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Preface 

The fundamental Physics of the 20th century was constructed basically from two main
theories, general relativity and quantum theory. The later allowed the construction of
the standard model which describes three of the four known fundamental interactions 
in Nature, the exception being the gravity interaction. Unfortunately, general relativity
and quantum theory have not been unified into a single coherent description of
gravity in the microscopic level yet. The gravity quantization problem exists for almost
one century and the final answer is yet unknown. Quantum gravity can then be 
considered as one of the major problems in fundamental Physics.

Many techniques to deal with the quantum nature of gravity have been developed 
during the last century. For instance, we can name the following techniques, popular 
among physicists: Canonical quantization, higher derivative gravity, Palatini-Cartan 
formalisms, gauge theories of the Einstein-Cartan type, Metric-affine gravities and,
perhaps the most popular, the string theory. In addition to the above mentioned 
techniques, one can also refer to loop quantum gravity, spin foam quantum gravity,
Euclidean quantum gravity and Horava-Lifshitz gravity as emergent gravity models 
that may describe quantum gravity. All of those techniques resulted in a massive
production of interesting scientific texts.

This book presents a series of selected chapters written by renowned authors with the 
objective to provide an overview and comparison of the various quantum gravity 
theories. Each chapter treats gravity and its quantization through known and 
alternative techniques. The book also describes the mathematical models that have
provided a framework for the themes here presented. Due to the authors efforts on 
writing clear yet concise texts, the reader will find each chapter very elucidative.
Moreover, all contributions on this book consist on new relevant results on quantum
gravity, which makes Quantum Gravity an useful book not only for beginners, but also 
for specialists of the field.

Finally, I wish to express my acknowledgements to the authors for their kindness on 
attending my requests regarding the format of each chapter and for the time spent to



Preface 

The fundamental Physics of the 20th century was constructed basically from two main 
theories, general relativity and quantum theory. The later allowed the construction of 
the standard model which describes three of the four known fundamental interactions 
in Nature, the exception being the gravity interaction. Unfortunately, general relativity 
and quantum theory have not been unified into a single coherent description of 
gravity in the microscopic level yet. The gravity quantization problem exists for almost 
one century and the final answer is yet unknown. Quantum gravity can then be 
considered as one of the major problems in fundamental Physics. 

Many techniques to deal with the quantum nature of gravity have been developed 
during the last century. For instance, we can name the following techniques, popular 
among physicists: Canonical quantization, higher derivative gravity, Palatini-Cartan 
formalisms, gauge theories of the Einstein-Cartan type, Metric-affine gravities and, 
perhaps the most popular, the string theory. In addition to the above mentioned 
techniques, one can also refer to loop quantum gravity, spin foam quantum gravity, 
Euclidean quantum gravity and Horava-Lifshitz gravity as emergent gravity models 
that may describe quantum gravity. All of those techniques resulted in a massive 
production of interesting scientific texts. 

This book presents a series of selected chapters written by renowned authors with the 
objective to provide an overview and comparison of the various quantum gravity 
theories. Each chapter treats gravity and its quantization through known and 
alternative techniques. The book also describes the mathematical models that have 
provided a framework for the themes here presented. Due to the authors efforts on 
writing clear yet concise texts, the reader will find each chapter very elucidative. 
Moreover, all contributions on this book consist on new relevant results on quantum 
gravity, which makes Quantum Gravity an useful book not only for beginners, but also 
for specialists of the field. 

Finally, I wish to express my acknowledgements to the authors for their kindness on 
attending my requests regarding the format of each chapter and for the time spent to 



XII Preface

produce an important contribution to the book Quantum Gravity. I am also thankful to 
Ms. Daria Nahtigal for her patience with me and dedication to the book.  

February 2012 

Rodrigo F. Sobreiro 
Fluminense Federal University 

Instituto de Fisica, Campus da Praia Vermelha, 
Avenida General Milton Tavares de Souza s/n, 24210-346, 

Niteroi, RJ,  
Brasil 



1 

Anomalous Gravitational Vacuum Fluctuations 
Which Act as Virtual Oscillating Dipoles 

Giovanni Modanese 
1University of Bolzano 

2Inst. for Advanced Research in the Space, Propulsion & Energy Sciences 
Madison, AL 

1Italy 
 2USA 

1. Introduction  
In this work we would like to review some concepts developed over the last few years: that 
the gravitational vacuum has, even at scales much larger than the Planck length, a peculiar 
structure, with anomalously strong and long-lasting fluctuations called “zero-modes”; and 
that these vacuum fluctuations are virtual particles of negative mass and interact with each 
other, leading to the formation of weakly bound states. The bound states make up a 
continuum, allowing at each point of spacetime the local excitation of the gravitational 
vacuum through the coupling with matter in a coherent state. The spontaneous or 
stimulated decay of the excited states leads to the emission of virtual gravitons with spin 1 
and large p/E ratio. The main results on the zero-modes and their properties have been 
given in (Modanese, 2011), but in this work we expand and discuss in physical terms several 
important details concerning the zero-mode interactions, the dynamics of virtual particles 
with negative mass and the properties of virtual gravitons. 

Technically, our approach is based on the Lorenzian path integral of Einstein gravity in the 
usual metric formulation. We take the view that any fundamental theory of gravity has the 
Einstein action as its effective low-energy limit (Burgess, 2004). The technical problem of the 
non-renormalizability of the Einstein action is solved in effective quantum gravity through 
the asymptotic safety scheme (Niedermaier & Reuter, 2006; Percacci, 2009). According to 
this method, gravity can be nonperturbatively renormalizable and predictive if there exists a 
nontrivial renormalization group fixed point at which the infinite ultraviolet cutoff limit can 
be taken. All investigations carried out so far point in the direction that a fixed point with 
the desired properties indeed exists.  

An important feature of the path integral approach is that it allows a clear visualization of 
the metric as a dynamical quantum variable, of which one can study averages and 
fluctuations also at the non-perturbative level. It is hard, however, to go much further than 
formal manipulations in the Lorenzian path integral; after proving the existence of the zero-
modes we resort to semi-classical limits and standard perturbation theory. This method is 
clearly not always straightforward. At several points we proceed, by necessity, through 
physical induction and analogies with other interactions. 
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The outline of the work is the following. In Section 2 we show the existence of the zero-
modes and discuss their main features, using their classical equation and the path integral. 
This Section contains some definitely mathematical parts, but we have made an effort to 
translate all the concepts in physical terms along the way. Section 3 is about the pair 
interactions of zero-modes: symmetric and antisymmetric states, transitions between these 
states, virtual dipole emission and its A and B coefficients. Section 3.3 contains a digression 
on the elementary dynamics of virtual particles with negative mass. Section 4 is devoted to 
the interaction of the zero-modes with a time-variable -term. We discuss in detail the 
motivations behind the introduction of such a term and compare its effect to that of 
“regular” incoherent matter by evaluating their respective transition rates. Finally, in 
Section 5 we discuss in a simplified way the properties of virtual gravitons; the virtual 
gravitons exchanged in a quasi-static interaction are compared to virtual particles 
exchanged in a scattering process and to virtual gravitons emitted in the decay of an excited 
zero-mode. 

2. Isolated zero-modes: Non trivial static metrics with null action 
Our starting point is a very general property of Einstein gravity: it has a non-positive-
definite action density. As a consequence, some non trivial static field configurations 
(metrics) exist, which have zero action. We call these configurations zero-modes of the 

action. The Einstein action is 
4

4

8E
cS d x gR

G
    (plus boundary term; see Sect. 3) and the 

zero-mode condition is 

 4 0d x gR   (1) 

This condition is, of course, satisfied by any metric with R(x)=0 everywhere (vacuum 
solutions of the Einstein equations (28), like for instance gravitational waves). But since the 
density gR  is not positive-definite, the condition can also be satisfied by metrics which do 
not have R(x)=0 everywhere, but regions of positive and negative scalar curvature. The non-
positivity of the Einstein action has been studied by Hawking, Greensite, Mazur and 
Mottola and others (Greensite, 1992; Mazur & Mottola, 1990). Wetterich later found that also 
the effective action is always un-defined in sign (Wetterich, 1998). 

We are interested into these zero-action configurations because, in the Feynman path 
integral, field configurations with the same action tend to interfere constructively and so to 
give a contribution to the integral distinct from the usual classical contribution of the 
configurations near the stationary point of the action. Let us write the Feynman path 
integral on the metrics ( )g x  as 

    exp E
iI d g S g   

    (2) 

Suppose there is a subspace X of metrics with constant action. The contribution to the 
integral from this subspace is simply 
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    ˆ ˆexp expX E E
X

i iI S d g S X       
    

 (3) 

where ˆ
ES  is the constant value of the action in the subspace and  X  its measure. The 

case ˆ 0ES   is a special case of this. 

 
Fig. 1. Subspace X of metrics with constant action. All the metrics (spacetime configurations) 
in X have the same action ˆ

ES . In particular, there exist a subspace whose metrics all have 
zero action. 

The zero-modes can only give a significant contribution to the path integral if they are not 
isolated configurations (like a line in 2D, which has measure zero), but a whole full-
dimensional subset of all the possible configurations. They are “classical” fields, not in the 
sense of being solutions of the Einstein equations in vacuum, but in the sense of being 
functions of spacetime coordinates which are weighed in the functional integral with non-
vanishing measure. 

2.1 Classical equation of the zero-modes 

Now let us find at least some of these configurations. It is not obvious that eq. (1) has 
solutions with R not identically zero, because it is a difficult non-linear integro-differential 
equation.  

In some previous work we used, to solve (1) in the weak field approximation, a method 
known as “virtual source method” or “reverse solution of the Einstein equations” 
(Modanese, 2007). According to this method, one solves the Einstein equations with non-
physical sources which satisfy some suitable condition, in our case 0vdx gg T

  . Since 

for solutions of the Einstein equations one has (trace of the equations) 4
8 vGR g T
c





 , it 

follows that such solutions will be zero-modes. The expression 0vdx gg T
   is far 

simpler in the linear approximation. In that case the source must satisfy a condition like, for 
instance, 00 0dxT   (supposing Tii is vanishing) and is therefore a “dipolar” virtual source. 

A much more interesting class of zero-modes is obtained, however, in strong field regime, 
starting with a spherically-symmetric Ansatz. In other words, let us look for spherically 
symmetric solutions of (1). Consider the most general static spherically symmetric metric 
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 2 2 2 2 2 2 2( ) ( ) ( sin )d B r dt A r dr r d d        (4) 

where A(r) and B(r) are arbitrary smooth functions. We add the requirement that outside a 
certain radius rext, A(r) and B(r) take the Schwarzschild form, namely 

 
1

2 2
2 2( ) 1 ; ( ) 1 for ext

GM GMB r A r r r
c r c r


          
   

 (5) 

This requirement serves two purposes: (1) It allows to give a physical meaning to these 
configurations, seen from the outside, as mass-energy fluctuations of strength M. For r>rext 
their scalar curvature is zero. (2) More technically, the Gibbons-Hawking-York boundary 
term of the action is known to be constant in this case (Modanese, 2007).  

Even with only the functions A and B to adjust, the condition (1) is very difficult to satisfy. 
We do find a set of solutions, however, if we make the drastic simplification g00=B(r)=const. 
The scalar curvature multiplied by the volume element becomes in this case  

 2
18 | | 1rAL gR BA
AA


      

 
 (6) 

Apart from the constant c4/8G, L is the lagrangian density of the Einstein action, computed 
for this particular metric. Let us fix arbitrarily a reference radius rext, and introduce reduced 
coordinates s=r/rext. Define an auxiliary function =A-1. Regarding L(s) as known, eq. (6) 
becomes an explicit first-order differential equation for : 

 
| |1

8 | |
L

s s s B



     (7) 

The boundary conditions (5) are written, in reduced coordinates 

 
1

( 1) 1 ; ( 1) 1M MB s A s
s s


   

        
   

 
 (8) 

where M  is a free parameter, the total mass in reduced units: 22 / extM GM c r . In the 
following we shall take 0M  , in order to avoid singularities. For extr r , we have 

(1) 1B B M    . 

It is interesting to note that putting L=0 in eq. (7) we can easily find an exact solution, ie a 
non-trivial static metric with R=0. Namely, if 1->0, then =1-econst/s, which does not satisfy 
the boundary condition; if 1-<0, then =1+econst/s, implying coste M   . The resulting grr 
component has the same form on the left and on the right of s=1, namely 

 
1

| |1rr
Mg
s


 

  
 


 (9) 

while g00 is constant and equal to (1 | |)M   for s<1, and is equal to (1 | |/ )M s   for 1s  . 
Note that grr goes to zero at the origin. 

 
Anomalous Gravitational Vacuum Fluctuations Which Act as Virtual Oscillating Dipoles 

 

5 

 
Fig. 2. Metric of an elementary static zero-mode of the Einstein action. Inside the radius rext 
(region I) the g00 component is constant, and the grr component goes to zero. On the outside 
(region II) both components have the form of a Schwarzschild solution with negative mass. 

Now we can look for metrics close to (9), but with scalar curvature not identically zero. For 
large M  and small L, the last term in eq. (7) is a small perturbation. Since  never diverges 
and -1 does not appear in the equation, the perturbed solution is not very different from (7). 
For values of M  of order 1 or smaller, the equation can be integrated numerically. If we 
choose a function L(s) with null integral on the interval (0,1), we obtain a metric which is a 
zero-mode of the action but not of the lagrangian density. One can take, for instance, 
L(s)=L0sin(2ns), with n integer. 

In conclusion, we have found a family of regular metrics with null scalar curvature, 
depending on a continuous parameter M . Furthermore, we have built a set of metrics close 
to the latter, by solving eq. (7) with L arbitrary but having null integral. These metrics do not 
have zero scalar curvature, but still have null action. They make up a full-dimensional 
subset of the functional space (see proof in (Modanese, 2007)). 

Our solutions of the zero-mode condition are, outside the radius rext, Schwarzschild metrics 
with M<0. The quantity Mc2 coincides with the ADM energy of the metrics. At the origin of 
the coordinates the component rrg  goes to zero, the integral of gR  is finite and also the 
volume dx g  is finite. The volume inside the radius rext is smaller than the volume of a 
sphere with the same radius in flat space. 

According to our previous argument on the functional integral, these metrics give a 
significant contribution to the quantum averages, although they are neither classical 
solutions nor quantum fluctuations near the classical solutions. In the vacuum state, there 
exists a finite probability that the metric at any given point is not flat, but has the form of a 
zero-mode, i.e., seen from a distance, of a pseudo-particle of negative mass. In the language 
of Quantum Field Theory this could be called a vacuum fluctuation. Vacuum fluctuations 
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subset of the functional space (see proof in (Modanese, 2007)). 

Our solutions of the zero-mode condition are, outside the radius rext, Schwarzschild metrics 
with M<0. The quantity Mc2 coincides with the ADM energy of the metrics. At the origin of 
the coordinates the component rrg  goes to zero, the integral of gR  is finite and also the 
volume dx g  is finite. The volume inside the radius rext is smaller than the volume of a 
sphere with the same radius in flat space. 

According to our previous argument on the functional integral, these metrics give a 
significant contribution to the quantum averages, although they are neither classical 
solutions nor quantum fluctuations near the classical solutions. In the vacuum state, there 
exists a finite probability that the metric at any given point is not flat, but has the form of a 
zero-mode, i.e., seen from a distance, of a pseudo-particle of negative mass. In the language 
of Quantum Field Theory this could be called a vacuum fluctuation. Vacuum fluctuations 
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are created spontaneously and at zero energetic cost at any point of spacetime, in a 
homogeneous and isotropic way. Usually vacuum fluctuations have a very short life, as can 
be shown through the Schroedinger equation (time-energy uncertainty principle) or through 
a transformation to Euclidean time (when the action is positive-definite). These arguments 
on the lifetime of the fluctuations can not be applied here, because quantum gravity has 
neither a local Hamiltonian, nor a positive-definite action. Our fluctuations, if they were 
completely isolated, would be independent of time; in fact, their interaction causes a finite 
lifetime (Sect. 2.3). In Sect. 5 we shall give a comparison between this kind of vacuum 
fluctuations and other fluctuations present in quantum gravity, like the virtual gravitons 
which transmit the gravitational interactions. 

In order to avoid a large global curvature, the total average effect of the virtual masses of the 
zero-modes must inevitably be renormalized to zero. This is, in our view, guaranteed by the 
“cosmological constant paradox”: nature appears to be endowed with a dynamical 
mechanism which relaxes to zero any constant positive or negative contributions to the 
vacuum energy density, coming from particle physics or even from gravity itself. So, even 
though such contributions are formally infinite, in the end they do not affect the curvature 
of spacetime. The full explanation of this mechanism can only be achieved within a 
complete non-perturbative theory of Quantum Gravity. Some partial evidence of the 
dynamical emergence of flat spacetime has been obtained in the lattice theory, and in 
effective field theory approaches (Hamber, 2004, Dolgov, 1997).  

Therefore we shall not be concerned with the global effect of our massive vacuum 
fluctuations on spacetime. We shall instead consider their interactions, which result in a 
novel pattern of purely gravitational excited states, above a ground state in which all 
fluctuations pairs with equal mass are in a symmetrical superposition. Freely speaking, it’s a 
bit like studying the local effects of pressure variations, without worrying about how the 
total force due to atmospheric pressure affects the Earth. 

2.2 Zero-modes in the explicit functional integral 

The zero-modes equation (plus the argument of non-interference) tell us that relevant run-
away configurations of vacuum exist, in which the metric is locally very different from its 
classical value .We shall now consider an explicit path integral of Einstein gravitation, in 
order to evaluate the functional average of certain metric components and confirm this 
supposition.  

Let us choose a spherical coordinate system. We integrate only over a sector X of the 
functional space, namely over the spherically-symmetric metric configurations with 
constant g00. If we obtain a null quadratic vacuum average in X, namely 
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this allows us to reach our conclusion: at any point there is a finite probability for a zero-
mode to occur. 
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For these metrics the Einstein action is written (Sect. 2.1) 
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where rrA g  and 00B g  are functions of r. Define a radius extr , the “external radius” of 
our configurations, on which we impose boundary conditions as in Sect. 2.1. This means that 
we integrate over configurations which outside the radius extr  appear like Schwarzschild 
metrics with mass M. In order to avoid singularities, we suppose 0M  . We can re-write 
the action as an integral on r with upper limit rext, because the scalar curvature of the 
Schwarzschild metric is zero. We can also add the Gibbs-Hawking-York boundary term, 
which in this case takes the form HGYS M dt   . For a fixed time interval, we can regard the 

integral dt  as a constant. 
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The second exponential can be disregarded in the functional averages, because it cancels 
with the normalization factor in the denominator. In the first exponential, let us define a 

constant factor  
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 and discretize the integral in ds. We divide the integration 

interval [0,1] in ( 1)N   small intervals of length   and replace the integral with a sum, 
where the derivative is written as a finite variation. We obtain 
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The presence of the square root and of the fractions with jA  makes the integrals very 
complicated. Let us change variables. Suppose 0A  , which is physically a widely justified 
assumption (and remember we are looking for a sufficient condition, i.e. we want to show 
that there exist a set of gravitational configurations for which the functional average of a 
quadratic quantity is different from the classical value). Define 1 / A  . This gives the 
new path integral 
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(Note that  1 2j j j     in the continuum limit.) We want to use this to compute the 

average 2
m , where m is a fixed intermediate index. This is the average of the squared field 

2  at the point s m , therefore in the continuum limit it gives the average of 2  at the 
origin. We know that the system has zero-modes for which 0A   at the origin, and 
therefore    . So we would like to show that 2

m    for 0  . This can indeed be 

done (Modanese, 2011), and implies in turn that (10) is true. One can also check that this is 
not an artefact of the continuum limit. 

2.3 Zero-modes as quantum states 

The explicit calculation of the average (0)rr Xg  in a sector of the functional integral is 
conceptually important, but in practice it does not help much in giving a quantum 
representation of the zero-modes and their interactions. The properties of the zero-modes as 
“classical” metrics are more useful for that purpose. We shall suppose that each zero-mode 
corresponds to a quantum state |i  and that 2

ii H i c M  (see below for the meaning of 
the gravitational Hamiltonian H in this context). The states |i  are localized and mutually 
orthogonal. Different |i  correspond to field configurations centered at different points. In 
the following we shall also suppose for simplicity that their Schwarzschild radii are always 
much smaller than their distance. 

According to this line of thought, the “true non-interacting ground state” of the 
gravitational vacuum is obtained in principle as the limit of an infinite incoherent 
superposition of flat spacetime (Fock vacuum) plus single zero-mode wavefunctions: 

 |0 |0 |Fock i
i

i      (15) 

This definition of the ground state is clearly difficult to put on a rigorous basis. We are 
mainly interested, however, into the excitations with respect to this ground state. The most 
relevant among these excitations are those resulting from pair interactions of zero-modes, as 
we shall see. 

Note that fixing i H i  amounts to a much weaker statement than giving a gravitational 
quantum Hamiltonian operator H, because i H i  is only a matrix element and a classical 
limit of the total energy for an asymptotically flat configuration (ADM energy (Murchada & 
York, 1974)). So whenever we write here the full gravitational Hamiltonian H, in fact we 
only exploit some properties of its matrix elements, like in a Heisenberg representation of 
quantum mechanics. This is consistent with our path integral approach to the full-
interacting case. 

In other words, in the following we use neither the “full” gravitational Hamiltonian 
operator H, nor eigenvalue relations. (Interaction Hamiltonians on a background metric like 
that employed in Sect. 4 do not suffer from these limitations.) In fact, the Hamiltonian H is 
very difficult to define in quantum gravity. Even classically, there exists no generally 
accepted expression for the gravitational energy density. Furthermore, assuming the 
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validity of eigenvalue operator relations would lead to contradictions. For instance, by 
applying the full Hamiltonian to the vacuum state (15) and supposing for a moment that 

2
iH i M c i , we would obtain, only formally  

 “ 20 i i
i

H M c i  ” (16) 

From this we would conclude that |0  is not an eigenstate! Nevertheless the property 
0 0 0H   is true, considering that the coefficients i  have random phases. 

We could call the states |i  “purely gravitational, long-lived virtual particles”. They are 
long-lived in the following sense. The classical equation for isolated zero-modes gives 
configurations independent from time. Adding to the pure Einstein action the boundary 
Gibbs-Hawking-York term, the latter takes the form GHYS M dt   , i.e. it is a constant for 
any fixed time interval, and does not cause interference in the path integral. However, when 
the zero-modes are not isolated but interact with each other, the boundary term causes their 
lifetime to be finite. 

In the next section we shall discuss the simplest interaction of the zero-modes (pair 
interaction). This displays one of the typical amazing features of virtual particles (compare 
Sect. 5): they are created from the vacuum “for free”, but after that they follow the usual 
dynamical rules. When computing the amplitude of a process involving virtual particles, we 
do not need to take into account the initial amplitude for creating the particles at a given 
point of space and time, but we do compute (Sect.s 3 and 4) the amplitudes for their ensuing 
propagation and interaction. 

3. Pair interactions of zero-modes 
We have introduced the concept of ground state in an effective theory of Quantum Gravity as 
given by the Fock vacuum plus a random superposition of zero-modes. In this Section we 
show that non-interacting zero-modes with equal mass are coupled in degenerate symmetric 
and anti-symmetric wavefunctions. The introduction of interaction removes the degeneration. 
The excited states form a continuum and the interaction of the vacuum with an external 
coherent oscillating source leads to transitions, with a probability which we shall compute in 
Sect. 4. As in Sect. 2, we denote with a capital M a zero-mode mass (virtual and negative). 

3.1 Pairs in symmetric and antisymmetric states 

Consider a couple of states |1  and |2  with masses 1M  and 2M . We have 

 2 2
1 21|H|1 c , 2|HM M|2 c , 1|2 0          (17) 

Putting now M1=M2=M and taking the interaction into account, the degenerate non-
interacting levels are splitted. Define the symmetrical and anti-symmetrical superpositions 
   and   : 

 1 1| (|1 |2 ) | (|1 |2 )
2 2

           (18) 
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Fig. 3. Symmetric and antisymmetric bound states of zero-modes with equal mass M. (We 
assume that the wavefunction is much more localized near the masses than depicted – 
compared to their distance.) 

The energy splitting E  is given, as known, by 

 | | | | 2 1| |2E E E H H H      
               (19) 

Note that the matrix element 1| |2H   can be taken to be real without loss of generality. 
Suppose that 1| |2H  can be computed to a first approximation through its classical limit. 
The ADM energy integral at spatial infinity for the Schwarzschild-like field of two positive 
masses can be analytically continued to negative masses. We then obtain 

 
2

2 GME
r

   (20) 

being r the distance between the symmetry centers of the states |1 and |2 . This procedure 
reminds the computation of the bound states of two atoms in a molecule: the “internal 
states” of the atoms are not relevant and each atom is described by a single vector 
coordinate; the relevant Hamiltonian is the interaction Hamiltonian, although the full 
Hamiltonian of the system comprises in principle the forces inside the atoms and even 
inside the nuclei. 

Let us consider the transitions between    and   . We shall see that they are mainly of 
two types: (a) excitation     due to the interaction with a local -term dependent on 
time (variable vacuum energy density, associated with coherent matter - compare Sect. 4); 
(b) decay     with emission of a virtual graviton. We look for a relation between the 
frequency of the transition and the virtual mass of the excited states. In the ground state, all 
couples with equal mass will be in their symmetric superposition state. Any transition of 
one couple from its symmetric to its antisymmetric state gives an excited state with energy 
(20). Since there exist zero-modes with any (negative) mass, at any distance, there is actually 
a continuum of excited states. 

For the same energy, in principle, there are transitions to excited levels involving different 
masses at different distances, provided the ratio 2 /M r  is the same. In practice, however, 
there is an upper limit on the scale r, because the time-variable -term has a typical spatial 
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extension (coherence range) of the order of 10-9 m, and typical frequency 106-109 Hz. This 
fixes the maximum virtual mass involved, by eq. (20), to M10-13 kg. This is small, but 
definitely much larger than any atomic scale mass, and implies that also the gravitational 
interaction in the pairs of virtual masses is much larger than the usual gravitational 
interactions at atomic scale.  

We are confronted here with a very unusual situation and we should check that our 
description is consistent, at least at the energy scale we are considering. (In principle the 
zero-mode fluctuations exist at any scale, but since they are an emergent phenomenon, 
computed in an effective theory, it is fair to concentrate on the scale which we deem most 
realistic.) First, one can easily check that the supposed localization of the zero-modes is well 
compatible with the Heisenberg position-momentum uncertainty principle. Second, one can 
prove that their interaction, though strong on the atomic scale, is much weaker than the 
interaction in a hypothetical gravitational bound state formed by two masses of this size. 
This can be easily checked, for instance, by computing the corresponding Bohr radius: this is 
of the order of 2 3 19/ 10  mGm  , while the zero-modes in the states    and    are 
separated by a distance of the order of 10-9 m. So the acceleration of each zero-mode due to 
the presence of the other is very small, if compared to accelerations due to atomic or 
molecular forces. It follows that in these “weakly bound states of heavy quasi-particles” the 
distance r varies slowly and there is plenty of time for the transitions    to occur at 
frequency 106-109 Hz, as we shall describe in detail later.  

On a longer time scale, the interaction itself causes the zero-modes to fade out slowly as 
vacuum fluctuations. This is a subtle point that completes our analysis of the isolated zero-
modes given in Sect. 2. As we have seen, the boundary term M dt  in the action is constant for 
an isolated zero-mode, for any time interval, and therefore an isolated zero-mode will persist 
indefinitely in time. For interacting zero-modes the situation is more complicated, because  

1. The superposition of their metrics is not necessarily a zero-mode. 
2. Their total ADM mass-energy is still constant, as long as radiation is negligible; this 

total mass-energy comprises their masses plus potential and kinetic energy. But when 
the emitted radiation becomes a sizeable fraction of the total mass, the ensuing change 
in the boundary term in the action of the zero-modes begins to cause a destructive 
interference in the functional integral between the metrics  1,g x t ,  2,g x t … at 
subsequent times. So the quantum amplitudes of these metrics tend to vanish and the 
result is that the zero-modes, as vacuum fluctuations, acquire a finite lifetime as they 
begin to emit dipolar or quadrupolar radiation. 

3.2 Virtual dipole emission, A and B coefficients 

In this Section we compute the lifetime of an excited state   . The decay of the excited state 
occurs with the emission of an off-shell graviton with spin 1. This happens because the 
dominant graviton emission process in the decay of an excited zero-mode is oscillating-
dipole emission. Quadrupolar emission, which is the only process ensuring conservation of 
energy, momentum and spin in the emission of  on-shell gravitons, can in this case be 
disregarded. Since we are only interested into a lowest-order perturbative estimate (tree 
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diagrams) we can use the linearized Einstein theory in the form of the “Maxwell-Einstein” 
equations 
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Here GE  is the gravito-electric (Newtonian) field, GB  is the gravito-magnetic field, and mj , 
m  are the mass-energy current and density. The elementary quantization of the field 

modes in a finite volume V follows the familiar scheme used for the computation of 
spontaneous and stimulated electromagnetic emission of atoms in a cavity. We have 
discussed in (Modanese, 2011) the conditions for applicability of the Einstein-Maxwell 
equations to plane waves in vacuum. 

The Einstein A-coefficient of spontaneous emission turns out to be related to the B-
coefficient and to the mass dipole moment by the relation 
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where the electromagnetic coupling constants have been replaced, up to an irrelevant 
adimensional factor, by the gravitational constants, according to eq.s (21). The operator d̂  is 
the mass-dipole moment and the matrix element is taken between the initial and final state 
of interest. 

 
Fig. 4. Emission of a virtual graviton with spin 1 in the spontaneous decay    . The 
matrix element of the mass-dipole moment operator between    and    has module Mr/2. 

It is straightforward to check that there is an oscillating mass dipole between the states    
and   : 
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where 1
1
2

r r , 2
1
2

 r r ; here r  is the displacement between the masses M1 and M2, which 

in the end are taken to be equal. The origin of the coordinate system is in the center of mass. 

This mass dipole moment has purely quantum origin, because in our system there are no 
masses of different signs, and it is known that in this case the classical mass dipole moment 
computed with respect to the center of mass is zero. We could say that the non-zero matrix 
element (23) is due to the quantum tunnelling between the states and |2 . This corresponds 
to a mass oscillation.  

Eq. (22) gives the lifetime   of the excited level    by spontaneous emission. With the 
values of M and r found in Section 3.1 supposing an excitation frequency of the order of 1 
MHz, one finds 1210B  m3/Js2 for the stimulated emission coefficient and 1 1A    s for 
the lifetime for spontaneous emission (taking 1f  m/s: compare discussion in 
(Modanese, 2011) and Sect. 5). The general dependence of B on the frequency  and on the 
length r of the dipoles is easily obtained from eq.s (20), (22) and (23): 

 31B r
  (24) 

Note that B is independent from the Newton constant G. 

3.3 Digression: Elementary dynamics of virtual particles with negative mass 

Real particles with negative mass cannot exist, because they would make the world terribly 
unstable, popping up spontaneously from the vacuum with production of energy. In this 
work, however, we hypothesize the existence of long-lived virtual particles with negative 
mass, whose creation from the vacuum does not require or generate any energy. We 
recognize that these virtual particles have negative mass by looking at their metric at 
infinity, which is Schwarzschild-like, but with negative M and negative ADM energy. We 
know that the dynamics of virtual particles, after their creation, is similar to that of real 
particles, and we have computed quantum amplitudes involving them.  

We do not know any general principle about the “classical” dynamics of virtual particles 
with negative mass. Actually, virtual particles of this kind are an emergent phenomenon 
guessed from the path integral and can only be observed in a very indirect way. It is 
interesting, nonetheless, to make some reasonable hypothesis and check the consequences. 
Our basic assumption will be the following: for an isolated system comprising particles with 
positive and negative mass, the position of the center of mass, defined by 

 CM i i
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is invariant in time. From this assumption one can prove in a straightforward way several 
strange properties of particles with negative mass. These properties can be summarized by 
saying that in the usual dynamical rules their mass really behaves like a negative number, 
namely: (a) The acceleration of the virtual particle is opposite to the applied force. (b) The 
momentum is opposite to the velocity. (c) The kinetic energy is negative. The kinetic energy 
is defined as usual through the work of the applied force, in such a way that the sum 
Ekin+Epot is conserved.  

Applying these rules one obtains a bizarre behaviour in the scattering processes and in the 
dynamics. For instance, although the gravitational potential energy of two virtual particles 
with negative mass is negative, Epot =-GM1M2/r (compare Sect. 3.1), the two particles 
experience a repulsion, due to Property (a). They tend to run away from each other; while 
their distance increases, their Epot decreases in absolute value, and their (negative) Ekin 
increases in absolute value. If the particles were initially at rest at some distance r0 (Fig. 5), 
when their distance goes to infinity they gain a Ekin equal to their initial Epot. 

 
Fig. 5. “Classical” motion of two virtual particles with negative mass initially at rest at 
distance r0. Although their potential energy is negative, they feel a repulsion and their 
(negative) kinetic energy increases in absolute value as their distance goes to infinity. 

In the decay     (Sect. 3.2) the momentum of the emitted graviton is balanced by the 
recoil of the zero-modes (in the same direction of the emission). The conservation equations 
give 
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where E is the energy gap, Eg and pg are the graviton energy and momentum, vr is the 
recoil velocity of the zero-mode and 2M-10-13 kg is the zero-mode mass. After replacing 
pg=Eg, the system (26) leads to the equation 
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which has a positive solution EgE, independently from . Furthermore, the recoil velocity 
vr turns out to be always non-relativistic. This means that the recoil of the zero-modes can 
always ensure conservation of momentum, independently from the value of the graviton 
energy-momentum ratio .  

4. Interaction of the zero-modes with a variable -term 

In Sect. 3 we have computed the probability of the decay process     with emission of 
a virtual graviton. The excitation process     (transition of a zero-modes pair from a 
symmetric to an anti-symmetric state) can occur by absorption of a virtual graviton or by 
coupling to an external source. It is easy to show (Sect. 4.3) that the coupling of zero-modes 

to “ordinary” matter with energy-momentum 
dx dxT m
d d
 

  
  is exceedingly weak.  

(Note that certain interactions between zero-modes and massive particles vanish exactly for 
symmetry reasons. For instance, a particle in uniform motion can never “lose energy in 
collisions with the zero-modes”, because in its rest reference system the particle will see the 
vacuum, zero-modes included, as homogeneous and isotropic. There are possible exceptions 
to this argument: accelerated particles, or particles in states with large p uncertainty.) 

The coupling to a (t) term, or local time-dependent vacuum energy density, can lead to a 
significant transition probability. This is due to the presence of the non-linear g  factor in 
the coupling, and corresponds physically to the fact that such a  term does not describe 
isolated particles, but coherent, delocalized matter. 

4.1 Summary of conventions and of some previous results 

The Einstein equations with a cosmological constant, or vacuum energy term, are written 
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The corresponding action (without the boundary term) is 
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In this paper with use metric signature (+,-,-,-). With this convention, the cosmological 
(repulsive) background experimentally observed is of the order of c4/G=-10-9 J/m3. 

In perturbative quantum gravity on a flat background, this value of  corresponds to a small 
real graviton mass (Datta et al., 2003, and ref.s). Actually, in the presence of a curved 
background the flat space quantization must be replaced by a suitable curved-space 
quantization (Novello & Neves, 2003). The limit m0 of a theory with massive gravitons is 
tricky, so this global value of  still represents a challenge for quantum gravity (besides the 
need to explain its origin; compare Sect. 2.1).  

In our previous work we introduced the idea that at the local level, the coupling of gravity 
with certain coherent condensed-matter systems could give an effective local positive 
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contribution to the cosmological constant and therefore generate instabilities in the field 
(imaginary graviton mass (Modanese, 1996)). This early argument was not very compelling, 
but was reinforced after considering the effects of the -term on the weak-field dipolar 
fluctuations mentioned in Sect. 2.1. Still such effects were predicted to be very weak and 
dependent on the sign and value of the background  at the scale of interest. After the 
discovery of the strong-field zero-modes of the action, in (Modanese & Junker, 2007) we 
computed the effect of a -term on such configurations, but it still turned out to be very 
small. 

4.2 Time-dependent  and zero-modes transitions 

A substantial progress was made in (Modanese, 2011), where we showed that the effect of a 
high-frequency (t)-term can be quite large and independent from its sign and from the 
background . This was obtained considering the interactions between the zero-modes, as we 
detail in the following. Our latest computations also allow us to recognize more clearly the 
difference between the gravitational effect of coherent matter mediated by the -term and the 
(negligible) gravitational effect of the classical T of the same matter. After writing the total 
Lagrangian Lgrav+Lmatter, we split Lmatter into an “incoherent particles” part (Sect. 4.3) and a 
coherent matter part, described by a scalar field . Only the latter part contains a nonlinear 
factor  g , which can have non-vanishing matrix elements already to first order in . 

We suppose that the scalar field  which describes the coherent matter has in flat space an 
action of the standard form 

 2 2 41 1
2 2

S dxL dx m k
             

    (30) 

The gravitational coupling introduces a g  volume factor. The dynamics of  is driven by 
external forces, so this coupling can be regarded as an external perturbation H , a local 
vacuum energy density term due to the presence of coherent matter described by a 
macroscopic wavefunction equivalent to a classical field: 

 1 1( , ) ( , ) ( , ) ( , ) ( , )
8 8

H t g t t g t L t
G G     x x x x x  (31) 

The  term in coherent matter turns out to be much larger than the cosmological 
background: for instance, one typically has c4/G=106-108 J/m3 in superconductors, 
depending on the type, while the currently accepted value for the cosmological background 
is of the order of c4/G=10-9 J/m3. The value above for superconductors is the result of a 
complex evaluation of the relativistic limit of the Ginzburg-Landau Lagrangian, which 
yields the following expression for  in terms of the pairs density  (Modanese, 2003): 

 2 2 2 2 41( , ) ( )
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            x  (32) 

where  is the second Ginzburg-Landau coefficient and m is the Cooper pair mass. This 
energy density has strong variations in space and time, following the behaviour of the 
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macroscopic wavefunction. In order to obtain high-frequency oscillations in time, one can 
induce in the material Josephson currents (Modanese & Junker, 2007). Spatial variations 
have a typical scale of 1 nm, so we take this as the size of the volume V where the 
perturbation is spatially constant and the transition probability is computed. For this reason 
we shall leave only the time dependence in  and write henceforth 

 1( , ) ( , ) ( )
8

H t g t t
G  x x  (33) 

 
Fig. 6. A time-dependent -term can be quite efficient in exciting transitions + -, because 
it enters the matrix elements to first order in . The denomination “Volume coupling” refers 
to its mathematical form and to the fact that it is due to de-localized coherent matter 
described by a macroscopic wavefunction. 

For the evaluation of the density of final states we refer to (Modanese, 2011) and give here 
only the final result on the probability of transitions +- under the action of an external 
perturbation with oscillation frequency  in resonance with the energy difference (20). 
Given the large number of available states, the resonance occurs for any frequency, and also 
if the perturbation is not exactly monochromatic. 

In accordance with the Fermi rule and considering a volume V10-27 m3 and a frequency 
107 Hz (compare Sect. 3), we obtain 
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 (34) 

This implies that the excitation time of the zero-modes in the presence of a suitable local -
term is very short (10-23 s). It is likely, actually, that this excitation process is limited by the 
energetic balance rather than by the transition probability. 

4.3 Comparison with the effect of incoherent matter 

The action of free incoherent particles is 

 ( )a a a a
a

S m g x dx dx 
    (35) 
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The index "a" denotes the sum over particles and will be omitted in the following, 
considering for simplicity one single particle. The corresponding field/particle interaction 
Hamiltonian density is 

 ,
1 ( , )

2
ji

particle ijH h t p p
m

x x  (36) 

where m is the particle mass, ij ij ijh g    and i,j are spatial indices. This holds to lowest 
order in p and for fields h which describe a plane wave (on-shell or off-shell, see proof in 
(Modanese, 2011)). 

Suppose to apply eq. (36) to our case, i.e. to compute a transition probability +- due to 
the coupling of gravitation to single particles in ordinary matter. In this case, the particle 
momentum is a given numerical function of time, while ( , )ijh t x  is a quantum operator 

which acts on the Fock vacuum creating or destroying a graviton. (In the following we shall 

often denote the field operator as ĥ  and omit the indices.) The numerical factor 
2

jip p
m

 is of 

the order of the kinetic energy of the particle 
2

2
p
m

, i.e. of the order of 10-19 J for an atomic 

system. This is also the magnitude order of the (t) term. But while the interaction 
Hamiltonian ,H x  can have non-vanishing matrix elements also when acting linearly 
between the states + and -, because it is proportional to the non-linear function 

1 Tr( ) ...g h   , the Hamiltonian ,particleHx  has non-vanishing matrix elements only to 

second order. 

Namely, we can write a matrix element of the form ˆIn h Out  as 

 ˆ ˆ0, 0,z m z mIn h Out In h Out   (37) 

where z mIn   and z mOut   denote the zero-mode components of the initial and final 
states, and 0  denotes the Fock vacuum, without gravitons. The matrix element is clearly 
zero, because it contains a single field acting between two Fock vacuum states. In other 
words, we can say that since neither in the initial state nor in the final state there are 
gravitons, the standard vertex (36) can have non-zero matrix element only when it is taken 
twice (Fig. 7) and is therefore proportional to  22 /p m ; but this is of magnitude order 10-38 
in S.I. units, as seen, and gives a factor 10-76 after insertion in the transition probability (34).  

On the other hand, the ˆ ˆhh , ˆ ˆ ˆhhh  , … terms in the expansion of H can give non-zero matrix 
elements already to first order in . We are not able to compute these matrix elements 
without a complete theory, because inside the Schwarzschild radius of the zero-modes the 
weak field expansion is not valid. The situation resembles that of early nuclear physics, 
where the nuclear matrix elements were largely unknown, apart from some general 
properties or magnitude orders; this did not prevent researchers from obtaining important 
data on the processes, based on the available information and on the crucial knowledge of 
the final states density. 
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Fig. 7. Zero-mode excitation by double interaction with incoherent matter. A single massive 
particle can cause such an excitation by emitting and re-absorbing a virtual graviton, but the 
probability of this process is very small. 

5. Properties of virtual gravitons 
The aim of this final section is to give a simplified yet consistent physical picture of how 
virtual gravitons mediate the gravitational interactions. This is necessary in order to 
understand the link between virtual gravitons and the other kind of vacuum fluctuations 
studied in this paper, the zero-modes. 

Note that virtual gravitons respect the usual time-energy uncertainty principle; their are not 
“long-lived” vacuum fluctuations like the zero-modes. This is because we consider 
gravitons as the particles obtained in the perturbative quantization of gravity on a flat 
background. It is known that the theory is not renormalizable at higher orders, but we use 
only tree diagrams in this work and suppose that the renormalization problem will be 
solved or is already solved in an effective quantum field theory of gravity (compare Sect. 1). 

The concept of virtual particles mediating an interaction is not simple, and it is sometimes 
used improperly. In some treatments the virtual particles are seen as purely formal 
representations of perturbative diagrams. Instead, it is important to understand in which 
sense they can be regarded as particles or not.  

For a real particle of given mass m, kinematics allows to connect the three quantities E, p, v 
through the two relations 

 2 2 2 2 4E p c m c   (38) 
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Therefore when one of the tree quantities is known, we can find the other two. Note that 
from (38) and (39) one can prove the relation 2/ /p E v c , which connects E and p and 
(unlike (39)) also holds for v=c. So we can as well consider as basic relations between E, p, v 
the couple 
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 2 2 2 2 4E p c m c   (40) 

 2      p v
E c
  (41) 

These formulas all hold when the quantities m, E, p, v are well defined, thus for particles 
which are either stable or have a sufficiently long lifetime. For virtual particles the situation 
is more vague and one finds a range of statements in the literature. For instance, there is a 
simple textbook argument showing that the exchange of virtual photons gives rise to a 1/r2 
force between two charges q1 and q2. The argument is based on the time-energy uncertainty 
relation. One writes Eth, where E is the energy of the exchanged virtual photon and t 
its lifetime. Supposing that the virtual particle travels with light speed, its range is r=ct. 
Therefore if the charges q1 and q2 are at a distance r, the “exchanged energy” is E1/r and 
the corresponding force will be proportional to 1/r2. One must add the assumption that the 
number of exchanged photons is also proportional to the product q1q2 of the charges of the 
interacting particles. A weak point in this argument is the identification of the exchanged 
energy with the potential energy of the interaction. In fact, the exchanged energy depends 
on the velocities of the charged particles and can even be zero for static sources or in cases 
like that of the protons observed in their center of mass system (Fig. 8, Sect. 5.1). Apart from 
this, the assumption that the virtual particle has an energy uncertainty and that it 
propagates with light speed looks reasonable. 

5.1 Example: Scattering process 

Let us consider, however, another simple example: the electromagnetic scattering of two 
protons with the exchange of a single virtual photon. To fix the ideas, we choose a definite 
energy of the two protons as seen in their center of mass system, for instance E=10-13 J  1 
MeV. (Magnitude orders are important in these considerations, in order to estimate the 
wavelength and the number of the exchanged particles, as we shall see below in the case of 
gravitons.) In this reference system the exchanged energy is zero and the exchanged 
momentum is of the order of 202 10pm E   kg m/s (non-relativistic approximation). 

 
Fig. 8. Proton-proton scattering through the exchange of a single virtual photon, as seen 
from the center of mass reference system. 
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Suppose that this momentum is carried by one single virtual photon . The photon is off-
shell, with imaginary mass m2<0: m2c2=E2-p2c2  m2=-p2/c2. The virtual photon energy 
and momentum are exactly defined and their ratio E/p is exactly zero in this reference 
system (it is not Lorentz-invariant). The wavelength of the photon, defined as =h/p , is of 
the order of 10-14 m. One can estimate, classically, that the minimum distance reached by the 
protons is of the order of 10-16 m. If the virtual photon is emitted at this point, its 
wavefunction can clearly not be regarded as a plane wave. Its propagation velocity v is 
hardly observable and relation (41) appears to suggest that v is very large; if we assume v=c, 
it is only by analogy with the familiar retarded classical effects.  

The situation appears, in conclusion, to be very different from the previous example. It 
seems reasonable to draw a clear distinction between a scattering process, which can be 
described as the exchange of a single virtual particle, and the inter-particle force in static or 
quasi-static conditions, which is in general equivalent to the exchange of a large number of 
virtual particles. 

5.2 Photons or gravitons vs. static force 

Let us now consider a different situation (Fig. 10): a massive particle (for instance, a proton) 
in free fall in the gravitational field of the Earth. Suppose the particle is initially at rest. 
There is an exact quantum formula which allows to find the static interaction potential 
energy in field theories like QED, QCD etc. The generalization to quantum gravity was 
given by (Modanese, 1995). In this formula the graviton propagator appears explicitly, as 
well as the G constant and the masses m1m2 of the sources (showing that the amplitude of 
virtual gravitons generation is proportional to both these masses; this property was also 
discussed by (Clark, 2001)). The potential energy is written as 
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This equation describes the exchange of gravitons, for an ideally infinite time, between two 
static masses ( 1 2 r r r ; see Fig. 9). In our case the masses are the Earth and the particle. 

The gravitons flux is proportional to both m1 and m2 and the propagator gives the 
amplitude of the propagation of virtual gravitons from r1 to r2, but note that their 
emission and absorption probabilities are equal to 1. If we expand the Feynman 
propagator in four-momentum space, we can see which energies and momenta are 
exchanged. One first finds 
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Changing variables to (t1+t2), (t1-t2) we find that the integral in (t1+t2) cancels the factor 1/T. 
By integrating exp[-iE(t1-t2)] one obtains (E): this selects the static limit, i.e. the exchanged 
gravitons have E0 (note that in eq.s (43) and (44) we use natural units h/2=c=1). Finally we 
have 
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with 'p r p . (A similar reasoning also applies to quantum electrodynamics.) The last 
integral is equal to / 2  and the main contribution to the integration comes from the 
momentum region 'p  , i.e. pr  . This means that in the classical interaction of two 
masses at distance r, the majority of the exchanged virtual gravitons have momentum 

/p r  (restoring  ), or wavelength r  . 

 
Fig. 9. Static potential energy of two masses m1, m2 as the outcome of graviton exchange. 
Virtual gravitons are emitted and absorbed at all possible times t1, t2; the final result is 
obtained by integration over t1 and t2. 

The propagation velocity is not the same for all virtual gravitons, as is seen from the fact 
that their emission/absorption times vary from - to +; correspondingly, their invariant 
masses also vary. Being a static formula, eq. (42) cannot show that the propagation velocity 
of the force is c. For this we need some generalization to moving sources; the formalism of 
Quantum Field Theory will ensure that the retardation effects are accounted for. 

The condition /p r   or r   shows that the wavefunctions of the exchanged virtual 
gravitons are very different from plane waves: these functions do not even make a complete 
oscillation over a distance equal to the Earth radius! Such virtual gravitons can hardly be 
regarded as “particles”. This should actually be expected, because the attractive character of 
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the force can only be understood if we consider the details of the wavefunction (Baez, 1995). 
A naïve particle exchange can only explain repulsive forces. 

 
Fig. 10. The wavefunction of virtual gravitons exchanged in a quasi-static interaction is not a 
plane wave: for most of them, the wavelength is larger than the traveled distance. 

Let us estimate how many gravitons are exchanges between the Earth and a free-falling 
proton or nucleon. To stay close to the static limit, consider a short interval t. The proton, 
initially at rest, acquires in this time a momentum p=mgt. The absorbed gravitons have, on 
the average, individual momentum 41/ 10p r   kg m/s. The number of absorbed 
gravitons is then of the order of  N/t  1015 s-1. 

5.3 Virtual gravitons emitted in the decay     

We have seen that the virtual gravitons exchanged in a quasi-static attractive gravitational 
interaction have very small energy and momentum. Their wavefunctions do not resemble 
plane waves. The propagation of this “stream” composed of a large number of virtual 
gravitons is a collective phenomenon occurring at light velocity. 

The virtual gravitons emitted in the decay     (Sect. 3.2) have completely different 
features. Their energy is much larger (10-27 J). Their momentum is not fixed by the emission 
process, since the recoil of the emitting zero-modes can balance it in any case. One of these 
gravitons can be individually absorbed by a real particle at rest (for instance a proton), in 
such a way to conserve energy and momentum, provided the product f of the graviton 
frequency and wavelength is equal to half the final velocity of the real particle. In fact the 
balance equations are 
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where the suffix “g” denotes the virtual graviton and “p” the real particle. This is a quantum 
process that satisfies the conservation balance, thus it can happen and will in fact happen, 
with a certain amplitude. The amplitude for the final step (absorption by the real particle) is 
unitary, by analogy with the similar process in the static exchange. 
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the force can only be understood if we consider the details of the wavefunction (Baez, 1995). 
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where the suffix “g” denotes the virtual graviton and “p” the real particle. This is a quantum 
process that satisfies the conservation balance, thus it can happen and will in fact happen, 
with a certain amplitude. The amplitude for the final step (absorption by the real particle) is 
unitary, by analogy with the similar process in the static exchange. 
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Supposing that the real particle is a proton, it is easy to check that conservation requires vp 
1 m/s, 10-7 m. If the distance between the real particle and the graviton source is much 
larger than , then the wavefunction of the virtual graviton can be properly described as a 
plane wave. If it is legitimate to apply the kinematical relations of Sect. 5.1 to this plane 
wave, it follows that the virtual graviton propagates like a tachyon (Recami et al., 2000). This 
does not violate the causal principles of special relativity, because the propagation of a 
single virtual particle cannot be modulated to obtain a signal. The existence of such 
tachyonic virtual gravitons would be a consequence of the unique features of their source 
(virtual decay    ). 

6. Conclusions 
In quantum gravity the vacuum fluctuations have a more complex structure than in other 
field theories with positive-definite action. In particular, there are vacuum fluctuations 
which in the non-interacting approximation have infinite lifetime, and seen from the 
outside appear as Schwarzschild metrics with negative mass. These vacuum fluctuations 
behave as pseudo-particles which are created “for free” from the vacuum at any point in 
spacetime. The non-interacting vacuum can in fact be described as an incoherent, 
homogeneous and isotropic superposition of a Fock vacuum plus infinite states of this 
kind (“zero-modes”).  

When the interaction is taken into account, one finds that each pair of zero-modes with 
equal virtual mass M and distance r can be in two states, denoted by + and  -, with energy 
splitting E=E--E+=GM2/r. The excited state  - can decay into the state + by emitting a 
virtual off-shell graviton with spin 1. The energy-momentum ratio E/p of the virtual 
graviton can take in principle any value, being the total momentum preserved by the recoil 
of the zero-modes pair. The A and B Einstein coefficients of spontaneous and stimulated 
emission have been computed in weak-field approximation. The B coefficient turns out to be 
of the order of r2/2h, where  is the frequency corresponding to the gap E. The A 
coefficient depends on the wavelength; for   1 m/s one has A  1 s-1. 

The excitation process +  - cannot occur by interaction with single incoherent particles, 
because the relative amplitude is exceedingly small, involving a double elementary 
particle/graviton vertex. Instead, a sizeable excitation amplitude is obtained in the 
interaction with an external source of the form dxg(t) (local vacuum energy density term, 
due to the presence of condensed matter in a coherent state). By taking into account the 
density of final states one finds, for a length scale of the -term of the order of 10-9 m, an 
excitation time +  - of the order of 10-23 s. 

The virtual gravitons emitted in the decay  - +  are very different from those 
exchanged in the usual gravitational interactions. Consider, for instance, a nucleon in free 
fall near the surface of the Earth. If it was initially at rest, it reaches a velocity of 1 m/s in 
approximately 0.1 s, absorbing 1014 virtual gravitons of very low frequency and large 
wavelength. For comparison, a single virtual graviton of frequency 107 Hz emitted in a 
vacuum decay  - + can transfer the same momentum to the nucleon in a single quick 
absorption process. 
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1. Introduction

In Ref. [1], Weinberg suggested that the general theory of relativity may have a non-trivial
UV fixed point, with a finite dimensional critical surface in the UV limit, so that it
would be asymptotically safe with an S-matrix that depends on only a finite number
of observable parameters. In Refs. [2–4], strong evidence has been calculated using
Wilsonian [5–8] field-space exact renormalization group methods to support asymptotic
safety for the Einstein-Hilbert theory. We have shown in Refs. [9–19] that the extension of
the amplitude-based, exact resummation theory of Ref. [20] to the Einstein-Hilbert theory
(we call the extension resummed quantum gravity) leads to UV fixed-point behavior for
the dimensionless gravitational and cosmological constants, but with the bonus that the
resummed theory is actually UV finite. More evidence for asymptotic safety for quantum
gravity has been calculated using causal dynamical triangulated lattice methods in Ref. [21]1.
There is no known inconsistency between our analysis and Refs. [2–4, 21]. Our results are also
consistent with the results on leg renormalizability of quantum gravity in Refs. [23, 24].

The reader unfamiliar with the methods of Wilson in the context of the renormalization
group may consult Refs. [2, 5–8] for the details of the approach. Here we stress that in
the Wilsonian formulation of the renormalization group, it does not matter whether the
theory under study is actually renormalizable because the idea is to thin the degrees of
freedom to those relevant to the momentum scale k under study. When one does this,
the operators in the theory then fall into the classes of relevant, marginal and irrelevant
operators as one studies the response of the theory to changes in the value of k. If the
theory is renormalizable, then as k → ∞ there will be a finite number of relevant or marginal
operators in the effective action, yielding an S-matrix that depends on only a finite number of
parameters. If the theory is non-renormalizable, there will be an infinite number of relevant
or marginal operators in the effective action as k → ∞. It was for this reason that the authors

*Work supported in part by NATO grant PST.CLG.980342.
1 We also note that the model in Ref. [22] realizes many aspects of the effective field theory implied by

the anomalous dimension of 2 at the UV-fixed point but it does so at the expense of violating Lorentz
invariance.
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in Ref. [2–4] have chosen to use Wilsonian methods to study the Einstein-Hilbert theory,
which is naively non-renormalizable by the standard power-counting arguments. What they
find is that there are only a finite number of relevant or marginal operators in the effective
action as k → ∞, asymptotic safety. There is no contradiction with the naive expectation
because the Wilsonian methods take into the account the non-perturbative changes in the scale
dimensions of the theory’s operators due to interactions. Unlike the methods in Refs. [2–4]
which have unphysical cut-off dependence from thinning the degrees of freedom procedures
and unphysical gauge dependence, our results have no such dependence on cut-offs or gauge
choice. That we agree with the findings of Refs. [2–4] then strengthens these results. Contact
with experiment is now in order.

Specifically, in Ref. [25], it has been argued that the approach in Refs. [2–4] to quantum
gravity may provide a realization2 of the successful inflationary model [27, 28] of cosmology
without the need of the inflaton scalar field: the attendant UV fixed point solution
allows one to develop Planck scale cosmology that joins smoothly onto the standard
Friedmann-Walker-Robertson classical descriptions so that one arrives at a quantum
mechanical solution to the horizon, flatness, entropy and scale free spectrum problems. In
Ref. [19], using the resummed quantum gravity theory [9–18], we recover the properties as
used in Refs. [25] for the UV fixed point with “first principles” predictions for the fixed point
values of the respective dimensionless gravitational and cosmological constants. Here, we
carry the analysis one step further and arrive at a prediction for the observed cosmological
constant Λ in the context of the Planck scale cosmology of Refs. [25]. We comment on the
reliability of the result as well, as it will be seen already to be relatively close to the observed
value [29–31]. More such reflections, as they relate to an experimentally testable union of the
original ideas of Bohr and Einstein, will be taken up elsewhere [32].

The discussion is organized as follows. In the next section we review the Planck scale
cosmology presented in Refs. [25]. In Section 3 we review our results [19] for the dimensionless
gravitational and cosmological constants at the UV fixed point. In Section 4, we combine
the Planck scale cosmology scenario [25] with our results to predict the observed value
of the cosmological constant Λ. Appendix 1 contains the evaluation of our gravitational
resummation exponent.

2. Planck scale cosmology

More precisely, we recall the Einstein-Hilbert theory

L(x) =
1

2κ2

√−g (R − 2Λ) (1)

where R is the curvature scalar, g is the determinant of the metric of space-time gμν,
Λ is the cosmological constant and κ =

√
8πGN for Newton’s constant GN . Using

the phenomenological exact renormalization group for the Wilsonian [5–8] coarse grained
effective average action in field space, the authors in Ref. [25] have argued that the attendant
running Newton constant GN(k) and running cosmological constant Λ(k) approach UV fixed
points as k goes to infinity in the deep Euclidean regime:

k2GN(k) → g∗, Λ(k) → λ∗k2

2 The attendant scale choice k ∼ 1/t used in Refs. [25] was also proposed in Ref. [26].
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for k → ∞.

The contact with cosmology then proceeds as follows. Using a phenomenological connection
between the momentum scale k characterizing the coarseness of the Wilsonian graininess of
the average effective action and the cosmological time t, k(t) = ξ

t for ξ > 0, the authors in
Refs. [25] show that the standard cosmological equations admit of the following extension:

(
ȧ
a
)2 +

K
a2 =

1
3

Λ +
8π

3
GNρ

ρ̇ + 3(1 + ω)
ȧ
a

ρ = 0

Λ̇ + 8πρĠN = 0

GN(t) = GN(k(t))

Λ(t) = Λ(k(t)) (2)

for the density ρ and scale factor a(t) with the Robertson-Walker metric representation as

ds2 = dt2 − a(t)2
(

dr2

1 − Kr2 + r2(dθ2 + sin2 θdφ2)

)
(3)

so that K = 0, 1,−1 correspond respectively to flat, spherical and pseudo-spherical 3-spaces
for constant time t. The equation of state is

p(t) = ωρ(t), (4)

where p is the pressure.

Using the UV fixed points for g∗ and λ∗, the authors in Refs. [25] show that the extended
cosmological system given above admits, for K = 0, a solution in the Planck regime where 0 ≤
t ≤ tclass, with tclass a “few” times the Planck time tPl , which joins smoothly onto a solution in
the classical regime, t > tclass, which coincides with standard Friedmann-Robertson-Walker
phenomenology but with the horizon, flatness, scale free Harrison-Zeldovich spectrum, and
entropy problems all solved purely by Planck scale quantum physics. We now review the
results in Refs. [19] for these UV limits as implied by resummed quantum gravity theory as
presented in [9–18] and show how to use them to predict the current value of Λ. In this way,
we put the arguments in Refs. [25] on a more rigorous theoretical basis.

3. g∗ and λ∗ in resummed quantum gravity

We start with the prediction for g∗, which we already presented in Refs. [9–19]. For the sake
of completeness, let us we recapitulate the main steps in the calculation. Referring to Fig. 1,
we have shown in Refs. [9–18] that the large virtual IR effects in the respective loop integrals
for the scalar propagator in quantum general relativity can be resummed to the exact result

iΔ�
F(k)|resummed =

ieB��
g (k)

(k2 − m2 − Σ�
s + i�)

(5)
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Fig. 1. Graviton loop contributions to the scalar propagator. q is the 4-momentum of the
scalar.

for (Δ = k2 − m2)

B��
g (k) = −2iκ2k4

∫
d4�

16π4
1

�2 − λ2 + i�
1

(�2 + 2�k + Δ + i�)2

=
κ2|k2|
8π2 ln

(
m2

m2 + |k2|
)

,

(6)

where the latter form holds for the UV regime, so that (5) the resummed scalar propagator
falls faster than any power of |k2|. An analogous result [9–18] holds for m = 0 (See Appendix
1.). As Σ�

s, the residual self-energy function, starts in O(κ2), we may drop it in calculating
one-loop effects. It follows that, when the respective analogs of iΔ�

F(k)|resummed are used for
the elementary particles, all quantum gravity loop corrections are UV finite [9–18].

We stress that our resummed scalar propagator representation (5) is not limited to the regime
where k2 ∼= m2 but is an identity that holds for all k2 – see Refs. [9–18]. This is readily shown as
follows. If we invert both sides of (5) and recall the formula for the exact inverse propagator,
we get

Δ−1
F (k)− Σs(k) = (Δ−1

F (k)− Σ�
s(k))e

−B��
g (k) (7)

where the free inverse propagator is Δ−1
F (k) = Δ(k) + i� and Σs(k) is the exact proper

self-energy part. We introduce here the loop expansions

Σs(k) =
∞

∑
n=1

Σs,n(k)
(

κ2

4π2

)n

Σ�
s(k) =

∞

∑
n=1

Σ�
s,n(k)

(
κ2

4π2

)n

and we get, from elementary algebra, the exact relation

− Σs,n(k) = −
n

∑
j=0

Σ�
s,j(k)

(−4π2B��
g (k)

κ2

)n−j

/(n − j)! (8)
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where we define for convenience −Σs,0(k) = −Σ�
s,0(k) = Δ−1

F (k). This proves that every
Feynman diagram contribution to Σs(k) corresponds to a unique contribution to Σ�

s(k) to all
orders in κ2/(4π) for all values of k2. QED.

When we use our resummed propagator results, as extended to all the particles in the SM
Lagrangian and to the graviton itself, , working now with the complete theory (see Refs. [9–
19]) of (1) plus the SM Lagrangian written in diffeomorphism invariant form as explained in
Refs. [9–18],

L(x) =
1

2κ2

√−g (R − 2Λ) +
√−gLG

SM(x) (9)

where LG
SM(x) is the SM Lagrangian written in diffeomorphism invariant form as explained

in Refs. [9–18], the denominator of the graviton propagator becomes [9–18] (MPl is the Planck
mass)

q2 + ΣT(q2) + i� ∼= q2 − q4 c2,e f f

360πM2
Pl

, (10)

for

c2,e f f = ∑
SM particles j

nj I2(λc(j))

∼= 2.56 × 104
(11)

with I2 given in Refs. [9–18] by

I2(λc) =
∫ ∞

0
dxx3(1 + x)−4−λc x (12)

and with λc(j) =
2m2

j

πM2
Pl

. nj is the number of effective degrees of freedom [9–18] of particle

j of mass mj. In c2,e f f in (11), we take the SM masses as explained in Refs. [9–19] following
Refs. [29–31, 33–35] : for the now presumed three massive neutrinos [33], we estimate a mass
at ∼ 3 eV; for the remaining members of the known three generations of Dirac fermions
{e, μ, τ, u, d, s, c, b, t}, we use [34] me ∼= 0.51 MeV, mμ

∼= 0.106 GeV, mτ
∼= 1.78 GeV, mu ∼= 5.1

MeV, md
∼= 8.9 MeV, ms ∼= 0.17 GeV, mc ∼= 1.3 GeV, mb

∼= 4.5 GeV and mt ∼= 174 GeV and
for the massive vector bosons W±, Z we use the masses MW ∼= 80.4 GeV, MZ ∼= 91.19 GeV,
respectively. We set the Higgs mass at mH ∼= 120GeV, in view of the limit from LEP2 [35].
We note that (see the Appendix 1 here and the Appendix 1 in Ref. [9]) when the rest mass of
particle j is zero, such as it is for the photon and the gluon, the value of mj turns-out to be

√
2

times the gravitational infrared cut-off mass [29–31], which is mg ∼= 3.1 × 10−33eV. We also
note that from Ref.[36] it also follows that the value of nj for the graviton and its attendant
ghost is 42. For λc → 0, we have found the approximate representation

I2(λc) ∼= ln
1
λc

− ln ln
1
λc

− ln ln 1
λc

ln 1
λc

− ln ln 1
λc

− 11
6

. (13)

We thus identify (we use GN for GN(0))

GN(k) = GN/(1 +
c2,e f f k2

360πM2
Pl
) (14)
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Fig. 1. Graviton loop contributions to the scalar propagator. q is the 4-momentum of the
scalar.

for (Δ = k2 − m2)

B��
g (k) = −2iκ2k4

∫
d4�

16π4
1

�2 − λ2 + i�
1

(�2 + 2�k + Δ + i�)2

=
κ2|k2|
8π2 ln

(
m2

m2 + |k2|
)

,

(6)

where the latter form holds for the UV regime, so that (5) the resummed scalar propagator
falls faster than any power of |k2|. An analogous result [9–18] holds for m = 0 (See Appendix
1.). As Σ�

s, the residual self-energy function, starts in O(κ2), we may drop it in calculating
one-loop effects. It follows that, when the respective analogs of iΔ�

F(k)|resummed are used for
the elementary particles, all quantum gravity loop corrections are UV finite [9–18].

We stress that our resummed scalar propagator representation (5) is not limited to the regime
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Δ−1
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F (k)− Σ�
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−B��
g (k) (7)

where the free inverse propagator is Δ−1
F (k) = Δ(k) + i� and Σs(k) is the exact proper
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Σs(k) =
∞
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n=1
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(

κ2

4π2

)n

Σ�
s(k) =

∞

∑
n=1

Σ�
s,n(k)
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κ2

4π2

)n

and we get, from elementary algebra, the exact relation

− Σs,n(k) = −
n

∑
j=0

Σ�
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(−4π2B��
g (k)

κ2

)n−j

/(n − j)! (8)
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Refs. [29–31, 33–35] : for the now presumed three massive neutrinos [33], we estimate a mass
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∼= 8.9 MeV, ms ∼= 0.17 GeV, mc ∼= 1.3 GeV, mb
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for the massive vector bosons W±, Z we use the masses MW ∼= 80.4 GeV, MZ ∼= 91.19 GeV,
respectively. We set the Higgs mass at mH ∼= 120GeV, in view of the limit from LEP2 [35].
We note that (see the Appendix 1 here and the Appendix 1 in Ref. [9]) when the rest mass of
particle j is zero, such as it is for the photon and the gluon, the value of mj turns-out to be

√
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times the gravitational infrared cut-off mass [29–31], which is mg ∼= 3.1 × 10−33eV. We also
note that from Ref.[36] it also follows that the value of nj for the graviton and its attendant
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1
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− ln ln
1
λc
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and compute the UV limit g∗ as

g∗ = lim
k2→∞

k2GN(k2) =
360π

c2,e f f
∼= 0.0442. (15)

We stress that this result has no threshold/cut-off or gauge effects in it. a pure property of the
known world.

Turning now to λ∗, we use Einstein’s equation

Gμν + Λgμν = −κ2Tμν (16)

in a standard notation where Gμν = Rμν − 1
2 Rgμν, Rμν is the contracted Riemann tensor, and

Tμν is the energy-momentum tensor. Working with the representation gμν = ημν + 2κhμν for
the flat Minkowski metric ημν = diag(1,−1,−1,−1) we may isolate Λ in Einstein’s equation
by evaluating its VEV (vacuum expectation value). For any bosonic quantum field ϕ we use
the point-splitting definition (here, : : denotes normal ordering)

ϕ(0)ϕ(0) = lim
�→0

ϕ(�)ϕ(0)

= lim
�→0

T(ϕ(�)ϕ(0))

= lim
�→0

{: (ϕ(�)ϕ(0)) : + < 0|T(ϕ(�)ϕ(0))|0 >}
(17)

where the limit is taken with time-like � ≡ (�,�0) → (0, 0, 0, 0) ≡ 0 respectively. A scalar then
makes the contribution [9–18] to Λ given by3

Λs = −8πGN

∫
d4k

2(2π)4
(2k2

0)e
−λc(k2/(2m2)) ln(k2/m2+1)

k2 + m2

∼= −8πGN [
1

G2
N64ρ2

],
(18)

where ρ = ln 2
λc

and we have used the calculus of Refs. [9–18]. We note that the standard
equal-time (anti-)commutation relations algebra realizations then show that a Dirac fermion
contributes −4 times Λs to Λ. The deep UV limit of Λ then becomes

Λ(k) −→
k2→∞

k2λ∗,

λ∗ = − c2,e f f

2880 ∑
j
(−1)Fj nj/ρ2

j

∼= 0.0817

(19)

where Fj is the fermion number of j and ρj = ρ(λc(mj)). We see again that λ∗ is free
of threshold/cut-off effects and of gauge artifacts and is a pure prediction of our known

3 We note the use here in the integrand of 2k2
0 rather than the 2(�k2 + m2) in Ref. [19], to be consistent with

ω = −1 [37] for the vacuum stress-energy tensor.
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world – λ∗ would vanish in an exactly supersymmetric theory. Our results for (g∗, λ∗) agree
qualitatively with those in Refs. [2, 25].

For reference, we note that, if we restrict our resummed quantum gravity calculations above
for g∗, λ∗ to the pure gravity theory with no SM matter fields, we get the results

g∗ = .0533, λ∗ = −.000189

. We see that our results suggest that there is still significant cut-off effects in the results used
for g∗, λ∗ in Refs. [2, 25], which already seem to include an effective matter contribution when
viewed from our resummed quantum gravity perspective, as an artifact of the obvious gauge
and cut-off dependences of the results. Indeed, from a purely quantum field theoretic point of
view, the cut-off action is

ΔkS(h, C, C̄; ḡ) =
1
2
< h,Rgrav

k h > + < C̄,Rgh
k C > (20)

where ḡ is the general background metric, which is the Minkowski space metric η here, and
C, C̄ are the ghost fields and the operators Rgrav

k , Rgh
k implement the course graining as they

satisfy the limits

lim
p2/k2→∞

Rk = 0,

lim
p2/k2→0

Rk → Zkk2,

for some Zk [2]. Here, the inner product is that defined in the second paper in Refs. [2] in its
Eqs.(2.14,2.15,2.19). The result is that the modes with p � k have a shift of their vacuum energy
by the cut-off operator. There is therefore no disagreement in principle between our gauge
invariant and cut-off independent results and the gauge dependent and cut-off dependent
results in Refs. [2, 25].

4. An estimate of Λ

To estimate the value of Λ today, we take the normal-ordered form of Einstein’s equation,

: Gμν : +Λ : gμν := −κ2 : Tμν : . (21)

The coherent state representation of the thermal density matrix then gives the Einstein
equation in the form of thermally averaged quantities with Λ given by our result above
in lowest order. Taking the transition time between the Planck regime and the classical
Friedmann-Robertson-Walker regime at ttr ∼ 25tPl from Refs. [25], we introduce

ρΛ(ttr) ≡ Λ(ttr)

8πGN(ttr)

=
−M4

Pl(ktr)

64 ∑
j

(−1)Fnj

ρ2
j

(22)
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world – λ∗ would vanish in an exactly supersymmetric theory. Our results for (g∗, λ∗) agree
qualitatively with those in Refs. [2, 25].

For reference, we note that, if we restrict our resummed quantum gravity calculations above
for g∗, λ∗ to the pure gravity theory with no SM matter fields, we get the results

g∗ = .0533, λ∗ = −.000189

. We see that our results suggest that there is still significant cut-off effects in the results used
for g∗, λ∗ in Refs. [2, 25], which already seem to include an effective matter contribution when
viewed from our resummed quantum gravity perspective, as an artifact of the obvious gauge
and cut-off dependences of the results. Indeed, from a purely quantum field theoretic point of
view, the cut-off action is

ΔkS(h, C, C̄; ḡ) =
1
2
< h,Rgrav

k h > + < C̄,Rgh
k C > (20)

where ḡ is the general background metric, which is the Minkowski space metric η here, and
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for some Zk [2]. Here, the inner product is that defined in the second paper in Refs. [2] in its
Eqs.(2.14,2.15,2.19). The result is that the modes with p � k have a shift of their vacuum energy
by the cut-off operator. There is therefore no disagreement in principle between our gauge
invariant and cut-off independent results and the gauge dependent and cut-off dependent
results in Refs. [2, 25].

4. An estimate of Λ

To estimate the value of Λ today, we take the normal-ordered form of Einstein’s equation,

: Gμν : +Λ : gμν := −κ2 : Tμν : . (21)

The coherent state representation of the thermal density matrix then gives the Einstein
equation in the form of thermally averaged quantities with Λ given by our result above
in lowest order. Taking the transition time between the Planck regime and the classical
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and use the arguments in Refs. [38] (teq is the time of matter-radiation equality) to get the first
principles estimate, from the method of the operator field,

ρΛ(t0) ∼=
−M4

Pl(1 + c2,e f f k2
tr/(360πM2

Pl))
2

64 ∑
j

(−1)Fnj

ρ2
j

× [ t2
tr

t2
eq

× (
t2/3
eq

t2/3
0

)3]

∼= −M2
Pl(1.0362)2(−9.197 × 10−3)

64
(25)2

t2
0

∼= (2.400 × 10−3eV)4.

(23)

where we take the age of the universe to be t0 ∼= 13.7 × 109 yrs. In the latter estimate, the first
factor in the square bracket comes from the period from ttr to teq (radiation dominated) and
the second factor comes from the period from teq to t0 (matter dominated) 4. This estimate
should be compared with the experimental result [29–31]5 ρΛ(t0)|expt ∼= (2.368 × 10−3eV(1 ±
0.023))4.

To sum up, our estimate, while it is definitely encouraging, is not a precision prediction, as
possible hitherto unseen degrees of freedom have not been included and ttr is not precise, yet.

5. Acknowledgments
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CERN TH Division and the Werner-Heisenberg-Institut, MPI, Munich, respectively, where a
part of this work was done.

6. Appendix: Gravitational infrared exponent

In the text, we use several limits of the gravitational infrared exponent B��
g defined in (6). This

appendix contains these evaluations for completeness.

We have to consider

− B��
g (p) =

2iκ2 p4

16π4

∫ d4k
(k2 − λ2 + i�)

1
(k2 − 2kp + Δ + i�)2 (24)

where Δ = p2 − m2. The integral on the RHS of (24) is given by

I =
∫ d4k

(k2 − λ2 + i�)
1

(k2 − 2kp + Δ + i�)2

=
−iπ2

p2
1

x+ − x−
[
x+ ln(1 − 1/(

√
2x+))− x− ln(1 − 1/(

√
2x−))

]

4 The method of the operator field forces the vacuum energies to follow the same scaling as the
non-vacuum excitations.

5 See also Ref. [39] for an analysis that suggests a value for ρΛ(t0) that is qualitatively similar to this
experimental result.
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with
x± =

1
2
√

2

�
Δ̄ + λ̄2 ± ((Δ̄ + λ̄2)2 − 4(λ̄2 − i�̄))1/2

�
(25)

for Δ̄ = 1 − m2/p2, λ̄2 = λ2/p2and �̄ = �/p2. In this way, we arrive at the results, for p2 < 0,

B��
g (p) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ2|p2|
8π2 ln

�
m2

m2+|p2|
�

, m �= 0

κ2|p2|
8π2 ln

�
m2

g

m2
g+|p2|

�
, m = mg = λ

2κ2|p2|
8π2 ln

�
m2

g

|p2|

�
, m = 0, mg = λ

(26)

where we have made more explicit the presence of the observed small mass, mg, of the
graviton. When m=0 and one wants to use dimensional regularization for the IR regime
instead of mg, we normalize the propagator at a Euclidean point k2 = −μ2 and use standard
factorization arguments [40–44] to take the factorized result for B��

g from (26) as

B��
g (p)|factorized =

2κ2|p2|
8π2 ln

� |μ2|
|p2|

�
, m = 0, mg = 0. (27)

In physical applications, such mass singularities are absorbed by the definition of the initial
state “parton” densities and/or are canceled by the KLN theorem in the final state; we do not
exponentiate them in the exactly massless case.

We stress that the standard analytic properties of the 1PI 2pt functions obtain here, as we use
standard Feynman rules. Wick rotation changes the Minkowski space Feynman loop integral�

d4k with k = (k0, k1, k2, k3) for real kj and k2 = k02 − k12 − k22 − k32 into the integral i
�

d4kE

with k = (ik0, k1, k2, k3) and k2 = −k02 − k12 − k22 − k32 ≡ −k2
E with kE the Euclidean 4-vector

kE = (k0, k1, k2, k3) with metric δμν = diag(1, 1, 1, 1). Thus our results rigorously correspond
to |p2| = −p2 in (26), (27) with m2 replaced with m2 − i�, with � ↓ 0, following Feynman,
for p2 < 0; by Wick rotation this is the regime relevant to the UV behavior of the Feynman
loop integral. Standard complex variables theory then uniquely specifies our exponent for
any value of p2.
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g defined in (6). This

appendix contains these evaluations for completeness.

We have to consider

− B��
g (p) =

2iκ2 p4

16π4

∫ d4k
(k2 − λ2 + i�)

1
(k2 − 2kp + Δ + i�)2 (24)

where Δ = p2 − m2. The integral on the RHS of (24) is given by

I =
∫ d4k

(k2 − λ2 + i�)
1

(k2 − 2kp + Δ + i�)2

=
−iπ2

p2
1

x+ − x−
[
x+ ln(1 − 1/(

√
2x+))− x− ln(1 − 1/(

√
2x−))

]

4 The method of the operator field forces the vacuum energies to follow the same scaling as the
non-vacuum excitations.

5 See also Ref. [39] for an analysis that suggests a value for ρΛ(t0) that is qualitatively similar to this
experimental result.
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with
x± =

1
2
√

2

�
Δ̄ + λ̄2 ± ((Δ̄ + λ̄2)2 − 4(λ̄2 − i�̄))1/2

�
(25)

for Δ̄ = 1 − m2/p2, λ̄2 = λ2/p2and �̄ = �/p2. In this way, we arrive at the results, for p2 < 0,

B��
g (p) =

⎧
⎪⎪⎪⎪⎪⎨
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κ2|p2|
8π2 ln

�
m2

m2+|p2|
�

, m �= 0

κ2|p2|
8π2 ln

�
m2

g

m2
g+|p2|

�
, m = mg = λ

2κ2|p2|
8π2 ln

�
m2

g

|p2|

�
, m = 0, mg = λ

(26)

where we have made more explicit the presence of the observed small mass, mg, of the
graviton. When m=0 and one wants to use dimensional regularization for the IR regime
instead of mg, we normalize the propagator at a Euclidean point k2 = −μ2 and use standard
factorization arguments [40–44] to take the factorized result for B��

g from (26) as

B��
g (p)|factorized =

2κ2|p2|
8π2 ln

� |μ2|
|p2|

�
, m = 0, mg = 0. (27)

In physical applications, such mass singularities are absorbed by the definition of the initial
state “parton” densities and/or are canceled by the KLN theorem in the final state; we do not
exponentiate them in the exactly massless case.

We stress that the standard analytic properties of the 1PI 2pt functions obtain here, as we use
standard Feynman rules. Wick rotation changes the Minkowski space Feynman loop integral�

d4k with k = (k0, k1, k2, k3) for real kj and k2 = k02 − k12 − k22 − k32 into the integral i
�

d4kE

with k = (ik0, k1, k2, k3) and k2 = −k02 − k12 − k22 − k32 ≡ −k2
E with kE the Euclidean 4-vector

kE = (k0, k1, k2, k3) with metric δμν = diag(1, 1, 1, 1). Thus our results rigorously correspond
to |p2| = −p2 in (26), (27) with m2 replaced with m2 − i�, with � ↓ 0, following Feynman,
for p2 < 0; by Wick rotation this is the regime relevant to the UV behavior of the Feynman
loop integral. Standard complex variables theory then uniquely specifies our exponent for
any value of p2.
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36 Quantum Gravity

1. Introduction

One of the main motivations for constructing a model of topological gravity in three dimensions
(3D) is that it might serve as a ‘laboratory’ for applying techniques appearing rather awkward
or even intractable in four dimensions. This stems from the fact that a Riemannian spacetime
is Ricci-flat, i.e., the Ricci tensor determines the Riemann tensor in 3D and as a result, the
only vacuum solutions of the Einstein equations with vanishing cosmological constant are
flat. This result implies that the dynamical properties may not be attributed to the metric but
rather to the coframe. When matter is included there are nontrivial solutions to the Einstein
equations and if topological terms are included, these may induce dynamical properties in
3D. Such a ‘laboratory’ may no longer be a suitable testing ground for higher–dimensional
models of Einsteinian gravity [5, 10, 18, 36].

There are other reasons for studying the dynamical aspects of topological gravity in three
dimensions: Some problems in 4D gravity reduce to an effective 3D theory, such as cosmic
strings, the high–temperature behavior of 4D theories and some membrane models of
extended relativistic systems. Moreover, many aspects of black hole thermodynamics can
be effectively reduced to problems in 3D, cf. Refs. [6, 7].

Outside of quantum gravity, the continuum theory of lattice defects in crystal physics can be
regarded as ‘analogue gravity’ with Cartan‘s torsion in 3D, where such defects are modeled by
connections in the orthonormal frame bundle and the Chern-Simons type free-energy integral
by Riemann–Cartan (RC) spaces with constant torsion [11, 26]. Recently, flexural modes
of graphene have also been considered as membranes with a ‘gravitational’ metric [25] or
coframe induced from its embedding into three-dimensional spacetime.

Our paper is organized as follow: In Section 2, we give a brief introduction to the
Mielke-Baekler (MB) model of toplogical gravity in 3D, in which the Einstein-Cartan
Lagrangian is substituted by a mixed topological term, the so-called mix-model. The coupling
of Rarita-Schwinger fields to topological gravity is presented in Section 3, whereas in Section
4 we deduce the restrictions on the coupling parameters in order to ensure that the model is
supersymmetric. The particular dynamical symmetry of the MB model, in Ref. [32] dubbed
“S–duality", is generalized in Section 5 to our topological supergravity model. In Section
6 and in an Outlook, we consider the still speculative applicability of this model to the

*Permanent address: Departamento de Física, Facultad de Ciencias, Universidad del Zulia, Venezuela

  

S-Duality in Topological Supergravity 
Eckehard W. Mielke and Alí A. Rincón Maggiolo* 

Departamento de Física,  
Universidad Autónoma Metropolitana–Iztapalapa, 

México 

3



10 Will-be-set-by-IN-TECH

[10] B.F.L. Ward, Mod. Phys. Lett. A 17 (2002) 237.
[11] B.F.L. Ward, Mod. Phys. Lett. A 19 (2004) 14.
[12] B.F.L. Ward, J. Cos. Astropart. Phys. 0402 (2004) 011.
[13] B.F.L. Ward, Acta Phys. Polon. B37 (2006) 1967.
[14] B.F.L. Ward, Acta Phys. Polon. B37 (2006) 347.
[15] B.F.L. Ward, hep-ph/0502104; in Focus on Black Hole Research, ed. P.V. Kreitler,(Nova Sci.

Publ., Inc., New York, 2006) p. 95.
[16] B.F.L. Ward, hep-ph/0411050; Int. J. Mod. Phys. A20 (2005) 3502.
[17] B.F.L. Ward, hep-ph/0411049; Int. J. Mod. Phys. A20 (2005) 3128.
[18] B.F.L. Ward, hep-ph/0410273; in Proc. ICHEP 2004, vol. 1, eds. H. Chen et al.,(World Sci.

Publ. Co., Singapore, 2005) p. 419 and references therein.
[19] B.F.L. Ward, Mod. Phys. Lett. A 23 (2008) 3299.
[20] D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13 (1961) 379; see also K. T.

Mahanthappa, Phys. Rev. 126 (1962) 329, for a related analysis.
[21] J. Ambjorn et al., Phys. Lett. B 690 (2010) 420, and references therein.
[22] P. Horava, Phys. Rev. D 79 (2009) 084008.
[23] D. Kreimer, Ann. Phys. 321 (2006) 2757.
[24] D. Kreimer, Ann. Phys. 323 (2008) 49.
[25] A. Bonanno and M. Reuter, Phys. Rev. D 65 (2002) 043508; Jour. Phys. Conf. Ser. 140

(2008) 012008, and references therein.
[26] I.L. Shapiro and J. Sola, Phys. Lett. B 475 (2000) 236.
[27] See for example A. H. Guth and D.I. Kaiser, Science 307 (2005) 884; A. H. Guth, Phys.

Rev. D 23 (1981) 347, and references therein.
[28] See for example A. Linde, Lect. Notes. Phys. 738 (2008) 1, and references therein.
[29] A.G. Riess et al., Astron. Jour. 116 (1998) 1009.
[30] S. Perlmutter et al., Astrophys. J. 517 (1999) 565.
[31] C. Amsler et al., Phys. Lett. B 667 (2008) 1 and, references therein.
[32] B.F.L. Ward, to appear.
[33] See for example D. Wark, in Proc. ICHEP02, eds. S. Bentvelsen et al.,

(North-Holland,Amsterdam, 2003), Nucl. Phys. B (Proc. Suppl.) 117 (2003) 164; M.
C. Gonzalez-Garcia, hep-ph/0211054, in Proc. ICHEP02, eds. S. Bentvelsen et al.,
(North-Holland,Amsterdam, 2003), Nucl. Phys. B (Proc. Suppl.) 117 (2003) 186, and
references therein.

[34] K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001; S. Eidelman et al., Phys. Lett. B 592
(2004) 1; H. Leutwyler and J. Gasser, Phys. Rept. 87 (1982) 77, and references therein.

[35] D. Abbaneo et al., hep-ex/0212036; M. Gruenewald, hep-ex/0210003, in Proc. ICHEP02,
eds. S. Bentvelsen et al., (North-Holland,Amsterdam, 2003), Nucl. Phys. B Proc. Suppl.
117(2003) 280.

[36] G. ’t Hooft and M. Veltman, Ann. Inst. Henri Poincare XX (1974) 69.
[37] Ya. B. Zeldovich, Sov. Phys. Uspekhi 11 (1968) 381.
[38] V. Branchina and D. Zappala, G. R. Gravit. 42 (2010) 141; arXiv:1005.3657, and references

therein.
[39] J. Sola, J. Phys. A 41 (2008) 164066.
[40] R.K. Ellis et al., Phys. Lett. B 78 (1978) 281-4.
[41] R.K. Ellis et al., Nucl. Phys. B 152 (1979) 285-329.
[42] D. Amati, R. Petronzio and G. Veneziano G, Nucl. Phys. Bbf 146 (1978) 29-49.
[43] S. Libby and G. Sterman G, Phys. Rev. D 18 (1978) 3252-68.
[44] A. Mueller, Phys. Rev. D 18 (1978) 3705-27.

36 Quantum Gravity

1. Introduction

One of the main motivations for constructing a model of topological gravity in three dimensions
(3D) is that it might serve as a ‘laboratory’ for applying techniques appearing rather awkward
or even intractable in four dimensions. This stems from the fact that a Riemannian spacetime
is Ricci-flat, i.e., the Ricci tensor determines the Riemann tensor in 3D and as a result, the
only vacuum solutions of the Einstein equations with vanishing cosmological constant are
flat. This result implies that the dynamical properties may not be attributed to the metric but
rather to the coframe. When matter is included there are nontrivial solutions to the Einstein
equations and if topological terms are included, these may induce dynamical properties in
3D. Such a ‘laboratory’ may no longer be a suitable testing ground for higher–dimensional
models of Einsteinian gravity [5, 10, 18, 36].

There are other reasons for studying the dynamical aspects of topological gravity in three
dimensions: Some problems in 4D gravity reduce to an effective 3D theory, such as cosmic
strings, the high–temperature behavior of 4D theories and some membrane models of
extended relativistic systems. Moreover, many aspects of black hole thermodynamics can
be effectively reduced to problems in 3D, cf. Refs. [6, 7].

Outside of quantum gravity, the continuum theory of lattice defects in crystal physics can be
regarded as ‘analogue gravity’ with Cartan‘s torsion in 3D, where such defects are modeled by
connections in the orthonormal frame bundle and the Chern-Simons type free-energy integral
by Riemann–Cartan (RC) spaces with constant torsion [11, 26]. Recently, flexural modes
of graphene have also been considered as membranes with a ‘gravitational’ metric [25] or
coframe induced from its embedding into three-dimensional spacetime.

Our paper is organized as follow: In Section 2, we give a brief introduction to the
Mielke-Baekler (MB) model of toplogical gravity in 3D, in which the Einstein-Cartan
Lagrangian is substituted by a mixed topological term, the so-called mix-model. The coupling
of Rarita-Schwinger fields to topological gravity is presented in Section 3, whereas in Section
4 we deduce the restrictions on the coupling parameters in order to ensure that the model is
supersymmetric. The particular dynamical symmetry of the MB model, in Ref. [32] dubbed
“S–duality", is generalized in Section 5 to our topological supergravity model. In Section
6 and in an Outlook, we consider the still speculative applicability of this model to the

*Permanent address: Departamento de Física, Facultad de Ciencias, Universidad del Zulia, Venezuela

  

S-Duality in Topological Supergravity 
Eckehard W. Mielke and Alí A. Rincón Maggiolo* 

Departamento de Física,  
Universidad Autónoma Metropolitana–Iztapalapa, 

México 

3



2 Will-be-set-by-IN-TECH

objects p-forms components n=4 3 2
ϑα vector 1 n2 16 9 1
Γ�

α vector 1 n2 16 9 1
Tα vector 2 n2(n − 1)/2 24 9 2
Rαβ bivector 2 n2(n − 1)2/4 36 9 1
Σα vector n − 1 n2 16 9 4
ταβ bivector n − 1 n2(n − 1)/2 24 9 2
ηα vector n − 1 n2 16 9 4

Table 1. Geometrical objects and fields

flexural modes of corrugated surfaces (2D membranes) embedded in 3D spacetime, as recently
realized by the rather prospective new material called graphene.

2. Topological gravity with torsion

In three spacetime dimensions, the basic gravitational variables in the Riemann-Cartan (RC)
formalisms are the one–forms of the coframe and the Lie dual of the (Lorentz-) rotational
connection Γβγ = Γj

βγdxj, i.e.,

ϑα = ei
αdxi and Γ�

α :=
1
2

ηαβγΓβγ. (1)

The related field strengths are the two–forms of torsion

Tα := dϑα − (−1)s ηαβ ∧ Γ�
β (2)

and curvature

R�
α =

1
2

ηαβγRβγ := dΓ�
α +

(−1)s

2
ηαβγΓ�

β ∧ Γ�
γ, (3)

respectively, cf. the Appendices of Ref. [31]. Table 1 contains a summary of these basic
variables and their components in various dimensions. Observe that only for n = 3 all fields
have the same number of components. After converting bivectors into vectors via the Lie
dual, a linear combination of all variables could pave the way for a better understanding of
topological models.

In 3D, the Einstein-Cartan (EC) Lagrangian

LEC := −χ

�
ϑα ∧ R�

α ≡ −χ CTL − χ

�
d(Γ�

α ∧ ϑα) (4)

merely gives rise to a locally trivial dynamics [38]. This is due to its equivalence to a ‘mixed’
Chern-Simons type term CTL plus a total divergence, as indicated above.

In this paper, we generalize this trivial dynamics by adding Chern-Simons (CS) type terms,
following the lead of Witten [43]. By gauging the Poincaré group IR3 ⊂× SO(1, 2), we arrive at
the Mielke and Baekler (MB) model [2, 28] which is at most linear in the field strengths. This is
slightly modified here by replacing LEC via the ‘mixed’ Chern-Simons type term CTL, which
is simulating, in 3D, to some extend Einstein’s theory with ‘cosmological’ term, as is indicated
above. Thereby, we are able to depart from a completely topological theory.

38 Quantum Gravity S-Duality in Topological Supergravity 3

Allowing for arbitrary “vacuum angles" θT, θL and θTL = −χ, the most general purely
topological gravity Lagrangian in 3D, in first order formalism, takes the form

LMB(ϑ
α, Γ�

α) = θTCT + θLCL + θTLCTL , (5)

where
CT :=

1
2�2 ϑα ∧ Tα, CL := (−1)s Γ�α ∧ R�

α −
1
3!

ηαβγ Γ�α ∧ Γ�β ∧ Γ�γ (6)

and

CTL :=
1
�

(
Γ�α ∧ Tα − (−1)s

2
ηαβγ Γ�α ∧ Γ�β ∧ ϑγ

)
, (7)

respectively, are the translational, rotational and ‘mixed’ Chern-Simons type three forms
of gauge type C =Tr{A ∧ F} in RC spacetime [8, 12, 43]. The equation (5) is the known
topological Lagrangian of the Mielke-Baekler (MB) mix-model [28, 31]. Since the translational
term CT is covariant, it appears that the MB model is semi-topological, with interesting
consequence on the degrees of propagating modes, cf. Ref. [4, 32, 36].

Varying the Lagrangian (5) with respects to ϑα and Γ�α and employing the results of Appendix
A, yields the topological field equations

− θTL R�
α −

θT
�

Tα = �Σα , (8)

and
− (−1)sθTL Tα − θT

2�
ηα − θL� R�

α = � τ�
α , (9)

cf. Eq. (6.9) of Ref. [2]. Observe that the translational CS term proportional to θT induces
in the second field equation a constant term, familiar in 4D from Einstein’s equation with
cosmological constant Λ.

Thereby, combining the vacuum field equations (9) and (8) yield for the torsion and the RC
curvature the constrictions:

Tα =
2κ

�
ηα , R�

α =
ρ

�2 ηα (10)

where the contortional constants κ = θTLθT/2A and ρ = −θ2
T/A are related to the vacuum

angles. A singular case is exclude by assuming that A =: −(−1)sθ2
TL + 2θTθL �= 0.

When including matter couplings, we explicitly find for the torsion

Tα − 2κ

�
ηα =

2
A
� (θTLτ�

α − θL�Σα) , (11)

and the RC curvature
R�

α −
ρ

�2 ηα =
2
A

(θTL�Σα − θTτ�
α ) , (12)

cf. Ref. [31].

3. Rarita–Schwinger Lagrangian in 3D

Commonly, supergravity [15, 19] with one supersymmetry generator, i.e. N=1, represents the
simplest consistent coupling of a Rarita–Schwinger (RS) spin– 3

2 field [35] to gravity.
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term CT is covariant, it appears that the MB model is semi-topological, with interesting
consequence on the degrees of propagating modes, cf. Ref. [4, 32, 36].

Varying the Lagrangian (5) with respects to ϑα and Γ�α and employing the results of Appendix
A, yields the topological field equations

− θTL R�
α −

θT
�

Tα = �Σα , (8)

and
− (−1)sθTL Tα − θT

2�
ηα − θL� R�

α = � τ�
α , (9)

cf. Eq. (6.9) of Ref. [2]. Observe that the translational CS term proportional to θT induces
in the second field equation a constant term, familiar in 4D from Einstein’s equation with
cosmological constant Λ.

Thereby, combining the vacuum field equations (9) and (8) yield for the torsion and the RC
curvature the constrictions:

Tα =
2κ

�
ηα , R�

α =
ρ

�2 ηα (10)

where the contortional constants κ = θTLθT/2A and ρ = −θ2
T/A are related to the vacuum

angles. A singular case is exclude by assuming that A =: −(−1)sθ2
TL + 2θTθL �= 0.

When including matter couplings, we explicitly find for the torsion

Tα − 2κ

�
ηα =

2
A
� (θTLτ�

α − θL�Σα) , (11)

and the RC curvature
R�

α −
ρ

�2 ηα =
2
A

(θTL�Σα − θTτ�
α ) , (12)

cf. Ref. [31].

3. Rarita–Schwinger Lagrangian in 3D

Commonly, supergravity [15, 19] with one supersymmetry generator, i.e. N=1, represents the
simplest consistent coupling of a Rarita–Schwinger (RS) spin– 3

2 field [35] to gravity.
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The Rarita-Schwinger [35] type spinor-valued one-form1

Ψ = Ψidxi = Ψαϑα (13)

can be written holononically and anholononically. However, it does not depend on the
coframe, inasmuch Ψα := eα�Ψ involves the inverse tetrad. In 3D, we adhere to the
conventions that the holonomic indices run from i, j, k, . . . = 0, 1, 2, whereas α, β, . . . = 0̂, 1̂, 2̂
for the anholonomic indices.

We are going to provide a brief summary of the spinors that will be used in three dimensions:
As well known, the covering group of the rotation group SO(3) is isomorphic to the unitary
group SU(2). Since an element of SU(2) can be parameterized by three numbers, the most
convenient basis of the Lie algebra are the familiar Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (14)

These matrices satisfy the following Lie algebra:
[
σα, σβ

]
= 2iηαβγσγ. (15)

However, for Lorentzian signature s = 1, the covering group of SO(1, 2) is isomorphic to the
real group SL(2, IR). Then the generators of SL(2, IR) may be realized by the matrices

γ0 = iσ2, γ1 = σ1, γ2 = σ3. (16)

These real matrices [27] satisfying

γαγβ = gαβ + ηαβνγν (17)

also provide a realization of the Clifford algebra

γαγβ + γβγα = 2gαβ (18)

in 3D. In addition, the coframe basis ϑα converts into one Clifford algebra value one-form

γ = γαϑα (19)

Then Ψ will become real two-component spinors, with the Dirac adjoint defined by Ψ :=
Ψ†γ0.

1 In four dimensions (4D), the Rarita–Schwinger field Ψ := Ψαϑα entering Eq. (13) is a Majorana spinor
valued one-form. As it is well known [34], it satisfies the Majorana condition, i.e. Ψ = CΨt, where C
is the charge conjugation matrix given by C = −iγ0 satisfying C† = C−1 , Ct = −C and C−1γαC =

− (γα)t. Consequently,
Ψ ∧ Ψ = 0 , Ψ ∧ γ5γαΨ = 0 , Ψ ∧ γ5Ψ = 0

For the real Majorana representation all γα are purely imaginary and the components of the gravitino
vector–spinor consequently are all real [30].
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The corresponding manifestly Hermitian RS type Lagrangian three–form of Howe and Tucker
[23] reads

LRS =
i
4
(
Ψ ∧ DΨ − Ψ ∧ DΨ

)
+

i
4

mΨ ∧ γ ∧ Ψ, (20)

including, however, a mass term. Here minimal coupling to gravity is achieved via

DΨ = dΨ − 1
2

γαΓ�α ∧ Ψ, (21)

which is nothing more than the gauge covariant derivative of a spinor-valued one-form Ψ.

Only in 3D, however, there exists a generalization given by the following expression

LΨ = LRS + s1 DΨ ∧ ∗(DΨ) + s2 DΨ ∧ γ ∧ ∗(γ ∧ DΨ). (22)

As in the case of the Rarita-Schwinger Lagrangian LRS, it is manifestly Hermitian when the
additional quadratic derivative terms carry s1 and s2 as dimensionless coupling constants.

In order to supersymmetrize this action, it will be coupled to topological gravity later on.

3.1 Energy-momentum and spin currents

By definition, the energy-momentum current two-form Σα of matter is given by

Σα :=
δLΨ
δϑα

=
∂LΨ
∂ϑα

+ D
∂LΨ
∂Tα

, (23)

where the second term accounts for the possibility of a non-minimal coupling to torsion
via Pauli type terms, cf. Eq. (5.1.8) of Ref. [22]. According to the Noether theorem, the
energy-momentum current two-form of matter Σα without Pauli terms can be rewritten as

Σα := eα�LΨ − (eα�Ψ) ∧ ∂LΨ
∂Ψ

− (eα�Ψ) ∧ ∂LΨ

∂Ψ
− (eα�DΨ) ∧ ∂LΨ

∂DΨ
− (eα�DΨ) ∧ ∂LΨ

∂DΨ
, (24)

see Eq. (5.4.11) of Ref. [22] for details. This equivalent equation often is more convenient,
since it involves only partial derivatives of the matter fields and avoids the intricate treatment
of a possible dependence of the matter Lagrangian on the Hodge dual. Taking into account
the identities of Appendix B, we find

Σα = − i
4

mΨ ∧ γαΨ + s1
{

DΨ ∧ eα�∗(DΨ)− (eα�DΨ) ∧ ∗ (DΨ
)}

+s2
[
DΨ ∧ γα ∧ ∗(γ ∧ DΨ)− (eα�DΨ) ∧ ∗ (DΨ ∧ γ

) ∧ γ
]

. (25)

Since the kinetic terms in the Rarita-Schwinger type Lagrangian LRS do not depend explicitly
on the coframe ϑα, they provides no contribution to the energy-momentum current.

The 3-dual of the spin current is defined by

τ�
α :=

1
2

ηαβγτβγ =
(−1)s

2
δLΨ
δΓ�

α
. (26)

41S-Duality in Topological Supergravity



4 Will-be-set-by-IN-TECH

The Rarita-Schwinger [35] type spinor-valued one-form1

Ψ = Ψidxi = Ψαϑα (13)

can be written holononically and anholononically. However, it does not depend on the
coframe, inasmuch Ψα := eα�Ψ involves the inverse tetrad. In 3D, we adhere to the
conventions that the holonomic indices run from i, j, k, . . . = 0, 1, 2, whereas α, β, . . . = 0̂, 1̂, 2̂
for the anholonomic indices.

We are going to provide a brief summary of the spinors that will be used in three dimensions:
As well known, the covering group of the rotation group SO(3) is isomorphic to the unitary
group SU(2). Since an element of SU(2) can be parameterized by three numbers, the most
convenient basis of the Lie algebra are the familiar Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (14)

These matrices satisfy the following Lie algebra:
[
σα, σβ

]
= 2iηαβγσγ. (15)

However, for Lorentzian signature s = 1, the covering group of SO(1, 2) is isomorphic to the
real group SL(2, IR). Then the generators of SL(2, IR) may be realized by the matrices

γ0 = iσ2, γ1 = σ1, γ2 = σ3. (16)

These real matrices [27] satisfying

γαγβ = gαβ + ηαβνγν (17)

also provide a realization of the Clifford algebra

γαγβ + γβγα = 2gαβ (18)

in 3D. In addition, the coframe basis ϑα converts into one Clifford algebra value one-form

γ = γαϑα (19)

Then Ψ will become real two-component spinors, with the Dirac adjoint defined by Ψ :=
Ψ†γ0.

1 In four dimensions (4D), the Rarita–Schwinger field Ψ := Ψαϑα entering Eq. (13) is a Majorana spinor
valued one-form. As it is well known [34], it satisfies the Majorana condition, i.e. Ψ = CΨt, where C
is the charge conjugation matrix given by C = −iγ0 satisfying C† = C−1 , Ct = −C and C−1γαC =

− (γα)t. Consequently,
Ψ ∧ Ψ = 0 , Ψ ∧ γ5γαΨ = 0 , Ψ ∧ γ5Ψ = 0

For the real Majorana representation all γα are purely imaginary and the components of the gravitino
vector–spinor consequently are all real [30].

40 Quantum Gravity S-Duality in Topological Supergravity 5

The corresponding manifestly Hermitian RS type Lagrangian three–form of Howe and Tucker
[23] reads

LRS =
i
4
(
Ψ ∧ DΨ − Ψ ∧ DΨ

)
+

i
4

mΨ ∧ γ ∧ Ψ, (20)

including, however, a mass term. Here minimal coupling to gravity is achieved via

DΨ = dΨ − 1
2

γαΓ�α ∧ Ψ, (21)

which is nothing more than the gauge covariant derivative of a spinor-valued one-form Ψ.

Only in 3D, however, there exists a generalization given by the following expression

LΨ = LRS + s1 DΨ ∧ ∗(DΨ) + s2 DΨ ∧ γ ∧ ∗(γ ∧ DΨ). (22)

As in the case of the Rarita-Schwinger Lagrangian LRS, it is manifestly Hermitian when the
additional quadratic derivative terms carry s1 and s2 as dimensionless coupling constants.

In order to supersymmetrize this action, it will be coupled to topological gravity later on.

3.1 Energy-momentum and spin currents

By definition, the energy-momentum current two-form Σα of matter is given by

Σα :=
δLΨ
δϑα

=
∂LΨ
∂ϑα

+ D
∂LΨ
∂Tα

, (23)

where the second term accounts for the possibility of a non-minimal coupling to torsion
via Pauli type terms, cf. Eq. (5.1.8) of Ref. [22]. According to the Noether theorem, the
energy-momentum current two-form of matter Σα without Pauli terms can be rewritten as

Σα := eα�LΨ − (eα�Ψ) ∧ ∂LΨ
∂Ψ

− (eα�Ψ) ∧ ∂LΨ

∂Ψ
− (eα�DΨ) ∧ ∂LΨ

∂DΨ
− (eα�DΨ) ∧ ∂LΨ

∂DΨ
, (24)

see Eq. (5.4.11) of Ref. [22] for details. This equivalent equation often is more convenient,
since it involves only partial derivatives of the matter fields and avoids the intricate treatment
of a possible dependence of the matter Lagrangian on the Hodge dual. Taking into account
the identities of Appendix B, we find

Σα = − i
4

mΨ ∧ γαΨ + s1
{

DΨ ∧ eα�∗(DΨ)− (eα�DΨ) ∧ ∗ (DΨ
)}

+s2
[
DΨ ∧ γα ∧ ∗(γ ∧ DΨ)− (eα�DΨ) ∧ ∗ (DΨ ∧ γ

) ∧ γ
]

. (25)

Since the kinetic terms in the Rarita-Schwinger type Lagrangian LRS do not depend explicitly
on the coframe ϑα, they provides no contribution to the energy-momentum current.

The 3-dual of the spin current is defined by

τ�
α :=

1
2

ηαβγτβγ =
(−1)s

2
δLΨ
δΓ�

α
. (26)

41S-Duality in Topological Supergravity



6 Will-be-set-by-IN-TECH

In view of the definition (21) of the covariant derivative, we find

τ�
α =

(−1)s

2

{
i
4

ΨγαΨ +
s1
2

[
Ψγα ∧ ∗(DΨ) + γαΨ ∧ ∗ (DΨ

) ]

+
s2
2

[
Ψγα ∧ γ ∧ ∗(γ ∧ DΨ) + γαΨ ∧ γ ∧ ∗ (γ ∧ DΨ)

]}
. (27)

Using the Hermetian properties of the spinor-valued p–forms, we finally obtain

τ�
α =

(−1)s

2

[
i
4

Ψ ∧ γαΨ + s1 Ψγα ∧ ∗(DΨ) + s2 Ψγα ∧ γ ∧ ∗(γ ∧ DΨ)

]
, (28)

cf. the identities of Appendix C.

It should be noted that for the pure Rarita-Schwinger Lagrangian with s1 = s2 = 0, the
energy-momentum current is proportional to its dual spin, i.e.

Σα = −(−1)s2mτ�
α . (29)

4. Topological supersymmetry in 3D

Let us consider the first order topological Lagrangian

L∞ = L∞(ϑα, Γ�
α, Ψ) = LMB + LΨ (30)

and verify if it is supersymmetric or not: The variation of its independent variables (ϑα, Γ�
α, Ψ)

yields

δL = δϑα ∧ δL
δϑα

+ δΓ�
α ∧

δL
δΓ�

α
+ δΨ ∧ δL

δΨ
(31)

where, for convenience, it suffices to vary only for the Dirac adjoint Ψ.

The supersymmetric transformation of Deser [13, 14] read in exterior form notation

δsusyϑα = iσ Ψγα, δsusyΓ�
α = iσ γ∗

αDΨ + icσ (γαΨ + eα�∗Ψ),

δsusyΨ = 2Dσ + cγσ, (32)

where σ stands in for a spinor valued zero form and c a real constant. Inserting this into Eq.
(31) yields

δsusyL = iσ Ψγα ∧ δL
δϑα

+ δsusyΓ�
α ∧

δL
δΓ�

α
+

(
2Dσ + cσγ

) ∧ δL
δΨ

, (33)

where we used cγσ = cσγ for the Dirac adjoint.

In the following, we assume that the second field equation δL/δΓ�
α
∼= 0 is fulfilled “on shell”,

i.e., Eq. (9) of the ‘mixed’ MB model. Then, the SUSY transformation reduce to

δsusyL ∼= σ

(
iγαΨ ∧ δL

δϑα
− 2D ∧ δL

δΨ
+ cγ ∧ δL

δΨ

)
+ 2d

(
σ ∧ δL

δΨ

)
(34)
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Let us restrict for the moment to the usual Rarita-Schwinger Lagrangian LRS, or equivalently
to LΨ with s1 = s2 = 0. Then the Rarita-Schwinger equation

2
i

δL
δΨ

= DΨ +
1
2

mγ ∧ Ψ ∼= 0 (35)

becomes massive. Moreover, in Eq. (34) the term in brackets following form the
supersymmetric transformations reads

iγαΨ ∧ δL
δϑα

+ cγ ∧ δL
δΨ

− 2D
δL
δΨ

∼= iγαΨ
(

θTL
�

R�
α +

θT
�2 Tα + Σα

)
+ cγ ∧

(
i
2

DΨ +
i
4

mγ ∧ Ψ
)

−D
(

iDΨ +
i
2

mγ ∧ Ψ
)

= iγαΨ
(

θTL
�

R�
α +

θT
�2 Tα

)
+ γαΨ

(
1
4

mΨγαΨ
)

(36)

+cγ ∧
(

i
2

DΨ +
i
4

mγ ∧ Ψ
)
− iR�

αγαΨ − i
2

mTαγαΨ +
i
2

mγ ∧ DΨ

By a Fierz rearrangement, i.e.,
γαΨ ∧ ΨγαΨ = 0, (37)

terms arising from the energy-momentum current Σα, or likewise from the dual spin τ�
α , are

vanishing.

Moreover, in our restricted model with s1 = s2 = 0 we have to put

c = −m, (38)

in order to eliminate the kinetic γ ∧ DΨ terms. Then, using the formula

γ ∧ γ = −2γαηα, (39)

of Howe and Tucker [23], we find from Eq. (36) the requirement

i
[(

θTL
�

− 1
)

R�
α +

(
θT
�2 − m

2

)
Tα +

m2

2
ηα

]
γαΨ = 0, (40)

in order that our Lagrangian becomes supersymmetric.

At first sight, it appears that there is no cosmological constant in order to compensate a similar
one arising from the RS mass. However, one should compare the bracket with the second field
equation (9) inserted, which indeed involves a cosmological term induced by the translational
Chern-Simons term proportional to θT. In this insertion

i
[(

θL +
θTL
�

− 1
)

R�
α +

(
(−1)s θTL

�
+

θT
�2 − m

2

)
Tα +

1
2

(
θT
�2 + m2

)
ηα + τ�

α

]
γαΨ = 0, (41)
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the dual spin τ�
α of the RS field will not contribute, again due to Fierz rearrangement (37). This

finally leads to the “on shell” conditions

θT = −m2�2, θTL =
(−1)s

2
m(2m + 1)�, θL = 1 − θTL

�
= 1 − (−1)s

2
m(2m + 1) (42)

for the coupling constants of the bosonic part of our Lagrangian L∞. Consequently,
massless RS spinors do not require a translational nor a ‘mixed’ CS term in order to acquire
supersymmetry.

5. Towards supersymmetric S–duality

There exists a continuous deformation [or a field redefinition (FR)] of the (Lorentz-) rotational
connection by adding a tensor–valued one–form, similarly as in Eq. (3.11.1) of Ref. [22]. In
3D, the particular deformation

Γ̃�
α = Γ�

α − (−1)s ε

2�
ϑα, (43)

where ε is a continuous parameter, is involving the Lie dual Γ�
α = 1

2 ηαβγΓβγ of the connection.
In view of the definitions (2) and (3) of torsion and curvature, respectively, this FR implies

T̃α = Tα − ε

�
ηα, R̃�

α = R�
α − (−1)s ε

2�
Tα + (−1)s ε2

4�2 ηα (44)

for the deformed torsion and curvature, respectively. In particular, there can arise two
subcases: Riemannian spacetime with deformed torsion T̃α = 0, or deformed teleparallelism in
the gauge Γ̃�

α
∗
= 0, equivalent to the covariant constraint of vanishing modified RC curvature,

i.e., R̃�
α = 0.

In the latter case, coframe and connection are Lie dual to each other, i.e.,

Γ�
α = (−1)s ε

2�
ϑα ⇔ ϑα = (−1)s 2�

ε
Γ�

α. (45)

Observe the inversion of the parameter ε, i.e., a small deformation ε of the connection will
induce a large coframe proportional to 1/ε and vice versa, resembling strong/weak duality.
Such a duality of the strong/weak coupling regime of gauge fields, is the so-called S–duality. For
Chern-Simons (super-)gravity, some of its aspects have also been discussed in Ref. [16, 20].

There could also arise the seemingly trivial case of a completely flat deformed spacetime, i.e.,
T̃α = 0 and R̃�

α = 0. This would correspond to configurations with constant axial torsion and
constant RC curvature as originally envision by E. Cartan, i.e.,

Tα =
ε

�
ηα, R�

α =
ρ

�2 ηα, (46)

where ρ = (−1)sε2/4 depends quadratically on the deformation parameter ε.

Let us extend such ideas to supergravity in 3D: Generalizing the peculiar dynamical symmetry
of BMH [2], identified as S–duality in Ref. [31], we try the following Ansatz

ϑα = (−1)s� Γ�
α + σ γαΨ , (47)
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where σ is again a spinor valued zero-form and � a fundamental length.

By exterior differentiation, we find

dϑα = (−1)s�dΓ�
α + d(σγαΨ), (48)

or, after separating the covariant two-forms of torsion and curvature,

Tα − (−1)sηαβ ∧ Γ�β = (−1)s�R�
α −

�

2
ηαβγΓ�β ∧ Γ�γ + d(σ ∧ γαΨ) (49)

Let us reconstitute our Ansatz (47) in order to replace all the connection terms Γ�β . Then,
using also the fundamental relation (18) for a Clifford algebra, we obtain

Tα +
2
�

ηα +
1
�

ηαβ ∧ σ γβΨ (50)

= (−1)s�R�
α −

1
2�

ηαβγ(ϑ
β − σγβΨ) ∧ (ϑγ − σγγΨ) + d(σγαΨ).

Now we can eliminate torsion and RC curvature via (11) and (12) with the result

2
A

[
(θTL + (−1)sθT)τ

�
α − (θL + (−1)sθTL)�Σα

]
�2 + (3 + 2κ − (−1)sρ)ηα

= −2ηαβ ∧ σ γβΨ − 1
2

ηαβμσγβΨ ∧ σγμΨ + �d(σγαΨ). (51)

Together with (29), this leads to

B
4A

i�2ΨγαΨ +
C
A

ηα

= −2ηαβ ∧ σ γβΨ − 1
2

ηαβμσγβΨ ∧ σγμΨ + �D(σγαΨ) (52)

as a condition for S-duality, where

B = θT + (−1)sθTL + 2m�[θL + (−1)sθTL] (53)

and
C = 3A + θT[θTL + (−1)sθT]. (54)

In the case of vanishing B and C and in view of the massive Rarita-Schwinger equation (35),
there remains a first order nonlinear differential equation for σ coupled to RS fields to be
satisfied.

6. Membranes with torsion defects

As an example of a spacetime with torsion and/or curvature defects [9] or singularities, let
us consider a a planar graphene solution within the ‘mixed’ MB model governed by the two
Einstein-Cartan type field equations (11) and (12).
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Fig. 1. ‘Screw’ dislocation with singular torsion in a cubic lattice. (The Cartan circuit is
indicate in blue, cf. Ref. [26].]

Let us assume that the 2D membrane of a corrugated graphene is evolving in an intrinsic
three-dimensional spacetime, suppressing for the moment the embedding of a real graphene
into flat 4D Minkowski spacetime. Then we may adopt the convention that xα together with
yα are spacelike orthogonal vectors which span the (x, y)–plane perpendicular to the time
coordinate t, which itself is orthogonal to the world sheet of the graphene. The corresponding
one–forms [29] are denoted by capital letters, i.e.

X := xα ϑα , Y := yα ϑα . (55)

Moreover, the vector nα is a timelike unit vector normal to the hypersurface with nα nα = s,
the signature s of our 3D spacetime.

Following Soleng [37], cf. Anandan [1, 3, 22], we assume that the two–forms Σα and τ�
α of

the energy–momentum and spin current, respectively, vanish outside of the graphene sheet,
whereas “inside" they are constant, i.e.

Σα = ε xα X ∧ Y , τ�
α = σ yα X ∧ Y , (56)

which satisfy
ϑα ∧ Σα = 0 , ϑα ∧ τ�

α = 0 (57)

by construction. The constant parameters ε and σ of this spinning string type Ansatz are related
to the exterior vacuum solution by appropriate matching conditions. For the related solution
with conical singularities and torsion of Tod [40], we can infer that ε and σ are delta distributions
[39] at the location of the defect, cf. Fig 1. From the specification (55) of the one–forms X and
Y it can easily be inferred that the only nonzero components are Σ0̂ �= 0 and τ1̂2̂ = −τ2̂1̂ �= 0.

Due to the identities (57), contractions of the second field equation (12) with xα and yα reveal
that x[αyβ] Rαβ = R1̂2̂ = −R2̂1̂ �= 0 are the only nonvanishing components of the RC curvature.
From its covariant expression

Rαβ = ε�2 x[αyβ] X ∧ Y (58)
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there follows the identity

Rβ
α ∧ ϑβ =

ε�2

2
(xα Y ∧ X ∧ Y − yα X ∧ X ∧ Y) = 0 . (59)

Recalling that Nα = n�ϑα is the lapse and shift vector in the (2+1)–decomposition a la ADM,
the corresponding coframe and connection can now explicitly be obtained by applying a finite
boost to the usual conical metric of a defect simulated by a cosmic string:

ϑ0̂ = dt + �2σρ∗2[1 − cos(ρ/ρ∗)]dφ

ϑ1̂ = dρ , ϑ2̂ = ρ∗ sin(ρ/ρ∗)dφ ,

Γ1̂2̂ = cos(ρ/ρ∗)dφ = −Γ2̂1̂ . (60)

From the Cartan type relation (11) and the identities (57) we can infer that the axial torsion

A = ∗(ϑα ∧ Tα) = −(−1)s 2κ

�2 (61)

of such a membrane defect is a non-vanishing constant. Thus, in 3D there is no contribution
to the Pointrjagin type term d(A∧ dA) from the axial torsion.

Moreover, the Nieh–Yan term dCT proportional to d ∗A vanishes identically for this example of
a spinning cosmic string exhibiting a torsion line defect.

7. Outlook: Graphene and supersymmetry

Fundamental interactions are rather successful formulated in terms of Yang-Mills theories
with large gauge groups, stipulating that symmetry breaking is occurring in the ground state.
The idea of supersymmetry or supergravity, anticipated to some extent already by Hermann
Weyl [42], goes in the same direction but so far lacks empirical support in particle physics.

Recently, graphene [33] as a new material has attracted a lot of attention because its charge
carriers can be described by massless Dirac fields, cf. Ref. [41], whereas the flexural models
of the 2D membrane of graphene have been tentatively considered as membranes, cf. Ref.
[25], evolving in 2 + 1 dimensional curved, but conformally flat spacetime [24]. There are also
indications of dislocations [9] related to torsion.

A related topological framework with a coupling to Dirac fields in 3D has been considered
before by Lemke and Mielke [27]. It seems to be feasible to enlarge the dynamical framework
of the theory by including supersymmetry, cf. Ref. [17] and apply the topological ideas
developed to some extent in this paper.

8. Acknowledgments

We would like to thank to Friedrich W. Hehl for constructive comments. Moreover, (E.W.M.)
acknowledges the support of the SNI and thanks Noelia, Miryam Sophie Naomi and Markus
Gérard Erik, for encouragement.

47S-Duality in Topological Supergravity



10 Will-be-set-by-IN-TECH

Fig. 1. ‘Screw’ dislocation with singular torsion in a cubic lattice. (The Cartan circuit is
indicate in blue, cf. Ref. [26].]

Let us assume that the 2D membrane of a corrugated graphene is evolving in an intrinsic
three-dimensional spacetime, suppressing for the moment the embedding of a real graphene
into flat 4D Minkowski spacetime. Then we may adopt the convention that xα together with
yα are spacelike orthogonal vectors which span the (x, y)–plane perpendicular to the time
coordinate t, which itself is orthogonal to the world sheet of the graphene. The corresponding
one–forms [29] are denoted by capital letters, i.e.

X := xα ϑα , Y := yα ϑα . (55)

Moreover, the vector nα is a timelike unit vector normal to the hypersurface with nα nα = s,
the signature s of our 3D spacetime.

Following Soleng [37], cf. Anandan [1, 3, 22], we assume that the two–forms Σα and τ�
α of

the energy–momentum and spin current, respectively, vanish outside of the graphene sheet,
whereas “inside" they are constant, i.e.

Σα = ε xα X ∧ Y , τ�
α = σ yα X ∧ Y , (56)

which satisfy
ϑα ∧ Σα = 0 , ϑα ∧ τ�

α = 0 (57)

by construction. The constant parameters ε and σ of this spinning string type Ansatz are related
to the exterior vacuum solution by appropriate matching conditions. For the related solution
with conical singularities and torsion of Tod [40], we can infer that ε and σ are delta distributions
[39] at the location of the defect, cf. Fig 1. From the specification (55) of the one–forms X and
Y it can easily be inferred that the only nonzero components are Σ0̂ �= 0 and τ1̂2̂ = −τ2̂1̂ �= 0.

Due to the identities (57), contractions of the second field equation (12) with xα and yα reveal
that x[αyβ] Rαβ = R1̂2̂ = −R2̂1̂ �= 0 are the only nonvanishing components of the RC curvature.
From its covariant expression

Rαβ = ε�2 x[αyβ] X ∧ Y (58)

46 Quantum Gravity S-Duality in Topological Supergravity 11

there follows the identity

Rβ
α ∧ ϑβ =

ε�2

2
(xα Y ∧ X ∧ Y − yα X ∧ X ∧ Y) = 0 . (59)

Recalling that Nα = n�ϑα is the lapse and shift vector in the (2+1)–decomposition a la ADM,
the corresponding coframe and connection can now explicitly be obtained by applying a finite
boost to the usual conical metric of a defect simulated by a cosmic string:

ϑ0̂ = dt + �2σρ∗2[1 − cos(ρ/ρ∗)]dφ

ϑ1̂ = dρ , ϑ2̂ = ρ∗ sin(ρ/ρ∗)dφ ,

Γ1̂2̂ = cos(ρ/ρ∗)dφ = −Γ2̂1̂ . (60)

From the Cartan type relation (11) and the identities (57) we can infer that the axial torsion

A = ∗(ϑα ∧ Tα) = −(−1)s 2κ

�2 (61)

of such a membrane defect is a non-vanishing constant. Thus, in 3D there is no contribution
to the Pointrjagin type term d(A∧ dA) from the axial torsion.

Moreover, the Nieh–Yan term dCT proportional to d ∗A vanishes identically for this example of
a spinning cosmic string exhibiting a torsion line defect.

7. Outlook: Graphene and supersymmetry

Fundamental interactions are rather successful formulated in terms of Yang-Mills theories
with large gauge groups, stipulating that symmetry breaking is occurring in the ground state.
The idea of supersymmetry or supergravity, anticipated to some extent already by Hermann
Weyl [42], goes in the same direction but so far lacks empirical support in particle physics.

Recently, graphene [33] as a new material has attracted a lot of attention because its charge
carriers can be described by massless Dirac fields, cf. Ref. [41], whereas the flexural models
of the 2D membrane of graphene have been tentatively considered as membranes, cf. Ref.
[25], evolving in 2 + 1 dimensional curved, but conformally flat spacetime [24]. There are also
indications of dislocations [9] related to torsion.

A related topological framework with a coupling to Dirac fields in 3D has been considered
before by Lemke and Mielke [27]. It seems to be feasible to enlarge the dynamical framework
of the theory by including supersymmetry, cf. Ref. [17] and apply the topological ideas
developed to some extent in this paper.

8. Acknowledgments

We would like to thank to Friedrich W. Hehl for constructive comments. Moreover, (E.W.M.)
acknowledges the support of the SNI and thanks Noelia, Miryam Sophie Naomi and Markus
Gérard Erik, for encouragement.

47S-Duality in Topological Supergravity



12 Will-be-set-by-IN-TECH

9. Appendices

A: Variations of Chern–Simons terms

Gauging the Poincaré group in (2+1) dimensions, local translations and (Lorentz-) rotations
give rise to two type of gauge potentials, the coframe ϑγ and the dual of Lorentz-connection
Γ�

α. Then the two Bianchi identities of Riemann-Cartan geometry can be rewritten as

DTα ≡ (−1)s ηαβ ∧ R�
β , (62)

DR�
α ≡ 0. (63)

In 3D the corresponding Chern–Simons three–forms of gauge type C = Tr{A ∧ F}, are

CT :=
1

2�2 ϑα ∧ Tα = − (−1)s

�2 ηα ∧ K�
α , CL := (−1)s Γ�α ∧ R�

α −
1
3!

ηαβγ Γ�α ∧ Γ�β ∧ Γ�γ. (64)

and

CTL :=
1
�

(
Γ�α ∧ Tα − (−1)s

2
ηαβγ Γ�α ∧ Γ�β ∧ ϑγ

)
. (65)

The variational derivatives of these terms lead us to the following expressions

δCT
δϑα

=
1
�2 Tα

δCT
δΓ�α

=
(−1)s

�2 ηα , (66)

δCL
δϑα

= 0 ,
δCL
δΓ�α

= (−1)s 2R�
α, (67)

δCTL
δϑα

=
1
�

R�
α ,

δCTL
δΓ�α

=
1
�

Tα, (68)

respectively. Note that these three–forms are uniquely related to the torsion Tα, the curvature
R�

α, and the cosmological term ηα, as developed in much more detail in Ref. [21].

B: The η–basis for exterior forms in 3D

The symbol ∧ denotes the exterior product of forms, the symbol � the interior product of a
vector with a form and ∗ the Hodge star (or left dual) operator which maps a p–form into a
(3 − p)–form. It has the property that

∗ ∗Φ(p) = (−1)p(3−p)+sΦ(p), (69)

where p is the degree of the form Φ and s denotes the number of negative eigenvalues of the
metric, i.e., the signature of spacetime.

The volume three–form is defined by

η :=
1
3!

ηαβγ ϑα ∧ ϑβ ∧ ϑγ, (70)
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where ηαβγ :=
√
|det gμν| �αβγ, and �αβγ is the Levi–Civita symbol. The forms

{η, ηα, ηαβ, ηαβγ} span a dual basis for the algebra of arbitrary p–forms in 3D, where

ηα := eα�η =
1
2

ηαβγϑβ ∧ ϑγ = ∗ϑα,

ηαβ := eβ�ηα = ηαβγϑγ = ∗(ϑα ∧ ϑβ),

ηαβγ := eγ�ηαβ. (71)

In 3D, the following relations for the η–basis hold:

ηαβγηαβγ = (−1)s3!,

ηαβγηαβν = (−1)s2δ
γ
ν ,

ηαβγηαμν = (−1)sδ
β
μδ

γ
ν = (−1)s2δ

β

[μ
δ

γ
ν]

,

ηαβγηρμν = (−1)sδ
αβγ
ρμν , (72)

and
ηβ ∧ ηαβ = eβ�(η ∧ ηαβ) + η ∧ eβ�ηαβ ≡ 0 (73)

due to the antisymmetry of ηαβ and the fact that η ∧ ηαβ would already be a four-form in 3D.

C: Identities for spinor–valued forms

Now some relations of special importance are presented which take care of the order of the
forms in the exterior products and its Dirac adjoint: We would like to remind the reader that
Φ is a p–form and Ψ a q–form with the spinor indices suppressed:

Φp ∧ Ψq = (−1)p·qΨq ∧ Φp, (74)

Φp ∧ Ψq = (−1)p·q Ψq ∧ Φp, (75)

Φp ∧ ∗Ψp = Ψp ∧ ∗Φp, (76)

eα� (Φp + Ψq) = eα�Φp + eα�Ψq, (77)

eα�(Φp ∧ Ψq) = (eα�Φp) ∧ Ψq + (−1)pΦp ∧ (eα�Ψq), (78)

ϑα ∧ (eα�Φ) = pΦ (79)
∗(Φ ∧ ϑα) = eα� ∗Φ, (80)

γ = γ. (81)

D: No axial torsion restrictions in 3D

Spaces of constant curvature deserve special attention in General Relativity, in particular in
the cosmological context. In particular, when the RC curvature is constant as in Eq. (10), i.e.

R�
α =

ρ

�2 ηα =
ρ

2�2 ηαβγϑβ ∧ ϑγ, (82)
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the Bianchi identities (62) and (63) could lead to constraints on the admissible torsion Tα, as in
4D and higher dimensions. However, in 3D the situation is different: Using Appendix B, the
first Bianchi identity yields

(−1)sηαβ ∧ R∗
β = (−1)s ρ

�2 ηβ ∧ ηαβ = (−1)s ρ

2�2

(
ηβμνηαβγ

)
ϑγ ∧ ϑμ ∧ ϑν (83)

= −(−1)s2δα
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ϑγ ∧ ϑμ ∧ ϑν = 0.

Furthermore, the exterior covariant derivative of Eq. (10) provides the identity

DTα =
2κ

�
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�
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�2 ηαβ ∧ ηβ ≡ 0. (84)

Thus the first Bianchi identity does not give any further information. The second Bianchi
identity (63) yields

DR�
α =

ρ

�2 Dηα =
2κρ

�3 ηαβ ∧ ηβ ≡ 0 (85)

which is identically zero by a similar argument, or by employing Eq. (73). Consequently, the
Bianchi identities impose no restrictions on the axial torsion given by (10) in 3D, a fact which
has allowed us to construct something non-trivial from the MB model.
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52 Quantum Gravity

1. Introduction

The search for the theory of quantum gravity (QG) in 4-dimensions (4D) is one of
the most significant challenges of temporary physics. The great effort and insights of
many theoreticians and experimentalists resulted in the emergence of one of the greatest
achievements of 20th century science, i.e. standard model of particles and fields (SM). SM
(with its minimal extensions by massive neutrinos and after renormalization) describes and
predicts, with enormous accuracy, almost all perturbative aspects and behaviour of interacting
quantum fields and particles which place themselves in the realm of electromagnetic, strong
and weak nuclear interactions, within the range of energies up to few TeV. However, gravity at
quantum level is not covered by this pattern. The oldest, semiclassical, approach to QG relies
on the quantization of metric field which is understood as the perturbation of the ground
spacetime metric. This is exactly in the spirit of quantum field theory (QFT) as in SM. There
should follow various correlation functions of physical processes where gravity at quantum
level is present. There should, but actually they do not since the expressions are divergent
and the theory is not renormalizable. Even the presence of supersymmetry does not change
this substantially. On the other hand, we have a wonderful theory of general relativity (GR)
which, however, is a theory of classical gravity and it prevents its quantization in 4D.

Among existing approaches to QG, superstring theory is probably the most advanced
and conservative one. It attempts to follow GR and quantum mechanics as much as
possible. However, superstring theory has to be formulated in 10 spacetime dimensions
and on fixed, not dynamical, background. Many proposals how to reach the observed
physics from 10D superstrings were worked out within the years. These are among others,
compactiffication, flux stabilization, brane configuration model-buildings, brane worlds,
holography or anti-de-Sitter/conformal field theory duality, i.e. AdS/CFT. There exists much
ambiguity, however, with determining 4D results by these methods. Some authors estimate
that there exist something about 10500 different backgrounds of superstring theory which
all could be ”good” candidates expressing 4D physics. This means that similar variety of
possible models for true physics is predicted by superstring theory. To manage with such huge
amount of ”good” solutions, there was proposed to use the methods of statistical analysis to
such landscape of possible backgrounds. Anyway, one could expect better prediction power
from the fundamental theory which would unify gravity with other interactions at quantum
level. On the other hand, superstring theory presents beautiful, fascinating and extremly rich
mathematics which is still not fully comprehended.
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The search for the theory of quantum gravity (QG) in 4-dimensions (4D) is one of
the most significant challenges of temporary physics. The great effort and insights of
many theoreticians and experimentalists resulted in the emergence of one of the greatest
achievements of 20th century science, i.e. standard model of particles and fields (SM). SM
(with its minimal extensions by massive neutrinos and after renormalization) describes and
predicts, with enormous accuracy, almost all perturbative aspects and behaviour of interacting
quantum fields and particles which place themselves in the realm of electromagnetic, strong
and weak nuclear interactions, within the range of energies up to few TeV. However, gravity at
quantum level is not covered by this pattern. The oldest, semiclassical, approach to QG relies
on the quantization of metric field which is understood as the perturbation of the ground
spacetime metric. This is exactly in the spirit of quantum field theory (QFT) as in SM. There
should follow various correlation functions of physical processes where gravity at quantum
level is present. There should, but actually they do not since the expressions are divergent
and the theory is not renormalizable. Even the presence of supersymmetry does not change
this substantially. On the other hand, we have a wonderful theory of general relativity (GR)
which, however, is a theory of classical gravity and it prevents its quantization in 4D.

Among existing approaches to QG, superstring theory is probably the most advanced
and conservative one. It attempts to follow GR and quantum mechanics as much as
possible. However, superstring theory has to be formulated in 10 spacetime dimensions
and on fixed, not dynamical, background. Many proposals how to reach the observed
physics from 10D superstrings were worked out within the years. These are among others,
compactiffication, flux stabilization, brane configuration model-buildings, brane worlds,
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ambiguity, however, with determining 4D results by these methods. Some authors estimate
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Therefore Asselmeyer-Maluga & Król (2010) have proposed recently how to find connections
of superstring theory with dimension 4 in a new way not relying on the standard techniques.
Whole the approach derives from mathematics, especially low dimensional differential
topology and geometry. In that approach one considers superstring theory in 10D and
supersymmetry as ”merely” mathematics describing directly, at least in a variety of important
cases, the special smooth geometry on Euclidean, topologically trivial, manifold R4. These
are various non-diffeomorphic different smooth structures. Smooth manifold R4 with such
non-standard smoothness is called exotic R4 and as a smooth Riemannian manifold allows
for a variety of metrics. This exotic geometry in turn, is regarded as underlying smoothness
for 4-spacetime and is directly related to physics in dimension 4.

The way towards crystallizing such point of view on string theory was laborious and required
many important steps. The breakthrough findings in differential topology, from the eighties
of the previous century, showed that indeed there are different from the standard one,
smoothings of the simplest Euclidean 4-space (see e.g. Asselmeyer-Maluga & Brans (2007)).
Spacetime models usually are based on 4D smooth manifolds, hence they are locally described
with respect to the standard smooth R4. Anything what happens to this fundamental building
block might be important at least to classical physics formulated on such spacetime. Indeed,
it was conjectured by Brans (1994a;b), and then proved by Asselmeyer (1996) and Sładkowski
(2001), that exotic smooth R4’s can act as sources for the external gravitational field in
spacetime. Even mathematics alone, strongly distinguishes these smooth open 4-manifolds:
among all Rn only the case n = 4 allows for different smoothings of Euclidean Rn. For
any other Rn, n �= 4 there exists unique smooth structure. Moreover, there exists infinitely
continuum many different smoothings for R4. However, mathematical tools suitable for the
direct description of, say, metrics or functions on exotic R4 are mostly unknown (see however
Asselmeyer-Maluga & Brans (2011)). The main obstruction which prevents progress in our
understanding of exotic smoothness on R4 is that there is no known effective coordinate
presentation. As the result, no exotic smooth function on any such R4 is known, even though
there exist infinite continuum many different exotic R4. Such functions are smooth in the
exotic smoothness structure, but fail to be differentiable in a standard way determined by
the topological product of axes. This is also a strong limitation for the applicability of the
structures to physics. Let us note that smooth structures on open 4-manifolds, like on R4,
are of special character and require special mathematics which, in general, is not completely
understood now. The case of compact 4-manifolds and their smooth structures is much
better recognized also from the point of view of physics (see e.g. Asselmeyer-Maluga (2010);
Asselmeyer-Maluga & Brans (2007); Witten (1985)). The famous exception is, however, not
resolved yet, negation of the 4D Poincaré conjecture stating that there exists exotic S4.

Biz̆aca (1994) constructed an infinite coordinate patch presentation by using Casson handles.
Still, it seems hopeless to extract physical information from that. The proposition by Król
(2004a;b; 2005) indicated that one should use methods of set theory, model theory and
categories to grasp properly some results relevant to quantum physics. Such low level
constructions modify the smoothness on R4 and the structures survive the modifications as
a classical exotic R4. Thus, functions, although from different logic and category, approach
exotic smooth ones, such that some quantum structures emerge due to the rich categorical
formalism involved. Still, to apply exotic 4-smoothness in variety of situations one needs
more direct relation to existing calculus.
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Even though neither any explicit exotic metric nor the function on R4 is known, recent relative
results made it possible to apply these exotic structures in a variety of contexts relevant to
physics. In particular, strong connection with quantum theories and quantization was shown
by Asselmeyer-Maluga & Król (2011b). First, we deal here exclusively with small exotic R4.
These arise as the result of failing h-cobordism theorem in 4D (see e.g. Asselmeyer-Maluga &
Brans (2007)). The others, so called large exotic R4, emerge from failing the smooth surgery
in 4D. Second, the main technical ingredient of the relative approach to small 4-exotics is the
relation of these with some structures defined on a 3-sphere. This S3 should be placed as a
part of the boundary of some contractible 4-submanifold of R4. This manifold is the Akbulut
cork and its boundary is, in general, a closed 3-manifold which has the same homologies as
ordinary 3-sphere – homology 3-sphere. Next, we deal with the parameterized by the radii
ρ ∈ R of S4 as a subset of R4, a family of exotic R4

ρ each of which is the open submanifold of
standard R4. This is the radial family of small exotic R4’s or the deMichellis-Freedman family
DeMichelis & Freedman (1992). Let CS be the standard Cantor set as a subset of R, then the
crucial result is:

Theorem 1 (Asselmeyer-Maluga & Król (2011b)). Let us consider a radial family Rt of small exotic
R4

t with radius ρ and t = 1 − 1
ρ ⊂ CS ⊂ [0, 1] induced from the non-product h-cobordism W

between M and M0 with Akbulut cork A ⊂ M and A ⊂ M0, respectively. Then, the radial family Rt
determines a family of codimension-one foliations of ∂A with Godbillon-Vey invariant ρ2. Furthermore,
given two exotic spaces Rt and Rs, homeomorphic but non-diffeomorphic to each other (and so t �= s),
then the two corresponding codimension-one foliations of ∂A are non-cobordant to each other.

This theorem gives a direct relation of small exotic R4’s - from the radial family, and
(codimension one) foliations of some S3 - from the boundary of the Akbulut cork. M and
M0 are compact non-cobordant 4-manifolds, resulting from the failure of the 4D h-cobordism
theorem (see the next section). Such relativization of 4-exotics to the foliations of S3 is the
source of variety of further mathematical results and their applications in physics. One
example of these is the quantization of electric charge in 4D where instead of magnetic
monopoles one considers exotic smoothness in some region in spacetime Asselmeyer-Maluga
& Król (2009a). More examples of this kind will be presented in the course of this Chapter.

Now we are ready to formulate two important questions as guidelines for this work:

i. What if smooth structure, with respect to which standard model of particles is defined, is
not the ”correct” one and it does not match with the smooth structure underlying GR and
theories of quantum gravity, in 4 dimensions?

ii. What if particles and fields, as in standard model of particles, are not fundamental from
the point of view of gravity in 4 dimensions? Rather, more natural are effective condensed
matter states, and these states should be used in order to unify quantum matter with
general relativity.

This Chapter is thought as giving the explanation for the above questions and for the existence
of a fundamental connection between these, differently looking, problems. New point of view
on the reconciliation of quantum field theory with general relativity in 4 physical dimensions,
emerges. The exact description of quantum matter and fields coupled with QG in 4D, at least
in some important cases, is presented. The task to build a final theory of QG in 4D is thus seen
from different perspective where rather effective states of condensed matter are well suited for
the reconciliation with QG. Such approach is also motivated by the AdS/CFT dualities where
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Therefore Asselmeyer-Maluga & Król (2010) have proposed recently how to find connections
of superstring theory with dimension 4 in a new way not relying on the standard techniques.
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ρ each of which is the open submanifold of
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R4

t with radius ρ and t = 1 − 1
ρ ⊂ CS ⊂ [0, 1] induced from the non-product h-cobordism W
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theorem (see the next section). Such relativization of 4-exotics to the foliations of S3 is the
source of variety of further mathematical results and their applications in physics. One
example of these is the quantization of electric charge in 4D where instead of magnetic
monopoles one considers exotic smoothness in some region in spacetime Asselmeyer-Maluga
& Król (2009a). More examples of this kind will be presented in the course of this Chapter.

Now we are ready to formulate two important questions as guidelines for this work:

i. What if smooth structure, with respect to which standard model of particles is defined, is
not the ”correct” one and it does not match with the smooth structure underlying GR and
theories of quantum gravity, in 4 dimensions?

ii. What if particles and fields, as in standard model of particles, are not fundamental from
the point of view of gravity in 4 dimensions? Rather, more natural are effective condensed
matter states, and these states should be used in order to unify quantum matter with
general relativity.

This Chapter is thought as giving the explanation for the above questions and for the existence
of a fundamental connection between these, differently looking, problems. New point of view
on the reconciliation of quantum field theory with general relativity in 4 physical dimensions,
emerges. The exact description of quantum matter and fields coupled with QG in 4D, at least
in some important cases, is presented. The task to build a final theory of QG in 4D is thus seen
from different perspective where rather effective states of condensed matter are well suited for
the reconciliation with QG. Such approach is also motivated by the AdS/CFT dualities where
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effective matter states (without gravity) are described by dual theories with gravity. Hence
gravity is inherently present in description of such condensed matter states.

In the next section we describe the relation of small exotic R4 with foliations of S3 and WZW
models on SU(2). Then we show the connections between string theory and exotic R4. In
particular 4-smoothness underlying spacetime emerges from superstring calculations and it
modifies the spectra of charged particles in such spacetime. In Sec. 4 we discuss the Kondo
state and show that it generates the same exotic 4-smoothness. Moreover, the Kondo state,
when survive the high energy and relativistic limit, would couple to the gravity backgrounds
of superstring theory. The backgrounds are precisely those related with exotic smooth R4 as
in Sec. 3. We conjecture that one could encounter the experimental trace of existence of exotic
R4

p in the k-channel, k > 2, Kondo effect, where the usual fusion rules of the SU(2)k WZW
model would be modified to these of SU(2)p WZW in high energies.

Next in Sec. 5 we present the connections of branes configurations in superstring theory with
non-standard 4-smoothness of R4. Discussion and conclusions close the Chapter.

2. Foliations, WZW σ-models and exotic R4

An exotic R4 is a topological space with R4−topology but with a smooth structure different
(i.e. non-diffeomorphic) from the standard R4

std obtaining its differential structure from the
product R × R × R × R. The exotic R4 is the only Euclidean space Rn with an exotic
smoothness structure. The exotic R4 can be constructed in two ways: by the failure to split
arbitrarily a smooth 4-manifold into pieces (large exotic R4) and by the failure of the so-called
smooth h-cobordism theorem (small exotic R4). Here, we deal with the later kind of exotics.
We refer the reader to Asselmeyer-Maluga & Brans (2007) for general presentation of various
topological and geometrical constructions and their physical perspective. Another useful
mathematical books are Gompf & Stipsicz (1999); Scorpan (2005). The reader can find further
results in original scientific papers.

Even though there are known, and by now rather widely discussed (see the Introduction),
difficulties with making use of different differential structures on R4 (and on other open
4-manifolds) in explicit coordinate-like way (see e.g. Asselmeyer-Maluga & Brans (2007)),
it was, however, established, in a series of recent papers, the way how to relate these 4-exotics
with some structures on S3 (see e.g. Asselmeyer-Maluga & Król (2009a;b; 2011b)). This S3 is
supposed to fulfil specific topological conditions: it has to lie in ambient R4 such that it is a
part of the boundary of some compact 4-submanifold with boundary, i.e. Akbulut cork. If so,
one can prove that exotic smoothness of the R4 is tightly related to codimension-one foliations
of this S3, hence, with the 3-rd real cohomology classes of S3. Reformulating Theorem 1 we
have [Asselmeyer-Maluga & Król (2009a)]:

The exotic R4’s, from the radial family of exotic R4’s embedded in standard R4, are determined by
the codimension-1 foliations, F ’s, with non-vanishing Godbillon-Vey (GV) class in H3(S3, R) of a
3-sphere lying at the boundary of the Akbulut corks of R4’s. The radius in the family, ρ, and value of
GV are related by GV = ρ2. We maintain: the exoticness is localized at a 3-sphere inside the small
exotic R4 (seen as a submanifold of R4).

Let us explain briefly, following Asselmeyer-Maluga & Król (2011d), how the codimension-1
foliations of S3 emerges from the structure of exotic R4. The complete construction and proof
can be found in Asselmeyer-Maluga & Król (2009a).
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Small exotic R4 is determined by the compact 4-manifold A with boundary ∂A which is
homology 3-sphere, and attached several Casson handles CH’s. A is the Akbulut cork and
CH is built from many stages towers of immersed 2-disks. These 2-disks cannot be embedded
and the intersection points can be placed in general position in 4D in separated double points.
Every CH has infinite many stages of intersecting disks. However, as Freedman proved, CH
is topologically the same as (homeomorphic to) open 2-handle, i.e. D2 × R2. Now if one
replaces CH’s, from the above description of small exotic R4, by ordinary open 2-handles
(with suitable linking numbers in the attaching regions) the resulting object is standard R4.
The reason is the existence of infinite (continuum) many diffeomorphism classes of CH, even
though all are topologically the same.

Consider the following situation: one has two topologically equivalent (i.e. homeomorphic),
simple-connected, smooth 4-manifolds M, M�, which are not diffeomorphic. There are two
ways to compare them. First, one calculates differential-topological invariants like Donaldson
polynomials Donaldson & Kronheimer (1990) or Seiberg-Witten invariants Akbulut (1996).
But there is yet another possibility – one can change a manifold M to M� by using a series
of operations called surgeries. This procedure can be visualized by a 5-manifold W, the
cobordism. The cobordism W is a 5-manifold having the boundary ∂W = M � M�. If
the embedding of both manifolds M, M� into W induces a homotopy-equivalence then W is
called an h-cobordism. Moreover, we assume that both manifolds M, M� are compact, closed
(without boundary) and simply-connected. Freedman (1982) showed that every h-cobordism
implies a homeomorphism, hence h-cobordisms and homeomorphisms are equivalent in that
case. Furthermore, the following structure theorem for such h-cobordisms holds true [Curtis
& Stong (1997)]:
Let W be a h-cobordism between M, M�. Then there are contractable submanifolds A ⊂ M, A� ⊂ M�
together with a sub-cobordism V ⊂ W with ∂V = A � A� (the disjoint oriented sum), so that the
h-cobordism W \ V induces a diffeomorphism between M \ A and M� \ A�.
Thus, the smoothness of M is completely determined (see also Akbulut & Yasui (2008; 2009))
by the contractible submanifold A (Akbulut cork) and its embedding A ↪→ M determined by
a map τ : ∂A → ∂A with τ ◦ τ = id∂A and τ �= ±id∂A(τ is an involution). Again, according
to Freedman (1982), the boundary of every contractible 4-manifold is a homology 3-sphere.
This h-cobordism theorem is employed to construct an exotic R4. First, one considers a
neighborhood (tubular) of the sub-cobordism V between A and A�. The interior of V, int(V),
(as open manifold) is homeomorphic to R4. However, if (and only if) M and M� are not
diffeomorphic (still being homeomorphic), then int(V) ∩ M is an exotic R4.

Next, Biz̆aca (1994) and Biz̆aca & Gompf (1996) showed how to construct an explicit handle
decomposition of the exotic R4 by using int(V). The details of the construction can be found in
their papers or in the book Gompf & Stipsicz (1999). The idea is simply to use the cork A and
add some Casson handle to it. The interior of this resulting structure is an exotic R4. The key
feature here is the appearance of CH. Briefly, a Casson handle CH is the result of attempts to
embed a disk D2 into a 4-manifold. In most cases this attempt fails and Casson (1986) searched
for a possible substitute, which is just what we now call a Casson handle. Freedman (1982)
showed that every Casson handle CH is homeomorphic to the open 2-handle D2 × R2 but in
nearly all cases it is not diffeomorphic to the standard handle, Gompf (1984; 1989). The Casson
handle is built by iteration, starting from an immersed disk in some 4-manifold M, i.e. a map
D2 → M which has injective differential. Every immersion D2 → M is an embedding except
on a countable set of points, the double points. One can ”kill” one double point by immersing
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effective matter states (without gravity) are described by dual theories with gravity. Hence
gravity is inherently present in description of such condensed matter states.

In the next section we describe the relation of small exotic R4 with foliations of S3 and WZW
models on SU(2). Then we show the connections between string theory and exotic R4. In
particular 4-smoothness underlying spacetime emerges from superstring calculations and it
modifies the spectra of charged particles in such spacetime. In Sec. 4 we discuss the Kondo
state and show that it generates the same exotic 4-smoothness. Moreover, the Kondo state,
when survive the high energy and relativistic limit, would couple to the gravity backgrounds
of superstring theory. The backgrounds are precisely those related with exotic smooth R4 as
in Sec. 3. We conjecture that one could encounter the experimental trace of existence of exotic
R4

p in the k-channel, k > 2, Kondo effect, where the usual fusion rules of the SU(2)k WZW
model would be modified to these of SU(2)p WZW in high energies.

Next in Sec. 5 we present the connections of branes configurations in superstring theory with
non-standard 4-smoothness of R4. Discussion and conclusions close the Chapter.

2. Foliations, WZW σ-models and exotic R4

An exotic R4 is a topological space with R4−topology but with a smooth structure different
(i.e. non-diffeomorphic) from the standard R4

std obtaining its differential structure from the
product R × R × R × R. The exotic R4 is the only Euclidean space Rn with an exotic
smoothness structure. The exotic R4 can be constructed in two ways: by the failure to split
arbitrarily a smooth 4-manifold into pieces (large exotic R4) and by the failure of the so-called
smooth h-cobordism theorem (small exotic R4). Here, we deal with the later kind of exotics.
We refer the reader to Asselmeyer-Maluga & Brans (2007) for general presentation of various
topological and geometrical constructions and their physical perspective. Another useful
mathematical books are Gompf & Stipsicz (1999); Scorpan (2005). The reader can find further
results in original scientific papers.

Even though there are known, and by now rather widely discussed (see the Introduction),
difficulties with making use of different differential structures on R4 (and on other open
4-manifolds) in explicit coordinate-like way (see e.g. Asselmeyer-Maluga & Brans (2007)),
it was, however, established, in a series of recent papers, the way how to relate these 4-exotics
with some structures on S3 (see e.g. Asselmeyer-Maluga & Król (2009a;b; 2011b)). This S3 is
supposed to fulfil specific topological conditions: it has to lie in ambient R4 such that it is a
part of the boundary of some compact 4-submanifold with boundary, i.e. Akbulut cork. If so,
one can prove that exotic smoothness of the R4 is tightly related to codimension-one foliations
of this S3, hence, with the 3-rd real cohomology classes of S3. Reformulating Theorem 1 we
have [Asselmeyer-Maluga & Król (2009a)]:

The exotic R4’s, from the radial family of exotic R4’s embedded in standard R4, are determined by
the codimension-1 foliations, F ’s, with non-vanishing Godbillon-Vey (GV) class in H3(S3, R) of a
3-sphere lying at the boundary of the Akbulut corks of R4’s. The radius in the family, ρ, and value of
GV are related by GV = ρ2. We maintain: the exoticness is localized at a 3-sphere inside the small
exotic R4 (seen as a submanifold of R4).

Let us explain briefly, following Asselmeyer-Maluga & Król (2011d), how the codimension-1
foliations of S3 emerges from the structure of exotic R4. The complete construction and proof
can be found in Asselmeyer-Maluga & Król (2009a).
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CH is built from many stages towers of immersed 2-disks. These 2-disks cannot be embedded
and the intersection points can be placed in general position in 4D in separated double points.
Every CH has infinite many stages of intersecting disks. However, as Freedman proved, CH
is topologically the same as (homeomorphic to) open 2-handle, i.e. D2 × R2. Now if one
replaces CH’s, from the above description of small exotic R4, by ordinary open 2-handles
(with suitable linking numbers in the attaching regions) the resulting object is standard R4.
The reason is the existence of infinite (continuum) many diffeomorphism classes of CH, even
though all are topologically the same.

Consider the following situation: one has two topologically equivalent (i.e. homeomorphic),
simple-connected, smooth 4-manifolds M, M�, which are not diffeomorphic. There are two
ways to compare them. First, one calculates differential-topological invariants like Donaldson
polynomials Donaldson & Kronheimer (1990) or Seiberg-Witten invariants Akbulut (1996).
But there is yet another possibility – one can change a manifold M to M� by using a series
of operations called surgeries. This procedure can be visualized by a 5-manifold W, the
cobordism. The cobordism W is a 5-manifold having the boundary ∂W = M � M�. If
the embedding of both manifolds M, M� into W induces a homotopy-equivalence then W is
called an h-cobordism. Moreover, we assume that both manifolds M, M� are compact, closed
(without boundary) and simply-connected. Freedman (1982) showed that every h-cobordism
implies a homeomorphism, hence h-cobordisms and homeomorphisms are equivalent in that
case. Furthermore, the following structure theorem for such h-cobordisms holds true [Curtis
& Stong (1997)]:
Let W be a h-cobordism between M, M�. Then there are contractable submanifolds A ⊂ M, A� ⊂ M�
together with a sub-cobordism V ⊂ W with ∂V = A � A� (the disjoint oriented sum), so that the
h-cobordism W \ V induces a diffeomorphism between M \ A and M� \ A�.
Thus, the smoothness of M is completely determined (see also Akbulut & Yasui (2008; 2009))
by the contractible submanifold A (Akbulut cork) and its embedding A ↪→ M determined by
a map τ : ∂A → ∂A with τ ◦ τ = id∂A and τ �= ±id∂A(τ is an involution). Again, according
to Freedman (1982), the boundary of every contractible 4-manifold is a homology 3-sphere.
This h-cobordism theorem is employed to construct an exotic R4. First, one considers a
neighborhood (tubular) of the sub-cobordism V between A and A�. The interior of V, int(V),
(as open manifold) is homeomorphic to R4. However, if (and only if) M and M� are not
diffeomorphic (still being homeomorphic), then int(V) ∩ M is an exotic R4.

Next, Biz̆aca (1994) and Biz̆aca & Gompf (1996) showed how to construct an explicit handle
decomposition of the exotic R4 by using int(V). The details of the construction can be found in
their papers or in the book Gompf & Stipsicz (1999). The idea is simply to use the cork A and
add some Casson handle to it. The interior of this resulting structure is an exotic R4. The key
feature here is the appearance of CH. Briefly, a Casson handle CH is the result of attempts to
embed a disk D2 into a 4-manifold. In most cases this attempt fails and Casson (1986) searched
for a possible substitute, which is just what we now call a Casson handle. Freedman (1982)
showed that every Casson handle CH is homeomorphic to the open 2-handle D2 × R2 but in
nearly all cases it is not diffeomorphic to the standard handle, Gompf (1984; 1989). The Casson
handle is built by iteration, starting from an immersed disk in some 4-manifold M, i.e. a map
D2 → M which has injective differential. Every immersion D2 → M is an embedding except
on a countable set of points, the double points. One can ”kill” one double point by immersing
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another disk into that point. These disks form the first stage of the Casson handle. By iteration
one can produce the other stages. Finally, we consider a tubular neighborhood D2 × D2 of this
immersed disk, called a kinky handle, on each stage. The union of all neighborhoods of all
stages is the Casson handle. So, there are two input data involved with the construction of a
CH: the number of double points in each stage and their orientation ±. Thus, we can visualize
the Casson handle CH by a tree: the root is the immersion D2 → M with k double points, the
first stage forms the next level of the tree with k vertices connected with the root by edges etc.
The edges are evaluated using the orientation ±. Every Casson handle can be represented by
such an infinite tree. The structure of CH as immersed many-layers 2-disks will be important
in Sec. 4 where we will assign fermion fields to CH’s.

Next, we turn again to the radial family of small exotic R4, i.e. a continuous family of
exotic {R4

ρ}ρ∈[0,+∞] with parameter ρ so that R4
ρ and R4

ρ� are non-diffeomorphic for ρ �= ρ�.
The point is that this radial family has a natural foliation (see Theorem 3.2 in DeMichelis &
Freedman (1992)) which can be induced by a polygon P in the two-dimensional hyperbolic
space H2. The area of P is a well-known invariant, the Godbillon-Vey class as the element
in H3(S3, R). Every GV class determines a codimension-one foliation on the 3-sphere (firstly
constructed by Thurston (1972); see also the book Tamura (1992) chapter VIII for the details).
This 3-sphere is a part of the boundary ∂A of the Akbulut cork A (there is an embedding
S3 → ∂A). Furthermore, one can show that the codimension-one foliation of the 3-sphere
induces a codimension-one foliation of ∂A so that the area of the corresponding polygons
(and therefore the foliation invariants) agree. The Godbillon-Vey invariant [GV] ∈ H3(S3, R)
of the foliation is related to the parameter of the radial family by

〈
GV, [S3]

〉
= ρ2 using the

pairing between cohomology and homology (the fundamental homology class [S3] ∈ H3(S3)).

Thus, the relation between an exotic R4 (of Bizaca as constructed from the failure of the
smooth h-cobordism theorem) and codimension-one foliation of the S3 emerges. Two
non-diffeomorphic exotic R4 imply non-cobordant codimension-one foliations of the 3-sphere
described by the Godbillon-Vey class in H3(S3, R) (proportional to the surface of the polygon).
This relation is very strict, i.e. if we change the Casson handle, then we must change the
polygon. But that changes the foliation and vice verse. Finally, we obtain the result:

The exotic R4 (of Bizaca) is determined by the codimension-1 foliations with non-vanishing
Godbillon-Vey class in H3(S3, R3) of a 3-sphere seen as submanifold S3 ⊂ R4. We say: the exoticness
is localized at a 3-sphere inside the small exotic R4.

In the particular case of integral H3(S3, Z) one yields the relation of exotic R4
k , k[ ] ∈

H3(S3, Z), k ∈ Z with the WZ term of the k WZW model on SU(2). This is because the
integer classes in H3(S3, Z) are of special character. Topologically, this case refers to flat
PSL(2, R)−bundles over the space (S2 \ {k punctures}) × S1 where the gluing of k solid
tori produces a 3-sphere (so-called Heegard decomposition). Then, one obtains the relation
[Asselmeyer-Maluga & Król (2009a)]:

1
(4π)2 �GV(F ), [S3]� = 1

(4π)2

∫

S3

GV(F ) = ±(2 − k) (1)

in dependence on the orientation of the fundamental class [S3]. We can interpret the
Godbillon-Vey invariant as WZ term. For that purpose, we use the group structure SU(2) =
S3 of the 3-sphere S3 and identify SU(2) = S3. Let g ∈ SU(2) be a unitary matrix with
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det g = −1. The left invariant 1-form g−1dg generates locally the cotangent space connected
to the unit. The forms ωk = Tr((g−1dg)k) are complex k−forms generating the deRham
cohomology of the Lie group. The cohomology classes of the forms ω1, ω2 vanish and
ω3 ∈ H3(SU(2), R) generates the cohomology group. Then, we obtain as the value for the
integral of the generator

1
8π2

∫

S3=SU(2)

ω3 = 1 .

This integral can be interpreted as winding number of g. Now, we consider a smooth map
G : S3 → SU(2) with 3-form Ω3 = Tr((G−1dG)3) so that the integral

1
8π2

∫

S3=SU(2)

Ω3 =
1

8π2

∫

S3

Tr((G−1dG)3) ∈ Z

is the winding number of G. Every Godbillon-Vey class with integer value like (1) is generated
by a 3-form Ω3. Therefore, the Godbillon-Vey class is the WZ term of the SU(2)k. Thus, we
obtain the relation:

The structure of exotic R4
k’s, k ∈ Z from the radial family determines the WZ term of the k WZW

model on SU(2).

This WZ term enables one for the cancellation of the quantum anomaly due to the conformal
invariance of the classical σ-model on SU(2). Thus, we have a method of including this
cancellation term from smooth 4-geometry: when a smoothness of the ambient 4-space, in
which S3 is placed as a part of the boundary of the cork, is this of exotic R4

k , then the WZ term
of the classical σ-model with target S3 = SU(2), i.e. SU(2)k WZW, is precisely generated by
this 4-smoothness. As the conclusion, we have the important correlation:

The change of smoothnes of exotic R4
k to exotic R4

l , k, l ∈ Z both from the radial family, corresponds
to the change of the level k of the WZW model on SU(2), i.e. k WZW →l WZW.

Let us consider now the end of the exotic R4
k i.e. S3 × R. This end cannot be standard smooth

and it is in fact fake smooth S3 ×Θk R, Freedman (1979). Given the connection of R4
k with

the WZ term as above, we have determined the ”quantized” geometry of SU(2)k × R as
corresponding to the exotic geometry of the end of R4

k . The appearance of the SU(2)k × R is
a source for various further constructions. In particular, we will see that gravitational effects
of R4

k on the quantum level are determined via string theory where one replaces consistently
flat R4 part of the background by curved 4D SU(2)k × R.

3. 10d string theory and 4d-smoothness

Let us, following Asselmeyer-Maluga & Król (2011a) (see also Król (2011a;b)), begin with
a charged quantum particle, say e, moving through non-flat gravitational background, i.e.
smooth 4-spacetime manifold. The amount of gravity due to the curvature of this background
affects the particle trajectory as predicted by GR. There should exist, however, a high energy
limit where gravity contained in this geometrical background becomes quantum rather than
classical and the particle may not be described by perturbative field theory any longer. This
rather natural, from the point of view of physics, scenario requires, however, quantum gravity
calculations which is not in reach in dimension 4. Moreover, mathematics underlying classical
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1
(4π)2 �GV(F ), [S3]� = 1

(4π)2

∫

S3

GV(F ) = ±(2 − k) (1)
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a) flat R4 j1 ��

end(R4)

��

R4
k

GV(FS3 )

��
S3 × R

j2 �� SU(2)k × Rφ

b) flat R4

sustring

��
SU(2)k × Rφ

Fig. 1. a) j1 is the change of the standard smooth R4 to the exotic R4
k , end(R4) assigns the

standard end to R4, GV(FS3 ) generates the WZk-term from exotic R4
k via GV invariant of the

codim.-1 foliation of S3. b) The change of string backgrounds s.t. flat R4 part is replaced by
the linear dilaton background SU(2)k × Rφ

gravity is of (pseudo-)Riemannian smooth geometry and should change to a new ’geometry,
or to, unknown at all, mathematics, when the transformation of GR to QG is performed.

As discussed already in the Introduction, it was proposed in Asselmeyer-Maluga & Król (2010;
2011c;d; 2012); Król (2011a;b) that 4-dimensional effects of string theory should be seen via its
connections with exotic smoothness of topologically trivial R4. Several results were derived
as if superstring theory were formulated on backgrounds which contain 4-dimensional part
which is exotic R4 rather than standard smooth R4. This serves as a new window to
4-dimensional physics. The argumentation dealt with exact string backgrounds in any order
of α�. The existence of such backgrounds is rather exceptional in superstring theory (see e.g.
Orlando (2006; 2007)) and this always indicates important and exactly calculable effects of the
theory. This is precisely the tool which we want to apply to the above stated problems, i.e.
the description of both, 4D QG effects due to gravity present in background spacetime, and
mathematics behind the shift GR → QG in 4D.

Exotic R4
k is a smooth Riemannian manifold, however, its structure essentially deals with

non-commutative geometry and quantization Asselmeyer-Maluga & Król (2011b). The
connection with string exact backgrounds was also recognized in Asselmeyer-Maluga & Król
(2010; 2011c). Thus, under the topological assumptions discussed in Sec. 2, the following
correspondence emerges:

The change of the smoothness from the standard R4 to exotic R4
k , corresponds to the

change of exact string backgrounds from R4 × K6 to SU(2)k × Rφ × K6.

Let us note that only because of the exotic smooth structure of R4, the link to string
backgrounds exists. If smoothness of R4 were standard, only separated regimes of 4-geometry
(GR) and superstrings (QG) would appear. In superstring theory one understands fairy well
how to change the exact background containing flat R4 to this with curved 4-dimensional part:
R4 × K6 → SU(2)k × Rφ × K6. This requires supersymmetry in 10 dimensions. The presence
of supersymmetry is, however, just a technical mean allowing for the consistent shifts between
the backgrounds and performing the QG calculations effectively.

3.1 The magnetic deformation of 4D part of the string background

To be specific let us consider the SO(3)k/2 × Rφ as the 4D part of the 10D string background
which replaces the flat R4 part. This SO(3)k/2 × Rφ geometry is the result of the projection
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from SU(2)k × Rφ, so k is even. Here SU(2)k is the affine Kac-Moody algebra at level k
and Rφ the linear dilaton, both appearing in the exact string background realized by the
superconformal 2D field theory (see, e.g. Kiritsis & Kounnas (1995b)). The deformation of
such curved 4D part of the background will be performed in heterotic superstring theory
in the language of σ-model. The deformations will correspond to the introducing almost
constant magnetic field H and its gravitational backreaction on the 4D curved part of the
background. First let us describe undeformed theory. The action for heterotic σ-model in this
SO(3)k/2 × Rφ background is:

S4 =
k
4

ISO(3)(α, β, γ) +
1

2π

∫
d2z

[
∂x0∂x0 + ψ0∂ψ0 +

3

∑
a=1

ψa∂ψa

]
+

Q
4π

∫ √
gR(2)x0 (2)

where ISO(3)(α, β, γ) = 1
2π

∫
d2z

[
∂α∂α + ∂β∂β + ∂γ∂γ + 2cosβ∂α∂γ

]
in Euler angles of

SU(2) = S3, R(2) is the 2D worldsheet curvature, g is the determinant of the target metric
and Q is the dilaton charge with x0 the coordinate of Rφ. The bosonic σ-model action reads in
general:

S =
1

2π

∫
d2z(Gμν + Bμν)∂xμ∂xν +

1
4π

∫ √
gR(2)Φ(x) (3)

so comparing with (2) gives the non-zero background fields as:

G00 = 1, Gαα = Gββ = Gγγ = k
4 , Gαγ = k

4 cos β

Bαγ = k
4 cos β, Φ = Qx0 = x0√

k+2
.

(4)

One can decompose (see e.g. Prezas & Sfetsos (2008)) the supersymmetric WZW model
into the bosonic SU(2)k−2 with affine currents Ji and three free fermions ψa, a = 1, 2, 3
in the adjoint representation of SU(2). As the result the supersymmetric N = 1 affine
currents are J a = Ja − i

2 �abcψbψc. After introducing the complex fermions combination
ψ± = 1√

2
(ψ1 ± iψ2) and the corresponding change of the affine bosonic currents J± = J1 ± i J2,

the supersymmetric affine currents read:

J 3 = J3 + ψ+ψ−, J ± = J± ±
√

2ψ3ψ± (5)

Let us redefine the indices in the fermion fields as: + → 1, − → 2, then J 3 = J3 + ψ1ψ2.

From the point of view of the σ-model, the vertex for the magnetic field H on 4-dimensional
Rφ × SU(2)k part of the background is the exact marginal operator given by Vm = H(J3 +

ψ1ψ2)Ja. Similarly, the vertex for the corresponding gravitational part is Vgr = R(J3 +

ψ1ψ2)J3, and represents truly marginal deformations too.

The shape of these operators follow from the fact that, in general, the marginal deformations
of the WZW model can be constructed as bilinears in the currents J, J of the model [Orlando
(2007)]:

O(z, z) = ∑
i,j

cij Ji(z)J j(z) (6)

where Ji, J j are left and right-moving affine currents respectively, Orlando (2007).

Here, following Kiritsis & Kounnas (1995b), we consider covariantly constant magnetic field
Ha

i = �ijkFa
jk and constant curvature Ril = �ijk�lmnRjmkn in the 4-dimensional background as
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gravity is of (pseudo-)Riemannian smooth geometry and should change to a new ’geometry,
or to, unknown at all, mathematics, when the transformation of GR to QG is performed.

As discussed already in the Introduction, it was proposed in Asselmeyer-Maluga & Król (2010;
2011c;d; 2012); Król (2011a;b) that 4-dimensional effects of string theory should be seen via its
connections with exotic smoothness of topologically trivial R4. Several results were derived
as if superstring theory were formulated on backgrounds which contain 4-dimensional part
which is exotic R4 rather than standard smooth R4. This serves as a new window to
4-dimensional physics. The argumentation dealt with exact string backgrounds in any order
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correspondence emerges:
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change of exact string backgrounds from R4 × K6 to SU(2)k × Rφ × K6.

Let us note that only because of the exotic smooth structure of R4, the link to string
backgrounds exists. If smoothness of R4 were standard, only separated regimes of 4-geometry
(GR) and superstrings (QG) would appear. In superstring theory one understands fairy well
how to change the exact background containing flat R4 to this with curved 4-dimensional part:
R4 × K6 → SU(2)k × Rφ × K6. This requires supersymmetry in 10 dimensions. The presence
of supersymmetry is, however, just a technical mean allowing for the consistent shifts between
the backgrounds and performing the QG calculations effectively.

3.1 The magnetic deformation of 4D part of the string background

To be specific let us consider the SO(3)k/2 × Rφ as the 4D part of the 10D string background
which replaces the flat R4 part. This SO(3)k/2 × Rφ geometry is the result of the projection

60 Quantum Gravity Quantum Gravity Insights from Smooth 4-Geometries on Trivial R4 9

from SU(2)k × Rφ, so k is even. Here SU(2)k is the affine Kac-Moody algebra at level k
and Rφ the linear dilaton, both appearing in the exact string background realized by the
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such curved 4D part of the background will be performed in heterotic superstring theory
in the language of σ-model. The deformations will correspond to the introducing almost
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above of closed superstring theory. When this chromo-magnetic field is in the μ = 3 direction
the following deformation is proportional to (J3 + ψ1ψ2)J and the right moving current J is
normalized as < J(1)J(0) >= kg/2. Rewriting the currents in the Euler angles, i.e. J3 =

k(∂γ + cos β∂α), J3
= k(∂α + cos β∂γ), we obtain for the perturbation of the (heterotic) action

in (2), the following expression:

δS4 =

√
kkg H
2π

∫
d2z(∂γ + cos β∂α)J . (7)

The new σ-model with the action S4 + δS4 is again conformally invariant with all orders in α�
since:

S4 + δS4 = k
4 ISO(3)(α, β, γ) + δS4 +

kg
4π

∫
d2z∂φ∂φ = k

4 ISO(3)(α, β, γ + 2
√

kg
k Hφ) +

kg(1−2H2)
4π

∫
d2z∂φ∂φ. This shows that, in fact the magnetic deformation is exactly marginal.

Here we have chosen for the currents J and J, ∂φ and ∂φ correspondingly, as their
bosonizations.

The background corresponding to the perturbation (7) is determined by background fields,
i.e. a graviton Gμν, gauge fields Fa

μν, an antisymmetric field (three form) Hμνρ and a dilaton Φ,
which, in turn, are solutions to the following equations of motion:

3
2

[
4(∇Φ)2 − 10

3 �Φ − 2
3 R + 1

12g2 Fa
μνFa,μν

]
= C

Rμν − 1
4 H2

μν − 1
2g2 Fa

μρFaρ
ν + 2∇μ∇νΦ = 0

∇μ
[
e−2Φ Hμνρ

]
= 0

∇ν
[
e−2ΦFa

μν

]
− 1

2 Fa,νρ Hμνρe−2Φ = 0

(8)

These are derived from the variations of the following effective 4-dimensional gauge theory
action:

S =
∫

d4x
√

Ge−2Φ
[

R + 4(∇Φ)2 − 1
12

H2 − 1
4g2 Fa

μνFa,μν +
C
3

]
(9)

where C is the l.h.s. of the first equation in (8). Here gstr = 1, the gauge coupling

g2 = 2/kg, Fa
μν = ∂μ Aν − ∂ν Aμ + f abc Ab

μ Ac
ν, Hμνρ = ∂μBνρ − 1

2g2

[
Aa

μFa
νρ − 1

3 f abc Aa
μ Ab

ν Ac
ρ

]
+

permutations. f abc are structure constants of the gauge group and Aa
μ is the effective gauge

field. One can observe that the term in the square bracket in Hμνρ is the Chern-Simons term
for the gauge potential Aa

μ.

Now, the background complying with these equations and which respects the deformation
(7), reads:

G00 = 1, Gββ = k
4 , Gαγ = k

4 (1 − 2H2) cos β

Gαα = k
4 (1 − 2H2 cos2 β) , Gγγ = k

4 (1 − 2H2) , Bαγ = k
4 cos β

Aα = g
√

kH cos β , Aγ = g
√

kH , Φ = x0√
k+2

.

(10)

where H is the magnetic field as in (7).

Similarly, when gravitational marginal deformations as in the vertex Vgr = R(J3 + ψ1ψ2)J3

are included, where R is the curvature parameter of the deformation, one can derive

62 Quantum Gravity Quantum Gravity Insights from Smooth 4-Geometries on Trivial R4 11

corresponding exact background of string theory via σ-model calculations, Hassan & Sen
(1993); Kiritsis & Kounnas (1995b). Again, the fields in this background which solve the
effective field theory equations (8), are [Kiritsis & Kounnas (1995b)]:

G00 = 1, Gββ = k
4

Gαα = k
4
(λ2+1)2−(8H2λ2+(λ2−1)2) cos2 β)

(λ2+1+(λ2−1) cos β)2

Gγγ = k
4
(λ2+1)2−(8H2λ2−(λ2−1)2) cos2 β)

(λ2+1+(λ2−1) cos β)2

Gαγ = k
4

4λ2(1−2H2) cos β+(λ4−1) sin2 β
(λ2+1+(λ2−1) cos β)2

Bαγ = k
4

λ2−1+(λ2+1) cos β
(λ2+1+(λ2−1) cos β)2

Aα = 2g
√

k Hλ cos β
(λ2+1+(λ2−1) cos β)2

Aγ = 2g
√

k Hλ
(λ2+1+(λ2−1) cos β)2

Φ = t√
k+2

− 1
2 log

[
λ + 1

λ + (λ − 1
λ ) cos β

]

(11)

The dependence on λ shows the existence of gravitational backreaction which was absent in
the purely magnetic deformed background (10).

3.2 Field theory vs. string theory spectra of charged particles in standard 4-space

In the case of field theory in 4 dimensions we introduce the magnetic field on S3 which agrees
with the magnetic part of the string background (10) as:

Aα = H cos β , Aβ = 0 , Aγ = H . (12)

The Hamiltonian for a particle with electric charge e moving on S3, is

H =
1√

detG
(∂μ − ieAμ)

√
detGGμν(∂ν − ieAν) . (13)

where we assume at the beginning that Gμν is standard metric on S3.

The energy spectrum for H is then given by:

ΔEj,m =
1

R2

[
j(j + 1)− m2 + (eH − m)2

]
(14)

where R is the radius of S3, j ∈ Z and −j ≤ m ≤ j, as is the case for SO(3). In the flat limit we
retrieve the Landau spectrum in 3-dimensional space of spinless particles:

ΔEn,p3 = eH̃(2n + 1) + p2
3 +O(R−1) (15)

where magnetic field is pointing into 3-rd direction and the re-scaling of eH is performed
as eH = eH̃ + κR + O(1), m = eH̃R2 + (p3 + κ) + O(1). This follows from rewriting

the spectrum (14) as ΔEn,m = 1
R2 [n(n + 1) + |m|(2n + 1)] +

(
eH−m2

R

)2
by introducing new

parameter n: j = |m|+ n for |m|,n ∈ N.
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above of closed superstring theory. When this chromo-magnetic field is in the μ = 3 direction
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kkg H
2π
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S4 + δS4 = k
4 ISO(3)(α, β, γ) + δS4 +

kg
4π

∫
d2z∂φ∂φ = k

4 ISO(3)(α, β, γ + 2
√

kg
k Hφ) +

kg(1−2H2)
4π

∫
d2z∂φ∂φ. This shows that, in fact the magnetic deformation is exactly marginal.
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bosonizations.

The background corresponding to the perturbation (7) is determined by background fields,
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3
2
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4(∇Φ)2 − 10

3 �Φ − 2
3 R + 1

12g2 Fa
μνFa,μν

]
= C

Rμν − 1
4 H2
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2g2 Fa

μρFaρ
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]
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∇ν
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μν

]
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(8)
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d4x
√

Ge−2Φ
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12

H2 − 1
4g2 Fa

μνFa,μν +
C
3

]
(9)
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μν = ∂μ Aν − ∂ν Aμ + f abc Ab

μ Ac
ν, Hμνρ = ∂μBνρ − 1

2g2

[
Aa

μFa
νρ − 1

3 f abc Aa
μ Ab

ν Ac
ρ

]
+

permutations. f abc are structure constants of the gauge group and Aa
μ is the effective gauge
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√
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√

kH , Φ = x0√
k+2

.

(10)

where H is the magnetic field as in (7).

Similarly, when gravitational marginal deformations as in the vertex Vgr = R(J3 + ψ1ψ2)J3

are included, where R is the curvature parameter of the deformation, one can derive
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corresponding exact background of string theory via σ-model calculations, Hassan & Sen
(1993); Kiritsis & Kounnas (1995b). Again, the fields in this background which solve the
effective field theory equations (8), are [Kiritsis & Kounnas (1995b)]:
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√
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]

(11)

The dependence on λ shows the existence of gravitational backreaction which was absent in
the purely magnetic deformed background (10).

3.2 Field theory vs. string theory spectra of charged particles in standard 4-space

In the case of field theory in 4 dimensions we introduce the magnetic field on S3 which agrees
with the magnetic part of the string background (10) as:

Aα = H cos β , Aβ = 0 , Aγ = H . (12)

The Hamiltonian for a particle with electric charge e moving on S3, is

H =
1√

detG
(∂μ − ieAμ)

√
detGGμν(∂ν − ieAν) . (13)

where we assume at the beginning that Gμν is standard metric on S3.

The energy spectrum for H is then given by:

ΔEj,m =
1

R2

[
j(j + 1)− m2 + (eH − m)2

]
(14)

where R is the radius of S3, j ∈ Z and −j ≤ m ≤ j, as is the case for SO(3). In the flat limit we
retrieve the Landau spectrum in 3-dimensional space of spinless particles:

ΔEn,p3 = eH̃(2n + 1) + p2
3 +O(R−1) (15)

where magnetic field is pointing into 3-rd direction and the re-scaling of eH is performed
as eH = eH̃ + κR + O(1), m = eH̃R2 + (p3 + κ) + O(1). This follows from rewriting

the spectrum (14) as ΔEn,m = 1
R2 [n(n + 1) + |m|(2n + 1)] +

(
eH−m2

R

)2
by introducing new

parameter n: j = |m|+ n for |m|,n ∈ N.
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Let us, again following Kiritsis & Kounnas (1995b), calculate the spectrum in the case of full
exact string background (10) as our starting point. One takes the metric components from the
background (10) and derive the eigenvalues of the Hamiltonian (14). The result is [Kiritsis &
Kounnas (1995b)]:

ΔEj,m =
1

R2

[
j(j + 1)− m2 +

(eHR − m)2

(1 − 2H2)

]
. (16)

Again, introducing n ∈ N by j = |m|+ n, |m| = 0, 1/2, 1, ... we can rewrite the spectrum (16)
as:

ΔEn,m =
1

R2 [n(n + 1) + |m|(2n + 1)] +
(

eHR − m
R
√

1 − 2H2

)2
(17)

which is the energy spectrum containing the corrections due to H field appearing in the string
exact background (10), but the Hamiltonian (13) is field theoretic 4-dimensional one.

One can also calculate the exact string spectrum of energy in this exact background (see
Kiritsis & Kounnas (1995a;b)) and when compared with (17) gives rise to the following
dictionary rules enabling passing between the spectra:

R2 → k + 2 , m → Q+ J3 , e →
√

2
kg
Q

H → F√
2(1+

√
1+F2)

= 1
2
√

2

[
F − F3

4 +O(F5)
]

.
(18)

Here F2 =
〈

Fa
μνFμν

a

〉
is the integrated (square of) field strength where Ha

i = �ijkFa
jk as before.

For a particle with spin S setting S = Q the following modification of the spectrum appear
due to the above rules [Kiritsis & Kounnas (1995b)]:

ΔEj,m,S =
1

k + 2

[
j(j + 1)− (m + S)2 +

(eHR − m − S)2

(1 − 2H2)

]
. (19)

Next step is the inclusion of gravitational backreactions. One begins with the string
background (11) and compute again the eigenvalues of (13). The result for scalar particles
is [Kiritsis & Kounnas (1995b)]:

ΔEj,m,m =
1

R2

[
j(j + 1)− m2 +

(2ReH − (λ + 1
λ )m − (λ − 1

λ )m)2

4(1 − 2H2)

]
(20)

where now −j ≤ m, m ≤ j. Again, comparing with exact string spectra for even k we have the
corresponding dictionary rules in the case where gravity backreactions are included:

R2 → k + 2 , m → Q+ J3 , e →
√

2
kg
P , m → J3

H2 → 1
2

F2

F2+2(1+
√

1+F2+R2)
, λ2 = 1+

√
1+F2+R2+R

1+
√

1+F2+R2−R
(21)

where R2 =
〈

RμνρσRμνρσ
〉

is the integrated squared scalar curvature and Rμνρσ is the
Riemann tensor of the „squashed” SU(2) = S3 in the deformed background.
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3.3 The exotic 4D interpretation of string calculations

Given the dictionary (21), we can rewrite (20) in a way where the dependance on the even
level k is written explicitly:

ΔEk
j,m,m =

1
k + 2

[j(j + 1)− m2] +
(2
√

k + 2eH − (λ + 1
λ )m − (λ − 1

λ )
√
(1 + 2/k)m)2

4(k + 2)(1 − 2H2)
. (22)

Thus this is the 4D spectrum of a scalar particle with charge e which is modified by the
magnetic field H and its gravitational backreaction λ (20). The spectrum depends on k = 2p
which indicates the relevance of the stringy regime. One can interpret this dependance on k
as the result of exotic R4

k geometry of a 4-region where the particle travells. However, this
4-geometry, in the QG limit of string theory, generates the quantum gravity effects in 4D.

In deriving the spectrum (22) we commence with the flat standard smooth R4 which is a
part of the exact string background. Then we switched to another exact string background
where the 4D part is now SU(2)k × Rφ. This new 4D part ceases to be flat. Its curvature
has defined gravitational meaning in superstring theory such that the QG calculations are
possible. The effects are derived in the regime of QG, i.e. heterotic string theory. The same
deformed spectrum could be obtained, in principle, via including magnetic field H̃ and its
gravitational backreaction on exotic smooth R4

k where modified metric G̃μν emerges. These
fields, however, are not explicitly specified but still the effects in QG regime are derived from
string theory as above. Such an approach serves as a way of quantization of gravity while on
exotic R4. The relations between various ingredients appearing here are presented in Fig. 2.

flat R4
� �

b

��

a �� R4
k

d
�� H̃,G̃μ,ν

��

SU(2)k × R

e
��

R4 × W6
c

�� SU(2)k × Rφ × W6
H,Gμ,ν

�� ΔEk
j,m,m

Fig. 2. a is the change of smoothness on R4 from standard one to exotic R4
k ; b is the

embedding of flat smooth R4 into the string background; c is the change of the string
backgrounds; d assigns R4

k SU(2)k × R the end of exotic R4
k , via GV invariant; e is the

embedding of SU(2)k × R into the string background; H, Gμ,ν is the deformation of the CFT
background resulting in the deformed spectrum ΔEk

j,m,m; the same spectrum is obtained

when H̃, G̃μ,ν are on exotic R4
k

Let us turn to the appearance of the mass gap in the spectrum when the theory is formulated
on exotic R4

k rather than standard smooth R4. In field theory a dilaton Φ couples to a massless
bosonic field T in a universal fashion:

S[Φ, T] =
∫

e−2Φ∂MT∂MT.

One can introduce a new field U = e−ΦT hence the above action becomes:

S[Φ, U] =
∫

∂MU∂MU + [∂2Φ − ∂MΦ∂MΦ]U.
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Let us, again following Kiritsis & Kounnas (1995b), calculate the spectrum in the case of full
exact string background (10) as our starting point. One takes the metric components from the
background (10) and derive the eigenvalues of the Hamiltonian (14). The result is [Kiritsis &
Kounnas (1995b)]:

ΔEj,m =
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[
j(j + 1)− m2 +
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(1 − 2H2)

]
. (16)

Again, introducing n ∈ N by j = |m|+ n, |m| = 0, 1/2, 1, ... we can rewrite the spectrum (16)
as:

ΔEn,m =
1

R2 [n(n + 1) + |m|(2n + 1)] +
(

eHR − m
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√

1 − 2H2

)2
(17)

which is the energy spectrum containing the corrections due to H field appearing in the string
exact background (10), but the Hamiltonian (13) is field theoretic 4-dimensional one.

One can also calculate the exact string spectrum of energy in this exact background (see
Kiritsis & Kounnas (1995a;b)) and when compared with (17) gives rise to the following
dictionary rules enabling passing between the spectra:

R2 → k + 2 , m → Q+ J3 , e →
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= 1
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Here F2 =
〈
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〉
is the integrated (square of) field strength where Ha
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jk as before.

For a particle with spin S setting S = Q the following modification of the spectrum appear
due to the above rules [Kiritsis & Kounnas (1995b)]:

ΔEj,m,S =
1

k + 2

[
j(j + 1)− (m + S)2 +

(eHR − m − S)2

(1 − 2H2)

]
. (19)

Next step is the inclusion of gravitational backreactions. One begins with the string
background (11) and compute again the eigenvalues of (13). The result for scalar particles
is [Kiritsis & Kounnas (1995b)]:

ΔEj,m,m =
1

R2

[
j(j + 1)− m2 +

(2ReH − (λ + 1
λ )m − (λ − 1

λ )m)2

4(1 − 2H2)

]
(20)

where now −j ≤ m, m ≤ j. Again, comparing with exact string spectra for even k we have the
corresponding dictionary rules in the case where gravity backreactions are included:

R2 → k + 2 , m → Q+ J3 , e →
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P , m → J3

H2 → 1
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√

1+F2+R2)
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where R2 =
〈

RμνρσRμνρσ
〉

is the integrated squared scalar curvature and Rμνρσ is the
Riemann tensor of the „squashed” SU(2) = S3 in the deformed background.
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3.3 The exotic 4D interpretation of string calculations

Given the dictionary (21), we can rewrite (20) in a way where the dependance on the even
level k is written explicitly:

ΔEk
j,m,m =

1
k + 2

[j(j + 1)− m2] +
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√
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. (22)

Thus this is the 4D spectrum of a scalar particle with charge e which is modified by the
magnetic field H and its gravitational backreaction λ (20). The spectrum depends on k = 2p
which indicates the relevance of the stringy regime. One can interpret this dependance on k
as the result of exotic R4

k geometry of a 4-region where the particle travells. However, this
4-geometry, in the QG limit of string theory, generates the quantum gravity effects in 4D.

In deriving the spectrum (22) we commence with the flat standard smooth R4 which is a
part of the exact string background. Then we switched to another exact string background
where the 4D part is now SU(2)k × Rφ. This new 4D part ceases to be flat. Its curvature
has defined gravitational meaning in superstring theory such that the QG calculations are
possible. The effects are derived in the regime of QG, i.e. heterotic string theory. The same
deformed spectrum could be obtained, in principle, via including magnetic field H̃ and its
gravitational backreaction on exotic smooth R4

k where modified metric G̃μν emerges. These
fields, however, are not explicitly specified but still the effects in QG regime are derived from
string theory as above. Such an approach serves as a way of quantization of gravity while on
exotic R4. The relations between various ingredients appearing here are presented in Fig. 2.
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Fig. 2. a is the change of smoothness on R4 from standard one to exotic R4
k ; b is the

embedding of flat smooth R4 into the string background; c is the change of the string
backgrounds; d assigns R4
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k , via GV invariant; e is the
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when H̃, G̃μ,ν are on exotic R4
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Let us turn to the appearance of the mass gap in the spectrum when the theory is formulated
on exotic R4

k rather than standard smooth R4. In field theory a dilaton Φ couples to a massless
bosonic field T in a universal fashion:

S[Φ, T] =
∫

e−2Φ∂MT∂MT.

One can introduce a new field U = e−ΦT hence the above action becomes:

S[Φ, U] =
∫

∂MU∂MU + [∂2Φ − ∂MΦ∂MΦ]U.
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Thus, for a linear dilaton Φ = qMXM the field U gets a mass square M2 = qMqM for
qM spacelike. This way the massless boson T is mapped to the boson U with the mass
M. However, this mechanism does not work in the case of massless free fermions. In four
dimensional spacetime the chiral fermion ψ can be coupled to an antisymmetric tensor Hμνρ

as follows:
S[ψ, H] =

∫
ψγμ

[←→
∂μ + Hμ

]
ψ

where Hμ = εμνρσ Hνρσ is the dual of the antisymmetric tensor Hνρσ. If one can embed this
system into a string background with the fields: Φ and HMNP, then using one-loop string
equations:

RMN = −2∇M∇NΦ + 1
4 HMPR H PR

N ,

∇L
(
e−2Φ HL

MN
)
= 0,

∇2Φ − 2 (∇Φ)2 = − 1
12 H2,

(23)

one gets for the linear dilaton Φ = qMXM the following relation:

qMqM =
1
6

H2

and the scalar curvature R is:
R =

3
2

qMqM .

If non-vanishing components of qM and HMNP are in four dimensional space, one obtains
that:

qμ ∼ εμνρσ Hνρσ.

Thus, the Dirac operator acquires a mass gap proportional to qμqμ.

The problem of embedding a four dimensional fermion system in the exact string background
was considered in Kiritsis & Kounnas (1995c). In the case when four dimensional space is
represented by the Rφ × SU(2)k part of the string background, than the linear dilaton is Φ =

QX0 and Q is given by the level k of the WZW model on SU (2) as Q = (k + 2)−1/2 so that the
CFT has the same central charge as flat space. Hence, the massless bosons acquire the mass
gap ΔM2 = μ2 = (k + 2)−1.

That way we arrive at the important feature of the theory when on exotic R4
k :

The theory predicting the energy spectra of charged particles as in (22) in the flat smooth 4D limit,
k → ∞ does not show the existence of the mass gap in the energy spectra. However, in the exotic R4

k
limit the theory acquires the mass gap μ2 ∼ 1

(k+2) .

The mass gap which appears here in 4D theory is the result of QG computations i.e. those on
linear dilaton background in superstring theory. Such overlapping QG with field theory in
4D is a special new feature of the approach via exotic open 4-smooth spaces which bridges
10D superstring and 4D matter fields. We will see in the next section that there are also
bottom–up arguments where exotic R4’s emerge from the regime of low energy effective
states of condensed matter. The latter means that gravity is present in the description of the
effective entangled matter, since R4

k is not flat and Einstein equations can be written on these
4-manifolds.
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4. Quantum effective spin matter and exotic R4 – the Kondo effect

Gravitational interaction is very exceptional among all interactions in Nature. On the one
hand gravity is the geometry of spacetime on which fields propagate and interactions take
place. On the other hand, gravity couples with any kind of energy and matter. Further, it is
the only interaction which restrains quantization.

Based on the entanglement of ideas presented so far, we want to argue that gravity is present
in some states of magnetic effective quantum matter in a nonstandard way. The latter means
that some states of spin matter, already at low temperatures, are coupled with 4D gravity via
special 4-geometry directly, rather than, by energy-momentum tensor. This coupling can be
extended over quantum regime of gravity, at least in some cases, and relates effective rather
than fundamental fields and particles from SM. The coupling is understood as the presence
of a non-flat 4-geometry which becomes dominating in some limits. The special 4-geometry
is, again, exotic smoothness of Euclidean 4-space R4, thus becoming a guiding principle for
presented approach to QG. The presence of gravity in the description of nonperturbative,
strongly entangled states of 4D matter field is not a big surprise, as recent vital activity on
the methods of AdS/CFT correspondence shows. However, our approach is different and
makes use of inherently 4-dimensional new geometrical findings, which, at this stage of
development, do not refer to AdS/CFT techniques (cf. Król (2005)).

In the thirties of the last century strange behaviour of conducting electrons occurring in some
metallic alloys was observed. Namely the resistivity ρ(T) in these alloys in the presence of
magnetic spin s impurities, growth substantially when the temperature is lowering below the
critical temperature TK called the Kondo temperature. TK is as low as a few K.

Kondo proposed in 1964 a simple phenomenological Hamiltonian Affleck (1995):

H = ∑
→
k ,α

ψ+α
→
k

ψ→
k α

�(k) + λ
→
S · ∑

→
k ,

→
k�

ψ+
→
k

→
σ

2
ψ→

k�
. (24)

explaining the growth of the resistivity ρ(T). Here ψ is the annihilation operator for the

conduction electron of spin α and momentum
→
k , the antiferromagnetic interaction term is

that between spin s impurity
→
S with spins of conducting electrons, at

→
x = 0;

→
σ is the vector

of Pauli matrices. From this Hamiltonian one can derive, in the Born approximation, that

ρ(T) ∼
[
λ + νλ2 ln D

T + ...
]2

where D is the ’width of the band’ parameter and the second
term is divergent in T = 0. Thus, this divergence explains the growth of the resistivity. The
Hamiltonian (24) can be also derived from the more microscopic Anderson model Anderson
(1961). The Kondo antiferromagnetic coupling appears as the tunnelling of electrons thus
screening the spin impurity (see eg. Potok et al. (2007)).

The exact low T behavior was proposed by Affleck (1995); Affleck & Ludwig (1991; 1993; 1994)
and Potok et al. (2007) by the use of boundary conformal field theory (BCFT). This insightful
use of the CFT methods makes it possible to work out the connection with smooth 4-geometry.

Let us see in brief how the structure of the SU(2)k WZW model is well suited to the
description of the k-channel Kondo effect. Recall that Kac-Moody algebra SU(2)k is spanned
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M. However, this mechanism does not work in the case of massless free fermions. In four
dimensional spacetime the chiral fermion ψ can be coupled to an antisymmetric tensor Hμνρ

as follows:
S[ψ, H] =

∫
ψγμ

[←→
∂μ + Hμ

]
ψ

where Hμ = εμνρσ Hνρσ is the dual of the antisymmetric tensor Hνρσ. If one can embed this
system into a string background with the fields: Φ and HMNP, then using one-loop string
equations:

RMN = −2∇M∇NΦ + 1
4 HMPR H PR

N ,

∇L
(
e−2Φ HL

MN
)
= 0,

∇2Φ − 2 (∇Φ)2 = − 1
12 H2,

(23)

one gets for the linear dilaton Φ = qMXM the following relation:

qMqM =
1
6

H2

and the scalar curvature R is:
R =

3
2

qMqM .

If non-vanishing components of qM and HMNP are in four dimensional space, one obtains
that:

qμ ∼ εμνρσ Hνρσ.

Thus, the Dirac operator acquires a mass gap proportional to qμqμ.

The problem of embedding a four dimensional fermion system in the exact string background
was considered in Kiritsis & Kounnas (1995c). In the case when four dimensional space is
represented by the Rφ × SU(2)k part of the string background, than the linear dilaton is Φ =

QX0 and Q is given by the level k of the WZW model on SU (2) as Q = (k + 2)−1/2 so that the
CFT has the same central charge as flat space. Hence, the massless bosons acquire the mass
gap ΔM2 = μ2 = (k + 2)−1.

That way we arrive at the important feature of the theory when on exotic R4
k :

The theory predicting the energy spectra of charged particles as in (22) in the flat smooth 4D limit,
k → ∞ does not show the existence of the mass gap in the energy spectra. However, in the exotic R4

k
limit the theory acquires the mass gap μ2 ∼ 1

(k+2) .

The mass gap which appears here in 4D theory is the result of QG computations i.e. those on
linear dilaton background in superstring theory. Such overlapping QG with field theory in
4D is a special new feature of the approach via exotic open 4-smooth spaces which bridges
10D superstring and 4D matter fields. We will see in the next section that there are also
bottom–up arguments where exotic R4’s emerge from the regime of low energy effective
states of condensed matter. The latter means that gravity is present in the description of the
effective entangled matter, since R4

k is not flat and Einstein equations can be written on these
4-manifolds.
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4. Quantum effective spin matter and exotic R4 – the Kondo effect

Gravitational interaction is very exceptional among all interactions in Nature. On the one
hand gravity is the geometry of spacetime on which fields propagate and interactions take
place. On the other hand, gravity couples with any kind of energy and matter. Further, it is
the only interaction which restrains quantization.

Based on the entanglement of ideas presented so far, we want to argue that gravity is present
in some states of magnetic effective quantum matter in a nonstandard way. The latter means
that some states of spin matter, already at low temperatures, are coupled with 4D gravity via
special 4-geometry directly, rather than, by energy-momentum tensor. This coupling can be
extended over quantum regime of gravity, at least in some cases, and relates effective rather
than fundamental fields and particles from SM. The coupling is understood as the presence
of a non-flat 4-geometry which becomes dominating in some limits. The special 4-geometry
is, again, exotic smoothness of Euclidean 4-space R4, thus becoming a guiding principle for
presented approach to QG. The presence of gravity in the description of nonperturbative,
strongly entangled states of 4D matter field is not a big surprise, as recent vital activity on
the methods of AdS/CFT correspondence shows. However, our approach is different and
makes use of inherently 4-dimensional new geometrical findings, which, at this stage of
development, do not refer to AdS/CFT techniques (cf. Król (2005)).

In the thirties of the last century strange behaviour of conducting electrons occurring in some
metallic alloys was observed. Namely the resistivity ρ(T) in these alloys in the presence of
magnetic spin s impurities, growth substantially when the temperature is lowering below the
critical temperature TK called the Kondo temperature. TK is as low as a few K.

Kondo proposed in 1964 a simple phenomenological Hamiltonian Affleck (1995):

H = ∑
→
k ,α

ψ+α
→
k

ψ→
k α

�(k) + λ
→
S · ∑

→
k ,

→
k�

ψ+
→
k

→
σ

2
ψ→

k�
. (24)

explaining the growth of the resistivity ρ(T). Here ψ is the annihilation operator for the

conduction electron of spin α and momentum
→
k , the antiferromagnetic interaction term is

that between spin s impurity
→
S with spins of conducting electrons, at

→
x = 0;

→
σ is the vector

of Pauli matrices. From this Hamiltonian one can derive, in the Born approximation, that

ρ(T) ∼
[
λ + νλ2 ln D

T + ...
]2

where D is the ’width of the band’ parameter and the second
term is divergent in T = 0. Thus, this divergence explains the growth of the resistivity. The
Hamiltonian (24) can be also derived from the more microscopic Anderson model Anderson
(1961). The Kondo antiferromagnetic coupling appears as the tunnelling of electrons thus
screening the spin impurity (see eg. Potok et al. (2007)).

The exact low T behavior was proposed by Affleck (1995); Affleck & Ludwig (1991; 1993; 1994)
and Potok et al. (2007) by the use of boundary conformal field theory (BCFT). This insightful
use of the CFT methods makes it possible to work out the connection with smooth 4-geometry.

Let us see in brief how the structure of the SU(2)k WZW model is well suited to the
description of the k-channel Kondo effect. Recall that Kac-Moody algebra SU(2)k is spanned
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on 3-components currents
→
J n, n = ... − 2,−1, 0, 1, 2, ...:

[J a
n ,J b

m]k = i�abcJ c
n+m +

1
2

knδabδn,−m . (25)

Next, we decompose the currents
→
J n as

→
J n =

→
J n +

→
S such that

→
J n obey the same Kac-Moody

algebra, i.e. [Ja
n, Jb

m]k = i�abc Jc
n+m + 1

2 knδabδn,−m and usual relations for
→
S , i.e. [Sa, Sb] =

i�abcSc, [Sa, Jb
n] = 0. From the point of view of field theories describing the interacting currents

with spins,
→
J n corresponds to the effective infrared fixed point of the theory of interacting

spins
→
S with

→
J nwhere the coupling constant λ is taken as 2

3 for k = 1. The interacting
Hamiltonian of the theory, for k = 1, reads:

Hs = c

(
1
3

+∞

∑
−∞

→
J −n · →J n + λ

+∞

∑
−∞

→
J n ·

→
S

)
. (26)

For λ = 2
3 , one completes the square and the algebra (25) for the currents

→
J n follows. Then,

the new Hamiltonian, where
→
S is now effectively absent (still for k = 1), is given by H =

c� ∑+∞−∞

(→
J −n ·

→
J n − 3

4

)
(c, c� are some constants).

A similar procedure holds for arbitrary integer k where the spin part of the Hamiltonian reads:

Hs,k = 1
2π(k+2)

→
J

2
+ λ

→
J ·

→
S δ(x) and the infrared effective fixed point is now reached for k =

2
2+k . The spins

→
S reappear as the boundary conditions in the boundary CFT represented by

the WZW model on SU(2). This model defines the Verlinde fusion rules and is determined by
these. The following fusion rules hypothesis, was proposed by Affleck (1995), which explains
the creation and nature of the multichannel Kondo states:

The infrared fixed point, in the k-channel spin-s Kondo problem, is given by fusion with the spin-s
primary for s � k/2 or with the spin k/2 primary for s > k/2. Thus, the level k Kac-Moody
algebra, as in the level k WZW SU(2) model, governs the behaviour of the Kondo state in the
presence of k channels of conducting electrons and magnetic impurity of spin s.

This is also the reason why, already in low temperatures, entangled magnetic matter of
impurities and conduction electrons indicates the correlation with exotic 4-geometry. First,
every CH generates a fermion field. Every small exotic R4 can be represented as handlebody
where Akbulut cork has several CH’s attached. The important thing is that the handlenbody
has a boundary and only after removing it the interior is diffeomorphic to, say, exotic R4

k . Let
us remove a single CH from the handlebody R4

k . The result is R4
k \ CH. The boundary of it

reads ∂(R4
k \CH). The contribution to the Einstein action

∫
R4

k\CH R
√

gd4x from this boundary
is the suitable surface term:

∫

∂(R4
k\CH)

R
√

gd4x +
∫

∂(R4
k\CH)

KCH
√

g∂d3x

where KCH is the trace of the 2-nd fundamental form and g∂ the metric on the boundary
Asselmeyer-Maluga & Brans (2011). But as shown in Asselmeyer-Maluga & Brans (2011) this
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term is expressed by the spinor field ψ describing the immersion of D2 into R3, which extends
to the immersion of D2 × (0, 1) into R4:

∫

∂(R4
k\CH)

KCH
√

g∂d3x =
∫

∂(R4
k\CH)

ψγμDμψ
√

g∂d3x . (27)

This can be extended to 4-dimensional Einstein-Hilbert action with the source depending on
the CH, hence on exotic R4

k :

SCH
4 (R4

k) =
∫

R4
k\CH

(R + ψγμDμψ)
√

gd4x . (28)

Again, it was shown in Asselmeyer-Maluga & Brans (2011) that the spinor field ψ extends over
whole 4-manifold such that the 4D Dirac equations are fulfilled. This way we have fermion
fields which are determined by CH. Moreover, this fermions plays a role of gravity sources as
in 28. In fact every infinite branch of the CH determines some 4D fermion.

Second, given exotic R4
p we have r Casson handles in its handlebody. These r CH’s generate

effective q(r)-many infinite branches. Each such branch generates a fermion field. Attaching
the CH’s to the cork results in exotic R4

p. Hence, p is the function of q in general, p = p(q(r)).

Let us assign now the simplest possible CH to every CH in the handlebody of exotic R4, such
that replacing the original CH by this simple one does not change the exotic smoothness. This
is the model handlebody we refer to in the context of the Kondo effect (see Fig. 3 for the
examples of the simplest CH’s).

The k-channel Kondo state, in the k-channel Kondo effect, is the entangled state of conducting
electrons in k bands and the magnetic spin s impurity. The physics of resulting state is
described by BCFT by the Verlinde fusion rules in SU(2)k WZW model. To have the WZ
term in this WZW model one certainly needs p = k. This kWZ term is generated by exotic R4

k
as we explained in Sec. 2. The draft of the dependance of the number of infinite branches on
the function of the number of CH’s in the handlebody of R4

k , is presented in Fig. 3a. Fig. 3b
shows the example of the ramified structure of CH’s in the precise language of the graphical
Kirby calculus (see e.g. Gompf & Stipsicz (1999)).

The general correspondence appears:

One assigns the 4-smooth geometry on R4 to the k-channel Kondo effect such that k corresponds to
the number of infinite branches of CH’s in the handlebody. This 4-geometry is R4

p where p = p(k),
p, k ∈ N. The change between the physical Kondo states, from this emerging in k1 channel Kondo
effect to this with k2 channels, k1 �= k2, corresponds to the change between 4-geometries, from exotic
R4

p1
to R4

p2
, p1 �= p2, p1, p2 ∈ N, such that p1 = p1(k1) and p2 = p2(k2) as above.

Whether actually p = k or not is the question about the level of the SU(2) WZW model and
the corresponding fusion rules in use. If k = p the exotic geometry gives the same fusion
rules as the Affleck proposed. In the case k �= p and k < p in the k-channel Kondo effect the
fusion rules derived from the exotic geometry are those of the SU(2)p WZW model. It would
be interesting to decide experimentally, which fusion rules apply for bigger k. Probably in
higher energies, if the Kondo state survives, the proper fusion rules are those derived from
exotic R4

p. This reflects the situation that electrons in different conduction bands (channels)
are generated potentially by (each infinite branch of) Casson handles from the handlebody of
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S δ(x) and the infrared effective fixed point is now reached for k =
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2+k . The spins

→
S reappear as the boundary conditions in the boundary CFT represented by

the WZW model on SU(2). This model defines the Verlinde fusion rules and is determined by
these. The following fusion rules hypothesis, was proposed by Affleck (1995), which explains
the creation and nature of the multichannel Kondo states:

The infrared fixed point, in the k-channel spin-s Kondo problem, is given by fusion with the spin-s
primary for s � k/2 or with the spin k/2 primary for s > k/2. Thus, the level k Kac-Moody
algebra, as in the level k WZW SU(2) model, governs the behaviour of the Kondo state in the
presence of k channels of conducting electrons and magnetic impurity of spin s.

This is also the reason why, already in low temperatures, entangled magnetic matter of
impurities and conduction electrons indicates the correlation with exotic 4-geometry. First,
every CH generates a fermion field. Every small exotic R4 can be represented as handlebody
where Akbulut cork has several CH’s attached. The important thing is that the handlenbody
has a boundary and only after removing it the interior is diffeomorphic to, say, exotic R4

k . Let
us remove a single CH from the handlebody R4

k . The result is R4
k \ CH. The boundary of it

reads ∂(R4
k \CH). The contribution to the Einstein action
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term is expressed by the spinor field ψ describing the immersion of D2 into R3, which extends
to the immersion of D2 × (0, 1) into R4:

∫

∂(R4
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√

g∂d3x =
∫
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√
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This can be extended to 4-dimensional Einstein-Hilbert action with the source depending on
the CH, hence on exotic R4
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√

gd4x . (28)

Again, it was shown in Asselmeyer-Maluga & Brans (2011) that the spinor field ψ extends over
whole 4-manifold such that the 4D Dirac equations are fulfilled. This way we have fermion
fields which are determined by CH. Moreover, this fermions plays a role of gravity sources as
in 28. In fact every infinite branch of the CH determines some 4D fermion.

Second, given exotic R4
p we have r Casson handles in its handlebody. These r CH’s generate

effective q(r)-many infinite branches. Each such branch generates a fermion field. Attaching
the CH’s to the cork results in exotic R4

p. Hence, p is the function of q in general, p = p(q(r)).

Let us assign now the simplest possible CH to every CH in the handlebody of exotic R4, such
that replacing the original CH by this simple one does not change the exotic smoothness. This
is the model handlebody we refer to in the context of the Kondo effect (see Fig. 3 for the
examples of the simplest CH’s).

The k-channel Kondo state, in the k-channel Kondo effect, is the entangled state of conducting
electrons in k bands and the magnetic spin s impurity. The physics of resulting state is
described by BCFT by the Verlinde fusion rules in SU(2)k WZW model. To have the WZ
term in this WZW model one certainly needs p = k. This kWZ term is generated by exotic R4

k
as we explained in Sec. 2. The draft of the dependance of the number of infinite branches on
the function of the number of CH’s in the handlebody of R4

k , is presented in Fig. 3a. Fig. 3b
shows the example of the ramified structure of CH’s in the precise language of the graphical
Kirby calculus (see e.g. Gompf & Stipsicz (1999)).

The general correspondence appears:

One assigns the 4-smooth geometry on R4 to the k-channel Kondo effect such that k corresponds to
the number of infinite branches of CH’s in the handlebody. This 4-geometry is R4

p where p = p(k),
p, k ∈ N. The change between the physical Kondo states, from this emerging in k1 channel Kondo
effect to this with k2 channels, k1 �= k2, corresponds to the change between 4-geometries, from exotic
R4

p1
to R4

p2
, p1 �= p2, p1, p2 ∈ N, such that p1 = p1(k1) and p2 = p2(k2) as above.

Whether actually p = k or not is the question about the level of the SU(2) WZW model and
the corresponding fusion rules in use. If k = p the exotic geometry gives the same fusion
rules as the Affleck proposed. In the case k �= p and k < p in the k-channel Kondo effect the
fusion rules derived from the exotic geometry are those of the SU(2)p WZW model. It would
be interesting to decide experimentally, which fusion rules apply for bigger k. Probably in
higher energies, if the Kondo state survives, the proper fusion rules are those derived from
exotic R4

p. This reflects the situation that electrons in different conduction bands (channels)
are generated potentially by (each infinite branch of) Casson handles from the handlebody of
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(a) (b)

Fig. 3. (a) (Redrawn from Asselmeyer-Maluga & Brans (2011)) Two CH’s, the upper one with
3 infinite branches, the lower one is the simplest CH with the single infinite labeled branch
with a single intersection point at every stage. This CH appears in the simplest possible
exotic smooth R4. (b) Schematic structure of the r = 4 CH’s in the handlebody of exotic R4

p.
Each infinite branch generates a fermion field hence, this exotic R4

p can model the Kondo
state in the k = 6-channels Kondo effect.

the exotic R4
p, though not every CH generates the actual channel contributing to the Kondo

effect. The higher energy more potential CH contributes to the actual electron bands. Then,
the fusion rules are given by the exotic geometry, i.e. SU(2)p WZW model. In suitable high
energies 4-geometry (Casson handles) acts as anihilation or creation operator for fermions
(electrons). This is the content of our relativistic fusion rule (RFR) hypothesis. The experimental
confirmation of such discrepancy (between the levels of the WZW model) in high energies in
Kondo effect for p > 2 channels, would serve as indication for the role of 4-exotic geometry in
the relativistic limit of the Kondo state.

Let us illustrate this hypothesis and consider the simplest CH and the simplest exotic R4

described by Biz̆aca & Gompf (1996). Suppose this exotic R4
1 is the member of the radial family

and its radius, hence GV invariant of the foliation of S3, is equal to 1. The corresponding WZ
term would be then derived from the SU(2)1 WZW model. Thus, in this case, there is precisely
one channel of conducting electrons in the Kondo effect. More complicated exotic R4

2 could
have two CH’s in the handlebody and the radii equal to

√
2. Two channels of conducting

electrons give rise to the SU(2)2 WZ fusion rules. However, more complicated exotic R4
p,

p > 2, could spoil this 1 to 1 correspondence between number of CH’s and the number of
channels in the Kondo effect.

We have derived the trace of the (exotic) 4-geometry in the low energy Kondo effect. This
geometry is probably not physically valid at energies of the Kondo effect (as gravity is not).
However, exotic R4

k in high energy (and relativistic) limit can become dominating or giving
viable physical contributions. These contributions appear when geometric CH’s become the
actual sources for fermions in KE, thus, changing its CFT structure. In fact the appearance of
non-flat R4

k when describing the p-channel Kondo effect, indicates a new fundamental link
between matter, geometry and gravity in dimension 4.
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5. From smooth geometry of string backgrounds to quantum D-branes

One could wonder what is, if any, suitable sense assigned to geometry of spacetime in various
string constructions or backgrounds. As we know the geometry of GR, hence, classical
gravity, is the one of (pseudo)-Riemannian differentiable manifolds. String theory has GR
(10D Einstein equations) as its classical gravitational limit; however, string theory is the theory
of QG and the spacetime geometry should be modified. What is the fate of this (pseudo)
Riemannian geometry when gravity is quantized? To answer this question we should find
correct classical limit for some quantum string constructions. The proper way is to consider
the string backgrounds. These are semi-classical solutions in string theory or supergravity,
around which one develops a purturbative theory. GR is not the only ingredient of classical
geometry in string theory. There are other fields which are equally fundamental. In type II
we have metric Gμν, antisymmetric H-field, i.e. three-form Hμνρ, and dilaton Φ. In heterotic
strings we have additionally gauge field Fa

μν and the calculations of Sec. 3 made use of these.
The presence of B-field such that H is represented by the non-zero cohomology class (see
below), is a highly non-trivial fact and indicates that the correct, semi-classical, geometry
for string theory is one based on abelian gerbes as supplementing Riemannian geometry Król
(2010a;b); Segal (2001). Small exotic R4’s show strong connections with abelian gerbes on S3

Asselmeyer-Maluga & Król (2009a) which has many important consequences. Some of them
are discussed in what follows.

Another crucial feature is the role assigned to D- and NS-branes. Closed string theory, as
we made use of it in Sec. 3, is not complete in the sense that there are possible boundary
conditions, Dirichlet (D) or Neveu-Schwarz (NS), for open strings, already appearing in closed
string theories. These boundary conditions determine geometric subspaces on which open
strings can end. In that sense open string theory complements the closed one and predicts the
existence of D- or NS-branes. This tame picture of branes as subspaces has only very limited
validity. In the quantum regime, or even in the non-zero string coupling gs, the picture of
D-branes as above fails Aspinwall (2004). Nevertheless, interesting proposals were presented
recently. They are based on the ideas from non-commutative geometry and aim toward
replacing D-branes and spacetime by corresponding (sub) C�-algebras Brodzki et al. (2008a;b);
Szabo (2008). Surprisingly, such an C�-algebraic setting again shows deep connections with
exotic R4’s.

The appearance of the codimension-one foliations of S3 in the structure of small exotic R4,
is the key for the whole spectrum of the connections of exotics, beginning with differential
geometry and topology, up to non-commutative geometry. This opens very atractive
possibilities for exploring both, 1) the classical limit of string geometry, as above and 2)
quantum D-branes regim in string theory.

Let us comment on 1) above. The presence of non-zero B-field in a string background is
crucial from the point of view of resulting geometry: in σ-model the B-field modifies metric
as in (3). Moreover, supposing dilaton is constant and Fa

μν vanishes, the second equation
of (8) (the β-function), enforces the background be non-flat, unless H = dB is zero. Given
S3 part of the linear dilaton background as in Sec. 3, we have non-trivial H-field on it.
The topological classification of H-fields is given by 3-rd de Rham cohomology classes on
background manifold M, H3(M, R). In order to avoid anomalies we restrict to the integral
case H3(S3, Z) for M = S3. These classes however are equally generated by exotic R4

k , k ∈ Z

(see Sec. 2). On the other hand, the classification of D-branes in string backgrounds is
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(a) (b)
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5. From smooth geometry of string backgrounds to quantum D-branes
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μν and the calculations of Sec. 3 made use of these.
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Asselmeyer-Maluga & Król (2009a) which has many important consequences. Some of them
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μν vanishes, the second equation
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k , k ∈ Z

(see Sec. 2). On the other hand, the classification of D-branes in string backgrounds is
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governed by K-theory of the background, or in the presence of H-field, by, twisted by H,
K-theory classes. This is briefly summerized in the next subsection where D and NS branes
will be understood also classically as subsets in specific CFT backgrounds.

5.1 NS and D branes in type II

Let us consider again the bosonic, i.e. nonsupersymmetric, SU(2)k WZW model and follow
Asselmeyer-Maluga & Król (2011c) closely. The semi-classical limit of it corresponds to taking
k → ∞ as in Sec. 3.3. In that limit D-branes in group manifold SU(2) are determined by
wrapping the conjugacy classes of SU(2), i.e. are described by 2-spheres S2’s and two poles
(degenarate branes) each localized at a point. Owing to the quantization conditions, there are
k+ 1 D-branes on the level k SU(2) WZW model Alekseev & Schomerus (1999b); Fredenhagen
& Schomerus (2001); Schomerus (2002). To grasp the dynamics of the branes one should deal
with the gauge theory on the stack of N D-branes on S3, quite similar to the flat space case
where noncommutative gauge theory emerges Alekseev & Schomerus (1999a). Let J be the
representation of SU(2)k i.e. J = 0, 1

2 , 1, ... , k
2 . The non-commutative action for the dynamics

of N branes of type J (on top of each other), in the string regim (k is finite), is then given by:

SN,J = SYM + SCS =
π2

k2(2J + 1)N

(
1
4

tr(FμνFμν)− i
2

tr( f μνρCSμνρ)

)
. (29)

Here the curvature form Fμν(A) = iLμ Aν − iLν Aμ + i[Aμ, Aν] + fμνρ Aρ and the
noncommutative Chern-Simons action reads CSμνρ(A) = Lμ Aν Aρ +

1
3 Aμ[Aν, Aρ]. The fields

Aμ, μ = 1, 2, 3 are defined on a fuzzy 2-sphere S2
J and should be considered as N × N

matrix-valued, i.e. Aμ = ∑j,a aμ
j,aYj

a where Yj
a are fuzzy spherical harmonics and aμ

j,a are
Chan-Paton matrix-valued coefficients. Lμ are generators of the rotations on fuzzy 2-spheres
and they act only on fuzzy spherical harmonics Schomerus (2002). The noncommutative
action SYM was derived from Connes spectral triples from the noncommutative geometry, and
they will be crucial in grasping quantum nature of D-branes in the next subsection. Originally
the action (29) was designed to describe Maxwell theory on fuzzy spheres Carow-Watamura
& Watamura (2000). The equations of motion derived from (29) read:

LμFμν + [Aμ, Fμν] = 0 . (30)

The solutions of (30) describe the dynamics of the branes, i.e. the condensation processes on
the brane configuration (N, J) which results in another configuration (N�, J�). A special class
of solutions, in the semi-classical k → ∞ limit, can be obtained from the N(2J + 1) dimensional
representations of the algebra su(2). For J = 0 one has N branes of type J = 0, i.e. N point-like
branes in S3 at the identity of the group. Given another solution corresponding to JN = N−1

2 ,
one shows that this solution is the condensed state of N point-like branes at the identity of
SU(2) Schomerus (2002):

(N, J) = (N, 0) → (1,
N − 1

2
) = (N�, J�) (31)

Turning to the finite k string regime of the SU(2) WZW model one makes use of the techniques
of the boundary CFT, the same as was applied to the analysis of Kondo effect in Sec. 4. It
follows that there exists a continuous shift between the partition functions governed by the
Verlinde fusion rules coefficients N l

JN j: Nχj(q) and the sum of characters ∑j N l
JN jχl(q) where

72 Quantum Gravity Quantum Gravity Insights from Smooth 4-Geometries on Trivial R4 21

N = 2JN + 1. In the case of N point-like branes one can determine the decay product of these
by considering open strings ending on the branes. The result on the partition function is

Z(N,0)(q) = N2χ0(q)

which is continuously shifted to NχJN (q) and next to ∑j N j
JN JN

χj(q). As the result, we have
the decay process:

Z(N,0)(q) → Z(1,JN)

(N, 0) → (1, JN)
(32)

which extends the similar process derived at the semi-classical k → ∞ limit (31), and the
representations 2JN are bounded now, from the above, by k.

Thus, there are k + 1 stable branes wrapping the conjugacy classes numbered by J = 0, 1
2 , ..., k

2 .
The decaying process (32) says that placing N point-like branes (each charged by the unit 1) at
the pole e, they can decay to the spherical brane JN wrapping the conjugacy class. Taking
more point-like branes to the stack at e, gives the more distant S2 branes until reaching
the opposite pole −e, where we have single point-like brane with the opposite charge −1.
Having identified k + 1 units of the charge with −1, we obtain the correct shape of the group
of charges, as: Zk+2. More generally, the charges of branes on the background X with
non-vanishing H ∈ H3(X, Z) are described by the twisted K group, K�

H(X). In the case of
SU(2), we get the group of RR charges as (for K = k + 2):

K�
H(S3) = ZK (33)

Now, based on the earlier discussion from Secs. 2,3, let us place the S3 � SU(2) above, at the
boundary of the Akbulut cork for some exotic smooth R4

k . Then, we have: Certain small exotic
R4’s generate the group of RR charges of D-branes in the curved background of S3 ⊂ R4.

We have yet another important correspondence:

Theorem 2 (Asselmeyer-Maluga & Król (2011c)). The classification of RR charges of the branes on
the background given by the group manifold SU(2) at the level k (hence the dynamics of D-branes in
S3 in stringy regime) is correlated with the exotic smoothness on R4, containing this S3 = SU(2) as
the part of the boundary of the Akbulut cork.

Turning to the linear dilaton geometry, as emerging, in the near horizon geometry, from the
stack of N NS5-branes in supersymmetric model, i.e. R5,1 × Rφ × SU(2)k, we obtain next
important relation:

Theorem 3 (Asselmeyer-Maluga & Król (2011c)). In the geometry of the stack of NS5-branes in
type II superstring theories, adding or subtracting a NS5-brane is correlated with the change of the
smoothness structure on the transversal R4.

5.2 Quantum and topological D-branes

The recognition of the role of exotic R4 in string theory, in the previous and in Sec. 3, relied
on the following items:

• Standard smooth R4 appears as a part of an exact string background;
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• The process of changing the exotic smoothness on R4 is capable of encoding a) the change
in the configurations of specific D- and NS branes (Sec. 5.1), b) the change of the 4D part
of the string background from flat to curved one in closed string theory (see Sec. 3).

• All exotic R4’s appearing in this setup are small exotic R4’s, i.e. those which embed
smoothly in the standard smooth R4 as open subsets.

Given the fact that every small exotic R4 from the radial family (see Sec. 2) determines the
codimension-1 foliation of S3, we have natural C�-algebra assigned to this 4-exotic. Namely
this is the noncommutative convolution C�-algebra of the foliation. Let us, following Brodzki
et al. (2008b), represent every D-brane by suitable separable C�-algebra replacing, in the same
time, spacetime by the correspponding separable C�-algebra as well. The usual semiclassical
embedding of D-branes in spacetime is now reformulated in the language of morphisms
between C�-algebras. In fact, taking into account the isue of stability of D-branes, we define
the setup:

1. Fix the (spacetime) C� algebra A;

2. A � homomorphism φ : A → B(H) (a homomorphisms of the algebras preserving
their � structure), generates the embedding of the D-brane world-volume M and its
noncommutative algebra AM as AM := φ(A);

3. D-branes embedded in a spacetime A are represented by the spectral triple (H,AM, T);

4. Equivalently, a D-brane in A is given by an unbounded Fredholm module (H, φ, T).

Thus, the classification of stable D-branes in A is given by the classification of Fredholm
modules (H, φ, T) where B(H) are bounded operators on the separable Hilbert space H and T
the operators corresponding to tachyons. In general, to every foliation (V, F) one can associate
its noncommutative C� convolution algebra C�(V, F). The interesting connection with exotic
4-smoothness then emerges:

Theorem 4. The class of generalized stable D-branes on the C� algebra C�(S3, F1) (of the codimension
1 foliation of S3) determines an invariant of exotic smooth R4,

and

Theorem 5. Let e be an exotic R4 corresponding to the codimension-1 foliation of S3 which gives rise
to the C�algebra Ae. The exotic smooth R4 embedded in e determines a generalized quantum D-brane
in Ae.

It is interesting to note that the tame subspace interpretation of D-branes can be recovered for
the special class of the topological quantum D-branes. However, the embedding is replaced
now by the wild embedding into spacetime, which historically appeared in the description of
the horned Alexander’s spheres, known from topology.

Theorem 6. Let R4
H be some exotic R4 determined by element in H3(S3, R), i.e. by a codimension-1

foliation of S3. Each wild embedding i : K3 → Sp for p > 6 of a 3-dimensional polyhedron determines
a class in Hn(Sn, R) which represents a wild embedding i : Kp → Sn of a p -polyhedron into Sn.

Now, a class of topological quantum Dp-branes are these branes which are determined by the
wild embeddings i : Kp → Sn as above and in the classical and flat limit correspond to
tame embeddings. In fact, B-field on S3 can be translated into wild embeddings of higher
dimensional objects and generates quantum character of these branes.
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6. Discussion and conclusions

Superstring theory (ST) appears in fact as very rich mathematics. The mathematics
which is designed especially for the reconciling classical gravity, as in GR, with QFT. The
richness of mathematics involved is, however, the limitation of the theory. Namely, to
yield 4D physics from such huge structure is very non-unique and thus problematic. We
followed the idea, proposed at the recent International Congress of Mathematician ICM
2010 [Asselmeyer-Maluga & Król (2010)], that the mathematics of ST refers to and advance
understanding of the mathematics of exotic smooth R4. Conversely, exotic R4’s provide
important information about the mathematics of superstrings. Exotic R4’s are non-flat
geometries, hence contain gravity from the point of view of physics. ST is the theory of
QG and gravity of exotic geometries is quantized by methods of ST. The 4-geometries also
refer to effective correlated states of condensed matter as in Kondo effect. Thus, the approach
presented in this Chapter indicates new fundamental link between gravity, geometry and
matter at the quantum limit and exclusively in dimension 4. The exotic smoothness of R4,
when underlies the 4-Minkowski spacetime, is a natural way to quantum gravity (given by
superstring techniques) from the standard model of particles. On the other hand, exotic R4’s
serve as factor reducing the ambiguity of 10D superstring theory in yielding 4D physical
results. The work on these issues should be further pursued.
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geometries, hence contain gravity from the point of view of physics. ST is the theory of
QG and gravity of exotic geometries is quantized by methods of ST. The 4-geometries also
refer to effective correlated states of condensed matter as in Kondo effect. Thus, the approach
presented in this Chapter indicates new fundamental link between gravity, geometry and
matter at the quantum limit and exclusively in dimension 4. The exotic smoothness of R4,
when underlies the 4-Minkowski spacetime, is a natural way to quantum gravity (given by
superstring techniques) from the standard model of particles. On the other hand, exotic R4’s
serve as factor reducing the ambiguity of 10D superstring theory in yielding 4D physical
results. The work on these issues should be further pursued.
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78 Quantum Gravity

1. Introduction

Motivated by the construction of a gravity theory independently of the metric structure of
spacetime and on the stability of a quantum gravity theory many authors have developed
schemes that allow a gauge theory to generate an effective metric, see for instance [1–9]. The
models are constructed based on a gauge group G that possesses the Lorentz group SO(1, 3)
as a stable subgroup. A symmetry breaking mechanism is imposed in order to G collapse
to SO(1, 3). Mostly of these techniques are based on the de Sitter group and its variations.
However, other groups are also considered such as the general linear and affine groups, see
for instance [10–14], and also unitary groups [15]. The main motivation in the construction of
a gauge theory of gravity that is metric independent is that the base space can be regarded as
a flat one, and thus the standard quantization of gauge theories can be employed [16]. In fact,
some of the cited works are in fact quantizable, at least perturbatively.

In the present work we consider the fiber bundle theory to describe gauge theories and gravity
[17–20]. We then show that a gauge theory can be identified with a first order gravity if the
principal bundle that describes the gauge theory can be identified with the principal bundle
that describes gravity. We formally establish the conditions that the gauge theory must obey
and the resulting gravity theory that emerges. The last is constructed from a mapping between
the gauge principal bundle structures and the geometric setting of a gravity theory.

This work is organized as follows: In Sect. 2 we briefly review the fiber bundle description of
gauge theories. Also in this section we enunciate some important results concerning reduction
of principal bundles. The same approach to the first order gravity theories is displayed in
Sect. 3. In Sect. 4 we discuss the emergent geometries that can be derived from a gauge theory
in terms of formal theorems. In sect. 5 we collect our final remarks.

2. Gauge theories

2.1 Principal bundles for gauge theories

First we define two classes of principal bundles within gauge theories can be formally
described. The first one is the principal bundle which localizes a gauge group [18] GR = (G, R)
where G is a Lie group characterizing the fiber and structure group while R is the base space,
a differential manifold with do dimensions identified with spacetime. The total space GR
describes the localization of the Lie group G in the manifold R, assembling to each point
x ∈ R a different value for the elements of G. We shall refer to GR as gauge bundle.

It is assumed that GR is endowed with a connection 1-form Y. The connection 1-form is
recognized as the gauge field, the fundamental field of gauge theories. The connection
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1-form will be called gauge connection, or simply, connection. The gauge transformations
are associated with coordinates changing of the total space with fixed base space coordinates,
(x, g) → (x, g�), which corresponds to a translation along the fiber, providing Y(x, g) �−→
Y(x, g�) = f−1(x) (d + Y(x, g)) f (x), where g� = g f and {g�, g, f } ⊂ G. To every connection
Y there is a curvature 2-form defined over GR, namely F = ∇2 = dY + YY, where ∇ is
the covariant derivative, ∇ = d + Y, and d is the exterior derivative in R. The covariant
derivative is defined from the parallel transport between fibers and the curvature is obviously
recognized as the field strength in gauge theories.

The gauge connection does not belong to the former structure of the gauge bundle, it
originates from a unique choice for the decomposition of the tangent space Tq(GR), in a point
q ∈ GR, into vertical and horizontal spaces. The mathematical structure that describes the
dynamics of Y must contain all possible gauge connections that can be defined in GR as well
as the information of gauge transformations as the definition of equivalence classes for gauge
connections. This task is achieved through the moduli bundle Y = (GR,Y), see for instance
[14, 18, 20–22]. In Y, the fiber and structure group are the local Lie group GR and the base
space Y is the space of all independent connection 1-forms1 Y, the so called moduli space. The
typical fiber2 π−1(Y) is a gauge orbit obtained from a configuration Y(x) ∈ Y and all of its
possible gauge transformations Yg = g−1(d+Y)g. Thus, the total space Y can be understood
as the union of all gauge orbits which determine the equivalence classes in Y.

The interpretation of the gauge and moduli principal bundles is as follows: The gauge bundle
provides the localization of a Lie group and the existence of a gauge connection. To give
dynamics for the connection one should consider all possible connections (together with a
minimizing principle for a classical theory or a path integral measure for a quantum one [14,
22]). This dynamics is provided by the infinite dimensional moduli bundle.

2.2 Contraction of principal bundles

We now discuss some relevant results concerning gauge bundles:

Theorem 2.1. Let HR = (H, R) be a reduced gauge bundle obtained from a former gauge bundle
GR = (G, R), where G = H ⊗ K induces a Lie algebra decomposition G̃ = H̃ ⊕ K̃. If GR is endowed
with a connection form Y = A + B, where A ∈ H̃ and B ∈ K̃, then A defines a connection on HR if,
and only if, H is a stability group of G.

Comment. This theorem3 is a standard result [17, 23]. The formal proof can be found in [17].
It follows from the fact that a gauge transformation on a fiber π−1(x) will always keep A
as a connection and B as an element of K̃ as it can be seen from the decomposition of the
gauge transformation in GR. Obviously, this is a direct consequence of the stability of H.
This result establishes that the original bundle imposes a connection on the reduced bundle,
independently of the mechanism that led to HR.

Corollary 2.2. The space K defines an associated bundle KR = (H, R, K) ≡ HR × K.

1 By independent we mean the set of gauge connections that cannot be related to each other through a
gauge transformation, i.e., they do not belong to the same equivalence class.

2 We adopt the standard fiber bundle notation where π : Y �−→ Y is the projection map.
3 From now on the conditions for the validity of this theorem are assumed to hold.
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Proof. The coset K is an invariant subspace with respect to the stability group H and thus a
homogeneous space, which is the requirement for K to be the fiber of an associated bundle
[20]. From Theorem 2.1 it is clear that a point q ∈ GR will split q = (u, k) where u ∈ HR
and k ∈ K̃. Thus, we define the action of H on HR × K by (u, k) �−→ (uh, h−1k) by taking the
transitions functions to act on the fiber K while an element of the group suffers its own action
from the right as allowed by the principal bundle nature of HR. Ever since the point x ∈ R is
general, the proof holds for the entire bundle KR.

Comment. From Corollary 2.2 it is clear that the field B is a section over KR [17, 18]. Thus, the
component B ∈ K̃ of the connection Y migrates to the sector of matter fields on HR.

We consider now moduli bundles:

Theorem 2.3. Let Y = (GR,Y) be a moduli bundle constructed from GR = (G, R). Then the
reduction GR −→ HR induces a reduction on Y according to Y −→ A where the reduced moduli
bundle is A = (HR, C). The base space C = A × B is the decomposed moduli space of stable
connections A ∈ H̃ and independent sections B ∈ K̃ on KR while the fiber is the decomposed gauge
orbit:

Ah = h−1(d + A)h ,

Bh = h−1Bh . (1)

Proof. Since GR is the fiber of Y its reduction to HR is equivalent to a split on the gauge
orbit (1). Thus, the gauge orbit is reduced to the first of (1) where, A ⊂ Y , represented by
independent elements A ∈ H̃, define the reduced moduli space of connections. The space
B = Y/A, on the other hand, is the set of all fields B that cannot be related through a gauge
transformation. Thus, a point in the base space can be defined as C = (A, B) and the fiber is
constructed by the action of H as C �−→ Ch = (Ah, Bh). The reduced total space is the union
of all reduced gauge orbits. The stable character of H ensures that there will be no mixing
between the spaces A and B = Y/A along any gauge orbit.

Comment. The infinite dimensional space B is equivalent to the set of all independent sections
B(x) that can be defined in KR. Thus, the space B is the collection of all possible sections in
KR. The space B can be also understood as the fiber bundle B = (Σ(B), HR,B) where the base
space is B and a fiber Σ(B) is the collection of all equivalent sections for a given B ∈ B.

Corollary 2.4. Define a composite field θ, which is an invariant representation of H, that can be
constructed from the original set of connections. For each base space point C there is only one field
θ(C). If an equivalence class Ch is defined then θh = θ(Ch) is on the same equivalence class of θ(C)
where θh = hθ.

Proof. The field θ is, by construction, an invariant representation of H, thus, it transforms
as θ �−→ θh = hθ. The last expression defines the equivalence class for θ. Now, since θ =
θ(C), then θ(C�), constructed in another point C�, belongs to the same equivalence class of the
original field if θ(C�) = hθ(C). However, the transformation of θ is induced by the action of
the group on its dependence on C. Thus, θ(C�) = θ(Cg) for an element g ∈ H. Using again the
definition of θ as an invariant representation, we have that θ(Cg) = gθ(C). Thus, g = h.
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1 By independent we mean the set of gauge connections that cannot be related to each other through a
gauge transformation, i.e., they do not belong to the same equivalence class.

2 We adopt the standard fiber bundle notation where π : Y �−→ Y is the projection map.
3 From now on the conditions for the validity of this theorem are assumed to hold.
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Comment. The field θ is a one to one map θ : C �−→ θ(C) which establishes that for at each
point C there will be only one θ such that if C ∼ C� then θ ∼ θ�. In other words, in each fiber
Ch there will be only one equivalence class for θ.

3. First order gravity

Gravity can be mathematically defined as a coframe bundle [12, 13, 20, 21], CM =
(GL(d, R), M), where M is a d-dimensional spacetime manifold. The structure group and fiber
have a more deep meaning: In each point X ∈ M one can define the cotangent space T∗

X(M).
The fiber is the collection of all coframes e that can be defined in T∗

X(M) and which are related
to each other through the action of the general linear group. As a consequence, the fiber is
actually the group GL(d, R). In terms of Sect. 2, the coframe bundle is also a gauge bundle for
the general linear group with the addend that the gauge group is identified with geometric
properties of M. The action of the group from the right are local gauge transformations while
the action of the group from the left are general coordinate transformations.

Geometrically, the gauge connection Γ is related to the parallel transport, in M, between
two near cotangent spaces. The curvature 2-form is obtained from the double action of
the covariant derivative, Ω = dΓ + ΓΓ while torsion, T = ∇e, is the minimal coupling
of coframes. It is evident that, besides Γ, which is the gauge field of gravity, e is just as
relevant. Moreover, the metric tensor m in the tangent space T(M) has to be introduced
because the GL(d, R)/SO(d − n, n) sector of the general linear group does not preserve a
flat metric. In practice m enters as an extra independent field. Thus, in CM, gravity possesses
three fundamental fields, Γ, e and m, all relevant to determine spacetime geometry. A general
theory of this type is a metric-affine gravity4 [10–13].

Remarkably, the coframe bundle has a contractible piece GL(d, R)/SO(d−n, n) where SO(d−
n, n) is obviously a stability group. This means that the coframe bundle can be naturally
contracted down to SOM = (SO(d − n, n), M) [14, 17, 19]. The fact that the contraction is
topologically favored has drastic consequences to the geometry, it means that every manifold
M can assume a Riemannian metric, i.e., the connection can always be chosen to be compatible
with the metric. This means that the metric tensor can be set as a constant flat one, m = η,
where the signature of η depends on n. As a consequence, a standard fiber at X is the set
of all orthonormal coframes that can be obtained from an SO(d − n, n) transformation acting
on a fixed coframe. The group SO(d − n, n) describes then the isometries in T∗

X(M). From
Theorem 2.1 the connection Γ = ω + w imposes an SO(d − n, n) connection ω ∈ Õ, where Õ
is the algebra of SO(d − n, n) and w ∈ G̃L/Õ. A gravity theory constructed over SOM is a
standard Einstein-Cartan gravity. In this work we shall deal strictly with SOM.

To construct a moduli bundle for gravity is not immediate as in pure gauge theories. If the
coframe bundle is a gauge bundle then e is actually a matter field because it is a fundamental
representation of the gauge group [24]. On the other hand, one can include the space of all
independent e that can be defined in T∗

X(M) as the coframe moduli space E . Thus, defining
the full moduli space as G = W × E , where W is the moduli space of spin-connections, the

4 Metric-Affine gravities can be also generalized for the affine group A(d, R) = GL(d, R)�Rd, however,
the non-semi-simplicity of this group spoils the construction of an invariant action. We shall fix our
attention to semi-simple groups.
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gauge orbit is then

ωg = g−1(d + ω)g ,
eg = ge , (2)

with g ∈ SO(d − n, n) and W = (ω, e) ∈ G. The moduli coframe bundle is O = (SOM,G).
This principal bundle is analogously equivalent to that described in Theorem 2.3. Thus, the
space of all sections that can be defined over SOM is actually the functional space of coframes.
This space is equivalent to the fiber bundle E = (Σ(e), SOM, E) where the fiber Σ(e) is the set
of all equivalent sections that can be obtain from an element e ∈ E through the action of SOM.

4. Effective geometries

We now discuss the possibility of a gauge theory to be mapped into a gravity theory. We first
discuss the map between gauge and coframe bundles and then we generalize the results for
moduli bundles.

4.1 Gauge and coframe bundles

Theorem 4.1. Let HR = (H, R) be a stable reduced bundle obtained from the gauge bundle GR =
(G, R) which is endowed with a connection Y = A + B. Then GR can define a geometry SOM =
(SO(d − n, n), M) if and only if

1. The base spaces R and M are isomorphic;

2. The structure groups H and SO(d − n, n) are related, at least, by a surjective homomorphism;

3. A composite field θ, which is an invariant representation of H, can be identified with an invariant
fundamental representation of SO(d − n, n).

Proof. Condition 1 ensures that each point x ∈ R can define a unique point in X ∈ M while
M will be entirely covered by the map with no overlapping points. Moreover, the algebraic
structure defined in R will be preserved by the mapping. On the other hand, condition 2
ensures that the target group SO(d − n, n) will be entire covered by the mapping. To construct
the fiber at a cotangent space T∗

X(M) in each point X ∈ M we need two quantities: a coframe
e ∈ T∗

X(M) and the isometries of the cotangent space. The use of conditions 1 and 2 ensures
the existence of the isometries. Since there is a fiber H in each point x ∈ R and condition 2
ensures that H is at least homomorphic to SO(d − n, n), this fiber defines the cotangent space
T∗

X(M) isometries. In addition, since there is one fiber for each point x ∈ R there will be only
one set of isometries for each X ∈ M, as it is evident from condition 1. Condition 3 ensures that
the field θ, in the fiber HR, can be defined as the cotangent 1-form e ∈ T∗

X(M), recognized as a
coframe. Once more, the isomorphism of condition 1, together with Corollary 2.4, ensures the
uniqueness of e in X. Finally, a standard fiber in SOR is obtained by the action of SO(d − n, n)
on e. A connection ω in SOM emerges naturally from A. Again, condition 1 establishes that
at a point X there will be only one ω while the action of H on A ensures that ω will transform
correctly along the fiber π−1(X) under the action of the local isometries in T∗

X(M). More
explicitly, In each fiber π−1(x) a connection A can be defined. This definition ensures the
existence of an equivalence class along the fiber. Thus, a section s(x) : R �−→ H(x) is defined
in such a way that x �−→ q, where q = (x, g) and g ∈ G. In each point q the connection
A(q) can be identified with a connection ω(Q) in SO(X) at a point Q = (X, u) ∈ SO(X)
and u ∈ SO(d − n, n) is the SO(d − n, n) equivalent of g such that π(Q) = X, π(q) = x and
x �−→ X. Condition 1 ensures that there will be only one connection ω(Q) for each A(q).
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Obviously, the reconstruction of the whole class of connections along a fiber is obtained from
the action of the group on ω(Q). The final result is a mapping GR �−→ SOR which is actually
a set of mappings

R �−→ M ,
H �−→ SO(d − n, n) ,
θ �−→ e ,
A �−→ ω . (3)

We remark that, in the mapping GR �−→ SOR, a contraction GR −→ HR is assumed.

Comment. If the map described in Theorem 4.1 is smooth and all fibers π−1(x) are mapped
into fibers π−1(X) then this map is a bundle map. In that case, since each fiber π−1(x) is
mapped into a fiber π−1(X) in a smooth way, a smooth map R �−→ M is induced [20].

Comment. We remark that dim M = dim T∗
X(M) and thus dim R = do is not necessary equal

to dim M = d. Notwithstanding, the bound d ≤ do is a always valid. Furthermore, d is the
dimension of the fundamental representation of SO(d − n, n), as a consequence it coincides
with the dimension of the invariant representation of H, namely θ. The case d < do affects
only a subsector of spacetime R ⊃ Rsub �−→ M, where dim Rsub = dim M. For instance, if
R = Rdo , then the resulting full manifold is then M × Rdo−d. The case d = do deforms the
entire spacetime. This case is more interesting because one can take the starting gauge theory
as a description for quantum gravity. from now on, independently of the case, we shall call by
M the full do-dimensional manifold formed by the deformed (d-dimensional subspace) and
undeformed ((do − d)-dimensional subspace) sectors.

Corollary 4.2. If the space of p-forms in R are directly mapped into the space of p-forms in M, Πp
R �−→

Πp
M, then the map can be explicitly computed and depends exclusively on the metric tensors of R and

M.

Proof. By duality the map Πp
R �−→ Πp

M induces a similar map for the Hodge dual space of
(d − p)-forms, ∗Πp

R �−→ �Πp
M, where ∗ is the Hodge operation in R while � is the Hodge

operation in M. Thus, it is a straightforward exercise [9] to show that the map is given by

∂Xν

∂xμ =

(
m̃
m

)1/2d
m̃ναmαμ , (4)

where mμν is the metric tensor in R, m̃μν is the metric tensor in M and m and m̃ are the
respective determinants. The determinants are assumed to be non-vanishing.

Comment. Since the mapping matrix (4) has an inverse, the geometry in M is unique.

4.2 Moduli bundles and gravity

Theorem 4.1 can be generalized for moduli bundles:

Theorem 4.3. If the map GR �−→ SOM exists then the map Y �−→ O ⊕ B̃ also exists. The space B̃

is the target space associated with the space B or B/Θ if Θ ⊆ B where Θ is the functional space of all
possible θ that can be defined in Y.
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Proof. In a principal principal bundle GR a connection Y can be defined. The collection of
all possible connections Y defines the space Y. The separation of Y into equivalence classes
organizes this space as the set of all gauge orbits over the moduli space C. According to
Theorem 2.3, the gauge orbit splits as (1). Moreover, for each of these fibers one can associate a
field θ, as allowed by Corollary 2.4. It is the pair (A, θ) that defines the geometric fields (ω, e)
in SOM. Thus, to construct an O structure for gravity is an easy task to collect all possible
pairs W = (ω, e) emerging from Theorem 4.1. In fact, each pair (A, θ) and the associated orbit
define a fiber Wg ∈ O. That is ensured also by Condition 1 of Theorem 4.1. Thus, the fiber HR
over a point (ω, e) ∈ G is obtained from A �−→ ω and θ(A, B) �−→ e and the respective action
of SO(d − n, n). The uniqueness of this mapping is ensured by Corollary 2.4.

The space B = (Σ(B), HR,B) is a dynamical space and survives the mapping. For the case
B ∩Θ = ∅ one can associate the moduli space with a set of independent fields B �−→ B̃ which
are invariant representations of SO(d− n, n). Theorem 4.1 ensures that the structure group HR
can be mapped into SOM while the fibers Σ(B) are identified with fibers Σ(B̃) over B̃. Thus,
for each B ∈ B there will be a correspondent B̃ ∈ B̃ and the fiber Σ(B̃) is obtained from the
action of SO(d − n, n). Thus, B̃ = (Σ(B̃), SOM, B̃). The proof for the case B ∩ Θ �= ∅ is totally
equivalent.

Comment. The final result is that of a gravity theory with an extra set of matter fields B̃.

5. Final remarks

We have formally prove that a class of gauge theories can be deformed into a first order
gravity theory and, possibly, with an extra set of matter fields. For that we have employed
the theory of fiber bundles. The relevance (and motivation) of the present work is that it can
be applied to quantum gravity models which are based on gauge theories that can generate
an emergent gravity theory. The main problem in quantizing gravity is that the principles
of general relativity are incompatible with those of quantum field theory. In fact, a quantum
field theory can only be formulated in an Euclidean spacetime. For example, a quantum field
is, by definition, an object that carries uncertainty fluctuations and is parametrized through
spacetime coordinates, i.e., a set of well defined real parameters. Now, if a coframe field is a
quantum field5, ê(x), and from the fact that it defines a mapping from tangent coordinates xa

to world coordinates xμ, then quantum fluctuations of ê will induce spacetime to fluctuate as
well, x̂μ = êμ

a xa. Thus, a paradox is encountered because x must be a set of parameters instead
of a fluctuating object.

On the other hand, if the starting gauge theory is constructed over an Euclidean manifold and
it is renormalizable, then it can be an excellent candidate for a quantum gravity theory. All
needed is that it emerges as a geometrodynamics at classical level. The class of theories that
fits on this program are determined essentially by theorems 4.1 and 4.3.

A few practical examples are in order: In [15] a 4-dimensional SU(2) gauge theory generates
a deformation of the 3-dimensional space. Time is left untouched by he mapping. In this
example, the resulting theory contains the Einstein-Hilbert action for the extrinsic curvature
and the solution of the equations of motion predicts not only curvature but also torsion.
Another example can be found in [9], where a deformed 4-dimensional spacetime emerges
from a de Sitter type gauge theory over an Euclidean spacetime. In this case, a dynamical
mass scale is responsible for the separation between the gauge and gravity phases. In general,

5 The hat indicates the quantum nature of the field.
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m
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several emergent gravity theories fit to the results of this work, see for instance [1–8] where
the Higgs mechanism is largely used to separate gauge and gravity phases.

We end this work by remarking that several issues are left for future investigation. Just to
name a few: The role of matter fields living in the starting gauge theory; the generalization
of the present results to include metric-affine gravities before the reduction of the coframe
bundle; the role of the extra matter fields in the dark matter/energy problem; explicit
computations in order to make reliable predictions that fit with actual data; and so on.
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1. Introduction 
Einstein’s contribution to relativity was initially an intuitive approach based on a basic 
elimination of simultaneousity and a mathematical reformulation using the Lorenz 
transformation. In this respect Einstein just added some more physics to what Poincaré and 
Lorenz have done much earlier. However, it was Minkowski who introduced the 
geometrical ideas and the use of a four-dimensional space with time as the fourth 
dimension. Einstein took over Minkowski’s idea and initiated what we may call the 
program of geometrizing physics, starting with gravity. Later on Einstein and Hilbert 
attempted the unification of electro-magnetism and gravity while Kaluza and Klein tried the 
same using an extra fifth dimension. This may have been the beginning of the higher 
dimensional space-time theories culminating in super strings, super gravity and the 
Cantorian space-time theory [1]. 

In special relativity there is no absolute time. We have a space and each slice has its own 
time. Thus each point in the Minkowski’s space is specified by four coordinates, three 
spatial and one temporal in a four-dimensional space-time rather than the 3+1 space plus 
time coordinates of the classical mechanics [1]. 

A fundamental role in this new geometry is played by the constancy of the velocity of light 
that cannot be exceeded without violating the causal structure as well documented 
experimental facts show. A change of things began by adding quantum mechanics to special 
relativity. 

By replacing Euclidean geometry by curved Riemannian one, Einstein was the first to give 
gravity a geometrical interpretation as a curvature of space-time due to matter. Einstein 
never fixed the topology of his theory nor did he use or was aware of the existence of non-
classical geometry which was in any case in its infancy [1-5]. The possibly only encounter of 
Einstein with M. S. El Naschie’s Cantorian like transfinite geometry was when K. Menger 
presented a paper in a conference held in his honour [1, 6-17]. 

2. Transfinite sets and quantum mechanics 
Let us examine the basic concept of a line or more generally a curve. Classical geometry 
used in classical mechanics and general relativity the fact that a line is a one-dimensional 
object, while a point is zero-dimensional. Furthermore, it would seem at first sight that a line 
consists of infinite number of points and that it is simply the path drawn by a zero-
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dimensional point moving in the two or three-dimensional space. Classical geometry similar 
to classical mechanics has made various tacit simplifications and ignored several subtle 
topological facts [2]. 

If a line is one-dimensional and if it is made of infinite number of points then the sum of 
infinitely many zeros should be equal to one. That is of course not true. On the other hand 
we know that there is a curve called the Peano-Hilbert curve which is area filling and two-
dimensional [1, 7-20].  By contrast, we can construct a three dimensional cube known as the 
Menger sponge which has a fractal dimension more than two and less than three, 

namely log 20
log 3

D   as explained for instance in the classical book of Mandelbrot [2]. 

The existence of all these non-conventional forms described in modern parlance, following 
Mandelbrot, as fractals, may be traced back to the archetypal transfinite set known as Cantor 
triadic set [6]. 

A Cantor set is a set of disjoint points which possesses the same cardinality as the 
continuum. It may be this coincidence that makes it an ideal compromise between the 
discrete and the continuum. It is transfinite discrete. Our Cantorian space-time which we 
will use to “topologize” physics is based on these transfinite sets. The main idea behind the 
Cantorian space-time approach is to replace the formal analysis of quantum mechanics and 
the Riemannian space-time geometry of general relativity by a transfinite fractal Cantorian 
space-time manifold [1, 8, 11, 13]. 

3. A short historical overview of ideas leading to fractal space-time 
The idea of a hierarchy and fractal-like self-similarity in science started presumably first in 
cosmology before moving to the realm of quantum and particle physics [1]. It is possible 
that the English clergyman T. Right was the first to entertain such ideas (Fig. 1). Later on the 
idea reappeared in the work of the Swedish scientist Emanuel Swedenborg (1688-1772) and 
then much later and in a more mathematical fashion in the work of another Swedish 
astrophysicist C. Charlier (1862-1934) (Fig. 2).  

In 1983, the English-Canadian physicist Garnet Ord wrote a seminal paper [3] and coined 
the phrase Fractal Space-time. Ord set on to take the mystery out of analytical continuation. 
We should recall that analytical continuation is what converts an ordinary diffusion 
equation into a Schrödinger equation and a telegraph equation into a Dirac equation. 
Analytical continuation is thus a short cut quantization. However what really happened is 
totally inexplicable. Ord showed using his own (invented) quantum calculus, that analytical 
continuation which consist of replacing ordinary time t by imaginary time it where 1i    
is not needed if we work in a fractal-like setting, i.e. a fractal space-time. Although rather 
belated Ord’s work has gained wider acceptance in the mean time and was published for 
instance, in Physics Review [4]. Therefore one is hopeful that his message has found wider 
understanding. It is the transfinite geometry and not quantization which produces the 
equations of quantum mechanics. Quantization is just a very convenient way to reach the 
same result fast, but understanding suffers in the process of a formal analytical 
continuation. 
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Fig. 1. A vision of T. Right's cosmos as a form of sphere packing, on all scales [1]. 

 
Fig. 2. A vision of a fractal-like universe, with clusters of clusters ad infinitum as envisaged 
by the Swedish astronomer C. Charlier who lived between 1862 and 1934. This work was 
clearly influenced by the work of the Swedish astrophysicist A. Swedenborg (1688–1772) [1]. 
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Similar work, but not identical, was carried out by the French cosmologist Laurent Nottale, 
fifteen years ago.  Nottale connected scaling and Einstein’s relativity to what is now called 
scale relativity theory [5]. Around 1990, M. S. El Naschie began to work on his Cantorian 
version of fractal space-time [6].  In M. S. El Naschie’s work on high energy physics and 
electromagnetic weak interactions the golden mean plays a very important role. 

In the year 1995 Nobel laureate Prof. Ilya Prigogine, Otto Rössler and M. S. El Naschie edited 
an important book [7] in which the basic principles of fractal space-time were spelled out. 
Sometime later El Naschie using the work of Prigogine on irreversibility showed that the 
arrow of time may be explained in a fractal space-time. Recently El Naschie gave for the first 
time a geometrical explanation of quantum entanglement and calculated a probability of the 
golden mean to the power of five 5  for the entanglement of two quantum particles [8, 9].  

4. Fractals 
In this section, we give a very brief account of Cantor sets and fractals which are 
fundamental to the Cantorian space-time theory. 

4.1 Triadic Cantor set and the random Cantor set 

The archetypal fractal is what is known as Cantor triadic set. We start by describing the 
fundamental construction. Consider a unit interval. Let us delete the middle third but leave the 
end points. We repeat the procedure with the two segments left and so on as shown in Fig. 3 
infinitely many times. At the end we obtain an uncountable set of points of measure zero. This 
means adding all these points together and we obtain a zero length. However, from the point 
of view of transfinite set theory something very profound is left, namely a transfinite points set 
with a finite dimension, the so-called Hausdorff-Besicovitch dimension [2] 

ln 2 0.63
ln 3Cd    

Mauldin and Williams replaced the orderly triadic construction by a random construction. 
In their original paper [10] they said they used a uniform probabilistic distribution. The 
Mauldin-Williams theorem which states that with the probability equal to one, a one 
dimensional randomly constructed Cantor set will have the Hausdorff-Besicovitch 
dimension  

(0) 5 1
2Cd 

  

The Menger-Urysohn dimension of all Cantor sets is zero, while the empty set has the 
dimension minus one [11]. 

4.2 The Sierpinski triangle, Menger sponge and their random analogues 

The generalization of the one-dimensional triadic Cantor set to two-dimensions is called the 
Sierpinski triangle. It is constructed as shown in Fig. 3 and the Hausdorff-Besicovitch 
dimension is given by the inverse of the triadic Cantor set [2] 
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It is important to note that the Sierpinski triangle is a curve and its dimension lies between 
the classical line and the classical area.  
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Fig. 3. In this figure we draw analogy between smooth spaces as a line, a square, a cube, a 
higher-dimensional cube and the Cantor set, the Sierpinski triangle, the Menger sponge and 
the Cantorian space-time which is difficult to draw. The calculation of the Hausdorff-
Besicovitch dimension of classical fractals and their random version is presented [1, 13].  

It was shown in the Cantorian space-time theory [12] that the generalization of the formula 
connecting the triadic Cantor set with the Sierpinski triangle is possible for n dimension and 
is given by the so-called bijection formula 
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Similar work, but not identical, was carried out by the French cosmologist Laurent Nottale, 
fifteen years ago.  Nottale connected scaling and Einstein’s relativity to what is now called 
scale relativity theory [5]. Around 1990, M. S. El Naschie began to work on his Cantorian 
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For (0)
Cd  , the random contra part of the Sierpinski triangle will have the Hausdorff-

Besicovitch dimension equal to [13] 

2 1
(2) 1 1 1.61803Cd

 


 

   
 

 

A most remarkable 3D fractal is the Menger sponge which is shown in Fig. 3. The 
Hausdorff-Besicovitch dimension of this fractal is given by [2] 

ln 20 2.7268
ln 3Md    

The volume of the Menger sponge is zero. The random version of the Menger sponge has a 
Hausdorff- Besicovitch dimension equal to [1, 13] 

3 1 2
(3) 1 1 2Cd 

 


   

      
   

 

Using the bijection formula we can calculate any higher dimensional fractals [8, 11]. 

One of the most far reaching and fundamental discoveries using the zero measure Cantor 
sets is undoubtedly that of El Naschie probability of quantum entanglement. His result for 
two entangled particles is a generic and universal value of the golden mean to the power of 
five. This is exactly equal to the famous result of Lucien Hardy [8, 9]. Quantum 
entanglement is thus explained as a consequence of zero measure gravity. Similarly one 
could explain any velocity larger than the speed of light [8, 9]. 

5. Construction of a random Cantor set and the Cantorian space-time 
The main idea of the Cantorian space-time theory is in fact a sweeping generalization of 
what Einstein did in his general relativity, namely introducing a new geometry of space-
time which differs considerably from the space-time of our sensual experience. This space-
time is taken to be Euclidean. By contrast, general relativity persuaded us that the Euclidean 
3+1 dimensional space-time is only an approximation and that the true geometry of the 
universe in the large is in reality a four-dimensional curved manifold [1, 11]. 

In the Cantorian space-time theory we take a similar step and allege that space-time at 
quantum scales is far from being the smooth, flat and passive space which we use in the 
classical physics. On extremely small scales, at very high observational resolution equivalent 
to a very high energy, space-time resembles a vacuum fluctuation and in turn modeling this 
fluctuation using the mathematical tools of non-linear dynamics, complexity theory and 
chaos. In particular, the geometry of chaotic dynamics, namely the fractal geometry is 
reduced to its quintessence, i.e. Cantor sets. A Cantor set has no ordinary real physical 
existence, because its Lebegue measure is zero and nonetheless it exists indirectly because it 
does have a well defined non-zero quantity, namely its Hausdorff-Besicovitch dimension. 
The triadic Cantor set possesses a Hausdorff-Besicovitch dimension equal to 

log 2 0.63.
log 3

D     
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For a randomly constructed Cantor set on the other hand, the Hausdorff-Besicovitch 
dimension is found to take the surprising value of the inverse of the golden 

mean 5 1 0.61803
2

D 
   by virtue of the Mauldin-Williams theorem [10]. 

In 1986 R. Mauldin and S. Williams proved a remarkable theorem which confirmed the 
main conclusion of the Hausdorff-Besicovitch dimension of the Cantorian space-time. To 
explain the Mauldin-Williams theorem let   us construct a Cantor set of the interval [0, 1] via 
a random algorithm as follows. First we chose at random an x according to the uniform 
distribution on [0, 1], then between x and 1 we chose y at random according to the uniform 
distribution on [x, 1]. That way we obtain two intervals [0, X] and [Y, 1]. Next we repeat the 
same procedure on [0, X] and [Y, 1] independently and so on. Continuation of this 
procedure leads then to a random Cantor dust and the Hausdorff-Besicovitch dimension of 

this set will be with a probability one equal to 5 1 0.61803
2

 
   [10]. 

Cantorian space-time is made of an infinite number of intersections and unions of the 
randomly constructed Cantor sets. Let us denote the Hausdorff-Besicovitch dimension of 
these Cantor sets by (0)

Cd . Next we use (0)( )n
Cd  as a statistical weight for the topological 

dimension n=1 to  and determine the average dimension n , i.e. the expectation value of 
n. This value is easy to find following the centre of gravity theorem of probability theory to 
be [1, 8, 11]  
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Next let us calculate the average Hausdorff-Besicovitch dimension .Cd  We sum together 

all the Hausdorff-Besicovitch dimensions (0) (0)( )Cd , (0) (1)( )Cd , (0) (2)( )Cd ....., following the 
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formula for the infinite convergent geometric sequence, (0) (0)( )Cd , (0) (1)( )Cd , (0) (2)( )Cd ,....., 

where (0)0 1Cd  , we obtain [1, 11] 
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If the Cantorian space-time is to be without gapes and overlapping [1, 14] then we must set 
n equal to Cd . Proceeding that way one finds from [1, 14] the following Peano-Hilbert 

space filling condition n = Cd  that 

(0)

(0)
1
1

C

C

d
d



 (0) (0)
1 .

(1 )C Cd d



 

Thus we have 

(1+ (0)
Cd ) (0)

Cd  = 1 

or 

(0) (2)( )Cd  + (0)
Cd  - 1 = 0. 

This is a quadratic equation with two solutions 

(0)
,1

5 1
2Cd 

   

(0)
,2

1 .Cd


   

Inserting back in n and Cd the solution (0)
,1 ,Cd  one finds that 

 n = 1
1







  = 3
1


= 4+ 3  

and 

1
(1 )Cd

 
 

 3
1


= 4 + 3  

 
Quantum Gravity in Cantorian Space-Time 

 

95 

where 2 1,    5 1 .
2

 
  

Our next aim is to solve the problem of lifting the random Cantor set (0)
Cd to higher 

dimensions n and find ( )n
Cd for a given (0)

Cd . 

The solution of this problem comes from the fact that the generalisation of the triadic set to 
two dimensions is the Sierpinski gasket. The Hausdorff-Besicovitch dimension of the gasket 

is the inverse value of the Hausdorff-Besicovitch dimension of the triadic set log 2
log 3

. 

Therefore one could write [1, 11] 
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The generalisation by analogy and induction can thus be written as [12]  
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Now let us examine the case for space filling, i.e. (0)
Cd   and four-dimensionality. 

This way we obtain the Hausdorff-Besicovitch dimension of the Cantorian space-time 

3
(4) 31 4 4.236067.Cd 


 

    
 

 

This is a remarkable result which means that the formally infinite dimensional but 
hierarchical Cantorian space-time looks from a distance as if it were four-dimensional with 
the Hausdorff-Besicovitch dimension equal to  34 4.236067.    

The preceding derivation could be regarded as a proof for the essential four-dimensionality 
of our physical space-time. We perceive space-time to be four-dimensional because this is 
the expectation value of our infinite dimensional Cantorian space-time. 

6. Summing over paths and summing over all dimensions in the Cantorian 
space-time 
We recall that Feynman gave an alternative formulation of quantum mechanics in which 
one calculates amplitudes by summing over all possible trajectories of a system weighted by 

,
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e  where s is the classical action, 1i    and ħ the Planck quantum. For one particle the 
path integral is thus [15] 
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where [dx] means that we are summing over all possible paths of the concerned particle. What 
is important here is to realize that from all of infinitely many paths which a quantum particle 
can take some are more probable than others. The probability of the actual path, that is to say 
the amplitude of an event is the sum over the amplitude corresponding to all paths. Thus we 
have a weight assigned to each path in the Feynman formulation of quantum mechanics.  

In the Cantorian space-time theory we proceed in an analogous way. However, instead of 
summing over all paths, we sum over all dimensions of infinite dimensional hierarchical 
Cantorian space-time. El Naschie has recently demonstrated that E-Infinity is a Suslin 
operation and the so-called Suslin A operation [9]. In this theory Suslin scaling replace the 
classical Lagrangian and the classical calculus using descriptive set theory [16, 17].  

7. Cantorian space-time and Newton’s non-dimensional gravity constant 
Quantum non-dimensional gravity constants can be derived from descriptive set theory 
[16].  In descriptive set theory and theory of polish spaces it is shown that [16, 17]:  

Definition 1: 

When a space AN is viewed as the product of infinitely many copies of A with discrete 
topology and is completely metrizable and if A is countable then the space is said to be polish. 

Two cases are of considerable importance. 

Definition 2:  

When a space is polish and when A = 2 = [0,1], then we call C= 2N the Cantor space. 

Definition 3: 

When a space is polish and when A = N then we call B = NN the Baire space. 

Now we can proceed to explain the relationship between the Cantor space and Cantorian 
space-time. The relationship comes from the solution of the cardinality problem of a Borel 
set in polish spaces. Thus, we call a subset of a topological space a Cantor set if it is 
homeomorphic to a Cantor space [16, 17].  

Theorem 1: 

Let X be polish and Y X  be a Borel set. Then either Y is countable or else it contains a 
Cantor set. In particular every uncountable standard Borel space has cardinality 2. 

A Cantor space is homeomorphic to a triadic Cantor set and also to the random Cantor set 
[17]. The relation between the triadic Cantor set and the Cantor space establishes the 
relationship between the Cantor space and the Cantorian space-time, since the Cantorian 
space-time is a hierarchical infinite dimensional Cantor set with the expectation Hausdorff-
Besicovitch dimension 34 4.236067.   

In particular, it has been shown [17] that when interpreting (0)
1

Cd
in the bijection formula as 

the average (0)
1 2
Cd

  of the fundamental Wisse-Abbot theorem and taking N = 128, 
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( 128ew   is the inverse coupling constant measured at the electroweak scale) then the 
bijection formula  
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CC d  . The value 38(1.70141)(10)  is the non-dimensional gravity constant 

G  which is defined as 
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It is of interest to mention that a similar result was found empirically by F. Parker Rhodes 
which was the subject of extensive discussions by Noyes [18]   

127 382 137 (1.7)(10)G     

Here ħ is the Planck quantum, c the speed of light, G the Newton’s gravity constant, mp the 
Planck mass. 

8. Cantorian space-time and the connectivity dimension 
Next we show the logarithmic scaling which will connect the non-dimensional gravity 
constant to the most fundamental equation namely the bijection formula. We start by taking 
the logarithm of both sides of the equation 
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where [dx] means that we are summing over all possible paths of the concerned particle. What 
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can take some are more probable than others. The probability of the actual path, that is to say 
the amplitude of an event is the sum over the amplitude corresponding to all paths. Thus we 
have a weight assigned to each path in the Feynman formulation of quantum mechanics.  

In the Cantorian space-time theory we proceed in an analogous way. However, instead of 
summing over all paths, we sum over all dimensions of infinite dimensional hierarchical 
Cantorian space-time. El Naschie has recently demonstrated that E-Infinity is a Suslin 
operation and the so-called Suslin A operation [9]. In this theory Suslin scaling replace the 
classical Lagrangian and the classical calculus using descriptive set theory [16, 17].  

7. Cantorian space-time and Newton’s non-dimensional gravity constant 
Quantum non-dimensional gravity constants can be derived from descriptive set theory 
[16].  In descriptive set theory and theory of polish spaces it is shown that [16, 17]:  

Definition 1: 

When a space AN is viewed as the product of infinitely many copies of A with discrete 
topology and is completely metrizable and if A is countable then the space is said to be polish. 

Two cases are of considerable importance. 

Definition 2:  

When a space is polish and when A = 2 = [0,1], then we call C= 2N the Cantor space. 

Definition 3: 

When a space is polish and when A = N then we call B = NN the Baire space. 

Now we can proceed to explain the relationship between the Cantor space and Cantorian 
space-time. The relationship comes from the solution of the cardinality problem of a Borel 
set in polish spaces. Thus, we call a subset of a topological space a Cantor set if it is 
homeomorphic to a Cantor space [16, 17].  

Theorem 1: 

Let X be polish and Y X  be a Borel set. Then either Y is countable or else it contains a 
Cantor set. In particular every uncountable standard Borel space has cardinality 2. 

A Cantor space is homeomorphic to a triadic Cantor set and also to the random Cantor set 
[17]. The relation between the triadic Cantor set and the Cantor space establishes the 
relationship between the Cantor space and the Cantorian space-time, since the Cantorian 
space-time is a hierarchical infinite dimensional Cantor set with the expectation Hausdorff-
Besicovitch dimension 34 4.236067.   

In particular, it has been shown [17] that when interpreting (0)
1

Cd
in the bijection formula as 

the average (0)
1 2
Cd

  of the fundamental Wisse-Abbot theorem and taking N = 128, 
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( 128ew   is the inverse coupling constant measured at the electroweak scale) then the 
bijection formula  
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gives for N = n = 128ew   the following 
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where (128)2N
CC d  . The value 38(1.70141)(10)  is the non-dimensional gravity constant 

G  which is defined as 

38
2 (1.7)(10)G
p

c
Gm

  
  

It is of interest to mention that a similar result was found empirically by F. Parker Rhodes 
which was the subject of extensive discussions by Noyes [18]   

127 382 137 (1.7)(10)G     

Here ħ is the Planck quantum, c the speed of light, G the Newton’s gravity constant, mp the 
Planck mass. 

8. Cantorian space-time and the connectivity dimension 
Next we show the logarithmic scaling which will connect the non-dimensional gravity 
constant to the most fundamental equation namely the bijection formula. We start by taking 
the logarithm of both sides of the equation 
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Setting (0)
1 2
Cd

 
  

 
 and ( )n

Cd  =Z, where Z is the partition function, one finds 

ln 1.
ln 2

Zn    

The above formula is very well-known in the combinatorial topology [14, 19, 20] and is called 
the connectivity dimension. Now if we conceive of G  as being the expectation value of the 
partition function of the observable universe then the connectivity dimension would be 

ln 1 128
ln 2

G
ewD 

     

This is the inverse of the Sommerfeld electromagnetic fine structure constant measured at 
the electroweak scale [1, 13]. 

9. Fundamental constants of Cantorian space-time 
The fine-structure constant usually denoted with α, is a fundamental physical constant, 
namely the coupling constant characterizing the strength of the electromagnetic interaction. 
It is a dimensionless quantity and is defined as  

2

0

1
(4 ) 137.035999074

e
c




 


 

or as the inverse fine-structure constant  

1 137.03599907


   

where e is the unit electron, ħ = h/2π is the Planck constant, c is the speed of light, ε0 
permittivity of free space.  

In the Cantorian space-time theory the inverse fine-structure constant 0 can be written in a 
remarkable short form based upon the multiplication and addition theorems of probability 
theory [1]. This is done by interpreting (0)

Cd   as a topological probability of a Cantor set 
formed by the ratio of the Hausdorff- Besicovitch dimension (0)

Cd   and the embedding 
topological dimension (1) 1.Cd    

That way one finds 

4
0 (0)

1(2)(10)( )
Cd

   

or 

4
0

1(2)(10)( ) 137.082039.


   

The value 137.082039 is in excellent agreement with the measured experimental value. 
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From the inverse fine-structure constant 0  we can derive the inverse coupling constant of the 

non-super symmetric unification of all forces g  and the inverse coupling constant of the 

super symmetric unification of all forces gs  using the scaling arguments in the Cantorian 

space-time [1] . The scaling factor in the Cantorian space-time is  . To derive the inverse 
coupling constant of the non-super symmetric unification of all forces g  we start with the 

Cooper pair. That means we multiply 0
2
 with   and obtain the following result [20] 

0 42.360679 .
2 g


    

Proceeding in this way one finds the inverse coupling constant of the super symmetric 

unification of all forces gs . We multiply 0

2
  with 2  and obtain 

20 26.18033989 .
2 gs


    

Both inverse coupling constants are in full agreement with the experimental values [1, 13, 20]. 

10. Conclusion 

In the present review article we gave a short overview of ideas leading to the fractal space-
time and the Cantorian space-time theory. The triadic set, the Sierpinski gasket, the Menger 
sponge and their random analogous are introduced. The Cantorian space-time is 
determined by three dimensions, the formal fn   , the topological nT = 4 and the 
Hausdorff-Besicovitch dimension equal to 34 4.236067.    

Feynman introduced a procedure which consists of summing over all possible paths of the 
concerned particle. In the Cantorian space-time theory the procedure is analogous, but 
instead of summing over all paths we sum over all dimensions of the infinite dimensional 
but hierarchical Cantorian space-time. 

We establish a conceptual and quantitative connection between classical gravity and the 
electro-weak field using the Cantorian space-time theory and the descriptive set theory. This 
led El Naschie to a fundamental discovery for quantum entanglement [8, 9, 21, 22]. 

With the use of the golden mean scaling operator we derive an expectation value of the 
inverse electromagnetic fine structure constant 0 , the inverse coupling constant of the non-
super symmetric unification of all forces g  and the inverse coupling constant of the super 
symmetric unification of all forces gs . 
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