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Preface 

The vital condition for the practical applicability of any control system is that its basic 
characteristics are invariant to variations of its constituent parameters and to external 
disturbances, at least in some well-defined range. This is considered as Robustness, 
and the design of control systems with prescribed performance and stability limits is 
the subject of Robust Control. 

The aim of this two-volume book `Robust Control' is to provide a selective overview of 
recent developments in the theory and application of robust control. The book is a 
compilation of 39 contributions by recognized experts in the broad field of robust 
control. Since robust control is a diverse field of research it is difficult to provide an 
exhaustive and at the same time balanced coverage of this topic. The chapters were 
selected so to equally account for recent developments in the theory as well as 
different application areas. 

Volume I comprises 19 chapters covering selected problems in the theory of robust 
control and its application to robotic and electromechanical systems. 

The first part of this volume consists of six chapters addressing specific theoretical 
issues. Chapter 1 deals with the robustness of control systems to parametric 
uncertainties of linear time invariant (LTI) systems. 

Many practical problems can be classified as time delay systems. The time delay may 
in general be time dependent, which must be accounted for by the controller in order 
to ensure stability. This robustness problem is addressed in chapter 2. 

Often robust control problems are formulated as L2 minimization problem. This 
approach fails for bilinear systems, however. Such systems are treated in section 3, 
where sum of squares formulation is used. 

The principle of repetitive control, a variant of internal model control, is applied to 
spatially sampled systems in chapter 4, where attention is paid to non-linear saturation 
effects. 

In chapter 5 the problem of robust H controller design for time invariant systems with 
polytopic uncertainties is addresses and an iterative design method is proposed. 



XII Preface

Chapter 6 addresses the selection of optimal weights in mixed sensitivity  H1 design. 
In particular the selection problem for tracking sinusoidal reference signals is studied 
and a procedure for the weight selection is proposed. The weight parameters are 
related to the tracking error specification via a functional approximation. 

The second part of volume I is dedicated to robust control of robotic and mobile 
manipulators that are inherently nonlinear. 

In chapter 7 an adaptive hybrid position-force control scheme is proposed for mobile 
platforms exhibiting kinematic as well as dynamic uncertainties. While the method is 
developed for the particular case of a mobile manipulator it represents a general 
method potentially applicable to general non-holonomically constrained mechanisms. 

The classical quantitative feedback theory (QFT) is applied to the control of a robotic 
arm in chapter 8 where the arm is assumed to possess uncertainties in its dynamical 
parameters. This case study demonstrates the application of the QFT. 

Visual servoing, being an established method for the control of robotic systems, is 
used in section 9 for motion control of a robotic arm with three degrees of freedom. In 
this method the dynamics of the controlled system is represented in the image space. It 
is crucial that fundamental properties of the dynamics model in joint space are 
inherited by that in image space. This allows designing a robust visual servoing 
control scheme assuming certain bounds on the variation of the robot parameters as 
shown in the chapter. 

Since any robust control method assumes certain bounds of the model parameters it 
is crucial to provide bounds on the uncertainties for the particular control problem. 
This is pursued in chapter 10 for the robotic manipulators. A bound estimation is 
derived in terms of the function that gives rise to a particular solution of the defining 
condition. Hence the main result of this chapter is a family of bound estimations. 
Three different particular solutions and the corresponding Lyapunov-stable control 
laws are presented. 

Chapter 11 addresses the formation control of cooperating missiles. Optimal control is 
applied to establish and control formations. 

Besides the robustness of the actual model-based controller of a robotic manipulator 
the robustness of the underlying model is crucial. This problem is addressed in 
chapter 12 for the control of parallel manipulators with actuation redundancy. It is 
pointed out that the problem of input-singularities, that are eliminated in the plant by 
the actuation redundancy, remains for the dynamics model. A globally valid dynamics 
formulation is proposed that does not suffer from this problem. 

The third part of this volume is reserved for applications of robust control to 
electromechanical problems. Chapter 13 presents a robust variant of a higher order 
sliding mode controller used for the control of permanent magnet synchronous 

Preface XI 

motors. The concept of higher order sliding mode control is briefly recalled before the 
case study is discussed in detail.

Chapter 14 presents the design of a sliding mode controller for switched reluctance 
motors. The robustness of the controller is shown. 

Chapter 15 addresses the robust control of sensorless AC drives using H control
design. Adaptivity is introduced to account for the system uncertainties and for 
identification. 

The identification of electrical parameters of a three-phase permanent magnet
synchronous machine is approached in section 16 by means of a robust estimation 
strategy.

Chapter 17 considers the effect of uncertainties in pulse with modulation (PVM) DC-
DC converters. A robust controller is proposed subject to linear matrix inequality 
(LMI) constraints. 

The compensation of harmonic currents in electrical mains by means of active
filtering is addressed in chapter 18. A nonlinear robust controller is designed and 
tested. 

Passivity is a crucial property of non-linear control systems. This is discussed in
chapter 19 for the control of permanent magnet synchronous drives. 

Given the wide spectrum covered by this monograph the editor and the authors are 
confident that the two volumes of 'Robust Control' will be a valuable and stimulating 
reference for researchers from different disciplines. 

Andreas Mueller 
Chair of Mechanics and Robotics

University Duisburg-Essen 
Germany
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Parametric Robust Stability

César Elizondo-González
Facultad de Ingeniería Mecánica y Eléctrica

Universidad Autónoma de Nuevo León
México

1. Introduction

Robust stability of LTI systems with parametric uncertainty is a very interesting topic to study,
industrial world is contained in parametric uncertainty. In industrial reality, there is not a
particular system to analyze, there is a family of systems to be analyzed because the values
of physical parameters are not known, we know only the lower and upper bounds of each
parameter involved in the process, this is known as Parametric Uncertainty (Ackermann et al.,
1993; Barmish, 1994; Bhattacharyya et al., 1995). The set of parameters involved in a system
makes a Parametric Vector, the set of all vectors that can exists such that each parameter is kept
within its lower and upper bounds is called a Parametric Uncertainty Box.
The system we are studying is now composed of an infinite number of systems, each system
corresponds to a parameter vector contained in the parametric uncertainty box. So as to
test the stability of the LTI system with parametric uncertainty we have to prove that all the
infinite number of systems are stable, this is called Parametric Robust Stability. The parametric
robust stability problem is considerably more complicated than determine the stability of an
LTI system with fixed parameters. The stability of a LTI system can be analyzed in different
ways, this chapter will be analyzed by means of its characteristic polynomial, in the case of
parametric uncertainty now exists a set with an infinite number of characteristic polynomials,
this is known as a Family of Polynomials, and we have to test the stability of the whole family.
The parametric robust stability problem in LTI systems with parametric uncertainty is solved
in this chapter by means of two tools, the first is a recent stability criterion for LTI systems
(Elizondo, 2001B) and the second is the mathematical tool “Sign Decomposition” (Elizondo,
1999). The recent stability criterion maps the prametric robust stability problem to a robust
positivity problem of multivariable polynomic functions, sign decomposition solves this
problem in necessary and sufficient conditions.
By means of the recent stability criterion (Elizondo, 2001B) is possible to analyze the
characteristic polynomial and determine the number of unstable roots on the right side in
the complex plane. This criterion is similar to the Routh criterion although without using the
traditional division of the Routh criterion. This small difference makes a big advantage when
it is analized the robust stability in LTI systems with parametric uncertainty, the elements of
the first column of the table (Elizondo, 2001B) they are multivariable polynomic functions and
these must be positive for stability conditions. Robust positivity of a multivariable polynomial
function is more easier to prove that in the case of quotients of this class of functions, therefore,
the recent criterion (Elizondo, 2001B) is easier to use than Routh criterion. There are other
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criterions whose its elements are multivariable polynomic functions, such as the Hurwitz
criterion and Lienard-Chipart criterion (Gantmacher, 1990), but both use a huge amount
of mathematical operations in comparison with the recently stablished stability criterion
Elizondo et al. (2005). When industrial cases are analyzed, the difference of mathematical
operations is paramount, if the recently stability criterion takes several hours to determine the
robust stability, the other criterions take several days. For these reasons the recently stability
criterion is used in this chapter instead of other criterions.
Sign Decomposition (Elizondo, 1999) also called by some authors as Sign definite Decomposition
is a mathematical tool able to determine in necessary and sufficient conditions the robust
positivity of multivariable polynomic functions by means of extreme points analysis. Sign
Decomposition begun as incipient orthogonal ideas of the author in his PhD research. It
was not easy to develop this tool as thus it happens in orthogonal works with respect to the
contemporary research line, the orthogonal ideas normally are not well seen. This is a very
difficult situation on any research work, there may be many opinions, but we must accept that
the world keeps working by the aligned but it changes by the orthogonals.
In LTI systems with parametric uncertainty applications, the multivariable polynomic
functions to be analyzed depend on bounded physical parameters and some bounds could
be negative. So sign decomposition begins with a coordinates transformation from the
physical parameters to a set of mathematical parameters such that all the vectors of the new
parameters are contained in a positive convex cone; in other words, all the new parameters are
non-negatives. In this way, the multivariable polynomic function is made by non-decreasing
terms, some of them are preceded by a positive sign and some by a negative sign. Grouping all
the positive terms and grouping all the negative terms, then factorizing the negative sign and
defining a “positive part” and a “negative part” of the function we obtain two non-decreasing
functions. Now the function can be expressed as the positive part minus the negative part. It
is obvious that both parts are independent functions, so they can be taken as a basis in with
a graphical representation using two axis, the axis of the negative part and the axis of the
positive part. Now, suppose that we have a particular vector contained in the parametric
uncertainty box , then evaluating the negative part and the positive part a point on the
“negative part, positive part plane” is obtained, this point represents the function evaluated
in the particular vector in . The forty five degree line crossing at the origin on the “negative
part, positive part plane” represents the set of functions with zero value, a point above this
line represents a function with positive value and a point below this line represents a function
with negative value.
The decomposition of the function in its negative and positive parts may look very simple
and non-transcendent but taking into acount that the negative and positive parts are made by
the addition of non-decreasing terms, then the negative and positive parts are nondecreasing
functions in a vector space, this implies that the positive part and the negative part are bonded.
So, geometrically, any point representing the function evaluated at any parameter vector is
contained in a rectangle on the “negative part, positive part plane” and if the lowest right
vertex is above the forty five degree line then the function is robust positive, obtaining in this
way the basis of the “rectangle theorem”. By means of this theorem upper and lower bounds
of the multivariable polynomic function in the parametric uncertainty box are obtained.
Sign decomposition contains a set of definitions, propositions, facts, lemmas, theorems and
corollaries, sign decomposition can be applied to several disciplines; in the case of LTI systems
with parametric uncertainty, this mathematical tool can be applied to robust controllability,
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obsevability or stability analysis. In this chapter sign decomposition is applied to parametric
robust stability.
In this chapter the following topics are studied: recent stability criterion, linear time invariant
systems with parametric uncertainty, brief description of sign decomposition and finally a
solution for the parametric robust stability problem. All demonstrations of the criterions,
theorems, corollaries, lemmas, etc, will be omitted because they are results previously
published.

2. A recent stability criterion for LTI systems

The study of stability of the LTI systems begun approximately one and a half century
ago with three important criterions: Hermite in 1856 (Ackermann et al., 1993), 1854
(Bhattacharyya et al., 1995); Routh in 1875 (Ackermann et al., 1993), 1877 (Gantmacher, 1990)
and Hurwitz in 1895 (Gantmacher, 1990). Routh, using Sturm’s theorem and Cauchy Index
theory of a real rational function, set up a theorem to determine the number k of roots of
polynomial with real coefficients on the right half plane of the complex numbers.

Theorem 1. (Routh) (Gantmacher, 1990) The number of roots of the real polynomial p(s) =
c0 + c1s + c2s2 + · · · + cnsn in the right half of the complex plane is equal to the number of
variations of sign in the first column of the Routh’s table with coefficients: ai,j = (ai−1,1ai−2,j+1 −
ai−2,1ai−1,j+1)/ai−1,1 ∀i ≥ 3, ai,j = cn+1−i−2(j−1) ∀i ≤ 2

There are several results related to the Routh criterion, for example (Fuller, 1977; Meinsma,
1995), but they are not appropriate to use in the parametric uncertainty case and they use
more mathematical calculations than the Routh criterion.
In this chapter a recent criterion, an arrange similar to the Rouht table, it is presented. The
stability in this recent criterion depends on the positivity of a sign column. The recent criterion
has two advantages: 1) the numerical operations are reduced with respect to above mentioned
criterions; 2) the coefficients are multivariable polynomic functions in the case of parametric
uncertainty and robust positivity is easier to test than Routh criterion. The criterion is as
described below.

Theorem 2. (Elizondo, 2001B) Given a polynomial p(s) = c0 + c1s+ c2s2 + · · ·+ cn−1sn−1 + cnsn

with real coefficients, the number of roots on the right half of the complex plane is equal to the number
of variations of sign in the sign σ column on the follow arrange.

σ1 cn cn−2 cn−4 · · ·
σ2 cn−1 cn−3 cn−5 · · ·
σ3 e3,1 e3,2 · · ·
...

...
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The procedure for calculating the elements (ei,j) is similar to the Routh table but without
using the division. On the other hand, the calculation of an element σi is more easier
than it looks mathematical expression. We can get the sign σi , multiplying the sign of the
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element (ei,1) by the sign of the immediate superior element (ei−1,1) and then jumping in
pairs. For example σ6 = Sign(e6,1)Sign(e5,1)Sign(e3,1)Sign(e1,1). Also σ1 = Sign(cn) and
σ2 = Sign(cn−2). So also it is not necessary to calculate the last element (en+1,1), only its
sign is necessary to calculate. Each row of (ei,j) elements is obtained by means of (ei−1,j)
and (ei−2,j) elements previously calculated and in Hurwitz criterion a principal minor is not
calculated from previous, then the Elizondo-González criterion is more advantageous than
Hurwitz criterion as shown in table (1)

Remark 3. a) Given the relation of the above criterion with the Routh criterion, the cases in that one
element ei,j is equal to cero or all the elements of a row are cero, they are treated as so as it is done in the
Routh criterion. b) The last element en+1,1 is not necessary to calculate, but it is necessary to obtain
only its sign

Mathematical operations in polynomials n degree
grado Hurwitz C. Elizondo

n × + o − × + o −
3 4 1 2 1
4 9 2 5 2
5 66 18 9 4
6 193 45 14 6
7 780 145 20 9

Table 1. A comparison of stability criterions.

2.1 Examples
Example 1. Given the polynomial p(s) = s5 + 2s4 + 1s3 + 5s2 + 2s + 2 by means of criterion 2
determine the number of roots in the right half of the complex plane and compare the results
with the Routh criterion.
Applying 2 criterion we obtain the left table. As an example of the procedure to obtain the
elements ei,j and σi, we have: e3,1 = 2 × 1 − 1 × 5, e3,2 = 2 × 2 − 1 × 2, σ6 = Sign(+)×
Sign(−56)× Sign(−3)× Sign(1), σ5 = Sign(−56)× Sign(−19)× Sign(2).

Elizondo-González 2001
σ1 = + 1 1 2
σ2 = + 2 5 2
σ3 = − −3 2
σ4 = + −19 −6
σ5 = + −56
σ6 = + +

Routh
1 1 2
2 5 2
−1.5 1
6.3333 2
1.4737
+

Table 2. Example 1. Comparison of stability criterions.

The left arrengment shows two sign changes in σ column so the polynomial has two roots
on the right half of the complex plane. By means of Routh criterion is obtained the right
table, it shows too two sign changes in the first column which is the same previous result. An
interesting observation (see table (2)) is that the left table presents a minus sign in the third
row of the σ column and the right table presents a minus sign in the same third row but in the
first column.
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Example 2. Given the polynomial p(s) = s5 + 2s4 + 2s3 + 2s2 + s + 3 by means of criterion 2
determine the number of roots in the right half of the complex plane and compare the results
with the Routh criterion.

Elizondo-González 2001
σ1 = + 1 2 1
σ2 = + 2 2 3
σ3 = + 2 −1
σ4 = + 6 6
σ5 = − −18
σ6 = + −

Routh
1 2 1
2 2 3
1 −0.5
3 3
−1.5
+

Table 3. Example 2. Comparison of stability criterions.

It is easy to see by means of two criterions that the polynomial has two roots on the right half
of the complex plane in accordance to the table (3).
Example 3. Given the polynomial p(s) = s5 + 1s4 + 2s3 + 2s2 + 2s + 1 by means of criterion 2
determine the number of roots in the right half of the complex plane.
When we try to make the table by means of Elizondo-González 2001 criterion or Routh
criterion, it is truncated because e3,1 = 0

σ1 1 2 2
σ2 1 2 1
σ3 0 1

Table 4. Example 3. Presence of a zero in the first column of elements.

Since the element e3,1 is equal zero (see table (4)) then this element is replaced by by an � > 0,
thus obtaining the following arrangement.

σ1 1 2 2
σ2 1 2 1
σ3 � 1
σ4 2� − 1 �

σ5 2� − 1 − �2

σ6 (2� − 1 − �2)�

Table 5. Example 3. Solution of the problem of zero in the first column.

Applying the limit � → 0 in table (5) is obtained the table (6).

σ1 = + 1 2 2
σ2 = + 1 2 1
σ3 = + � 1
σ4 = − −1 �

σ5 = + −1
σ6 = + −�

Table 6. Example 3. Final result to the solution of the problem of zero in the first column.

From the table (6) is easy to see that the polynomial has two roots on the right half of the
complex plane.
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Example 4. Given the polynomial p(s) = s5 + 1s4 + 2s3 + 2s2 + 1s + 1 by means of criterion 2
determine the number of roots in the right half of the complex plane. Applying this criterion
we get as following.

σ1 1 2 1
σ2 1 2 1
σ3 0 0

Table 7. Example 4. A row equal zero.

The table (7) generated, it shows the third row equal zero. Then obtaining the derivative of the
polynomial “corresponding” to the immediately superiory row p(s) = s4 + 2s2 + 1 is obtained
p(s) = 4s3 + 4s. Now the coefficients of this polynomial replace the zeros of the third row and
the procedure continues, obtaining in this way the follow arrangement.

σ1 = + 1 2 1
σ2 = + 1 2 1
σ3 = + 4 4
σ4 = + 4 4
σ5 = + �

σ6 = + 4�

Table 8. Example 4. Solution to the problem of a row equal zero.

We can see in table (8) that there is no sign change in sigma column, then there are not roots
in the right half complex plane.

3. Linear time invariant systems with parametric uncertainty

3.1 Parametric uncertainty
All phisical systems are dependent on parameters qi and in the physical world does not know
the value of the parameters, only know the lower q−i and upper q+i bounds of each parameter,
so that q−i ≤ qi ≤ q+i , this expression is also written as qi ∈ [q−i , q+i ].
For example if we have several electrical resistances with color code of 1,000 ohm, if one
measures one of them, the measurement can be: 938, 1,024, or a value close to 1,000 ohm but
it is rather difficult that it is exactly 1,000 ohm. By means of tolerance code can be deduced
that the resistance will be greater than 900 and less than 1,100 ohm. Another example is
the mass of a commercial aircraft, it can fly with few passengers and little baggage or with
with many passengers and much baggage, then the mass of the plane is not known until the
last passenger to be registered, but not when the plane was designed, however the plane is
designed to fly from a minimum mass to a maximum mass.
The set of � parameters involved in a system makes a Parametric Vector q = [q1, q2, · · · , q�]T,
q ∈ �� and the set of all the possible parameter vectors that may exist makes a Parametric
Uncertainty Box Q = { q = [q1, q2, · · · , q�]T

∣∣ qi ∈ [q−i , q+i ] ∀i}. In the case of qi > 0 ∀i then
Q = { q = [q1, q2, · · · , q�]T

∣∣ qi > 0, qi ∈ [q−i , q+i ] ∀i } and Q is contained in a positive convex
cone P, Q ⊂ P ⊂ ��.
For the study of cases involving parametric uncertainty is necessary to define the minimum
and maximum vertices of the parametric uncertainty box, so the minimum vmin and
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maximum vmax Euclidean vertices of Q are defined as so as
∥∥vmin

∥∥
2 = min

q∈Q
�q�2, �vmax�2 =

max
q∈Q

�q�2.

3.2 Parametric robust stability in LTI systems
In the LTI systems with parametric uncertainty, the characteristic polynomial has coefficients
dependent on physical parameters, p(s, q) = c0(q) + c1(q)s + c2(q)s2 + · · · cn(q)sn; so Routh
criterion is very difficult to use because it is necessary to test the robust positivity of
rational functions dependent on physical parameters. By means of Hurwitz criterion is
possible to solve the problem of parametric robust stability by means of robust positivity of
principal minors of a matrix dependent on physical parameters, this procedure uses a lot of
mathematical calculations. The robust positivity of rational function dependent on physical
parameters can be considered as so as a very much difficult problem since only the robust
positive test of multivariable polynomic function is very difficult problem (Ackermann et al.,
1993) (page 93). So the parametric robust stability problem in LTI systems with parametric
uncertainty in the general case is not an easy problem to solve, however in this chapter is
presented a solution.
The characteristic polynomials are classified according to its coefficient of maximum
complexity; from the simplest structure coefficient to the most complex are: Interval, Affine,
Multilinear and Polynomic. For example, the coefficients: ci(q) = qi, ci(q) = 2q1 + 3q2 + 5q3 +
q4, ci(q) = 5q1q2 + 2q2q4 + 5q3 + q4, ci(q) = 2q3

1q2 + 2q2
2q5

4 + q3, correspond to classification:
Interval, Affine, Multilinear and Polynomic respectively. The number of polynomials p(s, q)
that can exist is infinite since the number of vectors that exist is infinite, the collection of all
polynomials that exist is a Family of Polynomials P(s, Q) = {p(s, q)|q ∈ Q}.
The families of polynomials interval and afin are convex sets and these families have
subsetting test. This concept, subsetting test, means that a family of polynomials is robustly
stable if and only if all polynomials contained in the subsetting test are stable.
Kharitonov in (Kharitonov, 1978), by means of his theorem demonstrates that a family of
interval polynomials is robust stable if and only if a set of four polynomials are stable. In
(Bartlett et al., 1988) by means of their edge theorem, demonstrated that a family of afin
polynomials is robustly stable if and only if all the polynomials corresponding to the edges
of the parametric uncertainty box are stable. The multilinear an polynomic families are not
convex set and they do not have subsetting test. So parametric robust stability of these
families can not be resolved by tools based on convexity. In (Elizondo, 1999) was presented a
solution for parametric robust stability of any kind of family: Interval, Affine, Multilinear or
Polynomic. The solution is based on sign decomposition, and by means of this tool can also
solve the problem of robust controllability or robust observability.

3.3 Robust stability mapped to robust positivity
The parametric robust stability problem of LTI systems can be mapped to a problem of robust
positivity of polynomial functions for at least three ways.
The first two are: the Hurwitz and Lienard-Chipart criterions, the other is the recently
stability criterion (2). By Hurwitz or Lienard-Chipart criterions can do the mapping but as
explained these require making a lot of mathematical calculations. The criterion (2) requires
much less mathematical calculations that the criterions mentioned as was shown in table (1),
(Elizondo et al., 2005)
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The parametric robust stability problem of LTI systems can be mapped to a problem of robust
positivity of polynomial functions for at least three ways.
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4. Brief description of sign decomposition

In different areas of sciences the fundamental problem can be mapped to a problem of robust
positivity of multivariable polynomic functions. For example the no singularity of a matrix
can be analyzed by mean of the robust positivity of its determinant, so it is very useful to have
a mathematical tool that solves the problem of robust positivity of multivariable polynomic
functions. Practically there are three tools for this purpose: Interval Arithmetic (Moor, 1966);
Bernstein Polynomials (Zettler, et all 1998) and Sign Decomposition ((Elizondo, 1999)) whose
complete version is developed in (Elizondo, 1999) and its partial versions are presented in
(Elizondo, 2000; 2001A;B; 2002A;B), for simplicity only will be mentioned (Elizondo, 1999).
Interval arithmetic is very difficult to use because it requires much more calculations than
other methods. When robust positivity is analyzed in a very simple function, Bernstein
polynomials have advantages over sign decomposition, but when the function is not simple,
sign decomposition has advantages over Bernstein polynomials (Graziano et al., 2004). There
are several works using sign decomposition instead of Bernstein polynomials, some of them
are: (Bhattacharyya et al., 2009; Guerrero, 2006; Keel et al., 2008; 2009; Keel, 2011; Knap et al.,
2010; 2011)

4.1 Definition of sign decomposition
The following is a brief description of the more relevant results of Sign Decomposition
(Elizondo, 1999). By means of this tool it is possible to determine, in necessary and sufficient
conditions, the robust positivity of a multivariable polynomic function depending on �
parameters, employing extreme points analysis.
Since mathematically exist the possibility that a parameter q̂i has negative value , then this tool
begins by a “coordinates transformation” from q̂i to qi such that the new parameters will be
positive qi > 0, then an uncertainty box Q = { q = [q1, q2, · · · , q�]T

∣∣ qi > 0, qi ∈ [q−i , q+i ] } is
makes, in other words, Q is in a positive convex cone P, Q ⊂ P ⊂ �� with minimum vmin and
maximum vmax Euclidean vertices. The transformation is very easy as shown in the equation
(1)

qi = q−i +
q̂i − q̂−i
q̂+i − q̂−i

(q+i − q−i ) (1)

From here on we will assume that if necessary, the transformation was made and work with
parameters qi > 0. Under this consideration will continue with the rest of this topic.

Definition 4. (Elizondo, 1999) Let f : �� → � be a continuous function and let Q ⊂ P ⊂ ��

be a box. It is said that f (q) has Sign Decomposition in Q if there exist two bounded continuous
nondecreasing and nonnegative functions fn(·) ≥ 0, fp(·) ≥ 0, such that f (q) = fp(q) − fn(q)
∀ q ∈ Q. In this way there are defined the Positive Part fp(q) and Negative Part fn(q) of the
function.

Negative Part is only a name since Negative Part and Positive Part are nonnegative.

4.2 ( fn, fp) representation
Is obvious that for the general case, fn(·) and fp(·) are independent functions then they make
a basis in �2 with graphical representation in the ( fn(·), fp(·)) plane in accordance with figure
( 1).
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If we take a particular vector q ∈ Q and evaluated the fn(q) and fp(q) parts, we obtain the
coordinates ( fn(q), fp(q)) of the function in the ( fn, fp) plane. The 45o line is the set of points
where the function is equal zero because fp(q) = fn(q) so f (q) = fp(q)− fn(q) = 0 . If a point
is above the 45o line means that fp(q) > fn(q) then f (q) > 0. If a point is below the 45o line
means that fp(q) < fn(q) then f (q) < 0.

Fig. 1. ( fn, fp) plane

It should be noted that independently of the number of parameters in which the function
depends on, the function will always be represented in �2 via ( fn(q), fp(q)). For example,
the function f (q) = 4 − q2 + q1q3 + 8q2

1q2 − 9q1q2
2q3

3 such that q ∈ Q ⊂ P ⊂ �3,
Q = { q = [q1, q2, q3]

T
∣∣ qi ∈ [0, 1] }. The function has sign decomposition because it is

decomposed in two bounded continuous nondecreasing and nonnegative functions fp(q) =

4 + q1q3 + 8q2
1q2, fn(q) = q2 + 9q1q2

2q3
3 and f (q) = fp(q)− fn(q). The figure ( 2) was obtained

by plotting a hundred lines blue color, (one hundred fifty points per line) of variable q3 holding
(q1, q2) constant uniformly distributed in different positions. The process was repeated
varying q2 in green color and finally varying q1 in red color. According to the position shown
in the graph of the function with respect to the 45o line, it appears that the function is robustly
positive. But it must be demonstrated mathematically.

Fig. 2. Function in ( fn, fp) plane
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Some preliminary properties of the continuous functions f (q), g(q), h(q) with sign
decomposition in Q and for all u(q) nondecreasing function in Q, are proved in (Elizondo,
1999) as so facts, lemmas and theorems. This properties are employed on the following
theorems.
a) ( fn(q) + u(q), fp(q) + u(q)) is a ( fn, fp) representation of the function f (q) ∀q ∈ Q; b)
the representation ( fn(q) + u(q), fp(q) + u(q)) of the function is reduced to its minimum
expression: ( fp(q), fn(q)); c) f (q) + g(q); d) f (q)− g(q) and e) f (q)g(q) are functions with
sign decomposition in Q; f) if f (q) = g(q) + h(q), then the positive and negative parts of
f (q) − g(q) are reduced to their minimum expressions, as follows: f (q) − g(q) = ( f (q) −
g(q))p − ( f (q)− g(q))n, ( f (q)− g(q))n = fn(q)− gn(q), ( f (q)− g(q))p = fp(q)− gp(q).

4.3 The rectangle theorem
Since negative part and positive part are bounded continuous nondecreasing functions, then
the following inequalities ( 2) are fulfilled.

fn(νmin) ≤ fn(q) ≤ fn(νmax)
fp(νmin) ≤ fp(q) ≤ fp(νmax)

(2)

This means that a function f (q) with sign decomposition, evaluated at any vector q ∈ Q,
its negative part is contained in a segment and also the positive part is contained in another
segment. So, on ( fn, fp) plane the function is contained in a rectangle as expressed by the
following theorem according to figure ( 3 ).

Theorem 5. (Elizondo, 1999) Rectangle Theorem. Let f : �� → � be a continuous function
with sign decomposition in a box Q ⊂ P ⊂ �� with minimum and maximum Euclidean vertices
vmin, vmax, then: a) f (q) is lower and upper bounded by fp(vmin) − fn(vmax) and fp(vmax) −
fn(vmin) respectively; b) The graphical representation of the function f (q), ∀q ∈ Q in ( fn, fp)

plane is contained in the rectangle with vertices ( fn(vmin), fp(vmin)), ( fn(vmax), fp(vmax)),
( fn(vmin), fp(vmax)) and ( fn(vmax), fp(vmin)); c) if the lower right vertex ( fn(vmax), fp(vmin))

is over the 45o line then f (q) > 0 ∀q ∈ Q; d) if the upper left vertex ( fn(vmin), fp(vmax)) is below
the 45o line then f (q) < 0 ∀q ∈ Q. In accordance with figure ( 3 ).

The above result seems to be very useful, we can say that the rectangle is the “house” where
the multivariable function lives in �2. We can know the robust positivity of a function
analyzing only one point. It is important to note that this is only sufficient conditions, the
lower right vertex can be below the 45o line and the function could be robustly positive or not
be. But if the lower right vertex is above the 45o line then the function is robustly positive.
For example, the function f (q) = 4 − q2 + q1q3 + 8q2

1q2 − 9q3
3q1q2

2 such that q ∈ Q ⊂ P ⊂ �3,
Q = { q = [q1, q2, q3]

T
∣∣ qi ∈ [0, 1] }, has sign decomposition, its minimum and maximum

Euclidean vertices are νmin = [0, 0]T, νmax = [1, 1]T, their positive and negative psrtes are:
fp(q) = 4 + q1q3 + 8q2

1q2, fn(q) = q2 + 9q3
3q1q2

2. Then the lower bound is fp(vmin)− fn(vmax),
fp(vmin) = 4 + (0)(0) + 8(0)(0) = 4, fn(vmax) = 1 + 9(1)(1)(1) = 10, the lower bound is
4 − 10 = −9. The function could be robustly positive, but for now we do not know, It is
necessary see more signs of decomposition items.

Remark 6. Should be noted three important concepts:
The graph of the function does not "fills" the whole rectangle, but it is contained in.
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The graph of the function always "touches " the rectangle in lower left vertice and upper right vertice.
The graph of the function is not necessarily convex.

Fig. 3. Rectangle theorem

4.4 The polygon theorem
For the purpose of improving the results shown up to this point, the following proposition
is necessary. In some cases it is necessary to analyze the function in a Γ box contained in Q,
Γ ⊂ Q. The Γ box has Euclidean Vertices μmin and μmax. So, a vector in Γ is expressed as so as
q = μmin + δ, where δ is a vector in Γ, with origins in μmin.

Proposition 7. (Elizondo, 1999) Let f : �� → � be a continuous function in Q ⊂ P ⊂ ��, let
Γj ⊂ Q be a box with its vertices set {μi} with minimum and maximum Euclidean vertices μmin,
μmax, let Δ = {δ | δi ∈ [0, δmax

i ], δmax
i = μmax

i − μmin
i } ⊂ P ⊂ �� be a box with its vertices set

{δi} with minimum and maximum Euclidean vertices 0, δmax = μmax − μmin, and let q ∈ Γj a vector
such that q = μmin + δ where δ ∈ Δ. Then the function f (q) is expressed by its: linear, nonlinear and
independent parts, in its minimum expression for all q ∈ Γj.
f (q) = f min + fL(δ) + fN(δ) | δ ∈ Δ∀q ∈ Γj

f min � Indepent Part = f (μmin)
fL(δ) � Linear Part = ∇ f (q)|μmin · δ ∀δ ∈ Δ

fN(δ) � Nonlinear Part = f (μmin + δ)− f min − fL(δ) ∀δ ∈ Δ

∇ f (q)|μmin · δ =
∂ f (q)

q1

∣∣∣∣
μmin

δ1 +
∂ f (q)

q2

∣∣∣∣
μmin

δ2 + · · ·+ ∂ f (q)
q�

∣∣∣∣
μmin

δ�

Must be noted that f min = f (μmin). On other hand, it is clear that we can use the concepts of
positive part and negative part in the above proposition, So, fp(q)− fn(q) = f min

p − f min
n +

fLp(δ) − fLn(δ) + fNp(δ) − fNn(δ) obtaining the following equations (3) where the relation
between δ and q can be appreciated in the figure (4).

fp(q) = f min
p + fLp(δ) + fNp(δ)

fn(q) = f min
n + fLn(δ) + fNn(δ)

(3)
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Fig. 4. Gamma box

Theorem 8. Polygon Theorem (Elizondo, 1999). Let f : �� → � be a continuous function with
sign decomposition in Q, let q, δ, Γj and Δ in accordance with the proposition (7). Then, a) the
lower and upper bounds of the function f (q) are: Lower Bound = f min + fL min − fNn(δ

max) and
Upper Bound = f min + fL max + fNp(δ

max) ∀q ∈ Q, b) the bounds of incise ”a”, are contained
in the interval defined by the bounds of the rectangle theorem 3. fp(μmin) − fn(μmax) ≤ Lower
Bound ≤ Upper Bound ≤ fp(μmax) − fn(μmin), c) The graphical representation of the function
f (q) ∀q ∈ Γ in the ( fn, fp) plane is contained in the polygon defined by the intersection of the
rectangle of the rectangle theorem (5) and the space between the two 45o lines separated from the origin
by the Lower Bound and Upper Bound in accordance with figure (5).

Fig. 5. Bounding of the function

The symbolic expression of the nonlinear part used in the above theorem is not necessary to
obtain, because we will use only its numerical value. So, from the equations (3), the nonlinear
parts are obtained as so as equations ( 4).
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fNp(δ) = fp(q)− f min
p − fLp(δ)

fNn(δ) = fn(q)− f min
n − fLn(δ)

fLp(δ) = ∇ fp(q)
∣∣
μmin · δ

fLn(δ) = ∇ fn(q)|μmin · δ

(4)

As an illustration of this theme, by means of rectangle theorem and polygon, we will analyze
the lower bound of a function in a gama box. Consider the function corresponding to
the figure ( 2), f (q) = 4 − q2 + q1q3 + 8q2

1q2 − 9q3
3q1q2

2 such that q ∈ Q ⊂ P ⊂ �3,
Q = { q = [q1, q2, q3]

T
∣∣ qi ∈ [0, 1] }. Suppose that the function is analyzed into a gamma

box Γ ⊂ Q, with Euclidean vertices μmin = [0.2 0.2 0.2 ]T and μmax = [0.85 0.85 0.85 ]T.
In accordance with the Rectangle Theorem (3) the lower bound is fp(vmin) − fn(vmax) =

−0.1403. Applying the Polygon Theorem (8) the lower bound is f min + fL min − fNn(δ
max),

so it is necessary to obtain each of these expressions, the results are as follows: f min =
f (μmin) = 3.9034, fL min = −0.4457, fNn(δ

max) = 3.3825. The last value is obtained of
ecuations (4), thus the lower bound is 0.0752. By means of the Rectangle Theorem is obtained
f (q) > −0.1403 ∀q ∈ Γ, following the Polygon Theorem is obtained f (q) > 0.0752 ∀q ∈ Γ, so
the function is robustly positive in the Γ box.

4.5 The box partition theorem
By means of Rectangle Theorem (3) and Polygon Theorem (8) are obtained sufficient
conditions of robust positivity, so to obtain necessary and sufficient conditions is necessary
to obtain new results.
When it is not possible to know whether the function is positive or not in Q = [q−1 , q+1 ]
×[q−2 , q+2 ]× · · · × [q−� , q+� ]. In this case it is possible to divide each variable [q−i , q+i ] in k parts,

generating k new intervals: [q−i , q1
i ], [q

1
i , q2

i ], · · · , [qj
i , qj+1

i ], · · · [qk−1
i , q+i ], let [γ−

i , γ+
i ] be a

k new interval, giving cause to the generation of k� new boxes Γi = [γ−
1 , γ+

1 ]× [γ−
2 , γ+

2 ]×
· · · × [γ−

� , γ+
� ] with μmin, μmax ∈ Γi minimum and maximum Euclidean vertices of Γi and

Q =
⋃
i

Γi. Through these concepts, the following theorem is obtained.

Theorem 9. Box Partition Theorem (Elizondo, 1999). Let f : �� → � be a continuous function
with sign decomposition in Q such that Q ⊂ P ⊂ �� is a box with minimum and maximum Euclidean
vertices vmin, vmax. Then the function f (q) is positive (negative) in Q if and only if a Γ boxes set exists,
such that Q =

⋃
j

Γj and Lower Bound ≥ c > 0 for each Γj box (Upper Bound ≤ c < 0 for each one

Γj box).

This theorem can be applied in two ways, one of them we call “ Analytical Partition” and
the other one “Constant Partition”. In analytical partition, the box where the function has a
negative lower bound is subdivided iteratively. In the case of the function is robustly positive
is also obtained information about where the function is close to losing positivity. By means
of constant partition is only obtained information on whether the function is robustly positive
or not.
To illustrate both procedures, we analyze the robust positivity of the function (Elizondo, 1999)
f (q) =

(
4 + q1 + 8q2

1q2
)− (

q2 + 9q1q2
2
)
, such that Q = { q = [q1, q2]

T
∣∣ qi ∈ [0, 1] ∀i } . The

robust positivity is analized by means of the rectangle theorem because it is more easier to
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Fig. 4. Gamma box
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apply, although it must be said that the bounds of the polygon theorem are better than the
rectangle theorem.
Analytical Partition (Elizondo, 1999). In the subfigure 1 of figure (6) shows that the function
is robustly positive in boxes Γ1 and Γ3 but not in the boxes Γ2 and Γ4. So it is necessary
apply iteratively the partition box to the boxes where the function is not robust positive, in
this way is obtained the subfigure 2 of figure (6). Since there is a set of boxes such that Q =⋃
j

Γj| f (q) > 0 ∀Γj, then the function is robustly positive in Q. The graphs were made to show

the procedure in visual way, but for more than two dimensions, using software we can get the
coordinates and dimensions of sub boxes where the function is close to losing positivity.

(a) Subfigure 1 (b) Subfigure 2

Fig. 6. Partition box

Constant Partition (Elizondo, 1999). In this procedure the domaine of each one of the �
parameters is divide in k equal parts (not necessarily equal), in this way, it is generated a
boxes set of k� sub boxes Γi such that Q =

⋃
j

Γj. The robust positivity of each Γi box can be

analyzed by a computer program so that the computer give us the final result about the robust
positivity of the function.
Another way is through a software which plot a × (blue) mark in the ( fn, fp) plane in each
( fn(μmin), fp(μmin)) and ( fn(μmax), fp(μmax)) coordinates corresponding to the minimum
and maximum vertices of each Γi box, and plot too a + (red) mark corresponding to the lower
bound of each Γi box, as can be appreciated in figure (7) that it was obtained with k = 13.
If a × (blue) mark is below the 45o line, means that there is at least one vector for which the
function is negative and therefore the function is not robustly positive. If all the × (blue) marks
are above the 45o line, and a + (red) mark is below the 45o line means that it is necessary to
increase the k number of partitions up to all the + (red) and × (blue) marks are above the 45o

line. If this is achieved then the function is robustly positive, as shown in figure (7).
In the figure (7) we can see that it is difficult to see that all + (red) marks are above the 45o

line, then with purpose to resolve this difficulty is proposed the following representation.
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Fig. 7. Function in ( fn, fp) plane

4.6 (α, β) Representation
In some cases as so as figure (7) it is not easy to determine in graphic way whether a point
close to the 45o line is over this line or not. So in (Elizondo, 1999) the (α, β) representation was
developed, α(q) = fp(q) + fn(q), β(q) = fp(q)− fn(q) , it is similar to rotated 45o the axis with
respect to ( fn, fp) representation implying some graphical and algebraic advantages over the
negative and positive representation.

Definition 10. (Elizondo, 1999) Let fn(q) and fp(q) be the negative and positive parts of a continuous
function f (q) with sign decomposition in Q. Let T be the linear transformation described below
such that T −1 exists, then it is called a representation of the function f (q), in (α, β) coordinates,
to the linear transformation (α(q), β(q)) = T( fn(q), fp(q)) and the inverse transformation of an
(α(q), β(q)) representation is a ( fn(q), fp(q)) representation of the function f (q).

T =

[
1 1
−1 1

]
T−1 = 1

2

[
1 −1
1 1

]

[
α(q)
β(q)

]
= T

[
fn(q)
fp(q)

] [
fn(q)
fp(q)

]
= T−1

[
α(q)
β(q)

]

α(q) = fp(q) + fn(q) fp(q) = 1
2 (α(q) + β(q))

β(q) = fp(q)− fn(q) fn(q) = 1
2 (α(q)− β(q))

With the purpose to show the advantages of the (α, β) representation, by means of
the rectangle theorem we analyze the same function in the previous subsection f (q) =(
4 + q1 + 8q2

1q2
)− (

q2 + 9q1q2
2
)

applying k = 13. We can see in the figure (8) beta axis scale is
positive implying that all the bounds are positives and consequently the function is robustly
positive.
The function f (q) = 4 − q2 + q1q3 + 8q2

1q2 − 9q3
3q1q2

2 corresponding to the figure (2) is shown
in the figure (9) in (α, β) representation. We can see that beta axis scale is positive implying
the function is robustly positive.
The original idea to develop the representation (α , β) (Elizondo, 1999) was to solve a visual
geometric problem, but this representation has interesting algebraic properties on continuous
functions f (q), g(q), h(q) with sign decomposition in Q and for all u(q) nondecreasing
function in Q, (Elizondo, 1999) as the following:
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Fig. 8. Function in (α, β) representation

Fig. 9. Function in (α, β) representation

a) α(q) is a non-decreasing and non-negative function in Q; b) α(q) ≥ β(q); c) β(q) = f (q)
∀ f (q), ∀q ∈ Q; d) the (α(q) + u(q), β(q) + u(q)) is a α, β representation of f (q); e) the
(α(q) + u(q), β(q)) representation is reduced to its minimum expression (α(q), β(q)); f)
Addition f (q) + g(q) : α(q) = α f (q) + αg(q), β(q) = β f (q) + βg(q); g) Subtraction f (q)−
g(q) : α(q) = α f (q) + αg(q), β(q) = β f (q)− βg(q); h) Product f (q)g(q), α(q) = α f (q)αg(q),
β(q) = β f (q)βg(q); i) the (α, β) representation of −g(q) is as follows: (αg(q), −βg(q)); j) if
f (q) = g(q) + h(q) then the alpha an beta parts of f (q)− g(q) are reduced to its minimum
expression as follows α(q) = α f (q)− αg(q), β(q) = β f (q)− βg(q).
Computationally the (α, β) representation is better than ( fn, fp) because if the computer does
not generate the negative scale in the β axis it is implying that all “marks” are positives.
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This is an usful and inetresting property, but above all properties there are three outstanding
properties, it would be very useful if they were fulfilled in complex numbers, they are as
follows:

Addition f (q) + g(q) α(q) = α f (q) + αg(q) β(q) = β f (q) + βg(q)
Subtraction f (q)− g(q) α(q) = α f (q) + αg(q) β(q) = β f (q)− βg(q)
Product f (q)g(q) α(q) = α f (q)αg(q) β(q) = β f (q)βg(q)

(5)

Most be noted that the alpha componet of subtraction is correct with α(q) = α f (q) + αg(q), it
is an “addition” of alphas. It is also important to highlight the simplicity with which made
the addition, subtraction and product in alpha beta representation.

4.7 Sign decomposition of the determinant
Sign decomposition of the determinant was developed in (Elizondo, 1999) and it was
presented an application in (Elizondo, 2001A; 2002B), by simplicity only will mention
(Elizondo, 1999). In parametric robust stability is not very useful the sign decomposition
of the determinant, but it is a part of sign decomposition. We can analyze robust stability by
means of the Hurwitz criterion means the robust positivity of determinants, but it is so much
easier by means of criterion (2), see table (1). Taking account that the reader could work in
other areas where the nonsingularity of a matrix dependent in parameters is important, then
sign decomposition of the determinant is included in this chapter.

4.7.1 The (α, β) representation of the determinant
In order to achieve the procedure to determine the robust positivity in necessary and sufficient
conditions of a determinant with real coefficients depending on � parameters qi, the following
fact is presented. By means of the (α, β) properties (5) is obtained the following fact, in
the development of the determinant appears the alpha part and beta part, as shown in the
following fact.

Fact 1. (Elizondo, 1999) Let M(q) be a (2× 2) matrix with elements mi,j(q) ∈ � with representation
(αi,j(q) , βi,j(q)). Then the (α, β) representation of the determinant of the matrix M(q) is:

(det(M(q)))α = (α1,1(q)α2,2(q) + α2,1(q)α1,2(q))
(det(M(q)))β = (β1,1(q)β2,2(q)− β2,1(q)β1,2(q)).

Definition 11. (Elizondo, 1999) Let M(q) =
[
mi,j(q)

]
be a matrix with elements mi,j(q) ∈ � with

(αi,j(q) , βi,j(q)) representation. Then the matrix Mα(q) =
[
αi,j(q)

]
will be called the alpha part of

the matrix M(q), and the determinant detα(M(q)) = |M(q)|α = |Mα(q)|α will be called the alpha
part of the determinant |M(q)| , which is symilar to the usual determinant changing all the subtractions

by additions including the sign rule of Cramer. In a similar way, the matrix Mβ(q) =
[

βi,j(q)
]

will

be called the beta part of the matrix M(q), and the determinant detβ(M(q)) = |M(q)|β =
∣∣∣Mβ(q)

∣∣∣
will be called the beta part of the determinant |M(q)| .

Most be noted that: a) βi,j(q) = mi,j(q), then, Mβ(q) = M(q) and detβ(M(q)) = det(M(q)),
b) In accordance with the above fact, for a (2 × 2) matrix, the (α, β) representation of the

determinant of the matrix M(q) is
(

detα(M(q)), detβ(M(q))
)

. In the following lemma a

generalization of the last expression for a (n × n) matrix is stablished.
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Lemma 12. (Elizondo, 1999) Let M(q) be a (n × n) matrix with elements mi,j(q) ∈ � with
representation (αi,j(q) , βi,j(q) ). Then the (α, β) representation of the determinant of the matrix

M(q) is
(

detα(M(q)), detβ(M(q))
)

. In accordance with definition (11)

4.7.2 Linear, nonlinear and independent parts of the determinant
When the positivity of the determinant of a matrix with elements mi,j(q) is analyzed via sign
decomposition, it is normally necessary to use the box partition and polygon theorems. Then,
the independent, linear and nonlinear parts of the determinant need to be obtained. These are
obtained in the following theorem.

Theorem 13. (Elizondo, 1999) (Sign Decomposition of the Determinant Theorem) Let q ∈ Γ ⊆ Q |
q = μmin + δ be according to the proposition (7 ). Let M(q) ∈ �n×n be a matrix with elements mi,j(q)
with sign decomposition in Q with representation (αmin

i,j + αi,j,L(δ) + αi,j,N(δ), βmin
i,j + βi,j,L(δ) +

βi,j,N(δ)), then the (α, β) representation of the determinant of the matrix M(q) is as follows:

α(q) = αmin + αL(δ) + αN(δ),

β(q) = βmin + βL(δ) + βN(δ)

αmin = detα

([
αmin

i,j

])
, βmin = det

([
βmin

i,j

])

αL(q) =
k=n

∑
k=1

detα

(
Φ(k)

[
αmin

i,j

]
+ [I − Φ(k)]

[
αi,j,L(δ)

])

βL(q) =
k=n

∑
k=1

det
(

Φ(k)
[

βmin
i,j

]
+ [I − Φ(k)]

[
βi,j,L(δ)

])

Φ(k) =
[
ϕi,j(k)

] |
ϕ1,1(k) = |sign(1− k)|
ϕ2,2(k) = |sign(2− k)|

...

ϕn,n(k) = |sign(n − k)|
ϕi,j(k) = 0 ∀i �= j

αN(δ) = α(q)− αmin − αL(δ), βN(δ) = β(q)− βmin − βL(δ)

4.7.3 Example
(Elizondo, 1999; 2001A). The Frazer and Duncan Theorem is presented in (Ackermann et al.,
1993) in the boundary crossing version as follows. Let P(s, Q) = {p(s, q) | q ∈ Q ⊂ P ⊂
��} be a family of polynomials of invariant degree with parametric uncertainty and real
continuous coefficients, then the family P(s, Q) is robust stable if and only if: 1) a stable
polynomial p(s, q̂) ∈ P(s, Q) exists, 2) det (H(q)) �= 0 for all q ∈ Q.
(Ackermann et al., 1993) Given the family of invariant degree polynomials with parametric
uncertainty described by: p(s, q) = c0 + c1s + c2s2 + c3s3 + c4s4, with real continuous
coefficients: c0(q) = 3, c1(q) = 2, c2(q) = 0.25 + 2q1 + 2q2, c3(q) = 0.5(q1 + q2), c4(q) = q1q2,
such that qi ∈ [1, 5]. Determine the robust stability of the family by means of the Frazer
and Duncan theorem applying in graphical way the sign decomposition of the determinant
theorem (13).
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The Hurwitz matrix H(q) is obtained, it is proved that the polynomial p(s, q̂) is stable for
q̂ = [1 1]T and that the determinant of the Hurwitz matrix H(q̂) is positive. Having the first
condition of the Frazer and Duncan theorem satisfied, and proving that the determinant is
robust positive in Q, the second condition of the Frazer and Duncan theorem will be satisfied
too.

H(q) =

⎡
⎢⎢⎣

c3(q) c1(q) 0 0
c4(q) c2(q) c0(q) 0

0 c3(q) c1(q) 0
0 c4(q) c2(q) c0(q)

⎤
⎥⎥⎦

The robust positivity of the determinant problem is solved by means of: the box partition
theorem 9, the polygon theorem 8 in (α, β) representation and the sign decomposition of
the determinant theorem (13). Taking the partition in 9 equal parts in each one of the two
variables qi and applying sign decomposition in constant partition way, the function values
in minimum and maximum vertices “×” and lower bound “+” are plotted for each Γi box, as
it appears in the figure (10). All lower bound marks “+” are above the alpha axis, then all of
bounds are positive, therefore the determinant of the Hurwitz matrix H(q) is robust positive
implying that the polynomials family is robust stable.

Fig. 10. Positivity of the determinant

5. A solution for the parametric robust stability problem

5.1 Problem identification
In control area, the robust stability of LTI systems with parametric uncertainty problem has
been studied in different interesting ways. The problem can be divided in two parts. One of
them is that it is not possible to be obtained roots of a polynomial by analytical means for the
general case. The second is that we have now a family of polynomials to study instead of a
single polynomial.
Since to obtain roots of polynomials for the general case is a difficult problem. Then the
extraction of roots of polynomials went mapped firstly to a “position” of roots problem in the
complex plane, Routh never tried to extract the roots, his work begun studying the position of
the roots. This problem was subjected to a second mapping, it was transferred to mathematical
problems of smaller level for example to a positivity problem, as it is the case of: Routh,
Hurwitz, Lienard-Chipart and Elizondo-González 2001 criterions.

21Parametric Robust Stability



18 Will-be-set-by-IN-TECH

Lemma 12. (Elizondo, 1999) Let M(q) be a (n × n) matrix with elements mi,j(q) ∈ � with
representation (αi,j(q) , βi,j(q) ). Then the (α, β) representation of the determinant of the matrix

M(q) is
(

detα(M(q)), detβ(M(q))
)

. In accordance with definition (11)

4.7.2 Linear, nonlinear and independent parts of the determinant
When the positivity of the determinant of a matrix with elements mi,j(q) is analyzed via sign
decomposition, it is normally necessary to use the box partition and polygon theorems. Then,
the independent, linear and nonlinear parts of the determinant need to be obtained. These are
obtained in the following theorem.

Theorem 13. (Elizondo, 1999) (Sign Decomposition of the Determinant Theorem) Let q ∈ Γ ⊆ Q |
q = μmin + δ be according to the proposition (7 ). Let M(q) ∈ �n×n be a matrix with elements mi,j(q)
with sign decomposition in Q with representation (αmin

i,j + αi,j,L(δ) + αi,j,N(δ), βmin
i,j + βi,j,L(δ) +

βi,j,N(δ)), then the (α, β) representation of the determinant of the matrix M(q) is as follows:

α(q) = αmin + αL(δ) + αN(δ),

β(q) = βmin + βL(δ) + βN(δ)

αmin = detα

([
αmin

i,j

])
, βmin = det

([
βmin

i,j

])

αL(q) =
k=n

∑
k=1

detα

(
Φ(k)

[
αmin

i,j

]
+ [I − Φ(k)]

[
αi,j,L(δ)

])

βL(q) =
k=n

∑
k=1

det
(

Φ(k)
[

βmin
i,j

]
+ [I − Φ(k)]

[
βi,j,L(δ)

])

Φ(k) =
[
ϕi,j(k)

] |
ϕ1,1(k) = |sign(1− k)|
ϕ2,2(k) = |sign(2− k)|

...

ϕn,n(k) = |sign(n − k)|
ϕi,j(k) = 0 ∀i �= j

αN(δ) = α(q)− αmin − αL(δ), βN(δ) = β(q)− βmin − βL(δ)

4.7.3 Example
(Elizondo, 1999; 2001A). The Frazer and Duncan Theorem is presented in (Ackermann et al.,
1993) in the boundary crossing version as follows. Let P(s, Q) = {p(s, q) | q ∈ Q ⊂ P ⊂
��} be a family of polynomials of invariant degree with parametric uncertainty and real
continuous coefficients, then the family P(s, Q) is robust stable if and only if: 1) a stable
polynomial p(s, q̂) ∈ P(s, Q) exists, 2) det (H(q)) �= 0 for all q ∈ Q.
(Ackermann et al., 1993) Given the family of invariant degree polynomials with parametric
uncertainty described by: p(s, q) = c0 + c1s + c2s2 + c3s3 + c4s4, with real continuous
coefficients: c0(q) = 3, c1(q) = 2, c2(q) = 0.25 + 2q1 + 2q2, c3(q) = 0.5(q1 + q2), c4(q) = q1q2,
such that qi ∈ [1, 5]. Determine the robust stability of the family by means of the Frazer
and Duncan theorem applying in graphical way the sign decomposition of the determinant
theorem (13).

20 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics Parametric Robust Stability 19

The Hurwitz matrix H(q) is obtained, it is proved that the polynomial p(s, q̂) is stable for
q̂ = [1 1]T and that the determinant of the Hurwitz matrix H(q̂) is positive. Having the first
condition of the Frazer and Duncan theorem satisfied, and proving that the determinant is
robust positive in Q, the second condition of the Frazer and Duncan theorem will be satisfied
too.

H(q) =

⎡
⎢⎢⎣

c3(q) c1(q) 0 0
c4(q) c2(q) c0(q) 0

0 c3(q) c1(q) 0
0 c4(q) c2(q) c0(q)

⎤
⎥⎥⎦

The robust positivity of the determinant problem is solved by means of: the box partition
theorem 9, the polygon theorem 8 in (α, β) representation and the sign decomposition of
the determinant theorem (13). Taking the partition in 9 equal parts in each one of the two
variables qi and applying sign decomposition in constant partition way, the function values
in minimum and maximum vertices “×” and lower bound “+” are plotted for each Γi box, as
it appears in the figure (10). All lower bound marks “+” are above the alpha axis, then all of
bounds are positive, therefore the determinant of the Hurwitz matrix H(q) is robust positive
implying that the polynomials family is robust stable.

Fig. 10. Positivity of the determinant

5. A solution for the parametric robust stability problem

5.1 Problem identification
In control area, the robust stability of LTI systems with parametric uncertainty problem has
been studied in different interesting ways. The problem can be divided in two parts. One of
them is that it is not possible to be obtained roots of a polynomial by analytical means for the
general case. The second is that we have now a family of polynomials to study instead of a
single polynomial.
Since to obtain roots of polynomials for the general case is a difficult problem. Then the
extraction of roots of polynomials went mapped firstly to a “position” of roots problem in the
complex plane, Routh never tried to extract the roots, his work begun studying the position of
the roots. This problem was subjected to a second mapping, it was transferred to mathematical
problems of smaller level for example to a positivity problem, as it is the case of: Routh,
Hurwitz, Lienard-Chipart and Elizondo-González 2001 criterions.

21Parametric Robust Stability



20 Will-be-set-by-IN-TECH

The objective in this chapter is to study the stability of a family of polynomials with invariant
degree (the reder can see poles and zeros canellation cases) and real continuous coefficients
dependent on parameters with uncertainty. The essence of the problem is that we have now
a set of roots in the the complexes plane, and for stability condition all of them must be in
the left half of the complex plane for asymptotic stability. How to obtain that the set of roots
remains in the left side of the complex plane?
A well known solution is: a) the family P(s, Q) has at least one element p(s, q∗) stable and
b) | H(q)|�= 0 ∀q ∈ Q. The explanation is because the determinant of a Hurwitz matrix is
zero when the polynomial has roots in the imaginary axis, so if there is a q∗ ∈ Q vector such
that p(s, q∗) is stable then its roots are at the left half of the complex plane. On other hand,
if a vector q slides into Q starting from q∗ implies that the coefficients ci(q) will change in
continuous way and the roots of p(s, q∗) will slides too on the complex plane. But if | H(q)|�=
0 ∀q ∈ Q, it means that does not exist a vector q for which p(s, q) has roots in the imaginary
axis, implying that the displacement of the roots never cross the imaginary axis. This solution
is very difficult to use because to test the robust positivity of a determinant in the general case
is a very difficult problem (Ackermann et al., 1993)(page 93).
Another solution was through the subsetting test, the idea worked well in convex families
as interval (Kharitonov, 1978) and affine (Bartlett et al., 1988), but it was not in nonconvex
families as multilinear and polynomic.
Then it can be concluded that the solution for robust stability of LTI systems with parametric
uncertainty problem for the general case: interval, affine, multilinear, polinomic, cannot be
sustained in convexity properties nor subsetting test.

5.2 A proposed solution
In (Elizondo, 1999) it was developed a solution for the general case of robust stability of LTI
systems with parametric uncertainty without concerning the convexity of the families, the
solution consists of two parts.
A part of the solution was the development of a stability criterion, operating with
multivariable polynomic functions in parametric uncertainty case, simpler than Hurwitz
and Lienard-Chipart criterions (Elizondo et al., 2005). The mentioned criterion is similar to
criterion (Elizondo, 2001B) but without the σ column, therefore it does not determine the
number of unstables roots, it only determines whether the polynomial is stable or not. The
amount of mathematical operations required in this criterion is equal to the one of (Elizondo,
2001B) but they are much less that the required ones in Hurwitz and Lienard-Chipart
criterions (Elizondo et al., 2005).
The other part of the solution was the development of a mathematical tool capable of solving
robust positivity problems of multivariable polynomic functions in necessary and sufficient
conditions by means of extreme point analysis.The mathematical tool developed in (Elizondo,
1999) was Sign Decomposition.
Then, the solution proposed for robust stability in LTI systems with parametric uncertainty in
the general case is supported in two results: the stability criterion for LTI systems (Elizondo,
2001B) and sign decomposition (Elizondo, 1999). Given a polynomial p(s, q) = cn(q)sn +
cn−1(q)sn−1 + · · ·+ c0(q) with real coefficients, where q ∈ Q ⊂ P, Q = {[q1 q2 · · · q� ]T |qi ∈
[0, 1] ∀i}. The procedure easier to use is by means of the partition box theorem (9) in the
modality “Constant Partition”, its application could be of the following way.
a) Take the equations of the coefficients ci(q) and decompose them into positive and negative
parts cip(q) and cin(q). In symbolic way.
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b) By means of the positive and negative parts, to obtain the components in alpha and beta
representation. αi = cip(q) + cin(q), βi = cip(q)− cin(q).
c) To make a table in accordance to the criterion (2).
d) By means of the rectangle theorem (5) or polygon theorem (8), to analyze the robust
positivity in Q of the coefficients cn(q) and cn−1(q). In case of negative bound in a coefficient,
include its graph in the following software.
e) To make a software to develop the table in accordance to the partition box theorem and to
graph the wished ei,1 element.

Remark 14. The sigma column in the criterion (2) is not necessary calculate for robust stability

5.3 Example
Given a LTI system with parametric uncertainty Q = {[q1 q2 q3]

T |qi ∈ [0, 1] ∀i}, its
characteristic polynomial of invariant degree is p(s, q) = c4(q)s4 + c3(q)s3 + +c2(q)s2 +
+c1(q)s + c0(q). To analyze the robust stability of the system.
a) Positive and negative parts cpi(q) and cni(q).

c0(q) = 2 + q1q2q3
3 − q2q3

c1(q) = 5 + q1q3
2 − q2q3

c2(q) = 10 + 4q1q3 − q1q2
2 − q3

2
c3(q) = 5 + q2

2 − q1q2
2

c4(q) = 3 + q1q3
2 − q2q3

c0p(q) = 2 + q1q2q3
3

c1p(q) = 5 + q1q3
2

c2p(q) = 10 + 4q1q3
c3p(q) = 5 + q2

2
c4p(q) = 3 + q1q3

2

c0n(q) = q2q3
c1n(q) = q2q3
c2n(q) = q1q2

2 + q3
2

c3n(q) = q1q2
2

c4n(q) = q2q3

b) The alpha and beta representation of the coefficients is as follows.

αi = cpi(q) + cni(q),
α0 = cp0(q) + cn0(q)
α1 = cp1(q) + cn1(q)
α2 = cp2(q) + cn2(q)
α3 = cp3(q) + cn3(q)
α4 = cp4(q) + cn4(q)

βi = cpi(q)− cni(q)
β0 = cp0(q)− cn0(q)
β1 = cp1(q)− cn1(q)
β2 = cp2(q)− cn2(q)
β3 = cp3(q)− cn3(q)
β4 = cp4(q)− cn4(q)

c) To make a table in accordance to the criterion (2).

σ1 (α4, β4) (α2, β2) (α0, β0)
σ2 (α3, β3) (α1, β1)
σ3 α3,1 = cα3cα2 + cα4cα1, β3,1 = cβ3cβ2 − cβ4cβ1 α3,2 = cα3cα0, β3,2 = cβ3cβ0
σ4 α4,1 = α3,1cα1 + cα3α3,2, β4,1 = β3,1cβ1 − cβ3β3,2
σ5 Check robust positivity of β4,1 and β3,2

d) The lower bound of c4(q) and c3(q) are as follows.
For c4(q) is LB c4 = c4p

(
[0 0 0]T

)− c4n
(
[1 1 1]T

)
= 3 + (0)(0)3 − (1)(1) = 2.

For c3(q) is LB c3 = c3p
(
[0 0 0]T

)− c3n
(
[1 1 1]T

)
= 5 + (0)2 − (1)(1)2 = 4.
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Then c4(q) and c3(q) are robustly positives in Q
e) By means of software applying 8 partitions the graphs e3,1, e3,2, e4,1 were obtained as
following.

Fig. 11. Element e31 in (α, β) representation

Fig. 12. Element e32 in (α, β) representation
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Fig. 13. Element e41 in (α, β) representation

Since c4(q), c3(q), e31(q), e32(q), e41(q) are robustly positive, then the system is robustly stable.
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Then c4(q) and c3(q) are robustly positives in Q
e) By means of software applying 8 partitions the graphs e3,1, e3,2, e4,1 were obtained as
following.

Fig. 11. Element e31 in (α, β) representation

Fig. 12. Element e32 in (α, β) representation

24 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics Parametric Robust Stability 23

Fig. 13. Element e41 in (α, β) representation

Since c4(q), c3(q), e31(q), e32(q), e41(q) are robustly positive, then the system is robustly stable.
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1. Introduction

There have been numerous attempts in the literature to generalize results in robust control
theory (42; 45) to linear time-varying (LTV) systems (for e.g. (10–13; 30; 33; 37; 39; 40) and
references therein). In (12)(13) and (11) the authors studied the optimal weighted sensitivity
minimization problem, the two-block problem, and the model-matching problem for LTV
systems using inner-outer factorization for positive operators. Abstract solutions involving
the computation of induced operators norms of operators are obtained. However, there is no
clear indication on how to compute optimal linear LTV controllers.
In (40) the authors rely on state space techniques which lead to algorithms based on infinite
dimensional operator inequalities which are difficult to solve. These methods lead to
suboptimal controllers and are restricted to finite dimensional systems. An extension of these
results to uncertain systems is reported in (41) relying on uniform stability concepts. In (9)
both the sensitivity minimization problem in the presence of plant uncertainty, and robust
stability for LTV systems in the �∞ induced norm is considered. However, their methods
could not be extended to the case of systems operating on finite energy signals. In (37) the
standard problem of H∞ control theory for finite-dimensional LTV continuous-time plants is
considered. It is shown that a solution to this problem exists if and only if a pair of matrix
Riccati differential equations admits positive semidefinite stabilizing solutions. State-space
formulae for one solution to the problem are also given.
The gap metric was introduced to study stability robustness of feedback systems. It induces
the weakest topology in which feedback stability is robust (6; 7; 31; 32; 38). Extensions of the
gap to time-varying systems have been proposed in (33; 34) where a geometric framework
was developed. Several results on the gap metric and the gap topology were established,
in particular, the concept of a graphable subspace was introduced. In (21) the problem
of robust stabilization for LTV systems subject to time-varying normalized coprime factor
uncertainty is considered. Operator theoretic results which generalize similar results known
to hold for linear time-invariant (infinite-dimensional) systems are developed. In particular, a
tight upper bound for the maximal achievable stability margin under TV normalized coprime
factor uncertainty in terms of the norm of an operator with a time-varying Hankel structure is
computed.
Analysis of time-varying control strategies for optimal disturbance rejection for known
time-invariant plants has been studied in (2; 16). A robust version of these problems was
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considered in (8; 15) in different induced norm topologies. All these references showed that
for time-invariant nominal plants and weighting functions, time-varying control laws offer no
advantage over time-invariant ones.
In this paper, we are interested in optimal disturbance rejection for (possibly
infinite-dimensional, i.e., systems with an infinite number of states) LTV systems. These
systems have been used as models in computational linear algebra and in a variety of
computational and communication networks (17). This allows variable number of states
which is predominant in networks which can switch on or off certain parts of the system (17),
and infinite number of states as in distributed parameter systems.
Using inner-outer factorizations as defined in (3; 11) with respect of the nest algebra of lower
triangular (causal) bounded linear operators defined on �2 we show that the problem reduces
to a distance minimization between a special operator and the nest algebra. The inner-outer
factorization used here holds under weaker assumptions than (12; 13), and in fact, as pointed
in ((3) p. 180), is different from the factorization for positive operators used there.
The optimal disturbance attenuation for LTV systems has been addressed using Banach space
duality theory in (20; 28). Its robust version which deals with plant uncertainty is addressed in
(4; 5; 19) using also duality theory ideas. Furthermore, using the commutant lifting theorem
for nest algebras the optimum is shown to be equal to the norm of a compact time-varying
Hankel operator defined on the space of causal Hilbert-Schmidt operators. The latter is the
“natural” analogous to the Hankel operator used in the LTI case. An operator identity to
compute the optimal TV Youla parameter is also provided.
The results are generalized to the mixed sensitivity problem for TV systems as well, where it
is shown that the optimum is equal to the operator induced of a TV mixed Hankel-Toeplitz
operator generalizing analogous results known to hold in the linear time-invariant (LTI) case
(22; 38; 43).
Our approach is purely input-output and does not use any state space realization, therefore
the results derived here apply to infinite dimensional LTV systems, i.e., TV systems with an
infinite number of state variables (33). Although the theory is developed for causal stable
system, it can be extended in a straightforward fashion to the unstable case using coprime
factorization techniques for LTV systems discussed in (11; 13).
The rest of the chapter is organized as follows. Section 2 the commutant lifting theorem
for nest algebras is introduced. In section 3 the optimal disturbance rejection problem is
formulated and solved in terms of a TV Hankel operator. A Generalization to the TV mixed
sensitivity problem is carried out in section 4. Section 5 contains some concluding remarks.

Definitions and notation

• B(E, F) denotes the space of bounded linear operators from a Banach space E to a Banach
space F, endowed with the operator norm

�A� := sup
x∈E, �x�≤1

�Ax�, A ∈ B(E, F)

• �2 denotes the usual Hilbert space of square summable sequences with the standard norm

�x�2
2 :=

∞

∑
j=0

|xj|2, x :=
(
x0, x1, x2, · · · )∈ �2
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• Pk the usual truncation operator for some integer k, which sets all outputs after time k to
zero.

• An operator A ∈ B(E, F) is said to be causal if it satisfies the operator equation:

Pk APk = Pk A, ∀k positive integers

• tr(·) denotes the trace of its argument.

The subscript “c” denotes the restriction of a subspace of operators to its intersection with
causal (see (11; 29) for the definition) operators. “⊕” denotes for the direct sum of two spaces.
“�” stands for the adjoint of an operator.

2. The commutant lifting theorem

The commutant lifting theorem has been proposed by Sz.Nagy and Foias (35; 36). It has been
used successfully to solve several interpolation problems including H∞ control problems for
linear time invariant (LTI) systems (31; 32; 43; 44). In this chapter, we rely on a time-varying
version of the commutant lifting theorem which corresponds to nest or triangular algebras.
Following (3; 18) a nest N of a Hilbert space Ȟ is a family of closed subspaces of Ȟ ordered
by inclusion. The triangular or nest algebra T (N ) is the set of all operators T such that
TN ⊆ N for every element N in N . A representation of T (N ) is an algebra homomorphism
h from T (N ) into the algebra B(H) of bounded linear operators on a Hilbert space H. A
representation is contractive if �h(A)� ≤ �A�, for all A ∈ T (N ). It is weak� continuous if
h(Ai) converges to zero in the weak� topology of B(H) whenever the net {Ai} converges to
zero in the weak� topology of B(Ȟ). The representation h is said to be unital if h(IȞ) =

IH, where IȞ is the identity operator on Ȟ, and IH the identity operator on H. The Sz.
Nagy Theorem asserts that any such a representation h has a B(Ȟ)-dilation, that is, there
exists a Hilbert space K containing H, and a positive representation H of B(Ȟ) such that
PHH(A) |H= h(A), where PH is the orthogonal projection from K into H (3; 18).
We now state the commutant lifting theorem for nest algebras from (3; 18) (see also references
therein).

Theorem 1. (3; 18) Let

h : T (N ) �−→ B(H)

h� : T (N ) �−→ B(H�)

be two unital weak� continuous contractive representations with B(Ȟ)-dilations

H : B(Ȟ) �−→ B(K)

H� : B(Ȟ) �−→ B(K�)

respectively. Assume that X : H �−→ H� is a linear operator with �X� ≤ 1, such that Xh(A) =
h�(A)X for all A ∈ T (N ), that is, X intertwines h and h�. Then there exists an operator Y : K �−→
K� such that

i) �Y� ≤ 1.

ii) Y intertwines H and H�, that is, YH(A) = H�(A)Y for all A ∈ B(Ȟ).
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iii) Y dilates X, that is, Y : M �−→ M�, and PH�Y |M= XPH |M, where H = M�N is the
orthogonal representation of H as the orthogonal difference of invariant subspaces for H |T (N ), and
similarly for H�.

In the next section the optimal disturbance rejection problem is formulated and solved using
this Theorem in terms of a TV Hankel operator.

3. Time-varying optimal disturbance rejection problem

In this chapter, we first consider the problem of optimizing performance for causal linear
time varying systems by considering the standard block diagram for the optimal disturbance
attenuation problem represented in Fig. 1, where u represents the control inputs, y the
measured outputs, z is the controlled output, w the exogenous perturbations. P denotes
a causal stable linear time varying plant, and K denotes a time varying controller. The
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Fig. 1. Block Diagram for Disturbance Rejection

closed-loop transmission from w to z is denoted by Tzw. Using the standard TV Youla
parametrization of all stabilizing controllers the closed loop operator Tzw can be written as
(2; 11; 16),

Tzw = T1 − T2QT3 (1)

where T1, T2 and T3 are stable causal LTV operators, that is, T1, T2 and T3 ∈ Bc(�
2, �2). Here it

is assumed without loss of generality that P is stable, the Youla parameter Q := K(I + PK)−1

is then an operator belonging to Bc(�2, �2), and is related in a one-to-one onto fashion to the
controller K (29). Note that Q is allowed to be time-varying. If P is unstable it suffices to use
the coprime factorization techniques in (11; 39) which lead to similar results. The magnitude
of the signals w and z is measured in the �2-norm. The performance index which quantifies
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optimal disturbance rejection can be written in the following form (20)

μ := inf {�Tzw� : K being robustly stabilizing linear time − varying controller}
= inf

Q∈Bc(�2,�2)
�T1 − T2QT3� (2)

The performance index (2) will be transformed into a shortest distance minimization between
a certain bounded linear operator and a subspace to be specified shortly. In order to do
so, following (11) define a nest N as a family of closed subspaces of the Hilbert space
�2 containing {0} and �2 which is closed under intersection and closed span. Let Qn :=
I − Pn, for n = −1, 0, 1, · · · , where P−1 := 0 and P∞ := I. Then Qn is a projection, and
we can associate to it the following nest N := {Qn�2, n = −1, 0, 1, · · · }. In this case the
triangular or nest algebra T (N ) is the set of all operators T such that TN ⊆ N for every
element N in N . That is

T (N ) = {A ∈ B(�2, �2) : Pn A(I − Pn) = 0, ∀ n}
= {A ∈ B(�2, �2) : (I − Qn)AQn = 0, ∀ n} (3)

Note that the Banach space Bc(�2, �2) is identical to the nest algebra T (N ). For N belonging
to the nest N , N has the form Qn�2 for some n. Define

N− =
∨{N� ∈ N : N� < N} (4)

N+ =
∧{N� ∈ N : N� > N} (5)

where N� < N means N� ⊂ N, and N� > N means N� ⊃ N. The subspaces N � N− are called
the atoms of N . Since in our case the atoms of N span �2, then N is said to be atomic (3).
The early days of H∞ control theory saw solutions based on the so-called inner-outer
factorizations of functions belonging to the Hardy spaces H2 and H∞, and their
corresponding matrix valued counterparts for multi-input multi-output (MIMO) systems
(22; 23). Generalizations in the context of nest algebras have been proposed in (1; 3) as follows:
An operator A in T (N ) is called outer if the range projection P(RA), RA being the range of
A and P the orthogonal projection onto RA, commutes with N and AN is dense in N ∩ RA
for every N ∈ N . A partial isometry U is called inner in T (N ) if U�U commutes with N
(1; 3; 11). In our case, A ∈ T (N ) = Bc(�2, �2) is outer if P commutes with each Qn and AQn�2

is dense in Qn�
2 ∩ A�2. U ∈ Bc(�

2, �2) is inner if U is a partial isometry and U�U commutes
with every Qn. Applying these notions to the time-varying operator T2 ∈ Bc(�2, �2), we get
T2 = T2iT2o, where T2i and T2o are inner outer operators in Bc(�2, �2), respectively. Similarly,
the operator T3 can be factored as T3 = T3oT3i where T3i ∈ Bc(�

2, �2) is inner, T3o ∈ Bc(�
2, �2)

is outer. The performance index μ in (2) can then be written as

μ = inf
Q∈Bc(�2,�2)

�T1 − T2iT2oQT3oT3i� (6)

Following the classical H∞ control theory (22; 23; 45),we assume
(A1) that T2o and T3o are invertible both in Bc(�

2, �2).
Assumption (A1) can be relaxed by assuming instead that the outer operators T2o and T3o
are bounded below (see Lemma (1) p. 220). Assumption (A1) guarantees that the map
Q −→ T2oBc(�

2, �2)T3o is bijective. Under this assumption T2i becomes an isometry and T3i
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a co-isometry in which case T�
2iT2i = I and T3iT�

3i = I. The operators T2o and T3o can be
absorbed into the Youla operator Q, and expression (6) is then equivalent to

μ = inf
Q∈Bc(�2,�2)

�T�
2iT1T�

3i − Q� (7)

Expression (7) is the distance from the operator T�
2iT1T�

3i ∈ B(�2, �2) to the nest algebra
Bc(�2, �2). It is the shortest distance from the bounded linear operator T�

2iT1T�
3i to the space

of causal bounded linear operators Bc(�2, �2), which is a subspace of B(�2, �2). In the sequel,
the commutant lifting theorem is used to solve the minimization (7) in terms of a time varying
version of Hankel operators.
First, let C2 denote the special class of compact operators on �2 called the Hilbert-Schmidt or
Schatten 2-class (3; 14) under the norm,

�A�2 :=
(

tr(A�A)
) 1

2
(8)

Note that C2 is a Hilbert space under the inner product (3)

(A, B) = tr(B�A), ∀ A, B ∈ C2 (9)

Define the space

A2 := C2 ∩Bc(�
2, �2) (10)

Then A2 is the space of causal Hilbert-Schmidt operators. This space can be viewed as the TV
counterpart of the standard Hardy space H2 in the standard H∞ theory. Define the orthogonal
projection P of C2 onto A2. P is the lower triangular truncation, and is analogous to the
standard positive Riesz projection (for functions on the unit circle) for the LTI case.
Following (27) an operator X in B(�2, �2) determines a Hankel operator HX on A2 if

HX A = (I −P)XA, for A ∈ A2 (11)

We shall show that the shortest distance μ is equal to the norm of a particular LTV Hankel
operator using the time varying version of the commutant lifting theorem in Theorem 1, thus
generalizing a similar result in the LTI setting. let HB be the Hankel operator (I − P)BP
associated with the symbol B := T�

2iT1T�
3ci. The Hankel operator HB belongs to the Banach

space of bounded linear operators on C2, namely, B(C2, C2). We have then the following
Theorem which relates the optimal distance minimization μ to the induced norm of the Hankel
operator HT�

2i T1 T�
3ci

.

Theorem 2. Under assumptions (A1) the following holds:

μ = �HT�
2i T1 T�

3ci
� = �(I −P)T�

2iT1T�
3ciP� (12)

Proof. Following (3; 18) let H1 = A2 and H2 = C2 �A2 the orthogonal complement of A2 in
C2. Define the representations h and h� of A2 by

h(A) = RA |H1 , A ∈ Bc(�
2, �2) (13)

h�(A) = (I −P)RA|H2
, A ∈ Bc(�

2, �2) (14)
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where now RA denotes the right multiplication associated to the operator A defined on the
specified Hilbert space, i.e., RAB = BA, B ∈ A2. The representation h(·) and h�(·) have
dilations H = H� given by

H(A) = H�(A) = RA on C2, A ∈ Bc(�
2, �2) (15)

(16)

Let M := Bc(�2, �2), N = {0}, M� := C2, N� := A2, and H1 = M � N, H2 = M� � N�
are orthogonal representations of H1 and H2 of invariant subspaces under H|Bc(�2,�2), that is,
RABc(�2, �2) ⊂ Bc(�2, �2). Now we have to show that the operator HT�

2iT1 T�
3ci

intertwines h and
h�, that is, if B := T�

2iT1T�
3ci, then h�(A)HB = HBh(A) holds for for all A ∈ Bc(�2, �2),

h�(A)HB = (I −P)RA(I −P)B |A2= (I −P)RAB |A2 (17)

= (I −P)BRA |A2= (I −P)BPRA |A2= HBh(A) (18)

Applying the Commutant Lifting Theorem for representations of nest algebras implies that
HB has a dilation H̃B that intertwines H and H�, i.e., H̃B H(A) = H�(A)H̃B, ∀A ∈ B(�2, �2).
By Lemma 4.4. in (18) H̃B is a left multiplication operator acting from A2 into C2 �A2. That
is, H̃B = LK for some K ∈ B(�2, �2), with �LK� = �K� = �H̃X� = �HB� by Lemma 4.5. (18).
By Lemma 4.3. (18) K = B − Q, ∃Q ∈ Bc(�2, �2) with �K� = �HB� as required.
By Theorem 2.1. (26) the Hankel operator HB is a compact operator if and only if B belongs to
the space Bc(�2, �2) +K, where K is the space of compact operators on the Hilbert space �2. A
basic property of compact operators on Hilbert spaces is that they have maximizing vectors,
that is, there exists at least one operator Ao ∈ A2, �Ao�2 = 1 such that HB achieves its induced
norm at Ao. That is,

�HB Ao�2 = �HB��Ao�2 = �HB� (19)

We can then deduce from (7) and (12) an operator identity for the minimizer, that is, the
optimal TV Youla parameter Qo as follows

Qo Ao = T�
2iT1T�

3ci A
o − HT�

2iT1 T�
3ci

Ao

where the unknown is Qo.
In the next section the mixed sensitivity problems for LTV systems is formulated and solved
using the commutant lifting theorem.

4. The time-varying mixed sensitivity problem

The mixed sensitivity problem for stable plants (42; 45) involves the sensitivity operator

T1 :=
(

W
0

)
, the complementary sensitivity operator T2 =

(
W
V

)
P and T3 := I which are all

assumed to belong to Bc(�2, �2 × �2), and is given by the minimization (13; 20; 46)

μo = inf
Q∈Bc(�2,�2)

∥∥∥∥
(

W
0

)
−

(
W
V

)
PQ

∥∥∥∥ (20)

where � · � stands for the operator norm in B(�2, �2 × �2) given by

�B� = sup
�x�2≤1, x∈�2

(
�B1x�2

2 + �B2x�2
2

) 1
2
, B =

(
B1
B2

)
(21)
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The optimization problem (20) can be expressed as a shortest distance problem from the
operator T1 to the subspace S = T2P Bc(�2, �2) of B(�2, �2 × �2).
To ensure closedness of S , we assume that W�W + V�V > 0, i.e., W�W + V�V as an operator
acting on �2 is a positive operator. In this case, there exists an outer spectral factorization
Λ1 ∈ Bc(�2, �2), invertible in Bc(�2, �2) such that Λ�

1Λ1 = W�W + V�V (1; 11). Consequently,
Λ1P as a bounded linear operator in Bc(�2, �2) has an inner-outer factorization U1G, where
U1 is inner and G an outer operator defined on �2 (3).
Next we assume (A2) G is invertible, so U1 is unitary, and the operator G and its inverse
G−1 ∈ Bc(�2, �2). The assumption (A2) is satisfied when, for e.g., the outer factor of the plant
is invertible. Let R := T2Λ−1

1 U1, assumption (A2) implies that the operator R�R ∈ B(�2, �2)
has a bounded inverse, this ensures closedness of S . It follows from Corollary 2 (1), that
the self-adjoint operator R�R has a spectral factorization of the form: R�R = Λ�Λ, where
Λ, Λ−1 ∈ Bc(�2, �2).
Define the operator R2 := RΛ−1, then R�

2 R2 = I, and S has the equivalent representation,
S = R2Bc(�2, �2). After "absorbing" Λ into the free parameter Q, the optimization problem
(20) is then equivalent to:

μo = inf
Q∈Bc(�2,�2)

�T1 − R2Q� (22)

The minimization problem (22) gives the optimal mixed sensitivity with respect to controller
design (as represented by Q). It is solved in terms of a projection of a multiplication operator.
If the minimization (22) is achieved by a particular Qo, we call it optimal.

Theorem 3. Introduce the orthogonal projection Π as follows

Π : A2 ⊕A2 �−→ (A2 ⊕A2)� R2A2

Under assumptions (A2) the following holds:

μo = �ΠT1� (23)

Proof. Denote by S := (A2 ⊕ A2) � R2A2. That is, S is the orthogonal complement of the
subspace R2A2 in A2 ⊕A2, and define the operator

Ξ : A2 �−→ S

Ξ := ΠT1 (24)

We shall show with the help of the commutant lifting theorem that

μo = �Ξ� (25)

To see this we need, as before, a representation of Bc(�2, �2), that is, an algebra
homomorphism, say, h(·) (respectively h�(·)), from Bc(�

2, �2), into the algebra B(A2,A2)
(respectively Bc(S, S)), of bounded linear operators from A2 into A2

(
respectively from S

into S
)
. Define the representations h and h� by

h : Bc(�
2, �2) �−→ B(A2,A2), h� : Bc(�

2, �2)
) �−→ Bc(S, S) (26)

h(A) := RA, A ∈ Bc(�
2, �2), h�(A) := ΠRA, A ∈ Bc(�

2, �2)
)
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where now RA denotes the right multiplication associated to the operator A defined on the
specified Hilbert space. By the Sz. Nagy dilation Theorem there exist dilations H (respectively
H�) for h (respectively h�) given by

H(A) = RA on A2 for A ∈ Bc(�
2, �2) (27)

H�(A) = RA on A2 ⊕A2 for A ∈ Bc(�
2, �2) (28)

The spaces A2 and S can be written as orthogonal differences of subspaces invariant under H
and H�, respectively, as

A2 = A2 � {0}, S = A2 ⊕A2 � R2A2 (29)

Now we have to show that the operator Ξ intertwines h and h�, that is, h�(A)Ξ = Ξh(A) for
all A ∈ Bc(�2, �2),

h�(A)Ξ = ΠRAΠT1 |A2= ΠRAΠT1 |A2

= ΠRAT1 |A2= ΠT1RA |A2

= Ξh(A)

Applying the commutant lifting theorem for representations of nest algebras implies that Ξ
has a dilation Ξ� that intertwines H and H�, i.e., Ξ�H(A) = H�(A)Ξ�, ∀A ∈ B(�2, �2). By
Lemma 4.4. in (18) Ξ� is a left multiplication operator acting from A2 into A2 ⊕ A2, and
causal. That is, Ξ� = LK for some K ∈ Bc(A2, A2 ⊕ A2), with �K� = �Ξ�� = �Ξ�. Then
Ξ = ΠT1 = ΠK, which implies that Π(T1 − K) = 0. Hence, (T1 − K) f ∈ R2A2, for all
f ∈ A2. That is, (T1 − K) f = R2g, ∃g ∈ A2, which can be written as R�

2(T1 − K) f = g ∈ A2.
In particular, R�

2(T1 − K) f ∈ Bc(�2, �2), for all f ∈ Bc(�2, �2) of finite rank. By Theorem
3.10 (3) there is a sequence Fn of finite rank contractions in Bc(�2, �2) which converges to
the identity operator in the strong *-topology. By an approximation argument it follows that
R�

2(T1 − K) ∈ Bc(�2, �2). Letting Q := R�
2(T1 − K) we have g = Q f . We conclude that

T1 − K = R2Q, that is, T1 − R2Q = K, with �K� = �Ξ�, and the Theorem is proved.
The orthogonal projection Π can be computed as

Π = I − R2PR�
2 (30)

where I is the identity operator on A2 ⊕A2, R�
2 is the adjoint operator of R2. To see that (30)

holds note that for any Y ∈ A2 ⊕A2, we have

(I − RPR�
2)

2Y = (I − RPR�
2)(I − RPR�

2)Y (31)

= (I − R2PR�
2 − R2PR�

2 + R2PR�
2PR�

2)Y (32)

but R�
2 R2 = I and P2 = P , therefore

(I − RPR�
2)

2Y = (I − RPR�
2)Y (33)

This shows that (I − RPR�
2) is a projection. The adjoint of (I − RPR�

2), (I − RPR�
2)

�, is clearly
equal to (I − RPR�

2) showing that it is an orthogonal projection. Now we need to show that
the null space of (I − RPR�

2) is R2A2. Let Z ∈ A2 ⊕ A2 such that (I − RPR�
2)Z = 0, so

Z = R2PR�
2 Z. But R�

2 Z ∈ C2, then PR�
2 Z ∈ A2, implying that Z ∈ R2A2. We have showed
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The optimization problem (20) can be expressed as a shortest distance problem from the
operator T1 to the subspace S = T2P Bc(�2, �2) of B(�2, �2 × �2).
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1 U1, assumption (A2) implies that the operator R�R ∈ B(�2, �2)
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Λ, Λ−1 ∈ Bc(�2, �2).
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2 R2 = I, and S has the equivalent representation,
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(20) is then equivalent to:

μo = inf
Q∈Bc(�2,�2)

�T1 − R2Q� (22)
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design (as represented by Q). It is solved in terms of a projection of a multiplication operator.
If the minimization (22) is achieved by a particular Qo, we call it optimal.

Theorem 3. Introduce the orthogonal projection Π as follows

Π : A2 ⊕A2 �−→ (A2 ⊕A2)� R2A2

Under assumptions (A2) the following holds:

μo = �ΠT1� (23)

Proof. Denote by S := (A2 ⊕ A2) � R2A2. That is, S is the orthogonal complement of the
subspace R2A2 in A2 ⊕A2, and define the operator

Ξ : A2 �−→ S

Ξ := ΠT1 (24)

We shall show with the help of the commutant lifting theorem that

μo = �Ξ� (25)

To see this we need, as before, a representation of Bc(�2, �2), that is, an algebra
homomorphism, say, h(·) (respectively h�(·)), from Bc(�

2, �2), into the algebra B(A2,A2)
(respectively Bc(S, S)), of bounded linear operators from A2 into A2

(
respectively from S

into S
)
. Define the representations h and h� by

h : Bc(�
2, �2) �−→ B(A2,A2), h� : Bc(�

2, �2)
) �−→ Bc(S, S) (26)

h(A) := RA, A ∈ Bc(�
2, �2), h�(A) := ΠRA, A ∈ Bc(�

2, �2)
)
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where now RA denotes the right multiplication associated to the operator A defined on the
specified Hilbert space. By the Sz. Nagy dilation Theorem there exist dilations H (respectively
H�) for h (respectively h�) given by

H(A) = RA on A2 for A ∈ Bc(�
2, �2) (27)

H�(A) = RA on A2 ⊕A2 for A ∈ Bc(�
2, �2) (28)

The spaces A2 and S can be written as orthogonal differences of subspaces invariant under H
and H�, respectively, as

A2 = A2 � {0}, S = A2 ⊕A2 � R2A2 (29)

Now we have to show that the operator Ξ intertwines h and h�, that is, h�(A)Ξ = Ξh(A) for
all A ∈ Bc(�2, �2),

h�(A)Ξ = ΠRAΠT1 |A2= ΠRAΠT1 |A2

= ΠRAT1 |A2= ΠT1RA |A2

= Ξh(A)

Applying the commutant lifting theorem for representations of nest algebras implies that Ξ
has a dilation Ξ� that intertwines H and H�, i.e., Ξ�H(A) = H�(A)Ξ�, ∀A ∈ B(�2, �2). By
Lemma 4.4. in (18) Ξ� is a left multiplication operator acting from A2 into A2 ⊕ A2, and
causal. That is, Ξ� = LK for some K ∈ Bc(A2, A2 ⊕ A2), with �K� = �Ξ�� = �Ξ�. Then
Ξ = ΠT1 = ΠK, which implies that Π(T1 − K) = 0. Hence, (T1 − K) f ∈ R2A2, for all
f ∈ A2. That is, (T1 − K) f = R2g, ∃g ∈ A2, which can be written as R�

2(T1 − K) f = g ∈ A2.
In particular, R�

2(T1 − K) f ∈ Bc(�2, �2), for all f ∈ Bc(�2, �2) of finite rank. By Theorem
3.10 (3) there is a sequence Fn of finite rank contractions in Bc(�2, �2) which converges to
the identity operator in the strong *-topology. By an approximation argument it follows that
R�

2(T1 − K) ∈ Bc(�2, �2). Letting Q := R�
2(T1 − K) we have g = Q f . We conclude that

T1 − K = R2Q, that is, T1 − R2Q = K, with �K� = �Ξ�, and the Theorem is proved.
The orthogonal projection Π can be computed as

Π = I − R2PR�
2 (30)

where I is the identity operator on A2 ⊕A2, R�
2 is the adjoint operator of R2. To see that (30)

holds note that for any Y ∈ A2 ⊕A2, we have

(I − RPR�
2)

2Y = (I − RPR�
2)(I − RPR�

2)Y (31)

= (I − R2PR�
2 − R2PR�

2 + R2PR�
2PR�

2)Y (32)

but R�
2 R2 = I and P2 = P , therefore

(I − RPR�
2)

2Y = (I − RPR�
2)Y (33)

This shows that (I − RPR�
2) is a projection. The adjoint of (I − RPR�

2), (I − RPR�
2)

�, is clearly
equal to (I − RPR�

2) showing that it is an orthogonal projection. Now we need to show that
the null space of (I − RPR�

2) is R2A2. Let Z ∈ A2 ⊕ A2 such that (I − RPR�
2)Z = 0, so

Z = R2PR�
2 Z. But R�

2 Z ∈ C2, then PR�
2 Z ∈ A2, implying that Z ∈ R2A2. We have showed
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that the null space of the projection (I − RPR�
2) is a subset of R2A2. Conversely, let Z ∈ A2,

then

(I − RPR�
2)R2Z = R2Z − R2PZ = R2Z − R2Z = 0 (34)

hence R2Z belongs to the null space of (I − RPR�
2), and (30) holds.

The operator Ξ has the following explicit form

Ξ = (I − R2PR�
2)T1 (35)

which leads to the explicit solution

μo = �(I − R2PR�
2)T1� (36)

The expression generalizes the solution of the mixed sensitivity problem in the LTI case (25;
43; 46) to the LTV case. This result also applies to solve the robustness problem of feedback
systems in the gap metric (38) in the TV case as outlined in (11; 21; 33), since the latter was
shown in (11) to be equivalent to a special version of the mixed sensitivity problem (20).

5. Conclusion

The optimal disturbance rejection and the mixed sensitivity problems for LTV systems involve
solving shortest distance minimization problems posed in different spaces of bounded linear
operators. LTV causal and stable systems form a nest algebras, this allows the commutant
lifting theorem for nest algebras to be applied and solve both problems in term of abstract
TV Hankel and a TV version generalization of Hankel-Topelitz operators under fairly weak
assumptions. Future work includes investigation of numerical solutions based on finite
dimensional approximations, and computation of the corresponding controllers.
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shown in (11) to be equivalent to a special version of the mixed sensitivity problem (20).

5. Conclusion

The optimal disturbance rejection and the mixed sensitivity problems for LTV systems involve
solving shortest distance minimization problems posed in different spaces of bounded linear
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1. Introduction

Robust control problems for nonlinear systems are usually formulated as L2-induced norm
minimization problems and those problems are reduced to the solvability of the so-called
“Hamilton-Jacobi equation” (see, for example, van der Schaft (1996) and references therein).
However, in the case of bilinear systems the usual L2-induced norm minimization problem
leads to an obvious solution (the zero input is optimal!). To avoid the obvious solution
Shimizu et al. (1997) introduced nonlinear weights on the evaluated signal and proposed a
design method using linearization of the state-dependent matrix Riccati inequality derived
from the Hamilton-Jacobi equation. In contrast to this, the purpose of this paper is to propose
a new design method using SOS (Sum-of-Squares) optimization without linearization.
It is known that the Hamilton-Jacobi equality coming from the L2-induced norm minimization
problem is reduced to the solvability of an inequality condition of quadratic form, i.e.,

hT(x)M(x)h(x) ≥ 0, ∀x (1)

and this inequality is moreover reduced to the following matrix positive semi-definiteness
condition:

M(x) � 0, ∀x (2)

where M(x) is a Riccati-type matrix including the state variables. This matrix inequality
is usually called “a state-dependent matrix Riccati inequality” derived from the L2-induced
norm optimization problem. Most papers have tried to find a solution to the matrix inequality
(2) so far. See, for example, Ichihara (2009); Prajna et al. (2004) and the references therein.
However, it should be noted that the condition (2) is just a sufficient condition for (1) unless
h(x) is independent of x, because M(x) includes x. In most L2-induced norm optimization
cases, h(x) includes x (in our case h(x) = P−1x as shown in the later section) and hence the
methods of Ichihara (2009); Prajna et al. (2004) and other papers based upon the condition (2)
can have significant conservativeness. Note that Ichihara (2009) proposed a redesign method
for reducing the conservativeness; however, it has to find a solution to (2) before applying the
redesign method. Hence, the redesign method cannot be applied if the matrix inequality (2)
does not have a solution.
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is usually called “a state-dependent matrix Riccati inequality” derived from the L2-induced
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(2) so far. See, for example, Ichihara (2009); Prajna et al. (2004) and the references therein.
However, it should be noted that the condition (2) is just a sufficient condition for (1) unless
h(x) is independent of x, because M(x) includes x. In most L2-induced norm optimization
cases, h(x) includes x (in our case h(x) = P−1x as shown in the later section) and hence the
methods of Ichihara (2009); Prajna et al. (2004) and other papers based upon the condition (2)
can have significant conservativeness. Note that Ichihara (2009) proposed a redesign method
for reducing the conservativeness; however, it has to find a solution to (2) before applying the
redesign method. Hence, the redesign method cannot be applied if the matrix inequality (2)
does not have a solution.

3



2 Will-be-set-by-IN-TECH

In the present paper, to avoid the conservativeness we propose a new method for finding
a solution to (1) directly without finding a solution to (2). A key idea of our method is to
treat the dependency of h(x) with x as an equality condition and formulate the problem to
be concerned as an SOS (Sum of Squares) optimization problem with an equality constraint.
After that we apply SOS optimization technique to the problem to propose an iterative
algorithm for finding a robust feedback controller.
This paper is organized as follows: In Section 2, the plant to be concerned is described
and a robust control problem is formulated after introducing nonlinear weights. Moreover,
an inequality condition of quadratic form and the corresponding state-dependent matrix
Riccati inequality are derived without using the Hamilton-Jacobi equality. In Section 3, some
definitions and basic properties of SOS polynomials and SOS matrices are given. In Section
4, a new iterative method is proposed for finding a solution to the inequality condition of
quadratic form. In Section 5, a numerical example is demonstrated to show the efficiency of
our method, and in Section 6 this paper is concluded.
In this paper, the following notations are used:
R the set of real numbers.
Z the set of integers.
Z+ the set of non-negative integers.
R[x] the set of polynomials in x. (R[x] is also written as R[x1 · · · xn] for x = [x1 · · · xn]T .)
MT the transpose of the matrix M.
⊗ the Kroneckar product.
Σ the set of SOS polynomials. In particular, Σx denotes the set of SOS polynomials in x.
I an identity matrix of appropriate size. In particular, Ir denotes the r × r identity matrix.
Moreover, for a square matrix M, M � 0 and M � 0 imply that M is positive definite and
positive semi-definite, respectively.

2. Problem statement

2.1 Plant and nonlinear weights
Consider the following bilinear systems:

ẋp(t) = Apxp(t) + Bp1w(t) +
nq

∑
i=1

Bp2ixp(t)ui(t)

= Apxp(t) + Bp1w(t) + Bp2(x)u(t) (3)

zp(t) = Cpxp(t) (4)

where xp ∈ Rnp is the state variable, u := [u1 · · · unq ]
T ∈ Rnq is the input, w ∈ Rnw is

the exogenous input, zp ∈ Rr is the output to be evaluated, and the matrices Ap, Bp1, Bp2i
(i = 1, . . . , nq) are real matrices of appropriate sizes with

Bp2(x) :=
nq

∑
i=1

Bp2ix.
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In this paper, we consider to evaluate the L2-induced norm from w to zp and u with the
following frequency weights Wz(s) and Wu(s), respectively (see Fig. 1):

Wz(s) :
�

ẋz(t) = Azxz(t) + Bzzp(t),
zz(t) = Czxz(t) + Dzzp(t),

(5)

Wu(s) :
�

ẋu(t) = Auxu + Buu(t),
zu(t) = Cuxu(t) + Duu(t)

(6)

where xz ∈ Rnz , xu ∈ Rnu and the matrices in (5) and (6) are real matrices of appropriate size.
Here, we assume that the state variable is available for feedback. Then the plant with the
frequency weights in Fig. 1 can be represented as a generalized plant G in Fig. 2 which is
given by

ẋ(t) = Ax(t) + B1w(t) + B2(x)u(t) (7)

z(t) =
�

C11
C12

�
x(t) +

�
0

D12

�
u(t)

y(t) = x(t) (8)

where y(t) is the output for feedback and

x(t) =

⎡
⎣

xp(t)
xz(t)
xu(t)

⎤
⎦ , z(t) =

�
zz(t)
zu(t)

�
, (9)
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A =

⎡
⎢⎢⎣

Ap 0 0

BzCp Az 0

0 0 Au

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

Bp1

0

0

⎤
⎥⎥⎦ , B2(x) =

⎡
⎢⎢⎣

Bp2(x)

0

Bu

⎤
⎥⎥⎦ , (10)

C11 =
�

DzCp Cz 0
�

, C12 =
�

0 0 Cu
�

, D12 = Du. (11)

Let n (:= np + nz + nu) denote the dimension of x.
The purpose of this paper is to find a feedback controller which reduces the effect of w on z.
For this purpose, the problem to minimize the L2-induced norm from w to z defined by

sup
w �=0

�z�2
�w�2

(12)

is usually considered where � · �2 denotes the L2 norm. However, the bilinear system (3) is
uncontrollable for x = 0 because of B2(0) = 0, so that the effect of w cannot be reduced
around x = 0. Moreover, it is known that the zero input u = 0 is optimal for the problem
of minimizing the L2-induced norm (12) when the evaluated variable z is affine in x and u.
Hence, the minimization problem with respect to the L2-induced norm (12) is no use for our
purpose.
Although the system is uncontrollable at x = 0, the system behavior can be improved by
some proper controllers except at x = 0. To formulate the problem of finding such controllers
Shimizu et al. (1997) introduce nonlinear weights on z. It is shown by them that the obvious
solution (the zero input) can be avoided by introducing the nonlinear weights.
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z̄u

Fig. 3. Plant with nonlinear weights

Ḡ
�w

�u
�z̄

�y

Fig. 4. Generalized plant including nonlinear weights

As in the paper of Shimizu et al. (1997) we will also introduce nonlinear weights on z as shown
in Fig. 3 where az(x) and au(x) are the nonlinear weights which are functions of x.
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With the introduction of the nonlinear weights the new generalized plant Ḡ shown in Fig. 4 is
represented as

ẋ(t) = Ax(t) + B1w(t) + B2(x)u(t),

z̄(t) =

[
az(x)C11

au(x)C12

]
x(t) +

[
0

au(x)D12

]
u(t), (13)

y(t) = x(t)

where

z̄(t) : =

[
z̄z(t)

z̄u(t)

]

=

[
az(x)zz(t)

au(x)zu(t)

]
.

Then the problem to be considered in this paper is formulated as the one of finding the
feedback controller which minimizes the L2-induced norm from w to z̄ defined by

sup
w �=0

�z̄�2
�w�2

. (14)

The next theorem is shown by Ohsaku et al. (1998); Shimizu et al. (1997) using linealization.

Theorem 1. Consider the bilinear system (13) with C12 = 0. For given γ > 0 suppose that there
exits a positive definite symmetric matrix P which satisfies

PA + AT P +
1

γ2 PB1BT
1 P + CT

11C11 < 0 (15)

and the nonlinear weights az(x) and au(x) satisfy the condition

1
a2

u(x)
xT PB2(x)BT

2 (x)Px + (1 − a2
z(x))xTCT

11C11x ≥ 0. (16)

Then the L2-induced norm from w to z̄ is less than or equal to γ via the feedback control

u(t) = − 1
a2

u(x)
BT

2 (x)Px(t). (17)

This theorem gives a method for choosing the nonlinear weights after P is obtained; however,
this means that the nonlinear weights cannot be chosen before obtaining P and the condition
(16) restricts the choice of the nonlinear weights. In contract to this, in our method given below
the nonlinear weights can be chosen a priori and the condition which they have to satisfy is
just that a2

z(x) ∈ R[x] and 1/a2
u(x) ∈ R[x].

43A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems
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A typical choice of the nonlinear weights is as follows:

az(x) =
√

1 + xT Rzx,

au(x) =
1√

1 + xT Rux
(18)

where Rx � 0 and Ru � 0. Fig. 5 shows an example in the case of x ∈ R. The weight az(x)
shown in Fig. 5 is utilized for suppressing the effect of w on zz and au(x) is for allowing large
input values except at x = 0.

−2 −1 0 1 2
1

1.5

2

2.5

(a) az(x)

−2 −1 0 1 2
0.4

0.6

0.8

1

(b) au(x)

Fig. 5. Example of nonlinear weights

2.2 Derivation of state-dependent inequalities
In the sequel, we assume D12 = I for simplicity. Then we have the next theorem.

Theorem 2. Suppose that for given γ > 0 there exists a positive definite symmetric matrix P which
satisfies the following state-dependent inequality:

φ(x, P) :=xT
[
−P−1(A + B2(x)C12)− (A + B2(x)C12)

T P−1

− P−1
(

1
γ2 B1BT

1 − 1
a2

u(x)
B2(x)BT

2 (x)
)

P−1 − a2
z(x)CT

11C11

]
x > 0,

∀x( �= 0) ∈ Rn (19)

Then by the feedback

u(t) = −
(

1
a2

u(x)
BT

2 (x)P−1 + C12

)
x(t) (20)

the closed-loop system is asymptotically stable and the L2-induced norm (14) is less than or equal to γ,
i.e.,

sup
w �=0

�z̄�2
�w�2

≤ γ. (21)
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Proof: First, we will show that the closed-loop system via the feedback (20) with w(t) = 0 is
stable when (19) holds. To show this we adopt V(t) = xT(t)P−1x(t) as a Lyapunov function
candidate. Then we have

d
dt

V(t) =ẋT P−1x + xT P−1 ẋ

=(Ax + B2(x)u)T P−1x + xT P−1(Ax + B2(x)u)

=

[
Ax − B2(x)

(
1

a2
u(x)

BT
2 (x)P−1 + C12

)
x
]T

P−1x

+ xT P−1
[

Ax − B2(x)
(

1
a2

u(x)
BT

2 (x)P−1 + C12

)
x
]

from (20)

=xT
[

P−1(A + B2(x)C12) + (A + B2(x)C12)
T P−1 − 2

a2
u

P−1B2(x)BT
2 (x)P−1

]
x

<− xT
[

1
γ2 P−1B1BT

1 P−1 + a2
zCT

11C11 +
1
a2

u
P−1B2(x)BT

2 (x)P−1
]

x from (19)

≤0, for x �= 0. (22)

This shows the closed-loop system is asymptotically stable.
Next, from (13) we have

γ2|w|2 − |z|2 = γ2|w|2 − a2
z xTCT

11C11x − a2
uxTCT

12C12x − a2
uuTu − 2a2

uxTCT
12u (23)

and the following identity holds:

0 = 2xT P−1 ẋ − 2xT P−1 ẋ

= 2xT P−1 ẋ − 2xT P−1 Ax − 2xT P−1B1w − 2xT P−1B2(x)u. (24)

By adding the both-sides of (24) to (23) and completing the square we have

γ2|w|2 − |z|2 =2xT P−1 ẋ + γ2wTw − 2xT P−1B1w

− a2
u

[
uTu + 2

(
1
a2

u
xT P−1B2(x) + xTCT

12

)
u
]

− xT
[
2P−1 A + a2

zCT
11C11 + a2

uCT
12C12

]
x

=2xT P−1 ẋ + γ2w̃Tw̃ − 1
γ2 xT P−1B1BT

1 P−1x

− a2
uũTũ + a2

uxT
(

1
a2

u
P−1B2(x) + CT

12

)(
1
a2

u
BT

2 (x)P−1 + C12

)
x

− xT
[
2P−1 A + a2

zCT
11C11 + a2

uCT
12C12

]
x

=2xT P−1 ẋ + γ2w̃Tw̃ − a2
uũTũ + φ(x, P) (25)
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where

w̃ = w − 1
γ2 BT

1 P−1x,

ũ = u +

(
1
a2

u
BT

2 (x)P−1 + C12

)
x.

Then from (19) and (20)
γ2|w|2 − |z|2 ≥ 2xT P−1 ẋ + γ2w̃Tw̃,

and hence
∫ τ

0
(γ2|w|2 − |z|2)dt ≥

∫ τ

0
(2xT P−1 ẋ + γ2w̃Tw̃)dt

=xT(τ)P−1x(τ)− xT(0)P−1x(0) +
∫ τ

0
(γ2w̃Tw̃)dt.

Here, let x(0) = 0 and τ → ∞ then

γ2�w�2 − �z�2 =
∫ ∞

0
(γ2|w|2 − |z|2)dt =

∫ ∞

0
(γ2w̃Tw̃)dt ≥ 0, (26)

which leads to (21). Note that to derive (26) we use limτ→∞ x(τ) = 0 which holds because the
closed-loop is asymptotically stable. Q.E.D.
Note that φ(x, p) in (19) can be represented as

φ(x, P) = (P−1x)T M(x, P)(P−1x) (27)

where

M(x, P) :=− (A + B2(x)C12)P − P(A + B2(x)C12)
T

−
(

1
γ2 B1BT

1 − 1
a2

u(x)
B2(x)BT

2 (x)
)
− a2

z(x)PCT
11C11P. (28)

From this we have the next corollary.

Corollary 1. Suppose that for given γ > 0 there exists a positive definite symmetric matrix P which
satisfies the following state-dependent inequality:

M(x, P) � 0, ∀x ∈ Rn (29)

Then by the feedback (20) the closed-loop system is asymptotically stable and the L2-induced norm (14)
is less than or equal to γ.

Proof: It is obvious from (27) that (19) is satisfied if (29) holds. Hence we obtain this corollary
from Theorem 2. Q.E.D.
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The inequality (29) is called “a state-dependent matrix Riccati inequality” and equivalent to

hT [−(A + B2(x)C12)P − P(A + B2(x)C12)

−
(

1
γ2 B1BT

1 − 1
a2

u(x)
B2(x)BT

2 (x)
)
− a2

z(x)PCT
11C11P

]
h > 0,

∀x ∈ Rn, h( �= 0) ∈ Rn. (30)

Note that h is independent of x in (30), whereas there is a relationship of h = P−1x between h
and x in (19). This means that the condition (30) can be very conservative compared with the
condition (19). As mentioned in Introduction, most papers have tried to find P which satisfies
a matrix state-dependent inequality like (29) (or (30)). In contrary to this, we will try to find P
which satisfies (19) (instead of (30)) to reduce the conservativeness.

3. Sum of squares

In this section, we briefly survey the so-called “SOS (Sum of Squares) optimization.”

3.1 Definitions and basic properties
A monomial in x = [x1 · · · xn]T is represented as xα1

1 · · · xαn
n with α = (α1, . . . , αn) ∈ Zn

+.
This is also written as xα = xα1

1 · · · xαn
n . The degree of a monomial xα, denoted by deg(xα),

is defined by deg(xα) := ∑n
i=1 αi and the degree of a polynomial f (x) ∈ R[x], denoted by

deg( f ), is defined by the degree of the monomial which has the highest degree among all
the monomials included in f (x). For a polynomial matrix F(x) ∈ Rq×r the degree of F(x),
denoted by deg(F), is defined by deg(F) := maxij deg(Fij) where Fij denotes the (i, j) element
of F(x).
A real polynomial f (x) ∈ R[x] is said to be an SOS (Sum of Squares) polynomial if it can
be represented as a sum of squares of some polynomials, i.e., there exist some polynomials
gi(x) ∈ R[x] (i = 1, . . . , p) such that

f (x) =
p

∑
i=1

g2
i (x). (31)

Moreover, a polynomial symmetric matrix F(x) ∈ Rr×r[x] is said to be an SOS matrix if it can
be represented as

F(x) = LT(x)L(x)

for some polynomial matrix L(x) of appropriate size. In this paper, we denote the set of SOS
polynomials by Σ, and the set of r × r SOS matrices by Σr×r.
From the definitions it is obvious that

f (x) ∈ Σ ⇒ f (x) ≥ 0 (∀x ∈ Rn), (32)

F(x) ∈ Σr×r ⇒ F(x) � 0 (∀x ∈ Rn). (33)

Here, for a positive integer d let vd(x) be a polynomial vector in x of size n+dCd defined by

vd(x) :=
[

1 x1 · · · xn x2
1 x1x2 · · · x2

n · · · xd
1 · · · xd

n
]T , (34)
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which contains all monomials whose degrees are less than or equal to d where αCβ =
α!/(β!(α − β)!) for positive integers α and β with α ≥ β. Then the next lemmas are known.

Lemma 1. (Parrilo (2003)) Let deg( f ) = 2d where f (x) ∈ R[x]. Then the following (i) and (ii) are
equivalent:

(i) f (x) ∈ Σ.

(ii) There exists a positive semi-definite symmetric matrix of appropriate size such that f (x) =
vT

d (x)Qvd(x).

Lemma 2. (Scherer & Hol (2006)) Let deg(F) = 2d where F(x) ∈ R[x]r×r. Then the following (i)
and (ii) are equivalent:

(i) F(x) ∈ Σr×r.

(ii) There exists a positive semi-definite symmetric matrix of appropriate size Q such that F(x) =
(vd(x)⊗ Ir)TQ(vd(x)⊗ Ir).

Using these lemmas, the problem of determining whether a polynomial f (x) (or a polynomial
matrix F(x)) is an SOS polynomial (or an SOS matrix) or not is reduced to an SDP
(Semi-Definite Programming) problem, which can be solved numerically, of checking the
positive semi-definiteness of the corresponding matrix Q.

3.2 SOS polynomials with equality constraints
Let us consider the following equality constraints:

f j(x) = 0, j = 1, . . . , p (35)

where f j(x) ∈ R[x] and their feasible set is defined by

S := {x ∈ Rn | f j(x) = 0, j = 1, . . . , p}. (36)

Here we consider the problem of determining whether a given polynomial f0(x) ∈ R is
non-negative or not for all x ∈ R in the feasible set, i.e., the following condition holds or
not:

f0(x) ≥ 0, ∀x ∈ S. (37)

For this problem, define a generalized Lagrange function L(x, λ) by

L(x, λ) := f0(x)−
p

∑
j=1

λj(x) f j(x) (38)

where λj(x) ∈ R[x] and let

λ(x) :=
[

λ1(x) · · · λp(x)
]T ∈ R[x]p.

Then if for given λ[x] ∈ R[x]p

L(x, λ) ≥ 0, ∀x ∈ Rn (39)
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holds, the condition (37) is satisfied. In fact, (39) implies

f0(x) ≥
p

∑
j=1

λj(x) f j(x) = 0, ∀x ∈ S. (40)

Moreover, if L(x, λ) ∈ Σ then (39) holds from Lemma 1 and hence (37) holds. These facts are
summarized in the following lemma.

Lemma 3. If the following (i) or (ii) holds, the condition (37) holds.

(i) There exists λ(x) ∈ R[x]p such that L(x, λ) ≥ 0 (∀x ∈ Rn).

(ii) There exists λ(x) ∈ R[x]p such that L(x, λ) ∈ Σ.

4. Proposed method

Theorem 2 implies that the state feedback (20) will stabilize the closed-loop system and (25) is
satisfied if we can obtain a positive definite symmetric matrix P satisfying (19). In this section,
we propose an SOS optimization method to find such P.
To this end, let us introduce sufficiently small � > 0 and define

M̃(x, P) := M(x, P)− �I, (41)

φ̃(x, P) := (P−1x)T M̃(x, P)(P−1x). (42)

Then it is easy to see

M̃(x, P) � 0, ∀x ∈ Rn ⇒ M(x, P) � 0, ∀x ∈ Rn, (43)

φ̃(x, P) ≥ 0, ∀x ∈ Rn ⇒ φ(x, P) > 0, ∀x( �= 0) ∈ Rn. (44)

Hence, for obtaining the feedback (20) it suffices to find P � 0 such that

φ̃(x, P) ≥ 0, ∀x ∈ Rn. (45)

From (42), the condition (45) can be written as

hT M̃(x, P)h ≥ 0, ∀(x, h) ∈ R2n such that h = P−1x (46)

and moreover this can be written as

hT M̃(x, P)h ≥ 0, ∀(x, h) ∈ S̃ (47)

where
S̃ := {(x, h) ∈ R2n | x − Ph = 0}. (48)

By this, the condition (45) is represented as the condition (47) including the equality constraint
x − Ph = 0. For the condition (47) we define a generalized Lagrange function as in Section 3.2
as follows:
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j=1

λj(x) f j(x) (38)

where λj(x) ∈ R[x] and let

λ(x) :=
[

λ1(x) · · · λp(x)
]T ∈ R[x]p.

Then if for given λ[x] ∈ R[x]p
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holds, the condition (37) is satisfied. In fact, (39) implies
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p

∑
j=1
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where
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x − Ph = 0. For the condition (47) we define a generalized Lagrange function as in Section 3.2
as follows:
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L(x, h, λ; P) := hT M̃(x, P)h − λT(x, h)(x − Ph) (49)

where λ(x, h) ∈ R[x, h]n. Then, from Lemma 3, (47) is satisfied if there exit λ and P(� 0)
which satisfies

L(x, h, λ; P) ≥ 0, ∀(x, h) ∈ R2n (50)

Here, suppose the degree of λ is given, say m, then λ can be written as

λ(x, h) = Hvm(x, h)

where vm(x, h) is a vector of size 2n+mCm which contains all monomials in x and h whose
degrees are less than or equal to m, and H is an n × (2n+mCm) real matrix. From this, (50) is
reduced to

Lm(x, h; H, P) := hT M̃(x, P)h − vT
m(x, h)HT(x − Ph) ≥ 0, ∀(x, h) ∈ R2n, (51)

and the problem to be concerned becomes the one for finding matrices P and H which satisfies
(51).
Note that Lm(x, h; H, P) includes the product of H and P in the last term. Hence, we consider
an iterative algorithm which repeats a step of finding H for fixed P and a step of finding P for
fixed H.
First, suppose P is fixed. In this case, Lm(x, h; H, P) can be written as

Lm(x, h; H, P) = vT
d1
(x, h)Q1(H)vd1

(x, h) (52)

where d1 = deg(Lm), the degree of Lm as a polynomial in x and h, vd1
(x, h) is a vector of

size 2n+d1
Cd1

which contains all monomials in x and h whose degrees are less than or equal
to d1, and Q1(H) is a (2n+d1

Cd1
)× (2n+d1

Cd1
) symmetric matrix. Then Q1(H) is affine in H

because so is Lm. Hence, in the case of fixed P, the problem to be concerned is reduced to an
SDP problem to find H such that Q1(H) � 0, because (51) is satisfied if Lm ∈ Σ(x,h) which is
equivalent to the existence of Q1(H) � 0 by Lemma 1.
Next, suppose H is fixed. In this case, Lm is not affine in P, but by Schur complement (51) is
equivalent to

G(x, h; H, P) :=
[

G11(x, h; H, P) a2
z(x)hT PCT

11
a2

z(x)C11Ph a2
z(x)Inz

]
� 0, ∀(x, h) ∈ R2n, (53)

which is affine in P, where

G11(x, h; H, P) :=hT
[
−(A + B2(x)C12)P − P(A + B2(x)C12)

T − γ̄B1BT
1

+ ā2
u(x)B2(x)BT

2 (x)
]

h − vT
m(x, h)HT(x − Ph) (54)

and
γ̄ :=

1
γ2 , āu(x) :=

1
au(x)

. (55)
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Since G is afffine in P, it can be written as

G(x, h; H, P) = (vd2 (x, h)⊗ Inz+1)
TQ2(P)(vd2 (x, h)⊗ Inz+1) (56)

where d2 = deg(G), the degree of G as a polynomial matrix in x and h, vd2 (x, h) is a vector of
size 2n+d2 Cd2 which contains all monomials in x and h whose degrees are less than or equal to
d2, and Q2(P) is a real symmetric matrix of appropriate size. Hence, in the case of fixed H, the
problem to be concerned is reduced to an SDP problem to find P such that Q2(P) � 0, because

(51) is satisfied if G ∈ Σ(nz+1)×(nz+1)
(x,h) which is equivalent to the existence of Q2(H) � 0 by

Lemma 2.
Note that Lm and G are also affine in γ̄ and hence we can consider to maximize γ̄ = 1/γ2 (i.e.,
minimize γ).
Now, let us summarize our method as an algorithm.

Algorithm 1. Step. 0 Choose an initial value P0 � 0 and small �. Let k := 0 and γ̄0 = 0.

Step 1 Let P = Pk and get the optimal value γ̄∗ and its optimizer H∗ by solving numerically the next
SDP problem

max
γ̄,H

γ̄ s.t. Q1(H) � 0, (57)

and let Hk := H∗.

Step 2 Let H = Hk and get the optimal value γ̄∗ and its optimizer P∗ � 0 by solving numerically
the next SDP problem

max
γ̄,P�0

γ̄ s.t. Q2(P) � 0, (58)

and let γ̄k+1 := γ̄∗ and Pk+1 = P∗.

Step 3 If |γ̄k+1 − γ̄k| is sufficiently small (i.e., γ̄k is convergent), then return Pk+1 as a solution and
exit; otherwise, let k := k + 1 and go to Step 1.

Note that a feasible solution to M̃(0, P) � 0 for large γ can be used as an initial value P0,
because M̃(0, P) � 0 is a usual Riccati inequality and has a feasible solution for large γ.

5. Numerical example

In this section, we give a numerical example. The bilinear system to be concerned is the
semi-active suspension system for automobiles introduced by Ohsaku et al. (1998); Sampei et
al. (1999).
The motion equation of the suspension system is given by

Mbẍb = Cs(ẋw − ẋb) + Cv(ẋw − ẋb) + Ks(xw − xb) (59)

Mwẍw = −Cs(ẋw − ẋb)− Cv(ẋw − ẋb)− Ks(xw − xb) + Kt(xr − xw) (60)

where

xb is the displacement of the car body,

xw is the displacement of the car wheel,

xr is the displacement of the road,
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Mb is the mass of the car body,

Mw is the mass of the car wheel,

Ks is the spring constant of the suspension,

Kt is the elastic coefficient of the tire,

Cs is the fixed damping coefficient of the suspension,

Cv is the variable damping coefficient of the suspension,

and Cv is the input and ẋr is the disturbance.

Mb

Mw

�������������

�
�������������

Ks

Kt

Cs

u = Cv�����

�xr

�xw

�xb

�� �
�
�
�
���� �� �� ��

Fig. 6. Semi-active suspension system

Then the state-space representation of the generalized system with Wz = I, Wu = 1 and
nonlinear weights az(x), au(x) is given by

ẋ(t) = Ax(t) + B1w(t) + B2(x)u(t) (61)

z̄(t) = az(x)C11x(t) + au(x)u(t) (62)

where

x(t) =

⎡
⎢⎢⎢⎢⎣

xw(t)− xb(t)

ẋb(t)
xr(t)− xw(t)

ẋw(t)

⎤
⎥⎥⎥⎥⎦

, u(t) = Cv(t), w(t) = ẋr(t)

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0 1

Ks
Mb

− Cs
Mb

0 Cs
Mb

0 0 0 −1

− Ks
Mw

Cs
Mw

Kt
Mw

− Cs
Mw

⎤
⎥⎥⎥⎥⎥⎥⎦

, B1 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , B2(x) =

⎡
⎢⎢⎢⎢⎢⎣

0
ẋw−ẋb

Mb

0
− ẋw−ẋb

Mw

⎤
⎥⎥⎥⎥⎥⎦

,

C11 =
�

0 1 0 0
�
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and the nonlinear weights are given by

az(x) =
√

1 + xT Rzx,

au(x) =
1√

1 + xT Rux
, (63)

Rz = mz I,

Ru = mu I,

with some positive numbers mz, mu. Note that this nonlinear weights do not satisfy the
condition (16) in Theorem 1 in general. Hence, the method by Ohsaku et al. (1998); Shimizu et
al. (1997) cannot be applied to this example with this weights.
The objective of the robust control to be concerned is to minimize the effect of the disturbance
(the road roughness) on the velocity of the car body, which is formulated as the problem of
minimizing the following L2-induced norm:

sup
w �=0

‖z̄‖2
‖w‖2

.

Fig. 7 shows the disturbance w(t) = ẋr(t) and Fig. 8 shows the simulation results where the
dashed red line shows the velocity of the car body without feedback control and the solid
blue line shows the one with feedback control designed by our method. It can be seen that
the amplitude of the body velocity by our method is suppressed compared with that without
feedback control. This means that the effect of the disturbance on the body velocity is reduced
by our method, which shows the efficiency of our method.

Fig. 7. Disturbance from the road surface
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Fig. 8. Velocities of the car body (dashed red: open-loop, solid blue: by our method)

6. Conclusions

In this paper, first we have derived an inequality condition of quadratic form for the robust
control problem of bilinear systems with nonlinear weights, and then proposed an iterative
method for finding a solution to the inequality condition. Finally, we have given a numerical
example to show the effectiveness of our method.
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1. Introduction 
Repetitive control is one control algorithm based on the Internal Model Principle (Francis & 
Wonham, 1976) and has been widely implemented in various applications. A repetitive 
control based system has been shown to work well for tracking periodic reference 
commands or for rejecting periodic disturbances. Although the idea has been verified as 
early as 1981 (Inoue et al., 1981), a rigorous analysis and synthesis of repetitive controllers 
for continuous-time systems was not proposed until 1989, by Hara et al. (Hara et al., 1988). 
Tomizuka et al. (Tomizuka et al., 1989) addressed the analysis and synthesis of discrete-time 
repetitive controller, considering the fact that digital implementation of a repetitive 
controller is simpler and more straightforward. Since then, repetitive control has gained 
popularity in applications where periodic disturbances rejection or repetitive tracking are 
required, see (Wang et al., 2009; Cuiyan et al., 2004) and the references therein. These 
include controls of disk drive servo (Tomizuka et al., 1989; Guo, 1997; Moon et al., 1998), 
hydraulic closed-loop servo for material testing (Srinivasan & Shaw, 1993), vibration 
suppression (Hillerstrom, 1996), rejection of load disturbances in steel casting process 
(Manayathara et al., 1996), servo control for a positioning table (Yamada et al., 1999), X-Y 
table (Tung et al., 1993), noncircular turning process (Alter & Tsao, 1994), motor speed 
ripple reduction (Godler et al., 1995; Rodriguez et al., 2000), and eccentricity compensation 
(Garimella & Srinivasan, 1996). 
In literatures, repetitive controllers are synthesized and operate in time domain, which is 
in accordance with the fact that models or differential equations of physical systems are 
mostly derived using time as the independent variable. One of the key steps for designing 
a repetitive controller is to determine the period, or equivalently, the number of delay 
taps (q−1, q is the one step advance operator). This can usually be done by analyzing the 
periodic tracking or disturbance signal using techniques such as fast Fourier transform 
(FFT). To ensure effectiveness of the design, an underlying assumption is that the 
frequency constitutions of the periodic tracking or disturbance signal do not vary with 
respect to time, which corresponds to a stationary or time-invariant frequency spectrum 
of the signal. This assumption can be satisfied when the design objective is to track a pre-
specified periodic trajectory. However, it might be violated for disturbance rejection 
problems where the frequency constitutions of the disturbance are time-varying. For a 
motion system with rotary components such as gear-train, the disturbances due to gear 
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Fig. 8. Velocities of the car body (dashed red: open-loop, solid blue: by our method)
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1. Introduction 
Repetitive control is one control algorithm based on the Internal Model Principle (Francis & 
Wonham, 1976) and has been widely implemented in various applications. A repetitive 
control based system has been shown to work well for tracking periodic reference 
commands or for rejecting periodic disturbances. Although the idea has been verified as 
early as 1981 (Inoue et al., 1981), a rigorous analysis and synthesis of repetitive controllers 
for continuous-time systems was not proposed until 1989, by Hara et al. (Hara et al., 1988). 
Tomizuka et al. (Tomizuka et al., 1989) addressed the analysis and synthesis of discrete-time 
repetitive controller, considering the fact that digital implementation of a repetitive 
controller is simpler and more straightforward. Since then, repetitive control has gained 
popularity in applications where periodic disturbances rejection or repetitive tracking are 
required, see (Wang et al., 2009; Cuiyan et al., 2004) and the references therein. These 
include controls of disk drive servo (Tomizuka et al., 1989; Guo, 1997; Moon et al., 1998), 
hydraulic closed-loop servo for material testing (Srinivasan & Shaw, 1993), vibration 
suppression (Hillerstrom, 1996), rejection of load disturbances in steel casting process 
(Manayathara et al., 1996), servo control for a positioning table (Yamada et al., 1999), X-Y 
table (Tung et al., 1993), noncircular turning process (Alter & Tsao, 1994), motor speed 
ripple reduction (Godler et al., 1995; Rodriguez et al., 2000), and eccentricity compensation 
(Garimella & Srinivasan, 1996). 
In literatures, repetitive controllers are synthesized and operate in time domain, which is 
in accordance with the fact that models or differential equations of physical systems are 
mostly derived using time as the independent variable. One of the key steps for designing 
a repetitive controller is to determine the period, or equivalently, the number of delay 
taps (q−1, q is the one step advance operator). This can usually be done by analyzing the 
periodic tracking or disturbance signal using techniques such as fast Fourier transform 
(FFT). To ensure effectiveness of the design, an underlying assumption is that the 
frequency constitutions of the periodic tracking or disturbance signal do not vary with 
respect to time, which corresponds to a stationary or time-invariant frequency spectrum 
of the signal. This assumption can be satisfied when the design objective is to track a pre-
specified periodic trajectory. However, it might be violated for disturbance rejection 
problems where the frequency constitutions of the disturbance are time-varying. For a 
motion system with rotary components such as gear-train, the disturbances due to gear 
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eccentricity or tooth profile error are inherently angular displacement dependent or 
spatially periodic. They are periodic with respect to angular displacement, but not 
necessarily periodic with respect to time. Gear eccentricity induces disturbances with 
period equal to one revolution and tooth profile error induces disturbances with 
fundamental frequency equal to the number of teeth per revolution. The spatial periods 
for these two types of disturbances do not change with the angular velocity. However, the 
corresponding temporal frequencies will be proportional to the angular velocity and vary 
accordingly when the system operates at variable speeds. As an example, for a single 
stage motor/gear transmission system operating an output speed of v revolution per 
second, the eccentricity error of the final gear will show up as a periodic disturbance with 
temporal frequency of v Hz. As the operating speed changes, a proportional changes to 
the temporal frequency of the disturbance will occur whereas its spatial frequency is fixed 
at 1 cycle per revolution. Suppose that a repetitive controller is implemented using a 
constant-angular-displacement sampling period (spatially sampled) approach, e.g., m 
samples per revolution of the final gear, to tackle this disturbance. The number of 
required delay taps, which reflects the period of the disturbance, will be a constant m 
regardless of the angular velocity. On the other hand, a repetitive controller synthesized 
using the conventional approach, i.e., based on the temporal frequency of the disturbance 
(v Hz), and implemented with constant-time sampling period will not be effective if the 
number of delay taps for the repetitive controller is not tuned/adapted in real-time in 
accordance with the angular velocity. If the period fluctuation is small, methods have 
been shown to improve the robustness of the repetitive controller by increasing the notch 
width in the frequency domain of the repetitive controller at the cost of reduced 
attenuation for the periodic disturbance (Onuki & Ishioka, 2001). When the period 
variation is large, there are two approaches to address the varying period in a repetitive 
control framework. For situation where the period variation can not be measured or 
unknown, adaptive control approaches have been shown to be effective in adapting the 
period of the repetitive controller (Hillerstrom, 1996; Manayathara et al., 1996; Wit & 
Praly, 2000) at the expense of response time and transient response. When the period 
variation is known or can be measured, such as the case in gear noise induced 
disturbance, better trade-off between period adaptability and effectiveness of repetitive 
control can be made. 
Recent researches started studying control problems of rejecting/tracking spatially periodic 
disturbances/references in spatial domain, i.e., using spatially sampled repetitive 
controllers. As explained earlier, a spatially sampled repetitive controller has its repetitive 
kernel (i.e., e-st or z-N with positive feedback) synthesized and operate with respect to 
angular displacement. Hence its capability for rejecting/tracking spatially periodic 
disturbances/references will not degrade when the controlled system operates at varying 
speed. Note that a typical repetitive control system consists of repetitive (i.e., a repetitive 
kernel) and non-repetitive (e.g., a stabilizing controller) portions. Given a time-domain 
open-loop system and with the repetitive kernel to be synthesized and implemented in 
spatial domain, design of the non-repetitive portion that properly interfaces the repetitive 
kernel and the open-loop system actually poses a challenge. (Nakano et al., 1996) initiated a 
fundamental design of spatially sampled repetitive controller in 1996. Although the 
proposed design is rudimentary due to its focus on simple linear time-invariant systems, it 
has recently motivated several more advanced designs (Mahawan & Luo, 2000; Chen et al., 
2006). The design started by transforming a given open-loop system in time domain into one 
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in spatial domain. Specifically, the variable of time is rendered implicit for the transformed 
system in spatial domain with angular displacement being the new independent variable. 
This is attained by using the relationship between angular displacement and velocity along 
with imposing an assumption of bijective mapping between time and angular displacement. 
The resulting nonlinear system was linearized at a fixed angular velocity and a stabilizing 
controller with built-in repetitive control action was synthesized. In (Chen et al., 2006), 
robust control methods were employed to address issues associated with using a linearized 
plant model in the controller synthesis and actuator saturation. Although effective for small 
angular velocity fluctuations, the effectiveness of a linearized approach is limited when the 
application requires a large variation in operating speed. (Mahawan & Luo, 2000) 
demonstrated the feasibility of augmenting a spatially sampled repetitive controller to a 
time-sampled stabilizing controller, where no reformulation and linearization of the open-
loop plant model is required. However, the complexity of the method lies in the need to 
solve an optimization problem in real-time to synchronize the hardware and software 
interrupts associated with time and spatial sampling, respectively. In addition, although 
reasonable for trajectory tracking, the assumption of a known mapping between time and 
angular displacement is rarely applicable for disturbance rejection applications. The lack of 
considerations to modeling uncertainty is another area that can be improved from the 
methods proposed in (Nakano et al., 1996) and (Mahawan & Luo, 2000). Instead of 
linearizing the resulting nonlinear plant model, (Chen and Chiu, 2008) shows that the 
nonlinear plant model can be formulated into a quasi-linear parameter varying (quasi-LPV) 
system, where the angular speed is one of the measurable varying parameters. Leveraging 
existing results in controller synthesis for LPV systems (Becker & Packard, 1994; Apkarian et 
al., 1995; Gahinet, 1996; Gahinet & Apkarian, 1994, 1995) and the robust repetitive design 
formulation outlined in (Chen et al., 2006; Hanson & Tsao, 2000), an LPV gain-scheduling 
controller can be obtained that addresses bounded modeling uncertainties, actuator 
saturation and spatially periodic disturbances. 
This book chapter will provide the reader with a review and summary of recent advances in 
design of spatially sampled repetitive control systems. Specifically, we will elaborate on a 
few designs which account for the robustness property of the system, i.e., capability in 
tackling modeling uncertainties and actuator saturation. Current issues and future research 
directions will also be discussed. The outline of this chapter is as follows: 
Section 2 demonstrates how to transform a generic time-domain system into its counterpart 
in spatial domain. It is also shown that nonlinearity such as actuator saturation may be 
properly modeled and incorporated into the spatial-domain open-loop system. 
Section 3 presents a design of spatially sampled robust repetitive control. A well-known 
approach for designing controllers for nonlinear systems with a well defined operating 
point is to first linearize the system around the nominal operating point. Once the linear 
system is extracted, linear robust design paradigm can be applied to establish a design 
framework with embedded repetitive controller. 
Section 4 presents another design of spatially sampled robust repetitive control. By 
reformulating the transformed spatial-domain system as a quasi-linear parameter varying 
(quasi-LPV) system, we gain access to the LPV design framework for gain-scheduling 
controllers. Hence, an LPV gain-scheduling repetitive control (LPVRC) system can be 
synthesized by augmenting the repetitive controller with the LPV controller. The LPVRC 
design is superior to others in the sense that 1) It requires less computation effort when 
compared to nonlinear design; 2) It is robust to spatially periodic disturbances when 
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eccentricity or tooth profile error are inherently angular displacement dependent or 
spatially periodic. They are periodic with respect to angular displacement, but not 
necessarily periodic with respect to time. Gear eccentricity induces disturbances with 
period equal to one revolution and tooth profile error induces disturbances with 
fundamental frequency equal to the number of teeth per revolution. The spatial periods 
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regardless of the angular velocity. On the other hand, a repetitive controller synthesized 
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(v Hz), and implemented with constant-time sampling period will not be effective if the 
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accordance with the angular velocity. If the period fluctuation is small, methods have 
been shown to improve the robustness of the repetitive controller by increasing the notch 
width in the frequency domain of the repetitive controller at the cost of reduced 
attenuation for the periodic disturbance (Onuki & Ishioka, 2001). When the period 
variation is large, there are two approaches to address the varying period in a repetitive 
control framework. For situation where the period variation can not be measured or 
unknown, adaptive control approaches have been shown to be effective in adapting the 
period of the repetitive controller (Hillerstrom, 1996; Manayathara et al., 1996; Wit & 
Praly, 2000) at the expense of response time and transient response. When the period 
variation is known or can be measured, such as the case in gear noise induced 
disturbance, better trade-off between period adaptability and effectiveness of repetitive 
control can be made. 
Recent researches started studying control problems of rejecting/tracking spatially periodic 
disturbances/references in spatial domain, i.e., using spatially sampled repetitive 
controllers. As explained earlier, a spatially sampled repetitive controller has its repetitive 
kernel (i.e., e-st or z-N with positive feedback) synthesized and operate with respect to 
angular displacement. Hence its capability for rejecting/tracking spatially periodic 
disturbances/references will not degrade when the controlled system operates at varying 
speed. Note that a typical repetitive control system consists of repetitive (i.e., a repetitive 
kernel) and non-repetitive (e.g., a stabilizing controller) portions. Given a time-domain 
open-loop system and with the repetitive kernel to be synthesized and implemented in 
spatial domain, design of the non-repetitive portion that properly interfaces the repetitive 
kernel and the open-loop system actually poses a challenge. (Nakano et al., 1996) initiated a 
fundamental design of spatially sampled repetitive controller in 1996. Although the 
proposed design is rudimentary due to its focus on simple linear time-invariant systems, it 
has recently motivated several more advanced designs (Mahawan & Luo, 2000; Chen et al., 
2006). The design started by transforming a given open-loop system in time domain into one 
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in spatial domain. Specifically, the variable of time is rendered implicit for the transformed 
system in spatial domain with angular displacement being the new independent variable. 
This is attained by using the relationship between angular displacement and velocity along 
with imposing an assumption of bijective mapping between time and angular displacement. 
The resulting nonlinear system was linearized at a fixed angular velocity and a stabilizing 
controller with built-in repetitive control action was synthesized. In (Chen et al., 2006), 
robust control methods were employed to address issues associated with using a linearized 
plant model in the controller synthesis and actuator saturation. Although effective for small 
angular velocity fluctuations, the effectiveness of a linearized approach is limited when the 
application requires a large variation in operating speed. (Mahawan & Luo, 2000) 
demonstrated the feasibility of augmenting a spatially sampled repetitive controller to a 
time-sampled stabilizing controller, where no reformulation and linearization of the open-
loop plant model is required. However, the complexity of the method lies in the need to 
solve an optimization problem in real-time to synchronize the hardware and software 
interrupts associated with time and spatial sampling, respectively. In addition, although 
reasonable for trajectory tracking, the assumption of a known mapping between time and 
angular displacement is rarely applicable for disturbance rejection applications. The lack of 
considerations to modeling uncertainty is another area that can be improved from the 
methods proposed in (Nakano et al., 1996) and (Mahawan & Luo, 2000). Instead of 
linearizing the resulting nonlinear plant model, (Chen and Chiu, 2008) shows that the 
nonlinear plant model can be formulated into a quasi-linear parameter varying (quasi-LPV) 
system, where the angular speed is one of the measurable varying parameters. Leveraging 
existing results in controller synthesis for LPV systems (Becker & Packard, 1994; Apkarian et 
al., 1995; Gahinet, 1996; Gahinet & Apkarian, 1994, 1995) and the robust repetitive design 
formulation outlined in (Chen et al., 2006; Hanson & Tsao, 2000), an LPV gain-scheduling 
controller can be obtained that addresses bounded modeling uncertainties, actuator 
saturation and spatially periodic disturbances. 
This book chapter will provide the reader with a review and summary of recent advances in 
design of spatially sampled repetitive control systems. Specifically, we will elaborate on a 
few designs which account for the robustness property of the system, i.e., capability in 
tackling modeling uncertainties and actuator saturation. Current issues and future research 
directions will also be discussed. The outline of this chapter is as follows: 
Section 2 demonstrates how to transform a generic time-domain system into its counterpart 
in spatial domain. It is also shown that nonlinearity such as actuator saturation may be 
properly modeled and incorporated into the spatial-domain open-loop system. 
Section 3 presents a design of spatially sampled robust repetitive control. A well-known 
approach for designing controllers for nonlinear systems with a well defined operating 
point is to first linearize the system around the nominal operating point. Once the linear 
system is extracted, linear robust design paradigm can be applied to establish a design 
framework with embedded repetitive controller. 
Section 4 presents another design of spatially sampled robust repetitive control. By 
reformulating the transformed spatial-domain system as a quasi-linear parameter varying 
(quasi-LPV) system, we gain access to the LPV design framework for gain-scheduling 
controllers. Hence, an LPV gain-scheduling repetitive control (LPVRC) system can be 
synthesized by augmenting the repetitive controller with the LPV controller. The LPVRC 
design is superior to others in the sense that 1) It requires less computation effort when 
compared to nonlinear design; 2) It is robust to spatially periodic disturbances when 
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compared to temporal-based design; 3) It allows wider operation range when compared to 
designs using linearization approaches. 
Section 5 concludes the chapter and points out issues and future research directions relevant 
to spatially sampled robust repetitive control. 

2. Problem formulation – Position-invariant rotary systems 
In this section, we show how a generic nonlinear time-invariant (NTI) model can be 
transformed into a nonlinear position-invariant (NPI; as opposed to the definition of time-
invariant) model by choosing an alternate independent variable (angular displacement 
instead of time) and defining a new set of states (or coordinates) with respect to the angular 
displacement. Note that the transformation described here is equivalent to a nonlinear 
coordinate transformation or a diffeomorphism. The NPI model will be used for the 
subsequent design and discussion. In Section 2.1, we further demonstrate this 
transformation for a typical linear time-invariant (LTI) rotary system with actuator 
saturation, which will be utilized in subsequent design. 
Consider the mathematical model of a single-input single-output (SISO) nth-order NTI 
system with model uncertainties, and subject to output disturbance, i.e., 
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transform or power spectral density is zero above a certain finite frequency. The only 
available information of the disturbances is the number of distinctive spatial frequencies and 
the spectrum distribution for non-periodic disturbance components.   ,t ff x t   and 
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  ,t gg x t   represent unstructured modeling inaccuracy, which are also assumed to be 
bounded. Instead of using time t  as the independent variable, consider an alternate 
independent variable ( )t  , i.e., the angular displacement. Since by definition 
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where ( )t  is the angular velocity, the following condition 
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will guarantee that ( )t  is strictly monotonic such that   1( )t  exists. Thus all the 
variables in the time domain can be transformed into their counterparts in the  -domain, 
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Equation (3) can be regarded as an NPI system with the angular displacement   as the 
independent variable. Note that the concept of transfer function is still valid for linear 
position-invariant systems if we define the Laplace transform of a signal ˆ( )g   in the 
angular displacement domain as 
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This definition will be useful for describing the linear portion of the overall control system. 

2.1 Transformation of an LTI rotary system with actuator saturation 
Suppose a state space realization of an LTI model for a typical rotary system can be 
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where x(t) is the system state vector, ( )x t  denotes the time derivative of the state vector, v(t) 
is the output disturbance vector that contains spatially periodic components, z(t) denotes the 
output vector related to system performance, y(t) is the measurement vector, and u(t) is the 
control input vector. Those signals are linearly related by the matrices shown in (4), i.e., A, 
Bv, Cz, etc. and all of the matrices and vectors are assumed to have compatible dimensions. If 
(t) is a strictly monotonic function of t such that its inverse t = 1(t) exists and does not 
vanish, variables in time domain will have a well defined counterpart in the -domain, i.e., 

 
1 1

1 1 1

( ) ( ( )),  ( ) ( ( )),

( ) ( ( )),  ( ) ( ( )),  and ( ) ( ( )).

x x z z

y y v v u u

   

     

 

  

 

  

  
    

  



 
Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics 

 

58

compared to temporal-based design; 3) It allows wider operation range when compared to 
designs using linearization approaches. 
Section 5 concludes the chapter and points out issues and future research directions relevant 
to spatially sampled robust repetitive control. 

2. Problem formulation – Position-invariant rotary systems 
In this section, we show how a generic nonlinear time-invariant (NTI) model can be 
transformed into a nonlinear position-invariant (NPI; as opposed to the definition of time-
invariant) model by choosing an alternate independent variable (angular displacement 
instead of time) and defining a new set of states (or coordinates) with respect to the angular 
displacement. Note that the transformation described here is equivalent to a nonlinear 
coordinate transformation or a diffeomorphism. The NPI model will be used for the 
subsequent design and discussion. In Section 2.1, we further demonstrate this 
transformation for a typical linear time-invariant (LTI) rotary system with actuator 
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Consider the mathematical model of a single-input single-output (SISO) nth-order NTI 
system with model uncertainties, and subject to output disturbance, i.e., 

 
               

       
t f t f t g t g

n y

x t = f x t , f +Δf x t , f + g x t , f +Δg x t , f u t

y = Ψx t + d t = x t + d t

     
 (1) 

where      1
T

nx t x t x t    ,  0 0 1   ,  u t  and  y t  correspond to control 
input and measured output angular velocity of the system, respectively. ( )yd t  represents a 
class of  position-dependent disturbances which constitutes bounded spatially periodic and 
non-periodic components. Here we refer non-periodic disturbances to signals whose Fourier 
transform or power spectral density is zero above a certain finite frequency. The only 
available information of the disturbances is the number of distinctive spatial frequencies and 
the spectrum distribution for non-periodic disturbance components.   ,t ff x t   and 

  ,t gg x t   are known vector-valued functions with unknown but bounded system 
parameters, i.e., 1f f fk       and 1g g gl      ;   ,t ff x t   and 

  ,t gg x t   represent unstructured modeling inaccuracy, which are also assumed to be 
bounded. Instead of using time t  as the independent variable, consider an alternate 
independent variable ( )t  , i.e., the angular displacement. Since by definition 

 
0

( ) ( ) (0),
t

t d        

where ( )t  is the angular velocity, the following condition 

    ( ) 0,   t >0dt
dt

 (2) 

will guarantee that ( )t  is strictly monotonic such that   1( )t  exists. Thus all the 
variables in the time domain can be transformed into their counterparts in the  -domain, 
i.e., 

 
Spatially Sampled Robust Repetitive Control 

 

59 

 

1 1

1 1

1

ˆ ˆ( ) ( ( )),  ( ) ( ( )),
ˆˆ( ) ( ( )),  ( ) ( ( )),

ˆ( ) ( ( )),

x x y y

u u d d

     

     

    

 

 



 

 



  

where we denote ̂  as the  -domain representation of  . Note that, in practice, (2) can 
usually be satisfied for most rotary motion system where the rotary component rotates only 
in one direction. Since 

 
ˆ ˆ( ) ( ) ( )ˆ( )dx t d dx dx

dt dt d d
   

 
    

(1) may be rewritten as 

 
             

   

ˆ( )ˆ ˆ ˆ ˆ ˆ ˆ( ) , , , ,

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) .

t f t f t g t g

y n y

dx f x f x g x g x u
d

y x d x d

          


    

           

    
 (3) 

Equation (3) can be regarded as an NPI system with the angular displacement   as the 
independent variable. Note that the concept of transfer function is still valid for linear 
position-invariant systems if we define the Laplace transform of a signal ˆ( )g   in the 
angular displacement domain as 

  


  
0

ˆ ˆ( ) ( ) sG s g e d .  

This definition will be useful for describing the linear portion of the overall control system. 

2.1 Transformation of an LTI rotary system with actuator saturation 
Suppose a state space realization of an LTI model for a typical rotary system can be 
expressed as 

 
( ) ( )
( ) ( )
( ) 0 ( )

v u

z zv zu

y yv

x t A B B x t
z t C D D v t
y t C D u t

    
         
        


 (4) 

where x(t) is the system state vector, ( )x t  denotes the time derivative of the state vector, v(t) 
is the output disturbance vector that contains spatially periodic components, z(t) denotes the 
output vector related to system performance, y(t) is the measurement vector, and u(t) is the 
control input vector. Those signals are linearly related by the matrices shown in (4), i.e., A, 
Bv, Cz, etc. and all of the matrices and vectors are assumed to have compatible dimensions. If 
(t) is a strictly monotonic function of t such that its inverse t = 1(t) exists and does not 
vanish, variables in time domain will have a well defined counterpart in the -domain, i.e., 

 
1 1

1 1 1

( ) ( ( )),  ( ) ( ( )),

( ) ( ( )),  ( ) ( ( )),  and ( ) ( ( )).

x x z z

y y v v u u

   

     

 

  

 

  

  
    

  



 
Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics 

 

60

Suppose the angular velocity can be measured in real-time and written as 

 0( ) ( ) 0,C x        (5) 

where 0 is the nominal angular velocity and C  is an appropriate output matrix. Applying 
the aforementioned transformation, substituting (5) into (4), and imposing the saturation 
function 
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The system expressed by (6) is an angular displacement reformulated (ADR) system with 
the angular displacement  as the independent variable. 

3. Linear spatially sampled robust repetitive control 
Linear robust controller design is aiming at synthesizing a feedback controller so that 
stability and performance of the overall (closed-loop) control system is insensitive (i.e., 
robust) to external disturbances and model uncertainties. There are four popular terms used 
to characterize the performance of a linear feedback control system, namely nominal 
stability, nominal performance, robust stability, and robust performance (Zhou & Doyle, 
1997). We say that a feedback control system is stable if its output signals are bounded when 
subject to bounded input signals. A feedback control system meets (steady-state) 
performance if it is stable and the ratio of the sizes (measured by a mathematical norm, e.g., 
2-norm) of its output to input signals is bounded above by certain frequency dependent 
number. In most cases, stability comes first, and performance comes next in the priority of 
the design. Nominal stability/performance is to be satisfied by controller design only for a 
plant, i.e., the model of the to-be-controlled system (free of parameter uncertainty), while 
robust stability/performance is to be satisfied by more challenged design for a set of plants, 
which include the nominal one and those due to plant parameter variation. Linear fractional 
transformation (LFT) is a popular and effective technique to formulate and pose a robust 
control design problem as will be demonstrated next. 

3.1 Synthesis of the robust controller 
Start the design by first looking at the LFT representation of the desired closed loop control 
system depicted in Fig. 1, which incorporate two motors as the actuators. An LFT 
representation basically consists of three blocks: generalized plant, generalized uncertainty, 
and the stabilizing controller. Several variables and components need to be explained here. 
First, the generalized plant ( )P z  (i.e., discrete-position system with z denoted the variable 
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used in the z-transform) includes the plant, and all linear weighting filters whose magnitude 
responses are used to specify the frequency-wise bounds on the output signals and 
modeling uncertainty. All mathematical operations within the generalized plant are either 
addition of two signals or scalar multiplication of signals, which renders ( )P z  linear. Note 
that only motor actuators are considered in the framework and driven by the control input u 
calculated by the controller ( )K z . Other type of actuators can also be considered. Second, 
the inputs to the controller y are output signal measurement, e.g. velocity error from the 
rotary component. Third, the variable w includes those external signals such as periodic 
disturbances while the variable z includes those physical quantities which are important to 
system performance. Furthermore, p and q represent the input and output of the generalized 
uncertainty which is formed by all the uncertainty blocks from the generalized plant. The 
uncertainty blocks are usually formed by the modeling error and plant nonlinearity. There 
exist standard procedures and techniques to ‘pull out’ uncertainties from the generalized 
plant (Zhou & Doyle, 1997). 
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Fig. 1. LFT representation of the EP closed-loop control system using motor actuators. 

Based on the LFT representation, a discrete-position state space realization of the to-be-
controlled system (the generalized plant plus the generalized uncertainty) can be written as 
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Suppose the angular velocity can be measured in real-time and written as 

 0( ) ( ) 0,C x        (5) 
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and the optimal stabilizing controller ( )K z  , parameters of which stabilize the system and 
also minimize the size of the transfer function from w to z (or the ratio between the sizes of 
w and z if induced matrix norm is used) in the presence of the generalized uncertainty, can 
be represented as 

 1 1
1 2

2
( ) ( ) [ ] .K

K K K K
K

C
K z zI A B B D

C
 

   
 

 (8) 

The corresponding optimization (or robust performance) problem can be formulated as 

 
minimize ( )
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wzH z
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where ( )wzH z  is the transfer function from w to z, and   is some induced matrix norm. 
The decision variables to be found are KA ,  1 2K KB B ,  1 2

T
K KC C and KD . It has been 

shown that the above problem is nonconvex and a sophisticated search algorithm (e.g., D-K 
iteration) needs to be implemented in order to locate the global optimal solution. An 
alternative way is to consider a suboptimal controller which is the solution to the following 
problem 
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qw pzH z

K z
   

where ( )qw pzH z  is the transfer function from  q w  to  p z , and   is some induced 
matrix norm. This is the so-called mixed-sensitivity optimization problem and is convex. 
There have been standard software tools for solving this type of problems (Gahinet & 
Nemirovski, 1995). 

3.2 Discrete-position model of the system 
Suppose that the open-loop LTI system P(s) has a state space realization, i.e., 
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where ( )v t  denotes disturbances at the plant output. Equation (9) is basically a simplified 
version of (4). Instead of using time t as the independent variable, we can pick angular 
position, ( )t , as the independent variable, i.e. ( )t  . Thus in the  -domain Eq. (9) can be 
expressed as 
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where  1( ) ( ( ))x x f  ,  1( ) ( ( ))u u f  ,  1( ) ( ( ))y y f  , and  1( ) ( ( ))v v f  .  
Linearize the equation around the nominal angular velocity 0 , we have 
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Equation (11) is a linear position invariant (LPI) system with the angular position ( )t  as the 
independent variable. Note that this transformation will render those position-dependent 
disturbances within v  periodic and stationary. The performance of a repetitive controller 
synthesized in the -domain will not be compromised. Properly choosing spatial sampling 
frequency T  (in number of samples per revolution), we can discretize Eq. (11) and acquire 
a discrete-position model, i.e. 
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The procedures summarized in the literature (Chen & Chiu, 2001) can now be applied to the 
plant model expressed in Eq. (12) for synthesizing a two degree of freedom (TDOF) discrete-
position robust repetitive controller. 
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Fig. 2. The proposed TDOF robust repetitive control system. 
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3.3 TDOF robust repetitive controller 
To reduce system sensitivity or increase system robustness to unmodeled dynamics or 
nonlinearity (i.e. actuator saturation), we can formulate the control problem within a unified 
linear design framework, i.e. using LFT. The proposed TDOF control structure is depicted in 
Fig. 2. The actual plant is represented as a saturation element 10.5(1 )   with 1| | 1   
followed by a nominal model ( )P z  with output multiplicative uncertainties 2 2W  . 2W  is 
the frequency-dependent uncertainty weighting filter such that 2 1  . It can be picked to 
be any stable filter with its magnitude upper bounding the multiplicative error between the 
model and the actual plant, i.e. 
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Furthermore, the kernel of the repetitive controller   Nq z z  is replaced by a fictitious 
uncertainty 3 . Also another fictitious uncertainty f  is connected between the disturbance 
input and plant output. 1W  is the frequency-dependent weighting filter that approximates 
human contrast sensitivity function (Chen et al., 2003). Thus, a TDOF controller is obtained 
by solving the following mixed-sensitivity optimization problem given by 
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With upper and lower LFT denoted by  ,uF    and  ,lF   , respectively (Zhou & Doyle, 
1997), the robust performance of the designed control system can further be evaluated by 
looking at the structure singular value of   , ,l uF F M R K  with respect to the uncertainty 
block  1 2, , fdiag     , i.e.    , ,l uF F M R K . Note that     NR z q z z  is the kernel of 
the repetitive controller. 

3.4 Effect of nominal angular velocity variation on temporal-based repetitive control 
A repetitive control system creates comb-like notches in the system sensitivity function at 
periodic disturbance frequencies. For a motor/gear rotary system where significant 
disturbance sources come from gear eccentricity or tooth profile error, temporal frequencies 
of those disturbances will be proportional to the nominal angular velocity. Thus the 
performance of temporal-based repetitive control systems will deteriorate as the nominal 

 
Spatially Sampled Robust Repetitive Control 

 

65 

angular velocity varies. The velocity variation can be caused by friction, which is usually 
time-varying and difficult to be taken into account during design of the controller. Based on 
the proposed TDOF repetitive controller design, Fig. 3 shows the effect of nominal velocity 
variation on the performance of the sensitivity reduction. Parameters of the repetitive 
controller were specified to reject a disturbance located at 16 Hz when the system is 
operating at a nominal angular velocity of 3.14 rad/s. It can be seen that as the nominal 
velocity deviates from the desired value, the ability of the repetitive controller to reject the 
disturbance at 16 Hz degrades significantly. As shown in Fig. 3, a 0.2% variation in the 
nominal speed has an order of magnitude effect in the effectiveness of disturbance rejection. 
This high sensitivity to operating velocity is the motivation for pursuing the spatial-based 
repetitive control. 
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Fig. 3. Effect of nominal angular velocity variation on performance of the repetitive 
controller. 

3.5 Spatial-based repetitive control 
The proposed discrete-position repetitive controller was implemented on a typical 600-dpi 
laser printing system. An optical encoder was mounted on the main rotary component, i.e., 
an organic photoconductor (OPC) drum. A spatial sampling scheme that uses the encoder 
pulses (instead of a master clock) to trigger the interrupt of the control algorithm at intervals 
of equal angular position was implemented. Instead of counting number of pulses within a 
sampling period, the angular velocity was determined by monitoring the amount of time 
elapsed for fixed number of encoder pulses. This method actually enables low-cost encoders 
to achieve high-resolution velocity measurement. The spatial sampling frequency was set at 
2000 samples/rev such that the discrete-position repetitive controller has a period of 
N=2000/16=125. The engine started printing when velocity data of 10 revolutions were 
collected from the OPC drum for analysis. Fig. 4 shows the measured angular velocity from 
the OPC drum. Note that as the paper goes through the printing process, it slightly 
increased the load on the transmission system. This impact decreased the nominal angular 
velocity from 3.14 rad/s to 3.07 rad/s. However, the frequency spectrums, as shown in Fig. 
5, indicated that the performance of the discrete-position repetitive control system was not 
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degraded by this variation in the nominal velocity. Fig. 5 also shows that capability of the 
temporal-based repetitive controller was compromised due to frequency shifting of those 
periodic disturbances. 
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4. Linear parameter varying spatially sampled repetitive control 
Several controller design approaches, e.g., design by linearization as shown previously and 
design for linear periodic system using the lifting technique (Chen & Francis, 1995; Hanson 
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& Tsao, 2000), can be considered for the ADR system represented in (6). In this section, we 
first demonstrate that the ADR system with actuator saturation can be formulated into a 
linear parameter varying (LPV) system. Next, we show that with additional 
parameterization, LPV gain-scheduling controller synthesis methods (Becker & Packard, 
1994; Apkarian et al., 1995) can be applied to the ADR system. Finally, repetitive control and 
anti-windup (Wu et al., 2000) formulations can be incorporated into the LPV framework to 
reject spatially periodic disturbances and avoid actuator saturation. 

4.1 State-dependent linear parameter varying (LPV) system 
Assume that the angular velocity described by (5) can be measured in real-time and the 
input u  and the output ( )sat u  of the actuator saturation is accessible. By defining two 
varying parameters 
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Equation (15) represents a linear parameter-varying (LPV) system with two varying 
parameters whose values are accessible in real-time. Strictly speaking, (15) represents a 
quasi-LPV system since one of the varying parameters (ρ) is a function of the system states 
(Shamma & Athans, 1992).  
Without the actuator saturation constraint, i.e.  = 1, (15) can be written as an affine LPV 
system, 
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. (16) 

Affine LPV representation has many desirable properties that can facilitate subsequent 
controller design. For the quasi-LPV system represented by (15), by defining an augmented 
varying parameter 
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degraded by this variation in the nominal velocity. Fig. 5 also shows that capability of the 
temporal-based repetitive controller was compromised due to frequency shifting of those 
periodic disturbances. 
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& Tsao, 2000), can be considered for the ADR system represented in (6). In this section, we 
first demonstrate that the ADR system with actuator saturation can be formulated into a 
linear parameter varying (LPV) system. Next, we show that with additional 
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1994; Apkarian et al., 1995) can be applied to the ADR system. Finally, repetitive control and 
anti-windup (Wu et al., 2000) formulations can be incorporated into the LPV framework to 
reject spatially periodic disturbances and avoid actuator saturation. 
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Equation (15) represents a linear parameter-varying (LPV) system with two varying 
parameters whose values are accessible in real-time. Strictly speaking, (15) represents a 
quasi-LPV system since one of the varying parameters (ρ) is a function of the system states 
(Shamma & Athans, 1992).  
Without the actuator saturation constraint, i.e.  = 1, (15) can be written as an affine LPV 
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Affine LPV representation has many desirable properties that can facilitate subsequent 
controller design. For the quasi-LPV system represented by (15), by defining an augmented 
varying parameter 
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such that ( , )u u uB B B     , (15) can be represented by a pseudo-affine LPV system with 
three varying parameters (, , ), i.e., 

 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) .
( ) 0 ( )

v u

z zv zu

y yv

A B Bx x
z C D D v
y C D u

   
  
 

    
         
         

   
 

 
 (17) 

The name pseudo-affine is used since  is not an independent parameter but depends on the 
other two parameters  and . The impact of over-parameterizing the parameter space will 
be discussed in later section. Controller synthesis problem for a pseudo-affine LPV system 
(17) or an affine LPV system (16) can be reduced to solving a finite set of linear matrix 
inequalities (LMIs) under conditions satisfied by the parameter variation set and the 
input/output matrices.  
The following example demonstrates the process of reformulating a simple 2nd order motor 
system model to a pseudo-affine LPV system in the angular displacement domain. Consider 
a transfer function representation of an LTI model for a permanent magnet brushless dc 
motor, 

    
 2( ) ( ) ( ) ( ) ( )cZ s Y s V s U s V s

s as b
, (18) 

where ( )U s  is the voltage input to the motor, ( )V s  is the output disturbance, and ( )Y s  and 
( )Z s  are the undisturbed and disturbed angular position output, respectively. A state space 

model for (18) can be obtained by defining a set of state variables 
   1 2( ) ( ) ( ) ( )T Tx t x t y t y t  , i.e., 
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where (t) and (t) are the motor angular position and angular velocity, respectively. We 
can represent (19) as an ADR pseudo-affine LPV system by defining three varying 
parameters, 

 1 ( )    , ( )sat u u    , and   .  

From (17), the associated LPV system can be written as 
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4.2 Synthesis of gain-scheduling controller for an affine LPV system 
We will briefly summarize the results pertinent to the synthesis of an LPV gain-scheduling 
controller. Note that these results are originally derived for time-based systems, i.e., using 
time as the independent variable. However, they are equally applicable for an ADR system 
using angular displacement as the independent variable. 
For the LPV system represented by (17), suppose a parameter-dependent output feedback 
dynamic controller is to be designed from y  to u , represented by 
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where  = (, , ) forms a parameter vector. Equation (20) is a full-order design in the sense 
that  nx R  implies  n

Kx R . Note that the controller is parameterized by the measurable but 
varying parameter vector ψ, which explains the gain-scheduling characteristics. Define 
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cl Kx x x , the closed-loop LPV system with (17) and (20) can be expressed as 
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In the above equations, all I’s and 0’s are identity and zero matrices, respectively, with 
compatible dimensions for block matrix addition and multiplication. Denote the above LPV 
closed-loop system as Pcl. Define the Laplace transform of a signal ( )g   in the angular 
displacement domain to be 

 
0

( ) ( ) sG s g e d 
     .  

The quadratic LPV γ-performance problem can be summarized in the following theorem: 
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In the above equations, all I’s and 0’s are identity and zero matrices, respectively, with 
compatible dimensions for block matrix addition and multiplication. Denote the above LPV 
closed-loop system as Pcl. Define the Laplace transform of a signal ( )g   in the angular 
displacement domain to be 
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The quadratic LPV γ-performance problem can be summarized in the following theorem: 
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Theorem 3.1 The LPV closed-loop system Pcl is exponentially stable and the scaled H norm 
of the system is less than a scalar  > 0, i.e., 

      

 
      1 2 1 2 1 2 1 21( )( ( )) ( ) ( ) ,cl cl cl cl clL P L L C sI A B D L  (21) 

for all  belonging to a parameter variation set , if there exists a symmetric positive 
definite  matrix X  Rnn and a scaling matrix L reflecting certain parameter structure such 
that 
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 (22) 

Proof: See (Becker & Packard, 1994) or (Gahinet & Apkarian, 1994). 
With the help of the projection lemma and the completion lemma, the following theorem 
can be derived to provide the necessary and sufficient conditions for the solvability of the 
(quadratic) LPV γ-performance problem stated above. 
Theorem 3.2 For a given   , let NR() and NS() denote orthonormal bases of the null 
spaces of    

 ( ) ( )T T
u zuB D  and    

 ( ) ( )y yvC D , respectively. The LPV γ-performance 
problem is solvable if and only if there exist symmetric matrices (R, S)  Rnn and symmetric 
scaling matrices L and J such that the following matrix inequalities 
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 (24) 

 
 

 
 

0
R I
I S

 (25) 

 LJ I  (26) 

hold for all   . 
Proof: Follows the proof in the appendix of (Gahinet & Apkarian, 1995). The only difference 
being that most matrices are now parameter dependent. 
If the LPV γ-performance problem is solvable, the two symmetric matrices R and S along 
with the value of  and the system matrices (  ( )A ,  ( )vB ,  ( )uB , etc.) can be used to 
synthesize the controller matrices (  ( )KA ,  ( )KB ,  ( )KC , and  ( )KD ) (Becker & Packard, 
1994; Gahinet, 1996). 
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Remark The scaling matrix L in the above theorems takes into account the structural 
information on the mapping relating input v  and output z  in (17), which can include 
unmodeled dynamics, errors in sensing the varying parameters, and uncertain parameters 
which can not be measured in real-time. However, the resulting matrix inequalities are 
nonconvex, mainly due to (26), and computational techniques such as scaling/controller 
iteration or D/K iteration will be required to solve for matrices R and S. 
To simplify the subsequent derivation, we will be conservative and ignore the structural 
information of the mapping between v  and z . This is equivalent to setting L = J = I and 
removing the constraint defined by (26) from the above theorem. The advantage of doing so 
is that (23)-(25) become LMIs in R and S and the optimization becomes a convex problem 
that can be solved using numerical solvers based on interior point method, e.g., (Gainet et 
al., 1995). To check the solvability of the problem for the system given by (17) using 
Theorem 3.2, the following substitution is used 
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Since  constitutes infinite number of elements, inequalities (23)-(25) pose solvability issue 
with infinite number of LMI constraints. It was suggested in (Becker & Packard, 1994) that 
the parameter space be gridded and a controller is synthesized such that it satisfies the 
solvability conditions at the finite number of parameter values. However, for fixed grid 
spacing, the number of grid points grows rapidly as the number of parameters increases. 
Another way to reduce the number of constraints is to take advantage of the properties of 
polytopic LPV systems. 
Definition An LPV system is polytopic if the state-space matrices of the system depend 
affinely on the varying parameters that lie within a polytope, i.e., 

 
1 1

: 1,  0 ,
r r

i i i i
i i

   
 

      
  
    

where r is the number of vertices of the polytope and i is the parameter vector 
corresponding to a vertex of the polytope. 
Proposition Let f :   R be a convex function where  is a convex set with vertices i’s, 

i.e., 
1 1

: 1,  0
r r

i i i i
i i
   

 

      
  
  . Then f(x) <   for all x   if and only if f(i) <   for i=1, 

2,…, r (Berkovitz, 2002). 
For a polytopic LPV system satisfying the following two assumptions: 
i. ( ) 0yuD   ; that is, no direct transmission from u  to y , 

ii. ( )u uB B   , ( )y yC C   , ( )zu zuD D   , and ( )yv yvD D   ; that is, those matrices are 

constant matrices that are independent of the varying parameters,  
it can be easily shown (using the above proposition) that (23) and (24) in Theorem 3.2 hold if 
and only if they hold for the matrices corresponding to the vertices of the parameter 
polytope, i.e.,   ( )iA ,  ( )v iB ,  ( )z iC ,  ( )zv iD  for i=1, 2,…, r (Apkarian et al., 1995). In other 
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hold for all   . 
Proof: Follows the proof in the appendix of (Gahinet & Apkarian, 1995). The only difference 
being that most matrices are now parameter dependent. 
If the LPV γ-performance problem is solvable, the two symmetric matrices R and S along 
with the value of  and the system matrices (  ( )A ,  ( )vB ,  ( )uB , etc.) can be used to 
synthesize the controller matrices (  ( )KA ,  ( )KB ,  ( )KC , and  ( )KD ) (Becker & Packard, 
1994; Gahinet, 1996). 
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Remark The scaling matrix L in the above theorems takes into account the structural 
information on the mapping relating input v  and output z  in (17), which can include 
unmodeled dynamics, errors in sensing the varying parameters, and uncertain parameters 
which can not be measured in real-time. However, the resulting matrix inequalities are 
nonconvex, mainly due to (26), and computational techniques such as scaling/controller 
iteration or D/K iteration will be required to solve for matrices R and S. 
To simplify the subsequent derivation, we will be conservative and ignore the structural 
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removing the constraint defined by (26) from the above theorem. The advantage of doing so 
is that (23)-(25) become LMIs in R and S and the optimization becomes a convex problem 
that can be solved using numerical solvers based on interior point method, e.g., (Gainet et 
al., 1995). To check the solvability of the problem for the system given by (17) using 
Theorem 3.2, the following substitution is used 
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Since  constitutes infinite number of elements, inequalities (23)-(25) pose solvability issue 
with infinite number of LMI constraints. It was suggested in (Becker & Packard, 1994) that 
the parameter space be gridded and a controller is synthesized such that it satisfies the 
solvability conditions at the finite number of parameter values. However, for fixed grid 
spacing, the number of grid points grows rapidly as the number of parameters increases. 
Another way to reduce the number of constraints is to take advantage of the properties of 
polytopic LPV systems. 
Definition An LPV system is polytopic if the state-space matrices of the system depend 
affinely on the varying parameters that lie within a polytope, i.e., 
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where r is the number of vertices of the polytope and i is the parameter vector 
corresponding to a vertex of the polytope. 
Proposition Let f :   R be a convex function where  is a convex set with vertices i’s, 

i.e., 
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  . Then f(x) <   for all x   if and only if f(i) <   for i=1, 

2,…, r (Berkovitz, 2002). 
For a polytopic LPV system satisfying the following two assumptions: 
i. ( ) 0yuD   ; that is, no direct transmission from u  to y , 

ii. ( )u uB B   , ( )y yC C   , ( )zu zuD D   , and ( )yv yvD D   ; that is, those matrices are 

constant matrices that are independent of the varying parameters,  
it can be easily shown (using the above proposition) that (23) and (24) in Theorem 3.2 hold if 
and only if they hold for the matrices corresponding to the vertices of the parameter 
polytope, i.e.,   ( )iA ,  ( )v iB ,  ( )z iC ,  ( )zv iD  for i=1, 2,…, r (Apkarian et al., 1995). In other 
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words, only the 2 1r  LMIs corresponding to the vertices of the parameter polytope need 
to be formed for solving matrices R and S in Theorem 3.2. 
The affine-LPV system represented in (16) qualifies as a polytopic system with matrix 

 0yuD  and the matrices A, Bv, and Bu depend on the varying parameter . Although the 
pseudo-affine LPV system represented by (17) has similar structure as (16) with  0yuD  and 
the matrices A ,  vB , uB , and  zuD  depend on varying parameters, it is not polytopic due to 
the dependency of the varying parameter η on the two varying parameters   and  . In 
such cases, a polytope can usually be found to bound and replace the parameter variation 
set. To satisfy the assumption (ii), parameter dependency of the uB  or the Bu matrix can be 
removed by filtering the input channel, as will be discussed in section 3.3. For systems 
without direct transmission between u  and z , e.g. the brushless dc motor system 
demonstrated in section 3.1, it is easy to verify that   0zu zuD D .  

4.3 Incorporating spatial-sampled repetitive control and actuator anti-windup 
The overall control structure is summarized in Fig. 6. Here ( )G   along with the actuator 
saturation block represents the pseudo-affine LPV system,  denotes the modeling 
uncertainty, and W1 and W2 are weighting filters whose frequency-dependent magnitudes 
are used to bound the performance specifications and model uncertainty. The repetitive 
controller is denoted by RC and the LPV controller to be designed is denoted by K(). The 
open-loop LPV system (within the dashed-line block in Fig. 6) can be expressed as 
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which differs from (17) in that unstructured model uncertainty, connecting output q  to 
input p , and weighting filters are also incorporated. The current formulation considers two 
types of perturbations. One is due to the varying parameters, which is bounded and can be 
measured in real-time. The other is due to modeling error, which is also bounded but can 
not be measured in real-time. In (27), without actuator saturation constraint, i.e.  = 1, we 
have  =  and the matrices  quD  and  zuD  become constant matrices and independent of 
varying parameters. 
To account for spatially periodic disturbances, we will consider a low-order and attenuated 
spatial-based repetitive controller that takes the form of 
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where k is the number of spatially sinusoidal disturbances that is to be compensated.  ni is 
the ith disturbance frequency in rad/rev. Damping ratios associated with the poles, i, and 
zeros, i, of the repetitive filter need to satisfy the condition 0 < i < i < 1, to ensure 
sensitivity reduction at spatial frequency  ni rad/rev. The gain of the repetitive controller 
RC( s ) can be adjusted by varying i and i. A low-pass filter with roll-off frequency r 
rad/rev is included to attenuate the controller gain in the high frequency region that is 
similar to the q-filter used in a digital repetitive controller. As shown in Fig. 6, the repetitive 
controller takes y  as input and creates a new input 2y  to the ‘to-be-designed’ LPV 
controller K(). 
To address actuator saturation, an anti-windup scheme as proposed in [36] can be 
formulated that feeds the difference between the actuator input and output back to the 
controller. This corresponds to creating a new input for the LPV controller, i.e., 

   1 ( 1) .y u   

If the control u  does not saturate, i.e., 1  , then 1 0y   and this additional input is 
deactivated. If the control u  saturates, i.e., 1  , then 1 0y  , which provides additional 
degree of freedom for manipulating the control u . 
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Fig. 6. LPV gain-scheduling control system with repetitive controller. 
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words, only the 2 1r  LMIs corresponding to the vertices of the parameter polytope need 
to be formed for solving matrices R and S in Theorem 3.2. 
The affine-LPV system represented in (16) qualifies as a polytopic system with matrix 
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where k is the number of spatially sinusoidal disturbances that is to be compensated.  ni is 
the ith disturbance frequency in rad/rev. Damping ratios associated with the poles, i, and 
zeros, i, of the repetitive filter need to satisfy the condition 0 < i < i < 1, to ensure 
sensitivity reduction at spatial frequency  ni rad/rev. The gain of the repetitive controller 
RC( s ) can be adjusted by varying i and i. A low-pass filter with roll-off frequency r 
rad/rev is included to attenuate the controller gain in the high frequency region that is 
similar to the q-filter used in a digital repetitive controller. As shown in Fig. 6, the repetitive 
controller takes y  as input and creates a new input 2y  to the ‘to-be-designed’ LPV 
controller K(). 
To address actuator saturation, an anti-windup scheme as proposed in [36] can be 
formulated that feeds the difference between the actuator input and output back to the 
controller. This corresponds to creating a new input for the LPV controller, i.e., 

   1 ( 1) .y u   

If the control u  does not saturate, i.e., 1  , then 1 0y   and this additional input is 
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Fig. 6. LPV gain-scheduling control system with repetitive controller. 
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The open-loop LPV system with repetitive and anti-windup control (within the dashed-line 
block in Fig. 6) can be shown to have the following state-space representation: 
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Note that the LPV controller K() now has three inputs 1 2( , , )y y y    and one output u . The 
parameter dependency of the input and output matrices (e.g., uB  and yC ), if any, can be 
removed by considering the dynamics of the sensors and actuators (Apkarian et al., 1995). 
Let 
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where 1 2ˆ ˆ ˆ( , , )y y y  represent the new outputs, and 
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where û  represent the new input. This action is equivalent to passing each input or output 
channel of the open-loop LPV system in (28) through a low-pass filter 
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respectively, before connecting to the LPV controller K(), as depicted in Fig. 7. The 
bandwidth of the low-pass filters depends on the sensor and actuator dynamics. For 
negligible senor or actuator dynamics, the bandwidth can be assigned to be much larger 
than that of the open-loop system to minimize possible interference. With the inclusion of 
the anti-windup formulation and the input/output filters, the overall open-loop LPV system 
with parameter-free input-output matrices can be found to be 
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Fig. 7. LPV gain-scheduling control system with repetitive controller, anti-windup scheme, 
and sensor/actuator dynamics. 

By making the following definitions 
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The open-loop LPV system with repetitive and anti-windup control (within the dashed-line 
block in Fig. 6) can be shown to have the following state-space representation: 

 

1

2

( ) 0 ( ) ( ) ( )( )
0 ( )( )

0 ( )( )
( ) 0 ( )
( ) 0 0
( ) 0 0 0 0 1
( ) 0 0 0 0

p v u

rc y rc rc yp rc yv
rc

q qp qv qu

z zp zv zu

y yp yv

rc

A B B Bx
B C A B D B D xx

C D D D xq
z C D D D
y C D D
y
y C

   



 

 


                                    

   
 

 






( )
( ) .
( )
( )

rc

p
v
u






 
 
 
 
 
 
  





 (28) 

Note that the LPV controller K() now has three inputs 1 2( , , )y y y    and one output u . The 
parameter dependency of the input and output matrices (e.g., uB  and yC ), if any, can be 
removed by considering the dynamics of the sensors and actuators (Apkarian et al., 1995). 
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respectively, before connecting to the LPV controller K(), as depicted in Fig. 7. The 
bandwidth of the low-pass filters depends on the sensor and actuator dynamics. For 
negligible senor or actuator dynamics, the bandwidth can be assigned to be much larger 
than that of the open-loop system to minimize possible interference. With the inclusion of 
the anti-windup formulation and the input/output filters, the overall open-loop LPV system 
with parameter-free input-output matrices can be found to be 
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Fig. 7. LPV gain-scheduling control system with repetitive controller, anti-windup scheme, 
and sensor/actuator dynamics. 
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we can rewrite the above system as 
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where the system and input/output matrices are of appropriate dimensions and can be 
identified from (2). Note that the matrices BU and CY are free of varying parameters. 

4.4 Discretization of angular displacement reformulated systems 
A spatial sampling scheme that uses the output pulses of an optical shaft encoder (instead of 
a clock signal) to trigger the interrupt of the control algorithm at intervals of equal angular 
displacement was implemented. The constant angular displacement based sampling 
effectively discretized the control system in the angular displacement domain. Note that an 
ADR system, see (15), without varying parameters can be viewed as an LTI system with 
angular displacement  as the independent variable as compared with time t. Theorems or 
methods used to derive the discrete equivalent of LTI systems, e.g., z-transform (impulse 
invariant), zero-order hold (step invariant), and bilinear or trapezoid rule, can be applied to 
ADR systems with slightest modification. What needs to be kept in mind is that the 
sampling behavior has changed from equal time interval (in sec) to equal angular 
displacement interval (in revolution). 

4.5 Experimental setup and validation 
Rotational velocity regulation in a laser printer will be used to verify the effectiveness of the 
proposed spatially sampled repetitive control in rejecting spatially periodic disturbances. A 
600-dpi monochrome laser printer is used as the experimental platform that comprised of 
one brushless dc motor, with a set of gear and a photosensitive drum. The hardware setup is 
depicted in Fig. 8. The motor velocity is regulated by adjusting the voltage input to a pulse 
width modulated (PWM) power drive. A digital encoder with a resolution of 50,000 
pulses/rev is mounted on the photosensitive drum to measurement of angular 
displacement and velocity. To maintain the desired dot placement accuracy, the 
photosensitive drum is expected to rotate at a nominal angular velocity of 0.5 rev/sec. This 
corresponds to a motor voltage input of 2.56 volts. The saturation limits for the input 
voltage are identified to be 0.5 volts around the nominal value, i.e., max 3.06u   and 

min 2.06u  . According to the frequency spectrum of the measured speed fluctuations, 
spatially periodic components at spaitial frequencies of 32, 48, and 96 cycles/rev need to be 
reduced, since they caused visible bands in printed images. A 2nd order transfer function 
from the motor voltage input to the drum angular velocity output is obtained to 
approximate the actual frequency response of the experimental platform, i.e. 
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Fig. 8. Experimental setup for the closed-loop control of a typical 600-dpi monochrome laser 
printer. 

The output multiplicative modeling errors are obtained by comparing the frequency 
responses of the plant model and the experimental platform, as shown in Fig. 9. Note that 
the spatial frequency response shown in Fig. 9 is obtained from the temporal frequency 
response where the spatial frequency in cycle per revolution is scaled by the nominal 
angular velocity. A stable 1st order filter that upper bounds the multiplicative model 
uncertainty can be found to be 

 2
16 1( ) 0.03 .

700 1
sW s
s








  

100 101 10210-2

10-1

100

ma
gn

itu
de

frequency (cyc les/rev)

m ultip licative error for 2nd order fit
m ultip licative error for 3rd order fit

100 101 10210-2

10-1

100

100 101 10210-2

10-1

100

ma
gn

itu
de

frequency (cyc les/rev)

m ultip licative error for 2nd order fit
m ultip licative error for 3rd order fit

 
Fig. 9. Output multiplicative uncertainties for the experimental platform approximated 
using a 2nd or 3rd order transfer function. The solid line is the magnitude of a 1st order filter 
that upper bounds the uncertainties. 
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we can rewrite the above system as 
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where the system and input/output matrices are of appropriate dimensions and can be 
identified from (2). Note that the matrices BU and CY are free of varying parameters. 
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printer. 

The output multiplicative modeling errors are obtained by comparing the frequency 
responses of the plant model and the experimental platform, as shown in Fig. 9. Note that 
the spatial frequency response shown in Fig. 9 is obtained from the temporal frequency 
response where the spatial frequency in cycle per revolution is scaled by the nominal 
angular velocity. A stable 1st order filter that upper bounds the multiplicative model 
uncertainty can be found to be 
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Fig. 9. Output multiplicative uncertainties for the experimental platform approximated 
using a 2nd or 3rd order transfer function. The solid line is the magnitude of a 1st order filter 
that upper bounds the uncertainties. 
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Note that the affine nature of the open-loop LPV system (29) will be intact after inclusion of 
the parameter independent filter, W2. The selection of W1 requires more considerations. First 
of all, the LPV controller will be independent of the saturation indicator  if the performance 
weighting does not depend on  [36]. In other words, the design problem using parameter-
free W1 will degenerate to one without actuator saturation. Secondly, if a parameter 
dependent W1 filter is chosen, the affine nature of the LPV open-loop system will be 
preserved after incorporating the filter. Thus, a feasible W1 filter can assume the following 
state space realization 
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Note that the magnitude curve of W1 can be specified by tuning the constant values of b , b, 
e, and k. Specifically, k can be used to specify the lower bound for the W1 magnitude at high 
frequencies (i.e., as s  ); the coefficient b can be used to specify the lower bound of the 
corner frequencies; coefficients b and e can be used to specify the exact corner frequencies 
and the W1 magnitude at low frequencies (i.e., as 0s  ). The parameter variation set   is 
determined to be 

  ( , , ) :  1 10, 0.1 1,              .  

 

 
Fig. 10. Parameter variation set   and the selected (convex) polytope   which bounds the 
set. 
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The upper and lower bounds of  and  are empirically determined based on a velocity 
variation from –80 % to +100% around the nominal value of 0.5 rev/sec and a 10-to-1 
saturation limit, respectively. The parameter variation set   is not convex but can be 
shown to lie within a polytope  with four vertices located at 1 (10,1,10)  , 

2 (10,0.1,1)  , 3 (1,1,1)  , and 4 (1,0.1,0.1)   (see Fig. 10). The polytope  will be used 
for the following design. Given that   [0.1, 1] in , the parameters of the weighting filter 
W1 can be properly determined to reflect the different performance requirement for the 
unsaturated ( = 1) and saturated ( < 1) system. Fig. 11 shows the magnitude curves of W1 
with k = 0.03, b = 212, b = 0.1b and e=5/3×b  as   [0.1, 1]. The magnitude curve of W2 
is also shown in the figure. The low-pass filters ( )jH s  and ( )F s  are selected as 
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Fig. 11. The parameter-dependent performance weighting W1 and uncertainty weighting W2. 

where the frequency value of 1000 cycles/rev is specified to reflect the negligible sensor and 
actuator dynamics. The low-order attenuated repetitive controller can be expressed as 
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where the periodic disturbances are at 32, 48 and 96 cycles/rev. A feasible LPV controller is 
determined based on the above parameters, which attains γ = 1.1669. The controller can be 
written as 
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We can view (31) and (32) as an LPV repetitive controller (LPVRC). For practical 
implementation, the vertex controllers need to be transformed into their discrete-position 
invariant counterparts, e.g., using bilinear transformation. The nominal performance (NP), 
robust stability (RS), and robust performance (RP) curves for the four vertex systems are 
shown in Fig. 12. 
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Fig. 12. NP, RS and RP curves for the four vertex closed-loop systems. 
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The experiment was performed by activating the LPVRC controller and rotating the 
photosensitive drum for 40 revolutions with step change in nominal velocity. During the 
operation, the nominal motor input voltage was changed at the 10th, 20th and 30th revolution, 
which shifted the nominal drum angular velocity. This can be seen in Fig. 13, which depicts 
the histories of drum angular velocity, motor input voltage and the three varying 
parameters with respect to the drum angular position. Fig. 14 compares the spatial 
frequency spectrum of the velocity signals within each 10-revolution interval to that of the 
uncompensated system. We can see that the performance of the LPVRC controlled system is 
insensitive to changes in nominal drum angular velocity. Note that the magnitude increases 
near dc frequency are due to the transient responses. As a comparison, Fig. 15 shows the 
responses when the system is under the control of a fixed temporal repetitive controller. As 
expected, a fixed-period repetitive controller operating in the time domain is unable to 
effectively compensate for the disturbances whose temporal periods change with the 
rotational speed of the system. 
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Fig. 13. Histories of drum angular velocity, motor input voltage and the three varying 
parameters with respect to drum angular position. 

The spatial sampling scheme proposed in this section raises a practical issue when 
synthesizing digital full-order repetitive controllers. The available sampling frequencies 
when conducting the scheme depends on the encoder resolution. For example, if the 
resolution of an encoder is 5000 pulses/rev, the highest sampling frequency achievable 
using the scheme will be 5000 cycles/rev. Other available sampling frequencies, depending 
on implementable divide-by-N circuits, might be 2500 (when the pulses are divided by 2), 
500 (divided by 10), etc. Due to limited choices of sampling frequencies, the number of delay 
taps N for the repetitive kernel (i.e. qN), which is the ratio of the sampling frequency and the 
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The spatial sampling scheme proposed in this section raises a practical issue when 
synthesizing digital full-order repetitive controllers. The available sampling frequencies 
when conducting the scheme depends on the encoder resolution. For example, if the 
resolution of an encoder is 5000 pulses/rev, the highest sampling frequency achievable 
using the scheme will be 5000 cycles/rev. Other available sampling frequencies, depending 
on implementable divide-by-N circuits, might be 2500 (when the pulses are divided by 2), 
500 (divided by 10), etc. Due to limited choices of sampling frequencies, the number of delay 
taps N for the repetitive kernel (i.e. qN), which is the ratio of the sampling frequency and the 
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disturbance frequency, might end up being non-integral when tackling certain disturbance 
frequencies. 
Other nonlinear control design approaches (e.g., sliding mode and adaptive control) can 
also be employed. However, it is not clear if frequency-wise tradeoff between performance 
and stability can be easily performed within those nonlinear design frameworks. 
It is also worth mentioning that the LPV gain-scheduling design may encounter the 
following implementation issues: 
i. The state-dependent varying parameters may leave the parameter variation set. 
ii. The measurement of the varying parameters may be contaminated by noise. 
iii. There may be delay induced in the measurement of the varying parameters. 
A feasible solution for the first issue is to setup the parameter variation set more accurately. 
Note that (22) implies that ( ) ( ) 0T

cl clA X XA    , and we can pick a Lyapunov function 

( ( )) ( ) ( )T
cl cl clV x x Xx      for the closed-loop system such that dV/d < 0. Thus, the state of the 

closed-loop system starting from 0( )clx   will stay within an ellipsoid  centered at the 
equilibrium point and defined by 

  0 0( ) ( ) ( ) ( ) ( ) .T T
cl cl cl cl clx x Xx x Xx             
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Fig. 14. Frequency spectra of the velocity signals for the open-loop and closed-loop systems. 
Spectra for the closed-loop system are divided into four, with each corresponding to signals 
measured from each 10-revolution interval (psd is abbreviation for power spectrum density) 
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The ellipsoid  provides a bound for the state-dependent varying parameters, e.g., . If a 
bound for the initial states can be established or estimated, a bound for the state-dependent 
varying parameters can be estimated, and the polytope  which contains the parameter 
variation set   can be determined more accurately. Since the proposed LPV control system 
has the property of being robust to unstructured but bounded uncertainty (specified by W2 
and ), the issues of measurement noise and uncertainty can be accounted for in the 
proposed formulation if they can be incorporated into the W2 filter and the  block. 
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Fig. 15. Frequency spectra of the velocity signals for the closed-loop system using fixed 
period temporal repetitive control. 

5. Conclusion 
In this chapter, the notion of spatial-based repetitive control system and its historical 
development were introduced. Two designs, which were experimentally verified on a rotary 
motion system, representative of recent advancement in this field were presented. The 
designs, which are applicable to a generic class of LTI systems, address important practical 
issues such as actuator saturation and modelling uncertainty. However, several drawbacks 
and limitations are worth notice. First of all, the designs resorted to linear robust control 
paradigm and account for only unstructured uncertainty. It is well known that such control 
approach might lead to limited performance if information regarding the uncertainty (e.g., 
structure) is not properly utilized. Second, the LPVRC design relies on a common Lyapunov 
function, which also results in conservative design. The design is further degraded if the 
number of varying parameters increases or the varying parameter space is nonconvex. 
Finally, both designs along with other exiting ones are applicable only to rotary systems 
operating unidirectionally. The LPVRC design can improve by employing parameter 
varying Lyapunov function (Apkarian & Adams, 1998). On the other hand, since the open-
loop spatial-based system, i.e., (3) or (6), is nonlinear, we may apply nonlinear control 
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Fig. 14. Frequency spectra of the velocity signals for the open-loop and closed-loop systems. 
Spectra for the closed-loop system are divided into four, with each corresponding to signals 
measured from each 10-revolution interval (psd is abbreviation for power spectrum density) 
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The ellipsoid  provides a bound for the state-dependent varying parameters, e.g., . If a 
bound for the initial states can be established or estimated, a bound for the state-dependent 
varying parameters can be estimated, and the polytope  which contains the parameter 
variation set   can be determined more accurately. Since the proposed LPV control system 
has the property of being robust to unstructured but bounded uncertainty (specified by W2 
and ), the issues of measurement noise and uncertainty can be accounted for in the 
proposed formulation if they can be incorporated into the W2 filter and the  block. 
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Fig. 15. Frequency spectra of the velocity signals for the closed-loop system using fixed 
period temporal repetitive control. 

5. Conclusion 
In this chapter, the notion of spatial-based repetitive control system and its historical 
development were introduced. Two designs, which were experimentally verified on a rotary 
motion system, representative of recent advancement in this field were presented. The 
designs, which are applicable to a generic class of LTI systems, address important practical 
issues such as actuator saturation and modelling uncertainty. However, several drawbacks 
and limitations are worth notice. First of all, the designs resorted to linear robust control 
paradigm and account for only unstructured uncertainty. It is well known that such control 
approach might lead to limited performance if information regarding the uncertainty (e.g., 
structure) is not properly utilized. Second, the LPVRC design relies on a common Lyapunov 
function, which also results in conservative design. The design is further degraded if the 
number of varying parameters increases or the varying parameter space is nonconvex. 
Finally, both designs along with other exiting ones are applicable only to rotary systems 
operating unidirectionally. The LPVRC design can improve by employing parameter 
varying Lyapunov function (Apkarian & Adams, 1998). On the other hand, since the open-
loop spatial-based system, i.e., (3) or (6), is nonlinear, we may apply nonlinear control 
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paradigm to directly approach the nonlinearities. Existing nonlinear robust control schemes 
are capable of tackling various types of modelling uncertainty. Some have built-in 
parametric adaptation mechanism or can integrate with an existing parametric identification 
scheme to improve the performance of the design. Theoretical results (with numerical 
simulation) of several designs based on adaptive feedback linearization, adaptive 
backstepping, and adaptive iterative learning control have been reported (Chen & Yang, 
2007, 2008, 2009; Yang & Chen, 2008, 2011). 
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1. Introduction 

It is well known that the robust disturbance attenuation against uncertainties can be 
achieved by the robust H  controllers and some practical situations make us use the fixed-
order controllers. These facts imply that the fixed-order robust H  controllers are important 
for practical control problems. However it is difficult to design such robust controllers, 
because the robust H  control problems include an infinite number of matrix inequality 
constraints, in other words, they are described by Robust Semi-Definite Programming 
(RSDP) problems. For obtaining a feasible solution of the RSDP problems coming from the 
robust control problems with state feedback controllers or full-order controllers, many 
numerical methods have been proposed. Classically, the quadratic stability theory, i.e. a 
common constant Lyapunov function for the entire uncertain set is used for reducing the 
infinite constraints to the finite ones at the expense of conservatism (Boyd et al. 1994). 
Recently, parameter dependent Lyapunov functions are used to improve the conservatism 
(Chesi et al. 2005) - (Ichihara et al. 2003), (Kami et al. 2009) - (Shaked 2001), (Xie 2008) and 
some one-shot type approaches using extended LMI conditions, which allows to use the 
affine parameter dependent Lyapunov functions, have been proposed (Pipeleers et al. 2009), 
(Shaked 2001), (Xie 2008). However these methods can not always produce the robust 
controller, because common additional variables are required and these methods can not be 
used for designing fixed-order controllers. In this sense, an iterative type approach may be 
useful to the problems such that these one-shot type approaches can not be applied. 
In the field of the numerical optimization, there are two types of iterative approaches for 
finding feasible or locally optimal solutions of the optimization problems: one is an interior-
point approach which needs an initial feasible solution to be carried out and the other is an 
exterior-point approach which does not need it. From these facts, exterior-point approach 
can be efficient for obtaining the solutions of the problems such that feasible solutions are 
difficult to be found. However, there are no exterior-point approaches except those in 
(Iwasaki & Skelton 1995), (Kami & Nobuyama 2004), (Kami et al. 2009), (Vanbierviet 2009) 
for control problems to our knowledge.  
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In this paper, we deal with the fixed-order robust H  controller synthesis problem against 
time invariant polytopic uncertainties, which can be described by parameter dependent 
bilinear matrix inequality (PDBMI) problems. The purpose of this paper is to propose an 
iterative approach which is like an exterior-point one. To do that, we introduce an `axis-
shifted system' which is obtained by shifting the imaginary axis of the complex plane so that 
all perturbing closed-poles are included in the LHS of the shifted imaginary axis. Our 
approach constructs a sequence of infeasible controller variables on which the shifted 
imaginary axis returns to the original position while the H  norm of the axis-shifted system 
is less than the prescribed H  norm bound. The advantage of our approach is to be able to 
use any controller variables as an initial point. The efficiency of our approach is shown by a 
numerical example. 
In this paper, the following notations are used. R , n mR  and nS  are the sets of real scalars, 

n m  real matrices and n n  real symmetric matrices, respectively. He{ Z }, 
*

T

A

B C
 
 
  

 and 

( )   denote TZ Z , the block symmetric matrix T

A B

B C
 
 
  

 and a set of eigenvalues, 

respectively. Moreover,   denotes a hyper-rectangle and vert   indicates the set of 
vertices of  .  

2. Problem formulation 
In this paper, we consider the following plant ( )P   with a time invariant uncertain 
parameter  1: N    : 

 
( ) ( ) ( ) ( ) ( )

( ) : ( ) ( ) ( )
( ) ( )

wx t A x t Bu t B w t
P z t Cx t Du t

y t Ex t




  
  
 


 (1) 

 0
1

( ) :
N

i i
i

A A A 


   (2) 

where ( )x t  is the plant state, ( )w t  is any exogenous input, ( )u t  is the control input, ( )z t  is 
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Moreover, we have the following assumptions:  
1. ( ( ), )A B  is controllable for all   . 
2. ( ( ), , )wA B C  is controllable and observable for all   . 
For this system let us consider the following fixed-order controller d  or the static state 
feedback controller s : 
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where ( ) r
cx t R  is the controller state and r  is the prescribed integer which achieves 

0 r n  . Note that d  and s  become state feedback controllers in the case that E I  
holds. 
Via the controller d  and s  the closed-loop system can be described by  
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For the controller s  ( )clx t  and the coefficient matrices are given by 

 ( ) ( ), ( ) ( ), , , , ,clx t x t A A B B E E C C D D K K         (10) 

For the closed-loop system (6) the control problem to be solved in this paper is defined as 
follows: 
Robust H  synthesis problem: 

Given an H  norm bound p , find K  which achieves 

 ( , )zw pT K  

  (11) 

where ( , )zwT K q  is the transfer function from w  to z  of the closed-loop system (6) and ¥⋅  
denotes the H¥  norm.  
For the control problem (11) the following lemma holds (Boyd et al. 1994): 
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Lemma 1 ( , )zw pT K  

  holds if there exists a parameter dependent Lyapunov function  
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 (13) 

This lemma implies that the robust H  synthesis problem (11) can be described as PDBMI 
problem, which has an infinite number of BMI constraints corresponding to all points on  . 
Hence it is difficult to obtain the feasible controller variables K  achieving (13). One well 
known classical method for obtaining s  in the case that E I is to use quadratic 
(parameter independent constant) Lyapunov functions (Boyd et al. 1994). i.e., defining 

 1( ) :P X   , :W KX  (14) 

to get the controller variables from  

 1K WX  (15) 

where X  and W  are the solutions of the next inequalities: 

 

( ) ( ) * *

* 0, vert 
0

T T T

T
w p

p

A X XA BW W B

B I
CX DW I

 

 



   
 

     
 

   

 (16) 

However the quadratic Lyapunov functions X  do not always exist and even if they exist 
the obtained controller includes a high conservatism. Moreover, this method can be only 
used in the case that E I . 
Recently, various studies with parameter dependent Lyapunov functions have been 
reported to reduce the conservatism (Chesi et al. 2005) - (Ichihara et al. 2003), (Kami et al. 
2009) - (Shaked 2001), (Xie 2008). Especially, some interesting one-shot type approaches for 
designing static state feedback controllers or full-order controllers with extended matrix 
inequality conditions have been proposed (Pipeleers et. al., 2009), (Shaked 2001), (Xie 2008). 
However these methods do not always produce the feasible controllers in some cases, 
because some additional common matrix variables are required and this method can not be 
used in the case that E I . In this paper, we propose an iterative approach to the fixed-
order robust H  synthesis problem, which can be used if E I . The features of our 
approach are to constructs a controller sequence from the infeasible region to the feasible 
one and to be able to use any matrix as an initial point. 
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3. Multi-convex relaxation method 
In this section, let us consider the next PDMI problem  

 0
1 1

find  s.t. ( , ) : ( ) ( ) ( ) 0,
N N N

i i i j ij
i i j i

z M z M z M z M z    
  

        (17) 

where  1: ( )T
N iz z z z R  is a vector of decision variables,  1: T

N     is a 
parameter vector whose elements i R  are in the given range i i i       and 0( )M z , 

( )iM z  and ( )ijM z  are symmetric matrices with appropriate sizes. It is well known that 
feasible solutions of the PDMI problem (17) are difficult to be obtained, because this 
problem has an infinite number of constraints corresponding to all points on  . In this 
section, we show the multi-convex relaxation method (Ichihara et al. 2003) which is used for 
reducing the infinitely constrained problem to a finitely constrained one for obtaining a 
feasible solution of (17). 

3.1 Multi-convex function 
In this subsection, we review the definition and the properties of the multi-convex function. 
Definition 1: If the function  1( ), Nf       becomes a multi-convex function with 
respect to any j  in the case that ( 1, , 1, 1, , )i i j j N      are fixed then the function 

( )f   is said as a multi-convex function.  
From the definition the multi-convex function has the next properties: 
Lemma 2 The next statements hold: 

1. The function ( )f q  is the multi-convex function if and only if ( ) 0
i

f q
q

¶
³

¶
 hold 

1, ,i N" =  . 
2. The maximum of the multi-convex function ( )f q  on q ÎW  is on the vertex of W (See 

Fig. 2).  
Using these properties the relaxation method for obtaining the feasible solution of (17) is 
shown in the next subsection. 
 

 
Fig. 2. The concept of the multi-convex functions. 

3.2 Multi-convex relaxation  
In this subsection, we show a relaxation method with multi-convex function (Ichihara et al. 
2003) which is needed to derive our approach. The key idea of this method is to make the 
multi-convex upper bound of ( , )M z  . 
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The multi-convex relaxation method can be described as the next lemma: 
Lemma 3 z  is a feasible solution of the PDMI problem (17) if there exist z , n n

iQ R  and 
( 1, , )n

iR i N S   which achieve 

 1 1 1 1

( , ) * * *
* *

0, vert 
0 *
0 0N N N N

M z
Q R R

Q R R








 
       
 
 

  

 
 (18) 

 ( ) 0( 1, ).ii iM z R i N     (19) 

Proof ( , ) 0,M z      holds iff we have 

 ( , ) : ( , ) 0, , ( 0)T nf z x M z x x        R . (20) 

Now, let us define 1( , )f z   and 2( )f   as 

 2
1

1
( , ) : ( , ) ,

N
T T

i i
i

f z x M z x x R x  


   (21) 

 2
2

1
( ) : ,

N
T

i i
i

f x R x 


  (22) 

respectively, where n
iR S  achieve  

 ( ( ) ) 0, : 1,T
ii ix M z R x i N     (23) 

which is the necessary and sufficient condition for 1( , )f z   to be multi-convex function with 
respect to  . Then the function ( , )f z   given by (24) becomes a multi-convex upper bound 
function of 1 2( , )( ( , ) ( ))f z f z f    :  

 1 2( , ) : ( , ) ( )f z f z f    , (24) 

  2
1

( ) : .
N

T T
i i i i i i i i i

i
f R R R  


       (25) 

This is because 2 2( ) ( )f f     holds from 

 2 ( ),T T n n
i i i i i i i i i i i iR R R R            R . (26) 

Then, from the property of the multi-convex functions ( , ) 0f z    holds iff we have  

 
1
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i i i i i
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+ -B -B < " Î Wå  (27) 
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and the inequality (27) can be transformed into 

 
1 1 1 1 1

( , ) * * *
* *

0, vert .
0 *
0 0N N N N N

M z
R R R

R R R








 
        
 
 

   

   (28) 

Therefore, z  is a feasible solution of ( , ) 0M z   if there exist z , i  and iR  which achieve 
(28) for all vert     and replacing i iR  by iQ  in (28) we have (18).  
Using this lemma the problem (17) with an infinite number of constraints can be reduced 
into that with a finite number of constraints. 

4. Iterative approach to the robust H  synthesis problems 

In this section, we propose an iterative approach to the robust H  control problem (11) 
using Lemma 3. To do that, we introduce an `axis-shifted system' which is obtained by 
shifting the imaginary axis so that all perturbing poles are located in the LHS of the 
imaginary axis. The key idea of our approach is to return the shifted imaginary axis to the 
original position while the H  norm of the axis-shifted system is less than p . The feature of 
our approach is to be able to use any controller variables as an initial point.  
Firstly, we add the practical assumption for the closed-loop system (6) such that the poles of 
the system (6) do not exist infinitely far from the imaginary axis on the RHS of the complex 
plane, i.e., there always exists a finite scalar   which achieves: 

 ( ( , ))
max Re[ ] ,

clA K  
  


    (29) 

and we introduce the following system using  , which is needed to derive our iterative 
approach: 

 
( ) ( ( , ) ) ( ) ( )

.
( ) ( ) ( )

cl cl cl clw

cl cl

x t A K I x t B w t
z t C K x t

    





 (30) 

This system has the next property. 
Lemma 4 The system (30) is robustly stable for the parameter   .  
Proof It is obvious from (29).  
Remark 1.  In this paper, we interpret the meaning of " ( , )clA K I  " as shifting the 
imaginary axis of the complex plane to the right by   (See Fig. 3). In this sense, the system 
(30) is called as `axis-shifted system' in this paper. 
Now, letting ( , , )zwT K    be a transfer function of the system (30) from w  to z  the next 
lemma holds for the H  norm condition  

 ( , , )zw pT K q b g
¥

< . (31) 

Lemma 5 (31) holds if there exists a parameter dependent Lyapunov function  
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Fig. 3. Concept of complex plane of the axis-shifted system. 

 0
1

( ) : 0
N

i i
i

P P P  


    (32) 

which achieves  

 ( ( ), , , , ) 0pM P K       (33) 

where 

 

( )( ( , ) ) ( ( , ) ) ( ) * *

( ( ), , , , ) : ( ) * .
( ) 0

T
cl cl

T
p clw p

cl p

P A K I A K I P

M P K B P I
C K I

     

     



 

  

   
 

  
 

  

 (34) 

Proof It is obvious from Lemma 1.  
Remark 2. If ( , )clA K   is robustly stable    we can let 0   and in this case 
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Moreover, we have the next lemma with respect to the existence of   which achieves 
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    for given controller variables kK .  

Lemma 7 For a given kK  achieving the condition (29) there always exists   achieving 
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Fig. 3. Concept of complex plane of the axis-shifted system. 
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This inequality can be transformed into the next inequality: 
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and this inequality can be obtained by substituting the common constant Lyapunov function 
( )P I   into (33). Hence ,( , , )zw pT K    


    holds. 

Using Lemmas 6 and 7, we propose the following iterative approach to obtain a feasible 
solution of the problem (11): 
Algorithm 

Step 1: Find any 1K  and let 1  and 1  be scalars which achieve 

 
1

1 ( ( , ))
max Re[ ],

clA K  
 


 1 1( , , )zw pT K   


 , 1 1   (46) 

respectively, for vert    . For example, let 1 1   where 1  can be chosen as the solution 
of the LMI's (45). Let : 1k   and choose   from 0 to 1. 
Step 2: If 0k   then let * : kK K  and exit. Otherwise let  

 1 : (1 )k k k        (47) 

and go to the next step.  
Step 3: Find ( : 0, , )iP i N    which satisfy 

 1( ( ), , , , ) 0, vert k k pM P K     
      (48) 

and let them be ikP  and define  

 0
1

( ) :
N

k k i ik
i

P P P   


   (49) 

Step 4: Find K  and t  which are the solutions of  

 1,
min   s.t. ,

t
t t kK 

     (50) 

 ( ( ), , , , ) 0, vert k t pM P K           (51) 

and let 1 1: , :k k tK K      and : 1k k   and go to Step 2.  
Theorem 1  The next statements hold for our algorithm. 
1.  km  is an upper bound of kb , i.e., k km b³  holds.  
2.  km  is monotonically decreasing, i.e., 1k km m +>  holds. 

3.  ,( , , )zw k k pT K q m g q
¥

< " ÎW  holds for all k . 
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Proof 1. and 2.  From (46) and (50), k k   holds. Moreover, from (47) we have  

 1k k k    . (52) 

3. From Step 4 of the algorithm and the fact that k k   holds, we have 

 10 ( ( ), , , , )k k k pM P K    
   

 1( ( ), , , , )k k k pM P K    
   

 1( ( ), , , , )k k k pM P K    
 , (53) 

which implies kK  achieves ( , , ) ,zw k k pT K    

   . Hence Theorem 1 holds. 

Remark 1: The key idea of our approach is to decrease k  so as to approach k  to 0, i.e.,  
the shifted imaginary axis approach the original position while the H  norm constraint 

( , , ) ,zw k k pT K    

    is achieved(See Fig.4). This fact implies that the controller kK  

is updated from a non robust H  controller for the original system to a robust H  one as k  
increases. In this sense, this approach can be an exterior-point approach. 
Remark 2: Unfortunately, our approach can not always produce a robust H  controller, in 
other words, there does not exist the efficient ways of choices of 1K , 1 , 1  and   so that a 
feasible robust controller is always obtained. Hence a condition for detecting an infeasibility 
for obtaining a robust feasible H  controller may be needed. Moreover, 0k   is a 
sufficient condition for ( , ) ,zw k pT K   


   . Hence we may also need a efficient 

criterion for kK  to be a feasible solution of the problem (11).  
 

 
Fig. 4. Concept of our exterior-point approach. 
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5. Numerical example 
To demonstrate the efficiency of our approach let us consider the following matrices: 

 0 1 2

9 1 2 0 0 1 2 3 2 0 0
6 8 11 , 5 1 4 , 0 1 5 , 0 , 1
1 4 7 0 1 1 3 2 0 3 0

wA A A B B
            
                          
                      

 (54) 

 [ ]
1 0 0

1 0 0 , 0.1, , 0.1
0 1 0 pC D E g
é ù
ê ú= = = =ê úë û

 (55) 

Note that the one-shot type methods (Pipeleers et al. 2009), (Shaked 2001), (Xie 2008) can not 
use for designing the robust H  controller because of E I . 
For this numerical example, we set the initial condition for carrying out our approach as 
follows: 

 1

0 0 1 0
1 0 0 0
0 1 0 0

K
 
   
  

, 1 10.3, 8.1027      (56) 

where 1 1( )   is given as the solution of the LMI's (45). 
Fig. 5 shows locations of eigenvalues of 1( )A BK E  , i.e., the perturbations of poles of the 
uncertain closed-loop system via initial controller variables 1K . This figure shows that 1K  is 
not a robust stabilizing controller.   
After 10 iterations the next controller variables are given from our approach: 

 *
1.5195 3.6942 8.3794 2.6309

35.6459 43.3047 270.7538 85.3833 .
40.8834 1.7382 131.5127 91.5248

K
    

    
    

 (57) 

 

 
Fig. 5. Placement of the closed-poles via 1K . 
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Fig. 6 and 7 show locations of eigenvalues of *( )A BK E  , i.e., the perturbations of poles of 
the uncertain closed-loop system via controller variables *K  and the contour plot of 

*( , )zwT K 


 on  , respectively. From these figures, *K  is a feasible solution of the 
problem (11).  
 
 
 
 

 
 
 

Fig. 6. Placement of the closed-poles via *K . 

 
 
 

 
 
 

Fig. 7. The contour plot of *( , )zwT K 


 on  . 
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Fig. 8 shows behaviours of k  and k  as a function of iteration number k . This figure 
shows that k  is an upper bound of k  and monotonically decreasing, which implies that 
the controller variables kK  is updated from a non robust stabilizing controller to a robust 
H  controller. 

 
 
 

 
 
 
 

Fig. 8. Behaviours of k  and k . 

6. Conclusions 

In this paper, we have considered the robust H  control problem against time invariant 
uncertainties. Firstly, we show the relaxation method for obtaining a feasible solution of the 
PDMI problem with multi-convex functions. Secondly, we introduce the axis-shifted system 
and show that this system can be constructed so as to achieve the H  norm constraint. 
Next, we propose an iterative approach using the axis-shifted system and multi-convex 
relaxation method for obtaining the robust H  controllers. The property of our approach is 
to construct a controller sequence on which the shifted imaginary axis approaches the 
original position with the H  norm constraint achieved and to be able to choose any 
controller variables as an initial point. Finally we have given a numerical example which 
shows the efficiency of our approach. 
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1. Introduction

A typical control engineering problem deals with the design of a control system subject to
closed-loop stability and certain performance requirements. The requirements may include
the figures of merit such as gain/phase margin, bandwidth, and tracking error to a reference
command. The control system is required to achieve the design objectives against unknown or
unmeasurable disturbances. The difficulty arises since the plant is often poorly modeled and
the set of performance requirements is typically stringent. The robust control theory attempts
to address the question of stability and performance of multivariable systems in the face of
modeling errors and unknown disturbances (Zhou et al., 1996).
In robust control theory, the question concerning the achievable performance limits is
generally posed as an optimization problem in an appropriate mathematical setting. A major
benefit of this approach is that it provides a means to optimize the system performance by
trading off various stringent, and often conflicting, specifications against each other. In the last
three decades, H∞ control theory has evolved as the primary multivariable optimization and
synthesis tool that can effectively deal with the modeling errors and unknown disturbances
(Skogesttad & Postlethwaite, 2007).
In a tracking problem, the reference command is usually specified as a step or ramp signal.
Accordingly, the tracking error is also specified in terms of such signals. This class of signals,
however, does not model all command signals of interest. For example, a servo control system
may be required to track a periodic signal of a fixed period. For this class of applications, the
tracking performance must instead be specified in terms of a periodic command signal. Since
every periodic signal can be represented by its Fourier series for all time, the steady state
tracking performance of a linear feedback system with a periodic command signal can be
studied in terms of the steady state tracking performance of each of its sinusoidal components.
Design of the control systems that can track periodic reference signals falls in the category
of repetitive control (Hara et al., 1998; Lee & Smith, 1998; Sugimoto & Washida, 1997).
This has been an active area of research in the last three decades where many successful
applications have been reported in the literature. However, applications of the results to
certain high performance positioning systems have proved to be more challenging. For
example, in (Broberg & Molyet, 1994) a robust repetitive control system is designed to
improve the turn-around sinusoidal tracking performance of the imaging mirror system of
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a weather satellite in face of stringent tracking error specifications. A similar situation has
been investigated recently by (Aphale et al., 2008; Salapaka et. al, 2002) who considered a
robust control design for a high bandwidth nano-positioning system.
An important step in studying the tracking performance of a control system to a sinusoidal
reference signal is to investigate the inherent limitations of a feedback system. These
limitations provide a deeper understanding of the problem and help a designer to evaluate
his/her design against the best attainable tracking error obtained over all possible controller
design. The topic been investigated thoroughly in (Su et al., 2003; 2005). The results show
that the best achievable performance can be characterized in terms of the inherent properties,
mainly the nonminimum phase zeros of the plant and the frequency of the reference signal.
After gaining the necessary insight into the fundamental limitations on the best achievable
tracking performance, the next step is to pose the problem as an H∞ robust performance
problem. Among the various approaches reported in the literature, the mixed-sensitivity H∞
control (Kwakernaak H., 2002), signal-based H∞ control (Skogesttad & Postlethwaite, 2007),
and H∞ loop-shaping design (Balas et al., 998) have perhaps gained more popularity with
designers. The mixed-sensitivity H∞ design is particularly attractive as it gives the designer
the ability to directly shape the sensitivity and complementary sensitivity functions. This, in
turn, greatly facilitates the trade-off study among several competing performance objectives.
The mixed sensitivity design is a conceptually attractive method, but how easily does it lend
itself in practical applications? To apply the design, the designer starts by selecting certain
weights such that the H∞ optimal controller can provide a good trade-off between conflicting
objectives in various frequency ranges. After several iterations, the designer is in a position to
assess the design to see if all objectives have been met by the controller. If not, the next logical
step is to go back and change the weights and repeat the process until a satisfactory result is
obtained. Evidently, this is a tedious and often a long process, especially when the system
dimension is high. To shorten the design cycle, it is of great interest to have a set of guidelines
that can help the designer in selecting the appropriate weights in the optimization process.
The selection of optimal weights for the H∞ control has received attention only very recently
(Chiang & Hadaegh, 1994; Lanzon, 2001). In (Lanzon, 2000), the problem is formulated in
such a way that the controller and the weights are obtained simultaneously and in an iterative
manner. However, the question of the suitability of the weights and the complexity of the
algorithm employed are yet to be judged. As an alternative, a new set of simple guidelines
have been developed recently that can greatly facilitate the selection of appropriate weights
(Oloomi & Shafai, 2003). These guidelines are derived using elementary arguments based on
phasors and straight-line approximation of the magnitude response, and in the same spirit as
what is usually done in the classical control theory. These results are simple to interpret and
provide insights into the interplay among various design parameters including the peaks of
the sensitivity and complementary sensitivity functions and the system bandwidth.
The chapter is outlines as follows. In Section 2, we briefly discuss the general guidelines
used for the selection of the weighting functions in the mixed S/T sensitivity design. In
Section 3, we study the problem of the weights selection for tracking sinusoidal reference
signals and obtain certain expressions which relate the parameters of the weights to the
steady state tracking error specifications. We then outline a procedure for the selection of
the parameters of the weighting functions using the derived expressions. The approximate
formulae obtained in this chapter are derived using elementary arguments from phasors
and straight-line approximation of the magnitude response, in the same spirit as what is
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usually done in the classical control theory. The results obtained are simple to interpret and
provide insights into the interplay among various design parameters including the peaks of
the sensitivity and complementary sensitivity functions and the system bandwidth. In Section
4, we briefly demonstrate how these results can be used to obtain the weights in a robust
control mixed sensitivity design of a high bandwidth nano-positioning system. We conclude
the chapter in Section 4.

2. Weights selection in general mixed sensitivity design

We initiate the discussion by considering the feedback system shown in Figure 1. Let S(s) =
1 + G(s)K(s) and T(s) = 1 − S(s) be the sensitivity and complementary sensitivity transfer
functions, respectively. In the S/T mixed sensitivity design, the objective is to minimize the
infinity norm

∥∥∥∥
WPS
WTT

∥∥∥∥
∞

where WP(s) and WT(s) are the performance and the stability weights, respectively
(Skogesttad and Postlethwaite, 2000; Zhou et al., 1996). These weights are often taken to be
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The amplitude responses of these weights and their inverses are shown in Figure 2.
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Fig. 1. One degree of freedom feedback control system.

Typically MS and MT are chosen to be in the interval 1.5 to 2 so that sufficient gain margin,
GM, and sufficient phase margin, PM, are attained according to the inequalities

GM ≥ MS
MS−1 PM ≥ 2 arcsin

(
1

2MS

)

GM ≥ 1 + 1
MT

PM ≥ 2 arcsin
(

1
2MT

)
.

However, larger values of MS and MT are unavoidable for nonminimum phase systems.
Ideally, AS = AT = 0 so that 1/|WP| and 1/|WT | have the desirable Butterworth highpass and
Butterworth lowpass characteristics. This ensures that the frequency responses of 1/|WP| and
1/|WT | are maximally flat in the high and low frequency ranges respectively, where they take
the general shapes of the sensitivity and the complementary sensitivity functions. Although,
due to the numerical difficulties (Balas et al., 1998), one is often forced to set the parameters
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AS and AT to some small non-zero values, the forgoing observations still hold true in the
frequency ranges of interest. Keeping this into consideration, AS and AT are chosen to be
sufficiently small so that poles of 1/WP(s) are at least two decades above the zeros of 1/WP(s),
and zeros of 1/WT(s) are at least two decades above the poles of 1/WT(s). In general, it is
required to have AS � MS and AT � MT . Assuming that MS, AS, MT , and AT are chosen
based on these observations, we now concentrate on selecting the remaining parameters of
the weighting functions, namely, m, ω�

BT , n, and ω�
BT . General guidelines for selecting these

parameters are given below (Skogesttad and Postlethwaite, 2000).
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Fig. 2. Stability and performance weighting functions and their inverses.

2.1 General guidelines
1. For systems with PM ≤ 90◦, it is well known that ωB ≤ ωc ≤ ωBT where ωB, ωBT , and

ωc are the closed loop bandwidth measured on the basis of S, the closed loop bandwidth
measured on the basis of T, and the gain crossover frequency, respectively. Therefore, it
is required that ω�

B ≤ ω�
BT . It should be noted that the presence of nonminimum phase

zeros places restriction on the achievable bandwidth. Moreover, for high performance
tracking applications with noticeable measurement noise it often becomes necessary to
make a compromise and instead choose ω�

BT < ω�
B.

2. When disturbance attenuation is the control objective, the general rule is to increase ω�
B as

much as possible. However, increasing ω�
B more than necessary causes the appearance of

a peak in the sensitivity curve. This implies that the system will have less stability margins
which manifests itself in an increased overshoot in the step response.

3. When the control objective is to reduce the effect of the measurement noise, the general rule
is to decrease ω�

BT as much as possible. However, decreasing ω�
BT more than necessary

causes a reduction in the system bandwidth and this manifests itself in a poor tracking
performance.

4. Increasing m and n can improve the disturbance rejection and measurement noise
attenuation, respectively. However, m and n should be kept as low as possible since large
values of these parameters adversely affect the stability margins, and the controller order
becomes unnecessarily high. (Controller order is N + n + m where N is the order of the
plant.)
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3. Weights selection for sinusoidal tracking performance

In this section, we study the tracking performance of the feedback system in Figure 1 to a
sinusoidal command signal. Tracking of other periodic command waveforms can be reduced
to this case since every periodic signal can be represented by its Fourier series and ωr can
be chosen to represent the highest frequency component of r(t) beyond which all other
components are negligible. For example, when tracking a triangular waveform, ωr can
represent the frequency of the third harmonic of r(t) since higher frequency harmonics have
negligible amplitudes for this signal. Thus, let us assume that d = n = 0 in Figure 1 and
consider the sinusoidal reference command

r(t) = Ar cos ωrt, ωr � ω�
B.

Then the sinusoidal steady state output is

yss(t) = Ar|T(jωr)| cos(ωrt +∠T(jωr))

= Ar|T(jωr)| cos
[

ωr

(
t +

∠T(jωr)

ωr

)]

= Ar|T(jωr)| cos [ωr(t − τe)] ,

where the tracking delay is given by

τe = −∠T(jωr)

ωr
.

This delay is an increasing function of the tracking frequency.
In tracking applications, the complementary sensitivity function is shaped so that at least up
to the tracking frequency the system behaves as an all-pass filter with negligible phase shift,
that is |T(jωr)| ≈ 1 and ∠T(jωr) ≈ 0. This ensures that the peak steady state error and delay
are small so that yss(t) ≈ r(t). However, as was mentioned earlier, for high performance
applications even small deviation of yss(t) from the reference signal r(t) may exceed the
performance requirements. Thus, our objective in this chapter is to address this issue by
outlining a procedure for selecting the parameters m, ω�

B, n, and ω�
BT . To this end, we first

define what we mean by the steady state tracking errors.
Using basic results from trigonometry, it is readily seen that the steady state error signal

ess(t) = Ar cos ωrt − Ar|T(jωr)| cos [ωr(t − τe)]

can be written in the compact form

ess(t) = Re cos(ωrt + φe)

where

Re = Ar

√
1 + |T(jωr)|2 − 2|T(jωr)| cos ωrτe, (1)

φe = arctan
( |T(jωr)| sin ωrτe

1 − |T(jωr)| cos ωrτe

)
. (2)
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AS and AT to some small non-zero values, the forgoing observations still hold true in the
frequency ranges of interest. Keeping this into consideration, AS and AT are chosen to be
sufficiently small so that poles of 1/WP(s) are at least two decades above the zeros of 1/WP(s),
and zeros of 1/WT(s) are at least two decades above the poles of 1/WT(s). In general, it is
required to have AS � MS and AT � MT . Assuming that MS, AS, MT , and AT are chosen
based on these observations, we now concentrate on selecting the remaining parameters of
the weighting functions, namely, m, ω�

BT , n, and ω�
BT . General guidelines for selecting these

parameters are given below (Skogesttad and Postlethwaite, 2000).
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Fig. 2. Stability and performance weighting functions and their inverses.

2.1 General guidelines
1. For systems with PM ≤ 90◦, it is well known that ωB ≤ ωc ≤ ωBT where ωB, ωBT , and

ωc are the closed loop bandwidth measured on the basis of S, the closed loop bandwidth
measured on the basis of T, and the gain crossover frequency, respectively. Therefore, it
is required that ω�

B ≤ ω�
BT . It should be noted that the presence of nonminimum phase

zeros places restriction on the achievable bandwidth. Moreover, for high performance
tracking applications with noticeable measurement noise it often becomes necessary to
make a compromise and instead choose ω�

BT < ω�
B.

2. When disturbance attenuation is the control objective, the general rule is to increase ω�
B as

much as possible. However, increasing ω�
B more than necessary causes the appearance of

a peak in the sensitivity curve. This implies that the system will have less stability margins
which manifests itself in an increased overshoot in the step response.

3. When the control objective is to reduce the effect of the measurement noise, the general rule
is to decrease ω�

BT as much as possible. However, decreasing ω�
BT more than necessary

causes a reduction in the system bandwidth and this manifests itself in a poor tracking
performance.

4. Increasing m and n can improve the disturbance rejection and measurement noise
attenuation, respectively. However, m and n should be kept as low as possible since large
values of these parameters adversely affect the stability margins, and the controller order
becomes unnecessarily high. (Controller order is N + n + m where N is the order of the
plant.)
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3. Weights selection for sinusoidal tracking performance

In this section, we study the tracking performance of the feedback system in Figure 1 to a
sinusoidal command signal. Tracking of other periodic command waveforms can be reduced
to this case since every periodic signal can be represented by its Fourier series and ωr can
be chosen to represent the highest frequency component of r(t) beyond which all other
components are negligible. For example, when tracking a triangular waveform, ωr can
represent the frequency of the third harmonic of r(t) since higher frequency harmonics have
negligible amplitudes for this signal. Thus, let us assume that d = n = 0 in Figure 1 and
consider the sinusoidal reference command

r(t) = Ar cos ωrt, ωr � ω�
B.

Then the sinusoidal steady state output is

yss(t) = Ar|T(jωr)| cos(ωrt +∠T(jωr))

= Ar|T(jωr)| cos
[

ωr

(
t +

∠T(jωr)

ωr

)]

= Ar|T(jωr)| cos [ωr(t − τe)] ,

where the tracking delay is given by

τe = −∠T(jωr)

ωr
.

This delay is an increasing function of the tracking frequency.
In tracking applications, the complementary sensitivity function is shaped so that at least up
to the tracking frequency the system behaves as an all-pass filter with negligible phase shift,
that is |T(jωr)| ≈ 1 and ∠T(jωr) ≈ 0. This ensures that the peak steady state error and delay
are small so that yss(t) ≈ r(t). However, as was mentioned earlier, for high performance
applications even small deviation of yss(t) from the reference signal r(t) may exceed the
performance requirements. Thus, our objective in this chapter is to address this issue by
outlining a procedure for selecting the parameters m, ω�

B, n, and ω�
BT . To this end, we first

define what we mean by the steady state tracking errors.
Using basic results from trigonometry, it is readily seen that the steady state error signal

ess(t) = Ar cos ωrt − Ar|T(jωr)| cos [ωr(t − τe)]

can be written in the compact form

ess(t) = Re cos(ωrt + φe)

where

Re = Ar

√
1 + |T(jωr)|2 − 2|T(jωr)| cos ωrτe, (1)

φe = arctan
( |T(jωr)| sin ωrτe

1 − |T(jωr)| cos ωrτe

)
. (2)
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The result is depicted in Figure 3 where the sinusoidal components of the steady state error
signal are represented as phasors in the quadrature plane with the reference axis taken as
cos ωrt. It is seen that the steady state error phasor is rotated by an angle of φe in the
counter-clockwise direction due to the presence of the tracking delay τe, and that the peak
amplitude of the steady state tracking error, namely Re, is influenced by this rotation as well
as the gain of the closed loop system at the tracking frequency ωr. It should be noted that when
|T(jωr)| cos ωrτe ≤ 1, this phasor resides in the first quadrant so that tan φe > 0. However,
when |T(jωr)| cos ωrτe > 1, the steady state error phasor moves to the second quadrant for
which tan φe < 0. Therefore, in obtaining φe from tan φe in the latter case, we must interpret φe
as being in the second quadrant ant not in the fourth. Typical sinusoidal tracking waveforms
with small peak steady state error and small delay are also shown in Figure 4 where the lead
property of the steady state error signal is cleanly seen.
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Fig. 3. Phasor diagram for the steady state sinusoidal tracking error.
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Fig. 4. Steady state sinusoidal tracking error signal.

We now derive expressions for the parameters of the weighting functions in terms of the
tracking error parameters Re and τe. To this end, recall from (Skogesttad and Postlethwaite,
2000) that in the mixed sensitivity design the weighting functions WP and WT are used to scale
the closed loop transfer functions S and T, respectively in order to satisfy the performance and
stability requirements, and that the inverse of these weighting functions are upper bounds,
up to constant scaling factors, on the transfer functions they are used to scale. These constant
factors can be absorbed in the weighting functions themselves so that the approximations
WPS ≈ 1 and WTT ≈ 1 are reasonable for appropriate weights. However, the discrepancies
can become noticeable if the controller is not designed properly or when the nonminimum

108 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics Optimizing the Tracking Performance in Robust Control Systems 7

phase zeros are located near the origin for which large peaks appear in the sensitivity and
complementary sensitivity response curves.
We first derive an expression for the tracking delay. To simplify notation, let

α :=
ωr

ω�
B

, β :=
ωr

ω�
BT

(3)

and note that 0 < α, β � 1. Using the approximation WTT ≈ 1, we have

|T(jωr)| ≈ 1
|WT(jωr)

, ∠T(jωr) ≈ −∠WT(jωr).

Therefore, using the straight line approximation

|T(jωr)| ≈ 1
|WT(jωr)|

= MT

∣∣∣∣
1 + jβ n

√
AT

1 + jβ n
√

MT

∣∣∣∣
n

≈ MT , for β � 1
n
√

MT
, (4)

and

τe ≈ ∠WT(jωr)

ωr

≈ n
ωr

[
arctan

(
β n
√

MT

)
− arctan

(
β n
√

AT

)]
. (5)

Next, we derive an expression for the peak steady state error. Since WPS ≈ 1, we have

|S(jωr)| ≈ 1
|WP(jωr)

, ∠S(jωr) ≈ −∠WP(jωr).

Therefore,

|S(jωr)| ≈ 1
|WP(jωr)|

= AS

∣∣∣∣∣
1 + j α

m√AS

1 + j α
m√MS

∣∣∣∣∣
m

≈ αm, for m
√

AS � α � m
√

MS.

On the other hand, E(s) = S(s)R(s) so that at the steady state we also have

Re ≈ Arαm. (6)

Therefore, by equating (1) and (6) and using (4) we obtain

αm ≈
√

1 + M2
T − 2MT cos ωrτe. (7)
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The result is depicted in Figure 3 where the sinusoidal components of the steady state error
signal are represented as phasors in the quadrature plane with the reference axis taken as
cos ωrt. It is seen that the steady state error phasor is rotated by an angle of φe in the
counter-clockwise direction due to the presence of the tracking delay τe, and that the peak
amplitude of the steady state tracking error, namely Re, is influenced by this rotation as well
as the gain of the closed loop system at the tracking frequency ωr. It should be noted that when
|T(jωr)| cos ωrτe ≤ 1, this phasor resides in the first quadrant so that tan φe > 0. However,
when |T(jωr)| cos ωrτe > 1, the steady state error phasor moves to the second quadrant for
which tan φe < 0. Therefore, in obtaining φe from tan φe in the latter case, we must interpret φe
as being in the second quadrant ant not in the fourth. Typical sinusoidal tracking waveforms
with small peak steady state error and small delay are also shown in Figure 4 where the lead
property of the steady state error signal is cleanly seen.
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Fig. 3. Phasor diagram for the steady state sinusoidal tracking error.
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Fig. 4. Steady state sinusoidal tracking error signal.

We now derive expressions for the parameters of the weighting functions in terms of the
tracking error parameters Re and τe. To this end, recall from (Skogesttad and Postlethwaite,
2000) that in the mixed sensitivity design the weighting functions WP and WT are used to scale
the closed loop transfer functions S and T, respectively in order to satisfy the performance and
stability requirements, and that the inverse of these weighting functions are upper bounds,
up to constant scaling factors, on the transfer functions they are used to scale. These constant
factors can be absorbed in the weighting functions themselves so that the approximations
WPS ≈ 1 and WTT ≈ 1 are reasonable for appropriate weights. However, the discrepancies
can become noticeable if the controller is not designed properly or when the nonminimum
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phase zeros are located near the origin for which large peaks appear in the sensitivity and
complementary sensitivity response curves.
We first derive an expression for the tracking delay. To simplify notation, let

α :=
ωr

ω�
B

, β :=
ωr

ω�
BT

(3)

and note that 0 < α, β � 1. Using the approximation WTT ≈ 1, we have

|T(jωr)| ≈ 1
|WT(jωr)

, ∠T(jωr) ≈ −∠WT(jωr).

Therefore, using the straight line approximation

|T(jωr)| ≈ 1
|WT(jωr)|

= MT

∣∣∣∣
1 + jβ n

√
AT

1 + jβ n
√

MT

∣∣∣∣
n

≈ MT , for β � 1
n
√

MT
, (4)

and

τe ≈ ∠WT(jωr)

ωr

≈ n
ωr

[
arctan

(
β n
√

MT

)
− arctan

(
β n
√

AT

)]
. (5)

Next, we derive an expression for the peak steady state error. Since WPS ≈ 1, we have

|S(jωr)| ≈ 1
|WP(jωr)

, ∠S(jωr) ≈ −∠WP(jωr).

Therefore,

|S(jωr)| ≈ 1
|WP(jωr)|

= AS

∣∣∣∣∣
1 + j α

m√AS

1 + j α
m√MS

∣∣∣∣∣
m

≈ αm, for m
√

AS � α � m
√

MS.

On the other hand, E(s) = S(s)R(s) so that at the steady state we also have

Re ≈ Arαm. (6)

Therefore, by equating (1) and (6) and using (4) we obtain

αm ≈
√

1 + M2
T − 2MT cos ωrτe. (7)

109Optimizing the Tracking Performance in Robust Control Systems



8 Will-be-set-by-IN-TECH

An expression relating (5) to (7) can now be derived noting that

∠WP(jωr) ≈ m
[

arctan
(

α
m
√

MS

)
− arctan

(
α

m
√

AS

)]
. (8)

Since

∠E(jωr) = ∠S(jωr) +∠R(jωr)

= ∠S(jωr)

= −∠WP(jωr), (9)

from (2), (4), (8), and (9) we obtain

arctan
(

MT sin ωrτe

1 − MT cos ωrτe

)
≈ m

[
arctan

(
α

m
√

AS

)
− arctan

(
α

m
√

MS

)]
. (10)

Expressions (5), (6), (7), and (10) are the basic expressions to be used in the selection of the
weighting functions. In order to gain insight into the relationships among various parameters
involved in these equations, we make further simplifications by noting that AS, AT , α and β
are small positive numbers. Thus, by neglecting appropriate terms, these equations reduce to

ω�
B ≈ ωr

(
Ar

Re

) 1
m

, (11)

MT ≈ cos ωrτe +

√(
ω�

B
ωr

)2m
− sin2 ωrτe, (12)

ω�
BT ≈ ωr

n
√

MT

tan
(ωrτe

n
) , (13)

MS ≈
[

ωr

ω�
B
∣∣tan

(mπ
2 − γ

)∣∣
]m

, (γ �= mπ/2) (14)

where

γ = arctan
(

MT sin ωrτe

1 − MT cos ωrτe

)
. (15)

Note that ω�
B � ωr so that (12) is well defined. For (13), we have used the trigonometric

identity tan(x − y) = (tan x − tan y)/(1 + tan x tan y) to obtain the quadratic equation

n
√

MT AT tan
(ωrτe

n

)
β2 +

(
n
√

AT − n
√

MT

)
β + tan

(ωrτe

n

)
= 0,

and then have set AT ≈ 0. Derivation of the remaining equations is straightforward. When
m = 1, (14) and (15) can be combined using the trigonometric identity tan(x − y) = (tan x −
tan y)/(1 + tan x tan y) resulting in

MS ≈ ωr MT sin ωrτe

ω�
B|1 − MT cos ωrτe| , (MT cos ωrτe �= 1). (16)
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3.1 Guidelines for sinusoidal tracking performance
Assume that Ar, ωr, and the upper bounds on the tracking errors Re and τe are specified.
Further, assume that the parameters AS and AT are chosen to be some small positive numbers
on the basis of our earlier guidelines. A procedure for selecting the remaining parameters of
the weighting functions WP(s) and WT(s) are given below assuming that Re and τe are the
only specifications to be dealt with.

1. Initially, let m = 1 and calculate ω�
B from (11). If this value is too large, increase m and

re-calculate ω�
B.

2. Calculate MT from (12) using the values of m and ω�
B obtained in Step 1.

3. Let n = 1 and calculate ω�
BT from (13) with the values of m, ω�

B, and MT calculated in
Steps 1 and 2. If ω�

BT is not large enough, increase n and recalculate ω�
BT from (13) till a

satisfactory result is obtained.

4. Finally, calculate MS from (14) and (15), or from (16) if m = 1, using the values of ω�
B, m,

and MT calculated in Steps 1 and 2.

4. Application

The importance of nanotechnology has been brought to full attention by the scanning probe
microscopy and is the result of new techniques used to explore the properties of near
atomic-scale structure (Aphale et al., 2008; Barrett & Quate, 1991; Teoh et al., 2008). However,
most schemes of nanotechnology impose severe specifications on positioning systems, making
the control system design more challenging. For example, micro/nano positioning systems
are essential in auto focus systems, fast mirror scanners, image steering devices in optics;
disk spin stands and vibration cancelation in disk drives; wafer and mask positioning in
microelectronics; micropumps, needle valve actuation, linear drives, and piezo hammers
in precision mechanics; and cell penetration and microdispensing devices in medicine and
biology (Daniele et al., 1999; Salapaka et. al, 2002; Tamer & Dahleh, 1994).
In (Salapaka et. al, 2002), a mixed sensitivity robust control has been successfully applied to a
noano-poistioning device, suited to biological samples as part of an atomic force microscope,
where it is shown that substantial improvement in the positioning and precision is attainable
over the conventional PI control. The improvement reported in this chapter is judged on the
basis of the system ability to track a “high frequency” triangular reference waveform with
a small peak error (in order of micro-meter) and a small delay (in order of milli-seconds).
However, it is notable that the success of the design reported in (Salapaka et. al, 2002),
as well as other mixed sensitivity designs, depends largely on the appropriate selection of
the weights used in the optimization process. While for typical applications appropriate
weights are often easily chosen after several trials and errors, the stringent performance
requirements imposed for the ultra-high performance applications makes the selection of
appropriate weights difficult, or at least time-consuming.
In the last section, we derived certain approximate expressions in terms of the tracking
performance specifications and provided a guideline for the selection of the weights in the
mixed sensitivity design. These expressions should prove valuable to the designer as they
expedite the weights selection process in the simulation/design cycle. In order to demonstrate
the usefulness of the guideline, consider the mixed sensitivity robust control design for a high
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The importance of nanotechnology has been brought to full attention by the scanning probe
microscopy and is the result of new techniques used to explore the properties of near
atomic-scale structure (Aphale et al., 2008; Barrett & Quate, 1991; Teoh et al., 2008). However,
most schemes of nanotechnology impose severe specifications on positioning systems, making
the control system design more challenging. For example, micro/nano positioning systems
are essential in auto focus systems, fast mirror scanners, image steering devices in optics;
disk spin stands and vibration cancelation in disk drives; wafer and mask positioning in
microelectronics; micropumps, needle valve actuation, linear drives, and piezo hammers
in precision mechanics; and cell penetration and microdispensing devices in medicine and
biology (Daniele et al., 1999; Salapaka et. al, 2002; Tamer & Dahleh, 1994).
In (Salapaka et. al, 2002), a mixed sensitivity robust control has been successfully applied to a
noano-poistioning device, suited to biological samples as part of an atomic force microscope,
where it is shown that substantial improvement in the positioning and precision is attainable
over the conventional PI control. The improvement reported in this chapter is judged on the
basis of the system ability to track a “high frequency” triangular reference waveform with
a small peak error (in order of micro-meter) and a small delay (in order of milli-seconds).
However, it is notable that the success of the design reported in (Salapaka et. al, 2002),
as well as other mixed sensitivity designs, depends largely on the appropriate selection of
the weights used in the optimization process. While for typical applications appropriate
weights are often easily chosen after several trials and errors, the stringent performance
requirements imposed for the ultra-high performance applications makes the selection of
appropriate weights difficult, or at least time-consuming.
In the last section, we derived certain approximate expressions in terms of the tracking
performance specifications and provided a guideline for the selection of the weights in the
mixed sensitivity design. These expressions should prove valuable to the designer as they
expedite the weights selection process in the simulation/design cycle. In order to demonstrate
the usefulness of the guideline, consider the mixed sensitivity robust control design for a high
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bandwidth nano-positioning system as discussed in (Salapaka et. al, 2002). A model of the
device obtained experimentally is a fourth order nonminimum phase transfer function

G(s) =
9.7 × 104(s − (7.2 ± 7.4j)× 103)

(s + (1.9 ± 4.5j)× 103)(s + (1.2 ± 15.2j)× 102)
.

The design considered is a mixed S/T/KS design where the weight on the controller transfer
function KS is chosen to be Wu = 0.1 in order to restrict the magnitude of the input signal
within the saturation limit. The other weights chosen are

WP(s) =
0.1667s + 2827

s + 2.827
, WT(s) =

s + 235.6
0.01s + 1414

.

A simulation result presented in this chapter which shows a sinusoidal tracking response with
Re ≈ 1(μm) and τe ≈ 2 [msec] when system is subjected to a 100 [Hz] command signal with
peak value of 5 [μm]. From the selected weights, it is seen that

m = 1, ω�
B = 2827, MS ≈ 36, AS = 10−6,

n = 1, ω�
BT = 1414, MT ≈ 36, AT = 10−4.

We like to demonstrate how the initial weights can be obtained using the expressions derived
earlier. Starting with m = 1, Ar/Re = 5, and ωr ≈ 628 [rad/sec], we obtain ω�

B ≈ 3142
[rad/sec] which is not too far from the given value of 2827 [rad/sec]. Since ωrτe ≈ 70.4 and
ω�

B/ωr ≈ 5, equation (12) gives MT ≈ 5.245 which is better than the one chosen in (Salapaka
et. al, 2002). With the calculated values and from (13) we next obtain ω�

BT ≈ 1176 [rad/sec]
which is again not too far from the given value in (Salapaka et. al, 2002). Finally, from (16) we
obtain MS ≈ 1.5 which is lower than what is considered in that chapter. Therefore, we see that
while ω�

B and ω�
BT are fairly close in the first try, the values of MS and MT are considerably

lower. This is however expected since large values of MS and MT are unavoidable here due
to the presence of a complex pair of RHP zeros (Su et al., 2003; 2005).
In conclusion, we see that using the expressions derived in this chapter, a designer can start off
with a fairly reasonable set of parameters and further adjust these parameters for the desired
performance. Additionally, if larger values of MT and MS are to be allowed, the derived
expressions can be used to see how these changes affect the remaining parameters like ω�

B
and ω�

BT . For example, it is seen from (12) that a larger MT is obtained at the expense of a
larger value for ω�

B. From (13), this in turn implies a larger value for ω�
BT as well, and the

same can be said for MS form (14) and (15). In summary, the values obtain from the derived
expressions in this chapter can form the basis of the first try in the simulation and as such
should prove valuable to the designers.

5. Conclusion

In this chapter, the mixed sensitivity robust tracking problem of a feedback system with
sinusoidal command waveforms is studied. Approximate expressions relating the tracking
errors specifications to various parameters of the weighting functions used in the mixed
S/T sensitivity design are derived. The derivation presented in this chapter uses simple
arguments using phasors and straight line approximation of magnitude response. We have
outlined guidelines for the selection of the weighting functions parameters using the derived
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expressions. Application of the results in minimizing the tracking errors of a nano-positioning
system is demonstrated.
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Robust Adaptive Position/Force Control
of Mobile Manipulators

Tatsuo Narikiyo and Michihiro Kawanishi
Toyota Technological Institute

Japan

1. Introduction

A mobile manipulator is a class of mobile robot on which the multi-link manipulator is
mounted. This system is expected to play an important role both in the production process of
factory and in the medical care system of welfare business. To come up to this expectation, a
mobile manipulator is required to simultaneously track to both the desired position trajectory
and force trajectory. However, these tracking performances are subject to nonholonomic and
holonomic constraints. Furthermore, mobile manipulators possess complex and strongly
coupled dynamics of mobile bases and manipulators. Then, there are very few studies on
the problems of stabilization position/force control for mobile manipulators.
In (Chang & Chen, 2002; Oya et al., 2003; Su et al., 1999), position and force control methods
for mobile robot without manipulators have been addressed. Since in these studies
holonomic constraints representing the interaction between end-effector of the manipulator
and environment have not been considered, those approaches could not be applied to the
position/force control problems of the mobile manipulators. In (Dong, 2002; Li et al., 2007;
2008), adaptive and robust control approaches have been applied to the position/force
control problems of the mobile manipulators. In these approaches, since the chained form
transforms are required, synthesis methods of the control torques and adaptation laws of these
approaches are too complicated to apply. On the other hand, we have derived the stabilizing
controllers for a class of mobile manipulators(Narikiyo et al., 2008). In (Narikiyo et al., 2008)
we have proposed robust adaptive control scheme for the system with dynamic uncertainties
and external disturbances directly from the reduced order dynamics subject to both the
holonomic and nonholonomic constraints. Furthermore, in (Narikiyo et al., 2009) we have
developed this control scheme to control the system with both kinematic and dynamic
uncertainties. In these studies usefulness of these control schemes have been demonstrated
by numerical examples. However, proof of the closed loop stability has not been completed
under an inadequate assumption(Narikiyo et al., 2009).
In this study we complete the proof and relax the assumptions of (Narikiyo et al., 2009). Then
we implement these control schemes (Narikiyo et al., 2008; 2009) experimentally and apply
to the prototype shown in Fig.1 to demonstrate the effectiveness of these proposed control
schemes. It is also guaranteed theoretically that the tracking position and force errors to the
desired trajectories are asymptotically converged to zero by the proposed control schemes.
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2. Modeling of mobile manipulator

Fig. 1. Mobile manipulator

Fig.1 shows the prototype of mobile manipulator employed in experiments. Let qB ∈ Rn,
qM ∈ Rm and q = [qT

B qT
M]T ∈ Rn+m be the generalized coordinates of the mobile base,

manipulator and whole system, respectively. Then the equations of nonholonomic constraints
imposed on the mobile base are written as

JB(qB)q̇B = 0, (1)

where qB = [qT
B1 qT

B2]
T and JB(qB) = [JB1 JB2] ∈ R(n−k)×n, detJB1 �= 0. The equations of

holonomic constraints imposed on the manipulator are given by

Φ(q) = 0, (2)

where Φ(q) ∈ Rm−h. Let JM(q) = ∂Φ/∂q ∈ R(m−h)×(n+m), rankJM = m − h. Then (2) can be
rewritten as

JM(q)q̇ = 0. (3)
Furthermore, let

JM(q) =
[

∂Φ
∂qB

∂Φ
∂qM1

∂Φ
∂qM2

]
= [JM0 JM1 JM2] ,

qM = [qT
M1 qT

M2]
T, qM1 ∈ Rh, qM2 ∈ Rm−h and detJM2 �= 0. Then the equations of motion of

the mobile manipulator is written as

M(q)q̈ + C(q, q̇)q̇ + G(q) + d(q, t) = JT(q)λ + B(q)τ, (4)

J(q)q̇ = 0, (5)

where

M(q) =
[

M11(q) M12(q)
M21(q) M22(q)

]
, G(q) =

[
G11(q)
G21(q)

]
, C(q, q̇) =

[
C11(q, q̇)
C21(q, q̇)

]
,

B(q) =
[

B11(qB) 0
0 Im

]
, d(q, t) =

[
d11(q, t)
d21(q, t)

]
,

J(q) =
[

JB 0 0
JM0 JM1 JM2

]
, τ =

[
τB
τM

]
, λ =

[
λB
λM

]
.
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Indices {i, j = 1, 2} correspond to decompositions of qB, qM. d(t) denotes uncertain
disturbance. For λ = [λT

B λT
M]T, λB ∈ Rn−k denote reaction forces acted on the wheels

from the floor and λM ∈ Rm−h denote reaction forces acted on the end-effector from the
environment. The equation (4) has following properties(Slotine & Li, 1991).
Property 1:Ṁ − 2C is skew symmetric.
Property 2:For any ξ

M(q)ξ̇ + C(q, q̇)ξ + G(q) = Y(q, q̇, ξ, ξ̇)p0,

where p0 ∈ Rs0 denotes unknown parameter vector and Y ∈ R(n+m)×s0 is called regressor
matrix whose elements consist of known functions.
Let fB(qB) = [ f1(qB), ..., fk(qB)] be the bases of null space of JB(qB), then there exists η =
[η1, ..., ηk]

T such that (1) is equivalent to

q̇B = fB(qB)η. (6)

Using the suitable selection of fB(qB), η can be specified to be equal to forward linear velocity
u and angular velocity ω of the mobile base, that is, k = 2 and η = [η1 η2]

T = [u ω]T, without
loss of generality. Since η corresponds to angular velocity of wheels νB, there exists ϕ such
that νB = ϕη. Therefore (6) is rewritten as

q̇B = SB(qB)νB, (7)

where

SB(qB) = fB(qB)ϕ−1 =

[−J−1
B1 JB2
Ik

]
.

Furthermore, let

S(qB) = Blockdiag {SB(qB), Im} ∈ R(n+m)×(k+m),

ν =

[
νT

B , q̇T
M1,−

{
J−1
M2

(
JM0 fB ϕ−1νB + JM1q̇M1

)}T
]T

∈ Rk+m,

then we have
q̇ = S(qB)ν. (8)

Differentiating (8), substituting it into (4) and multiplying both sides by ST(qB) from the left,
we have(Yamamoto & Yun, 1996)

M1(q)ν̇ + C1(q, q̇)ν + G1(q) + d1(q, t) = B1(q)τ + JT
M(q)λM, (9)

where

M1(q) = ST(qB)M(q)S(qB),

C1(q, q̇) = ST(qB)
{

M(q)Ṡ(qB) + C(q, q̇)S(qB)
}

,

G1(q) = ST(qB)G(q), d1(q, t) = ST(qB)d(q, t),

B1(q) = ST(qB)B(q), JM =
[

JM0 fB ϕ−1 JM1 JM2

]
.

It is well known that Property 1 and 2 are invariant under changes of
coordinates(Murray et al., 1993). Then (9) has following properties similarly to (4).
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Property 3:Ṁ1 − 2C1 is skew-symmetric.
Property 4:For any ξ̄

M1(q)ξ̇ + C1(q, q̇)ξ + G1(q) = Y1(q, q̇, ξ, ξ̇)p1,

where p1 ∈ Rs1 denotes unknown parameter vector and Y1 ∈ R(k+m)×s1 is called the regressor
matrix whose elements consist of known functions. Furthermore, kinematic uncertainties of
the system give the following properties(Cheah et al., 2003; Fukao et al., 2000).
Property 5:SB(qB)νB in (7) can be written as

SB(qB)νB =
k

∑
i=1

⎛
⎝σi0(qB) +

hi

∑
j=1

θijσij(qB)

⎞
⎠ νBi.

Property 6:JT
M(q)λM in (9) can be written as

JT
M(q)λM = Z1(q, λM)ψ,

where θij is unknown parameter which consists of unknown parameters of mobile base, and
σij is known functions which consists of the coordinate qB, (i = 1, ..., k, j = 1, ..., hi). ψ ∈ Rc is
unknown parameter vector of the whole system and Z1(q, λM) ∈ R(k+m)×c is known matrix
function of the position/force coordinate q and λM , respectively.
Following assumptions are required to synthesize the control scheme.
Assump.1:There are no unknown parameters in B1(q) and detB1(q) �= 0 for all q. d1 and its
derivative are bounded and �d1� ≤ D. Where D is unknown.
Assump.2:JB, JM, J−1

B1 , J−1
M2 ∈ L∞ and these matrices are all continuously differentiable with

respect to q and kinematic parameters, and these derivatives are bounded.

3. Hybrid position/force control scheme

Let q∗ be the desired position trajectory, then there exist desired velocity input ν∗ =
[ν∗1 , ..., ν∗k , ν∗T

M ]T such that
q̇∗ = S(q∗B)ν∗. (10)

Since [ν∗1 , ..., ν∗k ]
T are desired velocities of the mobile base, we can set [ν∗1 ν∗2 ]T = ϕ[u∗ ω∗]T

and k = 2 without loss of generality. Where desired forward linear velocity u∗ and desired
angular velocity ω∗ of the mobile base. Using the relations such as ν∗M1 = q̇∗M1 and ν∗M2 = q̇∗M2,
ν∗M2(= q̇∗M2) can be determined by ν∗M1 and u∗, ω∗. For these values following assumptions
are required.
Assump.3:q∗, u∗, ω∗, q̇∗, u̇∗, ω̇∗, q̈∗, ü∗, ω̈∗ and ˙̈q∗ are bounded globally. And u∗ �= 0.

3.1 Reference robot
To specify error dynamics of trajectory tracking system we introduce the reference robot
shown in Fig.1. Trajectory error eB for base coordinates qB = [x y φ]T, trajectory error
eM1 for manipulator coordinates qM1 and trajectory error λ̃M for constrained forces are given
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Fig. 2. Reference robot and tracking errors
by

eB =

⎡
⎣

e1
e2
e3

⎤
⎦ =

⎡
⎣

(x∗ − x) cos φ + (y∗ − y) sin φ
−(x∗ − x) sin φ + (y∗ − y) cos φ

φ∗ − φ

⎤
⎦

eM1 = q∗M1 − qM1, λ̃M = λM − λ∗
M (11)

Using the results in (Fukao et al., 2000), desired velocity inputs νc = [νT
Bc νT

M1c νT
M2c]

T for
trajectory tracking are written as the following.

νBc = ϕuBc, uBc =

�
uc
ωc

�

=

�
u∗ cos e3 + K1e1

ω∗ + u∗K2e2 + K3 sin e3

�

νM1c = q̇∗M1 + KM1eM1

νM2c = −J−1
M2

�
JM0 fB ϕ−1νBc + JM1νM1c

�
(12)

Where Ki > 0, i = 1, 2, 3 and KM1 are arbitrarily assigned.
For the system (7) the following Lemma is shown in (Fukao et al., 2000).

Lemma 1. If νB = νBc is applied to (7), then the first derivatives of trajectory error coordinates are
given by the following equations.

ė1 = −K1e1 + (ω∗ + u∗K2e2 + K3 sin e3)e2

ė2 = −(ω∗ + u∗K2e2 + K3 sin e3)e1 + u∗ sin e3

ė3 = −u∗K2e2 − K3 sin e3 (13)

Then, limt→∞ eB = 0.
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ė3 = −u∗K2e2 − K3 sin e3 (13)

Then, limt→∞ eB = 0.

121Robust Adaptive Position/Force Control of Mobile Manipulators



6 Will-be-set-by-IN-TECH

However, since Lemma1 has not considered kinematic parameter uncertainties, νBc cannot
be applied to our problem. Therefore, we give the following assumption similar manner to
(Fukao et al., 2000).
Assump.4:There exist velocity inputs and adaptive laws:

νB = νBc(qB, q∗B, â)

˙̂ai = Ti(qB, q∗B, â) (14)

such that the closed loop system of (7) is stable at q∗B. Furthermore, there exists Lyapunov
function V1(qB, q∗B, ã) such that the time derivative of V1 along the closed loop system of (7)
with (14) is negative semi-definite. Where â is the estimate of an unknown parameter vector
a = [a1, ..., ak]

T, which is composed of θij, and ã = â − a is the estimated error.

3.2 Control laws for the system with both kinematic and dynamic uncertainties
In this section we propose the robust and adaptive position/force control scheme of the mobile
manipulators with both the kinematic and dynamic uncertainties. To begin with, we introduce
filter coordinates in a similar way to (Yuan, 1997) as follows. For any constant α1 we set
βM ∈ Rm as

β̇M = −α1βM − α1

�
ĴM1 ĴM2

�T
λ̃M, (15)

where ĴM(q, ψ̂) denotes the Jacobian matrix which is replaced ψ with estimate ψ̂ and

ĴM(q, ψ̂) =
�

ĴM0(q, ψ̂) fB(qB)ϕ̂−1 ĴM1(q, ψ̂) ĴM2(q, ψ̂)
�

=
�

ĴM0(q, ψ̂) ĴM1(q, ψ̂) ĴM2(q, ψ̂)
�

.

Secondly, we set

ν̃ = ν − νc, β = [0T
k βT

M ]T, ν̃ = Rs̃, δ = ν̃ + β,

χ = νc − β, s̃ = [ν̃T
B ν̃T

M1]
T, e = [eT

B eT
M]T, (16)

where

R =

⎡
⎢⎣

Ik 0
0 Il

− Ĵ
−1
M2 ĴM0 − Ĵ

−1
M2 ĴM1

⎤
⎥⎦ .

Finally we introduce variable ρ(t) which satisfies following conditions (Li et al., 2008).

(1) ρ(t) > 0, ∀t ∈ [0, ∞)

(2) lim
t→∞

ρ(t) = 0

(3) lim
t→∞

� t

0
ρ(τ)dτ = ρ0 < ∞

Under assumptions from Assump.1 to Assump.4, following theorem is derived.
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Theorem 1. Applying the following control law and adaptive laws to the mobile manipulator (4) and
(5),

τ = B−1
1

[
−Kdδ − F + Y1(q, q̇, χ, χ̇) p̂1 −

(
∂V1
∂q

Ŝ(qB, θ̂)

)T

+α2 Ĵ
T
M(q, ψ̂λ̃M)− Z1(q, λM)ψ̂

]

˙̂p1 = −Γ1YT
1 (q, q̇, χ, χ̇)δ (17)

˙̂ψ = Γ2ZT
1 (q, λM)δ

˙̂ai = Ti(qB, q∗B, â)

˙̂θi = Λi

(
∂V1
∂q

σi

)T
ν̃i

˙̂D = γ�δ�
then all internal signals are bounded and

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0, (18)

where θ̂i is estimate of θi, σi = [σi1, · · · , σihi
], 1 ≤ i ≤ k, and Kd, Γ1, Γ2, Λi are positive definite matrix

with appropriate dimensions, α2 is arbitrary constant and

F(t) =
δD̂2

�δ�D̂ + ρ(t)
.

Letting parameter estimation errors be p̃ = p̂ − p and D̃ = D̂ − D, closed loop system can be
written as follows.

M1δ̇ = −(C1 + Kd)δ + Y1(q, q̇, χ, χ̇) p̃1 −
(

∂V1
∂q

Ŝ(qB, θ̂)

)T

+α2 Ĵ
T
Mλ̃M − Z1ψ̃ − (F + d1) (19)

Proof of this theorem is shown by the following Lemmas.

Lemma 2. For the closed loop system, δ, β ∈ L2, and ν̃, p̂, eM1, ėM1, νc, χ, q, q̇, θ̂, ψ̂, â, D̂ ∈ L∞.

(Proof)
We set V2 as

V2 = V1 +
1
2

δT M1δ +
1
2

α2α−1
1 βT β +

1
2

p̃T
1 Γ−1 p̃1

+
1
2

k

∑
i=1

θ̃T
i Λ−1

i θ̃i +
1
2

ψ̃TΓ−1
2 ψ̃ +

1
2γ

D̃2. (20)

Differentiating V2 along (19), we have

V̇2 =
∂V1
∂q

S(qB)(νc + ν̃) +
∂V1
∂q∗ S(q∗B)ν∗ +

g

∑
i=1

∂V1
∂âi

Ti − δTKdδ

− ∂V1
∂q

Ŝ(qB)ν̃ − α2βT β +
k

∑
i=1

θ̃T
i Λ−1

i
˙̃θi − δT(F + d1) +

D̃ ˙̂D
γ

.
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However, since Lemma1 has not considered kinematic parameter uncertainties, νBc cannot
be applied to our problem. Therefore, we give the following assumption similar manner to
(Fukao et al., 2000).
Assump.4:There exist velocity inputs and adaptive laws:

νB = νBc(qB, q∗B, â)

˙̂ai = Ti(qB, q∗B, â) (14)

such that the closed loop system of (7) is stable at q∗B. Furthermore, there exists Lyapunov
function V1(qB, q∗B, ã) such that the time derivative of V1 along the closed loop system of (7)
with (14) is negative semi-definite. Where â is the estimate of an unknown parameter vector
a = [a1, ..., ak]

T, which is composed of θij, and ã = â − a is the estimated error.

3.2 Control laws for the system with both kinematic and dynamic uncertainties
In this section we propose the robust and adaptive position/force control scheme of the mobile
manipulators with both the kinematic and dynamic uncertainties. To begin with, we introduce
filter coordinates in a similar way to (Yuan, 1997) as follows. For any constant α1 we set
βM ∈ Rm as

β̇M = −α1βM − α1

�
ĴM1 ĴM2

�T
λ̃M, (15)

where ĴM(q, ψ̂) denotes the Jacobian matrix which is replaced ψ with estimate ψ̂ and

ĴM(q, ψ̂) =
�

ĴM0(q, ψ̂) fB(qB)ϕ̂−1 ĴM1(q, ψ̂) ĴM2(q, ψ̂)
�

=
�

ĴM0(q, ψ̂) ĴM1(q, ψ̂) ĴM2(q, ψ̂)
�

.

Secondly, we set

ν̃ = ν − νc, β = [0T
k βT

M ]T, ν̃ = Rs̃, δ = ν̃ + β,

χ = νc − β, s̃ = [ν̃T
B ν̃T

M1]
T, e = [eT

B eT
M]T, (16)

where

R =

⎡
⎢⎣

Ik 0
0 Il

− Ĵ
−1
M2 ĴM0 − Ĵ

−1
M2 ĴM1

⎤
⎥⎦ .

Finally we introduce variable ρ(t) which satisfies following conditions (Li et al., 2008).

(1) ρ(t) > 0, ∀t ∈ [0, ∞)

(2) lim
t→∞

ρ(t) = 0

(3) lim
t→∞

� t

0
ρ(τ)dτ = ρ0 < ∞

Under assumptions from Assump.1 to Assump.4, following theorem is derived.
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Theorem 1. Applying the following control law and adaptive laws to the mobile manipulator (4) and
(5),

τ = B−1
1

[
−Kdδ − F + Y1(q, q̇, χ, χ̇) p̂1 −

(
∂V1
∂q

Ŝ(qB, θ̂)

)T

+α2 Ĵ
T
M(q, ψ̂λ̃M)− Z1(q, λM)ψ̂

]

˙̂p1 = −Γ1YT
1 (q, q̇, χ, χ̇)δ (17)

˙̂ψ = Γ2ZT
1 (q, λM)δ

˙̂ai = Ti(qB, q∗B, â)

˙̂θi = Λi

(
∂V1
∂q

σi

)T
ν̃i

˙̂D = γ�δ�
then all internal signals are bounded and

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0, (18)

where θ̂i is estimate of θi, σi = [σi1, · · · , σihi
], 1 ≤ i ≤ k, and Kd, Γ1, Γ2, Λi are positive definite matrix

with appropriate dimensions, α2 is arbitrary constant and

F(t) =
δD̂2

�δ�D̂ + ρ(t)
.

Letting parameter estimation errors be p̃ = p̂ − p and D̃ = D̂ − D, closed loop system can be
written as follows.

M1δ̇ = −(C1 + Kd)δ + Y1(q, q̇, χ, χ̇) p̃1 −
(

∂V1
∂q

Ŝ(qB, θ̂)

)T

+α2 Ĵ
T
Mλ̃M − Z1ψ̃ − (F + d1) (19)

Proof of this theorem is shown by the following Lemmas.

Lemma 2. For the closed loop system, δ, β ∈ L2, and ν̃, p̂, eM1, ėM1, νc, χ, q, q̇, θ̂, ψ̂, â, D̂ ∈ L∞.

(Proof)
We set V2 as

V2 = V1 +
1
2

δT M1δ +
1
2

α2α−1
1 βT β +

1
2

p̃T
1 Γ−1 p̃1

+
1
2

k

∑
i=1

θ̃T
i Λ−1

i θ̃i +
1
2

ψ̃TΓ−1
2 ψ̃ +

1
2γ

D̃2. (20)

Differentiating V2 along (19), we have

V̇2 =
∂V1
∂q

S(qB)(νc + ν̃) +
∂V1
∂q∗ S(q∗B)ν∗ +

g

∑
i=1

∂V1
∂âi

Ti − δTKdδ

− ∂V1
∂q

Ŝ(qB)ν̃ − α2βT β +
k

∑
i=1

θ̃T
i Λ−1

i
˙̃θi − δT(F + d1) +

D̃ ˙̂D
γ

.
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In this computation, we used the relations ∂V1
∂q Ŝβ = 0 and:

ĴMR =
�

ĴM0 ĴM1 ĴM2

�
⎡
⎢⎣

Ik 0
0 Il

− Ĵ
−1
M2 ĴM0 − Ĵ

−1
M2 ĴM1

⎤
⎥⎦

=
�
0(m−l)×k 0(m−l)×l

�
.

Furthermore, by using the relation

∂V1
∂q

S̃(qB)ν̃ =
∂V1
∂q

(Ŝ − S)ν̃ =
∂V1
∂q

⎡
⎣ k

∑
i=1

⎛
⎝σi0(qB) +

li

∑
j=1

θ̂ijσij(qB)

⎞
⎠

−
k

∑
i=1

⎛
⎝σi0(qB) +

li

∑
j=1

θijσij(qB)

⎞
⎠
⎤
⎦ νBi =

∂V1
∂q

k

∑
i=1

σi θ̃i ν̃i

we have

V̇2 = V̇νB=νBC
1 − δTKdδ − α2βT β − δT(F + d1) +

D̃ ˙̂D
γ

, (21)

where

V̇νB=νBC
1 =

∂V1
∂q

S(qB)νc +
∂V1
∂q∗ S(q∗B)ν

∗ +
g

∑
i=1

∂V1
∂âi

Ti ≤ 0.

Last inequality sign ≤ is given by Assump.4. From the definition of F(t) and adaptive law of
D̂ following inequality is derived.

− δT(F + d1) +
D̃ ˙̂D

γ
= −δT δD̂2

�δ�D̂ + ρ(t)
− δTd1 +

D̂ ˙̂D
γ

− D ˙̂D
γ

< − �δ�2D̂2

�δ�D̂ + ρ(t)
+ �δ�D +

D̂ ˙̂D
γ

− D ˙̂D
γ

= − �δ�2D̂2

�δ�D̂ + ρ(t)
+

D̂(γ�δ�)
γ

+
D
γ

�
γ�δ� − ˙̂D

�

=
ρ(t)�δ�D̂

�δ�D̂ + ρ(t)
< ρ(t)

These inequalities lead the right hand of (32) to

V̇2 < −δTKdδ − α2βT β + ρ(t). (22)

Integrating both sides of this inequality and using definition of ρ(t), we have

V2(t)− V2(0) < −
� t

0
δTKdδdτ − α2

� t

0
βT βdτ + ρ0 < ∞. (23)

124 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics Robust Adaptive Position/Force Control
of Mobile Manipulators 9

This shows
V2(t) < V2(0) + ρ0 < ∞. (24)

Therefore, V2(t) is bounded, that is, qB, ã, δ, β, p̃1, D̃, θ̃, ψ̃ ∈ L∞, and δ, β ∈ L2. From definition
of variable ν̃, we have ν̃ ∈ L∞. Since unknown parameters are constant and bounded,
p̂, D̂, â, θ̂, ψ̂ ∈ L∞. From (12) and definitions of ν and νc, ν̃M1 = −ėM1 − KM1eM1 ∈ L∞. Then
eM1, ėM1 ∈ L∞. From (12), Assump.3 and Assump.4, we have νc, χ ∈ L∞. From Assump.2
and Assump.3, we have qM, q̇M ∈ L∞. Similarly from ν̃, νc ∈ L∞ and Assump.2, we have
q̇B, ėB ∈ L∞. Therefore q, q̇ ∈ L∞.

Lemma 3. Let M̂1 = M1( p̂1) and

Δ(ψ, ψ̂) = JT
M

(
ĴM Ĵ

T
M

)−1
ĴM +

(
Ĵ

T
M

)†
− Ik+m,

where
(

Ĵ
T
M

)†
is left annihilator of Ĵ

T
M. If there exist α1 and α2 such that

{
α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)

}

is nonsingular, then λ̃M ∈ L∞.

(Proof)

Substituting (15) and (16) into (19), we have

{
α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)

}
Ĵ

T
Mλ̃M

= M1(R ˙̃s + Ṙs̃) + (C1 + Kd)δ − Y1(q, q̇, χ, χ̇ + β̇) p̃1 − α1M̂1β

+

(
∂V1
∂q

Ŝ(qB, θ̂)

)T
+ Δ(ψ, ψ̂) Ĵ

T
Mλ∗

M + (F + d1). (25)

In this calculation, following relations are used.

Y1(q, q̇, χ, χ̇) p̃1 = Y1(q, q̇, χ, χ̇ + β̇) p̃1 −
{

M̂1(q)− M1(q)
}

β̇

Z1ψ̃ =

(
Ĵ

T
M − J

T
M

)
λ̃M +

(
Ĵ

T
M − J

T
M

)
λ∗

M

= −Δ(ψ, ψ̂) Ĵ
T
Mλ̃M − Δ(ψ, ψ̂) Ĵ

T
Mλ∗

M

Multiplying (25) by ĴM M−1
1 from left, we have

ĴMM−1
1

{
α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)

}

× Ĵ
T
Mλ̃M = ĴM

[
Ṙs̃ + M−1

1 {(C1 + Kd)δ

−Y1(q, q̇, χ, χ̇ + β̇) p̃1 + α1M̂1β

+

(
∂V1
∂q

Ŝ(qB, θ̂)

)T
+ Δ(ψ, ψ̂) Ĵ

T
Mλ∗

M + (F + d1)

}]
. (26)
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In this computation, we used the relations ∂V1
∂q Ŝβ = 0 and:

ĴMR =
�

ĴM0 ĴM1 ĴM2

�
⎡
⎢⎣

Ik 0
0 Il

− Ĵ
−1
M2 ĴM0 − Ĵ

−1
M2 ĴM1

⎤
⎥⎦

=
�
0(m−l)×k 0(m−l)×l

�
.

Furthermore, by using the relation

∂V1
∂q

S̃(qB)ν̃ =
∂V1
∂q

(Ŝ − S)ν̃ =
∂V1
∂q

⎡
⎣ k

∑
i=1

⎛
⎝σi0(qB) +

li

∑
j=1

θ̂ijσij(qB)

⎞
⎠

−
k

∑
i=1

⎛
⎝σi0(qB) +

li

∑
j=1

θijσij(qB)

⎞
⎠
⎤
⎦ νBi =

∂V1
∂q

k

∑
i=1

σi θ̃i ν̃i

we have

V̇2 = V̇νB=νBC
1 − δTKdδ − α2βT β − δT(F + d1) +

D̃ ˙̂D
γ

, (21)

where

V̇νB=νBC
1 =

∂V1
∂q

S(qB)νc +
∂V1
∂q∗ S(q∗B)ν

∗ +
g

∑
i=1

∂V1
∂âi

Ti ≤ 0.

Last inequality sign ≤ is given by Assump.4. From the definition of F(t) and adaptive law of
D̂ following inequality is derived.

− δT(F + d1) +
D̃ ˙̂D

γ
= −δT δD̂2

�δ�D̂ + ρ(t)
− δTd1 +

D̂ ˙̂D
γ

− D ˙̂D
γ

< − �δ�2D̂2

�δ�D̂ + ρ(t)
+ �δ�D +

D̂ ˙̂D
γ

− D ˙̂D
γ

= − �δ�2D̂2

�δ�D̂ + ρ(t)
+

D̂(γ�δ�)
γ

+
D
γ

�
γ�δ� − ˙̂D

�

=
ρ(t)�δ�D̂

�δ�D̂ + ρ(t)
< ρ(t)

These inequalities lead the right hand of (32) to

V̇2 < −δTKdδ − α2βT β + ρ(t). (22)

Integrating both sides of this inequality and using definition of ρ(t), we have

V2(t)− V2(0) < −
� t

0
δTKdδdτ − α2

� t

0
βT βdτ + ρ0 < ∞. (23)
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This shows
V2(t) < V2(0) + ρ0 < ∞. (24)

Therefore, V2(t) is bounded, that is, qB, ã, δ, β, p̃1, D̃, θ̃, ψ̃ ∈ L∞, and δ, β ∈ L2. From definition
of variable ν̃, we have ν̃ ∈ L∞. Since unknown parameters are constant and bounded,
p̂, D̂, â, θ̂, ψ̂ ∈ L∞. From (12) and definitions of ν and νc, ν̃M1 = −ėM1 − KM1eM1 ∈ L∞. Then
eM1, ėM1 ∈ L∞. From (12), Assump.3 and Assump.4, we have νc, χ ∈ L∞. From Assump.2
and Assump.3, we have qM, q̇M ∈ L∞. Similarly from ν̃, νc ∈ L∞ and Assump.2, we have
q̇B, ėB ∈ L∞. Therefore q, q̇ ∈ L∞.

Lemma 3. Let M̂1 = M1( p̂1) and

Δ(ψ, ψ̂) = JT
M

(
ĴM Ĵ

T
M

)−1
ĴM +

(
Ĵ

T
M

)†
− Ik+m,

where
(

Ĵ
T
M

)†
is left annihilator of Ĵ

T
M. If there exist α1 and α2 such that

{
α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)

}

is nonsingular, then λ̃M ∈ L∞.

(Proof)

Substituting (15) and (16) into (19), we have

{
α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)

}
Ĵ

T
Mλ̃M

= M1(R ˙̃s + Ṙs̃) + (C1 + Kd)δ − Y1(q, q̇, χ, χ̇ + β̇) p̃1 − α1M̂1β

+

(
∂V1
∂q

Ŝ(qB, θ̂)

)T
+ Δ(ψ, ψ̂) Ĵ

T
Mλ∗

M + (F + d1). (25)

In this calculation, following relations are used.

Y1(q, q̇, χ, χ̇) p̃1 = Y1(q, q̇, χ, χ̇ + β̇) p̃1 −
{

M̂1(q)− M1(q)
}

β̇

Z1ψ̃ =

(
Ĵ

T
M − J

T
M

)
λ̃M +

(
Ĵ

T
M − J

T
M

)
λ∗

M

= −Δ(ψ, ψ̂) Ĵ
T
Mλ̃M − Δ(ψ, ψ̂) Ĵ

T
Mλ∗

M

Multiplying (25) by ĴM M−1
1 from left, we have

ĴMM−1
1

{
α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)

}

× Ĵ
T
Mλ̃M = ĴM

[
Ṙs̃ + M−1

1 {(C1 + Kd)δ

−Y1(q, q̇, χ, χ̇ + β̇) p̃1 + α1M̂1β

+

(
∂V1
∂q

Ŝ(qB, θ̂)

)T
+ Δ(ψ, ψ̂) Ĵ

T
Mλ∗

M + (F + d1)

}]
. (26)
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By definition and Assump.3 ν̇c ∈ L∞ and χ̇ + β̇ = ν̇c, we have

Y1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Therefore, if α1 and α2 are selected such that
{

α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)
}

is nonsingular, then λ̃M ∈ L∞.

Lemma 4. Z1, ν̇c, β̇, χ̇, Y1(q, q̇, χ, χ̇), F(t) ∈ L∞.

(Proof)

Z1 ∈ L∞ is derived from Lemma 2 and 3. ν̇c ∈ L∞ is derived from definition of νc, Assump.2
and adaptive laws of â, ψ̂. β̇ ∈ L∞ is derived directly from (15). Then χ̇ = ν̇c − β̇ ∈ L∞. These
relations imply Y1(q, q̇, χ, χ̇) ∈ L∞. And finally,

�F(t)� = � δD̂2

�δ�D̂ + ρ(t)
� < � δD̂2

�δ�D̂
� = D̂ ∈ L∞.

Lemma 5.
lim
t→∞

e = 0

(Proof)

From definitions and Lemma 4, we have δ̇ ∈ L∞. Since δ, β ∈ L2, by Barbalatat’s
Lemma(Kristic et al., 1995; Slotine & Li, 1991) we have limt→∞ δ = 0 and limt→∞ β = 0. This
means limt→∞ ν̃ = 0. By Lemma1 limt→∞ eB = 0. Since limt→∞ ν̃ = 0 and

ν̃M1 = −ėM1 − KM1eM1,

limt→∞ eM1 = 0. Then limt→∞ e = 0.
From above 5 Lemmas and next Lemma the proof of Theorem 1 is completed.

Lemma 6.
lim
t→∞

λM = λ∗
M

(Proof)

From (19), Lemma 3 and Lemma 4, δ̇ ∈ L∞. And from definitions, β̇ ∈ L∞, ˙̃ν ∈ L∞. Then
q̈ ∈ L∞, R̈ and ν̈c ∈ L∞. These lead us to Ẏ1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Differentiating both sides of (26), we have ˙̃λM ∈ L∞, that is λ̇M ∈ L∞.Then, by above Lemmas
and definition of βM , β̈M ∈ L∞. This shows that β̇M is uniformly continuous. And βM → 0 is
shown in previous Lemma. Therefore from Barbalat’s Lemma(Kristic et al., 1995; Slotine & Li,
1991) we have limt→∞ β̇M = 0. Since [ ĴM1 ĴM2]

T in (15) is full column rank, we have

lim
t→∞

λ̃M = 0.
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3.3 Control laws for the system only with the dynamic uncertainties
In this section we propose the robust and adaptive position/force control scheme of the mobile
manipulators with only the dynamic uncertainties. Since kinetic parameters are known, the
Jacobian matrix ĴM(q, ψ̂) has no uncertainties. Therefore (15) and R̂ are replaced with

β̇M = −α1βM − α1 [JM1 JM2]
T λ̃M, (27)

R =

⎡
⎣

Ik 0
0 Il

−J−1
M2 JM0 fB ϕ−1 −J−1

M2 JM1

⎤
⎦ .

Then the robust adaptive control scheme proposed in (Narikiyo et al., 2008) can be applied
to the system with dynamic uncertainties. This control scheme is shown in the following
theorem.

Theorem 2. Let the kinematic parameters be known. Applying the following control law and adaptive
laws to the mobile manipulator (4) and (5),

τ = B−1
1 [−Kdδ − F + Y1(q, q̇, χ, χ̇) p̂

−
�

∂V1
∂q

S(qB)

�T
+ JT

M(−λ∗
M + α2λ̃M)]

˙̂p = −ΓYT
1 (q, q̇, χ, χ̇)δ (28)

˙̂D = γ�δ�
then internal signals are bounded and

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0, (29)

where

F(t) =
δD̂2

�δ�D̂ + ρ(t)
.

Substituting (28) into (4), we can obtain the following closed loop system.

M1δ̇ = −(C1 + Kd)δ + Y1(q, q̇, χ, χ̇) p̃ −
�

∂V1
∂q

S(qB)

�T

+(1 + α2) J̄T
Mλ̃M − (F + d1) (30)

˙̂p = −ΓY1(q, q̇, χ, χ̇)δ

˙̂D = γ�δ�
β̇M = −α1βM − α1[JM1 JM2]

Tλ̃M

Proof of the theorem 2 is completed by the following Lemmas as similar to the proof of
Theorem 1.

Lemma 7. For the closed loop system, δ, β ∈ L2,ν̃, Rs̃, p̂, eM1, ėM1, νc, χ, q, q̇ ∈ L∞ and

lim
t→∞

e1 = 0, lim
t→∞

e3 = 0.
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By definition and Assump.3 ν̇c ∈ L∞ and χ̇ + β̇ = ν̇c, we have

Y1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Therefore, if α1 and α2 are selected such that
{

α1M̂1Blockdiag(0k, Im) + α2 Ik+m + Δ(ψ, ψ̂)
}

is nonsingular, then λ̃M ∈ L∞.

Lemma 4. Z1, ν̇c, β̇, χ̇, Y1(q, q̇, χ, χ̇), F(t) ∈ L∞.

(Proof)

Z1 ∈ L∞ is derived from Lemma 2 and 3. ν̇c ∈ L∞ is derived from definition of νc, Assump.2
and adaptive laws of â, ψ̂. β̇ ∈ L∞ is derived directly from (15). Then χ̇ = ν̇c − β̇ ∈ L∞. These
relations imply Y1(q, q̇, χ, χ̇) ∈ L∞. And finally,

�F(t)� = � δD̂2

�δ�D̂ + ρ(t)
� < � δD̂2

�δ�D̂
� = D̂ ∈ L∞.

Lemma 5.
lim
t→∞

e = 0

(Proof)

From definitions and Lemma 4, we have δ̇ ∈ L∞. Since δ, β ∈ L2, by Barbalatat’s
Lemma(Kristic et al., 1995; Slotine & Li, 1991) we have limt→∞ δ = 0 and limt→∞ β = 0. This
means limt→∞ ν̃ = 0. By Lemma1 limt→∞ eB = 0. Since limt→∞ ν̃ = 0 and

ν̃M1 = −ėM1 − KM1eM1,

limt→∞ eM1 = 0. Then limt→∞ e = 0.
From above 5 Lemmas and next Lemma the proof of Theorem 1 is completed.

Lemma 6.
lim
t→∞

λM = λ∗
M

(Proof)

From (19), Lemma 3 and Lemma 4, δ̇ ∈ L∞. And from definitions, β̇ ∈ L∞, ˙̃ν ∈ L∞. Then
q̈ ∈ L∞, R̈ and ν̈c ∈ L∞. These lead us to Ẏ1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Differentiating both sides of (26), we have ˙̃λM ∈ L∞, that is λ̇M ∈ L∞.Then, by above Lemmas
and definition of βM , β̈M ∈ L∞. This shows that β̇M is uniformly continuous. And βM → 0 is
shown in previous Lemma. Therefore from Barbalat’s Lemma(Kristic et al., 1995; Slotine & Li,
1991) we have limt→∞ β̇M = 0. Since [ ĴM1 ĴM2]

T in (15) is full column rank, we have

lim
t→∞

λ̃M = 0.
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3.3 Control laws for the system only with the dynamic uncertainties
In this section we propose the robust and adaptive position/force control scheme of the mobile
manipulators with only the dynamic uncertainties. Since kinetic parameters are known, the
Jacobian matrix ĴM(q, ψ̂) has no uncertainties. Therefore (15) and R̂ are replaced with

β̇M = −α1βM − α1 [JM1 JM2]
T λ̃M, (27)

R =

⎡
⎣

Ik 0
0 Il

−J−1
M2 JM0 fB ϕ−1 −J−1

M2 JM1

⎤
⎦ .

Then the robust adaptive control scheme proposed in (Narikiyo et al., 2008) can be applied
to the system with dynamic uncertainties. This control scheme is shown in the following
theorem.

Theorem 2. Let the kinematic parameters be known. Applying the following control law and adaptive
laws to the mobile manipulator (4) and (5),

τ = B−1
1 [−Kdδ − F + Y1(q, q̇, χ, χ̇) p̂

−
�

∂V1
∂q

S(qB)

�T
+ JT

M(−λ∗
M + α2λ̃M)]

˙̂p = −ΓYT
1 (q, q̇, χ, χ̇)δ (28)

˙̂D = γ�δ�
then internal signals are bounded and

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0, (29)

where

F(t) =
δD̂2

�δ�D̂ + ρ(t)
.

Substituting (28) into (4), we can obtain the following closed loop system.

M1δ̇ = −(C1 + Kd)δ + Y1(q, q̇, χ, χ̇) p̃ −
�

∂V1
∂q

S(qB)

�T

+(1 + α2) J̄T
Mλ̃M − (F + d1) (30)

˙̂p = −ΓY1(q, q̇, χ, χ̇)δ

˙̂D = γ�δ�
β̇M = −α1βM − α1[JM1 JM2]

Tλ̃M

Proof of the theorem 2 is completed by the following Lemmas as similar to the proof of
Theorem 1.

Lemma 7. For the closed loop system, δ, β ∈ L2,ν̃, Rs̃, p̂, eM1, ėM1, νc, χ, q, q̇ ∈ L∞ and

lim
t→∞

e1 = 0, lim
t→∞

e3 = 0.
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(Proof)

We set V2 as

V2 = V1 +
1
2

δT M1δ +
1 + α2

2α1
βT β +

1
2

p̃TΓ−1 p̃

+
1

2γ
D̃2. (31)

Differentiating V2 along (30), we have

V̇2 =
∂V1
∂q

S(qB)(νc + ν̃) +
∂V1
∂q∗ S(q∗B)ν∗

−δTKdδ − (1 + α2)βT β − δTST(qB)

�
∂V1
∂q

�T

+(1 + α2)λ̃M J̄MRs̃ − δT(F + d1).

Furthermore, by using definitions of V1 = V1(qB, q∗B) and δ,

∂V1
∂q

S(qB)ν̃ =
∂V1
∂q

S(qB)δ

is derived and by using the relation

J̄MR =
�

JM0 fB ϕ−1 JM1 JM2

� ⎡⎣
Ik 0
0 Il

−J−1
M2 JM0 fB ϕ−1 −J−1

M2 JM1

⎤
⎦

=
�
0(m−l)×k 0(m−l)×l

�
,

we have

V̇2 = −K1e2
1 −

K3

K2
sin2 e3 − δTKdδ − (1 + α2)βT β − δT(F + d1). (32)

F(t) and adaptive laws lead the right hand of (32) to

V̇2 < −K1e2
1 −

K3

K2
sin2 e3 − δTKdδ − (1 + α2)βT β + ρ(t). (33)

Integrating both side of this inequality and using definition of ρ(t), we have

V2(t)− V2(0) < −K1

� t

0
e2

1dτ − K3

K2

� t

0
sin2 e3dτ

−
� t

0
δTKdδdτ − (1 + α2)

� t

0
βT βdτ + a < ∞.

(34)

This shows
V2(t) < V2(0) + a < ∞. (35)

Therefore, V2(t) is bounded, that is, e1, e2, δ, β, p̃, D̃ ∈ L∞, and e1, sin e3, δ, β ∈ L2. From
definitions of variables ν̃, we have Rs̃, p̂, D̂ ∈ L∞. From (12) and definitions of ν and νc,
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ν̃M1 = −ėM1 − KM1eM1 ∈ L∞. Then eM1, ėM1 ∈ L∞. Furthermore, from (12) and Assump.3,
we have νc, χ ∈ L∞ and eM1, ėM1 ∈ L∞. From Assump.2, we have qM, q̇M ∈ L∞. Similarly
from ν̃, νc ∈ L∞ and Assump.2, we have q̇B, ėB ∈ L∞. Therefore q, q̇ ∈ L∞. Finally, from
e1, sin e3 ∈ L2 and Barbalat’s Lemma(Slotine & Li, 1991), we have

lim
t→∞

e1 = 0, lim
t→∞

e3 = 0.

Lemma 8. Let M̂1 = M1( p̂). If there exist α1, α2 such that
{

α1 M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m
}

is nonsingular, then λ̃M ∈ L∞.

(Proof)

From (30) we have

(1 + α2) J̄T
Mλ̃M = M1(R ˙̃s + Ṙs̃) + M1 β̇ + (C1 + Kd)δ

−Y1(q, q̇, χ, χ̇) p̃ + (F + d1).

By using the relation

Y1(q, q̇, χ, χ̇) p̃ = Y1(q, q̇, χ, χ̇ + β̇) p̃

− {
M̂1(q)− M1(q)

}
β̇,

above equation is converted into
{

α1 M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m
}

J̄T
Mλ̃M

= M1(R ˙̃s + Ṙs̃) + (C1 + Kd)δ

−Y1(q, q̇, χ, χ̇ + β̇) p̃ − α1 M̂1β + (F + d1). (36)

Multiplying (36) by J̄M M−1
1 from left, we have

J̄M M−1
1

{
α1M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m

}

× J̄T
Mλ̃M = J̄M

[
Ṙs̃ + M−1

1 {(C1 + Kd)δ

−Y1(q, q̇, χ, χ̇ + β̇) p̃ − α1M̂1β + (F + d1)
}]

. (37)

Furthermore, since (12) and Assump.3 lead to ν̇c ∈ L∞ and χ̇ + β̇ = ν̇c, we have

Y1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Therefore, if α1andα2 are selected such that
{

α1 M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m
}

is nonsingular, then λ̃M ∈ L∞.
Since from these Lemmas and Barbalat’s Lemma(Slotine & Li, 1991) we have

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0,

proof of the theorem is completed.
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we have νc, χ ∈ L∞ and eM1, ėM1 ∈ L∞. From Assump.2, we have qM, q̇M ∈ L∞. Similarly
from ν̃, νc ∈ L∞ and Assump.2, we have q̇B, ėB ∈ L∞. Therefore q, q̇ ∈ L∞. Finally, from
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Fig. 3. Mobile manipulator used for simulations and experiments

4. Simulations and experiments

4.1 Mobile manipulator
Schematic model of mobile manipulator used for simulations and experiments is shown in
Fig.3. This mobile manipulator consists of 3 wheel mobile base and 3 link manipulator.
mB, mW and m1, m2, m3 denote masses of base, wheels and manipulator links, respectively.
IB,IW ,Im and I1, I2, I3 denote moment of inertia of base, wheel axis, wheel and manipulator
links, respectively. These dynamic parameters are unknown. Kinematic parameters are
denoted in Fig.3. Numerical values of kinematic parameters are estimated as follows. 2b =
0.316, r = 0.098, d = 0.11, L1 = 0.143, L2 = 0.19, L3 = 0.342, l1 = 0.0715, l2 = 0.095, l3 = 0.171.
On the other hand, dynamic parameters are hardly identified. However, in simulations we
use following estimates; mB = 5.0, mW = 1.25, IB = 0.137, IW = 0.00313, Im = 0.00582, 2b =
0.316, m1 = 1.25, m2 = 0.5, m3 = 0.75, I1 = 0.00259, I2 = 0.00173, I3 = 0.00201. Unknown
parameter vector p1 ∈ R26 is consisting of these parameters and is given by

p1 = [p1
1, p1

2, · · · , p1
26]

T,

where

p1
1 =

r2

4
(mB + m1 + m2 + m3),

p1
2 =

r2d
2b

(mB + m1 + m2 + m3),

p1
3 =

r2

4b2

{
(mB + m1 + m2 + m3)d

2 + IB + 2IW

}
,

p1
4 = mWr2 + Im, p1

5 = (m2l2 + m3L2)g,

p1
6 =

r
2
(m2l2 + m3L2), p1

7 =
1
2
(m2l2

2 + m3L2
2),
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p1
8 =

r2

4b
(m2l2 + m3L2), p1

9 =
rd
2b

(m2l2 + m3L2),

p1
10 =

r
4b

(m2l2
2 + m3L2

2), p1
11 =

r2d
4b2 (m2l2 + m3L2),

p1
12 =

r2

8b2 (m2l2
2 + m3L2

2), p1
13 = m3l3g, p1

14 =
1
2

m3rl3,

p1
15 = m3L2l3, p1

16 =
1
2

m3l2
3, p1

17 =
1
4b

m3r2l3,

p1
18 =

1
2

m3rdl3, p1
19 =

1
2b

m3rl3L2, p1
20 =

1
4b

m3rl2
3,

p1
21 =

1
4b2 m3r2dl3, p1

22 =
1

4b2 m3r2L2l3,

p1
23 =

1
8b2 m3r2l2

3, p1
24 = I1, p1

25 = I2, p1
26 = I3.

Generalized coordinates are also shown in this Figure. Base coordinates (x, y, φ) can be
detected by 3D camera system and others can be detected by encoders. Nonholonomic
constraints imposed on this system are written as follows.

ẋ sin φ − ẏ cos φ = 0

ẋ cos φ + ẏ sin φ + bφ̇ = rθ̇r

ẋ cos φ + ẏ sin φ − bφ̇ = rθ̇r

Coordinates (θr, θl) are related with forward velocity u and angular velocity ω as
�

θ̇r
θ̇l

�
=

� 1
r

b
r

1
r − b

r

� �
u
ω

�
.

Then (θr, θl) can be eliminated from the equations of motion by using (u, ω) as generalized
velocities. Therefore, kinematic equations (8) are given by

⎡
⎢⎢⎣

ẋ
ẏ
φ̇
θ̇1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r
2 cos φ r

2 cos φ 0
r
2 sin φ r

2 sin φ 0
r

2b − r
2b 0

0 0 1

⎤
⎥⎥⎦

⎡
⎣

νr
νl

νM1

⎤
⎦ . (38)

4.2 Simulation for the system with both the kinetic and dynamic uncertainties
Mobile manipulator used for simulation is shown in Fig.3. In this simulation both the
kinematic and dynamic parameters are all unknown.
In this simulation, the mobile base is controlled to track to the desired position/orientation
trajectory on the floor and the end-effector of the manipulator is controlled to be constrained
on the ceiling with desired reaction force. Then, nonholonomic constraints imposed on this
system are same as shown before. On the other hand, holonomic constarint imposed on this
system is

Φ(q) = L1 + L2 sin θ2 + L3 sin(θ2 + θ3)− L = 0.

131Robust Adaptive Position/Force Control of Mobile Manipulators



14 Will-be-set-by-IN-TECH

M

z

L

3

l

2l
2m 3m

2L
M

y

1L

3L3l

2
1m

l

O

2b d
0 , ,P x y

1 1l

passive wheel
driving wheel

2r

x

Fig. 3. Mobile manipulator used for simulations and experiments

4. Simulations and experiments
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4.2 Simulation for the system with both the kinetic and dynamic uncertainties
Mobile manipulator used for simulation is shown in Fig.3. In this simulation both the
kinematic and dynamic parameters are all unknown.
In this simulation, the mobile base is controlled to track to the desired position/orientation
trajectory on the floor and the end-effector of the manipulator is controlled to be constrained
on the ceiling with desired reaction force. Then, nonholonomic constraints imposed on this
system are same as shown before. On the other hand, holonomic constarint imposed on this
system is

Φ(q) = L1 + L2 sin θ2 + L3 sin(θ2 + θ3)− L = 0.

131Robust Adaptive Position/Force Control of Mobile Manipulators



16 Will-be-set-by-IN-TECH

Fig. 4. Trajectory on (x, y) plane

This holonomic constraint represents that the end-effector of manipulator is constrained on
the ceiling.
Desired trajectory of the manipulator is given by

θ∗1 = 1.2(1 − cos 0.25t), θ∗2 =
π

4

and desired force trajectory λ∗
M is 10. Desired position trajectories of the base q∗B = [x∗ y∗ φ∗]T

are generated by the reference robot given by

q̇∗ = fB(q
∗
B)η

∗. (39)

To obtain the mixed straight and curved line, desired velocities η∗ = [u∗ ω∗]T are defined as
follows.

{
u∗ = 0.1

(
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2.5 t
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{
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ω∗ = −u∗ (7.5 ≤ t < 10){
u∗ = 0.1π
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{
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Initial conditions are q̇(0) = 0, q(0) = [0 0 − π/20 0; π/4, π/3]T and p̂1(0) = 0, âi(0) =
0, θ̂i(0) = 0, D̂(0) = 0, ψ̂(0) = [0.1 0.1]T. Disturbance vector is d1(q) = [1 1 0.5 0.5 0.5]T. For
this system design parameters are asigned as Kd = 10 × I4, Γ1 = Γ2 = γ = Λ1 = Λ2 = 1, α1 =
5 × I3, α2 = 25, γ1 = γ2 = 100, K1 = K2 = K3 = KM11 = KM12 = 10 and

ρ(t) =
1

(1 + t
10 )

2
.
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Fig. 5. Position tracking errors

Fig. 6. Force tracking error

Fig.4 shows a desired trajectory and a tracking trajectory. Broken line shows a desired
trajectory generated by the reference robot and solid line shows a tracking trajectory of the
mobile manipulator. In spite of quite a large initial tracking error, tracking error is converged
sufficiently small. Fig.5 and Fig.6 show the trajectory tracking errors of each coordinate and
force tracking error, respectively.

4.3 Experiments
Fig.7 and 8 show a snapshot of experiments and the end-effector of the mobile manipulator
respectively. In order to reduce the adverse effects of friction from the wall rolling ball is
mounted on the top of the end-effector and to detect the reaction force from the wall force
sensor is equipped under the rolling ball. In experiments mobile manipulator is controlled
to move on the straight line parallel to the wall with assigned speed and simultaneously
end-effector is controlled to press against the wall with assigned force. Since the end-effector
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Fig. 7. Snapshot of experiments

is constrained on the wall, following holonomic constraint Φ(q) is imposed.

Φ(q) = y + d sin φ + {L2 cos θ2 + L3 cos(θ2 + θ3)}
× sin(φ + θ1)− L = 0,

where L denotes distance between the wall and P0 which is center of wheel axis. Then θ2 is
also eliminated by using the holonomic constraint.

Force
1.5cm

Force
sensor

2.8cm

Fig. 8. End-effector

4.3.1 Application to the system only with the dynamic uncertainties
In case when kinetic parameters are known, we can apply control laws given in Theorem 2 and
we can use estimates of kinematic parameters shown in Subsection 4.1. Control parameters
are give as follows. Kd = 5, K1 = 5, K2 = 50, K3 = 10, KM1 = [10 10], α1 = 5, α2 = 5, Γ =
0.2, γ = 1. ρ(t) is given as

ρ(t) =
1

(t/Kρ + 1)2 ,

where Kρ is constant and is assigned 500 in this experiments.
Experimental situation is shown in Fig.7. Mobile manipulator is controlled to move on the
straight line with constant speed 5cm/sec. End-effector is controlled to press against the wall
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with constant force 2N. Fig.9 shows position error trajectories of the mobile base. Even though
the mobile base is declined about 20 degrees parallel to the wall initially, position errors are
settled to the neighbourhood of origin. Fig.10 shows force error. Also the force error is settled
similarly to the position error trajectories.

4.3.2 Application to the system with both the kinetic and dynamic uncertainties
In this experiment we assume that not only dynamic parameters but also kinematic
parameters are unknown. Then we apply control laws given in Theorem 1. In these control
laws, unknown parameters are defined as follows.

a1 =
1
r

, a2 =
b
r

,

θp1 =

[ r
2
r

2b

]
, θp2 =

[ r
2
r

2b

]
.
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with constant force 2N. Fig.9 shows position error trajectories of the mobile base. Even though
the mobile base is declined about 20 degrees parallel to the wall initially, position errors are
settled to the neighbourhood of origin. Fig.10 shows force error. Also the force error is settled
similarly to the position error trajectories.

4.3.2 Application to the system with both the kinetic and dynamic uncertainties
In this experiment we assume that not only dynamic parameters but also kinematic
parameters are unknown. Then we apply control laws given in Theorem 1. In these control
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Furthermore, from Property 6

JT
M(q)λM = Z1(q, λM)ψ
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⎡
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λM sin φ λM cos φ λM cos(φ + θ1) cos θ2
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Therefore control scheme given in Theorem 1 is overparameterized scheme. Control
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parameters are as follows.Kd = 5, K1 = 5, K2 = 50, K3 = 10, KM1 = [10 10], α1 = 5, α2 =
5, Γ1 = 0.01, Γ2 = 0.01, γ = 0.01, γ1 = 10, γ2 = 10, Λ1 = 1, Λ2 = 1. ρ(t) is same as that given
in case when kinetic parameters are known.
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As similar in case when kinetic parameters are known, mobile manipulator is controlled to
move on the straight line with constant speed 5cm/sec. End-effector is controlled to presss
against the wall with constant force 2N. Fig.11 shows position error trajectories of the mobile
base. Similarly to the previous experiment, even though the mobile base is declined about 20
degrees to the wall initially, position errors are settled to the neighbourhood of origin. Fig.12
shows force error. Also the force error is settled similarly to the position error trajectories.

5. Concluding remark

In this study robust adaptive hybrid position/force control problems have been investigated.
Proposed control schemes can be applied to the system which has not only dynamic
uncertainties but also both the kinematic and dynamic uncertainties. Furthermore unknown
disturbances have been considered. It is guaranteed theoretically that the tracking position
errors and force errors are asymptotically converged to zero and all internal signals are
bounded. This means that all estimated parameters are also bounded and still remained to
be small. However, some estimated parameters are monotonically increasing, especially D̂.
Since D̂ is updated by

˙̂D = γ‖δ‖,

D̂ is increased in so far as δ �= 0. Furthermore in this experiments sensor noise and
unmodeled nonlinearities hinder the proposed control schemes from achievement of the
perfect regulation δ = 0. These lead us to the fact that the estimate D̂ becomes large with
the passage of time. Therefore, in the practical situation to avoid the numerical difficulties of
D̂ resulted from the long-term control, D̂ should be set constant value when the estimate D̂
exceeds the designated threshold or ‖δ‖ should be set 0 in the computation of the adaptive
laws if ‖δ‖ < �, where � is specified small number.
Usefulness of the proposed control schemes has been demonstrated by experiments.
Especially, since environmental uncertainties can be considered as the kinematic uncertainties,
the proposed control scheme given by Theorem 1 can be applied to the case when
environmental uncertainties arise.
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As similar in case when kinetic parameters are known, mobile manipulator is controlled to
move on the straight line with constant speed 5cm/sec. End-effector is controlled to presss
against the wall with constant force 2N. Fig.11 shows position error trajectories of the mobile
base. Similarly to the previous experiment, even though the mobile base is declined about 20
degrees to the wall initially, position errors are settled to the neighbourhood of origin. Fig.12
shows force error. Also the force error is settled similarly to the position error trajectories.

5. Concluding remark

In this study robust adaptive hybrid position/force control problems have been investigated.
Proposed control schemes can be applied to the system which has not only dynamic
uncertainties but also both the kinematic and dynamic uncertainties. Furthermore unknown
disturbances have been considered. It is guaranteed theoretically that the tracking position
errors and force errors are asymptotically converged to zero and all internal signals are
bounded. This means that all estimated parameters are also bounded and still remained to
be small. However, some estimated parameters are monotonically increasing, especially D̂.
Since D̂ is updated by
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D̂ is increased in so far as δ �= 0. Furthermore in this experiments sensor noise and
unmodeled nonlinearities hinder the proposed control schemes from achievement of the
perfect regulation δ = 0. These lead us to the fact that the estimate D̂ becomes large with
the passage of time. Therefore, in the practical situation to avoid the numerical difficulties of
D̂ resulted from the long-term control, D̂ should be set constant value when the estimate D̂
exceeds the designated threshold or ‖δ‖ should be set 0 in the computation of the adaptive
laws if ‖δ‖ < �, where � is specified small number.
Usefulness of the proposed control schemes has been demonstrated by experiments.
Especially, since environmental uncertainties can be considered as the kinematic uncertainties,
the proposed control scheme given by Theorem 1 can be applied to the case when
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Positioning Control of One Link Arm with
Parametric Uncertainty Using the QFT Method

Takayuki Kuwashima, Jun Imai and Masami Konishi
Okayama University

Japan

1. Introduction

Many manufacturing robots are currently operated in various factories, with the aim of
saving labor and cost. In particular, automatic sorting robots for products in assortment lines
are used to improve productivity. In case of having the robots operate in such ways, the
manipulators are demanded to have positioning performance of high precision to the target
position. But in condition that products of various weights are handled, control performance
such as positioning precision and settling time would be deteriorated if the controller is
designed based on a fixed mathematical model; and they include parameters such as weights
of grabbing product with their robot hands. So the controller needs to have robust control
performance against parameter uncertainty in plant dynamics. It means that a control system
should maintain its performance even if there exists uncertainty. In decades, control problems
under plant uncertainty have been much studied because conventional control theory is based
on the assumption that the dynamics of plant is fully well-known and certain, and that
the mathematical model accurately reflects behavior of controlled plant in the real world.
Nowadays, robust control theory is developed in order to cope with such problems. H∞
control theory, among robust control theories, has been applied to many control systems and
can handle unstructured uncertainty of plant, but it can not directly deal with structured
uncertainty such as parameter variation.
In this chapter, a robust controller design using Quantitative Feedback Theory(QFT)
(Houpis et al., 2006) is presented for one link arm with parametric uncertainty. QFT is a
robust control theory developed based mainly on classical control. QFT can cope with
parametric uncertainty in a plant(Khodabakhshian & Golbon, 2005; Barve & Nataraj, 1998;
Zolotas & Halikias, 1999; Ryoo et al., 2002). In design procedure, the region where the plant
can exists in accordance with parameter variation is illustrated on Nichols chart for each
frequency, which is called template. By using templates, the controller is designed in order to
satisfy performance specification for all possible plants.

2. Model of one link arm

Let us consider the one link arm as shown in Fig.1. It simulates the sorting robot in
manufacturing facility. It consists of a Direct-Drive (DD) motor as an actuator, a rigid arm
and a payload mass at free end of the arm, simulating a carried product. The arm is driven by
the DD motor and rotates in the horizontal plane. The DD motor is actuated by input torque
τ[Nm]. The specification of the motor is as shown in Table. 1 and the arm is made of stainless
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Positioning Control of One Link Arm with
Parametric Uncertainty Using the QFT Method

Takayuki Kuwashima, Jun Imai and Masami Konishi
Okayama University

Japan

1. Introduction

Many manufacturing robots are currently operated in various factories, with the aim of
saving labor and cost. In particular, automatic sorting robots for products in assortment lines
are used to improve productivity. In case of having the robots operate in such ways, the
manipulators are demanded to have positioning performance of high precision to the target
position. But in condition that products of various weights are handled, control performance
such as positioning precision and settling time would be deteriorated if the controller is
designed based on a fixed mathematical model; and they include parameters such as weights
of grabbing product with their robot hands. So the controller needs to have robust control
performance against parameter uncertainty in plant dynamics. It means that a control system
should maintain its performance even if there exists uncertainty. In decades, control problems
under plant uncertainty have been much studied because conventional control theory is based
on the assumption that the dynamics of plant is fully well-known and certain, and that
the mathematical model accurately reflects behavior of controlled plant in the real world.
Nowadays, robust control theory is developed in order to cope with such problems. H∞
control theory, among robust control theories, has been applied to many control systems and
can handle unstructured uncertainty of plant, but it can not directly deal with structured
uncertainty such as parameter variation.
In this chapter, a robust controller design using Quantitative Feedback Theory(QFT)
(Houpis et al., 2006) is presented for one link arm with parametric uncertainty. QFT is a
robust control theory developed based mainly on classical control. QFT can cope with
parametric uncertainty in a plant(Khodabakhshian & Golbon, 2005; Barve & Nataraj, 1998;
Zolotas & Halikias, 1999; Ryoo et al., 2002). In design procedure, the region where the plant
can exists in accordance with parameter variation is illustrated on Nichols chart for each
frequency, which is called template. By using templates, the controller is designed in order to
satisfy performance specification for all possible plants.

2. Model of one link arm

Let us consider the one link arm as shown in Fig.1. It simulates the sorting robot in
manufacturing facility. It consists of a Direct-Drive (DD) motor as an actuator, a rigid arm
and a payload mass at free end of the arm, simulating a carried product. The arm is driven by
the DD motor and rotates in the horizontal plane. The DD motor is actuated by input torque
τ[Nm]. The specification of the motor is as shown in Table. 1 and the arm is made of stainless
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Fig. 1. One link arm

Rated voltage[V] 200
Rated torque[N·m] 25
Rated current[A] 2.7

Rated velocity[min−1] 150
Inertia moment J0[kg·m2] 0.0909

Table 1. Specification of the DD motor

steel with length of L=0.3m, line density ρ=0.79 Kg/m and cross-section 1cm2. Now, let θ(t)
be the angle of rotation from the initial position, an equation of motion describing this system
is

Jθ̈ + Dθ̇ = τ. (1)

The Laplace transform of Eq.(1) gives the transfer function from τ to θ as

P(s) =
1

Js2 + Ds
. (2)

Here, J donates rotating inertia of the whole arm system, and is represented as

J = J0 +
ρL3

3
+ ML3. (3)

D is the friction coefficient around the motor rotary axis. From Eq.(3), it is found that value
of J varies depending on weight of product. This time, we considered 6 samples of products,
and their weights are from 0.5 through 3.0 at 0.5kg intervals. On the other hand, D varies with
time. So observation experiment of D using step response method has been performed for 200
times. The variation ranges for J and D are as

J ∈ (0.098, 0.368) , D ∈ (0.475, 0.814) . (4)

Then, we consider 7 samples of J and 10 samples of D as parameters of P(s), and let P donates
the set of the plant transfer functions, that is

P = {Pl} where l = 1, 2, ..., 70. (5)
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3. Effect of parameter variation

In this section, the effect of plat parameter variation on control performance of the one link
arm system is studied. As described in Section 2, values of J and D vary in a certain range.
We employ average values

J̄ = 0.233kg · m2, D̄ = 0.644N · m · s (6)

for each parameter as the nominal parameter. Let P̄(s) donates the nominal plant. A PD
controller has been designed for P̄(s) in order to satisfy following performance specifications:

Overshoot : Os < 10% (7)

Peak time : tp < 1.0sec. (8)

Designed controller is

C(s) = 3.0 +
0.5

1 + 0.001s
. (9)

Numerical experiment has been done on the control system shown in Fig. 2. The target rotary
angle θr(t) is aimed at 1 rad and computational interval is 0.005s. Simulation result to control
P̄(s) is shown in Fig. 3. On the other hand, J and D can take various values. Control results
for P are shown in Fig. 4, and it is found that the responses of output θ(t) are scattered and
some responses violate performance specifications. From these results, it can be seen that the
controller designed for P̄(s) does not always ensure the desired performance with variation
in parameters of P̄(s).

)(sC

Controller Plant Output

θ
r

θ

Target angle

τ

Input

torque

PP

Fig. 2. Feedback Control System

4. Control system design using QFT

In control systems, it is desirable for controlled output of plant θ(t) to satisfy performance
specification in spite of parameter uncertainty in a plant. In QFT design procedure, designer
can determine the performance specifications that response of θ(t) should lie in. It has certain
width as tolerance in time and frequency domains. Controller is designed on Nichols Chart
(NC) so that all θ(t) lie between these specifications. These specifications are described on NC
as boundary.
Consider feedback control system shown in Fig.5. Control objective is to control angular
position of arm. We design C(s) and F(s) in order to satisfy performance specifications.
QFT design procedure is as follows:
STEP1. Determine performance specification in time and frequency domains.
STEP2. Gain the area where varying plant can exist on NC, called template.
STEP3. Construct performance specification on NC as bounds.
STEP4. Form the open loop transfer function C(s)P(s) to satisfy bounds.
STEP5. Design the filter F(s).
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Fig. 4. Simulation result for P(s)

4.1 Performance specification
Here, performance specifications in time domain is determined as

Overshoot : Os = 0 ∼ 10%, (10)

Settling time : ts < 2.0sec. (11)
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Fig. 6. Time domain performance specification

In QFT, more concrete specification is constructed so as to have certain width by determining
upper and lower bounds according to Eqs.(10) and (11). Transfer function TRU and TRL that
represents upper and lower bounds respectively, is designed as follows:

TRU (s) =
0.5(s + 30)

s2 + 4.6148s + 15.2
, (12)

TRL(s) =
52.8

(s + 3.3)(s + 4)2 . (13)

The time and frequency responses of these functions are shown in Figs.6 and 7.

4.2 Template
One of the features of QFT is to describe the plant as a contour. On NC, a plant is expressed
as a point at certain frequency. If parameters of the plant model vary, the plant is expressed
on NC as contour for each frequency. It is referred to as a template. Therefore the template
represents the region where the plant can exist. So the designer can recognize uncertainty in
plant visually from templates. Fig.8 shows templates of P(s) with variations of J and D at
each frequency.
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4.3 Bound on NC
Let us determine performance specification on NC. As one of the features of NC, we can
obtain a peak gain of a closed loop system by plotting gain-phase curve of open loop transfer
function on NC. This peak gain is given by constant M curve to which gain-phase curve
is tangent, called M-contour. Therefore, if peak gain Mp(dB) of performance specification
in frequency domain is given, M-contour representing Mp can be obtained on NC, which
indicate performance specification about the peak gain. So this specification can be satisfied
unless gain-phase curve of open loop transfer function C(s)P(s) does not enter this M-contour.
However, gain-phase curve of C(s)P(s) is represented as certain region if plant model P(s)
has parametric uncertainty, as stated in former section. So consider that we take down
lower half of M-contour by V(dB), which is maximum variation of templates in bandwidth
frequency, to make gain margin. The region constructed by M-contour and gain margin is
called U-contour. If gain-phase curve of C(s)P(s) does not enter U-contour, it means that
performance specification about the peak gain is satisfied for all varying plant P .
This time, peak gain of frequency domain performance specification, Mp, and maximum
variation of templates, V(dB) take the values

Mp = 1.05dB, V = 11.49dB. (14)

Then, U-contour has form as shown in Fig.9.

4.4 Loop shaping
From upper specification in Eq.(12), the main object of controller design is written as

∣∣∣∣
CP

1 + CP

∣∣∣∣ < Mp = 1.05dB. (15)
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Mp is a peak magnitude of closed loop transfer function. This specification is described on NC
as bound, called as U-contour (See Fig.9). As stated in Sec.4.3, this bound means the region
that the gain-phase curve of open loop transfer function C(s)P(s) must not enter to satisfy
Eq.(15) for all possible plant. C(s) is designed by trial and error in order not to penetrate
U-contour. This time, C(s) is consist of integrator and phase-delay compensator. Then, C(s)
has been decided as

C(s) = 5.2 · 103 (s + 1)(s + 3.2)
s(s + 285)

. (16)

Fig.10 shows templates of C(s)P(s) and M-contour representing Mp. From this figure, it is
found that all templates do not enter the M-contour. It means that the system including P(s)
satisfies Eq.(15).

4.5 Design of F(s)
In the final step, filter F(s) is designed so that transfer function from input to output

F(s)C(s)P(s)
1 + C(s)P(s)

lies between performance specifications TRU and TRL . Then, F(s) was decided as

F(s) =
(s/25 + 1)2

(s/3 + 1)(s/4 + 1)
. (17)
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5. Simulation

In this section, based on numerical simulation, control performance of QFT control system
designed in former section are compared with conventional PID control system. We consider
70 samples of set of J and D in plant dynamics. As a conventional controller to be compared,
the following PID controller

CP(s) = 1.3 +
0.001

s
+

0.8
1 + 0.001s

(18)

is adopted. The target rotary angle θr(t) is 1 rad and computational time step is 0.005s.
The simulation results for two control system are shown in Figs.11 and 12. We found that
scattering of the output θ(t) due to the parametric uncertainty are suppressed, and all θ(t) lies
between upper and lower performance specifications, while the PID controller can not cope
with parametric uncertainty. Now let us consider settling time ts[s] and overshoot Os[rad] as
performance indices and use standard deviation to assess the scattering of these indices. The
results are shown in Table 2. From this table, it is found that standard deviation of ts[s] is
reduced to 1/80 and that of Os[s] is decreased to 1/7, compared with PID.
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PID QFT
ts[s] 64.0 × 10−2 0.875 × 10−2

Os[rad] 1.95 × 10−3 0.278 × 10−3

Table 2. Standard deviation of ts and Os
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6. Conclusion

We presented a controller design for a one link arm with parametric uncertainty. In condition
that there is uncertainty in plant’s dynamics, the desirable control performance may not be
obtained because the controller is designed based on only nominal model of plant. In this
chapter, robust controller based on QFT is designed for plant with parametric uncertainty.
By numerical experiments, systems designed by using QFT and conventional method are
compared. It is found that the control system designed by QFT shows robust performance
and can suppress the undesirable output due to parametric uncertainty.
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1. Introduction

Servo applications (regulation and tracking) are an important class of tasks for robots.
Robustness in a servo controller must be guaranteed when the robot manipulator operates
in an uncertain environment to ensure the stability and performance in the presence of
uncertain robot manipulator dynamics, objects to be manipulated by the robot, and obstacles
to be avoid. Also, robots must have sensing capability to adapt to the new tasks without
reprogramming. Servoing based on visual measurements, also referred to as visual servoing
(Hutchinson et al. (1996)), provided an alternative solution to these applications. Commonly
used schemes include position-based and image-based visual servoing, being the main
difference how to use the visual measurements: if the visual measurements are used to infer
the end-effector pose to implement a cartesian control, we get a position-based visual servoing
(PBVS) (see, e.g., Fujita et al. (2007)); if the visual measurements are used directly to calculate
the control torque to the manipulator, we get an image-based visual servoing (IBVS) (see, e.g.,
Espiau et al. (1992) and Kelly (1996)). It is generally recognized that IBVS has the advantages of
having less on-line computation burden, being more accurate, while the PBVS is more flexible
for its implementation.
Dynamic visual servoing was proposed by Weiss et al. (1987). A key point in this approach is
to view the visual measurements as the output of a dynamic system. By adopting this point
of view, Dickmanns & Graefe (1988) set up a dynamic model of curvature evolution of the
road in a driving application. However, stability and robustness issues were not addressed .
To address these important questions and to investigate further the applications of IBVS for
general scenarios, Hashimoto et al. (1996) and Ma et al. (1999) studied the image dynamics, i.e.,
how the image feature of an object moving in a 3-D space evolutes in the 2-D image plane. The
visual system in a robotics application is linearized in Hashimoto et al. (1996) at the desired
point yielding a linear-time-invariant (LTI) multi-input-multi-output (MIMO) model. Ma et al.
(1999) proposed a curve dynamic model in vision guided navigation application and based
on it designed a linearizing control law that controls the curvature dynamics in the image
plane using only perspective projection thanks to a state-observer. By combining passivity
of the visual feedback system and the manipulator dynamics, Fujita et al. (2007) addressed
the PBVS to track a 3-D object in a camera-in-hand configuration. However, the resulting
control law was more complicated than that obtained with the transposed jacobian approach
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for its implementation.
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to view the visual measurements as the output of a dynamic system. By adopting this point
of view, Dickmanns & Graefe (1988) set up a dynamic model of curvature evolution of the
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To address these important questions and to investigate further the applications of IBVS for
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how the image feature of an object moving in a 3-D space evolutes in the 2-D image plane. The
visual system in a robotics application is linearized in Hashimoto et al. (1996) at the desired
point yielding a linear-time-invariant (LTI) multi-input-multi-output (MIMO) model. Ma et al.
(1999) proposed a curve dynamic model in vision guided navigation application and based
on it designed a linearizing control law that controls the curvature dynamics in the image
plane using only perspective projection thanks to a state-observer. By combining passivity
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the PBVS to track a 3-D object in a camera-in-hand configuration. However, the resulting
control law was more complicated than that obtained with the transposed jacobian approach
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(Kelly et al. (2000)) and had to be restricted to consider a steady object in order to establish the
stability of the control system.
Motivated by these works, we consider in this chapter the servo problem in a robot
manipulator based only on the visual measurements by following the dynamic visual
servoing approach to design an IBVS with a fixed camera configuration. To model the
whole visual servoing system, we "lift" the manipulator dynamics up to the image space,
reconstructed based on the perspective projection of the robot space in the image plane, and
model it with the lagrangian formalism by formulating the kinetic and potential energy in the
image space. The resulting motion equation has the same structure as that obtained in the
joint space using the lagrangian modeling (Spong et al. (2006)), and therefore inheriting the
passivity property. Robust control schemes based on the passivity of the motion equation
are then designed for visual servoing. The main features of this robust control law are
(1) No image derivative is required as it uses only the image position for feedback, (2) no
camera parameters and robot inertia parameters are needed for the implementation, making
it robust to the parameter uncertainties in both the camera and robot manipulator, (3) no other
measurements as from optical encoders are needed but the visual measurements from a single
fixed camera.
The rest of this chapter is organized as follows: Section 2 presents the robot image dynamics
obtained by gathering together manipulator dynamics, manipulator kinematics and the
camera model into a single dynamic system, and its experimental validation in a laboratory
set. Section 3 gives the controller design and the main results. Experiments results are shown
in Section 4 to illustrate the performance of the proposed IBVS. Concluding remarks and
future works are given in Section 5.

2. Robot image dynamics

2.1 Robot joint dynamics
Consider a 3-DOF articulated (RRR) manipulator moving in a (robot) space, whose motion
equation in the joint space is

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (1)

where τ(t) ∈ �3 is the control torque and q(t) ∈ �3, the joint position of the manipulator.
M(q) ∈ �3×3 represents the inertia matrix, and C(q, q̇)q̇ ∈ �3 and g(q) ∈ �3 are
Coriolis/centrifugal and gravity torques, respectively. This equation can be obtained by
modeling the manipulator in the joint space using the lagragian formalism (Spong et al. (2006))
with kinetic energy K(q, q̇) = 1

2 q̇T M(q)q̇ and potential energy P(q). The motion equation (1)
has the following properties:
Property 1 : The inertia matrix M(q) is positive definite, ı.e.,

m ≤ qT M(q)q ≤ m, ∀q ∈ �3, q �= 0, 0 < m ≤ m. (2)

Property 2: The matrix Ṁ(q)− 2C(q, q̇) is skew-symmetric, ı.e.,

xT [Ṁ(q)− 2C(q, q̇)]x = 0, ∀x ∈ �3. (3)
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Property 3: The dynamics of (1) is linearly parameterizable:

M(q)q̈ + C(q, q̇)q̇ + g(q) = Y(q, q̇, q̈)a = τ, (4)

where the regressor Y(q, q̇, q̈) ∈ �3×na , contains known functions of q, q̇, q̈, and a ∈ �na is the
vector of manipulator parameters, na the number of parameters.
Property 4: The gravity torque satisfies

� ∂g(q)
∂q

�≤ cg, for some cg > 0 and ∀q ∈ �3. (5)

Passivity of the mapping τ → q̇ in the the manipulator dynamics (1) follows from Property 2
by considering the stored energy V(q, q̇) = 1

2 q̇T M(q)q̇+ P(q) and its time derivatives along (1)
V̇ = τTq̇ (Ortega & Spong (1989)). Based on the passivity, simple and robust control laws have
been proposed (see, e.g., Slotine & Li (1987); Takegaki & Arimoto (1981)) for robot control.

2.2 Robot forward kinematics
The forward kinematics f : �3 → �3 gives the cartesian position X of a feature point in the
robot coordinate frame in terms of the joint position q

X = f (q), (6)

and the velocity kinematics J(q) = ∂ f (q)/∂q ∈ �3×3 relates the feature point velocity Ẋ with
the joint velocity q̇

Ẋ = J(q)q̇. (7)

2.3 Camera model
The pin-hole model of a CCD camera (Hutchinson et al. (1996)) is considered. In this model, a
point in the robot space seen in the camera frame X = [X1 X2 X3] (meter) is transformed into
the image position x ∈ �2 (pixel) in the image plane by perspective projection (Fig. 1)

x = HR(θ)[X − X0], (8)

where R(θ) ∈ SO(3) is the rotation matrix generated by clockwise rotating the camera about
its optical axis by θ radians,

R(θ) =

⎡
⎣

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤
⎦ ,

H is the magnification matrix,

H =
λ

λ − X3

�
α1 0 0
0 α2 0

�
,

with λ the focus length, X3 the depth (the distance from the lens to the image plane), α1 and
α2 (pixels/m) the scale factors of length units in the image plane, X0 the intersection point of
the optical axis at the robot plane.
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M(q) ∈ �3×3 represents the inertia matrix, and C(q, q̇)q̇ ∈ �3 and g(q) ∈ �3 are
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2 q̇T M(q)q̇ and potential energy P(q). The motion equation (1)
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Property 1 : The inertia matrix M(q) is positive definite, ı.e.,
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Fig. 1. The robot plane (Y-Z) is the plane perpendicular to the camera optical axis and
containing the origin of the robot coordinate frame. The image-plane (y-z) is its perspective
projection.

2.4 Robot image dynamics
By robot image dynamics we refer to the dynamics of the robot image evolving in the image
space (defined below) when the robot moves in the robot space.
Let the robot plane (Y-Z) be the plane perpendicular to the camera optical axis and containing
the origin of the robot coordinate frame. The robot manipulator moves in the robot space
defined by the robot coordinate frame (X-Y-Z) (Fig. 1). The image-plane (y-z) is the perspective
projection of the robot plane (Y-Z), and the image space (x-y-z) is the space reconstructed
based on the perspective projection of the robot space in the image plane (y-z). Common
methods used for this reconstruction include range identification (Chen & Kano (2002); Dixon
et al. (2003); Karagiannis & Astolfi (2005)), utilization of multiple feature points attached to
the end effector as well as to the target (Kelly et al. (2006); Yuan (1989)). In this work, we use
the feature points attached to the links to reconstruct the joint angles of the robot image in the
image space needed for the controller implementation.
The robot image dynamics we consider in this chapter is obtained by lumping together
manipulator dynamics, forward kinematics and the camera transformation into a single
dynamics (Fig. 2). Consider the kinetic energy Kφ(φ, φ̇) = 1

2 φ̇T Mφ(φ)φ̇ and potential energy
Pφ(φ) in the image space, where, similar to modeling the manipulator in the joint space, φ

is the joint image position (rad)1, Mφ(φ) the inertia matrix seen in the image space. The
motion equation as seen in the image space is obtained by modeling the visual servo system
(manipulator and camera) with lagragian formalism:

Mφ(φ)φ̈ + Cφ(φ, φ̇)φ̇ + gφ(φ) = τ. (9)

As in the joint-space model, this motion equation has the following properties:
Property 1’: The inertia matrix Mφ(φ) is positive definite, ı.e.,

mφ ≤ φT Mφ(φ)φ ≤ mφ, ∀φ ∈ �3, φ �= 0, 0 < mφ ≤ mφ. (10)

1 Joint image position is meant here the joint position in the image space.
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Fig. 2. Graphic representation of the robot image dynamics (9).

Property 2’: The matrix Ṁφ(φ)− 2Cφ(φ, φ̇) is skew-symmetric, ı.e.,

xT [Ṁφ(φ)− 2Cφ(φ, φ̇)]x = 0, ∀x ∈ �3. (11)

Property 3’: The dynamics of (9) is linearly parameterizable:

Mφ(φ)φ̈ + Cφ(φ, φ̇)φ̇ + gφ(φ) = Yφ(φ, φ̇, φ̈)aφ = τ, (12)

For this 3-DOF articulated robot manipulator, a parametrization with aφ, Yφ(φ, φ̇, φ̈) ∈ �15

may be obtained (Spong et al. (2006)).
Property 4’: The gravity torque satisfies

� ∂gφ(φ)

∂φ
�≤ cgφ , for some cgφ > 0 and ∀φ ∈ �3. (13)

Remark 1: As a consequence of this paradigm, the parameters of the manipulator dynamics,
forward kinematics and camera transformation are all lumped together into the parameters
of the model (9). The passivity property followed from Property 2’ will simplify significantly
the control design based on visual measurements.
Remark 2: The aforementioned robot plane (Y-Z) and the image-plane (y-z) in Fig.1 are
uniquely defined once the camera position and orientation are set, and are parallel from
perspective projection (8). In the experiments, X0 will be defined as the anti-image of the
principal point in the image plane determined using the method in Grammatikopoulos et al.
(2004).
Before moving to consider the control design, we validate our point of view through
experiments. The validation was carried out by first identifying the robot image dynamics
using an off-line least-square algorithm, and then by comparing the output of the robot image
system in Fig. 2 with that of the model (9).
The experiment platform is shown in Fig 3. It consists of a three-link manipulator (made
in the laboratory) moving in the (robot) space, and a fixed IEEE 1394 digital camera from
Basler (model A601 FC). The camera has focus length λ = 0.9091 (cm), and scaling factors
α1 = α2 = 4.6 (pixels/cm). The rotation angle of the camera about its optical axis was set to
θ = 0 (rad). The image plane has a resolution of (horizontal x vertical) 320 × 240 pixels.
Before the experiments, the feature point corresponding to the robot base point (origin of
the robot coordinate frame) and length of the link 1, link 2 and link 3 are determined in the
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Fig. 3. Experiment platform.

image plane. Using this information, the joint image position (φ) is obtained by measuring
two feature points at the second and the third joint (end-effector).
To attenuate the noise in the image measurements image thresholding was first applied to the
images of the feature points, then the centroid of each feature point image was calculated,
which was used as the image positions of the feature points to calculate the joint image
position.
The applied voltage, which is proportional to the applied torque, is fed through a D/A
converter (AI-1608AY card from CONTEC) to the power amplification unit. A PC Pentium D
running at 3 GHz was used in the experiments. The sampling time was set to 50 (frames/sec).
The joint image position together with the applied voltage is shown in Fig. 4.
First the robot image dynamics (9) is identified using an off-line least square algorithm and
the parametrization (12). In order to avoid from using the image acceleration, a first order
low-pass filter is applied to both sides of the parametrization (12) to get a filtered version of
the parametrization (12):

Yf (φ, φ̇)aφ = τf , (14)

where
τf =

β

s + β
τ, Yf =

β

s + β
Yφ

are the filtered regressor and the filtered input torque, respectively, and β/(s + β), with β =
0.9 and s the Laplace transform variable, the filter transfer function. In order to further avoid
from using the derivatives of the joint image position, φ̇ is substituted by its approximate
derivative φ̇ = s

1+� f s φ, with � f = 0.001. 900 samples were used. The estimated parameters
are shown in Table 1.
After the parameter vector of the robot image dynamics (12) is obtained, this dynamical model
is validated by comparing the output of the robot image dynamics (Fig. 2) and the output of
the identified robot image dynamics (9). The applied torques and the measured joint image
positions and the outputs of the identified robot image dynamics are shown in Fig. 5.
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Parameter aφ1 aφ2 aφ3 aφ4 aφ5 aφ6 aφ7 aφ8

Value 0.0036 0.0537 0.0389 0.0021 0.0914 0.0596 0.0225 0.0402
Parameter aφ9 aφ10 aφ11 aφ12 aφ13 aφ14 aφ15

Value 0.0758 0.0463 0.0073 0.0052 0.0641 0.0598 0.0047

Table 1. Estimated parameters of the robot image dynamics (12).

Fig. 4. Identification of the robot image dynamics: Left column shows the torque inputs, right
column shows the joint image position for Link 1 (up), 2 (middle) and 3 (down).

3. Controller design for IBVS

In this section, motivated from joint space control in Escobar et al. (1999); Kelly (1999); Tomei
(1991) we design an output feedback control law with bounded control action and desired
gravity compensation to regulate the joint image position. The results are summarized in the
following.
Theorem 1: Consider the robot image dynamics (9) and the control law

τ = −ψ1(φ̃)− ψ2(z) + gφ(φd), (15)

where

gφ(φd) = [0 aφ4g cos(φd2) + aφ5g cos(φd2 + φd3)

aφ5g cos(φd2 + φd3)],

is the desired gravity compensation term, φ̃ = φ − φd the image position error, φd ∈ �3 the
desired joint image position, ψT

i (x) = [ψi1(x1) ψi2(x2) ψi3(x3)] : �3 → �3, i = 1, 2, are
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Fig. 5. Validation of the robot image dynamics: Left column shows the torque inputs, right
column shows the joint image position measured from the robot image dynamics (Fig. 2)
(solid line) and the joint image position from the model (9) (dashed line) for Link 1 (up), 2
(middle) and 3 (down).

continuous functions satisfying

xψij(x) > 0, ∀x ∈ �, ψij(0) = 0, i = 1, 2, j = 1, 2, 3, (16)

∂ψ1
∂x

= diag[
∂ψ11
∂x1

∂ψ12
∂x2

∂ψ13
∂x3

] ≥ cgφ I, (17)

where cgφ is given in Property 4’ and

ẇ = −α(w + φ), α > 0,

z = w + φ. (18)

Then all the signals in the control loop are bounded and φ̃ → 0 asymptotically.

Proof. Substituting the control law (15) into the robot image dynamics (9) gets the closed-loop
equation

Mφ(φ)φ̈ + Cφ(φ, φ̇)φ̇ + gφ(φ) = −ψ1(φ̃)− ψ2(z) + gφ(φd). (19)

First, we show that (φ̃, φ̇, z) has a unique equilibrium at the origin, and then using the
Lyapunov analysis to show this equilibrium is asymptotically stable.
In fact, at the equilibria we have

ψ1(φ̃) = gφ(φd)− gφ(φ). (20)
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On the other hand, it follows from Property 4’ and (17) that

� gφ(φd)− gφ(φ) �≤ cgφ � φd − φ �≤� ψ1(φ̃) � .

The above two expressions imply that φ = φd.
Rewriting the observer dynamics (18) as

ż = −αz + φ̇. (21)

Therefore, (φ̃, φ̇, z) = (0, 0, 0) is the unique equilibrium of the closed-loop system.
Consider the following potential energy-like function for the closed-loop system

P1 =
∫ φ

0

[
ψ1(φ̃)− gφ(φd) + gφ(φ)

]
dφ

= φTψ1(φ̃)− φT gφ(φd) + Pφ(φ). (22)

Then φ = φd is the global minimum of P1(φ) since ∂P1
∂φ = 0 ⇒ φ = φd and ∂2P1

∂φ2 =
∂ψ1(φ̃)

∂φ +

∂gφ(φ)
∂φ > 0.

Consider the Lyapunov function candidate

V(φ̃, φ̇, z) =
1
2

φ̇T Mφ(φ)φ̇ + P1(φ)− P1(φd) +
∫ z

0
ψ2(z)dz. (23)

Its time derivative along the error dynamics (19) is

V̇ = −φ̇Tψ2(z) + żTψ2(z)

= −ψT
2 (z)[−ż + φ̇]

= −αzTψ2(z) ≤ 0. (24)

In order to conclude the asymptotic stability of the equilibrium, we invoke LaSalle theorem
(Khalil (2002)) by considering the invariant set

Ω = {(φ̃ φ̇ z) ∈ �3 ×�3 ×�3 : V̇(φ̃, φ̇, z) = 0}, (25)

which contains only the equilibrium. Therefore the asymptotic stability of the equilibrium
follows.

Remark 3: Since the control law is developed based on the robot image dynamics, no
other measurements than the joint image positions are need for its implementation. This
is important because taking time derivative of image measurements are in general not
acceptable given noisy image measurements. Also, notice that the only parameters in the
control law are the gravity term of the robot image dynamics, which may be also tuned on-line
as in Tomei (1991).
Remark 4: Due to the occlusion effect in a single fixed camera configuration, it is impossible
to determine uniquely the joint image positions for certain poses of the manipulator by the
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Fig. 5. Validation of the robot image dynamics: Left column shows the torque inputs, right
column shows the joint image position measured from the robot image dynamics (Fig. 2)
(solid line) and the joint image position from the model (9) (dashed line) for Link 1 (up), 2
(middle) and 3 (down).
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geometrical method used here. For practical purposes, the given desired image joint position
φd1 must be restricted away ±20 (deg) away from the camera optical axis.
Remark 5: Typically, ψT

i (x) = [ψi1(x1) ψi2(x2) ψi3(x3)] is taken a sigmoid function, e.g.,
2k1
π atan( x

k2
) with k1, k2 > 0 determining the magnitude and shape of the sigmoid function, to

avoid the control signal from saturating (Escobar et al. (1999)).

4. Experiments results

In order to evaluate the robustness of the proposed control in the presence of quantization
errors in camera transformation, lens distortion, possible misalignment of the camera rotation
angle about its optical axis, laboratory experiments were carried out.
The control law (15) with gravity compensation term gφ(φd) was applied to the robot the
experiment platform in Fig.3. The sigmoid function as in Remark 5 was used with k1 =
7.65, 2.25, 1.75 and k2 = 4.35, 1.98, 1.15 for the joint 1, 2 3, respectively, and α = 5 in (18).
Fig. 6 depicts the regulation of the joint image position to its desired position, which
corresponds to moving the end-effector from an initial position corresponding to φ(0) =
[10 -100 -110] (deg) to a desired position φd(0) = [−30 − 30 − 30] (deg) at t = 0 (sec.)
and φd(5) = [30 40 40] (deg) at t = 5 (sec.). Although not established in theory here, the
results of tracking a desired image trajectory, which corresponds to drawing a figure in the
image space shown in Fig. 7, with the proposed control law are shown in Fig. 8 and Fig. 9.

Fig. 6. Experiments of the visual servoing: regulation of the joint image position for joint 1
(up), 2 (middle) and 3 (down). Left column shows the torque inputs, right column shows the
joint image position and the desired position.
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Fig. 7. Experiments of the visual servoing: tracking of the joint image trajectory in the image
space.

Fig. 8. Experiments of the visual servoing: control torques for joint 1 (up), 2 (middle) and 3
(down).
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Fig. 7. Experiments of the visual servoing: tracking of the joint image trajectory in the image
space.

Fig. 8. Experiments of the visual servoing: control torques for joint 1 (up), 2 (middle) and 3
(down).
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Fig. 9. Experiments of the visual servoing: the joint image trajectory and the desired
trajectory for joint 1 (up), 2 (middle) and 3 (down).
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5. Conclusions

This chapter has presented an IBVS based on passivity of the robot image dynamics
obtained by lumping together the manipulator dynamics, forward kinematics and perspective
projection the camera. Using the passivity, controller design was considerably simplified.
Regulation and tracking performances were illustrated through laboratory experiments.
Although the general basic idea presented in this chapter is applicable to n-DOF scenarios,
much research works related to more precise state observation of the robot image dynamics in
the image space using its perspective projection, and analysis of the robustness issues remain
to be done. Further works in these directions are undergoing.
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Fig. 9. Experiments of the visual servoing: the joint image trajectory and the desired
trajectory for joint 1 (up), 2 (middle) and 3 (down).
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1. Introduction 
Some robust control methods have been developed in the past in order to increase tracking 
performance in the presence of parametric uncertainties. In the presence of parametric 
uncertainty, unmodelled dynamics and other sources of uncertainties, robust control laws 
are used. Corless-Leitmann [1] approach is a popular approach used for designing robust 
controllers for robot manipulators. In early application of Corless-Leitmann [1] approach to 
robot manipulators [2, 3], it is difficult to compute uncertainty bound precisely. Because, 
uncertainty bound on parameters depends on the inertia parameters, the reference trajectory 
and manipulator state vector. Spong [4] proposed a new robust controller for robot 
manipulators using the Lyapunov theory that guaranties stability of uncertain systems. In 
this approach, Leithmann [5] or Corless-Leithman [1] approach is used for designing the 
robust controller. One of the advantage of Spong’s approach [4] is that uncertainty on 
parameter is needed to derive robust controller and uncertainty bound parameters depends 
only on the inertia parameters of the robots. Yaz [6] proposed a robust control law based on 
Spong’s study [4] and global exponential stability of uncertain system is guaranteed. 
However, disturbance and unmodelled dynamics are not considered in algorithm of [4, 6]. 
Danesh at al [7] develop Spong’s approach [4] in such a manner that control scheme is made 
robust not only to uncertain inertia parameters but also to robust unmodelled dynamics and 
disturbances. Koo and Kim [8] introduce adaptive scheme of uncertainty bound on 
parameters for robust control of robot manipulators. In [8], upper uncertainty bound is not 
known as would be in robust controller [4] and uncertainty bound is estimated with 
estimation law in order to control the uncertain system. A new robust control approach is 
proposed by Liu and Goldenerg [9] for robot manipulators based on a decomposition of 
model uncertainty. Parameterized uncertainty is distinguished from unparameterized 
uncertainty and a compensator is designed for parameterized and unparameterized 
uncertainty. A decomposition-based control design framework for mechanical systems with 
model uncertainties is proposed by Liu [10]. 
In order to increases tracking performance of uncertain systems, design of uncertainty 
bound estimation functions are considered. For this purpose, some uncertainty bound 
estimation functions are developed [11-15] based on a Lyapunov function, thus, stability of 
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and manipulator state vector. Spong [4] proposed a new robust controller for robot 
manipulators using the Lyapunov theory that guaranties stability of uncertain systems. In 
this approach, Leithmann [5] or Corless-Leithman [1] approach is used for designing the 
robust controller. One of the advantage of Spong’s approach [4] is that uncertainty on 
parameter is needed to derive robust controller and uncertainty bound parameters depends 
only on the inertia parameters of the robots. Yaz [6] proposed a robust control law based on 
Spong’s study [4] and global exponential stability of uncertain system is guaranteed. 
However, disturbance and unmodelled dynamics are not considered in algorithm of [4, 6]. 
Danesh at al [7] develop Spong’s approach [4] in such a manner that control scheme is made 
robust not only to uncertain inertia parameters but also to robust unmodelled dynamics and 
disturbances. Koo and Kim [8] introduce adaptive scheme of uncertainty bound on 
parameters for robust control of robot manipulators. In [8], upper uncertainty bound is not 
known as would be in robust controller [4] and uncertainty bound is estimated with 
estimation law in order to control the uncertain system. A new robust control approach is 
proposed by Liu and Goldenerg [9] for robot manipulators based on a decomposition of 
model uncertainty. Parameterized uncertainty is distinguished from unparameterized 
uncertainty and a compensator is designed for parameterized and unparameterized 
uncertainty. A decomposition-based control design framework for mechanical systems with 
model uncertainties is proposed by Liu [10]. 
In order to increases tracking performance of uncertain systems, design of uncertainty 
bound estimation functions are considered. For this purpose, some uncertainty bound 
estimation functions are developed [11-15] based on a Lyapunov function, thus, stability of 
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uncertain system is guaranteed. In early derivation of uncertainty bound estimation laws 
[11-13], only a single derivation is possible because selection of variable function is difficult 
for other derivation and first order differential equation is used. Only exponential function 
and logarithmic functions are used for derivations because it is diffucut to define variable 
functions for other derivations.  
In previous studies, some robust control laws are introduced, however, a method for 
derivation of adaptive bound estimation law for robust controllers is not proposed. 
Recently, a new approach for derivation of bound estimation laws for robust control of 
robot manipulators is proposed [14, 15]. A general equation is developed based on the 
Lyapunov theory in order to derive adaptive bound estimation laws and stability of 
uncertain system is guaranteed. In the approach [15], some functions depending on robot 
kinematics and control parameters and proper integration techniques can be used for 
derivation of new bound estimation laws. Then, new bound estimation laws are derived and 
this derivations also show how the general rule can be used for derivation of different 
bound estimation laws. After that, four new robust controllers are designed based on each 
bound estimation law. Lyapunov theory based on Corless-Leitmann [1] approach is used 
and uniform boundedness error convergence is achieved. This study also shows that bound 
estimation laws for robust control input do not only include these derivations but also 
allows derivation of other bound estimation laws for robust controllers  provided that 
appropriate function and proper integration techniques are chosen. In this work, based on 
the study [15], some appropriate functions are developed and proper integration techniques 
are chosen. As results, new uncertainty bound estimation laws for robust control input are 
developed and new robust controllers are proposed. In derivations, some functions and 
integration techniques are used. 

2. A method for derivation of bound estimation laws         
In the absence of friction or other disturbances, the dynamic model of an n-link manipulator 
can be written as [16] 

     M(q)q C(q,q)q G(q) τ        (1) 

where q denotes generalised coordinates, τ  is the n-dimensional vector of applied torques 
(or forces), M(q)  is a positive definite mass matrix, C(q,q)q   is the n-dimensional vector of 
centripetal and Coriolis terms and G(q) is the n-dimensional vector of gravitational terms. 
Equation (1) can also be expressed in the following form. 

        Y(q,q,q )π            (2) 

where π is a p-dimensional vector of robot inertia parameters and Y is an nxp matrix which 
is a function of joint position, velocity and acceleration. For any specific trajectory, the 
desired position, velocity and acceleration vectors are qd, dq and dq . The measured actual 
position and velocity errors  are dq q q  , and dq q q    . Using the above information, the 
corrected desired velocity and acceleration vectors for nonlinearities and decoupling effects 
are proposed as: 

 r dq q q     ; q qr d q        (3) 
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where  is a positive definite matrix. Then the following nominal control law is considered:                            

       0 0 r 0 r 0

r r 0

τ M (q)q  C (q,q)q G (q) Kσ
     Y(q,q,q ,q )π Kσ

   
 

  
  

  (4) 

where π0Rp represents the fixed parameters in dynamic model and Kσ is the vector of PD 
action. The  corrected velocity error  is given as 

 σ q Λqrq q        (5) 

The control input τ is defined in terms of the nominal control vector 0τ  as 

 0 r r r r 0τ τ Y(q,q,q ,q )u(t) Y(q,q,q ,q )(π u(t))-Kσ           (6) 

Where u(t) is the additional robust control input. It is assumed that there exists an unknown 
bound on parametric uncertainty such that 

 0π π ρ       (7) 

Since ρR+p is assumed to be unknown, ρ should be estimated with the estimation law to 
control the system properly. ρ(t)ˆ shows the estimate of  ρ and  ρ(t)  is   

 ρ(t) ρ ρ(t)ˆ    (8) 

Substituting  (6) into (1) and after some algebra yields 

    r rM(q)σ C(q,q)σ Kσ Y(q,q,q ,q )(π u(t))           (9) 

By taking into account above parameters and control algorithm, the Lyapunov function 
candidate is defined as [15, 16]. 

   T T T 21 1 1V( ,q,ρ(t)) σ M(q)σ q Bq ρ(t) (t) ρ(t)
2 2 2

            (10) 

where BRnxn is a positive diagonal matrix, (t )  is chosen as a pxp dimensional diagonal 
matrix changes in time. The time derivative of V along the trajectories is 

  T T T T T 21V σ M(q) σ M(q)σ q Bq ρ(t) (t) (t)ρ(t) ρ(t) (t) (t)
2

= + + + +              (11) 

Taking 2B K  , using the property - 2 0T [ M(q) C(q,q)]    nR   [17, 18], and taking 
time derivative of V of system (9) is 

 T T T T T T 2V -q Kq-q ΛKΛq σ Yu(t) σ Yπ ρ(t) (t) (t)ρ(t) ρ(t) (t) ρ(t)                    (12) 

Equation (12) is arranged as 

 
T T T T

T T 2

V -q Kq-q ΛKΛ q σ Yu(t) σ Yπ

      (ρ ρ(t)) (t) (t)(ρ ρ(t)) (ρ ρ(t)) (t) ρ(t) 0ˆ ˆ ˆ ˆ

  

        

      


  (13) 
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where  is a positive definite matrix. Then the following nominal control law is considered:                            
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T T T T

T T 2
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ˆ(t ) (t )    (since  is a constant). Remembering that     and if u(t) is taken as the 
estimated term of uncertainty bound, that is u(t) ρ(t)ˆ   then Equation (13 is written as 

   
T T T T

T T 2

V -q Kq-q ΛKΛq σ Y( ρ(t)) σ Yρ

    [ρ ρ(t)] (t) (t)[ρ ρ(t)] (ρ ρ(t)) (t)  ρ(t)] 0

ˆ

ˆ ˆ ˆ ˆ

   

        

     


  (14) 

Equation (14) can be arranged as 

 
T T T

T T 2

V -q Kq-q ΛKΛq σ Y[ρ-ρ(t)]

        [ρ-ρ(t)] (t) (t)[ρ-ρ(t)] (ρ -ρ(t)) (t) (t)] 0

ˆ

ˆ ˆ ˆ ̂

 

     

     


  (15) 

Consequently, a suitable expression for the time derivative of V is obtained.                                                        

 T T T T 2V -q Kq-q ΛKΛq [(ρ ρ(t)] [Y σ (t) (t)(ρ ρ(t)) (t) ρ(t)] 0ˆ ˆ ˆ                (16) 

where T T-q Kq-q ΛKΛq 0     . If the rest of Equation (16) is zero, system will be stable. 
Remaining terms in Equation (16) are 

 T T 2[(ρ-ρ(t)] [Y σ (t) (t)(ρ ρ(t)) (t) ρ(t)] 0ˆ ˆ ˆ         (17) 

[(ρ-ρ(t)]ˆ is considered as a common multiplier then 

 T 2Y σ (t) (t)(ρ ρ(t)) (t) ρ(t) 0ˆ ˆ        (18) 

Hence, we look for the conditions for which the equation 

T 2Y σ (t) (t)(ρ ρ(t)) (t) ρ(t) 0ˆ ˆ        

is satisfied. Equation (18) can be written as 

 T(t) (t)(ρ ρ(t)) (t) (t)ρ(t) Y σˆ ˆ          (19) 

Then 

 -1 T(t) (t) (t)ρ(t) (t) Y σ (t)ρˆ ˆ         (20) 

Equation (20) is arranged as 

 -1 Td (t) (t)) (t) Y σ (t)ρ
dt

ˆ(      (21) 

Integration both side of Equation (21) yields 

 -1 T(t)ρ(t) (t) Y σ (t)ρdt Cˆ dt          (22)  

Then, a general equation for derivation derivation of bound estimation law is developed as 
[14, 15] 

 -1 -1 T -1ρ(t) (t) (t) Y σ (t) Cˆ [ dt]        (23) 
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The Equation (23) is a general equation for derivation of the bound estimation law and it is 
derived from Lyapunov function. As a result, ˆ (t )  all derived from Equation (23) 
guarantess stability of uncertain system. However, (t)-1 and ˆ (t )  are unknown and ˆ (t )  is 
derived depending on the function (t)-1. For derivation, selection of (t)-1 and integration 
techniques are very important. There is no certain rule for selection of (t)-1 and integration 
techniques for this systems. System state parameters and mathematical insight are used to 
search for appropriate function of (t)-1  as a solution of the Equation (23).  

2.1 First choice of (t)-1 
For the first derivation of ˆ (t ) , 1(t )  is chosen as a time varying function such that 
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Substituting Equation (24) into (23) yields 
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After integration, the result is 
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ˆ(t ) (t )    (since  is a constant). Remembering that     and if u(t) is taken as the 
estimated term of uncertainty bound, that is u(t) ρ(t)ˆ   then Equation (13 is written as 

   
T T T T

T T 2

V -q Kq-q ΛKΛq σ Y( ρ(t)) σ Yρ

    [ρ ρ(t)] (t) (t)[ρ ρ(t)] (ρ ρ(t)) (t)  ρ(t)] 0

ˆ

ˆ ˆ ˆ ˆ

   

        

     


  (14) 

Equation (14) can be arranged as 

 
T T T

T T 2

V -q Kq-q ΛKΛq σ Y[ρ-ρ(t)]

        [ρ-ρ(t)] (t) (t)[ρ-ρ(t)] (ρ -ρ(t)) (t) (t)] 0

ˆ

ˆ ˆ ˆ ̂

 

     

     


  (15) 

Consequently, a suitable expression for the time derivative of V is obtained.                                                        

 T T T T 2V -q Kq-q ΛKΛq [(ρ ρ(t)] [Y σ (t) (t)(ρ ρ(t)) (t) ρ(t)] 0ˆ ˆ ˆ                (16) 

where T T-q Kq-q ΛKΛq 0     . If the rest of Equation (16) is zero, system will be stable. 
Remaining terms in Equation (16) are 

 T T 2[(ρ-ρ(t)] [Y σ (t) (t)(ρ ρ(t)) (t) ρ(t)] 0ˆ ˆ ˆ         (17) 

[(ρ-ρ(t)]ˆ is considered as a common multiplier then 

 T 2Y σ (t) (t)(ρ ρ(t)) (t) ρ(t) 0ˆ ˆ        (18) 

Hence, we look for the conditions for which the equation 

T 2Y σ (t) (t)(ρ ρ(t)) (t) ρ(t) 0ˆ ˆ        

is satisfied. Equation (18) can be written as 

 T(t) (t)(ρ ρ(t)) (t) (t)ρ(t) Y σˆ ˆ          (19) 

Then 

 -1 T(t) (t) (t)ρ(t) (t) Y σ (t)ρˆ ˆ         (20) 

Equation (20) is arranged as 

 -1 Td (t) (t)) (t) Y σ (t)ρ
dt

ˆ(      (21) 

Integration both side of Equation (21) yields 

 -1 T(t)ρ(t) (t) Y σ (t)ρdt Cˆ dt          (22)  

Then, a general equation for derivation derivation of bound estimation law is developed as 
[14, 15] 

 -1 -1 T -1ρ(t) (t) (t) Y σ (t) Cˆ [ dt]        (23) 
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The Equation (23) is a general equation for derivation of the bound estimation law and it is 
derived from Lyapunov function. As a result, ˆ (t )  all derived from Equation (23) 
guarantess stability of uncertain system. However, (t)-1 and ˆ (t )  are unknown and ˆ (t )  is 
derived depending on the function (t)-1. For derivation, selection of (t)-1 and integration 
techniques are very important. There is no certain rule for selection of (t)-1 and integration 
techniques for this systems. System state parameters and mathematical insight are used to 
search for appropriate function of (t)-1  as a solution of the Equation (23).  

2.1 First choice of (t)-1 
For the first derivation of ˆ (t ) , 1(t )  is chosen as a time varying function such that 
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T T
1 1 1 1

T T
2 2 2 2

T T
p p

Y σdt) Y σdt)
1 1 11

Y σdt) Y σdt)
22 1 2 2

Y σdt) Y σdt)

e e

e e

e ep p

( ( T

( ( T

( (p T
p p

sin( )(Y )ˆ (t)
ˆ (t) sin( )(Y )(t) [ dt] ........ ................
ˆ (t )

sin( )(Y )

 

 

 

  
  


 



  
   
            
   
     

 

 1

1
1

1p

(t).. .....




   
   
       
   
    

  (25) 

After integration, the result is 
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Then  
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If 0ˆ ( )   is taken as initial condition, constant C is equivalent to Cos(1). So, the estimation 
law for the uncertainty bound is derived as.  

 

T T T
1 1 1 1 1 1
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2.2 Second choice of (t)-1 
For the second derivation of ˆ (t ) , 1(t )  is defined as 

 
T

i

T
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( Y σdt)
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1 e
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Substituting Equation (29) into (23) yields 
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After integration, the result is 
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After multiplication by 1(t ) , the result will be 
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  (32) 

If 0ˆ ( )   is taken as initial condition, constant C is equivalent to -arctan(1). So, the 
estimation law for the uncertainty bound is derived as.  
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2.3 Third choice of (t)-1 
For the third derivation of ˆ (t ) , 1(t )  is defined as 

 
1 2 T T

i i i i iSin ( Y σdt) Cos( Y σdt)(t ) diag( )        (34)  

Substitution of Equation (34) into Equation (23) yields 
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After integration, the result is 
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If 0ˆ ( )   is taken as initial condition, constant C is equivalent to Cos(1). So, the estimation 
law for the uncertainty bound is derived as.  
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2.2 Second choice of (t)-1 
For the second derivation of ˆ (t ) , 1(t )  is defined as 
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Substituting Equation (29) into (23) yields 
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After integration, the result is 
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After multiplication by 1(t ) , the result will be 
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  (32) 

If 0ˆ ( )   is taken as initial condition, constant C is equivalent to -arctan(1). So, the 
estimation law for the uncertainty bound is derived as.  
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2.3 Third choice of (t)-1 
For the third derivation of ˆ (t ) , 1(t )  is defined as 
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Substitution of Equation (34) into Equation (23) yields 
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After integration, the result is 
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If 0ˆ ( )   is taken as initial condition, constant C is equivalent to zero. So, the estimation 
law for the uncertainty bound is derived as .  
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  (37) 

If we substitute ,  , and ˆ (t )  into Equation (16), the right terms of Equation (16) 
T T 2[(ρ-ρ(t)] [Y σ (t) (t)(ρ ρ(t)) (t) ρ(t)] 0ˆ ˆ ˆ       will be always zero and the derivation of the 

Lyapunov function will become a negative semidefinite function such that 

 
T TV -q Kq-q ΛKΛq 0         (38) 

So, the system is stable for all ˆ (t)  derived from Equation (23). 

3. Design of robust contol laws  
Based on the uncertainty bound estimation laws derived in section 2, and in [15], it is 
possible to develop robust control inputs.  

3.1 Robust control law 1  
In order to define first robust control input, the following theorem is proposed. 
Theorem:  
Additional control input in control law (6) is  

   

  

  

T
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i i iT
i

i T
Ti

i i i
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(Y ) ˆ (t ) if (Y )
(Y )

(u(t))
(Y ) ˆ (t ) if (Y )

   


   



 


 

 



  (39) 
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Where ε>0. If the control input (39) is substituted into the control law (6) for the control of 
the model manipulator, then, the control law (6) is continuous and the closed-loop system is 
uniformly ultimate bounded. 
Proof 
It is assumed that there exists an unknown bound on parametric uncertainty such that 

 0π π ρ       and          0π π       (40) 

If Φ, ˆ (t) ,   and ˆ (t)  are substituded into (13),  the time derivative of the Lyapunov 
function (13) is written as [14, 15].  
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     -q Kq-q ΛKΛq σ Y (t) σ Y σ Y( (t)
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u
ˆu

ˆQx u

 

  



   

    

  

      
         (41) 

Where T T Tx [q ,q ]    and Q=diag[TK, K]. Based on the Leitman [1], we can show that 
0V   for ||x||>w where  

  2
minw = (t)/2 (Q)̂       (42) 

Where λmin(Q) denotes the minimum eigenvalue of Q. Second term in Equation (41), if 
||YTσ||>ε then 
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From the Cauchy-Schawartz inequality and our assumption on . If ||YT σ||<ε then   
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   (44) 

This last term achieves a maximum value of ˆ(t) / 4  when ||YT σ||=ε/2. We have that 

 TV - (t) 4ˆx Qx /      (45) 

Note that ˆ (t ) is bounded. The rest of the proof can be seen in [4, 8]. 
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If 0ˆ ( )   is taken as initial condition, constant C is equivalent to zero. So, the estimation 
law for the uncertainty bound is derived as .  
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If we substitute ,  , and ˆ (t )  into Equation (16), the right terms of Equation (16) 
T T 2[(ρ-ρ(t)] [Y σ (t) (t)(ρ ρ(t)) (t) ρ(t)] 0ˆ ˆ ˆ       will be always zero and the derivation of the 

Lyapunov function will become a negative semidefinite function such that 
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So, the system is stable for all ˆ (t)  derived from Equation (23). 

3. Design of robust contol laws  
Based on the uncertainty bound estimation laws derived in section 2, and in [15], it is 
possible to develop robust control inputs.  
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Where ε>0. If the control input (39) is substituted into the control law (6) for the control of 
the model manipulator, then, the control law (6) is continuous and the closed-loop system is 
uniformly ultimate bounded. 
Proof 
It is assumed that there exists an unknown bound on parametric uncertainty such that 
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If Φ, ˆ (t) ,   and ˆ (t)  are substituded into (13),  the time derivative of the Lyapunov 
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Where T T Tx [q ,q ]    and Q=diag[TK, K]. Based on the Leitman [1], we can show that 
0V   for ||x||>w where  

  2
minw = (t)/2 (Q)̂       (42) 
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From the Cauchy-Schawartz inequality and our assumption on . If ||YT σ||<ε then   
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This last term achieves a maximum value of ˆ(t) / 4  when ||YT σ||=ε/2. We have that 
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Note that ˆ (t ) is bounded. The rest of the proof can be seen in [4, 8]. 
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3.2 Robust control law 2 
Based on the bound estimation law ˆ (t ) derived from general Equation (23), additional 
control input u(t) are defined [15]. The additional control input in control law (6) is defined 
as [15] 
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3.3 Robust control law 3 
i denote the ith component of the vector TY  , i  choose as the ith component of . Then, 

considering the ˆ (t ) derived from Equation (23), u(t) for each ˆ (t )  is defined as as follows: 
For Equation (28), u(t)i is 
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For Equation (33),  
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For Equation (36):  
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3.4 Robust control law 4 
From Equations (43) and (44), it is ease to define the following control law. 

 
  

  

T
T

T

T
T

Y ˆ (t ) if (Y )
(Y )

u(t)
Y ˆ (t ) if (Y )

   


   



 
 


 


   (50) 

Modelling of Bound Estimation Laws and  
Robust Controllers for Robot Manipulators Using Functions and Integration Techniques 

 

173 

4. Simulation results 
For illustration, a two-link robot manipulator is given in  Figure 1 [4]. Parameterisation of 
this robot is given by  
 

 
Fig. 1. Two-link planar robot [4]. 

  1=m11c12+m2l12+I1,                     π2= m2lc22+I2 ,              π3=m2l1lc2 ,   

  π4=m1lc1,                                         π5=m2l1,                         π6=m2lc2,  (51) 

With this parameterisation, the component yij  of Y(q,q,q )   in Equation 2 are given as 

  11 1y q  ;     12 1 2y q q   ;     2
13 2 1 2 2 2 1 2y cos(q )(2q q sin(q )(q 2q q ))        ;   

 y14= gccos(q1);      y15= gccos(q1);          y16= gccos(q1+q2) ;    

  y21=0;           22 1 2y q q    ;            2
23 2 1 2 1y cos(q )q sin(q )(q )    ;   

   y24=0 ;                  y25=0 ;                        y26= gccos(q1+q2).  (52) 

r rY(q,q,q ,q )   in Equation (4) have the components  

 11 r1y q   ; 12 r1 2y q qr    ;      

 13 2 r1 2 2 1 2 1 r2 2 r2y cos(q )(2q q sin(q )(q q q q q q )r r)            ;  

 y14=gccos(q1);      y15= gccos(q1) ;       y16= gccos(q1+q2)   

  y21=0;      22 r1 2y q qr   ;       ; 23 2 r1 2 1 r1y cos(q )q sin(q )(q q )      

   y24=0 ;               y25=0  ;             y26= gccos(q1+q2).       (53) 
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For illustrated purposes let us assume that the parameters of the unloaded manipulator are 
known and are given by Table 1. Using these values in Table 1, the ith component of π 
obtained by means of Equation (51) are given in Table 2. It is assumed that the parameters 
m2, lc2 and I2 are changed in the intervals 

 20 10m    ;   20 0 5cl .   ;   2
150
12

I   (54)  

Choosing the mean value for the range of possible i in Equation (54) yields the nominal 
parameter vector and the computed values for ith component of π0 is shown in Table 3 [4].  
 

m1 m2 l1 l2 lc1 lc2 I1 I2 
10 5 1 1 0.5 0.5 10/12 5/12 

Table 1. Parameters of the  unloaded arm [4]. 

 
π1 π2 π3 π4 π5 π6 

8.33 1.67 2.5 5 5 2.5 

Table 2. πi for the unloaded arm [4] 

 

01  02  03  04  05  06  

13.33 8.96 8.75 5 10 8.75 

Table 3. Nominal parameter vector π0 [4]. 

With this choice of nominal parameter vector 0 and uncertainty range given by (54), it is an 
easy matter to calculate the uncertainty bound  as follows: 
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and thus 181 26 13 46. .   .  
For explanation, Spong’s algorithms are given. 
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As a measure of parameter uncertainty on which the additional control input is based, ρ can 
be defined as  
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Having a single number ρ to measure the parameter uncertainty may lead to overly 
conservative design, higher than necessary gains, etc. For this purpose, different “weights” 
or gains to the components of u may be assigned. This can be done as follows: Supposing 
that a measure of uncertainty for each parameter i  can be defined separately as: 

 i i           I=1,2,……….,p   (58) 

Let i denote the itch component of the vector TY  , i  choose as the itch component of , 
and consequently the itch component of the control input up is defined as [4]. 

    i i i i i
i

i i i i i

ρ υ / υ         if   υ ε
u

(ρ /ε )υ     if   υ ε
    

  (59)      

Since extended algorithm (56) is used, the uncertainty bounds for each parameter are shown 
separately in Table 4. The uncertainty bounds i in Table 4 are simply the difference 
between values given in Table 3 and Table 2, and the value of ρ is the Euclidean norm of the 
vector with components ρi  [4].  
 

       ρ1          ρ2         ρ3       ρ4        ρ5          ρ6 
        5     7.29       6. 25        0         5          6.25 

Table 4. Uncertainty bound [4]. 

For computer simulation, a fifth order polynomial function is used as a reference trajectory 
for both joints. In order to analyse performance of the proposed controllers, each control law 
with the same control parameters K and Ʌ is applied to the same model system using same 
trajectory. The control matrices Ʌ and K are chosen to be identical as Ʌ=diag(10 10) and 
K=diag(30 30) for all controllers. The obtained results are plotted in Figures 2-4. 
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Fig. 2. Response using the robust control law (39) with uncertainty bound estimation law 
(28) when =diag(10 10), K=diag(30 30), α=1, β=1. 
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Fig. 2. Response using the robust control law (39) with uncertainty bound estimation law 
(28) when =diag(10 10), K=diag(30 30), α=1, β=1. 
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Fig. 3. Response using the robust control law (39) with uncertainty bound estimation law 
(35) when =diag(10 10), K=diag(30 30), α=0.8, β=0.4. 
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Fig. 4. Response using the robust control law (39) with uncertainty bound estimation law 
(37) when =diag(10 10), K=diag(30 30), α=0.5, β=2. 
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As shown in Figures 2-4, tracking error is small and tracking performance changes 
according to uncertainty bound estimation laws.  

5. Conclusion 
In the past, some robust controllers are developed for robot manipulators. Corless-Leitmann 
[1] approach is a popular approach used for designing robust controllers for robot 
manipulators. Spong [4] proposed a new robust controller for robot manipulators and 
Leithmann [5] or Corless-Leithman [1] approach is used for designing the robust controller. 
In [4], uncertainty bound on parameter is needed to derive robust controller and uncertainty 
bound parameters depends only on the inertia parameters of the robots. However, constant 
uncertainty bound parameters cause pure tracking performances. In order to increase 
tracking performance of the uncetain system, uncertainty bound estimation laws are 
developed [11-13]. Uncertainty bound estimation laws are updated as a function of 
exponential [11, 12], logarithmic [13] and trigonometric [14] functions depending on robot 
kinematics parameters and tracking error. A first order differential equation function is 
developed for derivation of control parameters and only a single derivation of uncertainty 
bound estimation law is possible. A new method for derivation of a bound estimation law is 
not proposed in [11-13], because, definition of a new variable function for other derivation is 
diffucult.  
In the study [14], a general equation is developed from Lyapunov function and uncertainty 
bound  estimation laws depending on trigonometric functions are developed. However, a 
general method for derivation of uncertainty bound  estimation laws is not proposed. In a 
recent study [15], a general method for derivation of bound estimation laws based on the 
Lyapunov theory is proposed. In this method, functions and integration techniques are used 
for derivation of uncertainty bound estimation laws. Then, relations between the bound 
estimation laws and robust control inputs are established and four new robust control 
inputs are designed depending on each bound estimation law. It is possible to derive other 
different uncertainty bound estimation laws from general equation (23) if appropriate 
functions and integration techniques are defined. In this work, three different variable 
functions are defined and integration techniques are used in order to derive ˆ (t)  and 
relations between the uncertainty bouns and robust control laws are established. There is no 
distinct rule for definition of the (t) and integration techniques in order to derive ˆ (t ) . We 
use system state parameters and mathematical insight to search for appropriate function of 
(t)  as a derivtion of ˆ (t ) . This study also shows that robust controllers are not limited 
with these derivations. It will be also possible to derive another bound estimation laws from 
Equation (23) if appropriate function (t) and integration techniques are chosen.  
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Fig. 3. Response using the robust control law (39) with uncertainty bound estimation law 
(35) when =diag(10 10), K=diag(30 30), α=0.8, β=0.4. 
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1. Introduction 

In traditional engagement model, there is only one single weapon or platform which resists 
to another single one, and the connections between members are few, so the complete and 
global information in engagement space can’t be utilized sufficiently, which directly results 
in traditional model is confronting with more and more disadvantages especially as the 
high-tech and information-tech are developing faster and faster. In view of those issues, the 
concepts and technology of missile formation cooperative are presented, developed and 
expanded recently(Cui et al., 2009). Compared to traditional model, weapon or platform 
with cooperative manner manifests great advantages in aspects of ability of penetration, 
electronic countermeasures and ability of searching moving targets etc, furthermore the 
synthetical engagement efficacy is developed greatly. 
Many new cooperative weapon systems are established and developed fast recently, such as 
Cooperative Engagement Capability (CEC) system, Net Fire System and LOw Cost 
Autonomous Attack System (LOCAAS) etc, wherein the LOCAAS is most relevant to our 
topic, so we will introduce it more detailed. 
In order to meet the requirements of future aerial warfare, United States Force has 
developed a series of high technical and high accurate airborne guided weapon systems, 
such as Joint Common Missile (JCM), Joint Direct Attack Missile (JDAM), Wind Corrected 
Munitions Dispenser (WCMD) and LOw Cost Autonomous Attack System (LOCAAS). 
These weapons are paid much attention because their great capabilities of high-precision, 
all-weather engagement and attacking beyond defence area etc. Especially, LOCAAS also 
has other great advantages besides those aspects mentioned above, such as low cost, general 
utilization and attacking multi-targets simultaneously, so it is paid more attention than 
other weapons, and it becomes an outstanding representative of high-tech weapon and new 
engagement model. 
LOCAAS is developed from an previous weapon named as Low Cost Anti-Armor Sub-
munitions (also called LOCAAS for short) which was a kind of short-range unpowered 
airborne and air-to-ground guided weapon developed in 1998. At a later time, researchers 
added thrust system to this old LOCAAS, so it had capability of launching beyond defence 
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1. Introduction 

In traditional engagement model, there is only one single weapon or platform which resists 
to another single one, and the connections between members are few, so the complete and 
global information in engagement space can’t be utilized sufficiently, which directly results 
in traditional model is confronting with more and more disadvantages especially as the 
high-tech and information-tech are developing faster and faster. In view of those issues, the 
concepts and technology of missile formation cooperative are presented, developed and 
expanded recently(Cui et al., 2009). Compared to traditional model, weapon or platform 
with cooperative manner manifests great advantages in aspects of ability of penetration, 
electronic countermeasures and ability of searching moving targets etc, furthermore the 
synthetical engagement efficacy is developed greatly. 
Many new cooperative weapon systems are established and developed fast recently, such as 
Cooperative Engagement Capability (CEC) system, Net Fire System and LOw Cost 
Autonomous Attack System (LOCAAS) etc, wherein the LOCAAS is most relevant to our 
topic, so we will introduce it more detailed. 
In order to meet the requirements of future aerial warfare, United States Force has 
developed a series of high technical and high accurate airborne guided weapon systems, 
such as Joint Common Missile (JCM), Joint Direct Attack Missile (JDAM), Wind Corrected 
Munitions Dispenser (WCMD) and LOw Cost Autonomous Attack System (LOCAAS). 
These weapons are paid much attention because their great capabilities of high-precision, 
all-weather engagement and attacking beyond defence area etc. Especially, LOCAAS also 
has other great advantages besides those aspects mentioned above, such as low cost, general 
utilization and attacking multi-targets simultaneously, so it is paid more attention than 
other weapons, and it becomes an outstanding representative of high-tech weapon and new 
engagement model. 
LOCAAS is developed from an previous weapon named as Low Cost Anti-Armor Sub-
munitions (also called LOCAAS for short) which was a kind of short-range unpowered 
airborne and air-to-ground guided weapon developed in 1998. At a later time, researchers 
added thrust system to this old LOCAAS, so it had capability of launching beyond defence 
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area and searching moving targets within large scope. This weapon was added bidirectional 
data link once again in 2003, so it can implement Man-in-the-Loop control and command, 
which meant that this weapon system can attack targets autonomously and manifest a kind 
of smart engagement capability. After those improvements, this old anti-armor weapon was 
re-named to LOw Cost Autonomous Attack System (LOCAAS). LOCAAS adopts INS and 
mid-course guidance, and it also equips a smart fuze and a sensor that can be used to search 
moving targets, so LOCAAS can not only monitor targets within large range but also can re-
locate, recognize and aim at them autonomously. The most outstanding character is that 
LOCAAS can also make intelligent decision for choosing the optimal orientation and 
sequence to achieve optimal attack, and it also has the capability of on-line planning 
mission. 
At present, United State Force sets the engagement schemes for LOCAAS as: there will be 
some LOCAASs flying in the battle field to cruise or put on standby, and they can connect 
with each other by data link. While one of them finding the targets and can't destroy them 
alone, it will send out the signals to require for cooperative attacking, however if it can 
destroy the targets by itself, this LOCAAS will attack the targets and the other LOCAASs 
will continue searching targets after receiving the instruction signals from the mentioned 
LOCAAS which has gone into the battle. The sketch map Fig.1 shows the main concepts of 
how LOCAASs take part in engagement cooperatively. Authors who are interested in 
LOCAAS can get more detailed information in the website of Lockheed Martin. 
 

 
Fig. 1. The sketch map of LOCAAS engagement. 

The background and significance were presented first, and then the technique frame of 
missile formation cooperative control system is showed, which can clearly elaborate how 
missiles in a formation work together in a cooperative manner. The specific relationships 
between each loop are analyzed, which are very necessary to clearly explain how to design 
missile formation control system. Followed are the main contents of this chapter, which are 
the detailed processes of establishing and designing missile formation control system. In this 
part, we will only consider the external loop of missile formation control system because the 
design method on individual missile inner controller is easy to be found in many literatures, 
and then we just assumed it is closed-loop and stable. The detailed process is divided into 
two steps, first is using proportion-differential control method to design missile formation 
keeping controller, the other explains how to design optimal keeping controller of missile 
formation. Some simulations are made to compare these two formation control systems 
proposed in this chapter at last.  
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2. Frame of missile formation control system 
The missile formation control system mentioned in this chapter only has one leader missile 
(showed as Fig.2), and it mainly consists of the following subsystems: cooperative 
engagement mission planning subsystem, formation configuration describing subsystem, 
leader inner-loop control subsystem, follower inner-loop control subsystem and formation 
configuration control subsystem. The sketch map illustrates relationships between each 
subsystem in one missile formation system is showed in Fig.3. 
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Fig. 2. Sketch map of missile formation consisted of two followers and only one leader. 
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Fig. 3. Relationships between subsystems of missile formation control system. 

The cooperative mission planning subsystem supplies real-time status of mission space and 
distribution situation of targets, and restricts the flight status of leader at the same time; the 
formation configuration describing system receives the information supplied by cooperative 
engagement subsystem and establishes associated function of engagement efficacy 
according to different missile formation configurations, and then makes the decision set 
about formation configurations based on the returned value of this efficacy function. After 
optimizing the values of efficacy function according to the specific mission space, the 
optimal formation configuration can be calculated within this decision set. The optimal 
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how LOCAASs take part in engagement cooperatively. Authors who are interested in 
LOCAAS can get more detailed information in the website of Lockheed Martin. 
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formation. Some simulations are made to compare these two formation control systems 
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2. Frame of missile formation control system 
The missile formation control system mentioned in this chapter only has one leader missile 
(showed as Fig.2), and it mainly consists of the following subsystems: cooperative 
engagement mission planning subsystem, formation configuration describing subsystem, 
leader inner-loop control subsystem, follower inner-loop control subsystem and formation 
configuration control subsystem. The sketch map illustrates relationships between each 
subsystem in one missile formation system is showed in Fig.3. 
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The cooperative mission planning subsystem supplies real-time status of mission space and 
distribution situation of targets, and restricts the flight status of leader at the same time; the 
formation configuration describing system receives the information supplied by cooperative 
engagement subsystem and establishes associated function of engagement efficacy 
according to different missile formation configurations, and then makes the decision set 
about formation configurations based on the returned value of this efficacy function. After 
optimizing the values of efficacy function according to the specific mission space, the 
optimal formation configuration can be calculated within this decision set. The optimal 
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formation configuration will be different when the missile formation is flying in different 
segments of mission space, that is, the optimal formation configuration will be decided by 
specific engagement requirement. The formation configuration describing subsystem will 
also restrict flight status of leader together with cooperative mission planning subsystem at 
the same time; The leader inner-loop control subsystem receives the information sent from 
the cooperative engagement planning subsystem and controls the leader to fly stably, and 
then the real flight states of leader can be obtained; The required states of follower missile 
can be calculated through the states in relative spatial dimension i.e. the distance between 
missiles which is obtained from formation configuration describing subsystem; The follower 
inner-loop control subsystem receives the command states, which is similar to that of leader 
mentioned above, and then control follower to fly stably. The actual flight states of follower 
missiles are fed back to the formation configuration control subsystem and used to achieve 
the expected formation configuration which is decided by the specific cooperative 
engagement mission.   
This chapter focus on missile formation keeping control problems. First, we consider the 
actual flight states of leader as perturbation variables acting on the controller, and assume 
the follower inner-controller is closed and stable loop, that is, followers can track the 
required commands of velocity, flight path angle and flight deflection angle rapidly and 
stably. We will make further assumption that those three channels referred above are one-
order systems expressed as (Wei et al., 2010): 
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where ,f fV  and vf is the velocity, flight path angle and flight deflection angle of follower 
respectively; ,fc fcV  and vfc are commands of velocity, flight path angle and flight deflection 
angle of follower respectively; ,vf f  and

vf are the inertial time constants of velocity, 
flight path angle and flight deflection angle channel of follower respectively. These values 
can be calculated by analyzing four-dimensional guidance and control system referrd in the 
literature of Cui et al., 2010, they are: 
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These inertial time constants will be used in the subsequent sections for designing and 
simulating missile formation keeping controller.  
After missile formation achieving four-dimensionally rendezvous, this formation should 
carry out some subsequent missions, such as relative navigation and location, cooperative 
searching targets, locating and recognizing targets and cooperative penetration etc., 
however, these missions require missile formation keeping its configuration or relative 
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dimensional states for some periods of time. Next sections will present some further and 
detailed researches on how to keep missile formation optimally and robustly.  
The main thought of the following parts is showed as below: basing on the kinematics 
relationships between missiles in inertial coordinate frame, the missile formation 
proportional-derivative (PD) controller via feeding back full states will be present firstly; 
Second, the relative motion will be established in relative coordinates frame, which can 
indicate the characteristics of relative motion directly. Based on this direct relative motion, 
the optimal controller that has non-zero given point and restrains slowly variant 
perturbations is designed in the third part. 

3. PD controller of missile formation keeping  
3.1 Definition of coordinate frame system 
1. Relative coordinate frame r r r ro x y z  
The origin ro of this coordinate coincides with the mass centre of leader, and axis r ro x points 
to the velocity direction of leader, r ro y is perpendicular to r ro x and points to up direction, 

r ro z composes right-hand coordinate frame together with other two axes mentioned above. 
2. Inertial coordinate frame system I I I IO X Y Z  
The origin IO of this coordinate frame is fixed to an arbitrary point on ground, axis I IO X lies 
in horizontal plane and points to target, axis I IO Y is perpendicular to I IO X and points to up 
direction, the last axis I IO Z also composes right-hand coordinate frame system together with 
those two axes mentioned above. 
The relationship between these two coordinate frames is showed in Fig.4. 
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Fig. 4. Relationship between relative and inertial coordinate frame. 

3. Trajectory coordinate frame system 1 2 2 2o x y z  
The origin of this coordinate 1o  coincides with the mass centre of missile, and axis 1 2o x  
points to the velocity direction of missile, 1 2o y  is perpendicular to 1 2o x  and points to up 
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formation configuration will be different when the missile formation is flying in different 
segments of mission space, that is, the optimal formation configuration will be decided by 
specific engagement requirement. The formation configuration describing subsystem will 
also restrict flight status of leader together with cooperative mission planning subsystem at 
the same time; The leader inner-loop control subsystem receives the information sent from 
the cooperative engagement planning subsystem and controls the leader to fly stably, and 
then the real flight states of leader can be obtained; The required states of follower missile 
can be calculated through the states in relative spatial dimension i.e. the distance between 
missiles which is obtained from formation configuration describing subsystem; The follower 
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mentioned above, and then control follower to fly stably. The actual flight states of follower 
missiles are fed back to the formation configuration control subsystem and used to achieve 
the expected formation configuration which is decided by the specific cooperative 
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actual flight states of leader as perturbation variables acting on the controller, and assume 
the follower inner-controller is closed and stable loop, that is, followers can track the 
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stably. We will make further assumption that those three channels referred above are one-
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where ,f fV  and vf is the velocity, flight path angle and flight deflection angle of follower 
respectively; ,fc fcV  and vfc are commands of velocity, flight path angle and flight deflection 
angle of follower respectively; ,vf f  and

vf are the inertial time constants of velocity, 
flight path angle and flight deflection angle channel of follower respectively. These values 
can be calculated by analyzing four-dimensional guidance and control system referrd in the 
literature of Cui et al., 2010, they are: 
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These inertial time constants will be used in the subsequent sections for designing and 
simulating missile formation keeping controller.  
After missile formation achieving four-dimensionally rendezvous, this formation should 
carry out some subsequent missions, such as relative navigation and location, cooperative 
searching targets, locating and recognizing targets and cooperative penetration etc., 
however, these missions require missile formation keeping its configuration or relative 
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dimensional states for some periods of time. Next sections will present some further and 
detailed researches on how to keep missile formation optimally and robustly.  
The main thought of the following parts is showed as below: basing on the kinematics 
relationships between missiles in inertial coordinate frame, the missile formation 
proportional-derivative (PD) controller via feeding back full states will be present firstly; 
Second, the relative motion will be established in relative coordinates frame, which can 
indicate the characteristics of relative motion directly. Based on this direct relative motion, 
the optimal controller that has non-zero given point and restrains slowly variant 
perturbations is designed in the third part. 

3. PD controller of missile formation keeping  
3.1 Definition of coordinate frame system 
1. Relative coordinate frame r r r ro x y z  
The origin ro of this coordinate coincides with the mass centre of leader, and axis r ro x points 
to the velocity direction of leader, r ro y is perpendicular to r ro x and points to up direction, 

r ro z composes right-hand coordinate frame together with other two axes mentioned above. 
2. Inertial coordinate frame system I I I IO X Y Z  
The origin IO of this coordinate frame is fixed to an arbitrary point on ground, axis I IO X lies 
in horizontal plane and points to target, axis I IO Y is perpendicular to I IO X and points to up 
direction, the last axis I IO Z also composes right-hand coordinate frame system together with 
those two axes mentioned above. 
The relationship between these two coordinate frames is showed in Fig.4. 
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Fig. 4. Relationship between relative and inertial coordinate frame. 

3. Trajectory coordinate frame system 1 2 2 2o x y z  
The origin of this coordinate 1o  coincides with the mass centre of missile, and axis 1 2o x  
points to the velocity direction of missile, 1 2o y  is perpendicular to 1 2o x  and points to up 
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direction, 1 2o z composes right-hand coordinate frame together with other two axes 
mentioned above. The spatial directions are parallel to those in relative coordinate frame 
system. 

3.2 Model of relative motion between missiles 
3.2.1 Basic assumptions 
It is assumed that the control system of missile self is closed-loop and stable, that is, missile 
can track the required velocity, flight path angle and flight deflection angle rapidly and 
stably. Further, we consider these tracking channels are one-order inertial loops described as 
section 2. In order to express the relationships conveniently, we will change the one-order 
inertial loops showed in Equ.(1) to the following forms: 
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where i is the number of missile, iV , i and vi represent the actual velocity, flight path angle 
and flight deflection angle of ith missile respectively; icV , ic and vic are desired velocity, 
desired flight path angle and desired flight deflection angle of ith missile respectively; 

v ,  and
v are the reciprocals of inertial time constants v ,  and

v in channels of 
veloctiy, flight path angle and flight deflection angle respectively. 

3.2.2 Establishing the control model 
The kinematics equations of missile in inertial coordinate frame can be expressed as: 
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The kinematics relationship of two missiles in inertial and relative coordinate frame is 
showed in Fig.5, so the relative positions of two missiles can be obtained from these sketch 
maps: 
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where * *,x y and *z are the distances relative to leader in relative coordinate frame, and the 
transformation matrices in Equ.(5) are:  
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Fig. 5. Relative position relations between two missiles. 

Further, the deviations of relative positions can be expressed from Equ.(5) to: 
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and making derivatives to last equation yields:  
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making further derivatives gets: 
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Further, the deviations of relative positions can be expressed from Equ.(5) to: 
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so we can get the following vector equation: 

 1 r e f G u  (10) 
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* *
1 2 2

2 * *2 1 2 1
1 1 2 1 1 1 1 1 12

11 * *
1 2

( ) ( )( ) ( )v v
r v v

vv
v

x xX V
d dY y y

ddZ z z

 
    



                                         


  


T Tf G T T   

 

* * *
2

* 2 * *2 1 1 1 1 1 1 1
1 1 2 1 1 2 1 12

1 1 11* * *

( ) ( ) ( ) ( )2 ( ) ( )v
v v v

v

x x x
d d d dy y y

d d dd
z z z

        
  

     
     

       
     
          

  T T T TT T   

 
Missile Cooperative Engagement Formation Configuration Control Method 

 

187 

 
2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

cos cos sin cos cos sin
sin cos 0

cos sin sin sin cos cos

v

v

v v v v

r v

v v v v

V V
V

V V

 



 

        

   
        

  
 

  
   

G  (11) 

The control variables of follower are: 
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As for the expression of 1f , we also need to know: 
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In order to eliminate the deviations of relative positions, that is, make the deviation e be 
asymptotically equivalent to zero, we will choose the following PD control laws: 

 1 2k k   e e e 0  (13) 

so there will be: 

 1 2 1 rk k   e e f G u   
further, the required control quantity can be expressed as below: 

 1
1 1 2( )r k k   u G f e e  (14) 

What should be done next is to analyze the existence conditions of expression (14). The 
condition is: iff matrix rG is non-singular, the control quantity exists. The determinant of 

rG can be calculated by Equ.(11), it is: 

 2
2det cos

vr vV     G  (15) 

Through checking this expression, it is obvious that rG is non-singular when the missile 

formation is flying, that is, 2 0V  , so we can choose proper coefficients 1 2,k k to guarantee 
expression (13) to be converged, which is lim

t
e 0 . 

4. Optimal controller of missile formation keeping  
4.1 Establishing model of relative motion 
Because relative coordinate frame is rotating, the relationship between relative derivative 
and absolute derivative should be considered during the process of establishing relative 
motion equations in relative coordinate frame. The relationship between these two 
derivatives is: 
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In order to eliminate the deviations of relative positions, that is, make the deviation e be 
asymptotically equivalent to zero, we will choose the following PD control laws: 

 1 2k k   e e e 0  (13) 

so there will be: 

 1 2 1 rk k   e e f G u   
further, the required control quantity can be expressed as below: 

 1
1 1 2( )r k k   u G f e e  (14) 

What should be done next is to analyze the existence conditions of expression (14). The 
condition is: iff matrix rG is non-singular, the control quantity exists. The determinant of 

rG can be calculated by Equ.(11), it is: 
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2det cos
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Through checking this expression, it is obvious that rG is non-singular when the missile 

formation is flying, that is, 2 0V  , so we can choose proper coefficients 1 2,k k to guarantee 
expression (13) to be converged, which is lim

t
e 0 . 

4. Optimal controller of missile formation keeping  
4.1 Establishing model of relative motion 
Because relative coordinate frame is rotating, the relationship between relative derivative 
and absolute derivative should be considered during the process of establishing relative 
motion equations in relative coordinate frame. The relationship between these two 
derivatives is: 
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 fr lr r   V V V r  (16) 

where frV and lrV are the absolute velocities of follower and leader in relative coordinate 
frame respectively; rV is the relative velocity from follower to leader in relative coordinate 
frame; represents the rotating angular velocity of relative coordinate frame relative with 
respect to inertial space, and it is described in relative coordinate frame; r is the position 
vector of follower relative to leader in relative coordinate frame. 
We can get the absolute velocities of follower and leader in relative coordinate frame by the 
transformations as below: 
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2fV and 2lV represent the velocity vectors of follower and leader in themselves trajectory 
coordinate frames respectively, and the components of them are:  
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Besides, lV is the velocity of leader in inertial coordinate frame; l is the flight path angle of 
leader; vl is flight deflection angle of leader. 
Further, the difference of absolute velocities between two missiles in the relative coordinate 
frame is: 
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at the same time, the relative velocity between two missiles in relative coordinate frame:  
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 [ , , ]Tr x y z   V  (18) 

where ,x y and z are components of relative position vector r in relative coordinate frame, 
and the rotating angular velocity of relative coordinate frame with respect to inertial space 
can be expressed as: 
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so, as for the expression  r , there will be: 
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further, we can get the following expression directly from equation (16): 

 ( )r fr lr   V V V r  (21) 

After expanding all the terms from Equ.(17) to Equ.(20) finally, we can obtain the missile 
relative kinematics model in 3-dimension space: 
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4.2 Establishing the optimal control model of missile formation keeping 
4.2.1 Linearized method 
The formation motion equations (22) are nonlinear, we can treat them by linearized method 
to get linear forms that can be utilized and analyzed more conveniently. During the process 
of missile formation flight, some variables can be considered as small quantities, such 
as f , l and e l f    , and the states of leader can be considered as inputs, then Equ.(22) 
can be transformed to: 
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Dealing with this expression by small perturbation linearized method yields: 
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Dealing with this expression by small perturbation linearized method yields: 
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where ,fb fbV  and vfb are feature points of linearized equations. We can describe this model 
by the following states space form: 

 
  


 X AX BU BW
Y CX  (24) 

where [ , , ]Tx y zX are the state variables; the control variables of formation controller are 
motion states of follower, that is, [ , , ]Tf f vfV  U ; outputs are [ , , ]Tx y zY ; perturbation 
variables are the velocities of leader [ ,0,0]TlVW , which can be considered as slowly 
variant variables; the system matrix A is described as:  
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and output matrixC is: 

 

1 0 0
0 1 0
0 0 1

 
   
  

C   

effect matrix of perturbations B is: 

 

1
0
0

 
   
  

B   

4.2.2 Method of substituting variables 
As analyzed in last section, we can get linear control model showed as Equ.(24) via small 
perturbation linearized method, however, this linear model requires the actual flight path is 
closely around feature points. Although we can design the missile formation keeping 
controller at those points within the whole flight scope by gain-scheduled method, it will 
increase amount of work greatly. Next we will re-deal with the nonlinear equations of 
relative kinematics showed in Equ.(22). If we transform the control variables 
from [ , , ]Tf f vfV  U toU with the following form:  
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then an indirectly linear control model of relation motion can be obtained: 
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further, the direct control variablesU which act on followers can be calculated by the 
following expressions: 
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at last, we can tranform equation (26) to the states space form showed as below: 

   


 X AX BU BW
Y CX

 (27) 

where system matrix A is: 
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control matrix B is: 

 
cos cos sin cos sin
sin cos cos sin sin

sin 0 cos
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l vl l l vl
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B   

the meanings of other variables are same as those in Equ.(24).  
It can be stated through analyzing this section that the indirect control model of relative 
motion based on the relationships of relative motion between missiles has a direct mapping 
relationship between inputs and outputs. However, this mapping just can be indicated by a 
mathematical form rather than some intuitive physical meanings, so we can’t give the linear 
expressions just through modelling directly. As mentioned above, we should transform the 
coordinate space of input variables and then establish the indirect linear model (27). 
After the missile formation controller system is described by the Equ.(27), we also need to 
consider the completely controllable ability of those indirect variablesU , that is, we should 
analyze the relationships between rank of 2[ ] B AB A B and the dimensions of this system. 
Because matrix B is full rank in the feasible flight scope, that is, 2rank[ ]=3 B AB A B , 
system(27) should be completely controllable. 
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4.3 Establishing the optimal control model of missile formation keeping 
As for the missile formation keeping control problem, the aim is to keep the distances 
between members within one formation on a non-zero states. After considering equation 
(27), we can further describe this formation keeping problem to another problem that how 
to regulate non-zero given value of output affected by slowly variant perturbations. So we 
can design this optimal controller by two steps: first, we need to design an optimal output 
regulator that can overcome slowly variant perturbations; second, we should further design 
optimal controller based on the first step which can maintain the missile formation on a non-
zero desired relative states. 

4.3.1 Optimal proportional-integral (PI) controller of missile formation 
As for the system with invariant or slowly variant perturbations showed in expression (27), 
we can choose PI control law to overcome these perturbations, which is similar to classical 
control method. 
In order to clearly explain the principle of how this integral feed-back controller eliminates 
stable errors, we will make a hypothesis that the stable outputs of system are zeros. Because 
there has an integrator in the controller, outputs can be constants although inputs are zeros, 
if these values are just rightly equivalent to the perturbations that are effecting on the input 
points but the signs are inverse, then the inputs of this control system will be eliminated to 
zeros, so the final outputs of system can be kept to zeros (Xie, 1986). 
First, we transform the perturbations of system to control inputting ports, and then system 
(27) can be changed to:  

 ( )   X AX B U W  (28) 

where W is transformation of initial perturbations, it has following form after comparing to 
the Equ.(27):  

 
1 W B BW   

Until now, the problem has been transformed to how to design PI optimal controller for 
system(28). This new system is augmented to: 

 
1 0 0

( )

(t ) (t )is given

  

  

 
  

X AX B U W

U W U U W
 (29) 

This augmented system can be further marked as: 

 1 1 1 1 1

1 1

 


X A X B U
Y C X

 (30) 

where states variables of augmented system are T
1 [ , ]  X X U W ; system matrix 1A of this 

augmented system is:   

 1
3 3 3 3 

 
  
 

A B
A

0 0
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control matrix of this augmented system is 1 3 3 3 3[ , ]T B I0 , and output matrix is 

1 3 3 3 3[ , ] C I 0 . 
The quadratic optimal performance index for system (30) is appointed to: 

 
0

1 1 1 1 1 1[ ]ft T T
t

J dt  X Q X U R U  (31) 

where 1Q is state regulating weight matrix of augmented system; 1R is control energy weight 
matrix of augmented system. When augmented system (30) is controllable, the optimal 
control quantities for minimizing the performance index (31) should be: 

 * 1
1 1 1 1

T U R B PX  (32) 

where P is the solution of Riccati Equation: 

 1
1 1 1 1 1 1

T T    P PA A P PB R B P Q   

Here we have to make further analysis on performance index expression(31). 1Q can be 
decomposed to the following form based on the expansions of state variables 1X : 

1
 

  
 

0
0
Q

Q
R

 

and then, there will be: 

 1 1 1 ( ) ( )T T T    X Q X X QX U W R U W  (33) 

whereQ is the states regulating weight matrix of original system(27), R is the control energy 
weight matrix of original system. From original system(27), there will be expression showed 
as below: 

 T T T T
Y Y X QX X C Q CX Y Q Y   

where YQ is the outputs regulating weight matrix, then expression(31) that describes the 
problem of quadratic optimal states regulating can be transformed to the problem of 
quadratic optimal output regulating, which is: 

 
0

1 1 1[ ( ) ( ) ]ft T T T
Yt

J dt      Y Q Y U W R U W U R U  (34) 

besides, because perturbations W is slowly variant variables, following expression can be 
noted: 

 0W   
and then 

 1 
U U  (35) 
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At last the quadratic optimal performance index of outputs regulating can be expressed as: 

 f
0

t T T T
Y 1tJ [ ( ) ( ) ]dt    

      Y Q Y U W R U W U R U  (36) 

As for the optimal control variables(32), it can be transformed from Equ.(35) to: 

 * * 1 T
1 1 1 1

  U U R B PX  (37) 

Expanding equation(37) yields: 

 
* 1 11 12

1 *
21 22

1 1 *
1 21 1 22( )



 

   
     

      

   


 

 

0 XP P
U R

I P P U W

R P X R P U W
 (38) 

which is the expression of optimal control quantities that can minimize the performance 
index (34) for zero-given points.  

4.3.2 Optimal controller for non-zero given points 
In order to keep the output variables [ , , ]Tx y zY on non-zero points, the final system states 
and control inputs should also be non-zero, and then the optimal control quantities will be 
transformed from Equ.(37) to the following form: 

 
* 1

1 1 1 0 1 0
T       U R B PX U KX U  (39) 

where 0U is additional control quantities for non-zero states.  
Considering the output equations of augmented system: 

 1 1Y C X  (40) 

and the expansions of augmented states 1X : 

 1 [ , , , (1), (2), (3)]Tf f vfx y z V       X W W W   

we should choose the following output matrix of augmented system to make sure the 
outputs of augmented system accord with those of original system: 

 1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 
   
  

C   

Substituting the control values(39) into the state equation(30) of augmented system yields: 

 1 1 1 1 1 0( )   X A B K X B U  (41) 

Because the closed-loop system(41) is asymptotically stable, there will be: 
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 1lim ( ) 0
t

t


X   

and then the asymptotically stable system can be expressed as: 

 1 1 10 1 0( )   A B K X B U0  (42) 

where 10X is the stable value of state 1X . If all the eigenvalues of matrix 1 1A B K lie in the 
left complex plane, then matrix is 1 1A B K non-singular, and further we can get the 
expression showed as below from Equ.(42):  

 1
10 1 1 1 0( )   X A B K B U  (43) 

and the relationship between non-zero points and stable value of states will meet: 

 *
10 1 10Y C X   

further the relationship required between non-zero states *
10Y and the stable value 10X of 

state 1X should be expressed as: 

 1 1 *
0 1 1 1 1 10[ ( ) ]   U C B K A B Y  (44) 

At last we can implement optimal control to system(27) that describes the relative 
kinematics of missiles by the following optimal control quantity:  

 * 1 1 1 1 *
1 1 1 1 1 1 1 1 1 10[ ( ) ]T T       U R B PX C B R B P A B Y  (45) 

and this control quantity can keep missile formation on the desired relative dimensional 
states. 

4.4 Stability analysis 
In order to analyze the stability of optimal controller of missile formation, we need to 
transform the model of missile formation relative motion to tracking error model. The 
tracking error of state is chosen by state equation(27) as:   

 ˆ
d X X X  (46) 

where is X the actual flight states of missile formation; dX is the expected states. Substituting 
last equation into Equ.(27) obtains the error state equation: 

 ˆ ˆ ˆ X AX BU +W  (47) 

whereŴ is the invariant perturbations of tracking error state equation, the value of this 
term is: 

 ˆ
d W W AX   

Because invariant perturbations do not affect the dynamic performance of control system no 
more than affect the stable tracking performance of this system, we can ignore this term 
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when just analyzing the stability of control system, that is, we can just analyze the following 
control system:  

 ˆ ˆ X AX BU  (48) 

Taking Lyapunov function to this system gets: 

 
2 2 21 ˆ ˆ ˆ( )

2
x y z     (49) 

The derivative of this Lyapunov function is: 

 ˆ ˆ ˆ ˆ ˆ ˆxx yy zz       (50) 

Substituting Equ.(26) to expression(50) yields: 

 ˆ( )T  BU X  (51) 

and the optimal control quantityU for this error state equation is: 

 1 ˆT U R B PX   

substituting it into Equ.(50) gets: 

 1 ˆ ˆ( )T T   BR B PX X   

Because the control energy weight matrix R in this chapter is unit matrix, there should have: 

 1 ˆ ˆTBR B PX = PX   

and then the derivative of Lyapunov function can be changed to: 

 ˆ ˆT T   X P X  (52) 

where P is the solution of Riccati Equation, which has the following characters (Xie, 1986): 
1. for every 0[ , ]t t T , P is symmetrical matrix; 
2. for every 0[ , ]t t T , P is non-negative matrix. 
So Equ.(52) is non-negative, and it also states that we can’t get the conclusion that this 
system is asymptotical until now, and need some more stronger conditions. Original system 
is time-variant system, so we can complement the stability conditions of system(48) through 
Barbalat Lemma. 
The contents of Barbalat Lemma are: if a scalar function ( , )x t is satisfied with the following 
series of conditions: 
1. ( , )x t has lower bounded; 
2. ( , )x t is semi-negative; 
3. ( , )x t is uniformly continuous with respect to time. 
then ( , ) 0x t  when t  (Slotine et al, 1991). 
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After analyzing that Lyapunov function appointed in the previous section, we can find that 
this function satisfies the former two aspects of Barbalat Lemma. If we want to prove 
expression(52) also satisfies the third point, we just need to prove  exists and is bounded. 
The expression of is:   

 ˆ ˆ ˆ ˆT T T T     X P X X P X   

at the same time, from Equ.(52) we can know: 

 0    

so, according to Equ.(49), it can be concluded that system state X̂  is bounded, 
further exists and is bounded, and then Lyapunov function meets Barbalat Lamme, that is, 
when t  ,there will be ( , ) 0x t  ,and then further ˆ X 0 , which indicates that the 
system(48) is asymptotically stable. 

5. Simulations  
5.1 Simulations for PD controller of missile formation keeping 
5.1.1 Initial conditions 
We will choose the following conditions for the simulations of PD controller: 
1. missile formation is consisted of three missiles; 
2. flight time of missile formation is 150s ;  
3. three inertial time constants of each channel of follower are 3.51sv  , 2.25s   and 

2.37s
v  ; 

4. the flight states of leader are:  
 initial positions in inertial coordinate frame are: 0 500mlX  , 0 800mlY   and 

0 0mlZ  ; intial velocitiy is 0 240m/slV  ; initial flight path angle is 0 10   ;initial flight 

deflection angle is 0 20v   . 
 the change rules of veloctity, fligh path angle and flight deflection angle of leader are: 

 

240 20sin(0.15 )
0.2sin(0.05 0.4515)

0.4sin(0.06 0.5511)

l

l

vl

V t
t

t



 
 
     

initial distances between leader and follower 1 and follower 2 are: 

 

1 2

1 2

1 2

500 400
550 m, 450 m
350 350

f f

f f

f f

x x
y y
z z

                                     
  

desired distances between leader and follower 1 and follower 2 are: 
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control system:  

 ˆ ˆ X AX BU  (48) 

Taking Lyapunov function to this system gets: 

 
2 2 21 ˆ ˆ ˆ( )

2
x y z     (49) 

The derivative of this Lyapunov function is: 

 ˆ ˆ ˆ ˆ ˆ ˆxx yy zz       (50) 

Substituting Equ.(26) to expression(50) yields: 

 ˆ( )T  BU X  (51) 

and the optimal control quantityU for this error state equation is: 

 1 ˆT U R B PX   

substituting it into Equ.(50) gets: 

 1 ˆ ˆ( )T T   BR B PX X   

Because the control energy weight matrix R in this chapter is unit matrix, there should have: 

 1 ˆ ˆTBR B PX = PX   

and then the derivative of Lyapunov function can be changed to: 

 ˆ ˆT T   X P X  (52) 

where P is the solution of Riccati Equation, which has the following characters (Xie, 1986): 
1. for every 0[ , ]t t T , P is symmetrical matrix; 
2. for every 0[ , ]t t T , P is non-negative matrix. 
So Equ.(52) is non-negative, and it also states that we can’t get the conclusion that this 
system is asymptotical until now, and need some more stronger conditions. Original system 
is time-variant system, so we can complement the stability conditions of system(48) through 
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1. ( , )x t has lower bounded; 
2. ( , )x t is semi-negative; 
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then ( , ) 0x t  when t  (Slotine et al, 1991). 
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After analyzing that Lyapunov function appointed in the previous section, we can find that 
this function satisfies the former two aspects of Barbalat Lemma. If we want to prove 
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 ˆ ˆ ˆ ˆT T T T     X P X X P X   
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 0    

so, according to Equ.(49), it can be concluded that system state X̂  is bounded, 
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5. Simulations  
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deflection angle is 0 20v   . 
 the change rules of veloctity, fligh path angle and flight deflection angle of leader are: 
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intial states of follower 1 and follower 2 are: 
  velocity: 10 180m/sfV  , 20 240m/sfV  ; 

 flight path angle: 10 5f   , 20 5f    ; 

 flight deflection angle: 10 10vf    , 20 10vf   . 

satuaration of control quantities 
Considering the feasible fight scope of missile formation, we should limit the control 
quantities of formation controller, that is, the command states of follower should be limilted. 
Here we set the satuatations are: 

 
150m/s 300m/sfcV  , -15 35fc   , -40 40vfc     

5.1.2 Simulation results and analysis 
After simulating, we can get the result curves Fig.6-Fig.12, where Fig.6 is the 3-dimensional 
motions of missile formation; Fig.7 and Fig.8 are the position components of follower 1 and 
follower 2 in relative coordinate frame respectively; Fig.9 is the distances between members 
in missile formation; Fig.10-Fig.11 are the control quantities in velocity, flight path angle and 
flight deflection angle channels of followers respectively. 
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Fig. 6. Three-dimensional trajectories of missile formation under PD controlling. 
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It can be found from those result curves showed above that PD keeping controller of missile 
formation can implement keeping control at about 25s, and control quantities are feasible; 
the stable error in rx direction is about 5m, and those in ry and rz directions are 1m and 6m 
respectively.  
Because three channels of PD controller are coupled seriously, it is very difficult to find the 
obvious relationships between the inertial time constants of each channel and control 
performance; From the change of each curve, we can find that the maneuver of leader affect 
the formation keeping control distinctly; Besides, we can find that there are evident 
regulating processes from initial states to expected states, and the maximum control 
quantity exists in two followers, its value is about 60m. 

5.2 Simulations for Optimal Controller of missile formation keeping 
5.2.1 Initial Conditions 
We will choose the following conditions for the simulations to optimal controller: 
1. weight matrices of optimal controller are: 
  output regulating weight matrix: diag(4.0,6.0,6.0)y Q ; 

  control energy weight matrix: diag(1.0,1.0,1.0)R ; 
  weight matrix of control energy changing: 1 diag(1.0,1.0,1.0)R . 
2. other conditions are same as section 5.1.  

5.2.2 Simulation results and analysis 
After simulating, we can get the result curves Fig.13-Fig.18, where Fig.13 is the 3-
dimensional motion of missile formation; Fig.14 and Fig.15 are the position components of 
follower 1 and follower 2 in relative coordinate frame respectively; Fig.16-Fig.18 are the 
control quantities in velocity, flight path angle and flight deflection angle channels of 
followers respectively. 
There are following conclusions after analyzing above result curves: 
1. Optimal keeping controller of missile formation can implement keeping on desired 

relative states at about 20s, it has faster response speed than PD controller; 
2. The maneuver motion of leader also disturbs missile formation keeping control, and 

there also exists regulation process when the states of missile formation changing from 
initial states to final states, but the disturbance amplitude is smaller that of PD 
controller; 

3.  The stable error of relative motion in rx direction is about 0.5m, and those in other two 
directions are 3m and 4m respectively, which are decreased by comparing to PD 
controller. Especially the improvement in rx direction is more evident, which is because 
the velocity of leader is considered as slowly variant perturbation that will affect 
evidently to the relative motion in rx direction, however, the optimal controller 
designed in this chapter can restrict this perturbation well, so there will be more higher 
tracking precision; 

4. We can further decrease the stable errors by enhancing output regulating weight 
matrix yQ , but this manner will increase the changing rate at the same time, so we 
should coordinate the values of weight matrix yQ , R and 1R to obtain proper control 
quantities, and achieve the minimum stable tracking error. 

 
Missile Cooperative Engagement Formation Configuration Control Method 

 

203 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

x 104
-4000

-3000

-2000

-1000

0

1000
0

1000

2000

3000

 

x(m)

z(m) 

y(
m

)

leader
follower1
follower2

 
Fig. 13. Three-dimensional trajectories of missile formation under optimal controlling. 
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Fig. 16. Velocity commands of followers. 
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Fig. 17. Flight path angle commands of followers. 
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Fig. 18. Flight deflection angle commands of followers. 



 
Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics 

 

204 

0 50 100 150
-600

-400

-200

0

200

400

600

 

 

X: 105.4
Y: 404.3

t(s)

x r,y
r,z

r(m
)

X: 88.85
Y: -450.6

X: 131.6
Y: -502.9X: 3.733

Y: -533

xrf2

yrf2

zrf2

 
Fig. 15. Distances between follower 2 and leader in relative coordinate frame. 

 

0 50 100 150
180

190

200

210

220

230

240

250

260

270

280

t(s)

V
fc

(m
/s

)

 

 
follower1
follower2

 
Fig. 16. Velocity commands of followers. 

 
Missile Cooperative Engagement Formation Configuration Control Method 

 

205 

0 50 100 150
-15

-10

-5

0

5

10

15

t(s)

θ f(°
)

 

 
follower1
follower2

 
Fig. 17. Flight path angle commands of followers. 

 

0 50 100 150
-25

-20

-15

-10

-5

0

5

10

15

20

25

t(s)

ψ
vf

(°
)

 

 

follower1
follower2

 
Fig. 18. Flight deflection angle commands of followers. 



 
Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics 

 

206 

6. Conclusion 
In this chapter, we mainly focus on some control problems of missile formation engagement. 
Significance of cooperative engagement was first presented by taking LOCAAS as instance, 
which showed the synthetical efficacy can be greatly increased by adopting cooperative 
engagement manner. Following the significance was analysis of frame of cooperative 
engagement system, which supplied the train of thought of how to research on missile 
formation control problem. Missile formation keeping control system design is the main 
content of this chapter. In this part, we established the model of relative motion in two ways 
firstly, and then designed missile formation control system based on PD control law and 
optimal control method respectively. Finally, the comparisons were made by a series of 
simulations, the conclusion that optimal controller is better from the points of view of 
stability and rapidity can be obtained from the result curves.  
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1. Introduction

Parallel manipulators, often called parallel kinematics machines (PKM), are controlled
non-linear dynamical systems. From a mechanical point of view PKM are (holonomically)
constrained mechanical systems characterized by a power transmission between input and
output. A so-called end-effector (EE), representing the mechanical output, is connected to
a fixed platform by several (often identical) serial linkages, and the constraints reflect the
existence of closed loops formed by these chains. Each chain is equipped with one or more
actuators, representing the mechanical inputs. The modeling, identification, and control of
PKM have advanced in the last decades culminating in successful industrial implementations.
Yet the acceptance of PKM is far beyond that of the well-established serial manipulators. This
is mainly due to the limited workspace, drastically varying static and dynamic properties, the
abundance of singularities within the workspace, and the seemingly complex control.
Traditionally the number of mechanical inputs of a PKM equals its mechanical
degree-of-freedom (DOF) so that the PKM is non-redundantly actuated. A means to overcome
the aforementioned mechanical limitations is the inclusion of additional actuators, commonly
by adding further limbs to the moving platform without increasing the DOF of the PKM.
As a simple example consider the PKM in figure 1. The EE can be positioned in the plane
thus possesses 2 degrees of freedom. Also the PKM as a whole has the DOF 2 so that
two actuators would be sufficient for controlling this PKM. Yet the PKM is actuated by 3
actuators, which gives rise to actuation redundancy in the sense that the actuator forces are
not independent. Such actuation redundancy has the potential to increase the EE-acceleration,
to homogenize stiffness and manipulability, and to eliminate input singularities (where the
motion of the moving platform is not controllable by the actuators), and thus to increase the
usable workspace. The design of RA-PKM, and the possible dexterity improvement were
addressed in several publications as for instance Garg et al. (2009); Gogu (2007); Krut et al.
(2004); Kurtz & Hayward (1992); Lee et al. (1998); Nahon & Angeles (1989); O’Brien & Wen
(1999); Shin et al. (2011); Wu et al. (2009).
The existence of redundant actuators allows for control forces that have no effect on the PKM
motion but rather lead to mechanical prestress within the PKM. This effect can be exploited
for different second-level control tasks such as backlash avoidance and stiffness control. In

*All control concepts proposed in this chapter were implemented by Timo Hufnagel at the Heilbronn
University.

 

Robust Modeling and Control Issues of Parallel 
Manipulators with Actuation Redundancy 

Andreas Mueller * 

University Duisburg-Essen, Chair of Mechanics and Robotics 
Germany 

12



 
Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics 

 

206 

6. Conclusion 
In this chapter, we mainly focus on some control problems of missile formation engagement. 
Significance of cooperative engagement was first presented by taking LOCAAS as instance, 
which showed the synthetical efficacy can be greatly increased by adopting cooperative 
engagement manner. Following the significance was analysis of frame of cooperative 
engagement system, which supplied the train of thought of how to research on missile 
formation control problem. Missile formation keeping control system design is the main 
content of this chapter. In this part, we established the model of relative motion in two ways 
firstly, and then designed missile formation control system based on PD control law and 
optimal control method respectively. Finally, the comparisons were made by a series of 
simulations, the conclusion that optimal controller is better from the points of view of 
stability and rapidity can be obtained from the result curves.  

7. Acknowledgment 
Thank Prof. Sang-Young Park and Korean Industry-Academic Cooperation Foundation very 
much. They supply plenteous financial support and good working conditions. 

8. References 
Cui, Naigang ; Wei, Changzhu; Guo, Jifeng & Zhao, Biao (2010). Research on the missile 

formation control system. Proceeding of the 2009 IEEE International Conference on 
Mechatronics and Automation, pp. 4197-4198, Changchun, China, August 9-12, 2009 

Wei, Changzhu; Guo, Jifeng & Cui, Naigang (2010). Research on the missile formation 
keeping optimal control for cooerative engagement. Journal of Astronautics, Vol.31, 
No.4, (2010), pp. 1043-1044, ISBN 1000-1328 

Cui, Naigang; Wei, Changzhu & Guo, Jifeng (2010). Research on four-dimensional guidance 
and control for missile cooperative engagement. Flight Dynamics, Vol.28, No.2, 
(2010), pp. 63-66, ISBN 1002-0853 

Xie, Xueshu (1986). Optimal control theroty and application (1St edition), Tsinghua University 
Press, Beijing 

Slotine, Jean Jacques & Li, Weiping (1991). Applied nonlinear control (1St edition), Prentice-
Hall International (UK) Limited, London, ISBN: 0130408905 

1. Introduction

Parallel manipulators, often called parallel kinematics machines (PKM), are controlled
non-linear dynamical systems. From a mechanical point of view PKM are (holonomically)
constrained mechanical systems characterized by a power transmission between input and
output. A so-called end-effector (EE), representing the mechanical output, is connected to
a fixed platform by several (often identical) serial linkages, and the constraints reflect the
existence of closed loops formed by these chains. Each chain is equipped with one or more
actuators, representing the mechanical inputs. The modeling, identification, and control of
PKM have advanced in the last decades culminating in successful industrial implementations.
Yet the acceptance of PKM is far beyond that of the well-established serial manipulators. This
is mainly due to the limited workspace, drastically varying static and dynamic properties, the
abundance of singularities within the workspace, and the seemingly complex control.
Traditionally the number of mechanical inputs of a PKM equals its mechanical
degree-of-freedom (DOF) so that the PKM is non-redundantly actuated. A means to overcome
the aforementioned mechanical limitations is the inclusion of additional actuators, commonly
by adding further limbs to the moving platform without increasing the DOF of the PKM.
As a simple example consider the PKM in figure 1. The EE can be positioned in the plane
thus possesses 2 degrees of freedom. Also the PKM as a whole has the DOF 2 so that
two actuators would be sufficient for controlling this PKM. Yet the PKM is actuated by 3
actuators, which gives rise to actuation redundancy in the sense that the actuator forces are
not independent. Such actuation redundancy has the potential to increase the EE-acceleration,
to homogenize stiffness and manipulability, and to eliminate input singularities (where the
motion of the moving platform is not controllable by the actuators), and thus to increase the
usable workspace. The design of RA-PKM, and the possible dexterity improvement were
addressed in several publications as for instance Garg et al. (2009); Gogu (2007); Krut et al.
(2004); Kurtz & Hayward (1992); Lee et al. (1998); Nahon & Angeles (1989); O’Brien & Wen
(1999); Shin et al. (2011); Wu et al. (2009).
The existence of redundant actuators allows for control forces that have no effect on the PKM
motion but rather lead to mechanical prestress within the PKM. This effect can be exploited
for different second-level control tasks such as backlash avoidance and stiffness control. In

*All control concepts proposed in this chapter were implemented by Timo Hufnagel at the Heilbronn
University.

 

Robust Modeling and Control Issues of Parallel 
Manipulators with Actuation Redundancy 

Andreas Mueller * 

University Duisburg-Essen, Chair of Mechanics and Robotics 
Germany 

12



2 Will-be-set-by-IN-TECH

1

2

3

End Effector
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a power port representation of the PKM control system this means that control forces are
possible without a (mechanical) power inflow into the system. This also means that in the
non-linear control system there are more control vector fields than the dimension of the state
space manifold, and that the control forces are not unique. Several strategies for redundancy
resolution were proposed exploiting redundancy for second-level control tasks, see Lee et al.
(2005); Müller (2005; 2006).
While the described advantages make the redundant actuation scheme attractive its
implementation raises several challenges, however. These challenges are due to model
uncertainties, synchronization errors in decentralized control schemes, as well to the lack
of a globally valid dynamics model. The effect of uncertainties has been analyzed in
Müller (2008) and Müller (2010) and it was show that geometric imperfections cause a
qualitative change of the way in which actuation forces act upon the PKM. This is in sharp
contrast to non-redundantly actuated manipulators where geometric uncertainties simply
cause quantitative control errors and so impair the control performance. Moreover, geometric
uncertainties of redundantly actuated PKM (RA-PKM) lead to antagonistic control forces
proportional to the linear feedback gains. It turns out that this can severely deteriorate the
integrity of the controlled RA-PKM.
Although model-based control concepts have been proposed for a long time and implemented
recently, robotic manipulators are dominantly controlled by means of decentralized control
schemes in practice. Now the indiscriminate application of decentralized control methods
to RA-PKM leads again to the problem of antagonistic control forces. In contrast to
intentionally generated counteracting control forces, generating desired prestresses, the latter
are uncontrolled parasitic control forces. This is an inherent problem of the decentralized
control of RA-PKM that can be observed even for a perfect matching of model and plant. To
eliminate such antagonistic control forces a so-called antagonism filter (AF) was proposed in
Müller & Hufnagel (2011).
The motion equations governing the PKM dynamics form the basis for any model-based
control. Aiming on an efficient formulation, the motion equations are usually derived in
terms of a minimal number of generalized coordinates that constitute a local parameterization
of the configuration space. A well-known problem of this formulation is that such minimal
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coordinates are not globally valid on the entire configuration space. Configurations where
these coordinates become invalid are called parameterization singularities. That is, it is
not possible to uniquely determine any PKM configuration by one specific set of minimal
coordinates. The most natural and practicable choice of minimal coordinates is to use the
actuator (input) coordinates as they can be measured. Then, the parameterization singularities
are also input singularities. An ad hoc method to cope with this phenomenon is to switch
between different minimal coordinates as proposed in Hufnagel & Müller (2011). This is a
computationally expensive approach since it requires monitoring the numerical conditioning
of the constraint equations, and the entire set of motion equation must be changed accordingly.
To avoid such switching a novel formulation of motion equations that does use minimal
coordinates was proposed in Müller (2011). This formulation is robust with respect to input
respectively parameterization singularities and hence does not require switching between
different parameterizations. Exponentially stable trajectory tracking can be shown when this
formulation is employed in a computed torque and augmented PD control scheme.
These observations call for robust modeling and control concepts. This chapter reports some
recent developments in modeling and control of RA-PKM.

2. The PKM control problem

2.1 Manipulator dynamics
Aiming for efficient real-time implementations model-based control schemes for PKM are
based on a dynamic model in terms of minimal coordinates as pursued in Cheng et al. (2003);
Müller (2005); Nakamura & Ghodoussi (1989); Thanh et al. (2009). A PKM is a force-controlled
mechanism with kinematic loops. Following the standard approach in multibody dynamics
the Lagrangian motion equations of first kind are first derived for the unconstrained system
(opening kinematic loops), and the Lagrange multipliers are eliminated by projecting these
equations to the configuration space defined by the (holonomic) geometric constraints. This
approach is know as the coordinate partitioning method, see Wehage & Haug (1982).
Denote with q ∈ Vn the vector of joint variables qa, a = 1, . . . , n of the unconstrained system,
obtained by opening the kinematic loops, where in each kinematic loop one joint is removed.
The loop closure is enforced by the corresponding loop constraints giving rise to a set of r
geometric and kinematic loop constraints

0 = h (q) , h (q) ∈ Rr

0 = J (q) q̇, J (q) ∈ Rr,n. (1)

The PKM in figure 1, for instance, comprises two independent kinematic loops that can be
opened by removing the two joints at the EE connecting the kinematic chain formed by joints
2 and 5 with that formed by joints 1 and 4, and joints 3 and 6, respectively. The resulting
unconstrained tree-system in figure 2 has n = 6 generalized coordinates qa, a = 1, . . . , 6.
With the constraints (1) the Lagrangian motion equations of the PKM are

G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t) + JT (q)λ = u. (2)

G is the generalized mass matrix of the tree-system, Cq̇ represents generalized Coriolis
and centrifugal forces, Q represents all remaining forces, including EE loads, and u are
the generalized control forces. The Lagrange multipliers λ can be identified with the
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eliminate such antagonistic control forces a so-called antagonism filter (AF) was proposed in
Müller & Hufnagel (2011).
The motion equations governing the PKM dynamics form the basis for any model-based
control. Aiming on an efficient formulation, the motion equations are usually derived in
terms of a minimal number of generalized coordinates that constitute a local parameterization
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approach is know as the coordinate partitioning method, see Wehage & Haug (1982).
Denote with q ∈ Vn the vector of joint variables qa, a = 1, . . . , n of the unconstrained system,
obtained by opening the kinematic loops, where in each kinematic loop one joint is removed.
The loop closure is enforced by the corresponding loop constraints giving rise to a set of r
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0 = J (q) q̇, J (q) ∈ Rr,n. (1)

The PKM in figure 1, for instance, comprises two independent kinematic loops that can be
opened by removing the two joints at the EE connecting the kinematic chain formed by joints
2 and 5 with that formed by joints 1 and 4, and joints 3 and 6, respectively. The resulting
unconstrained tree-system in figure 2 has n = 6 generalized coordinates qa, a = 1, . . . , 6.
With the constraints (1) the Lagrangian motion equations of the PKM are

G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t) + JT (q)λ = u. (2)
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Fig. 2. Definition of loop constraints for the planar 2 DOF RA-PKM.

constraint reactions in cut-joints. The vector q ∈ Vn represents the PKM configuration. The
configuration space (c-space) of the PKM model is defined by the geometric constraints:

V := {q ∈ Vn|h (q) = 0} . (3)

If J has locally full rank r, one can select δ := n − r joint variables, called independent
coordinates, such that the admissible configurations q ∈ V are functions of these independent
coordinates. This induces a coordinate partitioning. If the rank of J is constant, the c-space
is smooth δ-dimensional manifold and δ is the DOF of the PKM, see Müller (2009). A
configuration q where the rank of J changes is called a c-space singularity since then V is
not a smooth manifold in q.
Denote with q1 and q2 respectively the vector of dependent and independent coordinates, the
velocity constraints can be written as

J1q̇1 + J2q̇2 = 0, (4)

where J = (J1, J2), with J1 (q) ∈ Rr,r, J2 (q) ∈ Rr,δ. By definition of independent coordinates
J1 has full rank, and the generalized velocities can be expressed as

q̇ = Fq̇2, where F :=

(−J−1
1 J2

Iδ

)
. (5)

where the matrix F is an orthogonal complement of J because JF ≡ 0 . The time derivative of
(5) yields the accelerations q̈ = Fq̈2 + Ḟq̇2.
Due to the existence of kinematic loops, PKM comprise passive joints and only the m control
forces corresponding to the active joints are present in u. Denote with c ≡ (c1, . . . , cm) the
vector of generalized control forces in the actuated joints, and let A be that part of F so that
FTu = ATc. This means that if qa denote the vector of m actuator coordinates, then q̇a = Aq̇2.
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Projecting the motion equations (2) of the tree-system to the configuration space V, with the
help of the orthogonal complement F, and with (5), yields

G(q) q̈2 + C (q, q̇) q̇2 + Q(q, q̇, t) = AT(q) c (6)

where
G := FTGF, C :=FT(CF + GḞ), Q := FTQ. (7)

The δ = n − m equations (6) together with the r dynamic constraints Jq̈ + J̇q̇ = 0 yield a
system of n ODE’s in the n generalized coordinates q that govern the PKM dynamics when
controlled via the generalized control forces c. The equations (6) have been first proposed by
Voronets (1901) and are a special kind of Maggi’s equations, Maggi (1901). They have been
proposed for use in multibody dynamics in Angles & Lee (1988); Wehage & Haug (1982), and
were put forward for PKM modeling in Cheng et al. (2003); Müller (2005); Thanh et al. (2009).
The PKM control problem can now be represented as the control-affine control system

ẋ = f (x) +
m

∑
i=1

gi (x) ci (8)

with state vector x := (q2, q̇2), where

f :=

(
q̇2

−G
−1(

Cq̇2 + Q
)
)

, g :=

(
0

G
−1

AT

)
. (9)

f is the drift vector field, and the columns gi, i = 1, . . . , m are the control vector fields that
determine how the control forces affect the system’s state.

2.2 Actuation concepts
Based on the control system (8) different actuation schemes can be distinguished. Actuation
refers to the immediate effect of control forces in a given state of the PKM. Apparently the
degree of actuation has to do with the number of independent control vector fields. The degree
of actuation (DOA) can be defined as the number of independent input vector fields gi in the
control system (8). With regular G the DOA is

α (q) := rank M (q) . (10)

If α (q) < δ, the system is called underactuated, and if α (q) = δ, it is called full-actuated at q.
The system is called redundantly actuated at q, if m − α (q) > 0 and non-redundantly actuated
at q, if m = α (q). Apparently a system can be redundantly underactuated. Configurations q
where the DOA changes, i.e. when α is not constant in a neighborhood of q, are called input
singularities, see Müller (2009); Zlatanov & Fenton (1998).

2.3 Inverse dynamics solution
The inverse dynamics problem is to find the control forces c required for controlling the
PKM along a prescribed target trajectory q (t). The system (6) has no unique solution
for c. Moreover, it is clear that only those c in the range of the control matrix AT are
effective control forces, and that arbitrary forces c0 (prestress) in the null-space of AT can
be superposed. If c0 is the vector of desired prestress, for given q, q̇, q̈, a solution such that
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2.3 Inverse dynamics solution
The inverse dynamics problem is to find the control forces c required for controlling the
PKM along a prescribed target trajectory q (t). The system (6) has no unique solution
for c. Moreover, it is clear that only those c in the range of the control matrix AT are
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(
c − c0)T W

(
c − c0) → min is given by

c =
(

AT
)+

W
FT(G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇)) + NAT ,Wc0

=
(

AT
)+

W
(G (q) q̈2 + C (q, q̇) q̇2 + Q (q, q̇) ) + NAT,Wc0 (11)

where
(
AT)+

W := W−1A
(
ATW−1A

)−1 is the weighted right pseudoinverse, and NAT ,W :=

(Im − (
AT)+

W AT) is a projector to the null-space of AT. W is a symmetric positive
definite weighting matrix for the drive forces in accordance with the drive capabilities. The
pseudoinverse solution in (11) delivers the controls that produce the desired motion, where
the drive load is balanced between the individual drives according to the weights. The second
part of the control vector c is the null-space component generating prestress that is closest to
the desired c0. The possibility of generating control forces in the null-space has been used
for backlash avoidance and stiffness control Müller (2005; 2006); Valasek et al. (2002); Yi et al.
(1989).

3. Decentralized control schemes

3.1 Peculiarities of PKM with actuation redundancy
Decentralized control of individual actuators without taking into account the dynamics of the
controlled system is still the standard control method in industrial applications. Moreover the
majority of contemporary robotic manipulators are controlled by a decentralized PD law in
favor of its simple computation and low-cost setup. In contrast to model-based control, the
actuators are controlled independently, without reference to the dynamics of the non-linear
control system, exclusively upon the individual commands obtained from motion planning
and inverse kinematics. In other words, it is assumed that all actuators can be independently
controlled without mutual interference. This applies to serial manipulators as well as to
PKM without actuation redundancy as summarized in Paccot et al. (2009) and Thanh et
al. (2009). However, since in case of RA-PKM more actuators are activated than required,
decentralized control of RA-PKM naturally leads to conflicting control forces, reflected by
undesired prestresses and an increased power consumption as observed in Saglia et al.
(2009),Valasek et al. (2005), Wang et al. (2009). Hence antagonistic control forces cannot
be attributed to model uncertainties alone, as analyzed in Müller (2010), which could be
minimized using model identification methods. Even more such counteraction is inherent
to the decentralized control method. In order to eliminate contradicting control forces the
actuation redundancy must be resolved also within decentralized control, which requires a
kinematic model. In the following the interplay of measurement errors and decentralized
control is discussed.
As above denote with q and qa the actual generalized coordinates of the plant (which is
unknown). Further a measurement error is assumed caused by a constant (calibration) offset
Δqa. The vector of measured actuator coordinates is then introduced as q̃a := qa + Δqa. If
qd

a (t) denotes the desired actuator motion, ea := qa − qd
a is the actual tracking error. Due to

the calibration offset the measured tracking error is ẽa = q̃a − qd
a = ea + Δqa.

The simple PD control law that independently regulates the m actuator positions upon these
measurements is

c = −KPẽa − KD ˙̃ea. (12)
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KP and KD are diagonal positive definite gain matrices. The effect of measurement errors
can be understood considering the pose q̃a that is attained as result of a constant setpoint
command qd

a . The stationary control forces, not producing any motion, are those c0 in the
null-space of AT (q), i.e.

0 = AT (q) c0 = −AT (q)KPẽa = −AT (q)KP (ea + Δqa) . (13)

If there are no measurement errors (and no model uncertainties) it is Δqa = 0, and the PKM
converges to ea = 0 since qa and qd

a satisfy the geometric constraints. Since generally Δqa do
not comply with the geometric constraints the PKM converges to a qa such that ea + Δqa is
in the null-space of ATKP. The exact value of q depends on external forces, e.g. gravity and
process loads. The attained steady state error is

ea = −K−1
P

(
AT)+KPΔqa (14)

with the right pseudoinverse
(
AT)+ = A

(
ATA

)−1 of AT. In this equilibrium configuration
the PD controllers yield the steady state actuator forces c0 = KP (ea + Δqa). Since they are in
the null-space of AT the RA-PKM stays at rest.
The consideration so far applies to constant calibration offsets. A further source of
systematic measurement errors is the encoder resolution within the actuators. Assuming
exact calibration, for simplicity, the error measurement, and thus Δqa, change discontinuously
according to the resolution. Then the solution for the steady state error (14) is only piecewise
valid and may not be unique. Moreover the interplay of antagonistic forces and the
quantization of q̃a can cause alternating control forces, and hence excited vibrations. This
is clear by noting that Δqa changes in discrete steps so that during the settling process the
components of ea + Δqa in the null-space of ATKP are changing discontinuously and thus
cause discontinuous control forces.
The crucial point is that the decentralized control scheme (13) is not restricted to the range
of AT , and so yields antagonistic control forces in the null-space of AT. Such contradictory
control forces are on the one hand due to measurement errors but are on the other hand
inevitably caused by the uncoordinated control of individual actuators with (12). In the
decentralized PD control the individual controller for each kinematic chain, connecting the
EE to the base, acts independently without respecting the coordination within the closed
kinematic loops of the RA-PKM. Consider this phenomenon for the 2 DOF RA-PKM in
figure 1. The manipulator can be viewed as the cooperation of two (virtually independent)
non-redundantly actuated 5-bar linkages as shown in figure 3. Consider the situation when
the EE is to follow a straight line depicted in figure 3. The three base joints, with coordinates
q1, q2, and q3, are actuated. Two of these actuators are sufficient for this 2 DOF system,
however. For instance, the PKM can be controlled by joints 1 and 2, or joints 2 and 3.
Consequently the motion control of the 5-bar loop consisting of joints 1 and 2, and the other
5-bar loop with joints 2 and 3 must be synchronized. Controlling the loops independently,
the control commands for steering the EE along the straight line, determined from (12), drive
either 5-bar loop along a straight line in the q1 − q2 and q2 − q3 joint subspace, respectively. The
latter correspond to EE-curves depicted in figure 3. It is apparent that the control commands
of the 5-bar linkages are contradicting due to the missing synchronization of the two loops.
This is an inherent problem of the decentralized control, which does exist for the model-based
control schemes that a priori respects such interdependencies.
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KP and KD are diagonal positive definite gain matrices. The effect of measurement errors
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5-bar loop with joints 2 and 3 must be synchronized. Controlling the loops independently,
the control commands for steering the EE along the straight line, determined from (12), drive
either 5-bar loop along a straight line in the q1 − q2 and q2 − q3 joint subspace, respectively. The
latter correspond to EE-curves depicted in figure 3. It is apparent that the control commands
of the 5-bar linkages are contradicting due to the missing synchronization of the two loops.
This is an inherent problem of the decentralized control, which does exist for the model-based
control schemes that a priori respects such interdependencies.
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Fig. 3. Explanation of the synchronization error in decentralized control.

3.2 Antagonism filter - a method for reducing counteraction
Apparently the antagonistic actuator forces are those control commands that are
(unintentionally) in the null-space of AT. Elimination of these antagonistic control forces is
hence equivalent to the removal of those components of the control forces c that are in the
null-space of AT . This is readily achieved using the projector

RAT := I − NAT =
(
AT)+AT (15)

onto the range of AT , where NAT is the null-space projector. This projector can be applied to
any actuator force commands (not necessarily computed from (12)), and return the effective
control forces

ceff = RAT c. (16)

These control forces can be applied to the PKM without changing the drive action since
ATRAT = AT . Because RAT eliminates the antagonistic actuator forces it is called the
antagonism filter (AF) in Müller & Hufnagel (2011).
In practice the individual actuators are position/velocity controlled rather than force
controlled. Since this splitting concerns the actuator forces it needs to be transformed to the
position and velocity command. Therefore the error vector in (12) is projected to the range of
ATKP and ATKD, respectively, so that

eeff = RATKP
ẽa, ėeff = RATKD

˙̃ea. (17)

Then the corrected command sent to the individual PD controllers is

qd
eff = qa − eeff, q̇d

eff = q̇a − ėeff. (18)

3.3 Case study: Planar 2 DOF RA-PKM
The AF has been applied to decentralized control of the planar 2 DOF redundantly
full-actuated PKM in figure 1. The testbed was developed at the Heilbronn University as
reported in Hufnagel & Müller (2011) and Müller & Hufnagel (2011), where all experiments
were carried out. The prototype consists of arm segments with a length of 200 mm. The
three revolute joints are located at an equilateral triangle with lateral length 400 mm. The base
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joints are actuated with DC motors (Maxon Re30). The RA-PKM can be controlled either with
individual PD controllers or a model-base control scheme (see section 4.5). The PD controllers
are designed for a load corresponding to the weight of one arm (134 g). In the following results
for the PD controller are reported.
As example the PKM is controlled within 5 s along the triangular EE trajectory in figure 4.
The trajectory is planned according to the maximal acceleration of about 0.5 m

s2 . The required
actuator motions are determined from the inverse kinematics that are the target trajectories of
the PD controllers. The manipulator was calibrated manually in order to reduce calibration
errors. The required joint torques are shown in figure 5 and the joint errors in figure 6. The
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Fig. 4. Triangular EE-path along which the RA-PKM is controlled with the CTC.
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Fig. 7. Joint torques when the AF is applied to decentralized PD control of the RA-PKM.

initial and final torques and errors in the actuator joint angles when the PKM is at rest are due
to the remaining calibration uncertainty and encoder quantization. These steady state drive
torques are in accordance with (13) and (14). Application of the AF (15) reduces the overall
drive torques as shown in figure 7. The antagonistic actuator torques are almost removed
by the AF. A small part of the constant initial and final actuator torques remain, however.
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Motor i Electric Energy Consumption Eel
i

1
2
3

without AF with AF

1.3347 Ws 0.4574 Ws
1.5414 Ws 0.7010 Ws
1.6844 Ws 1.0801 Ws

Table 1. Energy consumption if the PKM is manually recalibrated.

This can be explained by noting that the control matrix AT and the AF are computed upon
the measurement q̃a, and that there are always model imperfections. A reduction of electric
energy translates directly to the reduction of actuator torques, and the reduced actuator
torques are reflected by a reduced electrical power consumption Eel

i of motor i. Table 1 shows
the energy consumptions when the RA-PKM is controlled with and without application of the
AF. A significant reduction of electrical energy consumption and thus of the drive torques is
apparent. The performed mechanical work is indeed not altered by AF.

4. Model-based control schemes

4.1 Augmented PD and computed torque controller
Two accepted methods for the model-based control of robotic manipulators are the augmented
PD (APD) and computed torque control (CTC) schemes Asada & Slotine (1986); Murray et
al. (1993). Both schemes consist of a non-linear feedforward term, that delivers the control
forces required for steering the PKM along the desired trajectory, and a linear feedback term
to compensate drifts from the desired motion. Now the feedforward term requires the inverse
dynamics solution (11). These control methods, originally derived for non-redundantly
actuated systems, can be directly adopted for RA-PKM as in Cheng et al. (2003); Müller (2005);
Paccot et al. (2009). The APD can be used in the form (omitting null-space components)

c =
(

AT(q)
)+ [

G (q) q̈d
2 + C (q, q̇) q̇d

2+Q (q, q̇)− KDė2 − KPe2

]
, (19)

wherein qd (t) is the desired path, and e2 (t) := q2 (t) − qd
2 (t) is the tracking error of the

independent coordinates. The gain matrices KD and KP are diagonal and positive definite.
An adopted form of the CTC law for RA-PKM is

c =
(

AT(q)
)+ [

G (q) v2 + C (q, q̇) q̇2+Q (q, q̇)
]
, (20)

with v2 := q̈d
2 − KDė2 − KPe2. Perfect matching of model and plant presumed, both control

laws applied to (6) result in exponentially stable trajectory tracking for sufficiently large gains
KD and KP, provided G is regular. The latter assumption only fails in configuration space
singularities of the PKM and in singularities of the parameterization of the model. This is in
particular critical for RA-PKM as explained in the next section.

4.2 Parameterization-singularities of the dynamic model
It is well-known that there is generally no choice of minimal coordinates that is valid for the
entire motion range of the manipulator. Parameterization-singularities refer to configurations
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initial and final torques and errors in the actuator joint angles when the PKM is at rest are due
to the remaining calibration uncertainty and encoder quantization. These steady state drive
torques are in accordance with (13) and (14). Application of the AF (15) reduces the overall
drive torques as shown in figure 7. The antagonistic actuator torques are almost removed
by the AF. A small part of the constant initial and final actuator torques remain, however.
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, (20)

with v2 := q̈d
2 − KDė2 − KPe2. Perfect matching of model and plant presumed, both control

laws applied to (6) result in exponentially stable trajectory tracking for sufficiently large gains
KD and KP, provided G is regular. The latter assumption only fails in configuration space
singularities of the PKM and in singularities of the parameterization of the model. This is in
particular critical for RA-PKM as explained in the next section.

4.2 Parameterization-singularities of the dynamic model
It is well-known that there is generally no choice of minimal coordinates that is valid for the
entire motion range of the manipulator. Parameterization-singularities refer to configurations
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where a selected set of independent coordinates becomes invalid. This problem is usually
solved ad-hoc by switching between different mathematical models as proposed in Hufnagel
& Müller (2011). There is, however, no general approach to cope with this problem. While
this is essentially a numerical problem of the particular PKM model it does have a great
significance for PKM control. In particular the improper selection of generalized coordinates
can severely deteriorate the stability of model-based control schemes.
The inherent problem of the minimal coordinate formulation is the need for selecting
independent minimal coordinates q2. Since they are local coordinates on the c-space V the
PKM configuration cannot be expressed globally in terms of these minimal coordinates. That
is, any such minimal coordinates are only valid in a limited range of motion, and a collection
of different sets of minimal coordinates is necessary to cover the entire c-space. The switching
method proposed in Hufnagel & Müller (2011) switches between such local coordinates.
From a practical point of view it makes sense to use δ actuator coordinates as independent
coordinates in the motion equations (6). That is, q2 is a subset of qa. In other words the
PKM is considered as non-redundantly actuated and its motion equations are parameterized
in terms of δ actuator coordinates. Consequently, parameterization-singularities are exactly
the input-singularities of the non-redundantly actuated PKM. For example, the planar 2
DOF RA-PKM in figure 1 is naturally parameterized in terms of δ = 2 out of the m = 3
actuator coordinates. This leads to parameterization-singularities shown in figure 8. Figure
8 a) shows two configurations where the actuator coordinates q1 and q2 are not valid as
independent coordinates for the PKM model. In these configurations the PKM configuration
is not uniquely determined by the motion joints of 1 and 2 so that q1 and q2 fail as
independent coordinates. Alternatively joints 1 and 3 could be used to control the PKM.
That is, q1 and q3 would constitute independent coordinates of the minimal coordinate
model (6). This parameterization exhibits the singular configurations in figure 8 b), however.
Similar singularities exist when q2 and q3 are used as independent, and moreover there are
parameterization-singularities for any choice of two actuator angles.
Now it is important to notice that any switching to different independent coordinates
q2 causes a complete change of the motion equations (6). Such a switching method is
thus computationally rather complex and accompanied by a high implementation effort.
Its application to general RA-PKM requires monitoring the numerical conditioning of the
orthogonal complement F in (5) in order to detect switching points. Only for simple
mechanisms, such as the reported 2 DOF RA-PKM in figure 1, the switching points can be
determined explicitly giving rise to a switching map.

4.3 A robust formulation of the dynamic model in redundant coordinates
The minimal coordinate formulation (6) is prone to parameterization-singularities.
Coordinate switching methods, introduced to cope with this problem, are computationally
rather complex for general PKM. An approach that completely avoids the use of independent
coordinates was proposed in Müller (2011) where the motion equations are expressed in terms
of n redundant coordinates. The idea is to eliminate the Lagrange multipliers from (2) by
means of a projector to the null-space of J. That is, instead of premultiplication with FT,
(2) is premultiplied with a null-space projector determined from the pseudoinverse of J. As
long as the PKM does not encounter c-space singularities, where rank J drops, the constraint
Jacobian J is always full rank r, and its right pseudoinverse is given by J+ = JT(JJT)−1. The
corresponding projector to the null-space of J is then NJ = In − J+J. This projector does not
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EE

Fig. 8. Different parameterization singularities if the 2 DOF planer PKM is non-redundantly
actuated. The mechanism shown in color is the equivalent non-redundantly actuated
mechanisms being instantaneously in an input-singularity.

require the selection of minimal coordinates, it is a rank deficient n × n matrix with constant
rank δ = n − r, and NJ = NT

J = NJNJ.
As with the orthogonal complement the null-space projector must be partitioned according
to the coordinates of the passive and actuated joints. To this end the coordinate vector is
rearranged as q =

(
qp, qa

)
, Denote with qp and qa the vector consisting of the m coordinates

of passive joints and δ coordinates of actuator joints, respectively. With the assumption that
the PKM configuration is determined by the m actuator coordinates, δ actuator coordinates
serve as minimal coordinates, so that qa = (..., q2). Then the projector can be partitioned as

NJ =

(
P̃
Ã

) − (n − m)× n
− m × n

(21)

where Ã corresponds to the actuator coordinates so that q̇a = Ãq̇. Premultiplication of the
motion equations (2) with NT

J = NJ and JNJ = 0 yields a system of n motion equations

NJ(G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t)) = ÃTc. (22)

Only δ = n− r of these n equations are independent, however. The q̇ and q̈ in (22) must satisfy
the constraints. If this cannot be ensured, in particular if q are determined from measured
values, they must be projected according to q̇proj = NJq̇ and q̈proj = NJq̈ + ṄJq̇. This leads

219Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy



12 Will-be-set-by-IN-TECH

where a selected set of independent coordinates becomes invalid. This problem is usually
solved ad-hoc by switching between different mathematical models as proposed in Hufnagel
& Müller (2011). There is, however, no general approach to cope with this problem. While
this is essentially a numerical problem of the particular PKM model it does have a great
significance for PKM control. In particular the improper selection of generalized coordinates
can severely deteriorate the stability of model-based control schemes.
The inherent problem of the minimal coordinate formulation is the need for selecting
independent minimal coordinates q2. Since they are local coordinates on the c-space V the
PKM configuration cannot be expressed globally in terms of these minimal coordinates. That
is, any such minimal coordinates are only valid in a limited range of motion, and a collection
of different sets of minimal coordinates is necessary to cover the entire c-space. The switching
method proposed in Hufnagel & Müller (2011) switches between such local coordinates.
From a practical point of view it makes sense to use δ actuator coordinates as independent
coordinates in the motion equations (6). That is, q2 is a subset of qa. In other words the
PKM is considered as non-redundantly actuated and its motion equations are parameterized
in terms of δ actuator coordinates. Consequently, parameterization-singularities are exactly
the input-singularities of the non-redundantly actuated PKM. For example, the planar 2
DOF RA-PKM in figure 1 is naturally parameterized in terms of δ = 2 out of the m = 3
actuator coordinates. This leads to parameterization-singularities shown in figure 8. Figure
8 a) shows two configurations where the actuator coordinates q1 and q2 are not valid as
independent coordinates for the PKM model. In these configurations the PKM configuration
is not uniquely determined by the motion joints of 1 and 2 so that q1 and q2 fail as
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218 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy 13

a) b)1
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EE

Fig. 8. Different parameterization singularities if the 2 DOF planer PKM is non-redundantly
actuated. The mechanism shown in color is the equivalent non-redundantly actuated
mechanisms being instantaneously in an input-singularity.

require the selection of minimal coordinates, it is a rank deficient n × n matrix with constant
rank δ = n − r, and NJ = NT

J = NJNJ.
As with the orthogonal complement the null-space projector must be partitioned according
to the coordinates of the passive and actuated joints. To this end the coordinate vector is
rearranged as q =

(
qp, qa

)
, Denote with qp and qa the vector consisting of the m coordinates

of passive joints and δ coordinates of actuator joints, respectively. With the assumption that
the PKM configuration is determined by the m actuator coordinates, δ actuator coordinates
serve as minimal coordinates, so that qa = (..., q2). Then the projector can be partitioned as

NJ =

(
P̃
Ã

) − (n − m)× n
− m × n

(21)

where Ã corresponds to the actuator coordinates so that q̇a = Ãq̇. Premultiplication of the
motion equations (2) with NT

J = NJ and JNJ = 0 yields a system of n motion equations

NJ(G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t)) = ÃTc. (22)

Only δ = n− r of these n equations are independent, however. The q̇ and q̈ in (22) must satisfy
the constraints. If this cannot be ensured, in particular if q are determined from measured
values, they must be projected according to q̇proj = NJq̇ and q̈proj = NJq̈ + ṄJq̇. This leads
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to
�G (q) q̈ + �C (q, q̇) q̇ + �Q (q) = �ATc (23)

with
�G:=NT

J GNJ, �C :=NT
J (CNJ + GṄJ), �Q:=NT

J Q. (24)

The time derivative in (21) is readily found to be ṄJ = − �
B+ḂNJ

�− �
B+ḂNJ

�T.
The dynamics model (22) in redundant coordinates is globally valid in all regular
configurations as it does not involve any minimal coordinates.

4.4 Model-based control in redundant coordinates
4.4.1 Inverse dynamics
In order to use the dynamics formulation in redundant coordinates within a model-based
controller (22), respectively (23), must be solved for c. The general inverse dynamics solution
(neglecting prestress forces) is

c =
��AT�+NJ(G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t)). (25)

The crucial point here is the computation of the pseudoinverse. The n × m matrix �AT is not
regular since rank �AT = δ < m < n. Hence the closed form Moore-Penrose pseudoinverse is
not applicable. The singular value decomposition (SVD) can always be used to iteratively
determine the pseudoinverse. This is generally not applicable for real-time applications
due to its numerical complexity. Now if the redundantly actuated PKM does not poses
input-singularities, the PKM configuration is uniquely determined by the m > δ input
coordinates. Hence at any time rank �A = δ, and a full-rank δ × n submatrix �A1 can be
separated so that

�A =

� �A1�A2

�
(26)

with the remaining (m − δ) × n matrix �A2. Upon this partitioning the following explicit
expression for the pseudoinverse was presented in Müller (2011):

��AT�+ =

⎛
⎝

��AT
1
�+ �

In − �AT
2
�
Im−δ + BTB

�−1
BT(�AT

1
�+�

�
Im−δ + BTB

�−1
BT��AT

1
�+

⎞
⎠ (27)

with B =
��AT

1
�+ �AT

2 and the left pseudoinverse
��AT

1
�+

=
��A1 �AT

1
�−1 �A1.

The partitioning (26) is equivalent to selecting δ independent coordinates. As already
discussed such a selection, and thus the submatrix �A1, is not unique, which rises again
the problem of selecting δ independent coordinates out of the m actuator coordinates.
Consequently the full-rank δ × n matrix �A1 must be selected depending on the actual PKM
pose. The important difference to the minimal coordinate formulation is that only the
submatrix �A must be selected whereas the motion equations (22) and (23) are globally valid
and remain unaltered in the entire motion range. Switching is only performed within the
pseudoinverse computation for �AT . The selection of a proper submatrix requires monitoring
the rank of the δ × δ matrix �A1 �AT

1 .
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4.4.2 Augmented PD control
The control task is to minimize the tracking error of the actuator coordinates given a target
trajectory with qd

a (t). With the above formulation it is straightforward to introduce the
following APD control scheme

c =
(
ÃT)+ (

G̃ (q) q̈d+C̃ (q̇, q) q̇d+Q̃ (q, q̇, t)− KPe − KDė
)

(28)

=
(
ÃT)+NJ(G (q) q̈d+C (q, q̇) q̇d+Q (q, q̇, t)− KPe − KDė)

with error vector e := q − qd. Now the gain matrices measure the errors in the m actuator
coordinates. That is, assuming the coordinate partitioning q≡(

qp, qa
)
, they have the form

K = diag (0, . . . , 0, K1, . . . , Km) . (29)

The closed loop dynamics, when (28) is applied to the model (23), is governed by

G̃q̈ − DG̃q̈d + C̃q̇ − DC̃q̇d + Q̃ − DQ̃ + DKD ė + DKPe = 0 (30)

with D = ÃT(ÃT)+ �= In. The rank deficiency of Ã implies that D �= In.
It can be shown that the APD control scheme (28) achieves exponential trajectory tracking on
the c-space V using the Lyapunov function

V (ė, e, t) =
1
2

ėTG̃ (q) ė +
1
2

eTKPe +
1
2

εeTG̃ (q) ė (31)

with ε > 0. V (ė, e, t) is positive definite, and V̇ is negative definite for all trajectories in
V. These properties are directly inherited from the minimal coordinate formulation via the
projection onto V with the projector NJ.

4.4.3 Computed torque control
The standard CTC scheme is easily adapted to the redundant coordinate formulation as

c =
(
ÃT)+ (

G̃ (q) v + C̃ (q̇, q) q̇ + Q̃ (q, q̇, t)
)

=
(
ÃT)+NJ (G (q) v + C (q, q̇) q̇ + Q (q, q̇, t)) (32)

with v = q̈ − KPe − KDė and the gain matrices in (29). It is readily shown that the CTC (32)
achieves exponential trajectory tracking on V. Choose local coordinates q2 on V, and let P1
be a projector to the vector space of dependent velocities q̇1, and P2 a projector to the vector
space of independent velocities q̇2. Then the dynamics of the closed loop splits into

P1

(
G̃q̈ + C̃q̇ + Q̃

)
= 0 (33)

P2G̃ (ë + KDė + KPe) = 0. (34)

The first n − δ equations are automatically satisfied for trajectories in V if the second system is
satisfied. The second system, consisting of δ equations, governs the error dynamics in term of
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projection onto V with the projector NJ.

4.4.3 Computed torque control
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(
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=
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with v = q̈ − KPe − KDė and the gain matrices in (29). It is readily shown that the CTC (32)
achieves exponential trajectory tracking on V. Choose local coordinates q2 on V, and let P1
be a projector to the vector space of dependent velocities q̇1, and P2 a projector to the vector
space of independent velocities q̇2. Then the dynamics of the closed loop splits into

P1

(
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The first n − δ equations are automatically satisfied for trajectories in V if the second system is
satisfied. The second system, consisting of δ equations, governs the error dynamics in term of
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independent coordinates. For trajectories in V this is equivalent to the system of δ equations

G
(

ë2 + FTKDFė2 + FTKPFe2

)
= 0 (35)

with positive definite G = FTG̃F in (7). The stability of the controller is ensured with positive
definite gains.

4.5 Case study: Planar 2 DOF RA-PKM
The proposed CTC control scheme in redundant coordinates was implemented in a prototype
of the planar 2 DOF PKM in figure 1, which is briefly described in section 3.3. As discussed in
section 2.1 the dynamic model is given in terms of n = 6 joint angles, giving rise to a system
of n = 6 motion equations (22). The projected 6 × 3 control matrix M̃ has rank 2.
The manipulator is controlled along the EE-path in figure 4. If two actuator joint angles are
used as independent coordinates the minimal coordinate model (6) exhibits parameterization
singularities as described in section 4.2. Moreover the EE-path passes such singularities
several times and the minimal coordinate model is not valid. The redundant coordinate
formulation does not suffer from such singularities.
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Fig. 9. Actuator torques when the RA-PKM is controlled along the EE-path of figure 4 by a
CTC model in terms of redundant coordinates.

Figure 9 shows the actuator torques when the RA-PKM is controlled by the CTC scheme
(32). Figure 10 shows the corresponding actuator tracking errors. Apparently the motion and
the torque evolution is smooth and unaffected by any singularities thanks to the redundant
coordinate formulation. Notice that also for this CTC method there are non-zero drive torques
even if the RA-PKM is at rest. This is again due to measurement errors in conjunction with
actuation redundancy. The crucial point in the inverse dynamics formulation (25) is the
computation of the pseudoinverse (27). This requires identification of a full rank submatrix
Ã1, i.e. δ actuator coordinates representing valid local coordinates on V. A straightforward

implementation is to select one of the three combinations q(1)
2 = (q1, q2), q(2)

2 = (q1, q3), and
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Fig. 10. Joint tracking error when the RA-PKM is controlled by a CTC model in redundant
coordinates.

q(3)
2 = (q2, q3) based on the infinity norm of the corresponding Ã1. That is, the submatrix Ã1,

corresponding to a certain q(i)
2 , is selected for which ||Ã1||∞ is minimal.

5. Summary

Redundant actuation has the potential to improve the kinematic and dynamic performance of
PKM. This redundancy is easily taken into account within the design process so to optimize
dexterity. It turns out, however, that the control of RA-PKM poses several challenges. A
problem that is peculiar to RA-PKM is the existence of antagonistic control forces. Such
forces can be employed purposefully to avoid backlash or to modulate the EE stiffness,
but impair the performance and stability of decentralized control schemes for RA-PKM. In
this chapter the applicability of decentralized control schemes is analyzed, and it is shown
that they inherently cause antagonistic control forces. As remedy a so-called antagonism
filter is proposed that eliminates antagonistic control forces. Another problem arises in
the model-based control of RA-PKM. Since the dynamics model is commonly formulated
in terms of a set of independent actuator coordinates the model of the RA-PKM becomes
invalid at the input singularities of the non-redundantly actuated PKM. This would limit
the controllable motion range to that of the non-redundant PKM. To overcome this problem
a formulation in redundant coordinates was presented that does not require the selection
of independent actuator coordinates. This formulation is valid in the entire motion range.
Thereupon an augmented PD and computed torque controller was proposed. Experimental
results are reported for the planar 2 DOF RA-PKM that confirmed the robustness of these
control schemes.
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1. Introduction 

Nonlinear system control has been widely concern of the research. At present, the nonlinear 
system decoupling control and static feedback linearization that based on the theory of 
differential geometry brought the research getting rid of limitation for local linearization 
and small scale motion. However, differential geometry control must depend on precise 
mathematical model. As a matter of fact, the control system usually is with parameters 
uncertainties and output disturbance. Considering sliding mode variable structure control 
with good robust, which was not sensitive for parameters perturbation and external 
disturbance, the combination idea of nonlinear system and sliding mode controls was 
obtained by reference to the large number of documents. Thus, it not only can improve 
system robustness but solve the difficulties problem of nonlinear sliding mode surface 
structure. As known to all, traditional sliding mode had a defect that is chattering 
phenomenon. A plenty of research papers focus on elimination/avoidance chattering by 
using different methods. By comparing, the chapter is concerned with novel design method 
for high order sliding mode control, which can eliminate chattering fundamentally. 
Especially, the approach and realization of nonlinear system high order sliding mode 
control is presented. 
High order sliding mode technique is the latest study. This chapter from the theory analysis 
to the simulation and experiment deeply study high order sliding mode control principle 
and its applications. The arbitrary order sliding mode controller is employed, whose relative 
degree can equal any values instead of one.  
In addition, the control systems design is very often to differentiate the variables. Through 
the derivation of sliding mode, the expression of sliding mode differential value is obtained. 
At the same time, the differentiator for arbitrary sliding mode is given to avoiding complex 
numerical calculation. It not only remains the precision of variables differential value, but 
also obtains the robustness. 
Due to its inherent advantages, the permanent magnet synchronous motor (PMSM) 
deserves attention and is the most used drive in machine tool servos and modern speed 
control applications. For improving performance, this chapter will apply nonlinear high 
order sliding mode research achievement to MIMO permanent magnet synchronous motor. 
It changes the coupling nonlinear PMSM to single input single output (SISO) linear 
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subsystem control problem instead of near equilibrium point linearization. Thereby, the 
problem of nonlinear and coupling for PMSM has been solved. In addition, Uncertainty 
nonlinear robust control system has been well-received study of attention. Because the 
robust control theory is essentially at the expense of certain performance. This kind of 
robust control strategy often limits bandwidth of closed loop, so that system tracking 
performance and robustness will be decreased. So, sliding mode control is an effective 
approach for improving system robust. This chapter first proposed a robust high order 
sliding mode controller for PMSM. The system has good position servo tracking precision in 
spite of parameters uncertainties and external torque disturbance.  
On this basis, according to the principle of high order sliding mode, as well as differentiator, 
the state variables of PMSM are identified online firstly and successfully. The results of 
simulation indicate observe value has high precision when sliding mode variable and its 
differentials are convergent into zero. The same theory is used in external unknown torque 
disturbance estimation online for PMSM. As if, load torque will no longer be unknown 
disturbance. System performance can be improved greatly. It establishes theoretical 
foundation for the future applications. 
At the end of chapter, using advanced half-physical platform controller dSPACE to drive a 
PMSM, hardware experiment implement is structured completely. The experiment results 
illustrate that PMSM adopting precious feedback linearization decoupling and high order 
sliding mode controller can realize system servo tracking control with good dynamic and 
steady character. 

2. Robust high order sliding mode control 
As known to all, the sliding mode control with the strong robustness for the internal 
parameters and external disturbances. In addition, the appropriate sliding surface can be 
selected to reduce order for control system. However, due to the chattering phenomena of 
sliding mode control, the high frequency oscillation of control system brings challenge for 
the application of sliding mode control. On the other hand, the choice of sliding surface 
strictly requires system relative degree to equal to 1, which limits the choice of sliding 
surface.  
In order to solve the above problems, this chapter focuses on a new type of sliding mode 
control, that is, higher order sliding mode control. The technology not only retains advantage 
of strong robustness in the traditional sliding mode control, but also enables discontinuous 
items transmit into the first order or higher order sliding mode derivative to eliminate the 
chattering. Besides, the design of the controller no longer must require relative degree to be 1. 
Therefore, it is greatly simplified to design parameters of sliding mode surface. 
Emelyanov and others first time propose the concept of high order differentiation of sliding 
mode variable, but also provide a second order sliding mode twisting algorithm, and prove 
its convergence (Emelyanov et al., 1996). Another algorithm is super twisting, which can 
completely eliminate chattering (Emelyanov et al., 1990), although the relative degree of 
sliding mode variable is required to equal to 1. In the second order sliding mode control, 
Levant proved sliding mode accuracy is proportional to )( 2o  the square of the switching 
delay time. It has also become one of the merits of high order sliding mode control (Levant, 
1993). Since then, the high order sliding mode controller has been developed and applied 
rapidly. For example, Bartolini and others propose a second order sliding mode control 
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applied the sub-optimal algorithm (Bartolini et al., 1997, 1999). After the concept of high 
order sliding mode control was applied to bound operator in (Bartolini et al., 2000). Levant 
used high order sliding mode control in aircraft pitch control (Levant, 2000) as well as the 
exact robust differentiator (Levant, 1998). About the summary of high order sliding mode 
control is also described in the literature (Fridman & Levant, 2002). 

2.1 Review of high order sliding mode control 
In recent years, because arbitrary order sliding mode control technique not only retains the 
traditional sliding mode control simple structure with strong robustness, but also eliminates 
the chattering phenomenon in the traditional sliding mode, at the same time, gets rid of the 
constraints of system relative degree. Therefore theoretical research and engineering 
applications has caused widespread concern and has been constant development.  
Without losing generality, considering a state equation of single input nonlinear system as 

 
( ) ( )
( , )

x f x g x u
y s x t
 



 (1) 

Where, nx R  is system state variable, t  is time, y  is output, u  is control input. Here, ( )f x , 
( )g x  and ( )s x  are smooth functions. The control objective is making output function 0s  . 

Differentiate the output variables continuously, we can get every order derivative of s . 
According to the conception of system relative degree, there are two conditions. 
i. Relative degree 1r  , if and only if 0s u     

ii. Relative degree 2r  , if ( ) 0  ( 1,2, 1)is u i r     , and ( ) 0rs u    
In arbitrary order sliding mode control, its core idea is the discrete function acts on a higher 
order sliding mode surface, making 

 ( 1)( , ) ( , ) ( , ) ( , ) 0rs x t s x t s x t s x t       (2) 

Suppose the relative degree of system (1) equals to r , generally speaking, when the control 
input u  first time appears in r -order derivative of s , that is ( ) 0rds du  , then we take r -
order derivative of s  for the output of system (1), ( 1), , , rs s s s     can be obtained. They are 
continuous function for all the x  and t . However, corresponding discrete control law u  
acts on ( )rs . Selecting a new local coordinate, then 

 ( 1)
1 2( , , ) ( , , )r

ry y y y s s s      (3) 

So, the following expression can be obtained 

 ( ) ( , ) ( , ) ,     ( , ) 0rs a y t b y t u b y t    (4) 

Therefore, high order sliding mode control is transformed to stability of  r  order dynamic 
system (2), (4). Through the Lie derivative calculation, it is very easy to verify that 
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Suppose 1 2( , , )r r ny y y    , then 

 ( 1) ( 1)( , , , , , ) ( , , , , , )r rt s s s t s s s u          (6) 

Now, equation (3), (4) and (6) are transformed to Isidori-Brunowsky canonical form. The 
sliding mode equivalent control is ( , ) ( , )equ a y t b y t   (Utkin,1992). At present, the aim of 
control is to design a discrete feedback control ( , )u U x t , so that new system converge into 
origin on the r  order sliding mode surface within limited time. Therefore, in equation (4), 
both ( , )a y t  and ( , )b y t  are bounded function. There are positive constants mK , MK  and C  
so that  

 
0 ( , )

| ( , )|
m MK b y t K

a y t C
  


 (7) 

Theorem 1: (Levant, 1998, 2003) Suppose the relative degree of nonlinear system (1) to 
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Properly choose positive parameters 1 2 1, , r    , the system converge into origin on the 
r  order sliding mode surface within limited time. Finally, when 0s  , it achieves control 
object. The choice of positive parameters 1 2 1, , r     is not unique. Here, 4r   order 
sliding mode controller is given, which is also tested. 
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From the above equation (10) we can also see that, when 1r  , the controller is traditional 
relay sliding mode control; when 2r  , in fact, the controller is super twisting algorithm of 
second order sliding mode. 
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To get the differentiation of a given signal is always essential in automatic control systems. 
We often need derivative a variable or function. So there are a lot of numerical algorithms 
for this issue. The same situation also appears in the design of high order sliding mode 
controller (10) that needs to calculate the derivative values of sliding mode variable. In order 
to be able to accurately calculate, at the same time simplifying the algorithm, this chapter 
directly uses own advantages of high order sliding mode control due to high accuracy and 
robustness. We can design a high order sliding mode differentiator used to calculate the 
numerical derivative of the variables. 
Presentation above in the previous has been explained in detail the principles of high order 
sliding mode control and sliding mode controller design method. This part focuses on how 
to take use of high order sliding mode technique to solve the differentiation of a given signal 
or variable function. And their simulation results are verified 
Suppose given signal is ( )f t , now set a dynamic system as 
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Where, 0  , 0   are positive constant. Definite a function as ( , , ) | ( )|C t    , C  is 
Lipschitz constant about derivative of ( )f x . ( ( ), ( ))t t   is the solution of equation of (16), 
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Suppose 1 2( , , )r r ny y y    , then 
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Theorem 2: (Levant, 1998) Let 0C   , 0  , function ( , , ) 1C   . Then, provided 
( )f t  has a derivative with Lipschitz’s constant C , the equality ( )u f t   is fulfilled 

identically after finite time transient process. And the smaller value of  , faster 
convergence; If ( , , ) 1C   , control input u  will not converge into ( )f t . Observer 
parameters should meet the following sufficient condition for convergence of the second-
order sliding mode control, 

 2 4
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According to the principle of second order sliding mode, after a finite time, the system will 
converge into the origin, that is, 

 ( , ) ( , ) 0s x t s x t   (18) 

Then,  

 ( )u f t   (19) 

Now, observer input u  is the estimation of derivative of given signal ( )f t . Using a sliding 
mode controller achieve differentiation of variable function. 
Let input signal be presented in the form 0( ) ( ) ( )f t f t n t  , where 0( )f t  is a differentiable 
base signal, 0( )f t  has a derivative with Lipschitz’s constant 0C  , and ( )n t  is a noise, 
| ( )|n t  . Then, there exists such a constant 0b   depend on 2( ) /C   and 2( ) /C   
that after a finite time, the inequality 1/2

0| ( ) ( )|u t f t b    holds. (Levant, 1998) 
Through the first order sliding mode differentiator description of the working principle, it 
will naturally think, whether can design a sliding mode differentiator to obtain the arbitrary 
order derivative of given signal. Well, the design of high order sliding mode controller (10) 
needs to know all sliding mode variables and their corresponding differentiation.  
Theorem 3: Design an arbitrary order sliding mode differentiator, which can be used to 
estimate the derivative value of sliding mode variables, so as to achieve a simplified 
numerical differential purposes as following. 
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The same with first order sliding mode differentiator, suppose given signal is ( )f t , 
[0, )t  . It has been known that the n  order derivative of ( )f t  has Lipschitz constant, 
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recorded as 0L  . Now, the object of sliding mode differentiator is estimating the value of 
( )( ), ( ), , ( )nf t f t f t    in real time. 

Arbitrary order sliding mode differentiator has the following recursive form as equation 
(20).  
It can be verified, When 1n  , it is first order differentiator. Suppose 0( )f t  is basic value of 
given signal ( )f t , ( )t  is uncertain part, but bounded, satisfying | ( )|t  , then 

0( ) ( ) ( )f t f t t  . 
Theorem 4: (Levant, 2003) If properly choose parameter (0 )i i n   , the following 
equalities are true in the absence of input noise after a finite time of a transient process. 
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The theorem 4 illustrates that arbitrary order sliding mode differentiator can use 
differentiation (0 )iz i n   to estimate any order derivative of input function ( )f t  online 
within limited time. 
Theorem 5: (Levant, 2003) Let the input noise satisfy the inequality 0( ) | ( ) ( )|t f t f t    . 
Then the following inequality are established in finite time for some positive constants i , 

i  depending exclusively on the parameters of the differentiator. 
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By Theorem 5, we can see that the arbitrary order sliding mode differentiator has 
robustness. 
The arbitrary order sliding mode differentiator can accurately estimate any order derivative 
of a given input. If this differentiator can be used in high order sliding mode controller (10), 
any order derivative of sliding mode variable s  can be accurately estimated avoiding the 
complicated calculation, which greatly simplifies the controller design. Adopting the 
differentiator, consider ( )s t  in high order sliding mode controller as given input for 
differentiator. Then the output of differentiator (0 )iz i n   can substitute any order 
derivative of ( )s t , that is 
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The sliding mode controller (8) can be rewritten by 

 1, 0 1 ( 1)sgn( ( , , , ))r r ru z z z       (24) 

The expression from this controller can also be clearly seen, with high order sliding mode 
differentiator, the differentiation of arbitrary order sliding mode variable will not be 
difficult to solve, which makes the high order sliding mode controller design has been 
simplified greatly. 
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2.2 Applications for permanent magnet synchronous motor 
Permanent magnet synchronous motors (PMSM) are receiving increased attention for 
electric drive applications due to their high power density, large torque to inertia ratio and 
high efficiency over other kinds of motors (Glumineau et al, 1993; Ziribi et al, 2001; Caravani 
et al, 1998).  
But the dynamic model of a PMSM is highly nonlinear because of the coupling between the 
motor speed and the electrical quantities, such as the d, q axis currents. In last years, many 
different control algorithms have been used to improve the performance of the magnet 
motor. For example, as the dynamic model of the machine is nonlinear, a natural approach 
is the exact feedback linearization control method, by which the original nonlinear model 
can be transformed into a linear model through proper coordinate transformation. 
However, in general, the dynamics of the synchronous motors may not be fully known, 
since some of parameters appearing in the equations will vary. For instance, the resistance 
and inductance will be changed when the temperature alters. As a consequence, 
nonlinearities can only be partially cancelled by the feedback linearization technique, and 
parameters uncertainties act on the equations of the motion. Then an important aim of the 
control design is to develop a robust controller which ensures good dynamic performances 
in spite of parameters uncertainties and perturbation.  
The sliding mode control is known to be a robust approach to solve the control problems of 
nonlinear systems. Robustness properties against various kinds of uncertainties such as 
parameter perturbations and external disturbances can be guaranteed. However, this control 
strategy has a main drawback: the well known chattering phenomenon. In order to reduce 
the chattering, the sign function can be replaced by a smooth approximation. However, this 
technique induces deterioration in accuracy and robustness. In last decade, another 
approach called higher order sliding mode (HOSM) has been proposed and developed. It is 
the generalization of classical sliding mode control and can be applied to control systems 
with arbitrary relative degree r respecting to the considered output. In HOSM control, the 
main objective is to obtain a finite time convergence in the non empty manifold 

( 1){ | 0}rS x X s s s s             by acting discontinuously on r order derivatives of the 
sliding variable s. Advantageous properties of HOSM are: the chattering effect is eliminated, 
higher order precision is provided whereas all the qualities of standard sliding mode are 
kept, and control law is not limited by relative degree of the output. 
The common analysis of permanent magnet synchronous motor is d-q axis mathematical 
model. It can be used to analyze not only the permanent magnet synchronous motor steady 
state operating characteristics, but also can be used to analyze the transient performance 
motor. In order to establish sinusoidal PMSM d-q axis mathematical model, firstly assume: 
i. Motor core saturation neglected; 
ii. Excluding the eddy current and magnetic hysteresis loss of motor; 
iii. The motor current is symmetrical three phase sine wave current. 
Thereby, the following voltage, flux linkage, electromagnetic torque and mechanical motion 
equations can be obtained, where all the values in equations are transient. 
The voltage equation: 
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The flux linkage equation: 
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The electromagnetic torque equation: 

 ( ) [( ) ]em d q q d d q d q f qT P i i P L L i i i        (27) 

The motor motion equation: 

 em l
dJ T T B
dt

      (28) 

Where: du , qu  are d-q axis stator voltage; di , qi  are d-q axis stator current; dL , qL  are d-q 
axis stator inductance, as d qL L , motor is non-salient pole; as d qL L , motor is salient pole; 

d , q  are d-q axis stator flux linkage; f  is magnetic potential generated by permanent 
magnet rotor;   is motor’s electrical angular velocity; R  is stator phase resistance; P  is 
number of motor pole pairs; emT  is electromagnetic torque; lT  is load torque;   is motor’s 
mechanical angular velocity, with P  ; J  is total inertia of rotor and load; B  is viscous 
friction coefficient. 
Set of equations (25), (26), (27) and (28), we can get the state equation expression of PMSM 
as following. 
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Suppose e  is the electrical angle between rotor axis and stator A  phase axis,   is 
mechanical angular position of motor, with eP  , and following equality is set up. 

 0dt      (30) 

Where, 0  is rotor initial angular position. Considering position control, equation (29) can 
be rewritten by 
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The flux linkage equation: 
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  (26) 

The electromagnetic torque equation: 

 ( ) [( ) ]em d q q d d q d q f qT P i i P L L i i i        (27) 

The motor motion equation: 

 em l
dJ T T B
dt

      (28) 

Where: du , qu  are d-q axis stator voltage; di , qi  are d-q axis stator current; dL , qL  are d-q 
axis stator inductance, as d qL L , motor is non-salient pole; as d qL L , motor is salient pole; 

d , q  are d-q axis stator flux linkage; f  is magnetic potential generated by permanent 
magnet rotor;   is motor’s electrical angular velocity; R  is stator phase resistance; P  is 
number of motor pole pairs; emT  is electromagnetic torque; lT  is load torque;   is motor’s 
mechanical angular velocity, with P  ; J  is total inertia of rotor and load; B  is viscous 
friction coefficient. 
Set of equations (25), (26), (27) and (28), we can get the state equation expression of PMSM 
as following. 
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Suppose e  is the electrical angle between rotor axis and stator A  phase axis,   is 
mechanical angular position of motor, with eP  , and following equality is set up. 

 0dt      (30) 

Where, 0  is rotor initial angular position. Considering position control, equation (29) can 
be rewritten by 
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From the equation (31) we can see that PMSM is a multi-variable, coupling, nonlinear time 
varying systems. In addition, the variables in d-q axis can be changed to three phase abc  
axis by coordinate transformation. 

2.2.1 Robust control for PMSM 
This section will use the high order sliding mode control algorithm with differentiator, in 
spite of system parameter uncertainties, external disturbances and other factors, to design a 
robust controller for nonlinear multi-input multi-output permanent magnet synchronous 
motor. The advantage of this controller is the elimination of the chattering in standard 
sliding mode. At the same time, it is still with precision and robustness of the standard 
sliding mode control. And its control law no longer subjects to relative degree constraints. 
Firstly, let x  denotes the motor state variable 1 2 3 4[ , , , ] [ , , , ]T T

d qx x x x x i i   , and control 
input 1 2[ , ] [ , ]T T

d qu u u u u  . The parameters R , dL , qL  and B  are considered as uncertain 
parameters, such as R  will change with the temperature rise of the synchronous motor. 
Therefore, use 0R , 0dL , 0qL  and 0B  to express their nominal value part of R , dL , qL  and 
B  respectively.  
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  (32) 

In order to facilitate the calculation, the coefficient (1 10)ik i   is used to plan these 
variable expressions, Where, 0 (1 10)ik i   is the nominal value of the concerned parameter, 

ik  is the uncertainty on the concerned parameter such that 0 0| | | |i i ik k k   , with 0ik  a 
known positive bound. The state variable 4x R , such that | | (2 4)i iMAXx x i   , 2MAXx  is 
the maximum values of the angular velocity, 3MAXx  and 4MAXx  are the maximum values of 
the current di  and qi  respectively. And control input 2u R  such that 
| | ,(1 2)i iMAXu u i   . Where, 1MAXu  and 2MAXu  are the maximum values of the voltage 
input dv  and qv  respectively. 
Then the state space model of the synchronous motor can be changed as following nonlinear 
system. 

 
1 2

2 1 3 2 4 3 2 1

3 4 3 5 2 4 6 2

4 7 2 8 2 3 9 4 10

( , ) ( , )

0 0
( ) / 0 0

0
0

l

f x t g x t

x x
x k x k x k x T J u
x k x k x x k u
x k x k x x k x k

     
                             

      






 

  (33) 

 
Robust High Order Sliding Mode Control of Permanent Magnet Synchronous Motors 

 

239 

The aim is to design an appropriate control which guarantees robust performance in 
presence of parameters and load variations. The control objective is double aspect. First, the 
rotor angular position 1x   must track a reference trajectory angular position 1refx . 
Second, the nonlinear electromagnetic torque must be linearized to avoid reluctance effects 
and torque ripple. This objective is equivalent to constrain 3 dx i  to track a constant direct 
current reference 3 0refx  . 
As we known that PMSM is a multi-input multi-output nonlinear dynamic system. It is 
assumed that the position and current are available for measurement. A first sliding variable 
s  for the tracking of direct current 3x  towards its equilibrium point 3refx  f is defined from 
the direct current error. So, the first sliding mode variable is 

 1 1 3 3( ) refs h x x x    (34) 

Derivative of 1s , we can see that the relative degree of sliding mode variable 1s  equals 1, 
that is 

 1 3 3

4 3 5 2 4 6 1 3

ref

ref

s x x
k x k x x k u x

 

   

  

  (35) 

To track the angular position 1x  , another sliding manifold is proposed so that the error 
dynamics follows a desired third order dynamic. Denoting 1refx  the desired trajectory, 
following form can be obtained. 

 2 2 1 1( ) refs h x x x    (36) 

Considering load torque as external disturbance, derivative of 2s  continuously until control 
input appears. 
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 (37) 

The control input u  appears in the 3 order derivative of 2s , so the relative degree of 2s  
equals 3. Considering sliding mode variable 1 2[ , ]Ts s s    as a new dynamci system, the space 
state express can be writtern by 

 1 1 11 1

2 2 21 22 2

0s A B u
s A B B u
       

        
       


  (38) 

Where, 
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From the equation (31) we can see that PMSM is a multi-variable, coupling, nonlinear time 
varying systems. In addition, the variables in d-q axis can be changed to three phase abc  
axis by coordinate transformation. 

2.2.1 Robust control for PMSM 
This section will use the high order sliding mode control algorithm with differentiator, in 
spite of system parameter uncertainties, external disturbances and other factors, to design a 
robust controller for nonlinear multi-input multi-output permanent magnet synchronous 
motor. The advantage of this controller is the elimination of the chattering in standard 
sliding mode. At the same time, it is still with precision and robustness of the standard 
sliding mode control. And its control law no longer subjects to relative degree constraints. 
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d qu u u u u  . The parameters R , dL , qL  and B  are considered as uncertain 
parameters, such as R  will change with the temperature rise of the synchronous motor. 
Therefore, use 0R , 0dL , 0qL  and 0B  to express their nominal value part of R , dL , qL  and 
B  respectively.  
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In order to facilitate the calculation, the coefficient (1 10)ik i   is used to plan these 
variable expressions, Where, 0 (1 10)ik i   is the nominal value of the concerned parameter, 

ik  is the uncertainty on the concerned parameter such that 0 0| | | |i i ik k k   , with 0ik  a 
known positive bound. The state variable 4x R , such that | | (2 4)i iMAXx x i   , 2MAXx  is 
the maximum values of the angular velocity, 3MAXx  and 4MAXx  are the maximum values of 
the current di  and qi  respectively. And control input 2u R  such that 
| | ,(1 2)i iMAXu u i   . Where, 1MAXu  and 2MAXu  are the maximum values of the voltage 
input dv  and qv  respectively. 
Then the state space model of the synchronous motor can be changed as following nonlinear 
system. 
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The aim is to design an appropriate control which guarantees robust performance in 
presence of parameters and load variations. The control objective is double aspect. First, the 
rotor angular position 1x   must track a reference trajectory angular position 1refx . 
Second, the nonlinear electromagnetic torque must be linearized to avoid reluctance effects 
and torque ripple. This objective is equivalent to constrain 3 dx i  to track a constant direct 
current reference 3 0refx  . 
As we known that PMSM is a multi-input multi-output nonlinear dynamic system. It is 
assumed that the position and current are available for measurement. A first sliding variable 
s  for the tracking of direct current 3x  towards its equilibrium point 3refx  f is defined from 
the direct current error. So, the first sliding mode variable is 

 1 1 3 3( ) refs h x x x    (34) 

Derivative of 1s , we can see that the relative degree of sliding mode variable 1s  equals 1, 
that is 
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To track the angular position 1x  , another sliding manifold is proposed so that the error 
dynamics follows a desired third order dynamic. Denoting 1refx  the desired trajectory, 
following form can be obtained. 

 2 2 1 1( ) refs h x x x    (36) 

Considering load torque as external disturbance, derivative of 2s  continuously until control 
input appears. 
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The control input u  appears in the 3 order derivative of 2s , so the relative degree of 2s  
equals 3. Considering sliding mode variable 1 2[ , ]Ts s s    as a new dynamci system, the space 
state express can be writtern by 
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Where, 
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 11 6 110 11:B k B B     

         21 1 6 4 210 21:B k k x B B     

                     22 1 3 2 10 220 22( ) :B k x k k B B      

10A , 20A , 110B , 210B  and 220B  are the known nominal expressions whereas the expressions 
of 1A , 2A , 11B , 21B  and 22B  contain all the uncertainties due to parameters and load 
torque variations. 
Next, controller should be designed so that sliding mode variable 1s  achieves to zero in 
finite time. Another sliding mode variable 2s  and its first and second derivative likewise 
achieve to zero in finite time. When the sliding mode happens, then 

 1 1

2 2 2 2

{ | ( , ) 0}
{ | ( , ) ( , ) ( , ) 0}

S x X s x t
S x X s x t s x t s x t

  
       (39) 

The control problem is equivalent to the finite time stabilization of the following MIMO 
system. 
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From the equation (37), the outputs of this MIMO system are coupled since 2s  is affected by 
1u  and 2u . So an input-output feedback linearization technique can be used, here w  is new 

control input. 

 1
0 0[ ]u B A w     (43) 

Now, if considering influence of external disturbance and parameter uncertainties, equation 
(40) can be rewritten by 

 
0 0

1
0 0 0 0

( )

( )[ ( )]

s A Bu
A A B B u

A A B B B A w

 

  

 
   

     

 (44) 

Evolution and ordinate, then 

 











































2

1

2221

11

2

1

2

1

ˆˆ
0ˆ

ˆ
ˆ

w
w

BB
B

A
A

s
s



 (45) 

 
Robust High Order Sliding Mode Control of Permanent Magnet Synchronous Motors 

 

241 

Where, 

            11
1 1 10

110

ˆ BA A A
B
    

                                                     22 21021 22
2 2 10 20

110 110 220 220

ˆ [ ]B BB BA A A A
B B B B

       

 11
11

110

ˆ 1 BB
B


    

               22 21021
21

110 110 220

ˆ B BBB
B B B


    

  22
22

220

ˆ 1 BB
B


    

In the new dynamic system with 1 2[ , ]Tw w w , it leads to 1s  equals integrator of 1w  and 2s  
equals three time integrators of 2w , if the part of uncertainties 0A   and 0B  . Then 

1w  and 2w  are designed to stabilize in this new system.  
In fact, the term 1

0 0B A  of (43) is the so-called equivalent control in the sliding mode 
context. In this new system, due to state variable (2 4)ix x  , there exist three positive 
constants 1C , 2C , 11mK , 22mK , 11MK , 22MK  and 21K , so that 
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 (46) 

Then, owing to the relative degree of 1s  equals 1, the first order sliding mode algorithm 
previously presented with control law 

 1 1 1sgn( )w s   (47) 

Where 1  is positive constant. In the actual system, due to all the state variables have the 
bound, selecting parameter 1  properly to satisfy convergence. For the motor angular 
position control, a 3 order sliding mode control law is used. In this case, only a single scalar 
parameter 2  is to be adjusted. Actually, the control input 2w  can be chosen as following. 

 3 2 1/6 2/3
2 2 2 2 2 2 2 2sgn( 2(| | | | ) sgn( | | sgn( )))w s s s s s s        (48) 

According to the principle of sliding mode differentiator, the arbitrary order derivative of 
2s  can be estimated by the output of differentiator 0z , 1z  and 2z . 
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torque variations. 
Next, controller should be designed so that sliding mode variable 1s  achieves to zero in 
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Then, owing to the relative degree of 1s  equals 1, the first order sliding mode algorithm 
previously presented with control law 

 1 1 1sgn( )w s   (47) 

Where 1  is positive constant. In the actual system, due to all the state variables have the 
bound, selecting parameter 1  properly to satisfy convergence. For the motor angular 
position control, a 3 order sliding mode control law is used. In this case, only a single scalar 
parameter 2  is to be adjusted. Actually, the control input 2w  can be chosen as following. 
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Then, substituting 0z , 1z  and 2z  for 2s , 2s  and 2s  respectively in equation (48), that is 

 3 2 1/6 2/3
2 2 2 1 0 1 0 0sgn( 2(| | | | ) sgn( | | sgn( )))w z z z z z z      (50) 

The figure 1 is the block graph of control system. The first sliding mode variable 1s  is given 
by the error between direct axis current reference and feedback. And the second variable 2s  
is identified by the error between the motor reference position and actual feedback. 
According to the Theorem 4 after finite time, 0z , 1z  and 2z  can be used to estimate 2s , 2s  
and 2s . In system, the state variable speed of motor 2w  is obtained by differentiator of 
angle position signal  . Finally, the nonlinear dynamic system must be linearized by input-
output feedback linearization, then the control input 1u  and 2u  are used to drive the 
synchronous motor. 
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Fig. 1. The block graph of dynamic system structure. 

In the simulation, The PMSM is a DutymAx 95DSC060300 (Leroy Somer Co.) drive. Two 
sensors give measurements of phase currents, a optical encoder is used to measure the 
position of the motor. The parameters of synchronous motor are 3P  , 3 3.R   , 

0 027.dL H , 0 0034.qL H , 0 0034.B N m s   , 0 341.f Wb  , 20 00037.J kg m  . A phase 
current of the maximum accepted value is 6 0. A , the load torque maximum value is 6N m , 
and angular velocity is rpm3000 .To achieve the efficiency of controller, the parameter in (47) 
and (50) are chosen by 51  ,  33002  . In the differentiator, the coefficient of (49) are 
selected by 1500  , 1601  , 4002   in order to allow the convergence of the 
differentiator. The system sampling frequency is Hz8000 . To show the system robustness of 
the controller, consider permanent magnet synchronous motor parameters uncertainties 
(with RR %50 , with dd LL %250   and qq LL %250   and with B%20 ).  
The trajectory of motor angular position reference and feedback are shown in figure 2 above 
in spit of PMSM parameters uncertainty. From this figure, we can see that the servo system 
track trajectory has good performance. The precision can achieve 10-3. In addition, using 
high order sliding mode control, the chattering is eliminated in lower sliding mode surface 
so that the track trajectory becomes smoother. 
Figure 2 below shows position tracking error, which does not exceed 0.09 rad. It means that 
the controller has high robust capability versus the parameters variations. 
The figure 3 shows the curve of input du  and qu  for PMSM using the high order sliding 
mode observer.  
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Fig. 2. Reference angle positon and actual angle position. 
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Fig. 3. The curve of input du  and qu . 
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Then, substituting 0z , 1z  and 2z  for 2s , 2s  and 2s  respectively in equation (48), that is 
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sensors give measurements of phase currents, a optical encoder is used to measure the 
position of the motor. The parameters of synchronous motor are 3P  , 3 3.R   , 
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current of the maximum accepted value is 6 0. A , the load torque maximum value is 6N m , 
and angular velocity is rpm3000 .To achieve the efficiency of controller, the parameter in (47) 
and (50) are chosen by 51  ,  33002  . In the differentiator, the coefficient of (49) are 
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Figure 2 below shows position tracking error, which does not exceed 0.09 rad. It means that 
the controller has high robust capability versus the parameters variations. 
The figure 3 shows the curve of input du  and qu  for PMSM using the high order sliding 
mode observer.  
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Fig. 4. Four quadrant run and quadrature/direct axis currents. 
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The figure 4 is the speed and d-q axis current of synchronous motor. The motor in the four-
quadrant operation, with acceleration, deceleration, has good dynamic performance. In this 
figure, direct axis current di  is very near reference 0drefi  . 
The figure 5 shows that sliding mode variable 2s  converge into origin in three dimensional 
surface within limited time. 
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Fig. 6. Tracking error of motor with the load torque disturbance. 

The Figure 6 shows the controller is strong robustness versus the load torque variations. The 
error of angular position does not exceed 0.1 rad even though the load perturbation. 
To sum up, this section takes the multiple-input multiple-output nonlinear permanent 
magnet synchronous motor as control object, and designs a robust high order sliding mode 
controller with differentiator, through the state feedback linearization to decouple the 
system. The simulation results show that, despite the existence of parameter uncertainties 
and external disturbances, the system still has a better dynamic performance and 
robustness, which is due to higher order sliding mode control converge within limited time. 
Comparing with the traditional sliding mode control, high order sliding mode control 
eliminates the chattering phenomenon. And the better test results prove the feasibility of the 
theory. 

2.2.2 States estimation 
The parameters and state estimation of permanent magnet synchronous motor has been 
more concerned in motor control. As the motor itself is a typical nonlinear, multivariable 
system with strong coupling, there are a lot algorithms to improve the motor control 
performance in recent years. Earlier off-line estimation of the static dynamic system can not 
satisfy the control requirements; the use of extended Kalman filter (EKF) usually have a 
group of high order nonlinear equations, which is not conducive to the calculation (Yan, 
2006), and its stability is also a local stable; In least squares procedure, the matrix forgotten 
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The Figure 6 shows the controller is strong robustness versus the load torque variations. The 
error of angular position does not exceed 0.1 rad even though the load perturbation. 
To sum up, this section takes the multiple-input multiple-output nonlinear permanent 
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factor (Poznyak et al, 1999; Poznyak, 1999) is used to solve non-static parameter 
identification; as a result of sliding mode control with strong robustness and global 
convergence, In recent years, sliding mode observer (Floret-Pontet, 2001; Koshkouei, 2002) 
has been used for dynamic system state and parameter estimation, but the observer 
feedback gain is usually not easy to choose. 
With the development of nonlinear theory, in order to enhance the performance of 
permanent magnet synchronous motor, many advanced control strategies have been 
proposed and used in motor control, which requires the state of motor can be measured, 
such as mechanical angular position, rotational speed, the electrical current and so on. 
Hence mechanical, electromagnetic or photoelectric sensor are needed, as  well known to all, 
the sensors have many other shortcomings such as drift, friction, high costs, as well as 
electromagnetic interference caused by additional conductors. Therefore, the control system 
should be as possible as release the use of sensors to ensure the reliability and stability, 
which requires the system observer to precisely estimate the value of the state. 
The high order sliding mode control is widely used in last decade, which take high order 
derivetives of sliding mode variables to substitute original discrete control, so that the 
chattering disappears in the high order differentiation. This section uses a high order sliding 
mode observer with differentiator algorithm to estimates the value of state variables. In this 
case, it removes the speed and current sensors of motor, and a better control precision and 
accurate state estimation are obtained. 
In this section, the mathematical model of PMSM is the same with above section (33). In 
order to make control effectiveness more smooth, the relative order is raised artificially. 
Considering control input u  as a new input, original sliding mode variable (35) and (37) are 
transformed into 

 1 1 11 1
(4)

2 21 1 22 22

' '

' ' '

s A B u

s A B u B u

 

  

 

 
 (51) 

Then, the coefficient matrix of original system 1A , 2A , 11B , 21B  and 22B  become new 
matrixes 1 'A , 2 'A , 11 'B , 21 'B  and 22 'B . Where,  
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Next, it still is high order sliding mode controller design that make the sliding mode 
variables converge into origin within limited time in the sliding mode surface. In another 
word, it should satisfy following conditions. 

 1 1 1
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S x X s x t s x t
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Let (4)
1 2[ , ]Ts s s  , 1 2[ , ]u u u   , this control object is equivalent to stable of following multi-

input multi-output system in limited time. 

 ' 's A B u   (53) 

Due to (4)
2s  effected by 1u  and 2u , the output of this system are coupled. Here, input-

output feedback linearization technology is used to decouple system. 
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After decoupling, the relative degree of 1s  equals 2, so 2 order sliding mode control law is 
adopted 
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Where, 1  is a positive constant. Now, we use the output of sliding mode differentiator 01z  
and 11z  to estimate the value of 1s  and 1s . 
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For the motor’s angular position control, 4 order sliding mode control law is used. In this 
case, we only adjust a single parameter 2  to make the system converge within limited 
time. 
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Similarly, the output 02 12 22, ,z z z  of 3 order differentiator is used to estimated sliding mode 
variables 2 2 2, ,s s s  . 
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Generally speaking, in the actual system not all the state variables is measurable. 
Sometimes, due to the limitation of condition, some state variables can not be measured. 
Therefore, it requires the controller can estimate state variables of system as possible as 
accurate. 
PMSM only uses the position sensors, taking the use of high order sliding mode control 
techniques, so that its speed and the current state variable are estimated online. In this way, 
it avoids the use of other sensors, at the same time ensures the motor position tracking 
progress. 
In the design of controller, we have obtained that 

 1 4 3 5 2 4 6 2 3refs k x k x x k u x      

 2 2 1refs x x     

 2 1 1 1 3 2 4 3 2 1( )ref refs x x k x k x k x x          (59) 

From the above equations, we can calculate the speed estimation of synchronous motor 
2 2 1refx s x    , so the current estimation expressed by 
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For calculating 3x  and 4x , considering sliding mode variables 1s , 2s , 2s  and 2u  as known 
value, adopt recursive algorithm to get 
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Where, j  is the j -th sample point of system, 1j   is the next sample point. Through the 
above recursive equation, current estimation 3x  and 4x  are obtained. Take these estimation 
into the control system so that save the sensors. Thereby, system become more simple and 
reliability. 
In the simulation, we use the DutyMAX95-BSC060300 permanent magnetic synchronous 
motor. The parameters of motor are 3P  ， 3.3R   ， 0.027dL H ， 0.0034qL H ，

0.341f Wb  ， 0.0034B N m s   , 20.0037J kg m  . A phase current of the maximum 
accepted value is 6.0A , the load torque maximum value is 6N m , and angular velocity is 
3000rpm . 
The parameter of controller are 1 5   and 2 50  ; the parameter of sliding mode 
differentiator are 01 2  , 11 1.5  , 02 25  , 12 25  , 22 33   and 32 500  . 
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Fig. 7. Position tracking and error curve of PMSM. 

From the figure 7 above, it can be seen that the permanent magnet synchronous motor 
control system has good performance. This figure shows the permanent magnet 
synchronous motor can precisely track the given position. And the error between reference 
and the actual position feedback is shown in Figure 7 below. The maximal error does not 
exceed to 0.08 rad. 
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Fig. 8. Speed estimation and error curve of PMSM. 

The figure 8 above shows the motor angular speed by derivative of the motor’s angular 
position. The figure 8 below shows the error between the estimation of the electrical angular 
speed. 
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Fig. 7. Position tracking and error curve of PMSM. 

From the figure 7 above, it can be seen that the permanent magnet synchronous motor 
control system has good performance. This figure shows the permanent magnet 
synchronous motor can precisely track the given position. And the error between reference 
and the actual position feedback is shown in Figure 7 below. The maximal error does not 
exceed to 0.08 rad. 
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Fig. 8. Speed estimation and error curve of PMSM. 

The figure 8 above shows the motor angular speed by derivative of the motor’s angular 
position. The figure 8 below shows the error between the estimation of the electrical angular 
speed. 
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Fig. 9. The direct/quadrature axis currents and their estimations. 

For permanent magnet synchronous motor, its angular position, speed and current are 
system state values. The figure 9(a), (b), (c), (d) shows that the estimated value and actual 
current value of direct axis and quadrature axis respectively. The figure 9(e), (f) are the error 
between actual current value and the estimated value. In this figure, the error of direct axis 
current is between )(100.1 4 A , and the error of quadrature axis is between )(100.1 3 A . 
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Fig. 10. System sliding mode variables curve. 

The figure 10 is the convergence curve of sliding mode variable and its high order 
derivatives. From the figure we can clearly see that the discrete control law acts on the high 
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order sliding mode surface, which makes the lower sliding mode surface smooth. That is the 
reason why high order sliding mode control can eliminate the chattering. 
This subsection focuses on a state estimation of PMSM online. In the practical systems, not 
all the state variables are measurable, or because of objective reasons they are often not 
easy to measure. In this section, we just use the motor position sensor, through the high 
order sliding mode control with differentiator, to achieve the state variables of motor 
estimation online. The simulation results show that the PMSM control system has good 
dynamic performance, while the electrical angular speed and d-q axis current are 
estimated precisely. 

2.2.3 Torque disturbance identification 
In high precious servo control, the disturbance load will impact servo control. Therefore, the 
estimation of the disturbance load is very necessary to reduce its influence. Usually in the 
actual system, the disturbance load torque is often random and uncertain. So, this requires 
the controller can estimate the value of state variables as accurately as possible. This section 
will use the arbitrary order sliding mode differentiator, to calculate the high order 
derivative of sliding mode variables online, so as to avoid the complexity of differential 
calculation. Then, through the expression of the unknown disturbance load torque, it is 
estimated. Take the estimation as system input, thereby enhancing the system performance. 
In the simulation, the position and current sensors of PMSM are used. Adopt high order 
sliding mode control, its disturbance torque is estimated online. Then, the unknown 
uncertain external disturbance torque can be entered as a known value so that improve the 
motor position tracking accuracy. 
In order to facilitate the description, the mathematical model of motor still use system state 
equation (31) in d-q axis coordinate. The meaning of the parameters remains unchanged. 
Then, from the mathematical model of PMSM, the following solution can easily get 

 3 4 2 2[( ) ]l d q fT p L L x x Bx Jx        (62) 

In equation (62), lT  is the estimation of external torque. 2x  and 2x  are the estimation of 
angular speed and angular acceleration respectively. 
From the controller of previous section, the following expression can be obtained 

 2 2 1
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      (63) 

Therefore, the above equation (63) can solve the estimation of angular speed and angular 
acceleration. 
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Until now, if we can get the 1 and 2 order derivative of sliding mode variable 2s , the 
estimation of state variable 2x  and its differentiation 2x  can be solved. According to the 
principle of high order sliding mode differentiator, 2s  and 2s  in equation (64) can be 
estimated by the output of differentiator 12z  and 22z . 
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order sliding mode surface, which makes the lower sliding mode surface smooth. That is the 
reason why high order sliding mode control can eliminate the chattering. 
This subsection focuses on a state estimation of PMSM online. In the practical systems, not 
all the state variables are measurable, or because of objective reasons they are often not 
easy to measure. In this section, we just use the motor position sensor, through the high 
order sliding mode control with differentiator, to achieve the state variables of motor 
estimation online. The simulation results show that the PMSM control system has good 
dynamic performance, while the electrical angular speed and d-q axis current are 
estimated precisely. 
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In high precious servo control, the disturbance load will impact servo control. Therefore, the 
estimation of the disturbance load is very necessary to reduce its influence. Usually in the 
actual system, the disturbance load torque is often random and uncertain. So, this requires 
the controller can estimate the value of state variables as accurately as possible. This section 
will use the arbitrary order sliding mode differentiator, to calculate the high order 
derivative of sliding mode variables online, so as to avoid the complexity of differential 
calculation. Then, through the expression of the unknown disturbance load torque, it is 
estimated. Take the estimation as system input, thereby enhancing the system performance. 
In the simulation, the position and current sensors of PMSM are used. Adopt high order 
sliding mode control, its disturbance torque is estimated online. Then, the unknown 
uncertain external disturbance torque can be entered as a known value so that improve the 
motor position tracking accuracy. 
In order to facilitate the description, the mathematical model of motor still use system state 
equation (31) in d-q axis coordinate. The meaning of the parameters remains unchanged. 
Then, from the mathematical model of PMSM, the following solution can easily get 

 3 4 2 2[( ) ]l d q fT p L L x x Bx Jx        (62) 

In equation (62), lT  is the estimation of external torque. 2x  and 2x  are the estimation of 
angular speed and angular acceleration respectively. 
From the controller of previous section, the following expression can be obtained 
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Until now, if we can get the 1 and 2 order derivative of sliding mode variable 2s , the 
estimation of state variable 2x  and its differentiation 2x  can be solved. According to the 
principle of high order sliding mode differentiator, 2s  and 2s  in equation (64) can be 
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Fig. 11. External disturbance load torque and its estimation of motor. Available into the 
equation (62). 

 3 4 12 1 22 1[( ) ] ( ) ( )l d q f ref refT p L L x x B z x J z x          (66) 

Through calculation online, the estimation of disturbance load is obtained. Take the 
estimated value into the control system so that the uncertain disturbance load become the 
determine input. In this case, the system performance is improved effectively. 
From the figure 11 we can see that, taking use of high order sliding mode with 
differentiator, disturbance load torque get a better estimation. Disturbance torque is 
estimated online successfully so that it is no longer unknown uncertainties factor. It also 
improves the performance of the system. The maximum torque value is mN 2  in the figure. 
The sliding mode variable converges into origin at the 0.25s. 
The figure 12 shows that the actual angular position track reference of PMSM with the 
disturbance load. From the figure we can see that the maximum error of the angular 
position is not more than 0.12 rad. The system gets a better control performance. 
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Fig. 12. Position tracking curve with load torque disturbance. 

2.4 Experimental results and analysis 
The dSPACE is a equipment of control exploitation and test system based on 
MATLAB/Simulink that is from Germany. It implements seamless link with the 
MATLAB/Simulink completely. It can complete the control algorithm design, test and 
implementation, overcoming the shortage of the traditional control system, for example, the 
difficult to achieve the complex algorithm and the long development cycle. It has 
advantages of high speed, ease to use and user-friendly. 
Taking DS1005PPC control board as the core, with DS2001AD acquisition board, 
DS2002/2003 multi-channel AD acquisition board, CP4002 Multi-I/O board, DS2102DA 
output board, DS3002 incremental encoder interface board, we constitute a standard 
component hardware parts of dSPACE DS1005 system, which is used in this experiment.  
After the completion of the experimental platform, the development steps of control system 
for PMSM based on the dSPACE include the following points: 
1. MATLAB/Simulink modeling and off-line simulation. Take use of MATLAB/Simulink 

to establish a mathematical model for the simulation object, and design control 
programs. At the same time, complete the system off-line simulation. 

2. Input/output interface (I/O) experimental model. In the MATLAB/Simulink 
environment, we need to retain module that is downloaded to the dSPACE. Select the 
real-time control required for I/O modules from the RTI library. Replace the original 
connection relationship with the hardware interface, and configure I/O parameters. In 
some special cases, we also need to set up hardware and software interrupt priority 
levels.  
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3. The dSPACE/RTW provides tools to automatically generate code and download. Since 
MATLAB and dSPACE with seamless connectivity features, a simple operation can 
complete real-time C code generation, compile, link and download for the target system. 
In other word, model is downloaded into target board DS1005PPC as running program. 

4. The dSPACE integrated experiment and debugging. The dSPACE provides real-time 
ControlDesk software as well, which changes the parameters and real-time control. 

The figure 13 is a control system in MATLAB/Simulink environment with the dSPACE/RTI 
module.  
 

 
Fig. 13. MATLAB/Simulink environment based on dSPACE/RTI control system. 

i. Content and intention: 
1. Validate feasibility of high order sliding mode control in PMSM; 
2. Test system using high sliding mode control whether it can release chattering 

phenomenon; 
3. Test system using high sliding mode control whether it has robustness. 
ii. Equipments: 
 

Name Type Unit Amount 
dSPACE controller DS1005 Dais  1 
DC regulated power WYK-303B2 Dais  1 
Slide-wire rheostat BX8D-3/7 Dais  3 
Switch regulated 
power S-100-24 Dais  1 

Universal meter LINI-T/UT58A Dais  1 

Ondoscope Tektronix/TDS202
4 Dais  1 

Industrial computer ADLINK Dais  1 

Table 1. The list of experimental equipments. 
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iii. Experimental procession: 
Step 1: Off-line simulation. According to the principle of high order sliding mode control 
and differentiator, combining with chapter 5 of the application for permanent magnet 
synchronous motor, the theoretical simulation is researched in the MATLAB/Simulink 
firstly. In detail, set the sampling frequency and differential equation solution, and save the 
.mdl model file; 
Step 2: After the control algorithm verification, remove the inverter model and motor model 
replaced by the physical prototypes of actual system. And then complete all of the system 
interface, including the A /D, D/A, I/O, PWM and other interfaces of the dSPACE. 
Afterwards, compile on-line to generate. cof configuration file; 
Step 3: Check all connections are correct. After that, start the dSPACE. Compile and 
download files real-time (RTI) in the environment of MATLAB/Simulink. At this moment, 
algorithm program code is downloaded to the DSP core program area of dSPACE controller; 
Step 4: Start the dSPACE/ControlDesk. Create an experimental file .prj in the interface, and 
design the required .lay layer file. Observe compiler-generated variable file .sdf in order to 
facilitate observe the real-time dynamic performance of the system; 
Step 5: After the completion of the above, check the status of external devices is good or not. 
Finally, start bus power, while start system operation in dSPACE/ControlDesk interface. 
iv. Controlled device: 
The controlled object in experiments uses non-salient pole permanent magnet synchronous 
motor of Delta's ASMT series, whose main parameters are as follows table 2: 
 

Name Value Unit 

Resistance 3.052R   

Inductance 8.4dL   mH  

Rating Power 1.0P   kW  

Torque 3.3T   N m  

Pole-pairs 4pN   --- 

Voltage 300U   V  

Speed 3000Nn   /minr  

Rotary inertia 0.00026J   2kg m  

Table 2. Parameters of PMSM in experiment d. 

Host-computer control surface adopts visual man-machine surface the 
dSPACE/ControDesk to realize data acquisition and display. Figure 14 is pictorial diagram 
based on the dSPACE control system. The system consists of inverter, isolation circuit, 
detection circuit, power circuit and etc. 
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Fig. 14. Control system hardware circuit with dSPACE interface. 

v. Waveform: 
Because the research of nonlinear system high order sliding mode control theory still is in 
primary stage, it is face with much challenge. For example, it strictly requires all of the 
system functions are smooth, and norm-bounded. Otherwise, there is the higher derivative 
of reference value in control law. In our experiment, 60V DC regulated power is supplied. 
Experiment is tested under the conditions above. The main test results are following. 
 

     
Fig. 15. Speed reference curve of PMSM.  
 

 

Fig. 16 Dynamic speed feedback curve. 
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High order sliding mode control law has high derivative of reference signal, so the reference 
signal must be smooth and continues enough function. For testing speed dynamic response 
of PMSM in the experiment, the reference signal is set as Fig. 15. Actual measurement of 
speed dynamic response is shown in Fig. 16. 
By comparing Fig. 15 and Fig 16, nonlinear PMSM holds good dynamic tracking character 
with high order sliding mode control. 
 

        
Fig. 17. Steady speed of clockwise/ Anti-clockwize displayed in dSPACE/ControlDesk. 
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Fig. 18. Speed curve of PMSM in MATLAB/Simulink using traditional sliding mode control. 

Fig. 17 is steady speed clockwise/anti-clockwise curve of PMSM. It is can be seen that the 
PMSM also takes on good steady performance. 
The Fig. 18 is outline simulation speed waveform of PMSM using traditional sliding mode 
control. It displays anti-clockwise speed waveform of PMSM. And the Fig. 19 is outline 
simulation speed curve of PMSM using high order sliding mode. After partial amplification, 
comparing with Fig. 18, high order sliding mode control is provided with the ability of 
avoidance chattering. But, its algorithm is more complicated than tradition. The adjusting 
time is longer, too.  
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Fig. 19. Speed curve of PMSM in MATLAB/Simulink using high order sliding mode control. 

To validate experiment intention 2 and 3, show high order sliding mode control with free 
chattering and robustness, the experiment designs traditional sliding mode controller, too. 
Simulation and actual measurement are recorded in order to compare with high order 
sliding mode. 
 

          
Fig. 20. Speed curve in dSPACE/ControlDesk using traditional/high order sliding mode 
control. 

Due to the traditional sliding mode control uses discontinues control law acting on sliding 
mode manifold surface, chattering problem is caused. The great of the coefficient in sliding 
mode control law, the faster of convergence, when the system enter into sliding mode, 
chattering phenomenon is more obvious. The left figure of Fig. 20 is actual measurement 
speed curve of PMSM, which adopts conventional sliding mode control. The control law is 

sgniu K s  , in current loop 1 5K  , in speed loop 2 8.2K  . From the comparison of Fig. 
20, we can obtain a conclusion that chattering is released in high order sliding mode. 
Hereto, both of simulation and experiment results prove that high order sliding mode 
control can reduce the chattering phenomenon which exists in conventional. Following 
experiment will test the robustness of high order sliding mode control. 
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Fig. 21. Speed curve of 0.5 mN   disturbance load in dSPACE/ControlDesk. 

The PMSM is a typical complex system because of elevated temperature, saturation, time 
delay and a good many elements. These reasons lead to the synchronous motor is nonlinear, 
variation parameter, close coupled system. For the sake of testing high order sliding control, 
which is insensitive to the parameter uncertainness and disturbance, experiment is injected 
about 0.5 mN   external load disturbance at the 0.01 second. The speed actual measurement 
waveform is shown in Fig. 21. From this figure, speed curve is smooth without flutter. The 
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experiment result illuminates high order sliding mode control reserves robustness of 
conventional sliding mode.  
Experimentally verified, high order sliding mode control provides an effective method to 
improve accuracy and robustness further for nonlinear systems 

3. Conclusion 
This chapter applies the research of nonlinear control and high order sliding mode control 
theory in PMSM control, and achieves robust control for a PMSM in spit of the internal 
parameter uncertainties and unknown external disturbance load torque. The simulation 
results show good performance; in addition, the estimation online of system state variables 
is also one of the hot issues in the control field. In this chapter, a new design based on high 
order sliding mode with differentiator for PMSM, access to the state variable estimation; 
Besides, unknown uncertain load impacts the performance of motor control. In order to 
improve system performance, this chapter also achieves external disturbance load 
estimation online. It makes sure the load can be accurately estimated. 
This chapter described dSPACE physics experiment control platform the build and 
development process in detail. Through the dSPACE real-time control platform, the 
nonlinear high order sliding mode control theory research is applied to the control of 
permanent magnet synchronous motor. The experimental results and simulation results are 
consistently indicate that synchronous motor has better dynamic performance and steady 
accuracy, proves the feasibility of this technology in practical application systems; It is also 
verified by high order sliding mode control technique that preserves the robustness of 
traditional sliding mode control. The high order sliding mode essentially eliminates the 
chattering caused by discrete control law. From another point of view, the simulation and 
physical experiment provide a certain reference value for the nonlinear systems high order 
sliding mode control further application. 
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1. Introduction   
Switched reluctance motors (SRMs) can be applied in many industrial applications due to 
their cost advantages and ruggedness. The switched reluctance motor is simple to 
construct. It is not only features a salient pole stator with concentrated coils, which allows 
earlier winding and shorter end turns than other types of motors, but also features a 
salient pole rotor, which has no conductors or magnets and is thus the simplest of all 
electric machine rotors. Simplicity makes the SRM inexpensive and reliable, and together 
with its high speed capacity and high torque to inertia ratio, makes it a superior choice in 
different applications. 
The dynamics of these systems are highly nonlinear and their models inevitable contain 
parametric uncertainties and unmodeled dynamics. The application of non linear robust 
control techniques is a necessity for successful operation electrical system. The industrial 
applications necessitate speed/position variators having high dynamic performances, a 
good precision in permanent regime, a high capacity of overload and robustness to the 
different perturbations. Thus, the recourse to robust control algorithms is desirable in 
stabilization and in tracking trajectories [1, 2].  
Variable structure control with sliding mode, is one of the effective non linear robust control 
approaches. Sliding Mode Control (SMC) has attracted considerable attention because it 
provides a systematic approach to the problem of maintaining stability. It has been studied 
extensively to tackle problems of the nonlinear dynamic control systems. The sliding mode 
control can offer many good properties such as good performance against unmodelled 
dynamics systems, insensitivity to parameter variation, external disturbance rejection and 
fast dynamic [5, 9]. 
Sliding mode control has long proved its interests. Among them, relative simplicity of 
design, control of independent motion (as long as sliding conditions are maintained), 
invariance to process dynamics characteristics and external perturbations, wide variety of 
operational modes such as regulation, trajectory control [1], model following [2] and 
observation [3]. 
However, the motor is highly nonlinear and operates in saturation to maximize the output 
torque. Moreover, the motor torque is a nonlinear function of current and rotor position. 
This highly coupled nonlinear and complex structure of the SRM make the design of the 
controller difficult [4]. 
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Section 2, investigates a case study of sliding mode control. In a more general study, the 
third section develops sliding mode controllers for switched reluctance motor drive; the 
proposed controller is described, and used to control the speed of the switched reluctance 
motor. Simulation results are given to show the effectiveness of this controller. Conclusions 
are summarized in the last section. 

2. SRM model 
2.1 Description of the system 
In a switched reluctance machine, only the stator presents windings, while the rotor is made 
of steel laminations without conductors or permanent magnets. This very simple structure 
reduces greatly its cost. Motivated by this mechanical simplicity together with the recent 
advances in the power electronics components, much research has being developed in the 
last decade. The SRM, when compared with the AC and DC machines, shows two main 
advantages: 
- It is a very reliable machine since each phase is largely independent physically, 

magnetically, and electrically from the other machine phases; 
- It can achieve very high speeds (20000 - 50000 r.p.m.) because of the lack of conductors 

or magnets on the rotor; 
The switched reluctance machine motion is produced because of the variable reluctance in 
the air gap between the rotor and the stator. When a stator winding is energized, producing 
a single magnetic field, reluctance torque is produced by the tendency of the rotor to move 
to its minimum reluctance position [5].  
A cross-sectional view is presented in figure 1.  
 

 
Fig. 1. Switched reluctance motor. 

The schematic diagram of the speed control system under study is shown in figure 2. The 
power circuit consists with the H-bridge asymmetric type converter whose output is connected 
to the stator of the switched reluctance machine. Each phase has two IGBTS and two diodes. 
The parameters of the switched reluctance motor are given in the Appendix [5, 6]. 
The SMC inputs are obtained by manipulating the speed reference and feedback, while the 
SMC output is integrated to produce the current reference.  
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Fig. 2. Control of  SRM. 

2.2 Machine equation 
The switched reluctance motor has a simple construction, but the solution of its 
mathematical models is relatively difficult due to its dominant non-linear behaviour. The 
flux linkage is a function of two variables, the current I and the rotor position (angle θ). 
The instantaneous voltage across the terminals of a phase of an SR motor winding is related 
to the flux linked in the winding by Faraday's law as:  
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With 1,....3j   
Because of the double salience construction of the SR motor and the magnetic saturation 
effects, the flux linked in an SRM phase varies as a function of rotor position   and the 
phase current. Equation (1) can be expanded as 
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instantaneous back e.m.f. 
While excluding saturation and mutual inductance effects, the flux in each phase is given by 
the linear equation 
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It can be written as 
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The total energy associated with the three phases ( 3)n   is given by  
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Each phase inductance displaced by an angle s .  
The average torque can be written as the superposition of the torque of the individual motor 
phases: 
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and the motor total torque by  
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The mechanical equations are  

 e lJ T T f
t
 
  


 (8) 

Where V - the terminal voltage, I - the phase current, R - the phase winding resistance,   - 
the flux linked by the winding, J - the moment of inertia, f - the friction coefficient, ( )L   - the 
instantaneous inductance, rN  number of rotor poles, sN  number of stator poles, lT  is the 
torque load and eT  is the total torque. 

3. SRM sliding mode speed controller  
3.1 Sliding mode principle 
Sliding modes is phenomenon may appear in a dynamic system governed by ordinary 
differential equations with discontinuous right-hand sides. It may happen that the control as 
a function of the system state switches at high frequency, this motion is called sliding mode. 
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3.2 Sliding mode controller 
The equivalent total phase power becomes [9, 10] 
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The electromagnetic torque over the switching period is then 
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  then electromagnetic torque can be further simplified as 
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Where tK  is a proportional torque constant and ( )tI t is the equivalent dc-link current 
providing electromagnetic torque. 
The electromagnetic dynamic model of a switched reluctance motor and loads can be 
expressed as follows [11,12, 13]: 

 ( )e lT T f
t J

  



 (13) 



 
Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics 

 

266 

It can be written as 
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The mechanical equations are  
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From (11) and (12), (13) can be obtained: 
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Speed control can be implemented by a sliding-mode variable structure controller, but a 
discontinuous torque control signal would cause chattering of the speed response. In order 
to enable smooth torque control and reduce the chattering problem ( )tI t must be smoothed 
according to (11). The phase variable state representation of Fig. 4 can be used to develop 
the required control scheme. It can be simplified as: 
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Where 1 refx    , ref  is the demand rotor speed, 2 refx I I  , and U  is a control signal 
which is used to control the current error, irrespective of drive system parameter variations. 
The sliding line in the phase plane diagram [Fig. 4] can be described as follows: 
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the current of control is given by  
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To satisfy the existence condition of the sliding-mode speed controller, the following must 
be satisfied: 
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The controller can be designed as follows: 
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Where: 
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a and b are proportional and derivative gain constant respectively, and 1 2 1 2, , and     are 
real constants.  
 

 

Fig. 4. A prescribed sliding line in phase plane. 

4. Simulation result 
The speed regulation of the SRM, despite its mechanical simplicity, is not simple to achieve. 
In the previous sections, we saw the importance that the values of the commutation angles 
have to torque oscillations. A linear controller as the PI regulator presents good results for 
the SRM speed control [8]. However, the controller will be only valid for a given operating 
point. Therefore, some authors have investigated recently non-linear controllers based on 
the sliding mode [11,12,16] applied to SRM speed control. In this section, we discuss and 
illustrate the advantages and drawbacks of the SRM speed control by using a PI regulator 
and a sliding mode controller. 
To show the sliding mode controller performances we have simulated the system described 
in figure 2. The simulation of the starting mode without load is done. The simulation is 
realized using the SIMULINK software in MATLAB environment. Figure 5 shows the 
performances of the sliding mode controller.  
The saturating function in the PI block diagram is necessary since during the transient, if the 
current demanded is high and if the speed reference is also high, then the f.e.m. produced 
will prevent the current to grow. Hence, the maximum current value of the block saturation 
has been fixed in 25A. 
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Fig. 5.b shows the speed regulation for a reference of 120rad/s , with 0on    and 
38off   . Values of PI parameters pK  and iK  have been optimized in order to have the 

best compromise between response time and overshoot. Fig. 5.b shows good results for the 
speed regulation with weak speed oscillations in the permanent regime. Using a PI 
controller, a good compromise for pK  and iK  parameters has been found in order to have 
weak speed oscillations. The values found were: 0,18pK   and 2,85iK  .However, if a 
load is applied, the speed oscillations will increase, as illustrated in Fig. 5.b. These results 
have been obtained with a load of 1,5NmlT   applied at 0,6st  . 
Fig. 5 shows the very good performance reached by the sliding mode controller. Indeed, one 
notes that the overshoot is less important in the case of the sliding mode regulator, with a 
best response time without increasing the overshoot. Follow, we show the robustness of the 
PI and the sliding mode controller for the same operating condition.  
 

 
            PI                                                             Sliding mode 

Fig. 5. PI and sliding speed regulation with 1,5NmlT   applied at 0,6st  . 

Follow, the speed regulation operates in a supplementary quadrant. That means we are 
going to do a speed regulation with a negative torque load but maintaining the speed 
reference. Fig. 6 shows the results obtained for a negative load of 2NmlT    also applied at 

0,6st  . 

Fig. 6 shows that the speed regulation is not assured anymore after 0,6st  . From (8), the 

motor speed is given by 

 ( )e lT T
f

 
  (21) 

Therefore, the minimum speed for a possible regulation without producing a braking 
torque, meaning that the regulator will have its reference current to zero, will be  

 lT
f

 
min  (22) 
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In our case, the minimum speed stays 96,3 /srd min , as shown in Fig. 6. Now, if one 
wants to continue the speed regulation at 90 /rd s , it will be necessary to produce a braking 
torque when the speed error is negative. The controller by sliding mode gives good result 
compared to that of regulator PI. The increase speed is reduced during the application of a 
negative torque. However, when the negative torque load is applied at 0,5st  , the speed 
oscillations become significant. Previous results in Fig. 6 showed significant oscillations in 
the speed signal due to an initial bad choice of the on  value. 
 
 
 

 
              PI                                                          Sliding mode 
 
 

Fig. 6. PI and sliding speed regulation with 2NmlT    applied at 0,6st  . 

Figure 7 shows the very good performances reached by the sliding mode controller. Indeed, 
one notes that the overshoot is less important in the case of the sliding regulator, with a best 
response time without increasing the overshoot. 
For this test, the sliding controller proves to be well more robust because the speed curve is 
hardly of its reference. On the other hand, the speed signal evolution obtained with the PI 
controller deviates about 10% from its reference value (figure 7). The speed tracking is 
satisfactory, and the torque ripple is low. These results demonstrate the robustness of the 
drive under unpredictable load conditions. The decreasing speed oscillations with the PI 
controller are owed to a slower reaction of the current, as shown in figure 7.  

4.1 Robustness 
In order to test the robustness of the proposed control, we have studied the speed 
performances. Two cases are considered: 
1. Inertia variation, 
2. Stator resistance variation. 
The figure 8 shows the tests of the robustness: a) The robustness tests concerning the 
variation of the resistances, b) the robustness tests in relation to inertia variations. 
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Fig. 7. Simulation results of speed control. 
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b) Different values of moment of inertia 

Fig. 8. Test of robustness.  

Figure 8-b shows the parameter variation does not allocate performances of proposed 
control. The speed response is insensitive to parameter variations of the machine, without 
overshoot and without static error. The other performances are maintained. 
For the robustness of control, a decrease or increase of the moment of inertia, the resistances 
doesn’t have any effects on the performances of the technique used (figure 8.a and 8.b). An 
increase of the moment of inertia gives best performances, but it presents a slow dynamic 
response (figure 8.b). The controller suggested gives good performances although the  
parameters are unknown.   

5. Conclusion 
This chapter presents a new approach to robust speed control for switched reluctance 
motor. It develops a simple robust controller to deal with parameters uncertain and external 
disturbances and takes full account of system noise, digital implementation and integral 
control. The control strategy is based on SMC approaches.  

 
Sliding Controller of Switched Reluctance Motor 

 

275 

The simulation results show that the proposed controller is superior to conventional 
controller in robustness and in tracking precision. The simulation study clearly indicates the 
superior performance of sliding control, because it is inherently adaptive in nature. It 
appears from the response properties that it has a high performance in presence of the plant 
parameters uncertain and load disturbances. It is used to control system with unknown 
model. The control of speed by SMC gives fast dynamic response without overshoot and 
zero steady-state error. The controller contains only two structures and the only way of 
changing them is by switching. A major drawback of this system is chattering, which is 
caused by a fast switching of the controller structure   

6. Appendix 
Throughout this section the motor parameters used to verify the design principles are: 
Number of phase 3, Number of stator poles 6, Pole arc 30°,  Number of rotor poles 4, Pole 
arc 30°, Maximum inductance 60mH, Minimum inductance 8mH, resistance 1,3Ω, Moment 
of inertia 0,0013Kg;m2, friction 0,0183Nm/s, Inverter voltage 150v. 
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1. Introduction 
In most of the modern drive systems with alternating current (AC) machines which require 
rotor speed control, the main task is to design and develop different controllers, able to 
achieve high dynamic performance and to maintain the system response within specified 
tolerances, for a wide range of speed and torque values, for parameter variations and for 
external perturbations like: total inertia moment, friction coefficient, etc. (Leonhard, 1985). 
Various concepts for controlled AC drives without speed sensor (sensorless control) have 
been developed in the past few years (Holtz, 2002; Rajashekara et al., 1996; Vas, 1998). 
Ongoing research has focused on providing sustained operation at high dynamic 
performance at very low speed, including zero speed and zero stator frequency (Akatsu & 
Kawamura, 2000; Holtz & Quan, 2002; Hurst et al., 1998; Lascu et al., 2005). In speed 
sensorless control, motor parameter sensitivity is an important and large discussed and 
analyzed problem (Akpolat et al., 2000; Toliyat et al., 2003). In many existing speed 
identification algorithms, the rotor speed is estimated based on the rotor flux observer. 
Therefore, these algorithms are, to a certain degree, machine parameter dependent. The 
solution proposed in this chapter is to apply robust control to sensorless AC drive systems.  
The designing procedure of the speed controllers can be very difficult, if a complex 
mathematical model of the plant (here of the AC machine) is used. But robust controllers 
keep the dynamic and stability performance of the controlled system even if structured or 
unstructured uncertainties appear. That's why, robust speed controllers can be designed by 
using simplified models of the AC machines, and have to be used in a complex structure 
based on the field-oriented control (FOC) principle (Birou & Pavel, 2008). Thus, the 
requirements of a digital control application are: a flexible control structure, reduced 
hardware configuration and a good dynamic behavior of the controlled process. The last 
two aspects can be realized by finding a compromise between the reducing of the control 
cycle times and the increasing of controller complexity. For industrial applications the 
hardware costs are also important.  
Two different algorithms will be presented to estimate the rotor speed in this chapter, one 
based on the model reference adaptive system (MRAS) and the other on a full order 
observer (FOO). The speed identification algorithms, the designing procedure of the optimal 
H controller and the robust control of the sensorless driving system will be accomplished 
by simulated and experimental results. Based on the results obtained, advantages and 
disadvantages of the proposed control structures will be discussed. 
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2. Control of AC machines 
Electrical machines are the major and most efficient source to generate motion for a large 
number of applications in a wide range of power (from μW to several hundred of MW). 
Among all types of electromechanical converters, the AC machines are now, from fare, the 
most produced and used in variable speed applications, because of their high 
performance/cost ratio. If for low power applications (i.e. servo drives), generally 
permanent magnet synchronous machines (PM-SM) and for very high powers electrical 
excited synchronous machines (SM) are used, the largest number of applications use rotor 
cage induction machines (IM) because of their higher mechanical robustness and lower cost 
(Birou et al., 2010; Holtz, 2002; Kelemen & Imecs, 1991; Leonhard, 1985; Moreira et al., 1991; 
Wieser, 1998; Trzynadlowski, 1994). The main disadvantage of using in the past the IM as 
motion source in variable speed applications, namely the difficulty to precisely control 
speed and/or torque, is now compensate by using: 
- power electronics in wide power range (voltage-source or current-source converters), to 

fed AC machines with variable amplitude/frequency power signals (voltage or 
current); 

- modern control methods, like field oriented based vector control (VC) or direct torque 
control (DTC) strategies of AC drive systems; 

- high frequency, real-time, digital computing systems, based on microcontrollers (μC) or 
digital signal processors (DSP), able to implement an perform the designed strategies 
and control methods. 

Depending on the dynamic performances, energy efficiency demands and final cost of the 
electrical drive system, following control strategies can be used: 
- scalar control (SC) of AC machines, considering the two torque producing components 

of the electrical machine (the current and the electromagnetic flux) only as scalar 
variables, without information about their phasorial positions. The current, speed or 
position control loops are able to impose good enough dynamic performances for a 
large number of applications; 

- vector control (VC) of AC machines, based on the field-oriented control (FOC) 
principle, where the motion control loop (position, speed or torque loop) and the 
magnetizing control loop (flux loop) are decoupled by using the flux phasor (vector) as 
reference system and splitting the current phasor into an active and a reactive 
component. This control strategy is the most computer time and effort demanding 
(revealed also in the costs of the system) but ensure the best dynamic performances and 
energy efficiency in variable speed control; 

- direct torque control (DTC) of AC machines, used widely in variable torque 
applications like electric traction systems, based on the direct control of the torque 
producing current, considering the limited number of possible topologic configurations 
of one of the power converter components, namely the pulse width modulated (PWM) 
inverter. 

In the designing procedure of the controllers, it is important to know the transfer function of 
the process. A transfer function which describes exactly the behavior of the AC machine is 
almost impossible to obtain, because of the nonlinearities of the mathematical model of the 
machine. Consequently a simplified transfer function of the process is used to design the 
speed controller. Then, the control law is introduced in the not simplified and nonlinear 
"original" control structure, in order to simulate and analyze the dynamic behavior of the 
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mechanical and electrical variables (speed, torque, currents, voltages, etc.). In our drive 
system, the simplified transfer function describes the linear model of the AC machine 
corresponding to a steady state working point and is presented in Fig. 1. A vector control 
strategy will be applied to control the variable speed electrical drive systems discussed in 
this chapter. For the proposed FOC of the AC machine, the rotor flux vector is considered to 
be the reference system. In this case the speed controller has as input the speed error Δnr and 
computes the control variable as the active component of the stator current i*Active=isqλr, as 
described by Equation 1. 
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Fig. 1. Simplified speed close-loop control structure of an ac machine. 

Using the torque producing expression: 
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with ω the electrical angular velocity and nr the rotor speed. The simplified transfer function 
of the rotor-flux oriented AC machine can be written: 

   2
1* 1 1

r m

m msq r

n KKP s K
T s T si 

  
 

.  (4) 

If we apply to the speed control loop presented in Fig. 1 the module criteria and consider the 
non compensable component described by the dead-time transfer function: 
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the speed controller will have a transfer function as follows: 
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It results a classical PI controller, having Kp - the proportional coefficient and Ki=Kp/Ti - the 
integrator coefficient. Considering the two first-order integrator type transfer functions of 
the direct loop having constant times of different ranges, with m  Tm , 
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the equivalent closed-loop transfer function of Fig.1 becomes: 
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3. Sensorless control of AC machines based on adaptive identification 
The common accepted definition of sensorless control for electrical drives means the need of 
speed and/or torque control of an electrical machine without using any mechanical speed or 
position measuring device placed on the rotor ax. Recently, sensorless control of AC drives 
is a prolific research area and many viable solutions have been proposed and implemented. 
It combines favorably the cost advantage with increased reliability due to the absence of the 
mechanical sensor and its communication cable. Speed sensorless AC drives are today well 
established in industrial applications where no persistent operation at lower speed occurs. 
The main philosophy in sensorless control is to use the electrical machine itself as a “sensor” 
by offering the necessary information able to estimate its position or speed (Consoli et al., 
2003; Lorenz 2010). Several techniques have been developed and published in application 
with both FOC and DTC of AC drives. A first category comprises signal injection 
techniques, based on spectral analysis which use either the natural (if it exists), or an 
artificial created, anisotropy of the magnetic field of the AC machine (Briz et al., 2004; 
Degner & Lorenz, 2000; Holtz 2006; Kim & Lorenz, 2004). By injecting appropriate voltage 
signals in the stator (mainly high frequency signals) and analyzing the obtained current or 
voltage harmonics, valuable information can be extracted to determine the rotor position. A 
second category comprises techniques which estimate the rotor position/speed starting 
from the real process (drive system) and from the mathematical model of the machine by 
using different identification algorithms, like: 
- open-loop state estimation using simple models and improved schemes with 

compensation of nonlinearities and disturbances (Holtz & Quan, 2002); 
- model reference adaptive system based techniques (Birou & Pavel, 2008; Cirrincione & 

Pucci, 2005; Landau, 1979; Lascu et al., 2005); 
- adaptive and robust observer (mainly Kalman filter or Lueneberger observers) based on 

fundamental excitation and advanced models (Caruana et al., 2003; Hinkkanen, 2004; 
Jansen et al., 1994); 

- estimators using artificial intelligence, in particular fuzzy-logic systems, neural 
networks and genetic algorithms (Zadeh, 1996) .  

 
Robust Control of Sensorless AC Drives Based on Adaptive Identification  

 

281 

The proposed solution is based on a FOC structure with AC machine, using for speed 
estimation a model reference adaptive system (MRAS) algorithm and a full order observer 
(FOO) respectively, like presented in Fig. 2. 
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Fig. 2. Block diagram of the speed sensorless vector control of the induction machine 

3.1 Model reference adaptive system algorithm for speed identification 
In order to achieve sensorless control, the rotor speed estimation has to be indirectly derived 
based on the measured stator voltages and currents. Therefore, a mathematical model of the 
induction machine is needed. The model is described in the stationary (stator) reference 
frame. The block diagram of the MRAS speed identification is shown in Fig. 3. It contains a 
reference model, an adjustable model and an adaptive algorithm. Both models have as 
inputs the stator voltages and currents. The reference model outputs a performance index p 

and the adjustable model a performance index p


. The difference between the two values is 

used by the adaptive algorithm to converge the estimated speed 


 to its real value. 
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Fig. 3. Model reference adaptive system algorithm (MRAS) for speed identification. 

In order to estimate the rotor speed accurately, the performance index of the reference 
model has to be robust over the entire speed range and insensitive to the machine 
parameters. According to the equations of the induction machine, we can obtain the value of 
the rotor flux phasor based on stator equations: 
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parameters. According to the equations of the induction machine, we can obtain the value of 
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where Lσ is the equivalent inductance and Rs is the stator resistance. The same rotor flux 
phasor based on the rotor equations: 
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where τr=Lr/Rr is the rotor time constant. Considering the electromotive induced voltage 
(back EMF) being: 
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and decoupling Equation 9 on the stationary (stator-fixed) reference frame d-q, we obtain: 
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Considering a formal magnetizing current 
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The reference model is described based on Equations 12 and 13 and is parameter 
dependent, namely with the stator resistance Rs and the equivalent inductance L. In the 
reference model there are no integral operations, so the model can be used also for low 
speed estimation. To improve the robustness of the reference model, one of the two 
machine parameters can be avoided by choosing an optimal way to define the reference 
model performance index p. To eliminate the effect of the inductance L, Equations 12 and 
13 are cross multiplied by the derivates of the two stator current components and we 
obtain: 
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Equation 17 describes the performance index of the reference model. To obtain the 
performance index of the adjustable model, same mathematical operations applied to 
Equations 15 and 16 give: 
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having the two formal magnetizing current components described by: 
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Equation 17 is used for the reference model and Equation 18 for the adjustable model. The 
error between the two performance indexes 
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p p    (21) 

is the input for the adaptive algorithm, see Fig. 3. This algorithm estimates the 


 rotor 
speed in order to converge the performance index of the adjustable model to the 
performance index of the reference model (converge the error  to zero). In designing the 
adaptive mechanism of the presented MRAS structure, it is necessary to ensure the stability 
of the control system and the convergence of the estimated speed to the real one. Based on 
the hyper-stability theory (Landau, 1979), following adaptive mechanism is used in order to 
guarantee the system stability: 
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where, Kp and Ki are the gain parameters of the adaptive algorithm, limited only by noise 
considerations and having for our control structure the particular values Kp=3 and Ki=10. 
The MRAS algorithm presented above can also be used for on-line identification of some 
parameter of the induction machine, namely the stator resistance, the equivalent inductance 
or the rotor time constant.  

3.2 Speed and rotor flux estimator based on a full order observer 
The speed estimation strategy with full order observer (FOO) is based on the fundamental 
excitation variables as information source, like presented in Fig. 4. The rotor speed estimator 

is based on comparing the stator current estimate value si


 to the actual stator current is and 

updating the estimated speed 


 such that the error is- si


 is minimized in some sense. This 
will be done by using a full-order observer for the estimated stator current, rotor flux and 
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where Lσ is the equivalent inductance and Rs is the stator resistance. The same rotor flux 
phasor based on the rotor equations: 
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where τr=Lr/Rr is the rotor time constant. Considering the electromotive induced voltage 
(back EMF) being: 
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and decoupling Equation 9 on the stationary (stator-fixed) reference frame d-q, we obtain: 
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The reference model is described based on Equations 12 and 13 and is parameter 
dependent, namely with the stator resistance Rs and the equivalent inductance L. In the 
reference model there are no integral operations, so the model can be used also for low 
speed estimation. To improve the robustness of the reference model, one of the two 
machine parameters can be avoided by choosing an optimal way to define the reference 
model performance index p. To eliminate the effect of the inductance L, Equations 12 and 
13 are cross multiplied by the derivates of the two stator current components and we 
obtain: 
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Equation 17 describes the performance index of the reference model. To obtain the 
performance index of the adjustable model, same mathematical operations applied to 
Equations 15 and 16 give: 
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having the two formal magnetizing current components described by: 
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Equation 17 is used for the reference model and Equation 18 for the adjustable model. The 
error between the two performance indexes 
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is the input for the adaptive algorithm, see Fig. 3. This algorithm estimates the 


 rotor 
speed in order to converge the performance index of the adjustable model to the 
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guarantee the system stability: 
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excitation variables as information source, like presented in Fig. 4. The rotor speed estimator 
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where  is the speed of the reference frame and k1, k2 and k3 are the gain parameters of the 
algorithm, calculated from the Ricatti equation.  
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Fig. 4. Full order observer (FOO), for speed and rotor flux estimation 

The speed estimator must converge significantly faster than the mechanical speed control 
loop in order to ensure good tracking. So, the dynamics of the speed estimator can be 
neglected as seen from the much slower flux and speed dynamics and thus it can be 
considered only that value of estimated speed and stator current which have converged to 
quasi steady-state values. The control structure based on the MRAS algorithm presented in 
3.1 will be implemented on a driving system, composed of an induction machine with the 
following main catalog values:  
- rated power   PN  2,2 kW,  
- rated speed   nN 1435 rpm.,  
- nominal stator current  IsN 4,9 A, 
- rated stator voltage  UsN 400V,  
- nominal load torque  MN 14,7 Nm.  
Simulated results of the MRAS algorithm are presented in Fig. 5, where the reference model 

performance index p, the adjustable model performance index p


 (Equations 17 and 18), and 
error ε (Equation 21) are for a starting process to the rated speed with rated load torque.  
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Fig. 5. The performance index of reference model p, adjustable model p


 and error index . 
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The simulated speed of this process, the estimated speed based on the MRAS algorithm and 
the speed error estimation are presented in Fig. 6. Problems that may occur by derivation of 
the measured stator currents can be avoided using specific digital algorithms.  
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Fig. 6. Rotor speed, estimated speed based on the MRAS algorithm and speed error for a 
starting process at rated speed with rated torque. 

Simulated results confirm that the advantage of using the MRAS algorithm, for the control 
of a sensorless driving system, is a high dynamic performance at speed and torque steps. 
The error of the estimated speed in the starting process is relative big, because of the 
sensitivity of the control structure with speed estimators to parameter variations (rotor time 
constant) and external perturbations (moment of inertia, friction coefficient). By modifying 
the gain parameters from Equation 22 we can avoid this, but we disturb the control 
performance parameters (overshooting, stationary error). So, increasing robustness of the 
sensorless control is needed. The proposed solution is to apply the robust control theory to 
the AC drive, by designing an optimal H controller, to ensure the stability and robustness 
performances of the driving system.  

4. Robust control of AC drives 
A control system is considered to be robust if it is insensitive to internal process parameter 
variations or external perturbations (McFarlene & Glover, 1990; Safonov, 1980). In driving 
systems with AC machines, the most sensible elements are: 
- rotor resistance or rotor time  constant because of their strong variation due to the inner 

temperature of the machine and because of their influence in the machine model; 
- mutual inductance (magnetic inductance) because of his nonlinearity (saturation effect); 
- total inertia moment of the system with possible nonlinear or even random variations 

(especially by robot arms); 
- load torque for a wide range of applications. 
The main goal of a robust controller is to compensate the effects introduced by the 
variations of the sensitive elements described above to the dynamic process of the controlled 
system 
The designing process of a robust controller may follow different methods, applying various 
robust control system synthesis techniques (Ball & Helton, 1993; Chiang & Safonov, 1992; 
Doyle et al., 1989; Morari & Zafiriou, 1990; Zames, 1996). The main methods are based on 
geometric-analytical, frequency domain or steady-state approaches like: Hardy space based, 
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Simulated results confirm that the advantage of using the MRAS algorithm, for the control 
of a sensorless driving system, is a high dynamic performance at speed and torque steps. 
The error of the estimated speed in the starting process is relative big, because of the 
sensitivity of the control structure with speed estimators to parameter variations (rotor time 
constant) and external perturbations (moment of inertia, friction coefficient). By modifying 
the gain parameters from Equation 22 we can avoid this, but we disturb the control 
performance parameters (overshooting, stationary error). So, increasing robustness of the 
sensorless control is needed. The proposed solution is to apply the robust control theory to 
the AC drive, by designing an optimal H controller, to ensure the stability and robustness 
performances of the driving system.  

4. Robust control of AC drives 
A control system is considered to be robust if it is insensitive to internal process parameter 
variations or external perturbations (McFarlene & Glover, 1990; Safonov, 1980). In driving 
systems with AC machines, the most sensible elements are: 
- rotor resistance or rotor time  constant because of their strong variation due to the inner 

temperature of the machine and because of their influence in the machine model; 
- mutual inductance (magnetic inductance) because of his nonlinearity (saturation effect); 
- total inertia moment of the system with possible nonlinear or even random variations 

(especially by robot arms); 
- load torque for a wide range of applications. 
The main goal of a robust controller is to compensate the effects introduced by the 
variations of the sensitive elements described above to the dynamic process of the controlled 
system 
The designing process of a robust controller may follow different methods, applying various 
robust control system synthesis techniques (Ball & Helton, 1993; Chiang & Safonov, 1992; 
Doyle et al., 1989; Morari & Zafiriou, 1990; Zames, 1996). The main methods are based on 
geometric-analytical, frequency domain or steady-state approaches like: Hardy space based, 
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optimal H2 and H techniques (Green & Limebeer, 1995; Ionescu et al., 1998; Kwakernaak, 
1993; Mita et al., 1998), linear quadratic optimal LQG (Kucera, 1993), LQG/LTR (Doyle et al., 
1989) or LQR (Chiang & Safonov, 1992) techniques and square root based  synthesis 
techniques (Apkarian & Morris, 1993). An optimal H technique will be used in this chapter 
for the robust control of the driving system because of the relative simple designing process 
of the controller and the high robust performances obtained (Bryson, 1996). The designing 
procedure for the optimal controller will start by describing the driving system with AC 
machine in steady state equations as a linear multivariable system. 

4.1 Mathematical model of the real driving system with AC machine 
Fig. 1 presents the closed loop control system of an AC drive. The controlled process is 
described by a simplified model P(s) of the AC machine (valuable for both the induction and 
the synchronous machine). The robust control problem is to design an optimal speed 
controller C(s) able to satisfy the robust-stability and robust-performance criteria of the 
controlled system. The difference between the real physical system (in our case the AC 
driving system) and his mathematical model, difference defined as mathematical 
uncertainty may have several causes, namely: 
- the AC driving system (like most of the real systems) is nonlinear, while the 

mathematical model is linear around a static working point, so the model exactly 
describes the process only around this working point; 

- simplification constrains in modeling the process (AC machine in our case) based on 
high number of variables and parameter involved; 

- process parameter variations and external perturbations are difficult to be exactly 
modeled; 

- dynamic behavior of the driving system can not be exactly modeled. 
The mathematical uncertainties can be structural uncertainties, based on parameter 
variations of the dynamic process like rotor time constant and nonstructural uncertainties, 
frequency dependent like magnetic saturation or external perturbations (moment of inertia, 
load torque). The study of system robustness based on the Hcontrol theory is based on 
describing the model uncertainty as transfer function (matrix) different from the nominal 
one. The most used methods to describe them are like additive uncertainties, multiplicative 
uncertainties or a superposition of both uncertainties, like presented in Fig. 7. Using them, 
the real process can be written based on the modeled one (nominal plant) as: 

 ( ) ( ) ( )N AP s P s s    (26) 

in the case of additive uncertainties, and : 

 ( ) ( ( )) ( )M NP s I s P s    (27) 

in the case of multiplicative uncertainties, where PN(s) is the nominal (rated) plant, P(s) is the 
real plant (perturbed process), A(s) is the additive uncertainty and M(s) is the 
multiplicative uncertainty. Analyzing the dynamic behavior of the process in frequency 
domain by using additive or multiplicative uncertainties, the model will describe better the 
real system in stationary frame or at lower frequencies and the uncertainties will increase at 
higher frequencies. 
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Fig. 7. Diagram of the controlled process using the additive and multiplicative uncertainty. 

4.2 Optimal H controller design for the driving system 
The extended H control theory is used to design a robust speed-control solution for AC 
driving systems. It has to satisfy the robust stability characteristics of the control structure as 
well as the dynamic performances of the driving system. Considering a Laplace transform 
matrix G(s)Cmxn of a multivariable system with n inputs and m outputs and  (G) the 
greatest singular value of matrix G, the Hnorm of G(s) can be defined as: 

 sup [ ( )]G G j


 





 . (28) 

For a single input-single output system the H norm of a transfer function can be defined as: 

 max ( )G G j


  . (29) 

The H optimal control designing problem in the particular case of applying the small gain 
problem is to form an augmented plant of the process, P(s) like in Fig. 8, with the weighting 
functions W1(s), W2(s), W3(s) applied to the signals: error e, command u and output y 
respectively, so that the weighted (y11, y12, y13) and not weighted y2 system outputs can be 
defined as: 
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and the real, perturbed process P(s) can be described as: 
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optimal H2 and H techniques (Green & Limebeer, 1995; Ionescu et al., 1998; Kwakernaak, 
1993; Mita et al., 1998), linear quadratic optimal LQG (Kucera, 1993), LQG/LTR (Doyle et al., 
1989) or LQR (Chiang & Safonov, 1992) techniques and square root based  synthesis 
techniques (Apkarian & Morris, 1993). An optimal H technique will be used in this chapter 
for the robust control of the driving system because of the relative simple designing process 
of the controller and the high robust performances obtained (Bryson, 1996). The designing 
procedure for the optimal controller will start by describing the driving system with AC 
machine in steady state equations as a linear multivariable system. 

4.1 Mathematical model of the real driving system with AC machine 
Fig. 1 presents the closed loop control system of an AC drive. The controlled process is 
described by a simplified model P(s) of the AC machine (valuable for both the induction and 
the synchronous machine). The robust control problem is to design an optimal speed 
controller C(s) able to satisfy the robust-stability and robust-performance criteria of the 
controlled system. The difference between the real physical system (in our case the AC 
driving system) and his mathematical model, difference defined as mathematical 
uncertainty may have several causes, namely: 
- the AC driving system (like most of the real systems) is nonlinear, while the 

mathematical model is linear around a static working point, so the model exactly 
describes the process only around this working point; 

- simplification constrains in modeling the process (AC machine in our case) based on 
high number of variables and parameter involved; 

- process parameter variations and external perturbations are difficult to be exactly 
modeled; 

- dynamic behavior of the driving system can not be exactly modeled. 
The mathematical uncertainties can be structural uncertainties, based on parameter 
variations of the dynamic process like rotor time constant and nonstructural uncertainties, 
frequency dependent like magnetic saturation or external perturbations (moment of inertia, 
load torque). The study of system robustness based on the Hcontrol theory is based on 
describing the model uncertainty as transfer function (matrix) different from the nominal 
one. The most used methods to describe them are like additive uncertainties, multiplicative 
uncertainties or a superposition of both uncertainties, like presented in Fig. 7. Using them, 
the real process can be written based on the modeled one (nominal plant) as: 
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in the case of additive uncertainties, and : 
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in the case of multiplicative uncertainties, where PN(s) is the nominal (rated) plant, P(s) is the 
real plant (perturbed process), A(s) is the additive uncertainty and M(s) is the 
multiplicative uncertainty. Analyzing the dynamic behavior of the process in frequency 
domain by using additive or multiplicative uncertainties, the model will describe better the 
real system in stationary frame or at lower frequencies and the uncertainties will increase at 
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Fig. 8. Structure of speed control system with weighted process.  
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The second step of the robust control designing problem is to find an optimal stabilizing H 
controller having the structure presented in Fig. 9. The optimal stabilizing H controller is 
described by the control law: 

 2 2( ) ( ) ( )u s C s y s  (32) 

so that the infinity norm of the cost function Ty1u1, defined as: 
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is minimized and is less then one (Doyle et al., 1989; Kwakernaak, 1993): 
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Considering the robust stability and robust performance criteria, the weighting functions for 
the optimal H controller are chosen and then the iterative computing process continues, 
until the norm condition is full fit. The performance design specifications of the speed 
control loop with the H controller are imposed in frequency domain (Ionescu et al., 1998; 
Morari & Zafiriou, 1990): 
- robust performance specifications: minimizing the sensitivity function S (reducing it at 

least 100 times to approximate 0.3333 rad/sec). 
- robust stability specifications: -40 dB/decade roll-off and at least -20dB at a crossover 

band of 100 rad/sec. 
According to them, following weighting functions have been considered to describe the 
perturbed AC drive system with variable moment of inertia and friction coefficient: 
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where  represents the actual step value. The iterative process continues, until the graphic 
representation in Bode diagram of cost function Ty1u1 reach its maximum value in the 
proximity of 0 dB axis. In our case, for =39,75 we obtain the infinite norm 

 1 1 0,9999y uT

 .  (37) 

Respecting condition imposed by Equation 34 the corresponding H speed controller is: 
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The inverse weighting functions W1-1(s) and W3-1(s) and the sensitivity functions S(s) and 
T(s) are presented in Fig. 10. From the diagram results the influence of the weighting 
function W3-1(s) to limit the peak value of T(s) function. The output of the speed controller, 
i.e. the active current component, was limited.  
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Fig. 10. Weighting functions W1-1(s), W3-1(s) and sensitivity functions S(s) and T(s). 
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is minimized and is less then one (Doyle et al., 1989; Kwakernaak, 1993): 
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Considering the robust stability and robust performance criteria, the weighting functions for 
the optimal H controller are chosen and then the iterative computing process continues, 
until the norm condition is full fit. The performance design specifications of the speed 
control loop with the H controller are imposed in frequency domain (Ionescu et al., 1998; 
Morari & Zafiriou, 1990): 
- robust performance specifications: minimizing the sensitivity function S (reducing it at 

least 100 times to approximate 0.3333 rad/sec). 
- robust stability specifications: -40 dB/decade roll-off and at least -20dB at a crossover 

band of 100 rad/sec. 
According to them, following weighting functions have been considered to describe the 
perturbed AC drive system with variable moment of inertia and friction coefficient: 
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where  represents the actual step value. The iterative process continues, until the graphic 
representation in Bode diagram of cost function Ty1u1 reach its maximum value in the 
proximity of 0 dB axis. In our case, for =39,75 we obtain the infinite norm 

 1 1 0,9999y uT

 .  (37) 

Respecting condition imposed by Equation 34 the corresponding H speed controller is: 
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The inverse weighting functions W1-1(s) and W3-1(s) and the sensitivity functions S(s) and 
T(s) are presented in Fig. 10. From the diagram results the influence of the weighting 
function W3-1(s) to limit the peak value of T(s) function. The output of the speed controller, 
i.e. the active current component, was limited.  
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Fig. 10. Weighting functions W1-1(s), W3-1(s) and sensitivity functions S(s) and T(s). 
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The logarithmic Bode diagram and the Nyquist diagram of the direct-loop transfer function 
of the weighted process are presented in Fig. 11. According to them we establish the 
following stability parameters: crossover band  153,7 rad./sec., stability margins: gain 
margin = 130,3 dB, phase margin = 86,8°. For the same performance and robust stability 
specifications, a great number of weighting functions described by Equation 36 can be 
chosen, so the solution of designing an optimal H controller is not unique (Chiang & 
Safonov, 1992; Zames, 1996). To analyze if the speed control structure with the H controller 
presented in Equation 38 is robust stable, we apply the stability theorem for a perturbation 
in the drive system, namely a highest variation of total inertia moment from Jmot to 10Jmot 
and of the friction coefficient  Bmot to 100*Bmot. The condition  

 ( ) ( ) 1s T sM 


  (39) 

must be tested, where ( )M s  represents the greatest multiplicative uncertainty for the 
nominal plant. 

4.2.1 Stability analyze for a variation from Jmot to 10Jmot 
Considering the calculus way of the transfer function of the process, a ten times growing of 
the inertial moment, practically means a ten time growing of the time constant of the fixed 
part. The transfer functions of the nominal process and of the disturbed process are: 
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Using Equation 27 and considering Tm=1,232 sec., the maximum multiplicative uncertainty 
in the case of ten times growing the inertial moment J, can be modeled: 
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Fig. 11. Direct-loop transfer function of the weighted process in Bode and Nyquist diagram. 
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Knowing the expression of the complementary sensibility function T(s), the condition of 
robust stability can be determined, and is: 

 ( ) ( ) 0,9359M s T s


  . (42) 

Concluding, the control system with H controller remains robust stable for a variation of 10 
times of the total inertial moment of the system, related to the catalogue one. Fig. 12 shows 
the direct-loop transfer function Hd(s) family curves for the PI controller and for the optimal 
H, controller, at variations of the inertial moment of the synchronous motor, starting at  Jmot 
value, from 3, 5, 7 and 10 times of this value. As we can see from the presented graphs, at 
the variations of J, though the PI controller doesn’t go in instability, thus it is more sensitive 
at the parameter variations than the H controller. This shows a better robustness of the H 
optimal regulator. 

4.2.2 Stability analyze for a variation from Bmot to 100Bmot 
Considering that the largest variation of the friction coefficient of the mechanical system is 
100*Bmot catalogue value. A greater friction coefficient practically means a smaller value of 
the time constant as like of the amplification factor of the fixed part. Considering the above 
mentioned, the transfer functions of the nominal process and of the disturbed processes are: 
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Using Equation 27 and the time constant of the nominal process, the maximal multiplicative 
uncertainty, in the case of 100*Bmot friction coefficient, can be written as: 
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Fig. 12. Bode diagram of direct-loop transfer functions for PI (left) and H controller (right), 
at different inertia moment values. 
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Knowing the expression of the complementary sensibility function T(s), the condition of 
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Fig. 12. Bode diagram of direct-loop transfer functions for PI (left) and H controller (right), 
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The robust stability condition will be expressed as: 

 ( ) ( ) 0,9999M s T s


  . (45) 

We can find that the control system with the H controller remains robust stable for a 100 
times variation of the friction coefficient.  

5. Simulated and experimental results 
Some results of the sensorless control of AC machines based on adaptive identification are 
presented in main paragraph 3. Because of its sensitivity to parameter variations and 
external perturbations, a robust solution for the speed controller was proposed and 
discussed in paragraph 4.  Simulated results of an AC drive system controlled by a robust 
optimal H controller (chapter 5.1) will demonstrate the advantage of using robust control 
in applications with permanent variation of system parameter or external perturbations, (i.e. 
robot arms, traction systems, etc.). Finally, some experimental results of a robust control 
system, with sensorless AC drive, based on adaptive identification, will be presented. 

5.1 Simulated results of robust controlled driving system with permanent magnet 
synchronous machine 
A variable speed, FOC structure, of the PM-SM with cancelled longitudinal reaction, fed by 
a PWM voltage source inverter is presented in Fig.13. The stator current vector split into 
components leads to the characteristic loops of a FOC system. Rotor position information is 
obtained from the encoder and rotor speed is computed. The control system was simulated 
in Matlab/Simulink. The speed controller was designed and simulated using more 
optimizations criteria, to be compared with. The designed optimal robust H controller was 
implemented (see Equation 33), a PI controller (see Equation 6) and an optimal H2 controller 
based on the same performance design specifications like the optimal robust H controller.  
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Fig. 13. Variable speed VC structure of PM-SM with different types of speed controller. 
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The power converter is a 1kW voltage source converter, composed by a diode rectifier  
and a PWM inverter. The PM-SM is a three phase machine, having following catalog  
values: 
- rated speed   nN 3000 rev/min, 
- rated torque   MN 1,7 Nm, 
- electromotive constant kE 110 V/(1000 rpm.), 
- rated power   PN 530 W, 
- motor constant  kM 1,05 Nm/A, 
- magnetic induction  B 1,3 T, 
- rated stator current  IN 1,6 A, 
- pole pairs   zp 3, 
- PM flux   ΨPM 0,2334 Wb, 
- d ax stator inductance  Lsd 0,049 H, 
- q ax stator inductance  Lsq 0,046 H, 
- stator resistence  Rs 10 Ω, 
- inertia moment  Jmot 1,85*10-4 kgm2, 
- friction coefficient  Bmot 5*10-5 Nm(rad/sec)-1. 
Fig. 14 presents the simulated results for a speed control of the synchronous machine with 
the designed PI, H2, and H controller, having all parameters at the nominal value, for a 
starting process to the rated rotor speed with no load torque (left diagram) and with rated 
load torque (right diagram). In Fig. 15 the speed response is for a perturbed plant with total 
friction coefficient Btot=50Bmot for the same imposed speed step without (left) and with 
nominal load torque (right). The speed response for a similar simulation of a perturbed 
plant with total moment of inertia variation Jtot=11Jmot is presented in Fig. 16 for a no load 
start (left) and a rated load start (right).  
For the nominal plant the dynamic performances at a speed step are similar for all three 
controllers. It is normal to be so, because the controllers have been designed using a 
simplified model of the machine, working in the steady-state nominal point. The advantage 
of using optimal H robust controller is evident in the presented simulations when the 
nominal plant is perturbed, by changing the load torque, the total moment of inertia or the 
friction coefficient.  
Fig. 17 presents the speed response for a speed control of the synchronous machine with the 
designed PI, H2, and H controllers for a starting process at rated speed with no load 
followed at 0.3 sec. by a rated load step (1.7 Nm). Fig. 18 details the imposed torque step mr 
and the obtained electromagnetic torque me and dynamic torque mj. A starting process at 
rated speed, followed by a stopping process for the PM-SM without load and with rated 
load is presented in Fig. 19. A simulation of the starting process with low speed step is also 
presented in Fig. 20 for all three types of designed controllers.  
In conclusion, we consider that the H optimal robust controller ensures good dynamical 
performances and stability for a domain of variation large enough of the parameters that 
can be modified in the process. In applications, where electromechanical parameter 
variations or load perturbations appear (such as robot control), performant drive systems 
with AC machines can be considered, by using robust speed (or position) controllers. 
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Fig. 14. Starting process with PI, H2 and H controller for a nominal plant without load 
torque (left) and with rated torque (right). 
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Fig. 15. Starting process with PI, H2 and H controller for a perturbed plant (moment of 
inertia Jtot=11Jmot ) without load torque (left) and with rated torque (right). 
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Fig. 16. Starting process with PI, H2 and H controller for a perturbed plant (friction 
coefficient B=50Bmot) without load torque (left) and with rated torque (right). 
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Fig. 17. Speed response for speed and torque steps Fig. 18. Torque diagrams. 
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Fig. 19. Starting and fast stopping process with PI, H2 and H controllers for a nominal plant 
with no load (left) and with rated load (right). 
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Fig. 20. Speed response at low speed step (300 rev/min) with PI, H2 and H controllers. 
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Fig. 16. Starting process with PI, H2 and H controller for a perturbed plant (friction 
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Fig. 19. Starting and fast stopping process with PI, H2 and H controllers for a nominal plant 
with no load (left) and with rated load (right). 
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Fig. 20. Speed response at low speed step (300 rev/min) with PI, H2 and H controllers. 
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5.2 Experimental results of robust controlled sensorless driving system with 
induction machine and adaptive speed estimation  
The control unit is based on the fixed-point TMS320C50 Digital Motor Control Board 
developed by Texas Instruments. The complete schematic of the control architecture is 
presented in Fig. 21. It is composed of: 
 a high speed TDM type serial bus for interconnection with the master processor and 

with the other dedicated processors. 
 the control board (target hardware) consisting in a microcomputer, based on the 

TMS320C5x signal processor and the following dedicated modules: 
- a PWM unit controlled by the processor and realized in FPGA technologies, which 

generates the three output signals for the power converter; 
- a interfacing unit to the incremental encoder giving the position of the rotor (used to 

confirm the speed estimation algorithm), also implemented in FPGA technologies; 
- an analogic signal acquisition unit consisting in a A/D converter and an analogic 

multiplexer for 8 channels, used for the input of the stator currents and voltages. 
 the AC drive system composed by a frequency voltage source PWM converter with 

current reaction and a induction machine having following main parameters: 
- rated power   PN  2,2 kW,  
- rated speed   nN 1435 rpm.,  
- nominal stator current  IsN 4,9 A, 
- rated stator voltage  UsN 400V,  
- nominal load torque  MN 14,7 Nm.  
 a debugging computer interfaced to the target hardware through a serial RS232 driver 

and an emulation and debugging module XDS510. This computer will be used only in 
the software developing and debugging phase. 
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Fig. 21. Hardware structure of the robust controlled sensorless driving system with 
induction machine and adaptive speed estimation. 
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The three control loops (presented also in Fig. 13), namely: speed control loop, implemented 
with a robust controller; minor loop, necessary for the field-orientation based on the rotor flux 
and the stator current control loop of the PWM generator are software implemented. In order 
to obtain the best approach speed and accuracy a fixed point, fractional arithmetic was used. 
The program modules are:  main( ) the main loop realizing the hardware initialization and the 
communication functions with the main processor and the other dedicated processors; tint( ) 
interrupt handling routine executing the current control loop and minor control loop and 
int_4( ) interrupt handling routine executing the PWM current control loop. The TMS320C5x 
assembler language was used to achieve an effective software implementation for the main 
routine and ANSI-C language was used for the control routines tint and int_4. Library 
functions (in C or assembly language) are used for handling the incremental encoder, the A/D 
converter, the PWM control signal generator and the communication through the serial 
interface with the screen terminal. The interrupts are generated by programmable counters. So 
tint interrupt is generated by processor internal programmable counter and has a 100s 
period. Int_4 interrupt is generated by the PWM module and has a 10s period. 
The dynamic evolution of rotor speed, estimated speed based on the MRAS algorithm and 
speed error for a robust controlled (using the optimal H controller) starting process of the 
sensorless driving system with induction machine at rated speed step with no load torque is 
presented in Fig. 22. It can be observed, that the maximum speed error in the dynamic 
process (starting process) is less then 9 rpm, that means a relative error (speed error/real 
speed) of around 0,6%, which is a considerable  better value then the results obtained for the 
same sensorless drive system, without a robust speed controller. The relative sped error of 
the sensorless robust control, after the transitory dynamic process is ended and the drive 
system works at stabilized speed, is less then 0.05%, which means a really performant 
estimation (less then 0,7 rpm.). The differences between the two sensorless control 
structures, the one without a robust control (speed control results presented in Fig.6) and 
the one with robust control (speed control results presented in Fig. 22), can be explained by 
the increased robustness imposed by the optimal H controller, to a process (the AC drive 
system) which is sensitive to parameter variations (rotor time constant) and external 
perturbations (moment of inertia, friction coefficient), because of the adaptive estimation 
algorithm used to determine the rotor speed.  
 

 
Fig. 22. Speed, estimated speed and speed error for a robust controlled  starting process. 
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The control unit is based on the fixed-point TMS320C50 Digital Motor Control Board 
developed by Texas Instruments. The complete schematic of the control architecture is 
presented in Fig. 21. It is composed of: 
 a high speed TDM type serial bus for interconnection with the master processor and 

with the other dedicated processors. 
 the control board (target hardware) consisting in a microcomputer, based on the 

TMS320C5x signal processor and the following dedicated modules: 
- a PWM unit controlled by the processor and realized in FPGA technologies, which 

generates the three output signals for the power converter; 
- a interfacing unit to the incremental encoder giving the position of the rotor (used to 

confirm the speed estimation algorithm), also implemented in FPGA technologies; 
- an analogic signal acquisition unit consisting in a A/D converter and an analogic 

multiplexer for 8 channels, used for the input of the stator currents and voltages. 
 the AC drive system composed by a frequency voltage source PWM converter with 

current reaction and a induction machine having following main parameters: 
- rated power   PN  2,2 kW,  
- rated speed   nN 1435 rpm.,  
- nominal stator current  IsN 4,9 A, 
- rated stator voltage  UsN 400V,  
- nominal load torque  MN 14,7 Nm.  
 a debugging computer interfaced to the target hardware through a serial RS232 driver 

and an emulation and debugging module XDS510. This computer will be used only in 
the software developing and debugging phase. 
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Fig. 21. Hardware structure of the robust controlled sensorless driving system with 
induction machine and adaptive speed estimation. 
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The three control loops (presented also in Fig. 13), namely: speed control loop, implemented 
with a robust controller; minor loop, necessary for the field-orientation based on the rotor flux 
and the stator current control loop of the PWM generator are software implemented. In order 
to obtain the best approach speed and accuracy a fixed point, fractional arithmetic was used. 
The program modules are:  main( ) the main loop realizing the hardware initialization and the 
communication functions with the main processor and the other dedicated processors; tint( ) 
interrupt handling routine executing the current control loop and minor control loop and 
int_4( ) interrupt handling routine executing the PWM current control loop. The TMS320C5x 
assembler language was used to achieve an effective software implementation for the main 
routine and ANSI-C language was used for the control routines tint and int_4. Library 
functions (in C or assembly language) are used for handling the incremental encoder, the A/D 
converter, the PWM control signal generator and the communication through the serial 
interface with the screen terminal. The interrupts are generated by programmable counters. So 
tint interrupt is generated by processor internal programmable counter and has a 100s 
period. Int_4 interrupt is generated by the PWM module and has a 10s period. 
The dynamic evolution of rotor speed, estimated speed based on the MRAS algorithm and 
speed error for a robust controlled (using the optimal H controller) starting process of the 
sensorless driving system with induction machine at rated speed step with no load torque is 
presented in Fig. 22. It can be observed, that the maximum speed error in the dynamic 
process (starting process) is less then 9 rpm, that means a relative error (speed error/real 
speed) of around 0,6%, which is a considerable  better value then the results obtained for the 
same sensorless drive system, without a robust speed controller. The relative sped error of 
the sensorless robust control, after the transitory dynamic process is ended and the drive 
system works at stabilized speed, is less then 0.05%, which means a really performant 
estimation (less then 0,7 rpm.). The differences between the two sensorless control 
structures, the one without a robust control (speed control results presented in Fig.6) and 
the one with robust control (speed control results presented in Fig. 22), can be explained by 
the increased robustness imposed by the optimal H controller, to a process (the AC drive 
system) which is sensitive to parameter variations (rotor time constant) and external 
perturbations (moment of inertia, friction coefficient), because of the adaptive estimation 
algorithm used to determine the rotor speed.  
 

 
Fig. 22. Speed, estimated speed and speed error for a robust controlled  starting process. 
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The speed and estimation speed error for the same control structure at a full loaded starting 
process (with nominal imposed torque) are presented in Fig. 23. The time constant of the 
transitory starting process is as expected a few times bigger than in the starting process with 
no load (Fig.22.) and the relative speed error is around 0,3%, that means less then at no-load 
start. That can be explained, due to the fact that the speed estimator itself is less sensitive to 
parameter variations when it works with nominal inputs. The dynamic evolution of the 
different currents of the induction machine for the same process are presented in Fig. 24, 
namely the stator current, the active (torque producing) and reactive (flux producing) 
components of the stator current and the estimated magnetizing current. 
 

 
Fig. 23. Rotor speed and speed error at rated load starting process. 

 

 
Fig. 24. Different currents of the IM at a starting process with rated load. 

The dynamic behavior of the AC drive, if a rated load step is imposed to the system running 
at a stable rotor speed (rated speed), is tested. Fig. 25 presents the performance indexes of 
the MRAS based speed identification algorithm (the reference model performance index p, 
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the adjustable model performance index p


, and the error ε), the imposed load torque step at 
0,31 sec. and the developed electromagnetic torque of the AC machine. The stator current 
was limited in the starting process to a 3,5 times value of the rated current (Is,max=17A). The 
estimated speed, the rotor speed and the speed error are presented in Fig. 26. The maximum 
relative speed error in the transitory process (around 1,4%), is significantly greater as for a 
rated speed step and the zero convergence time of the speed error is significantly longer. It 
is an expected result because in all presented FOC structures, by using a speed controller in 
the active control loop of the AC drive (Fig. 2 and Fig. 13), the rotor speed is directly 
controlled while the electromagnetic torque is indirectly controlled. In applications where a 
direct torque control is needed, the dynamic performances of torque response can be 
improved. 
 

  
Fig. 25. Performance indexes of MRAS algorithm (left diagram), imposed load torque step 
and developed electromagnetic torque (right diagram). 

 
 

 
 

Fig. 26. Speed evolution for a starting process and a rated load step at t=0.3 sec. 
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The results confirm, that the robust control, using an optimal H speed controller, of the 
sensorless AC drives, based on adaptive identification with MRAS algorithm for speed 
estimation, assure:  
- good estimation in steady state and transient operations; 
- robustness to electrical parameter variations as stator resistance and mutual inductance 

(reference model) or rotor time constant (adjustable model); 
- robustness to external perturbations (moment of inertia, friction coefficient), 
but needs greater computing time for the control loop, that means more powerful real time 
computing systems (with high frequency digital signal processors) and increasing costs.  

6. Conclusion 
Sensorless control of AC drive systems became in the last years a challenge for intelligent 
motion control. To estimate rotor speed or position, by using adaptive identification 
algorithms based on model reference, is a relative easy task and became therefore a valuable 
solution for applications where not high precision of speed/position estimation is needed. 
The main disadvantage of the MRAS identification algorithms is the relative high sensitivity 
to machine parameter variations (i.e. rotor time constant) and to external perturbations (i.e. 
moment of inertia, friction coefficient). Using the robust control theory seams to be a good 
solution to increase the speed/position estimation accuracy and to apply the same 
estimation method for a large number of motion control applications. The optimal H speed 
controller makes the AC drive system stable to a large scale of parameter variations and 
perturbations and provides high dynamic performance as well as accurate speed estimation 
to the sensorless control structure. 
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1. Introduction

As the high field strength neodymium-iron-boron (NdFeB) magnets become commercially
available and affordable, the sinusoidal back electromagnetic force (emf) permanent magnet
synchronous motors (PMSMs) are receiving increasing attention due to their high speed,
high power density and high efficiency. These characteristics are very favourable for high
performance applications, e.g., robotics, aerospace, and electric ship propulsion systems
Rahman et al. (1996), Ooshima et al. (2004). PMSMs as traction motors are common in
electric or hybrid road vehicles, but not yet widely used for rail vehicles. Although the
traction PMSM has many advantages, just a few prototypes of vehicles were built and
tested. The following two new prototypes of rail vehicles with traction PMSMs, which
were presented at the InnoTrans fair in Berlin 2008, were the Alstom AGV high speed train
and the Skoda Transportation low floor tram 15T ForCity. The greatest advantage of the
PMSM is its low volume in contrast to other types of motors, which makes a direct drive of
wheels possible. However, the traction drive with PMSM must meet special requirements
typical for overhead-line-fed vehicles. The drives and especially their control should be
robust to a wide range of overhead line voltage tolerance (typically from −30% to +20%
), voltage surges and input filter oscillations. These features may cause problems during
flux weakening operation, which must be used for several reasons. The typical reason is
to obtain constant power operation in a wide speed range and to reach nominal power
during low speed (commonly 1/3 of the maximum speed). In the case of common traction
motors such as asynchronous or DC motors, it is possible to reach the constant power
region using flux weakening. This is also possible for traction PMSM, however, a problem
with high back emf arises. In the report by Dolecek (2009), the usage of a flux weakening
control strategy for PMSM as a prediction control structure is shown to improve the dynamic
performance of traditional feedback control strategies. This is obtained in terms, for instance,
of overshoot and rising time. It is known that, an accurate knowledge of the model and its
parameters is necessary for realizing an effective prediction control. To achieve desired system
performance, advanced control systems are usually required to provide fast and accurate
response, quick disturbance recovery and parameter variations insensitivity Rahman et al.
(2003). Acquiring accurate models for systems under investigation is usually the fundamental
part in advanced control system designs. For instance, proper implementation of flux
weakening control requires the knowledge of synchronous machine parameters. The most
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1. Introduction

As the high field strength neodymium-iron-boron (NdFeB) magnets become commercially
available and affordable, the sinusoidal back electromagnetic force (emf) permanent magnet
synchronous motors (PMSMs) are receiving increasing attention due to their high speed,
high power density and high efficiency. These characteristics are very favourable for high
performance applications, e.g., robotics, aerospace, and electric ship propulsion systems
Rahman et al. (1996), Ooshima et al. (2004). PMSMs as traction motors are common in
electric or hybrid road vehicles, but not yet widely used for rail vehicles. Although the
traction PMSM has many advantages, just a few prototypes of vehicles were built and
tested. The following two new prototypes of rail vehicles with traction PMSMs, which
were presented at the InnoTrans fair in Berlin 2008, were the Alstom AGV high speed train
and the Skoda Transportation low floor tram 15T ForCity. The greatest advantage of the
PMSM is its low volume in contrast to other types of motors, which makes a direct drive of
wheels possible. However, the traction drive with PMSM must meet special requirements
typical for overhead-line-fed vehicles. The drives and especially their control should be
robust to a wide range of overhead line voltage tolerance (typically from −30% to +20%
), voltage surges and input filter oscillations. These features may cause problems during
flux weakening operation, which must be used for several reasons. The typical reason is
to obtain constant power operation in a wide speed range and to reach nominal power
during low speed (commonly 1/3 of the maximum speed). In the case of common traction
motors such as asynchronous or DC motors, it is possible to reach the constant power
region using flux weakening. This is also possible for traction PMSM, however, a problem
with high back emf arises. In the report by Dolecek (2009), the usage of a flux weakening
control strategy for PMSM as a prediction control structure is shown to improve the dynamic
performance of traditional feedback control strategies. This is obtained in terms, for instance,
of overshoot and rising time. It is known that, an accurate knowledge of the model and its
parameters is necessary for realizing an effective prediction control. To achieve desired system
performance, advanced control systems are usually required to provide fast and accurate
response, quick disturbance recovery and parameter variations insensitivity Rahman et al.
(2003). Acquiring accurate models for systems under investigation is usually the fundamental
part in advanced control system designs. For instance, proper implementation of flux
weakening control requires the knowledge of synchronous machine parameters. The most
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common parameters required for the implementation of such advanced control algorithms
are the classical simplified model parameters: Ld - the direct axis self-inductance, Lq - the
quadrature axis self-inductance, and Φ - the permanent magnet flux linkage. Prior knowledge
of the previously mentioned parameters and the number of pole pairs p allows for the
implementation of torque control through the use of current vector control. Techniques
have been proposed for the parameters’ identification of PMSM from different perspectives,
such as offline Kilthau et al. (2002), Weisgerber et al. (1997) and online identification of PMSM
electrical parameters Mobarakeh et al. (2001), Khaburi et al. (2003). These technique are based
on the decoupled control of linear systems when the motor’s mechanical dynamics are
ignored. Using a decoupling control strategy, internal dynamics may be almost obscured, but
it is useful to remember that there are no limitations in the controllability and observability
of the system. In the report by Mercorelli et al. (2003) a decoupling technique is used to
control a permanent magnets machine more efficiently in a sensorless way using an observer.
The work described by Liu et al. (2008) investigates the possibility of using a numerical
approach Particle Swarm Optimization (PSO) as a promising alternative. PSO approach uses a
system with a known model structure but unknown parameters. The parameter identification
problem can be treated as an optimisation problem, involving comparison of the system
output with the model output. The discrepancy between the system and model outputs is
minimised by optimisation based on a fitness function, which is defined as a measure of how
well the model output fits the measured system output. This approach utilises numerical
techniques for the optimisation, and it can incur in difficult non-convex optimisation problems
because of the nonlinearity of the motor model. Despite limitation on the frequency range of
identification, this paper proposes a dynamic observer based on an optimised decoupling
technique to estimate Ldq and Rs parameters. The proposed optimisation technique, similar
to that presented by Mercorelli (2009) applies a procedure based on minimum variance error
to minimise the effects of non-exact cancelation due to the decoupling controller. In the
meantime, the paper proposes a particular observer that identifies the permanent magnet
flux using the estimated Ldq and Rs parameters. The whole structure of the observer is totally
new. The limit of this observer for the estimation of the permanent magnet flux is given
by the range of work frequency. In fact, examining the theoretical structure of the observer,
these limits appear evident and are validated with simulated data, as the estimation becomes
inaccurate for low and high velocity of the motor. Because of the coupled nonlinear system
structure, a general expression of limits is not easy to find. The paper is organised in the
following way: a sketch of the model of the synchronous motor and its behaviour are given in
Section 2, Section 3 is devoted to deriving, proposing and discussing the dynamic estimator,
and Section 4 shows the simulation results using real data for a three-phase PMSM.

2. Model and behavior of a synchronous motor

To aid advanced controller design for PMSM, it is very important to obtain an appropriate
model of the motor. A good model should not only be an accurate representation of system
dynamics but should also facilitate the application of existing control techniques. Among a
variety of models presented in the literature since the introduction of PMSM, the two-axis
dq-model obtained using Park’s transformation is the most widely used in variable speed
PMSM drive control applications Rahman et al. (2003) and Khaburi et al. (2003). The Park’s
dq-transformation is a coordinate transformation that converts the three-phase stationary
variables into variables in a rotating coordinate system. In dq-transformation, the rotating
coordinate is defined relative to a stationary reference angle as illustrated in Fig. 1. The
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dq-model is considered in this work.

Fig. 1. Park’s transformation for the motor
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The dynamic model of the synchronous motor in d-q-coordinates can be represented as
follows:

�
did(t)

dt
diq(t)

dt

�
=

�
− Rs

Ld

Lq
Ld

ωel(t)
− Rs

Lq
− Ld

Lq
ωel(t)

� �
id(t)
iq(t)

�
+

�
1
Ld

0
0 1

Lq

� �
ud(t)
uq(t)

�
−

�
0

Φωel(t)

�
, (3)

and
Mm =

3
2

p{Φiq(t) + (Ld − Lq)id(t)iq(t)}. (4)

In (3) and (4), id(t), iq(t), ud(t) and uq(t) are the dq-components of the stator currents
and voltages in synchronously rotating rotor reference frame, ωel(t) is the rotor electrical
angular speed, the parameters Rs, Ld, Lq, Φ and p are the stator resistance, d-axis and q-axis
inductance, the amplitude of the permanent magnet flux linkage, and p the number of couples
of permanent magnets, respectively. At the end, Mm indicates the motor torque. Considering
an isotropic motor with Ld � Lq = Ldq, it follows:
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with the following movement equation:

Mm − Mw = J
dωmec(t)

dt
, (7)

where pωmech(t) = ωel(t) and Mw is an unknown mechanical load.

3. Structure of the decoupling dynamic estimator

The present estimator uses the measurements of input voltages, currents and angular velocity
of the motor to estimate the "d-q" winding inductance, the rotor resistance and amplitude
of the linkage flux. The structure of the estimator is described in Fig. 2. This diagram shows
how the estimator works. In particular, after having decoupled the system described in (5), the
stator resistance Rs and the inductance Ldq are estimated through a minimum error variance
approach. The estimated values R̂s and Ldq are used for to estimate of the amplitude of the
linkage flux (Φ̂).

Fig. 2. Conceptual structure of the whole estimator

3.1 Decoupling structure and minimum error variance algorithm
To achieve a decoupled structure of the system described in Eq. (5), a matrix F is to be
calculated such that,
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and V = im([0, 1]T) of Eq. (8), according to Basile et al. (1992), is a controlled invariant
subspace. More explicitly it follows:
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then the decoupling of the dynamics is obtained via the following relationship:
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where the parameters F11, F12, F21, and F22 are to be calculated in order to guarantee condition
(10) and a suitable dynamics for sake of estimation. Condition (10) is guaranteed if

F12 = −ωel(t)Ldq. (11)
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Because of the possible inexact decoupling, it follows that:
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+ n(Δ(ωel(t)(Ldq − L̂dq))), (13)

where n(Δ(Ldq − L̂dq)) is the disturbance due to the inexact cancelation.

Proposition 1. Considering the disturbance n(Δ(Ldq − L̂dq)) of Eq. (12) as a white noise, then
the current minimum variance error σ
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eid
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)
= σ
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id(t) − îd(t)
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is obtained by minimising the

estimation error of the parameters Ldq and Rs.

Proof 1. If Eqs. (12) and (13) are discretised using Implicit Euler with a sampling frequency equal to
ts, then it follows that:
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îd(k) =
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It is possible to assume an ARMAX model for the system represented by (15) and thus

id(k) = îd(k) + a1 îd(k − 1) + a2 îd(k − 2) + b1ud(k − 1)+

b2ud(k − 2) + n(k) + c1un(k − 1) + c2un(k − 2). (16)

Letting eid
(k) = id(k)− îd(k) as mentioned above, it follows that:

eid
(k) = a1 îd(k − 1) + a2 îd(k − 2) + b1ud(k − 1) + b2ud(k − 2)+

n(k) + c1n(k − 1) + c2n(k − 2), (17)

where the coefficients a, b, c1, c2, are to be estimated, and n(k) is assumed as white noises. The next
sample is:

eid
(k+ 1) = a1 îd(k)+ a2 îd(k− 1)+ b1ud(k)+ b2ud(k− 1)+ n(k+ 1)+ c1n(k)+ c2n(k− 1).

(18)
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(
id(t) − îd(t)

)
is obtained by minimising the

estimation error of the parameters Ldq and Rs.

Proof 1. If Eqs. (12) and (13) are discretised using Implicit Euler with a sampling frequency equal to
ts, then it follows that:

îd(k) =
îd(k − 1)

(1 + ts
Rs
Ldq

)
+

ts

Ldq(1 + ts
Rs
Ldq

)
ud(k), (14)

îd(k) =
îd(k − 1)

(1 + ts
Rs
Ldq

)
+

ts

Ldq(1 + ts
Rs
Ldq

)
ud(k) + n(k). (15)

It is possible to assume an ARMAX model for the system represented by (15) and thus

id(k) = îd(k) + a1 îd(k − 1) + a2 îd(k − 2) + b1ud(k − 1)+

b2ud(k − 2) + n(k) + c1un(k − 1) + c2un(k − 2). (16)

Letting eid
(k) = id(k)− îd(k) as mentioned above, it follows that:

eid
(k) = a1 îd(k − 1) + a2 îd(k − 2) + b1ud(k − 1) + b2ud(k − 2)+
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sample is:

eid
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(18)
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The prediction at time "k" is:

êid
(k + 1/k) = a1 îd(k) + a2 îd(k − 1) + b1ud(k) + b2ud(k − 1) + c1n(k) + c2n(k − 1). (19)

Considering that:

J = E{e2
id
(k + 1/k)} = E{[êid

(k + 1/k) + n(k + 1)]2},

and assuming that the noise is not correlated to the signal eid
(k), it follows:

E{[êid
(k + 1/k) + n(k + 1)]2} = E{[êid

(k + 1/k)]2}+
E{[n(k + 1)]2} = E{[êid

(k + 1/k)]2}+ σ2
n , (20)

where σn is defined as the variance of the white noises. The goal is to find îd(k) such that:

êid
(k + 1/k) = 0. (21)

It is possible to write (17) as

n(k) = eid
(k)− a1 îd(k − 1)− a2 îd(k − 2)− b1ud(k − 1)−

b2ud(k − 2)− c1n(k − 1)− c2n(k − 2). (22)

Considering the effect of the noise on the system as follows:

c1n(k − 1) + c2n(k − 2) ≈ c1n(k − 1), (23)

and using the Z-transform, then:

N(z) = Îd(z) − a1z−1 Îd(z) − a2z−2 Îu(z) − b1z−1Ud(z) − b2z−2Ud(z) − c1z−1N(z) (24)

and

N(z) =
(1 − a1z−1 − a2z−2)

1 + c1z−1 Îd(z)− (b1z−1 + b2z−2)

1 + c1z−1 Ud(z). (25)

Inserting Eq. (25) into Eq. (19) after its Z-transform, and considering the approximation stated in (23)
and Eq. (21), the following expression is obtained:

Îd(z) = − (a1 + c1 + b1z−1)

b1(1 + c1z−1) + b2(1 + c1z−1)
Ud(z). (26)

Using the Z-transform for Eq. (14) it follows:

Id(z) =
ts

Ldq + tsRs − Ldqz−1 Ud(z). (27)

Comparing (26) with (27), we are left with a straightforward diophantine equation to solve. The
diophantine equation gives the relationship between the parameters Θ = [a1, b1, b2, c1] as follows:

− b1 = 0 (28)

a1 + c1 = ts (29)

b1 + b2 = Ldq + tsRs (30)

b1c1 + b2c1 = −Ldq. (31)

Guessed initial values for parameters Ldq, Rs are given. This yields initial values for the parameters
Θ = [a1, b1, b2, c1]. New values for the vector Θ are calculated using the recursive least squares
method.
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Remark 1. The approximation in equation (23) is equivalent to considering �c2� << �c1�. In
other words, this means that a noise model of the first order is assumed. An indirect validation of this
assumption is given by the results. In fact, the final measurements show in general good results with
the proposed method.

Remark 2. At the end, the recursive least-squares method gives an estimation of the parameters
Ldq and Rs. These calculated parameters Ldq and Rs minimize the current minimum variance error
σ(eid

(t)) = σ(id(t)− îd(t)).

3.2 The dynamic estimator of Φ
If the electrical part of the system "q" and "d" axes is considered, then, assuming that ωel(t) �=
0, iq(t) �= 0, and id(t) �= 0, the following equation can be considered:

Φ(t) = − Ldq
diq(t)

dt + Rsid(t) + Ldqωel(t)iq(t) + uq(t)

ωel(t)
. (32)

Consider the following dynamic system:

dΦ̂(t)
dt

= −KΦ̂(t)−K
( L̂dq

diq(t)
dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)
, (33)

where K is a function to be calculated. Eq. (33) represents the estimators of Φ. If the error
functions are defined as the differences between the true and the observed values, then:

eΦ(t) = Φ(t)− Φ̂(t), (34)

and
deΦ(t)

dt
=

dΦ(t)
dt

− dΦ̂(t)
dt

. (35)

If the following assumption is given:

� dΦ(t)
dt

� << � dΦ̂(t)
dt

�, (36)

then in Eq. (35), the term dΦ(t)
dt is negligible. Using equation (33), Eq. (35) becomes

deΦ(t)
dt

= KΦ̂(t) +K3

( L̂dq
diq(t)

dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)
. (37)

Because of Eq. (32), (37) can be written as follows:

deΦ(t)

dt
= KΦ̂(t)−KΦ(t), (38)

and considering (34), then
deΦ(t)

dt
+KΦ(t) = 0. (39)

K can be chosen to make Eq. (39) exponentially stable. To guarantee exponential stability, K
must be

K > 0.
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To guarantee � dΦ(t)
dt � << � dΦ̂(t)

dt �, then K >> 0. The observer defined in (33) suffers from the
presence of the derivative of the measured current. In fact, if measurement noise is present
in the measured current, then undesirable spikes are generated by the differentiation. The
proposed algorithm must cancel the contribution from the measured current derivative. This
is possible by correcting the observed velocity with a function of the measured current, using
a supplementary variable defined as

η(t) = Φ̂(t) +N (iq(t)), (40)

where N (iq(t)) is the function to be designed.
Consider

dη(t)
dt

=
dΦ(t)

dt
+

dN (iq(t))
dt

(41)

and let
dN (iq(t))

dt
=

dN (iq)

diq(t)
diq(t)

dt
=

KL̂dq

ωel(t)
diq(t)

dt
. (42)

The purpose of (42) is to cancel the differential contribution from (33). In fact, (40) and (41)
yield, respectively,

Φ̂(t) = η(t)−N (iq(t)) and (43)

dΦ̂(t)
dt

=
dη(t)

dt
− dN (iq(t))

dt
. (44)

Substituting (42) in (44) results in

dΦ̂(t)
dt

=
dη(t)

dt
− KL̂dq

ωel(t)
diq(t)

dt
. (45)

Inserting Eq. (45) into Eq. (33), the following expression is obtained1:

dη(t)
dt

− KL̂dq

ωel(t)
diq(t)

dt
= −KΦ̂(t)−K

( L̂dq
diq(t)

dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)
, (46)

then

dη(t)
dt

= −KΦ̂(t)−K
(

R̂sid(t) + L̂dqωel(t)iq(t) + uq(t)
)

ωel(t)
. (47)

Letting N (iq(t)) = kappiq(t), where a parameter has been indicated with kapp, then from (42)

⇒ K =
kappωel(t)

L̂dq
, and Eq. (43) becomes:

Φ̂(t) = η(t)− kappiq(t). (48)

Finally, substituting (48) into (47) results in the following equation:

dη(t)
dt

= − kappωel(t)

L̂dq

(
η(t)− kappiq(t)

)
+

kapp

L̂dq

(
R̂sid(t) + L̂dqωel(t)iq(t) + uq(t)

)
,

Φ̂(t) = η(t)− kappiq(t). (49)

1 Expression (33) works under the assumption (36): fast observer dynamics.
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Using the implicit Euler method, the following velocity observer structure is obtained:

η(k) =
η(k − 1)

1 + ts
kappωel(k)

L̂dq

+
ts

k2
appωel(k)iq(k)

L̂dq
+ kappωel(k)iq(k) +

ts R̂skappid(k)
L̂dq

1 + ts
kappωel(k)

L̂dq

iq(k)+

ts
kapp

L̂dq

1 + ts
kappωel(k)

L̂dq

uq(k),

Φ̂(k) = η(k)− kappiq(k), (50)

where ts is the sampling period.

Remark 3. Assumption (36) states that the dynamics of the approximating observer should be faster
than the dynamics of the physical system. This assumption is typical for the design of observers.

Remark 4. The estimator of Eq. (50) presents the following limitations: for low velocity of the motor
(ωmec.(t) << ωmecn (t)), where ωmecn(t) represents the nominal velocity of the motor), the estimation
of Φ becomes inaccurate. Because ωel(t) divides the state variable η, the observer described by (50)
becomes hyperdynamic. Critical phases of the estimation are the starting and ending of the movement.
Another critical phase is represented by high velocity regime. In fact, it has been proven through
simulations that if ωmec(t) >> ωmecn(t), then the observer described by (50) becomes hypodynamic.
According to the simulation results, within some range of frequency, this hypo-dynamicity can be
compensated by a suitable choice of kapp.

Remark 5. The Implicit Euler method guarantees the finite time convergence of the observer for any
choice of kapp. Nevertheless, any other method can demonstrate the validity of the presented results.
Implicit Euler method is a straightforward one.

4. Simulation results

Simulations have been performed using a special stand with a 58-kW traction PMSM. The
stand consists of a PMSM, a tram wheel and a continuous rail. The PMSM is a prototype
for low floor trams. The PMSM parameters are: nominal power 58 kW, nominal torque 852
Nm, nominal speed 650 rpm, nominal phase current 122 A and number of poles 44. The
model parameters are: R = 0.08723 Ohm, Ldq = Ld = Lq = 0.8 mH, Φ = 0.167 Wb.
Surface mounted NdBFe magnets are used in PMSM. The advantage of these magnets is their
inductance, which is as great as 1.2 T, but theirs disadvantage is corrosion. The PMSM was
designed to meet B curve requirements. The stand was loaded by an asynchronous motor.
The engine has a nominal power 55 kW, a nominal voltage 380 V and nominal speed 589 rpm.
Figures 3, 4, and 5 show the estimation of Rs stator resistance, Ldq inductance, and Φ magnet
flux, respectively. These simulation results are obtained using values of kapp equal to 2 and 20
respectively. From these results, in particular from flux estimation, an improvement, passing
from values of kapp = 2 kapp = 20, is visible. From these figures, the effect of the limit of the
procedure discussed in remark 4 is visible at the beginning of the estimation. Figure 6 shows
the angular velocity of the motor. In the present simulations, t = 0 corresponds to ωel(t) = 0.
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Fig. 3. Estimated and real values of Rs stator resistance for kapp = 2 (on the top) and
kapp = 20 (on the bottom)

312 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics A Robust Decoupling Estimator to Identify Electrical Parameters for Three-Phase Permanent Magnet Synchronous Motors 11

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

2

4

6

8

10
x 10

−4

Time (sec.)

L dq
 in

du
ct

an
ce

 (
H

)

 

 

Estimated values of L
qd

 inductance

Real value of L
qd

 inductance

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

1

2

3

4

5

6

7

8

9
x 10

−4

Time (sec.)

L dq
 in

du
ct

an
ce

 (
H

)

 

 

Estimated values of L
qd

 inductance

Real value of L
qd

 inductance

Fig. 4. Estimated and real values of Ldq inductance for kapp = 2 (on the top) and kapp = 20
(on the bottom)

313
A Robust Decoupling Estimator to Identify Electrical 
Parameters for Three-Phase Permanent Magnet Synchronous Motors



10 Will-be-set-by-IN-TECH

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.05

0.1

0.15

0.2

0.25

Time (sec.)

S
ta

to
r 

re
si

st
an

ce
 (

O
hm

)

 

 

Real value of the stator resistance
Estimated values of the stator resistance

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.05

0.1

0.15

0.2

0.25

Time (sec.)

S
ta

to
r 

re
si

st
an

ce
 (

O
hm

)

 

 

Estimated values of the stator resistance
Real value of the stator resistance

Fig. 3. Estimated and real values of Rs stator resistance for kapp = 2 (on the top) and
kapp = 20 (on the bottom)

312 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics A Robust Decoupling Estimator to Identify Electrical Parameters for Three-Phase Permanent Magnet Synchronous Motors 11

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

2

4

6

8

10
x 10

−4

Time (sec.)

L dq
 in

du
ct

an
ce

 (
H

)

 

 

Estimated values of L
qd

 inductance

Real value of L
qd

 inductance

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

1

2

3

4

5

6

7

8

9
x 10

−4

Time (sec.)

L dq
 in

du
ct

an
ce

 (
H

)

 

 

Estimated values of L
qd

 inductance

Real value of L
qd

 inductance

Fig. 4. Estimated and real values of Ldq inductance for kapp = 2 (on the top) and kapp = 20
(on the bottom)

313
A Robust Decoupling Estimator to Identify Electrical 
Parameters for Three-Phase Permanent Magnet Synchronous Motors



12 Will-be-set-by-IN-TECH

0 0.5 1 1.5 2

x 10
−3

−30

−25

−20

−15

−10

−5

0

5

Time (sec.)

P
er

m
an

en
t m

ag
ne

t f
lu

x 
lin

ka
ge

 (
V

s)

 

 

Estimated values of the permanent magnet flux linkage
Real values of the permanent magnet flux linkage 

0 0.5 1 1.5 2

x 10
−3

0

2

4

6

8

10

Time (sec.)

P
er

m
an

en
t m

ag
ne

t f
lu

x 
lin

ka
ge

 (
V

s)

 

 

Estimated values of the permanent magnet flux linkage 
Real value of the permanent magnet flux linkage

Fig. 5. Estimated and real values of the permanent magnet flux linkage for kapp = 2 (on the
top) and kapp = 20 (on the bottom)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−200

−100

0

100

200

300

400

500

600

700

Time (sec.)

A
ng

ul
ar

 v
el

oc
ity

 (
ra

d.
/s

ec
.)

Fig. 6. Angular velocity

314 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics A Robust Decoupling Estimator to Identify Electrical Parameters for Three-Phase Permanent Magnet Synchronous Motors 13

5. Conclusions and future work

This paper considers a dynamic estimator for fully automated parameters identification for
three-phase synchronous motors. The technique uses a decoupling procedure optimised by a
minimum variance error to estimate the inductance and resistance of the motor. Moreover, a
dynamic estimator is shown to identify the amplitude of the linkage flux using the estimated
inductance and resistance. It is generally applicable and could also be used for the estimation
of mechanical load and other types of electrical motors, as well as for dynamic systems
with similar nonlinear model structure. Through simulations of a synchronous motor used
in automotive applications, this paper verifies the effectiveness of the proposed method in
identification of PMSM model parameters and discusses the limits of the found theoretical
and the simulation results. Future work includes the estimation of a mechanical load and the
general test of the present algorithm using a real motor.
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1. Introduction

This chapter proposes a systematic approach for the synthesis of robust controllers for dc-dc
converters. The approach is based on the Linear Matrix Inequalities (LMIs) framework and
the associated optimization algorithms. The aim of this approach is to allow the designer to
describe the uncertainty of the converter and to deal with the requirements of the application
beforehand.
The aforementioned dc-dc converters (see Figure 1) are devices that deliver a dc output
voltage, with different properties from those in the input voltage (Erickson & Maksimovic,
1999). They are usually employed to adapt energy sources to the load requirements (or
vice versa). These devices present several challenges regarding their robust control. First,
the converter must maintain a tight regulation or tracking of the output. Moreover, the
controller design is focused on maximizing the bandwidth of the closed-loop response in
order to reject the usual disturbances that appear in these systems. Finally, the response of the
converter must satisfy desirable transient characteristics, as for example, the shortest possible
output settling time or the minimum overshoot. Besides of these common requirements, the
converter can be affected by uncertainty in its components or by input or output disturbances
that may appear.
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Fig. 2. State-feedback and output-feedback block diagrams.

Nevertheless, most of the modeling approaches in the literature disregard these uncertainties.
Moreover, due to the switching nature of the system, pulse-width modulation (PWM) is
commonly used in the industry applications, while the models that are usually employed
disregard that part of the dynamics (i.e. the high frequency dynamics) and other inherent
nonlinearities, such as saturations and bilinear terms.
The chapter proposes a systematic approach to deal with these challenges, using the concepts
of LMI control (Ben-Tal et al., 2009; Bernussou, 1996; Boyd et al., 1994; El Ghaoui & Niculescu,
2000; Pyatnitskii & Skorodinskii, 1982). Linear matrix inequalities have become an important
topic in the field of Automatic Control due to the following facts. First of all, LMIs can
be solved numerically by efficient computer algorithms (Gahinet et al., 1995; Löfberg, 2004;
Sturm, 1999). Secondly, more and more methods have been developed to describe control
problems in terms of LMI constraints. Finally, these methods are able to include descriptions
of the uncertainty.
Some of the previous literature on LMI control of dc-dc converters are (Montagner et al., 2005;
Olalla et al., 2009a; 2010a). In these papers, the uncertainty of the converter is taken into
account and the control synthesis deals with different operating points. Nevertheless, they
do not consider the stability of the system trajectories when the system changes from one
operating point to another, nor they include other nonlinearities such as saturations. The
versatility of LMI control has allowed to deal with some of these nonlinearities (Olalla et al.,
2009b), (Olalla et al., 2011).
These approaches share the same feedback scheme, which is based upon state-feedback with
error integration (Figure 2(a)). The main advantage of this approach is that the synthesis
optimization problem can be posed as a convex semidefinite programming and that the
implementation of the controller is simple. On the other hand, state-feedback requires sensing
of the state variables, which may not be easily measurable or may require estimation in some
cases. In practice, most of the designs that can be found in the power electronics literature
employ output-feedback approaches since they usually rely on frequency-based concepts
which are well-known by electrical engineers. This is the reason why this chapter focuses
on LMI-based synthesis methods which may be applicable to the output-feedback scheme
(Figure 2(b)), with the aim to derive robust controllers for dc-dc converters.
In order to introduce such synthesis methods, the chapter is organized as follows. The first
section deals with modeling of dc-dc converters, the averaging method, the sampling effect
of the pulse-width modulator and the uncertainty. Section II reviews some of the results of
previous works on LMI synthesis for state-feedback approaches. Section III puts forward
the problem of output-feedback and some of the strategies that can be employed to pose
such problem in terms of semidefinite programming. Concretely, Section III proposes the
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Fig. 3. Schematic of the buck and the buck-boost converter.

following strategies. First, the classic dynamic output-feedback control problem is treated.
This approach can be carried out with a change of variables as in (Scherer et al., 1997).
However, with such an approach the uncertainty must be modeled with elaborated models,
as for example, weighting functions Wallis & Tymerski (2000). Therefore, the chapter also
proposes the synthesis of output-feedback controllers based on the static case. Both the static
output-feedback and a parametrization (Peaucelle & Arzelier, 2001b) to deal with dynamic
output-feedback are considered. The advantages and drawbacks of the three approaches
shown in the chapter will be discussed and the results will be compared.

Notation
For symmetric matrices A and B, A > B means that A − B is positive definite. A denotes that

the matrix A is an unknown variable. A� denotes the transpose of A. Co
{

vj, j = 1, . . . , N
}

denotes the convex hull defined by N vertices vj ∈ Rn. The identity matrix of order n is noted
as 1n and the null n × m matrix is noted as 00 n,m. The symbol � denotes symmetric blocks in
partitioned matrices.

2. Modeling of uncertain dc-dc converters

This subsection shows the state-space averaged models of the buck and the buck-boost
converters of Figures 3(a) and 3(b). The models are assumed to operate in Continuous
Conduction Mode (CCM), i.e. the inductor current is always larger than zero. Besides of
the averaged models, this section also introduces a model of the sampling effect caused by
the PWM. Finally, at the end of the section, the uncertainty modeling of dc-dc converters is
discussed and a simple example is shown.

2.1 Model of the buck converter
The first model that is introduced considers a buck converter, which is characterized by linear
averaged control-to-output dynamics. As stated in (Olalla et al., 2010b), the transfer functions
of dc-dc converters can strongly depend on the stray resistances of the converter. Since the
chapter considers different output-feedback synthesis approaches, these stray resistances are
considered in the models.
Figure 3(a) shows the circuit diagram of a dc-dc buck converter where vo(t) is the output
voltage, vg(t) is the line voltage and iload(t) is the load disturbance. The output voltage must
be kept at a given reference Vref. The converter load is modeled as a linear resistor R. The stray
resistances of the switch during the on and the off position are combined with the resistance
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Olalla et al., 2009a; 2010a). In these papers, the uncertainty of the converter is taken into
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do not consider the stability of the system trajectories when the system changes from one
operating point to another, nor they include other nonlinearities such as saturations. The
versatility of LMI control has allowed to deal with some of these nonlinearities (Olalla et al.,
2009b), (Olalla et al., 2011).
These approaches share the same feedback scheme, which is based upon state-feedback with
error integration (Figure 2(a)). The main advantage of this approach is that the synthesis
optimization problem can be posed as a convex semidefinite programming and that the
implementation of the controller is simple. On the other hand, state-feedback requires sensing
of the state variables, which may not be easily measurable or may require estimation in some
cases. In practice, most of the designs that can be found in the power electronics literature
employ output-feedback approaches since they usually rely on frequency-based concepts
which are well-known by electrical engineers. This is the reason why this chapter focuses
on LMI-based synthesis methods which may be applicable to the output-feedback scheme
(Figure 2(b)), with the aim to derive robust controllers for dc-dc converters.
In order to introduce such synthesis methods, the chapter is organized as follows. The first
section deals with modeling of dc-dc converters, the averaging method, the sampling effect
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following strategies. First, the classic dynamic output-feedback control problem is treated.
This approach can be carried out with a change of variables as in (Scherer et al., 1997).
However, with such an approach the uncertainty must be modeled with elaborated models,
as for example, weighting functions Wallis & Tymerski (2000). Therefore, the chapter also
proposes the synthesis of output-feedback controllers based on the static case. Both the static
output-feedback and a parametrization (Peaucelle & Arzelier, 2001b) to deal with dynamic
output-feedback are considered. The advantages and drawbacks of the three approaches
shown in the chapter will be discussed and the results will be compared.

Notation
For symmetric matrices A and B, A > B means that A − B is positive definite. A denotes that

the matrix A is an unknown variable. A� denotes the transpose of A. Co
{

vj, j = 1, . . . , N
}

denotes the convex hull defined by N vertices vj ∈ Rn. The identity matrix of order n is noted
as 1n and the null n × m matrix is noted as 00 n,m. The symbol � denotes symmetric blocks in
partitioned matrices.

2. Modeling of uncertain dc-dc converters

This subsection shows the state-space averaged models of the buck and the buck-boost
converters of Figures 3(a) and 3(b). The models are assumed to operate in Continuous
Conduction Mode (CCM), i.e. the inductor current is always larger than zero. Besides of
the averaged models, this section also introduces a model of the sampling effect caused by
the PWM. Finally, at the end of the section, the uncertainty modeling of dc-dc converters is
discussed and a simple example is shown.

2.1 Model of the buck converter
The first model that is introduced considers a buck converter, which is characterized by linear
averaged control-to-output dynamics. As stated in (Olalla et al., 2010b), the transfer functions
of dc-dc converters can strongly depend on the stray resistances of the converter. Since the
chapter considers different output-feedback synthesis approaches, these stray resistances are
considered in the models.
Figure 3(a) shows the circuit diagram of a dc-dc buck converter where vo(t) is the output
voltage, vg(t) is the line voltage and iload(t) is the load disturbance. The output voltage must
be kept at a given reference Vref. The converter load is modeled as a linear resistor R. The stray
resistances of the switch during the on and the off position are combined with the resistance
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of the inductor and noted as:
ron = rdon

+ rL

ro f f = rdo f f
+ rL

(1)

The measurable states of the converter are noted as xa(t). Note that the time dependence of
the variables may be omitted to simplify the notation.
The binary signal ub(t), which turns on and off the switches, is genereated by means of
a Pulse Width Modulation (PWM) subcircuit, working at a constant frequency 1/Ts. The
switching period Ts is equal to the sum of ton and toff. For a unit-amplitude sawtooth PWM,
the duty-cycle d(t) = ton/(ton + toff) is the control input of the converter.
As shown in (Erickson & Maksimovic, 1999) and (Leyva et al., 2006), considering that the
state-space matrices of the converter are [ Aon, Bon ] during ton and [ Aoff, Boff ] during toff,
the general state-space averaged model of a dc-dc converter can be written as:
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(2)

where the equilibrium (noted with capital letters) and the incremental vectors (noted with
tildes) are as follows. X and x̃ ∈ Rn correspond to the state vectors, D and d̃ ∈ Rm are the
control inputs, while W and w̃ ∈ Rl stand for the disturbance inputs.
In the buck converter, Aon = Aoff, and the averaged model (2) can be rewritten as:

dx̃(t)

dt
=
�

AX + BwW
�
+ Ax̃(t) + Bww̃(t) + Bu d̃(t) + Bnw w̃(t)d̃(t) (3)

where:
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(4)

being req = Dron + D�ro f f and D� = 1− D. The dimensions of the system matrices are defined

as A ∈ Rn×n, Bu, Bnw ∈ Rn×m, Bw ∈ Rn×l.
Similarly, the averaged outputs of the buck converter can be written as:

Y + ỹ(t) =
�
CyX + EywW

�
+ Cyx̃(t) + Eyww̃(t) (5)
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where in a general case Cy ∈ Rq×n, Eyw ∈ Rq×m. Considering the load voltage vo(t) as the
only output, these matrices are written as:

Cy =

�
RrC

R + rC

R

R + rC

�
, Eyw =

�
0 − RrC

R + rC

�
. (6)

2.2 Model of the buck-boost converter
In the buck-boost converter, matrices Aon and Aoff are not equal, and therefore, the averaged
model contains bilinear terms concerning the control input, the states and the disturbance
inputs. According to those nonlinear terms, the linearized transfer function depends on the
operating point, hence making the control subsystem design more difficult. In order to derive
accurate transfer functions of the buck-boost converter for output-feedback approaches, the
stray resistances are also taken into account.
For the buck-boost converter, the averaged model in the form of (3) contains bilinear terms,
and can be expressed as follows:

dx̃(t)
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=
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�
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(8)

being req = Dron + D�ro f f . The dimensions of the system matrices are defined as

A, Bnx , Bnw ∈ Rn×n, Bu ∈ Rn×m, Bw ∈ Rn×l.
The averaged output vo(t) of the buck-boost converter can be written as:

Y + ỹ(t) =
�
CyX + EywW

�
+ Cyx̃(t) + Eyww̃(t) + CyuXd̃(t) + Cyu x̃(t)d̃(t) (9)
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ṽo(t)

�
, w̃(t) =

�
ṽg(t)
˜iload(t)

�
,

(4)

being req = Dron + D�ro f f and D� = 1− D. The dimensions of the system matrices are defined

as A ∈ Rn×n, Bu, Bnw ∈ Rn×m, Bw ∈ Rn×l.
Similarly, the averaged outputs of the buck converter can be written as:

Y + ỹ(t) =
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where:

Cy =

[
−D� RrC

R + rC

R

R + rC

]
, Cyu =

[
RrC

R + rC
0

]
, Eyw =

[
0 − RrC

R + rC

]
. (10)

These models are employed in Section 3 to derive robust controllers for the buck and the
buck-boost converters.

2.3 Delay model for the PWM actuator
The models presented above do not take into account the sampling effect of the modulation
(Brown & Middlebrook, 1981; Erickson & Maksimovic, 1999) (see Figure 4).
Usually, the sampling effect is not considered, and only the linear gain of the modulator is
taken into account. In a voltage-mode modulator, the duty-cycle input is usually constrained
between zero and the amplitude of the sawtooth signal VM, and therefore the linear gain
of this modulator is 1/VM (Erickson & Maksimovic, 1999). For simplicity the amplitude VM

can be considered equal to one, such that the linear model shown previously is valid for a
duty-cycle input d ∈ [0, 1].
However, the sampling effect can be taken into account in order to limit the control-loop
bandwidth in the automatic control synthesis algorithms. Such an effect can be incorporated
to the power stage model as a sampling at the switching frequency 1/Ts and a zero-order hold
block, assuming that the switch is fired once every switching cycle Ts (Maksimovic, 2000). The
equivalent transfer function for this sampling model is then:

GZOH(s) =
1 − e−sTs

sTs
(11)

The exponential factor e−sTs can be approximated by a Padé function:

e−sTs ≈ ∑n
k=0 −1kckTssk

∑n
k=0 ckTssk

,

ck =
(2n − k)!n!

2n!k!(n − k)!
, k = 0, 1, ·, n. (12)

Taking the first order approximation n = 1 we obtain

e−sTs ≈ 1 − (Ts/2)s

1 + (Ts/2)s
(13)

322 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics LMI Robust Control of PWM Converters: an Output-Feedback Approach 7

The equivalent hold transfer function with the Padé approximation writes

GZOH(s) =
1

1 + s Ts
2

(14)

which is a strictly proper transfer function whose representation in state-space form could be:

{
˙̃xp(t) = −(2/Ts)x̃p(t) + (2/Ts)d̃(t)

d̃2(t) = x̃p(t)
(15)

where x̃p(t) is the state variable of the GZOH(s), d̃(t) is its input and d̃2(t) is its output.

2.4 Modeling of uncertainty
As stated in (Gahinet et al., 1995), the notion of system uncertainty is of major importance
in the field of robust control theory. First of all, one of the key features of feedback is that
it reduces the effects of uncertainty. However, when designing a control system, the model
used to represent the behavior of the plant is often approximated. The difference between the
approximated model and the true model is called model uncertainty. Also the changes due to
operating conditions, aging effects, etc... are sources of uncertainty.
The two main approaches shown in (Gahinet et al., 1995) when dealing with system
uncertainties and LMI control are:

• Uncertain state-space models, relevant for systems described by dynamical equations with
uncertain and/or time-varying coefficients.

• Linear-fractional representation (LFR) of uncertainty, in which the uncertain system is
described as an interconnection of known LTI systems.

While LFR models have had a main role in modern robust control synthesis methods such as
in μ-synthesis (Zhou et al., 1996), state-space models have been used in convex optimization
approaches (Boyd et al., 1994). Since this chapter presents approaches that do not employ the
concept of structured singular value on which the μ-synthesis method is based, the following
subsection is focused on uncertain state-space models.
If some of the physical parameters are approximated or unknown, or if there exists nonlinear
or non-modeled dynamic effects, then the system can be described by an uncertain state-space
model: {

ẋ = Ax + Bu

y = Cx + Du
(16)

where the state-space matrices A, B, C, D depend on uncertain and/or time-varying
parameters or vary in some bounded sets of the space of matrices. One of the state-space
representations of relevance in LMI control problems is the class of polytopic models:

Definition 2.1. A polytopic system is a linear time-varying system

{
ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
(17)
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in which the matrix G(t) =

�
A(t) B(t)
C(t) D(t)

�
varies within a fixed polytope of matrices

G(t) ∈ Co{G1, . . . , GN} :=

⎧⎨
⎩

N

∑
j=1

δjGj : δj ≥ 0,
N

∑
j=1

δj = 1

⎫⎬
⎭ (18)

where G1, . . . , GN are the vertices of the polytope.

In other words, G(t) is a convex combination of the matrices G1, . . . , GN . Polytopics models
are also called linear differential inclusions LDI in (Boyd et al., 1994).

2.4.1 Example: Buck converter polytopic model
Consider the buck converter model introduced in subsection 2.1, with w̃(t) = 0. For simplicity,
the stray resistances are disregarded. If we take R and Vg as uncertain parameters of the
converter, the uncertain system is described as follows

⎧
⎪⎨
⎪⎩

dx̃(t)

dt
=

�
N
∑

j=1
Ajδj

�
x̃(t) +

�
N
∑

j=1
Bujδj

�
d̃(t)

ỹ(t) = Cyx̃(t) + Eyww̃(t)

(19)

with δj ≥ 0,
N
∑

j=1
δj = 1. The uncertain matrices Aj and Buj are

Aj =

⎡
⎢⎣

0 − 1

L
1

C
− 1

RjC

⎤
⎥⎦ , Buj =

⎡
⎣

Vgj

L
0

⎤
⎦ , (20)

where Rj = {Rmin Rmax Rmin Rmax}, and Vgj
= {Vgmin

Vgmin
Vgmax Vgmax}, which represents a

uncertain polytope of four vertices (2 power the number of uncertain parameters, that are Rj

and Vgj
in this example).

3. Robust control of dc-dc converters

Consider a general LTI model with states x(t), controlled outputs y(t) and performance
outputs z(t):

Σ :

⎧⎨
⎩

ẋ(t) = Ax(t) + Bww(t) + Buu(t)
y(t) = Cyx(t) + Eyww(t) + Eyuu(t)
z(t) = Czx(t) + Ezww(t) + Ezuu(t)

. (21)

It is possible to assume that some elements involved in the system matrices are uncertain
or time-varying. For the sake of simplicity, the performance and measurable outputs are
discarded, hence these uncertain elements are concentrated in matrices A, Bw and Bu and
they are grouped in a vector p. Thus, matrices A, Bw and Bu depend on such uncertainty
vector, and we can express (21) as function of these parameters:

ẋ(t) = A(p)x(t) + Bw(p)w(t) + Bu(p)u(t) . (22)
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-

Fig. 5. Block diagram of a state-feedback system with controller K and error integration.

This state-space representation has been previously used to derive robust control synthesis
methods for dc-dc converters, which generally result in a state-feedback law that stabilizes
the system for a certain range of uncertainty: parameter-dependent approaches for
the linear dynamics of the converters are presented in (Montagner et al., 2005) and
(Torres-Pinzon & Leyva, 2009) while (Hu, 2011) introduces a representation of the nonlinear
dynamics. Consistent experimental results with tight performances are presented in
(Olalla et al., 2009a; 2010a; 2011). The small-signal stabilization of nonlinear dc-dc converters
is considered in (Olalla et al., 2009a; 2010a), where the converter is ensured to be stable in a
range of operating points, but its trajectory between those points is not ensured to be stable
due to the disregard of the nonlinear dynamics. These nonlinearities are taken into account in
(Olalla et al., 2011) where also a less conservative polytopic uncertainty model is introduced.
The state-feedback formulation of the control problem is of interest since (i) it may deliver
better performance than some output-feedback approaches, (ii) it can be posed as a convex
optimization problem with no conservatism or iterations and (iii) it is very simple to
implement. However, the main disadvantage of state-feedback is that the full state vector
must be available for measure, which is not always true. Therefore, it may require additional
components and sensors to obtain the state or to implement estimators of the unaccessible
states. Robust output-feedback approaches are then an alternative to derive robust controllers
with known performances.
Robust control via output-feedback has been the subject of extensive research in the field
of automatic control (de Oliveira & Geromel, 1997; Garcia et al., 2004; Peaucelle & Arzelier,
2001a;b; Scherer et al., 1997; Skogestad & Postlethwaite, 1996), but it has been hardly
employed in dc-dc converters (Rodriguez et al., 1999). Power electronics engineers tend to
use current-mode approaches (Erickson & Maksimovic, 1999) that employ an inner current
loop before applying the output-feedback loop and, in that way, ease the control of the dc-dc
converter. However, current-mode approaches require current sensing, as state-feedback
control, and they suffer from noise, since in some cases, as in peak-current control, the current
waveform must be sensed accurately. Therefore, a plain output-feedback approach can be of
interest in certain cases in which a simple control is required and the sensing of all the states
of the converter is not possible.

3.1 State-feedback control
The most simple control problem in terms of an LMI formulation is the one in which all the
system states are measurable. The state-feedback problem considers the stabilization of (22)
with a simple controller u = Kx, where K ∈ Rm×n, as follows

ẋ(t) =
(

A(p) + Bu(p)K
)

x(t) + Bw(p)w(t) . (23)

Since the state-feedback approach does not allow to eliminate steady-state error, an additional
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in which the matrix G(t) =

�
A(t) B(t)
C(t) D(t)

�
varies within a fixed polytope of matrices

G(t) ∈ Co{G1, . . . , GN} :=

⎧⎨
⎩

N

∑
j=1

δjGj : δj ≥ 0,
N

∑
j=1

δj = 1

⎫⎬
⎭ (18)

where G1, . . . , GN are the vertices of the polytope.

In other words, G(t) is a convex combination of the matrices G1, . . . , GN . Polytopics models
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⎧
⎪⎨
⎪⎩

dx̃(t)

dt
=

�
N
∑

j=1
Ajδj

�
x̃(t) +

�
N
∑

j=1
Bujδj

�
d̃(t)

ỹ(t) = Cyx̃(t) + Eyww̃(t)

(19)

with δj ≥ 0,
N
∑

j=1
δj = 1. The uncertain matrices Aj and Buj are

Aj =

⎡
⎢⎣

0 − 1

L
1

C
− 1

RjC

⎤
⎥⎦ , Buj =

⎡
⎣

Vgj

L
0

⎤
⎦ , (20)

where Rj = {Rmin Rmax Rmin Rmax}, and Vgj
= {Vgmin

Vgmin
Vgmax Vgmax}, which represents a

uncertain polytope of four vertices (2 power the number of uncertain parameters, that are Rj

and Vgj
in this example).

3. Robust control of dc-dc converters

Consider a general LTI model with states x(t), controlled outputs y(t) and performance
outputs z(t):

Σ :

⎧⎨
⎩

ẋ(t) = Ax(t) + Bww(t) + Buu(t)
y(t) = Cyx(t) + Eyww(t) + Eyuu(t)
z(t) = Czx(t) + Ezww(t) + Ezuu(t)

. (21)

It is possible to assume that some elements involved in the system matrices are uncertain
or time-varying. For the sake of simplicity, the performance and measurable outputs are
discarded, hence these uncertain elements are concentrated in matrices A, Bw and Bu and
they are grouped in a vector p. Thus, matrices A, Bw and Bu depend on such uncertainty
vector, and we can express (21) as function of these parameters:

ẋ(t) = A(p)x(t) + Bw(p)w(t) + Bu(p)u(t) . (22)
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dynamics. Consistent experimental results with tight performances are presented in
(Olalla et al., 2009a; 2010a; 2011). The small-signal stabilization of nonlinear dc-dc converters
is considered in (Olalla et al., 2009a; 2010a), where the converter is ensured to be stable in a
range of operating points, but its trajectory between those points is not ensured to be stable
due to the disregard of the nonlinear dynamics. These nonlinearities are taken into account in
(Olalla et al., 2011) where also a less conservative polytopic uncertainty model is introduced.
The state-feedback formulation of the control problem is of interest since (i) it may deliver
better performance than some output-feedback approaches, (ii) it can be posed as a convex
optimization problem with no conservatism or iterations and (iii) it is very simple to
implement. However, the main disadvantage of state-feedback is that the full state vector
must be available for measure, which is not always true. Therefore, it may require additional
components and sensors to obtain the state or to implement estimators of the unaccessible
states. Robust output-feedback approaches are then an alternative to derive robust controllers
with known performances.
Robust control via output-feedback has been the subject of extensive research in the field
of automatic control (de Oliveira & Geromel, 1997; Garcia et al., 2004; Peaucelle & Arzelier,
2001a;b; Scherer et al., 1997; Skogestad & Postlethwaite, 1996), but it has been hardly
employed in dc-dc converters (Rodriguez et al., 1999). Power electronics engineers tend to
use current-mode approaches (Erickson & Maksimovic, 1999) that employ an inner current
loop before applying the output-feedback loop and, in that way, ease the control of the dc-dc
converter. However, current-mode approaches require current sensing, as state-feedback
control, and they suffer from noise, since in some cases, as in peak-current control, the current
waveform must be sensed accurately. Therefore, a plain output-feedback approach can be of
interest in certain cases in which a simple control is required and the sensing of all the states
of the converter is not possible.

3.1 State-feedback control
The most simple control problem in terms of an LMI formulation is the one in which all the
system states are measurable. The state-feedback problem considers the stabilization of (22)
with a simple controller u = Kx, where K ∈ Rm×n, as follows

ẋ(t) =
(

A(p) + Bu(p)K
)

x(t) + Bw(p)w(t) . (23)

Since the state-feedback approach does not allow to eliminate steady-state error, an additional
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integral state can be introduced for the regulated output of the system, as shown in Figure 5.
Once the augmented system has been rewritten in the form of (23), the following result,
adapted from (Bernussou et al., 1989), points out a synthesis method to obtain a state-feedback
controller that stabilizes quadratically the closed-loop system.

Theorem 3.1. The system (23) is stabilizable by state-feedback u = Kx if and only if there exist a
symmetric matrix W ∈ Rn×n and a matrix Y ∈ Rm×n such that

{
W > 00
AW + WA� + BuY + Y�B�

u < 00
(24)

then, the state-feedback is given by K = YW−1.

Proof. The proof uses a quadratic Lyapunov function V(x) = x�Px, P = P�
> 0, whose

time-derivative along the trajectories of the closed-loop system ẋ = (A + Bu)Kx must be definite
negative (Boyd et al., 1994). It follows that the following condition

A�P + PA + K�B�
uP + PBuK < 00 (25)

has to be satisfied. Finally, considering the left and right-hand multiplication of the previous condition
by W = P−1, and the substitution of KW = Y, LMI condition (24) follows.

A single Lyapunov function can be used to guarantee the stability of an uncertain system.
The following theorem yields the state-feedback condition in the case of a polytopic
representation.

Theorem 3.2. The uncertain system defined by a convex polytope Co {G1, . . . , GN} is quadratically
stabilizable by state-feedback u = Kx if and only if there exist a symmetric positive definite matrix W

and a matrix Y such that

AjW + WA�
j + BujY + Y�B�

uj < 00 ∀j = 1, . . . , N, (26)

then K = YW−1 is a state-feedback matrix.

The proof of this theorem is given in (Bernussou et al., 1989). It is worth to point out that
there exist more recent works which have been concerned with the stability of polytopic
uncertain systems considering in particular multiple Lyapunov functions instead of a single
one (Apkarian et al., 2001; Bernussou & Oustaloup, 2002; Peaucelle & Arzelier, 2001c), in
order to reduce the conservatism of the quadratic approach.

Example 1. Buck-Boost Converter
In this example, an uncertain polytopic model of the buck-boost converter is presented and a robust
state-feedback controller is derived.
Consider the buck-boost converter model introduced in Section 2.2. Since for state-feedback control,
the capacitor voltage is considered measurable, the stray resistance rC is neglected. Also the stray
resistances of the inductor and the semiconductor devices are disregarded. In order to obtain zero
steady-state error between the voltage reference Vref and the output voltage vo(t), the model is
augmented with an additional state variable xint(t), which stands for the integral of the output voltage
error, i.e. xint(t) = − ∫ (

Vref − vo(t)
)
dt. The state vector of the new model is then written as
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x(t) =

⎡
⎣

iL(t)
vo(t)

xint(t)

⎤
⎦. Considering

AX + BwW +
�

0
1
0

�
Vref = 0, (27)

the linear dynamics of the buck-boost converter are then written as:

˙̃x(t) =Ax̃(t) + Bww̃(t) + Buũ(t) (28)

A =

⎡
⎣

0 D�
L 0

− D�
C − 1

RC 0
0 1 0

⎤
⎦ , Bw =

⎡
⎣

D
L 0

0 − 1
C

0 0

⎤
⎦ , Bu =

⎡
⎢⎣

Vg

D�L
DVg

D�2RC
0

⎤
⎥⎦ . (29)

Uncertainty:

Polytopic uncertainty (19) is introduced in the model of the converter to cope with the variations of D
and R. The parameters of this example take the values shown in Table 1. Note that the transient
performance requirements are only fulfilled when the trajectory starts from an equilibrium point.
Consequently, the variations of D and R must be slow enough to allow the system states to return
to the equilibrium.

Parameter Value

R ∈ [10, 50] Ω
Vg 12 V
D [0, 0.7]
C 200 μ F
L 100 μ H
Ts 5 μ s

Table 1. Buck-boost: converter parameters

As in (Olalla et al., 2009a), additional variables are introduced, in order to remove the non affine
dependence of the system matrices on the uncertain terms. The uncertainty parameter vector is defined
as p = [R D� δ1 δ2], where:

R ∈ [Rmin, Rmax],

D� ∈ [D�
min, D�

max],

δ1 ∈ [1/D�
max, 1/D�

min],

δ2 ∈ [Dmin/D
�2
max, Dmax/D

�2
min].

(30)

Note that the uncertain model is inside a polytopic domain formed by N = 24 vertices. Also note that
the multiplication between δ2 and 1/R in the second row of Bu does not imply a new variable because
both functions are strictly decreasing.

Sampling effect:

In this example the sampling effect has not been included in the converter, as the state variables of the
modulator model can not be measured.
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negative (Boyd et al., 1994). It follows that the following condition

A�P + PA + K�B�
uP + PBuK < 00 (25)
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uncertain systems considering in particular multiple Lyapunov functions instead of a single
one (Apkarian et al., 2001; Bernussou & Oustaloup, 2002; Peaucelle & Arzelier, 2001c), in
order to reduce the conservatism of the quadratic approach.

Example 1. Buck-Boost Converter
In this example, an uncertain polytopic model of the buck-boost converter is presented and a robust
state-feedback controller is derived.
Consider the buck-boost converter model introduced in Section 2.2. Since for state-feedback control,
the capacitor voltage is considered measurable, the stray resistance rC is neglected. Also the stray
resistances of the inductor and the semiconductor devices are disregarded. In order to obtain zero
steady-state error between the voltage reference Vref and the output voltage vo(t), the model is
augmented with an additional state variable xint(t), which stands for the integral of the output voltage
error, i.e. xint(t) = − ∫ (

Vref − vo(t)
)
dt. The state vector of the new model is then written as
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the linear dynamics of the buck-boost converter are then written as:
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Uncertainty:

Polytopic uncertainty (19) is introduced in the model of the converter to cope with the variations of D
and R. The parameters of this example take the values shown in Table 1. Note that the transient
performance requirements are only fulfilled when the trajectory starts from an equilibrium point.
Consequently, the variations of D and R must be slow enough to allow the system states to return
to the equilibrium.

Parameter Value

R ∈ [10, 50] Ω
Vg 12 V
D [0, 0.7]
C 200 μ F
L 100 μ H
Ts 5 μ s

Table 1. Buck-boost: converter parameters

As in (Olalla et al., 2009a), additional variables are introduced, in order to remove the non affine
dependence of the system matrices on the uncertain terms. The uncertainty parameter vector is defined
as p = [R D� δ1 δ2], where:

R ∈ [Rmin, Rmax],

D� ∈ [D�
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max],

δ1 ∈ [1/D�
max, 1/D�

min],

δ2 ∈ [Dmin/D
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�2
min].

(30)

Note that the uncertain model is inside a polytopic domain formed by N = 24 vertices. Also note that
the multiplication between δ2 and 1/R in the second row of Bu does not imply a new variable because
both functions are strictly decreasing.

Sampling effect:

In this example the sampling effect has not been included in the converter, as the state variables of the
modulator model can not be measured.
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Fig. 6. Simulation results of Example 1, with controller K1, for the sixteen vertices of the
uncertainty set.

Performance Specifications:

Following the synthesis method shown in (Olalla et al., 2010a), the objective function to be minimized
is the H∞ norm of the transfer function between the output disturbance ĩload(t) and the output voltage
ṽo(t).
In order to assure robust transient performances, the closed loop poles are constrained in an LMI region
S(α, r, θ), where the desired minimum damping ratio is set to θ = 1√

2
, the required maximum damped

frequency is r = 1
10

2π
Ts

, and the minimum decay rate, for a settling time lower than 20 ms, is set to
α = 200.

Results:

The robust control synthesis algorithm yields a controller K1:

K1 = [−0.31 − 0.25 194.70] (31)

that ensures an H∞ norm from output disturbance to output voltage of 3.80 (11.6 dB). Figure 6 shows
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Fig. 7. Block diagram of an output-feedback system with controller G(s).

the simulation results of the controller over the sixteen vertices of the set of matrices. Since the nonlinear
terms are disregarded, the robust stability and performance of the converter is guaranteed while the
converter remains in the considered operating points, assuming that the change between these operation
points is sufficiently slow. In order to account for the neglected dynamics, see (Hu, 2011; Olalla et al.,
2009b; 2011).

3.2 Output-feedback control
Figure 7 shows the general diagram of an output-feedback control system. Depending on the
structure of the controller G(s), two main approaches can be differentiated for the synthesis
of output-feedback controllers: static and dynamic controllers.
Given the system Σ as described in (21), for the buck and the buck-boost converter Eyu = 0
can be considered. Then, in the case of a dynamic controller of order k with the following
structure

ΣK :

�
ẋc = Acxc + Bcy

u = Ccxc + Dcy
, (32)

the closed loop system has the form

TΣK
:

�
ẋcl = Axcl + Bw

z = Cxc +Dw
(33)

where �A B
C D

�
=

⎡
⎣

A + BuDcCy BuCc Bw + BuDcEyw

BcCy Ac BcEyw

Cz + EzuDcCy EzuCc Ezw + EzuDcDyw

⎤
⎦ (34)

In the case of a static controller, K ∈ Rm×q

u = Ky = K(Cyx + Eyww) (35)

and the closed loop system has the following structure

TK :

�
ẋ = Ax + Bw
z = Cx + Ew

(36)

where �A B
C E

�
=

�
(A + BuKCy) (Bw + BuKEyw)
(Cz + EzuKCy) (Ezw + EzuKEyw)

�
(37)
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Fig. 6. Simulation results of Example 1, with controller K1, for the sixteen vertices of the
uncertainty set.

Performance Specifications:

Following the synthesis method shown in (Olalla et al., 2010a), the objective function to be minimized
is the H∞ norm of the transfer function between the output disturbance ĩload(t) and the output voltage
ṽo(t).
In order to assure robust transient performances, the closed loop poles are constrained in an LMI region
S(α, r, θ), where the desired minimum damping ratio is set to θ = 1√

2
, the required maximum damped

frequency is r = 1
10

2π
Ts

, and the minimum decay rate, for a settling time lower than 20 ms, is set to
α = 200.

Results:

The robust control synthesis algorithm yields a controller K1:

K1 = [−0.31 − 0.25 194.70] (31)

that ensures an H∞ norm from output disturbance to output voltage of 3.80 (11.6 dB). Figure 6 shows
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the simulation results of the controller over the sixteen vertices of the set of matrices. Since the nonlinear
terms are disregarded, the robust stability and performance of the converter is guaranteed while the
converter remains in the considered operating points, assuming that the change between these operation
points is sufficiently slow. In order to account for the neglected dynamics, see (Hu, 2011; Olalla et al.,
2009b; 2011).

3.2 Output-feedback control
Figure 7 shows the general diagram of an output-feedback control system. Depending on the
structure of the controller G(s), two main approaches can be differentiated for the synthesis
of output-feedback controllers: static and dynamic controllers.
Given the system Σ as described in (21), for the buck and the buck-boost converter Eyu = 0
can be considered. Then, in the case of a dynamic controller of order k with the following
structure

ΣK :

�
ẋc = Acxc + Bcy

u = Ccxc + Dcy
, (32)

the closed loop system has the form

TΣK
:

�
ẋcl = Axcl + Bw

z = Cxc +Dw
(33)

where �A B
C D

�
=

⎡
⎣

A + BuDcCy BuCc Bw + BuDcEyw

BcCy Ac BcEyw

Cz + EzuDcCy EzuCc Ezw + EzuDcDyw

⎤
⎦ (34)

In the case of a static controller, K ∈ Rm×q

u = Ky = K(Cyx + Eyww) (35)

and the closed loop system has the following structure

TK :

�
ẋ = Ax + Bw
z = Cx + Ew

(36)

where �A B
C E

�
=

�
(A + BuKCy) (Bw + BuKEyw)
(Cz + EzuKCy) (Ezw + EzuKEyw)

�
(37)
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For both problems the Lyapunov inequality is written, in a generic form:

�
P > 00
A�P + PA < 00

, (38)

which depends non-linearly on P and the matrices of the controller (K in the static case or Ac,
Bc, Cc, Dc in the dynamic case).
There exist several methods to linearize the output-feedback synthesis problem. For the
dynamic output-feedback case, the results of reference (Scherer et al., 1997) are summarized.
In the case of static output-feedback, the methods shown in (de Oliveira & Geromel, 1997) and
(Peaucelle & Arzelier, 2001a) are employed.

3.2.1 Dynamic output-feedback
The dynamic output-feedback synthesis method shown in (Scherer et al., 1997) employs the
following transfer function parametrization defined from the exogenous input w = wjRj to
the cost output zj = Ljz as follows:

Tj(s) =
zj(s)

wj(s)
:=

�A Bj

Cj Dj

�
=

� A BRj

LjC LjDRj

�
=

⎡
⎣

A + BuDcCy BuCc Bj + BuDcFj

BcCy Ac BcFj

Cj + EjDcCy EjCc Dj + EjDcFj

⎤
⎦ (39)

where

Bj := BwRj, Cj := LjCz, Dj := LjEzwRj, Ej := LjEzu, Fj := EywRj. (40)

To find a controller which stabilizes the closed-loop system, there must exist a quadratic
Lyapunov function

V(xcl) = x�clPxcl , (41)

such that �
P > 00
A�P + PA < 00

(42)

The LMI constraints are formulated for a transfer function Tj(s) = LjT(s)Rj, in terms of the
state-space matrices A,Bj, Cj,Dj. The goal is to synthesize an LTI controller ΣK that:

• internally stabilizes the system

• meets certain specifications (H2, H∞ , pole placement,...) on a particular set of channels.

Generally, each transfer function Tj will satisfy each specification Sj, if there exists a Lyapunov
matrix Pj > 0 that satisfies some LMI constraints in Pj. The control problem usually includes
a number i of specifications. Therefore, the synthesis problem involves a set of matrix
inequalities whose variables are:

• the controller matrices Ac, Bc,Cc, Dc.

• the i Lyapunov matrices P1, . . . , Pi, one per specification.

• additional auxiliary variables to minimize, for example, the norm cost H∞.

Since this problem is nonlinear and hardly tractable numerically, the method shown in
(Scherer et al., 1997) requires that all the specifications are satisfied with a single Lyapunov
function, that is:

P1 = . . . = Pi = P. (43)
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This restriction involves conservatism in the design, but it leads to a numerically tractable LMI
problem, it produces controllers of reasonable order and it exploits all degrees of freedom in
P (Scherer et al., 1997). Actually, if a single Lyapunov function P is considered, the following
change of variable linearizes the control problem and makes it solvable with LMIs.
Let n be the number of states of the plant, and let k be the order of the controller. Partition P

and P−1 as

P =

�
Y N
N� ∗

�
, P−1 =

�
X M

M�
�

�
(44)

where X and Y are ∈ Sn, and � is a symmetric positive definite matrix such that PP−1 = 1

holds.

From PP−1 = 1 we infer P

�
X

M�
�
=

�
1

00

�
, which leads to

PΠ1 = Π2, Π1 =

�
X 1

M� 00

�
, Π2 =

�
1 Y

00 N�
�

(45)

The change of variables is as follows

⎧⎪⎪⎨
⎪⎪⎩

Â := NAcM� + NBcCyX + YBuCc M� + Y(A + BuDcCy)X
B̂ := NBc + YBuDc

Ĉ := CcM� + DcCyX

D̂ := Dc

(46)

where Â, B̂, Ĉ have dimensions n × n, n × m, q × n respectively. If M and N have full row
rank, and Â, B̂, Ĉ, D̂, X, Y are given, the matrices Ac, BcCc, Dc can be computed. If M and N
are square n = k and invertible, then Ac, Bc, Cc, Dc are unique.
The motivation for this change of variables lies in the following identities

Π�
1PAΠ1 = Π�

2AΠ1 =

�
AX + BĈ A + BuDCy

Â YA + B̂Cy

�

Π�
1PBj = Π�

2Bj =

�
Bj + BuDFj

YBj + B̂Fj

�

CjΠ1 =
�
CjX + EjĈ Cj + EjD̂Cy

�

Π�
1PΠ1 = Π�

1Π2 =

�
X 1

1 Y

�
(47)

which can be used in a congruence transformation to derive the LMI constraints. A detailed
proof is given in (Scherer et al., 1997).
Once the variables Â, B̂, Ĉ, D̂, X, Y have been found, let us recover the original system by
following this procedure. First we need to construct M, N and P that satisfy (45). M and
N should be chosen such that NM� = 1− YX. With the following LMI:

�
X 1

1 Y

�
> 00 (48)

we assure Y > 00 and X − Y−1
> 00 such that 1− YX is nonsingular. Hence, M and N can

always be found. After that, Π1 and Π2 are also nonsingular, and P = Π2Π−1
1 can be found.
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The LMI constraints are formulated for a transfer function Tj(s) = LjT(s)Rj, in terms of the
state-space matrices A,Bj, Cj,Dj. The goal is to synthesize an LTI controller ΣK that:

• internally stabilizes the system

• meets certain specifications (H2, H∞ , pole placement,...) on a particular set of channels.

Generally, each transfer function Tj will satisfy each specification Sj, if there exists a Lyapunov
matrix Pj > 0 that satisfies some LMI constraints in Pj. The control problem usually includes
a number i of specifications. Therefore, the synthesis problem involves a set of matrix
inequalities whose variables are:

• the controller matrices Ac, Bc,Cc, Dc.

• the i Lyapunov matrices P1, . . . , Pi, one per specification.

• additional auxiliary variables to minimize, for example, the norm cost H∞.

Since this problem is nonlinear and hardly tractable numerically, the method shown in
(Scherer et al., 1997) requires that all the specifications are satisfied with a single Lyapunov
function, that is:
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rank, and Â, B̂, Ĉ, D̂, X, Y are given, the matrices Ac, BcCc, Dc can be computed. If M and N
are square n = k and invertible, then Ac, Bc, Cc, Dc are unique.
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1Π2 =
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X 1

1 Y

�
(47)

which can be used in a congruence transformation to derive the LMI constraints. A detailed
proof is given in (Scherer et al., 1997).
Once the variables Â, B̂, Ĉ, D̂, X, Y have been found, let us recover the original system by
following this procedure. First we need to construct M, N and P that satisfy (45). M and
N should be chosen such that NM� = 1− YX. With the following LMI:

�
X 1

1 Y

�
> 00 (48)

we assure Y > 00 and X − Y−1
> 00 such that 1− YX is nonsingular. Hence, M and N can

always be found. After that, Π1 and Π2 are also nonsingular, and P = Π2Π−1
1 can be found.
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Then Dc, Cc, Bc and Ac can be solved, in this order:

⎧
⎪⎪⎨
⎪⎪⎩

Dc := D̂

Cc :=
�
Ĉ − DcCyX

�
M�−1

Bc := N−1
�
B̂ − YBuDc

�
Ac := N−1

�
Â − NBcCyX − YBuCcM� − Y

�
A + BuDcCy

�
X
�

M�−1

(49)

For a list of LMI constraints which respond to several specifications with this change of
variables, it is recommended to read (Scherer et al., 1997).

Example 2. Buck Converter
In this example, the synthesis of an output-feedback controller for a buck converter is carried out. The
objective of the synthesis algorithm is, again, to minimize the H∞ norm of the output disturbance to
output voltage transfer function.
In this case the stray resistances of the converter are taken into account, since only the output signals
are used. This design considers a unique output signal vo(t) to set-up a voltage-regulation operation.

Sampling effect:

The sampling effect could be included in the converter model, in order to prevent the optimization
algorithm to yield unrealistic results due to the switching action. However, in this case, a weighting
function on the complementary sensitivity response can be used for this purpose.

Uncertainty:

Polytopic uncertainty (19) can be introduced in the model of the converter to cope with the variations of
the uncertain parameters, as the load or the input voltage. However, in the case of output-feedback the
polytopic representation of uncertainty introduces nonlinear relationship between the variables of the
inequalities. This problem is treated in (Courties, 1997; 1999) where a cross-decomposition algorithm
is described to obtain a local optimum controller giving an initial feasible solution. The solution
proposed in this example exploits the weighting transfer functions to obtain the expected sensitivity
and complementary sensitivity responses. The parameters of this example take the values shown in
Table 2. The synthesis algorithm closely follows the linearizing change of variables of (Scherer et al.,

Parameter Value

R 1000 Ω
Vg 55 V
C 1000 μ F
L 100 μ H

req 150 mΩ
rC 30 mΩ
Ts 5 μ s

Table 2. Buck: converter parameters

1997) and the methodology explained in chapters 5 and 6 of (Gahinet et al., 1995):

1. First, the design specifications are expressed in terms of loop shapes and their corresponding shaping
filters.

2. Then, the original plant is augmented with such filters to obtain a weighted plant.

3. Finally, the augmented plant is used in the optimization algorithm to derive a controller that meets
certain LMIs.
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The algorithm yields a controller of the same order as the augmented plant, that is, the order of the
original plant plus the order of the shaping filters.

Performance Specifications:

The objective of the design procedure is to minimize the H∞ norm of the disturbance to output transfer
function. For such objective, a weighting function W1(s) for the error signal (i.e. for the sensitivity
function) and a weighting function W2(s) for the output signal (i.e. for the complementary sensitivity
function) are considered. Both weighting functions are depicted in Figure 8(b). In order to obtain small
steady-state error, W1(s) is very large at low frequencies.
Other performance requirements could have been included (pole placement, H2, ...) in the optimization
problem, but they have not been used to maintain all the degrees of freedom in the research of the
minimum H∞ norm.

Results:

The minimization algorithm yields the following controller transfer function (1 input, 1 output):

K2(s) = −3.00
(s + z1)(s + z2)(s + z3,4)(s + z5,6)

(s + p1)(s + p2)(s + p3,4)(s + p5,6)
(50)

where
p1 = −1.05 · 10−2 z1 = −4.39 · 102 + j6.04 · 102

p2 = −4.90 · 103 z2 = −4.39 · 102 − j6.04 · 102

p3 = −6.66 · 104 z3 = −1.89 · 103

p4 = −1.36 · 109 z4 = −3.50 · 109

(51)

The maximum guaranteed gain peak from disturbance to output is γ = 0.045 (-26.93 dB). Figure
8 depicts the simulation results for the nominal frequency and time-domain response of the buck
converter.

3.2.2 Static output-feedback
An alternative to the use of weighting functions and frequency dependent uncertainty models
is to consider the static output-feedback case. Static output-feedback considers a gain K to set
up the feedback loop as u = Ky.
The survey on output-feedback design methods (de Oliveira & Geromel, 1997) differentiates
between several approaches to solve the synthesis of a static output gain as follows:

1. Nonlinear programming methods. They work on the parametric space defined by K

and P to find an optimal value of a cost variable, if any. The search is done by
means of classical optimization methods as, for example, a gradient algorithm, primal
or dual Levine-Athans’ method, etc. The solution of the algorithm, which converges to
a local optimum, strongly depends on an initial stabilizing gain, which must be found
beforehand.

2. Parametric optimization methods. These methods optimize the objective function for the
parametric space defined by P, for some matrix K. The determination of the controller, if
it exists, is decomposed in independent steps. These methods can be easily implemented
using LMI solvers.

3. Convex programming methods. They solve a sufficient version of the Lyapunov inequality
(38) obtained by the addition of constraints which lead to a convex feasibility set.
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polytopic representation of uncertainty introduces nonlinear relationship between the variables of the
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1997) and the methodology explained in chapters 5 and 6 of (Gahinet et al., 1995):

1. First, the design specifications are expressed in terms of loop shapes and their corresponding shaping
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2. Then, the original plant is augmented with such filters to obtain a weighted plant.
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certain LMIs.
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The algorithm yields a controller of the same order as the augmented plant, that is, the order of the
original plant plus the order of the shaping filters.

Performance Specifications:

The objective of the design procedure is to minimize the H∞ norm of the disturbance to output transfer
function. For such objective, a weighting function W1(s) for the error signal (i.e. for the sensitivity
function) and a weighting function W2(s) for the output signal (i.e. for the complementary sensitivity
function) are considered. Both weighting functions are depicted in Figure 8(b). In order to obtain small
steady-state error, W1(s) is very large at low frequencies.
Other performance requirements could have been included (pole placement, H2, ...) in the optimization
problem, but they have not been used to maintain all the degrees of freedom in the research of the
minimum H∞ norm.

Results:

The minimization algorithm yields the following controller transfer function (1 input, 1 output):

K2(s) = −3.00
(s + z1)(s + z2)(s + z3,4)(s + z5,6)
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where
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The maximum guaranteed gain peak from disturbance to output is γ = 0.045 (-26.93 dB). Figure
8 depicts the simulation results for the nominal frequency and time-domain response of the buck
converter.

3.2.2 Static output-feedback
An alternative to the use of weighting functions and frequency dependent uncertainty models
is to consider the static output-feedback case. Static output-feedback considers a gain K to set
up the feedback loop as u = Ky.
The survey on output-feedback design methods (de Oliveira & Geromel, 1997) differentiates
between several approaches to solve the synthesis of a static output gain as follows:

1. Nonlinear programming methods. They work on the parametric space defined by K

and P to find an optimal value of a cost variable, if any. The search is done by
means of classical optimization methods as, for example, a gradient algorithm, primal
or dual Levine-Athans’ method, etc. The solution of the algorithm, which converges to
a local optimum, strongly depends on an initial stabilizing gain, which must be found
beforehand.

2. Parametric optimization methods. These methods optimize the objective function for the
parametric space defined by P, for some matrix K. The determination of the controller, if
it exists, is decomposed in independent steps. These methods can be easily implemented
using LMI solvers.

3. Convex programming methods. They solve a sufficient version of the Lyapunov inequality
(38) obtained by the addition of constraints which lead to a convex feasibility set.
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Fig. 8. Simulation results of Example 2 with controller K2(s).

The proposed parametrization is based on the elimination lemma (Boyd et al., 1994) and the
introduction of additional variables to obtain an iterative algorithm. It has been extracted
from (Peaucelle & Arzelier, 2001a).

Theorem 3.3. The Lyapunov inequality (38) can be rewritten as follows

⎧⎨
⎩

P > 00�
A�P + PA PB2

B�
2P 00

�
+

�
K�

s

1

� �
RCy −F

�
+

�
C�

yR�
−F�

� �
Ks −1

�
< 00

(52)

where Ks is a state-feedback gain that stabilizes the system. At the optimum point, which depends on
the objective function, the output-feedback controller is given by K = F−1R.

Proof. The equation (38) can be written as the following product of matrices:

�
1 C�

yK�
� �A�P + PA PB2

B�
2P 00

� �
1

KCy

�
< 00 (53)
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Applying the elimination lemma with

Q =

[
A�P + PA PB2

B�
2P 00

]
N = KCy (54)

we obtain [
A�P + PA PB2

B�
2P 00

]
+

[
C�

yK�
1

]
G� + G

[
KCy −1

]
< 00 (55)

With G =

[
Fs

−F

]
, the previous inequality is written as

[
A�P + PA PB2

B�
2P 00

]
+

[
C�

yK�
1

] [
F�

s −F�]+
[

Fs

−F

] [
KCy −1

]
< 00 (56)

With the following change of variables

K�
s = FsF−1, R = FK, (57)

it is verified that K = F−1R = F−1FK, and we obtain the result of (52).

This parametrization has been adapted to the minimization of the performance indexes H2

and H∞ (Peaucelle & Arzelier, 2001a;b).
With the new introduced variables we can split the optimization problem into two linear steps;
in the first step, Ks is kept constant, and the problem is solved for P, R and F. Then, in the next
step, R and F are kept constant and the problem is solved for P and Ks. With this iterative
process, a stabilizing gain that satisfies a given cost function can be obtained.
A key point of this approach is however related to the initialization step, for which and
admissible stabilizing state-feedback has to be selected. On the other hand, this algorithm
presents the advantage that the Lyapunov matrix P is set as a free variable in both steps.

Algorithm 3.1.

1. Initialization. Step k = 1. Choose a stabilizing state-feedback gain.

2. Iterative step k first part. Solve the LMI (52) in which Ks is constant.

3. Iterative step k second part. Solve the LMI (52) in which F and R are constant.

4. Final step. If the objective function satisfies the requirements, then stop K = F−1R, else k = k + 1
and return to step 2.

Example 3. Buck Converter
In this example, the previous output-feedback parametrization is employed to derive a static controller
for a buck converter, whose model was introduced in Section 2.2. The stray resistances of the model are
taken into account in this case. Also, note that the augmented model contains an integrator of the error
between the output and the reference.

Uncertainty:

The output-feedback parametrization allows to consider the polytopic uncertainty model shown in
Section 2.4. In this case, the uncertain model is formed by N = 22 vertices. The values of the converter
are shown in Table 3.
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Fig. 8. Simulation results of Example 2 with controller K2(s).

The proposed parametrization is based on the elimination lemma (Boyd et al., 1994) and the
introduction of additional variables to obtain an iterative algorithm. It has been extracted
from (Peaucelle & Arzelier, 2001a).

Theorem 3.3. The Lyapunov inequality (38) can be rewritten as follows

⎧⎨
⎩

P > 00�
A�P + PA PB2

B�
2P 00

�
+

�
K�

s

1

� �
RCy −F

�
+

�
C�

yR�
−F�

� �
Ks −1

�
< 00

(52)

where Ks is a state-feedback gain that stabilizes the system. At the optimum point, which depends on
the objective function, the output-feedback controller is given by K = F−1R.

Proof. The equation (38) can be written as the following product of matrices:

�
1 C�

yK�
� �A�P + PA PB2

B�
2P 00

� �
1

KCy

�
< 00 (53)
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Applying the elimination lemma with
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B�
2P 00

]
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B�
2P 00

]
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C�

yK�
1

]
G� + G
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KCy −1

]
< 00 (55)
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[
Fs
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]
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B�
2P 00

]
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C�

yK�
1

] [
F�

s −F�]+
[

Fs

−F

] [
KCy −1

]
< 00 (56)

With the following change of variables

K�
s = FsF−1, R = FK, (57)

it is verified that K = F−1R = F−1FK, and we obtain the result of (52).

This parametrization has been adapted to the minimization of the performance indexes H2

and H∞ (Peaucelle & Arzelier, 2001a;b).
With the new introduced variables we can split the optimization problem into two linear steps;
in the first step, Ks is kept constant, and the problem is solved for P, R and F. Then, in the next
step, R and F are kept constant and the problem is solved for P and Ks. With this iterative
process, a stabilizing gain that satisfies a given cost function can be obtained.
A key point of this approach is however related to the initialization step, for which and
admissible stabilizing state-feedback has to be selected. On the other hand, this algorithm
presents the advantage that the Lyapunov matrix P is set as a free variable in both steps.

Algorithm 3.1.

1. Initialization. Step k = 1. Choose a stabilizing state-feedback gain.

2. Iterative step k first part. Solve the LMI (52) in which Ks is constant.

3. Iterative step k second part. Solve the LMI (52) in which F and R are constant.

4. Final step. If the objective function satisfies the requirements, then stop K = F−1R, else k = k + 1
and return to step 2.

Example 3. Buck Converter
In this example, the previous output-feedback parametrization is employed to derive a static controller
for a buck converter, whose model was introduced in Section 2.2. The stray resistances of the model are
taken into account in this case. Also, note that the augmented model contains an integrator of the error
between the output and the reference.

Uncertainty:

The output-feedback parametrization allows to consider the polytopic uncertainty model shown in
Section 2.4. In this case, the uncertain model is formed by N = 22 vertices. The values of the converter
are shown in Table 3.
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Parameter Value

R ∈ [10, 1000] Ω
Vg ∈ [33, 55] V
C 1000 μ F
L 100 μ H

req 150 mΩ
rc 50 mΩ
Ts 5 μ s

Table 3. Buck: converter parameters

Sampling effect:

Since only the output signal is used, the sampling effect is included in the converter model in order
to obtain an accurate model up to half the switching frequency. This addition also prevents the
optimization algorithms to yield unrealistic results due to the switching action.

Performance Specifications:

Following the synthesis method shown in (Olalla et al., 2010a), the objective function to be minimized
is the H∞ norm of the transfer function between the output disturbance ĩload(t) and the output voltage.
As in the state-feedback case, the closed loop poles are constrained in an LMI region S(α, r, θ), in order
to assure robust transient performances. Again, the desired minimum damping ratio is set to θ = 1√

2
,

the required maximum damped frequency is r = 1
10

2π
Ts

, and the minimum decay rate, for a settling time
lower than 40 ms, is set to α = 100.

Results:

The robust control synthesis algorithm yields a controller K3:

K3 = 4.472 (58)

that assures an H∞ norm from output disturbance to output voltage of 0.656 (-3.66 dB). The waveforms
of a numerical simulation and corresponding Bode plots of the converter with controller K3 over the four
vertices of the set of matrices are depicted in Figure 9. It can be observed that the static output-feedback
controller does not achieve the performance of the dynamic output-feedback controller K2(s).

3.2.3 Dynamic output-feedback with static parametrization
The parametrization method shown in the previous subsection for the static case can be
adapted to the synthesis of a dynamic output-feedback controller. The following theorem
can be found in (Martenson, 1985; Nett et al., 1989).

Theorem 3.4. The synthesis of a dynamic controller ΣK for the system Σ (for simplicity, in absence
of perturbations (w = 0) ) can be expressed as the synthesis of a static controller for the augmented
system Σaug:

Σaug :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋaug =

�
A 00
00 00

�
xaug +

�
00 B
1 00

�
uaug

yaug =

�
00 1

C 00

�
xaug +

�
00 00
00 D

�
uaug

(59)
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Fig. 9. Simulation results of Example 3 with controller K3.

where

xaug =

[
x
xc

]
uaug =

[
ẋc

u

]
yaug =

[
xc

y

]
(60)

and

K =

[
Ac Bc

Cc Dc

]
(61)

Example 4. Buck Converter
A dynamic controller using the static output-feedback parametrization is derived in this subsection. As
in the static case, the stray resistances and a pure integrator are considered. The system is augmented
with an integrator and with the controller states to obtain a dynamic controller. For this case a simple
first-order controller is considered.

K(s) = k
(s + z)

(s + p)
(62)
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Parameter Value

R ∈ [10, 1000] Ω
Vg ∈ [33, 55] V
C 1000 μ F
L 100 μ H

req 150 mΩ
rc 50 mΩ
Ts 5 μ s

Table 3. Buck: converter parameters

Sampling effect:

Since only the output signal is used, the sampling effect is included in the converter model in order
to obtain an accurate model up to half the switching frequency. This addition also prevents the
optimization algorithms to yield unrealistic results due to the switching action.

Performance Specifications:

Following the synthesis method shown in (Olalla et al., 2010a), the objective function to be minimized
is the H∞ norm of the transfer function between the output disturbance ĩload(t) and the output voltage.
As in the state-feedback case, the closed loop poles are constrained in an LMI region S(α, r, θ), in order
to assure robust transient performances. Again, the desired minimum damping ratio is set to θ = 1√

2
,

the required maximum damped frequency is r = 1
10

2π
Ts

, and the minimum decay rate, for a settling time
lower than 40 ms, is set to α = 100.

Results:

The robust control synthesis algorithm yields a controller K3:

K3 = 4.472 (58)

that assures an H∞ norm from output disturbance to output voltage of 0.656 (-3.66 dB). The waveforms
of a numerical simulation and corresponding Bode plots of the converter with controller K3 over the four
vertices of the set of matrices are depicted in Figure 9. It can be observed that the static output-feedback
controller does not achieve the performance of the dynamic output-feedback controller K2(s).

3.2.3 Dynamic output-feedback with static parametrization
The parametrization method shown in the previous subsection for the static case can be
adapted to the synthesis of a dynamic output-feedback controller. The following theorem
can be found in (Martenson, 1985; Nett et al., 1989).

Theorem 3.4. The synthesis of a dynamic controller ΣK for the system Σ (for simplicity, in absence
of perturbations (w = 0) ) can be expressed as the synthesis of a static controller for the augmented
system Σaug:

Σaug :
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ẋaug =
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A 00
00 00
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xaug +
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uaug
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ẋc
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]
yaug =
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]
(60)

and

K =
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Ac Bc

Cc Dc

]
(61)

Example 4. Buck Converter
A dynamic controller using the static output-feedback parametrization is derived in this subsection. As
in the static case, the stray resistances and a pure integrator are considered. The system is augmented
with an integrator and with the controller states to obtain a dynamic controller. For this case a simple
first-order controller is considered.

K(s) = k
(s + z)

(s + p)
(62)
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Uncertainty:

As in the previous subsection, the synthesis considers a polytopic model. A new LMI is introduced for
every vertex of the uncertain model. The polytopic model used in this subsection considers the same
uncertain load R and input voltage Vg, as shown in Table 4.

Parameter Value

R ∈ [10, 1000] Ω
Vg ∈ [33, 55] V
C 1000 μ F
L 100 μ H

req 150 mΩ
rc 50 mΩ
Ts 5 μ s

Table 4. Buck: converter parameters

Sampling effect:

Again, the sampling effect is included in the converter model in order to obtain an accurate model up
to half the switching frequency.

Performance Specifications:

As in the previous case, the objective is to minimize the H∞ norm of the transfer function between
the disturbance and the output. Also, the closed loop poles are constrained in the same LMI region
S(α, r, θ), in order to assure robust transient performances.
The initialization step is constrained with the corresponding pole placement inequalities and its
objective function tries to enforce the states of the dynamic controller, using a weight β on R = FK.

max f (βR) subject to
W > 00
WA� + AW + Y�B�

u + BuY < 00
(63)

where for this case of one input and one state of the dynamic controller can be considered β =[
β1 0
0 β2

]
, β1 > β2. If an initial state-feedback is found then the iterative step minimizes the H∞

norm γ.

Results:

For the present case the algorithm yields the following controller:

K4 =

[
Ac Bc

Cc Dc

]
=

[−7475.4 −97.9

851.3 10.3

]
(64)

Note that the integrator is not included in the previous expression. The Bode plot of the controller with
the integrator is depicted in Figure 10(b).
The guaranteed H∞ norm with the controller K4 achieves the value γ = 0.571. The simulation results
are shown in Figure 10. It can be observed that the lag-lead compensation of the controller slightly
changes the gain peak of the transfer function of interest, yielding slightly better output disturbance
attenuation, but longer settling time with respect to the constant output feedback gain. Consequently,
this method can be seen as an intermediate solution between dynamic and static output feedback,
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Fig. 10. Simulation results of Example 4 with controller K4.

with the main drawback that the solution of the iterative algorithm may depend on the chosen initial
state-feedback gain.

4. Conclusions

In the chapter, it has been shown how a control formulation based on linear matrix inequalities
can cope not only with academic optimization problems, but also with large real-life complex
problems, since the numerical solution can be found by efficient computer algorithms.
The synthesis (or analysis) of the control system can be made by solving an optimization
problem, using the concepts of Lyapunov stability and positive definiteness. Besides,
frequency-based and time domain performance requirements can also be posed in form of
LMIs, as H∞, H2 or pole placement.
LMI-based state-feedback synthesis methods have been already applied successfully in the
field of power conversion, since they can be applied directly with no additional conservatism.
However, output-feedback approaches require the linearization of the synthesis variables in
order to be solvable with LMIs. Such linearization methods often impose changes in the
matrix variables or require an initial feasible result.
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Uncertainty:

As in the previous subsection, the synthesis considers a polytopic model. A new LMI is introduced for
every vertex of the uncertain model. The polytopic model used in this subsection considers the same
uncertain load R and input voltage Vg, as shown in Table 4.

Parameter Value

R ∈ [10, 1000] Ω
Vg ∈ [33, 55] V
C 1000 μ F
L 100 μ H

req 150 mΩ
rc 50 mΩ
Ts 5 μ s

Table 4. Buck: converter parameters

Sampling effect:

Again, the sampling effect is included in the converter model in order to obtain an accurate model up
to half the switching frequency.

Performance Specifications:

As in the previous case, the objective is to minimize the H∞ norm of the transfer function between
the disturbance and the output. Also, the closed loop poles are constrained in the same LMI region
S(α, r, θ), in order to assure robust transient performances.
The initialization step is constrained with the corresponding pole placement inequalities and its
objective function tries to enforce the states of the dynamic controller, using a weight β on R = FK.

max f (βR) subject to
W > 00
WA� + AW + Y�B�

u + BuY < 00
(63)

where for this case of one input and one state of the dynamic controller can be considered β =[
β1 0
0 β2

]
, β1 > β2. If an initial state-feedback is found then the iterative step minimizes the H∞

norm γ.

Results:

For the present case the algorithm yields the following controller:

K4 =

[
Ac Bc

Cc Dc

]
=

[−7475.4 −97.9

851.3 10.3

]
(64)

Note that the integrator is not included in the previous expression. The Bode plot of the controller with
the integrator is depicted in Figure 10(b).
The guaranteed H∞ norm with the controller K4 achieves the value γ = 0.571. The simulation results
are shown in Figure 10. It can be observed that the lag-lead compensation of the controller slightly
changes the gain peak of the transfer function of interest, yielding slightly better output disturbance
attenuation, but longer settling time with respect to the constant output feedback gain. Consequently,
this method can be seen as an intermediate solution between dynamic and static output feedback,
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Fig. 10. Simulation results of Example 4 with controller K4.

with the main drawback that the solution of the iterative algorithm may depend on the chosen initial
state-feedback gain.

4. Conclusions

In the chapter, it has been shown how a control formulation based on linear matrix inequalities
can cope not only with academic optimization problems, but also with large real-life complex
problems, since the numerical solution can be found by efficient computer algorithms.
The synthesis (or analysis) of the control system can be made by solving an optimization
problem, using the concepts of Lyapunov stability and positive definiteness. Besides,
frequency-based and time domain performance requirements can also be posed in form of
LMIs, as H∞, H2 or pole placement.
LMI-based state-feedback synthesis methods have been already applied successfully in the
field of power conversion, since they can be applied directly with no additional conservatism.
However, output-feedback approaches require the linearization of the synthesis variables in
order to be solvable with LMIs. Such linearization methods often impose changes in the
matrix variables or require an initial feasible result.
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The results presented in this chapter with LMI control of a buck and a buck-boost converter
demonstrates the feasibility of this approach, but also shows some of the limitations.
The buck-boost converter presents nonlinear dynamics; such control problem has been tackled
with a state-feedback approach, so that the information about the converter states allows to
consider the uncertainty coming from the disregarded dynamics, but also limits the achievable
performance. Such limitation also allows to neglect the sampling effect of the modulation,
since the effective feedback bandwidth of the control is well below the switching frequency.
On the other hand, the control of the buck converter, whose averaged dynamics are basically
linear, has been dealt with an output-feedback realization. In this case, the closed-loop
performance and its associated bandwidth can reach high frequencies, and it is advisable
to take into account the sampling effect of the modulator. From the comparison between the
three output-feedback approaches, the best results have been achieved with the H∞-based
dynamic controller, but this approach also presents some limitations, as the impossibility to
deal with easy-to-derive uncertainty models. Another drawback of this technique is that the
choice of appropriate weighting functions must be made by trial and error and therefore this
task requires good knowledge of the plant limits. Nevertheless, such limitations also appear
in the dynamic output-feedback approach by static parametrization, since the results strongly
depend on the initial feasible solution for the iterative algorithm.
Depending on the application of the dc-dc converter, it may be easier to implement a
state-feedback controller or an output-feedback controller. For instance, the inductor current
may not be accessible or the capacitor stray resistance cannot be assumed small enough.
Future research on LMI control of power converters could focus on the improvement of
the output-feedback synthesis algorithms, which still require the tedious task of selecting
weighting functions, even for the initial controller of the static feedback parametrization.
Besides of the inherent limitations of output-feedback, the synthesis algorithms are still very
conservative and do not lead to tight performances, when compared with state-feedback
approaches.
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The results presented in this chapter with LMI control of a buck and a buck-boost converter
demonstrates the feasibility of this approach, but also shows some of the limitations.
The buck-boost converter presents nonlinear dynamics; such control problem has been tackled
with a state-feedback approach, so that the information about the converter states allows to
consider the uncertainty coming from the disregarded dynamics, but also limits the achievable
performance. Such limitation also allows to neglect the sampling effect of the modulation,
since the effective feedback bandwidth of the control is well below the switching frequency.
On the other hand, the control of the buck converter, whose averaged dynamics are basically
linear, has been dealt with an output-feedback realization. In this case, the closed-loop
performance and its associated bandwidth can reach high frequencies, and it is advisable
to take into account the sampling effect of the modulator. From the comparison between the
three output-feedback approaches, the best results have been achieved with the H∞-based
dynamic controller, but this approach also presents some limitations, as the impossibility to
deal with easy-to-derive uncertainty models. Another drawback of this technique is that the
choice of appropriate weighting functions must be made by trial and error and therefore this
task requires good knowledge of the plant limits. Nevertheless, such limitations also appear
in the dynamic output-feedback approach by static parametrization, since the results strongly
depend on the initial feasible solution for the iterative algorithm.
Depending on the application of the dc-dc converter, it may be easier to implement a
state-feedback controller or an output-feedback controller. For instance, the inductor current
may not be accessible or the capacitor stray resistance cannot be assumed small enough.
Future research on LMI control of power converters could focus on the improvement of
the output-feedback synthesis algorithms, which still require the tedious task of selecting
weighting functions, even for the initial controller of the static feedback parametrization.
Besides of the inherent limitations of output-feedback, the synthesis algorithms are still very
conservative and do not lead to tight performances, when compared with state-feedback
approaches.
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1. Introduction

Harmonic pollution in the AC mains determines additional power losses and may cause
malfunctioning or even damage to connected equipments. Distortion of the currents
circulating on electric mains is mainly originated by non linear loads, as AC/DC uncontrolled
rectifiers used for motor drives, that absorb undesired current harmonics. Therefore, local
countermeasures have to be taken in order to keep the portion of grid affected by distortion
as small as possible, hence preventing relevant power losses and “saving” other equipments,
connected to the rest of the grid.
Traditionally, passive filtering components have been adopted to cope with harmonic
compensations, however they are affected by several drawbacks; they are very sensitive
to network impedance variation and environmental conditions, moreover they need to be
tuned on fixed frequencies. In order to overcome those limitations, in the last decades,
thanks also to the fast growth in power electronics and control processor technologies, a
remarkable research attempt has been devoted to the study of the so-called Active Power
Filters (APFs), both from a theoretical and technological point of view (see Gyugyi & Strycula
(1976), Akagi (1996), Singh & Al-Haddad (1999)). These devices are able to properly work in
a wide range of operating conditions, providing better performance and overtaking intrinsic
limitations of passive devices, they are far more insensitive to network impedance, they can
be tuned onto different frequencies just varying some software parameters. Furthermore, the
system reliability is improved, resonance phenomena are avoided and a diagnosis system can
be implemented on the control processor to monitor the system variables and adopt some
recovery strategy in case of faulty conditions.
In this chapter, the general issues related to analysis, dimensioning and control of a particular
class of APFs, the so-called Shunt Active Filters (SAFs), are addressed; the main purpose of
this kind of power system is to inject into mains a proper current, in order to cancel out,
partially or totally, the power distortions generated by nonlinear loads. The SAFs considered
in this work are based on a three-phases three-wires AC/DC boost converter topology (see
Fig. 1) connected in parallel to the distorting loads.
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1. Introduction

Harmonic pollution in the AC mains determines additional power losses and may cause
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rectifiers used for motor drives, that absorb undesired current harmonics. Therefore, local
countermeasures have to be taken in order to keep the portion of grid affected by distortion
as small as possible, hence preventing relevant power losses and “saving” other equipments,
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Traditionally, passive filtering components have been adopted to cope with harmonic
compensations, however they are affected by several drawbacks; they are very sensitive
to network impedance variation and environmental conditions, moreover they need to be
tuned on fixed frequencies. In order to overcome those limitations, in the last decades,
thanks also to the fast growth in power electronics and control processor technologies, a
remarkable research attempt has been devoted to the study of the so-called Active Power
Filters (APFs), both from a theoretical and technological point of view (see Gyugyi & Strycula
(1976), Akagi (1996), Singh & Al-Haddad (1999)). These devices are able to properly work in
a wide range of operating conditions, providing better performance and overtaking intrinsic
limitations of passive devices, they are far more insensitive to network impedance, they can
be tuned onto different frequencies just varying some software parameters. Furthermore, the
system reliability is improved, resonance phenomena are avoided and a diagnosis system can
be implemented on the control processor to monitor the system variables and adopt some
recovery strategy in case of faulty conditions.
In this chapter, the general issues related to analysis, dimensioning and control of a particular
class of APFs, the so-called Shunt Active Filters (SAFs), are addressed; the main purpose of
this kind of power system is to inject into mains a proper current, in order to cancel out,
partially or totally, the power distortions generated by nonlinear loads. The SAFs considered
in this work are based on a three-phases three-wires AC/DC boost converter topology (see
Fig. 1) connected in parallel to the distorting loads.
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The first step to properly design a SAF is the selection of suitable hardware components;
as it will become clear in the next section, owing to the structural properties of the system,
the sizing procedure cannot be considered apart from the canonical control aspects, hence a
correct dimensioning algorithm (Ronchi & Tilli, 2002) is proposed to ensure feasibility of the
desired control objectives and to minimize costs. In addition, according to such method, it
is shown how a time-scale separation between different dynamics of SAF usually takes place
“for free”. This point is very useful for control design and stability analysis.
Once a correct hardware sizing has been carried out, the first control issues to deal with are:
the current/power control algorithm and the load current analysis method adopted to define
the filter current reference. Various solutions have been proposed in literature. As regards
current/power harmonic tracking, in (Chandra et al., 2000) an hysteresis current control
(Kazmierkowski & Malesani, 1998) is proposed, while in (Jeong & Woo, 1997) predictive
current control is adopted. For what concerns the generation of the filter currents reference,
beside Fast Fourier Transform Techniques, instantaneous power theory (Akagi et al., 1984),
time domain correlation techniques (Van Harmelen & Enselin, 1993), notch filter theory
(Rastogi et al., 1995) and other methods have been proposed. Solution based on state observer
have been proposed, too, as in (Bhattacharya et al., 1995) and (Tilli et al., 2002).
However, what renders the SAF control problem challenging and different from other
conventional tracking problems is the presence of peculiar and unstable internal dynamics,
given by the voltage dynamics of the DC-link capacitor bank. This capacitor bank is the main
energy storage element, which provides the voltage, modulated by the control, to steer the
filter currents and, at the same time, is required to oscillate to exchange energy with the line
and the load to compensate for current harmonics. Actually, this element needs to be carefully
considered also in the previously-mentioned dimensioning stage; a correct capacitor sizing
is crucial for control objective feasibility, whatever control technique is adopted. Moreover,
it can be shown that, if perfect harmonic compensation is achieved, the DC-link voltage
dynamics are unstable, due to the system parasitic resistances that lead to a slow discharge
of the capacitor. Hence, a suitable stabilizing action for DC-link voltage dynamics needs to
be provided. Since no additional circuit is used to feed the DC-link capacitor independently
of the three-phase port used to inject currents, (see Fig. 1), the voltage stabilization would
need to be integrated with the controller devoted to harmonic compensation (the AC/DC
boost-based SAF is an underactuated system). This is a crucial point and it has to be tackled
preserving harmonic compensation performances as far as possible.
In this work a power/current controller, based on Internal Model Principle, (see Marconi
et al. (2003), Marconi et al. (2004), Marconi et al. (2007)) is designed in order to cancel
current harmonics, ensuring robustness with respect to SAF parameter uncertainties. By
exploiting the internal model approach, the proposed solution also allows to merge and
solve at the same time the two above-mentioned problems of current harmonics isolation and
current reference tracking. As regards the robust stabilization of the DC-link voltage internal
dynamics, a cascade control structure is proposed. An additional voltage controller, acting
on the references of the power/current controller, is introduced. This controller is designed
taking into account the structural voltage oscillations required for harmonic compensation
and minimizing the impact on harmonic compensation. In particular, by exploiting a proper
averaging (Sanders et al., 1991) of the capacitor voltage dynamics, the average value of the
capacitor voltage is chosen as output variable to be controlled (Hanschke et al., 2006).
As far as the overall stability is concerned, the previously mentioned time-scale separation
between portions of SAF dynamics can be effectively exploited to decouple power/current
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Fig. 1. Shunt Active Filter scheme.

tracking and voltage stabilization control problems, using averaging and singular perturbation
theory techniques (Khalil, 1996).
This chapter is organized as follows. In Section 2, the general framework is described, the
SAF model is derived and the control objectives are formally defined. In Section 3, two
methodological approaches are presented for the SAF components sizing. The first one is
based on the knowledge of the load currents harmonic spectrum, the values selected for the
hardware components are the minimums allowing the SAF to deal with the considered load
distortion. Differently, the second approach is related to the maximum current of the AC/DC
boost switching devices. In this case the selected components values are the minimums
which enable the SAF to compensate for all possible loads giving distorted currents smaller or
equal to the switches peak value. In Section 4 both the internal model-based power/current
controller and the averaging voltage controller design are presented, stability analysis is
carried out relying upon the time-scale separation imposed by the design algorithm; both
the power and the voltage subsystem are proven to be asymptotically stable, then practical
stability of the overall system is claimed exploiting general results on two time-scale averaged
systems (Teel et al., 2003). The effectiveness of the proposed control solution is tested in
Section 5 through simulations.

2. Shunt active filter model and control problem statement

The scheme of the shunt active filter considered in this chapter is reported in Fig. 1, as
mentioned in the introduction it is based on a three-phase three-wire AC/DC boost converter,
where the main energy storage element is a DC-bus capacitor, while the inductances are
exploited to steer the filter currents by means of the converter voltages. The switching devices
of the three-leg bridge (also called "‘inverter"’) are usually realized by IGBTs (Insulated Gate
Bipolar Transistors) and free-wheeling diodes.
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SAF model is derived and the control objectives are formally defined. In Section 3, two
methodological approaches are presented for the SAF components sizing. The first one is
based on the knowledge of the load currents harmonic spectrum, the values selected for the
hardware components are the minimums allowing the SAF to deal with the considered load
distortion. Differently, the second approach is related to the maximum current of the AC/DC
boost switching devices. In this case the selected components values are the minimums
which enable the SAF to compensate for all possible loads giving distorted currents smaller or
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carried out relying upon the time-scale separation imposed by the design algorithm; both
the power and the voltage subsystem are proven to be asymptotically stable, then practical
stability of the overall system is claimed exploiting general results on two time-scale averaged
systems (Teel et al., 2003). The effectiveness of the proposed control solution is tested in
Section 5 through simulations.

2. Shunt active filter model and control problem statement

The scheme of the shunt active filter considered in this chapter is reported in Fig. 1, as
mentioned in the introduction it is based on a three-phase three-wire AC/DC boost converter,
where the main energy storage element is a DC-bus capacitor, while the inductances are
exploited to steer the filter currents by means of the converter voltages. The switching devices
of the three-leg bridge (also called "‘inverter"’) are usually realized by IGBTs (Insulated Gate
Bipolar Transistors) and free-wheeling diodes.
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In this work the following notation is used to denote the SAF variables; vmabc=(vma, vmb, vmc)
T

is the mains voltage sinusoidal balanced and equilibrated tern, im=(ima, imb, imc)T are the
mains currents, il=(ila, ilb, ilc)

T are the load currents, while i=(ia, ib, ic)T are the filter currents.
L indicates the value of the inductances, and C the DC-link bus capacitor value.

2.1 Mathematical model
Considering the inductors dynamics, the filter model can be expressed as

⎡
⎣

vma(t)
vmb(t)
vmc(t)

⎤
⎦− L

d
dt

⎡
⎣

ia(t)
ib(t)
ic(t)

⎤
⎦− R

⎡
⎣

ia(t)
ib(t)
ic(t)

⎤
⎦ =

⎡
⎣

ux(t)
uy(t)
uz(t)

⎤
⎦ v(t)− vNK

⎡
⎣

1
1
1

⎤
⎦ (1)

where R is the parasitic resistance related to the inductance L and to the cables, vNK is
the voltage between the nodes N and K reported in Fig. 1, v(t) is the voltage on the
DC-link capacitor, and u1 = (ux, uy, uz)T is the switch command vector for the legs of the
converter. Since a PWM (Pulse Width Modulation) strategy is assumed to control the inverter,
the above-mentioned control inputs can be considered such that u1i ∈ [0, 1], i = x, y, z.
According to the three-wire topology for any generic voltage/current vector x it holds

∑
i=a,b,c

xi = 0 (2)

hence, from the sum of the scalar equations in (1) it follows that

vNK =
ux(t) + uy(t) + uz(t)

3
v(t) (3)

defining

uabc = [ua(t), ub(t), uc(t)]T =

⎡
⎣

ux(t)
uy(t)
uz(t)

⎤
⎦− ux(t) + uy(t) + uz(t)

3

⎡
⎣

1
1
1

⎤
⎦ (4)

it can be verified by direct computations that

[1 1 1]uabc(t) = 0 ∀t ≥ 0. (5)

For what concerns the state equation relative to the capacitor voltage dynamics, it can be
derived considering an ideal inverter and applying a power balance condition between the
input and the output of the filter, then replacing (3) into (1), the complete filter model results

di
dt

= −R
L

I3i(t)− v(t)
L

uabc(t) +
1
L

vmabc

dv
dt

=
1
C

uT
abc(t)i(t)

(6)

where the filter currents dynamics have been written in a more compact form with respect
to (1), multiplying the current vector by the identity matrix of suitable dimension I3.
Exploiting equations (3), (5), the system model can be reduced to the standard two-phase planar
representation of a three-phase balanced systems (Krause et al., 1995), which can be obtained
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ux uy uz ua ub uc uα uβ

0 0 0 0 0 0 0 0
1 0 0 2/3 -1/3 -1/3 2/3 0
1 1 0 1/3 1/3 -2/3 1/3 1/

√
3

0 1 0 -1/3 2/3 -1/3 -1/3 1/
√

3
0 1 1 -2/3 1/3 1/3 -2/3 0
0 0 1 -1/3 -1/3 2/3 -1/3 -1/

√
3

1 0 1 1/3 -2/3 1/3 1/3 -1/
√

3
1 1 1 0 0 0 0 0

Table 1. Control function table.

applying the following coordinates transformation

iαβ(t) = [iα iβ]
T =αβ Tabci(t)

uαβ(t) = [uα uβ]
T =αβ Tabcuabc(t)

vmαβ = [vmαvmβ]
T =αβ Tabcvm

αβTabc =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(7)

the SAF dynamics expressed in this α − β reference frame become

diαβ

dt
= −R

L
I2iαβ(t)− v(t)

L
uαβ(t) +

1
L

vmαβ

dv
dt

=
3

2C
uT

αβ(t)iαβ(t)
(8)

according to the hypothesis of three-phase balanced sinusoidal line, the ideal main voltage
tern can be expressed in the above-defined bi-dimensional reference frame as follows

[vmα vmβ ]
T = Vm [cos(ωm) sin(ωm)]

T

where Vm is the voltage amplitude and ωm the grid angular frequency. For what concerns the
control vector uabc, in this reference frame the eight possible configurations of the switching
network (reported in Tab. 1) can be mapped in the α − β plane, obtaining the vertexes and
the origin of the feasibility space illustrated in Fig.2, while each point in the hexagon can be
obtained as mean value in a PWM period. As it will become clear in the next sections, in
order to simplify the control objectives definition and the controller design, it is very useful
to adopt a further transformation from the two-phase current variables [iα iβ]

T to a two-phase
real-virtual (imaginary) power variables defined as

x = [xd xq]
T =dq Tαβiαβ (9)

where
dqTαβ = Vm

[
cos(ωmt) sin(ωmt)
−sin(ωmt) cos(ωmt)

]
.
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Fig. 2. Hexagon of feasible uabc.

In this so-called synchronous coordinate setting, aligned with the mains voltage vector, the
model of the SAF is expressed as

ẋ = M(R, L)x − v
L

udq + d0

v̇ =
�

2
uT

dqx
(10)

where

d0 =

[
Emd/L

0

]
, M(R, L) =

[−R/L ωm
−ωm −R/L

]
, � =

3
CEmd

, Emd = V2
m , udq =dq Tαβuαβ (11)

it is further to notice that, since the filter currents, the mains voltage and the DC-link voltage
are measurable, the full state (x,v) is available for feedback, moreover the actual control action
u = [ux uy uz] can be determined from uabc, which in turn can be derived from udq.
As regards the load description, the same two-phase real-virtual power representation can
be used, in particular following (Akagi et al., 1984), the load currents can be approximated
as periodic signals given by the sum of a finite number N of harmonics, with frequencies
multiple of fm = ωm/2π. Hence the load currents can be expressed in power variables as

xlj = Xlj0 +
N+1

∑
n=1

Xljncos(nωmt + ψjn), j = d, q (12)

where the harmonics amplitudes Xld0, Xlq0, Xldn, Xlqn and phases ψdn, ψqn are constants. Since
the load currents and the mains voltages are measurable, also the variables (xld, xlq) will be
considered known and available for control purpose.

2.2 Problem statement and control objectives
Roughly speaking the main control objective of the considered SAF is to steer the variables
xd , xq, injecting power into the line to compensate for the load harmonics. However the
ability of tracking current references relies upon the energy stored in the DC-link capacitor,
which is the main power source of the filter, therefore another general objective is to keep the
DC-link voltage confined in a suitable region, to avoid overcharge and, at the same time, to
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ensure the capability to steer the filter currents. On the other hand the ability of maintaining
DC-link voltage into a suitable region is strictly related to the power exchanged with the
mains, which in turn is affected by the current harmonics to be compensated for. The general
control objective is then two-folds; one related to the tracking of current disturbances, the
other concerns the voltage internal dynamics stabilization. In this paragraph a precise and
feasible control problem is formally defined, recalling the considerations made above, and
assuming that a suitable dimensioning, that will be deeply discussed in the next section, has
been carried out.
Bearing in mind the power variables representation of a generic nonlinear load expressed in
(12), it turns out that the only desired load component is Xld0, since it represents first-order
harmonics aligned with the mains voltages, while the remaining part of the real component
xld − Xld0 is an oscillatory signal with null balance over a line period, and the imaginary
component xlq represent a measure of the misalignment between mains ideal voltage and load
currents (see Mohan et al. (1989)) and do not contribute to the power flow. In this respect, the
terms xld − Xld0, xlq are undesired components which should be canceled by the injected filter
currents, hence ideally the control problem can be formulated as a state tracking problem, for
system (10), of the following reference

x∗(t) = [x∗d x∗q ]T =
[

Xld0 − xld − xlq

]T
(13)

a prefect tracking of this reference would ensure pure sinusoidal mains currents perfectly
aligned with the mains voltages. However, this ideal objective is in contrast with the
requirement to have a DC-link voltage bounded behavior. In order to formally motivate
this claim, consider the steady state voltage dynamics in case perfect tracking of the power
reference x∗(t) is achieved, after some computations it results

dv2

dt
= �L (d0 + M(R, L)x∗(t)− ẋ∗(t))T x∗ := �Ψ(x∗(t)) (14)

the signal �Ψ(x∗(t)) which drives the integrator is periodic with period T = 1/ fm, and
it is composed by the sum of a zero mean value signal �L(d0 − ẋ∗)T x∗, and the signal
�L(M(R, L)x∗)T x∗ which has negative mean value as long as parasitic resistance R or
reference x∗ are not zero. By this, no matter the starting voltage value of the DC-link, the
capacitor will be discharged and the voltage will drop, providing a loss of controllability of
the system.
To avoid this phenomenon, the reference must be revised, taking into account an additional
power term, which should be drained from the line grid by the active filter, in order to
compensate for its power losses. Following this motivation, and recalling that the unique
useful component for the energy exchange is the real part of the power variables, the ideal
reference signal (13) is modified as

x∗ϕ0
= x∗ + (ϕ0 0)T (15)

in which ϕ0 is a solution of the following equation

Rϕ2
0 − Emd ϕ0 + R fm

∫ 1/ fm

0
(x∗2

d (τ) + x∗2
q (τ))dτ = 0 (16)
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�L(M(R, L)x∗)T x∗ which has negative mean value as long as parasitic resistance R or
reference x∗ are not zero. By this, no matter the starting voltage value of the DC-link, the
capacitor will be discharged and the voltage will drop, providing a loss of controllability of
the system.
To avoid this phenomenon, the reference must be revised, taking into account an additional
power term, which should be drained from the line grid by the active filter, in order to
compensate for its power losses. Following this motivation, and recalling that the unique
useful component for the energy exchange is the real part of the power variables, the ideal
reference signal (13) is modified as

x∗ϕ0
= x∗ + (ϕ0 0)T (15)

in which ϕ0 is a solution of the following equation

Rϕ2
0 − Emd ϕ0 + R fm

∫ 1/ fm

0
(x∗2

d (τ) + x∗2
q (τ))dτ = 0 (16)

349
Analysis, Dimensioning and Robust Control 
of Shunt Active Filter for Harmonic Currents Compensation in Electrical Mains



8 Will-be-set-by-IN-TECH

this represents the power balancing condition which guarantees that the internal voltage
dynamics in case of perfect tracking of the modified reference x∗ϕ0

is

dv2(t)
dt

= �Ψ(x∗ϕ0
(t)) (17)

and the right hand side �Ψ(x∗ϕ0
) is periodic with period 1/ fm with zero mean value. A brief

discussion is needed for the solutions of equation (16), it has two real positive solutions if the
following condition is verified

E2
md ≥ 4R2 fm

∫ 1/ fm

0
(x∗2

d (τ) + x∗2
q (τ))dτ (18)

from a physical viewpoint relation (18) set an upper bound on the admissible undesired
components which can be compensated and on the parasitic resistance R, however, as
typically Emd >> R, this condition is not limitative at all. The two solutions of (16) under
condition (18) are

ϕ0 ≈ R
Emd

fm

∫ 1/ fm

0
(x∗2

d (τ) + x∗2
q (τ))dτ ≈ 0

ϕ0 ≈ Emd
R

(19)

the first solution, minimizing the power drained from the line grid to compensate the power
losses, is the physically most plausible, because the power consumed by parasitic resistances
in the filter is usually quite small, hence it will be considered throughout the chapter.
The control problem which will be faced in this work can now be precisely stated; the issue is
to design the control vector uabc in a way such that the following objectives are fulfilled:
A) Given the reference signal x∗ϕ0

defined in (15), asymptotic tracking must be achieved, that
is

lim
t→∞

(x(t)− x∗ϕ0
) = 0; (20)

B) Given a safe voltage range [vm, vM], with vM > vm > 0, and assuming v(t0) ∈ [vm, vM], it
is required that

v(t) ∈ [vm, vM], ∀t > t0; (21)

it can be verified that the tracking of the modified power reference is potentially achievable
keeping the voltage dynamics inside the safe region, only if the zero mean value oscillating
component of �Ψ(x∗ϕ0

) is properly bounded, this can be ensured by a suitable capacitor design.
In the regulator design, saturation of the actual input u1, imposed by PWM strategy, will not
be taken explicitly into account, also this approximation takes advantage of a correct sizing
methodology; as it will become clear in Section 3, a suitable choice of the DC-link voltage
lower bound vm, depending on the currents to be compensated for, has to be made to meet
the constraint u1 ∈ [0, 1], at least when the power tracking error is reasonably small.
A further consideration needs to be made on the requirement v(t0) ∈ [vm, vM]; according to
the AC/DC boost converter theory (Mohan et al., 1989), the natural response of the system
would lead the DC-link voltage at twice the line voltage peak value, due to the resonant
behavior of the LC pair and the free-wheeling diodes of the switching bridge. If a proper
design has been performed, this value is expected to be greater than the voltage range lower
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bound vm; hence, after a transient period, the controller can be switched on having the initial
voltage value inside the admissible region as required by objective B.
Finally it is further to remark that x∗ϕ0

depends on parasitic resistance R through (16), hence
it has to be considered as an unknown variable, to be reconstructed by estimating the power
losses by means of a proper elaboration of the DC-link voltage signal.

3. Shunt active filter sizing methodology

The aim of this section is to present a precise algorithm to properly select the SAF hardware
components, two different design objectives are considered, the first is to select the minimal
component values dependent on the level of current distortion imposed by the load, while
the second is to find the minimum capacitor value necessary to compensate all the possible
loads compatible with the maximum current rating of the inverter switching devices. Both
the methods are control-oriented, that is they ensure the feasibility of control objectives stated
in 2.2 and that control input saturation is avoided under nominal load and line voltage
conditions.
The proposed design method is based on the model derived in Section 2, a further
approximation is considered with respect to equation (6); the inductors are modeled as pure
inductance, that is the parasitic resistance R is neglected, while ideal mains voltage tern and
converter switches are considered as in the previous section.

3.1 Inductance value selection
The inductance value can be selected regardless the loads, hence this part of the design
procedure is the same for both the design objectives previously defined.
The design criterion is based on the maximum current ripple ΔIMpp allowed for the filter
currents; current ripple is a consequence of the PWM technique applied to obtain the reference
command value u∗

abc, it has to be bounded in order to limit high frequency distortion. The
actual command vector uabc(t) and filter current i(t) are affected by a ripple component

i(t) = i∗(t) + Δi(t)

uabc(t) = u∗
abc(t) + Δuabc(t)

(22)

substituting these expressions in the state equation (6) it turns out

L
Δi(t)

dt
= −Δuabc(t)v(t) (23)

by simple computation it can be showed that the worst ripple case occurs when the desired
command value u∗

abc is in the middle of a feasibility hexagon side (see Fig. 3). In this condition,
assuming that the DC-link voltage has constant value V in a PWM period, the peak to peak
current ripple is

ΔIpp =
∫ t+Ts/2

t

dΔi(t)
dt

dt =
V

6 fPW ML
(24)

where the sampling period Ts and the PWM frequency fPW M are assumed already set before
starting the sizing procedure. If the peak to peak ripple must be bounded by the desired
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this represents the power balancing condition which guarantees that the internal voltage
dynamics in case of perfect tracking of the modified reference x∗ϕ0

is

dv2(t)
dt

= �Ψ(x∗ϕ0
(t)) (17)

and the right hand side �Ψ(x∗ϕ0
) is periodic with period 1/ fm with zero mean value. A brief
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E2
md ≥ 4R2 fm

∫ 1/ fm

0
(x∗2

d (τ) + x∗2
q (τ))dτ (18)
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0
(x∗2

d (τ) + x∗2
q (τ))dτ ≈ 0

ϕ0 ≈ Emd
R

(19)
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t→∞
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bound vm; hence, after a transient period, the controller can be switched on having the initial
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The proposed design method is based on the model derived in Section 2, a further
approximation is considered with respect to equation (6); the inductors are modeled as pure
inductance, that is the parasitic resistance R is neglected, while ideal mains voltage tern and
converter switches are considered as in the previous section.

3.1 Inductance value selection
The inductance value can be selected regardless the loads, hence this part of the design
procedure is the same for both the design objectives previously defined.
The design criterion is based on the maximum current ripple ΔIMpp allowed for the filter
currents; current ripple is a consequence of the PWM technique applied to obtain the reference
command value u∗

abc, it has to be bounded in order to limit high frequency distortion. The
actual command vector uabc(t) and filter current i(t) are affected by a ripple component

i(t) = i∗(t) + Δi(t)

uabc(t) = u∗
abc(t) + Δuabc(t)

(22)

substituting these expressions in the state equation (6) it turns out

L
Δi(t)

dt
= −Δuabc(t)v(t) (23)

by simple computation it can be showed that the worst ripple case occurs when the desired
command value u∗

abc is in the middle of a feasibility hexagon side (see Fig. 3). In this condition,
assuming that the DC-link voltage has constant value V in a PWM period, the peak to peak
current ripple is

ΔIpp =
∫ t+Ts/2

t

dΔi(t)
dt

dt =
V

6 fPW ML
(24)

where the sampling period Ts and the PWM frequency fPW M are assumed already set before
starting the sizing procedure. If the peak to peak ripple must be bounded by the desired
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Fig. 3. Current ripple worst case.

maximum value ΔIMpp, the following inequality needs to be fulfilled

L ≥ vM

6 fPW MΔIMpp
⇒ Lmin =

vM

6 fPW MΔIMpp
(25)

the upper bound of the voltage range vM depends only on the kind of capacitor and it
can be supposed already chosen before starting the design procedure, hence the minimum
inductance value Lmin compatible with the desired maximum current ripple can be selected
applying equation (25).

3.2 Load-based approach
Let us now consider the first design algorithm based on the knowledge of the load to be
compensated for. The load distortion will be modeled as in equation (12), taking into account
the constraint on the maximum current Imax of the device implementing the bridge switches.
The switching devices sizing depends on the total amount of power (distorted and reactive)
P = 3VmRMS ISAFRMS that the filter has to compensate for (if the load is known then P
is known), hence by the route mean square value ISAFRMS, the maximum current that the
switches need to drain can be readily obtained as Imax =

√
2ISAFRMS.

The desired filter currents (denoted with ∗) necessary to fulfill the tracking objective A defined
in 2.2 can be effectively imposed by the converter if each component is less than the maximum
allowed value, i.e

i∗(t) = [i∗a (t) i∗b (t) i∗c (t)]T ≤ Imax[1 1 1]T, ∀t (26)

this feasibility condition can be graphically represented considering that each projection of the
filter currents vector must be less then Imax, hence the feasibility space is an hexagon similar
to that reported in Fig. 4 (obtained taking P = 45kVAR as filter size, VmRMS = 220V and
then Imax = 70A). Therefore condition (26) can be readily checked considering the inscribed
circle in the feasibility hexagon. If the load currents do not satisfy constraint (26) the number
of current harmonics to be compensated for has to be reduced, differently, when the filter
performance cannot be decreased, the opportunity to connect two shunt active filters to the
same load can be considered.
Assuming that an inductance value such that L ≥ Lmin has been selected, the voltages at the
input of the six switches bridge can be calculated as

v∗dq(t) = v(t)u∗
dq(t) =

[
Vm
0

]
− L

di∗dq

dt
+

[
0 ωm

−ωm 0

]
i∗dq (27)
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the above equation is obtained by inversion of equation (10) with R = 0 and expressing the
model in the synchronous reference frame in current rather than in power variables, in order to
directly consider the load currents in the design approach.
The constraints on the command inputs need to be considered too, by (27) the inductance
value must be as low as possible in order to make u∗

dq feasible, taking into account also the
current ripple limitation we select L = Lmin. As mentioned, the choice of the of the capacitor
voltage lower bound value plays a key role to avoid saturation issues on command inputs,
this can be easily verified approximating the hexagon in Fig. 2 with the inscribed circle. In
order to avoid control action saturation (assuming perfect power tracking) it must be imposed
that

||u∗
abc|| =

||v∗abc(t)||
v(t)

≤ ||v∗abc(t)||
vm

≤ rin =
1√
3

, ∀t (28)

with rin the radius of the inscribed circle and v∗abc = v(t)u∗
abc. From (28) design equation for

vm can be obtained

vM ≥ vm ≥ ||v∗abc(t)||
rin

, ∀t ∈
[

n
fm

,
n + 1

fm

]
, n = 0, 1, . . . (29)

usually vm is oversized with respect the value given by the inequality above, in order to avoid
saturation even if non-zero tracking errors are present. If condition (29) cannot be satisfied,
some alternatives need to be considered; the capacitor can be changed in order to adopt an
higher upper bound vM, when the costs of the project have to be limited and the kind of
capacitor cannot be substituted, the number of harmonics considered must be reduced until
(29) is satisfied. To preserve the number of harmonics to compensate, the inductance value
can be reduced, penalizing the current ripple and then tolerating a greater high frequency
distortion.
The capacitor value can then be selected assuming an ideal converter and writing the balance
equation between the instantaneous reference power at the input of the six switches bridge
and the power of the DC-link capacitor, hence

p f ilt(t) = [vdq(t)]
Ti∗dq(t) =

d
dt

(
1
2

Cv2(t)
)

(30)
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maximum value ΔIMpp, the following inequality needs to be fulfilled

L ≥ vM

6 fPW MΔIMpp
⇒ Lmin =

vM

6 fPW MΔIMpp
(25)

the upper bound of the voltage range vM depends only on the kind of capacitor and it
can be supposed already chosen before starting the design procedure, hence the minimum
inductance value Lmin compatible with the desired maximum current ripple can be selected
applying equation (25).

3.2 Load-based approach
Let us now consider the first design algorithm based on the knowledge of the load to be
compensated for. The load distortion will be modeled as in equation (12), taking into account
the constraint on the maximum current Imax of the device implementing the bridge switches.
The switching devices sizing depends on the total amount of power (distorted and reactive)
P = 3VmRMS ISAFRMS that the filter has to compensate for (if the load is known then P
is known), hence by the route mean square value ISAFRMS, the maximum current that the
switches need to drain can be readily obtained as Imax =

√
2ISAFRMS.

The desired filter currents (denoted with ∗) necessary to fulfill the tracking objective A defined
in 2.2 can be effectively imposed by the converter if each component is less than the maximum
allowed value, i.e

i∗(t) = [i∗a (t) i∗b (t) i∗c (t)]T ≤ Imax[1 1 1]T, ∀t (26)

this feasibility condition can be graphically represented considering that each projection of the
filter currents vector must be less then Imax, hence the feasibility space is an hexagon similar
to that reported in Fig. 4 (obtained taking P = 45kVAR as filter size, VmRMS = 220V and
then Imax = 70A). Therefore condition (26) can be readily checked considering the inscribed
circle in the feasibility hexagon. If the load currents do not satisfy constraint (26) the number
of current harmonics to be compensated for has to be reduced, differently, when the filter
performance cannot be decreased, the opportunity to connect two shunt active filters to the
same load can be considered.
Assuming that an inductance value such that L ≥ Lmin has been selected, the voltages at the
input of the six switches bridge can be calculated as

v∗dq(t) = v(t)u∗
dq(t) =

[
Vm
0

]
− L

di∗dq

dt
+

[
0 ωm

−ωm 0

]
i∗dq (27)
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the above equation is obtained by inversion of equation (10) with R = 0 and expressing the
model in the synchronous reference frame in current rather than in power variables, in order to
directly consider the load currents in the design approach.
The constraints on the command inputs need to be considered too, by (27) the inductance
value must be as low as possible in order to make u∗

dq feasible, taking into account also the
current ripple limitation we select L = Lmin. As mentioned, the choice of the of the capacitor
voltage lower bound value plays a key role to avoid saturation issues on command inputs,
this can be easily verified approximating the hexagon in Fig. 2 with the inscribed circle. In
order to avoid control action saturation (assuming perfect power tracking) it must be imposed
that

||u∗
abc|| =

||v∗abc(t)||
v(t)

≤ ||v∗abc(t)||
vm

≤ rin =
1√
3

, ∀t (28)

with rin the radius of the inscribed circle and v∗abc = v(t)u∗
abc. From (28) design equation for

vm can be obtained

vM ≥ vm ≥ ||v∗abc(t)||
rin

, ∀t ∈
[

n
fm

,
n + 1

fm

]
, n = 0, 1, . . . (29)

usually vm is oversized with respect the value given by the inequality above, in order to avoid
saturation even if non-zero tracking errors are present. If condition (29) cannot be satisfied,
some alternatives need to be considered; the capacitor can be changed in order to adopt an
higher upper bound vM, when the costs of the project have to be limited and the kind of
capacitor cannot be substituted, the number of harmonics considered must be reduced until
(29) is satisfied. To preserve the number of harmonics to compensate, the inductance value
can be reduced, penalizing the current ripple and then tolerating a greater high frequency
distortion.
The capacitor value can then be selected assuming an ideal converter and writing the balance
equation between the instantaneous reference power at the input of the six switches bridge
and the power of the DC-link capacitor, hence

p f ilt(t) = [vdq(t)]
Ti∗dq(t) =

d
dt

(
1
2

Cv2(t)
)

(30)
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the corresponding energy can be calculated as

E f ilt(t) =
∫ t

t0

p f ilt(τ)dτ (31)

by the hypothesis of sinusoidal load currents and ideal mains voltages E f ilt(t) is periodic of
frequency fm and its mean value is zero. Defining

Emax = max|E f ilt(t)|
vre f =

vM + vm

2

(32)

and imposing that the voltage variation corresponding to Emax is vre f − vm, the capacitor value
design equation can be written as

C =
2Emax

v2
re f − v2

m
(33)

3.3 Switches-based approach
As stated at the beginning of this section, a different design method aims to find the capacitor
value that makes the filter able to compensate for the worst load compatible with the switches
maximum current. If the resulting capacitor value is not too expensive, this method allows to
design the filter only knowing the amount of current that has to be compensated.
During the optimization procedure the load currents need to be the only varying parameters
while all the other values must be fixed. The inductance value is chosen equal to the
minimum compatible with the allowed ripple, while the minimum capacitor voltage vm is
supposed sufficiently low to make simple the voltage control, and, at the same time, the
resulting capacitor value feasible. Writing the filter currents spectrum in the d− q synchronous
reference frame, an expression similar to (12) can be obtained

ij(t) = Ij0 +
N+1

∑
n=1

Ijncos(2πn fmt + ψjn), j = d, q (34)

the parameters to be varied in order to calculate the worst Emax are the (2N + 1) + 1
magnitudes and the 2N + 1 phases, so the following optimization problem

Eworst
max = max

z
max

t
|
∫ t

t0

[vdq(τ)]
Tidq(τ)dτ| (35)

has to be solved with respect to the array z of 4(N + 1) + 1 variables, taking into account the
following constraints

• switches currents must be less than the maximum allowed, that is the current vector
must be inside an hexagon similar to that reported in Fig. 4. This can be easily checked
approximating the hexagon with its inscribed circle;

• the control output must be feasible, that is the vector uabc must be inside the hexagon
reported in Fig. 2. This can be easily checked approximating the hexagon with its inscribed
circle;

• harmonics components phases have to be greater than −π and less than π.
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Once Eworst
max has been determined, substituting its value in (33), the capacitor value relative to

the switches-based design approach can be selected.
In the discussion above, ideal mains voltages have been assumed, if also the grid line voltages
are distorted, the capacitor has to provide more energy to the load, hence its value must be
higher than the one calculated under ideal conditions.
In case of ideal mains voltages the load instant power is the one calculated in (12) and the only
power term that the filter must deliver is xldn = ∑N+1

n=1 Xldncos(nωmt + ψdn) = Vmildn having
zero mean value. If the mains voltages are distorted, their representation in the synchronous
reference frame is

vmdq(t) = [Vm + vmdn, vmq]
T (36)

line voltages harmonic perturbation produces additive terms in the load instantaneous power
expression, that by direct computation can be written as

pladd = vmdn(t)ildn(t) + vmqilq(t) (37)

the above equation shows that the filter has to provide more power to the load, furthermore
the power mean value in a PWM period can be different from zero. Hence also assuming that
the mean value becomes zero in a finite time, the capacitor must be oversized with respect to
the ideal situation, in order to accumulate more energy.

4. Robust controller design

In this section the control problem defined in 2.2 is addressed, relying upon a suitable
capacitor value given by the procedure described in the previous section, the two interlaced
objectives A and B defined in 2.2 can be approached individually by exploiting the principle
of singular perturbation. Two independent controllers (reported in the block diagram of Fig.
5) will be designed. An internal model-based controller (IMC) is proposed in order to deal
with the problem of robust reference tracking (defined in objective A) for the fast subsystems
composed by the power variables dynamics, while an independent voltage controller for the
slow DC-link voltage subsystem is designed to produce a reference modification η which
compensate the unknown power losses term ϕ0, allowing to achieve objective B. The averaged
voltage value is chosen as the controlled variable, and a phasor variables representation
is exploited to design the regulator, this choice allows for the necessary voltage oscillation
during nominal operation, and improves the voltage dynamics behavior with respect to
other proposed solutions (Marconi et al., 2007). Stability analysis is carried out in two steps;
the reduced averaged dynamics, obtained replacing the steady state of the fast subsystem into
the slow voltage dynamics and carrying out the average value to obtain a phasor variables
representation, and the boundary layer system, obtained considering the SAF currents dynamics
and an ideal energy storage element, are proved to be asymptotically stabilized by the
proposed controllers. Then practical stability for the overall closed-loop error system is stated
exploiting well-established singular perturbation and two time-scale systems theory results.
Before detailing the proposed control structure, consider the first preliminary control law

ū(t) = v(t)udq(t) (38)
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has to be solved with respect to the array z of 4(N + 1) + 1 variables, taking into account the
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• switches currents must be less than the maximum allowed, that is the current vector
must be inside an hexagon similar to that reported in Fig. 4. This can be easily checked
approximating the hexagon with its inscribed circle;

• the control output must be feasible, that is the vector uabc must be inside the hexagon
reported in Fig. 2. This can be easily checked approximating the hexagon with its inscribed
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higher than the one calculated under ideal conditions.
In case of ideal mains voltages the load instant power is the one calculated in (12) and the only
power term that the filter must deliver is xldn = ∑N+1

n=1 Xldncos(nωmt + ψdn) = Vmildn having
zero mean value. If the mains voltages are distorted, their representation in the synchronous
reference frame is
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T (36)

line voltages harmonic perturbation produces additive terms in the load instantaneous power
expression, that by direct computation can be written as

pladd = vmdn(t)ildn(t) + vmqilq(t) (37)

the above equation shows that the filter has to provide more power to the load, furthermore
the power mean value in a PWM period can be different from zero. Hence also assuming that
the mean value becomes zero in a finite time, the capacitor must be oversized with respect to
the ideal situation, in order to accumulate more energy.

4. Robust controller design

In this section the control problem defined in 2.2 is addressed, relying upon a suitable
capacitor value given by the procedure described in the previous section, the two interlaced
objectives A and B defined in 2.2 can be approached individually by exploiting the principle
of singular perturbation. Two independent controllers (reported in the block diagram of Fig.
5) will be designed. An internal model-based controller (IMC) is proposed in order to deal
with the problem of robust reference tracking (defined in objective A) for the fast subsystems
composed by the power variables dynamics, while an independent voltage controller for the
slow DC-link voltage subsystem is designed to produce a reference modification η which
compensate the unknown power losses term ϕ0, allowing to achieve objective B. The averaged
voltage value is chosen as the controlled variable, and a phasor variables representation
is exploited to design the regulator, this choice allows for the necessary voltage oscillation
during nominal operation, and improves the voltage dynamics behavior with respect to
other proposed solutions (Marconi et al., 2007). Stability analysis is carried out in two steps;
the reduced averaged dynamics, obtained replacing the steady state of the fast subsystem into
the slow voltage dynamics and carrying out the average value to obtain a phasor variables
representation, and the boundary layer system, obtained considering the SAF currents dynamics
and an ideal energy storage element, are proved to be asymptotically stabilized by the
proposed controllers. Then practical stability for the overall closed-loop error system is stated
exploiting well-established singular perturbation and two time-scale systems theory results.
Before detailing the proposed control structure, consider the first preliminary control law
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Fig. 5. Controller structure.

which is always well defined provided that v(t) ≥ vm > 0 for all t ≥ 0 according to objective
B. Replacing (38) into (10) yields

ẋ = M(R, L)x +
1
L

ū + d0

dv2

dt
= �ūTx

(39)

now consider the modified power reference

x∗η = x∗ + (η 0)T (40)

and define the change of variables

x̃ = x − x∗η , z̃ = v2 − V∗2 (41)

where V∗2 = (v2
m + v2

M)/(2) is the reference value for the square DC-link voltage. Note that
the requirement B of having v(t) ∈ [vm vM] for all t ≥ t0 can be equivalently formulated in the
error variable z̃ requiring z̃(t) ∈ [−l∗ l∗] for all t ≥ t0, with l∗ = (v2

M − v2
m)/2. The complete

system (39) can be then expressed in the error variables defined in (41), the transformed model
results

˙̃x = M(R, L)x̃ − 1
L

ū + d0 − ẋ∗η + Mx∗η
˙̃z = �ūT[x̃ + x∗η ].

(42)

The controller design will be carried out considering the error dynamics in (42), in summary
the idea is to steer the closed loop dynamics toward a steady state in which z̃ is free to oscillate
within the admissible region, but its mean value is steered to zero (i.e the DC-link voltage
mean value is steered to V∗), and x̃ is steered to zero, i.e the power x follows a reference which
is the sum of the term x∗, which takes into account the undesired harmonic load components,
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and a constant bias η which is needed in order to compensate the power losses and to make
the range [vm vM] an invariant subspace for the voltage dynamics.

4.1 Averaging voltage controller
In order to fulfill objective B the voltage dynamics need to be stabilized, in this respect the
subsystem composed by the capacitor voltage dynamics will be considered, a suitable reduced
averaged system will be sought, and then a controller for the capacitor voltage DC component
will be designed.
The first step is to average the voltage differential equation to obtain the dynamics in the
so-called phasor-variables, then, a control law, itself expressed on phasor representation, can be
designed following an approach similar to that proposed in (Valderrama et. al, 2001), however
in this work the only voltage subsystem is controlled using phasor variables, while the power
subsystem is controlled in the real time domain.
The controlled variable is chosen to be the time-window averaged value z̃a of the square
voltage error z̃, and the averaging is performed over the time interval [t − T, t]. In terms
of (Sanders et al., 1991) this average value is a zero-order phasor defined as

z̃a(t) =
∫ t

t−T
z̃(τ)dτ (43)

the fact that z̃a is a zero-order phasor allows to obtain its derivative by simply applying the
same averaging procedure to its differential equation in (42)

˙̃za =
1
T

∫ t

t−T
z̃(τ)dτ = �

∫ t

t−T
ūT [x̃ + x∗η ]dτ (44)

note that the average voltage derivative can also be expressed as the difference over one period
of the actual voltage, hence

d
dt
(z̃a) =

d
dt

∫ t

t−T
z̃(τ)dτ =

z̃(t)− z̃(t − T)
T

(45)

this insight connotes the availability of z̃a for measurement in real time, and, as it will later
clarified, it is of crucial importance for an actual implementation of the controller.
All further elaborations will focus on the integral-differential equation (44) representing the
averaged error voltage dynamics. This equation depends on ū which is actually provided by
the power tracking controller, to eliminate ū consider that the differential equation for x̃ in
(42) can be rewritten as

ū = L(M(R, L)x∗η − ẋ∗η + M(R, L)x̃ + d0 − ˙̃x) (46)

replacing (46) into (44) the following equation is obtained

˙̃za =
�L
T

∫ t

t−T
(M(R, L)x∗η − ẋ∗η + d0)

T x∗ηdτ + �LD̃(x̃) (47)

where D̃(x̃) collects all the terms depending on the power tracking error x̃. The next step
is to exploit the fact that the reference term x∗ is T-periodic (T = 1/ fm), hence it results in
a constant value when averaged over this period, this is a key advantage of the averaging
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Fig. 5. Controller structure.
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ū + d0

dv2

dt
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(42)

The controller design will be carried out considering the error dynamics in (42), in summary
the idea is to steer the closed loop dynamics toward a steady state in which z̃ is free to oscillate
within the admissible region, but its mean value is steered to zero (i.e the DC-link voltage
mean value is steered to V∗), and x̃ is steered to zero, i.e the power x follows a reference which
is the sum of the term x∗, which takes into account the undesired harmonic load components,
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and a constant bias η which is needed in order to compensate the power losses and to make
the range [vm vM] an invariant subspace for the voltage dynamics.

4.1 Averaging voltage controller
In order to fulfill objective B the voltage dynamics need to be stabilized, in this respect the
subsystem composed by the capacitor voltage dynamics will be considered, a suitable reduced
averaged system will be sought, and then a controller for the capacitor voltage DC component
will be designed.
The first step is to average the voltage differential equation to obtain the dynamics in the
so-called phasor-variables, then, a control law, itself expressed on phasor representation, can be
designed following an approach similar to that proposed in (Valderrama et. al, 2001), however
in this work the only voltage subsystem is controlled using phasor variables, while the power
subsystem is controlled in the real time domain.
The controlled variable is chosen to be the time-window averaged value z̃a of the square
voltage error z̃, and the averaging is performed over the time interval [t − T, t]. In terms
of (Sanders et al., 1991) this average value is a zero-order phasor defined as

z̃a(t) =
∫ t

t−T
z̃(τ)dτ (43)

the fact that z̃a is a zero-order phasor allows to obtain its derivative by simply applying the
same averaging procedure to its differential equation in (42)

˙̃za =
1
T

∫ t

t−T
z̃(τ)dτ = �

∫ t

t−T
ūT [x̃ + x∗η ]dτ (44)

note that the average voltage derivative can also be expressed as the difference over one period
of the actual voltage, hence

d
dt
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d
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∫ t

t−T
z̃(τ)dτ =

z̃(t)− z̃(t − T)
T

(45)

this insight connotes the availability of z̃a for measurement in real time, and, as it will later
clarified, it is of crucial importance for an actual implementation of the controller.
All further elaborations will focus on the integral-differential equation (44) representing the
averaged error voltage dynamics. This equation depends on ū which is actually provided by
the power tracking controller, to eliminate ū consider that the differential equation for x̃ in
(42) can be rewritten as

ū = L(M(R, L)x∗η − ẋ∗η + M(R, L)x̃ + d0 − ˙̃x) (46)

replacing (46) into (44) the following equation is obtained

˙̃za =
�L
T

∫ t

t−T
(M(R, L)x∗η − ẋ∗η + d0)

T x∗ηdτ + �LD̃(x̃) (47)

where D̃(x̃) collects all the terms depending on the power tracking error x̃. The next step
is to exploit the fact that the reference term x∗ is T-periodic (T = 1/ fm), hence it results in
a constant value when averaged over this period, this is a key advantage of the averaging
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approach for the voltage system. The T-periodic terms in (47) can be summarized to

D∗ =
1
T

∫ t

t−T
[(M(R, L)x∗ − ẋ∗ + d0)

Tx∗]dτ (48)

since x∗ is periodic in T, D∗ is a constant disturbance, and, due to power losses induced
by the parasitic resistance R, it also follows that D∗ < 0. For further simplification the
integral operator can be applied to the occurring derivative terms. Using definitions (11), (40),
after some computations the averaged error voltage dynamics can be expressed completely in
phasor variables

˙̃za = �[Emdηa − 2Rνa − Lν̇a + LD∗ + LD̃] (49)

where the following nonlinear term has been defined

ν(t) = η(t)
(

1
2

η(t) + x∗d
)

(50)

which enters (49) with its average and its averaged derivative

νa(t) =
1
T

∫ t

t−T
ν(τ)dτ

ν̇a(t) =
νa(t)− νa(t − T)

T

(51)

the averaged error voltage system is thus controlled by means of the averaged control input

ηa(t) =
1
T

∫ t

t−T
η(τ)dτ. (52)

According to singular perturbation theory, the voltage controller design can be carried out
considering only the reduced dynamics, obtained confusing the value of x̃ with its steady state
value x̃ = 0.
As previously remarked, this approximation can be introduced thanks to the small value of �
which, multiplying the voltage dynamics in the second of (42), makes the voltage subsystem
much slower with respect to the power dynamics in the first of (42) (this phenomenon is
usually referred as two time-scale system behavior) that will approach the steady state much
faster then z̃. Thus reduced voltage dynamics can be obtained by (49) simply dropping the
coupling term D̃, because by definition D̃(0) = 0.
The nonlinear terms νa, and ν̇a cannot be managed easily, beside non-linearity they contain an
integral, a time delay and a time-varying term x∗d . In order to simplify the mathematical
treatment, a sort of linearized version of system (49) will be considered. This linear
approximation is motivated by several facts; since the parasitic resistance R and the filter
inductance value L are usually very small with respect to the term Emd in every realistic setup,
nonlinear term are much smaller than the linear ones. Furthermore the component x∗d has no
influence at all in averaging terms if η is constant, thanks to the fact that it is T-periodic with
zero mean value. Hence it will influence the averaged system only while η is varying, and also
in this case its oscillatory part will be filtered by the averaging procedure. As a result of the
previous steps and considerations, the linearized averaged model for the reduced dynamics
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can be written as
˙̃za = �Emd[ηa − ϕ0] (53)

where, as mentioned, ϕ0 is the smallest solution of equation (16).
Now it is possible to design the control input ηa in order to stabilize the origin of system (53),
a standard PI regulator in the averaged variables is proposed

ηa = −KPz̃a + θ

θ̇ = −�KIz̃a
(54)

it is further to notice that the � factor in the integral action of the controller is introduced
to keep the voltage controller speed in scale with the voltage subsystem to control, thus
maintaining the two-time scale behavior of the overall system.
In order to prove the asymptotic stability of the closed-loop system resulting by the
interconnection of (54) and (53) consider the change of coordinates θ̃ = θ − ϕ0, which results
in the closed-loop error dynamics

d
dt

[
z̃a
θ̃

]
= �

[−EmdKP Emd
−KI 0

] [
z̃a
θ̃

]
(55)

since �, Emd are positive, the matrix in (55) is Hurwitz for all KP > 0, KI > 0, and system (55)
result asymptotically stable despite the unknown disturbance ϕ0.
The problem with implementing the regulator (55) is that the resulting control signal is the
average value of the actual control input η, thus some procedure is required to synthesize a
real-world control signal whose mean value satisfies the above conditions. In the SAF specific
case this problem can be solved, consider the derivative of signal ηa

d
dt

ηa =
d
dt

1
T

∫ t

t−T
η(τ)dτ (56)

it can be rewritten on the left side as the difference over one period, while the right side is
replaced with the derivative of ηa expressed in (54);

1
T
[η(t)− η(t − T)] = −KP ˙̃za +

˙̃θ = −KP ˙̃za − �KIz̃a (57)

solving for η(t) yields

η(t) = −TKP ˙̃za(t)− �TKIz̃a(t) + η(t − T) (58)

using (45), the derivative of the averaged square voltage error is actually measurable, thus
the above formula is implementable. However, while the interconnection between voltage
subsystem and controller is stable in sense of the averaged value, a further step is required.
In the incremental implementation (58) there is no more an integral action, the control input
history is kept in memory for one period, still the controller provides stability for the averaged
voltage error z̃a. Consider now that for the phasor variables system, a stable steady-state
guarantees that all the variables have a constant average value, while being allowed to
oscillate freely. This property is desired for what concern the capacitor voltage and it is the
main motivation for applying the averaging procedure, however implementation according
to (58) can introduce undesired periodic oscillation in the control input η, moreover oscillation
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approach for the voltage system. The T-periodic terms in (47) can be summarized to
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the averaged error voltage system is thus controlled by means of the averaged control input
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According to singular perturbation theory, the voltage controller design can be carried out
considering only the reduced dynamics, obtained confusing the value of x̃ with its steady state
value x̃ = 0.
As previously remarked, this approximation can be introduced thanks to the small value of �
which, multiplying the voltage dynamics in the second of (42), makes the voltage subsystem
much slower with respect to the power dynamics in the first of (42) (this phenomenon is
usually referred as two time-scale system behavior) that will approach the steady state much
faster then z̃. Thus reduced voltage dynamics can be obtained by (49) simply dropping the
coupling term D̃, because by definition D̃(0) = 0.
The nonlinear terms νa, and ν̇a cannot be managed easily, beside non-linearity they contain an
integral, a time delay and a time-varying term x∗d . In order to simplify the mathematical
treatment, a sort of linearized version of system (49) will be considered. This linear
approximation is motivated by several facts; since the parasitic resistance R and the filter
inductance value L are usually very small with respect to the term Emd in every realistic setup,
nonlinear term are much smaller than the linear ones. Furthermore the component x∗d has no
influence at all in averaging terms if η is constant, thanks to the fact that it is T-periodic with
zero mean value. Hence it will influence the averaged system only while η is varying, and also
in this case its oscillatory part will be filtered by the averaging procedure. As a result of the
previous steps and considerations, the linearized averaged model for the reduced dynamics
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can be written as
˙̃za = �Emd[ηa − ϕ0] (53)

where, as mentioned, ϕ0 is the smallest solution of equation (16).
Now it is possible to design the control input ηa in order to stabilize the origin of system (53),
a standard PI regulator in the averaged variables is proposed

ηa = −KPz̃a + θ

θ̇ = −�KIz̃a
(54)

it is further to notice that the � factor in the integral action of the controller is introduced
to keep the voltage controller speed in scale with the voltage subsystem to control, thus
maintaining the two-time scale behavior of the overall system.
In order to prove the asymptotic stability of the closed-loop system resulting by the
interconnection of (54) and (53) consider the change of coordinates θ̃ = θ − ϕ0, which results
in the closed-loop error dynamics
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since �, Emd are positive, the matrix in (55) is Hurwitz for all KP > 0, KI > 0, and system (55)
result asymptotically stable despite the unknown disturbance ϕ0.
The problem with implementing the regulator (55) is that the resulting control signal is the
average value of the actual control input η, thus some procedure is required to synthesize a
real-world control signal whose mean value satisfies the above conditions. In the SAF specific
case this problem can be solved, consider the derivative of signal ηa

d
dt

ηa =
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1
T

∫ t
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η(τ)dτ (56)

it can be rewritten on the left side as the difference over one period, while the right side is
replaced with the derivative of ηa expressed in (54);

1
T
[η(t)− η(t − T)] = −KP ˙̃za +

˙̃θ = −KP ˙̃za − �KIz̃a (57)

solving for η(t) yields

η(t) = −TKP ˙̃za(t)− �TKIz̃a(t) + η(t − T) (58)

using (45), the derivative of the averaged square voltage error is actually measurable, thus
the above formula is implementable. However, while the interconnection between voltage
subsystem and controller is stable in sense of the averaged value, a further step is required.
In the incremental implementation (58) there is no more an integral action, the control input
history is kept in memory for one period, still the controller provides stability for the averaged
voltage error z̃a. Consider now that for the phasor variables system, a stable steady-state
guarantees that all the variables have a constant average value, while being allowed to
oscillate freely. This property is desired for what concern the capacitor voltage and it is the
main motivation for applying the averaging procedure, however implementation according
to (58) can introduce undesired periodic oscillation in the control input η, moreover oscillation
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will persist being remembered through the time delay term. In summary, while ηa will
approach the constant power loss value ϕ0, the actual input η might be any periodic signal
with average value equal to ϕ0. Recalling that η modifies the real power reference value x∗d ,
any oscillation will result in a non-zero error for the power tracking controller.
In order to avoid this situation the following term can be added to (58)

dη(t) = η(t − T)− ηa(t − T/2) (59)

the reason of this modification is to cancel the oscillations stored in memory, by correcting
the stored signal towards its own mean value ηa(t − T/2). It is important to remark that the
averaged value is not the actual mean value of its corresponding signal, the mean value sm of
a signal s(t) is defined as

sm =
1
T

∫ t+T/2

t−T/2
s(τ)dτ (60)

the above equation is identical to the zero-order phasor definition, except for a time shift of
T/2. For this reason the mean value of the stored signal η(t− T) has been expressed as its time
shifted average value, note that the mean value of this stored signal can be computed because
also its “future” values are available. The additive term dη is a zero mean value signal, because
it is obtained removing its DC-value to a periodic signal. Since the control input η enters the
averaged system (55) after being averaged itself, any modification having zero mean value
will not affect the behavior of the averaged system dynamics. Hence the final implementation
of control input together with (59) is

η(t) = −TKP ˙̃za − �TKI z̃a + ηa(t − T/2) (61)

this controller will not introduce undesired oscillation because it depends solely on averaged
signals, whose simplified dynamics (55) cannot give oscillations.

4.2 Power tracking controller
The voltage controller output reported in (61) can be replaced into the filter error power
dynamics in (42), recalling also equation (54), it turns out

˙̃x = M(R, L)x̃ − 1
L

ū + d(t) + f (�, z̃a, θ̃, ˙̃za, ˙̃θ) (62)

where
d(t) = d0 + M(R, L)x∗ − ẋ∗ + M(R, L)ϕ0 (63)

is a T-periodic term composed by the sum of a constant term and sinusoids having known
frequency, while

f (z̃a, θ̃, ˙̃za, ˙̃θ, �) = TKp ¨̃za + �KI ˙̃za + Kp ˙̃za(t − T/2)− ˙̃θ(t − T/2)

+M(R, L)[−TKp ˙̃za − �KIz̃a − Kpz̃a(t − T/2) + θ̃(t − T/2)].
(64)

The problem of forcing x̃ in (62) clearly requires the ability of the control law to compensate
for the signal d(t), perfect tracking cannot be achieved by a feedforward action since SAF
parameters and d(t) are not fully known. To comply with uncertainties and provide
robustness we propose an internal model-based controller. Each component of the vector
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d(t) can be seen as the output of the following linear system

ẇi(t) = Ωwi(t), wi ∈ R2N+1

dim(t) = Γiwi(t), i = d, q
(65)

where Γi ∈ R(1×2N+1) are suitably defined vectors and matrix Ω ∈ R(2N+1)×(2N+1) is defined
as Ω = blkdiag(Ωj) with Ω0 = 0 and

Ωj =

[
0 jωm

−jωm 0

]
, j = 1, . . . , N (66)

with the pairs (Γi,Ω) observable. Defining Φ = blkdiag(Ω, Ω) and Γ = blkdiag(Γd, Γq), the
following internal model-based controller can be designed

ξ̇ = Φξ + Qx̃

ū = Γξ + Kx̃
(67)

where matrices Q and K need to be properly assigned. Once chosen ū as in (67) and defined
the internal model error variables as ξ̃ = ξ − Lw, where w := [wT

d , wT
q ]

T, the power subsystem
closed-loop error dynamics can be rewritten as

˙̃x = (M(R, L)− 1
L

K)x̃ − 1
L

Γξ̃ + f (z̃a, θ̃, ˙̃za, ˙̃θ, �)

˙̃ξ = Φξ̃ + Qx̃.
(68)

According to the general two time-scale averaging theory, the power tracking problem can be
studied focusing on the boundary layer system, obtained by putting � = 0 into the overall error
dynamics, hence by (47), (54) and ˙̃za = 0, ˙̃θ = 0, thus system (68) becomes

˙̃x = (M(R, L)− 1
L

K)x̃ − 1
L

Γξ̃ + f (z̃a, θ̃, 0, 0, 0)

˙̃ξ = Φξ̃ + Qx̃.
(69)

Now matrices K, Q need to be selected such that asymptotic stability is provided for the
boundary layer system. Define two arbitrary Hurwitz matrices Fd, Fq ∈ R(2N + 1)× (2N+ 1),
and two arbitrary vectors Gd, Gq such that the pairs (Fd, Gd), (Fq, Gq) are controllable, taking
the controller matrices as

K = k
[

kd 0
0 kq

]
, Q =

[
E−1

d 0
0 E−1

q

] [
Gd 0
0 Gq

]
K (70)

with kd, kq two arbitrary positive scalars, k a positive design parameter, and Ed, Eq defined as
non-singular solutions of the following Sylvester equations:

FdEd − EdΩd = −GdΓd

FqEq − EqΩq = −GqΓq
(71)
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will persist being remembered through the time delay term. In summary, while ηa will
approach the constant power loss value ϕ0, the actual input η might be any periodic signal
with average value equal to ϕ0. Recalling that η modifies the real power reference value x∗d ,
any oscillation will result in a non-zero error for the power tracking controller.
In order to avoid this situation the following term can be added to (58)
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a signal s(t) is defined as
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the above equation is identical to the zero-order phasor definition, except for a time shift of
T/2. For this reason the mean value of the stored signal η(t− T) has been expressed as its time
shifted average value, note that the mean value of this stored signal can be computed because
also its “future” values are available. The additive term dη is a zero mean value signal, because
it is obtained removing its DC-value to a periodic signal. Since the control input η enters the
averaged system (55) after being averaged itself, any modification having zero mean value
will not affect the behavior of the averaged system dynamics. Hence the final implementation
of control input together with (59) is

η(t) = −TKP ˙̃za − �TKI z̃a + ηa(t − T/2) (61)

this controller will not introduce undesired oscillation because it depends solely on averaged
signals, whose simplified dynamics (55) cannot give oscillations.

4.2 Power tracking controller
The voltage controller output reported in (61) can be replaced into the filter error power
dynamics in (42), recalling also equation (54), it turns out
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where
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is a T-periodic term composed by the sum of a constant term and sinusoids having known
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(64)

The problem of forcing x̃ in (62) clearly requires the ability of the control law to compensate
for the signal d(t), perfect tracking cannot be achieved by a feedforward action since SAF
parameters and d(t) are not fully known. To comply with uncertainties and provide
robustness we propose an internal model-based controller. Each component of the vector
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d(t) can be seen as the output of the following linear system

ẇi(t) = Ωwi(t), wi ∈ R2N+1

dim(t) = Γiwi(t), i = d, q
(65)

where Γi ∈ R(1×2N+1) are suitably defined vectors and matrix Ω ∈ R(2N+1)×(2N+1) is defined
as Ω = blkdiag(Ωj) with Ω0 = 0 and

Ωj =

[
0 jωm

−jωm 0

]
, j = 1, . . . , N (66)

with the pairs (Γi,Ω) observable. Defining Φ = blkdiag(Ω, Ω) and Γ = blkdiag(Γd, Γq), the
following internal model-based controller can be designed

ξ̇ = Φξ + Qx̃

ū = Γξ + Kx̃
(67)

where matrices Q and K need to be properly assigned. Once chosen ū as in (67) and defined
the internal model error variables as ξ̃ = ξ − Lw, where w := [wT

d , wT
q ]

T, the power subsystem
closed-loop error dynamics can be rewritten as

˙̃x = (M(R, L)− 1
L

K)x̃ − 1
L

Γξ̃ + f (z̃a, θ̃, ˙̃za, ˙̃θ, �)

˙̃ξ = Φξ̃ + Qx̃.
(68)

According to the general two time-scale averaging theory, the power tracking problem can be
studied focusing on the boundary layer system, obtained by putting � = 0 into the overall error
dynamics, hence by (47), (54) and ˙̃za = 0, ˙̃θ = 0, thus system (68) becomes

˙̃x = (M(R, L)− 1
L

K)x̃ − 1
L

Γξ̃ + f (z̃a, θ̃, 0, 0, 0)

˙̃ξ = Φξ̃ + Qx̃.
(69)

Now matrices K, Q need to be selected such that asymptotic stability is provided for the
boundary layer system. Define two arbitrary Hurwitz matrices Fd, Fq ∈ R(2N + 1)× (2N+ 1),
and two arbitrary vectors Gd, Gq such that the pairs (Fd, Gd), (Fq, Gq) are controllable, taking
the controller matrices as

K = k
[

kd 0
0 kq

]
, Q =

[
E−1

d 0
0 E−1

q

] [
Gd 0
0 Gq

]
K (70)

with kd, kq two arbitrary positive scalars, k a positive design parameter, and Ed, Eq defined as
non-singular solutions of the following Sylvester equations:

FdEd − EdΩd = −GdΓd

FqEq − EqΩq = −GqΓq
(71)
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asymptotic stability of the boundary layer system can be stated. In order to prove this claim
let us define the vector

Rξ =

[
− R

Γd1
02N − ωmL

Γq1
02N

]T

(72)

where Γd1, Γq1 denote the first element of vectors Γd, Γq respectively and 02N is a zero raw
vector having dimension 2N. Consider now the change of variables

χ̃ = Eξ̃ − ERξ(θ̃(t − T/2)− Kpz̃a(t − T/2)) + LGx̃ (73)

where E = blkdiag(Ed, Eq), G = blkdiag(Gd, Gq), in this coordinates system (69) results

˙̃x = (M(R, L)− 1
L

K + ΓL−1G)x̃ − 1
L

ΓE−1χ̃

˙̃χ = Fχ̃ − L(FG − GM(R, L))x̃
(74)

where F = blkdiag(Fd, Fq). Using standard linear system tools it can be verified that a value
k̄ exists, such that ∀ k ≥ k̄ the state matrix of the system in the new coordinates is Hurwitz,
hence asymptotic stability of the boundary layer system can be stated.

4.3 Overall system stability
Asymptotic stability has been stated for the boundary layer system and a linearized version
of the averaged reduced voltage dynamics. Exploiting the main results of the two time-scale
averaged systems theory, it can be proved that the two separately designed controllers are
able to provide practical stability for the complete system (42), i.e it is possible to claim that
the set

{(x̃, ξ̃) : x̃ = 0, ξ̃ = 0} ×Az, with Az = {(z̃, θ̃) : |z̃| ≤ l∗, θ̃ = 0}
is practically stable (Khalil, 1996) for the closed-loop trajectories of the complete error system.
More precisely we can define the positive values �∗, k̄, l∗s , such that for all positive ls ≤ l∗s , k ≥
k̄, � ≤ �∗, the trajectories of the overall closed loop system with initial condition (x̃(0), ξ̃(0))
belonging to an arbitrary compact set, and (z̃(0), θ̃(0)), such that dist((z̃(0), θ̃(0)),Az) ≤ ls
(dist denotes the distance of the initial state vector from the set Az), are bounded. Moreover
there exist positive M, λ, and a class KL function (Khalil, 1996) β such that

|x̃(t)| ≤ Me−λt|x̃(0)|+ ν

dist((z̃, θ̃),Az) ≤ β(dist((z̃(0), θ̃(0)),Az), �t) + ν
(75)

for all ν > 0. Proof of this result is omitted owing to space limitation, it relies upon the results
for two-time scale averaged systems given in (Teel et al., 2003) (see in particular Theorem 1).
Analyzing the previous result, it can be clarified how the proposed controller satisfies the
objectives in a practical way; by the second of (75) we deduce that θ̃ tends arbitrary close to
the power loss term ϕ0, while by the first of (75), it can be seen that the power vector x is
steered arbitrary close to the reference value x∗ϕ0

. In particular the asymptotic tracking error
can be arbitrary reduced by taking a smaller value for �, namely by increasing the capacitor
value C.
It’s further to notice that the practical stability result is semi-global for what concerns the
power variables, i.e the initial state (x̃(0), ξ̃(0)) can belong to an arbitrary compact set, while
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it is only local with respect to the set Az for the voltage initial condition (z̃(0), θ̃(0)). However,
as remarked in 2.2, this is not a constraint for z̃(0), since it is always possible to switch on the
control when the capacitor voltage is inside the admissible range, as regards θ̃, since typical
values of ϕ0 are usually very small, the restriction on the initial state θ̃(0) is always in practice
fulfilled taking θ̃(0) = 0.
In summary, even if asymptotic stability of the complete system has not been stated, and
formally the tracking error is not asymptotically null, in practice the two control objectives
defined in 2.2 can be considered achieved, in fact, by properly tuning the control parameters
and dimensioning the hardware components, we can ideally (assuming no cost or technology
limitations) improve the filter tracking performance keeping the capacitor voltage value in a
safe range.

5. Simulation results

Simulation tests have been performed in order to validate the proposed control solution.
Two different scenarios have been adopted; first model (6) has been implemented in
MATLAB/Simulink and a load scenario with two harmonics at 7ωm and 13ωm has been
chosen. Then, in order to validate the controller performance in a situation closer to a real
setup, the proposed continuous-time regulator has been discretized adopting a sampling
frequency fs = 7KHz, then the SAF converter components have been modeled by using
Simulink/SimPowerSystems toolbox, and a suitable PWM technique with a carrier frequency
equal to fs has been implemented. Finally a three-phase diode bridge has been selected as
nonlinear load scenario.
The following system parameters have been set, according to the procedure illustrated in
Section 3; C = 4400μF, L = 3.3mH, R = 0.12Ω, while the DC-link voltage limits have been set
to vm = 700V, vM = 900V. Ideal three-phase mains voltages with amplitude Vm = 310V and
frequency fm = 50Hz have been modeled.
For what concern the simulations in time continuous domain, the internal-model based
controller has been tuned to the load disturbances, according to the procedure described in
4.2. As regards the diode rectifier load scenario, the most relevant power disturbances, that
is the 6th and the 12th load current harmonics expressed in the synchronous d − q reference
frame (corresponding respectively to the 5th and the 7th, and to the 11th and the 13th in the
fixed reference frame), have been considered. Then the IMC controller has been discretized
according to the procedure reported in (Ronchi et al., 2003), thus the following matrices have
been selected; Ω = blkdiag(Ω0, Ω6, Ω12), Γd = Γq = (1, 1, 0, 1, 0)T , K = diag(200, 200) and
Q = 103diag(Qd, Qq), where Qd = Qq = (40.6, 80.7, 7.15, 78.7, 17.6)T . For what concerns the
voltage stabilizer described in 4.1, the following parameters have been selected KP = 0.3,
KI = 3.7.
Consider now the performance obtained on the first simulation scenario, with ideal SAF
model and the 7th , 13th disturbance harmonics; in Fig. 6 the tracking error on both real and
imaginary power variables is reported, as expected, asymptotic tracking is achieved and the
vector x̃ is steered arbitrary close to the origin. This ideal behavior is confirmed by Fig. 7, 8;
the two harmonics currents are totally canceled out by the filter currents, while a small current
component oscillating at the first-order harmonic frequency and aligned to the corresponding
voltage, arises on the line side due to the voltage controller action. In table 2 the harmonics
compensation performance are summarized.
For what concerns the voltage controller, in order to validate the stability properties, a value
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is practically stable (Khalil, 1996) for the closed-loop trajectories of the complete error system.
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for all ν > 0. Proof of this result is omitted owing to space limitation, it relies upon the results
for two-time scale averaged systems given in (Teel et al., 2003) (see in particular Theorem 1).
Analyzing the previous result, it can be clarified how the proposed controller satisfies the
objectives in a practical way; by the second of (75) we deduce that θ̃ tends arbitrary close to
the power loss term ϕ0, while by the first of (75), it can be seen that the power vector x is
steered arbitrary close to the reference value x∗ϕ0

. In particular the asymptotic tracking error
can be arbitrary reduced by taking a smaller value for �, namely by increasing the capacitor
value C.
It’s further to notice that the practical stability result is semi-global for what concerns the
power variables, i.e the initial state (x̃(0), ξ̃(0)) can belong to an arbitrary compact set, while
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it is only local with respect to the set Az for the voltage initial condition (z̃(0), θ̃(0)). However,
as remarked in 2.2, this is not a constraint for z̃(0), since it is always possible to switch on the
control when the capacitor voltage is inside the admissible range, as regards θ̃, since typical
values of ϕ0 are usually very small, the restriction on the initial state θ̃(0) is always in practice
fulfilled taking θ̃(0) = 0.
In summary, even if asymptotic stability of the complete system has not been stated, and
formally the tracking error is not asymptotically null, in practice the two control objectives
defined in 2.2 can be considered achieved, in fact, by properly tuning the control parameters
and dimensioning the hardware components, we can ideally (assuming no cost or technology
limitations) improve the filter tracking performance keeping the capacitor voltage value in a
safe range.

5. Simulation results

Simulation tests have been performed in order to validate the proposed control solution.
Two different scenarios have been adopted; first model (6) has been implemented in
MATLAB/Simulink and a load scenario with two harmonics at 7ωm and 13ωm has been
chosen. Then, in order to validate the controller performance in a situation closer to a real
setup, the proposed continuous-time regulator has been discretized adopting a sampling
frequency fs = 7KHz, then the SAF converter components have been modeled by using
Simulink/SimPowerSystems toolbox, and a suitable PWM technique with a carrier frequency
equal to fs has been implemented. Finally a three-phase diode bridge has been selected as
nonlinear load scenario.
The following system parameters have been set, according to the procedure illustrated in
Section 3; C = 4400μF, L = 3.3mH, R = 0.12Ω, while the DC-link voltage limits have been set
to vm = 700V, vM = 900V. Ideal three-phase mains voltages with amplitude Vm = 310V and
frequency fm = 50Hz have been modeled.
For what concern the simulations in time continuous domain, the internal-model based
controller has been tuned to the load disturbances, according to the procedure described in
4.2. As regards the diode rectifier load scenario, the most relevant power disturbances, that
is the 6th and the 12th load current harmonics expressed in the synchronous d − q reference
frame (corresponding respectively to the 5th and the 7th, and to the 11th and the 13th in the
fixed reference frame), have been considered. Then the IMC controller has been discretized
according to the procedure reported in (Ronchi et al., 2003), thus the following matrices have
been selected; Ω = blkdiag(Ω0, Ω6, Ω12), Γd = Γq = (1, 1, 0, 1, 0)T , K = diag(200, 200) and
Q = 103diag(Qd, Qq), where Qd = Qq = (40.6, 80.7, 7.15, 78.7, 17.6)T . For what concerns the
voltage stabilizer described in 4.1, the following parameters have been selected KP = 0.3,
KI = 3.7.
Consider now the performance obtained on the first simulation scenario, with ideal SAF
model and the 7th , 13th disturbance harmonics; in Fig. 6 the tracking error on both real and
imaginary power variables is reported, as expected, asymptotic tracking is achieved and the
vector x̃ is steered arbitrary close to the origin. This ideal behavior is confirmed by Fig. 7, 8;
the two harmonics currents are totally canceled out by the filter currents, while a small current
component oscillating at the first-order harmonic frequency and aligned to the corresponding
voltage, arises on the line side due to the voltage controller action. In table 2 the harmonics
compensation performance are summarized.
For what concerns the voltage controller, in order to validate the stability properties, a value
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Harmonic frequency (Hz) ima (A) ila (A) Compensation percentage
350 0.0039 10 99.96%
650 0.0038 10 99.96%

Table 2. Compensation performance for the two harmonics disturbance scenario.

quite far from the mean voltage reference value (v2
m + v2

M)/2 = 800V has been chosen as
initial condition for the capacitor voltage. As showed in Fig. 9, even though the average value
is initialized at zero and needs one period before representing the actual voltage, the controller
reacts immediately, thanks to its dependence on the averaged derivative ˙̃za. Hence the voltage
averaged error is successfully steered to zero, and the capacitor voltage is brought back to
the middle of the safe interval, without exceeding the upper and lower bounds. The initial
nonlinear behavior of the voltage error trajectories is originated by the neglected nonlinearities
and also by the coupling term D̃(x̃), although it has been discarded due to two time-scale
behavior hypothesis, it is excited by the internal model controller transient when harmonics
compensation starts.
As regards the second simulation scenario, carried out in discrete time domain and with a
more detailed filter physical model, the power tracking performance are reported in Fig. 10,
11, 12. In this case the power error variables x̃d, x̃q are higher with respect to the previous
situation, due to the fact that the AC/DC rectifier high order harmonics are not compensated
by the internal model, furthermore the discretization effects have to be taken into account.
However the load currents harmonics for which the controller has been tuned are strongly
reduced at the line side, as the currents magnitude spectrum reported in Fig. 12 shows.
Analyzing the currents waveform in the time domain (Fig. 11), it can be verified that the
mains currents are almost sinusoidal and perfectly aligned with the corresponding phase
voltages, hence also the load imaginary power is almost totally compensated. The ripple
introduced by the pulse with modulation can be noted on the filter current, it affects also the
mains currents, however thanks to a correct inductance sizing, the high frequency distortion is
properly bounded. Quantitative performance of the power-tracking controller obtained with
this scenario are summarized in Tab. 3.

The current component corresponding to the line frequency oscillation is slightly larger at
the line side than at the load side, due to the additional active power drained to compensate
for the filter losses.
As regards the averaging voltage controller, a discrete time version has been implemented,
while the same initial conditions of the first scenario have been reproduced. In Fig. 13 the
squared voltage error, its averaged value and the actual capacitor voltage are reported, also
in this case the objective relative to the voltage dynamics behavior is accomplished, similar
considerations to those made for the previous scenario can be made.

Harmonic frequency (Hz) ima(A) ila(A) Compensation percentage
250 0.03 3.88 99.2%
350 0.04 1.91 97.9%
550 0.03 1.57 98.1%
650 0.02 1.08 98.1%

Table 3. Compensation performance for the diode bridge load scenario.
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Analyzing the currents waveform in the time domain (Fig. 11), it can be verified that the
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voltages, hence also the load imaginary power is almost totally compensated. The ripple
introduced by the pulse with modulation can be noted on the filter current, it affects also the
mains currents, however thanks to a correct inductance sizing, the high frequency distortion is
properly bounded. Quantitative performance of the power-tracking controller obtained with
this scenario are summarized in Tab. 3.

The current component corresponding to the line frequency oscillation is slightly larger at
the line side than at the load side, due to the additional active power drained to compensate
for the filter losses.
As regards the averaging voltage controller, a discrete time version has been implemented,
while the same initial conditions of the first scenario have been reproduced. In Fig. 13 the
squared voltage error, its averaged value and the actual capacitor voltage are reported, also
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0 200 400 600 800 1000
0

5

10

15

20

frequency [Hz]

i m
a

[A
]

(a) Main current magnitude spectrum.

0 200 400 600 800 1000
0

5

10

15

20

frequency [Hz]

i l
a

[A
]

(b) Load current magnitude spectrum.

Fig. 12. FFT of the a-phase main current and of the corresponding load current: diode bridge
load scenario.
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Fig. 13. Voltage controller performance: diode bridge load scenario.

6. Conclusions

In this chapter a nonlinear robust control solution for a shunt active filter has been proposed,
the focus has been firstly put on the hardware components design issue, providing a suitable
algorithm, based on the structural system properties, which gives guarantees on the feasibility
of the control problem and allows to obtain a crucial time-scale separation between the power
and voltage dynamics. Then exploiting nonlinear systems analysis well established tools,
such as averaging and singular perturbation theory, an averaging capacitor voltage controller
and a power tracking controller based on the internal model principle, have been presented.
The former exploits the insight that, regulating the averaged voltage value, makes it possible
to ignore the necessary oscillations for a proper filter operation, and improves the voltage
dynamics behavior. The second is chosen in order to ensure asymptotic tracking of undesired
load current components, providing also robustness with respect to disturbances and model
uncertainties.
Saturation issues have not been explicitly addressed in this work, owing to space limitation,
however it is of utmost importance to deal with these phenomena for an actual industrial
implementation with stability and performance guarantees. Some solutions, for the SAF
specific case, have been proposed (see Cavini et al. (2004), Cavini et al. (2004)), however
this is still an open research topic. Future effort will thus be devoted to improve the filter
performance under control input saturation, analyzing the problem in the context of modern
anti-windup approaches, hence providing a rigorous characterization of the system under
saturation constraints. Moreover discretization issues relative to the nonlinear controller
here discussed will be further analyzed, in order to improve the discrete-time controller
performance with respect to that obtained applying standard discretization techniques.

7. References

Akagi, H., Kanagawa, Y. & Nabae, A. (1984). “Instantaneous reactive power compensator
comprising switching devices without energy storage components”, IEEE
Transactions on Industry Application,20, 1984.

368 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics Analysis, Dimensioning and Robust Control of Shunt Active Filter for Harmonic Currents Compensation in Electrical Mains 27

Akagi, H. (1996). “New trends in active filters for power conditioning”,IEEE Transactions on
Industrial Applications,vol. 32, pp. 1312-1332, 1996.

Bhattacharya, S., Veltman, A., Divan, D. M. & Lorentz, R. D. (1995). “Flux based active filter
controller, IEEE-IAS Annual Meeting, pp. 2483-2491, Orlando, Florida, USA, 1995.

Cavini, A., Rossi, C., & Tilli, A. (2004). “Digital implementation of decoupled nonlinear
control strategies for shunt active filters”, IEEE International Conference on Industrial
Technology, pp. 364-369, Hammamet, Tunisia, 2004.

Cavini, A., Rossi, C. & Tilli, A. (2004). “Shunt Active Filters controller with new saturation
strategy”, Annual Conference of the IEEE Industrial Electronics Society, pp. 546-551,
Busan, Korea, 2004.

Chandra, A., Singh, B. & Al.Haddad, K. (2000). “An improved control algorithm of shunt
active filter for voltage regulation, harmonic elimination, power-factor correction,
and balancing of nonlinear loads”, IEEE Transactions on Power Electronics,vol. 15, pp
495-507, 2000.

Gyugy, L. & Strycula, E. (1976). “Active ac power filters”,IEEE-IAS Annual Meeting, pp.
529-535, Cincinnati, Ohio, USA, 1976.

Hanschke, J., Marconi, L. & Tilli, A. (2006). “Averaging control of the DC-link voltage in shunt
active filters”, IEEE Conference on Decision and Control, pp 6211-6216, San Diego, CA,
USA, 2006.

Jeong,S. G. & Woo, M. H (1997). “Dsp-based active power filter with predictive current
control”, IEEE Transactions on Industrial Electronics,vol. 44, pp 329-336, 1997.

Kazmierkowski, M. & Malesani, L.(1998). “Current control techniques for three-phase
voltage-source pwm converters: a survey”, IEEE Transactions on Industrial
Electronics,vol. 45, pp 691-703, 1998.

Khalil, H. (1996). Nonlinear Systems, McMillan, 2nd Edition, New York (USA), 1996.
Krause, P., Wasynczuk, O. & Sudhoff, S.D. (1995). Analysis of Electric Machinery, IEEE Press,

Piscataway, NY (USA), 1995.
Marconi, L., Ronchi, F. & Tilli, A. (2004). “Robust control of shunt active filter based on the

internal model principle”, American Control Conference,vol. 5, pp. 3943-3948, Denver,
Colorado, USA, 2003.

Marconi, L., Ronchi, F. & Tilli, A. (2004). “Robust perfect compensation of load harmonics in
shunt active filters”, IEEE Conference on Decision and Control, pp. 2978-2983, Paradise
Island, Bahamas, 2004.

Marconi, L., Ronchi, F. & Tilli, A. (2007). “Robust nonlinear control of shunt active filters for
harmonic current compensation”, Automatica 2007, vol. 43, pp. 252-263, 2007.

Mohan, N., Undeland, T. M. & Robbins, W. P. (1989). Power Electronics.Converters, applications
and design, Wiley, 2nd Edition, New York, NY (USA), 1989.

Rastogi, M., Mohan, N. & Edris, A. A. (1995). “Hybrid-active filtering of harmonic currents in
power systems”, IEEE Transactions on Power Delivery, vol. 10, pp 1994-2000, 1995.

Ronchi, F. & Tilli, A. (2002). “Design methodology for shunt active filters”,EPE-PEMC, 10th
International power electronics and motion control conference,2002.

Ronchi, F., Tilli, A. & Marconi, L. (2003). “Control of an active filter based on the internal model
principle: tuning procedure and experimental results”,European control conference,
2003.

Sanders, S, Novorolsky, M., Liu, X. & Verghese, G. (1991). “Generalized averaging method
for power conversion circuits”, IEEE Transactions on Power Electronics, vol. 6, no.2, pp
251-259, 1991.

369
Analysis, Dimensioning and Robust Control 
of Shunt Active Filter for Harmonic Currents Compensation in Electrical Mains



26 Will-be-set-by-IN-TECH

0 0.2 0.4 0.6
−1

−0.5

0

0.5

1
x 10

5

time [s]

z̃,
z̃ a

[V
2 ]

(a) Square capacitor voltage error and
computed average value (bold).

0 0.2 0.4 0.6
770

785

800

815

830

time [s]

v
[V

]

(b) Actual capacitor voltage value.

Fig. 13. Voltage controller performance: diode bridge load scenario.

6. Conclusions

In this chapter a nonlinear robust control solution for a shunt active filter has been proposed,
the focus has been firstly put on the hardware components design issue, providing a suitable
algorithm, based on the structural system properties, which gives guarantees on the feasibility
of the control problem and allows to obtain a crucial time-scale separation between the power
and voltage dynamics. Then exploiting nonlinear systems analysis well established tools,
such as averaging and singular perturbation theory, an averaging capacitor voltage controller
and a power tracking controller based on the internal model principle, have been presented.
The former exploits the insight that, regulating the averaged voltage value, makes it possible
to ignore the necessary oscillations for a proper filter operation, and improves the voltage
dynamics behavior. The second is chosen in order to ensure asymptotic tracking of undesired
load current components, providing also robustness with respect to disturbances and model
uncertainties.
Saturation issues have not been explicitly addressed in this work, owing to space limitation,
however it is of utmost importance to deal with these phenomena for an actual industrial
implementation with stability and performance guarantees. Some solutions, for the SAF
specific case, have been proposed (see Cavini et al. (2004), Cavini et al. (2004)), however
this is still an open research topic. Future effort will thus be devoted to improve the filter
performance under control input saturation, analyzing the problem in the context of modern
anti-windup approaches, hence providing a rigorous characterization of the system under
saturation constraints. Moreover discretization issues relative to the nonlinear controller
here discussed will be further analyzed, in order to improve the discrete-time controller
performance with respect to that obtained applying standard discretization techniques.

7. References

Akagi, H., Kanagawa, Y. & Nabae, A. (1984). “Instantaneous reactive power compensator
comprising switching devices without energy storage components”, IEEE
Transactions on Industry Application,20, 1984.

368 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics Analysis, Dimensioning and Robust Control of Shunt Active Filter for Harmonic Currents Compensation in Electrical Mains 27

Akagi, H. (1996). “New trends in active filters for power conditioning”,IEEE Transactions on
Industrial Applications,vol. 32, pp. 1312-1332, 1996.

Bhattacharya, S., Veltman, A., Divan, D. M. & Lorentz, R. D. (1995). “Flux based active filter
controller, IEEE-IAS Annual Meeting, pp. 2483-2491, Orlando, Florida, USA, 1995.

Cavini, A., Rossi, C., & Tilli, A. (2004). “Digital implementation of decoupled nonlinear
control strategies for shunt active filters”, IEEE International Conference on Industrial
Technology, pp. 364-369, Hammamet, Tunisia, 2004.

Cavini, A., Rossi, C. & Tilli, A. (2004). “Shunt Active Filters controller with new saturation
strategy”, Annual Conference of the IEEE Industrial Electronics Society, pp. 546-551,
Busan, Korea, 2004.

Chandra, A., Singh, B. & Al.Haddad, K. (2000). “An improved control algorithm of shunt
active filter for voltage regulation, harmonic elimination, power-factor correction,
and balancing of nonlinear loads”, IEEE Transactions on Power Electronics,vol. 15, pp
495-507, 2000.

Gyugy, L. & Strycula, E. (1976). “Active ac power filters”,IEEE-IAS Annual Meeting, pp.
529-535, Cincinnati, Ohio, USA, 1976.

Hanschke, J., Marconi, L. & Tilli, A. (2006). “Averaging control of the DC-link voltage in shunt
active filters”, IEEE Conference on Decision and Control, pp 6211-6216, San Diego, CA,
USA, 2006.

Jeong,S. G. & Woo, M. H (1997). “Dsp-based active power filter with predictive current
control”, IEEE Transactions on Industrial Electronics,vol. 44, pp 329-336, 1997.

Kazmierkowski, M. & Malesani, L.(1998). “Current control techniques for three-phase
voltage-source pwm converters: a survey”, IEEE Transactions on Industrial
Electronics,vol. 45, pp 691-703, 1998.

Khalil, H. (1996). Nonlinear Systems, McMillan, 2nd Edition, New York (USA), 1996.
Krause, P., Wasynczuk, O. & Sudhoff, S.D. (1995). Analysis of Electric Machinery, IEEE Press,

Piscataway, NY (USA), 1995.
Marconi, L., Ronchi, F. & Tilli, A. (2004). “Robust control of shunt active filter based on the

internal model principle”, American Control Conference,vol. 5, pp. 3943-3948, Denver,
Colorado, USA, 2003.

Marconi, L., Ronchi, F. & Tilli, A. (2004). “Robust perfect compensation of load harmonics in
shunt active filters”, IEEE Conference on Decision and Control, pp. 2978-2983, Paradise
Island, Bahamas, 2004.

Marconi, L., Ronchi, F. & Tilli, A. (2007). “Robust nonlinear control of shunt active filters for
harmonic current compensation”, Automatica 2007, vol. 43, pp. 252-263, 2007.

Mohan, N., Undeland, T. M. & Robbins, W. P. (1989). Power Electronics.Converters, applications
and design, Wiley, 2nd Edition, New York, NY (USA), 1989.

Rastogi, M., Mohan, N. & Edris, A. A. (1995). “Hybrid-active filtering of harmonic currents in
power systems”, IEEE Transactions on Power Delivery, vol. 10, pp 1994-2000, 1995.

Ronchi, F. & Tilli, A. (2002). “Design methodology for shunt active filters”,EPE-PEMC, 10th
International power electronics and motion control conference,2002.

Ronchi, F., Tilli, A. & Marconi, L. (2003). “Control of an active filter based on the internal model
principle: tuning procedure and experimental results”,European control conference,
2003.

Sanders, S, Novorolsky, M., Liu, X. & Verghese, G. (1991). “Generalized averaging method
for power conversion circuits”, IEEE Transactions on Power Electronics, vol. 6, no.2, pp
251-259, 1991.

369
Analysis, Dimensioning and Robust Control 
of Shunt Active Filter for Harmonic Currents Compensation in Electrical Mains



28 Will-be-set-by-IN-TECH

Singh, B. & Al-Haddad, K. (1999). “A review of active filters for power quality improvement”
IEEE Trans. Ind. Electron., vol. 46, pp. 960-971, 1999.

Teel, A. R., Moreau, L. & Nesic, D. (2003). “A unified framework for input-to-state stability
in systems with two time scales”, IEEE Transactions on Automatic Control, vol. 48, pp.
1526ï£¡1544, 2003.

Tilli, A., Ronchi, F. & Tonielli, A. (2002). “Shunt active filters: selective compensation of current
harmonics via state observer”, IEEE-IECON, 28th Annual Conference of the Industrial
Electronics Society, vol. 2, pp. 874-879, 2002.

Valderrama, G., Mattavelli, P. & Stankovic, A. (2001). “Reactive power and unbalance
compensation using STATCOM with dissipativity-based control”, IEEE Transactions
on Control Systems Technology, vol.9, no.5, pp. 718-727, 2001.

Van Harmelen, G. L. & Enslin, J. H. R. (1993). “Real-time dynamic control of dynamic power
filters in supplies with high contamination”, IEEE Transactions on Power Electronics,
vol. 8, pp. 301-308, 1993.

370 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics

19 

Passivity Based Control for  
Permanent-Magnet Synchronous Motors 

Achour Abdelyazid 
Department of Electrical Engineering,  

A. Mira University, Bejaia, 
Algeria 

1. Introduction 
The Passivity based control (PBC) is a well established technique which has proved very 
powerful to design robust control for physical system, especially electrical machinery. The 
PBC have clear physical interpretation in terms of interconnection system with its 
environment, and are robust overlooked non dissipative effects modelled. These features are 
extremely valuable in practical implementations of controllers. In this chapter, we show 
how the PBC can be used to control the speed of permanents magnets synchronous motor 
(PMSM). In first part, we consider the Euler-Lagrange model in the -referential to design 
the Passivity Based Voltage Controller. The dq-model of the PMSM is considered to design 
the Passivity Based current Controller in the second part. 
The idea of Passivity Based Control (PBC) design is to reshape the natural energy of the 
system and inject the required damping in such a way that the control objective is achieved. 
Expected advantages of this approach are the enhanced robustness properties, which stem 
from the fact that conciliation of system nonlinearities is avoided. 
The technique has its roots in classical mechanics (Arnold, 1989) and was introduced in the 
control theory in the seminal paper (Takegaki & Arimoto, 1981). This method has been 
instrumented as the solution of several robot manipulator (Ailon & Ortega, 1993; Ortega & 
Spong; Takegaki & Arimoto, 1981) induction motor (Gökder & Simaan, 1997; Kim et al., 
1997; Ortega et al., 1996, 1997; Ortega & Loria), and power electronics (Sira-Ramirez et al., 
1995), which were intractable with other stabilization techniques. 
PBC was also combined with other techniques (Achour & Mendil, 2007; Ortega & García-
Canseco 2004a, 2004b; Qiu & Zhao, 2006; Petrović et al., 2001; Travieso-Torres et al., 2006, 
2008). The design of two single-input single-output controllers for induction motors based 
on adaptive passivity is presented in (Travieso-Torres et al., 2008). Given their nature, the 
two controllers work together with field orientation block. In ((Travieso-Torres et al., 2006), 
a cascade passivity-based control scheme for speed tracking purposes is proposed. The 
scheme is valid for a certain class of nonlinear system even with unstable zero dynamic, and 
it is also useful for regulation and stabilization purposes. A methodology based on energy 
shaping and passivation principles has been applied to a PMSM in (Petrović et al., 2001). 
The interconnection and damping structures of the system were assigned using the Port-
Controlled Hamiltonian (PCH) structure. The resulting scheme consists of a steady state 
feedback to which a nonlinear observer is added to estimate the unknown load torque. The 
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environment, and are robust overlooked non dissipative effects modelled. These features are 
extremely valuable in practical implementations of controllers. In this chapter, we show 
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(PMSM). In first part, we consider the Euler-Lagrange model in the -referential to design 
the Passivity Based Voltage Controller. The dq-model of the PMSM is considered to design 
the Passivity Based current Controller in the second part. 
The idea of Passivity Based Control (PBC) design is to reshape the natural energy of the 
system and inject the required damping in such a way that the control objective is achieved. 
Expected advantages of this approach are the enhanced robustness properties, which stem 
from the fact that conciliation of system nonlinearities is avoided. 
The technique has its roots in classical mechanics (Arnold, 1989) and was introduced in the 
control theory in the seminal paper (Takegaki & Arimoto, 1981). This method has been 
instrumented as the solution of several robot manipulator (Ailon & Ortega, 1993; Ortega & 
Spong; Takegaki & Arimoto, 1981) induction motor (Gökder & Simaan, 1997; Kim et al., 
1997; Ortega et al., 1996, 1997; Ortega & Loria), and power electronics (Sira-Ramirez et al., 
1995), which were intractable with other stabilization techniques. 
PBC was also combined with other techniques (Achour & Mendil, 2007; Ortega & García-
Canseco 2004a, 2004b; Qiu & Zhao, 2006; Petrović et al., 2001; Travieso-Torres et al., 2006, 
2008). The design of two single-input single-output controllers for induction motors based 
on adaptive passivity is presented in (Travieso-Torres et al., 2008). Given their nature, the 
two controllers work together with field orientation block. In ((Travieso-Torres et al., 2006), 
a cascade passivity-based control scheme for speed tracking purposes is proposed. The 
scheme is valid for a certain class of nonlinear system even with unstable zero dynamic, and 
it is also useful for regulation and stabilization purposes. A methodology based on energy 
shaping and passivation principles has been applied to a PMSM in (Petrović et al., 2001). 
The interconnection and damping structures of the system were assigned using the Port-
Controlled Hamiltonian (PCH) structure. The resulting scheme consists of a steady state 
feedback to which a nonlinear observer is added to estimate the unknown load torque. The 
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authors in (Qiu & Zhao, 2006) developed a PMSM speed control law based on PCH that 
achieves stabilization via system passivity. In particular, the PCH interconnection and 
damping matrices were shaped so that the physical (Hamiltonian) system structure is 
preserved at the closed-loop level. The difference between the physical energy of the system 
and the energy supplied by the controller forms the closed-loop energy function. A review 
of the fundamental theory of the Interconnection and Damping Assignment Passivity  Based 
Control technique (IDA-PBC) can be found in (Ortega & García-Canseco 2004a, 2004b). In 
the concerned papers it was showed the role played by the three matrices (i.e. 
interconnection, damping, Kernel of system input) of the PCH model in the IDA-PBC 
design. 
The permanent-magnet synchronous motor (PMSM) has numerous advantages over other 
machines that are conventionally used for ac servo drives. It has a higher torque to inertia 
ratio and power density when compared to the Induction Motion or the wound-rotor 
Synchronous Motor, which makes it preferable for certain high-performance applications 
like robotics and aerospace actuators. However, it presents a difficult control problem. This 
is due to the following reasons: first, the dynamical model of PMSM is nonlinear. Second, 
the motor parameters (e.g., stator resistance) can vary considerably from the nominal values. 
Also, the state variable (velocity and current) measurements are often contaminated with a 
considerable amount of noise. Generally, velocity and current sensors are omitted due to the 
considerable saving in cost, and volume. 
In Section 2, we propose a design strategy that utilizes the passivity concept in order to 
develop a combined controller-observer system for Permanent-Magnet Synchronous Motors 
(PMSM) speed control using only rotor position measurement and voltages applied to the 
stator windings. To this end, first a desired energy function for the closed loop system is 
introduced, and then a combined controller-observer system is constructed such that the 
closed loop system matches this energy function. A damping term is included to ensure 
asymptotic stability of the closed loop system. The interesting feature of this approach is the 
fact that it establishes a duality concept between the controller and observer design strategy. 
Such a duality feature is unique for nonlinear systems. Simulation tests on the combined 
controller-observer design are provided to show the feasibility and the performances of this 
method. 
The work of Section 3 is related with previous work concerning the voltage control of 
PMSM (Achour & Mendil, 2007). The PBC has been combined with a variable structure 
compensator (VSC) in order to deal with important parameter uncertainties plant, without 
raising the damping values of the controller. The dynamics of the PMSM were represented 
as feedback interconnection of a passive electrical and mechanical subsystem. The PBC is 
applied only to the electrical subsystem while the mechanical subsystem has been treated as 
a passive perturbation. A new passivity based current controller (PBCC) designed using the 
dq-model of PMSM is proposed in this Section 3. 

2. Passivity based controller-observer design for permanent magnet 
synchronous motors 
In this part, we develop a control algorithm based on the passivity concept that forces the 
PMSM to track desired velocity and torque vectors without the need for velocity and stator 
current measurements, but using only rotor position and stator voltage measurements. 
The passivity-based controller design proceeds as follows. First, we carry out a 
decomposition of the system dynamics as a feedback interconnection of passive subsystems, 
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where the outputs of the forward subsystem are the regulated outputs. Second, we design 
an inner feedback loop that, via the injection of a nonlinear damping term, ensures the 
controlled subsystem defines a strictly passive map from control signals to regulated 
outputs. Third, the passivity-based technique is applied to this subsystem leaving the 
feedback subsystem as a “passive perturbation”. This last step involves the definition of the 
desired closed loop energy function whose associated “target” dynamics evolves on a 
subspace of the state space ensuring zero error tracking. 
The main contribution is in the design of an observer that utilizes the high quality position 
information and voltage for reconstructing the velocity and current signals. The proposed 
observer is inspired from the passivity based controller design concept. The problem is 
tackled by constructing an observer that forces the estimated error to match a desired 
energy function, thereby preserving the passivity property. In addition, for asymptotic 
stabilization, damping has to be included in the loop. The main feature of this approach is in 
the fact that it establishes a concept duality between the controller and observer design 
strategy. Using passivity concept solves stability of the combined controller-observer design. 
We will introduce a desired energy function that consists of two parts, one for the closed 
loop controller dynamic and the other for the closed loop observer dynamic. 
The organization of this Section is as follows: In Subsection. 1.2 we present the two phases 
 model of PMSM described by Euler-Lagrange (EL) equations, and his properties. The 
design procedure and the stability problem of the combined controller-observer are given in 
Subsection. 1.3. Simulation results are presented in Subsection. 1.4. Finally, concluding 
remarks are given in Subsection. 1.5. 

2.1 Permanent-magnet synchronous motor model 
2.1.1 Model 
The PMSM uses surface mounted rare earth magnets. We consider the following 
assumptions: -No significant saliency effects; -negligible damping effects in the rotor; -
negligible saturation effects; -ideal symmetrical phases and sinusoidal distributed phase 
windings; -negligible capacity effects in stator windings, considering rigid shaft and not 
magnetic material in stator. Under the assumptions above, the standard two phases  
model of PMSM obtained in (Ortega et al., 1997) via direct application of EL equation is 
given by: 

 2 e( ) Re e m m eD q W q q q U      (1) 

 ( , )m m m m e m LD q R q q q        (2) 

 2( , ) ( )T
e m m eq q W q q     (3) 

where  
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e e eq q q        is stator current vector; 2( , )m mq q  are the rotor angular position 

and velocity respectively;  (q m ) is the flux linkages due to permanent magnets; Ld ,Lq are 
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authors in (Qiu & Zhao, 2006) developed a PMSM speed control law based on PCH that 
achieves stabilization via system passivity. In particular, the PCH interconnection and 
damping matrices were shaped so that the physical (Hamiltonian) system structure is 
preserved at the closed-loop level. The difference between the physical energy of the system 
and the energy supplied by the controller forms the closed-loop energy function. A review 
of the fundamental theory of the Interconnection and Damping Assignment Passivity  Based 
Control technique (IDA-PBC) can be found in (Ortega & García-Canseco 2004a, 2004b). In 
the concerned papers it was showed the role played by the three matrices (i.e. 
interconnection, damping, Kernel of system input) of the PCH model in the IDA-PBC 
design. 
The permanent-magnet synchronous motor (PMSM) has numerous advantages over other 
machines that are conventionally used for ac servo drives. It has a higher torque to inertia 
ratio and power density when compared to the Induction Motion or the wound-rotor 
Synchronous Motor, which makes it preferable for certain high-performance applications 
like robotics and aerospace actuators. However, it presents a difficult control problem. This 
is due to the following reasons: first, the dynamical model of PMSM is nonlinear. Second, 
the motor parameters (e.g., stator resistance) can vary considerably from the nominal values. 
Also, the state variable (velocity and current) measurements are often contaminated with a 
considerable amount of noise. Generally, velocity and current sensors are omitted due to the 
considerable saving in cost, and volume. 
In Section 2, we propose a design strategy that utilizes the passivity concept in order to 
develop a combined controller-observer system for Permanent-Magnet Synchronous Motors 
(PMSM) speed control using only rotor position measurement and voltages applied to the 
stator windings. To this end, first a desired energy function for the closed loop system is 
introduced, and then a combined controller-observer system is constructed such that the 
closed loop system matches this energy function. A damping term is included to ensure 
asymptotic stability of the closed loop system. The interesting feature of this approach is the 
fact that it establishes a duality concept between the controller and observer design strategy. 
Such a duality feature is unique for nonlinear systems. Simulation tests on the combined 
controller-observer design are provided to show the feasibility and the performances of this 
method. 
The work of Section 3 is related with previous work concerning the voltage control of 
PMSM (Achour & Mendil, 2007). The PBC has been combined with a variable structure 
compensator (VSC) in order to deal with important parameter uncertainties plant, without 
raising the damping values of the controller. The dynamics of the PMSM were represented 
as feedback interconnection of a passive electrical and mechanical subsystem. The PBC is 
applied only to the electrical subsystem while the mechanical subsystem has been treated as 
a passive perturbation. A new passivity based current controller (PBCC) designed using the 
dq-model of PMSM is proposed in this Section 3. 

2. Passivity based controller-observer design for permanent magnet 
synchronous motors 
In this part, we develop a control algorithm based on the passivity concept that forces the 
PMSM to track desired velocity and torque vectors without the need for velocity and stator 
current measurements, but using only rotor position and stator voltage measurements. 
The passivity-based controller design proceeds as follows. First, we carry out a 
decomposition of the system dynamics as a feedback interconnection of passive subsystems, 
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where the outputs of the forward subsystem are the regulated outputs. Second, we design 
an inner feedback loop that, via the injection of a nonlinear damping term, ensures the 
controlled subsystem defines a strictly passive map from control signals to regulated 
outputs. Third, the passivity-based technique is applied to this subsystem leaving the 
feedback subsystem as a “passive perturbation”. This last step involves the definition of the 
desired closed loop energy function whose associated “target” dynamics evolves on a 
subspace of the state space ensuring zero error tracking. 
The main contribution is in the design of an observer that utilizes the high quality position 
information and voltage for reconstructing the velocity and current signals. The proposed 
observer is inspired from the passivity based controller design concept. The problem is 
tackled by constructing an observer that forces the estimated error to match a desired 
energy function, thereby preserving the passivity property. In addition, for asymptotic 
stabilization, damping has to be included in the loop. The main feature of this approach is in 
the fact that it establishes a concept duality between the controller and observer design 
strategy. Using passivity concept solves stability of the combined controller-observer design. 
We will introduce a desired energy function that consists of two parts, one for the closed 
loop controller dynamic and the other for the closed loop observer dynamic. 
The organization of this Section is as follows: In Subsection. 1.2 we present the two phases 
 model of PMSM described by Euler-Lagrange (EL) equations, and his properties. The 
design procedure and the stability problem of the combined controller-observer are given in 
Subsection. 1.3. Simulation results are presented in Subsection. 1.4. Finally, concluding 
remarks are given in Subsection. 1.5. 

2.1 Permanent-magnet synchronous motor model 
2.1.1 Model 
The PMSM uses surface mounted rare earth magnets. We consider the following 
assumptions: -No significant saliency effects; -negligible damping effects in the rotor; -
negligible saturation effects; -ideal symmetrical phases and sinusoidal distributed phase 
windings; -negligible capacity effects in stator windings, considering rigid shaft and not 
magnetic material in stator. Under the assumptions above, the standard two phases  
model of PMSM obtained in (Ortega et al., 1997) via direct application of EL equation is 
given by: 
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the direct and quadrate stator inductance respectively; Dm is the rotor inertia; Rm 0 is the 

mechanical friction; ,
T

U u u     is stator voltage vector; and ,L are the generated and 

load torque respectively. The subscripts (.)e, (.)m, (.)T denotes the electrical, mechanical and 
vector transposition respectively. 

2.1.2 Properties 
In this subsection, we present three properties of the PMSM model, which are useful for the 
methodology of control design. 

2.1.2.1 Passivity property of permanent-magnet synchronous motor 

Lemma 1  

The PMSM represents a passive system, if ,
TT

LU     and ,
TT

e mq q q      are considered 

as inputs and outputs respectively.  
Proof 

The total energy H of the PMSM is: 

 1 1 2( , , ) ( )
2 2

T T
eH q q q q D q q q D qe m m e e m e m m          (4) 

Taking the time derivative of H along the trajectory (1)-(3), we get: 

  ( , , ) ( )T T Td
H q q q q Rq q q qe m m m edt

             (5) 

Integrating  H  from zero to  > 0, and setting 
0

(0) ( )T
m eH q q


        

 , proves the 

passivity of the PMSM. 
2.1.2.2 Passive Feedback Decomposition 

Lemma 2 
The PMSM can be represented as the negative feedback interconnection of the electrical and 
mechanical passive subsystems. 
 

 
Fig. 1. Passive subsystem decomposition. 
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where L32e , L2e are the spaces of  3 and 1 dimension respectively of square integral, 
essentially bounded functions and their extensions.  

Proof  

Considering the total energy He of the electric subsystem e, that is: 

 1
( , ) ( )

2
T TH q q q D q q qe m e e e m ee        (6) 

A similar procedure used above to prove the passivity of PMSM can be used to establish the 

passivity of e, and for mechanical m we consider the energy function 21( )  
2m m m mH q D q   

to prove the passivity property. 
2.1.2.3 Workless forces 
In order to introduce the third property, we note that the model (1)-(3) can be written under 
the following compact form: 

  ( )D q W q q Rq MU         (7) 

Where,    , ;  ,e m e mD diag D D R diag R R   

    2 1 2 2 1 L,0 ;  , ;  0  , -
TT TT

e mM I q q q            

 2 2( ) ( )  ,  ( ) 
TT T

m m m e mW q W q q q W q       (8) 

Based on the passivity property of the PMSM and the relations (1)-(3), we deduce that the 
“workless forces” are given by: 

 2 2 2

2 1 1
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m T
m

W q
C q

W q




 
    

  (9) 

as C (qm ) verifies:           

 (  ) -  (  )T
m mC q C q   (10) 

(i.e., C (qm ) is a skew symmetric matrix.)  
Remark 
In the present of the saliency effects, the “workless forces” are given by: 

 11 12

21 22
 ( , )m

C C
C q q

C C
 

  
 

   (11) 

Where 

 11 1 m
1 (q )
2 mC W q    
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as m (q  ,q )C   verifies:   ( )  ( , )  ( , )T
m mD q C q q C q q     

(i.e.,  (  ( ) - 2  ( , ))mD q C q q  is a skew symmetric matrix). 
The previous identification of the workless forces permitted us to write the relation (7) 
under the following form: 

  ( )mD q C q q Rq MU         (12) 
It is with noting that, these properties have been already derived for Induction machine in 
(Ortega et al., 1996). 

2.2 Problem formulation and design procedure 
2.2.1 Problem formulation 
The control problem can be formulated as follows: Consider the PMSM model (1)-(3) with 
state vector ,  ,  

TT
e m mq q q q      ; inputs U2; regulated outputs  ,  mq  ; measurable output 

qm; immeasurable outputs ( , )T T
e mq q  . The problem consists of constructing an observer-

based controller such that for all smooth desired output function ( )  Lt   , with known 
derivative ( )  Lt   , global torque tracking with internal stability is achieved 

2.2.2 Design procedure 
The steps to follow are mentioned in section 1. We consider the ideal case to simplify the 
procedure, where all outputs are supposed available from measurement, then we design an 
observer to reconstruct the states that we not available. 

2.2.2.1 Passivity approach to controller design 

The desired dynamics must be compatible with the bounded constraints of the PMSM. From 
equations (1)-(3), we deduce the following desired dynamics: 

 *
2( )e e m m e eD q W q q R q U        (13) 

 * * *
2 ( )T

m m m e m m LD q W q q R q         (14) 

Where * * ,  e mq q  is the desired current and desired rotor velocity respectively. 
The error dynamic are described by: 

 *
e e e eD e R e U U     (15) 

 2 ( )   0T
m m m e m mD e W q e R e     (16) 

Where * * , e e e m m me q q e q q        are the current error and rotor speed error respectively. 
The problem is to find a control law U, which ensures ( ) 0tLim e t  , where  ,  

TT
e me e e    . 

To this end, we shape the energy of the closed loop to match a desired energy function, as: 
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 *
e

1( )   e
2

T
e e e eH e e D     (17) 

Taking the time derivative of He
, along the trajectory (15), we get: 

 * *
e( )  ( (U-U )) eT

e e e eH e e R      (18) 
In order to ensure the convergence of the ee to zero, we take: 

 U U   (19) 
Since   0T

e eR R  , we has  

   2*
e min( )   e ( )  ,  tT

e e e e e eH e e R R e t       (20) 
we conclude that: 

 e( )   m  (0)  e t
e ee t e e    (21) 

Where,  

  
 

 
 

max min
e

min max
 0  ,     0e e

e
e e

D R
m

D D
 


 

    .  

 min max. , .   are the minimum and maximum eigenvalues respectively.   

Hence the desired current *
eq is asymptotically attainable. We have the following result:  

Proposition 1 
Let,                                              

 *
1 eU U K e    (22) 

where 1 2 e ,  k   0eK k I  , I2 identity matrix 2x2. 
Then the convergence to the desired state trajectory is faster. 
Proof 

Considering the quadratic function (17), and using the same procedure, we get: 

 1
e( )   m  (0)  e t

e ee t e e    (23) 
Where, 

   
 

min 1
e1

max
   0e

e

R K
D







    (24) 

The control law is: 

 2 1( )e e m m e e eU D q W q q R q K e         (25) 

Remarks 
1. Since, we can not control the magnetic fields from the permanent magnets; it is reasonable 
to expect that we must eliminate the effect on electric subsystem e of the flux linkages due 
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The control law is: 

 2 1( )e e m m e e eU D q W q q R q K e         (25) 

Remarks 
1. Since, we can not control the magnetic fields from the permanent magnets; it is reasonable 
to expect that we must eliminate the effect on electric subsystem e of the flux linkages due 
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to the permanent magnets. Which is seen from (25), the term from the permanent magnets 
must be concealed out a drawback of the scheme. However, this term is a vector in a 
measurable quantity (position). 
2. In the closed loop system, the positive definite matrix K1 increases the convergence of the 
tracking error and overcome the imprecise knowledge of system parameters, if we choose 
high gain ke. 
2.2.2.2 Desired current and desired torque 

The PMSM operating under maximum torque if the direct current id in the general reference 
frame d-q (direct-quadrate) equals to zero. 
Under the above condition, the desired current in  reference frame is chosen as: 

 
p

sin  ( )2 
cos  ( )3 n

m
e

mm

q
q

q




  
  

 
   (26) 

where is the desired torque; np is the number of pole pairs, and m is the amplitude of the 
flux linkage established by the permanent magnet. 
The desired torque is deduced from the desired mechanical dynamic (14), we have: 

 * *
m m m m LD q R q        (27) 

It has been proved in (Kim et al., 1997), that this scheme has two drawbacks, it is an open 
loop scheme (in the speed tracking error), and its convergence rate is limited by the 
mechanical constant time (Dm / Rm ). In (14)  is defined as: 

 *
m m LD q z       (28) 

 m e ,    and  a ,b  0 .z a z b      (29) 

With this choice, the convergence rate of the speed error m m   does not depend only on 
the natural mechanical damping. This rate can be adjusted by means of the positives gains b 
and a have the same role of proportional-derivative (PD) control law. 

Remark 

If, v and eq are considered as input and output, then it is easy to prove the strict passivity of 
the closed loop system. 

 e e e ev D q R q      (30) 

2.2.2.3 A passivity Approach to observer design 

The problem is to construct an auxiliary dynamic system that asymptotically reconstructs 
the current and velocity signals from input-output measurements, i.e., stator voltage U and 
rotor position qm, respectively. To this end we will use a passivity approach. An interesting 
feature of this approach is that it establishes a conceptual duality, between the strategies of 
PMSM controller and observer design. Such a duality feature is rather unique for nonlinear 
systems. 
Based on the physical structure of the PMSM model (1)-(3) and the controller structure (25), 
we introduce the current and velocity observer systems as follows: 
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 2ˆ ˆ ˆ( )e e m m e e e eD q W q q R q U L q         (31) 

 2ˆ ˆ ˆ( )T
m m m e m m L v mD q W q q R q L q         (32) 

where ˆ ˆ ˆ ,  
TT

e mq q q   
   is the observer state; ˆ ˆ , e mq q   represents the estimated current and 

estimated velocity respectively; ˆ ˆ , e e e m m mq q q q q q          are the estimated current error and 
estimated velocity error; where: 

   0 ,     0T
e e vL L L     (33) 

The model (31), (32) can be written under the following form: 

 ˆ ˆ ˆ ( )mD q C q q Rq MU Lq          (34) 

Where  e v ,   and  L L  , L
TT

e mq q q diag   
      

From the equation (12) and (34), we deduce the observer error dynamic: 

 3 1( ) ( ) 0mD q C q q R L q           (35) 
In order to prove the asymptotic stability of the observer estimated error; we choose the 
following desired energy error function: 

 * 1(q)   q
2

T
oH q D       (36) 

Taking the time derivative of Ho
, along the trajectory (35), we get: 

 *(q)  ( ) qT
oH q R L          (37) 

Since   0 , q 0 TL L   is asymptotically stable. 
Following the same procedure used in section II.2.1, we conclude that:  

  
o( )   m  (0)   ,  t.o tq t q e       (38) 

where  
 

 
 

max min
o

min max
 0  ,     0o

D R L
m

D D
 


 


     

We conclude that, the observer (34) reconstructs asymptotically the current and velocity 
signals. 
Remark 

We can notice that the gain matrix L has the same effect than that of matrix K1 in (25), i. e; L 
is the damping that is injected in the observer system to ensure the asymptotic stability of 
the observation error. 
2.2.2.4 Combined Controller-Observer Design 
The desired dynamics, when only rotor position is measurable are: 

 *
2 ˆ( )  e e m m e eD q W q q R q U       (39) 
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and a have the same role of proportional-derivative (PD) control law. 

Remark 

If, v and eq are considered as input and output, then it is easy to prove the strict passivity of 
the closed loop system. 

 e e e ev D q R q      (30) 

2.2.2.3 A passivity Approach to observer design 

The problem is to construct an auxiliary dynamic system that asymptotically reconstructs 
the current and velocity signals from input-output measurements, i.e., stator voltage U and 
rotor position qm, respectively. To this end we will use a passivity approach. An interesting 
feature of this approach is that it establishes a conceptual duality, between the strategies of 
PMSM controller and observer design. Such a duality feature is rather unique for nonlinear 
systems. 
Based on the physical structure of the PMSM model (1)-(3) and the controller structure (25), 
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 2ˆ ˆ ˆ( )e e m m e e e eD q W q q R q U L q         (31) 

 2ˆ ˆ ˆ( )T
m m m e m m L v mD q W q q R q L q         (32) 

where ˆ ˆ ˆ ,  
TT

e mq q q   
   is the observer state; ˆ ˆ , e mq q   represents the estimated current and 

estimated velocity respectively; ˆ ˆ , e e e m m mq q q q q q          are the estimated current error and 
estimated velocity error; where: 

   0 ,     0T
e e vL L L     (33) 

The model (31), (32) can be written under the following form: 

 ˆ ˆ ˆ ( )mD q C q q Rq MU Lq          (34) 

Where  e v ,   and  L L  , L
TT

e mq q q diag   
      

From the equation (12) and (34), we deduce the observer error dynamic: 

 3 1( ) ( ) 0mD q C q q R L q           (35) 
In order to prove the asymptotic stability of the observer estimated error; we choose the 
following desired energy error function: 

 * 1(q)   q
2

T
oH q D       (36) 

Taking the time derivative of Ho
, along the trajectory (35), we get: 

 *(q)  ( ) qT
oH q R L          (37) 

Since   0 , q 0 TL L   is asymptotically stable. 
Following the same procedure used in section II.2.1, we conclude that:  

  
o( )   m  (0)   ,  t.o tq t q e       (38) 

where  
 

 
 

max min
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min max
 0  ,     0o

D R L
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D D
 


 


     

We conclude that, the observer (34) reconstructs asymptotically the current and velocity 
signals. 
Remark 

We can notice that the gain matrix L has the same effect than that of matrix K1 in (25), i. e; L 
is the damping that is injected in the observer system to ensure the asymptotic stability of 
the observation error. 
2.2.2.4 Combined Controller-Observer Design 
The desired dynamics, when only rotor position is measurable are: 

 *
2 ˆ( )  e e m m e eD q W q q R q U       (39) 
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 * * *
2 ( )  T

m m m e m m L m mD q W q q R q k e         (40) 
Where, km > 0. 
We have the following result: The controller law becomes: 

 2 2ˆ( )e e m m e e eU D q W q q R q K e        (41) 
In order to establish the stability of the closed loop system with presence of the observer, we 
consider equation of state error (35). We get from (25), (16), (40) and (41): 

 ( ) ( ) 0m mD e G q e N q q      (42) 
Where, 
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Proposition 2 
Consider the PMSM model (1)-(3) in closed loop with the observer-controller (32)-(33) and 
(41)-(43). Then, the closed loop system is asymptotically stable provided that: 
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2v2
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l  4l 4
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k R

k R
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 (43) 

Proof 

To prove the convergence of the vector error T Te  , q
T

oz    
 , let consider the desired energy 

function error as: 

 1 1( ,  )   
2 2

cl T T
coH e q e D e q D q        (44) 

The time derivative of cl
coH  along the trajectory (35), (42), gives: 

 cl
co ( ) e-  ( ) q- ( ) qT T T

m mH e G q e N q q R L         (45) 
Which can be written as, 

 cl T
co o oH z Q z    (46) 

Where, 
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m m

T
m

G q N q
Q
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Then, if matrix Q is positive, we can conclude that the closed loop system is asymptotically 
stable. 
Matrix Q is positive if and only if the following inequality is satisfied: 

 1( ) (R L)- ( ) ( )  0
4

T
m m mG q N q N q    (47) 

which can be written after calculations; 

 11 12

21 22

1 ( ) (R L)- ( ) ( )
4

T
m m m

F F
G q N q N q

F F
 

   
 

  

Where, 

 11 e 2 e 2 2 2 2 2 e 2 e 2 2 2 2 2
1 1F  ( R )( R ) ( )R ( R ) ( )
4 4

T T
e e e e e eK L L L W W K L L L W W           

 2
12 24

vlF W   

 2
21 2 2 e 2( R )

4
T Tv

e
lF W W L     

 
2

2
22 m 2 m 2 ( R )( R )

4
v

m v
lF k l      

for simplicity, we have chosen:   

 2 2 2 2 2 2 2 e2 ,   , where k 0;  l   0 .e eL l I K k I      
We note that if conditions see that the matrix Q is positive definite if conditions (43) are 
satisfied.  
A block diagram representing the passivity-based method is show in Fig. 2. 

2.3 Simulation results 
The performance of the controller-observer system was investigated by simulation. We used 
a PMSM model, whose parameters are given in the Appendix 1. 
The filter and damping parameters taken in the simulation are; a=100; b=87.5; ke2=100; 
le2=1000 and lv2=1500. We have limited the desired stator current and chosen the initial 
observer conditions equal to zero. 
Fig. 3 shows the time response, of the motor, where a load torque L of 1.35 Nm is applied to 
the PMSM at the starting phase and we take a speed reference of 150 rad/s. The rotor speed 
converges with of setting time of 0.4s. The estimated observer current and speed errors 
converge to zero. 
Fig. 4 illustrate the time response of the closed loop system without load torque, and speed 
reference of (150 rad/s if t<=0.65 and –150 rad/s if t>0.65). We can see that the rotor velocity 
tracks its reference, and the estimation error converges. 
In Fig. 5, we show the robustness of the combined controller-observer system. We take these 
uncertainties in the parameters of PMSM (3Ra, 2Rm, 2Ld, 2Lq, 1.5Dm, 0.75m,). We note that, 
the rotor speed converges, but the setting time is increased lightly.  
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Fig. 2. Block diagrams for the passivity-based method. 

 
 

 
Fig. 3. Control of speed with reference 150 rd/s; a) Estimated current error; b) Estimated 
velocity error.     
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Fig. 4. Control of speed with reference (150 rd/s if t<=0.65 and –150 rd/s if t>0.65),  
a) Estimated current error ; b) Estimated velocity error. 

 

 
Fig. 5. Robustness test. 

3. Passivity based controller design for a permanent magnet synchronous 
motor in dq-frame 
Within this Section, a new passivity-based controller designed to force the motor to track 
time-varying speed and torque trajectories is presented. Its design avoids the using of the 
Euler-Lagrange model and destructuring since it uses a flux-based dq-modelling, 
independent of the rotor angular position. This dq-model is obtained through the three 
phase abc-model of the motor, using Park transform. The proposed control law does not 
compensate the model workless force terms which appear in the machine dq-model, as they 
have no effect on the system energy balance and they do not influence the system stability 
properties. Another feature is that the cancellation of the plant primary dynamics and 
nonlinearities is not done by exact zeroing, but by imposing a desired damped transient. 
The effectiveness of the proposed control is illustrated by numerical simulation results. 
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The Section 2 is organized as follows. The PMSM dq-model and the inner current loop 
design are presented at Subsection 2.2. In Subsection 3, the passivity property of the PMSM 
in the dq-reference frame is introduced. Subsection 2.4 deals with the computation of the 
current, flux and the torque references. The passivity property of the closed loop system and 
the resulting control structure are given in Subsections 2.5 and 2.6, respectively. Simulation 
results are presented in Subsection 2.7. Subsection 2.8 concludes this Section. The proof of 
the passivity property of the PMSM in the dq frame is given. The analysis and proof of the 
exponential stability of the flux tracking error is introduced. Subsections 2.5 contain the 
proof of the passivity property of the closed loop system.     

3.1 Permanent-magnet synchronous motor model in dq frame 
The PMSM uses buried rare earth magnets. Its electrical behaviour is described here by the 
well known dq model (Krause et al., 2002), given by Equation (48): 

 dq dq dq dq p m dq dq p m f dqL i R i n L i n v           (48) 

In this equation the following notations have been employed: 

0
0
d

dq
q

L
L L

 
  
 

; d
dq
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0

0
S

dq
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R
R

R
 

  
 

; 
0
f

f



 

  
 

; 
0 1
1 0

 
   

 
; d

dq
q

v
v v

 
  
 

 

In the above-presented relations, Ld and Lq: are the stator inductances in dq frame, RS: is the 
stator winding resistance, f: is the flux linkages due to permanent magnets, np: is the 
number of pole-pairs, m: is the mechanical speed, vd and vq: are the stator voltages in dq 
frame, id and iq: are the stator currents in dq frame. 
The mechanical equation of the PMSM is given by: 

 m VF m e LJ f        (49) 
where J is the rotor moment of inertia, fVF is the viscous friction coefficient, and L is the load 
torque.  
The electromagnetic torque e can be expressed in the dq frame as follows: 

    3
2e p d q d q f qn L L i i i       (50) 

The rotor position m is given by Equation (51):  

 m m    (51) 
where d and q are the flux linkages in dq frame. 
The interdependence between the flux linkage motor dq and the current vector  dqi  can be 
expressed as follow (Krause et al., 2002): 

 d
dq dq f

q
L i





 

  
 

  (52) 

where d and q are the flux linkages in dq frame. 
Substituting dqi  value obtained by Relation (52) in Equations (48) and (50), yields: 
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          dq p m dq dq dq dqn v R i        (53) 

 3
2e p dq dqn i      (54) 

Current controlled dq-model of PMSM 

Let us define the state model of the PMSM using the state vector 
T

d q m m       and 

Equations (49), (51), (53) and (54). The reference value of the current vector idq is denoted by: 

 d
dq

q

i
i

i






 
 
  

  

The proportional-integral (PI) current loops, used to force 
T

d qi i    to track the 

reference
T

d qi i  
  , are of the form of equations below: 

    
0

d ,   ,  0
t

d dp d d di d d dp div k i i k i i t k k       (55) 

    
0

d ,   ,  0
t

q qp q q qi q q qp qiv k i i k i i t k k        (56) 

Assuming that by the proper choice of positive gains kdp, kdi, kqp, kqi, these loops work 
satisfactory. Then, the reference vector dqi  can be considered as control input for the PMSM 

model. This result on the simplified dynamic dq-model of the PMSM given below: 

 dq p m dq dq dqn R i         (57) 

 m VF m e LJ f        (58) 

 m m    (59) 

 3
2

T
e p dq dqn i       (60) 

This simplified form of the PMSM model is further used to design the control input dqi  

using the passivity approach. 

3.2 Passivity property of dq-model 
Lemma 3 

The PMSM represents a strictly passive system if the reference vector, of the stator currents, 

dqi  and the flux linkage vector, dq  are considered as the input and the output vectors, 

respectively. 
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Proof 

First, multiply both sides of Equation (57) by
T
dq

sR


, yields 

  d1
2 d

T
dq dqT

dq dq
s

i
R t

 
      (61) 

where T
dq  is the transposed of vector dq . 

Note that the term p m T
dq dq

s

n
R


   does not appear on the right-hand side of (61), since 

0T
dq dq    due to skew-symmetric property of the matrix  . Integrating both sides of 

Equation (61), yields  

      
0

1 1d ( ) (0)
2 2

t
T T T
dq dq dq dq dq dq

s s
i t t

R R
          (62) 

Consider that the dqi  is the input vector and dq  is the output vector. Then, with positive 
definite function 

 1
2

T
f dq dqV     (63) 

the energy balance Equation (62) of the PMSM becomes 

  
0

1 1d ( ) (0)
t

T
dq dq f f

s s
i t V t V

R R
       (64) 

This means that the PMSM is a strictly passive system (Ortega et al., 1997). Thus, the term 
1 T

p m dq dq dqn R     has no influence on the energy balance and on the asymptotic stability of 
the PMSM also; it is identified as the workless forces term.      

3.3 Analysis of tracking errors convergence using passivity-based method  
The desired value of the flux linkage vector dq  is: 

 d
dq

d











 
  
  

  (65) 

and the difference between dq  and dq   representing flux tracking error, as: 

 fd
f dq dq

fq

e
e

e
   

   
  

  (66) 

Rearranging Equation (66) 

 dq f dqe      (67) 
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Substituting Equation (16) in Equation (68), yields 

  f p m f dq dq dq p m dqe n e R i n               (68) 

The aim is to find the control input dqi  which ensures the convergence of error vector ef to 
zero. The energy function of the closed-loop system is defined as 

 1( )
2

T
f f fV e e e   (69) 

Taking the time derivative of  fV e  along the Trajectory (17), gives 

    T
f f dq dq dq p m dqV e e R i n           (70) 

Note that the term 0T
p m f fn e e    due to the skew-symmetric property of the matrix . 

The convergence to zero of the error vector ef is ensured by taking  

  1 1
dq dq dq p m dq dq f fi R n R K e             (71) 

where 
0

0
fd

f
fq

k
K

k
 

  
  

 with 0fdk   and 0fqk  . 

The control input signal, dqi  consists of two parts: the term which encloses the reference 
dynamics and the damping term injected to make the closed-loop system strictly passive. 
The PBCC ensures the exponential stability of the flux tracking error.  

3.3.1 Proof of the exponential stability of the flux tracking error 
Consider the quadratic Function (69) and its time derivative in Equation (70). Substituting 

dqi  of (71) in (70), yields 

     2
min ( ) ,   t 0T

f f f f f fV e e K e K e t        (72) 

where  min 0fK   is the minimum eigenvalue of the matrix Kf and .  is the standard 
euclidian vector norm.  
The square of the standard Euclidian norm of the vector ef is given as: 

 
2 2 2 T

f fd fq f fe e e e e     (73) 

Which combined with Relation (69), gives 

 
21( ) ,  t 0

2
T

f f f fV e e e e      (74) 

Multiplying both sides of (74) by  min( )fK , leads to 

       2
min min( ) ,  t 0f f f fK V e K e        (75) 
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Proof 

First, multiply both sides of Equation (57) by
T
dq

sR


, yields 

  d1
2 d

T
dq dqT

dq dq
s

i
R t

 
      (61) 

where T
dq  is the transposed of vector dq . 

Note that the term p m T
dq dq

s

n
R


   does not appear on the right-hand side of (61), since 

0T
dq dq    due to skew-symmetric property of the matrix  . Integrating both sides of 

Equation (61), yields  

      
0

1 1d ( ) (0)
2 2

t
T T T
dq dq dq dq dq dq

s s
i t t

R R
          (62) 

Consider that the dqi  is the input vector and dq  is the output vector. Then, with positive 
definite function 

 1
2

T
f dq dqV     (63) 

the energy balance Equation (62) of the PMSM becomes 

  
0

1 1d ( ) (0)
t

T
dq dq f f

s s
i t V t V

R R
       (64) 

This means that the PMSM is a strictly passive system (Ortega et al., 1997). Thus, the term 
1 T

p m dq dq dqn R     has no influence on the energy balance and on the asymptotic stability of 
the PMSM also; it is identified as the workless forces term.      

3.3 Analysis of tracking errors convergence using passivity-based method  
The desired value of the flux linkage vector dq  is: 

 d
dq

d











 
  
  

  (65) 

and the difference between dq  and dq   representing flux tracking error, as: 

 fd
f dq dq

fq

e
e

e
   

   
  

  (66) 

Rearranging Equation (66) 
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which combined with Relation (72), gives 

    min ( ),  t 0f f fV e K V e      (76) 

Integrating both sides of the Inequality (76), yields 

 ( ) (0) ,  t 0f t
fV e V e      (77) 

where  min 0f fK   . Considering the Relation (74) at t=0, and multiplying it by f te  , 

gives 

 
2

(0) (0)f ft t
fV e e e     (78) 

which combined with Relation (77), leads to the following inequality: 

 
2

( ) (0) ,  t 0f t
f fV e e e      (79) 

The Inequalities (74) and (79) give that: 

 2( ) (0)
f t

f fe t e e



   (80) 

The Equation (80) shows that, the flux tracking error ef is exponentially decreasing with a 
rate of convergence of f/2.                                                                       

3.3.2 Flux reference computation 
The computation of the control signal dqi  requires the desired flux vector dq  . If the direct 
current id in the dq frame is maintained equal to zero, then the PMSM operates under 
maximum torque. Under this condition and using Equation (52), results in 

 d f     (81) 

 q q qL i     (82) 

The torque set-point value e
  corresponding to dq   is given by Equation (54). Substituting 

d   from (81) and qi
  from (82) in (54), it results that: 

 3
2

p f
e q

q

n
L


     (83) 

Therefore the value of the flux reference is deduced as 

 
2
3

q
q e

p f

L
n

 


    (84) 

3.3.3 Torque reference and load torque computation 
The desired torque e

  is computed by the expressions (28)-(29). 

 
Passivity Based Control for Permanent-Magnet Synchronous Motors 

 

389 

In practical applications, the load torque is unknown, therefore it must be estimated. For 
that purpose, an adaptive law (Kim et al., 1997) has been used: 

 Lˆ ( ),     k 0L L m mk        (85) 

3.4 Passivity property of the closed loop system in the general dq reference frame 
Lemma 4 
The closed loop system represents a strictly passive system if the desired dynamic output 
vector given by  

  1
dq dq p m dqR n           (86) 

and the flux linkage vector dq  are considered as input and output, respectively.                    

Proof 

Substituting the control input vector dqi  from (71) in Equation (57), gives 

 dq p m dq dq f fn R K e          (87) 

where   is given by Relation (86). 

Multiplying both sides of Equation (87) by 
T
dq

sR


 

 
 d1

2 d

T
dq dqT T

dq dq f f
s

K e
R t

 
       (88) 

The term p m T
dq dq

s

n
R


   disappears from (88), since 0T
dq dq    due to skew- 

-symmetric property of the matrix  . According to Relation (80), the flux tracking error ef is 
exponentially decreasing. Thus, the term T

dq f fK e  becomes insignificant. And Equation (88) 
is writes as  

 
 d1

2 d

T
dq dqT

dq
sR t

 
      (89) 

Integrating both sides of Equation (45), yields  

      
0

1 1d ( ) (0)
2 2

t
T T T
dq dq dq dq dq

s s
t t

R R
          (90) 

Let us consider the positive definite function Vf  from Relation (67). The Energy Balance (90) 
of the closed loop system becomes 

  
0

1 1d ( ) (0)
t

T
dq f f

s s
t V t V

R R
       (91) 
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which combined with Relation (72), gives 

    min ( ),  t 0f f fV e K V e      (76) 

Integrating both sides of the Inequality (76), yields 

 ( ) (0) ,  t 0f t
fV e V e      (77) 

where  min 0f fK   . Considering the Relation (74) at t=0, and multiplying it by f te  , 

gives 

 
2

(0) (0)f ft t
fV e e e     (78) 

which combined with Relation (77), leads to the following inequality: 

 
2

( ) (0) ,  t 0f t
f fV e e e      (79) 

The Inequalities (74) and (79) give that: 

 2( ) (0)
f t

f fe t e e



   (80) 

The Equation (80) shows that, the flux tracking error ef is exponentially decreasing with a 
rate of convergence of f/2.                                                                       

3.3.2 Flux reference computation 
The computation of the control signal dqi  requires the desired flux vector dq  . If the direct 
current id in the dq frame is maintained equal to zero, then the PMSM operates under 
maximum torque. Under this condition and using Equation (52), results in 

 d f     (81) 

 q q qL i     (82) 

The torque set-point value e
  corresponding to dq   is given by Equation (54). Substituting 

d   from (81) and qi
  from (82) in (54), it results that: 

 3
2

p f
e q

q

n
L


     (83) 
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q
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  is computed by the expressions (28)-(29). 
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In practical applications, the load torque is unknown, therefore it must be estimated. For 
that purpose, an adaptive law (Kim et al., 1997) has been used: 
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2 d
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Let us consider the positive definite function Vf  from Relation (67). The Energy Balance (90) 
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The previous relation shows that, the closed-loop system is a strictly passive (Ortega et al., 

1997). Thus, the term p m T
dq dq

s

n
R


   has no influence on the energy balance and the 

asymptotic stability of the closed-loop system; it is identified as the workless forces term.                                

3.5 Passivity based current controller structure for PMSM 
The design procedure of the passivity-based current controller for PMSM leads to control 
structure described by the block diagram in Fig. 6. It consists of three main parts: the load 
torque estimator given by Equation (85), the desired dynamics expressed by the Relations 
(28)-(29), (81)-(85), and the controller given by Equations (55), (56) and (71). In this design 
the imposed flux vector, dq  , is determined from maximum torque operation conditions 
allowing the computation of the desired currents dqi . Furthermore, the load torque is 
estimated through speed error, and directly taken into account in the desired dynamics. 
The inner loops of the PMSM control are based on well known proportional-integral 
controllers. Park transform is used for passing electrical variables between the three-phase 
and dq frame. 
The actuator used in the control application is based on a PWM voltage source inverter. 
Voltage, currents, rotational speed and PMSM angular position are considered measurable 
variables. 

3.6 Simulation results 
The parameters of the PMSM used for testing the previously exposed control structure are 
given in Appendix. 2. 
The plant and its corresponding control structure of Fig.6 are implemented using Matlab 
and Simulink software environment. It employs the PMSM model represented by the 
Equations (48)-(51) whose parameters are given in appendix 2. The chosen solver is based on 
Runge-Kutta algorithm (ODE4) and employs an integration time step of 10-4 s. The 
parameter values of the control system are determined using the procedures detailed in 
Subsections 2.2 and 2.4 as follows. From the imposed pole locations, the gains of the current 
PI controller are computed as: kdp=95, kdi=0.85, kqp=95, and kdi=0.8. The gains concerning 
the desired torque are set at a=75 and b=400 using pole placement method also. The 
damping parameters values have been obtained by using a trial-and-error procedure 
starting from guess values based on the stability Condition (71); their final values are kfd = 
kfq = 650. The gain of the load torque adaptive law is set to kL=6, value which ensures the 
best asymptotic convergence of the speed error. 
In all tests performed in this study, the following signals have been considered as 
representative for performance analysis: rotational speed (Fig. 7(a)), line current (Fig. 7(b)), 
electromagnetic torque (Fig. 7(c)), the stator voltages in dq frame (Fig. 7(d)), zoom of voltage 
at the output of the inverter (Fig. 7(e)), and zoom of line current (Fig. 7(f)). Fig. 7 shows the 
motor response to square speed reference signal with magnitude ±150 rad/s. This study 
concerns the robustness test of the designed control system to disturbances. To this end, a 
load torque step of L=10 Nm has been applied at time 0.5 second and has been removed at 
time 4.5 seconds (see Fig. 7). The results of Fig. 7 show that the response of the rotor speed 
to the disturbance is quite and the electromagnetic torque, e, have been increased to a value 
corresponding to the load applied. The rotational speed and line current tracks quickly the 
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reference, without overshoot and all other signals are well shaped. The peaks visible on the 
electromagnetic torque evolution are due to high gradients imposed to the rotational speed. 
In practice, these peaks can be easily reduced by limiting the speed reference changing rate 
and by limiting the imposed current 

qi  value. However, such situation has been chosen for 

a better presentation of the control law capabilities and performances. 
 
 

 
 
 

Fig. 6. The block diagram for the passivity-based current controller.  
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Fig. 7. Motor response to square speed reference signal with a load torque step of 10 Nm 
from t=0.5s to t=4.5s. 
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Fig. 8. Motor response to step reference with a change of +50% of the stator winding 
resistance Rs and a change of +100% of the  inertia moment J. 

A test of robustness at parameter changes has been performed. As presented in Fig. 8, a 
simultaneous change of +50% of the stator winding resistance Rs and +100% of the moment 
inertia J. The change of the stator winding resistance, Rs, affects slightly the dynamic motor 
response. This is due to the fact that the electrical time constant f of closed-loop system 
appearing in Equation (80) is compensated by the imposed damping gain, Kf, from Equation 
(71). However, a change of +100% inertia moment J increases the mechanical time constant 
and hence the rotor speed settling time (see Fig. 2.5). The designed PBCC is based only on 
the electrical part of the PMSM and has no direct compensation effect on the mechanical 
part. 
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4. Conclusion 
In the section 2, a strategy for designing PMSM control system that requires only rotor 
position and stator voltage measurements was presented. To this end, the passivity 
approach to design a controller-observer is adopted. It was shown that this strategy can 
provide asymptotically stabilizing solutions to the output feedback motor tracking problem. 
It is shown from simulation results that the robustness of the combined controller-observer 
with respect to the load and model uncertainties. This is mainly due to the fact that both of 
the controller and observer exploit the physical structure of the PMSM system and the 
injection of the high damping. 
A new passivity-based speed control law for a PMSM has been developed in the section 3. 
The proposed control law does not compensate the model workless force terms as they have 
no effect on the system energy balance. Therefore, the identification of these terms is a key 
issue in the associated control design. Another feature is that the cancellation of the plant 
primary dynamics is not done by exact zeroing but by imposing a desired damped transient. 
The design avoids the using of the Euler-Lagrange model and destructuring (singularities 
effect) since it uses a flux-based dq-modelling, independent of the rotor angular position. 
The inner current control loops which have been built using classical PI controllers preserve 
the passivity property of the current-controlled synchronous machine. 
Unlike the majority of the nonlinear control methods used in the PMSM field, this control 
loop compensates the nonlinearities by means of a damped transient. Its computation aims 
at imposing the currents set-points based on the flux references in the dq-frame. These latter 
variables are computed based on the load torque estimation by imposing maximum torque 
operation conditions. 
The speed control law contains a damping term ensuring the system stability and the 
adjustment of the tracking error convergence speed. The obtained closed-loop system allows 
exponential zeroing of the speed error, also preserving the passivity property. 
Simulation studies show the feasibility and the efficiency of the proposed controller. This 
controller can be easily included into control structures developed for current-fed induction 
motor commonly used in industrial applications. Its relatively simple structure should not 
involve significant hardware and software implementation constraints. 

Appendix 1 

Ra= 2 ; Rm ; 0.00019 Nm/rd/s; m =0.2 Wb ; np=2 ; Ld=3.1 mH; Lq= 3.1 mH; Dm=0.024 
Kgm2; In=15 A; Vn=250 V; Pn=3.75 KW; N=4000 r n/mn. 
Appendix 2 

Rated power = 6 Kw; Rated speed = 3000 rpm; Stator winding resistance = 173.77 e-3  ; 
Stator winding direct inductance = 0.8524 e-3 H; Stator winding quadrate inductance = 
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4. Conclusion 
In the section 2, a strategy for designing PMSM control system that requires only rotor 
position and stator voltage measurements was presented. To this end, the passivity 
approach to design a controller-observer is adopted. It was shown that this strategy can 
provide asymptotically stabilizing solutions to the output feedback motor tracking problem. 
It is shown from simulation results that the robustness of the combined controller-observer 
with respect to the load and model uncertainties. This is mainly due to the fact that both of 
the controller and observer exploit the physical structure of the PMSM system and the 
injection of the high damping. 
A new passivity-based speed control law for a PMSM has been developed in the section 3. 
The proposed control law does not compensate the model workless force terms as they have 
no effect on the system energy balance. Therefore, the identification of these terms is a key 
issue in the associated control design. Another feature is that the cancellation of the plant 
primary dynamics is not done by exact zeroing but by imposing a desired damped transient. 
The design avoids the using of the Euler-Lagrange model and destructuring (singularities 
effect) since it uses a flux-based dq-modelling, independent of the rotor angular position. 
The inner current control loops which have been built using classical PI controllers preserve 
the passivity property of the current-controlled synchronous machine. 
Unlike the majority of the nonlinear control methods used in the PMSM field, this control 
loop compensates the nonlinearities by means of a damped transient. Its computation aims 
at imposing the currents set-points based on the flux references in the dq-frame. These latter 
variables are computed based on the load torque estimation by imposing maximum torque 
operation conditions. 
The speed control law contains a damping term ensuring the system stability and the 
adjustment of the tracking error convergence speed. The obtained closed-loop system allows 
exponential zeroing of the speed error, also preserving the passivity property. 
Simulation studies show the feasibility and the efficiency of the proposed controller. This 
controller can be easily included into control structures developed for current-fed induction 
motor commonly used in industrial applications. Its relatively simple structure should not 
involve significant hardware and software implementation constraints. 
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