617.58 2.4002 
Petersen7   (50,5) 800 81 16533.7 6.8703 
Sento1        (60,30) 800 100 7772.0 0.0 
Sento2        (60,30) 800 82 8721.14 2.4495 
Weing7      (105,2) 800 100 1095445.0 0.0 

Table 7. The best results for all knapsack problems by CA-S (T=4x105). 
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Table 4. The best results for other problems by CA-IM_1 ( totalλ = 800, T=4x105). 

Thereby, it is possible to observe that CA-IM_1 outperforms DGA-SRM. Similarly, CA-IM_1 
also exhibits higher convergence reliability (higher values of N and Average with smaller 
Stdev) than DGA-SRM. These results show that the CA-IM_1 is able to find global optimal 
for MKP, taking into consideration the tests results with 100% success. 

The problem that presented greater difficulty was Sento2, that presented in some cases 
optimal values near to 100% such as N=98 and N=99. Even with results of N < 100 they are 
still better than the results obtained in the chosen benchmarks. In the meantime, the 
implementation of some adjustments allows CA-IM_1 to reach N=100 for Sento2. 
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For the tests carried out for CA-IM_2 the selection chosen was tournament whose value is 3. 
The mutation rate (PM) is a random value in a specific interval: PM= [0.01, 0.5]. The 
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Table 5 that shows the results for Weing7 and in Table 6 that shows the results for others 
knapsack problems. 
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The implementation of random rate for mutation and recombination in CA-IM_2 doesn’t 
produce satisfactory results in comparison to CA-IM_1, as it is shown in Table 6. In 
addition, the Average of Generations from algorithm CA-IM_2 is greater than CA-IM_1 for all 
knapsack problems. However, in comparison to CA-IM_1, there are few differences in 
results for Weing7 as is shown in Table 3 and Table 5. 

4.4 CA-S (Standard CA) 
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Table 7 shows the results from standard Cultural Algorithm (CA-S) that utilizes single 
population. According to results, the CA-S reaches optimum average for 100 runs only for 
Sento1 and Weing7. However, the results from CA-S for Petersen6, Pertersen7 and Sento2 
outperform the results presented by DGA-SRM. 

5. Conclusion 
This work presented a Cultural Algorithm (CA) with single population (CA-S) and multi 
population (CA-IM) in order to improve the search performance on MKP. It was observed 
that CA-S improves the convergence reliability and search speed. However, CA-S is not 
enough to reach global optimum for most problems presented. Our cultural algorithm 
implementation with island model (CA-IM_1 and CA-IM_2) allows the migration among 
islands sub-populations and main population through belief space structures that represent 
the cultural knowledge available in Cultural Algorithms. 

The results have shown that the CA-IM_1 is better than CA-IM_2 for the benchmarks 
selected. The results have also shown that the CA-IM_1 and CA-IM_2 perform the optimum 
search and reach optimum values equally or above the ones reached by algorithms DGA 
and DGA-SRM that were chosen for comparison. The positive results obtained, give support 
the idea that this is a desirable approach for tackling highly constrained NP-complete 
problems such as the MKP. In addition, it is possible that the hybridization of cultural 
algorithms based on population of GA with local search techniques improves the results 
obtained by standard CAs. In a future work, a study will be done about the behavior of the 
sub-populations that are eliminated and recreated randomly. In addition a local search will 
be implemented to CAs as much for standard CA (single population) as for CA-IM (multi 
population) so as to verify improvements on these algorithms. 
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1. Introduction  
The capacitated plant location problem (CPL) consists of locating a set of potential plants 
with capacities, and assigning a set of customers to these plants. The objective is to minimize 
the total fixed and shipping costs while at the same time demand of all the customers can be 
satisfied without violating the capacity restrictions of the plants. The CPL is a well-known 
combinatorial optimization problem and a number of decision problems can be obtained as 
special cases of CPL. There are substantial numbers of heuristic solution algorithms 
proposed in the literature (See Rolland et al., 1996; Holmberg & Ling, 1997; Delmaire et al., 
1999; Kratica et al., 2001; He et al., 2003; Uno et al., 2005). As well, exact solution methods 
have been studied by many authors. These include branch-and-bound procedures, typically 
with linear programming relaxation (Van Roy & Erlenkotter, 1982; Geoffrion & Graves, 
1974) or  Lagrangiran relaxation (Cortinhal & Captivo, 2003). Van Roy (1986) used the Cross 
decomposition which is a hybrid of primal and dual decomposition algorithm, and 
Geoffrion & Graves (1974) considered Benders’ decomposition to solve CPL problem. 
Unlike many other mixed-integer linear programming applications, however, Benders 
decomposition algorithm was not successful in this problem domain because of the 
difficulty of solving the master system. In mixed-integer linear programming problems, 
where Benders’ algorithm is most often applied, the master problem selects values for the 
integer variables (the more difficult decisions) and the subproblem is a linear programming 
problem which selects values for the continuous variables (the easier decisions). If the 
constraints are explicit only in the subproblem, then the master problem is free of explicit 
constraints, making it more amenable to solution by genetic algorithm (GA). The fitness 
function of the GA is, in this case, evaluated quickly and simply by evaluating a set of linear 
functions. In this chapter, therefore, we discuss about a hybrid algorithm (Lai et al., 2010) 
and its implementation to overcome the difficulty of Benders’ decomposition. The hybrid 
algorithm is based on the solution framework of Benders’ decomposition algorithm, 
together with the use of GA to effectively reduce the computational difficulty. The rest of 
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this chapter is organized as follows. In section 2 the classical capacitated plant location 
problem is presented. The applications of Benders’ decomposition and genetic algorithm are 
described in sections 3 and 4, respectively. In Section 5 the hybrid Benders/genetic 
algorithm to solve the addressed problem is illustrated. A numerical example is described in 
Section 6. Finally, some concluding remarks are presented in Section 7 followed by an 
acknowledgment and a list of references in Sections 8 and 9, respectively. 

2. Problem formulation 
The classical capacitated plant location problem with n potential plants and m customers can 
be formulated as a mixed integer program: 

 CPL: Min
1 1 1

m m n

i i ij ij
i i j

FY C X
= = =
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 0 , 1, ;  1,ijX i m j n≥ = … = …  (4) 

 { }0,1 ,   1,iY i m∈ =   (5) 

Here, Y is a vector of binary variables which selects the plants to be opened, while X is an 
array of continuous variables which indicate the shipments from the plants to the 
customers. Fi is the fixed cost of operating plant i and Si its capacity if it is opened. Cij is the 
shipping cost of all of customer j’s demand Dj from plant i. The first constraint ensures that 
all the demand of each customer must be satisfied. The second constraint ensures that the 
total demand supplied from each plant does not exceed its capacity. As well, it ensures that 
no customer can be supplied from a closed plant. 

3. Benders’ decomposition algorithm 
Benders’ decomposition algorithm was initially developed to solve mixed-integer linear 
programming problems (Benders, 1962), i.e., linear optimization problems which involve a 
mixture of either different types of variables or different types of functions. A successful 
implementation of the method to design a large-scale multi-commodity distribution system 
has been described in the paper of Geoffrion & Graves (1974). Since then, Benders’ 
decomposition algorithm has been successfully applied in many other areas, for example, in 
vehicle assignment (Cordeau et al., 2000, 2001), cellular manufacturing system (Heragu, 
1998), local access network design (Randazzo et al., 2001), spare capacity allocation 
(Kennington, 1999), multi-commodity multi-mode distribution planning,  (Cakir, 2009), and 
generation expansion planning (Kim et al., 2011). Benders’ algorithm projects the problem 
onto the Y-space by defining the function 
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and restating the problem (CPL) as 
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We will refer to the evaluation of v(Y) as the (primal) subproblem, a transportation LP 
whose dual LP problem is 
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If ψ ={( ˆ ˆ,k kU V ), k=1,…,K}  is the set of basic feasible solutions to the dual subproblem, then 
in principle v(Y) could be evaluated by a complete enumeration of the K basic feasible 
solutions. (The motivation for using the dual problem is, of course, that ψ  is independent of 
Y.)  That is, 

 ( ) { }
k=1,2,...K k=1,2,...K1 1 1

ˆ ˆMax  Max  
m m n

k k k k
i i i i i j j

i i j
v Y FY S U Y D V Y

= = =

  = + + = α + β 
  

    (14) 

where 
1

ˆ ˆ,
n

k k k k
i i i i j j

j
F S U D V

=
α ≡ + β ≡ . 

The function v(Y) may be approximated by the underestimate  
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where T≤K.  Benders’ decomposition alternates between a master problem 
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which selects a trial Yk, and the subproblem, which evaluates v(Yk) and computes a new 
linear support αkY+βk using the dual solution of the transportation subproblem. The major 
effort required by Benders’ algorithm is the repeated solution of the master problem, or its 
mixed-integer LP equivalent, 

 Min  Z (17) 

 Subject to ,    1,k kZ Y k T≥ α + β =   (18) 

 { }0,1iY ∈  (19) 

One approach to avoiding some of this effort is by suboptimizing the master problem, i.e., 
finding a feasible solution of the linear system 

 ˆ ,    1,k kZ Y k T> α + β =   (18) 

 { }0,1 ,    1,iY i m∈ =   (19) 

i.e., Y such that ( ) ˆTv Y Z< , where Ẑ  is the value of the incumbent at the current iteration, 
i.e., the least upper bound provided by the subproblems. (By using implicit enumeration to 
suboptimize the master problem, and restarting the enumeration when solving the 
following master problem, this modification of Benders’ algorithm allows a single search of 
the enumeration tree, interrupted repeatedly to solve subproblems.) For more information 
on the problem and the application of Benders’ algorithm for its solution, refer to Salkin et 
al. (1989). 

4. Genetic algorithm 
Genetic algorithm (GA) has been effective and has been employed for solving a variety of 
difficult optimization problems.  Much of the basic ground work in implementing and 
adapting GAs has been developed by Holland (1992). Since then, a large number of papers 
have appeared in the literature, proposing variations to the basic algorithm or describing 
different applications. In many cases, the GA can produce excellent solutions in a reasonable 
amount of time. For certain cases, however, the GA can fail to perform for a variety of 
reasons. Liepins & Hilliard (1989) have pointed out three of these reasons: (1) choice of a 
representation that is not consistent with the crossover operator; (2) failure to represent 
problem-specific information such as constraints; and (3) convergence to local optima 
(premature convergence). The first reason for failure, a representation inconsistent with the 
crossover operator, is most easily illustrated by an example of the traveling salesman 
problem, in which the crossover operator simply fails to preserve the feasible permutation 
in most cases. The second reason for failure is the inability to represent problem specific 
information such as constraints in an optimization problem. In general, for constrained 
problems, there is no guarantee that feasibility will be preserved by crossover or mutation, 
or even that a randomly-generated initial population is feasible. A broad range of 
approaches have been used in the literature to remedy this situation. However, there is no 
single mechanism that has performed consistently well in handling constrained problems 
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with genetic algorithms (Reeves, 1997). The most direct solution is simply to ignore this 
problem. If an infeasible solution is encountered, it may be assigned a very low fitness value 
to increase the chance that it will “die off” soon. But sometimes, infeasible solutions are 
close to the optimum by any reasonable distance measure. Another direct solution is to 
modify the objective function by incorporating a penalty function which reduces the fitness 
by an amount which varies as the degree of infeasibility. Unfortunately, not all penalty 
functions work equally well, and care must be exercised in their choice (Liepins & Hillard, 
1989). If the penalty is too small, many infeasible solutions are allowed to enter the 
population pool; if it is too large, the search is confined to a very small portion of the search 
space. Another increasingly popular technique for coping with infeasibility is the use of 
repair algorithms. These heuristic algorithms accept infeasible solutions but repair them in 
order to make them feasible before inserting them into the population. We can find various 
repair algorithms in the context of the traveling salesman problem in the literature 
(Goldberg & Lingle, 1985; Oliver et al., 1987; Chatterjee et al., 1996). Several practical 
questions arise, such as whether it should be the original offspring or the repaired version 
that should be used in the next generaion, and whether the entire randomness should be 
sacrificed because of the adoption of the repair methods. The third reason for failure is 
convergence to local optima (premature convergence). This condition occurs when most 
strings in the population have similar allele values. In this case, applying crossover to 
similar strings results in another similar string, and no new areas of the search space are 
explored (Levine, 1997). Many improvements to the genetic algorithms help to avoid 
premature convergence, such as thorough randomization of initial populations, multiple 
restart of problems, and appropriate parameter settings, i.e., carefully adjustment of the 
mutation rate and a suitable population size. 

Most researchers agree that, to guarantee success of an application of genetic algorithms, the 
representation system is of crucial importance. The difference between a successful 
application and an unsuccessful one often lies in the encoding. Kershenbaum (1997) pointed 
out that an ideal encoding would have the following properties: (a) It should be able to 
represent all feasible solutions; (b) It should be able to represent only feasible solutions. (An 
encoding that represents fewer infeasible solutions is generally better than one that 
represents a large number of infeasible solutions. The larger the number of representable 
infeasible solutions, the more likely it is that crossover and mutation will produce infeasible 
offspring, and the less effective the GA will become.); (c) All (feasible) solutions should have 
an equal probability of being represented; (d) It should represent useful schemata using a 
small number of genes that are close to one other in the chromosome. (It is generally very 
difficult to create an encoding with this property a priori, since we do not know in advance 
what the useful schemata are. It is, however, possible to recognize the presence of short, 
compact schemata in solutions with high fitness and thus to validate the encoding after the 
fact. This is important for recognizing successful GA applications.); and (e) The encoding 
itself should possess locality, in the sense that small changes to the chromosome make small 
changes in the solution. Kershenbaum also pointed out taht although some of these 
properties conflict (often making tradeoffs), to the extent taht those properties can be 
achieved, the genetic algorithms are likely to work well. In this section, we focus on the 
design of the GA approach for the master problem of CPL problem. More discussion of 
some of these as well as definitions and some of the basic GA terminology that is used in 
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which selects a trial Yk, and the subproblem, which evaluates v(Yk) and computes a new 
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 { }0,1iY ∈  (19) 
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this section can be found in Goldberg (1989) and Davis (1991). The implementation of GA is 
a step-by-step procedure: 

4.1 Initialization 

Initialization is to generate an initial population. The population size and length of 
"chromosome" depends on the users' choice and other requirements of the specific problem. 
To start, we usually have a totally random population. Each random string (or 
"chromosome") of the population, representing a possible solution for the problem, is then 
evaluated using an objective function. The selection of this objective function is important 
because it practically encompasses all the knowledge of the problem to be solved. The user 
is supposed to choose the proper combination of desirable attributes that could be best fit to 
his purposes. In CPL problem, the variable Y is a vector of binary integers. It is easily to be 
coded as a string of binary bit with the position #i corresponding to the plant #i. For 
example, Y = (0 1 1 0 1 0 0) means that plants #1, 4, 6 and 7 are not open and plants 2, 3 and 
5 are open. In our GA, a population size of 50 was used and the fitness function is evaluated 
quickly and simply by evaluating a set of linear functions, i.e., ( ) { } T k=1,2,...T

Max  k kv Y Y≡ α + β .   

4.2 Selection 

Selection (called “reproduction” by Goldberg) starts with the current population.  Selection 
is applied to create an intermediate population or mating pool. All the chromosomes in the 
mating pool are waiting for other operations such as crossover and/or mutation to create 
the next population. In the canonical genetic algorithm, selection is made according to the 
fitness. The fitness could be determined by many ways. For example, the fitness could be 
assigned according to probability of a string in the current population (Goldberg, 1989), a 
string's rank in the population (Baker, 1985; Whitley, 1989), or simply by its performance of 
scores. In our GA, the latter case is used, i.e., a string with an average score is given one 
mating; a string scoring one standard deviation above the average is given two matings; and 
a string scoring one standard deviation below the average is given no mating (Michalewicz, 
1998).   

4.3 Crossover and mutation 

We use a standard single-point crossover method. The duplicated strings in the mating pool 
are randomly paired off to produce two offspring per mating. The crossover location of the 
strings is generally chosen at random but not necessary always the case. For example, the 
distribution for selection the crossover point of the GenJam system, an interactive genetic 
algorithm jazz improviser, which was developed by Dannenberg for the Carnegie Mellon 
MIDI Toolkit, is biased toward the center of the chromosome to promote diversity in the 
population. If a crossover point is too near one end of the chromosome or the other, the 
resulting children are more likely to resemble their parents. This will lead the GenJam 
system to repeat itself when two nearly identical phrases happen to be played close to one 
another in the same solo and it does not seem desirable for GenJam to perform in that way. 
The role of mutation is to guarantee the diversity of the population. In most case, mutation 
alters one or more genes (positions in a chromosome) with a probability equal to the 
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mutation rate. Typically, but not always, mutation will flip a single bit. In fact, GenJam's 
mutation operators, on the other hand, are more complex than flipping a bit. They adopt 
several standard melodic development techniques, such as transposition, retrograde, 
rotation, inversion, sorting, and retrograde-inversion. Because these operators are all 
musically meaningful, they operate at the event level rather than on individual bits (Biles, 
2001).   

4.4 Replacement 

After the process of selection, crossover, and mutation, the current population is replaced by 
the new population. Those successful individuals of the each generation are more likely to 
survive in the next generation and those unsuccessful individuals are less likely to survive. 
In our GA, we use the incremental replacement method (See Beasley et al., 1993), i.e., only 
the new individuals whose fitness values are better than those of the current will be 
replaced. Thus, the individuals with the best fitness are always in the population.       

4.5 Termination 

In general, a genetic algorithm is terminated after a specified number of generations or 
when fitness values have converged. Our GA terminates when there has been no 
improvement in the best solution found for 100 iterations. 

5. Hybrid Benders/Genetic algorithm 
The basic idea of Benders’ partitioning algorithm for mixed-integer linear problems is to 
decompose the original problem into a pure integer master problem and one or more 
subproblems in the continuous variables, and then to iterate between these two problems. If 
the objective function value of the optimal solution to the master problem is equal to that of 
the subproblem, then the algorithm terminates with the optimal solution of the original 
mixed-integer problem. Otherwise, we add constraints, termed Benders’ cuts, one at a time 
to the master problem, and solve it repeatedly until the termination criteria are met. A major 
difficulty with this decomposition lies in the solution of the master problem, which is a 
“hard” problem, costly to compute.  

For the addressed CPL problem, however, the constraints are explicit only in the 
subproblem and the master problem is free of explicit constraints. Thus, the master problem 
is more amenable to solution by GA. 

Lai et al. (2010) introduced a hybrid Benders/Genetic algorithm which is a variation of 
Benders’ algorithm that uses a genetic algorithm to obtain “good” subproblem solutions to 
the master problem. Lai and Sohn (2011) conducted a study applying the hybrid 
Benders/Genetic algorithm to the vehicle routing problem. Below is a detailed description 
of the hybrid algorithm and it is illlustrated in Fig. 1 as well. 

Step 1. Initialization. We initialize the iteration counter k to zero, select initial trial values 
for the vector of binary variables Y which selects the plants to be opened.  

Step 2. Primal Subsystem. We evaluate the value of v(Y) by solving a tranportation linear 
programming problem whose fesible region is independent of Y.  
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Step 3. Generation of Benders‘ Cut. We compute a new linear support using the dual 
solution of the transportation subproblem and increment k by 1. 

Step 4. Primal Master system by GA. A trial location paln Y is to be computed by 
implementing a GA whose solution delivers both a feasible investment plan and a 
lower bound to the minimal cost for the equivalent program.  

 4a. Initialization. We initialize the variable Y as a string of binary bit with the position 
#i corresponding to the plant #i. We generate initial population and their fitness 
function are evluated as well. 

 4b. Genetic Operations. We perform a standard single-point crossover approach. The 
mutation operation to guarantee the diversity of the population is performed as 
well. The current population is replaced by the new population through the 
incremental replacement method. 

 4c.  Termination. We terminate the GA if no improvement within 100 iterations.    

 
Fig. 1. Flowchart of the Hybrid Benders/Genetic Algorithm 

This hybrid algorithm would avoid other traditional search methods, i.e., branch-and-
bound, which were used in the master problem. It will search the solution space in parallel 
fashion and take advantage of the “easy” evaluation of the fitness function. 

6. Example 
To illustrate the hybrid algorithm discussed in the earlier section, we use a randomly-
generated problem with 20 plant sites and 50 customers. Fifty points in a square area were 

Using a Genetic Algorithm to  
Solve the Benders’ Master Problem for Capacitated Plant Location 

 

413 

randomly generated, and the first 20 of these points were designated as both demand points 
and potential plant sites (see Fig. 2).  

 
Fig. 2. Fifty Randomly Generated Points 

The transportation cost between two points is proportional to the Euclidean distance 
between them. Three variations of Benders’ algorithm were applied to this plant location 
problem: (1) Optimization of master problem using implicit enumeration (BD-Opt); (2) 
Suboptimization of master problem using implicit enumeration (BD-Subopt); and (3) 
Suboptimization of master problem using a genetic algorithm (Hybrid BD/GA). In each 
case, the problem was not solved to completion, but was terminated after solving 50 
subproblems. 

First, an implicit enumeration algorithm was used to optimize Benders’ master problem. 
Fig. 3 shows the values of the upper and lower bounds, i.e., the solutions of the subproblems 
and master problems, respectively. The incumbent solution, which was found at iteration 
#10, is shown in Fig. 4 and requires opening 11 plants with a total cost of 5398, of which 
2619, or 48.5%, are fixed costs of the plants and the remaining costs are transportation costs. 
The greatest lower bound at this stage is 4325, so that the gap is approximately 19.9% when 
the algorithm was terminated. 

Secondly, the algorithm was restarted and again 50 iterations were performed, but 
suboptimizing the master problem using implicit enumeration. Fig. 5 shows the progress of 
this case. Because the master problem was suboptimized, no lower bound is available. After 
50 iterations, the incumbent solution shown in Fig 6, which requires opening seven plants, 
has a total cost of 5983, of which 1710, or approximately 28.6%, are fixed costs of the plants. 
It is important to note, of course, that although the quality of the incumbent solution is 
somewhat inferior to that found by optimizing the master problem, the computational effort 
is miniscule compared to that required when the master problem is optimized. 
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Fig. 3. Upper and lower bounds provided by Benders’ algorithm (BD-Opt). 

 
Fig. 4. Incumbent Solution Found by Benders’ algorithm (BD-Opt). 

Finally, the algorithm was again restarted, and 50 trial solutions were evaluated by the 
subproblems, this time using a genetic algorithm, so that the master problem is again 
suboptimized to generate the trial solutions. Each master problem was terminated after 40 
trial solutions better than the incumbent have been found (or after a maximum of 100 
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generations) at which time all those solutions better than the incumbent were evaluated. 
(After each subproblem, the trial solutions are re-evaluated, using the updated master 
problem cost function, ( )Tv Y , and only those with cost less than the incumbent are 
evaluated by the subproblem.) 

 
Fig. 5. Subproblem solutions of variation 2 of Benders’ algorithm (BD-Subopt). 

 
Fig. 6. Incumbent Solution Found by variation 2 of Benders’ algorithm (BD-Subopt). 
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Fig. 6. Incumbent Solution Found by variation 2 of Benders’ algorithm (BD-Subopt). 
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Fig. 7. Incumbent Solution by variation 3 of Benders’ algorithm (Hybrid BD/GA) trial 1. 

 
Fig. 8. Incumbent Solution by variation 3 of Benders’ algorithm (Hybrid BD/GA) trial 2. 

In this case, it happens that only 7 master problems were required to generate the 50 trial 
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Fig. 9. Upper bounds provided by Benders’ subproblems in variation 3 (Hybrid BD/GA). 

The best of the 50 trial solutions was found at iteration 49, with a total cost of 5303, of which 
988 (or approximately 18.6%) were fixed costs. Five plants were opened in this solution (see 
Fig. 7). Again, because the master problem is being suboptimized, no lower bound is 
available from the algorithm. Due to the random nature of the genetic algorithm, a second 
run of this variation was performed  and found another incumbent solution (see Fig. 8). Fig. 
9 shows the progress of two trials of the hybrid algorithm, i.e., the upper bounds provided 
by the subproblems.  
 

Variation of 
Benders’ algorithm 

Incumbent 
total cost 

Fixed 
costs 

% fixed 
costs 

# plants 
open 

BD-Opt 
BD-Subopt 
Hybrid BD/GA, trial 1 
Hybrid BD/GA, trial 2 

5398 
5983 
5303 
5491 

2619 
1710 
988 
1856 

48.5% 
28.6% 
18.6% 
33.8% 

11 
7 
5 
8 

Table 1. Summary of results of variations of Benders’ algorithm 

As well, Table 1 summarizes the results obtained by these three variations of Benders’ 
algorithm (terminated after 50 subproblems have been solved). Remarkably, in these results 
we observe no significant degradation of the quality of the solution when the master 
problem is suboptimized using a genetic algorithm, compared to optimizing the master 
problem and suboptimizing it by implicit enumeration. 
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7. Conclusion 
In this chapter, we have demonstrated that Benders’ decomposition algorithm for solving 
the capacitated plant location problem can be accelerated substantially when the master 
problem is solved heuristically. The hybrid Benders/GA algorithm is a variation of Benders’ 
algorithm in which, instead of using a costly branch-and-bound method, a genetic algorithm 
is used to obtain “good” subproblem solutions to the master problem. The numerical 
example shows that the hybrid algorithm is effective to solve the capacitated plant location 
problem. The results imply that the hybrid algorithm is much more practical when only 
near-optimal solutions are required. Future work could extend the proposed algorithm to 
other location problems. 
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