

BIO-INSPIRED
COMPUTATIONAL
ALGORITHMS AND
THEIR APPLICATIONS

Edited by Shangce Gao

Bio-Inspired Computational Algorithms and Their Applications
http://dx.doi.org/10.5772/2358
Edited by Shangce Gao

Contributors

Hansuk Sohn, Askhat Ibragimovich Diveev, Elena Sofronova, José Luis Castillo Sequera, Julio CA©sar Martinez-Romo,
Francisco Javier Luna-Rosas, Miguel Mora-Gonzalez, Carlos Alejandro De Luna-Ortega, Valentin Lépez-Rivas, Sertan
Erkanli, Ender Oguslu, Jiang Li, Esther Lugo-Gonzalez, Emmanuel Alejandro Merchan-Cruz, Rodolfo Ponce Reynoso,
Christopher Rene Torres-San Miguel, Javier Ramirez-Gordillo, Luis Héctor Hernandez-Gémez, Deam James Da Silva,
Otavio Noura Teixeira, Roberto Oliveira, Young-Doo Kwon, Dae-Suep Lee, Pedro Flores, Larysa Burtseva, Kim Soon
Gan, Mehmet Sevkli, Zulal Sevkli, Arash Sayyah, Alireza Rezazade, Hendrik Richter, Rustem Popa, Annibal Hetem Jr,,
Ines Fernando Vega-Lopez, Eduardo Fernandez-Gonzalez, Jorge A. Navarro-Castillo, Yourim Yoon, Yong-Hyuk Kim,
Liang, Yong Zhou, Han Jun, Guo He, Komla Folly, Marcelo Lobosco, Rodrigo Weber Dos Santos, Barbara De Melo
Quintela, Alexandre Bittencourt Pigozzo, Gilson Macedo, Pedro Augusto Ferreira Rocha

© The Editor(s) and the Author(s) 2012

The moral rights of the and the author(s) have been asserted.

All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH's written permission.

Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.

@)y |

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2012 by INTECH d.o.o.

eBook (PDF) Published by IN TECH d.o0.o.

Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.

Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Bio-Inspired Computational Algorithms and Their Applications
Edited by Shangce Gao

p.cm.
ISBN 978-953-51-0214-4
eBook (PDF) ISBN 978-953-51-5638-3

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

35®®+ 111,000+ 115M+

ailable International authors and editors Downloads

Our authors are among the

151 Top 1% 12.2%

Countries deliv most cited s Contributors from top 500 un sities

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Meet the editor

Shangce Gao received his BS degree from Southeast
University, Nanjing, China, in 2005, and his MS and
PhD degrees in Intellectual Information Systems and
Innovative Life Science from the University of Toyama,
Japan in 2008 and 2011 respectively. From 2005 to 2006,
he was a technical support engineer in Microsoft Co.
Ltd., Shanghai, China. He has received the Outstanding
Academic Performance Award of IEICE Hokuriku Branch in 2008, the
Outstanding Self-Financed Students Abroad Award of Chinese Govern-
ment from China Scholarship Council in 2009, the Outstanding Academic
Achievement Award of IPS] Hokuriku Branch in 2011, and the Outstand-
ing Doctoral Award of University of Toyama in 2011. He is currently an
associate research fellow at the Key Laboratory of Embedded System and
Service Computing, Ministry of Education, Tongji University, Shanghai
200092, China. His main research interests are intelligent computing and
brain cognition.

Contents

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Part 2

Chapter 7

Preface Xl

Recent Development of Genetic Algorithm 1

The Successive Zooming Genetic Algorithm
and Its Applications 3
Young-Doo Kwon and Dae-Suep Lee

The Network Operator Method for Search
of the Most Suitable Mathematical Equation 19
Askhat Diveev and Elena Sofronova

Performance of Simple Genetic Algorithm Inserting Forced
Inheritance Mechanism and Parameters Relaxation 43
Esther Lugo-Gonzélez, Emmanuel A. Merchan-Cruz,

Luis H. Hernandez-Gémez, Rodolfo Ponce-Reynoso,

Christopher R. Torres-San Miguel and Javier Ramirez-Gordillo

The Roles of Crossover and Mutation in
Real-Coded Genetic Algorithms 65
Yourim Yoon and Yong-Hyuk Kim

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and
Evolutionary Algorithms 83

Yong Liang

Genetic Algorithms: An Overview
with Applications in Evolvable Hardware 105
Popa Rustem

New Applications of Genetic Algorithm 121
Tune Up of a Genetic Algorithm

to Group Documentary Collections 123
José Luis Castillo Sequera

X Contents

Chapter 8 Public Portfolio Selection Combining Genetic Algorithms
and Mathematical Decision Analysis 139
Eduardo Fernandez-Gonzélez, Inés Vega-Lopez
and Jorge Navarro-Castillo

Chapter 9 The Search for Parameters and Solutions: Applying Genetic
Algorithms on Astronomy and Engineering 161
Annibal Hetem Jr.

Chapter 10 Fusion of Visual and Thermal Images
Using Genetic Algorithms 187
Sertan Erkanli, Jiang Li and Ender Oguslu

Chapter 11 Self Adaptive Genetic Algorithms for
Automated Linear Modelling of Time Series 213
Pedro Flores, Larysa Burtseva and Luis B. Morales

Chapter 12 Optimal Feature Generation with
Genetic Algorithms and FLDR in a Restricted-Vocabulary
Speech Recognition System 235
Julio César Martinez-Romo, Francisco Javier Luna-Rosas,
Miguel Mora-Gonzalez, Carlos Alejandro de Luna-Ortega
and Valentin Lopez-Rivas

Chapter 13 Performance of Varying Genetic
Algorithm Techniques in Online Auction 263
Kim Soon Gan, Patricia Anthony, Jason Teo and Kim On Chin

Chapter 14 Mining Frequent Itemsets over Recent
Data Stream Based on Genetic Algorithm 291
Zhou Yong, Han Jun and Guo He

Chapter 15 Optimal Design of Power System Controller
Using Breeder Genetic Algorithm 303
K. A. Folly and S. P. Sheetekela

Chapter 16 On the Application of Optimal PWM of Induction Motor in
Synchronous Machines at High Power Ratings 317
Arash Sayyah and Alireza Rezazadeh

Part 3 Artificial Imnmune Systems and Swarm Intelligence 333

Chapter 17 Artificial Immune Systems, Dynamic Fitness Landscapes,
and the Change Detection Problem 335
Hendrik Richter

Chapter 18 Modelling the Innate Immune System 351
Pedro Rocha, Alexandre Pigozzo, Barbara Quintela, Gilson Macedo,
Rodrigo Santos and Marcelo Lobosco

Chapter 19

Part 4

Chapter 20

Chapter 21

Contents X|

A Stochastically Perturbed Particle Swarm Optimization
for Identical Parallel Machine Scheduling Problems 371
Mehmet Sevkli and Aise Zulal Sevkli

Hybrid Bio-Inspired Computational Algorithms 383

Performance Study of Cultural Algorithms
Based on Genetic Algorithm with Single and
Multi Population for the MKP 385

Deam James Azevedo da Silva, Otavio Noura Teixeira
and Roberto Célio Limao de Oliveira

Using a Genetic Algorithm to Solve the Benders’ Master
Problem for Capacitated Plant Location 405
Ming-Che Lai and Han-suk Sohn

Preface

In recent years, there has been a growing interest in the use of biology as a source of
inspiration for solving practical problems. These emerging techniques are often
referred to as “bio-inspired computational algorithms”. The purpose of bio-inspired
computational algorithms is primarily to extract useful metaphors from natural
biological systems. Additionally, effective computational solutions to complex
problems in a wide range of domain areas can be created. The more notable
developments have been the genetic algorithm (GA) inspired by neo-Darwinian
theory of evolution, the artificial immune system (AIS) inspired by biological immune
principles, and the swarm intelligence (SI) inspired by social behavior of gregarious
insects and other animals. It has been demonstrated in many areas that the bio-
inspired computational algorithms are complementary to many existing theories and
technologies.

In this research book, a small collection of recent innovations in bio-inspired
computational algorithms is presented. The techniques covered include genetic
algorithms, artificial immune systems, particle swarm optimization, and hybrid
models. Twenty-four chapters are contained, written by leading experts from
researchers of computational intelligence communities, practitioners from industrial
engineering, the Air Force Academy, and mechanical engineering. The objective of this
book is to present an international forum for the synergy of new developments from
different research disciplines. It is hoped, through the fusion of diverse techniques and
applications, that new and innovative ideas will be stimulated and shared.

This book is organized into four sections. The first section shows seven innovative
works that give a flavor of how genetic algorithms can be improved from different
aspects. In Chapter 1, a sophisticated variant of genetic algorithms was presented. The
characteristic of the proposed successive zooming genetic algorithm was that it can
predict the possibility of the solution found to be an exact optimum solution which
aims to accelerate the convergent speed of the algorithm. In the second chapter, based
on the newly introduced data structure named “network operator”, a genetic
algorithm was used to search the structure of an appropriate mathematical expression
and its parameters. In the third chapter, two kinds of newly developed mechanisms
were incorporated into genetic algorithms for optimizing the trajectories generation in
closed chain mechanisms, and planning the effects that it had on the mechanism by

XV

Preface

relaxing some parameters. These two mechanisms are as follows: the forced
inheritance mechanism and the regeneration mechanism. The fourth chapter
examines an empirical investigation on the roles of crossover and mutation operators
in real-coded genetic algorithms. The fifth chapter summarizes custom processing
architectures for genetic algorithms, and it presents a proposal for a scalable parallel
array, which is adequate enough for implementation on field-programmable gate
array technology. In the sixth chapter, a novel genetic algorithm with splicing and
decomposable encoding representation was proposed. One very interesting
characteristic of this representation is that it can be spliced and decomposed to
describe potential solutions of the problem with different precisions by different
numbers of uniform-salient building-blocks. Finally, a comprehensive overview on
genetic algorithms, including the algorithm history, the algorithm architecture, a
classification of genetic algorithms, and applications on evolvable hardware as
examples were well summarized in the seventh chapter.

The second section is devoted to ten different real world problems that can be
addressed by adapted genetic algorithms. The eighth chapter shows an effective
clustering tool based on genetic algorithms to group documentary collections, and
suggested taxonomy of parameters of the genetic algorithm numerical and structural.
To solve a well-defined project portfolio selection problem, a hybrid model was
presented in the ninth chapter by combining the genetic algorithm and functional-
normative (multi-criteria) approach. In the 10% chapter, wide applications on
astrophysics, rocket engine engineering, and energy distribution of genetic algorithms
were illustrated.These applications proposed a new formal methodology (i.e., the
inverted model of input problems) when using genetic algorithms to solve the
abundances problems. In the 11 chapter, a continuous genetic algorithm was
investigated to integrate a pair of registered and enhanced visual images with an
infrared image. The 12" chapter showed a very efficient and robust self-adaptive
genetic algorithm to build linear modeling of time series. To deal with the restricted
vocabulary speech recognition problem, the 13 chapter presented a novel method
based on the genetic algorithm and the fisher’s linear discriminate ratio (FLDR). The
genetic algorithm was used to handle the optimal feature generation task, while FLDR
acted as the separability criterion in the feature space. In the 14 chapter, a very
interesting application of genetic algorithms under the dynamic online auctions
environment was illustrated. The 15% chapter examines the use of a parallel genetic
algorithm for finding frequent itemsets over recent data streams investigated, while a
breeder genetic algorithm, used to design power system stabilizer for damping low
frequency oscillations in power systems, was shown in the 16" chapter. The 17
chapter discusses genetic algorithms utilized to optimize pulse patterns in
synchronous machines at high power ratings.

The third section compiles two artificial immune systems and a particle swarm
optimization. The 18t chapter in the book proposes a negative selection scheme, which
mimics the self/non-self discrimination of the natural immune system to solve the

Preface

change detection problem in dynamic fitness landscapes. In the 19% chapter, the
dynamics of the innate immune response to Lipopolysaccharide in a microscopic
section of tissue were formulated and modelled, using a set of partial differential
equations. The 20% chapter analyzes swarm intelligence, i.e. the particle swarm
optimization was used to deal with the identical parallel machine scheduling problem.
The main characteristic of the algorithm was that its search strategy is perturbed by
stochastic factors.

The fourth section includes four hybrid models by combing different meta-heuristics.
Hybridization is nowadays recognized to be an essential aspect of high performing
algorithms. Pure algorithms are always inferior to hybridizations. This section shows
good examples of hybrid models. In the 21¢t chapter, three immune functions (immune
memory, antibody diversity, and self-adjusting) were incorporated into the genetic
algorithm to quicken its search speed and improve its local/global search capacity. The
227 chapter focuses on the combination of genetic algorithm and culture algorithm.
Performance on multidimensional knapsack problem verified the effectiveness of the
hybridization. Chapter 23 studies the genetic algorithm that was incorporated into the
Benders” Decomposition Algorithm to solve the capacitated plant location problem. To
solve the constrained multiple-objective supply chain optimization problem, two bio-
inspired algorithms, involving a non-dominated sorting genetic algorithm and a novel
multi-objective particle swarm optimizer, were investigated and compared in the 24t
chapter.

Because the chapters are written by many researchers with different backgrounds
around the world, the topics and content covered in this book provides insights which
are not easily accessible otherwise. It is hoped that this book will provide a reference
to researchers, practicing professionals, undergraduates, as well as graduate students
in artificial intelligence communities for the benefit of more creative ideas.

The editor would like to express his utmost gratitude and appreciation to the authors
for their contributions. Thanks are also due to the excellent editorial assistance by the
staff at InTech.

Shangce Gao

Associate Research Fellow

The Key Laboratory of Embedded System and Service Computing,
Ministry of Education

Tongji University

Shanghai

XV

Part 1

Recent Development of Genetic Algorithm

The Successive Zooming Genetic Algorithm
and Its Applications

Young-Doo Kwon'! and Dae-Suep Lee?

ISchool of Mechanical Engineering & IEDT, Kyungpook National University,
2Division of Mechanical Engineering, Yeungjin College, Daegu,

Republic of Korea

1. Introduction

Optimization techniques range widely from the early gradient techniques ! to the latest
random techniques 16 18 19 including ant colony optimization 13 7. Gradient techniques are
very powerful when applied to smooth well-behaved objective functions, and especially,
when applied to a monotonic function with a single optimum. They encounter certain
difficulties in problems with multi optima and in those having a sharp gradient, such as a
problem with constraint or jump. The solution may converge to a local optimum, or not
converge to any optimum but diverge near a jump.

To remedy these difficulties, several different techniques based on random searching have
been developed: full random methods, simulated annealing methods, and genetic
algorithms. The full random methods like the Monte Calro method are perfectly global but
exhibit very slow convergence. The simulated annealing methods are modified versions of
the hill-climbing technique; they have enhanced global search ability but they too have slow
convergence rates.

Genetic algorithms 2-5 have good global search ability with relatively fast convergence rate.
The global search ability is relevant to the crossover and mutations of chromosomes of the
reproduced pool. Fast convergence is relevant to the selection that takes into account the
fitness by the roulette or tournament operation. Micro-GA 3 does not need to adopt
mutation, for it introduces completely new individuals in the mating pool that have no
relation to the evolved similar individuals. The pool size is smaller than that used by the
simple GA , which needs a big pool to generate a variety of individuals.

Versatile genetic algorithms have some difficulty in identifying the optimal solution that is
correct up to several significant digits. They can quickly approach to the vicinity of the
global optimum, but thereafter, march too slowly to it in many cases. To enhance the
convergence rate, hybrid methods have been developed. A typical one obtains a rough
optimum using the GA first, and then approaches the exact optimum by using a gradient
method. Other one finds the rough optimum using the GA first, and then searches for the
exact optimum by using the GA again in a local domain selected based on certain logic 7.

The SZGA (Successive Zooming Genetic Algorithm) ¢ 812 zooms the search domain for a
specified number of steps to obtain the optimal solution. The tentative optimum solutions

4 Bio-Inspired Computational Algorithms and Their Applications

are corrected up to several significant digits according to the number of zooms and the
zooming rate. The SZGA can predict the possibility that the solution found is the exact
optimum solution. The zooming factor, number of sub-iteration populations, number of
zooms, and dimensions of a given problem affect the possibility and accuracy of the
solution. In this chapter, we examine these parameters and propose a method for selecting
the optimal values of parameters in SZGA.

2. The Successive Zooming Genetic Algorithm

This section briefly introduces the successive zooming genetic algorithm ¢ and provides the
basis for the selection of the parameters used. The algorithm has been applied successively
to many optimization problems. The successive zooming genetic algorithm involves the
successive reduction of the search space around the candidate optimum point. Although
this method can also be applied to a general Genetic Algorithm (GA), in the current study it
is applied to the Micro-Genetic Algorithm (MGA). The working procedure of the SZGA is as
follows. First, the initial solution population is generated and the MGA is applied.
Thereafter, for every 100 generations, the elitist point with the best fitness is identified. Next,
the search domain is reduced to (Xopr-ak/2, Xopr+ak/2), and then the optimization
procedure is continued on the reduced domain (Fig. 1). This reduction of the search domain
increases the resolution of the solution, and the procedure is repeated until a satisfactory
solution is identified.

£y cglobal vanable{dion ennonless)
2y local venable{ Emensionless in zocmed range)
ko l-N
¥l
I L1 1 | 0=l
I | | | 12 :0-1
. o
E E xld'pr E % length of search range=1
/ N,
Find hest fimess | \
\ &'t o'
k=Fk+1 L | | | \ X, -xu-m-'T_X.m:m"T
' y =
Zoaming in search range | I .-l 1 kl Z,:0~1 -
o a —
P = Lipe IL:: = length of starch range =g
&< @ / \ i i
HNo ; -] &
Ky Ky ~ = K+ =
Ves S \ 2 2
1 auon
“ o et length of search rangs -
e Sowe~ 5 Hpa Yeeww ¥ 5 ’
& emorr ratio = 10 . .

Fig. 1. Flowchart of SZGA and schematics of successive zooming algorithm

The SZGA can assess the reliability of the obtained optimal solution by the reliability
equation expressed with three parameters and the dimension of the solution Nyag.

Ry =[1-(1-(e/ Z)NV"R X ﬂAVG)NSF Jzoom -1 (1)

The Successive Zooming Genetic Algorithm and Its Applications 5

where,

a: zooming factor, B: improvement factor

Nvar: dimension of the solution, Nzoom: number of zooms

Nsys: number of sub-iterations, Npop: number of populations

Nsp: total number of individuals during the sub-iterations (Nsp=NsusXNpop)

Three parameters control the performance of the SZGA: the zooming factor a, number of
zooming operations Nzoom, and sub-iteration population number Nsp. According to
previous research, the optimal parameters for SZGA, such as the zooming factor, number of
zooming operations, and sub-iteration population number, are closely related to the number
of variables used in the optimization problem.

2.1 Selection of parameters in the SZGA

The zooming factor o, number of sub-iteration population Nsp,and number of zooms Nzoowm
of SZGA greatly affect the possibility of finding an optimal solution and the accuracy of the
found solution. These parameters have been selected empirically or by the trial and error
method. The values assigned to these parameters determine the reliability and accuracy of
the solution. Improper values of parameters might result in the loss of the global optimum,
or may necessitate a further search because of the low accuracy of the optimum solution
found based on these improper values. We shall optimize the SZGA itself by investigating
the relation among these parameters and by finding the optimal values of these parameters.
A standard way of selecting the values of these parameters in SZGA, considering the
dimension of the solution, will be provided. .

The SZGA is optimized using the zooming factor o, number of sub-iteration population Nsp,
and the number of zooms Nzoow, for the target reliability of 99.9999% and target accuracy of
10¢. The objective of the current optimization is to minimize the computation load while
meeting the target reliability and target accuracy. Instead of using empirical values for the
parameters, we suggest a standard way of finding the optimal values of these parameters
for the objective function, by using any optimization technique, to find the optimal values of
these parameters which optimize the SZGA itself. Thus, before trying to solve any given
optimization problem using SZGA, we shall optimize the SZGA itself first to find the
optimal values of its parameters, and then solve the original optimization problem to find
the optimal solution by using these parameters.

After analyzing the relation among the parameters, we shall formulate the problem for the
optimization of SZGA itself. The solution vector is comprised of the zooming factor o, the
number of sub-iteration population Nsp, and the number of zooms Nzoom. The objective
function is composed of the difference of the actual reliability to the target reliability,
difference of the actual accuracy to the target accuracy, difference of the actual Nsp to the
proposed Nsp, and the number of total population generated as well.

F(a’ NSP 4 NZOOM) = AR + AA + AZ\ISP + (NSP X NZOOM) (2)

SZGA

where,
AR, : difference to the target reliability

6 Bio-Inspired Computational Algorithms and Their Applications

AA :difference to the target accuracy
A Ngp : difference to the proposed Ngp

The problem for optimzation of SZGA itself can be formulated by using this objective
function as follows:

Minimize F(X) 3)

where,

X={a, N, N

}T
Sp” ZOOM

O<a<l1
Nsp~ 100
Nzoom > 1

The difference of the actual reliability to the target reliability is the difference between Rszca
and 99.9999%, where reliability Rszca is rewritten with an average improvement factor as

RSZGA = [1 - (1 — (a / Z)NVAR % ﬁAVG)NSP]Nzoom -1 (4)

Here, we can see the average improvement factor Bavg, which is to be regressed later on.
The difference of realized accuracy to the target accuracy is the difference between accuracy
A and 106, where accuracy A is actually the upper limit and may be written as,

A= aNzooM -1 (5)

The difference of the actual Nsp to the proposed Nspis difference between Nsp and 100 7 . In
organizing the optimization algorithm, each element in the objective function is given
different weights according to its importance. Thus, the target reliability and target accuracy
are met first, and then the number of total population generated is minimized. Although
any optimization technique could have been used to slove eq.(3), one can adopt the SZGA in
optimizing the SZGA itself to obtain a solution fast and accurately.

The parameters in SZGA have been optimized by using the objective function and
improvement factor averaged after regression for a test function °. The target reliability is
99.9999% and target accuracy of solution is 10-6. The proposed number of sub-iteration
population Nspis 100. Table 1 shows the optimized values for the SZGA parameters for four
cases of different number of design variables.

We found a similar tendency to Table 1 for test functions of various numbers of design
variables. We also found that the recommended number of sub-iteration population Nsp
would no longer be acceptable to assure reliability and accuracy for the cases whose number
of design variables is over 1. A much greater number of sub-iteration population is needed
to obtain an optimal solution with the proper reliability (99.9999%) and accuracy (10-6).

To confirm our optimized result, we fixed two parameters in the feasible domain that satisfy
the target reliability and target accuracy, and checked the change in the objective function as
a function of the remaining parameter. Examples of the change in the objective function for
the case of four design variables showed the validity of the obtained optimal values of the

The Successive Zooming Genetic Algorithm and Its Applications 7

parameters. Although these values may not be valid for all the other cases, they can be used
as a good reference for new problems. Some other ways of choosing the values of these
parameters will be given later on.

No. of
Variables 2 4 8 16
Zooming | 155 1303 4216 5176
Factor o
Nzoom 5 8 17 22
Nsp 1,000 2,000 9,510 1,479,230
No. of
Function 5,000 16,000 161,670 32,543,060
Evaluation

Table 1. Result of optimized parameters in SZGA for different number of design variables

2.2 Programming for successive zooming and pre-zoning algorithms

Programming the SZGA is simple, as explained below. This zooming philosophy may not
be confined only in GA, but can be applied to most other global search algorithms. Let Y(I)
be the global variables ranging YMIN(I) ~ YMAX(I), where I is the design variable number.
Z(1) consists of local normalized variables ranging 0~1. Thus, the relation between them is as
follows in FORTRAN;

DO 10 I=1,NVAR ! NVAR=NO. of VARIABLES
10 Y(I)=YMIN(I)+ (YMAX(I)-YMIN(I))*Z(I)

The relation between local variable Z(I) and local variable X(I) (0~1) in the zoomed region is
as follows;

DO 12 I=1,NVAR
12 Z(I)=ZOPT(I,JWIN)+ALP** (JWIN-1)* (X(I)-0.5)

Where, ZOPT(LJWIN) is the elitist in the zoom step (JWIN-1), and ALP is the zooming
factor. Note that ZOPT(IJWIN-1) is more logical. However, the argument is increased by
one to meet old versions of FORTRAN, which require a positive integer as a dimension
argument. Based on the elitist in step (JWIN-1), we are seeking variables in step JWIN.
Please note that ZOPT(I,1)=0.

A pre-zoning algorithm adjusts the gussed initial zone to a very reasonable zone after one
set of generation.

DO 14 I=1,NVAR
YMIN(I)=YINP(I)-BTA*ABS (YINP(I))
14 YMAX(I)=YINP(I)+BTA*ABS(YINP(I))

Where, YINP(I)is the elitist obtained after one set of generation. Thus, we eliminate the
assumed initial boundary, and establish a new reasonable boundary. The coefficient BTA
may be properly selected, say 0.5.

8 Bio-Inspired Computational Algorithms and Their Applications

2.3 Hybrid genetic algorithm

Genetic algorithms are stochastic global search methods based on the mechanism of natural
selection and natural reproduction. GAs have been applied to structural optimization
problems because they can solve optimization problems that involve mixing continuous,
discontinuous, and non-convex regions etc. The SGA (simple GA) has been improved to
MGA by using some techniques like tournament selection as well as the elitist strategy. Yet,
GAs have some difficulty in fast searching the exact optimum point at a later stage. The DPE
(Dynamic Parameter Encoding) GA ¢ uses a digital zooming technique, which does not
change a digit of a higher rank further after a certain stage. The SZGA (Successive Zooming
GA) zooms the searching area successively, and thus the convergence rate is greatly
increased. A new hybrid GA technique, which guarantees to find the optimum point, has
been proposed 7. 14.

The hybrid GA first identifies a quasi optimal point using an MGA, which has better
searching ability than the simple genetic algorithm. To solve the convergence problem at the
later stage, we employed hybrid algorithms that combine the global GA with local search
algorithms (DFP 1 or MGA). The hybrid algorithm using the DFP (Davidon Fletcher Powell)
method incorporates the advantages of both a genetic algorithm and the gradient search
technique. The other hybrid algorithm of global GA and local GA at the zoomed area is
called LGA (Locally zoomed GA), checks the concavity condition near the quasi minimum
point. The enhancement of the above hybrid algorithms is verified by application of these
algorithms to the gate optimization problem.

In this hybrid algorithm of minimization problem, an MGA is performed generation-by-
generation until there is no further change of the objective function, and then the
approximate optimum solution is found at Zmca. The gradients of the objective function as a
function of the design variables are checked, if the concavity condition ! is satisfied at the
boundary of a small zoomed area (Fig. 2). If the condition is not satisfied, the small zoomed
area is increased by 0. After several iterations, concavity conditions are finally achieved at
the boundary of the final zoomed area (k0 x k) centered at Zyica. With the elitist solution
from the global GA (approximate optimum solution, Zmca) and the concavity condition, the
optimum point is found within the final zoomed area [Z(i) : (Zmca(i) - ¥8) ~ (Zmca(i) + x0)].
From this point, a local GA is performed for the small finally zoomed area, which probably
contains the optimum point. Usually, this area is much smaller than the original are, so the
convergence rate increases considerably (note that the first approximate solution
prematurely converged to an inexact but near optimum point).

Water gates need to be installed in dams to regulate the flow-rate and to ensure the
containing function of dams. Among these gates, the radial gate is widely used to regulate
the flow-rate of huge dams because of its accuracy, easy opening and closing, endurance etc.
Moreover, 3-arm type radial gate has better performance than 2-arm type, in connection
with the section size of girders and the vibration characteristics during discharging
operation. Table 2 compares the optimized results for a 3-arm type radial gate, which
considers the reactions to the minimized main weight of the structure including vertical
girders with or without arms. The hybrid algorithm (MGA+DFP, MGA+LGA) obtained the
exact optimal solution of 0.690488E+10 after far fewer generations of 4100 than the 9000 by
MGA, which result in a close but not the exact solution of 0.690497E+10.

The Successive Zooming Genetic Algorithm and Its Applications 9

Pogitive gradient in
Iy dirwction

T, 2

LEL RN IIiilil LN

Megative gradieat in
Zp direction

oL LT T™

A

Negative gradieat in
Ly direction

i

aEEEEEE S

PTTLL)
H

E ® rmsomed area, FS5 o bS5

I

L

Fig. 2. Confirmed zoomed region after checking the concavity condition

3-arm type Micro GA MGA+DFP MGA+LGA
Convergence 9000 4000+a 4100
Generation
Objection Function 0.690497E+10 0.690488E+10 0.690488E+10

Table 2. Comparison of results: MGA, MGA+DFP, MGA+LGA

3. Example of the SZGA

The value of the zooming factor o, an optimal parameter was obtained in reference [8], and
was found to show good match with the empirical one. Using this zooming factor in SZGA,
the displacement of a truss structure was derived by minimizing the total potential energy
of the system. The capacity of the servomotor, which operates the wicket gate mounted in a
Kaplan type turbine of the electric power generator, was optimized using SZGA with the
value of zooming factor 8.

This is just one parameter among the full optimal parameters discussed in sec.2.1 9.
Therefore, the analysis done with this factor 8 is a simplified analysis. As commented in
section 2.1, the values of the parameters of a well-behaved test model suggested in the Table
1 can be used for an optimization, or the values of the parameters obtained in another way
as discussed in the next section can be used.

Several additional examples of SZGA optimization are presented in the following sections to
provide more insight on SZGA and to find another way of choosing the values of the SZGA
parameters. The first example finds the Moony-Rivlin coefficients of a rubber material to
compare with those from the least square method. The second example is a damage
detection problem in which the difference between the measured natural frequencies and
those of the assumed damage in the structure is minimized. The third example finds the

10 Bio-Inspired Computational Algorithms and Their Applications

optimal link specification (lengths and initial angular positions of members) to control the
double link system with one motor in an automotive diesel engine. The fourth and last
example finds an optimal specification (parametric sizes at specified positions) of a ceramic
jar that satisfies the required holding capacity.

3.1 Determination of Mooney-Rivlin coefficients

The rubber is a very important mechanical material in everyday life, used widely in
mechanical engineering and automotive engineering. Rubber has low production cost and
many advantages such as its characteristic softness, processability, and hyper-elasticity. The
development of the rubber parts including most process of the shape design, product
process, test evaluation, ingredient blending for the required property has used the
empirical methods. CAE based on advances in computer-aided structural analysis software
is applied to many products. FEM method is applied on various models of rubber parts to
evaluate the non-linearity property and the theoretical hyper-elastic behavior of rubber, and
to develop analysis codes for large, non-linear deformation.

The structure of rubber-like materials are difficult to analyze because of their material non-
linearity and geometric non-linearity as well as their incompressibility. Furthermore, unlike
other linear materials, rubber materials have hyper-elasticity, which is expressed by the
strain energy function. The representative strain energy functions in the finite element
analysis of rubber are the extension ratio invariant function (Mooney-Rivlin model) and the
principal extension ratio function (Ogden model). This case uses the Mooney-Rivlin model
to investigate the behavior of a rubber material.

The value of the zooming factor changes according to the number of variables and the
population number of a generation. If the population number is large, more exact solution
can be obtained than the approach with smaller one. For a large population number, which
is inevitable in the case of many design variables, longer computation time is needed. In this
case, because six design valuables are used to solve the six material properties, nine
hundred population units per one generation are used. At this time, whenever zooming is
needed, the function is calculated 90,000 times, where, 900 is the population number per one
generation and 100 is generation number per one zooming because zooming is implemented
after 100 generations . So the point number searched per one valuable is 6 units (=90,0001/6).
To search the optimum point, the zooming factor must be not less than 1/6. Therefore, the
zooming factor of 0.2 is used.

The maximum generation number must be decided after the zooming factor is chosen. If the
zooming factor is large, the exact solution can be solved as increasing zooming step.
Generation numbers have to be decided by the user because they affect the amount of
calculation like the population numbers do. For example, when zooming factor of 0.3 is
chosen and Maxgen (maximum allowed generation number) is decided as 1000
(Nzoom = 10), the accuracy of the final searching range becomes Zrangg = alNzoom-1) = (.3(10-1)
= 1.97E-05, and if Maxgen is decided by 1500 (Nzoom = 15) the final searching range
becomes Zrange = aNzoom-1) = (),.3(15-1) = 4,78 E-08, where Zrange is the value related with the
resolution of solution and is the searching range after N steps of zooming. The smaller this
value is, the more exact the solution becomes. In this case, Maxgen=900 is adopted. SZGA
minimized the total error better than the other two methods.

The Successive Zooming Genetic Algorithm and Its Applications 11

Errors to be minimized | Haines & Wilson Least Square SZGA
Simple extension 0.757932 0.709209 0.921277
Pure shear 0.702015 0.620089 0.370579
Equi-biaxial 13.2580 0.242475 0.139983
Total error 14.7180 1.57177 1.43184

Table 3. Comparisons of errors among the different methods for obtaining Mooney-Rivlin 6
coefficients

3.2 Damage detection of structures

Structures can sometimes experience failures far earlier than expected, due to fabrication
errors, material imperfections, fatigue, or design mistakes, of which fatigue failure is
perhaps the most common . Therefore, to protect a structure from any catastrophic failure,
regular inspections that include knocking, visual searches, and other nondestructive testing
are conducted. However, these methods are all localized and depend strongly on the skill
and experience of the inspector. Consequently, smart and global ways of searching for
damages have recently been investigated by using rational algorithms, powerful computers,
and FEM.

The objective function of the difference between the measured data and the computed data
is minimized according to an assumed structural damage to find the locations and
intensities of possible damages in a structure. The measured data can be the displacement of
certain points or the natural frequencies of the structure, while the computed data are
obtained by FEM using an assumed structural damage, whose severity is graded between 0
and 1. For example, Chou et al. used static displacements at a few locations in a discrete
structure composed of truss members, and adopted a kind of mixed string scheme as an
implicit redundant representation. Meanwhile, Rao adopted a residual force method, where
the fitness is the inverse of an objective function, which is the vector sum of the residual
forces, and Koh adopted a stacked mode shape correlation that could locate multiple
damages without incorporating sensitivity information 11.

Yet, a typical structure can be sub-divided into many finite elements and has many degrees
of freedom. Thus, FEM for a static analysis, as well as for a frequency analysis, takes a long
time. For a GA, the analysis time is related to the number of functions used for evaluating
fitness. This number can become uncontrollable when monitoring a full structure, and as a
result, the RAM or memory space required becomes too large and the access rate too slow
when handling so much data.

Accordingly, the proposed SZGA is very effective in this case, as it does not require so many
chromosomes, even as few as 4, thereby overcoming the slow-down of the convergence rate
of the conventional GA, which need many chromosomes in determining the extent of a
damage. Furthermore, the issue of many degrees of freedom can also be solved by sub-
dividing the monitoring problem into smaller sub-problems because the number of
damages will likely be between 1~4, as long as the structure was designed properly.
Moreover, the fact that cracks usually initiate at the outer and tensile stressed locations of a

12 Bio-Inspired Computational Algorithms and Their Applications

structure is also an advantage. As a result, the number of sub-problems becomes
manageable, and the required time is much reasonable.

Several tests were performed first to determine the effectiveness of the SZGA for structure
monitoring, where regional zooming is not necessary. Next, the procedure used to sub-
divide the monitoring problem is presented, along with a comparison of the amount of
computation required between a full-scale monitoring analysis and a sub--divide
monitoring analysis according to the number of probable damage sites. The optimization
problem for various cases of structural damage detection was solved by using three or six
variables, zooming factor of 0.2 or 0.3, and total number of function evaluations of 100,000
or 150,000, which is Nzoom X sub-iteration population number. The sub-iteration
population number means the total population number in a sub-generation of one
zooming.

0.6 -
0.5 "
0.4
0.3

0.2 4

Zooming factor(a)

0.1

0.0 4

T T T T T T T T 1

0 2 4 6 8 10 12 14 16 18
No. of variables(NVAR)

Fig. 3. Zooming factor with respect to the number of variables

log NSP

2 T T T T T T T T 1
Q 2 4 6 8 10 12 14 16 18

No. of variables (N

VAR)

Fig. 4. Number of sub-iteration population with respect to the number of variables

Fig. 3, Fig. 4 and Fig. 5 are the fitting curves of ‘Nyar - &, "Nyar - Nsp” and ‘Nvar - Number
of function calculation” relationship data, respectively, based on Table 1. These figures are
prepared for the data point not shown in Table 1 for interpolation purpose.

The Successive Zooming Genetic Algorithm and Its Applications 13

log F

T T T T T T T T 1
2 4 6 8 10 12 14 16 18

No. of variables (N, ,.)

Fig. 5. Number of function calculations with respect to the number of variables

The SZGA can pinpoint an optimal solution by searching a successively zoomed domain.
Yet, in addition to its fine-tuning capability, the SZGA only requires several chromosomes
for each zoomed domain, which is a very useful characteristic for structural damage
detection of a large structure that has a great number of solution variables. In the present
study, just four or six digits of chromosomes were used. The accuracy of optimal solution is
guaranteed by the successively zoomed infinitesimal range.

Most structures have few cracks, which may exist at different locations. Therefore, a
combinational search method is suggested to search for separate cracks by choosing
probable damage site as ,Cx. n denotes the number of total elements and k denotes the
number of possible crack sites (1~4). Thus, up to four cracks (k) were considered in a
continuum structure modelled with n (=20) elements, and the number of function
calculations between the combinational search and the full scale search was compared.

n!

WG = W Q)
No. of function calculation .
No. of cracks | nCx . Ra.t 10
Combinational search | Full scale search (Combinational/Full)
1 20 0.580671x105 0.578096x107 0.100445x10-3
2 190 0.950000x10¢ 0.578096x107 0.164332x10-2
3 1140 0.990843x107 0.578096x109 0.171398x10-1
4 4845 0.740788x108 0.578096x107 0.128143

Table 4. Result of combinational searching method to reduce amount of calculation in SZGA

When monitoring the entire structure, the number of function calculations became about six
hundred million based on the relation between the number of variables and the number of

14 Bio-Inspired Computational Algorithms and Their Applications

function calculations. However, when the combinational searching method was used, the
number of function calculations was reduced by about 10-1~104 times when compared to the
full-scale monitoring case, as shown in Table 4. Table 5 shows the good detection of the
damage using the combination method and SZGA.

Element No. 19 20 25 26 31 32
Actual 1 1 05 1 1 1
soundness factor
Damage 1.0 1.0 0.499999 1.0 1.0 1.0
detection result

Table 5. Result of structural damage detection using the combination method and SZGA

3.3 Link system design using weighting factors

This section presents a procedure involving the use of a genetic algorithm for the optimal
designs of single four-bar link systems and a double four-bar link system used in diesel
engines. Studies concerning the optimal design of the double link system comprised of both
an open single link system and a closed single link system which are rare, and moreover the
application of the SZGA in this field is hard to find, where the shape of objective function
have a broad, flat distribution 12.

During the optimal design of single four-bar link systems, one can find that for the case of
equal IO angles, the initial and final configurations show certain symmetry. In the case of
open single link systems, the radii of the IO links are the same and there is planar symmetry.
In the case of closed single systems, the radii of the IO links are the same and there is point
symmetry.

To control the Swirl Control Valve in small High Speed Direct Injection engines, there are
two types of actuating systems. The first uses a single DC motor controlled by Pulse Width
Modulation, while the second uses two DC motors. However, this study uses the first type
of actuator for the simultaneous control of two Swirl Control Valves using a double link
system. When two intake valves in a diesel engine are controlled by a single motor, they
usually exhibit quite different angular responses when the design variables for the control
link system are not properly selected. Therefore, in order to ensure balanced performance in
diesel engines with two intake valves, an optimization problem needs to be formulated and
solved to find the best set of design variables for the double four-bar link system, which in
turn can be used to minimize the different responses to a single input.

Two weighting factors are introduced into the objective function to maintain balance
between the multi-objective functions. The proper ratios of weighting factors between
objective functions are chosen graphically. The optimal solutions provided by the SZGA and
developed FORTRAN Link programs can be confirmed by monitoring the fitness. The
reduction in the objective functions is listed in the tables. The responses of the output links
that follow the simultaneously acting input links are verified by experiment and the
Recurdyn 3-D kinematic analysis package. The experimental and analysis results show
good correspondence.

The Successive Zooming Genetic Algorithm and Its Applications 15

The proposed optimal design process was successfully applied to a recently launched
luxury Sports Utility Vehicle model. Table 6 shows the original response and that of the
optimized model. The optimal model exhibits almost the exact left and right outputs, and
the difference between the left and right responses of 0.603 is thought to be a least value for
the given positions of the link centers and the double control system adopting a single input
motor.

Input Output(degree)
Model (degree) Max
Left Right Difference
Original 0-90 0-89.144 0-91.958 2.044
Optimal 0-90 0-89.999 0-89.999 0.603

Table 6. Comparison of original and optimal models

3.4 Proper band width for equality constraints

In a problem having an equality constraint, it is not so simple for GA to satisfy the constraint
while maintaining efficiency. Optimal solution lies on the line of equality constraint. It is
very important to gernerate individuals on or near the equality line. However, the desirable
narrow area including the equality line is very small compared with the whole area. The
number of individual generated in this narrow area is much less than those in the outer area
of the desirable narrow area including the equality line. Therefore, the convergence rate of
GA or SZGA is significantly slow for the problems with equality constraints. The bandwidth
method is proposed to overcome this kind of slow convergence rate.

For the minimization problems, we added a basic penalty function to meet the equality
constraint, which will be explained soon. For this problem with the basic constraint, we can
not expect a rapid convergence rate as mentioned above. Therefore, we added an additional
penalty function to the region, located out of the desirable narrow area including the
equality line, to make an infeasible area of a very highly increased objective function. The
bandwidth denotes the half width of the narrow region with the basic penalty only.

There are three methods to handle the equality constraints using GA. One is to give both
sides the penalty functions along the equality condition. The other is to give one side the
monotonic function and other side the even (jump) penalty function along the equality
constraint. However, the one side with the monotonic penalty should be feasible. And, the
final one is to apply one side with no penalty function and the other side with the even
(jump) penalty function along the equality constraint, and the one side of no penalty
function should be feasible.

The penalty methods provided in Fig. 6 only with original penalty, is the basic technique for
handling the equality constraint 5. With this kind of basic technique only, however, the
convergence rate would be too slow to reach the optimal point. Many generated individuals
are wasted because they mostly too far from the equality constraint line. Therefore we need
an additional penalty function to increase the effectiveness of GA. That is an additional

16 Bio-Inspired Computational Algorithms and Their Applications

penalty to the objective function if the condition is located in outer region of a certain
bandwidth centered with the equality constraint.

Additional

penally

Bandwidth

1 Additional

penalty

o
Additional

Bamdwidth Bandwidth penalty

':.:rlﬂ.l:':l1 & Original Original
ponalty penalty penalty
_— / Equality
L i
consteaind Objective congtratat Objective Objective constraint
- - Fanction fumction
anclion

() (b) ©)

Fig. 6. Three methods to handle the equality constraint in GA.

Using the type (c) equality constraint and additional bandwidth penalty, the design of a
ceramic jar was optimized for three values of zooming factors and various bandwidths of
equality constraint, as shown in Fig. 7 and Table 7. The result showed a proper range of
bandwidth for the equality constraint. In Table 7, the optimal solutions were found for the
jar, satisfying the equality constraint of 2 liter volume.

i) —a— v ol g n I e
o = oA g I _.,,' .+ \\1
A i T e o O S S
T S T S '
nzax | L i _
b e Y ot 2 I Ay
U] IR —i=ni F AT Eb E o . b 'r-']rn "
= L b ————t . e 1 LR
E 0 ' L YR E - ' Lo
F. Cerae o : Ay)
HEEL T o I | == Iy ¥ 3= ¥
- gy . g : &l Fuid | Tr)
g : e , Ha eleen 270 * vl FEn il
1 E LI I TR .
g] [L S -2
o T T T T T T T T --!3:. T T T LA - T T T T
LN I P R TR S P 11 | I TILOLEZImTE IR 0T o0Io0E oM AL M
Bar c-widih of ar ecJzl-y eanst-aint Bz 1daddil of an equality cor stz 41 Bz ekl of an equaliy sarstes +f
(Zooming factor 0.1) (Zooming factor 0.2) (Zooming factor 0.3)

Fig. 7. Best fitness for band-width of an equality constraint and numbers of generation.

Zooming Prop?r Weight Vo}ume Z 7
factors band-width (kg) (liter)
0.1 0.15~0.3 0.0802 2.000 0.4790 1.000
0.2 0.15~0.3 0.0802 2.000 0.4790 1.000
0.3 0.15~0.3 0.0802 2.000 0.4790 1.000

Table 7. Proper bandwidths and the optimal solutions for three zooming factors

This optimization problem does not converge below 0.15 of the band-width of an equality
constraint, because the objective function is rather complicated and the band-width is
relatively too narrow to give the most candidated optimal individual out of feasible region.

The Successive Zooming Genetic Algorithm and Its Applications 17

When the band-width is bigger than about 0.3, the best fitness dropped rapidly. In other
words, if we open the full range as the feasible solution range, the optimal ridge would be
too narrow to be chosen by GA. In conclusion, a too narrow bandwidth may lead to a
divergence and a too wide bandwidth may result in inefficiency.

4. Further studies and concluding remarks

The SZGA explained in the foregoing sections may be applied to more fields of interest,
such as, the optimal design of ceramic pieces considering important factors like beauty,
usage, stability, strength, lid, and exact volume. Prediction of a long -term performance of a
rubber seal installed in an automotive engine is another possible application.

The most dominant characteristics of SZGA are its accuracy up to the required significant
digits, and its rapid convergence rate even in the later stage. However, users have to
properly select the parameters, namely, the zooming factor, number of zooms, and number
of sub-domain population. A useful reference can be found in Table 1, Fig. 3, Fig. 4, and Fig.
5. The number of zooms can be determined by eq.(5) for a given upper limit of accuracy.
The number of sub-domain population has been recommended as a fixed number until
now, however, it may be varied as a function of the zooming step.

5. References

[1] D.M. Himmelblau, 1972, Applied Nonlinear Programming, McGraw-Hill.

[2] D.E. Goldberg, 1989, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley.

[3] K. Krishnakumar, 1989, “Micro-genetic algorithms for stationary and non-stationary
function optimization,” SPIEP, Intelligent Control and Adaptive Systems, Vol. 1196,
pp. 289~296.

[4] N.N. Schraudolph, R.K. Belew, 1992, "Dynamic parameter encoding for genetic
algorithms," Journal of Machine Learning, Vol. 9, pp. 9-21.

[5] D.L. Carroll, 1996, “Genetic algorithms and optimizing chemical oxygen-lodine lasers,”
Developments in Theoretical and Applied Mechanics, Vol. 18, pp. 411~424.

[6] Y.D. Kwon, S.B. Kwon, S.B. Jin and].Y. Kim, 2003, “Convergence enhanced genetic
algorithm with successive zooming method for solving continuous optimization
problems,” Computers and Structures, Vol. 81, Iss. 17, pp. 1715~1725.

[7]1 Y.D. Kwon, S.B. Jin,].Y. Kim, and L.H. Lee, 2004, “Local zooming genetic algorithm and
its application to radial gate support problems,” Structural Engineering and
Mechanics, An International Journal, Vol. 17, No. 5, pp. 611~626.

[8] Y.D. Kwon, HW. Kwon, J.Y. Kim, S.B. Jin, 2004, “Optimization and verification of
parameters used in successive zooming genetic algorithm,” Journal of Ocean
Engineering and Technology, Vol. 18, No. 5, pp. 29~35.

[9] Y.D. Kwon, HW. Kwon, S.W. Cho, and S.H. Kang, 2006, “Convergence rate of the
successive zooming genetic algorithm using optimal control parameters,” WSEAS
Transactions on Computers, Vol. 5, Iss. 6, pp. 1200~12007.

[10] Y.D. Kwon,].Y. Kim, Y.C. Jung, and 1.S. Han, 2007, “Estimation of rubber material
property by successive zooming genetic algorithm,” JSME, Journal of Solid
Mechanics and Materials Engineering, Vol. 1, Iss. 6, pp. 815-826.

18 Bio-Inspired Computational Algorithms and Their Applications

[11] Y.D. Kwon, HW. Kwon, W.]. Kim, and S.D. Yeo, 2008, “Structural damage detection in
continuum structures using successive zooming genetic algorithm,” Structural
Engineering and Mechanics, An International Journal, Vol. 30, No. 2, pp. 135~146.

[12] Y.D. Kwon, C.H. Sohn, S.B. Kwon, and J.G. Lim, 2009, “Optimal design of link systems
using successive zooming genetic algorithm,” SPIE, Progress in Biomedical Optics
and Imaging, Vol. 7493, No. 1~3, pp. 17-1~8.

[13] O. Baskan, S. Haldenbilen, Huseyin Ceylan, Halim Ceylan, 2009, “A new solution
algorithm for improving performance of ant colony optimization,” Applied
Mathematics and Computation, Vol. 211, Iss. 1, pp. 75~84.

[14]N. Tutkun, 2009, “Optimization of multimodal continuous functions using a new
crossover for the real-coded genetic algorithms,” Expert Systems with Appli-
cations, Vol. 3, Iss. 4, pp. 8172~8177.

[15] Y.D. Kwon, S.W. Han, and J.W. Do, 2010, “Convergence rate of the successive zooming
genetic algorithm for band-widths of equality constraint,” International Journal of
Modern Physics B, Vol. 24, No. 15&16, pp. 2731~2736.

[16] Z. Ye, Z. Lee, M. Xie, 2010, “Some improvement on adaptive genetic algorithms for
reliability-related applications,” Reliability Engineering and System Safety, Vol. 95,
Iss. 2, pp. 120~126.

[17] K. Wei, H. Tuo, Z. Jing, 2010, “Improving binary ant colony optimization by adaptive
pheromone and commutative solution update,” IEEE, 5th International Conference
on Bio Inspired Computing: Theory and Applications (BIC-TA), pp. 565~569.

[18]S. Babaie-Kafaki, R. Ghanbari, N. Mahdavi-Amiri, 2011, “Two effective hybrid
metaheuristic algorithms for minimization of multimodal functions,” Computer
Mathematics, Vol. 88, Iss. 11, pp. 2415~2428.

[191M.A. Ahandani, N.P. Shirjoposh, R. Banimahd, 2011, “Three modified version of
differential evolution for continuous optimization,” Soft Computing, Vol. 15, Iss. 4,
pp- 803~830.

2

The Network Operator Method for Search
of the Most Suitable Mathematical Equation

Askhat Diveev! and Elena Sofronova?

Unstitution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS,
2Peoples’ Friendship University of Russia

Russia

1. Introduction

For many applied and research problems it is necessary to find solution in the form of
mathematical equation. These problems are the selection of function at approximation of
experimental data, identification of control object model, control synthesis in the form of
state space coordinates function, the inverse problem of kinetics and mathematical physics,
etc. The main method to receive mathematical equations for solution of these problems
consists in analytical transformations of initial statement formulas of the problem. A few
problems have the exact analytical solution, therefore mathematicians use various
assumptions, decomposition, and special characteristics of solutions. Usually
mathematicians set the form of mathematical equation, and the optimal parameters are
found using numerical methods and PC. Such methods as the least-square method have
been applied to the problems of approximation for many years (Kahaner D. et al., 1989).

Recently the neural networks have been used to solve complex problems when the
mathematical equation cannot be found analytically. The structure of any neural network is
also given within the values of parameters or weight coefficients. In problems of function
approximation and the neural network training the form of mathematical equation is set by
the researcher, and the computer searches for optimum values of parameters in these
equations (Callan, 1999; Demuth et al., 2008).

In 1992 a new method of genetic programming was developed. It allows to solve the
problem of search of the most suitable mathematical equation. In genetic programming
mathematical equations are represented in the form of symbol strings. Each symbol string
corresponds to a computation graph in the form of a tree. The nodes of this graph contain
operations, and the leaves contain variables or parameters (Koza, 1992, 1994; Koza, Bennett
etal., 1999 & Koza, Keane et al., 2003).

Genetic programming solves the problems by applying genetic algorithm. To perform the
crossover it is necessary to find symbol substrings that correspond to brunches of trees. The
analysis of symbol strings increases the operating time of the algorithm. If the same
parameter or variable is included in the required mathematical equation several times, then
to solve the problem effectively the genetic programming needs to crossover the trees so
that the leaves contain no less than the required number of parameters or variables.

20 Bio-Inspired Computational Algorithms and Their Applications

Limitations of the genetic programming revealed at the solution of the problem of suitable
mathematical equation search, have led to creation of the network operator.

In this work we introduce a new data structure which we called a network operator.
Network operator is a directed graph that contains operations, arguments and all
information for calculations of mathematical equation.

Network operator method was used for the problems of control synthesis (Diveyev &
Sofronova, 2008; Diveev, 2009; Diveev & Sofronova, 2009a,b).

2. Program notations of mathematical equations

Mathematical equations consist of variables, parameters, unary and binary operations that
form four constructive sets.

Set of variables

X=(x,,...,xy), x,€R', i=1,N.)
Set of parameters

Q=(qy,..-,95), ;€ R", i=1,P.)
Unary operations set

Ol:(pl(z)=er2(z)/"-rpw(z))' ®)
Binary operations set

0, =(1(Z,2") s v (2,2))). 4)

Unary operations set must have an identity operation

pi(z)=z. ()
Binary operations must be commutative
12,2 =x("7),i=0,V -1, (6)
associative
1:((2,27),2")= 5, (7. (2", 2")), i=0,V -1,)
and have a unit element
Je. = yi(e,z)=z,i=0,V-1. (8)

A program notation of mathematical equation is a notation of equation with the help of
constructive sets (1) - (4).

The Network Operator Method for Search of the Most Suitable Mathematical Equation 21

3. Graphic notations of mathematical equations

To present mathematical equation as a graph we use a program notation. Let us enlarge the
program notation by additional unary identity operation p,(z)=z and binary operation
with a unit element y;,(e;,z)=z. These operations do not influence the result of calculation
but they set a definite order of operations in the notation, so that binary operations have
unary operations or unit elements as their arguments, and unary operations have only
binary operations, parameters or variables as their arguments.

A graphic notation of mathematical equation is a notation of binary operation that fulfills
the following conditions:

a. binary operation can have unary operations or unit element of this binary operation as
its arguments;
unary operation can have binary operation, parameter or variable as its argument;

c. binary operation cannot have unary operations with the same constants or variables as
its arguments.

Any program notation can be transformed into a graphic notation.

4. Network operator of mathematical expression

To construct a graph of the mathematical expression we use a graphic notation. The graphic
notation can be transformed into the graph if unary operations of mathematical expression
correspond to the edges of the graph, binary operations, parameters or variables correspond
to the nodes of the graph.

Suppose that in graphic notation we have a substring where two unary operations are
arguments to binary operation ...x, (p,(...),p,,(-..))... This substring is presented as a graph
on Fig. 1

m

Fig. 1. The graph for substring ..., (p,(...),p,, (-..))- ..

Suppose we have a substring where binary operation is an argument to unary operation
<.px(%;(---))--. - This substring is presented as a graph on Fig. 2.

k

@_.

Fig. 2. The graph for substring ...p, (x,(-..))..-

22 Bio-Inspired Computational Algorithms and Their Applications

Let us have a substring where parameter or variable is an argument to unary operation
...px(a)..., where a is an argument or parameter of mathematical equation, 1€ XU Q . The
graph for this substring is presented on Fig. 3.

O
Fig. 3. The graph for substring ...p,(a)..., ae XUQ

If graphic notation contains a substring where binary operation with a unit element is an
argument to unary operation ...p, (Xz (P, (),0)) .. We do not depict this unit elements and
the node has only one incoming edge as shown on Fig. 4.

m : k
Fig. 4. The graph for substring ...p, (Xz (P, (),0))

5. Properties of network operators
Network operator is a directed graph that has the following properties:

graph has no loops;

any nonsource node has at least one edge from the source node;

any non sink node has at least one edge to sink node;

every source node corresponds to the element from the set of variables X or the set of
parameters Q ;

an o

o

every node corresponds to binary operation from the set of binary operations O, ;
every edge corresponds to unary operation from the set of unary operations O, .

[mal

To calculate mathematical expression we have to follow certain rules:

a. unary operation is performed only for the edge that comes out from the node with no
incoming edges;
the edge is deleted from the graph once the unary operation is performed;

c. the binary operation in the node is performed right after the unary operation of the
incoming edge is performed;

d. the calculation is terminated when all edges are deleted from the graph.

To construct most of mathematical expressions we use the sets of unary and binary
operations that are given in Table 1 and Table 2.

Consider the construction of the network operator for the following mathematical equation

y=x, +sin(x;) +gq,x,e7% .

The Network Operator Method for Search of the Most Suitable Mathematical Equation

23

pi(z)=z2

p.s(z) =arctan(z)

g 1 sgn(z) 1

e, if|z>— & if |z|>—
pz(z): || \/g 914(2): g || %/g

72, otherwise 22, otherwise
p3(z):—z

Ve, if
plS(Z):{ g, if |7]<e

3/5 , otherwise

P4 (2) =sgn(z)y7]

z, if |7 <1
sgn(z), otherwise

plf,(Z)={

sgn(z)

, if |z <e
p5(Z)= 1
z

, otherwise

Pi7(2)=sgn(2)In(|2] +1)

(2)= e, ifz>-In(e)
Pe e, otherwise

P1g (Z) =
sgn(z)(e‘z‘ —1), otherwise

In|z|, otherwise

0, if |z|>—ln(£)
P (z)= s S .
gn(z)e™, otherwise

i 1
0, (z) = {ln(s), if -1I1|Z| > .

1, if z>¢

P (z)=10, if z<0
2 3
BLZ—ZLS, otherwise

€ I

1, if z>5
2

. €

P (z)=4-1, if z<-3

3z 47°)
— ———, otherwise
€

P (z)=sgn(z)

2 83
[0, if |2|>-In(e)
P (2)= {ez , otherwise

Pui (2) = cos(z)

_sgn(z)

i o> =
Pxn(z)= e

z—27°, otherwise

pr(z)=sin(2)

%, if z>-In(e)
Py (2)= +18

ﬁ' otherwise
+e

Table 1. Unary operations

24 Bio-Inspired Computational Algorithms and Their Applications

Operation Unit element
Xo(2,2)=2+2" 0
Xl (ZI, Z//) - Z’Z” 1
% (2,2") =max{z2"} 1

€
X3 (Z,2") = min{z’,z"} 1
€
X (2,2 =2 +2" =22 0
’ ” ’ ”n 0
1s(Z,2)=sgn (2 +2)(2) +(2)
%o (Z,2") =sgn(2'+)(Z]+[2))
27 (2,2") =sgn(2'+ 7|7}

Table 2. Binary operations

First we set parentheses to emphasize the arguments of functions. Then using Table 1 and
Table 2 we find appropriate operations and replace functions by operations

y=x, +sin(x,)+gx,e? = ((x1 +sin(x,))+qx,e) = % ((x1 +sin(x,)),q,x,e™)
=%o (Xo (wain(xl))/’hxle_xz) = Xo (Xo (x1’p12 (xl))/Xl (‘hxlfps (—x2)))
=Xo (Xo (X1/p12 (xl))/X1 (Xl (%/xl)rpe (p3 (xz)))) .

As aresult we obtain a program notation of mathematical equation

Y=%o (Xo (x1rplz (xl))1X1 (X1 (‘71/x1)/p(, (Pa (xz)))) .

We can see that this program notation does not meet the requirements to graphic notation.
These requirements are necessary for further construction of the graph. According to the
definition of the network operator binary operations correspond to the nodes of the graph,
unary operations correspond to the edges, thus binary and unary operations must be
arguments of each other in the graphic notation of mathematical equation.

When a binary operation has as its argument in program notation then we cannot construct
the graph, because there is no edge, in other words no unary operation, between two nodes.

To meet the requirements for graphic notation let us introduce additional unary identity
operations. For example in the given program notation we have a substring
Y=%o (Xo ()2 ()) :

Here binary operation has two binary operations as its arguments. It does not satisfy
condition «a» of graphic notation. If we use additional identity operation, then we have

The Network Operator Method for Search of the Most Suitable Mathematical Equation 25

Y=%o (pl (Xo ("'))’pl (Xl ())) :

Unary identity operation p, (z) does not change the value of argument and this operation is
necessary for the construction of the graph by graphic notation.

Since graphic notation should contain binary operations with unary operations as their
arguments then we additional unary identity operations. We get

Y=%o (pl (Xo (pl (%1),p1a (%,)))r P1 (Xl (p1 (Xl (p1 (ql)’pl (%,)))rpe (ps (x,))))) :

This notation is not a graphic one, because it does not satisfy condition «b» of graphic
notation. Here unary operation has unary operation as its argument

o Pe(P5 (%))

We use additional binary operation with a unit element as its second argument, for example
Xo(-..,0) . According to Table 2 binary operation y,(z’,z”) is addition. A unit element for
addition is 0 and it does not influence the result of calculation. Thus we get

<P (%0 (P5 (x,),0))...

We obtain the graphic notation of mathematical equation

Y=%o (pl (Xo(p1 (x1).P1a (xl)))' P1 (Xl(pl (X1(pl (1), (xl)))’pé (Xo(ps (xz),O))))) :

This notation does not satisfy condition «c» of graphic notation, because it contains a
substring where binary operation has two unary operations with the same variable as its
arguments

-+ Xo (pl(xl)fpu(xl))“'

We add a binary operation with a unit element and a unary identity operation to the
substring

o (Py (o (P2 (11),0)) P12 (21))

As aresult we get the following notation of mathematical equation

=10 (P (0 (P1 (20 (91 (40),0)) P (30))), P (31 (P (1 (91 (02), P2 (30)) P (0 (03 (12).0))))) -

This notation has all properties of graphic notation and we can construct the graph of
equation by this notation. To construct the graph we use the rules presented on Fig. 1 - 4.
The graph is shown on Fig. 5.

Fig. 5 shows the numeration of nodes on the top of each node in the graph. We see that the
numbers of the nodes where the edges come out from are less than the numbers of nodes

26 Bio-Inspired Computational Algorithms and Their Applications

where the edges come in. Such numeration is always possible for directed graphs without
loops.

3N 3 b6~ 6
GH—O—U
Fig. 5. Graph of mathematical equation

To calculate the mathematical equation which is presented as a graph we use additional
vector of nodes z for storage of intermediate results. Each element of vector z is associated
with the definite node in the graph. Initially elements of vector z, that are associated with
the source nodes have the values of variables and parameters. For example for the graph
presented at Fig. 5 we have

where 9 is the number of nodes in the graph. For the source nodes we set z, =x,, z,=¢,,
zy = x, . Values of other elements z, are equal to the unit elements for binary operations. As
a result we get an initial value of vector of nodes

z=[x, ¢, v, 010 1 0 0].
In the given example we use addition and multiplication. Unit element for addition is 0 and

for multiplication is 1.

According to the rules of calculation, we calculate unary operation that corresponds to the
edge that comes out from the node that has no incoming edges. For the edge (i,j) node i
has no incoming edges at the moment. Unary operation p, corresponds to the edge (i,j) .
Binary operation y, corresponds to the node j.Then we perform the following calculations

ZjZXI(Zj/pk(Zi))’ ©)
where z; in the right part of the equation is the value on the previous step.

After calculation of (9) we delete the edge (i,j) from the graph.

If we numerate the nodes so that the number of the node where the edge comes out from is
less than the number of the node that it comes in, then the calculation can be done just
following the numbers of the nodes.

The Network Operator Method for Search of the Most Suitable Mathematical Equation 27

For the given example we have the following steps:

- edge(14), z, = Xo(Pl(Zl) J)=x+0=x;

- edge (18), zg =%, (Pp(21), 8)—sm(x1)+0—sm(xl)
- edge(15), z;=¢ (pl(z) ,ZS) n1=x;

- edge(25), z; = 1(p1(1)/25) 41%X1 s

- edge (3,6), z, =, (p3 (xz)’ZG) X, +0= _xz ’

- edge (4,8), zg =%, (P (24),25) =X, +sin(x,)

- edge (5/7) =%X1 (pl (ZS)'Z7) UR x1= q41%1 7

- edge (6/7) = 1(96(26)/'27) e 2”71x1 ’

- edge (79), zo=xy(p:(2,),20) =€ 2, +0=€e72q,x, ;

- edge(89), z xo(pl(zg) o) =x, +sin(x,)+e g.x, .

When the calculations on the edge (8,9) are performed we obtain the result of initial
mathematical expression.

Nodes 8 and 9 in the graph can be united since binary operations are associative and
commutative. A reduced graph of mathematical equation is given on Fig. 6.

N 3 6~ © 7
H—O—0
Fig. 6. Reduced graph of mathematical equation

The results of calculation for graphs presented on Fig. 5 and Fig. 6 are the same.

The result of calculation will not change if we unite two nodes that are linked by the edge
that corresponds to unary identical operation and the edges that are linked to that nodes do
not come in or out from the same node.

To construct the graph of mathematical equation we need as many nodes as the sum of
parameters, variables and binary operations in its graphic notation. This number is enough
for construction but not minimal.

The result of calculation will not change if to the sink node of the graph we add an edge
with a unary identical operation and a node with binary operation and a unit element. An
enlarged graph for given example is shown on Fig. 7.

A directed graph constructed form the graphic notation of mathematical equation is a
network operator. One network operator can be associated with several mathematical

28 Bio-Inspired Computational Algorithms and Their Applications

equations. It depends on the numbers of sink nodes that are set by the researcher. In the
given example if we numerate the sink nodes with numbers 7, 8, 9 then we will get three
mathematical equations

Yo =2y =X, +sin(x;),
Yy =2 =X, +sin(x;) +e72q,x, .

This feature of the graphic notation allows using the network operator for presentation of
vector functions.

I~ 3 6~ 6
C—(O)—()

Fig. 7. Enlarged graph of mathematical equation

6. Network operator matrices

To present a network operator in the PC memory we use a network operator matrix (NOM).
NOM is based on the incident matrix of the graph A = [ai]} , 4, € {0,1} , i,j=1,L, where
L is the number of nodes in the graph.

If we replace diagonal elements of the incident matrix with numbers of binary operations
that correspond to appropriate nodes and nonzero nondiagonal elements with numbers of
unary operations, we shall get NOM W = [\ui].] ,i,j=1,L.

For the network operator shown on the Fig. 6 we have the following NOM

OO R R OOOOo

>

1]
coococoococoo
coocoocooo
coocoocooo
cCoocooc oo~
COoOOCO OO R -
coocoor oo
oOrRrRocOROOR

The Network Operator Method for Search of the Most Suitable Mathematical Equation 29

NOM for the graph on Fig. 6 is the following

0001100 12
0000100 0
0000030 0
0000000 1

¥=ooo00101 0
000000G6 0
0000001 1
0000000 O]

NOM W = |:lp 0 j] , 1,j=1,L is upper-triangular because of the numeration of nodes. NOM is
not enough for calculation of mathematical equation since it does not contain information
about parameters and variables. This information is kept in the initial values of vector of nodes

z=[z, ... z]. (10)

Then the calculation of mathematical equation can be done by

2 =%y, Py, (2)7), if 9,20, i=1,L=1, j=i+1L. (11)

To calculate the mathematical equation by its NOM we need to look through all rows
consequently, i=1,L—1. In each row i we consider the elements that follow the diagonal
element, j=i+1,L.If among them we find nonzero element then we perform calculation
according equation (11).

For the given NOM we get

v,,=1, v,,=0, Z4=Xo(p1(z1)rz4)=x1+0=x1;
v s=1, y;5=1, 25:7(1((z)
W5 =12, W =0, zg =y

s)=x, +sin(x,);
)) 7%, 1=q,x,;

) x
Yy s=1, Yy =0, z;= Xo(pl) Z,) e g x, +x +sin(x1).

7. Variations of network operators
Similar network operators are network operators that satisfy the following conditions:

a. have the same source nodes;
b. have the same constructive sets.

Alike network operators are similar network operators that have equal numbers of nodes.

30 Bio-Inspired Computational Algorithms and Their Applications

Network operators of alike structure are alike network operators that differ in unary and
binary operations.

Variation of network operator is the change of network operator that leads to a similar
network operator.

Simple variation of network operator is a variation that cannot be presented as a complex
of other variations.

Simple variations of network operator are given in Table 3.

Number of simple | Simple variation
variation

0 replacement of unary operation on the edge

1 replacement of binary operation in the node

2 addition of the edge with a unary operation

3 deletion of the edge if the node where this edge comes in has at least
one more incoming edge

4 Increase of the node number

5 Decrease of the node number

6 addition of the node with a binary operation and incoming edge
with unary operation

7 deletion of the sink node with incoming edge if this edge is single.

Table 3. Simple variations of network operator

Structural variation of network operator is a variation that changes the set of edges of
network operator.

Structural variations change the incident matrix of the graph. In the Table 3 structural
variations are 2 - 5. Variations 0, 1 do not change the incident matrix and lead to network
operators of alike structure.

A complete network operator is a network operator in which we cannot perform variation 2.

A complete network operator contains L nodes in which the number of source nodes is
N + P, maximum number of edges is equal to

|C|=(L—N—P)(§+N+P—1)_ 12)

If we apply variation 2, addition of an edge, to any network operator, then we can construct
a full network operator which is alike initial network operator.

If we apply variation 3, deletion of an edge, to the complete network operator, then we can
construct any alike network operator.

Any variation of network operator can be performed by a finite number of simple variations.

The Network Operator Method for Search of the Most Suitable Mathematical Equation 31

An eigen variation of network operator is a variation that does not change the number of
nodes in the network operator.

In the Table 3 eigen variations are 0 - 5.

Any eigen variation of the network operator can be performed by a finite number of simple
eigen variations.

To present any simple variation we use a variation vector

w= [wl W, W, Wy]T ’ (13)

where w, is the number of variation from Table 3, w,,w,,w, are elements that integer
values depend on the number of variation.

Values of elements of variation vector are given in Table 4. In case the values of elements are
not defined they can take any values. For example when w, =1 element w, can keep the
number of the node where this edge comes in w, = w, .

Variation of network operator is presented as
P=wo@ ,

where W is the NOM before variation is performed, W is the NOM after variation was
performed.

Number of | Number of the | Number of the | Number of | Number of
variation node where node where unary binary
w, the edge the edge operation operation
comes out comes in

0 w, W, w, -

1 - Wy - w,

2 w, W, w, -

3 w, (I - -

4 w, - - -

5 w, - - -

6 w, - w, w,

7 - W, - -

Table 4. Elements of variation vector

Consider examples of variations of network operator.

describes mathematical equation

3
11%

3f.2 2
NESE %

We have a network operator that

32 Bio-Inspired Computational Algorithms and Their Applications

Network operator matrix for the given equation is

0001000
000142 00
0000200

w=(0 00 1 0 0 1
0000 0150
00000 05
00000 0 1

Suppose we have a variation vector w=[246 2]T . Element w, =2 shows that we perform
addition of the edge. According to Table 3 a new edge should come out from the node 4,
come in the node 6 and have unary operation 2.

As a result we have NOM

[0 00 1 0 0 O]

00014 2 00

000 0 2 00

P-wo®W=000 1 0 2 1

000 0 0150

000 0 O O 5
000 0 0 0 1]

NOM W corresponds to the following mathematical equation

3
_ 1%

Ixs +x; +(q1xf)2 .

Suppose variation vectors w'=[04711] and w?=[0671] are given. The first
component of these vectors w, =0 shows the replacement of unary operation on the edge.
The second and the third components show the edge between the nodes. The first vector
points to the edge (4,7), the second - to the edge (6,7). The forth element contains the
number of new unary operation. According to Table 1 this operation for vector w' is
P (z)=cos(z), for vector w” is p,(z)=z . As a result we obtain NOM

000 1 00 0
000114 2 0 0
000 0 2 0 0

Y-wlow!'o®=|0 00 1 0 0 11
000 0 015 0
000 000 1
000 00 0 1

NOM W corresponds to

The Network Operator Method for Search of the Most Suitable Mathematical Equation 33

y= Cos(qle)?le +x5 .

Consider the examples of improper variations that change the number of nodes in the
network operator. We have a variation vector w=[647 O]T . Number of variation w, =6
shows that we add the node with binary operation w, =0 and an outcoming edge with
unary operation w, =7 . After variation we obtain the NOM

000100 00
00014 2 0 00
000020 00

- 00010017

T=we®=10 000 015 0 0
00000050
000000 0O
000000 0 O]

This NOM corresponds to the graph with two sink nodes and it presents at least two
mathematical equations

3
__1N 3
n= e =]
x| +x5
Let us given variation vectors w'=[3670]" and w?=[5700] . In the first vector w} =3,
that is why we delete the edge between nodes w) =6 and w;=7. In the second vector

w; =5, and we delete the node w; =7 with its incoming edge. As a result we have

000 1 0 0]
00014 2 0
-, .. 1000 0 20
W=wiew W=y 501 0 0
000 0 0 15
0000 0 0]

This NOM corresponds to two mathematical equations

_ 3 _3/..2 2
Yi=01%1, Yo =X + X5 .

Since we have changed the graph we obtain two mathematical equations. Network operator
is presented on Fig. 8.

Performance of variations is not always possible. If variation cannot be done then it is
omitted. For example we have a variation vector w=[04 6 Z]T . The first component shows
variation 0, replacement of unary operation. However there is no edge between nodes
w, =4 and w, =6, that is why this variation is not performed and NOM is not changed

PY=wol@,

34 Bio-Inspired Computational Algorithms and Their Applications

For proper variations variation w, =3 is not performed if one of the following conditions is
fulfilled:

- edge (w,,w,) is absent;
- there are no other incoming edges to the node where the edge (w,,w,) comes in;
- there are no other outcoming edges from the node where the edge (w,,w,) comes out.

A structural distance between two similar network operators is a minimal number of single
variations that should be performed to obtain one network operator from the other. A
structural distance between network operator W' and network operator W* is equal to a

structural distance between network operators W* and W'.

Fig. 8. Network operator after variations

8. Search of optimal mathematic equation

Let us formulate the problem of search of optimal mathematical equation g(x,q). It is
necessary to find mathematical equation g(x,q), that provides minimums of object
functions with restrictions

min f,(x,g(x,q)), i=0,D, (14)

fi(x.g(xq))<0, j=D+1K, (15)
where x is a vector of variables, q is a vector of parameters.

The solution to the problem (14), (15) is a mathematical equation §(x,q). Mathematical
equation g(x,q) is a function

g(x.q)=[g (x,q)-..8n(xq)] - (16)

If D=1, then the solution of the problem is a Pareto set

where Vg*(x,q)¢ T 38/ (x,§)e 11, £(§'(x,4))<f’(g" (x,q)), 0<j<D,
fO(g(q))=[fo(g (x,q))-fo(g(xq)] , £ (8’ (xq))<£ (8" (x.q)), if
q))<f(g"(x.q)), i=0,D,and (s’ (x,q))< fi(g" (x.9))-

The Network Operator Method for Search of the Most Suitable Mathematical Equation 35

To solve the problem (14), (15) we need to define a finite set of network operators, and in
this set find the best solution accoding to (14).

In the set of network operators we choose a basic network operator. Basic network operator
corresponds to the basic NOM W' and the basic mathematical equation g’ (x,qo) , where
q’= [q? . qﬂ is a vector of parameters.

Let us introduce a finite ordered set of variation vectors
W=(w1,...,w’), (17)

where [is a cardinal number of W, w' = [w; w;] is a variation vector, i =1, .

To construct the set of network operators we use a basic matrix ¥ and all possible sets W
of variation vectors.

9. Genetic algorithm for method of variations of basic solution

Consider genetic algorithm that searches both structure and parameters of mathematical
equation.

Initially we set the basic solution

w=[y)], i,j=1L. (18)

We generate the ordered sets of variation vectors

where H is a number of possible solutions in the population.

We generate bit strings for parameters

$'=[- shg | - i=TH, 1)

where P is the number of parameters, ¢ is the number of bits for the integer part of the
value, and d is the number of bits for the fractional part.

i

For each chromosome(Wi,s), 1<i<H, we define the values of object functions. We
construct NOM using W' =(w'",...,w"') and ®°

Wi=w'lo owloWw’, (22)
. . . T
We present parametrical part of the chromosomes’ =|s;...sp, d);|) , 1<i<H, as a vector of
parameters. We present a bit string s’ from the Gray code to the binary code

b =[b} by | (23)

36 Bio-Inspired Computational Algorithms and Their Applications

i

] {S;, if (]—1) mod (C+d)=0’j:m. (24)

s} @ b;_l, otherwise

From the binary code we obtain the vector of parameters

a=[q..0], (25)

c+d

qllc = ;257]‘ b;+(k—1)(c+d) 4 k= 1’P . (26)

To estimate each possible solution W' and q' we use parameter which is called a distance
to a Pareto set.

A distance to a Pareto set is a number of possible solutions that are better in terms of Pareto
than the current solution.

For each solution (Wj ,s!), 1<j<H we find mathematical equation gj(x,qj) and
calculate the values of object functions (14)

. . AT
f=[f..f], 27)
In the set we find the number of possible solutions that are better than the solution (W/ ,sf)

H

A =D (F), (28)
i=1
where
N1 fr <
A)= . 29
Z() {O, otherwise (29)

To construct new solutions we perform genetic operations of selection, crossover and
mutation.

We randomly choose two solutions (Wil,sil), (Wiz,siz) and perform a crossover with
probability

T+yA;, 1+vyA;
p. =maxy——-,——= , (30)
1+A, 1+A,

where vy is a given crossover parameter, 0 <y<1.

After crossover is performed in two points k,, k, we obtain four new solutions
(WH+‘1,SH+])’ (WH+2,SH+2), (WH+ZISH+3)’ (WH+4’SH+4)

WH+1 — Wil , (31)

The Network Operator Method for Search of the Most Suitable Mathematical Equation 37

T
He _[iy it i iy
s —[51 "'skpslcp+1"'SP(c+d):| ’ (32)
H+2 i
W + :WIZ, (33)
T
s =52 525l .80 (34)
T 71 Tk, Pkttt OP(etd) |
H+3 i1 i ke=1 o iy ke in,1
W * Z(W,] ,...,WZ1) ,WZZ /---/"Vl2)/ (35)
B B (36)
T 7L Tk Pkt PP(ewd) |7
He+4 i1 i k=1 ooin ks il
W = (wi, L weh T wik L wi) (37)
B B (38)
T 5k, Sk, 41 Speray |

For each new solution (WH” ,sH""), i=171, we perform a mutation with probability
P, €[0,1] . We find the points of mutation m_, m, for both parts of new solutions. In the
new Chromosome(WH“,sH”), 1<i<4, we randomly generate a variation vector w, "

with structural and parametric parts. For each new solutions we calculate the functions (14)

fH+i=[0H+i.“ l;—l+i:|T, i=1,4. (39)

For a new solution j we find the distance to Pareto set A,,; according to (28). Then we
find the solution with a maximum distance to Pareto set

A = max{Ai,i =1,H!, (40)

i

where i, is a number of solution with maximum distance to Pareto set.

We compare new solution to the solution that has maximum distance to Pareto set
Ay <A, - (41)

If (41) is fulfilled then we replace the solution with a maximum distance by the first new
solution W+ =W | g =g+ =% and recalculate the distances for all solutions in
the set.

These steps are performed for each new possible solution (W"*/,s"*/), j=1,4.

The steps are repeated starting from the selection of possible solutions. After several given
E iterations, where E is called epoch, we change basic solution Pl

As a new basic solution we can take the solution that has minimum of function

f- = min{ i(};)z } , (42)

-0

38 Bio-Inspired Computational Algorithms and Their Applications

Zi fji _fji

~. ~. ~. T
where i is the number of new basic solution, f =[f(§f£’,J , i=1,H, fl= ,

fi=f;

-

j=0,_D, f]-+=max{]-i,i=1,_H} , f]f:min{ ji,i=L_H} , j=0,D.

For the more rapid search we use a subset of elite solutions (Wi“,sifz , 1<i,<H . In this
subset we calculate the values of functional after each variation f* (‘P’?’ st) i

et =weko ow oW 1<k<d. (43)

We find variation of the solution that leads to minimum distance to Pareto set A; (f Z'L”k) .

o Jeminla e =i @

where k_ is the number of desired variation. Other variations for possible solution i, are
replaced by zeros. The calculation is terminated after given number of loops.

Consider an example. It is necessary to find inverse function for mathematical equation

x=cos(y2)+3/g.

The solution is presented in the form y = g(x,q), where q is a vector of parameters.

After substitution of found mathematical equation g(x,q) in initial function we should
obtain the identity

x=cos(g” (x,9))+ 3 (x,q) -

Let us set a finite number of points
T= {xj 1= 1,_5}

and define two object functions

R e

]

x! —cos(gz(xj,q))—?/g(xj,q)‘:] :1,5} — min .

Note that for exact solution we have f, =0 and f,=0.

f= m]ax{

Let us choose the following basic solution

Yy=q:x+4q,,
where ¢, =1, q,=1.

Network operator for basic solution is presented on Fig. 9.

The Network Operator Method for Search of the Most Suitable Mathematical Equation 39

ok
ol

O

To construct a basic network operator we need 5 nodes, but if we want to enlarge the search
space we add 3 nodes with addition operations and its unit elements. We get the network
operator presented on Fig. 10.

Fig. 9. Example of basic network operator

2 3

q 1 q? 1

-~ 1 4~ 1
e 4N
(—0)

Fig. 10. An expanded basic network operator

7 8

1@1@

S
G

NOM for graph shown on Fig. 10 is

€

I
O O O O O O oo
O O O O O O oo
O O O O O O oo
OO OO O
O OO Ok OO
O OO R OO oo
OO R OO0 O oo
O R OO0 O O oo

A genetic algorithm had the following values of parameters: number of chromosomes in
initial population H =1024 , number of crossing couples in one generation 256, number of
generations 128, number vectors of variations in one chromosome 8, number of generations
between the change of basic solutions 22, number of elite chromosomes 8, probability of
mutation p,, =0.8, parameter for crossing y=0.4 , number of parameters 2, number of bits
for integer part ¢ =2, number of bits for fractional part d =6, number of points S=11. We
obtained a Pareto set which is represented on Fig 11 and in the Table 5.

For example we take the solution no 310.
£1(87°(x,9))=0.32447275, £, (8™ (x,q))=0.121647 .

For this solution we have obtained the following values of parameters g, =3.14063,
g, =0.84375 .

The solution 310 is the network operator

40 Bio-Inspired Computational Algorithms and Their Applications

0001 0 0 0 0]
0001 0 0 0 0
0000 1 0 0 0
o (0000 1 12 0 0 0
0000 0 12 15 0
0000 0O 0 1 15
0000 0 0 1 1
0000 0 0 0 1

or the function

¢ (x,q)= sin(sin(xcos(ql))+q2){/(sin(xcos(ql))+q2)2)
f2 [5] i i T ; ; .
o127fm L
e
R
: U - : : :
0125} g
T Reagy,
D s o S s S
S
0422l
0,312 0,314 0,316 0,318 0,32 0,322 0,324 /i
Fig. 11. A Pareto set

If we substitute our solution in initial mathematical expression then we have to obtain

identity,
7=cos((5™ (v.a))') + (™ (x.a)

The graphs of the functions ¥ and identity function are represented on the Fig 12

.X,E 1

Fig 12. The graph of the function for the solution no 310

The Network Operator Method for Search of the Most Suitable Mathematical Equation

41

No No of solution fi fa
1 27 0.31208313 0.12743371
2 469 0.3124092 0.12701286
3 36 0.31248842 0.12695655
4 366 0.31317121 0.12657987
5 492 0.3132807 0.12652959
6 122 0.31423625 0.12614932
7 412 0.31526313 0.12581255
8 173 0.31617553 0.12555099
9 868 0.31630362 0.12551643
10 472 0.31719342 0.12528834
11 494 0.31731617 0.12525837
12 18 0.31815508 0.12506176
13 106 0.31826894 0.1250361
14 624 0.31903468 0.12486921
15 54 0.31981169 0.12470895
16 180 0.31989995 0.12469127
17 132 0.32046985 0.12457951
18 560 0.32054244 0.12456557
19 539 0.32099647 0.12447971
20 205 0.32105204 0.12446936
21 288 0.321382 0.12440861
22 141 0.32141958 0.12440176
23 696 0.32161979 0.12436553
24 658 0.32163874 0.12436213
25 621 0.32170585 0.12435009
26 310 0.32447275 0.121647

Table 5.

10. Conclusion

In this work the new approach to the problem of automatic search of mathematical
equations was considered. The researcher defines the sets of operations, variables and
parameters. The computer program generates a number of mathematical equations that
satisfy given restrictions. Then the optimization algorithm finds the structure of appropriate
mathematical expression and its parameters. The approach is based on the new data
structure the network operator.

If we replace the set of unary and binary operations in the network operator by the set of
logic operations, then we can perform the search of the most suitable logic function
(Alnovani et al. 2011).

11. Limitations & development

Presentation of the network operator as a matrix is limited by its dimension.

42 Bio-Inspired Computational Algorithms and Their Applications

In the problems where mathematical equations have many variables and parameters, it is
necessary to use big network operator matrices with many zero elements.

To exclude this limitation it is possible to divide one network operator with a considerable
number of nodes into some small network operators. We receive the multilayer network
operator and some matrices of smaller dimensions. Each layer of the network operator
describes a part of mathematical equation.

Further development of the network operator is a creation of a special data structure for
presentation of the network operator in memory of the computer. Such structure can be
multilayered and provide effective parallel calculation.

12. References

Alnovani G.H.A,, Diveev A.IL, Pupkov K.A., Sofronova E.A. (2011) Control Synthesis for
Traffic Simulation in the Urban Road Network, Preprints of the 18-th IFAC World
Congress. Milan (Italy) August 28 - September 2. pp. 2196-2201.

Callan R. (1999) The essence of neural networks. The Prentice Hall Europe, 1999, ISBN 0-13-
908732-X, 978-013-9087-32-5. 232 p.

Demuth, H.; Beale, M.; Hagan, M. (2008) Neural Network Toolbox™ User’s Guide. The
MathWorks, Inc. ISBN 0-9717321-0-8. 907 p.

Diveev A.lL (2009) A multiobjective synthesis of optimal control system by the network
operator method. Proceedings of international conference «Optimization and
applications» (OPTIMA) Petrovac, Montenegro, September 21-25, pp. 21-22.

Diveev A.lL, Sofronova E.A. (2009) Numerical method of network operator for multi-
objective synthesis of optimal control system, Proceedings of Seventh International
Conference on Control and Automation (ICCA’09) Christchurch, New Zealand,
December 9-11. pp. 701-708. ISBN 978-1-4244-4707-7.

Diveev AL, Sofronova E.A. (2009) The Synthesis of Optimal Control System by the Network
Operator Method, Proceedings of IFAC Workshop on Control Applications of
Optimization CAO’09, 6 - 8 May, University of Jyvéskyld, Agora, Finland.

Diveyev A.L, Sofronova E.A. (2008) Application of network operator method for synthesis
of optimal structure and parameters of automatic control system, Proceedings of 17-
th IFAC World Congress, Seoul, 05. - 12. July . pp. 6106 - 6113.

Kahaner, D.; Moler, C.; Nash, S. (1989) Numerical methods and software Prentice Hall
Incorporation ISBN 0-13-6272-58-4. 504p.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press. ISBN 0-262-11170-5. 840 p.

Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press.
ISBN 0-262-11189-6. 768 p.

Koza, J.R,; Bennett, F.H.; Andre, D. & Keane, M.A. (1999). Genetic Programming III: Darwinian
Invention and Problem Solving, Morgan Kaufmann. ISBN 1-55860-543-6. 1154 p.

Koza, J.R.,; Keane, M.A,; Streeter, M.].; Mydlowec, W.; Yu,]J.; Lanza, G. (2003). Genetic
Programming 1V: Routine Human-Competitive Machine Intelligence, Springer. ISBN 1-
4020-7446-8. 590 p.

3

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism
and Parameters Relaxation

Esther Lugo-Gonzélez, Emmanuel A. Merchan-Cruz,

Luis H. Herndndez-G6émez, Rodolfo Ponce-Reynoso,

Christopher R. Torres-San Miguel and Javier Ramirez-Gordillo
Instituto Politécnico Nacional Escuela Superior de Ingenieria Mecanica y Eléctrica
Meéxico

1. Introduction

Genetic Algorithms (GA) are powerful tools to solve large scale design optimization
problems. The research interests in GA lie in both its theory and application. On one hand,
various modifications have been made to allow them to solve problems faster, more
accurately and more reliably.

Genetic Algorithms are a search paradigm that applies principles of evolutionary biology
(crossover, mutation, natural selection) in order to deal with intractable search spaces. The
power and success of GA are mostly achieved by the diversity with the individuals of a
population which evolve, in parallel, following the principle of the survival of the fittest. In
general, the genetic algorithms resolve combinatorial optimization problems that in
(Goldberg, 1989) are mentioned, this implies a large number of responses associated with an
exponential growth in solutions potentially feasible according to the magnitude of the
problem. In a standard GA the diversity of the individuals is obtained and maintained using
the genetic operators crossover and mutation which allow the GA to find feasible solutions
and avoid premature convergence to a local maximum (Holland, 1975).

The performance of a genetic algorithm, like any global optimization algorithm, depends on
the mechanism for balancing the two conflicting objectives, which are exploiting the best
solutions found so far and at the same time exploring the search space for promising
solutions. The power of genetic algorithms comes from their ability to combine both
exploration and exploitation in an optimal way (Holland, 1975). However, although this
optimal utilization may be theoretically true for a genetic algorithm, there are problems in
practice. These arise because of Holland assumed that the population size is infinite, that the
fitness function accurately reflects the suitability of a solution, and that the interactions
between genes are very small (Beasley et al., 1993).

The evolutionary algorithm proposed in this paper is composed by a classic genetic
algorithms along with the forced inheritance mechanism proposed by (Merchan-Cruz, 2005,
Merchan-Cruz et al., 2008, Merchan-Cruz et al., 2007) and the regeneration mechanisms by

44 Bio-Inspired Computational Algorithms and Their Applications

(Ramirez-Gordillo, 2010, Lugo Gonzélez, 2010), for optimizing the trajectory generation in
closed chain mechanisms and planning the effects that it has on the mechanism by relaxing
some parameters. The objective is to show the behavior of relaxing the parameters of the
GA'’s, observing what advantages and disadvantages appear when varying some parameter
exceeding the recommended values established in the literature.

2. Genetic Algorithm description

Once the problem encoding and the fitness functions have been chosen, the evolution
process begin. To evolve new solutions, an initial population of encoded solutions is created
randomly or using some problem-specific knowledge. This population is subjected to
genetic operators to create new promising solutions.

A typical genetic algorithm starts with a randomly generated population composed by
genes, locus, allele, chromosome, genotype, variables and phenotype (Holland, 1975,
Goldberg, 1989, Michalewicz, 1999, Coello-Coello, 2007), figure 1.

Gene Gene
| L | |
I 1 T T 1
|111ll101[]lﬂlﬂlﬂﬂﬂﬂﬂﬁﬂlﬂlﬂlﬁlﬂlﬂl I
\]
Chromosome Allele

Fig. 1. Chromosome binary representation.

Individuals are probabilistically selected by evaluating the objective function. This gene has
converged when at least 95% of individuals in the population share the same value of that
genes. The population converges when all the genes have converged.

Different operators exist in GA’s, being the most popular (1) selection, (2) crossover, and (3)
mutation, The steps to make a genetic algorithm, as defined in (Goldberg, 1989), are shown
in the diagram of figure 2.

Initial Population is created randomly and it is encoded within the chromosome of an array
with variable length. The coding can be done in a binary representation (Goldberg, 1989),
based on the domain of each variable (figure 3).

In the decodification is necessary to have a representation of the genotype to assign the
parameters within a chain of symbols known as genes. The evaluation uses the fitness
function that reflect the value of the individual in terms of the real value of the variable in
the problem’s domain, but in many optimization combinatorial cases, where a great amount
of restrictions exists; there is a probability in which part of the points of the search space
represents no valid individuals. For example, the equation for the synthesis of planar
mechanisms are:

F=(Cl, ()~ Ciy (0)) +(Cly (0) - Ci, (0) M)

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 45

Where C! is a set of specific points indicated by the designer and C! are the points
generated by the coupler of the mechanism, and v = 1y, 5, 13, 14, ¥er, Ty, O, X0, Yo, the angles
6,,0;,...6, are values for the variable 6, i is the rest of the quotient. The genetic algorithm
maximizes solely, but the minimization can be made easily using the reciprocal of the
function to avoid singularity problems (2):

(®)

tnessoptimum =
f P fitness

In order to improve the results, approaches such as elitism, regeneration stages and the
forced inheritance mechanism can be inserted in the process of the algorithms:

Initial
Co ration

Generated
Population
™1

-

Evaluation

> | |

Elitism [Regeneration

J

Roulette selection

-~

Crossover
—;
Mutation
—l

End

Forced Inheritance Mechanism

Fig. 2. Flowchart of genetic algorithms.

46 Bio-Inspired Computational Algorithms and Their Applications

Domain=[-60 60 -6060060 0360]

[XOmin XOmax YOmin YOmax emimemax]

Fig. 3. Structure Chromosome.

Elitism: In this case the best individual of the population at a certain time is selected like
father, this reserve two slots in the next generation for the highest scoring chromosome of
the current generation, without allowing that chromosome to be crossed over in the next
generation. One of those slots, the elite chromosome will also not be subject to mutation in
the next generation.

Regeneration Mechanism: The investigations on some alive organisms that use strategies for
their renovation in physiological conditions or before a damage, demonstrate the possibility
of incorporating cells that appear and which are specialized in providing reserve cells of an
adult organism, thanks to a particular hereditary mechanism and, under this condition, the
algorithm can be considered like an evolutionary process within the population. Therefore,
a small percentage of the population can be renewed, which allows increasing the formation
of construction blocks with better possibilities of finding an optimal value, but as inconvenient
the problem of premature convergence of an evolutionary algorithm explained by (Hidalgo
and Lanchares, 2000) and (Wen-Jyi et al., 2003) is presented. Nevertheless, the biological
evolution process and its mimetization, can validate the use of a regeneration factor and its
fundamental preservation in the genetic operators of selection, crosses and mutation.

Forced Inheritance Mechanism: Proposed by (Merchan-Cruz, 2005), is a complementary part of
the regeneration mechanism as a strategy to introduce specialized chromosomes on the
basis of the elitism during the crossing process and mutation. Unlike elitism, where the
aptest individuals of a population pass to the following generation without no alteration,
the FIM is introduced in the process of regeneration, selection, crossover and mutation,
guaranteeing that the aptest individual of the previous generation undergoes a minimal
change increasing its aptitude value of consistent method. This mechanism is very useful
when the number of variables to solve in the problem is considerably large.

In the same way that the best obtained chromosome is carried among generations in a
simple GA, the best set of chromosomes is also carried to the GA search for the next
trajectory parameters. By introducing the best set of chromosomes from the previous
trajectory segment of the initial population of the current GA search, the required number of
generations to produce a new trajectory segment is reduced, provided that the trajectory is
stable in that particular instant, since the optimum or the near optimum solution is already
coded into the initial population. If the mechanism has to change its trajectory due to
kinematic constrains or any other circumstance, the carried set of chromosomes does not
affect the search for a new optimum set since this one is evaluated and ranked accordingly
to its corresponding fitness. Figure 4 illustrates this mechanism called Forced Inheritance
Mechanism, FIM, (Merchan-Cruz, 2005).

The necessary operations for regeneration and the forced inheritance are:

1. Percentage of the population to regenerate.
2. Chose again the number of individuals, the length of the chromosome and therefore the
size of the population.

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 47

3. Regeneration takes the value from the individuals by the percentage to be regenerated.

4. This population is converted to binary representation.

5. The position that will occupy the regenerated ones in the original population is
determined without altering the number of individuals.

6. Reinsert the regenerated population into a sector of the original population.

7. The best individual in the regenerated population introduces itself, looking forward not
to alter the number of individuals.

Following the development of the genetic algorithm, taking the best individuals from the
population will pay the selection of those who have been outfitted as parents of the new
generations.

Insert a copy onto next
Initial population

Trajectory update Best [Abn

Mechanisms information
trajectory information

[am)1
[ABj2
[AB]3
[ABJ4
[8015
[ABIE

Fig. 4. Forced Inheritance Mechanism (Merchan-Cruz, 2005).

For the Parent Selection exists several techniques, but the most used is the proportional
selection proposed by (Goldberg, 1989) in this each individual have a probability of being
selected like parents, that is proportional to the value estimated by means of the objective
function.

Crossover is based on taking two individuals correctly adapted to obtain descendants that
share genes of both. There are several types of crossover mechanisms that are used
depending on the scheme that is analyzed. According to (Kuri-Morales and Galaviz-Casas,
2002) the most popular are: single point crossover, two points and uniform crossover.

Mutation is an operator that is applied with probability pm and has the effect to invert a
single bit using a probability of mutation of bit [-1, being I the length of the chain of the
chromosome.

While crossover needs large populations to effectively combine the necessary information,
mutation works best when applied to small populations during a large number of
generations. Mutation is usually a secondary search operator which performs a random
search locally around a solution and therefore has received far less attention. However, in
evolutionary strategies where crossover is the primary search operator, significant attention
has been paid to the development of mutation operators. Several mutation operators,
including adaptive techniques, have been proposed by (Lima, 2005). Clearly, mutation
cannot perform this role as well as crossover.

48 Bio-Inspired Computational Algorithms and Their Applications

By other hand Crossover Probability indicates how often will be crossover performed. If there
is no crossover, offspring is an exact copy of parents. If there is a crossover, offspring is
made from parts of parent’s chromosome. If crossover probability is 100%, then all offspring
is made by crossover. If it is 0%, a whole new generation is made from exact copies of
chromosomes from old population (but this does not mean that the new generation is the
same). Crossover is made expecting that new chromosomes will have good parts of old
chromosomes and perhaps this will be better. However it is good to allow some part of the
population survive to next generation.

Mutation probability says how often will be parts of chromosome mutated. If there is no
mutation, the offspring is taken after crossover (or copy) without any change. If mutation is
performed, part of a chromosome is changed. If mutation probability is 100%, whole
chromosome is changed, if it is 0%, nothing is changed. Mutation is made to prevent falling
GA into local extreme, but it should not occur very often, because then GA will in fact
change to random search.

Each operator allows that the evolutionary process progress toward promising regions in
the area of search and can carry on diversity within the population and inhibit the
premature convergence to an optimal local by means of new individuals sampled randomly.
On the other hand is required to manipulate the information through a metric that
quantifies the evolutionary process, this can be done through the design of a function that
gets the more suitable individuals. This metric is known as a function of ability and it
increases the ability of this individual to operate with a good performance and to get an
unbeatable quality.

Problems typically contain restrictions, such as the non-linearity and inequality, which
makes necessary to incorporate information on the violation of restrictions on some of the
functions and the most known are Criminalization role, this restricts the fitness role by
extending its domain by a factor of criminalization to any restriction raped. It can penalize
for not being feasible or to make feasible an individual. The penalty function design must
take into account how distant is an individual from the feasible area, the cost of fulfillment
and the cost of expected compliance. Some of these penalties are:

e Death Penalty. It assigns a suitability of zero to the individual not feasible, avoiding
calculate again restrictions or objective function. However, the algorithm may be
truncated if the initial population does not contain any feasible individual.

e Static Criminalization. It defines levels of violation and chooses a coefficient of
violation to each one of them.

¢ Dynamic Criminalization. The factors of criminalization change with time; they are
susceptible to the values of the parameters and converge prematurely when these are
not selected properly.

e Adaptive Criminalization: Adjusting the penalty on the basis of a feedback process.

The adaptive criminalization is used in this work.

2.1 Efficiency enhancement of GA

Goldberg categorized the efficiency enhancement techniques of GA into four broad classes:
parallelization, hybridization, time continuation, and evaluation relaxation (Goldberg, 2002):

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 49

1. Parallelization: GAs are executed on several processors and the computational load is
distributed among these Processors (Cantu-Paz, 2000). This leads to significant speed-
up when solving large scale problems. Parallelization can be achieved through different
ways. A simple way is to have part of the GA operations such as evaluation running
simultaneously on multiple processors (Bethke, 1976). Another way is to create several
subpopulations and allow them evolve separately at the same time, while spreading
good solutions across the subpopulations (Grosso, 1985).

2. Hybridization: Local search methods or domain-specific knowledge is coupled with
GA. This are powerful in global search. However, they are not as efficient as local
search methods in reaching the optimum on micro-scale. Therefore, hybridization
which incorporates local search methods into GA will facilitate local convergence. A
common form of hybridization is to apply a local search operator to each member of the
population after each generation in GA (Sinha, 2002).

3. Time Continuity: The capabilities of both mutation and recombination are utilized to
obtain a solution of as high quality as possible with a given limited computational
resource (Srivastava, 2002). Time continuation exploits the tradeoff between the search
for solutions with a large population and a single convergence epoch or using a small
population with multiple convergence epochs.

4. Relaxation Evaluation: An accurate, but computationally expensive fitness evaluation
is replaced with a less accurate, but computationally inexpensive fitness estimate. The
low-cost, less-accurate fitness estimate can either be 1) exogenous, as in the case of
surrogate (or approximate) fitness functions, where external means that it can be used
to develop the fitness estimate; or 2) endogenous, as in the case of fitness inheritance
(Smith, 1995) where the fitness estimate is computed internally and is based on parental
fitness.

3. Adjustment in the performance of the parameters of the GA

Some authors such as (Holland, 1975), have looked into the effect of varying GA’s
parameters which have to be taken into account to exploit the full potential in particular
applications. Accordingly to this, for a search algorithm to perform well online, one has to
decide quickly which are the most promising search regions in order to concentrate the
search efforts there, the off-line performance does not penalize the search algorithm to
explore poor regions of the search space, provided that this will help to achieve the best
possible solutions (in terms of fitness), abig generation interval and the use of an elitist
strategy also improve the performance of the GA’s, in which the usual recommended
mutation rates between 0.001 and 0.01 for the binary representation (Goldberg, 1989), or in
general, much smaller value of the crossover probability (Cabrera et al., 2002).

The main parameters that can be adjusted, by the degree of importance within the GA are:

e Population size
e Percentage of crosses
e Percentage of mutation

The design of the algorithm is limited to choose and determine the degree of control or the
strategies of parameters such as the ranges and the likelihood of a mutation, crossing and
extent of the population. (Sanchéz-Marin, 2000) supported their research in the

50 Bio-Inspired Computational Algorithms and Their Applications

determination of control parameters, experimenting with different values and selecting
those that gave better results. (De Jong, 1975) recommended, after experimenting, values for
the probability of the interbreeding of simple point and the movement of a bit in the
mutation. In this work, the following parameters are defined: a population-based measure
of 50 individuals, probability of crossing 0.6, probability of mutation of 0.001 and elitist
selection; however, it presents the disadvantage that these parameters only worked for a
particular problem with very specific restrictions.

(De Jong, 1975) described that the operation on-line is based on the monitoring of the best
solution in every generation, while the operation off-line takes into account all the solutions
in the population to obtain the optimum value. (Grefenstette, 1986) used the meta-
algorithms as a method of optimization, in order to obtain values with similar parameters
for the operation on-line and off-line of the algorithm.

In order to have a good performance on-line of a search algorithm, it must quickly decide
where the most promising search region is and concentrate their efforts there. The
performance off-line does not always penalize the search algorithm to explore poor regions of
the search space, since this will contribute to achieving the best possible solutions (in terms of
fitness). The best sets of parameters analyzed on and off- line were population of 30 and 80
individuals, probability of crossing 0.95 and 0.45, probability of mutation 0.01 for both, either
using a strategy of elitist selection for the on-line case or not elitist for the off-line case .

(Smith, 1993) proposes a genetic algorithm which adjusts the extent of the population taking
into account the likelihood of error. This is linked with the number of generations, if under
the conditions of little use is determined a small value (20 to 50) to the number of
evaluations, the convergence will be quick, but it is not ensured an optimum result.

(Endre Eiben et al., 1999) expose technical drawbacks of the analysis of parameters on the
basis of experimentation, observing the following points:

e Parameters are not independent, but trying all possible combinations of these
systematically it is almost impossible.

e The process of tuning parameters is time-consuming, but if the parameters are
optimized one by one, it is possible to handle their interactions.

e For a given problem, the values for the selected parameters are not necessarily the best,
but if they are used to analyze uniformly, more meaningful values will be obtained.

In general, here are listed some important observations made by authors such as (Holland,
1975),with respect to the genetic algorithms that must be considered for the use of this tool,
such as:

e A high generational interval and the use of an elitist strategy also improve the
performance of the GA.

e The use of large populations (> 200) with a high percentage of mutation (> 0.05) does
not improve the performance of a GA.

e The use of small populations (< 20) with low percentage of mutation (< 0.002) does not
improve the performance of a GA.

¢ The mutation seems to have greater importance in the performance of a GA.

e If the size of the population is increased, the effect of crosses seems to be diluted.

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 51

With reference to the mutation, it has been deeply analyzed the value of the probability, but
the results vary with each researcher, for example (De Jong, 1975) recommend pm=0.001,
(Grefenstette, 1986, Goldberg, 1989) recommend 0.1, (Fogarty, 1989) indicates 0.005 to 0.01.

In the research of (Fogarty, 1989) and (Coello-Coello, 2007) have been developed some
formulas in order determine the mutation, where its main contribution is considering the
time and making a change of this during the execution of the GA. If the mutation percent is
0, does not exist any alteration, if is I, the mutation creates always add-ons of the original
individual and if it is 0.5, there is a high probability of altering strongly the schema of an
individual. In conclusion, it is possible to control the power of alteration of the mutation and
its capabilities for exploration, to have an equivalent weight within the AG as the crossing.

On the other hand for the crossing some common values for this are 0.6 indicated by (De Jong,
1975), 0.95 by (Grefenstette, 1986), 0.75 to 0.95 by (Fogarty, 1989). (Endre Eiben et al., 1999)
specify that is more common to use the results obtained in own experimentation and is rarely
used a value less than 0.6. When it is looking for locating the global optimum of a problem, the
mutation may be more useful, but when it is in the cumulative gain, crossing offers greater
benefits. From these research works it can be said that there are needs of large populations in
the crossing, to combine effectively the necessary information, but in mutation best results are
obtained when applied to small populations in a large number of generations.

Evolutionary strategies, where the mutation is the principal search operator, include several
operators of mutation, as well as technical adaptation, proposed by (Lima et al., 2005,
Rechenberg, 1973). (Whitley et al., 1998) reported comparative studies between the operators
of crossover and mutation, demonstrating that there were important features of each
operator that were not captured by the other.

In this work is demonstrated, through experimentation, that the maximum limit for
individuals have an acceptable performance of the GA is 3000, this depends completely on
study cases, since as it increases the number of variables in the problem to be analyzed it is
necessary an increase in the population. With this amount of individuals the process of
analysis is very slow, but it is in direct function of the mechanism type, the trajectory and
the precision points required, in addition to the restrictions on the domain to get the angles
and the links dimensions.

4. Study cases

The case of study is based on mechanisms synthesis, for that reason the basic concepts are
presented.

A mechanism is a set of rigid members that are jointed together in order to develop a
specific function. The mechanisms design, which is described by (Varbanov et al., 2006),
consists of two parts: the analysis and synthesis. The first one consists of techniques to
determine position, velocities and accelerations of points onto the members of mechanisms
and the angular position, velocities and accelerations of those members. The second type
explains the determination of the optimal length of the bars and the spatial disposition that
best reproduces the desired movement of the coupler link. The optimal dimensional
synthesis problem of mechanisms can be seen as a minimization process, since it is required
that the structural error being as small as possible. The point of the coupler link will have to be
able to generate a trajectory defined through separate points, with a minimum error. The

52 Bio-Inspired Computational Algorithms and Their Applications

generation of a desired trajectory consists controlling a point of the coupler link, figure 5 (case I
four-bar mechanism and case II six-bar mechanism), so that its described trajectory drives the
coupler through a discreet set of giving points, known as precision points (Norton, 1995). In
order to determine this point it is necessary to obtain the open and close chain mechanism.

In the last century, have been developing a variety of mechanisms synthesis methods. These
are usually based on graphical procedures originally developed by (Freudenstein, 1954); or
on analytical methods of research of (Denavit and Hartenberg, 1964). Other techniques
include the application of least squares in the finite synthesis of four-bar spatial synthesis
proposed by (Levitski and Shakvazian, 1960), or on the mathematical model and simulation
for the exact mechanisms synthesis as is described in (A. K. Mallik and A. Ghosh, 1994) and
(Tzong-Mou and Cha'o-Kuang, 2005). However while these works have represented major
contributions in the area, the principal restriction are the number of points of precision that
can be taken into account to define the desired path. The foregoing refers to the fact that
each point of precision defined for the desired path represents a new set of equations to be
solved. For example, the synthesis of a four- bar mechanism involves a set of 7 holonomics
restrictions that describe the kinematic relationship of the links that make it up; if the
designer consider 4 points of accuracy, the problem to be solved is a set of 28 non-linear
equations with 29 unknowns, which represents a non-linear indeterminate problem with an
infinite number of possible solutions.

With all these arguments in mind and taking into account that exist a wide variety of
applications that require a large number of precision points to define more accurately the
trajectory to be reproduced by the mechanism, the synthesis of these can be seen as an
optimization multi-objective problem. For this purpose, researchers have developed
different methodologies that include non-linear optimization (Levitski and Shakvazian,
1960), genetic algorithms (Quintero-R et al., 2004, Laribi et al., 2004, Cabrera et al., 2002,
Michalewicz, 1999, Roston and Sturges, 1996), neuronal networks (Vasiliu and Yannou,
2001), (Starosta, 2006), (Walczak, 2006)), Monte Carlo optimization (Kalnas and Kota, 2001),
or the controlled method (Bulatovic and Djordjevic, 2004). All the above methods have been
used for four-bar mechanisms synthesis and have helped to identify the constraints of space
that lead to the synthesis of mechanisms and programs developed for applications.

LEC T s :'n’;- L]
:.\.I':‘u'
! T, T ",
- 3 LN
! . Fo &0
gz | I‘\' s
e —— .
! , "
L S y
e JI " !
Al - L
] - i i i
Lo l::.\'-l.l o 1) 0 40 L
X mang
a) Coupler point on the coupler link of a four b) Type 6-bar Watt mechanism.
bar linkage

Fig. 5. Diferent mechanisms configuration.

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 53

4.1 Optimal design in the mechanisms synthesis

The formulation of this problem demands the definition of several aspects like the space of
design, the objective function, the algorithm of optimization and the restrictions (Lugo-
Gonzalez et al., 2010). In the case corresponding to the synthesis of mechanisms, it is desired
to diminish the error between the desired and generated trajectories besides analyzing the
changes in the response of the algorithm when modifying parameters like the probability of
mutation and crossing, the number of individuals and the maximum of generations, that
will be evaluated by the proposed equation (3) that has characteristics applied to the
approximated evaluation of the function, that involves the addition of the penalty to the
presented original version in the works of (Goldberg, 1989), which is:

(0L o)) +{C (0)-Cl (o)
Py i ®

Applying a division of the number of individuals ni in addition to a factor of division by the
reciprocal of N, that is the number of precision points, it adds a penalty whose objective is
to recover the individuals that do not fulfill the initial restrictions known as the conditions
of Grashof.

In order to finalize, the optimization algorithm uses four criteria of convergence that are
defined as:

reng= Is the first restriction, this one is the first evaluation in which it is verified if the
population fulfills the restrictions of Grashof (specific condition of mechanism synthesis).

maximogen = Defines the maximum number of times that the algorithm can evaluate the
objective function. An additional call to this implies the conclusion of the search without
reaching a solution.

minimerror = Defines the minimum value of error allowed in the objective function to being
compared with the generated function. A change of value in the parameter of minimum
error implies the conclusion of the search without reaching a solution.

condrep = Defines the number of times that the same value can be repeated into the
evaluation before proceeding to the following operation.

Being fulfilled these last conditions to the evaluation; the algorithm will stop its search
having presented the optimal values that better satisfy the restrictions and conditions.

4.2 Elliptical trajectory with parameters optimization of GA, 18 precision points, and a
four- bar mechanism

The obtained research results in (Cabrera et al., 2002, Laribi et al., 2004, Starosta, 2006) are
taken as a basis for describing an elliptical path with a four-link mechanism. The study case
was proposed for the first time by (Kunjur and Krishnamurty, 1997). The synthesis was
carried out using some variants of application using genetic algorithms or combining these
with tools such as fuzzy logic. In the table 1 is shown the desired precision points to be
followed by the mechanism. In the figure 6 is showed the corresponding graphic.

54 Bio-Inspired Computational Algorithms and Their Applications

---g-g---
- 0.5 0.005 0.02
Y N . 1.1 1.0 0.9 0.75 0.6 0.5 0.4

10

¥ desired
+
+
+

02 L ; 1 L L L 1

o 0.1 0.2 0z 0.4 0.5 0.8 o7

X desired
Fig. 6. Elliptical trajectory, by(Kunjur and Krishnamurty, 1997).

The realized parameters change is presented in table 2 and the results obtained by (Kunjur
and Krishnamurty, 1997, Cabrera et al., 2002, Laribi et al., 2004, Starosta, 2006) and our
results are shown in table 3. The analysis procedure is shown in figures 7 and 8. But this
indicates that is necessary to make a change of value in the parameters of crossover and
mutation. The changes are the number of individuals, crossover and mutation, affecting
with this time and the number of generations for the convergence. It has a maximum
number of 1500 generations and a precision of 6 digits.

Of this series of tests one concludes that:

The individual number is an important factor for the convergence, since although a response
time with a small number of individuals is obtained, it does not make sure that the result is
the optimal one. With a greater number of individuals the response time increases but the
possibility of obtaining a better result also increases. As it has been mentioned previously,
the program will have an optimal rank of individuals to operate satisfactorily, but this must
be verified by trial and error, being a program that has as a basis the random generation of
the population. However, the performance of the algorithm when the FIM is implemented
only registers a minor reduction compared with the one obtained for the previously
considered systems.

Do not exist a rule to determine the optimal value for the crossing and the mutation
probability. Not always the maximum values, that produce a total change in the individual,

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 55

give the best results, as it is observed in table 2. For this study case, the best result appears in
interjection k with the value of minimum error. This value is affected directly by the
dominion of the variables and in addition to the number of individuals.

The dominion is a determining value to obtain the optimal result, since all the variables are
related to each other by the calculations required for the synthesis. For example if the
restriction of some angles are modified, it changes the value of lengths of the links and by
consequence the value of the error, since perhaps the bars must increase or decrease them
length to cover the specified trajectory. Although the parameters are designed well, if this
definition of variables are incorrect, it does not fulfilled the objective.

j) k) 1)

Fig. 7. Different parameters in elliptical trajectory.

Bio-Inspired Computational Algorithms and Their Applications

a) 500 0.6 0.01 0.12607 974 124.70116
b) 1000 0.6 0.01 0.116874 992 200.83390
c) 1000 0.8 0.8 0.146653 994 281.61255
d) 1000 0.8 0.7 0.140036 992 318.54909
e 1500 0.8 0.7 0.128140 992 499.81671
il 1500 0.85 0.85 0.113155 979 384.667514
9 2000 0.3 0.1 0.253548 992 416.934751
h) 2000 0.6 0.2 0.2020683 988 374.043950
i) 2000 0.6 0.4 0.1852588 991 431.125409
L 2000 0.7 0.2 0.0986130 988 335.516387
k) 2000 0.7 0.4 0.0854537 995 402.078071
D 2000 0.85 0.85 0.09922667 989 776.17100

Table 2. The parameters modification for a generated elliptical figure by a four bar
mechanism.

In table 3 is presented the comparison of the researchers mentioned above with the
proposed algorithm. With these results it can be seen that there is a correspondence of
values in the bars length, angles and among desired and generated trajectory. Another
variable not found in the mentioned investigation is time, a factor that is critical for the
optimization. This will depend on the crossover probability, mutation parameters,
individuals and generation number. Varying a small value to these parameters can mean a
short time in convergence but not always the optimal value is guaranteed. With the specific
parameters, the time elapsed by the GA optimization analysis is 280.508318 seconds.

Kun]ur 1.132062 0663433 0274853 1 180253 2.138209 |1.879660 |0.91
Cabrera |1.776808 |-0.641991 |0.237803 |4.828954 2.056456 |3.057878 |2
Laribi -3.06 -1.3 0.42 2.32 3.36 4.07 3.90
Starosta |0.074 0.191 0.28 0.36 0.98 1.01 0.36
A-G 3.88548 |0.907087 |0.286753 |4.52611 359121 |4.29125 | 3.613847
prop.

Kunjur |0.62 5000

Cabrera |0.029 5000

Laribi 0.20

Starosta | 0.0377 200

A-G 0.0152 2000

prop.

Table 3. Dimensions and angles definition of an elliptical path obtained by some authors.

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 57

In spite of applying more generations that in the last researcher work, satisfactory results are
obtained. Due to the high amount of generations, computation time is more demanding,
but this offers less error among the generated and desired path, and therefore, greater
precision.

Figure 8 shows how the error behavior decreases at the beginning of the path and at the end
of the evaluation in each generation (¢ and b). Figures ¢ and d illustrates the four-bar
mechanism along the path, covering the first and sixth precision point, which were
randomly chosen to display the specified path.

x 10° x 10
2.6 " - - 3
25 2
5 5
i &
2.4 1
23 0
0 2 4 8 0 500 1000
Generation Generation
a) b)
Rl = 2-
=% :3 .
15 u
]« .
Yool or a4 4w o3 o3 I PR 4
aimke EREET oI T
<)

Fig. 8. Four-bar mechanism evolution to cover 18 precision points.

4.3 Six bar mechanisms optimization

There are two main six-link configuration mechanisms Watt and Stephenson type, whose
features make them suitable for the manufacture of polycentric prostheses such as
(Radcliffe, 1977, Dewen et al., 2003).

The first example illustrates a six-bar mechanism for covering 21 precision points. To
evaluate the effectiveness of the analyzed mechanism a Watt-I type will follow a path with
arbitrarily proposed restrictions on the initial 18 points, being the conditions reported in
table 4.

Figure 9 presents the proposed path to be followed by the Watt-I type mechanism. As in the
previous cases, settings in population, crossing and mutation probability, time and number
of generation analysis, will be varied in order to demonstrate that these adjustments are not
independent and that they are affected each other.

58 Bio-Inspired Computational Algorithms and Their Applications

Desired points Xg=[25 10 5 10 2010 5 10 15 25 40 43 50 55
Variables limits 50 4050 55 50 40 25]
ya=[[130 120 100 80 65 55 35 20 15 10 10 15 20
40 55 65 80 100 120 130 130]
Restriction for each links r1,12,r3,r4,r5,16,r7,18,19,r10€ [-60,60] inmm
x0,y0e [-60,60] in mm
Movements range 0° to 360° degrees
Population numbers niindividuals 200
Crossover probability Proportional type varied
Mutation probability Only one point varied
Precision Digits after point 6
Maximum number of 1000 generations
generations

Table 4. Six-bar mechanism restriction.

The path is obtained as a result of the evolution of the synthesis of the genetic mechanism
(figure 10). In the subsequent figures and in table 5 it can be seen how decrease the error,
while passing generations and changing some parameters to obtain the best adjustment.

¥ Value
140

120

100K

a0

60

<40

20

.
5 10 15 20 25 30 35 40 45 a0 i)
X Value

Fig. 9. Trajectory of 20 points for a six-bar Watt-I type mechanism.

This path was proposed with the objective of demonstrating that a six-link mechanism can
follow paths that would be difficult to follow by a four-bar mechanism.

From this analysis it is concluded that:

e An increase in precision points is directly proportional to the number of individuals in
the population, since to obtain a minor error, it is necessary to have a greater field of
search.

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 59

A small number of individuals decreases the search and does not offer satisfactory
results.

In order to obtain the optimal values is necessary to increase the value of the probability
of crossing at least greater than 0.6.

The rate of mutation can vary up to a maximum of 0.9, because if it increases to 1, it
would be completely changing the individual without having a real meaning of the best
for the evaluation, which was obtained with the elitism and the forced inheritance
mechanism.

High values of probability of crossover and mutation do not ensure that the best value

of convergence is achieved.

s 100

EY Tt o0 S5 o EY 100 1bo

0))
k))

=

N @
a) b)
e) i) g
i)

)
150, o
: 8
5
o

g

E]

; =
g g

-

m)

0)

q) r)

o s H
I : : <
8

Fig. 10. Adjustment of parameters for a specific path.

60 Bio-Inspired Computational Algorithms and Their Applications

a) 200 0.6 0.01 0.4530713342399 180.693674 978
b) 200 0.6 0.4 0.2088516234 162.480752 991
o) 200 0.8 0.8 0.1039548356200 168.681711 996
d) 500 0.6 0.01 0.1441113 250.446997 981
e 500 0.6 0.4 0.07266868 282.191 960
il 500 0.8 0.8 0.0558228894 290.697 987
9 1000 0.6 0.01 0.059796068 468.693084 999
h) 1000 0.6 0.4 0.0532988776 480.819397 947
i) 1000 0.7 0.5 0.119467646451 457.490696 999
7 1000 0.7 0.7 0.03260650948 524.067239 989
k) 1000 0.8 0.5 0.099396876739 536.369984 993
D 1000 0.85 0.8 0.0311870033413 550.612374 972
m) 1500 0.6 0.1 0.1962062488 619.52535 981
n) 1500 0.6 0.4 0.090105144 672.77304 990
0) 1500 0.95 0.85 0.163192355 1046.2808 968
p) 2000 0.7 0.7 0.08380448 1116.16188 999
q) 2000 0.85 0.8 0.0114246856933 1295.874818 987
r) 2000 0.95 0.85 0.0277589482798 1306.641231 1000

Table 5. Adjustment of six-bar mechanism parameters for a specific path.

5. Discussion

The optimization process is iterative, and it was demonstrated with the tests that were
realized varying the parameters of the genetic algorithm to analyze the behavior of the
system, which means that they can be modified until finding a system whose behavior
satisfies the expectations and requirements of the designer. The parameters of the GA
usually interact with each other in a nonlinear relation, that’s why they cannot be optimized
in an independent way, been demonstrated in the presented study cases. When existing a
change in the population size, this fact will be reflected in time of convergence and accuracy
in the path generation.

It was demonstrated that the diversity of individuals in the population is obtained and it
remains along with the operator of crossing and the genetic mutation, since in all the analysis,
they allow to find better solutions and avoid premature convergence to the maximum
premises. Although also it must be mentioned that the elitism and the forced inheritance help
to limit the number of individuals that will cover the imposed restrictions. On the other hand,
it was observed that the GA has few possibilities of making considerable or necessary a
number of reproductions for the optimal solution if it has an insufficient or small population.

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 61

Besides, the excessive population causes that the algorithm requires of a greater time of
calculation to process and to obtain a new generation. In fact, there is not a limit wherein it
is inefficient to increase the size of the population since it neither obtains a faster speed in
the resolution of the problem, nor the convergence makes sure. For the referred study cases
in this chapter, when increasing the population to 3500 individuals no acceptable results are
presented and the program became extremely slow. If the population remains so large, like
for example 1000 individuals, this means that it can improve the performance of the
algorithm, although this is affected by slower initial responses. It is important to do
emphasis on the relation that exists among the population size and the probabilistic relation
in the solution space of the problem.

The study cases of this work are over determined and nonlinear type, which implies by
necessity a space of multidimensional, nonlinear and non-homogenous solution, therefore,
large initial values cover different regions of the solution space wherein the algorithm could
converge prematurely to a solution that implies optimal premises costs, but when
maintaining a low probability of mutation is not possible to assure that the population,
although extensive in the number of individuals, continues being probabilistic
representative of the problem solution. With this in mind and considering that the
computation time to evaluate and to generate a new population of individuals from the
present initial or, directly is the bound to the number of individuals of this one, requires a
greater number of operations to obtain a new generation of possible solutions.

6. Conclusions

When operating with a population reduced in number of individuals, a sufficient
representative quantity of the different regions of the solution space is not achieved, but the
necessary computation time to create a new generation of possible solutions diminishes
dramatically. When considering a high percentage of the probability of mutation in the
algorithm, one assures a heuristic search made in different regions of the solution space, this
combined with the forced inheritance mechanism has demonstrated that for the problem
treated in this work, it is a strategy that power the heuristic capacities of the GA, for
nonlinear multidimensional problems, non-homogenous, becoming the algorithm meta-
heuristic; it is demonstrated then that an important improvement in the diminution of the
error is obtained, around 20% with respect to the reported works previously. Also it was
observed that the increase in the percentage of mutation improves the off-line performance,
since all the solutions in the population are taken into account to obtain the optimal value. The
off-line performance does not penalize the algorithm to explore poor regions of the search
space, as long as it contributes to reach the best possible solutions in terms of aptitude.

It was verified that for the crossover the rule is fulfilled of which applying values smaller to
0.6, the performance is not optimal and it does not change the expected result for a specific
problem. In the case of mutation, one demonstrated that this one can change no mattering
the number of times and increasing its value to obtain optimal results, reaching almost at the
unit, but avoiding to muter totally all the chromosomes eliminating the benefits created by
the elitism and the forced inheritance mechanism.

By means of the trial and error, also one concludes that the parameters are not independent,
and searching systematically to obtain all the possible combinations of these, is almost

62 Bio-Inspired Computational Algorithms and Their Applications

impossible; but if the parameters were optimized one at the time, it is then possible to
handle its interactions and, for a given problem, the values of the selected parameters are
not necessarily the optimal ones, but if they are analyzed uniformly they will generate more
significant values.

7. Acknowledgment

The authors thank to Instituto Politécnico Nacional, Project Number. 20113426, for the
facilities and means for the development of this research.

8. References

A. K. Mallik & A. Ghosh 1994. Kinematic Analysis and Synthesis of Mechanisms. CRC-Press,
688.

Beasley, D., Bull, D. R. & Martin, R., And R. 1993. An overview of genetic algorithms: part 1,
fundamentals. University Computing, 15, 58-69.

Bethke, A. 1976. Comparison of Genetic Algorithms and Gradient-Based Optimizers on
Parallel Processors: Efficiency of Use of Processing Capacity. Tech. Rep. No. 197,
Logic of Computers Group, University of Michigan.

Bulatovic, R. R. & Djordjevic, S. R. 2004. Optimal Synthesis of a Four-Bar Linkage by Method
of Controlled Deviation. The first international conference on computational mechanics
(CM'04), 31,No.3-4, 265-280.

Cabrera, J. A., Simon, A. & Prado, M. 2002. Optimal synthesis of mechanisms with genetic
algorithms. Mechanism and machine theory (Mech. mach. theory), 37 No10, 1165-
1177.

Cantu-Paz, E. 2000. Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston, MA.

Coello-Coello, C. A. 2007. Introduccién a la computaciéon evolutiva. In: CINVESTAV-IPN
(ed.). México.

De Jong, K. A. 1975. An analysis of the behaviour of a class of genetic adaptive systems. Tesis
doctoral, University of Michigan.

Denavit,]. & Hartenberg, R. S. 1964. Kinematic Synthesis of Linkages. USA: Mc. Graw Hill.

Dewen, J., Ruihong, Z., Ho, D., Rencheng, W. & Jichuan, Z. 2003. Kinematic and dynamic
performance of prosthetic knee joint using six-bar mechanism Journal of
Rehabilitation Research and Development, 40,No. 1, 39-48.

Endre Eiben, A., Hinterding, R. & Michalewicz, Z. 1999. Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation, 3, No. 2.

Fogarty, T. 1989. Varying the probability of mutation in the genetic algorithm. Proc. 3rd Int.
Conf. Genetic Algorithms,]. D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann.
Freudenstein, F. 1954. An analitical approach to the design of four link mechanism.

Transactions of the ASME 76, 483-492.

Goldberg, D. 2002. Lessons from and for Competent Genetic Algorithms. Kluwer, Boston,
MA.

Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning, USA,
Addison - Wesley.

Grefenstette, J. J. 1986. Optimization of control parameters for genetic algorithms. IEEE
Trans. Systems, Man, Cybern, 16, no. 1, 122-128.

Performance of Simple Genetic Algorithm
Inserting Forced Inheritance Mechanism and Parameters Relaxation 63

Grosso, P. 1985. Computer Simulations of Genetic Adaption: Parallel Subcompnent
Interaction in a Multilocus Model. Ph.D Dissertation, University of Michigan.
Hidalgo, J. I. & Lanchares, H. R. 2000. Partitioning and placement for multi-fpga systems

using genetic algorithms. In Proceedings of the Euromicro DSD 2000.

Holland, J. H. 1975. Adaptation in natural and artificial system. Ann Arbor, The University of
Michigan Press.

Kalnas, R. & Kota, S. 2001. Incorporating Uncertaintly intoMechanism Synthesis. Mechanism
and machine theory (Mech. mach. theory), 36, No.3, 843-851.

Kunjur, A. & Krishnamurty, S. 1997. Genetic Algorithms in Mechanism Synthesis. Journal of
Applied Mechanisms and Robotics, 4 No. 2, 18-24.

Kuri-Morales, A. & Galaviz-Casas, J. 2002. Algoritmos Genéticos. Instituto Politécnico
Nacional, Universidad NAcional Autonoma de México, Fondo de Cultura Econdmica,,
202.

Laribi, M. A., Mlika, A., Romdhane, L. & Zeghloul, S. 2004. A combined genetic algorithm-
fuzzy logic method (GA-FL) in mechanisms synthesis. Mechanism and machine
theory (Mech. mach. theory), 39, 717-735.

Levitski, N. L. & Shakvazian, K. K. 1960. Synthesis of four element spatial mechanisms with
lower pairs. International Journal of Mechanical Sciences 2, 76-92.

Lima, C. A. F. 2005. Combining Competent Crossover and Mutation Operators:a
Probabilistic Model Building Approach. GECCO'05.

Lima, C. F,, Sastry, K., Goldberg, D. E. & Lobo, F. G. 2005. Combining Competent Crossover
and Mutation Operators: a Probabilistic Model Building Approach. GECCO’05,
ACM 1595930108/ 05/0006.

Lugo-Gonzilez, E., Hernandez-Gémez, L. H., Ponce-Reynoso, R., Veldzquez-Sanchez, A. T,
Urriolagoitia-Sosa, G., Merchan-Cruz, E. A. & Ramirez-Gordillo, J. 2010.
Performance Optimization of GA Based Planar Mechanism Synthesis. In
Proceedings of the 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference
(September 28 - October 01, 2010). IEEE Computer Society, Washington, DC, 126-131.

Lugo Gonzélez, E. 2010. Disefio de mecanismos utilizando algoritmos genéticos con aplicacion en
prétesis para miembro inferior.Doctorado, Instituto Politécnico Nacional.

Merchan-Cruz, E. A. 2005. Soft-computing techniques in the trajectory planning of robot
manipulators sharing a common workspace. Doctor of Philosophy, Sheffield.

Merchan-Cruz, E. A., Hernandez-Gémez, L. H., Veldzquez-Sanchez, A. T., Lugo-Gonzalez,
E. & Urriolagoitia-Sosa, G. 2007. Exploiting monotony on a genetic algorithm based
trajectory planner (GABTP) for robot manipulators.). F. In the 16th IASTED
international Conference on Applied Simulation and Modelling (Palma de Mallorca, Spain,
August 29 - 31, 2007, De Felice, Ed. ACTA Press, Anaheim, CA, 300-305.

Merchan-Cruz, E. A., Urriolagoitia-Sosa, G., Ramirez-Gordillo, J., Rodriguez-Canizo, R.,
Campos-Padilla, I. Y., Munoz-César,]. J]. & Lugo-Gonzélez, E. 2008. GA Based
Trajectory Planner for Robot Manipulators Sharing a Common Workspace with
Adaptive Population Size. In Proceedings of the 2008 Electronics, Robotics and
Automotive Mechanics Conference (September 30 - October 03, 2008). IEEE Computer
Society, Washington, DC, 520-525.

Michalewicz, Z. 1999. Genetic Algorithms + Data Structure = Evolution Programs. tercera ed.
Nueva York: Springer.

Norton, R. L. 1995. Disefio de Maquinaria, Impreso en México, Mc. Graw Hill.

64 Bio-Inspired Computational Algorithms and Their Applications

Quintero-R, H., Calle-Trujillo, G. & Daz-Arias, A. 2004. Sintesis de generacién de
trayectorias y de movimiento para multiples posiciones en mecanismos, utilizando
algoritmos genéticos. Scientia et Technica, 10 No.25.

Radcliffe, C. 1977. The knud Jansen lecture:above-knee mechanisms: kinematics, alignment
and prescription criteria.: Prosthetic and orthetic practice.

Ramirez-Gordillo, J. 2010. Planeacion de trayectorias en sistemas de manipuladores robéticos
miiltiples.Doctorado, Instituto Politécnico Nacional.

Rechenberg, 1. 1973. Evolutionsstrategie Optimierung technischer systeme nach prinzipien
der biologischen evolution. Friedrich Frommann Verlag, Stuttgart-Bad Cannstatt.

Roston, G. P. & Sturges, R. H. 1996. Genetic Algorithm Synthesis of Four-bar Mechanisms.
Artificial Intelligence for Engineering Design,Analysis and Manufacturing, 10, pp. 371-
390.

Sanchéz-Marin, F. T. 2000. Contribucién a la Sintesis Dimensional de Mecanismos Planos para
Generacidn de Trayectorias.Doctor en Ciencias, Universitat Jaume-I.

Sinha, A. 2002. Designing Efficent Genetic and Evolutionary Algorithm Hybrids. M.S. Thesis,
University of Illinois-Urbana-Champaign.

Smith, B. D. A. S. S, R. 1995. Fitness Inheritance in Genetic Algorithms. in: Proc. of the ACM
Symposium on Applied Computing, 345-350.

Smith, R. 1993. Adaptively resizing populations: An algorithm and analysis. Proc. 5th Int.
Conf. Genetic Algorithms, S. Forrest Ed. San Mateo, CA: Morgan Kaufmann, 653.
Srivastava, R. 2002. Time Continuation in Genetic Algorithms. M.S. Thesis, University of

Illinois-Urbana-Champaign.

Starosta, R. 2006. On some application of genetic algorithm in mechanism synthesis. Annual
Meeting of GAMM, Book of Abstracts, 77.

Tzong-Mou, W. & Cha'o-Kuang, C. 2005. Mathematical model and its simulation of exactly
mechanism synthesis with adjustable link. Applied Mathematics and Computation,
160, 309-316.

Varbanov, H., Yankova, T., Kulev, K. & Lilov, S. 2006. S&AExpert system for planar
mechanism design. Expert Systems with Applications, 31, 558-569.

Vasiliu, A. & Yannou, B. 2001. Dimensional Synthesis of planar Mechanism Using Neural
Network: Application to path generator Inkages. Mechanism and machine theory
(Mech. mach. theory, 36 No. 2, 229-310.

Walczak, T. 2006. Mechanism synthesis with the use of neural network. in Annual Meeting of
GAMM, Book of Abstracts.Berlin, 77.

Wen-Jyi, H., Chien-Min, O. & Chin-Ming, Y. 2003. Robust Vector Quantization for Burst
Error Channels Using Genetic Algorithm. European Symposium on Artificial Neural
Networks, 267-274.

Whitley, D., Rana, S. & Heckendorn, R. 1998. Representation Issues in Neighborhood Search
and Evolutionary Algorithms. In D. Quagliarella, |. P eriaux, C. Poloni, and G. Winter,
editors, Genetic Algorithms and Evolution Strategies in Engineering and Computer
Science. Recent Advances and Industrial Applications, chapter 3, 39-57.

4

The Roles of Crossover and Mutation in
Real-Coded Genetic Algorithms

Yourim Yoon! and Yong-Hyuk Kim?*
1School of Computer Science and Engineering, Seoul National University, Seoul

2Department of Computer Science and Engineering, Kwangwoon University, Seoul
Republic of Korea

1. Introduction

We recognized that the roles of crossover and mutation in real encoding are quite different
from those in binary encoding during performing previous work with real-coded genetic
algorithms (Yoon et al., 2012). In this study, we are to argue the distinct roles of genetic
operators in real encodings.

Recently many studies on evolutionary algorithms using real encoding have been done.
They include ant colony optimization (Socha & Dorigo, 2008), artificial bee colony algorithm
(Akay & Karaboga, 2010; Kang et al., 2011), evolution strategies (ES) (Beyer, 2001), differential
evolution (Das & Suganthan, 2011; Dasgupta et al., 2009; Kukkonen & Lampinen, 2004; 2005;
Mezura-Montes et al., 2010; Noman & Iba, 2005; Ronkkonen et al., 2005; Storn & Price, 1997;
Zhang et al., 2008), particle swarm optimization (Chen et al., 2007; Huang et al., 2010; Juang
et al.,, 2011; Krohling & Coelho, 2006; 1. Sun et al., 2011), and so on. In particular, in the field of
ES, we can find many studies based on self-adaptive techniques (Beyer & Deb, 2001; Hansen
& Ostermeier, 2001; Igel et al., 2007; 2006; Jagerskiipper, 2007; Kita, 2001; Kramer, 2008a;b;
Kramer et al., 2007; Meyer-Nieberg & Beyer, 2007; Wei et al., 2011).

Many researchers have also concentrated on using real-valued genes in genetic algorithms
(GAs), as in (Ripon et al., 2007). It is reported that, for some problems, real-coded
representation and associated techniques outperform conventional binary representation
(Eshelman & Schaffer, 1993; Herrera et al., 1998; Janikow & Michalewicz, 1991; Lozano et al.,
2004; Ono et al., 1999; Ono & Kobayashi, 1997; Surry & Radcliffe, 1996, Wright, 1991). Several
theoretical studies of real-coded GAs have also been performed (Goldberg, 1991; Higuchi
et al., 2000; Kita et al., 1998; Qi & Palmieri, 1994a;b). However, the role and behavior of genetic
operators in real-coded GAs are fundamentally different from those in binary encodings
although motivation of the operators and the framework of GAs are similar.

In this chapter, we try to verify different properties of crossover and mutation in real
encodings from those in binary encodings through various experiments. We especially
concentrate on the effect of genetic operators (the bias and functions of crossover and
mutation) when they are used in real-coded GAs.

*Corresponding author: Yong-Hyuk Kim

66 Bio-Inspired Computational Algorithms and Their Applications

..................... o

Y aw i w i ow
@t
X

X

(a) Box crossover (b) Extended-box crossover
y

X

(c) Line crossover (d) Extended-line crossover

Fig. 1. The range of possible offspring in two-dimensional bounded real space

The remainder of this chapter is organized as follows. Traditional and recent genetic operators
in real encoding are introduced in Section 2. Previous genetic operators are presented in
Section 2.1 and ones we used in real encoding in this study are described in Section 2.2. In
Section 3, we describe the concept of bias of genetic operators and analyze that in the case of
crossover and mutation for GAs. In Section 4, experimental results for various combinations of
crossover and mutation are provided and analyzed. Finally, we make conclusions in Section 5.

2. Genetic operators in real encoding
2.1 Previous operators

The roles of crossover and mutation may change according to the selection of the operators.
We reviewed the most frequently used crossover and mutation operators for real-code
representation. We are to analyze how the roles of crossover and mutation can change by
studying various combinations of crossover and mutation operators.

In literature many crossover operators for real-code representation are found. Traditional
crossover operators for the real-code representation are described in (Béck et al., 2000). The
two main families of traditional crossover operators (Miihlenbein & Schlierkamp-Voosen,
1993) are discrete crossovers!' (Reed et al., 1967) and blend crossovers (Michalewicz, 1996).
Blend crossover operators can be distinguished into line crossovers and box crossovers.
Important variations of the last two crossover operators are the extended-line crossover and
the extended-box crossover (Miihlenbein, 1994).

The discrete recombination family is the straightforward extension to real vectors of the family
of mask-based crossover operators for binary strings including n-point and uniform crossover.

L It is also called dominant crossover.

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 67

box-crossover(x, y)

{

fori< 1lton
z; + arandom real number in [min(x;, y;), max(x;,y;)];
return z = (zq,2,...,2x);

}

Fig. 2. Pseudo-code of box crossover

extended-box-crossover(x,)
{
fori < 1lton
m min(x;,y;), M < max(x;,y;);
em < m—a(M—m),eM < M+ a(M—m);
z; + arandom real number in [min(em, I;), max(eM, u;));
return z = (z9,2,...,2x);
}

// & is extension rate.

Fig. 3. Pseudo-code of extended-box crossover

The mask is still a binary vector dictating for each position of the offspring vector from which
parent the (real) value for that position is taken.

The blend recombination family does not exchange values between parents like discrete
recombinations but it averages or blends them. Line recombination returns offspring on the
(Euclidean) line segment connecting the two parents. Box recombination returns offspring in
the box (hyper-rectangle) whose diagonally opposite corners are the parents. Extended-line
recombination picks offspring on an extended segment passing through the parent vectors but
extending beyond them and not only in the section between them. Analogously extended-box
recombination picks offspring on an extended box whose main diagonal passes through the
parents but extends beyond them.

Recently several new crossovers for the real-coded representation have been designed.
Several non-traditional crossover operators for real-coded representation are found in the
recent literature. They include SBX (simulated binary crossover) (Ballester & Carter, 2003;
2004b; Deb & Agrawal, 1995; Deb & Beyer, 1999; Deb & Kumar, 1995; Deb et al., 2007), UNDX
(unimodal normal distribution crossover) (Kita et al., 1998; 1999; Ono et al., 1999; Ono &
Kobayashi, 1997), SPX (simplex crossover) (Higuchi et al., 2000; Tsutsui & Goldberg, 2002;
Tsutsui et al., 2001; 1999), PCX (parent-centric crossover) (Ballester & Carter, 2004a; Deb et al.,
2002), etc (Herrera et al., 2003; 2005; Takahashi & Kita, 2001). Most of them are complex
and based on the specific probability distribution of the offspring (SBX, UNDX, and PCX),
self-adaptivity (SBX and UNDX), or multiple parents (UNDX and SPX). Some of them, e.g.,
include the function of mutation operators. In this study, we focus on traditional crossover
that does not consider the specific probability distribution of the offspring but only what
offspring can be generated with a probability greater than zero, given the two parents.

68 Bio-Inspired Computational Algorithms and Their Applications

line-crossover(x, y)
{
A + arandom real number in [0, 1];
fori< 1ton
zj = Ax+ (1= Ny
return z = (z1,22,...,2n);

}

Fig. 4. Pseudo-code of line crossover

extended-line-crossover(x, y)
{
m<— —oo, M + o0;
fori«< 1lton
ifx; #yi
ty < (li—yi)/ (xi — yi), tu <= (i — i) / (xi = vi);
tm < min(t;, t,), tar < max(t;, ty,);
m < max(m, ty;), M < min(M, fp);
A < arandom real number in [max(m, —«), min(M, 1 + a)];
fori< 1ton
zi < Axi+ (1= ANy
return z = (29,2p,...,2x);
}

// & is extension rate.

Fig. 5. Pseudo-code of extended-line crossover

The most common form of mutation for real-code vectors generates an offspring vector by
adding a vector M of random variables with expectation zero to the parent vector. There are
two types of mutations bounded and unbounded depending on the fact that the range of the
random variable is bounded or unbounded. The most frequently used bounded mutations
are the creep mutation and the single-variable mutation and for the unbounded case is the
Gaussian mutation. For the creep (or hyper-box) mutation M ~ U([—a,4]") is a vector of
uniform random variables, where a is a parameter defining the limits of the offspring area.
This operator yields offspring within a hyper-box centered in the parent vector. For the
single-variable mutation M is a vector in which all entries are set to zero except for a random
entry which is a uniform random variable ~ U([—a,4]). Bounded mutation operators may
get stuck in local optima. In contrast, unbounded mutation operators guarantee asymptotic
global convergence. The primary unbounded mutation is the Gaussian mutation for which M
is a multivariate Gaussian distribution.

2.2 Adopted operators for this study

As crossover operators for our analysis, we adopted four representative crossovers: box,
extended-box, line, and extended-line crossovers. Their pseudo-codes are shown in Figures 2,
3, 4, and 5, respectively and the possible range for each crossover is represented in Figure 1.

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 69

mutation(z, p)

{

fori< 1lton
if a random number from [0, 1] is less than mutation rate p
Zi < zi + N(O, (Ml' - ll)/10),
return z = (z1,22,...,2n);

}

Fig. 6. Pseudo-code of mutation

// x and y are parents.
fine-mutation(x, y, z, p)
{
fori«< 1ton
if a random number from [0, 1] is less than mutation rate p
zi <z + N(0,|x; — yil);
return z = (z9,2,...,2x);

}

Fig. 7. Pseudo-code of fine mutation

And, as mutation operators for our analysis, we adopted two kinds of mutation: Gaussian
mutation and fine mutation. Their pseudo-codes are shown in Figures 6 and 7, respectively.
The Gaussian mutation is a simple static Gaussian mutation, the same as in Tsutsui &
Goldberg (2001). The i-th parameter z; of an individual is mutated by z; = z; + N(0, 0;) with
a mutation rate p, where N (0, ¢;) is an independent random Gaussian number with the mean
of zero and the standard deviation of ¢;. In our study, o; is fixed to (u; — I;) /10 - the tenth of
width of given area. The fine mutation is a simple dynamic Gaussian mutation inspired from
Ballester & Carter (2004b). In different with Gaussian mutation, it depends on the distance
between parents and, as population converges, the strength of the mutation approaches zero.

3. Bias of genetic operators

Pre-existing crossovers for the real-coded representation have an inherent bias toward the
center of the space. Some boundary extension techniques to reduce crossover bias have been
extensively studied (Someya & Yamamura, 2005; Tsutsui, 1998; Tsutsui & Goldberg, 2001). The
concept of crossover bias first appeared in (Eshelman et al., 1997) and it has been extensively
used in (Someya & Yamamura, 2005; Tsutsui & Goldberg, 2001), in which they tried to remove
the bias of real-coded crossover heuristically (and theoretically incompletely).

Notice that the notion of bias of a crossover operator has different definitions depending upon
the underlying representation considered. The bias toward the center of the space considered
in real-coded crossovers conceptually differs from the crossover biases on binary strings,
which focus on how many bits are passed to the offspring and from which positions, which, in
turn conceptually differs from the bias considered in Genetic Programming focusing on bloat.

The notion of bias so defined can be understood as being the inherent preference of a search
operator for specific areas of the search space. This is an important search property of a search

70 Bio-Inspired Computational Algorithms and Their Applications

bt Bl)
r _L""\,
. "
Lk Vi - Lk s
F 4 " - “""ﬁ& Tl
|'. 1 I ‘. ‘-1.
Mo & +
2 '} » \
£ ' N £ -"l“‘l A "y
; e / ; e F _.
-\
1 P
& &
4 il
. .
L L] i III.I lrl.l- LS () lrl.l- [S, (8] (1%) 1 L L] i III.I lrl.l- LS () lrl.l- [S, (8] (1%)
Benpir af Bl irg Bengir i il irg
(a) Box crossover (b) Extended-box crossover (¢ = 0.5)
e .".ul'n..-\r '\‘\l"'v\..1.\. [
‘h__
vet / ', 1 et -
r i =
st ",
F
» W] i \'-.I
¥ ¥ .
i L I .,
z & % E & - \-L
i 1o]
& &
a4 2.4
. .
L L] i III.I lrl.l- LS () lrl.l- [S, (8] ll.'I 1 L L] i III.I lrl.l- LS () lrl.l- [S, (8] (1%)
e e
(c) Line crossover (d) Extended-line crossover (« = 0.5)

Fig. 8. Crossover bias in one-dimensional bounded real space

operator: an evolutionary algorithm using that operator, without selection, is attracted to the
areas the search operator prefers. Arguably, also when selection is present, the operator bias
acts as a background force that makes the search keener to go toward the areas preferred
by the search operator. This is not necessarily bad if the bias is toward the optimum or an
area with high-quality solutions. However, it may negatively affect performance if the bias
is toward an area of poor-quality solutions. If we do not know the spatial distribution of the
fitness of the problem, we may prefer not to have any a priori bias of the search operator, and
instead use only the bias of selection, which is informed by the fitness of sampled solutions
that constitute empirical knowledge about promising areas obtained in the search, and which
is better understood.

In this chapter, we investigate the bias caused by crossover itself and crossover combined
with mutation in real-coded GAs. Intuitively, box and line crossover are biased toward the
center on the Euclidean space. This intuition is easy to verify experimentally by picking a
large number of pairs (ideally infinitely many) of random parents and generating offspring
uniformly at random in the boxes (or lines) identified by the pairs of parents.

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 71

Function | n | Range of x;: [I;, u;] |
Shifted sphere
i(xi —0;)% — 450 30 [~100, 100]
lgi}ifted Schwefel
i(i(xj —0;))* — 450 30 [—100,100]
l:1SIr]1i:f’1ed Rosenbrock
nf(lOO((xi —0j+1)% = (xi11 — 0j41 +1))% + (x; — 0;)%) +390 | 30 [—100,100]
= Shifted Rastrigin
) ((x; — 0;)% — 10 cos(27(x; — 0;)) + 10) — 330 30 [-5,5]
i=1

Table 1. Test Functions
0= (01,0,...,0) is the optimal solution, which is randomly located in the domain.

In the Hamming space, the distribution of the offspring of uniform crossover tends in the limit
to be uniform on all space, whereas in the Euclidean space the distribution of the offspring
tends to be unevenly distributed on the search space and concentrates toward the center of
the space. One way to compensate, but not eliminate, such bias is using extended-line and
extended-box crossovers. Figure 8 visualizes the crossover bias in the one-dimensional real
space by plotting frequency rates of 107 offspring randomly generated by each type crossover.
As we can see, box and line crossover are biased toward the center of the domain. We could
also observe that extended-box and extended-line crossover largely reduce the bias but they
are still biased toward the center.?

For analyzing the effect of mutation in relation with the bias, we also performed the same
test using crossover combined with Gaussian mutation. We picked 107 pairs of random
parents, generated offspring randomly using each type crossover, and then applied Gaussian
mutation. The tests are performed for various mutation rates from 0.0 to 1.0. The results
for box, extended-box, line, and extended-line crossover are shown in Figures 9, 10, 11, and
12, respectively. Interestingly, for all cases, we could observe that the higher mutation rate
reduces the bias more largely. However, even high mutation rates cannot eliminate the bias
completely.

4. Combination of crossover and mutation

In this section, we try to figure out the properties of crossover and mutation through
experiments using their various combinations. For our experiments, four test functions are
chosen from Suganthan et al. (2005). They are described in Table 1.

We mainly followed the genetic framework by Tsutsui & Goldberg (2001). Its basic
evolutionary model is quite similar to that of CHC (Eshelman, 1991) and (i + A)-ES (Beyer,
2001).

2 We can find consistent results with this in Someya & Yamamura (2005); Yoon et al. (2012).

72

Bio-Inspired Computational Algorithms and Their Applications

Fig. 9. Bias of box crossover with mutation

e LR I T

e LR I T

e LR I T

e LR I T

4 !
f & %
Y i 1
1 s \
nal
i " . . i " .
T T L L N R & &8 ma &1 RS &F ms &

Branim wi him

(a) Crossover without mutation

Beanim wi B

(b) Crossover with mutation (p = 0.05)

i \
% £ e g \
£ ; \
\ ; . 4 \
S S
(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)
_’,J.'Y'P\"'-w..‘l__\)
r ol iy . e,
P -, iy,
o \'s._ .r#ﬂ N‘_\h"

7) w S # L
r A H ! y
] \ 3 /
B \ ; ssp f
|- wif
4 i X - . . |
T T

Branim wi him

(e) Crossover with mutation (p = 0.5)

Beanin nF EPimed e

(f) Crossover with mutation (p = 1.0)

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

73

e ELL LY

e ELL LY

I e I vﬂ.w
¥ *\-.
...rf". T ﬂ"ﬁ g,
' - "\.\\ . /’ "\-\\
/ T, i \
el 1‘*_" = ael _..-" _,"
i "l i |f %
napd ; e }
B e Y Y T B Y Y T
Sasin wf ivipears Basin wr Evipaeare
(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)
¥ i 'I“\'F“ﬂ...““* ¥),
Mﬁfﬁ"' o ’,.-*"”‘” Y
' L3 A~ =
'/'- \"'\. i f!"f H\k"-‘
Y % FEET I "\-."
¥ " - i b
¢ 1 B ’ %
o p ; Oy o
B e Y Y T B Y Y T

O]

(c) Crossover with mutation (p = 0.1)

R O

(d) Crossover with mutation (p = 0.2)

O]

(e) Crossover with mutation (p = 0.5)

. — . —
A
"
MMH“*MH #wmnmmmﬂ
P e oy, P ,/"M T,
“ H -
F b i .

- W, ™ 'a’/ \\
I L = []
1 ; "

el
T L T L L L

R O

(f) Crossover with mutation (p = 1.0)

Fig. 10. Bias of extended-box crossover (« = 0.5) with mutation

74 Bio-Inspired Computational Algorithms and Their Applications

1 e . e
//""'ﬁ m""-\- /f"ﬂ. N‘k..
" W\ ")
b r \"-
Lo % . “
: 4 LY : Fi b
E_ o F k'. E_ o ."'I‘ _‘
(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)
/{_ﬁm P wk\
" P \ " / \
1 .-’/ . 1 K] N
F LY £ i \
?_ e .."Ir{'I kl ?_ e _."’ I"..
(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)
e — .
o /" "y * o m‘t

rsasinng By
-

rrsna inny BeEng
™,
"

B T T B Y Y T
(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 11. Bias of line crossover with mutation

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

75

e ELL LY

e ELL LY

e LR I T

’.f_,a-*"’ ‘“"h_‘ . F ‘h"‘.,
v . z ! e
rd , i i x
F LY - Bk Ny

s “ | ¢ lj
3 i ; ol "
P N T TR B Y Y T

! ﬁ‘-"-. wf dirimrare | | ! ﬁ.llll- e Avipears ’ ’
(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)
i, - i
o - . e -,
4 H'u H A "W,
,’.z LY ;_ wi b / \

“| £ |/ L
i LY Fy k!
4 ! ; . |
P N T TR B Y Y T

! ﬁ‘-"-. wf dirimrare | | ! ﬁ.llll- e Avipears ’ ’
(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)
il . Rocaks
rb_w"'"* s w"-. 1 e e Hﬁ"“""mﬂ‘
o e e 7 o "
- . i -~ M

e 5 - woi | -.
|] ; " [

" A . : —

Branim wi him

(e) Crossover with mutation (p = 0.5)

Beanin nF EPimed e

(f) Crossover with mutation (p = 1.0)

Fig. 12. Bias of extended-line crossover (¢ = 0.5) with mutation

76 Bio-Inspired Computational Algorithms and Their Applications

Let N the population size. A collection of N /2 pairs is randomly composed, and crossover
and mutation are applied to each pair, generating N /2 offspring. Parents and newly generated
offspring are ranked and the best N individuals among them are selected for the population
in the next generation. The population size was 400 for all experiments. If the population has
no change during n x r x (1.0 — r) generations, it is reinitialized except for the best individual.
Here, r is a divergence rate and we set it to 0.25 as in Eshelman (1991). The used GA terminates
when it finds the global optimum.

For crossover, we used four crossover operators: box crossover, extended-box crossover
(extension rate a: 0.5), line crossover, and extended-line crossover (extension rate a: 0.5). After
crossover, we either mutate the offspring or do not. We used two different mutation operators;
Gaussian mutation and fine mutation. Different mutation rates were applied to each crossover
type and the rates decrease as the number of generations increases.

Table 2 shows the results from 30 runs. Each value in ‘Ave’ means the average function value
from 30 runs. The smaller, the better. The limit of function evaluations is 50,000, i.e., the
genetic algorithm terminates after 50,000 evaluations and outputs the best solution among
evaluated ones so far over generations. In the table, k = 1+ |numberOfGenerations/100| and
the rate of fine mutation is 0.5/k.

From these experiments we can obtain the following properties.

® There is no superior operator combination for all over the problem instances. For the
shifted sphere, box crossover with fine mutation showed the best performance. For
the shifted Schwefel, line crossover with Gaussian mutation, for the shifted Rosenbrock,
extended-box crossover without mutation, and for the shifted Rastrigin, box crossover
with fine mutation showed the best performances, respectively. So we can know that
suitable crossover and mutation can be varied depending on the property of given
problem.

¢ Without mutation, extended-box crossover showed the best performance. That is, when
we do not know the characteristic of given problem, it is a general choice that we use
extended-box crossover as a crossover operator in real-coded genetic algorithms. It is
convenient since parameter tuning with mutation is not required. However, it is possible
to surpass the performance of extended-box crossover using well-designed combination
of crossover and mutation.

¢ Unusually, for extended-box crossover, the results without mutation is the best and the
performance becomes worse as mutation rate increases. However, for box crossover,
moderate rate of mutation has a good effect to the performance. For all cases, box crossover
with mutation showed better performance than that without mutation. From this fact, we
can infer that extended-box crossover contains the function of mutation in itself but box
crossover does not.

* Except for extended-box crossover, the results of crossover with mutation were better than
those of crossover without mutation. In particular, fine mutation was better than Gaussian
mutation. Fine mutation depends on the distance between parents so, as population
converges, the strength of the mutation approaches zero. That is, the amount of mutation
becomes very fine as population converges. In binary encodings, the main role of mutation
is perturbation effect to prevent premature convergence. However, we can know that,
in real encoding, the function of fine tuning by mutation is also important from this
experiment.

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

77

Function

Crossover]

Mutation

Shifted Sphere
Ave (o/+/n

Shifted Schwefel
Ave (0/+/n)

Shifted Rosenbrock
Ave (0/+/n)

Shifted Rastrigin
Ave (0/+/n)

None

0.05/k
0.10/k
0.20/k
0.50/k
1.00/k

5.46e+02 (4.59+01
6.40e+01 (2.17e+01
1.37e+02 (1.55e+01
9.87e+02 (3.13e+01
2.38e+03 (6.45¢+01

T.68e+04 (9.05e+02)
1.16e+04 (5.33e+02)
7.99e+03 (4.79e+02)
7.87e+03 (3.18e+02)
1.24e+04 (3.76e+02

1.87e+07 (1.70e+06)
4.64e+06 (3.86e+05)
4.74e+06 (2.34e+05)
1.89e+07 (8.19e+05)
7.12e+07 (2.45e+06)

-2.66e+02 (1.91e+00
-2.68e+02 (1.65e+00
-2.64e+02 (1.58e+00
-2.27e+02 (1.28e+00
-1.91e+02 (1.72e+00

Box

None
0.05/k
0.10/k
0.20/k
0.50/k
1.00/k

2.46e+04 (4.46e+02
-3.61e+02 (1.81e+00
-4.02e+02 (1.13e+00
-1.25e+02 (6.96e-01
-3.40e+02 (3.04e+00
2.81e+02 (1.54e+01

)
2.47e+04 (3.03e+02)
1.44e+04 (1.96e+02)
1.22e+04 (1.42e+02)
9.98e+03 (1.40e+02)
8.10e+03 (1.17e+02)
8.68e+03 (2.05e+02)

5.36e+09 (1.69e+08)
2.66e+05 (8.26e+03)
7.86e+04 (2.26e+03)
4.34e+04 (1.57e+03)
2.16e+05 (1.02e+04)
5.55e+06 (2.53¢+05)

-1.83e+02 (1.64e+00
-2.53e+02 (1.51e+00
-2.60e+02 (1.11e+00
-2.48e+02 (2.37e+00
-1.94e+02 (1.90e+00
-1.71e+02 (1.48e+00

crossover

Fine

Fine + 0.05/k
Fine + 0.10/k
Fine + 0.20/k
Fine + 0.50/k
Fine + 1.00/k

~4.50e+02 (4.63¢-03
-4.50e+02 (2.54e-02
-4.48e+02 (8.07-02
-4.37e+02 (5.19e-01
2.11e+02 (6.63e+00
6.67e+02 (2.51e+01

8.74e+03 (1.16e+02)
8.43e+03 (1.36e+02)
8.10e+03 (1.42e+02)
7.83e+03 (1.06e+02)
8.83e+03 (1.72e+02)
1.20e+04 (2.27e+02)

1.40e+03 (7.16e+01)
1.99e+03 (8.5%9¢+01)
3.33e+03 (1.59¢+02)
1.78e+04 (8.37e+02)
8.47e+05 (3.91e+04)
1.08e+07 (5.26e+05)

-3.03e+02 (1.60e+00
-2.77e+02 (3.16e+00
-2.39e+02 (3.26e+00
-2.07e+02 (1.87e+00
-1.82e+02 (1.64e+00
-1.68e+02 (1.65e+00

Extended
box

None
0.05/k
0.10/k
0.20/k
0.50/k
1.00/k

-4.50e+02 (2.72e-04
-4.49¢+02 (3.17e-02
-4.40e+02 (2.52e-01
-3.59e+02 (2.22e+00
2.54e+02 (1.91e+01
1.60e+03 (5.17e+01

8.78e+03 (1.90e+02)
9.63e+03 (2.20e+02)
1.07e+04 (2.50e+02)
1.25e+04 (2.45e+02)
1.60e+04 (3.92e+02)
2.10e+04 (4.98e+02)

7.45e+02 (3.21e+01)
3.14e+03 (1.67e+02)
2.24e+04 (9.14e+02)
3.35e+05 (1.86e+04)
6.93e+06 (3.35e+05)
4.65e+07 (1.85e+06)

-2.21e+02 (2.33e+00
-2.00e+02 (1.97e+00
-1.95e+02 (1.75e+00
-1.81e+02 (1.66e+00
-1.63e+02 (1.68e+00
-1.50e+02 (2.26e+00

crossover
(@ = 0.5)

Fine

Fine + 0.05/k
Fine + 0.10/k
Fine + 0.20/k
Fine + 0.50/k
Fine + 1.00/k

-4.23e+02 (7.81e-01
-3.67e+02 (2.09e+00
-2.72e+02 (3.48e+00

9.07e+02 (3.03e+01
2.47e+03 (5.56e+01

1.76e+04 (3.62e+02)
1.80e+04 (4.84e+02)
1.85e+04 (4.39e+02)
1.84e+04 (5.26e+02)

2.55e+04 (5.66e+02)

2.07e+05 (1.21e+04)
7.16e+05 (2.99e+04)
1.55e+06 (6.25e+04)
5.45e+06 (2.49e+05)
2.69e+07 (1.32e+06)
9.84e+07 (3.94e+06)

-1.75e+02 (1.71e+00
-1.68e+02 (1.56e+00
-1.68e+02 (1.83e+00

-1.52e+02 (1.92e+00
-1.37e+02 (2.26e+00

Line

None
0.05/k
0.10/k
0.20/k
0.50/k
1.00/k

4.29e+04 (6.09e+02
-2.11e+02 (4.61e+00
-3.55e+02 (2.03e+00
-4.00e+02 (1.76e+00
-3.37e+02 (3.29e+00
2.37e+02 (2.04e+01

3.44e+04 (8.72e+02)
1.45e+04 (3.04e+02)
1.26e+04 (2.19¢+02)
1.00e+04 (1.80e+02)
7.26e+03 (1.59e+02)
6.93e+03 (1.46e+02)

T.22e+10 (4.00e+08)
1.30e+06 (4.48e+04)
2.12e+05 (7.95¢+03)
9.66e+04 (3.77e+03)
2.33e+05 (1.30e-+04)
4.34e+06 (2.80e+05)

7.32e+01 (3.09e+00
2.24e+02 (2.19e+00
-2.32e+02 (1.56e+00
2.24e+02 (3.13e+00
-1.91e+02 (1.62e+00
-1.73e+02 (1.50e+00

crossover

Fine

Fine + 0.05/k
Fine + 0.10/k
Fine + 0.20/k
Fine + 0.50/k
Fine + 1.00/k

-4.48e+02 (1.22e-01
-4.47e+02 (1.52e-01
-4.43e+02 (4.00e-01
-4.32e+02 (5.20e-01
-2.27e+02 (7.78e+00
5.76e+02 (2.37e+01

9.38e+03 (1.38e+02)
8.81e+03 (1.73e+02)
8.16e+03 (1.54e+02)
7.79e+03 (1.37e+02)
7.71e+03 (1.70e+02)
9.91e+03 (1.62e+02)

T.07e+04 (8.87e+02)
8.13e+03 (4.91e+02)
1.10e+04 (6.89e+02)
2.95e+04 (1.63e+03)
7.95e+05 (3.23e-+04)
9.54e+06 (5.55e+05)

-2.87e+02 (2.31e+00
-2.58e+02 (4.68e+00
-2.30e+02 (3.34e+00
-2.05e+02 (1.97e+00
-1.82e+02 (1.50e+00
-1.62e+02 (1.68e+00

Extended
line

None
0.05/k
0.10/k
0.20/k
0.50/k
1.00/k

3.85e+04 (9.05e+02
-1.37e+02 (1.20e+01
-3.27e+02 (4.22e+00
-3.67e+02 (3.37e+00
-2.41e+02 (6.38e+00
4.60e+02 (2.41e+01

3.11e+04 (6.79e+02)
1.21e+04 (2.97e+02)
9.46e+03 (2.92e+02)
8.19e+03 (2.09e+02)
7.03e+03 (1.43e+02)
8.00e+03 (1.61e+02)

9.81e+09 (5.11e+08)
2.97e+06 (2.14e+05)
5.23e+05 (3.33e+04)
2.02e+05 (1.00e+04)
6.22e+05 (3.95e-+04)
7.43e+06 (3.58e-+05)

-1.17e+02 (3.40e+00
-2.40e+02 (2.59e+00
-2.37e+02 (2.16e+00
-2.13e+02 (2.53e+00
-1.88e+02 (1.40e+00
-1.69e+02 (1.61e+00

crossover
(@ = 0.5)

Fine

Fine + 0.05/k
Fine + 0.10/k
Fine + 0.20/k
Fine + 0.50/k
Fine + 1.00/k

-4.46e+02 (2.66e-01
-4.39e+02 (4.12e-01
-4.29e+02 (1.03e+00
-3.92e+02 (2.23e+00
-4.34e+01 (1.06e+01

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
3
2.18e+01 (1.03e+01)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
;
8.69e+02 (3.33e+01)

7.67+03 (1.98e+02)
7.69e+03 (1.76e+02)
7.52e+03 (1.90e+02)
7.24e+03 (1.57e+02)
8.62e+03 (1.56e+02)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
E
2.24e+04 (5.74e+02)
(
(
G
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
E
1.10e+04 (2.63e+02)

1.88e+04 (2.14e+03)
2.28e+04 (1.56e+03)
3.51e+04 (2.50e+03)
1.42¢+05 (7.84e+03)
1.93¢+06 (8.59¢-+04)
1.51e+07 (9.43e+05)

-2.44e+02 (5.08e+00
-2.26e+02 (3.84e+00
-2.09e+02 (1.96e+00
-1.92e+02 (1.67e+00
-1.73e+02 (1.65e+00

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
i
-1.63e+02 (2.22e+00)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
2
-1.57e+02 (1.86e+00)

Table 2. Results

78 Bio-Inspired Computational Algorithms and Their Applications

5. Conclusions

In this chapter, we tried to analyze distinct roles of crossover and mutation when using real
encoding in genetic algorithms. We investigated the bias of crossover and mutation. From this
investigation, we could know that extended crossover and mutation can reduce the inherent
bias of traditional crossover in real-coded genetic algorithms.

We also studied the functions of crossover and mutation operators through experiments
for various combinations of both operators. From these experiments, we could know
that extended-box crossover is good in the case of using only crossover without mutation.
However, it is possible to surpass the performance of extended-box crossover using
well-designed combination of crossover and mutation. In the case of other crossover
operators, not only the function of perturbation but also that of fine tuning by mutation is
important, but extended-box crossover contains the fine tuning function in itself.

There are many other test functions defined on real domains. We conducted experiments
with limited test functions. We may obtain more reliable conclusions through experiments
with more other functions. So, more extended experiments on more various test functions are
needed for future work. We may also find other useful properties from those empirical study.

6. Acknowledgments

The authors would like to thank Dr. Alberto Moraglio for his encouragement and valuable
comments in improving this study. This work was supported by the Research and
Development of Advanced Weather Technology of National Institute of Meteorological
Research (NIMR) of Korea in 2011.

7. References

Akay, B. & Karaboga, D. (2010). A modified artificial bee colony algorithm for real-parameter
optimization, Information Sciences . doi:10.1016/].ins.2010.07.015.

Béck, T., Fogel, D. B. & Michalewicz, T. (eds) (2000). Evolutionary Computation 1: Basic
Algorithms and Operators, Institute of Physics Publishing.

Ballester, P. J. & Carter, J. N. (2003). Real-parameter genetic algorithms for finding
multiple optimal solutions in multi-modal optimization, Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 706-717.

Ballester, P. J. & Carter, J. N. (2004a). An effective real-parameter genetic algorithm with parent
centric normal crossover for multimodal optimisation, Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 901-913.

Ballester, P. J. & Carter, J. N. (2004b). An effective real-parameter genetic algorithms
for multimodal optimization, Proceedings of the Adaptive Computing in Design and
Manufacture VI, pp. 359-364.

Beyer, H.-G. (2001). Theory of Evolution Strategies, Springer.

Beyer, H.-G. & Deb, K. (2001). On self-adaptive features in real-parameter evolutionary
algorithms, IEEE Transactions on Evolutionary Computation 5(3): 250-270.

Chen, Y.-P, Peng, W.-C. & Jian, M.-C. (2007). Particle swarm optimization with recombination
and dynamic linkage discovery, IEEE Transactions on Systems, Man, and Cybernetics,
Part B 37(6): 1460-1470.

Das, S. & Suganthan, P. N. (2011). Differential evolution - a survey of the state-of-the-art, [IEEE
Transactions on Evolutionary Computation 15(1): 4-31.

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 79

Dasgupta, S., Das, S., Biswas, A. & Abraham, A. (2009). On stability and convergence of the
population-dynamics in differential evolution, AI Commun. 22(1): 1-20.

Deb, K. & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space,
Complex Systems 9(2): 115-148.

Deb, K., Anand, A. & Joshi, D. (2002). A computationally efficient evolutionary algorithm for
real-parameter optimization, Evolutionary Computation 10(4): 371-395.

Deb, K. & Beyer, H.-G. (1999). Self-adaptation in real-parameter genetic algorithms with
simulated binary crossover, Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 172-179.

Deb, K. & Kumar, A. (1995). Real-coded genetic algorithms with simulated binary crossover:
Studies on multi-modal and multi-objective problems, Complex Systems 9: 431-454.

Deb, K., Sindhya, K. & Okabe, T. (2007). Self-adaptive simulated binary crossover for
real-parameter optimization, Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1187-1194.

Eshelman, L. J. (1991). The CHC adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination, Proceedings of the Workshop on
Foundations of Genetic Algorithms, pp. 265-283.

Eshelman, L. J., Mathias, K. E. & Schaffer, J. D. (1997). Crossover operator biases: Exploiting
the population distribution, Proceedings of the International Conference on Genetic
Algorithms, pp. 354-361.

Eshelman, L. J. & Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-schemata,
Proceedings of the Workshop on Foundations of Genetic Algorithms, pp. 187-202.
Goldberg, D. E. (1991). Real-coded genetic algorithms, virtual alphabets, and blocking,

Complex Systems 5: 139-167.

Hansen, N. & Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution
strategies, Evolutionary Computation 9: 159-195.

Herrera, F, Lozano, M. & Sanchez, A. M. (2003). A taxonomy for the crossover operator
for real-coded genetic algorithms: An experimental study, International Journal of
Intelligent Systems 18(3): 309-338.

Herrera, F,, Lozano, M. & Sanchez, A. M. (2005). Hybrid crossover operators for real-coded
genetic algorithms: an experimental study, Soft Computing 9(4): 280-298.

Herrera, F, Lozano, M. & Verdegay,]. L. (1998). Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis, Artificial Intelligence Review
12(4): 265-319.

Higuchi, T., Tsutsui, S. & Yamamura, M. (2000). Theoretical analysis of simplex crossover
for real-coded genetic algorithms, Proceedings of the Sixth International Conference on
Parallel Problem Solving from Nature, pp. 365-374.

Huang, H., Qin, H., Hao, Z. & Lim, A. (2010). @ Example-based learning particle
swarm optimization for continuous optimization, Information Sciences
doi:10.1016/j.ins.2010. 10.018.

Igel, C., Hansen, N. & Roth, S. (2007). Covariance matrix adaptation for multi-objective
optimization, Evolutionary Computation 15(1): 1-28.

Igel, C., Suttorp, T. & Hansen, N. (2006). A computational efficient covariance matrix update
and a (14 1)-CMA for evolution strategies, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 453—460.

Jagerskiipper, J. (2007). Algorithmic analysis of a basic evolutionary algorithm for continuous
optimization, Theoretical Computer Science 379(3): 329-347.

80 Bio-Inspired Computational Algorithms and Their Applications

Janikow, C. Z. & Michalewicz, Z. (1991). An experimental comparison of binary and floating
point representations in genetic algorithms, Proceedings of the Fourth International
Conference on Genetic Algorithms, pp. 31-36.

Juang, Y.-T., Tung, S.-L. & Chiu, H.-C. (2011). Adaptive fuzzy particle swarm optimization for
global optimization of multimodal functions, Information Sciences (20): 4539-4549.

Kang, E, Li,]. & Ma, Z. (2011). Rosenbrock artificial bee colony algorithm for accurate global
optimization of numerical functions, Information Sciences (16): 3508-3531.

Kita, H. (2001). A comparison study of self-adaptation in evolution strategies and real-coded
genetic algorithms, Evolutionary Computation 9(2): 223-241.

Kita, H., Ono, I. & Kobayashi, S. (1998). Theoretical analysis of the unimodal
normal distribution crossover for real-coded genetic algorithms, Proceedings of the
International Conference on Evolutionary Computation, pp. 529-534.

Kita, H., Ono, 1. & Kobayashi, S. (1999). Multi-parental extension of the unimodal normal
distribution crossover for real-coded genetic algorithms, Proceedings of the Congress
on Evolutionary Computation, pp. 1581-1587.

Kramer, O. (2008a). Premature convergence in constrained continuous search spaces,
Proceedings of the Parallel Problem Solving from Nature, pp. 62-71.

Kramer, O. (2008b). Self-Adaptive Heuristics for Evolutionary Computation, Springer.

Kramer, O., Gloger, B. & Goebels, A. (2007). An experimental analysis of evolution strategies
and particle swarm optimisers using design of experiments, Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 674-681.

Krohling, R. A. & Coelho, L. S. (2006). Coevolutionary particle swarm optimization
using gaussian distribution for solving constrained optimization problems, IEEE
Transactions on Systems, Man, and Cybernetics, Part B 36(6): 1407-1416.

Kukkonen, S. & Lampinen,]. (2004). An extension of generalized differential evolution
for multi-objective optimization with constraints, Proceedings of the Parallel Problem
Solving from Nature, pp. 752-761.

Kukkonen, S. & Lampinen, J. (2005). GDE3: the third evolution step of generalized differential
evolution, Proceedings of the Congress on Evolutionary Computation, pp. 443-450.

L. Sun, C., Zeng,]. & Pan, J. (2011). An improved vector particle swarm optimization for
constrained optimization problems, Information Sciences 181(6): 1153-1163.

Lozano, M., Herrera, F.,, Krasnogor, N. & Molina, D. (2004). Real-coded memetic algorithms
with crossover hill-climbing, Evolutionary Computation 12(3): 273-302.

Meyer-Nieberg, S. & Beyer, H.-G. (2007). Self-adaptation in evolutionary algorithms,
Proceedings of the Parameter Setting in Evolutionary Algorithms, pp. 47-75.

Mezura-Montes, E., Miranda-Varela, M. E. & d. C. Gémez-Ramoén, R. (2010). Differential
evolution in constrained numerical optimization: An empirical study, Information
Sciences 180(22): 4223-4262.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer.

Miihlenbein, H. (1994). The breeder genetic algorithm - a provable optimal search algorithm
and its application, IEE Colloquium on Applications of Genetic Algorithms, pp.5/1-5/3.

Miihlenbein, H. & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder
genetic algorithm I: Continuous parameter optimization, Evolutionary Computation
1(1): 25-49.

Noman, N. & Iba, H. (2005). Enhancing differential evolution performance with local search
for high dimensional function optimization, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 25-29.

The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 81

Ono, I, Kita, H. & Kobayashi, S. (1999). A robust real-coded genetic algorithm using
unimodal normal distribution crossover augmented by uniform crossover: Effects of
self-adaptation of crossover probabilities, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 496-503.

Ono, 1. & Kobayashi, S. (1997). A real-coded genetic algorithm for function optimization
using unimodal normal distribution crossover, Proceedings of the Seventh International
Conference on Genetic Algorithms, pp. 246-253.

Qi, A. & Palmieri, F. (1994a). Theoretical analysis of evolutionary algorithms with an
infinite population size in continuous space, Part I: Basic properties of selection and
mutation, IEEE Transactions on Neural Networks 5(1): 102-119.

Qi, A. & Palmieri, F. (1994b). Theoretical analysis of evolutionary algorithms with an infinite
population size in continuous space, Part II: Analysis of the diversification role of
crossover, IEEE Transactions on Neural Networks 5(1): 120-129.

Reed, J., Toombs, R. & Barricelli, N. A. (1967). Simulation of biological evolution and machine
learning, Journal of Theoretical Biology 17: 319-342.

Ripon, K. S. N., Kwong, S. & Man, K. F. (2007). A real-coding jumping gene genetic algorithm
(RJGGA) for multiobjective optimization, Information Sciences 177(2): 632-654.

Ronkkonen, J., Kukkonen, S. & Price, K. (2005). Real-parameter optimization with differential
evolution, Proceedings of the Congress on Evolutionary Computation, pp. 506-513.

Socha, K. & Dorigo, M. (2008). Ant colony optimization for continuous domains, European
Journal of Operational Research 185(3): 1155-1173.

Someya, H. & Yamamura, M. (2005). A robust real-coded evolutionary algorithm with toroidal
search space conversion, Soft Computing 9(4): 254-269.

Storn, R. & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces, Journal of Global Optimization 11(4): 341-359.

Suganthan, P. N., Hansen, N., Liang, J.]J., Deb, K., Chen, Y., Auger, A. & Tiwari, S.
(2005). Problem definitions and evaluation criteria for the CEC 2005 special
session on real-parameter optimization, Technical Report NCL-TR-2005001, Natural
Computing Laboratory (NCLab), Department of Computer Science, National Chiao
Tung University.

Surry, P. D. & Radcliffe, N. (1996). Real representations, Proceedings of the Workshop on
Foundations of Genetic Algorithms, pp. 343-363.

Takahashi, M. & Kita, H. (2001). A crossover operator using independent component
analysis for real-coded genetic algorithm, Proceedings of the Congress on Evolutionary
Computation, pp. 643-649.

Tsutsui, S. (1998). Multi-parent recombination in genetic algorithms with search space
boundary extension by mirroring, Proceedings of the Fifth International Conference on
Parallel Problem Solving from Nature, pp. 428-437.

Tsutsui, S. & Goldberg, D. E. (2001). Search space boundary extension method in real-coded
genetic algorithms, Information Sciences 133(3-4): 229-247.

Tsutsui, S. & Goldberg, D. E. (2002). Simplex crossover and linkage identification: Single-stage
evolution vs. multi-stage evolution, Proceedings of the IEEE International Conference on
Evolutionary Computation, pp. 974-979.

Tsutsui, S., Goldberg, D. E. & Sastry, K. (2001). Linkage learning in real-coded GAs
with simplex crossover, Proceedings of the Fifth International Conference on Artificial
Evolution, pp. 51-58.

82 Bio-Inspired Computational Algorithms and Their Applications

Tsutsui, S., Yamamura, M. & Higuchi, T. (1999). Multi-parent recombination with simplex
crossover in real coded genetic algorithms, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 657-664.

Wei, L., Chen, Z. & Lj, J. (2011). Evolution strategies based adaptive L, LS-SVM, Information
Sciences 181(14): 3000-3016.

Wright, A. H. (1991). Genetic algorithms for real parameter optimization, Proceedings of the
Workshop on Foundations of Genetic Algorithms, pp. 205-218.

Yoon, Y., Kim, Y.-H., Moraglio, A. & Moon, B.-R. (2012). A theoretical and empirical study on
unbiased boundary-extended crossover for real-valued representation, Information
Sciences 183(1): 48-65.

Zhang, M., Luo, W. & Wang, X. (2008). Differential evolution with dynamic stochastic selection
for constrained optimization, Information Sciences 178(15): 3043-3074.

5

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and
Evolutionary Algorithms

Yong Liang
Macau University of Science and Technology
China

1. Introduction

Most of the real-world problems could be encoded by different representations, but genetic
and evolutionary algorithms (GEAs) may not be able to successfully solve the problems based
on their phenotypic representations, unless we use some problem-specific genetic operators.
Therefore, a proper genetic representation is necessary when using GEAs on the real-world
problems (Goldberg, 1989; Liepins, 1990; Whitley, 2000; Liang, 2011).

A large number of theoretical and empirical investigations on genetic representations were
made over the last decades. Earlier work (Goldberg, 1989¢c; Liepins & Vose, 1990) has shown
that the behavior and performance of GEAs is strongly influenced by the representation used.
As a result many genotypic representations were made for proper GEAs searching. Among of
them, the binary, integer, real-valued, messy and tree structure representations are the most
important and widely used by many GEAs.

To investigate the performance of the genetic representations, originally, the schema theorem
proposed by Holland (1975) to model the performance of GEAs to process similarities between
binary bitstrings. Using the definition of the building blocks (BBs) as being highly fit
solutions to sub-problems, which are decomposed by the overall problem, the building block
hypothesis (Goldberg, 1989c) states that GEAs mainly work due to their ability to propagate
short, low order and highly fit BBs. During the last decade, (Thierens, 1995; Miller, 1996;
Harik, 1997; Sendhoff, 1997; Rothlauf, 2002) developed three important elements towards
a general theory of genetic representations. They identified that redundancy, the scaling
of Building Blocks (BBs) and the distance distortion are major factors that influence the
performance of GEAs with different genetic representations.

A genetic representation is denoted to be redundant if the number of genotypes is higher than
the number of phenotypes. Investigating redundant representation reveals that give more
copies to high quality solutions in the initial population result in a higher performance of
GEAs, whereas encodings where high quality solutions are underrepresented make a problem
more difficult to solve. Uniform redundancy, however, has no influence on the performance
of GEAs.

The order of scaling of a representation describes the different contribution of the BBs to the
individual’s fitness. It is well known that if the BBs are uniformly scaled, GEAs solve all BBs

84 Bio-Inspired Computational Algorithms and Their Applications

implicitly in parallel. In contrast, for non-uniformly scaled BBs, domino convergence occurs
and the BBs are solved sequentially starting with the most salient BB (Thierens, 1995). As
a result, the convergence time increases and the performance is decreasing due to the noise
from the competing BBs.

The distance distortion of a representation measures how much the distance between
individuals are changed when mapping the phenotypes to the genotypes, and the locality of
the representation means that whether similar genotypes correspond to similar phenotypes.
The theoretical analysis shows that representation where the distance distortion and locality
are equal to zero, that means the distances between the individuals are preserved, do not
modify the difficulty of the problems they are used for, and guarantee to solve problems of
bounded complexity reliably and predictably.

The importance of choosing proper representations for the performance of GAs is already
recognized, but developing a general theory of representations is a formidable challenge.
Up to now, there is no well set-up theory regarding the influence of representations on the
performance of GAs. To help users with different tasks to search good representations, over
the last few years, some researchers have made recommendations based on the existing
theories. For example, Goldberg (Goldberg, 1989) proposed two basic design principles for
encodings:

* Principle of minimal alphabets: The alphabet of the encoding should be as small as possible
while still allowing a natural representation of solutions.

¢ Principle of meaningful building blocks: The schemata should be short, of low order, and
relatively unrelated to schemata over other fixed positions.

The principle of minimal alphabets advises us to use bit string representation. Combining
with the principle of meaningful building blocks (BBs), we construct uniform salient BBs,
which include equal scaled and splicing/decomposable alleles.

The purpose of this chapter is to introduce our novel genetic representation — a
splicing/decomposable (S/D) binary encoding, which was proposed based on some
theoretical guidance and existing recommendations for designing efficient genetic
representations. The S/D binary representation can be spliced and decomposed to
describe potential solutions of the problem with different precisions by different number
of uniform-salient BBs. According to the characteristics of the S/D binary representation,
GEAs can be applied from the high scaled to the low scaled BBs sequentially to avoid
the noise from the competing BBs and improve GEAs’ performance. Our theoretical and
empirical investigations reveal that the S/D binary representation is more proper than other
existing binary encodings for GEAs searching. Moreover, a new genotypic distance d¢ on the
S/D binary space ®, is proposed, which is equivalent to the Euclidean distance d, on the
real-valued space ®, during GEAs convergence. Based on the new genotypic distance dg,
GEAs can reliably and predictably solve problems of bounded complexity and the methods
depended on the phenotypic distance d;, for solving different kinds of optimization problems
can be directly used on the S/D binary space ®,.

This chapter is organized as follows. Section 2 describes three most commonly used binary
representations — binary, gray and unary encodings, and their theoretical analysis of the effect
on the performance of GEAs. Section 3 introduces our proposed splicing/decomposable

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms 85

(S/D) binary representation and its genotypic distance. Section 4 proposes the new genetic
algorithm based on the S/D binary representation, the splicing/Decompocable genetic
algorithm (SDGA). Section 5 discusses the performance of the SDGA and compares the S/D
binary representation with other existing binary encodings from the empirical studies. The
chapter conclusion are drawn in Section 6.

2. Background

Binary encodings are the most commonly used and nature-inspired representations for
GEAs, especially for genetic algorithms (GAs) (Goldberg, 1989). When encoding real-valued
problems by binary representations, different types of binary representations assign the
real-value in different ways to the binary strings. The most common binary representations
are the binary, gray and unary encodings. According to three aspects of representation theory
(redundancy, scaled building block and distance distortion), Rothlauf (Rothlauf, 2002) studied
the performance differences of GAs by different binary representations for real encoding.

2.1 The unary encoding and redundancy

In the unary encoding, a string of length I = s — 1 is necessary to represent s different
phenotypic values. The i" phenotypic value is encoded by the number of ones i — 1 in
the corresponding genotypic string. Thus, 2°~! different genotypes only encode s different
phenotypes. Analysis on the unary encoding by the representation theory reveals that
encoding is redundant, and does not represent phenotypes uniformly. Therefore, the
performance of GAs with the unary encoding depends on the structure of the optimal
solution. Unary GAs fail to solve integer one-max, deceptive trap and Binnt (Rothlauf, 2002)
problems, unless larger population sizes are used, because the optimal solutions are strongly
underrepresented for these three types of problems. Thus, the unary GAs perform much
worse than GAs using the non-redundant binary or gray encoding (Julstrom, 1999; Rothlauf,
2002).

2.2 The binary encoding, scaled building blocks and hamming cliff

The binary encoding uses exponentially scaled bits to represent phenotypes. Each phenotypic
value x, € ®, = {x1,x,..., x5} is represented by a binary string x¢ of length I = log(s).
Therefore, the genotype-phenotype mapping of the binary encoding is one-to-one mapping
and encodes phenotypes redundancy-free.

However, for non-uniformly binary strings and competing Building Blocks (BBs) for high
dimensional phenotype space, there are a lot of noise from the competing BBs lead to a
reduction on the performance of GAs. The performance of GAs using the binary encoding
is not only affected by the non-uniformly scaling of BBs, but also by problems associated
with the Hamming cliff (Schaffer, 1989b). The binary encoding has the effect that genotypes
of some phenotypical neighbors are completely different. For example, when we choose the
phenotypes x, = 7 and y, = 8, both individuals have a distance of one, but the resulting
genotypes xg = 0111 and y, = 1000 have the largest possible genotypic distance ||x —y||¢ = 4.
As a result, the locality of the binary representation is partially low. In the distance distortion
theory, an encoding preserves the difficulty of a problem if it has perfect locality and if it does
not modify the distance between individuals. The analysis reveals that the binary encoding

86 Bio-Inspired Computational Algorithms and Their Applications

changes the distance between the individuals and therefore changes the complexity of the
optimization problem. Thus, easy problems can become difficult, and vice versa. The binary
GAs are not able to reliably solve problems when mapping the phenotypes to the genotypes.

2.3 The gray encoding and modification of problem difficulty

The non-redundant gray encoding (Schaffer, 1989a) was designed to overcome the problems
with the Hamming cliff of the binary encoding (Schaffer, 1989b). In the gray encoding, every
neighbor of a phenotype is also a neighbor of the corresponding genotype. Therefore, the
difficulty of a problem remains unchanged when using mutation-based search operators that
only perform small step in the search space. As a result, easy problems and problems of
bounded difficulty are easier to solve when using the mutation-based search with the gray
coding than that with the binary encoding. Although the gray encoding has high locality,
it still changes the distance correspondence between the individuals with bit difference of
more than one. When focused on crossover-based search methods, the analysis of the average
fitness of the schemata reveals that the gray encoding preserves building block complexity
less than the binary encoding. Thus, a decrease in performance of gray-encoded GAs is
unavoidable for some kind of problems (Whitley, 2000).

3. A novel splicing/decomposable binary genetic representation

The descriptions in above section show that the existing binary genetic representations are
not proper for GAs searching and cannot guarantee that using GAs to solve problems of
bounded complexity reliably and predictably. According to the theoretical analysis and
recommendations for the design of an efficient representation, there are some important
points that a genetic representation should try to respect. Common representations for
GAs often encode the phenotypes by using a sequence of alleles. The alleles can separated
(decomposed) into building blocks (BBs) which do not interact with each other and which
determine one specific phenotypic property of the solution. The purpose of the genetic
operators is to decompose the whole sequence of alleles by detecting which BBs influence
each other. GAs perform well because they can identify best alleles of each BB and combine
them to form high-quality over-all solution of the problem.

Based on above investigation results and recommendations, we have proposed a new genetic
representation, which is proper for GAs searching. In this section, first we introduce a novel
splicing/decomposable (S/D) binary encoding, then we define the new genotypic distance
for the S/D encoding, finally we give the theoretical analysis for the S/D encoding based
on the three elements of genetic representation theory (redundancy, scaled BBs and distance
distortion).

3.1 A splicing/decomposable binary encoding

In (Leung, 2002; Xu, 2003a), we have proposed a novel S/D binary encoding for real-value
encoding. Assuming the phenotypic domain @, of the n dimensional problem can be
specified by

&, = [ag, B1] x [az, B2] X -+ - X [an, Bu].

A Splicing/Decomposable Binary Encoding

and Its Novel Operators for Genetic and Evolutionary Algorithms 87
[]
[]
(01) (11 @
¢..oni..11)
(00) (10
(..o0(..10

(a)

Fig. 1. A graphical illustration of the splicing/decomposable representation scheme, where
(b) is the refined bisection of the gray cell (10) in (a) (with mesh size O(1/2)), (c) is the
refined bisection of the dark cell (1001) in (b) (with mesh size O(1/22)), and so forth.

(Bi—ai)

Given a length of a binary string I, the genotypic precision is h;(l) = S, i =
1,2,--+-,n. Any real-value variable x = (x1,x2,..,X;) € P, can be represented by
a splicing/decomposable (S/D) binary string b = (by,by,..,b;), the genotype-phenotype
mapping f is defined as

I/n)
x=(x,x0,,x) = fo(b) = (120" X bj i,
j=0
I/n ’ . I/n | ,
201D X bjnya, -+, Y 20D X by n1),
j=0 j=0
where y y
I ; X — I ;
Z 2(/n=j) bj><n+i < ;l i I < 22(1/7[7]) X bj><n+i +1

That is, the significance of each bit of the encoding can be clearly and uniquely interpreted
(hence, each BB of the encoded S/D binary string has a specific meaning). As shown in
Figure 1, take ®, = [0,1] x [0,1] and the S/D binary string b = 100101 as an example (in
this case, | = 6, n = 2, and the genotypic precisions /1 (I) = hy(I) = &). Let us look how
to identify the S/D binary string b and see what each bit value of b means. In Figure 1-(a),
the phenotypic domain &, is bisected into four @é (i.e., the subregions with uniform size
%). According to the left-0 and right-1 correspondence rule in each coordinate direction, these
1

four @} then can be identified with (00), (01), (10) and (11). As the phenotype x lies in the

88 Bio-Inspired Computational Algorithms and Their Applications

subregion (10) (the gray square), its first building block (BB) should be BB; = 10. This leads
to the first two bits of the S/D binary string b. Likewise, in Figure 1-(b), ®; is partitioned

1 1
into 22*?2 ®,, which are obtained through further bisecting each ®; along each direction.

Particularly this further divides @é = (BBy) into four @,‘1’; that can be respectively labelled
by (BBy,00), (BB1,01), (BB1,10) and (BBj,11). The phenotype x is in (BBy,01)-subregion
(the dark square), so its second BB should be BB, = 01 and the first four positions of its
corresponding S/D binary string b is 1001.

1 1
In the same way, ®, is partitioned into 22*3 ®; as shown in Figure 1-(c), with &, =

(BB1, BBy) particularly partitioned into four <I>fl, labelled by (BBy,BB;,00), (BB1,BB,,01),
(BB1,BBy,10) and (BBy, BBy, 11). The phenotype x is found to be (BBy, BBp,01), that is,
identical with S/D binary string b. This shows that for any three region partitions, b =
(b1, by,b3,b4,bs,b), each bit value b; can be interpreted geometrically as follows: by = 0
(b = 0) means the phenotype x is in the left half along the x-coordinate direction (the
y-coordinate direction) in ®, partition with %-precision, and by = 1 (bp = 1) means x is
in the right half. Therefore, the first BBy = (bq,bp) determine the %—precision location of x.

1 1
If b3 = 0 (by = 0), it then further indicates that when @ is refined into ®;, the x lies in the

left half of CD%, in the x-direction (y-direction), and it lies in the right half if b3 = 1 (by = 1).
Thus a more accurate geometric location (i.e., the 1 g-precision location) and a more refined BB,
of x is obtained. Similarly we can explain b5 and be and identify BB3, which determine the
%-precision location of x. This interpretation holds for any high-resolution / bits S/D binary
encoding.

3.2 A new genotypic distance on the splicing/decomposable binary representation

For measuring the similarity of the binary strings, the Hamming distance (Hamming, 1980) is
widely used on the binary space. Hamming distance describes how many bits are different
in two binary strings, but cannot consider the scaled property in non-uniformly binary
representations. Thus, the distance distortion between the genotypic and the phenotypic
spaces make phenotypically easy problem more difficult. Therefore, to make sure that GAs
are able to reliably solve easy problems and problems of bounded complexity, the use of
equivalent distances is recommended. For this purpose, we have defined a new genotypic
distance on the S/D binary space to measure the similarity of the S/D binary strings.

Definition 1: Suppose any binary strings a and b belong to the S/D binary space @y, the
genotypic distance |la — b||¢ is defined as

1, .
Jxn+i T]><n+1
||a—b||g—2| z L,

where | and n denote the length of the S/D binary strings and the dimensions of the
real-encoding phenotypic space @, respectively.

A Splicing/Decomposable Binary Encoding

and Its Novel Operators for Genetic and Evolutionary Algorithms 89
0101|0111 | 1101|1111 0101|0111 1101|1111
0.75)| (1.0) [(1.25)] (1.5) (0.75)| (0.79)| (0.9) | (1.1)
0100 | 0110 | 1100 | 1110 0100| 0110|1100 | 1110
(0.5) | (0.75)| (1.0) | (1.25) (0.5) | (0.56)| (0.71)| (0.9)
0001 | 0011 | 1001|1011 0001 | 0011 | 1001|1011
(0.25)| (0.5) | (0.75)| (1.0) (0.25)| (0.35)| (0.56) | (0.79)
0000 | 0010 | 1000 | 1010 0000 | 0010 | 1000 | 1010
(0.0) | (0.25)((0.5) | (0.75) (0.0) | (0.25)((0.5) | (0.75)
genotypic distances phenotypic distances

Fig. 2. The genotypic and phenotypic distances between * * ** and 0000 in the S/D binary
representation.

For any two S/D binary strings a,b € ®¢, we can define the Euclidean distance of their
correspond phenotypes:

n l/nfla‘ . 1/n—1 b; ,
_ JXn+1 JXn+1
||a—b||p—\JZ(Z 2]‘+1 - Zo 2].+1)2/
]:

i=1 j=0

as the phenotypic distance between the S/D binary strings a and b. The phenotypic distance
| - || p and the genotypic distance || - || are equivalents in the S/D binary space ®, when we
consider the convergence process of GAs. We state this as the following theorem.

Theorem 1: The phenotypic distance || - ||, and the genotypic distance || - || are equivalents
in the S/D binary space @, because the inequation:

-y < M- llg < vl - llp

is satisfied in the the S/D binary space ®,, where 7 is the dimensions of the real-encoding
phenotypic space ®,.

Proof : For Va,b € Dg:

n .
la=bllg =31 Y, ——Fmr—|

- ajxn+i_bj><n+i
= (Y T Bt

n 1/n—1 Gxn+i=bjxntiy2

i=1 (Zj:O 2j+1)

_ 1<iy,ip<n 1/n—1 %xn+ibjxntiy

= |+ @xICh ot
1/n—1 %xn+i—bjxntiy

x| Lito CIER!)

90 Bio-Inspired Computational Algorithms and Their Applications

because
1<iy,in<n 1/n—1 %xn+i~Djxntiy
EI S (g | g/ Benst_bpensy
1702 j=0 2/ 1
0 < 1/n—1 “]'><n+i_bj><n+i2
x| it e ey
n 1/n-1g4. b .
_ JXn+i JXn+iyo
< (n 1)1.;1(];0 BT)%
then

la=bllp < lla=bllg < v/nx [la—bllp.

Figure 2 shows the comparison of the genotypic distance | - ||, and phenotypic distance || - ||,
between S/D binary strings and 0000 in 2 dimensional phenotypic space, where the length of
the S/D binary string = 4. For any two S/D binary strings a and b, if [|a — 0[|, > [|b — 0]/,
then [la — 0l|g > ||b — 0l|¢ is also satisfied. This means that || - ||, and || - || are equivalent
for considering the points’ sequence converge to 0. The searching process of GAs can be
recognized to explore the points’ sequence, which sequentially converge to optimum of the
problem. So we can use the new genotypic distance to measure the similarity and convergence
of the individuals on the S/D binary place.

The other advantage of the new genotypic distance || - ¢ is that its computational complexity
is O(1) and much lower than the computational complexity O(I?) of the phenotypic distance
|| - |p- So using the new genotypic distance || - ||, can guarantee GA to reliably and predictably
solve problems of bounded complexity and improve their performance when consider the
similarity of the individuals.

3.3 Theoretical analysis of the splicing/decomposable binary encoding

The above interpretation reveals an important fact that in the new genetic representation
the significance of the BB contribution to fitness of a whole S/D binary string varies as
its position goes from front to back, and, in particular, the more in front the BB position
lies, the more significantly it contributes to the fitness of the whole S/D binary string. We
refer such delicate feature of the new representation to as the BB-significance-variable property.
Actually, it is seen from the above interpretation that the first n bits of an encoding are
responsible for the location of the n dimensional phenotype x in a global way (particularly,
with O(%)-precision); the next group of n bits is responsible for the location of phenotype
x in a less global (might be called ‘local’) way, with O(}L)—precision, and so forth; the last
group of n-bits then locates phenotype x in an extremely local (might be called ‘microcosmic’)
way (particularly, with O(ﬁ)—precision). Thus, we have seen that as the encoding length [
increases, the representation

(bller e /bi’l/ bn+1/ bn+2/ e /ban Tty

b(o—ny D(e—n+1) -+ 2 b1)
= (BBy,BBy, -, BBy,

can provide a successive refinement (from global, to local, and to microcosmic), and more and
more accurate representation of the problem variables.

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms 91

S/D binary string

convergence window USBB

I
I
I
—— |
I
I
I
I
I

0100

L. J - 7

Y Y
already converged USBBs no yet converged USBBs

- - __ = _____ I

Fig. 3. Domino genotypic at the S/D encodings.

In each BB; of the S/D binary string, which consists of the bits (011, bixn+2, "+ b(iz1)xn)s
i =0,---,I/n—1, these bits are uniformly scaled and independent each other. We refer
such delicate feature of BB; to as the uniform-salient BB (USBB). Furthermore, the splicing
different number of USBBs can describe the potential solutions of the problem with different
precisions. So, the intra-BB difficulty (within building block) and inter-BB difficulty (between
building blocks) (Goldberg, 2002) of USBB are low. The theoretical analysis reveals that GAs
searching on USBB can explore the high-quality bits faster than GAs on non-uniformly scaled
BB.

The S/D binary encoding is redundancy-free representation because using the S/D binary
strings to represent the real values is one-to-one genotype-phenotype mapping. The whole
S/D binary string is constructed by a non-uniformly scaled sequence of USBBs. The domino
convergence of GAs occurs and USBBs are solved sequentially from high to low scaled.

The BB-significance-variable and uniform-salient BB properties of the S/D binary
representation embody many important information useful to the GAs searching. We will
explore this information to design new GA based on the S/D binary representation in the
subsequent sections.

4. A new S/D binary Genetic Algorithm (SDGA)

The existing exponentially scaled representations including binary and gray encodings consist
of non-uniformly scaled BBs. For non-uniformly and competing BBs in the high dimensional
phenotype space, there are a lot of noise from the competing BBs lead to a reduction on the
performance of GAs. Moreover, by increasing the string length, more and more lower salient
BBs are randomly fixed due to the noise from the competing BBs, causing GAs performance to
decline. Using large population size can reduce the influence of the noise from the competing
BBs. However, in real-world problem, long binary string is necessary to encode a large search
space with high precision, and hence we cannot use too large population size to solve the
noise problem. Thus, GAs will be premature and cannon converge to the optimum of the
problem.

To avoid the noise from the competing BBs of GAs, we have proposed a new
splicing/decomposable GA (SDGA) based on the delicate properties of the S/D binary
representation. The whole S/D binary string can be decomposed into a non-uniformly scaled
sequence of USBBs. Thus, in the searching process of GAs on S/D binary encoding, the

92 Bio-Inspired Computational Algorithms and Their Applications

Parents Children

Fig. 4. The genetic crossover and selection in SDGA.

domino convergence occurs and the length of the convergence window is equal to 7, the
length of USBB. As shown in Figure 3 for 4 dimensional case, the high scaled USBBs are
already fully converged while the low scaled USBBs did not start to converge yet, and length
of the convergence window is 4.

In the SDGA, genetic operators apply from the high scaled to the low scaled USBBs
sequentially. The process of the crossover and selection in SDGA is shown in Figure 4. For
two individuals xy and xp randomly selected from current population, The crossover point
randomly set in the convergence window USBB and the crossover operator two children ¢y,
3. The parents x1, x, and their children ¢y, ¢, can be divided into two pairs {x1, c1} and {x, c2}.
In each pair {x;, ¢;}(i = 1,2), the parent and child have the same low scaled USBBs. The select
operator will conserve the better one of each pair into next generation according to the fitness
calculated by the whole S/D binary string for high accuracy. Thus, the bits contributed to high
fitness in the convergence window USBB will be preserved, and the diversity at the low scaled
USBBs'’ side will be maintain. The mutation will operate on the convergence window and not
yet converged USBBs according to the mutation probability to incre