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Preface

A century and a half after the formulation of Maxwell’s equations, electromagnetism is
a domain in spectacular expansion, incorporating continuously the progress in
fundamental and applicative physics, from relativity to materials science, and
responding, in this way, to the challenges of the modern world.

The present book provides 12 review papers on recent developments in
electromagnetism, from fundamentals to electrical engineering. They are grouped in
four sections, as follows.

The first one covers fundamental problems of electromagnetic theory.

In van Kampen’s paper, linear charge and currents distributions make possible to
introduce the main concepts of electromagnetism without use of vector calculus.
Special relativity is invoked to demonstrate that electricity and magnetism are, in a
sense, two different ways of looking at the same phenomenon: in principle, from either
electricity or magnetism and special relativity, the third theory could be derived.

Starting with the standard Maxwell’s equations, Ni’s paper presents the different
types of quantum corrections, and the corresponding equations for nonlinear
electrodynamics.

The electromagnetism in curved spaces and the Einstein equivalence principle,
together with the different experimental results for the cosmic polarization rotation,
are discussed.

In his chapter, Kitano reformulates the electromagnetic theory using differential forms,
by taking into consideration the physical perspective, the unit system (physical
dimensions), and the geometrical aspects. In this way, he provides a unified, clear and
original view of electromagnetism.

The second section is devoted to the interconnections between electromagnetism and
quantum and thermal physics.

The topological model of electromagnetism constructed with electromagnetic knots is
presented in Ranada’s paper. It puts in a new light the classical and quantum aspects
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of the electromagnetic theory, treats electricity and magnetism symmetrically, and
gives a theoretical explanation for the quantization of the magnetic flux in
superconductors.

As the time-independent wave equations for the classical electric and magnetic field,
and for the wave function for a quantum particle, are similar, an interesting analogy
can be developed between electromagnetic wave propagation in waveguides, ballistic
electron transport in mesoscopic conductors and light propagation in optical fibres.
These issues are addressed in Barsan’s review.

In Lungu’s review, the different types of the thermodynamic potentials of electric and
magnetic systems are rigorously derived, starting from the principles of
thermodynamics and Maxwell equations. From the general expressions of the
potentials, the equations of state and the thermodynamic coefficients are deduced.
Finally, using the results previously obtained, some important thermodynamic
processes are discussed.

The next section puts together three important problems of electromagnetism —
scattering of electromagnetic waves, electromagnetic compatibility and liquid metal
flow in strong magnetic fields - treated with numerical methods.

An accurate numerical solution of electromagnetic scattering problems is critically
demanded in the simulation of industrial processes and in the study of wave
propagation phenomena. Modern techniques use the integral equations to reformulate
Maxwell’s equations for electric and magnetic fields on the surface of the object. These
equations are solved in Carpentieri’s contribution, using recent progress in numerical
analysis.

The electromagnetic compatibility, i.e. the need of avoiding undesirable effects of
electromagnetic interference due to the simultaneous functioning of several electric
devices in the same area, is addressed in El Baba’s paper. The backward propagation
of electromagnetic waves, based on the time reversal invariance of the electromagnetic
wave equation, is the starting point of a detailed numerical study of the parasitic
electromagnetic fields, in various geometries and environments.

Exact characterization of the liquid-metal lithium passing through a strong magnetic
field, which is used in order to confine the high-temperature reacting plasma in a
fusion reactor core, is essential for the evaluation of the heat transfer in such a complex
device. A 3D calculation is crucial for the precise evaluation of magneto-hydro-
dynamic flow in the inlet or outlet region of the magnetic field. Such a calculation,
attentively discussed and interpreted, is presented in Kumamuru’s chapter.

The last section is devoted to applicative issues, starting with magnetic refrigeration
technology at room temperature. The ultimate goal of this emerging technology is to
develop a standard refrigerator for home use, using the magnetocaloric effect.
Bouchekara’s chapter describes the magnetic refrigeration technology, from modern
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magnetic materials to be used, to the multitude of systems created in various
laboratories. Detailed numerical studies of the refrigeration effect are done for
different geometries, devices, systems and materials.

Several applications of metamaterials in antenna engineering are exposed in
Movahhedi’s and Veysi’s contributions. In the first paper, the authors propose new
backward and forward coupling line couplers with high coupling levels, broad
bandwidth and compact sizes. In the second, the possibility of increasing both antenna
bandwidth and directivity using metamaterial covers is examined.

Dr. Victor Barsan

Center for Nuclear Physics IFIN-HH,

National Institute of Physics and Nuclear Engineering,
Bucharest,

Romania

Prof. Radu P. Lungu
University of Bucharest,
Romania
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Fundamentals






Current-Carrying Wires and Special Relativity

Paul van Kampen

Centre for the Advancement of Science and Mathematics Teaching and Learning &
School of Physical Sciences,

Dublin City University

Ireland

1. Introduction

This chapter introduces the main concepts of electrostatics and magnetostatics: charge and
current, Coulomb’s Law and the Biot-Savart Law, and electric and magnetic fields. Using
linear charge distributions and currents makes it possible to do this without recourse to vector
calculus. Special relativity is invoked to demonstrate that electricity and magnetism are, in a
sense, two different ways of looking at the same phenomenon: in principle, from a knowledge
of either electricity or magnetism and special relativity, the third theory could be derived. The
three theories are shown to be mutually consistent in the case of linear currents and charge
distributions.

This chapter brings together the results from a dozen or so treatments of the topic in
an internally consistent manner. Certain points are emphasized that tend to be given
less prominence in standard texts and articles. Where integration is used as a tool to
deal with extended charge distributions, non-obvious antiderivatives are obtained from an
online integrator; this is rarely encountered in textbooks, and gives the approach a more
contemporary feel (admittedly, at the expense of elegance). This enables straightforward
derivation of expressions for the electric and magnetic fields of radially symmetric charge
and current distributions without using Gauss’” or Ampere’s Laws. It also allows calculation
of the extent of “self-pinching” in a current-carrying wire; this appears to be a new result.

2. Electrostatics

2.1 Charge

When certain objects are rubbed together, they undergo a dramatic change. Whereas before
these objects exerted no noticeable forces on their environment, they now do. For example,
if you hold one of the objects near a small piece of paper, the piece of paper may jump up
towards and attach itself to the object. Put this in perspective: the entire Earth is exerting a
gravitational pull on the piece of paper, but a comparatively small object is able to exert a
force big enough to overcome this pull (Arons, 1996).

If we take the standard example of rubber rods rubbed with cat fur, and glass rods rubbed
with silk, we observe that all rubber rods repel each other as do all glass rods, while all rubber
rods attract all glass rods. It turns out that all charged objects ever experimented on either
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behave like a rubber rod, or like a glass rod. This leads us to postulate that there only two
types of charge state, which we call positive and negative charge for short.

As it turns out, there are also two types of charge: a positive charge as found on protons, and
a negative charge as found on electrons. In this chapter, a wire will be modeled as a line of
positively charged ions and negatively charged electrons; these two charge states come about
through separation of one type of charge (due to electrons) from previously neutral atoms.
However, the atoms themselves were electrically neutral due to equal amounts of the type of
charge due to the protons in the nucleus, and the type of charge due to electrons.

Charged objects noticeably exert forces on each other when there is some distance between
them. Since the 19th century, we have come to describe this behaviour in terms of electric
fields. The idea is that one charged object generates a field that pervades the space around it;
this field, in turn, acts on the second object.

2.2 Coulomb’s Law

Late in the 18th century, Coulomb used a torsion balance to show that two small charged
spheres exert a force on each other that is proportional to the inverse square of the distance
between the centres of the spheres, and acts along the line joining the centres (Shamos, 1987a).
He also showed that, as a consequence of this inverse square law, all charge on a conductor
must reside on the surface. Moreover, by the shell theorem (Wikipedia, 2011) the forces
between two perfectly spherical hollow shells are exactly as if all the charge were concentrated
at the centre of each sphere. This situation is very closely approximated by two spherical
insulators charged by friction, the deviation arising from a very small polarisation effect.

Coulomb also was the first person to quantify charge. For example, having completed one
measurement, he halved the charge on a sphere by bringing it in contact with an identical
sphere. When returning the sphere to the torsion balance, he measured that the force between
the spheres had halved (Arons, 1996). When he repeated this procedure with the other sphere
in the balance, the force between the spheres became one-quarter of its original value.

In modern notation, Coulomb thus found the law that bears his name: the electrostatic force
Fr between two point-like objects a distance r apart, with charge Q and g respectively, is given
by

- 1

F @f’

E™ dneg 127

@

In SI units, the constant of proportionality is given as 1/47tey for convenience in calculations.
The constant € is called the permittivity of vacuum.

It is often useful to define the charge per unit length, called the linear charge density (symbol:
A); the charge per unit (surface) area, symbol: o; and the charge per unit volume, symbol p.

We are now in a position to define the electric field E mathematically. The electric field is
defined as the ratio of the force on an object and its charge. Hence, generally,

E , @

1l
Q‘mi
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and for the field due to a point charge Q,

1
47T60 r

Ie

E:

7. 3)

N

Finally, experiments show that Coulomb’s Law obeys the superposition principle; that is to
say, the force exerted between two point-like charged objects is unaffected by the presence
or absence of other point-like charged objects, and the net electrostatic force on a point-like
object is found by adding all individual electrostatic forces acting on it. Of course, macroscopic
objects generally are affected by other charges, for example through polarization.

2.3 An infinite line charge

r r

|—Z (a) |—Z (b)

i | & ' i

Fig. 1. Linear charges: (a) field due to a small segment of length d/, (b) net field due to two
symmetrically placed segments.

Imagine an infinitely long line of uniform linear charge density A. Take a segment of length dz,
a horizontal distance z from point P which has a perpendicular distance r to the line charge.
By Coulomb’s Law, the magnitude of the electric field at P due this line segment is

Adz

dE= —->——.
4rteg(r? + z2)

)

A second segment of the same length dz a distance z from P (see Fig. 1b) gives rise to an
electric field of the same magnitude, but pointing in a different direction. The z components
cancel, leaving only the ¥ component:

Adzsin ¢

dE;, = ————~.
" 4me (12 + 22)

©)

To find the net field at P, we add the contributions due to all line segments. This net field is
thus an infinite sum, given by the integral

A /‘°° dzsin¢

 4mey Jooo 124227

(6)
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The integral in (6) contains two variables, z and ¢; we must eliminate either. It can be seen

from Fig. 1a that
. dE, r
sing = iE = 702 vl 7)

which allows us to eliminate ¢, yielding

Ar /‘°° dz ®)

" 4mey J oo (r2 4 22)3/2°

The antiderivative is readily found manually, by online integrator, or from tables; the
integration yields
* 2

=3 )

e dz _ z
/_oo (r2 4+ 22)3/2 - r2(r2 4 22)1/2 |
Hence, the electric field due to an infinity linear charge at a distance r from the line charge is
given by
A
- 2mepr”

(10)

2.4 Electric field due to a uniformly charged hollow cylinder

Consider an infinitely long, infinitely thin hollow cylinder of radius R, with uniform surface
charge density 0. A cross sectional view is given in Figure 2. What is the electric field at a
point P, a distance yg from the centre of the cylinder axis? By analogy with the shell theorem,

Fig. 2. Uniformly charged hollow cylinder of radius R, with auxiliary variables defined.

one might expect that the answer is the same as if all the charge were placed at the central axis.
For an infinite cylinder, this turns out to be true. Think of the hollow cylinder as a collection
of infinitely many parallel infinitely long line charges arranged in a circular pattern. If the
angular width of each line charge is d¢, then each has linear charge density cRd¢; by (10),



Current-Carrying Wires and Special Relativity 7

each gives rise to an electric field of magnitude

oRd¢
=_— 11

2megr (1)

along the direction AP pointing away from the line charge, as shown in Figure 2.

The net field at any point P follows from superposition. We use a righthanded Cartesian
coordinate system where the positive y-axis points up and the positive z-axis points out of the
page. When comparing the contributions from the right half of the cylinder to the electric field
with those from the left half, it is clear by symmetry that the y-components are equal and add,
while the x-components are equal and subtract to yield zero. Hence

/2 ocR 7/2 cos@
E= 2/ dE, = 2% sty 12
N 2 Aty ¢ (12)

The integrand in (12) contains 3 variables, 7, ¢, and 0. We may write r and cos 6 in terms of ¢
and constants:

{r = /(Rcos )2+ (Rsing — y9)2 = \/Rz—l—y% —2Rypsing 13)

__ Yo—Rsing
cost) = F——+

hence
oR [7/2 Yo — Rsing

mey J-r/2R? + y% —2yoRsing

E= (14)

When entering the integral into the Mathematica online integrator (2011), the antiderivative
is given as

Rcosx/2—ygsinx/2 yosinx/2—Rcos x/2 n/2
- ardan(yg cosx/Z—Rsinx/Z) arCtan(yQ cosx/2—Rsinx/2) X
2Yo 2yo 2yo /2
-7

which is admittedly ugly, but not difficult to use. Since arctan is an odd function, the first two
terms are identical, and the antiderivative simplifies to

1 arctan Yosinx/2 — Rcosx/2 _|_E
Yo Yocosx/2 — Rsinx/2 2

Substitution eventually yields that the value of the integral is 77/y. Hence Equation (14) gives
for the electric field E outside the hollow cylinder:

/2

—71'/2.

= R7™ (15)
TT€ Yo
which, defining A = ¢ - 27tR, simplifies to
S (16)
27egyo

as expected.
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2.5 Electric field due to a uniformly charged cylinder

It follows from (16) that for any cylindrical charge distribution of radius R that is a function
of r only, ie., p = p(r), the electric field for r > R is given by

A
© 2mepr’

17)

where the linear charge density A is equal to the volume charge density p integrated over the
radial and polar coordinates.

3. Magnetic fields and current-carrying wires

3.1 Current

The flow of charge is called current. To be more precise, define a cross sectional area A through
which a charge dQ flows in a time interval df. The current I through this area is defined as

dQ

I=—.
dt

(18)

It is often convenient to define a current density J, which is the current per unit cross sectional
area A:
J=1/A. (19)

A steady current flowing through a homogeneous wire can be modeled as a linear charge
density A moving at constant drift speed v;. In that case, the total charge flowing through a
cross sectional area in a time interval At is given by Av;At, and

I= Avd. (20)

3.2 Magnetic field due to a linear current

In this chapter, we will only concern ourselves with magnetic effects due to straight
current-carrying wires. Oersted found experimentally that a magnet (compass needle) gets
deflected when placed near a current-carrying wire (Shamos, 1987b). As in electrostatics, we
model this behaviour by invoking a field: the current in the wire creates a magnetic field B
that acts on the magnet.

In subsequent decades, experiments showed that moving charged objects are affected by
magnetic fields. The magnetostatic force (so called because the source of the magnetic field is
steady; it is also often called the Lorentz force) is proportional to the charge g, the speed v, the
field B, and the sine of the angle ¢ between v and B; it is also perpendicular to v and B. In
vector notation,
En = q7 x B; (21)
in scalar notation,
Fu = quBsin ¢. (22)

As a corollary, two parallel currents exert a magnetostatic force on each other, as the charges
in each wire move in the magnetic field of the other wire.
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Just as Coulomb was able to abstract from a charged sphere to a point charge, the effect
of a current can be abstracted to a steady “point-current” of length dl. (Note that a single
moving point charge does not constitute a steady point-current.) In fact, there is a close analogy
between the electric field due to a line of static charges and the magnetic field due to a line
segment of moving charges —i.e., a steady linear current. The Biot-Savart law states that the
magnetic field at a point P due to a steady point current is given by

_ Hol dzsing
-~ 2m R2

dB (23)
where jig is a constant of proportionality called the permeability of vacuum, I is the current,
dz is the length of an infinitesimal line segment, ¢ is the angle between the wire and the line
connecting the segment to point P, the length of which is R; see Figure 3. Maxwell (1865)
showed that y and € are related; their product is equal to 1/c?, where c is the speed of light
in vacuum.

Fig. 3. The Biot-Savart law: magnetic field due to a small segment carrying a current I. The
direction of the magnetic field is out of the page.

The magnetostatic force at point P due to an infinitely long straight current-carrying wire is

then ! dzsing
Ho /°° Z sin
B=" , 24
27T J—oo 12+ 22 24)

which has the exact same form as (6).

Because the current distribution must have radial symmetry, all conclusions reached from (6)
can be applied here. Thus, the magnetic field due to a steady current I in an infinitely
long wire, hollow cylinder, or solid cylinder where the current density only depends on the
distance from the centre of the wire, varies with the distance r as

1
B= ;% (25)

outside the wire.

4, Special relativity

4.1 Relativity in Newtonian mechanics

Newton’s laws of motion were long assumed to be valid for all inertial reference frames. In
Newton’s model, an observer in one reference frame measures the position x of an object at
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various times t. An observer in a second reference frame moves with speed v relative to the
first frame, with identical, synchronized clocks and metre sticks. Time intervals and lengths
are assumed to be same for both observers.

The second observer sees the first observer move away at speed v. The distance between
the two observers at a time t’ is given by vt. Hence, the second observer can use the
measurements of the first observer, provided the following changes are made:

x'=x—ot (26)
=t (27)

Equations (26) and (27) are known as a Galilean transformation. It is easy to see that if
Newton’s second law holds for one observer, it automatically holds for the other. For an
object moving at speed 1 we find that

,_dx’  dx' dx

— —v=u-—u, (28)

S AR THRT

so we get
P S C -
a2 dr2 dr? '
Hence, in both reference frames, the accelerations are the same, and hence the forces are the
same, too.

4.2 The wave equation in two inertial reference frames

A problem occurs when we consider light waves. The transformation (28) implies that, in a
rest frame travelling at the speed of light c with respect to an emitter, light would be at rest —
it is not clear how that could be.

To put this problem on a firmer mathematical footing, we derive the general linear
transformation of the wave equation; we then substitute in the Galilean transformation. For
an electromagnetic wave, the electric field E satisfies, in one reference frame,

aiE 1 9%E

o 2oz (30)

We can express the derivative with respect to x in terms of variables used in another reference
frame, x’ and ¢, by using the chain rule:

OE  OE x QJE Y

9x ov ax T af ox’ G1)
The second derivative contains five terms:
FL_PE(a0\ ) FE adar BV OE PE (\P ReE
ox2  9x2 \ ox 0x'9t' 9x dx = dx2 dx' = o2 \ 9x dx2 ot
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For linear transformations, the third and fifth terms are zero. Hence we obtain:

PE_ P (or\' | PE ol PE (o) )
ox2  0x2 \ ox ox'ot’ dx dx  ot'2 \ 9x

The second derivative with respect to time is, likewise:
PE_PE (D PE o | PE (o)} o
otz ox2 \ ot ox'ot’ ot ot o2 \ ot

Substituting all this back into the wave equation, and grouping judiciously, we obtain

RE [fax'\* 1 fox'\*| 1% [fa\* L a\*| _ 9*E [1ax o ox ot
aﬂ&n)@(m) @M2<m)c<w>_JMW{@matihh'

(35)
To retain the wave equation (30), it is clear that the right-hand side of this equation must be

zero while the terms in square brackets on the left-hand side must be equal. This is not true
for the Galilean transformation, since we obtain:

9’E v? 1 9E 2v 9%E
ax/Z

2) @ar T Zavar (36)

4.3 Principles of special relativity

Einstein’s theory of special relativity resolved the problem. In special relativity, velocities
measured in two different reference frames can no longer be added as Newton did, because
one observer disagrees with the time intervals and lengths measured by the other observer.
As a result, the wave equation has the same form to all inertial observers, with the same value
for the speed of light, c. Newton’s laws of motion are modified in such a way that in all
situations they were originally developed for (e.g., uncharged objects moving at speeds much
smaller than the speed of light), the differences are so small as to be practically immeasurable.
However, when we look at currents it turns out that these very small differences do matter in
everyday situations.

In special relativity, all inertial frames are equivalent — meaning that all laws of physics are the
same, as they are in Galilean relativity. However, rather than postulating that time and space
are the same (“invariant”) for all inertial observers, it is postulated that the speed of light c is
invariant: it is measured to be the same in all reference frames by all inertial observers. As
a consequence, measurements of time and space made in one reference frame that is moving
with respect to another are different — even though the measurements may be made in the
exact same way as seen from within each reference system. Seen from one reference system, a
clock travelling at constant speed appears to be ticking more slowly, and appears contracted
in the direction of motion. Also, if there is more than one clock at different locations, the
clocks can only be synchronized according to one observer, but not simultaneously to another
observer in a different reference frame.

These ideas can be investigated with an imaginary device — a light clock. Because both
observers agree that light travels at speed c in both reference frames, this allows us to compare
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measurements in the two reference frames. Both observers agree that their own light clock
consists of two mirrors mounted on a ruler a distance [y apart, and that it takes a light pulse a
time interval At for a round trip. Both observers agree that [y and Aty are related by

1
l() =C- EAtO, (37)

and both agree that this is true irrespective of the orientation of the light clock.

However, when comparing each other’s measurements, the observers are in for some
surprises. As motion in one direction is independent from motion in an orthogonal direction,
it makes sense to distinguish between lengths parallel and perpendicular to the relative
motion of the two reference frames. A very useful sequence of looking at the light clock was
given by Mermin (1989):

1. length perpendicular to motion
2. time intervals

3. length parallel to motion

4

. synchronization of clocks

4.4 Lengths perpendicular to motion are unaffected

In the first thought experiments, each observer has a light clock. They are parallel to each
other, and perpendicular to their relative motion (see Figure 4a). We can imagine that a piece
of chalk is attached to each end of each clock, so that when the two clocks overlap, each makes
a mark on the other.

We arrive at a result by reductio ad absurdum. Say that observer 1 sees clock 2 contract (but his
own does not, of course — the observed contraction would be due purely to relative motion).
Both observers would agree on the marks made by the pieces of chalk on clock 2 — they are
inside the ends of clock 1. They would also both agree that the ends of clock 1 do not mark
clock 2. Special relativity demands that the laws of physics are the same for both observers:
so observer 2 must see clock 1 shrink by the same factor, clock 2 retains the same length; and
hence the chalk marks on clock 2 are inside the ends, while there are no marks on clock 1.
Thus, we arrive at a contradiction. Assuming one observer sees the other’s clocks expand
lead to the same conundrum. The only possible conclusion: both observers agree that both
clocks have length [y in both frames.

4.5 Time intervals: moving clocks run more slowly

In the same set-up, observer 1 sees the light pulse in his clock move vertically, while the light
pulse in clock 2 moves diagonally (see Figure 4a). Observer 1 uses his measurements only,
plus the information that clock 2 has length Iy and that the light pulse of clock 2 moves at
speed c, also as measured by observer 1. Observer 1 measures that a pulse in clock 2 goes
from the bottom mirror to the top and back again in an interval Af, which must be greater
than Aty, as the light bouncing between the mirrors travels further at the same speed. Thus,
as seen by observer 1, clock 2 takes longer to complete a tick, and runs slow; clock 1 has
already started a second cycle when clock 2 completes its first.
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Fig. 4. A light clock in frame 2 as measured by observer 1, when the light clock is (a)
perpendicular and (b) parallel to the relative motion of the two frames at speed v. The dot
indicates a photon travelling at speed c in the direction indicated by the arrow. Other
variables are defined in the text.

This reasoning can be quantified using Pythagoras’ Theorem. Observer 1 sees that

2 2
<c-;At> —(véAt) =13 (38)

The time interval At can be related to the time on clock 1, Af, because Iy = ¢ - %Ato ; hence

AP (11— A Af2 (39)
2) T
Now, defining
1
V= —F— (40)
Ji-z

substituting, taking the square root and dividing by -y, we conclude that

At = yAb. (41)

Since all processes in frame 2 are in sync with clock 2, observer 1 sees all processes in frame 2
run slower than those in frame 1 by a factor y. Conversely, to observer 2, everything is normal
in frame 2; but observer 2 sees all processes in frame 1 run slow by the same factor .

4.6 Lengths parallel to relative motion are contracted

Now both observers turn their clocks through 90 degrees, so the light travels parallel to their
relative motion, as shown in Figure 4b. Within their own reference frames, the clocks still run
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at the same rate; hence each observer sees the other’s clock run slow by a factor vy as before.

However, to observer 1, after the light pulse leaves the left mirror of clock 2, that whole clock
travels to the right. The pulse thus travels by a distance [ + v - Aty g at speed ¢ during a time
interval Aty r before it hits the right mirror, where [ is the length of the clock as measured by
observer 1. Hence

I+v-Atpr =c- Atrr. (42)

Similarly, after the pulse reflects it travels a distance | — v - Atgy before it hits the left mirror
again. Observer 1 finds for the total time At

l l 2] 1 2]
a2

The time interval At can be linked to the time interval in frame 1, Aty, by (41), which, in turn,
is linked to the length in frame 1, Alp, by (37). Straightforward substitution yields

I = l—o. (44)
Y
Thus, as measured by observer 1, all lengths in frame 2 parallel to the motion are shorter than
in frame 1 by a factor y (but both perpendicular lengths are the same). As seen by observer 2,
everything is normal in frame 2, but all parallel lengths in frame 1 are contracted by the same
factor y. When the two observers investigate each other’s metre sticks, they both agree on
how many atoms there are in the each stick, but disagree on the spacing between them.

4.7 Synchronization of clocks is only possible in one frame at a time

As it stands, it is hard to see how the observations in both frames can be reconciled. How can
both observers see the other clocks run slowly, and the other’s lengths contracted? The answer
lies in synchronization. Without going into much detail, we outline some key points here.

Measuring the length of an object requires, in principle, the determination of two locations (the
ends of the object) at the same time. However, when two clocks are synchronized in frame
1 according to observer 1, they are not according to observer 2. As the frames move with
respect to each other, observer 2 concludes that observer 1 moved his ruler while determining
the position of each end of the object. In the end, each observer can explain all measurements
in a consistent fashion. For an accessible yet rigorous in-depth discussion see Mermin (1989).
The end result is the transformation laws

x' = q(x —ot) (45)
t = y(t—ovx/c?) (46)

4.8 Transformation of forces and invariance of the wave equation in special relativity

Substituting the transformations of special relativity into the wave equation (35) shows that
the wave equation has the same form in both frames: the two factors in square brackets are
equal to 1, and the right hand side is equal to zero.
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However, Newton’s Second Law does not transform in special relativity. In the situations
under discussion in Section 5.1, all forces are perpendicular to the relative speed v. In that
case, a force of magnitude Fy in the rest frame is measured by an observer in a moving frame
to have magnitude F given by

F=F/y. (47)

An operational definition for a transverse force is given by Martins (1982). For the sake of
completeness we note that a parallel force transforms as F = Fy/+°.

5. Electric fields, magnetic fields, and special relativity

The considerations of the three previous sections can be brought together quite neatly. We
model a current-carrying wire as a rigid lattice of ions, and a fluid of electrons that are free
to move through the lattice. In the reference frame of the ions, then, the electrons move with
a certain drift speed, v;. But, by the same token, in the frame of the electrons, the ions move
with a speed v;.

We will consider four cases:

1. Aninfinitely thin current-carrying wire;
2. A current-carrying wire of finite width;
3. An charged object moving parallel to a current-carrying wire at speed vy;

4. Two parallel current-carrying wires.

5.1 Length contraction in a current carrying wire

Experimental evidence shows that a stationary charge is not affected by the presence of a
current-carrying wire. This absence of a net electrostatic force implies that the ion and electron
charge densities in a current-carrying wire must have the same magnitude. This statement is
more problematic than it may seem at first glance.

Consider the case of zero current. Call the linear charge density of the ions Ag. By charge
neutrality, the linear charge density of the electrons must be equal to —Ag. Now let the
electrons move at drift speed v, relative to the ions, causing a current I. Experimentally,
both linear charge densities remain unchanged, since a stationary charged object placed near
the wire does not experience a net force. So, as seen in the ion frame, the linear electron charge
density is given by:

A= —Ap. (48)

In the electron frame, the linear charge density of the electrons must be
AL =—Ao/7, (49)

so that
Ao =92l =9 (=Ao/7) = —o. (50)

Moreover, in the electron frame, the ions are moving, and hence their linear charge density is

A = Ao 1)
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The net charge density in the electron frame, A, is then given by
A=A+ A=A — Ao/ = Aoy (1 - 1/72) = Agyv3/c. (52)

Thus, in the electron frame, the wire is charged. We cannot, however, simply assume that
Coulomb’s Law (6) holds; that law was obtained from experiments on stationary charges,
while the ions are moving in the electron frame. In fact, the magnitude of the electric field dE
due to a point charge Adz moving at speed v, is given by (French, 1968; Purcell, 1984)

Adz (1 - U%/CZ)
47(60(r2—|-22)( _Ui r? )I

2 12422

dE =

(53)

using the notation of Figure 1la. However, when we integrate the radial component of this
electric field, we do obtain the same result; switching to primed coordinates to denote the
electron frame,
po N Mg
2megr!  2rmepr

(54)

We have used the fact that lengths perpendicular to motion do not contract; hence r = r'.

5.2 Current and charge distribution within a wire

Now consider a wire of finite radius, R. We can model this as an infinite number of parallel
infinitely thin wires placed in a circle. Assume that each wire starts out as discussed above.

As seen in the ion frame, there are many electron currents in the same direction; each current
will set up a magnetostatic field, the net effect of which will be an attraction towards the
centre. However, once the electrons start to migrate towards the centre, a net negative charge
is created in the centre of the wire; equilibrium is established when the two cancel (Gabuzda,
1993; Matzek & Russell, 1968).

As seen in the electron frame, there is a current of positive ions, but since the ion frame is
assumed perfectly rigid, no redistribution of charge occurs as a result. However, due to length
contraction there is also a net positive charge density, which will attract the electrons towards
the centre of the wire (Gabuzda, 1993). This must occur in such a way that the net electric field
is zero; this, in turn, can only happen if the net volume charge density is zero. Consequently,
the linear electron density is distorted: within a radius 4, a uniform electron volume charge
density is established that is equal to the ion volume charge density; between a and R, the
electron density is zero.

The magnitude of this effect can be calculated easily. The uniform ion volume charge density
is given by
o )‘/+ _ Tho,
P+ = TR2 = AR2’
this must be equal to (minus) the uniform electron volume density over a radius a. Hence we
obtain

(55)

g

a2 - yma? (56)
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Combining the two yields
a=R/7y. (57)

Thus, the wire is electrically neutral between 0 and R/, and has a positive volume charge
density given by (55) between R/ and R. Because in practice the outer shell is very thin, it
can be approximated as a surface density:

o' =p/, -27R =29A¢/R. (58)

As we have seen, lengths perpendicular to the motion do not change. Hence in the ion frame
the electrons comprise a uniform line of electrons moving at speed v,; in other words, there is
a “self-pinched” uniform current density given by

1
I = e = e &%
between 0 and R/, and zero current density between R/ and R.

Figure 5 shows some relevant current and volume charge densities in both reference frames.
Note that, by the considerations of Section 2.4, for r > R we may treat the wire as if all current
and charge were located on the central axis of the wire.

ion frame electron frame

Fig. 5. Current and charge densities in a current-carrying wire. ¥y =1/4/1 — vﬁ /c2, where v,

is the relative speed of the ions and electrons, and A is the linear ion density as seen in the
ion frame.

5.3 A charged object near a current carrying wire

We have established that in the ion frame, a current-carrying wire does not exert an
electrostatic force; but in the electron frame, it does. There is nothing wrong with this, but we
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must make sure that the effect on charges near the wire is the same in both frames; otherwise,
the principle of relativity would be violated.

First, consider a point-like object of charge g stationary in the ion frame. There is no
electrostatic force on the object, since there is no net charge; nor is there a magnetostatic force,
because the speed of the object is zero. In the electron frame, the electrostatic force F, is given
by
2
EI/\O')/Ud
Fl=qF = ——%. 60
e =1 27eqgc2r! (60)
There is also a magnetostatic force, F/,, asin the electron frame the object is moving with speed
v, parallel to a current of positive ions; hence

E! = qusB' = ’ﬁ’dﬂol. 1)

The two forces are readily shown to be equal, as I = A/ v; = vAgvg and pg = 1/€pc?. The
forces cancel, because a current of positive ions attracts a positively charged object while the
positive charge density repels it.

As a second case, a point-like object of charge g, moving parallel to a current carrying wire at
speed v, in the ion frame, experiences a purely magnetostatic force due to the electrons in the
wire, given by:

2
qu]/lol _ qu)\()

= , 62
27r 27egcr 62)

F =qv4B =

since ] = A_v; = Agvy. In the electron frame, the speed of g is zero so the force is purely
electrostatic: X
g\ _ 7993l

F =gE = = . 63
q 2megr  27megcr 63)

The electron frame is the rest frame for g; hence (47) becomes
F=F/y, (64)

which is obviously satisfied. Hence, what appears as a purely magnetostatic force in the ion
frame appears as a purely electrostatic force in the electron frame.

In the general case, where a point-like object of charge g is moving at any speed v (say, in the
ion frame), the ions and electrons are contracted by different factors, but always in such a way
that the resulting net electrostatic force is balanced by the net magnetostatic force between the
charge g and both on and electron currents. This case is discussed in detail by Gabuzda (1987).

5.4 Two parallel wires

As a final case, consider two parallel wires, each carrying a current I. When considering the
effect of wire 1 on wire 2, we must consider the electrons and ions in wire 2 separately, as
they have no common rest frame (Redzi¢, 2010). We cannot reify one segment of length [ in
one frame and transform it as a whole, even though coincidentally the same formulae can be
obtained (van Kampen, 2008; 2010).
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One convenient way of looking at the problem is by considering a segment of wire 2 of length
I, as measured in the ion frame. This consists of a segment of ions of length [/ as seen in
the electron frame, and a segment of electrons of length 7! as seen in the electron frame. The
transformation leaves the total charge unaltered: it is Agl.

In the ion frame, we can find the total force on the ion segment by dividing it up into point-like
segments of charge density Ay, and integrating over the entire length I. Anidentical procedure
holds for the electrons. In the electron frame, we integrate ion segments of charge density yAg
over a length I/, and electron segments of charge density Ao/ over a length /. The net
result is that all expressions found in the previous paragraph hold, if we replace g with Apl:

Foy =Fyy =F_ =F, =0 (65)
YA2v2]

F,=F_=F, =_—%4d 66

e+ e— m+ 27T€0C21’ (66)
A202]

Fp = 24 67

" 27egc3r 67)

6. Conclusion

In this chapter, we have outlined how electrostatics, magnetostatics and special relativity
give consistent results for a few cases involving infinitely long current carrying wires. We
have used an online integrator to obtain expression for the electrostatic field due to a hollow
uniformly charged cylinder, and derived expressions for a solid uniformly charged cylinder
and current-carrying wires from it. We have also derived expressions for self-pinching in a
current-carrying wire, by a factor -, and the creation of a surface charge density.
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1. Introduction

Classical electromagnetism is a well-established discipline. However, there remains some
confusions and misunderstandings with respect to its basic structures and interpretations. For
example, there is a long-lasting controversy on the choice of unit systems. There are also the
intricate disputes over the so-called EH or EB formulations. In some textbooks, the authors
respect the fields E and B as fundamental quantities and understate D and H as auxiliary
quantities. Sometimes the roles of D and H in a vacuum are totally neglected.

These confusions mainly come from the conventional formalism of electromagnetism and
also from the use of the old unit systems, in which distinction between E and D, or B and
H is blurred, especially in vacuum. The standard scalar-vector formalism, mainly due to
Heaviside, greatly simplifies the electromagnetic (EM) theory compared with the original
formalism developed by Maxwell. There, the field quantities are classified according to the
number of components: vectors with three components and scalars with single component.
But this classification is rather superficial. From a modern mathematical point of view, the
field quantities must be classified according to the tensorial order. The field quantities D and
B are the 2nd-order tensors (or 2 forms), while E and H are the 1st-order tensors (1 forms).
(The anti-symmetric tensors of order n are called n-forms.)

The constitutive relations are usually considered as simple proportional relations between E
and D, and between B and H. But in terms of differential forms, they associate the conversion
of tensorial order, which is known as the Hodge dual operation. In spite of the simple
appearance, the constitutive relations, even for the case of vacuum, are the non-trivial part
of the EM theory. By introducing relativistic field variables and the vacuum impedance, the
constitutive relation can be unified into a single equation.

The EM theory has the symmetry with respect to the space inversion, therefore, each field
quantity has a definite parity, even or odd. In the conventional scalar-vector notation, the
parity is assigned rather by hand not from the first principle: the odd vectors E and D
are named the polar vectors and the even vectors B and H are named the axial vectors.
With respect to differential forms, the parity is determined by the tensorial order and
the pseudoness (twisted or untwisted). The pseudoness is flipped under the Hodge dual
operation. The way of parity assignment in the framework of differential forms is quite
natural in geometrical point of view.
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It is well understood that the Maxwell equations can be formulated more naturally in the
four dimensional spatio-temporal (Minkowski) space. However, the conventional expression
with tensor components (with superscripts or subscripts) is somewhat abstract and hard to
read out its geometrical or physical meaning. Here it will be shown that the four-dimensional
differential forms are the most suitable method for expressing the structure of the EM theory.
We introduce two fundamental, relativistic 2-forms, which are related by the four-dimensional
Hodge’s dual operation and the vacuum impedance.

In this book chapter, we reformulate the EM theory with the differential forms by taking care
of physical perspective, the unit systems (physical dimensions), and geometric aspects, and
thereby provide a unified and clear view of the solid and beautiful theory.

Here we introduce notation for dimensional consideration. When the ratio of two quantities
X and Y is dimensionless (just a pure number), we write X & Y and read “X and Y are
dimensionally equivalent (in SI).” For example, we have cof ~ x. If a quantity X can be
measured in a unit u, we can write X 2 u. For example, for d = 2.5m we can write d 2.

2. The vacuum impedance as a fundamental constant

The vacuum impedance was first introduced explicitly in late 1930’s (Schelkunoff (1938)) in
the study of EM wave propagation. It is defined as the amplitude ratio of the electric and
magnetic fields of plane waves in vacuum, Zy = E/H, which has the dimension of electrical
resistance.

Itis also called the characteristic impedance of vacuum or the wave resistance of vacuum. Due
to the historical reasons, it has been recognized as a special parameter for engineers rather
than a universal physical constant. Compared with the famous formula (Maxwell (1865))
representing the velocity of light ¢y in terms of the vacuum permittivity ¢y and the vacuum
permeability g,

) = ’ 1
v Hogo @
the expression for the vacuum impedance
0
zo= /52, @

€0

is used far less often. In fact the term is rarely found in index pages of textbooks on
electromagnetism.

As we will see, the pair of constants (cp, Zg) can be conveniently used in stead of the pair
(€9, po) for many cases. However, conventionally the asymmetric pairs (¢, jig) or (co, €g) are
often used and SI equations become less memorable.

In this section, we reexamine the structure of electromagnetism in view of the SI system (The
International System of Units) and find that Zy plays very important roles as a universal
constant.

Recent development of new type of media called metamaterials demands the reconsideration
of wave impedance. In metamaterials (Pendry & Smith (2004)), both permittivity e and
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permeability y can be varied from values for vacuum and thereby the phase velocity Uph =

1/,/epi and the wave impedance Z = |/j/€ can be adjusted independently. With the control
of wave impedance the reflection at the interfaces of media can be reduced or suppressed.

2.1 Roles of the vacuum impedance

In this section, we show some examples for which Zj plays important roles (Kitano (2009)).
The impedance (resistance) is a physical quantity by which voltage and current are related.
In the SI system, the unit for voltage is V(= J/C) (volt) and the unit for current is A(=
C/s) (ampere). We should note that the latter is proportional to and the former is inversely
proportional to the unit of charge, C (coulomb). Basic quantities in electromagnetism can be
classified into two categories as

¢, A E, B Force quantities «V,

D, H P M, o ] Source quantities o A. (3)
The quantities in the former categories contain V in their units and are related to
electromagnetic forces. On the other hand, the quantities in the latter contain A and are

related to electromagnetic sources. The vacuum impedance Zj (or the vacuum admittance
Yy = 1/Zy) plays the role to connect the quantities of the two categories.

2.1.1 Constitutive relation

The constitutive relations for vacuum, D = ¢oE and H = py !B, can be simplified by using
the relativistic pairs of variables as
E _ CoD
| =[5 .

The electric relation and magnetic relation are united under the sole parameter Z;.

2.1.2 Source-field relation
We know that the scalar potential A¢ induced by a charge Ag = ¢Av is

1 oAv
C4mey v

A¢ ©)
where r is the distance between the source and the point of observation. The charge is
presented as a product of charge density ¢ and a small volume Av. Similarly a current moment
(current times length) JAv generates the vector potential

o JA0

AA = .
a7t r

(6)
The relations (5) and (6) are unified as
¢ | _ Zo |co0
A LOA} =1 | T Av. (7)

We see that the vacuum impedance Zg plays the role to relate the source (], coo)Av and the
resultant fields A(¢, cpA) in a unified manner.
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2.1.3 Plane waves

We know that for linearly polarized plane waves propagating in one direction in vacuum, a
simple relation E = ¢B holds. If we introduce H (= p, IB) instead of B, we have E = ZyH.
This relation was introduced by Schelkunoff (Schelkunoff (1938)). The reason why H is used
instead of B is as follows. A dispersive medium is characterized by its permittivity e and
and permeability y. The monochromatic plane wave solution satisfies E = vB, H = vD, and
E/H = B/D = Z,where v = 1/, /gji and Z = /i /¢. The boundary conditions for magnetic
fields at the interface of media 1 and 2 are Hj; = Hp; (tangential) and By, = By, (normal).
For the case of normal incidence, which is most important practically, the latter condition
becomes trivial and cannot be used. Therefore the pair of E and H is used more conveniently.
The energy flow is easily derived from E and H with the Poynting vector S = E x H. In
the problems of EM waves, the mixed use of the quantities (E and H) of the force and source
quantities invites Z.

2.1.4 Magnetic monopole

Let us compare the force between electric charges g (¥ As = C) and that between magnetic
monopoles g (fs\l/ Vs = Whb). If these forces are the same for equal distance, r, ie.,
7%/ (4regr?) = g%/ (4muor?), we have the relation ¢ = Zoq. This means that a charge of
1 C corresponds to a magnetic charge of Zg x 1C ~ 377 Wh.

With this relation in mind, the Dirac monopole gy (Sakurai (1993)), whose quantization
condition is gge = h, can be beautifully expressed in terms of the elementary charge e as

h h Z()e
8= Zoez( 0¢) = 7 (8)
where i = 2rth is Planck’s constant. The dimensionless parameter & = Zge?/2h =

% /4meghcy ~ 1/137 is called the fine-structure constant, whose value is independent of unit
systems and characterizes the strength of electromagnetic interaction.
2.1.5 The fine-structure constant

We have seen that the fine-structure constant itself can be represented more simply with the
use of Zy. Further, by introducing the von Klitzing constant (the quantized Hall resistance)
(Klitzing et al. (1980)) Rx = h/ ¢2, the fine-structure constant can be expressed as & = Zy/2Rg
(Hehl & Obukhov (2005)). We have learned that the use of Zj helps to keep SI-formulae in
simple forms.

3. Dual space and differential forms

3.1 Covector and dual space

We represent a (tangential) vector at position r as

sI
X = X1e1 + Xpep + x3e3 ~ m, 9)
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which represents a small spatial displacement from r to r + x. We have chosen an arbitrary

orthonormal basis {ej, €3, e3} with inner products (e;, ej) = J;;, where
1 (i=))
bii = L (10)
! {0 (i # )

is Kronecker’s delta. We note that x; X mand e; 2.

Such vectors form a linear space which is called a tangential space at . The inner product of

vectors x and  is (x,y) = X151 + X2y + X3y3 ~ m?.

We consider a linear function ¢(x) on the tangential space. For any ¢1,¢2 € R, and any vectors
x1 and xp, p(c1x1 + c2x2) = c1¢(x1) + c1¢(x2) is satisfied. Such linear functions form a linear
space, because the (weighted) sum of two functions dy¢; + da¢r with dy,dy € R defined with

(dig1 +dagp2) (x) = d1¢1(x) + daga(x) (11)

is also a linear function. This linear space is called a dual space. The dimension of the dual
space is three. In general, the dimension of dual space is the same that for the original linear
space. We can introduce a basis {v1,v2,v3}, satisfying v;(e;) = J;;. Such a basis, which is
dependent on the choice of the original basis, is called a dual basis. Using the dual basis, the
action of a dual vector ¢( ) = ayv1() +axv2( ) + asvs( ), a1, a2, a3 € R can be written simply as

¢(x) = (a1v1 + agv +azvs)(x1e1 + x2e2 + x3€3) (12)
3 3

=Y ) aixjvi(ej) = x1a1 + X203 + x303. (13)
i=1j=1

Here we designate an element of dual space with vector notation as a rather as a function ¢( )
in order to emphasize its vectorial nature, i.e.,

a-x=¢(x). (14)

We call a as a dual vector or a covector. The dual basis {v1, 15, v3} are rewritten as {n, ny, n3}
with n; - e; = ;. The dot product a - x and the inner product (x,y) should be distinguished.
Here bold-face letters x, y, z, and e represent tangential vectors and other bold-face letters
represent covectors.

A covector a can be related to a vector z uniquely using the relation, a - x = (z,x) for any
x. The vector z and the covector a are called conjugate each other and we write z = a and
a =z'. In terms of components, namely for a = Y ;a;n; and z = Y ; z;e;, a; = z; (i = 1,2,3)
are satisfied

For the case of orthonormal basis, we note that niT = ¢, eiT

relations, we tend to identify n; with ;. Thus a covector a is identified with its conjugate a "
mostly. However, we should distinguish a covector as a different object from vectors since it
bears different functions and geometrical presentation (Weinreich (1998)).

= n;. Due to these incidental

The inner product for covectors are defined with conjugates as (a,b) = (a',b"). We note the

dual basis is also orthonormal, since (n;, 1;) = (n;r,an) = (ej, ej) = djj.
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A good example of covector is the electric field at a point r. The electric field is determined
through the gained work W when an electric test charge g at r is displaced by x. A function
¢ 1 x — W/q is linear with respect to x if |x| is small enough. Therefore ¢( ) is considered as

a covector and normally written as E, i.e., ¢(x) = E - x R V. Thus the electric field vector can
be understood as a covector rather than a vector. It should be expanded with the dual basis as

E = Eyny + Eyny + E3ng 2 V/m. (15)
The norm is given as ||E|| = (E,E)"/? = | /E? + E3 + E3. We note that n; ~ 1 and E; ~ V/m.

3.2 Higher order tensors

Now we introduce a tensor product of two covectors a and b as T = ab, which acts on two
vectors and yield a scalar as

T:xy=(ab):xy = (a-x)(b-y). (16)
It can be considered as a bi-linear functions of vectors, i.e., T : xy = @(x,y) with

D(c1x1 +cox2,y) = 1P (x1,y) + 1P (x2,y),
D(x,c1y + C2yy) = 1 P(x,y1) +c1P(x,y,), (17)

where ¢, ¢y € R. We call it a bi-covector.

We can define a weighted sum of bi-covectors T = di Ty +dy Ty, dq,d» € R, which is not
necessarily written as a tensor product of two covectors but can be written as a sum of tensor
products. Especially, it can be represented with the dual basis as

3 3
T = Z Z Tijnl-nj, (18)

i=1j=1
where T;; = T : e;e; is the (i, j)-component of T.
j j J p

Similarly we can construct a tensor product of three covectors as 7 = abc, which acts on three
vectors linearly as 7 : xyz. Weighted sums of such products form a linear space, an element
of which is called a tri-covector. Using a tensor product of 1 covectors, a multi-covector or an
n-covector is defined.

3.3 Anti-symmetric multi-covectors — n-forms

If a bicovector T satisfies T :yx = —T :xy for any vectors x and y, then it is called
antisymmetric. ~ Anti-symmetric bicovectors form a subspace of the bicovector space.
Namely, a weighted sum of anti-symmetric bicovector is anti-symmetric. It contains an
anti-symmetrized tensor product, a A b := ab — ba, which is called a wedge product. In terms
of basis, we have

3 3
alNb= 2 ain; N\ 2 b]n] = E(El,'b]' - ajbi)ni Anj, (19)
i=1 =1 (i)
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where the last sum is taken for (7,7) = (1,2),(2,3), (3,1). A general anti-symmetric bicovector
can be written as

T = Z Ti]‘nl' A\ n;. (20)
(i.f)
We see that the 2-form has three independent components; Tip = =Ty, Tog = —T3p, T31 =

—Ti3, and others are zero. The norm of Tis || T|| = (T, T)V/2 = &, ;) T;Ty;.

If a bicovector T satisfies T : xx = 0 for any x, then it is anti-symmetric. It is easily seen from
therelation: 0 =T : (x+y)(x+vy) =T xx+ T :xy+ T yx+ T . yy.

An anti-symmetric multi-covector of order n are often called an n-form. A scalar and a
covector are called a O-form and a 1-form, respectively. The order n is bounded by the
dimension of the vector space, d = 3, in our case. An n-form with n > d vanishes due to
the anti-symmetries.

Geometrical interpretations of n-forms are given in the articles (Misner et al. (1973); Weinreich
(1998)).

3.4 Field quantities as n-forms

Field quantities in electromagnetism can be naturally represented as differential forms (Burke
(1985); Deschamps (1981); Flanders (1989); Frankel (2004); Hehl & Obukhov (2003)). A good
example of 2-form is the current density. Let us consider a distribution of current that flows
through a parallelogram spanned by two tangential vectors x and y at . The current I(x,y)
is bilinearly dependent on x and y. The antisymmetric relation I(y,x) = —I(x,y) can
understood naturally considering the orientation of parallelograms with respect to the current
flow. Thus the current density can be represented by a 2-form J as

Jixy=1I(x,y) XA, J=Y JimAn 2 A/m? 1)
(i)
The charge density can be represented by a 3-form R. The charge Q contained in a
parallelepipedon spanned by three tangential vectors x, y, and z:

R:xyz=Q(xy,z) R0, R=Rypn Ay Anz~C/m°. (22)

Thus electromagnetic field quantities are represented as n-forms (n = 0, 1,2,3) as shown in
Table 1, while in the conventional formalism they are classified into two categories, scalars and
vectors, according to the number of components. We notice that a quantity that is represented
n-form contains physical dimension with m™ in SI. An n-form takes n tangential vectors,
each of which has dimension of length and is measured in m (meters).

In this article, 1-forms are represented by bold-face letters, 2-forms sans-serif letters, and
3-forms calligraphic letters as shown in Table 1.
3.5 Exterior derivative

The nabla operator V can be considered as a kind of covector because a directional derivative
V - u, which is a scalar, is derived with a tangential vector u. It acts as a differential operator
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rank  quantities (unit) scalar/vector
O-form ¢ (V) scalar
1-form A (Wb/m), E(V/m), H(A/m), M (A/m) vector
2-form B (Wb/m?), D(C/m?3), P(C/m?), J(A/m?)  vector
3-form R (C/m?) scalar

Table 1. Electromagnetic field quantities as n-forms

and also as a covector. Therefore it can be written as

%] ] 0
V:nla +nzﬁ+n3% 2 1/1’I1 (23)

The wedge product of the nabla V and a 1-form E yields a 2-form;

JE; JE;
- i Al A )
V AE = (IZ];) (axi ax]-) ni A nj, (24)

which corresponds to V X E in the scalar-vector formalism. Similarly a 2-form J are
transformed into a 3-form as

V/\J-(a]23+a]31+ahz)n1/\n2/\n3, (25)
3

which corresponds to V - J.

3.6 Volume form and Hodge duality

We introduce a 3-form, called the volume form, as

3 3 3
st
E=nm AnyAng = Z 2 Z Ejjkhinnyg ~ 1, (26)
i—1j=1k=1

where

1 (i, ], k: cyclic)
€ijk = —1 (anti-cyclic) . (27)
0  (others)

It gives the volume of parallelepipedon spanned by x, y, and z;
Vix,y,z)=Eixyz 2 m3. (28)

Using the volume form we can define a relation between n-forms and (d — n)-forms, which
is call the Hodge dual relation. First we note that n-forms and (d — n)-forms have the same
degrees of freedom (the number of independent components), ;C, = ;Cy4_,, and there could
be a one-to-one correspondence between them. In our case of d = 3, there are two cases:
(n,d —n) = (0,3) and (1,2). We consider the latter case. With a 1-form E and a 2-form D, we
can make a 3-form EA D = f(E, D)E. The scalar factor f(E, D) is bilinearly dependent on E
and D. Therefore, we can find a covector (a 1-form) D that satisfies (E, D) = f(E, D) for any
E. Then, D is called the Hodge dual of D and we write D = %D or D = %D using a unary
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Fig. 1. Relations of electromagnetic field forms in three dimension

“u

operator “x” called the Hodge star operator. In terms of components, D; = D3, Dy = D3y,
D3 =Dy for D =D withD =Y, D;n; and D = Z(z,]) Di]-ni Anj.

Physically, (E,D) ~ J/m? corresponds to the energy density and can be represented by
the 3-form U = %E AND = %(E,D)E, because U : xyz is the energy contained in the
parallelepipedon spanned by x, y, and z.

The charge density form can be written as R = ony A np A nz = o€ with the conventional
scalar charge density ¢. The relation can be expressed as R = *¢ or ¢ = *xR. Similarly, we
have & = x1and 1 = *£.

Equations (24) and (25) are related to the conventional notations; *(V A E) = V x E and
*(V AJ) =V -], respectively.

3.7 The Hodge duality and the constitutive equation

In electromagnetism, the Hodge duality and the constitutive relations are closely related. We
know that the electric field E and the electric flux density D are proportional. However we
cannot compare them directly because they have different tensorial orders. Therefore we
utilize the Hodge dual and write D = ¢(«E). Similarly, the magnetic relation can be written
as H = py L(xB). Generally speaking, the constitutive relations in vacuum are considered to
be trivial relations just describing proportionality. Especially in the Gaussian unit system, they
tend to be considered redundant relations. But in the light of differential forms we understand
that they are the keystones in electromagnetism.

With the polarization P and the magnetization M, the constitutive relations in a medium are
expressed as follows:

D = ¢y(+xE) + P, H:yo_l(*B)—M. (29
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4. The Maxwell equations in the differential forms

With differential forms, we can rewrite the Maxwell equations and the constitutive relations
as,

VAB=0, VAE+%3=0,
VAD=R, VAH—aait):J,
D=ef-E+P, H=3}u'¢:B-M. (30)

In the formalism of differential forms, the spatial derivative V A _ is simply denoted as d_..

“u

Together with the Hodge operator “+”, Eq. (30) is written in simpler forms;

dB =0, dE+9;B=0,

dD=TR, dH-9;:D=J,

D =¢o(+E) + P, H:ygl(*B)—M, (31)
where d9; = d/9t.

In Fig. 1, we show a diagram corresponding Eq. (31) and related equations (Deschamps
(1981)). The field quantities are arranged according to their tensor order. The exterior
derivative “d” connects a pair of quantities by increasing the tensor order by one, while time
derivative d; conserves the tensor order. E (B) is related to D (H) with the Hodge star operator
and the constant ¢ (). The definitions of potentials and the charge conservation law

E=-dp—9A, B=dA, dJ+R=0 (32)

are also shown in Fig. 1. We can see a well-organized, perfect structure. We will see the
relativistic version later (Fig. 2).

5. Twisted forms and parity

5.1 Twist of volume form

We consider two bases X = {ej, ey, e3} and X' = {e], e}, e4}. They can be related as
e; = Y;Rjjej by a matrix R = [R;] with R;; = (e],e;). It is orthonormal and therefore
detR = =£1. In the case of det R = 1, the two bases have the same orientation and they can be
overlapped by a continuous transformation. On the other hand, for the case of detR = —1,
they have opposite orientation and an operation of reversal, for example, a diagonal matrix
diag(—1,1,1) is needed to make them overlapped with rotations. Thus we can classify all
the bases according to the orientation. We denote the two classes by C and C’, each of which
contains all the bases with the same orientation. The two classes are symmetric and there are

no a priori order of precedence, like for i and —i.

We consider a basis £ = {ej,e5,e3} € C and the reversed basis X' = {e], e}, ef} =
{—e1, —ez, —e3}, which belongs to C’. The volume form & in X is defined so as to satisfy
€ iejepe3 = +1, ie, the volume of the cube defined by ey, e;, and e3 should be +1.
Similarly, the volume form £’ in X’ is defined so as to satisfy £’ : ejebef = +1. We note
that £’ : ejepez = —E&' 1 efebel = —1, namely, & = —€. Thus we have two kinds of volume
forms € and &'(= —&) and use either of them depending on the orientation of basis.
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Assume that Alice adopts the basis X € C and Bob adopts X' € C’. When we pose a
parallelepipedon by specifying an ordered triple of vectors (x,v,z) and ask each of them to
measure its volume, their answers will always be different in the sign. It seems inconvenient
but there is no principle to choose one over the other. It is only a customary practice to use the
right-handed basis to avoid the confusion. Fleming’s left-hand rule (or right-hand rule) seems
to break the symmetry but it implicitly relies upon the use of the right-handed basis.

5.2 Twisted forms

Tensors (or forms) are independent of the choice of basis. For example, a second order tensor
can be expressed in X and X’ as

B=)_) Bjmn; =)} Bunn, (33)
i k1

with the change of components B = }.; }; RikRﬂBl{ it We note the dual basis has been flipped

asn} = —n;.
Similarly, in the case of 3-forms, we have
T = Typany Ay Ans = Tipzng Any Ang (34)
with Tjp3 = T{23. However, for the volume form the components must be changed as
€123 = (detR)e]ps, (35)

to have & = —& in the case of reverse of orientation. Therefore, the volume form is called a
pseudo form in order to distinguish from an ordinary form. The pseudo (normal) form are also
call a twisted (untwisted) form.

In electromagnetism, some quantities are defined in reference to the volume form or to the
Hodge star operator. Therefore, they could be twisted or untwisted. First of all, ¢, A, E,
and B are not involved with the volume form, they are all untwisted forms. On the other
hand, H = 1 (%*B) and D = ¢gy(+E) are twisted forms. The Hodge operator transforms an
untwisted (twisted) form to a twisted (untwisted) form.

The quantities M, P, J, and R (charge density), which represent volume densities of
electromagnetic sources, are also twisted as shown below. We have found that the force fields
are untwisted while the source fields are twisted in general.

5.3 Source densities

Here we look into detail why the quantities representing source densities are represented by
twisted forms. As examples, we deal with polarization and charge density. Other quantities
can be treated in the same manner.

5.3.1 Polarization

We consider two tangential vectors dx, dy at a point P. Together with the volume form &, we
can define

dS =& :dxdy S m?, (36)
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which is a pseudo 1-form. (Conventionally, it is written as dS = x X y.) In fact, for a tangential
vector { at P, the volume dS - { = £ : dxdy {, spanned by the three vectors is a linear function
of {. We choose dz that is perpendicular to the plane spanned by dx and dy, i.e., (dz,dx) =
(dz,dy) = 0. We assume |dz| < |dx| and |dz| < |dy|. dV = dS - dz is the volume of thin
parallelogram plate.

When a charge +4 is displaced by I from the other charge —g, they form an electric dipole
p = gl. We consider an electric dipole moment at a point P in dV. The displacement I can be
considered as a tangential vector at P, to which dS acts as dS- I = g~ 1dS - p. Then

, _dS.p  dS-1
T=asaz Tav

(37)
is the surface charge that is contributed by p. In the case of dS - p = 0, there are no surface
charge associated with p. If dz and p are parallel, 4'dz = ql = p holds.

Next we consider the case where many electric dipoles p; = g;1; are spatially distributed. The
total surface charge is given as

Q/ = Z q/ = Z — T
iedV : iedV dv
=(@V)™' Y & p;rdxdy = P dxdy, (38)
iedV

where the sum is taken over the dipoles contained in dV. The pseudo 2-form

P:=@V) 'Y £p *C/m? (39)
iedV

corresponds to the polarization (the volume density of electric dipole moments).

5.3.2 Charge density
The volume dV spanned by tangential vectors dx, dy, dz at P is

1

AV = £ :dxdydz 2 md. (40)

For distributed charges g;, the total charge in dV is given as

7:dV
iedV l iedV dv
= (dV)™' ¥ g, dxdydz = R : dxdydz. (41)
iedV
The pseudo 3-form
Ri=@V)'Y g6 XC/m? (42)
iedv

gives the charge density.
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untwist/twist ~ rank  quantities  parity = polar/axial scalar/vector

untwisted O-form ¢ even - scalar
untwisted 1-form A, E odd polar vector
untwisted 2-form B even axial vector
twisted l-form H, M even axial vector
twisted 2-from D, P, J odd polar vector
twisted 3-form R even - scalar

Table 2. Electromagnetic field quantities as twisted and untwisted n-forms

5.4 Parity

Parity is the eigenvalues for a spatial inversion transformation. It takes p = £1 depending on
the types of quantities. The quantity with eigenvalue of +1 (—1) is called having even (odd)
parity. In the three dimensional case, the spatial inversion can be provided by simply flipping
the basis vectors; Pe; = —e; (i = 1,2,3). The dual basis covectors are also flipped; anj = —n;
(7=1,23).

A scalar (0-form) ¢ is even because P¢p = ¢. The electric field E is a 1-form and transforms as

PE = 'P(Z Eini) = ZE,{Pni = — ZEin,’ = —E, (43)
i i i

and, therefore, it is odd. The magnetic flux density B is a 2-form and even since it transforms
as

PB = T(Z Bl-]-nl- A\ n]) = Z Bi]-ani A ﬂ’n] =B. (4:4)
) (i)
It is easy to see that the parity of an n-formsis p = (—1)".

The volume form is transformed as
PE = P(Viggng Ay Ang) = —Vip3Pny APy APng = E. (45)

The additional minus sign is due to the change in the orientation of basis. If ¥ € C, then
PX € C', and vice versa. The twisted 3-form has even parity. In general, the parity of a twisted
n-formis p = (—1)("+1),

In the conventional vector-scalar formalism, the parity is introduced rather empirically. We
have found that 1-forms and twisted 2-forms are unified as polar vectors, 2-forms and twisted
1-forms as axial vectors, and 0-forms and twisted 3-forms as scalars. Thus we have unveiled
the real shapes of electromagnetic quantities as twisted and untwisted n-forms.

6. Relativistic formulae
6.1 Metric tensor and dual basis

Combining a three dimensional orthonormal basis {e;,ep,e3} and a unit vector e
representing the time axis, we have a four-dimensional basis {eg, e, ez, e3}. With the basis,
a four (tangential) vector can be written

x = (cot)eg + xex + yey + ze3 = x%e,, (46)
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where the summation operator Ei:o is omitted in the last expression according to the
Einstein summation convention. The vector components are represented with variables with
superscripts. The sum is taken with respect to the Greek index repeated once as superscript
and once as subscript. With the four-dimensional basis, the Lorentz-type inner product can be
represented as

(x2) = —(cot)* + 2% + 47 + 2 = 2P (en, ) = x*guprf = xp2P, 47)
where we set x5 = x"g,5 and (eq, eg) = gup With gup = 0 (a # B), —g00 = gii = 1 (1 =1,2,3).

We introduce the corresponding dual basis as {e0,e!,e2, e} with el - e, = dl), where 8} = 0
(u #v), (58 = 6; = 1( = 1,2,3). The dual basis covector has a superscript, while the
components have subscripts. A four covector can be expressed with the dual basis as

a = age”. (48)
Then the contraction (by dot product) can be expressed systematically as
a-x=ae" -xﬁeﬁ = guxP e® eg = aaxﬁég = a,x". (49)

We note that the dual and the inner product (metric) are independent concepts. Especially the
duality can be introduced without the help of metric.

Customary, tensors which are represented by components with superscripts (subscripts) are
designated as contravariant (covariant) tensors. With this terminology, a vector (covector) is a
contravariant (covariant) tensor.

The symmetric second order tensor g = g,pe" eP is called a metric tensor. Its components are
-1 (a=p=0)
Ssp=91 (a=p#0) . (50)

0  (other cases)

For a fixed four vector z, we can find a four covector a = a ﬁeﬁ that satisfy
a-x=(zx) (51)

for any x. The left and right hand sides can be written as

a-x= a,gx”‘eﬁ ey = a/gx"‘é,f = aﬁxﬁ,
(2.2) = 258 (ea,05) = 2 gup, 62

respectively. By comparing these, we obtain ag = z"g,5. We write this covector a determined
by z as

a=z' = z”‘gweﬁ = z/;eﬁ, (53)
which is called the conjugate of z. We see that (eg)T = —ef, (ei)T =¢ (i =1,23),1ie,
(ea)” = gwel3 1. With ¢*P = (e*,eP), the conjugate of a covector a can be defined similarly

with z% = g”‘ﬂaﬁ asz=a'.

! An equation e, = g, ﬂeﬁ , which we may write carelessly, is not correct.
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Wehave (z')" =z (a')" = a, namely, ' = 1.

We introduce the four dimensional completely anti-symmetric tensor of order 4 as
e=eNel nePne?
= e,,‘ﬁnﬂge"‘eﬁﬂe’s. (54)
The components €,4,5, which are called the Levi-Civita symbol2 can be written explicitly as
1 (xByé is an even permutation of 0123)

€xpys = | —1 (an odd permutation) . (55)
0  (other cases)

We note that
QT _ (eO)T A (el)T A (EZ)T A (33)T
= (—eg) Ney Nex Nes

o
€uprs8™t' 8P 8178 e e e0er
= e e e eqer, (56)

where we introduced, /"7 = €,p,,¢"" gPvg17goT,

The conjugate of the metric tensor is given by
ET = gtxﬁ@a)—r(eﬁ)—r = gtxﬁgw‘gﬁveyev = gweyev- (57)

6.2 Levi-Civita symbol

Here we will confirm some properties of the completely anti-symmetric tensor of order 4.
From the relation between covariant and contravariant components

eaﬁ'y& _ gaygﬁvg'y(rgérewan (58)

0123 _

0= = —ep1p3 and similar relations hold for other components.

—1, we see that €
0123 _ 1.

and g
Here we note €

With respect to contraction, we have

ePreups = —24 (= —4!) )
e, o = —68 (60)
P10y = —2(516 — 5158) = —40] &) o
R (62)

where [} in the subscript represents the anti-symmetrization with respect to the indices. For
example, we have A,gB,| = (AupBy + ApyBu + AyaBg — ApyBy — AypBa — AuyBp)/6. We
note AAB = AlxﬁBye"‘ NeP Ner = 6A[aﬁBﬂe"‘eﬁe7.

2 In the case of three dimension, the parity of a permutation can simply be discriminated by the cyclic or

anti-cyclic order. In the case of four dimension, the parity of 0ijk follows that of ijk and those of i0jk,
ijOk, ijk0 is opposite to that of ijk.
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6.3 Hodge dual of anti-symmetric 2nd-order tensors

The four-dimensional Hodge dual (xA),g of a second order tensor A, is defined to satisfy

1 v
(fA)[uc/SB'yé] = E(AV B}lv)etxﬁv&r (63)

for an arbitrary tensor B, of order (d — 2) (Flanders (1989)). This relation is independent of
the basis 3.

Here, we will show that

1

(EA)IX[% = Ee"‘ﬁ

" Ay (64)
Substituting into the left hand side of Eq. (63) and contracting with e*f7°, we have

1 ,
€102 Apvey, j By = 3610, M Ay Brg = 36" ey AP BLs = —12A7°Bos. (65)

B

With Eq. (59), the right hand side of Eq. (63) yields —12A*" B, with the same contraction. We
also note

1 5 1
(£%A)op = Zeaﬁv € A = Zfﬂﬁwew” Au
1 1
= 5 (0480 = 800 A = =5 (Aup — Apa) = —Aup, (66)
i.e., *x = —1, which is different from the three dimensional case; *x = 1.

7. Differential forms in Minkowski spacetime
7.1 Standard formulation

According to Jackson’s textbook (Jackson (1998)), we rearrange the ordinary scalar-vector
form of Maxwell’s equation in three dimension into a relativistic expression. We use the SI
system and pay attention to the dimensions. We start with the source equations

9
— = . = cpo. 7
V xH 3(cof) (coD) =7, V-(coD) = cp0 (67)
Combining field quantities and differential operators as four-dimensional tensors and vectors
as

0 CoDx CoDy C()DZ

(G,X‘B): —C()Dx 0 H, —Hy
—coDy —H, 0  Hy

—coD; Hy —Hyx 0

X A/m, (68)

3 With the four-dimensional volume form ¢ = 9 A el A €2 A €3, the Hodge dual for p form (p = 1,2,3)
can be defined as (xA) AB = (A, B)¢, (xA) AB = (A B)¢, and (xA) AB = (A B)€. The inner
product for p forms is defined as (a1 A --- Aay, by A--- Aby) = det(a;, b;). (Flanders (1989))
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¢y 0 coQ
. ax s Fooy ]x st 2
0z Jz

we have a relativistic equation
5GP = G“ﬁ,ﬁ - j® (70)

We append “~”, by the reason described later. The suffix 0 represents the time component,
and the suffixes 1,2, 3 correspond to x, y, z-components. The commas in suffixes “,” means the
derivative with respect to the following spatial component, e.g., Hy 1 = (9/0x1)Hy.

On the other hand, the force equations

0
VXE+ 5 s(@B) =0, V- (cB) =0, 71)

are rearranged with

'"0(13 _ _COBX O _Ez E]/ EJ
(F ) - _COBy E, 0 —E, V/m, (72)
_COBZ —Ey Ex 0
as
opEP = F*P 5 =0. (73)

Thus the four electromagnetic field quantities E, B, D, and H are aggregated into two second
order, antisymmetric tensors Fap GoB,

In vacuum, the constitutive relations D = ¢oE, H = p, 1B hold, therefore, these tensors are
related as

G =Yo(«F)", or P =—7(xG)*P, (74)

where Zg = 1/Yy = \/Ho/ €0 2 Q is the vacuum impedance.

The operator * is the four-dimensional Hodge’s star operator. From Eq. (64), the action for a
2nd-order tensor is written as

(fA)ij — AOk, (iA)Oi _ _Ajk, (75)

where i, j, k (i,j = 1,2,3) are cyclic. We note that xx = —1, i.e., *~1 = —x holds.

Equation (74) is a relativistic version of constitutive relations of vacuum and carries two roles.
First it connect dimensionally different tensors G and F with the vacuum impedance Zj.
Secondly it represents the Hodge’s dual relation. The Hodge operator depends both on the
handedness of the basis* and the metric.

* We note €apys 15 a pseudo form rather than a form. Therefore, the Hodge operator makes a form into a
pseudo form, and a pseudo form into a normal form.
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Finally, the Maxwell equations can be simply represented as
9GP =T, 9gFP =0, G =Yy(«F)"P. (76)

This representation, however, is quite unnatural in the view of two points. First of all, the
components of field quantity should be covariant and should have lower indices. Despite of
that, here, all quantities are contravariant and have upper indices in order to contract with
the spatial differential operator d, with a lower index. Furthermore, it is unnatural that in
Egs. (68) and (72), D and B, which are 2-forms with respect to space, have indices of time and
space, and E and H have two spatial indices.

The main reason of this unnaturalness is that we have started with the conventional,
scalar-vector form of Maxwell equations rather than from those in differential forms.
7.2 Bianchi identity

In general textbooks, the one of equations in Eq. (76) is further modified by introducing a
covariant tensor Fyg = %6“/375137‘5 . Solving it as b = f%e"‘ﬁW‘st and substituting into
Eq. (73), we have

0 = 9geP1°F s = e*F1°94F 5. (77)
Considering « as a fixed parameter, we have six non-zero terms that are related as
0 = dg(F,s — Fsy) + 04 (Fsp — Fgs) + 95(Fg,, — Fyp)
—2 (aﬁpﬂS + 3y Fsp + agpﬁﬂ,) (B,7,6=0,...,3). (78)

Although there are many combinations of indices, this represents substantially four equations.
To be specific, we introduce the matrix representation of F,g as

0 —Ex —-E, -E

_|Ex O coBz —coBy
(Fep) = |E, —coB. 0 coBy
EZ COBy _COBx O

(79)

Comparing this with G*f in Eq. (68) and considering the constitutive relations, we find that
the signs of components with indices for time “0” are reversed. Therefore, with the metric
tensor, we have

G = Ypg" g F 5 = YoF?P. (80)

Substitution into Eq. (70) yields Yo F*P = J*_ Afterall, relativistically, the Maxwell equations
are written as

9pF*P = ZyJ*, 0uFpy + 0Fya + 0, Fyp = 0. (81)

Even though this common expression is simpler than that for the non relativistic version,
symmetry is somewhat impaired. The covariant and contravariant field tensors are mixed.
The reason is that the constitutive relations, which contains the Hodge operator, is eliminated.
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7.3 Differential forms

Here we start with the Maxwell equations (31) in three-dimensional dlfferentlal forms. We
introduce a basis {eg, e, €2, e3}, and the correspondmg dual basis {e%, e!,e?, €3}, ie., el - e, =
o', With G = e A H + ¢oD, J =N (=))+ R, and V = < 18te 4 V, the source
equations

0
VAH- ac ()t) (C()D) J, V/\(COD) =R, (82)

are unified as

VAG=J, (83)

where A represent the anti-symmetric tensor product or the wedge product. In components,
Eq. (83)is

a[“r Gaﬁ] aﬁ 7] = Japy /3. (84)

The tensor G, can be written as

0 H, Hy H,
o _|-Hx 0  ¢D: —coDy
(Gaﬂ) =(G: eaeﬁ) = —Hy —coD; 0 coDx
—H; ¢Dy —cogDx 0

(85)

The covariant tensors (forms) G, and J,4, are related to G* and J¥ in the previous subsection
as

1 ~ - ~ 1 -
GIX,B = 56“1575(;75/ ]Ixﬁ’Y = *elxﬁyé]&, or Ga‘B = 7§€aﬁ’wsc’)/5/ ]0( = W,B'75]ﬁ - (86)

Similarly,

V AE+ (coB) =0, WV A(coB) =0, (87)

d
d(cot)
can be written as

VAFE = (88)

with F = €% A (—E) + cgB. In components,

Iy Fup) = Flapny) = 0, (89)
where

O —Ex —Ey _EZ

_ ) _ Ex 0 coB; —COBy

(Fup) = (E: eaep) = Ey —coB; 0 ¢oBx
E, CQBy —cpByx 0

(90)

The covariant tensor (form) F,g is related to E*P in the previous subsection as
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twisted/untwisted = order  quantities

untwisted I-form V= ¢e¥ +co(—A)
untwisted 2-form  F = e’ A (—E)+coB
twisted 2-form G =e’ AH+cyD
twisted 2-form | =% A (=M) +coP
twisted 3-form  J =€’ A(—J)+coR
Table 3. Four dimensional electromagnetic field quantities as twisted and untwisted n-forms
1 o - 1 .gvs
Fup = s€uproF?, or, Jal g —56"‘/57 Fys. (91)

The Hodge operator acts on a four-dimensional two form as
2 NX+Y) = A(=(+Y)) + (+X) = & A (-Y) + X, (92)

where X and Y are a three-dimensional 1-form and a three-dimensional 2-form, and * is the
three-dimensional Hodge operator®. Now the constitutive relations D = eo(+E) and H =
Ho L(+B) are four-dimensionally represented as

G =-Yy(xF), or F=2Zy(xG). (93)
With components, these are represented as
szﬁ = _YO(EP)a‘Br or thﬁ = Zo(fG)“ﬁ, (94)

with the action of Hodge’s operator on anti-symmetric tensors of rank 2:

1 5 1
(EA)a/B = Ee,x/g’y A’y& = EgtxygﬁvewwA'y(S' (95)
Now we have the Maxwell equations in the four-dimensional forms with components:
a[,\rGaﬁ] = Lxﬁ'y/3/ 8[71?“/5] = O, F“,B = ZO (EG)aﬁ/ (96)
and in basis-free representations:

VAG=J, VANF=0, F=2Zy(xG), ©7)

or

dG=J, dF =0, F=Zy(xG). 98)

A 7 L

with the four-dimensional exterior derivative d_, = V A _. These are much more elegant and
easier to remember compared with Egs. (76) and (81). A similar type of reformulation has
been given by Sommerfeld (Sommerfeld (1952)).

% We note the similarity with the calculation rule for complex numbers: i(X +iY) = —Y +iX. If we can
formally set as G = H +icoD and F = —E + icyB, we have G = —iYyF and H = iZ,G.
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7.4 Potentials and the conservation of charge
We introduce a four-dimensional vector potential V = ¢e® + co(—A), i.e.,
(Vo) = (V- en)
= (¢, —coAx, —CoAy, —CoAz). (99)
Thenwehave VAV = —F, or
01 V) = —Fap/2, (100)

which is a relation between the potential and the field strength. Utilizing the potential, the
force equation becomes very trivial,

0=VA(VAV)=VAF, (101)

since VAV = 0ordd = 0 holds.

The freedom of gauge transformation with a 0-form A can easily be understood; V' = V + dA
gives no difference in the force quantities, i.e., F/ = F. A similar degree of freedom exist for
the source fields (Hirst (1997)). With a 1-form L, we define the transformation G’ = G + dL,
which yields J' = J.

The conservation of charge is also straightforward;

0=VAVAG=VAJ

= AR+ V AJ). (102)

7.5 Relativistic representation of the Lorentz force

Changes in the energy E and momentum p of a charged particle moving at velocity # in an
electromagnetic field are

dE

a:qE'u,
(jl—i’ =qgE+u x B. (103)

By introducing the four dimensional velocity u* = [co'y, Uy, Uy, uz] , and the four dimensional
momentum p, = [—E /€0, Pxs Py, pz] , we have the equation of motion

d
% — qFaﬁu;B’ (104)

where dt = dt/7 the proper time of moving charge, and v = (1 — u?/c3) /2 is the Lorentz
factor. The change in action AS can be written

AS = puAx" = —EAt+ p- Ax. (105)
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F quantities S quantities
V= (/)eo — oA
ld Yo
Ez—eOAE+COB — % — QzeOAH+coD

1d Zy 1d

0 J=—-e"ANJ+cR
id
0

Fig. 2. Relations of electromagnetic field forms in four dimension

(ZOG"‘ﬁ :)ﬁaﬁ Gaﬁ(: yopﬂtﬁ)

A

g'e’

*
Fg T G
—%

Fig. 3. Various kinds of tensors of order 2 used in the relativistic Maxwell equations

7.6 Summary for relativistic relations

In Fig. 2, the relativistic quantities are arranged as a diagram, the rows of which correspond
to the orders of tensors (n = 1,2,3,4). In the left column, the quantities related to the
electromagnetic forces (F quantities), and in the right column, the quantities related to the
electromagnetic sources (S quantities) are listed. The exterior derivative “d” connects a pair
of quantities by increasing the tensor order by one. These differential relations correspond
to the definition of (scalar and vector) potentials, the Maxwell’s equations, and the charge
conservation (See Fig. 1). Hodge’s star operator “x” connects two 2-forms: F and G. This
corresponds to the constitutive relations for vacuum and here appears the vacuum impedance

Zy = 1/Y) as the proportional factor.

In Fig. 3, various kinds of tensors of order 2 in the relativistic Maxwell equations and their
relations are shown. The left column corresponds to the source fields (D, H), the right column
corresponds to the force fields (E, B). Though not explicitly written, due to the difference in
dimension, the conversions associate the vacuum impedance (or admittance). “€” and “glr
represent the conversion by Levi-Civita (or by its conjugate), “x” represents the conversion by
Hodge’s operator. Associated with the diagonal arrows, “g ' g"”, and “gg” represent raising

and lowering of the indices with the metric tensors, respectively. The tensors in the upper row
are derived from the scalar-vector formalism and those in the lower row are derived from the
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differential forms. In order to avoid the use of the Hodge operator, the diagonal pair Fyg, Fop
(= ZoG"P) are used conventionally and the symmetry is sacrificed.

8. Conclusion

In this book chapter, we have reformulated the electromagnetic theory. First we have
confirmed the role of vacuum impedance Z; as a fundamental constant. It characterizes
the electromagnetism as the gravitational constant G characterizes the theory of gravity. The
velocity of light cg in vacuum is the constant associated with space-time, which is a framework
in which electromagnetism and other theories are constructed. Then, Zj is a single parameter
characterizing electromagnetism, and ey = 1/(Zgcg) and pg = Zy/ ¢ are considered derived
parameters.

Next, we have introduced anti-symmetric covariant tensors, or differential forms, in order to
represent EM field quantities most naturally. It is a significant departure from the conventional
scalar-vector formalism. But we have tried not to be too mathematical by carrying over the
conventional notations as many as possible for continuous transition. In this formalism, the
various field quantities are defined through the volume form, which is the machinery to
calculate the volume of parallelepipedon spanned by three tangential vectors. To be precise,
it is a pseudo (twisted) form, whose sign depends on the orientation of basis.

Even though the constitutive relation seems as a simple proportional relation, it associates
the conversion by the Hodge dual operation and the change in physical dimensions by the
vaccum impedance. We have found that this non-trivial relation is the keystone of the EM
theory.

The EM theory has the symmetry with respect to the space inversion, therefore, each field
quantity has a definite parity, even or odd. We have shown that the parity is determined by
the tensorial order and the pseudoness (twisted or untwisted).

The Maxwell equations can be formulated most naturally in the four dimensional space-time.
However, the conventional expression with tensor components (with superscripts or
subscripts) is somewhat abstract and hard to read out its geometrical or physical meaning.
Moreover, sometimes contravariant tensors are introduced in order to avoid the explicit use
of the Hodge dual with sacrificing the beauty of equations. It has been shown that the
four-dimensional differential forms (anti-symmetric covariant tensors) are the most suitable
tools for expressing the structure of the EM theory.

The structured formulation helps us to advance electromagnetic theories to various areas. For
example, the recent development of new type of media called metamaterials, for which we
have to deal with electric and magnetic interactions simultaneously, confronts us to reexamine
theoretical frameworks. It may also be helpful to resolve problems on the electromagnetic
momentum within dielectric media.
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1. Introduction

Standard electromagnetism is based on Maxwell equations and Lorentz force law. It can be
derived by a least action with the following Lagrangian density for a system of charged
particles in Gaussian units (e.g., Jackson, 1999),

Lems=Lem+Lem p+Lp=-(1/ (16m))[(1/ 2)1*kni-(1/ 2)ninK] FiiFu-Agk-Zimil (ds1) / (dt)16(x-x1), (1)

where F;; = A;; - A;j is the electromagnetic field strength tensor with A; the electromagnetic 4-
potential and comma denoting partial derivation, #i is the Minkowskii metric with signature
(+, - - -), m; the mass of the Ith charged particle, s; its 4-line element, and j* the charge 4-
current density. Here, we use Einstein summation convention, ie.,, summation over
repeated indices. There are three terms in the Lagrangian density Lems - (i) Lem for the
electromagnetic field, (ii) Leap for the interaction of electromagnetic field and charged
particles and (iii) Lp for charged particles.

The electromagnetic field Lagrangian density can be written in terms of the electric field E [=
(E1, E,, Es) = (F01, Foo, Fos)] and the magnetic induction B [E (B1, By, Bs) = (F32, Fi3, Fz])] as

Lea = (1/8m)[E-B2). ?)

This classical Lagrangian density is based on the photon having zero mass. To include the
effects of nonvanishing photon mass o, @ mass term Lpyoca,

Lproca = (mphutonzcz/ 8Hh2) (AkAk)/ (3)
needs to be added (Proca, 1936a, 1936b, 1936c, 1937, 1938). We use #i and its inverse #; to raise
and lower indices. With this term, the Coulomb law is modified to have the electric potential Ay,

Ao =qlerr/r), @)

where g is the charge of the source particle, r is the distance to the source particle, and p
(Empnotonc/h) gives the inverse range of the interaction.
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Experimental test on Coulomb’s law (Williams, Faller & Hill, 1971) gives a constraint of the
photon mass as

Mynoton < 1014 eV (= 2 x 1047 g), )

on the interaction range p! as

p122 %107 m. ©6)

Photon mass affects the structure and the attenuation of magnetic field and therefore can be
constrained by measuring the magnetic field of Earth, Sun or an astronomical body
(Schrodinger, 1943; Bass & Schrodinger, 1955). From the magnetic field measurement of
Jupiter during Pioneer 10 flyby, constraints are set as (Davis, Goldhaber & Nieto, 1975)

Myhoton <4 X 1016 eV (=7 x 1049 g); p1 25 x 108 m. (7)

Using the plasma and magnetic field data of the solar wind, constraints on the photon mass
are set recently as (Ryutov, 2007)

Mpjoton < 1018 @V (= 2 x 1051 g); -1 2 2 x 1011 m. ®)

Large-scale magnetic fields in vacuum would be direct evidence for a limit on their
exponential attenuation with distance, and hence a limit on photon mass. Using
observations on galactic sized fields, Chibisov limit is obtained (Chibisov, 1976)

Mphoton <2 X 1027 eV (=4 x 1040 g); 11 21020 m. 9)

For a more detailed discussion of this work and for a comprehensive review on the photon
mass, please see Goldhaber and Nieto (2010).

As larger scale magnetic field discovered and measured, the constraints on photon mass and
on the interaction range may become more stringent. If cosmic scale magnetic field is
discovered, the constraint on the interaction range may become bigger or comparable to
Hubble distance (of the order of radius of curvature of our observable universe). If this
happens, the concept of photon mass may lose significance amid gravity coupling or
curvature coupling of photons.

Now we turn to quantum corrections to classical electrodynamics. In classical
electrodynamics, the Maxwell equations are linear in the electric field E and magnetic field
B, and we have the principle of superposition of electromagnetic field in vacuum. However,
in the electrodynamics of continuous matter, media are usually nonlinear and the principle
of superposition of electromagnetic field is not valid. In quantum electrodynamics, due to
loop diagrams like the one in Fig. 1, photon can scatter off photon in vacuum. This is the
origin of invalidity of the principle of superposition and makes vacuum a nonlinear
medium also. The leading order of this effect in slowly varying electric and magnetic field is
derived in Heisenberg and Euler (1936) and can be incorporated in the Heisenberg-Euler
Lagrangian density

LiHeisenberg-Euler = [2a2h’ / 45(4m)2m4co][(E2-B2)2 + 7(E-B)2], (10)

where a is the fine structure constant and m the electron mass. In terms of critical field
strength B. defined as
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Bc = Ec = m2c3/eh =4.4x108 G=4.4x10° T=4.4x108 statvolt/cm=1.3x1018 V/m, (11)

this Lagrangian density can be written as
Liteisenterg-Euter = (1/811) Bo2 [171(E2-B2)2 + 4112(E-B)?2], (12)
1 = a/(45m) = 5.1x10° and 1, = 7a/ (180m) = 9.0 x10-5. (13)

For time varying and space varying effects of external fields, and higher order corrections in
quantum electrodynamics, please see Dittrich and Reuter (1985) and Kim (2011a, 2011b) and

references therein.

Fig. 1. On the left is the basic diagram for light-light scattering and for nonlinear
electrodynamics; on the right is the basic diagram for the nonlinear light (electromagnetic-
wave) propagation in strong electric and/or magnetic field.

Before Heisenberg & Euler (1936), Born and Infeld (Born, 1934; Born & Infeld, 1934)
proposed the following Lagrangian density for the electromagnetic field

LBorn—Infeld = '(b2/4l'l) [1 - (E2_B2)/b2 - (E.B)Z/b4]1/2’ (14)

where b is a constant which gives the maximum electric field strength. For field strength
small compared with b, (14) can be expanded into

Lgorn-tnfela = (1/8m) [(E2-B2) + (E2-B2)2/b2 + (E-B)2/b2 + O(b4)]. (15)

The lowest order of Born-Infeld electrodynamics agrees with the classical electrodynamics.
The next order corrections are of the form of Eq. (12) with

M =12=B2/b2 (16)

In the Born-Infeld electrodynamics, b is the maximum electric field. Electric fields at the
edge of heavy nuclei are of the order of 1021 V/m. If we take b to be 1021 V/m, then, 1 =112 =
5.9 x 106.

For formulating a phenomenological framework for testing corrections to Maxwell-Lorentz
classical electrodynamics, we notice that (E2-B2?) and (E-B) are the only Lorentz invariants
second order in the field strength, and (E2-B2)?, (E-B)2 and (E2-B2) (E-B) are the only Lorentz
invariants fourth order in the field strength. However, (E-B) is a total divergence and, by
itself in the Lagrangian density, does not contribute to the equation of motion (field
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equation). Multiplying (E-B) by a pseudoscalar field @, the term ®(E-B) is the Lagrangian
density for the pseudoscalar-photon (axion-photon) interaction. When this term is included
together with the fourth-order invariants, we have the following phenomenological
Lagrangian density for our Parametrized Post-Maxwell (PPM) Lagrangian density including
various corrections and modifications to be tested by experiments and observations,

Lopw = (1/80){(E-B2)+{D(E-B)+Be2l (B2 +4(E- B+ 25(E-BY(EB)].  (17)

This PPM Lagrangian density contains 4 parameters & 71, #2 & 13, and is an extension of the
two-parameteer (11 and 75) post-Maxwellian Lagrangian density of Denisov, Krivchenkov
and Kravtsov (2004). The manifestly Lorentz covariant form of Eq. (17) is

Lepm = (1/(32m)){-2FFyy -SOF* I Fq+Bc2[11(FK ) 2+ 12 F*K )2+ na(EXE) (F4iFy)]},  (18)
where
F*i = (1/2)ei Fy, (19)
with eiikl defined as

ekl = 1 if (ijkl) is an even permutation of (0123); -1 if odd; 0 otherwise. (20)

In section 2, we derive the PPM nonlinear electrodynamic equations, and in section 3, we
use them to derive the light propagation equation in PPM nonlinear electrodynamics. In
section 4, we discuss ultra-high precision laser interferometry experiments to measure the
parameters of PPM electrodynamics. In section 5, we treat electromagnetism in curved
spacetime using Einstein Equivalence Principle, and discuss redshift as an application with
examples from astrophysics and navigation. In section 6, we discuss empirical tests of
electromagnetism in gravity and the x-g framework and find pseudoscalar-photon
interaction uniquely standing out. In section 7, we discuss the pseudoscalar-photon
interaction and its relation to other approaches. In section 8, we use Cosmic Microwave
Background (CMB) observations to constrain the cosmic polarization rotation and discuss
radio galaxy observations. In section 9, we present a summary and an outlook briefly.

2. Equations for nonlinear electrodynamics

In analogue with the nonlinear electrodynamics of continuous media, we can define the
electric displacement D and the magnetic field H as follows:

D=411(8Lppry/OE)=[1+211(E2-B2)B,2+213(E-B)B 2| E+[D+472(E-B) B 2+15(E-B2)B2]B, (21)

H=-411(3Lpppy/dB)=[1+2171 (E2-B2)B.2+2175(E-B) B2 B-[ D+417,(E-B)B-2+15(E-B2)B2JE.  (22)

From D & H, we can define a second-rank G;; tensor, just like from E & B to define F;; tensor.
With these definitions and following the standard procedure in electrodynamics [see, e.g.,
Jackson (1999), p. 599], the nonlinear equations of the electromagnetic field are

curlH=(1/c)dD/ot + 4], (23)

div D =4mp, (24)
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curl E=-(1/c) 6B/ dt, (25)
divB =0. (26)

We notice that it has the same form as in macroscopic electrodynamics. The Lorentz force
law remains the same as in classical electrodynamics:

A[(1-v2/ ) V/2mpvi] /dt = g[E + (1/c)v; x B] 27)

for the I-th particle with charge gr and velocity v; in the system. The source of @ in this
system is (E-B) and the field equation for @ is

6L/ 8(3iD) - 8Lo/ D= E-B, (28)

where Lo is the Lagrangian density of the pseudoscalar field @.

3. Electromagnetic wave propagation in PPM electrodynamics

Here we follow the previous method (Ni et al., 1991; Ni, 1998), and separate the electric field
and the magnetic induction field into the wave part (small compared to external part) and
external part as follows:

E = Ewave + Eext’ (29)

B = Bwave + Bext, (30)

We use the following expressions to calculate the displacement field Dwave [= (Dwave,) =
(Dwavell Dwave, Dwaves)] and the magnetic field Hwave [= (Hwaveu) = (Hwavel, Hwave,, Hwaves)] of
the electromagnetic waves:

Dwave,= D, — Dext, = (4m)[(OLppm/ OEs)Eecs - (OLppm/ OEn)ext], 31)

Hwave, = H, - Hext, = - (411)[(Lppm/ 0Ba) £&B - (OLppMm/ OBa)ext, (32)

where (...) e means that the quantity inside paranthesis is evaluated at the total field
values E & B and (...)exx means that the quantity inside paranthesis is evaluated at the
external field values Eext & Bext,

Since both the total field and the external field satisfy Eqgs. (23)-(26), the wave part also
satisfy the same form of Egs. (23)-(26) with the source terms subtracted:

curl Hwave = (1/c) dDwave/dt, (33)
div Dwave = (), (34)
cur] Ewave = _(1/¢) gBwave /9, (35)
div Bwave = (. (36)

After calculating Dwave, and Hwave, from Egs. (31) & (32), we express them in the following
form:
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Dwave, = 3313 gqg EWavey + 33 Aop Bwavey, (37)
Hwave, = Fp_13 () qp Bwaveg - 3343 Ag, Ewavey, (38)

where
€ap=0cp[1+2171(E2-B2)B-2+21j3(E-B) B 2]+4111 E«EgB 2 +4172B (BB 2+ 213(EaBp+EpBa) B2, (39)
(1) ap=0p[1+2771(E2-B2) B -2+2175(E-B) B 2]-411BoBpB.2-412E o EpB 2+ 213(EaBp+EpBa) B2, (40)

Aap=8upE@+4172(E-B) B 2+13(E2-B2)B,2]-41)1 EoBpB 2+41,BaEpB2+213(EaEp+BaBg)B2, (41)

and we have dropped the upper indices ‘ext’ for simplicity. Note that the coefficients of
Bwaves in Eq. (37) is the negative transpose of the coefficients of Ewaves in Eq. (38) and vice
versa. This is a property derivable from the existence of Lagrangian. It is a reciprocity
relation; or simply, action equals reaction.

Using eikonal approximation, we look for plane-wave solutions. Choose the z-axis in the
propagation direction. Solving the dispersion relation for ®, we obtain

o=k {1+ (1/4) [(1+]2) £ [(Ji=]2)% + 4]V}, (42)
where
J1= () —en — 2h1, (43)
J2= ()i - e+ 2My, (44)
J=-en- (Dt A - An. (45)

Since the index of refraction n is

n=k/w, (46)

we find

ns=1- (1/4) {(Ji+]2)  [(=]2)? + 4212} (47)

From this formula, we notice that “no birefringence” is equivalent to J;=]; and J=0. A
sufficient condition for this to happen is #; = #j2, 113 = 0, and no constraint on ¢. We will show
in the following that this is also a necessary condition. The Born-Infeld electrodynamics
satisfies this condition and has no birefringence in the theory.

For Eext = 0, we now derive the refractive indices in the transverse external magnetic field
Bext for the linearly polarized lights whose polarizations (electric fields) are parallel and
orthogonal to the magnetic field. First, we use Egs. (39)-(41) & Egs. (43)-(46) to obtain

eap=0cp[1-2111B2B2]+4172B.BpB.2, (48)
(1) ap=0ap[1-211 B2B.2]-4171BaBB.2, 49)
Aap=Oup[p-173B2B.2] +2173B.BpB:2, (50)

J1 =-411B22B2 — 4112B12B2 — 4113B1B,B 2, (51)
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J2 =-4mB12B:2 — 4172B22B.2 + 4113B1B2B.2, (52)
J = 411B1B2B:2 — 4112B1B2B:2 + 213(B12-B2?2) B2 (53)
Using Eq. (47), we obtain the indices of refraction for this case:
ns=1+{(q1+n2) £ (717172 +112]"/%} (Br*+B2)Be2. (54)
The condition of no birefringence in Eq. (54) means that [(1:—172)2 +#32] vanishes, i.e.,

71 =12, 113 =0, and no constraint on ¢ (55)

This shows that Eq. (55) is a necessary condition for no birefringence. For Eext = 0, the
refractive indices in the transverse external magnetic field Bext for the linearly polarized
lights whose polarizations are parallel and orthogonal to the magnetic field, are as follows:

ny=1+{(+72) + [(1=172) +7:2]1/2} (Bex)2Be2 - (Ewave || Bex), (56)

ne=1+ {(171+772) - [(1/]1—;12)2 +7732]1/2} (Bext)2BC-2 (Ewave L Bext)' (57)

For Bext = 0, we derive in the following the refractive indices in the transverse external
electric field Eext for the linearly polarized lights whose polarizations (electric fields) are
parallel and orthogonal to the electric field. First, we use (39)-(41) & (43)-(46) to obtain

eap=Ocp[1+2111E2B. 2] +41 E«EpB.2, (58)
(1) ap=0cp[1+2171E2B2]-41EaEpB .2, (59)
Aap=8ag[@+113E2B:2] +213EEpB:2, (60)

J1 =41 E2B:2 = 4pEx2B 2 — 4i3E1E,B.2, (61)

J2 =-4mE»?B:2 — 412E12B.2 + 413E1E2B:2, (62)

] =-411E1E2B 2 + 4172E1E2B2 + 2173(E12-E22) B2 (63)

Using (47), we obtain the indices of refraction for this case:

=1+ {(11+172) + [(111=172)2 +1132]1/2} (E2+E2)B2. (64)

The condition of no birefringence in (64) is the same as (55), i.e., that [(1—72)? +13?]
vanishes. For Bext = (, the refractive indices in the transverse external magnetic field Eext for
the linearly polarized lights whose polarizations are parallel and orthogonal to the magnetic
field, are as follows:

ny=1+ {(1+12) + [(11-172)2 +1132]1/2} (Eex)2B -2 (Ewave" Eext), (65)

ne="1+ {(m+n2) - [(11=12)2 +1132]1/2} (Eext)2B-2  (Ewave L Eext), (66)

The magnetic field near pulsars can reach 1012 G, while the magnetic field near magnetars
can reach 10%5 G. The astrophysical processes in these locations need nonlinear
electrodynamics to model. In the following section, we turn to experiments to measure the
parameters of the PPM electrodynamics.
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4. Measuring the parameters of the PPM electrodynamics

There are four parameters 71, 12, #3, and § in PPM electrodynamics to be measured by
experiments. For the QED (Quantum Electrodynamics) corrections to classical
electrodynamics, #; = a/(45m) = 5.1x105, 2 = 7a/(180m) = 9.0 x10%, 13 = 0, and § = 0. There
are three vacuum birefringence experiments on going in the world to measure this QED
vacuum birefringence - the BMV experiment (Battesti et al., 2008), the PVLAS experiment
(Zavattini et al.. 2008) and the Q & A experiment (Chen et al., 2007; Mei et al., 2010). The
birefringence An in the QED vacuum birefringence in a magnetic field Bext is

An =nj-nr=4.0x102* (Bext/1T)2 (67)

For 2.3 T field of the Q & A rotating permanent magnet, An is 2.1 x 10-23. This is about the
same order of magnitude change in fractional optical path-length that ground
interferometers for gravitational-wave detection aim at. Quite a lot of techniques developed
in the gravitational-wave detection community are readily applicable for vacuum
birefringence detection (Ni et al., 1991).

B Photo Detector

Laser Polarizer Analyzer

Fig. 2. Principle of vacuum dichroism and birefringence measurement.

The basic principle of these experimental measurements is shown as Fig. 2. The laser light
goes through a polarizer and becomes polarized. This polarized light goes through a region
of magnetic field. Its polarization status is subsequently analyzed by the analyzer-detector
subsystem to extract the polarization effect imprinted in the region of the magnetic field.
Since the polarization effect of vacuum birefringence in the magnetic field that can be
produced on earth is extremely small, one has to multiply the optical pass through the
magnetic field by using reflections or Fabry-Perot cavities. An already performed
experiment, the BFRT experiment (Cameron et al., 1993) used multiple reflections; PVLAS,
Q & A, BMV experiments all use Fabry-Perot cavities. For polarization experiment, Fabry-
Perot cavity has the advantage of normal incidence of laser light which suppressed the part
of polarization due to slant angle of reflections. With Fabry-Perot cavity, one needs to
control the laser frequency and/or the cavity length so that the cavity is in resonance. With a
finesse of 30,000, the resonant width (FWHM) is 17.7 pm for light with 1064 nm wavelength;
when rms cavity length control is 10 % of this width, the precision would be 2.1 pm. Hence,
one needs a feedback mechanism to lock the cavity to the laser or vice versa. For this, a
commonly used scheme is Pound-Drever-Hall method (Drever et al., 1983). Vibration
introduces noises in the Fabry-Perot cavity mirrors and hence, in the light intensity and light
polarization transmitted through the Fabry-Perot cavity. Since the analyzer-detector
subsystem detects light intensity to deduce the polarization effect, both intensity noise and
polarization noise will contribute to the measurement results. Gravitational-wave
community has a long-standing R & D on this. We benefit from their research
advancements.
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Now we illustrate with our Q & A experiment. Since 1991 we have worked on precision
interferometry --- laser stabilization schemes, laser metrology and Fabry-Perot
interferometers. With these experiences, we started in 1994 to build a 3.5 m prototype
interferometer for measuring vacuum birefringence and improving the sensitivity of axion
search as part of our continuing effort in precision interferometry. In 2002, we finished
Phase I of constructing the 3.5 m prototype interferometer and made some Cotton-Mouton
coefficient and Verdet coefficient measurements with a 1T electromagnet (Wu et al., 2002).
The two vacuum tanks shown on the left photo of Fig. 3 house the two 5 cm-diameter
Pabry-Perot mirrors with their suspensions; the 1T electromagnet had been in place of
permanent magnet in the middle of the photo.

Fig. 3. Photo on the left-hand side shows the Q & A apparatus for Phase II experiment;
photo on the right-hand side shows the Q & A apparatus for Phase III experiment.

Starting 2002, we had been in Phase II of Q & A experiment until 2008. The results of Phase
IT on dichroism and Cotton-Mouton effect measurement had been reported (Chen et al.,
2007; Mei et al. 2009). At the end of Phase II, our sensitivity was still short from detection of
QED vacuum birefringence by 3 orders of magnitude; so was the PVLAS experiment and
had been the BFRT experiment. In 2009, we started Phase III of the Q & A experiment to
extend the 3.5 m interferometer to 7 m with various upgrades. Photo on the left of Fig. 3
shows the apparatus for Phase II; photo on the right side of Fig. 3 shows the apparatus for
Phase III, with the big (front) tank moved further to the front (out of the photo). The laser
has been changed to 532 nm wavelength and is located next and beyond the front tank. We
have installed a new 1.8 m 2.3 T permanent magnet (in the middle to bottom of right side
photo) capable of rotation up to 13 cycles per second to enhance the physical effects. We are
working with 532 nm Nd:YAG laser as light source with cavity finesse around 100,000, and
aim at 10 nrad(Hz)1/2 optical sensitivity. With all these achieved and the upgrading of
vacuum, for a period of 50 days (with duty cycle around 78 % as performed before) the
vacuum birefringence measurement would be improved in precision by 3-4 orders of
magnitude, and QED birefringence would be measured to 28 % (Mei et al., 2010). To
enhance the physical effects further, another 1.8 m magnet will be added in the future.

All three ongoing experiments - PVLAS, Q &A, and BMV - are measuring the birefringence
An, and hence, #1-72 in case 73 is assumed to be zero. To measure #; and 7, separately, one-
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arm common path polarization measurement interferometer is not enough. We need a two-
arm interferometer with the paths in two arms in magnetic fields with different strengths (or
one with no magnetic field).

To measure 73 in addition, one needs to use both external electric and external magnetic
field. One possibility is to let light goes through strong microwave cavity and interferes.
Suppose light propagation direction is the same as the microwave propagation direction
which is perpendicular to the microwave fields. Let’s choose z-axis to be in the propagation
direction, x-axis in the Eext direction and y-axis in the Bext direction, i.e., k = (0, 0, k), Eext = (E,
0, 0) and Bext = (0, B, 0). We calculate the indices of refraction using Egs. (39)-(47) without
first assuming E = B and obtain the following

eap: €11=1+2171(E2-B2) B-2+411 E2B 2; €20=1+21j1(E2-B2) B-2+412B2B 2
e33=1+211(E?-B2) B2 e1n=e21=213EBB2; e13=ex3=e31=€3,=0), (68)
(1) (11142 (B BB 2aE2B % () =142y (F-BAB -4 BB
(p1)33=1+2n1(E>-B%)B:2; (p)12=(p)21=213EBB: % (p)13=(p)2s=(p)13=(p1)23=0,  (69)

Aap: M1=8@+13(E2-B2)B2+213E2B 2 Ao=8p+13(E2-B2)B-2+213B2B.2%

A= n3(E%-BY)Be; Ay=-4miEBB.2 Ayy=41EBB.2 As=Apy=Asi=An=0, (70)
J1 = -4i1(E*+B2)B2+41mEBB. 2, 7

J2 = -411p(E*+B2)B2+41,EBB2, 72)

J = 25(E2BYB2, 7

ne="1+ (nr+n:)(E>+B-EB)B:2t [(n:-n2)(E2+B2-EB)2+1:2(E-BY)]1/2 B2 7

As a consistent check, there is no birefringence in Eq. (74) for 111 = 112, 13 = 0.

Now, we consider two special cases for Eq. (74): (i) E=B as in the strong microwave cavity,
the indices of refraction for light is

ns =1+ (n1+n2)B2B:2£(n1-n2)B2B:2, (75)
with birefringence An given by
An =2(n1-n2)B2B:%; (76)
(i) E=0, B#0, the indices of refraction for light is
ne =1+ (n1+n2)B2B2[(n1-n2)>+152]'/2B2B: 2, (77)
with birefringence An given by
An = 2[(n1-n2)*+132]1/2B2B 2, (78)
Equation (77) agrees with (54) derived earlier.
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To measure 71, 112 and 73, we could do the following three experiments to determine them:
(i) to measure the birefringence An = 2(11-172)B2B:2 of light with the external field provided
by a strong microwave cavity or wave guide to determine #;-1j,; (ii) to measure the
birefringence An = 2[(111-12)2+1352]*/2B2B.2 of light with the external magnetic field provided
by a strong magnet to determine #3 with #;-11, determined by (i); (iii) to measure 7; and 7
separately using two-arm interferometer with the paths in two arms in magnetic fields with
different strengths (or one with no magnetic field).

As to the term {@ and parameter ¢ it does not give any change in the index of refraction.
However, as we will see in section 7 and section 8, it gives a polarization rotation and the
effect can be measured though observations with astrophysical and cosmological
propagation of electromagnetic waves.

5. Electromagnetism in curved spacetime and the Einstein equivalence
principle

In the earth laboratory, where variation of gravity is small, we can use standard Maxwell
equations together with Lorentz force law for ordinary measurements and experiments.
However, in precision experiments on earth, in space, in the astrophysical situation or in
the cosmological setting, the gravity plays an important role and is non-negligible. In the
remaining part of this chapter, we address to the issue of electromagnetism in gravity and
more empirical tests of electromagnetism and special relativity. The standard way of
including gravitational effects in electromagnetism is to use the comma-goes-to-semicolon
rule, i. e., the principle of equivalence (the minimal coupling rule). This is the essence of
Einstein Equivalence Principle (EEP) which states that everywhere in the 4-dimensional
spacetime, locally, the physics is that of special relativity. This guarantees that the 4-
dimensional geometry can be described by a metric g; which can be transformed into the
Minkowski metric locally. In curved spacetime, 7 is replaced by g;; with partial derivative
(comma) replaced by the covariant derivative in the gj; metric (semi-colon) in the
Lagrangian density for a system of charged particles. When this is done the Lagrangian
density becomes

L= - (1/(16m))xcriM F;j Fyi - Axjk (-g)4/2 - Zymy (dsy) / (dt) 6(x-x1), (79)

where the GR (General Relativity) constitutive tensor ycri is given by

YcriM = (-9)1/2[(1/2) gk gi'- (1/2) g g¥], (80)

and g is the determinant of gj. In general relativity or metric theories of gravity where EEP
holds, the line element near a world point (event) P is given by

ds2 = gij dxi dxi = gap dxA dxB = [1ap + O((AxC)2)] dxA dxB, (81)

where {xi} is an arbitrary coordinate system, {x4} is a locally inertial frame, and g;; & gas
are the metric tensor in their respective frames. According to the definition of locally
inertial frame, we have gap = ap + O((AxC)?). Therefore, in the locally inertial system near
P, special relativity holds up to the curvature ambiguity, and the definition of rods and
clocks is the same as in the special relativity including local quantum mechanics and
electromagnetism.
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Nevertheless, for long range propagation and large-scale phenomenon, curvature effects are
important. For long range electromagnetic propagation, wavelength/frequency shift is
important. From distant quasars, the redshift factor z exceeds 6, i.e., the wavelength changes
by more than 6-fold. The gravitational redshift is given by

Ata/ At = goo(B)/ g0o(A), (82)

where Ars and Arp are the proper periods of a light signal emitted by a source A and
received by B respectively. This formula applies equally well to the solar system, to galaxies
and to cosmos. Its realm of practical application is in clock and frequency comparisons. In
the weak gravitational field such as near earth or in the solar system, we have

goo=1-2U/c?, (83)

in the first approximation, where U is the Newtonian potential. On the surface of earth, U/ c2
~ (.7 x 109 and the redshift is a fraction of it. This redshift is measured in the laboratory and
in space borne missions. It is regularly corrected for the satellite navigation systems such as
GPS, GLONASS, Galileo and Beidou. Another effect of electromagnetic propagation in
gravity is its deflection with important application to gravitational lensing effects in
astrophysics.

6. Empirical tests of electromagnetism in gravity and the y-g framework

In section 1, we have discussed the constraints on Proca part of Lagrangian density, i.e.,
photon mass. In this section, we discuss the empirical foundation of the Maxwell (main) part
of electromagnetism. First we need a framework to interpret experimental tests. A natural
framework is to extend the GR constitutive tensor ycri* [equation (80)] into a general form,
and look for experimental and observational evidences to test it to see how much it is
constrained to the GR form. The general framework we adopt is the y-¢ framework (Ni,
1983a, 1984a, 1984b, 2010).

The y-g framework can be summarized in the following interaction Lagrangian density

L= - (1/(16m))xi* F;j Fiy - Axjk (-g)/2 - Zymy (dsi) / (dt) 6(x-x1), (84)

where yikl = yXij = -yjil s a tensor density of the gravitational fields (e.g., g, ¢, etc.) or fields
to be investigated and F; = Aj; - A;; etc. have the usual meaning in classical
electromagnetism. The gravitation constitutive tensor density % dictates the behaviour of
electromagnetism in a gravitational field and has 21 independent components in general.
For general relativity or a metric theory (when EEP holds), yi is determined completely by
the metric g; and equals (-g)1/2[(1/2) g g - (1/2) g gi].

In the following, we use experiments and observations to constrain the 21 degrees of
freedom of yik to see how close we can reach general relativity. This procedure also serves
to reinforce the empirical foundations of classical electromagnetism as EEP locally is based
on special relativity including classical electromagnetism.

In the y-g framework, for a weak gravitational field,

kL =y O)ijkl + y(D)ijkd, (85)
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where

YOk = (1/2)niknil- (1/ 25, (86)

with #i the Minkowski metric and |y®Wik| << 1 for all i, j, k, and I The small special
relativity violation (constant part), if any, is put into the yWik's. In this field the dispersion
relation for @ for a plane-wave propagating in the z-direction is

02 = M1+(1/4)[(Ki+Ko) £ [(Ki-Ka)2 + 4 K2/, (87)
where

Ky =y(1)1010 - 24(1)1013 +(1)1313, (88)

Ky =y(02020 - 23(1)2023+1(1)2323, (89)

K =y{1)1020 - y(1)1023_/(1)1320-+1(1)1323, (90)

Photons with two different polarizations propagate with different speeds V, = wi/k and
would split in 4-dimensional spacetime. The conditions for no splitting (no retardation) is o+
=, 1.e.,

K1 = Kz, K= 0 (91)
Eq. (91) gives two constraints on the y(ik's (Ni, 1983a, 1984a, 1984b).

Constraints from no birefringence. The condition for no birefringence (no splitting, no
retardation) for electromagnetic wave propagation in all directions in the weak field limit
gives ten independent constraint equations on the constitutive tensor y#'s. With these ten
constraints, the constitutive tensor yi* can be written in the following form

yiiki=(-H)1/2[(1/2)Hik Hil-(1/2)Hil Hblyp + eiik, 92)

where H = det (H;j) and H;; is a metric which generates the light cone for electromagnetic
propagation (Ni, 1983a, 1984a,b). Note that (92) has an axion degree of freedom, geii, and a
‘dilaton” degree of freedom, y. Laimmerzahl and Hehl (2004) have shown that this non-
birefringence guarantees, without approximation, Riemannian light cone, i.e., Eq. (92) holds
without the assumption of weak field also. To fully recover EEP, we need (i) good
constraints from no birefringence, (ii) good constraints on no extra physical metric, (iii) good
constraints on no y (‘dilaton’), and (iv) good constraints on no ¢ (axion) or no pseudoscalar-
photon interaction.

Eq. (92) is verified empirically to high accuracy from pulsar observations and from
polarization measurements of extragalactic radio sources. With the null-birefringence
observations of pulsar pulses and micropulses before 1980, the relations (92) for testing EEP
are empirically verified to 10-14 - 106 (Ni, 1983a, 1984a, 1984b). With the present pulsar
observations, these limits would be improved; a detailed such analysis is given by Huang
(2002). Analyzing the data from polarization measurements of extragalactic radio sources,
Haugan and Kauffmann (1995) inferred that the resolution for null-birefringence is 0.02
cycle at 5 GHz. This corresponds to a time resolution of 4 x 1012 s and gives much better
constraints. With a detailed analysis and more extragalactic radio observations, (92) would
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be tested down to 10-28-10-2 at cosmological distances. In 2002, Kostelecky and Mews (2002)
used polarization measurements of light from cosmologically distant astrophysical sources
to yield stringent constraints down to 2 x 1032 For a review, see Ni (2010). In the remaining
part of this subsection, we assume (92) to be correct.

Constraints on one physical metric and no ‘dilaton” (). Let us now look into the empirical
constraints for Hi and . In Eq. (84), ds is the line element determined from the metric g;.
From Eq. (92), the gravitational coupling to electromagnetism is determined by the metric
Hj and two (pseudo)scalar fields ¢ ‘axion” and y “dilaton’. If H; is not proportional to g,
then the hyperfine levels of the lithium atom, the beryllium atom, the mercury atom and
other atoms will have additional shifts. But this is not observed to high accuracy in Hughes-
Drever experiments (Hughes et al., 1960; Beltran-Lopez et al., 1961; Drever, 1961; Ellena et
al., 1987; Chupp et al., 1989). Therefore H;; is proportional to g to certain accuracy. Since a
change of Hik to AH/ does not affect y% in Eq. (92), we can define Hi; = g11 to remove this
scale freedom (Ni, 1983a, 1984a). For a review, see Ni (2010).

Eotvos-Dicke experiments (Eotvos, 1890; Eotvos et al., 1922; Roll et al., 1964; Braginsky and
Panov, 1971; Schlamminger et al., 2008 and references therein) are performed on
unpolarized test bodies. In essence, these experiments show that unpolarized electric and
magnetic energies follow the same trajectories as other forms of energy to certain accuracy.
The constraints on Eq. (92) are

| 1-p | / U <1010, (93)

and

| Hoo- goo | / U <10, (94)
where U (~ 10-) is the solar gravitational potential at the earth.
In 1976, Vessot et al. (1980) used an atomic hydrogen maser clock in a space probe to test
and confirm the metric gravitational redshift to an accuracy of 1.4 x 104, i. e,,
| Ho()-g()() | / U<1.4 x10+4, (95)
where U is the change of earth gravitational field that the maser clock experienced.
With constraints from (i) no birefringence, (ii) no extra physical metric, (iii) no y (‘dilaton’),
we arrive at the theory (84) with yik given by
= GV (1/2) g g1 (1/2) g1 g5 + g e, (%6)
i.e., an axion theory (Ni, 1983a, 1984a; Hehl and Obukhov 2008). Here ¢! is defined to be (-
Q)1/2 ik, The current constraints on ¢ from astrophysical observations and CMB

polarization observations will be discussed in section 8. Thus, from experiments and
observations, only one degree of freedom of yi is not much constrained.

Now let’s turn into more formal aspects of equivalence principles. We proved that for a
system whose Lagrangian density is given by Eq. (84), the Galileo Equivalence Principle
(UFF [Universality of Free Fall; WEP I [Weak Equivalence Principle 1]) holds if and only if
Eq. (96) holds (Ni, 1974, 1977).
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If @ # 0in (96), the gravitational coupling to electromagnetism is not minimal and EEP is
violated. Hence WEP I does not imply EEP and Schiff's conjecture (which states that WEP I
implies EEP) is incorrect (Ni, 1973, 1974, 1977). However, WEP 1 does constrain the 21
degrees of freedom of y to only one degree of freedom (¢), and Schiff's conjecture is largely
right in spirit.

The theory with ¢ # 0 is a pseudoscalar theory with important astrophysical and cosmological
consequences (section 8). This is an example that investigations in fundamental physical laws
lead to implications in cosmology. Investigations of CP problems in high energy physics leads
to a theory with a similar piece of Lagrangian with ¢ the axion field for QCD [Quantum
Chromodynamics] (Peccei and Quinn, 1977; Weinberg, 1978; Wilczek, 1978).

In the nonmetric theory with yi (p # 0) given by Eq. (96) (Ni 1973, 1974, 1977), there are
anomalous torques on electromagnetic-energy-polarized bodies so that different test bodies
will change their rotation state differently, like magnets in magnetic fields. Since the motion
of a macroscopic test body is determined not only by its trajectory but also by its rotation
state, the motion of polarized test bodies will not be the same. We, therefore, have proposed
the following stronger weak equivalence principle (WEP 1II) to be tested by experiments,
which states that in a gravitational field, both the translational and rotational motion of a
test body with a given initial motion state is independent of its internal structure and
composition (universality of free-fall motion) (Ni 1974, Ni 1977). To put in another way, the
behavior of motion including rotation is that in a local inertial frame for test-bodies. If WEP
II is violated, then EEP is violated. Therefore from above, in the y-g framework, the
imposition of WEP Il guarantees that EEP is valid.

WEDP 1I state that the motion of all six degrees of freedom (3 translational and 3 rotational)
must be the same for all test bodies as in a local inertial frame. There are two different
scenarios that WEP II would be violated: (i) the translational motion is affected by the
rotational state; (ii) the rotational state changes with angular momentum (rotational
direction/speed) or species. Recent experimental results of Gravity Probe B experiment with
rotating quartz balls in earth orbit (Everitt et al., 2011) not just verifies frame-dragging effect,
but also verifies both aspects of WEP II for unpolarized-bodies to an ultimate precision (Ni,
2011).

In this section, we have shown that the empirical foundation of classical electromagnetism is
solid except in the aspect of a pseudoscalar-photon interaction. This exception has important
consequences in cosmology. In the following two sections, we address this issue.

7. Pseudoscalar-photon interaction

In this section, we discuss the modified electromagnetism in gravity with the pseudoscalar-
photon interaction which was reached in the last section, i.e. the theory with the
constitutive tensor density (96). Its Lagrangian density is as follows

Li=-(1/(16m))(-)*[(1/ 2)g*gi-(1/2)g7gk+q €M FijFi- AxjH(-8) 1/ -Zymu(ds1) / (d8)d(x-x1). (97)

In the constitutive tensor density and the Lagrangian density, ¢ is a scalar or pseudoscalar
function of relevant variables. If we assume that the ¢-term is local CPT invariant, then ¢
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should be a pseudoscalar (function) since €i¥ is a pseudotensor. The pseudoscalar(scalar)-
photon interaction part (or the nonmetric part) of the Lagrangian density of this theory is

Loy = LM = - (1/16m) @ eilF;Fy = - (1/4m) @,; eifA;A; (mod div), (98)

where ‘mod div’ means that the two Lagrangian densities are related by integration by parts
in the action integral. This term gives pseudoscalar-photon-photon interaction in the
quantum regime and can be denoted by L@w). This term is also the {-term in the PPM
Lagrangian density Lppy with the ¢ = (1/4)S® correspondence. The Maxwell equations (Ni
1973, 1977) from Eq. (97) become

Fiky + gikml Fy,, ) = -4, (99)

where the derivation ; is with respect to the Christoffel connection of the metric. The Lorentz
force law is the same as in metric theories of gravity or general relativity. Gauge invariance
and charge conservation are guaranteed. For discussions on the tests of charge conservation,
and on the limits of differences in active and passive charges, please see Limmerzahl et al.
(2005, 2007). The modified Maxwell equations (99) are also conformally invariant.

The rightest term in equation (99) is reminiscent of Chern-Simons (1974) term e#r A, Fg,. There are
two differences: (i) Chern-Simons term is in 3 dimensional space; (ii) Chern-Simons term in the
integral is a total divergence (Table 1). However, it is interesting to notice that the cosmological
time may be defined through the Chern-Simons invariant (Smolin and Soo, 1995).

Term Dimension Reference Meaning
efr A, Fp, 3 Chern-Simons (1974) Intergrar;jvzzr’izfologlcal
. Ni
ijkl . " 1
e @ FijFy 4 (1973, 1974, 1977) Pseudoscalar-photon coupling
Peccei-Quinn (1977)
¢l p FQCD; FOCDy, 4 Weinberg (1978) Pseui%fa}f‘rf'gluon
Wilczek (1978) ping
eV A; Fy 4 Carroll;l;;egl(():l)—]acklw External constant vector coupling

Table 1. Various terms in the Lagrangian and their meaning.

A term similar to the one in equation (98), axion-gluon interaction term, occurs in QCD in an
effort to solve the strong CP problem (Peccei & Quinn, 1977; Weinberg, 1978; Wilczek, 1978).
Carroll, Field and Jackiw (1990) proposed a modification of electrodynamics with an
additional ek V; Aj Fiy term with V; a constant vector (See also Jackiw, 2007). This term is a
special case of the term ek ¢ F;; Fy (mod div) with ¢,; = - 12V

Various terms in the Lagrangians discussed in this subsection are listed in Table 1. Empirical
tests of the pseudoscalar-photon interaction (98) will be discussed in next section.

8. Cosmic polarization rotation

For the electromagnetism in gravity with an effective pseudoscalar-photon interaction
discussed in the last section, the electromagnetic wave propagation equation is governed by
equation (99). In a local inertial (Lorentz) frame of the g-metric, it is reduced to
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Fik .+ eikml Fy, @1 = 0. (100)

Analyzing the wave into Fourier components, imposing the radiation gauge condition, and
solving the dispersion eigenvalue problem, we obtain k = @ + (1n#¢,, + ¢,0) for right circularly
polarized wave and k = ® - (n#p, + @) for left circularly polarized wave in the eikonal
approximation (Ni 1973). Here n# is the unit 3-vector in the propagation direction. The
group velocity is

vg = dw/dk =1, (101)

which is independent of polarization. There is no birefringence. For the right circularly
polarized electromagnetic wave, the propagation from a point P; = {xqy} = {x)% xa)#} = {x@)’,
xmyl, X2 X@)’} to another point P> = {x@)} = {x2% x@*} = {x x@! x@?% x@?3} adds a phase of
a = @(P2) - (P1) to the wave; for left circularly polarized light, the added phase will be
opposite in sign (Ni 1973). Linearly polarized electromagnetic wave is a superposition of
circularly polarized waves. Its polarization vector will then rotate by an angle a. Locally, the
polarization rotation angle can be approximated by

a = @(P2)-p(P1) =Zi=o® [@i X (X - Xy)] =Zi=0® [@iAXT] = @,0AX0 + [Zyu=1% pAxH]
= - (1) Ziec? [VIAXT] = - (45) VoAXO - (V) [Ser?VuAxi] (102)

The rotation angle in (102) consists of 2 parts -- ,0Ax? and [Z,=13¢ . AxH]. For light in a local
inertial frame, |Axr| = |Ax0|. In Fig. 4, space part of the rotation angle is shown. The
amplitude of the space part depends on the direction of the propagation with the tip of
magnitude on upper/lower sphere of diameter |Axt| X |¢,|. The time part is equal to Ax?
@o. (Vo = [p;]) When we integrate along light (wave) trajectory in a global situation, the
total polarization rotation (relative to no g-interaction) is again Ap = @2 - ¢ for ¢ is a scalar
field where @1 and > are the values of the scalar field at the beginning and end of the wave.
When the propagation distance is over a large part of our observed universe, we call this
phenomenon cosmic polarization rotation (Ni, 2008, 2009a, 2010).

In the CMB polarization observations, there are variations and fluctuations. The variations
and fluctuations due to scalar-modified propagation can be expressed as 6¢(2) - dp(1),
where 2 denotes a point at the last scattering surface in the decoupling epoch and 1
observation point. 8¢(2) is the variation/fluctuation at the last scattering surface. 6¢(1) at
the present observation point is zero or fixed. Therefore the covariance of fluctuation
<[dp(2) - dp(1)]>> gives the covariance of dg2(2) at the last scattering surface. Since our
Universe is isotropic to ~ 105, this covariance is ~ (g% 10-5)2 where the parameter ¢ depends
on various cosmological models. (Ni, 2008, 2009a, 2010)

Now we must say something about nomenclature.

Birefringence, also called double refraction, refers to the two different directions of
propagation that a given incident ray can take in a medium, depending on the direction of
polarization. The index of refraction depends on the direction of polarization.

Dichroic materials have the property that their absorption constant varies with polarization.
When polarized light goes through dichroic material, its polarization is rotated due to
difference in absorption in two principal directions of the material for the two polarization
components. This phenomenon or property of the medium is called dichroism.
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V| Ax0
the direction of V)

| Vo | cos 8 Ax0

Fig. 4. Space contribution to the local polarization rotation angle -- [Z,=13¢, ,Ax#] = | V@ | cos
8 Ax0. The time contribution is @9 Ax?. The total contribution is (| V| cos 0 + ¢,0) Ax0. (Ax0 >
0).

In a medium with optical activity, the direction of a linearly polarized beam will rotate as it
propagates through the medium. A medium subjected to magnetic field becomes optically
active and the associated polarization rotation is called Faraday rotation.

Cosmic polarization rotation is neither dichroism nor birefringence. It is more like optical
activity, with the rotation angle independent of wavelength. Conforming to the common
usage in optics, one should not call it cosmic birefringence -- a misnomer.

Now we review and compile the constraints of various analyses from CMB polarization
observations.

In 2002, DASI microwave interferometer observed the polarization of the cosmic
background (Kovac et al., 2002). E-mode polarization is detected with 4.9 o. The TE
correlation of the temperature and E-mode polarization is detected at 95% confidence. This
correlation is expected from the Raleigh scattering of radiation. However, with the
(pseudo)scalar-photon interaction under discussion, the polarization anisotropy is shifted
differently in different directions relative to the temperature anisotropy due to propagation;
the correlation will then be downgraded. In 2003, from the first-year data (WMAP1), WMAP
found that the polarization and temperature are correlated to more than 10 ¢ (Bennett et al
2003). This gives a constraint of about 10-! for Ap (Ni, 2005a, 2005b).

Further results and analyses of CMB polarization observations came out after 2006. In Table
2, we update our previous compilations (Ni 2008, 2010). Although these results look
different at 1 o level, they are all consistent with null detection and with one another at 2 o
level.
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Analysis C?Ir;srtzgant Source data
Ni (2005a, b) +100 WMAPI (Bennett ef al 2003)
s WMAP3 (Spergel et al 2007) &
Feng, Li, Xia, Chen & Zhang (2006) A0BE70 | oo e ANG( (503‘)5 (Montroy ez 12006)
Liu, Lee & Ng (2006) 24 BOOMERANG (B03) (Montroy et al 2006)
Kostelecky & Mews (2007) 209 £ 122 BOOMERANG (B03) (Montroy et al 2006)
Cabella, Natoli & Silk (2007) -43 +52 WMAPS3 (Spergel et al 2007)
Lo WMAP3 (Spergel et al 2007) &
Xia, Li, Wang & Zhang (2008) 108 £67 BOOMERANG( (50335 (Montroy e?f al 2006)
Komatsu et al (2009) -30£37 WMAP5 (Komatsu et al 2009)
o WMAPS5 (Komatsu et al 2009) &
Xia, Li, Zhao & Zhang (2008) A45£33 BOOMERANé (B03) (Montroy et)al 2006)
Kostelecky & Mews (2008) 40 + 94 WMAP5 (Komatsu et al 2009)
Kahniashvili, Durrer & Maravin (2008) +44 WMAP5 (Komatsu et al 2009)
Wu et al (2009) 9.6+143+8.7 QuaD (Pryke et al 2009)
Brown et al. (2009) 112+£87+87 QuaD (Brown et al 2009)
Komatsu et al. (2011) -19+22+26 WMAP7 (Komatsu et al 2011)

Table 2. Constraints on cosmic polarization rotation from CMB polarization observations.
[See Ni (2010) for detailed references.]

Both magnetic field and potential new physics affect the propagation of CMB propagation
and generate BB power spectra from EE spectra of CMB. The Faraday rotation due to
magnetic field is wavelength dependent while the cosmic polarization rotation due to
effective pseudoscalar-photon interaction is wavelength-independent. This property can
be used to separate the two effects. With the tensor mode generated by these two effects
measured and subtracted, the remaining tensor mode perturbations could be analyzed for
signals due to primordial (inflationary) gravitational waves (GWs). In Ni (2009a,b), we
have discussed the direct detectability of these primordial GWs using space GW
detectors.

Observations of radio and optical/UV polarization of radio galaxies are also sensitive to
measure/test the cosmic polarization rotation, and give comparable constraints of tens of
mrad. These observations have the capability of determining the polarization rotation in
various directions. For a recent work, see di Serego Alighieri et al. (2010).

9. Outlook

We have looked at the foundations of electromagnetism in this chapter. For doing this, we
have used two approaches. The first one is to formulate a Parametrized Post-Maxwellian
framework to include QED corrections and a pseudoscalar photon interaction. We discuss
various vacuum birefringence experiments - ongoing and proposed -- to measure these
parameters. The second approach is to look at electromagnetism in gravity and various
experiments and observations to determine its empirical foundation. We found that the
foundation is solid with the only exception of a potentially possible pseudoscalar-photon
interaction. We discussed its experimental constraints and look forward to more future
experiments.
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1. Introduction

In this chapter, we revise the main features of a topological model of electromagnetism,
also called the model of electromagnetic knots, that was presented in 1989 (Rafiada, 1989)
and has been developed in a number of references. Some of them are (Arrayas & Trueba,
2010; 2011; Irvine & Bouwmeester, 2008; Rafiada, 1990; 1992; Rafiada & Trueba, 1995; 1997;
2001; Rafiada, 2003). One of the main characteristics of this model is that it allows to obtain
interesting topological quantization rules for the electric charge (Rafiada & Trueba, 1998) and
the magnetic flux through a superconducting ring (Rafiada & Trueba, 2006). We will pay
special attention to these features.

An electromagnetic knot is defined as a standard electromagnetic field with the property that
any pair of its magnetic lines, or any pair of its electric lines, is a link with linking number
£. This number is a measure of how much the force lines curl themselves the ones around
the others. These lines coincide with the level curves of a pair of complex scalar fields ¢(r, f),
(x,t). In the model of electromagnetic knots, the physical space and the complex plane are
compactified to S* and S?, so that the scalars can be interpreted as maps S> — S?, which are
known to be classified in homotopy classes characterized by the integer value of the Hopf
index n, which is related to the linking number £.

The topological model of electromagnetism is locally equivalent to Maxwell’s standard theory
in the sense that the set of electromagnetic knots coincides locally with the set of the standard
radiation fields (radiation fields are electromagnetis fields such that the magnetic field is
orthogonal to the electric field at any point and at any instant of time). In other words,
standard radiation fields can be understood as patched together electromagnetic knots. This
can still be expressed as the statement that, in any bounded domain of space-time, any
standard radiation fields can be approximated arbitrarily enough by electromagnetic knots.

It is remarkable that the standard Maxwell’s equations are the exact linearization, by change of
variables not by truncation, of a set of nonlinear equations referring to the complex scalar fields
¢(r,t) and 6(r, f). The fact that this change is not completely invertible has the surprising
consequence that the linearity of the Maxwell’s equations is compatible with the existence of
topological constants of the motion which are nonlinear in the magnetic and electric fields. In
this chapter we will see how to find some of these topological constants.
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2. Electromagnetic knots

As said before, the topological model of electromagnetic knots makes use of two fundamental
complex scalar fields ¢(r, f) and 6(r, ), the level curves of which coincide with the magnetic
and electric lines, respectively. This means that each one of these lines are labelled by the
constant value of the corresponding scalar. These complex scalar fields are assumed to
have only one value at infinity, which is equivalent, from the mathematical point of view,
to compactify the three-space to the sphere S3. Moreover, the complex plane C is also
compactified to the sphere S?. Both compactifications imply that the scalars ¢ and @ can
be interpreted (via stereographic projection) as maps S — S2, which can be classified in
homotopy classes and, as such, be characterized by the value of the Hopf index n. It can be
shown that the two scalars have the same Hopf index and that the magnetic (resp. electric)
lines are generically linked with the same Gauss linking number £. If y is the multiplicity of
the level curves (i.e. the number of different magnetic (resp. electric) lines that have the same
label ¢ (resp. 8)), then n = ¢y?; the Hopf index can thus be interpreted as a generalized linking
number if we define a line as a level curve with u disjoint components.

From the dimensionless scalars ¢(r, t) and 6(r, t), one can construct a magnetic field B and an
electric field E as

_ Vavex Vg
Bt = i 1+ )2
~ Vac Vo x Ve

@
where ¢ and 6 are the complex conjugates of ¢ and 0 respectively, i is the imaginary unit, a is
a constant introduced so that the magnetic and electric fields have correct dimensions, and ¢
is the speed of light in vacuum. In the SI of units, a can be expressed as a pure number times
the Planck constant /i times the speed of light c times the vacuum permeability py.

In order to obtain a solution of the Maxwell’s equations in vacuum from the fields given by
Equations (1), they also have to satisfy
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Equations (1) and (2) constitute the definition of an electromagnetic knot, and the magnetic
and the electric fields resulting from these equations satisfy exactly Maxwell’s equations in
vacuum.

It is possible to write Equations (1) and (2) in a more compact way by using the language of
differential forms (a nice reference in which Electromagnetism is written in this language is
(Hehl & Obukhov, 2003)). If p,v = 0,1,2,3 are space-time indices and i, j, = 1,2, 3 are purely
space indices, A} = (V/c,A) (in which V is the electrostatic potential and A is the vector
potential) is the 4-vector potential of the electromagnetic field, so that the electromagnetic
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tensor is
Fu = 0, Ay — VA, ®)

in which xp = ct. From this tensor one finds the components of the electric field as E; = ¢ F 0
and the magnetic field as B; = fei]-kF]k /2 as usual. Moreover, the dual to the electromagnetic
tensor is defined as

1
Gy =" Fy = 5 eyvrxﬁF“ﬁr 4)
with components B; = G%, E; = —c €ijk G/* /2. Now, the Faraday 2-form is defined as
1 u v
F = 3 F}de Adx?, 5)
and its dual 2-form is defined as
_1 Gudx! N\ dx¥
*]:_5 adx? A dx”. (6)

Because of clarity, we will use in this work natural units, in which the speed of light c, the
Planck constant 7, the vacuum permittivity ¢y and the vacuum permeability y are chosen
asc =N =g = pp = 1. In this system of units, the constant a in Equations (1) and (2)
is a pure number. In the language of differential forms, Equations (1) and (2) simply and
remarkably mean that the Faraday form F and its dual *F of any electromagnetic knot are
the two pull-backs of o, the area 2-form in 2, by the maps ¢ and 8 from S to S?, i. e.

F=—Vap'o,
*F = \a0*o. )
As a consequence the two maps are dual to one another in the sense that

x (¢*0) = —0%0, (8)

* being the Hodge or duality operator. The existence of two maps satisfying Equation (8)
guarantees that both F and *F obey the Maxwell equations in empty space without the
need of any other requirement. The electromagnetic fields obtained as in Equations (7) are
electromagnetic knots. They are radiation fields , i. e. they verify the condition E-B = 0.
Note that, because of the Darboux theorem, any electromagnetic field in empty space can be
expressed locally as the sum of two radiation fields.

As stated before, the model of electromagnetic knots is locally equivalent to Maxwell’s
standard theory (Rafiada & Trueba, 1998; Rafiada, 2003). However, its difference from
the global point of view has interesting consequences, as are the following topological
quantizations:

* The electromagnetic helicity H is quantized. In natural units,

1 3, _
H—E/RS(A~B+C~E)dr—na, )
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where B = V x A, E = V x C, the integer n being equal to the common value of the
Hopf indices of ¢ and 0. Note that H = Ngr — N, where Nr and Np are the classical
expressions of the number of right- and left-handed photons contained in the field (i.e.
H = NrR—Np = fd3k(aRaR —apar), ar(k),ar (k) being Fourier transforms of A, in
the classical theory, but creation and annihilation operator in the quantum version). This
implies that, if we take the constant a tobe a =1,

n= NR — NL, (10)

which is a curious relation between the Hopf index (i.e. the generalized linking number)
of the classical field and the classical limit of the difference Ng — N;. This difference has a
clear topological meaning, what is attractive from the intuitive physical point of view.

* The topology of the model of electromagnetic knots implies also the quantization of the
electromagnetic energy in a cavity, as studied in Reference (Rafiada, 2003). More precisely,
the model predicts that its energy £ in a cubic cavity verifies

€ =nw, (11)

with n = d/4, d being an integer, equal to the degree of a certain map between two
orbifolds, and w is the angular frequency of the electromagnetic radiation. This rule is
different from the Planck-Einstein law but very similar.

* The model of electromagnetic knots explains the discretization of the values of the electric
charge and the magnetic flux through a superconducting ring. These properties will be
studied in the next sections of this work.

3. The problem of the quantization of the electric charge

It is a experimental fact that electric charge is discrete. The theoretical prediction of this fact
has been linked to the existence of magnetic monopoles. So far there is not any evidence
of the existence of monopoles, although some modern unified theories of cosmology and
fundamental interactions imply the existence of magnetic monopoles.

In the next section we will present a theoretical argument for the quantization of the electric
charge where there is not need for the existence of a magnetic charge or quantum mechanics.
However, in this section we also present the standard arguments of the electric charge
quantization. We advice to consult the bibliography, specially (Jackson, 1998) and (Schwinger
et al., 1998) for more details.

3.1 Thomson’s calculation of the angular momentum

J. ] Thomson considered in (Thomson, 1904) the electromagnetic field of a system consisting
in a magnetic pole and an electric charge. He calculated the momentum and the angular
momentum of the electromagnetic field. Then, from its conservation he deduced the magnetic
part of the Lorentz force.

Let us assume that we have a magnetic pole g at the point A and a electric charge ¢ at the
point B both at rest. We have then that at an arbitrary point P of the space the electric field
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and magnetic fields are given, in natural units, by
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where r; = rp —r4 and rp = rp — rp. It is very interesting to see how Thomson assumed in
this work that the magnetic field produced by a magnetic pole was of the Coulomb type. In
(Thomson, 1904), the author cites Coulomb and Gauss to provide the experimental proof. The
fact that he assumed that, in a magnet, the total magnetic charge has to be zero led him to get
the right answers.

The linear momentum of the field is
Pf:/Ede3r:O, (13)

as the linear momentum field lines are circles with their centres along the line AB and their
planes at right angles to it. The angular momentum of the electromagnetic field is defined as

Lf:/rx(ExB)d3r. (14)

Since the total linear momentum is null, the total angular momentum will be independent of
the point chosen to calculate it, according to Classical Mechanics. It will point in the direction
of the line AB. To evaluate it, we take origin at the position of the magnetic pole A, the axis z
as the line AB, and we have L = L, 2z with

_eg sinf . 3
L, = (an)? / "t — R sina d°r, (15)

where R = R 2 is the position of the electric charge at B, § = ZPAB and &« = ZAPB. Using
spherical coordinates and the law of sines, it turns out that

egR /""’ /” rsin® 6
Le=%r dr do. 16
“7 8t Jo Jo (r2+ R2—2Rrcosf)3/2 r (16)

The integral can be calculated by different methods as can be seen in (Adawi, 1976). A change
of variables r = R(cosf + sinftany), v € [0 — 71/2, 71/2] solves the integral and yields 1/2,
so that R
e

F=1 2 (17)
From the conservation of the total linear and angular momenta of the field plus the system
of the pole and the charge, Thomson deduces then the magnetic part ¢(v x B) of the Lorentz
force over the charge. Note that Jackson follows the converse argument, starting from the
Lorentz force between a monopole and a charge, to get the same result.
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3.2 The semiclassical quatization rules by Saha and Wilson

Thomson result (17) was used by Saha (Saha, 1949) and independently by Wilson (Wilson,
1949) to get the same quantization condition that Dirac had obtained earlier (we will revise
Dirac’s argument below). The idea is that, from quantum mechanics, the angular momentum
is quantized. Using Saha words, if we apply the quantum logic, identifying the angular
momentum of the field created by a charge and a monopole with the quantum number for
the angular momentum, we get the Dirac result in natural units,

eg = 27mn, (18)

so the existence of a monopole implies the quantization of the charge. For further
considerations of the role of the angular momentum and its conservation in the monopole
problem, we will refer to the work (Goldhaber, 1965).

3.3 Dirac’s argument

Now the turn for the source: Dirac’s consideration about the wave function of a particle (Dirac,
1931; 1948). A particle in quantum mechanics is represented by a wave function

P = Ael (19)

where A and v are real functions of r and ¢, denoting the amplitude and the phase respectively.
The physical meaning of the wave function, according to the quantum postulates, allows for
an arbitrary numerical constant coefficient that we can choose to be of modulus unity. So we
can add to the phase 7 an arbitrary function B. This arbitrary function B does not have to
be a unique value in each point (r, f), as if we go around a closed curve could change, but
this change has to be the same for all the wave functions or vary for different wave functions
in multiples of 277, otherwise will have physical consequences such as interference between
states. But it has to have definite derivatives as it has to be a solution of a quantum wave
equation.

Following Dirac, we will introduce the four vector x/ as

_o o _  _9
Ky = 9 Ky = y’ Kz = 92’ Kt = o’ (20)

and they have to be well defined as stated above. Thus the change in phase round a close
curve in the 4-D space, where the vector x* is defined, can be calculated as

f‘ Ky dsh = 277, @1)

If we take the close curve very small, the continuity of the wave function imposes the value
n = 0 for a simple connected domain, as the integration domain reduces to a point. However,
if there are points where the wave function vanishes, then the phase would have not meaning.
Since the wave function is a complex number, we need two conditions for its vanishing, so we
well have in general a nodal line. But now, if we take the closed curve for the integration in
(21) around such a line, the continuity considerations are not longer able to tell us that the
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phase change must be zero. All we can say is that the change will be 27t being n an integer,
positive or negative depending on the defined orientation.

On the other hand, we can apply Stoke’s theorem to the circulation in Equation (21) to write
it as i
]é Ky dst = /S (curlx); dS/, (22)

where the domain is any hypersurface bounded by the closed curve, and the (curl x) jisa6-D
vector that we can write in three dimensional vector notation as

Vxk=¢e¢B
ok
Vg — 5 eE, (23)

where k = (xy, Ky, ;). We can identify, as the notation in (23) suggests, this curl with an
electromagnetic field given by the electromagnetic potentials (V,A) = (—xo, k)/e. This can
be seen clearer calculating the momentum using Equation (19) with the arbitrary phase §,

P =iV (peP) = eP(—iVp+ k) =p+eA. (24)

The interpretation of the phase curl as an electromagnetic field as far reaching consequences,
as Dirac noted. If the close curve is taken in three-dimensional space, only the magnetic flux
will come to play so, from Equations (21) and (22), one obtains

e/s B- dS =2mn. (25)

So the magnetic flux through any surface bounded by the curve will be equal to the phase
shift difference of the wave equation. We have seen that if there is not any nodal line across
the surface defined by the curve, the phase difference is equal zero. If we take a closed surface
around a nodal line, in the case that the nodal line comes in and out, and that difference should
be again zero. But if the nodal line had an end, and we take the close surface around that end,
then the phase shift will be nonzero. But that would mean that the there is a net magnetic
flux crossing a closed surface, so there is a magnetic charge or monopole inside the surface.
The magnetic flux can be written as g, being g the strength of the magnetic pole. Then we get,
from Equation (25),

eg = 2mn, (26)

which is the same condition as in Equation (18) that we got with the semiclassical rule. There
is a nice account of bibliography related to the monopole problem in Reference (Goldhaber &
Trower, 1990).

4. Quantization of the electric charge in the model of electromagnetic knots

A topological mechanism for the quantization of the charge in the model of electromagnetic
knots can be seen in Reference (Rafiada & Trueba, 1998). Quantization of charge is usually
stated by saying that the electric charge of any particle is an integer multiple of a fundamental
value ¢, the electron charge, whose value in the International System of Unitsise = 1.6 x 10~19
C. The Gauss theorem allows a different, although fully equivalent, statement of this property:
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the electric flux across any closed surface X which does not intersect any charge is always an
integer multiple of e. This can be written as

/ E-ndS = ne, (27)
b

where n is a unit vector orthogonal to the surface, E is the electric field and dS the surface
element. We could as well write Equation (27) as

/ +F = ne, (28)
z

*F being the dual to the Faraday 2-form F = 1/2F,,dx" Adx". Stating in this way
the discretization of the charge is interesting because it shows a close similarity with the
expression of the topological degree of a map. Assume that we have a regular map 6 of X
on a 2-sphere 2 and let o be the normalized area 2-form in S2. It then happens that

/Z A (29)

6*o being the pull-back of o and # an integer called the degree of the map, which gives the
number of times that S is covered when one runs once through X (equal to the number of
points in ¥ in which 0 takes any prescribed value). The comparison of Equations (28) and (29)
shows that there is a close formal similarity between the dual to the Faraday 2-form and the
pull-back of the area 2-form of a sphere S2.

Suppose that an electromagnetic field is given, such that its form *F is regular except at
the positions of some point charges. Suppose also that we have a map 6 : R3 ~ S? which
is regular except at some point singularities where its level curves converge or diverge. It
happens then that Equations (28) and (29) are simultaneously satisfied for all the closed
surfaces ¥ which do not intersect any charge or singularity. This means that the electric charge
will be automatically and topologically quantized in a model in which these two forms *F and
§*c are proportional, the fundamental charge being equal to the proportionality coefficient
and the number of fundamental charges in a volume having then the meaning of a topological
index.

This is exactly what happens in the topological model of electromagnetic knots. In it, the dual
to the Faraday 2-form is expressed as

«F = /a0*c, (30)

where a is a normalizing constant, that is a pure number in natural units, or proportional
to the product ficyg in the International System of Units. The electric field is then E =
Vac(2mi) 71 (14 00) 72V x V6, the electric lines being therefore the level curves of 6. The
degree of the map X + S? induced by 6 is given by Equation (29). Therefore,

/y; «F = n/a. @31)

As this is equal to the charge Q inside %, it does happen that Q = n+/a, what implies that
there is then a fundamental charge g9 = /4, the degree n being the number of fundamental
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charges inside .. This gives a topological interpretation of 1, the number of fundamental
charges inside any volume.

It is easy to understand that n = 0 if 6 is regular in the interior of . This is because each level
curve of 0, i. e. each electric line, is labeled by its value along it (a complex number) and, in
the regular case, any one of these lines enters into this interior as many times as it goes out
of it. But assume that 6 has a singularity at point P, from which the electric lines diverge or
to which they converge. If ¥ is a sphere around P, we can identify R® except P with T x R,
so that the induced map 6 : £ ~ S? is regular. In this case, # need not vanish and is equal
to the number of times that 6 takes any prescribed complex value in X, with due account to
the orientation. Otherwise stated, among the electric lines diverging from or converging to P,
there are |n| whose label is equal to any prescribed complex number.

To understand better this mechanism of discretization, let us take the case of a Coulomb
potential as in Reference (Rafiada & Trueba, 1997): E = Qr/ (47r®), B = 0. The corresponding

scalar is
6 = tan (g) exp (i%q)) , (32)

where ¢ and ¢ are the azimuth and the polar angle. The scalar (32) is well defined only
if Q@ = ny/a, n being an integer. The lines diverging from the charge are labeled by
the corresponding value of 0, so that there are |n| lines going in or out of the singularity
and having any prescribed complex number as their label. If n = 1, it turns out that
0= (x+iy)/(z+r).

This mechanism has a very curious aspect: it does not apply to the source but to the
electromagnetic field itself. This is surprising since one would expect that the topology should
operate restricting the fields of the charged particles. However, in this model, it is the field
who mediates the force the one which is submitted to a topological condition. It must be
emphasized furthermore that the maps S® — S2, given by the two scalars ¢, 6 are regular
except for singularities at the position of point charges, either electrical or magnetic (if the
latter do exist). At these points, the level curves (the electric lines) converge or diverge.

In the case that the value of a in natural units is 4 = 1 (in order to obtain the right quantization
of the electromagnetic helicity), the topological model of electromagnetic knots predicts that
the fundamental charge has the value

90 =1, (33)
which is about 3.3 times the electron charge. Note that this applies both to the electron charge
and to the hypothetical monopole charge. This property can be stated saying that, in the
topological model, the electromagnetic fields can only be coupled to point charges which
are integer multiple of the fundamental charge g0 = 1. Note that the same discretization
mechanism would apply to the hypothetical magnetic charges (located at singularities of ¢),
their fundamental value being also g9 = 1.

5. Quantization of the magnetic flux in the model of electromagnetic knots

Electromagnetic knots are compatible with the quantization of the magnetic flux of a
superconducting ring, which in standard theory is always an integer multiple of g/2, where
¢ = v/a (or ¢ = 1 in natural units) is the value of the magnetic monopole in the topological
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model of electromagnetic knots. The mechanism of quantization was stablished in Reference
(Rafiada & Trueba, 2006). To understand how this mechanism of quantization works, let us
begin with the case of an infinite solenoid.

5.1 Flux quantization in an infinite solenoid

Consider again the equations for any electromagnetic knot. The Faraday 2-form and its dual
generated by the pair of complex scalar fields ¢ and 6 can be written, with the constant a fixed
to a = 1 in natural units, as

F =dsndp, with p=1/(1+|p[?), s =arg(¢)/2r
*F=doAdu, with v=1/(1+160%), u = arg(6)/27, (34)

sothatp = /(1 —p)/pe?™ and 6 = /(1 —v)/ve?™. This implies that the magnetic and

electric fields have the form

B = Vp x Vs = (dpuVv —dgvVu),
E = VuxVov=(9dsVp—9ypVs). (35)

The quantities (p, s) and (v, u) are called Clebsch variables of the fields B and E, respectively (or
of the scalars ¢ and 6). Note that ¢ and 6 are not uniquely determined by the magnetic and
electric fields. Indeed, a different pair defines the same fields E, B if the corresponding Clebsch
variables (P,S), (V,U) can be obtained through a canonical transformation (p,s) — (P, S)
or (v,u) — (V,U). However, the canonical transformation must satisfy two conditions: (i)
0 <P,V <1,and (ii) S, U must be arguments of complex numbers in units of 27, i. e. they
can be multivalued but their change along a closed curve must be an integer.

Let us turn to our physical problem. Consider an infinite perfect solenoid around the z-axis
with N turns per unit length and intensity I (perfect means that no flux escapes through
the coils). This can happen exactly only in a superconducting ring. Indeed, from the
purposes of the present study, perfect solenoids and superconducting rings can be considered
synonymous. The magnetic field vanishes outside and is equal to B = yg NI inside. Now let us
ask what can be the scalar ¢ (which gives a map S® +— S?) that corresponds to that magnetic
field if we restrict ourselves to the model of electromagnetic knots. With the configuration
of the magnetic lines of that solenoid, it is impossible that ¢ be regular in all the sphere S°.
However, we may consider the 3-space as 5% x R and require that ¢ be regular in the induced
map S? + S2, the first S? being the plane (x, ), the second the complex plane, both completed
with the point at infinity. If ¢ = |¢| exp(27ris) and p = 1/(1 + |$|?), then

B=Vpx Vs (36)

As B = 0 outside the solenoid, p and s can not be independent functions there. This may
happen in three ways:

1. The first possibility is s = f(p), f being a nontrivial function. We can change s to s — f(p).
This is a canonical transformation of the variables (s, p) which does not affect the value
of B in view of Equation (36). The new expression of ¢ is real outside the solenoid, but
not inside in general. Consequently, the magnetic flux across a section of the solenoid is
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topologically quantized, being equal to the area of the set ¢(S) in the sphere S?, where S is
any surface that cuts the solenoid and is bordered by a circuit outside it. Indeed its value is
necessarily Flux = n/2, because any curve contained in a great circle of a sphere encircles
a integer multiple of semispheres.

2. The second possibility is s = sy = constant. The situation is similar to and gives the same
flux quantization as in the previous case (outside the solenoid, ¢ takes values also in a
great circle of §?). That is Flux = n/2.

3. The last possibility is p = pg = constant. Let p = pg outside and s variable. Then the scalar

would be
¢ = 1—po €i27rs(r,<p), (37)
\/ Po

where r = (x2 4 y?)1/2 and ¢ is the azimuth. Moreover,

where m is an integer number. In order for ¢ to be a regular map, there are two possibilities:
s = sp = constant, and s = function of ¢ but with either pg (and ¢ = o0) or pg = 1 (and
¢ = 0). In both cases, it turns out that Flux = n/2.

So, in conclusion, in the topological model of electromagnetism based on electromagnetic
knots, the magnetic flux in an infinite perfect solenoid is always an semi-integer multiple of
the fundamental magnetic charge gg (with g9 = 1 in natural units),

Flux = gqo. (39)

This is interesting, because it says that the flux in the solenoid is necessarily quantized, the
fundamental fluxoid being half the fundamental magnetic charge qq (as the real fluxoid is half
the Dirac monopole). This quantity, however, is qgp/2 = 1/2 in natural units, as compared
with ¢/2 = 10.37 for the Dirac monopole.

5.2 Flux quantization in a finite solenoid

Let us consider now the case of a superconducting ring, i. e. of a perfect but finite solenoid. We
can imagine it as a cylinder around de z-axis between z = —L/2 and z = L/2 and the radii rg
and rg + h, although these magnitudes are quite irrelevant in this case. Since the magnetic field
does not enter inside the superconductor, B = 0 inside it. If the superconductor is infinitely
think (i.e. I = o), the topology of the problem is the same as in the previous case of infinite
solenoid, and all the results are also the same. In the realistic case in which & is finite, there
are also three cases. In the two first cases, the result would be the same. However, it is not
clear that the same could be said of the third possibility. We have to take a different way for
the third possibility.

Consider the quantization of the magnetic flux across a superconducting ring in the standard
theory (Feynman et al., 1965). In this case the wave function can be treated as a classical
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macroscopic field ¥ = /p ¢'?, the following equation being satisfied
VY = QA, (40)

where Q is the charge of a Cooper pair of electrons, equal to 2e. The flux is thus

2mtn’

QY

where 7’ is an integer. We see that the fundamental unit of flux is then 27t/ Q.

Hm:fAmz 1)

Let us take a finite superconducting ring of cylindrical shape, with axis along the z-axis,
between the planes z = £L/2 and radii rgp and ry + h. The interior magnetic field created
by the superconducting ring at the central plane z = 0 can be written as

B =B(r)2, (42)

r being the radial coordinate. The magnetic flux across the ring is
Flux = /C B(r) rdrde, (43)
JL0

where Cj is the circle of radius rg. Because of the symmetry of the problem, we can take a
scalar ¢(r, ), with p = 1/(1 + |®|?) and s = arg(®) /27, such that

1 /dpos adpos),

It is convenient to define the dimensionless radial coordinate

R= ., (45)

so that, in each plane (R, ¢), ¢ can be taken as a map ¢ : C; — S%, where C; is the circle of
unit radius, and

11(8;985 asas>A
B=—- (2" _22 )3 (46)
rZ R \0Rd¢p 9d¢ oR
The magnetic flux across the superconductor results
B dp 0s  Op 0s
FM_A«MM—WMVM@ 47)

The quantity between brackets in (47) is the Jacobian of the change of variables (p,s) — (R, ¢),
so that

Flux ::]Q«h)dpda (48)

where ¢(Cy) is the image in S? of the unit circle C;.

In the framework of London’s theory of type II superconductors (the case in which
the magnetic flux is quantized), the magnetic field in the superconductor satisfies a
phenomenological equation in the transition layer in which the magnetic field goes to zero.



Topological Electromagnetism: Knots and Quantization Rules 83

This is the second London equation,
A=-A’VxB, (49)

where A(r) obeys Coulomb gauge and A is the penetration length of the magnetic field inside
the superconductor material (in practice, A is about ten Angstroms, much shorter than the
inner radius of the superconductor ring rp).

From Equation (44), the vector potential A(r) for the magnetic field B(r) in the Coulomb
gauge (V - A = 0) can be written as

A_Pds u,. (50)

It follows that s = s(¢) and p = p(r). Furthermore, the quantity foz T Aprdg has to be
independent of r inside the superconductor. From these considerations one obtains

4
p=ro s=nt (51)
Inserting Equation (50) into London Equation (49), we obtain the following ordinary
differential equation for p(r),

a2 1d
2(a7p Lapy
A ( i dr) p=0. (52)

Up to first order in A /ry, we can neglect the first term in (52) to obtain
p(r)=0,r>r, (53)

characterizing p inside the superconductor. As the Clebsch variable p has to be continuous
and constant inside the superconductor, with a value p = pg, we obtain pg = 0, i.e. ¢ = oo.
In the model of electromagnetic knots, if an electromanetic field is generated by the scalar
field ¢ and the Clebsch variables (p, s), it is also generated by the scalar 1/¢ and the Clebsch
variables (1 — p, —s). In the latter case, Equation (53) would be 1 — p(r) = 0, r > 7, so that
po = 1 and ¢ = 0 inside the superconductor.

Consequently, the value of the scalar field ¢ inside the superconductor is ¢ = oo or ¢ = 0. In
both cases, the magnetic flux is

Fl AR roRdo — [ 4 54
uX—/Cl()ro q)—/ogq)—n- (54)

If we consider the solutions given by the families 1 and 2 at the begining of this subsection, it
results that the magnetic flux is quantized, being always an integer multiple of 1/2.

The previous argument relies on London’s equation. However, the same conclusion can be
reached considering the following. The radial derivative of p is in general discontinuous at
ro. However, this irregularity in the map ¢ is vanished if either ¢ = 0 or ¢ = oo inside the
superconductor. Therefore, the requirement that the map is regular leads to the topological
quantization of the flux, without taking into account the London equation.
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5.3 The fine structure constant at infinite energy equal to 1/47?

Because the topological model here presented is classical, the electric charge g9 = /Ticep must
be interpreted as the fundamental bare charge, both electric and magnetic (remember that we
are using natural units). The corresponding fine-structure constant « = g3 /47thce is clearly
equal to vy = 1/4m, which is certainly a nice and simple number. We will argue now that
1/4m is an appealing and interesting value for the non-renormalized fine-structure constant
(i. e. neglecting the effect of the quantum vacuum). As we show now, the topological model
seems to describe the electromagnetic field at infinite energy.

The argument goes as follows. Let us combine this topological quantization of the charge
with the appealing and plausible idea that, in the limit of very high energies, the interactions
of charged particles could be determined by their bare charges, i. e. the values of that their
charges would have if they were not renormalized by the quantum vacuum; see e. g. Section
11.8 of Reference (Milonni, 1994). A warning is necessary, however. As the concept of bare
charge is not simple, it is convenient to speak instead of charge at a certain scale. To avoid
confusion and be precise, the expression “bare charge" will be used here as synonymous
or equivalent of “infinite energy limit of the charge" or, more correctly, “charge at infinite
momentum transfer Q", defined as ec, = /47fic€gioo, Where ttoo = lim a(Q?) when Q2 — 0.

The possibility of a finite value for a is an interesting idea worth of consideration. In fact,
it was discusseed by Gell-Mann and Low in their classical and seminal paper “QED at small
distances", Reference (Gell-Mann & Low, 1954), in which they showed that it is something
to be seriously studied. However, they could not decide from their analysis whether e« is
finite or infinite. The current wisdom idea that it is infinite was established later on the basis
of perturbative calculations, but the alternative posed by Gell-Mann and Low has not been
really settled. It is still open.

The infinite energy charge e« of an electron is partially screened by the sea of virtual pairs
that are continuously being created and destroyed in empty space. It is hence said that
it is renormalized. Because the pairs are polarized, as are the molecules in a dielectric, a
polarization cloud is formed around any charged particle, with the result that the observed
value of the electron charge is smaller than e.. Moreover, the apparent electron charge
increases as any probe goes deeper into the polarization cloud and is therefore less screened.
This effect is difficult to measure, since it can be appreciated only at extremely short distances.
However it has been observed in experiments of electron-positron scattering at high energies
Reference (Levine et al., 1997). This means that the vacuum is dielectric. On the other hand,
it is paramagnetic because the effect of the magnetic field is due to the spin of the pairs. The
consequence is that the hypothetical magnetic charge would be observed with a greater value
at low energy than at very high energy, contrary to the electron charge.

It is easy to understand the reason for the expression “bare charge" to denote e.. When two
electrons interact with very high momentum transfer, each one is located so deeply inside the
polarization cloud around the other that very little space is left between them to screen the
charges, so that the bare charges, namely e, interact directly. As unification is is assumed to
happen at very high energy, it is an appealing idea that aec = agyT (GUT stands for “Grand
Unified Theories", that include weak and gravitation ones. This suggests that a unified theory
could be a theory of bare particles (i. e. in the sense that it neglects the effect of the vacuum.)
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If this were the case, nature would have provided us with a natural cut-off, aguT = ®co. As
a consequence, it can be argued that the topological model implies that agyr = &eo = 1/47.
The argument goes as follows.

1. The value of the fundamental charge predicted by this topological quantization, ¢y =
Viiceg = 5.28 x 10719 C is in the right interval to verify ¢y = ex = oo, in other words to be
equal to the common value of both the fundamental electric and magnetic bare charges. This is
so because, as the quantum vacuum is dielectric but paramagnetic, the following inequalities
must be satisfied: e < ¢y < g, as it happens since e = 0.3028, g = 1, ¢ = ¢/2a = 20.75, in
natural units. Note that it is impossible to have a completely symmetry between electricity
and magnetism simultaneously at low and high energies. The lack of symmetry between the
charges of the electron and the Dirac monopole would be due to the vacuum polarization:
according to the topological model, the electric and magnetic infinite energy charges are equal
and verify exgoo = €3 = 1, but they would be decreased and increased, respectively, by the sea
of virtual pairs, until their current values that verify eg = 27r. This qualitative picture seems
nice and appealing.

2. Let us admit as a working hypothesis that two charged particles interact with their bare
charges at high energies. There could be then a conflict between (a) a unified theory of
electroweak and strong forces in which « = a5 and (b) an infinite value of xe. The reason
is that unification implies that the curves of the running constants a(Q?) and as(Q? must
converge asymptotically to the same value agyr. It could be argued that, to have unification
at a certain scale, it would suffice that these two curves be close in an energy interval, even
if they cross and separate afterwards. However in that case the unified theory would be just
an approximate accident. On the other hand, the assumption that both running constants go
asymptotically to the same finite value gives a much deeper meaning to the idea of unified
theory. In that case, ec must expected to be finite, and the equality agyr = e must be
satisfied.

3. The value ay = €§/47hcey = 1/47 = 0.0796 for the infinite energy fine-structure constant
is thought-provoking and fitting, since agyr is believed to be in the interval (0.05,0.1). This
reaffirms the assertion that the fundamental value of the charge given by this topological
mechanism ey could be equal to e, the infinite energy electron charge (and the infinite energy
monopole charge, as well). It also supports the statement that agyt = a9 = 1/4m. All this
is certainly curious and intriguing: indeed, the topological mechanism for the quantization of
the charge here described is obtained simply by putting some topology in elementary classical
low energy electrodynamics.

We believe, therefore, that the following three ideas must be studies carefully: (1) the complete
symmetry between electricity and magnetism at the level of the infinite energy charges, where
both are equal to /ficey, this symmetry being broken by the dielectric and paramagnetic
quantum vacuum; (2) That the topological model on which the topological mechanism of
quantization is based could give a theory of high- energy electromagnetism at the unification
scale and (3) that the value that this model predicts for the fine-structure constant ag = 1/47
could be equal to the infinite energy limit we and also to agyr, the constant of the unified
theory of strong and electroweak interactions.
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6. Conclusions

The topological model of electromagnetism constructed with electromagnetic knots is based
on the existence of a topological structure which underlies the Maxwell’s standard theory, in
such a way that the Maxwell’s equations in empty space are the exact linearization of some
nonlinear equations with topological properties and constants of the motion. Although the
model is classical, it embodies the topological quantizations of the helicity and the energy
inside a cavity, which suggest that it offers a way to understand better the relation between the
classical and quantum aspects of the electromagnetic theory. The model is locally equivalent
to Maxwell’s standard theory in empty space (but globally non-equivalent). This means that
it can not enter in conflict with Maxwell’s theory in experiments of local nature.

In the model of electromagnetic knots, the electric charge which is topologically quantized,
its fundamental value being g9 = 1 in natural units (or g9 = +/ficeg = 5.28 x 107 Cin
the International System of Units). Furthermore, the number of fundamental charges inside a
volume is equal to the degree of a map between two spheres. It turns out that there are exactly
|m| electric lines going out or coming into a point charge g = mqy, for which a complex scalar
field is equal to any prescribed complex number (taking into account the orientation of the
map).

The topological model is completely symmetric between electricity and magnetism, in the
sense that it predicts that the fundamental hypothetical magnetic charge would be also 4.
Note that qg = 3.3¢, where ¢ is the electron charge, and that the corresponding fine structure
constant is p = 1/47r. Hence, o could be interpreted as the bare electron and monopole
charge. As the quantum vacuum is dielectric but paramagnetic, the observed electric charge
must be smaller than gg, but the Dirac magnetic monopole must be greater (it is equal to
20.75qp). This suggests that &g could be the fine structure constant at infinite energy and,
consequently, that the coupling constant of the Grand Unified Theory could be also a5 = ap =
1/47m.

The model of electromagnetic knots also predicts that the magnetic flux is quantized, the
fundamental flux unit being 1/2 in natural units. Consequently, the relation between the
fundamental magnetic flux and electric charge in this model is the same as that between
the Dirac monopole and the electron charge in standard theory. The quantum vacuum
increases the value of the magnetic fields by a factor 271/, according to the above mentioned
interpretation. This can be represented by a relative permeability u, = 27t/e = 20.75 (with
respect to the state in which there is neither matter nor radiation and the effect of the zero
point radiation has been discounted). The renormalized magnetic flux must be therefore equal
to iy x Flux, where Flux = 1/2 is the bare value. This implies that the flux is a multiple
integer of 7t/e, either in standard theory or in the topological theory after multiplying by the
permeability p; to take care of the effect of the quantum vacuum. Hence, the topological
quantization of the magnetic flux coincides with the standard one after introducing a relative
permeability to account for the effect of the quantum vacuum. This is fully coherent with the
interpretation given in the previous paragraph that the topological model of electromagnetic
knots gives a theory of high energy electromagnetism at the unification scale or a theory of
bare electromagnetism.
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1. Introduction

In this chapter, we shall expose several analogies between oscillatory phenomena in
mecahanics and optics. The main subject will be the analogy between propagation
of electromagnetic waves in dielectrics and of electrons in various time-independent
potentials. The basis of this analogy is the fact that both wave equations for electromagnetic
monoenergetic waves (i.e. with well-defined frequency), obtained directly from the Maxwell
equations, and the time-independent Schrodinger equation are Helmholtz equations; when
specific restrictions - like behaviour at infinity and boundary conditions - are imposed,
they generate similar eigenvalues problems, with similar solutions. The benefit of such
analogies is twofold. First, it could help a researcher, specialized in a specific field, to better
understand a new one. For instance, they might efficiently explain the fiber-optics properties
to people already familiar with quantum mechanics. Also, even if such researchers work
frequently with the quantum mechanical wave function, the electromagnetic modal field
may provide an interesting vizualization of quantum probability density field [1]. Second,
it provides the opportunity of cross-fertilization between (for instance) electromagnetism and
optoelectronics, through the development of ballistic electron optics in two dimensional (2D)
electron systems (2DESs); transferring concepts, models of devices and experiments from one
field to another stimulate the progress in both domains.

Even if in modern times the analogies are not credited as most creative approaches in physics,
in the early days of developement of science the perception was quite different. "Men’s labour
.. should be turned to the investigation and observation of the resemblances and analogies
of things... for these it is which detect the unity of nature, and lay the fundation for the
constitution of the sciences.”, considers Francis Bacon, quoted by [1]. Some two centuries later,
Goethe was looking for the "ultimate fact" - the Urphédnomenon - specific to every scientific
discipline, from botanics to optics [2], and, in this investigation, attributed to analogies a
central role. However, if analogies cannot be considered anymore as central for the scientific
investigation, thay could still be pedagogically useful and also inspiring for active scientific
research.

Let us describe now shortly the structure of this chapter. The next two sections are
devoted to a general description of the two fields to be hereafter investigated: metallic
and dielectric waveguides (Section 2) and 2DESs (Section 3). The importance of these
topics for the development of optical fibers, integrated optics, optoelectronics, transport
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phenomena in mesoscopic and nanoscopic systems, is explained. In Section 4, some very
general considerations about the physical basis of analogies between mechanical (classical or
quantum) and electromagnetic phenomena, are outlined. Starting from the main experimental
laws of electromagnetism, the Maxwell’s equations are introduced in Section 5. In the next
one, the propagation of electromagnetic waves in metalic and dielectric structures is studied,
and the transverse solutions for the electric and magnetic field are obtained. These results are
applied to metalic waveguides and cavities in Section 7. The optical fibers are described in
Section 8, and the behaviour of fields, including the modes in circular fibers, are presented.
Although the analogy between wave guide- and quantum mechanical- problems is treated in a
huge number of references, the subject is rarely discussed in full detail. This is why, in Section
9, the analogy between the three-layer slab optical waveguide and the quantum rectangular
well is mirrored and analyzed with utmost attention. The last part of the chapter is devoted
to transport phenomena in 2DESs and their electromagnetic counterpart. In Section 10, the
theoretical description of ballistic electrons is sketched, and, in Section 11, the transverse
modes in electronic waveguides are desctibed. A rigorous form of the effective mass approach
for electrons in semiconductors is presented in Section 12, and a quantitative analogy between
the electronic wave function and the electric or magnetic field is established. Section 13 is
devoted to optics experiments made with ballistic electrons. Final coments and conclusions
are exposed in Section 14.

2. Metallic and dielectric waveguides; optical fibers

Propagation of electromagnetic waves through metallic or dielectric structures, having
dimensions of the order of their wavelength, is a subject of great interest for applied
physics. The only practical way of generating and transmitting radio waves on a well-defined
trajectory involves such metallic structures [3]. For much shorter wavelengths, i.e. for infrared
radiation and light, the propagation through dielectric waveguides has produced, with the
creation of optical fibers, a huge revolution in telecommunications. The main inventor of the
optical fiber, C. Kao, received the 2009 Nobel Prize in Physics (together with W. S. Boyle and
G. E. Smith). As one of the laurees remarks, "it is not often that the awards is given for work
in applied science". [4]

The creation of optical fibers has its origins in the efforts of improving the capabilities of the
existing (at the level of early '60s) communication infrastructure, with a focus on the use of
microwave transmission systems. The development of lasers (the first laser was produced in
May 16, 1960, by Theodore Maiman) made clear that the coherent light can be an information
carrier with 5-6 orders of magnitude more performant than the microwaves, as one can
easily see just comparing the frequencies of the two radiations. In a seminal paper, Kao
and Hockham [5] recognized that the key issue in producing "a successful fiber waveguide
depends... on the availability of suitable low-loss dielectric material”, in fact - of a glass with
very small (< 10%) concentration of impurities, particularly of transition elements (Fe, Cu,
Mn). Besides telecommunication applications, an appropriate bundle of optical fibers can
transfer an image - as scientists sudying the insect eye realized, also in the early 60s. [6]

Another domain of great interest which came to being with the development of dielectric
waveguides and with the progress of thin-film technology is the integrated optics. In the
early '70s, thin films dielectric waveguides have been used as the basic element of all the
components of an optical circuit, including lasers, modulators, detectors, prisms, lenses,
polarizers and couplers [7]. The transmission of light between two optical components
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became a problem of interconnecting of two waveguides. So, the traditional optical circuit,
composed of separate devices, carefully arranged on a rigid support, and protected against
mechanical, thermal or atmospheric perturbations, has been replaced with a common
substrate where all the thin-film optical components are deposited [7].

3. 2DESs and ballistic electrons

Electronic transport in conducting solids is generally diffusive. Its flow follows the gradient in
the electrochemical potential, constricted by the physical or electrostatic edges of the specimen
or device. So, the mean free path of electrons is very short compared to the dimension of
the specimen. [8] One of the macroscopic consequences of this behaviour is the fact that
the conductance of a rectangular 2D conductor is directly proportional to its width (W)
and inversely proportional to its length (L). Does this ohmic behaviour remain correct for
arbitrary small dimensions of the conductor? It is quite natural to expect that, if the mean
free path of electrons is comparable to W or L - conditions which define the ballistic regime
of electrons - the situation should change. Although the first experiments with ballistic
electrons in metals have been done by Sharvin and co-workers in the mid '60s [9] and Tsoi and
co-workers in the mid '70s [10], the most suitable system for the study of ballistic electrons
is the two-dimensional electron system (2DES) obtained in semiconductors, mainly in the
GaAs — AlyGaj_, As heterostructures, in early ‘80s. In such 2DESs, the mobility of electrons
are very high, and the ballistic regime can be easily obtained. The discovery of quantum
conductance is only one achievement of this domain of mesoscopic physics, which shows
how deep is the non-ohmic behaviour of electrical conduction in mesoscopic systems. In the
ballistic regime, the electrons can be described by a quite simple Schrodinger equation, and
electron beams can be controlled via electric or magnetic fields. A new field of research, the
classical ballistic electron optics in 2DESs, has emerged in this way. At low temperatures and
low bias, the current is carried only by electrons at the Fermi level, so manipulating with such
electrons is similar to doing optical experiments with a monochromatic source [11].

The propagation of ballistic electrons in mesoscopic conductors has many similarities with
electromagnetic wave propagation in waveguides, and the ballistic electron optics opened
a new domain of micro- or nano-electronics. The revealing of analogies between ballistic
electrons and guided electromagnetic waves, or between optics and electric field manipulation
of electron beams, are not only useful theoretical exercises, but also have a creative potential,
stimulating the transfer of knowledge and of experimental techniques from one domain to
another.

4. Mechanical and electrical oscillations

It is useful to begin the discussion of the analogies presented in this chapter with some
very general considerations [12]. The most natural starting point is probably the comparison
between the mechanical equation of motion of a mechanical oscillator having the mass m and
the stiffness k:

d*x )
and the electrectromagnetical equation of motion of a LC circuit [12]:
g q
L— +L=0 2
TG @



92 Trends in Electromagnetism — From Fundamentals to Applications

which provides immediately an analogy between the mechanical energy:

1 (dx\*> 1, ,
and the electromagnetic one:
1 (dg\* 1 _
2 (dt) tae=¢ @)

The analogy between these equations reveals a much deeper fact than a simple terminological
dictionary of mechanical and electromagnetic terms: it shows the inertial properties of the
magnetic field, fully expressed by Lenz’s law. Actually, magnetic field inertia (defined by the
inductance L) controls the rate of change of current for a given voltage in a circit, in exactly
the same way as the inertial mass controls the change of velocity for a given force. Magnetic
inertial or inductive behaviour arises from the tendency of the magnetic flux threading a
circuit to remain constant, and reaction to any change in its value generates a voltage and
hence a current which flows to oppose the change of the flux. ([5], p.12) Even if, in the
previous equations, the mechanical oscillator is a classical one, its deep connections with its
quantum counterpart are wellknown ([13], vol.1, Ch. 12). Also, understanding of classical
waves propagation was decissive for the formulation of quantum-wave theory [13], so the
classical form of (1) and (3) is not an obstacle in the development of our arguments.

These basic remarks explain the similarities between the propagation of elastic and mechanical
waves. The velocity of waves through a medium is determined by the inertial and elastical
properties of the medium. They allow the storing of wave energy in the medium, and in the
absence of energy dissipation, they also determine the impedance presented by the medium
to the waves. In addition, when there is no loss mechanism, a plane wave solution will be
obtained, but any resistive or loss term, will produce a decay with time or distance of the
oscillatory solution.

Referring now to the electromagnetic waves, the magnetic inertia of the medium is provided
by the inductive property of that medum, i.e. permeability y, allowing storage of magnetic
energy, and the elasticity or capacitive property - by the permittivity €, allowing storage of the
potential or electric field energy. ([12], p.199)

5. Maxwell’s equations

The theory of electromagnetic phenomena can be described by four equations, two of them
independent of time, and two - time-varying. The time-independent ones express the fact that
the electric charge is the source of the electric field, but a "magnetic charge” does not exist:

V- (eE) =p )
V- (uH) =0 (6)

One time-varying equation expresses Faraday’s (or Lenz’s) law [12], relating the time variation
of the magnetic induction, yH = B, with the space variation of E :

0 : )
3% (uH) is connected with p (say)
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More exactly,
VXE=—p— ?)

The other one expresses Ampere’s law [12], relating that the time variation of €E defines the
space variation of H:

9 (eE) is connected with oH (say)

ot oz o

More exactly,
oE
V xH=e— 8
€ ®)
assuming that no free chages or electric current are present - a natural assumption for our
approach, as we shall use Maxwell’s equations only for studying the wave propagation. In
this context, the only role played by (5) and (6) will be to demonstrate the transverse character

of the vectors E, H.

6. Propagation of electromagnetic waves in waveguides and cavities

The propagation of electromagnetic waves in hollow metalic cylinders is an interesting
subject, both for theoretical and practical reasons - e.g., for its applications in
telecommunications. We shall consider that the metal is a perfect conductor; if the cylinder
is infinite, we shall call this metallic structure waveguide; if it has end faces, we shall call it
cavity. The transversal section of the cylinder is the same, along the cylinder axis. With a time
dependence exp (—iwt), the Maxwell equations (5)-(8) for the fields inside the cylinder take
the form [3]:

VxE=iwB, V-B=0, VxB=—iuewE, V-E=0 9
For a cylinder filled with a uniform non-dissipative medium having permittivity e and
permeability u,
E
2 2 —
(V + pew ) {B} =0 (10)

The specific geometry suggests us to single out the spatial variation of the fields in the z
direction and to assume

E(x,y,z,t)| _ [E(xy)exp(Likz —iwt) 1
B(x,y,z, t)} - {B(x,y) exp (Likz — iwt) a1

The wave equation is reduced to two variables:

[Vf + (yewz - kz)} {E} - (12)

where V? is the transverse part of the Laplacian operator:

82

2 _ vy
Vi=V 572

(13)

It is convenient to separate the fields into components parallel to and transverse the o0z axis:

E = E,+E;, with E, =2E,, B, = (ZxE) x2 (14)
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Z is as usual, a unit vector in the z—direction. Similar definitions hold for the magnetic field
B. The Maxwell equations can be expressed in terms of transverse and parallel fields as [3]:

% + iwZ X Bt = Vth, Z- (Vt X Et) = inZ (15)
oB; . ~ .
5, T iHewz x Et = VB,, Z-(V; X Bt) = —ipewE, (16)
_ OE; 0B
Vi B =—== Vi B =—== 17)

According to the first equations in (15) and (16), if E; and B, are known, the transverse
components of E and B are determined, assuming the z dependence is given by (11).
Considering that the propagation in the positive z direction (for the opposite one, k changes it
sign) and that at least one E, and B, have non-zero values, the transverse fields are
E = m kVE. — wz x VB (18)
_ m [kV B, + wewz x V,E,] (19)
Let us notice the existence of a special type of solution, called the transverse electromagnetic
(TEM) wave, having only field components transverse to the direction of propagation [6].
From the second equation in (15) and the first in (16), results that E; = 0 and B, = 0 implies
that E; = Epr) satisfies
VixEgrm =0, Vi-Eprm =0 (20)

So, Err is a solution of an electrostatic problem in 2D. There are 4 consequences:

1. the axial wave number is given by the infinite-medium value,

k=ko=w\/ne (21)
as can be seen from (12).

2. the magnetic field, deduced from the first eq. in (16), is

Berm = £/1€z X Epry (22)

for waves propagating as exp (+ikz). The connection between Brry; and Epry is just the
same as for plane waves in an infinite medium.

3. the TEM mode cannot exist inside a single, hollow, cylindrical conductor of infinite
conductivity. The surface is an equipotential; the electric field therefore vanishes inside.
It is necessary to have two or more cylindrical surfaces to support the TEM mode. The
familiar coaxial cable and the parallel-wire transmission line are structures for which this is
the dominant mode.

4. the absence of a cutoff frequency (see below): the wave number (21) is real for all w.

In fact, two types of field configuration occur in hollow cylinders. They are solutions of the
eigenvalue problems given by the wave equation (12), solved with the following boundary
conditions, to be fulfilled on the cylinder surface:

nxE=0, n-B=0 (23)
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where n is a normal unit at the surface S. From the first equation of (23):
nx E=nx (—nE;+ZE;) =nxZE; =0

so:
E;ls =0 (24)
Also, from the second one:
n-B=n-(—nB;+2B;) =—-B;=0
With this value for B; in the component of the first equation (16) parallel to n, we get:

0B;

5 ls=0 (25)

where d/0n is the normal derivative at a point on the surface. Even if the wave equation
for E; and B; is the same ((eq. (12)), the boundary conditions on E, and B, are different, so
the eigenvalues for E; and B, will in general be different. The fields thus naturally divide
themselves into two distinct categories:

Transverse magnetic (TM) waves:
B, = 0 everywhere; boundary condition, E; | =0 (26)

Transverse electric (TE) waves:

0B
E; = 0 everywhere; boundary condition, a—n’z [s=0 (27)

For a given frequency w, only certain values of wave number k can occur (typical waveguide
situation), or, for a given k, only certain w values are allowed (typical resonant cavity
situation).

The variuos TM and TE waves, plus the TEM waves if it can exist, constitute a complete set of
fields to describe an arbitrary electromagnetic disturbance in a waveguide or cavity [3].

7. Waveguides

For the propagation of waves inside a hollow waveguide of uniform cross section, it is found
from (18) and (19) that the transverse magnetic fields for both TM and TE waves are related

by:
H; = :I:%i x Ey (28)

where Z is called the wave impedance and is given by

k k

w = R\/g (TM)
7z = w L m

w — ko [E (TE)

and ky is given by (21). The =+ sign in (28) goes with z dependence, exp (%ikz) [3]. The
transverse fields are determined by the longitudinal fields, according to (18) and (19):

(29)
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TM waves:

ik
Br= Vi (30)
TE waves: "
i
H; = :i:?thp (31)

where § exp (+ikz) is E; (H;) for TM (TE) waves, and 4 is defined below. The scalar function
1 satisfies the 2D wave eq (12):

(Vi+2?)yp=0 (32)
where
v = pew? — k? (33)
subject to the boundary condition,
_ W,
gls =0or 5|5 =0 (34)

for TM (TE) waves.

Equation (32) for ¢, together with boundary condition (34), specifies an eigenvalues problem.
The similarity with non-relativistic quantum mechanics is evident.

7.1 Modes in a rectangular waveguide

Let us illustrate the previous general theory by considering the propagation of TE waves in
a rectangular waveguide (the corners of the rectangle are situated in (0,0), (4,0), (a,b), (0, b)).
In this case, is easy to obtain explicit solutions for the fields [3]. The wave equation for iy = H,
is

02 02 2

— 4 2 =0 35
with boundary conditions d¢/dn = 0 at x = 0, a and y = 0, b. The solution for ¥ is easily
find to be:

B mmx nmy
Y, (x,y) = Hocos (—a ) cos ( b ) (36)
with 7 givem by:
m?  n?

Yom = T (az + bz> (37)

with m, n - integers. Consequently, from (33),

2
i

k%nn = V€w2 - '7%171 = he (wz - w%m) ’ w%ﬂn = ymen (38)

As only for w > wyn, ki is real, so the waves propagate without attenuation; wy,;, is called
cutoff frequency. For a given w, only certain values of k, namely k;,;;, are allowed.

For TM waves, the equation for the field i = E, will be also (39), but the boundary condition
will be different: y = 0at x = 0, aand y = 0, b. The solution will be:

(5) ®9

. (mIXy
P, (x,y) = Egsin ( p ) sin
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with the same result for k.

In a more general geometry, there will be a spectrum of eigenvalues 73 and corresponding
solutions 1,, with A taking discrete values (which can be integers or sets of integers, see
for instance (37)). These different solutions are called the modes of the guide. For a given
frequency w, the wave number k is determined for each value of A :

k3 = pew® — 73 (40)
Defining a cutoff frequency w,,
_ T 2 2

then the wave number can be written:

ky = e w? — w3 (42)

7.2 Modes in a resonant cavity

In a resonant cavity - i.e., a cylinder with metallic, perfect conductive ends perpendicular to
the oz axis - the wave equation is identical, but the eigenvalue problem is somewhat different,
due to the restrictions on k. Indeed, the formation of standing waves requires a z—dependence
of the fields having the form

Asinkz + Bcoskz (43)

So, the wavenumber k is restricted to:
kng,p:QLm (44)

and the condition a(35) impose a quantization of w :

2 _ (TN 2
pewy,) = (pg> +7 (45)
So, the existence of quantized values of k implies the quantization of w.

8. Electromagnetic wave propagation in optical fibers

Optical fibers belong to a subset (the most commercially significant one) of dielectric optical
waveguides [6]. Although the first study in this subject was published in 1910 [14], the
explosive increase of interest for optical fibers coincides with the technical production of low
loss dielectrics, some six decenies later. In practice, they are highly clindrical flexible fibers
made of nearly transparent dielectric material. These fibers - with a diameter comparable to
a human hair - are composed of a central region, the core of radius a and reffractive index n¢,,
surrounded by the cladding, of refractive index n,; < 1o, covered with a protective jacket [15].
In the core, 1, may be constant - in this case, one says that the refractive-index profile is a
step profile (as also 1,; = const.), or may be graded, for instance:

Mo (1) = 1o (0) {1 —A (2)“} , r<a (46)
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For & = 2, the profile is called parabolic. One of the main parameters characterizing an optical
fiber is the profile hight parameter A,

1 n? n
A - — — cl ~ — 7Cl , = 47
5 ( n%,)) ~ Heo = Maxteo () |r<a 47)

Besides A, one usually also defines the fiber parameter V' :

V = kav2A (48)

Assimilating the propagating light with a geometric ray, it must be incident on the
core-cladding interface at an angle smaller than the critical angle 6. :

6. = arcsin Ad (49)
Mco

in order to be totally reflected at this interface, and therefore to remain inside the core.
However, due to the wave character of light, it must satisfy a self-interference condition, in
order to be trapped in the waveguide [6]. There are only a finite number of paths which
satisfy this condition, and therefore a finite number of modes which propagate through the
fiber. The fiber is multimode if 12.5um < r < 100um and 0.01 < A < 0.03, and single-mode if
2um < v < 5um and 0.003 < A < 0.01 [15]. By far the most popular fibers for long distance
telecommunications applications allow only a single mode of each polarization to propagate

[6].

8.1 Modes in circular fibers

We consider a fiber of uniform cross section with relative magnetic permeability = 1
and n varying only on transverse directions [3]. Assuming a z— and {— dependence
exp (ik;z — iwt), the Maxwell equations can be combined, to yield the Helmholtz wave
equations for H and E:

2.2
V2H + nc(; H = iweg (Vn2) x E (50)
2,2 1
V2E + ”C‘z" E=_V [nz (Vnz) E} (51)

where we have written € = n?¢. Just as in Sect. 6, the transverse components of E and H can
be expressed in terms of the longitudinal fields E,, H;, i.e.

1

E; 2 [k:V(Ez — wpoZ X VH:] (52)

and .
Hy = é (k. Vi H + wegn®z x ViE:] (53)
where 12 = n?w?/c? — k2 is the radial propagation constant, as for metallic waveguides.

If we take the z component of the eqs (54), (55) and use (52) to eliminate the transverse
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field components, assuming that on?/9z = 0, we find generalizations of the 2D scalar wave
equation (32):

2
2 217 _ (W 2\ . szeoA
ViH: +9°H: (w) (Vo) ik = =502 [Vl x ViE| (54
and )
WT+%E—Aé (w#)VE_fMﬂW[anvH} (55)
Lz z on tCz ,)/ 02 t t11z

In contrast to (32) for ideal metallic guides, the equations for E;, H, are coupled. In general,
thee is no separation into purely TE and TM modes. The only simplification occurs in the
case of a step-profile refractive index, where we can solve the equation (54) or (55) in each
domain of constant refractive index, and match the two solutions, using appropriate boundary
conditions. In this case, the radial part of the electric field (for the first mode) in the core is [6]:

Io (ks =62 0/

R(r)= , r<a (56)
Jo (\/ ncokz p >
and in the cladding:
Ky ( n?k3 — p? (r/a)>
R(r)= , r>a (57)

m(w@%—ﬁ)

These solutions are identical (using an appropriate "dictionary") with the solution of the
Schrodinger equation for a particle moving in a potential with cylindrical symmetry, the radial
part of the potential being a rectangular well of finite depth. However, this kind of analogies
can be more easely developed for planar dielectric waveguides, namely for "step-index"
dielectrics, consisting of a central slab of finite thickness and of higher refractive index (core),
and two lateral, half-space medium of lower refractive index (cladding). Indeed, in such a
situation, the quantum counterpart of the dielectric guide is much more extensively studied,
in almost any textbook of quantum mechanics.

9. An optical-quantum analogy: the three-layer slab optical waveguide and the
quantum rectangular well

We shall calculate in detail the TE modes of a three-layer slab optical waveguide, with a 1D
structure, and the bound states of a particle in a rectangular well, and we shall find that these
problems have identical solutions. Of course, the physical meaning of the parameters entering
in each solution are different, but the mathematical structure of the solutions is identical.

9.1 The optical problem

We consider a three-layer slab optical waveguide, with a 1D structure [16]. The
electromagnetic wave propagates along the x axis, and the slabs are: a semi-infinite medium
of refractive index n1, having as right border the yz plane; a slab of refractive index #,, having
as left border the plane yz and as left border a plane paralel to it, cutting the ox axis at xg = W;
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and a semi-infinite medium of refractive index n3, for the remaining space. The inner slab
corresponds to the core, and the outer ones - to the cladding.

It is instructive to obtain the wave equation for the electric and magnetic field in this simple
geometry, starting directly from the Maxwell equations (7), (8). Assuming that u = p,
throughout the entire system and that the t—dependence is:

E=E(t=0)exp(—iwt), H=H(t =0)exp (—iwt)

the equations for the field components are:

0E; OE, .

—ay ~ o = ipgwHy (58)

JE, OE; .

T ingwH, (59)

JoE oE

oy TR

9 3y ipgwH; (60)
Also,

oH, oJH, .

3y ~ 5 = —iewEy (61)

oH, oH; .

% ox iewEy (62)

oH, 0H

y _ X _ 5

gy 3y iewE; (63)

TE mode

We shall look for the TE mode. By definition, in this mode there is no electric field in
longitudinal direction, E, = 0, there is no space variation in the y direction, so d/dy — 0, and
the z-dependence is exp (—iBz), s0 9/dz — —ip. The Maxwell equations (58)-(63) become:

_ B

He = 5 E (64)
— BEx = powHy (65)

i OE,
H, = *luoiww (66)
BHy = —ewkEy (67)
—ifHy — % = —iewEy (68)
My _ 69
e (69)

From (69), H, = const and we can put H, = 0, so from (65), (67), Ex = 0. So,

Ex=E,=Hy =0 (70)
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With (64), (66) in (68):
d’E
7y 2 _ g2 _
-+ (emgw? — ) By =0 71)
Defining:
nEff — % — ‘B = nefka/ ko = w €0]10 (72)
we have: )
d°E
Y o2 2
With kg = 27t/ A, (73) becomes:
d’E,  4n?
y 2 —
it (e, - neff) E, =0 (74)

It is interesting to compare (74) with the Schrodinger equation for a particle of mass m moving
in a potential V :

Py 4n?
ﬁﬁ-?(—ZmV—i—Zmé’)qJ:O (75)
For bound states, £ = —|&| < 0. In (75), the energy is subject of quantization, similar to

ng £t in (73) - with appropriate boundary conditions, see below. So, the quantum-mechanical
energy is proportional to €,, confirming the analogy stated in Sect.4. The opposite of the
potential is proportional to the square of the refractive index - the so-called "upside-down
correspondence” [1] between optical and mechanical propagation: a light wave tends to
concentrate in the area with maximum refractive index, while a particle tends to propagate
on the bottom of the potential. Also, the wavelength A corresponds to the Planck constant # :
when A — 0, the wave optics is replaced by geometrical optics, similarly with transition ftrom
quantum to classical mechanics.

Let us discuss now the boundary conditions. In the absence of charges and current flow on
surfaces, the boundary conditions for the electromagnetic fields are:

1. the tangential components of the electric field are continuous while crossing the border
2. the tangential components of the magnetic field are continuous

3. the normal components of the electric flux density D = ¢E are continuous

4. the normal components of the magnetic flux density B = pH are continuous

The tangential electric field at the boundary is E,y + E.Z = E,y and the tangential magnetic
; dE,

field is Hyy + H.z = H;z. But H; = _%LWW’ so the continuity of H, is equivalent to

the continuity of % So, the conditions (1) and (2) impose the continuity of Ey and of its

derivative, %. The normal component of the electric field Ey is identically zero, according

to (70), so the condition (3) is automatically fulfilled. As p = p,, condition (4) claims the
continuity of the normal components of the magnetic flux, Hy = %%Ey, so this condition
coincides with (1).



102 Trends in Electromagnetism — From Fundamentals to Applications

Consequently, in our case, the boundary conditions request the continuity of Ey and of its
derivative dE, /dx , at the slab boundaries. The equation (73), together with these boundary
conditions, define a Sturm-Liouville problem, which determines the eigenvalues of Neff OI,
equivalently, of B.

For the physics of optical fibers, the most interesting situation is that corresponding to an
oscillatory solution inside the core and exponentially small ones outside the core (in the
cladding):

Ey (x) = Crexp (11x), 71 =ko (76)

(77)

= Cysin(yyx +a), 'yszo,/
=Cexp(—13(x—W)), 73= ko,/ (78)

As we just have seen, the boundary conditions are equlvalent to the continuity of Ey (x) and
of its derivative, dE, (x) /dx :

dE, (x)
ayix =71Crexp(11%), 11 = kO\/ (79)

= 1,Ca cos (7, + &) (80)
= 713G exp (=13 (x = W)) (81)
So, the continuity at x = 0 means:
C1 = Cysina (82)
71C1 = 12Ca cos (83)
Similarily, at x = W:
Cosin (yo,W +a) = C3 (84)
72C2 €08 (1, W +a) = —73C3 (85)
Dividing (83) by (82), we get:
N = cota, (86)
72
a = arccot — n + nn, g1 =0,1,2,. (87)
Dividing (85) by (81), we get:
T3 _ —cot(,W+a),
72
73
— arccot P —a+ g =1,W (88)
2

Substitution of « from (87) into (88) gives:

73
Y2

T

— arccot — — arccot — + g = W (89)

Written in the form:

— arctan 22 — arctan 22 + qm = ,W (90)
73 T
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it coincides with eq. (20) Ch.II, vol.1, [13]. It is the energy eigenvalue equation for the
Schrodinger equation of a particle of mass m, moving in the potential V (x) :
@2 2m
@+?(7V(x)+6) Pp(x)=0 91)

where V (x) is a piecewise-defined function ([13], IIL.1.6):

%P xX>a
Vix)=q¢ Vo, a>x>b 92)
Vs, b>«x
Vo<V < Vs
It is useful to consider a particular situation, when n; = n3 in the optical waveguide,

respectively when V; = V3 = 0, V, < 0, in the quantum mechanical problem. In (91),
—V (x) > 0is given, and we have to find the eigenvalues of the energy £ < 0. For the optical
waveguide (71), ey w? is given, and the eigenvalues of the quantity —pB? (essentially, the
propagation constant ) must be obtained. Let us note once again that the refractive index in
the optical waveguide corresponds to the opposite of the potential, in the quantum mechanical
problem.

Let us investigate in greater detail the consequences of the particular situation just mentioned,
ny = nz. With ¢ = —g, eq. (90) becomes:

T2, 97 _ W
arctan - + y = > 93)
It gives, for 4 odd:
N tan M (94)
72 2
and for g even:
W
T2 _ tan A8 (95)
2! 2

Putting:

w 2 2 2 2
5 =M= ako,/nefffn1 =T1, 1pa = akoy/n5 —nZ ;= Iy (96)
0

we get, instead of (94), (95):

r
L —tanT, (q 0dd) 97)
I
I
—= =—tanl, (geven) (98)
I
Defining K through the equation:
7 =K -T13} 99)

the eigenvalue conditions (97), (98) take the form:

=tanI) (100)
I
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)

/K2 -T2

So, the eigenvalue equation (90) splits into two simpler conditions (100), (101), carracterizing
states with well defined parity, as we shall see further on (of course, the parity of 4, mentioned
just after (93), has nothing to do with the parity of states).

= —tanl» (101)

We shall analyze now the same problem, starting from the quantum mechanical side.

9.2 The quantum mechanical problem: the particle in a rectangular potential well

We discuss now the Schrodinger equation for a particle in a rectangular potential well ([17],
v.1, pr.25), one of the simplest problems of quantum mechanics:

n a2
—%@‘FV(X) P (x) =&Y (x) (102)
-U, 0<x<a
Vix) = { 0, elsewere (103)
Let be: ) -
8% ks o o, o
5_—Eﬁ,u_3%,k_%—% (104)

We are looking for bound states inside the well:

up (x) = Aexp (xx), x<0 (105)
Uy (x) =Bsin(kx+a), 0<x<a (106)
uz(x) =Dexp(x(a—x)), a<x (107)
The wavefunction and its derivatives:
uj (x) = »Aexp (3x), x<0 (108)
up (x) =kBeos(kx+a), 0<x<a (109)
ub (x) = —xDexp (x(a—x)), a<x (110)
must be continuous in x = 0:
A = Bsina (111)
A = kBcosw (112)
and in x = a:
Bsin(ka+a) =C (113)
kBcos (ka+a) = —»C (114)
Dividing (111), (112):
1 1
— = —tang, « = arctan K +nm (115)
» k »
and (113), (114):
1 1 k
—tan (ka+a) = ——, ka+a = —arctan — + nmym (116)
k » »
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and substituting (115) in (116), we get:

k ka ny
For n, even:
k = —tan k—a, arctan k = —k—a (118)
» 2 » 2
and for n, odd:
k ka = k ka
~ = tan (—2—|—2>, arctan;——?+§ (119)
Putting
ka koa
- — 207 12
=, c=2 (120)
the conditions (118), (119) become respectively:
tan¢ = — (121)

cotf = ——— (122)

yro

Let us write now the wavefunction (106) using the expression (115) for a:

_&
\/C2— &
¢
Cc2- ¢

k
up (x) = Bsin (kx + arctan P nr() , O0<x<a (123)

With (118) and (119), the equation (123) splits in two equations:

uy (x) = Bsin (kx - k?a + 1’l7T> (124)
15 (x) = Bsin <kx - %” +o+ nn) (125)

We translate now the coordinate x, so that the origin of the new axis is placed in the center of
the well:

x=y+3 (126)

and we get:
U (y) = uj (y+ %) = Bsin (ky + nrt) = (—1)" Bsinky (127)
Uz (y) = ug” (y+5) = Bsin (ky+ 2 +n) = (~1)" Beosky (128)

So, the wavefunctions corresponding to the eigenvalues obtained from (121), (122) have well
defined parity.

Let us stress once more that the core of the optical-quantum analogy consists in eqs. (74),
(75), which can be formulated as follows: the refractive index for the propagation of light
plays a similar role to the potential, for the propagation of a quantum non-relativistic particle,
and both the electric (or magnetic) field and the wave function are the solution of essentially



106 Trends in Electromagnetism — From Fundamentals to Applications

the same (Helmholtz) equation. So, if the dynamics of a particle, given by the Schrodinger
equation, can be considered as the central aspect of quantum mechanics, the scattering of light
by a medium with refractive index n (7)) can be considered as the central aspect of optics, at
least when the Maxwell equations can be reduced to a Helmholtz equation. Remembering
Goethe’s opinion, that the "Urphdnomenon” of light science is the scattering of light on a
"turbid" medium, one could remark that his theory of colours is not always as unrealistic as it
was generally considered. [18]

10. Ballistic electrons in 2DESs

As already mentioned, the 2DES, formed at the interface of two semiconductors might play a
central role in mesoscopic physics. The thin 2D conduction layer formed in the GaAs/AlGaAs
heterojunction may reach a carrier concentration of 2 x 10'> cm™2 and can be depleted by
applying a negative voltage to a metalic gate deposited on the surface [Datta]. The mobility
can be as high as 106cm?/ Vs, two order of magnitude higher than in bulk semiconductors.
The Fermi wavelength Ay, is about 35 nm, and the electron mean free path may be as long as
Am = 30um— the same order of magnitude as the liniar dimension of the sample; the ballistic
regime of electrons is therefore easily reached.

At low temperature, the conduction in mesoscopic semiconductor is mainly due to electrons
in the conduction band. Their dynamics can be described by an equation of the form:

(ihV + eA)?

&+ o

+U()|¥(r) =E¥(r) (129)

where & referrs to the conduction band energy, U (r) is the potential energy due to
space-charge etc., A is the vector potential and m is the effective mass. Any band discontinuity
A€, at heterojunctions is incorporated by letting £ be position-dependent [11].

In the case of a homogenous semiconductor, U (r) = 0, assuming A = 0 and & = const.,
the solution of (129) is given by plane waves, exp (ik - r), and not by Bloch functions, 1 (r) -
exp (ik - r) . So, the solutions of (129) are not true wavefunctions, but wavefunctions smoothed
out over a mesoscopic distance, so any rapid variation at atomic scale is suppressed; eq. (129)
is called single-band effective mass equation.

Let us consider a 2DES contained mainly in the xy plane. This means that, in the absence of
any external potential, the electrons can move freely in the xy plane, but they are confined in
the z-direction by some potential V (z), so their wavefunctions will have the form:

Y (r) = ¢, (2) exp (ikyx) exp (ikyy) (130)

The quantization on the z—direction, expressed by the functions ¢, (z), generate several
subbands, with cut-off energy ¢,. At low temperature, only the first subband, corresponding
ton = 1, is occupied, so, instead of (129), the electrons of the 2DES are described by:

(ihV + eA)?

Es+ m

+U(@)|¥(r)=E¥(r) (102) (131)

where the subband energy is & = & + €1; so, the f—dimension enters in this equation only
through &1, which depends on the confining potential V (z). The eq. (131) correctly describes
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the 2DESs formed in semiconductor heterostructures, but is inappropriate for metallic thin
films, where the electron density is much higher, and even at nanoscopic scale, there are tens
of occupied bands; so, the system is merely 3D. Consequently, the dimensionality of a system
depends not only on its geometry, but also on its electron concentration. Let us remind that
the conductive / dielectric properties of a sample depends on frequency of electromagnetic
waves: so even basic classification of materials is not necessarely intrinsec, but it might
depend of the value of some parameters.

11. Transverse modes (or magneto-electric subbands)

We shall discuss now the concept of transverse modes or subbands, which are analogous to
the transverse modes of electromagnetic waveguides [11]. In narrow conductors, the different
transverse modes are well separated in energy, and such conductors are often called electron
waveguides.

We consider a rectangular conductor that is uniform in the x—direction and has some
transverse confining potential U(y). The motion of electrons in such a conductor is described
by the effective mass eq (131):

(ihV 4 eA)?

&
s 2m

+UyY) | Y (xy) =EY (x,y) (132)

We assume a constant magnetic field B in the z—direction, perpendicular to the plane of the
conductor, which can be represented by a vector potential defined by:

Ay=—By, Ay=0 (133)

so that the effective-mass equationcan be rewritten as:

(px+eBy? Py _
les A S U ()| Y (xy) = €Y (ny) (134)
Writing
1

Y (x,v) = — exp (ikx 135
(ry) = 7 exp (ikx) x (v) (135)

we get for the transverse function the equation:
g4 BBt Pyl ) = ex (136)

We are interested in the nature of the transverse eigenfunctions and eigenenergies for different
combinations of the confining potential Uand the magnetic field B. A parabolic potential

1
Uy) = Emw%yz (137)

is often a good description of the actual potential in many electron wave guides.
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Let us consider the case of confined electrons (U # 0) in zero magnetic field (B = 0). Eq.
(134) becomes:

P AN SO Y BT (138)
sttt amwqyt| x(y) = Ex(y
with solutions:
maw
Xk () = n (9), 4=/ ="y (139)
nk)? 1
E(nk)=Es+ (272 + (n+ 2> hwy (140)
where: .
un (9) = exp (—26/2> Hu (q) (141)

with H,, - Hermite polynomials. The velocity is obtained from the slope of the dispersion

curve:
_ 10E(nk) _ Nk

Rl T P
States with different index # are said to belong to different subbands; the situation is similar to
that described in Sect. 8, where we have discussed the confinement due to the potential V (z).
However, the confinement in the y—direction is somewhat weaker, and several subbands are
now normally occupied. The subbands are often referred to as transverse modes, in analogy
with the modes of an electromagnetic waveguide [11].

(142)

12. Effective mass approximation revisited

A more attentive investigation of the effective-mass approximation for electrons in a
semiconductor, introduced in a simplified form in Sect.10, will allow quantitative analogies
between propagation ballistic electrons and guided electromagnetic waves past abrupt
interfaces [19].

According to Morrow and Brownstein [20], out of the general class of Hamiltonians suggested
by von Ross [21], only those of the form:

Hy = () [ (PP (0 () )|}V (P v =g s

with the constraint
20 +p=-1 (144)

(where a and B have specific values for specific substances) can be used in the study of
refraction of ballistic electrons at the interface between dissimilar semiconductors.

For the Hamiltonian (143), the boundary conditions for an electron wave at an interface are:
m*Y = continous (145)

and
m By - 7 = continuous (146)
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with 71 — the unit vector normal to the interface. Analogously, the boundary conditions
for an electromagnetic waves at an interface between two dielectrics require the continuity
of tangential components E;, H; across the interface. Based on these considerations, it is
reasonable to look for analogies between

D =m"y (146)
and either E or H.

For bulk propagation in a homogenous medium, an exact analogy can be drawn between ®
and both E or H. In this case, eq. (143) reduces to a Helmholtz equation of the form:
2m(E-V)

hZ
The wave equation (148) is exactly analogous to the Helmholtz equation for an

electromagnetic wave propagating in a homogenous dielectric of permittivity € and
permeability p, with ® replaced by E or H, and

V2o = k2P, K = (147)

K = wpe (148)

So, an exact analogy can be drawn between ® and both E or H. With these analogies, one can
define a phase-refractive index for electron waves as:

by =my/2(E— V)2 (149)
where m, = m/m, is the relative effective mass and
E-V
— = 1

is the relative kinetic energy, where m,,f, V. are the effective mass and the potential
energy in a reference region. This electron wave phase-refractive index is analogous to the
phase-refracting index for electromagnetic waves,

n%\’f = Vi, & (151)

With these results, phase-propagation effects, such as interference, can be analyzed using
standard em results, where E (or H), n}f{lv[ is replaced by ®, n%‘/ . These results are valid for
all the Hamiltonians (143). For the electron wave amplitude, the index of refraction is defined
as

nEW = mf 2 (e~ V)l (152)
These expressions are exactly the same as the anagous electromagnetic expressions for the
reflection/refraction of an electromagnetic wave from an interface between two dielectrics

3].

The theory outlined in this section can be extended for 1D or 2D inhomogenous materials, but
not for three dimensions [19].

Dragoman and Dragoman [22], [23], [24] obtained a quantum-mechanical - electromagnetic
analogy, similar to [19], in the sense that the electronic wave function does not correspond to
the fields, but to the vector potential:

m*p — A (TM wave) or (¢/u) (TE wave) (153)
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13. Optics experiments with ballistic electrons

In 2DESs, there exists a unique oportunity to control ballistic carriers via electrostatic gates,
which can act as refractive elements for the electron path, in complete analogy to refractive
elements in geometrical optics. [8], [25], [26]. The refraction of a beam of ballistic electrons can
be simply described, using elementary considerations. If in the "left" half-space, the potential
has a constant value V, and in the "right" one, a different (but also constant) one, V + AV, an
incident electron arriving with an incident angle 6 and kinetic energy

WK
= 154
& e (154)
emerges in the "right" half-plane under the angle ¢’, with the kinetic energy
hZ kK2
I = AV = — 1
& =E+eAV o (155)

Translational invariance along the interface preserves the parallel component of electron
momentum and thus
ksinf® = k' sin 6’ (156)

sinf k' &
sne  k Ve (157)

Considering that the energies £, £ are Fermi energies, proportional (in a 2D system) to the
electron densities 1,; (not to be confused with refractive index!), the Snell’s law takes the form:

or

ino n/
Y (158)
sin 6 M,

An electrostatic lens for ballistic electrons was set up in [8] and its focusing action was
demonstrated in the GaAs / AlGaAs heterostructure. In this way, the close analogy between
the propagation of ballistic electrons and geometrical optics has been put in evidence.

Another nice experiment used a refractive electronic prism to switch a beam of ballistic
electrons between different collectors in the same 2DES [25]

The quantum character of ballistic electrons is clearly present, even they are regarded as
beams of particles. Transmission and reflection of electrons on a sharp (compared to Ar),
rectangular barrier, induced via a surface gate at T = 0.5K, follow the laws obtained in
quantum mechanics, for instance the following expression for the transmission coefficient:

1

- 2
1+025<%-%) sin? (ka)

with k, ky - the wavevectors inside and outside the barrier, and a - its width (compare the
previous formula with the results of IIL.L7 of [13]). [27]
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14. Conclusions

Several analogies between electromagnetic and quantum-mechanical phenomena have been
analyzed. They rely upon the fact that both wave equation for electromagnetic and
electric field with well defined frequency, obtained from the Maxwell equations, and the
time-independent Schrodinger equation, have the same form - which is a Helmholtz equation.

However, the description of these analogies is by no way a simple dictionary between two
formalisms. On the contrary, their physical basis has been discussed in detail, and they
have been developed for very modern domains of physics - optical fibers, 2DESs, electron
waveguides, electronic transport in mesoscopic and nanoscopic regime. So, the analogies
examined in this chapter offers the opportunity of reviewing some very exciting, new and
rapidely developing fields of physics, interesting from both the applicative and fundamental
perspective. It has been stressed that the analogies are not simple curiosities, but they
bear a significant cognitive potential, which can stimultate both scientific understanding and
technological progress in fields like waveguides, optical fibers, nanoscopic transport.
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1. Introduction

The systems which contain electric or magnetic media have besides the electric (respectively
magnetic) properties also the common properties of a thermodynamic systems (that is
thermal, volumic, chemical); moreover, there are correlations between the electric (magnetic)
properties and the thermal or volumic properties. Because there are a great variety of
situations with the corresponding properties, we shall present briefly only the most important
characteristics of the simplest electric or magnetic systems. For these systems there are
supplementary difficulties (comparing to the simple neutral fluid) because the inherent
non-homogeneity of these systems and also because the special coupling between the electric
(respectively magnetic) degree of freedom and the volumic degree of freedom. These
difficulties have let to the use of different methods of study in the literature, being necessary
to modify some standard thermodynamic quantities (introduced in the standard textbooks for
the simple thermodynamic systems).

In order to have a relation with the presentations of other works, we shall discuss the electric
(respectively the magnetic) systems with many methods and we shall note some improper use
of the different concepts which had been introduced initially in the standard thermodynamics.
Although the most of the electric or magnetic systems are solid, in order to maintain a short
and also an intelligible exposition we shall present explicitly only the case when the system
is of the fluid type, and when it contain a single chemical species, therefore neglecting the
anisotropy effects and the complications introduced by the theory of elasticity.

We remark that for the thermodynamics of quasi-static processes must be considered only
equilibrium states, so that we will deal only with electrostatic or magneto-static fields.
Although there are interference effects between the electric and magnetic phenomena, these
are very small; therefore, in order to simplify the exposition, we shall study separately the
electric and the magnetic systems, emphasizing the formal similitude between these type of
systems.

There are many textbooks which present the basic problems of thermodynamics, some of
the most important of them used the classical point of new [1-12], and also other used the
neo-gibbsian point of view [13-15]; in the following we shall use the last point of view (i.e. we
shall use the neo-gibbsian thermodynamics) [16].
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2. Electric systems

2.1 General electrodynamic results

Accordingly to the electrodynamics, the electrostatic field created by a distribution of static
electric charges, in an electric medium, is characterized by the vectorial fields the intensity of
the electric field E(r) and the intensity of electric induction D(r), which satisfy the electrostatic
Maxwell equations [17-20]:

rot £(r) =0, (1a)
div D(r) = p(r), (1b)

where p(r) is the volumic density of the electric free charge (there are excluded the
polarization charges).

From Eq. (la) it follows that £(r) is an irrotational field, i.e. it derives from an electrostatic
potential ®(r):

E(r) = — grad ®(r) . )
Also, on the surface of an conductor having the electric charge, the surface density of electric
charge o is related to the normal component (this is directed towards the conductor) of the

electric induction with the relation:
Dn = —0. (3)

Under the influence of the electrostatic field, the dielectric polarizes (it appears polarization
charges), and it is characterized by the electric dipolar moment P, respectively by the polarization
(the volumic density of dipolar electric moment) P(r):

_ i 9P(1)
P(r) = (5%}130 SV (r)

P = /Vd3r P(r). 4

Using the polarization it results the relation between the characteristic vectors of the
electrostatic field:

D(r) =g E(r) + P(r), (5
where g is the electric permitivity of the vacuum (it is an universal constant depending on
the system of units).

The general relation between the intensity of the electric field £(r) and the polarization P(r)
is

P(r) = & Xe(&,1) : E(r) + Po(1), (6a)
where P is the spontaneous polarization, and X is the electric susceptibility tensor (generally
it is dependent on the electric field).

For simplicity, we shall consider only the particular case when there is no spontaneous
polarization (i.e. the absence of ferroelectric phenomena) Py = 0, and the dielectric is linear
and isotropic (then Xe is reducible to a scalar which is independent on the electric field); in
this last case, Eq. (6a) becomes:

P=%gx.€&, (6b)

and Eq. (5) allows a parallelism and proportionality relation between the field vectors:

D=%(l+x) €. @)
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55]ext

/ £=0

Fig. 1. The system chosen for the evaluation of the electric work.

In the common cases the susceptibility (for the specified types of dielectrics) depends on the
temperature and of the particle density (or of the pressure) in the form:

Xe =nxe(T, %), ®)

where n = N/V is the particle density, X, is the specific (per particle) susceptibility, and P is

the pressure!.

In the narrow sense, the concrete expression of the electric susceptibility per particle is an
empirical information of the thermal state equation type; we shall consider explicitly two
simple cases:

— the ideal dielectric K
Xe(T) =7, (9a)
— the non-ideal dielectric X
Xe(T,B) = —=7m 7
where K is a constant depending on the dielectric (called Curie constant), and O() is a
function of the pressure, having the dimension of a temperature.

(9b)

Using the general relations of the electrostatics, we can deduce the expression of the
infinitesimal electric work, as the energy given to the thermo-isolated dielectric when the
electric field varies:

Lo — / $r€.6D, (10)
Vo

under the condition that the system is located in the domain with the volume V;) = constant,
so that outside to this domain the electric field vanishes.

Proof:

! We can define the dipolar electric moment per particle as P = N p, resulting the susceptibility per
particle with an analogous relation to (6b) p =& X, £.
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The electrostatic field from the dielectric is created by charges located on conductors; we consider
the situation illustrated in Fig. 1, where inside the domain with the volume V; and fixed external
surface X, there are dielectrics and a conductor (this last has the surface X;) with the electric charge
gex (tespectively the charge density o) which is the source of the electrostatic field?.

In the conditions defined above, the infinitesimal electric work is the energy given for the transport
of the small electric charge Jgex from outside (the region without electric field) until the conductor
surface X, which has the electrostatic potential ®:

0Le = D gex -

In order to express the electric work in terms of the vectors for the electrostatic field, we observe that
the charge gex located on the internal conductor can be written with the normal component of the
electric induction, accordingly to Eq. (3):

Jex = 7{ (Td.A:—% Dy, dA,
Jr, J,
and from previous relation it results that a variation of the charge gex implies a variation of the electric

induction 0D (the surface X, is fixed); because the electrostatic potential ® is constant on the surface
Y1, the expression of the electric work can be written as:

8Le=—¢ dAn, 6D,
Z

The integral on the surface ¥; can be transformed in a volume integral, using the Gauss’ theorem:
/dV div a:?{ dAn-a;
D oD

6L=~ [ 4V div (©6D)+ § dAng-®6D.
JV JZo

then we obtain

From the defining conditions, on the external surface ¥ the electrostatic potential ® and the electric
induction D vannish, so that the surface integral on ... has no contribution.

For the volumic integral we can perform the following transformations of the integrand:
div (® 6D) = grad @ - 6D + ® div (6D) = —€ - 6D + @ §(divD)
=-£.6D,
because Eq. (2) and the absence of another free charges inside the dielectric:
divD = pine =0.
Finally, by combining the previous results, we get Eq. (10). g

We note that the expression (10) for the electric work, implies a domain for integration with a
fixed volume (Vp), and in addition the electric field must vanish outside this domain.

Therefore, there are two methods to deal the thermodynamics of dielectrics on the basis of
the electric work (and also the necessary conditions for the validity of the corresponding
expression): the open system method (when the domain of integration is fixed but it has a
fictitious frontier and it contains only a part of the dielectric), and the closed system method
(when the domain of integration has physical a frontier, possibly located at the infinity, but
the dielectric is located in a part of this domain); we observe that the second method is more
physical, but in the same time it is more complex, because we must consider a compound
system and only a part of this total system is of special interest (this is the dielectric). In
addition we shall see that the second method implies the change of the common definitions
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Fig. 2. The open system model.

for the state parameters associated to the electric and volumic degrees of freedom (both the
extensive and the intensive).

1. The open system method: we consider a fixed domain (having the volume V = const.)
which contains an electrostatic field inside, but outside to this domain the electrostatic field
vanishes; the interesting system is the dielectric located inside the above specified domain,
as an open thermodynamic system (the dielectric fills completely the domain, but there is a
part of this dielectric outside the domain, at vanishing electrostatic field, because the frontier
is totally permeable).

We note the following characteristic features of this situation:

— the thermodynamic system (the portion of the dielectric located in electrostatic field) has a
fixed volume (V = Vjj = constant), but in the same time, it is an open thermodynamic system
(N # constant);

— the electro-striction effect (this is the variation of the volume produced by the variation of
the electric field) in this case leads to the variation of the particle number, or in another words,
by variation of the particle density n = N/V{ # constant (because the volume is fixed, but
the frontier is chemical permeable);

—in the simplest case, when we consider a homogeneous electrostatic field?, inside the domain
with the volume Vj, infinitesimal electric work can be written in the form

5Le = E6(Vy D), 1)

and this implies the following definition for the electric state parameters (the extensive and
the intensive ones):
{Xe:VOD:ZD (12)

Pe=¢&

[in this case V = const., that is the volumic degree of freedom for this system is frozen; but we
emphasize that the expression L. = £ 6(V D) when the volume of the system V can varies
is incorrect].

2 In order to have the general situation, we do not suppose particular properties for the dielectrics, so
that we consider the non-homogeneous case.

3 This situation is realized by considering a plane electric condenser having very closed plates, so that it
is possible to consider approximately that the electric field vanishes outside the condenser; the space
inside and outside the condenser is filled with a fluid dielectric. Accordingly to the previous definitions,
the thermodynamic interesting system is only the part of the dielectric which is located inside the plates
of the condenser, and the frontier of this system is fictitious.
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E=0

Fig. 3. The model for the closed system.

2. The closed system method: we consider the dielectric surrounded by an non-electric fluid
(that is, the dielectric is located on a part of the domain with electric field).

Then it is necessary to define the compound system corresponding to the whole space where
exists electric field

sW=6J¢,

where & is the dielectric system with the volume V, and &' is an auxiliary non-electric system
having the volume V' = V) — V, as it is illustrated in Fig. 3.

We must remark that the auxiliary system (having negligible electric properties) is necessary
in order to obtain the condition £ — 0 towards the frontier of the domain which have the
volume Vp, and also it produces a pressure on the dielectric; thus, the volume of the dielectric
is not fixed and we can distinguish directly electro-striction effects.

Because the polarization P is non-vanishing only in the domain V, occupied by the system
6, we transform the expression (10) using Eq. (5), in order to extract the electrization work on
the subsystem &

Mgﬂ:/d%‘s.w:/d3r£-50(58+/d3r6-5P
V() VO VO
E&Wér)—ﬁ-gﬁp,

where 5W§T) is the variation of the energy for the field inside the total volume Vp, and 5Ly, is
the work for polarize the dielectric.

The first term allows the separation of the contributions corresponding the two subsystems
when the energy of the electrostatic field changes:

5. £2 5. £2 7. £2
(T):/ 3. (&€& _ / 3. §€& / 3. €&
SW} ‘Vudré(—z ) 5{ @ oy [ d
= 6Wg + 6Wg .
The second term can be interpreted as electric polarization work and it implies only the

dielectric; in order to include the possible electro-strictive effects, we shall write this term
in the form

oLy~ [ Pre-oP = [ drE P— [drE Pi= (5{/d3r£-P}
Vo Vi v, v

E=const.
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that is, the polarization work implies the variation of the polarization J P and of the volume
0V of the dielectric with the condition of constant electric field: £ = constant (during the
process).

On the basis of the previous results we can separate the contribution of the electric work on
the dielectric (6L) from those on the auxiliary non-electric system (5Wé):

5L = 5Le+ 6W), (13a)

0Le = 0Ly +0Wg . (13b)

For the electric work on the dielectric (the subsystem &) we observe two interpretations in the
case when & is homogeneous*:

1. we take into account only the polarization work 5L, and we neglect systematically the
energy of the electric field inside the dielectric 6Wg; then the polarization work in the
uniform electric field can be expressed with the dipolar electric moment

Xﬁpzﬁ-é/d3rP:S~§P; (14)
14

2. we estimate the contributions of the both terms from Eq. (13b), taking into account the
implications due to the homogeneity of the system:

dLp = £dP =Ed(VP),

5052 V) _ _5052

de:d( 2 2

dv+ £d4d(Vgé),
so that we obtain the total electric work performed by the dielectric

& &2
2

dLe = ALy +dWg = — dv+ £4(VD), (15)

and the last expression can be interpreted as an work performed on two degrees of freedom
(volumic and electric).
We observe that for isotropic dielectrics the vectors €, D and P are collinear; therefore, we
shall omit the vectorial notation, for simplicity.
2.2 Thermodynamic potentials

We shall discuss, for simplicity, only the case when the electric system is homogeneous
and of fluid type, being surrounded by a non-electric environment. Then, the fundamental
thermodynamic differential form is:

dU =dQ +dLy +dLe +dLy . (16)

For the thermodynamic study of the electric system there are many methods, depending the
choice of the fundamental variables (corresponding to the choice of the concrete expression
for the electric work d&Le).

4 The condition of homogeneity implies an uniform electric field £(r) = const. in the subsystem &, and
this property is realized only when the dielectric is an ellipsoid in an uniform external field.



120 Trends in Electromagnetism — From Fundamentals to Applications

2.2.1 Pseudo-potentials method

We replace the expression (13b) — (14) for the electric work, and also the expression for the
other forms of work and for the heat; then, the fundamental thermodynamic differential form
has the explicit expression:

dU =TdS —PdV +EdP +dWs + u dN . 17)

We observe that the preceding differential form contains a term dW¢ which is a exact total
differential (from the mathematical point of view) and it represents the variation of the energy
of the electric field located in the space occupied by the dielectric; we put this quantity in the
left side of the above equality we obtain:

dUd =TdS—BdV+EdP+pudN, (18)

where U = U — Wy is called the internal pseudo-energy of the dielectric®.

We present some observations concerning the differential form (18):

e U(S,V,P,N) is equivalent to the fundamental thermodynamic equation of the system, since
it contains the whole thermodynamic information about the system (that is, its derivatives are
the state equations)®; and on the other side, the pseudo-energy has no specified convexity
properties (because it was obtained by subtracting a part of the energy from the total internal
energy of the system);

e U(S,V,P,N) is a homogeneous function of degree 1 (because it is obtained as a difference
of two homogeneous functions of degree 1);

e by considering the differential form (18) as similar to the fundamental thermodynamic
differential form, it follows that the electric state parameters are’

)EEZP - PV,
Pe=¢&;

o if we perform the Legendre transformations of the function u (S8,V,P,N), then we obtain
objects of the thermodynamic potential types (that is, the derivatives of these quantities give
the state equations of the dielectric); however, these objects are not true thermodynamic
potentials (firstly since they have not the needed properties of convexity-concavity), so that
they are usually called thermodynamic pseudo-potentials.

In the following we shall present briefly only the most used pseudo-potentials: the electric
pseudo-free energy and the electric Gibbs pseudo-potential.

5 Because we consider in the expression We = V gE?/2 the intensity of the electric field in the presence
of the dielectric, this energy is due both to the vacuum and to the dielectric; thus, U is not the internal
energy of the dielectric (without the energy of the electric fields in vacuum), but it is an artificial quantity.

6 We shall show later that the derivatives of the pseudo-energy (more exactly, the derivatives of the
pseudo-potentials deduced from the pseudo-energy) are the correct state equations.

7 We observe that the use of the internal pseudo-energy implies the modification of the extensive electric
state parameter (VD — VP), but the intensive electric state parameter (£) had been unmodified.



Thermodynamics of Electric and Magnetic Systems 121

a.l. The electric pseudo-free energy is the Legendre transformation on the thermal and
electric degrees of freedom®
F*=U-TS—-EP, (19)

having the differential form”:
dF* = —-8SdT —pdV—-PdE+udN, (20)

so that it allows the deduce the state equations in the representation (T, V, &, N).

We consider the simplest case, when the dielectric behaves as a neutral fluid, having the free
energy Fo(T,V,N), in the absence of the electric field and when the electric susceptibility is
Xe(T,V/N); then, we can consider as known the electric state equation (the expression of the
dipolar electric moment):

dF* _

((_95) =—-P(T,V,E,N) =g x.(T,V/N)EV .
T,V,N

By partial integration, with respect to the electric field, and taking into account that at

vanishing electrical field the electric pseudo-free energy reduces to the proper free energy

(the Helmholtz potential):

F* _ =U TS =F(T,V,N),
we obtain:
F*(T,V,E,N) = Fo(T,V,N) + F5(T,V,E,N), (21a)
(T, V,E,N) = — ¥ x(T,V/N)V, (21b)

that is, the electric pseudo-free energy of the dielectric is the sum of the free energy at null
electric field and the electric part ).

The additivity (factorization) property of the electric pseudo-free energy is transmitted to the
non-electric state equations: the entropy, the pressure and the chemical potential (these are
sums of the non-electric part, corresponding to vanishing electric field, and the electric part):

T % 5. 02
S(T,V,& N) = — (%’;) = So(T,V,N) + % (%’;") v, (22a)
V,.EN V.N

* 5. €2
prven = () S vy ¢ 08 (VY oy
v 2 WV )y
EN :
- o
W(T,V,EN) = [ 2 — (T, V,N) — 057 (e (22)
aN 2 \oN Jpy
TV, ’

8 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation.
9 In the strictly sense, F* is a simple Gibbs potential, so that the common terminology is criticizable.
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a.2. The electric Gibbs pseudo-potential is defined, analogously to the previous case, as the
Legendre transformation on the thermal, volumic and electric degrees of freedom!®

G =U-TS+PV-EP, (23)

having the differential form

dG* = —SdT+VdP—PdE+udN, (24)

so that it allows the deduction of the state equations in the representation (T,%5, &, N).

We consider the simplest case (analogously in the former case), when the dielectric behaves
as a neutral fluid, having the proper Gibbs potential (the free enthalpy) Go(T,B, N) in the
absence of the electric field and when the electric susceptibility is x,(T,9); then, we can
consider as known the electric state equation (the expression of the dipolar electric moment):

(%) =—P(T,B,E,N)=—%x,(T,P) EN.
T8N

By partial integration, with respect to the electric field, and taking into account that at
vanishing electrical field the electric Gibbs pseudo-potential reduces to the proper Gibbs
potential:

G|,y = Uo—TSo+PB Vo =G(T,BN),
we obtain:
G*(T,%,€,N) = Go(T, %, N) + G4 (T, B, £,N) , (25a)
. o2
Ga(T,B,E,N) = - % X(T,B) N, (25b)

that is, the electric Gibbs pseudo-potential of the dielectric is the sum of the Gibbs potential at
null electric field and the electric part G.

The additivity (factorization) property of the electric Gibbs pseudo-potential is transmitted to
the non-electric state equations: the entropy, the volume and the chemical potential (these are
sums of the non-electric part, corresponding to vanishing electric field, and the electric part):

G 80& (X
S(T,%, & N) = — ( agT ) = So(T, B, N) + 802 (a?) N, (26a)
P,6N B
9G* g &2 (X
V(T, %, & N) = ( ai& ) = Vo(T, B, N) — 502 (%;)TN, (26b)
T,E,N
9G* §¢&?
BT, E,N) = (ai) = 1o(T, %, N) = = % (T, ). (260)
T3,

We observe, in addition, that the electric Gibbs pseudo-potential is a maximal Legendre
transformation, so that with the Euler relation we obtain

g*(T/m/ng):V(T/m/g)N' (27)

10 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation (like in the preceding case).
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2.2.2 The method of modified potentials

We use the expression (15) for the electric work, without extracting terms with total exact
differential type from the internal energy of the dielectric; then, the differential form (16) can
be written in the following explicit manner:

. €2
duszS—(m+?2?)dv+5dan0+de

=TdS—ndV+£dD+udN. (28)

We observe that in this case the electric work has contributions on two thermodynamic
degrees of freedom, so that we must redefine the electric and volumic state parameters:

. 2
Xy =V, %—n:@ugf>, (29a)
Xe=®=DV, Pe=¢€. (29b)

In this last case it appears some peculiarities of the electric state parameters (both for the
extensive and for the intensive), so that there are needed cautions when it is used this method:

-V and ® = DV must be considered as independent variables,
— the effective pressure has an supplementary electric contribution gy £2/2.

Although the modified potential method implies the employment of some unusual state
parameters, however it has the major advantage that U(S,V,D, N) is the true fundamental
energetic thermodynamic equation, and it is a convex and homogeneous of degree 1 function;
thus, it is valid the Euler equation:

U=TS-nV+ED+uN, (30)

and it is possible to define true thermodynamic potential with Legendre transformations.
From the Euler relation (30) and passing to the common variables, it results

= 2
u:TS—mv+5PV+@§—V+yN,

so that it is ensured that I/ = U — W is a homogeneous function of degree 1 with respect to
the variables (S, V, P, N).

In order to compare the results of the method of modified potentials with those of the method
of the pseudo-potentials we shall present only the electric free energy and the electric Gibbs
potential as energetic thermodynamic potentials.

b.1. The electric free energy is the Legendre transformation on the thermal and electric
degrees of freedom

fﬂnV£mnzﬁﬁﬁﬂ&%@»@—TS—sz}, (31)

and it has the following differential form!!:
dF* = —SdT—ndV -9 df + pdN. (32)

1 In the strictly sense, F* is a simple Gibbs potential, so that the common terminology is criticizable.
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We shall emphasize some important properties of the above defined electric free energy
F*(T,V,E N).

1. When the electric field vanishes it becomes the proper free energy (the Helmholtz potential)

F*(T,V,0,N) = Uy(T,V,N) = TSy(T,V,N) = Fo(T,V,N) .

2. The electric state equation is

(EUT > = —D(T,V,E,N) = —& [1+ xe(T,V/N)] £V .
08 JryN

3. By partial integration with respect to the electric field and the use of the condition of
null field, we obtain the general expression of the electric free energy (for a linear and
homogeneous dielectric)

. 02
FXT,V,E,N)=Fo(T,V,N) — % [1+X3(T,V/N)] V. (33)
4. F*(T,V,&E,N) is a function concave in respect to the variables T and &; as a result we get
the relation 5
0 F*
— =—g 1
(852 >T,V,N g [14 %] V <0,

and it follows “the stability condition” x, > —1 . (We note that actually is realized a more
strong condition x, > 0, but this has no thermodynamic reasons).

5. The state equations, deduced from Eq. (33) are:

% = 2
S(T,V,&,N) = — <an; )VSN = So(T,V,N) + 8025 (%’“)VNV, (34a)
 (aF B g &2 3 (xeV)
H(T/ VlglN) - <W>Tg,]\] - s130(’1—‘/ V’ N) + 2 1+ (T)T,N ’ (34b)
9 F* 8E2 (2
wrven = (%) =mmvn -5 (5 v, (349

Because m = P + gy E2/2 , it results that the state equations (34) are identical with Egs.

(22), and this shows that F* (the correspondent pseudo-potential to F*) gives correct state
equations.

From Eq. (33) it result that the free energy (Helmholtz potential) is

J—':J-'*+€©:]-'o+£TDV,

so that the electric part of the volumic density of free energy is:

R A
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We emphasize that in many books the previous expression for the electric part of the free
energy density is erroneously considered as electric part of the internal energy density.

Correctly, the internal energy has the expression

D = £2
u:F*+T5+5©:(]_.0+TSO)+(ST+802€ T%X,[f) v,

so that the electric part of the volumic density of internal energy is

— = £2
_U-U _ED &E Taxg#eTD.

\%4 2 2 9T

Ug]

b.2. The electric Gibbs potential is defined analogously, as the Legendre transformation on
the thermal, volumic and electric degrees of freedom

G (T,n,g,N)Eslig/f@{U(S,V,CD,N)fTSJranECD}, (35)

and it has the differential form
dg*=-8dT+Vdn—DdE+udN. (36)

According to the definition, G* is a maximal Legendre transform, so that the Euler relation
leads to:
g*=puN. (37)

On the other side, by replacing the variables 7r and © , accordingly to the definitions (29), we
obtain the the electric Gibbs potential is equal to the electric Gibbs pseudo-potential'> (but they have
different variables):

G*(T,m,E,N) =G*(T,B,E,N)

g &2
T="P+ 02 .

From the preceding properties it follows that the equations deduced from the potential G*
are identical with Eqs. (22); we observe, however, that it is more convenient to use the
pseudo-potential G*, because this has more natural variables than the corresponding potential

g

2.2.3 Thermodynamic potentials for open systems

Previously we have shown that the electric work implies two methods for treating the
dielectrics: either as a closed subsystem of a compound system (this situation was discussed
above), or as an open system located in a fixed volume (and the electric field is different from
zero only inside the domain with fixed volume).

12 The equality G* = G* (as quantities, but not as functions) can be obtained directly by comparing the
consequences of the Euler equation (27) and (37).
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If we use the second method, then the electric work has the expression (11) and the dielectric
system has only 3 thermodynamic degrees of freedom: thermal, electric and chemical (the
volumic degree of freedom is frozen); then, the fundamental differential form is

dU =TdS+Ed(Vy D)+ udN. (398)

Among the thermodynamic potentials, that can be obtained by Legendre transformations
of the energetic fundamental thermodynamic equation, denoted as U(S,VpD,N) =
U(S,D,N; V), we shall present only the electric free energy:

FHT,E N; V) = inf{U(S,’D,N;Vg)—TS—SZ)}, (39)

which has the following properties:

1. the differential form:
dF*=-8dT-VyDdE+udN; (40)

2. it reduces to the free energy (the Helmholtz potential) at vanishing electric field
.F*(T,O, N; Vo) = Z/f()(T, N; V()) - TSO(T, N; V()) = fo(T, N; V()) ;

3. by integrating the electric state equation Vo D(T,E,N) = Vj [1+ x.] & £, we obtain
s, £2
FNT,E,N; V) = Fo(T,N; Vo) — Vo % 1+ xe(T,V/N)] . (41)

We note that the results are equivalent to those obtained by the previous method, but the
situation is simpler because the volumic degree of freedom is frozen.

2.3 Thermodynamic coefficients and processes
2.3.1 Definitions for the principal thermodynamic coefficients

Because the dielectric has 4 thermodynamic degrees of freedom (in the simplest case, when it
is fluid), there are a great number of simple thermodynamic coefficients; taking into account
this complexity, we shall present only the common coefficients, corresponding to closed
dielectric systems (N = constant). In this case it is convenient to use reduced extensive

S
parameters with respect to the particle number; thus, we shall use the specific entropy s = N

and the specific volume v = % .

a.1. The sensible specific heats are defined for non-isothermal processes “¢ "

C 1 (8 S ) ( ds )

4
T =) =T 22 . (42)
N N oT ), T/,
In the case, when the process ¢ is simple, we obtain the following specific isobaric/isochoric
and iso-polarization/iso-field heats: cy p, cy ¢, cpp, cpe-

Co

a.2. The latent specific heats are defined for isothermal processes "1 ”:

@ _ 1, (9S\ _ (95
Ay _NT<aa)¢_T<aa ) (43)
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The most important cases (for “i ” and a) are the isothermal-isobaric process with a = £ when
we have the isobaric electro-caloric coefficient A and the conjugated isothermal-isofield process

)Z

with a = 3, when we have the iso-field piezo-caloric coefficient /\(gp

ds (P) (85)
A=T| 55 , Ao’ = == . 44
<35>T,q3 ¢ OF Jre “

a.3. The thermodynamic susceptibilities are of two types: for the volumic degree of freedom
(in this case they are called compressibility coefficients) and for the electric degree of freedom
(these are called electric susceptibilities):

-1 /0V -1 /dv
= (), = (), w
e) _ 1 (0P _ (0P
Xy _v<ag>¢_<ag>¢' (46)

In the simple cases "¢ " is an isothermal/adiabatic and iso-polarization/iso-field processes;
it results the following simple compressibility coefficients: srp, s1g, 2p and s ¢.
Analogously “i” as simple process is isothermal/adiabatic and isobaric/isochoric, resulting

the following simple electric susceptibilities: X(Te;), X%}%, Xéﬁ}) and Xge,g

From Eq. (6b) we observe that the isothermal electric susceptibility is proportional to the
susceptibility used in the electrodynamics:

(el) <8P) s
Xro =|5¢]) =txe(T,0).
T Q& To e

a.4. The thermal coefficients are of two types, corresponding to the two non-thermal and
non-chemical degrees of freedom (the volumic and the electric ones). If we consider only
thermal coefficients for extensive parameters, then we can define the following types of simple
coefficients:

o the isobaric thermal expansion coefficients (also iso-polarization/iso-field)

1 /0V 1 /0o
YW=y (ﬁ)ww -3 (ﬁ)w / (47)

where the index y is P or &;

e the pyro-electric coefficients (also isochoric/isobaric)

1 (aP\ _ (ap
o= N <8T)S,a,N B <8T>S,a ’ (48)

where the index a is V (for the volume V) or P (for the pressure ‘B).

a.5. The mixed coefficients express correlations between the volumic and the electric degrees
of freedom; we mention the following simple coefficients:
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e the electro-strictive coefficient

v
<ﬁ >T,‘B ; (49)

_1 (9P _ a_;:)
TN (am)T,&N (a‘l‘ Te G0

2.3.2 Relations between simple coefficients

o the piezo-electric coefficient

Because the great number of thermodynamic coefficients, corresponding to the dielectrics, we
must select among all possible relations between the simple coefficients; therefore, we shall
present only the most important relations: the symmetry relations (consequences of some
Maxwell relations) and special relations (of the type Reech or Mayer).

In order to emphasize symmetry relations expressed by the temperature, the pressure and
the electric field (T,B, &), as variables, for an closed system (N = constant), we use the
differential form of the reduced Gibbs pseudo-potential $*(T,B,€) = G*/N, which is
obtained with the general reduction formulae from Egs. (23) — (24):

dg* = —sdT+odP—pdf. (51)

From the above differential form it results 3 Maxwell relations, which can be expressed by
simple coefficients, resulting symmetry relations between these coefficients:

ds 0v (P)
- (== — Ao’ ==Tuoag, 52a
(3‘13>T,5 (a T)qs,g ¢ ¢ (%22)

(the relation between the iso-field piezo-caloric coefficient and the isobaric-isofield thermal
expansion coefficient);

ds [ dp -
(ﬁ)T,m = <ﬁ>m’5 — A= T7Tp , (52b)

(the relation between the isobaric electro-caloric coefficient and the isobaric pyro-electric
coefficient);

av 8p>
= — | —— — 0 = -0, 52C
(ag)mts (3‘43 T.E ! ¢ (529

(the relation between the electro-strictive coefficient and the piezo-electric coefficient).

Relations of Reech type can be obtained from the general relation (see [16], Eq. (3.25)),
resulting the equality between the ratios of the isobaric specific heats, of the compressibility
coefficients, and of the electric susceptibilities (isothermal, and respectively adiabatic):

c X )

Ve
Py s, 5/?3 . (53)
cpeg ATE X%ﬁ%
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Analogously, from the general Mayer relation for the specific heats (see [16] Eq. (3.28)) we

obtain in this case )

o
cpg—cpp=T0 —£_ (54)

Similar relations with Egs. (53) — (54) can be obtained for the coefficients associated to another
sets of simple processes (e.g. isochoric, iso-polarization processes).
2.3.3 The factorization of some simple coefficients

An important characteristics of some thermodynamic coefficients is the factorization property:
the expression of the considered coefficient is the sum of the part corresponding to the absence
of the electric field (similarly as for the neutral fluid) and the “electric part”, and this result
comes from the factorization of the state equations.

We shall present the factorization of some coefficients using the variables of the electric Gibbs
representati0n13 (T, B, &, N); in this case the state equations are Egs. (26).

The entropy is given by Eq. (26a), and here we write it without the variables (for simplicity),
and for using later the convenient variables

S=8)+ S, (55)

where & is the entropy of the dielectric as a neutral fluid, in the absence of the electric field,
and S is the electric part of the entropy:

_BE (0K N 8E (dxe
Sel = =5 (aT q3N_ > |37 vv. (56)

Accordingly to the general definition (42), we obtain a factorization of the specific heats:

co = cg,,o) + cgfl) , (57)

where CEPO) = T(3s(9) /9 T), is the specific heat of the dielectric in the absence of the electric
field, and cg,,eD =T(3s(e) /9 T), is the electric part of the specific heat.

For the isobaric processes there are the specific heat at constant electric field or at constant
polarization. From Eq. (56) it results

@) (90X \ €&>
CP"S_T(BT)% — (58)

(el)

To obtain ¢}, we express the electric entropy S in terms of the dipolar electric moment
(instead the electric field), using Eq. (6b):

2 ~ 2 =~ \—1
2£0X€ oT B 2% oT %

13 We remark that some coefficients need the use of other thermodynamic representations.
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then it results for the electric part of the isobaric-isopolarization specific heat the expression:

) _ =P [ (x)!
Pp T 2% T( o2 )y &)

(el)

1 ~ T, so that we obtain Cpy = 0, thatiscpy, =

We observe that for an ideal dielectric (},)~

C%O) (the iso-polarization specific heat is independent of the electric field)4.

It is interesting to emphasize that for the ideal dielectrics the internal energy has also particular
properties. The electric part of the volumic density of internal energy for an arbitrary dielectric
has the expression

2 oT

For an ideal dielectric we obtain that this energy density is equal to the energy density of
the electric field u(®) = gy £2/2 = wyy, that is the whole electric energy is given only by the
electric field, without any contribution from the processes of the electric polarization. The
behavior of the iso-polarization specific heats and of the internal energy are similar to the
neutral fluids which satisfy the Clapeyron - Mendeleev equations, so that it is justified the
terminology “ideal” for the dielectrics which have Curie susceptibility.

. €2
ule) — & (1+Xe+TaXe) .

In contrast with the specific heats, the isobaric electro-caloric coefficient has contribution only
from the electric part of the entropy:

) %
)L_EogT< e) .

The volume is given by Eq. (26b), that is it can be expressed in the form:

V=W+Vy,

where V is the volume of the dielectric as neutral fluid, in the absence of the electrical field,
and V is the electric part of the volume:

_ %&* (9%,

Accordingly to the general definitions (45) and respectively (47), the isothermal
compressibility coefficients sc1 ¢ and the isobaric thermal expansion coefficient a¢ (both of
them at constant field) factorize in non-electric part (corresponding to null electric field, when
the dielectric behaves as a neutral fluid) and electric part:

xrE = %(TO) + %(ng) p (61a)
we = a® 42 (61b)

14 For the corresponding isochoric specific heat we obtain the same result cg/elqg =cy.
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where!®
()  EE° [O°X,
#TET 20 <9‘432)T ’ (622)
) _  8& X,
wg = 205 9TOT (62b)

In contrast with the previous coefficients, the electro-strictive coefficient is obtained only from
the electric part of the volumic state equation'

. && (dX,
N_Uo<aq3)T' )

2.3.4 Thermodynamic processes

Using the previous results we shall present the most significant thermodynamic processes for
the dielectrics as closed system (we shall choose the variable set T, 3, £, N = constant).

d.1. The isothermal electrization: we consider that initially the dielectric is in null electric
field (T,B, & = 0,N) and we apply the electric field with an isothermal-isobaric process, so
that the final state has the parameters: (T,B, £ =N ).

Using Eq. (26a) for the entropy, the heat transfered in this process is
Qif = TAS;; = T{S(T,P,€,N) — S(T,R,0N) }

g &? X,
== (E)T mN. (64)

Since X, (T,B) is in general a decreasing function with respect to the temperature, it results
that in the electrization process the dielectric yields heat: Q;¢ < 0.

d.2. The adiabatic-isobaric depolarization: we consider that initially the dielectric is in
the presence of the electric field £ and it has the temperature T;; then, by a quasi-static
adiabatic-isobaric process the electric field is decreasing to vanishing value.

Since the equation of this process is S(T,B,E,N) = constant, with the supplementary
conditions 8 = constant and N = constant, then by using Eq. (26a), we obtain the equation
of the temperature:

S(T;,B,E,N) +S(Tf,B,0,N) ;

that is, after simple algebraical operations, we get:

g0E2 [dx
ﬂnm+%(f)=¥nmy (65)
2 \9T )y f

Because the electric susceptibility is in general an decreasing function in respect to the
temperature (9X,/0T)yy < O and the entropy s°(T,%) is an increasing function of

15 In fact, the factorization is obtained only if we consider small electric effects, so that we could
approximate v = vy at the denominators.

16 We consider that the electro-strictive effects are small, so that we can use the approximation v ~ vy, at
the denominator.
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temperature, it results s; < sy, that is the dielectric gets cool during the adiabatic
depolarization: Ty < T;.

d.3. The electro-strictive and piezo-electric effects

The electro-strictive effect means the variation of the volume (of the dielectric) due to the
variation of the electric field, in conditions isothermal-isobaric (also the dielectric is a closed
system)!”; and the electro-strictive coefficient is defined by Eq. (49).

The piezo-electric effect means the variation of the dipolar electric moment (of the dielectric),
due to the variation of the pressure, in conditions isothermal and at constant electric field
(also the dielectric is a closed system)'® and the piezo-electric effect coefficient is defined by
Eq. (50).

Between coefficients of the two effects it is the symmetry relation (53), and the corresponding
expressions can be put in explicit forms using the electric susceptibility:

__l __505 aXe

We observe that the necessary condition to have an electro-strictive effect and an piezo-electric
effect is that ), depends on the pressure; accordingly to Eqgs. (9), it results that only the
non-ideal dielectrics can have these effects.

Using the volumic equation of state (26b), we can evaluate the global electro-strictive effect,
that is the variation of the volume (of the dielectric) at the isothermal-isobaric electrization:

— 2 —
AVig(E) = V(T,B,,N) - V(T,B,0,N) = — @& (9% N (67)
2 \ 9% );
From the previous expression it results that when the electric susceptibility is a decreasing
function of the pressure (0X,/9%)r < 0, then it follows a contraction (a reduction of the
volume) at the electrization of the dielectric.

3. Magnetic systems

The thermodynamics of magnetic systems has many formal similitude with the
thermodynamics of electric systems; in fact, we shall show that it is possible to obtain the most
of the results for magnetic systems by simple replacements from the corresponding relations
for dielectric systems.

Because this similitude is only formal, and there are physical differences, and on the other
side, in order to have an autonomy with respect to the previous section, we shall present
briefly the thermodynamics of the magnetic systems independently of the results obtained
for the dielectrics. However, for emphasizing the formal similitude between the electric and
the magnetic systems, we shall do this presentation analogously to the previous one (which
corresponds to dielectrics).

17 In other words, the electro-strictive effect can be considered as the volumic response of the dielectric to
an electric perturbation.

18 We observe that the piezo-electric effect can be considered as the electric response of the dielectric to a
volumic perturbation, being conjugated to the electro-strictive effect.
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3.1 General electrodynamic results

Accordingly to the electrodynamics, the magneto-static field created by a distribution of
stationary electric currents, in an magnetic medium is characterized by the vectorial fields
the intensity of magnetic induction B(r) and the intensity of the magnetic field H(r) (called also
the magnetic excitation) which satisfy the magneto-static Maxwell equations [17-20]:

rot H(r) =j(r), (68a)
div B(r) =0, (68b)

where j(r) is the volumic density of the conduction currents (there are excluded the
magnetization currents).

Under the influence of the magneto-static field the medium becomes magnetized (it
appears magnetization currents), and it is characterized by the magnetic dipolar moment M,
respectively by the magnetization (the volumic density of dipolar magnetic moment) M (r):
. 5M(1‘) "3
M(r) = lim ——& < = / d’r M (x) . 69
(x) M}IEO SV (r) M Jv r M(x) (69)
Using the magnetization it results the relation between the characteristic vectors of the
magneto-static field:
1
H(r) = i B(r)— M(r), (70)
0
where 71, is the magnetic permeability of the vacuum (it is an universal constant depending
on the system of units).

The general relation between the intensity of the magnetic field H (r) and the magnetization
M(r) is
M(r) = Xm(H, 1) : H(r) + My(r), (71a)

where M) is the spontaneous magnetization, and Xm is the magnetic susceptibility tensor
(generally it is dependent on the magnetic field).

For simplicity, we shall consider only the particular case when there is no spontaneous
magnetization (that is the absence of ferromagnetic phenomena) My = 0, and the magnetic
medium is linear and isotropic (then Xm is reducible to a scalar which is independent on the
magnetic field); in this last case, Eq. (71a) becomes:

M=xmH, (71b)
and Eq. (70) allows a parallelism and proportionality relation between the field vectors:
B:ﬁ0(1+7(m)7{ . (72)

In the common cases the susceptibility (for the specified types of magnetic media) depends on
the temperature and of the particle density (or of the pressure) in the form:

Am =n Xm(T/ ‘13) ’ (73)
where n = N/V is the particle density, and ¥,,, is the specific (per particle) susceptibility”.

19 We can define the dipolar magnetic moment per particle as M = N m, resulting the susceptibility per
particle with an analogous relation to (71b) m = x,, H.
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/ H=0

Fig. 4. The system chosen for the evaluation of the magnetic work.

In the strictly sense, the concrete expression of the magnetic susceptibility per particle is an
empirical information of the thermal state equation type. On the basis of the type of specific
susceptibility, the linear magnetic media are divided in two classes:

a. the diamagnetic media, which have negative specific susceptibilities, depending very little
of the temperature and the pressure®

X (T,B) =~ constant < 0; (74a)

b. the paramagnetic media, which have positive specific susceptibilities, with small values; in
addition, there are two types of para-magnets:

—ideal para-magnets, having susceptibilities of the Curie type and independent of the pressure

XD =7 (730)

— non-ideal para-magnets, having susceptibilities of the Curie - Weiss type

K
Xm(TB) = =57 7
¥ = e
where K is a constant depending on the paramagnet, called Curie constant), and ©(*p) is a
function of the pressure, having the dimension of a temperature.

(74¢)

Using the general relations of the magneto-statics, we can deduce the expression of the
infinitesimal magnetic work, as the energy given to the thermo-isolated magnetic medium
when the magnetic field varies:

5L = / PrH -8B, (75)
Vo

under the condition that the system is located in the domain with the volume Vj = constant,
so that outside to this domain the magnetic field is null.

20 In this case the magnetization is in the opposite direction to the magnetic field [see Eq. (71)].
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Proof:

The magneto-static field from the magnetic medium is created by conduction electric currents; we
consider the situation illustrated in Fig. 4, where inside the domain with the volume Vj and fixed
external surface X, there are magnetic media and electric conductors?!.

In contrast to the electric case, the magnetic work cannot be evaluated directly, since the magnetic
forces are not conservative, and also because the variation of the magnetic field produces an electric
field through the electro-magnetic induction, accordingly to the Maxwell - Faraday equation

~9B(rt)

rotE(r) = o

(76)

For this reasons, the magnetic work, as the variation of the energy corresponding to the magnetic field
inside the considered domain, will be evaluated from the electric work on the currents (as sources of
the magnetic field) produced by the electric field which was induced at the variation of the magnetic
field.

We consider an infinitesimal variation of the magnetic field 6BB(r) produced in the infinitesimal time
interval Jt; the induced electric field performs in the time interval Jt, on the currents, the work

Lo = 5t / $rj €. 77)
Vo

Using Eq. (68a) we transform the integrand in the following form:

j-E=E-rotH=div(HxE)+H rot€,

and it results for the electric work the expression

a:cel:&/ &r div (H x £) +5t/ PrH 1ot £ .
Vo Vo

We transform the first term in a surface integral, using the Gauss’ theorem, and this integral vanishes,
because the hypothesis that the magnetic field is null on the frontier of the domain

&r di E)=¢d . £)=0;
" r 1v(’H>< ) 7420 A ny (’H>< )

in the second term we use the Maxwell - Faraday equation (76) and we introduce the variation of the
magnetic induction with the relation (08/0t) 6t = 61, so that it results

5t/d3ru-rot£:—/d3r%~§5t:—/d3rﬂ~5B.
Vo Vo ot Vo

We observe that the electric work, determined previously, must be compensated by an additional
work supplied from outside; therefore the magnetic work given to the system for an infinitesimal
variation of the magnetic field is 5L = — 8L, , and it results Eq. (75). a

We note that the expression (75) for the magnetic work, implies a domain for integration with
a fixed volume (1}), and in addition the magnetic field must vanish outside this domain.

2l In order to have the general situation, we do not suppose particular properties for the magnetic medium
inside the chosen domain, so that we consider the non-homogeneous case.
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Fig. 5. The open system model.

By comparing the expressions of the magnetic work and electric work (10) we observe the
formal similitude between these formula, and this leads to the following substitution rule to
obtain the magnetic results from the electric ones:

E —H
D — B.

However this similitude is only formal, since from the physical point of view, the
correspondence between the electrical field vectors and the magnetic ones is £ < B and
D H.

In the following we shall present the consequences derived from the expression of the
magnetic work (75) in an analog manner as the electric case; therefore we shall consider two
methods to deal with the thermodynamics of the magnetic media, based on the expression of
the magnetic work (and of the necessary conditions for the validity of this expression).

1. The open system method: we consider a fixed domain (having the volume V = constant)
which contains an magneto-static field inside, but outside to this domain the magneto-static
field vanishes; the interesting system is the magnetic medium located inside the above
specified domain, as an open thermodynamic system (the magnetic medium fills completely
the domain, but there is a part of this medium, outside the domain at vanishing magneto-static
field, because the frontier is totally permeable).

We note the following characteristic features of this situation:

— the thermodynamic system (the portion of the magnetic medium located in magneto-static
field) has a fixed volume (V = Vj = constant), but it is an open thermodynamic system (N #
constant);

— the magneto-striction effect (this is the variation of the volume produced by the variation
of the magnetic field) in this case leads to the variation of the particle number, or in another
words, by variation of the particle density n = N/V}) # constant;

~ in the simplest case, when we consider a homogeneous magneto-static field??, inside the
domain with the volume V), infinitesimal magnetic work can be written in the form

5Lm = H 6(VoB), (78)

22 This situation is realized by considering a very long cylindrical solenoid, so that it is possible to consider
approximately that the magnetic field vanishes outside the solenoid; the space inside and outside the
solenoid is filled with a fluid paramagnet (or diamagnet). Accordingly to the previous definitions, the
thermodynamic interesting system is only the part of the magnetic medium which is located inside the
solenoid, and the frontier of this system is fictitious.



Thermodynamics of Electric and Magnetic Systems 137

H=0
6/

H£0

Fig. 6. The model for the closed system.

and this implies the following definition for the magnetic state parameters

(79)

Xm:VOBE%,
Pm="H;

[in this case V = constant, that is the volumic degree of freedom for this system is frozen; but
we emphasize that the expression 5Ly = H §(VB) when the volume of the system V can
varies is incorrect].

2. The closed system method: we consider the magnetic medium surrounded by an
non-magnetic medium, so that the magnetic medium does not occupy the whole space where
is present the magnetic field.
In this case it is necessary to define the compound system corresponding to the domain with
magnetic field

s=6J¢,

where G is the magnetic system with the volume V, and &' is an auxiliary non-magnetic
system having the volume V' = Vj — V, as it is illustrated in Fig. 6.

We must remark that the auxiliary system (having negligible magnetic properties) is necessary
in order to obtain the condition H — 0 towards the frontier of the domain which have the
volume Vj, and also it produces a pressure on the magnetic medium; thus, the volume of the
magnetic medium is not fixed and we can distinguish directly magneto-striction effects.

Because the magnetization M is non-vanishing only in the domain V, occupied by the system
6, we transform the expression (75) using Eq. (70), in order to extract the magnetization work
on the subsystem &

ock) = [ - 0B = [ drH FyoH+ | drH-fy oM
0 0 0
= WY + 3L,

where (5W?(_[T ) is the variation of the energy for the field inside the total volume Vp, and 5Ly, is
the work for magnetize the magnetic medium.
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The first term allows the separation of the contributions corresponding the two subsystems
when the energy of the magneto-static field changes:

= 92 = a2 = 2
(T):/ 3. s (FoH™Y _ / 3, HoH / 3, ot
Wy, Vod r(S( > ) ) Vd r— +4 V/d r—

= Wy + W), .

The second term can be interpreted as magnetization work and it implies only the magnetic
medium; in order to include the possible magneto-strictive effects, we shall write this term in
the form

5L :/d3_7{~5M:/d3_’H~M—/d3_’H~M«
M e Iy v, Iy f v Iy i

=5{/Vd3rﬁ0H-MH

that is, the magnetization work implies the variation of the magnetization 6 M and also the
variation of the volume 4§V of the magnetic medium, with the condition of constant magnetic
field: H = constant (during the process).

H=const.

On the basis of the previous results we can separate the contribution of the magnetic work on
the magnetic medium (6L, ) from those on the auxiliary non-magnetic system (5W?’{):

5L = SLm + oW, (80a)
SLm = Ly + Wy . (80b)

For the magnetic work on the magnetic medium (the subsystem &) we observe two
interpretations in the case when & is homogeneous??:

1. we take into account only the magnetization work §£y; and we neglect systematically the
energy of the magnetic field inside the magnetic medium 6Wy; then the magnetization
work in the uniform magnetic field can be expressed with the dipolar magnetic moment

a‘ﬁM:ﬁOH-a/VdSrM:ﬁOH-JM; @81)

2. we estimate the contributions of the both terms from Eq. (80b), taking into account the
implications due to the homogeneity of the system:

ALy = Jig M AM = iy H d(VM)

n 2 b 2
AWy, = d(”og-[ v) S "0;{ dv + H d(ViigH) -

so that we obtain the total magnetic work performed by the magnetic system
7.2

dLm =dLy +dWy = — “02{ dV+H d(VB), (82)

2 The condition of homogeneity implies an uniform magnetic field H(xr) = constant in the subsystem
G, and this property is realized only when the magnetic medium is an ellipsoid in an uniform external
field.
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and the last expression can be interpreted as an work performed on two degrees of freedom
(volumic and magnetic).

We observe that for isotropic magnetic media the vectors #, B and M are colinear; therefore,
we shall omit the vector notation, for simplicity.

3.2 Thermodynamic potentials

We shall discuss, for simplicity, only the case when the magnetic system is homogeneous
and of fluid type, being surrounded by a non-magnetic environment. Then, the fundamental
thermodynamic differential form is:

dU =dQ+dLy +d L +d Ly . (83)

For the thermodynamic study of the magnetic system there are many methods, depending the
choice of the fundamental variables (corresponding to the choice of the concrete expression
for the magnetic work dLn).

3.2.1 Pseudo-potentials method

We replace the expression (80b) — (81) for the magnetic work, and also the expression for the
other forms of work and for the heat; then, the fundamental thermodynamic differential form
has the explicit expression:

dU =T dS — P dV +FyH dM +dWy + u dN . (84)

We observe that the preceding differential form contains a term dWy which is a exact total
differential (from the mathematical point of view) and it represents the variation of the energy
of the magnetic field located in the space occupied by the magnetic medium; we put this
quantity in the left side of the above equality we obtain:

diU = TdS — P dV +pigH dM + pudN, (85)

where U = U — Wy, is the internal pseudo-energy of the magnetic medium?*,

We present some observations concerning the differential form (85):

e U(S,V, M,N) is equivalent to the fundamental thermodynamic equation of the system,
since it contains the whole thermodynamic information about the system (that is, its
derivatives are the state equations); and on the other side, the pseudo-energy has no specified
convexity properties (because it was obtained by subtracting a part of the energy from the
total internal energy of the system);

ol (S,V, M, N) is a homogeneous function of degree 1 (because it is obtained as a difference
of two homogeneous functions of degree 1);

24 Because we consider in the expression Wy, = V7i;H2/2 the intensity of the magnetic field in the
presence of the magnetic medium, this energy is due both to the vacuum and to the magnetic medium;
thus, U is not the internal energy of the magnetic medium (without the energy of the magnetic field in
vacuum), but it is an artificial quantity.
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e by considering the differential form (85) as similar to the fundamental thermodynamic
differential form, it follows that the magnetic state parameters are

{)}m:M = MV,
Py =4y H ;

e if we perform the Legendre transformations of the function u (S, V,M,N), then we
obtain objects of the thermodynamic potential types (that is, the derivatives of these
quantities give the state equations of the magnetic medium); however, these objects are
not true thermodynamic potentials (firstly since they have not the needed properties of
convexity-concavity), so that they are usually called thermodynamic pseudo-potentials.

In the following we shall present briefly only the most used pseudo-potentials: the magnetic
pseudo-free energy and the magnetic Gibbs pseudo-potential.

a.l. The magnetic pseudo-free energy is the Legendre transformation on the thermal and

magnetic degrees of freedom?
F*=U-TS-FHM, (86)

having the differential form?°:
dF* = -SdT — P dV — M d(fyH) + p dN, (87)

so that it allows the deduction of the state equations in the representation (T, V,H, N).

We consider the simplest case, when the magnetic medium behaves as a neutral fluid, having
the free energy Fo(T,V,N), in the absence of the magnetic field and when the magnetic
susceptibility is x,; (T, V/N); then, we can consider as known the magnetic state equation
(the expression of the dipolar magnetic moment):

(aa];{) = —Fig M(T,V,H,N) = = Jig xm(T,V/N) HV .
T,V,N

By partial integration, with respect to the magnetic field, and taking into account that at
vanishing magnetic field the magnetic pseudo-free energy reduces to the proper free energy
(the Helmholtz potential):

F 2 O:MO—TS():}"O(T,V,N),

we obtain:
FX(T,V,H,N) = Fo(T,V,N) + Fynag(T.V, H,N) , (88a)
" Y
Finag(T,V, H,N) = = 05 xn(T,V/N) V, (88b)

%5 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation.
26 In the strictly sense, F* is a simple Gibbs potential, so that the common terminology is criticizable.
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that is, the magnetic pseudo-free energy of the magnetic medium is the sum of the free energy
at null magnetic field and the magnetic part 7,

The factorization property of the magnetic pseudo-free energy is transmitted to the
non-magnetic state equations: the entropy, the pressure and the chemical potential (these are
sums of the non-magnetic part, corresponding to null magnetic field, and the magnetic part):

T=% — 2
S(T,V,H,N) = — 7 :SO(T,V,N)+”°H 9xm v, (89a)
aT 2 \ar ),y
V,H,N ,
T% - 2
BTV, N) = — (25 — (T, v, N) + Pt mV)y (89b)
PG 2 oV Jon
T,H,N ,
T % — 2
W(T, v, HN) = (25 — (T, v, N) - B (9 oy (590)
IN 2 \ 9N Jry
TV, H ’

a.2. The magnetic Gibbs pseudo-potential is defined, analogously to the previous case, as
the Legendre transformation on the thermal, volumic and magnetic degrees of freedom?”

G'=U-TS+PV—pH M, (90)
having the differential form
dG* = —SdT + V dP — M d(fiyH) + p dN, 1)

so that it allows the deduction of the state equations in the representation (T,5, H, N).

We consider the simplest case (analogously in the former case), when the magnetic medium
behaves as a neutral fluid, having the proper Gibbs potential (the free enthalpy) Go(T,B, N)
in the absence of the magnetic field and when the magnetic susceptibility is x,,(T,); then,
we can consider as known the magnetic state equation (the expression of the dipolar magnetic
moment):

b 7k
(%) :_ﬁOM(TrY‘BIHIN):_ﬁOXm(T/‘B)HN'
T8,N

By partial integration, with respect to the magnetic field, and because at null magnetic field
the magnetic Gibbs pseudo-potential reduces to the proper Gibbs potential:

G|, =U—TSo+PBV=G(T,BN),
we obtain:
G* (T, H,N) = Go(T B, N) + G (T, B, N) (922)
TN = - B N, (920)

that is, the magnetic Gibbs pseudo-potential of the magnetic medium is the sum of the Gibbs
potential at null magnetic field and the magnetic part Gy,

%7 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation (like in the preceding case).
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The additivity (factorization) property of the magnetic Gibbs pseudo-potential is transmitted
to the non-magnetic state equations: the entropy, the volume and the chemical potential
(these are sums of the non-magnetic part, corresponding to vanishing magnetic field, and
the magnetic part):

9G* HoH* (39X
S(T, %, H,N) = — < agT ) = 8o(T, B, N) + ”02 (%) N, (93a)
B,HN RY

Ok — 42 _
V(T, 5, H,N) = (ag ) = Vo(T, P, N) — ”O;H (aﬂ> N, (93b)
TH,N T

P P
9G* Ty H?
u(T, B, H,N) = (af\,) = puo(T,B) — #02 Xm(T,B) . (93¢c)
TB,H

We observe, in addition, that the magnetic Gibbs pseudo-potential is a maximal Legendre
transformation, so that with the Euler relation we obtain

G*(T, B, H,N) = u(T, %, H) N . (94)

3.2.2 The method of modified potentials

We use the expression (82) for the magnetic work, without to extract terms of the total exact
differential type from the internal energy of the magnetic medium; then, the differential form
(83) can be written in the following explicit manner:

2

dL{_TdS<‘B+V0;{

=TdS—7dV+HdB+pudN. (95)

) AV +H d(BV) +udN

We observe that in this case the magnetic work has contributions on two thermodynamic
degrees of freedom, so that we must redefine the magnetic and volumic state parameters:

2
X, =B=BV, Py="H. (96b)

- 2
Xy =V, p’v_—n:—(m”‘ﬂ{), (96a)

In this last case it appears the following peculiarities:
-V and B = B V must be considered as independent variables,

— the effective pressure has an supplementary magnetic contribution 7, #2/2.

Although the modified potential method implies the employment of some unusual state
parameters, however it has the major advantage that (S, V,B, N) is the true fundamental
energetic thermodynamic equation, and it is a convex and homogeneous of degree 1 function;
thus, it is valid the Euler equation:

U=TS—nV+HB+uN 97)
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and it is possible to define true thermodynamic potential with Legendre transformations.
From the Euler relation (97) and passing to the common variables, it results

_ HoH?
U=TS-PV+uH MV—I—T V+uN,
so that it is ensured that I/ = U — Wy is a homogeneous function of degree 1 with respect to

the variables (S, V, M, N).

In order to compare the results of the method of modified potentials with those of the method
of the pseudo-potentials we shall present only the magnetic free energy and the magnetic Gibbs
potential as energetic thermodynamic potentials.

b.1. The magnetic free energy is the Legendre transformation on the thermal and magnetic
degrees of freedom

J-“*(T,V,H,N)Eér%{u(s,v,%,N)—TS—H%}, (98)

and it has the following differential form?3:
dF*=-8SdT—-ndV-BdH+pudN. (99)
We shall emphasize some important properties of the magnetic free energy 7*(T,V,H,N).

1. When the magnetic field vanishes it becomes the proper free energy (Helmholtz potential)

F*(T,V,0,N) = Uy(T,V,N) = TSy(T,V,N) = Fo(T,V,N) .

2. The magnetic state equation is

(af) =—%B(T,V,H,N) =~y [14 xm(T,V/N) |HV .
IH T,V,N

3. By partial integration with respect to the magnetic field and the use of the condition of
null field, we obtain the general expression of the magnetic free energy (for a linear and
homogeneous magnetic medium)

= 742
F*(T,V,H,N) = Fo(T,V,N) — @ [14 xm(T,V/N)| V. (100)

4. F*(T,V,H,N) is a function concave in respect to the variables T and #; as a result we get
the relation

9> F* _
(536 )y = Pl 2 201V <0

and it follows “the stability condition” x;; > —1 . We observe that the thermodynamics allows
the existence of negative values of the magnetic susceptibility, that is the diamagnetism; the
minimum value ), = —1 corresponds to the perfect diamagnetism.

28 In the strictly sense, F* is a simple Gibbs potential, so that the common terminology is criticizable.



144 Trends in Electromagnetism — From Fundamentals to Applications

5. The state equations, deduced from Eq. (100) are:

* - 2
S(T,V,H,N) = — (BF) _ Sy(T, v, N) + Pt (ax’") v, (101a)
aT V,H,N 2 T V,N
_ (o F _ fgH? 3 (xmV)
TC(T/ V/H/ N) - (W)T,H’N _%O(T/ V/ N) + T 1+ ( oV N (101b)
_(3F" _ _ M (xm
u(T,V, H,N) = ( — )T,V,H = wo(T,V,N) = PO (2 T,Vv. (101¢)

Because T = P + FOHZ/ 2 , it results that the state equations (101) are identical with Egs.

(89), and this shows that F* (the correspondent pseudo-potential to F*) gives correct state
equations.

From Eq. (100) it result that the free energy (Helmholtz potential) is

]-":J-"*+H%:J-"0+HTBV,

so that the electric part of the volumic density of free energy is:

_F—Fy HB
mag = "y =y

We emphasize that in many books the previous expression for the magnetic part of the free
energy density is erroneously considered as magnetic part of the internal energy density.

Correctly, the internal energy has the expression

,,Hz p)
u:f*+TS+H%:(]:o+T50)+(HTB+yOTT%)V’

so that the magnetic part of the volumic density of internal energy is

_U-Uy _HB M xm , HB
Mmg =y = T A

b.2. The magnetic Gibbs potential is defined analogously, as the Legendre transformation on
the thermal, volumic and magnetic degrees of freedom
G*(T,m,1,N) = inf {L{(S,V,%,N)—TS+7IV—H%}, (102)
SV, B
and it has the differential form
dg* =-8dT+Vdn—BdH+udN. (103)

According to the definition, G* is a maximal Legendre transform, so that the Euler relation
leads to:
G"=uN. (104)
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On the other side, by replacing the variables 7t and %5 , accordingly to the definitions (96), we
obtain the the magnetic Gibbs potential is equal to the magnetic Gibbs pseudo-potential®® (but they
have different variables):
G*(T, 7, H,N) = G*(T, B, #,N)
= 92
=P+ LO;LL .

From the preceding properties it follows that the equations deduced from the potential G*
are identical with Eqs. (93); we observe, however, that it is more convenient to use the
pseudo-potential G*, because this has more natural variables than the corresponding potential

gr.
3.2.3 Thermodynamic potentials for open systems

Previously we have shown that the magnetic work implies two methods for treating the
magnetic media: either as a closed subsystem of a compound system (this situation was
discussed above), or as an open system located in a fixed volume (and the magnetic field
is different from zero only inside the domain with fixed volume).

If we use the second method, then the magnetic work has the expression (78) and the magnetic
medium system has only 3 thermodynamic degrees of freedom: thermal, magnetic and
chemical (the volumic degree of freedom is frozen); then, the fundamental differential form is

dU =TdS+H d(VyB) + udN . (105)

Among the thermodynamic potentials, obtained by Legendre transformations of the energetic
fundamental thermodynamic equation, denoted as U(S,Vy B, N) = U(S,B, N; Vp), we shall
present only the magnetic free energy:

FX(T, H,N; Vy) E}%{U(S,%,N;VO)—TS—H%}, (106)

which has the following properties:

1. the differential form:
dF*=-8dT-VyBdH +pudN; (107)

2. it reduces to the free energy (the Helmholtz potential) at vanishing magnetic field
f*(T,O, N; V()) = UO(T, N; Vo) — TS()(T, N,' Vo) = .Fo(T, N,' Vo) ;

3. by integrating the magnetic state equation, that is written in the form Vo B(T,H,N) =
Vo [1+ xm] #igH , we obtain

- 2
FH(TH,N Vo) = FolT, N Vo) = Vo P25 (14 xn(, v/ )] (108)

We note that the results are equivalent to those obtained by the previous method, but the
situation is simpler because the volumic degree of freedom is frozen.

2 The equality G* = G* (as quantities, but not as functions) can be obtained directly by comparing the
consequences of the Euler equation (94) and (104).
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3.3 Thermodynamic coefficients and processes
3.3.1 Definitions for the principal thermodynamic coefficients

Because the magnetic media has 4 thermodynamic degrees of freedom (in the simplest case,
when it is fluid), there are a great number of simple thermodynamic coefficients; taking into
account this complexity, we shall present only the common coefficients, corresponding to
closed magnetic media systems (N = constant).

a.1. The sensible specific heats are defined for non-isothermal processes "¢ "

1 0S8 ds
Cp= = T() :T<> . (109)
N 9T/, oT )/,
In the case, when the process ¢ is simple, we obtain the following specific isobaric/isochoric
and iso-magnetization/iso-field heats: cy m, ¢y 14, €p,m, Cp -

a.2. The latent specific heats are defined for isothermal processes "1 ”:

1 08 ds
PN T() :T<> . (110)
¥ N da ), da )y,
The most important cases (for "¢ ” and a) are the isothermal-isobaric process with a = H
when we have the isobaric magnetic-caloric coefficient A and the conjugated isothermal-isofield

(P)

process with a = B, when we have the iso-field piezo-caloric coefficient A4, ’:

ds (P) (as)
A=T[ — , Ay, =T =— . 111
(9H)T,qs " R AT )

a.3. The thermodynamic susceptibilities are of two types: for the volumic degree of freedom
(in this case they are called compressibility coefficients) and for the magnetic degree of freedom
(these are called magnetic susceptibilities):

—1/0V —1 /9dv
”f"‘v(am){v(am)(p' (12
(m):1<3M):1(aM) 113
Yo T v \amm) ), T m \oH ), 4

In the simple cases "¢ ” is an isothermal /adiabatic and iso-magnetization/iso-field processes;
it results the following simple compressibility coefficients: 1 a, 277, 25m and ;4.
Analogously "¢ ” as simple process can be isothermal/adiabatic and isobaric/isochoric,

resulting the following simple magnetic susceptibilities: )(<Tr;), X(TI?J)}' ng?) and )(gr%)
From Eq. (71b) we observe that the isothermal magnetic susceptibility is proportional to the
susceptibility used in the electrodynamics:

(m) _ (oMY _ 1

a.4. The thermal coefficients are of two types, corresponding to the two non-thermal and
non-chemical degrees of freedom (the volumic and the magnetic ones). If we consider only

thermal coefficients for extensive parameters, then we can define the following types of simple
coefficients:
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e the isobaric thermal expansion coefficients (also iso-magnetization/iso-field)

1 /0V 1 /0dv
b3 1 G,

where the index y is M or H;

e the pyro-magnetic coefficients (also isochoric/isobaric)

1 /oM om
=5 (57 )~ (7). e

where the index a is V (for the volume V) or P (for the pressure ‘P).

a.5. The mixed coefficients express correlations between the volumic and the magnetic
degrees of freedom; we mention the following simple coefficients:

* the magnetic-strictive coefficient

1 /0V 1 (dv
1=y (aH)mN =3 (aH)m ' (o)

¢ the piezo-magnetic coefficient

1 /oM om
=N (am)w - (am)m | (1)

3.3.2 Relations between simple coefficients

Because the great number of thermodynamic coefficients, corresponding to the magnetic
media, we must select among all possible relations between the simple coefficients; therefore,
we shall present only the most important relations: the symmetry relations (consequences of
some Maxwell relations) and special relations (of the type Reech or Mayer).

In order to emphasize symmetry relations expressed by the temperature, the pressure and the
magnetic field intensity (T,, #), as variables, for an closed system (N = constant), we use
the differential form of the reduced Gibbs pseudo-potential g*(T, 3, H), which is obtained
with the general reduction formulae from Egs. (90) - (91):

dg" = —sdT+ovdP —md(FyH) . (118)

From the above differential form it results 3 Maxwell relations, which can be expressed by
simple coefficients, resulting symmetry relations between these coefficients:

ds v (P)
(5%)y =~ (37 )y W= -Tow, a9

(the relation between the iso-field piezo-caloric coefficient and the isobaric-isofield thermal
expansion coefficient);

0s am) _
9 _ (9w N A=7 Trp, 119b
(awom)m (57 .. FoTrp,  (1190)
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(the relation between the isobaric magneto-caloric coefficient and the isobaric pyro-magnetic
coefficient);

v om v
=— (= — y=—0. 119
(8 (VOH))T;;B (8 ‘B)T,ﬂ - T (1159

(the relation between the magnetic-strictive coefficient and the piezo-magnetic coefficient).

Relations of Reech type can be obtained from the general relation (see [16] Eq. (3.25)), resulting
the equality between the ratios of the isobaric specific heats, of the compressibility coefficients,
and of the magnetic susceptibilities (isothermal, and respectively adiabatic):

(m)

Chm _ HsH _ Asgp (120)
CpH XTH X(ng%

Analogously, from the general Mayer relation for the specific heats (see [16] Eq. (3.28)) we

obtain in this case )

_ %
cpyy—Cpm=T0 o) (121)
XT,%
Similar relations with Eqgs. (120) — (121) can be obtained for the coefficients associated to
another sets of simple processes (e.g. isochoric, iso-magnetization processes).

3.3.3 The factorization of some simple coefficients

An important characteristics of some thermodynamic coefficients is the factorization property:
the expression of the considered coefficient is the sum of the part corresponding to the absence
of the magnetic field (like for the neutral fluid) and the “magnetic part”, and this result comes
from the factorization of the state equations.

We shall present the factorization of some coefficients using the variables of the magnetic
Gibbs represemtation30 (T, B, H, N); in this case the state equations are Eqs. (93).

The entropy is given by Eq. (93a), and here we write it without the variables, for simplicity
and for using later the convenient variables

§=38+ Smag ’ (122)

where & is the entropy of the magnetic medium as a neutral fluid, in the absence of the
magnetic field, and Smag is the magnetic part of the entropy:

— 22 oo — 2
Smag = FoHt <8Xm> N = Fot <3Xm> V. (123)
B v

2 oT 2 oT

Accordingly to the general definition (109), we obtain a factorization of the specific heats:

cp =) 4 clmas) (124)

30 We remark that some coefficients need the use of other thermodynamic representations.
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where CEPO) = T(3s0) /9 T), is the specific heat of the magnetic medium in the absence of the
magnetic field, and Cgpmag) = T(0s(mag) /9 T), is the magnetic part of the specific heat.

For the isobaric processes there are the specific heat at constant magnetic field or at constant
magnetization. From Eq. (123) it results

- 7142
(mag) _ 1 (0Xm ) Fo't
e =1 () W (125)
0T )y 2
To obtain Cémni\g) we express the magnetic entropy Smag in terms of the dipolar magnetic

moment (instead the magnetic field), using Eq. (71b):

m2 aXm _m2 J (Xm)_l
Smag = 07 22 ( oT >q3N— 2 \ ot )N

then it results for the magnetic part of the isobaric-isomagnetization specific heat the

expression:
2 2 ( -1
(mag) _ —m T d (Xm) . 12

‘Pm zﬁo ( o T2 - ’ (126)

We observe that for an ideal paramagnet (Xm)’1 ~ T, so that we obtain cggmnfg) = 0, that is
(0)

cpm = Cp (the iso-magnetization specific heat is independent of the magnetic field)>!.

It is interesting to emphasize that for the ideal para magnets the internal energy has also
particular properties. The magnetic part of the volumic density of internal energy for an
arbitrary magnetic medium has the expression

7 fHZ
(mag) _ Ho 9 Xm
u . (1+Xm-|—T—aT .

For an ideal paramagnet we obtain that this energy density is equal to the energy density of
the magnetic field u(mag) = HoH?/2 = Wmag , that is the whole magnetic energy is given only
by the magnetic field, without any contribution from the processes of the magnetization. The
behavior of the iso-magnetization specific heats and of the internal energy are similar to the
neutral fluids which satisfy the Clapeyron - Mendeleev equations, so that it is justified the
terminology “ideal” for the para-magnets which have Curie susceptibility.

We observe, in addition, that the diamagnetic systems, having a constant magnetic
susceptibility (approximatively), have null magnetic entropy Smag, accordingly to Eq. (123);
therefore, the diamagnetic systems have caloric properties independent of the magnetic field
(or of the magnetization).

In contrast with the specific heats, the isobaric magneto-caloric coefficient has contribution
only from the magnetic part of the entropy:

A=TgHT (aaLTm)m .
(mag) _ (0)

31 For the corresponding isochoric specific heat we obtain the same result cy, P cy
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The volume is given by Eq. (93b), that is it can be expressed in the form:
V=W+ Vmag ’

where V is the volume of the magnetic medium as neutral fluid, in the absence of the magnetic
field, and Vimag is the magnetic part of the volume:

Vinag = — ”02 <aiq3n) N. (127)

Accordingly to the general definitions (112) and respectively (114), the isothermal
compressibility coefficients s 7; and the isobaric thermal expansion coefficient a3, (both of
them at constant field) factorize in non-magnetic part (corresponding to null magnetic field,
when the magnetic medium behaves as a neutral fluid) and magnetic part:

Ty = %(TO) + %(j{?;lg) , (128a)
ay = o 4278 (128b)
where32
mag) _ fio "™ H? (X,
o 2o, < ), (129a)
(mag) _ FoM* X
i = T (129b)

In contrast with the previous coefficients, the magneto-strictive coefficient is obtained only
from the magnetic part of the volumic state equation

:uO,H aXm
s (%), a0

3.3.4 Thermodynamic process

Using the previous results we shall present the most significant thermodynamic processes for
the magnetic media as closed system (we shall choose the variable set T, 3, H, N = constant).

d.1. The isothermal magnetization: we consider that initially the magnetic medium in null
magnetic field (T,9, H; = 0, N) and we apply the magnetic field with an isothermal-isobaric
process, so that the final state has the parameters: (T, %, H; = H,N).

Using Eq. (93a) for the entropy, the heat transfered in this process is
Qif=TAS;; =T {S(T,P,H,N)—S(T,B,0,N) }

_FOHZ aXm
= T(—aT mN. (131)

32 In fact, the factorization is obtained only if we consider small magnetic effects, so that we could
approximate v = vy at the denominators.

33 We consider that the magneto-strictive effects are small, so that we can use the approximation v ~ v,
at the denominator.
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Since x,,(T,B) is in general a decreasing function with respect to the temperature, it results
that in the magnetization process the magnetic medium yields heat: Q;y <0.

d.2. The adiabatic-isobaric demagnetization: we consider that initially the magnetic medium
is in the presence of the magnetic field H and it has the temperature T; ; then, by a quasi-static
adiabatic-isobaric process the magnetic field is decreasing to vanishing value.

Because the equation of this process is S(T,3, H,N) = constant, with the supplementary
conditions p = constant and N = constant, then by using Eq. (93a), we obtain the equation
of the temperature:

S(T;, B, H,N) = S(Tf,B,0,N) ;
that is, after simple algebraical operations, we get:

FoH’ (aXm

(Ti %) + 75 8T>m—50(Tf/m)- (132)

Because the magnetic susceptibility is in general an decreasing function in respect to
the temperature (3%,,/9T)y < 0 and the entropy s°(T,B) is an increasing function of
temperature, it results s; < sg, that is the paramagnet gets cool during the adiabatic
demagnetization: Ty < T;.

d.3. The magneto-strictive and piezo-magnetic effects

The magneto-strictive effect means the variation of the volume (of the magnetic medium) due
to the variation of the magnetic field, in conditions isothermal-isobaric (also the magnetic
medium is a closed system)34; and the magneto-strictive coefficient is defined by Eq. (116).
The piezo-magnetic effect means the variation of the dipolar magnetic moment (of the magnetic
medium), due to the variation of the pressure, in conditions isothermal and at constant
magnetic field (also the magnetic medium is a closed system)® and the piezo-magnetic effect
coefficient is defined by Eq. (117).

Between the coefficients of the two effects it is the symmetry relation (53), and the
corresponding expressions can be put in explicit forms using the magnetic susceptibility:

N S Y e
7=—= =K (MT' (133)

We observe that the necessary condition to have an magneto-strictive effect and an
piezo-magnetic effect is that ,, depends on the pressure; accordingly to Egs. (76), it results
that only the non-ideal para-magnets can have these effects.

Using the volumic equation of state (93b), we can evaluate the global magneto strictive
effect, that is the variation of the volume (of the paramagnet) at the isothermal-isobaric
magnetization:

. _ _ _ _FOHZ X
T
From the previous expression it results that when the magnetic susceptibility is a decreasing
function of the pressure (9x,,/9B)r < 0, then it follows a contraction (a reduction of the
volume) at the magnetization of the diamagnet.

34 In other words, the magneto-strictive effect can be considered as the volumic response of the magnetic
medium to an magnetic perturbation.

35 We observe that the piezo-magnetic effect can be considered as the magnetic response of the magnetic
medium to a volumic perturbation, being conjugated to the magneto-strictive effect.
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1. Introduction

An accurate numerical solution of Electromagnetic scattering problems is critically demanded
in the simulation of many real-life applications, such as in the design of industrial processes
and in the study of wave propagation phenomena. Electromagnetic (EM) scattering problems
address the physical issue of computing the diffraction pattern of the EM radiation that is
propagated by a complex body, illuminated by an incident wave. An explicit solution is
possible only for simple targets, e.g. for spherical bodies; complicated geometries impose
to use approximate numerical techniques.

Until the emergence of high-performance computing in the early eighties, the analysis of
scattering problems was afforded by using approximate high frequency techniques such as the
shooting and bouncing ray method (SBR) (Lee et al. (1988)). Ray-based asymptotic methods
like SBR and the uniform theory of diffraction are based on the idea that EM scattering
becomes a localized phenomenon as the size of the scatterer increases with respect to the
wavelength. In the last decades, due to impressive advances in computer technology and the
introduction of innovative algorithms with limited computational and memory requirement,
a more rigorous numerical solution has become possible for many practical applications.

Finite-difference (FD) (Kunz & Luebbers (1993); Taflove (1995)), finite-element (FE) (Silvester
& Ferrari (1990); Volakis et al. (1998)) and finite-volume (FV) methods (Bonnet et al.
(1998); Botha (2006)) can be used to discretize the Maxwell’s equations into a finite volume
surrounding the scatterer, giving rise to sparse systems of linear equations. Upon inversion of
the system, a solution is computed for all excitations. More recently, alternative approaches
based on integral equations are becoming increasingly popular for solving high-frequency EM
scattering problems. They reformulate the Maxwell’s equations in the frequency domain and
solve for the electric and the magnetic currents induced on the surface of the object. Thus
integral methods require only a simple description of the surface of the target by means of
triangular facets (see an example of discretization in Figure 1). This means that a 3D problem
is reduced to solving a 2D surface problem, simplifying considerably the mesh generation
especially in the case of moving objects. No artificial boundaries need to be imposed and
boundary conditions are automatically satisfied in the case of perfectly conducting objects.

Another interest to use surface discretizations is that they noticeably reduce the effect of grid
dispersion errors. Grid dispersion errors occur when a wave has a different phase velocity on
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Fig. 1. Example of surface discretization in an integral equation context. Each unknown of
the problem is associated to an edge in the mesh. Courtesy of the EMC-CERFACS Group in
Toulouse.

the grid compared to the exact solution; they tend to accumulate in space and may introduce
spurious solutions over large 3D simulation regions (Bayliss et al. (1985); Jr. (1994); Lee &
Cangellaris (1992)). For second-order accurate differential schemes, to alleviate this problem
the grid density may grow up to O((kd)3) unknowns in 2D and of O((kd)*?) in 3D, where k
is the wavenumber and d is the approximate diameter of the simulation region. Therefore,
the overall solution cost may increase considerably also for practical (i.e. finite) values of
wavenumber (Chew et al. (1997)).

Boundary element discretizations are applied in many scientific and engineering areas
beside electromagnetics and acoustics, e.g. in biomagnetic and bioelectric inverse modeling,
magnetostatic and biomolecular problems, and many other applications (Forsman, Gropp,
Kettunen & Levine (1995); Yokota, Bardhan, Knepley, Barba & Hamada (2011)). The potential
drawback is that they lead, upon discretization, to large and dense linear systems to invert.
Hence fast numerical linear algebra methods and efficient parallelization techniques are urged
for solving large-scale boundary element equations efficiently on modern computers. In this
chapter we overview some relevant techniques. In Section 2 we introduce the boundary
integral formulation for EM scattering from perfectly conducting objects. In Section 4 we
discuss fast iterative solution strategies based on preconditioned Krylov methods for solving
the dense linear system arising from the discretization. In Section 5 we focus our attention on
the design of the preconditioner, that is a critical component of Krylov methods in this context.
We conclude our study in Section 5 with some final remarks.

2. The integral equation context

In an integral equation context, the standard EM scattering problem may be formulated in
variational form as follows:

Find the surface current j such that for all tangential test functions j!, we have

6ty (707 ) = gyt - dir ) ) andy =

— l _’. ._'i
= e | Ec®) T @z @
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Eqn. (1) is called Electric Field Integral Equation (EFIE) (see Bilotti & Vegni (2003); Li et al.
eik|y —x|

(2005)); we denote by G(|y — x|) the Green'’s function of Helmholtz equation,

47|y — x|
I' is the boundary of the object, k the wave number and Zy = +/y/eg the characteristic
impedance of vacuum (¢ is the electric permittivity and p the magnetic permeability). Given
a continuously differentiable vector field j(x) represented in Cartesian coordinates on a
3D Euclidean space as j(x1,X2,%3) = jx, (X1, X2,X3)8x, + ju, (X1, X2, X3)8x, + jas (X1, X2, X3) s,
where &,,,&y,, &y, are the unit basis vectors of the Euclidean space, we denote by divj(x) the
divergence operator defined as

_ajx1+%+%'

divj(x) = dx;  0xp  0x3

The EFIE formulation can be applied to arbitrary geometries such as those with cavities,
disconnected parts, breaks on the surface; hence, it is very popular in industry.

For closed targets, the Magnetic Field Integral Equation (MFIE) can be used, which reads
s .o, 1 ~ =
[ Rejn0)f+5 [37 = = [ (Hue A7)
The operator Roxt j is defined as
Rext j(y) = [ radyGlly = x|) A f(x)d,

and is evaluated in the domain exterior to the object.

Both formulations suffer from interior resonances which make the numerical solution more
problematic at some frequencies known as resonant frequencies, especially for large objects.
The problem can be solved by combining linearly EFIE and MFIE. The resulting integral
equation, known as Combined Field Integral Equation (CFIE), is the formulation of choice
for closed targets. We point the reader to Gibson (2008) for a thorough presentation of integral
equations in electromagnetism.

On discretizing Eqn. (1) in space by the Method of Moments (MoM) over a mesh containing n

edges, the surface current j is expanded into a set of basis functions {#i}1<i<, with compact

support (the Rao-Wilton-Glisson basis, Rao et al. (1982), is a popular choice), then the integral
equation is applied to a set of tangential test functions j'. Selecting j! = @j, we are led to

compute the set of coefficients {A;}, ;- such that

' R R | .
% | f 6 =) (3500 50 ~ fptionie) - dion i) ) ] =
1<i<n ¢
i - .
=t | En®) §(x)ax, @
for each 1 <i < n. The set of equations (2) can be recast in matrix form as

AA =D, 3)
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where A = {Ai]} and b = [b;] have elements, respectively,

~ ~ 1. -
A = [ 6y =) (#0310 — o) - dior i) ) sy,
i [z ~
b = i [ Einc(x) - 3y)ix.

The set of unknowns are associated with the vectorial flux across an edge in the mesh. The
right-hand side varies with the frequency and the direction of the illuminating wave.

3. Fast matrix solvers for boundary element equations

Linear systems issued from boundary element discretizations may be very large in
applications, although their size is typically much smaller compared to those arising from FE
or FV formulations of the same problem. The number of unknowns grows linearly with the
size of the scatterer and quadratically with the frequency of the incoming radiation (Bendali
(1984)). A target with size of a few tens of wavelength, illuminated at O(1) GHz of frequency,
may lead to meshes with several million points (Sylvand (2002)). Some efficient out-of-core
dense direct solvers based on variants of Gaussian elimination have been proposed for solving
blocks of right-hand sides, see e.g. Alléon, Amram, Durante, Homsi, Pogarieloff & Farhat
(1997); Chew & Wang (1993). However, the memory requirements of direct methods are
not affordable for solving such systems in realistic applications, even on modern parallel
computers. Iterative methods can solve the problems of space of direct methods because
they are based on matrix-vector (M-V) multiplications. In general terms, a modern integral
equation solver is the mix of a robust iterative method, a fast algorithm for computing cheap
approximate M-V products, and an efficient preconditioner to speed-up the convergence.

3.1 The choice of the iterative method

Krylov methods are among the most popular accelerators because of their ability to deliver
good rates of convergence and to handle very large problems efficiently. They look for the
solution of the system Ax = b in the Krylov space Ky(A,b) = span{b, Ab, Ab,..., A*"1b}.
This is a good space from which to construct approximate solutions for a nonsingular linear
system because it is intimately related to A~!. In fact the inverse of any nonsingular matrix
A can be written in terms of powers of A with the help of the minimal polynomial 4(t) of A,
which is the unique monic polynomial of minimal degree such that g(A) = 0. If Ay, ..., A4 are
the distinct eigenvalues of A, m; is the index of A]-, and we define m as

d
m = Z m]‘,
j=1
then |
q(t) =TTt =ap)™. 4)
j=1

Writing g(#) in the form
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Solver ‘Iterations (CPU time)
CORS 601 (253")
BiCOR 785 (334)
GMRES(50) 2191 (469)
QMR 878 (548)
BiCGSTAB 1065 (444)

Table 1. Number of iterations and CPU time (in seconds) required by Krylov methods to
reduce the initial residual to O(10~8). An asterisk "*" indicates the fastest run. The problem
is shown in Figure 2

we have

_ 1 & ; :
A ==Y A, a=]](-A)" #0.
Ny i P
j=0 =1
This shows that, if the minimal polynomial of A has degree m, then the solution of Ax = b
lies in the space Ky, (A, ). The smaller the degree of the minimal polynomial, the faster the
expected rate of convergence of a Krylov method (see Ipsen & Meyer (1998)).

One issue is the choice of the suitable Krylov algorithm. Most integral formulations for surface
and hybrid surface/volume scattering give rise to indefinite linear systems that cannot be
solved using the Conjugate Gradient method (see discussions in Section 2). The GMRES
method by Saad & Schultz (1986) is virtually always used for solving dense non-Hermitian
linear systems as it is an optimal iterative solver, in the sense that it minimizes the 2-norm
of the residual over the corresponding Krylov space. It generally requires the least number
of iterations to converge. However, the optimality of GMRES comes at a price. The cost of
applying the method increases with the iterations, and it may sometimes become prohibitively
expensive for solving practical applications. As an attempt to limit the costs of GMRES, the
algorithm is often restarted. After a given number of steps k, the approximate solution is
computed from the generated Krylov subspace. Then the Krylov subspace is destroyed, and
a new space is reconstructed using the latest residual.

On the other hand, non-optimal methods attempt to limit the costs of GMRES while
preserving its favourable convergence properties. In Table 1, we show the number of
iterations required by Krylov methods to reduce the initial residual to O(107%) starting
from the zero vector on the problem shown in Figure 2. For simplicity, the right-hand side
of the linear system is set up so that the initial solution is the vector of all ones. We do
not use preconditioning. In addition to restarted GMRES, we consider complex versions
of iterative algorithms based on Lanczos biorthogonalization, such as BiCGSTAB (van der
Vorst (1992)) and QMR (Freund & Nachtigal (1994)) and on the recently developed Lanczos
biconjugate A-orthonormalization, such as BICOR and CORS (Carpentieri et al. (2011); Jing,
Huang, Zhang, Li, Cheng, Ren, Duan, Sogabe & Carpentieri (2009)). We clearly observe the
importance of the choice of the iterative method. In our experiments, the CORS method is
the fastest non-Hermitian solver with respect to CPU time on most selected examples except
GMRES with large restart. Indeed, unrestarted GMRES may outperform all other Krylov
methods and should be used when memory is not a concern. However, reorthogonalization
costs may penalize the GMRES convergence in large-scale applications, so using high
values of restart may not be convenient (or even not affordable for the memory) as shown
in Carpentieri et al. (2005). In Table 1 we select a value of 50 for the restart parameter.

The BiCOR and CORS methods are introduced in Carpentieri et al. (2011); Jing, Huang,
Zhang, Li, Cheng, Ren, Duan, Sogabe & Carpentieri (2009). They search for the approximate
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Fig. 2. Test problem: an open cylindric surface. Characteristics of the associated linear
system: size=6268, frequency=362 MHz, x1(A) = O(10%). Courtesy of the EMC-CERFACS
Group in Toulouse.

solution in the Krylov subspace Ky, (A,rg) by applying a Petrov-Galerkin approach and
imposing the residual be orthogonal to the constraints subspace A”K,, (A™,r}); the shadow
residual r; is chosen to be equal to rj = Arg. The basis vector representations for

the subspaces Ky, (4,79) and A"K,, (AH,r}) are computed by means of the biconjugate
A-Orthonormalization procedure. Starting from two vectors v; and w; chosen to satisfy the
condition w! Avy, the method ideally builds up a pair of biconjugate A-orthonormal bases
vj,j =1,2,...,mand w;,i =1,2,...,m, respectively for the dual Krylov subspaces K, (A;v;)
and Km(AH ;wi), satisfying the condition wiH Avj = 51‘,]'/ 1 < i,j < m. We point the reader
to Jing, Carpentieri & Huang (2009) for further experiments with iterative Krylov methods for
surface integral equations.

A significant amount of work has been devoted in the last years to design fast algorithms
that can reduce the O(n?) computational complexity for the M-V product operation required
at each step of a Krylov method, such as the Fast Multipole Method (FMM) (Greengard
& Rokhlin (1987); Rokhlin (1990)), the panel clustering method (Hackbush & Nowak
(1989)), the H-matrix approach (Hackbush (1999)), wavelet techniques (Alpert et al. (1993);
Bond & Vavasis (1994)), the adaptive cross approximation method (Bebendorf (2000)), the
impedance matrix localization method (Canning (1990)), the multilevel matrix decomposition
algorithm (Michielssen & Boag (1996)) and others. In particular, the combination of iterative
Krylov subspace solvers and FMM is a popular approach for solving integral equations. For
Helmholtz and Maxwell problems, FMM algorithms enable to speedup M-V multiplications
with boundary element matrices down to O(nlogn) algorithmic and memory complexity
depending on the problem and on the specific implementation, see e.g. Cheng et al. (2006);
Darrigrand (2002); Darve & Havé (2004); Dembart & Epton (1994); Engheta et al. (1992); Song
& Chew (1995); Tausch (2004). Two-level implementations of FMM can reduce the cost of the
M-V product operation from O(n?) to O(n3/2), a three level algorithm down to O (1*/3) and
the Multilevel Fast Multipole Algorithm (MLEMA) to O(nlogn).

Multipole techniques exploit the rapid decay of the Green’s function and compute interactions
amongst degrees of freedom in the mesh at different levels of accuracy depending on their
physical distance. The 3D mesh of the object is partitioned recursively into boxes of roughly
equal size until the size becomes small compared with the wavelength. The hierarchical
partitioning of the object is typically represented using a tree-structured data called oct-tree
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(see Figure 3). Multipole coefficients are computed for all boxes starting from the smallest

Level n (LEAVES)

Fig. 3. The oct-tree data structure representation in the FMM algorithm. Each cube has up to
eight children and one parent box except for the largest cube which encloses the whole
domain.

ones, that are the leaves, and recursively for each parent cube in the tree by summing
together multipole coefficients of its children. Interactions of degrees of freedom within one
observation box and its close neighboring boxes are computed exactly using MoM; depending
on the frequency, they generate between 1% and 2% of the entries of A. Interactions with boxes
that are not neighbors of the observation box but whose parent in the oct-tree is a neighbor of
the box parent are computed using FMM (see Figure 4). All other interactions are computed

Fig. 4. Interactions in the multilevel FMM algorithm. Interactions for the gray boxes are
computed directly. We denote by dashed lines cubes that are not neighbors of the cube itself
but whose parent is a neighbor of the cube’s parent. These interactions are computed using
the FMM. All other interactions are computed hierarchically on a coarser level.
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hierarchically on a coarser level by traversing the oct-tree. Multiple techniques have been
efficiently implemented on distributed memory parallel computers proving to be scalable to
several million discretization points, see for instance the FISC code developed at University
of Illinois by Song & Chew (1998); Song et al. (1997; 1998), the INRIA /EADS integral equation
code AS_ELFIP by Sylvand (2002; 2003), the Bilkent University code by Ergiil & Giirel (2007;
2008) and others.

4. Algebraic preconditioning for boundary integral equations

Krylov methods may converge very slowly in practice, mainly due to bad spectral
conditioning of the linear system. Relation (4) implies that the dimension of the solution space,
and therefore the convergence properties, are mostly dictated by the eigenvalue distribution of
A. The spectral properties may vary noticeably depending on the integral operator as well as
on object shape and material. Problems with cavities or open surfaces typically require more
iterations to converge than closed objects of the same physical size, and nonuniform meshes
often produce ill-conditioned MoM matrices. On EFIE, the iteration count of Krylov solvers
may increase as O(n%) when the number of unknowns 7 is related to the wavenumber, see
for instance experiments reported in Song & Chew (1998), whereas on CFIE the number of
iterations typically increases as O (n%2).

On the other hand, if preconditioning A by a nonsingular matrix M the eigenvalues of M~! A
fall into a few clusters, say ¢ of them, whose diameters are small enough, then M ~1A behaves
numerically like a matrix with ¢ distinct eigenvalues. As a result, we would expect t iterations
of a Krylov method to produce reasonably accurate approximations. The matrix M is called
the preconditioner matrix; preconditioning can be applied from the left as M—1 Ax = M~1b as
well as from the right as AM 1y = b with x = M~ 1y.

Optimal analytic preconditioners have been proposed for surface integral equations, see
e.g. Antoine et al. (2004); Christiansen & Nédélec (2002); Steinbach & Wendland (1998).
But they are problem-dependent. In this study, we consider purely algebraic techniques
which compute the preconditioner only using information contained in the coefficient
matrix of the linear system. Although far from optimal for any specific problem, algebraic
methods can be applied to different operators and to changes in the geometry only by
tuning a few parameters, and may often be developed from existent public-domain software
implementations.

We are interested to develop techniques that have O(nlogn) algorithmic and memory
complexity in the construction and in the application phase like FMM, and may be
implemented efficiently within multipole codes. For memory concerns, we compute the
preconditioner by initially decomposing the linear system in the form

(S+B)x=b )

where S is a sparse matrix retaining the most relevant contributions to the singular integrals
and is easy to invert, while B can be dense. If the continuous operator S underlying S is

bounded and the operator B underlying B is compact, then S~ is compact and

SHS+B) =T+5'B.
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We may expect that the preconditioned system (I + S~!B Jx=3§ ~1bhas a good clusterization
of eigenvalues close to one, see e.g. Chen (1994) and (Chen, 2005, pp. 182-185).

The simplest approach to compute the local matrix S is to drop the small entries of A below
a threshold (Cosnau (1996); Kolotilina (1988); Vavasis (1992)). When all the entries of A are
not explicitly available, it may be necessary to use information extracted from the physical
mesh of the problem. In an integral equation context, the surface of the object is discretized
using a triangular mesh; each degree of freedom (DOF), or equivalently each unknown of the
linear system, is associated to an edge of the mesh. Therefore, the sparsity pattern of S can be
defined according to the concept of level k neighbours (see Figure 5(a)). Level 1 neighbours
of a DOF are the DOF plus the four DOFs belonging to the two triangles that share the edge
corresponding to the DOF itself. Level 2 neighbours are all the level 1 neighbours plus the
DOFs in the triangles that are neighbours of the two triangles considered at level 1, and so
forth. Due to the very localized nature of the Green’s function, by retaining a few (two or
three) levels of neighbours for each DOF an effective approximation may be constructed.

Comparative experiments show that there is little to choose. Both matrix- and mesh-based
approaches can provide very good approximations S to the dense coefficient matrix for low
sparsity ratio between 1% and 2% (Carpentieri et al. (2000)). The mesh-based approach
is straightforward to implement in FMM codes as the object is typically partitioned using
geometric information (see Figure 5(b)). Multipole algorithms yield a matrix decomposition

A= Adiag + Anear + Afar/ (6)

where Agj;, is the block diagonal part of A associated with interactions of basis functions
belonging to the same box, Ay is the block near-diagonal part of A associated with
interactions within one level of neighboring boxes (they are 8 in 2D and 26 in 3D), and Ay, is
the far-field part of A. Therefore, in a multipole setting a suitable choice for the local matrix
may be S = Agiag + Anear-

.
AN e
A
(a) Topological neighbours of a DOF (b) Box-wise partitioning in the FMM
in the discretization mesh. context. Courtesy of EADS-CCR

Toulouse.

Fig.5. Mesh-based pattern selection strategies to compute local interactions in an integral
equation context.
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4.1 Comparison of standard preconditioners

To illustrate the difficulty of finding a good preconditioner for this problem class, in Table 2 we
report one experiments with the GMRES solver and various algebraic preconditioners applied
to a scattering problem from an open cylindric surface illuminated at 200 MHz of frequency
and modeled using EFIE. The system has n = 1299 unknowns and is a low resolution testcase
than the problem in Figure 2. In connection with GMRES, we consider preconditioners M of
either implicit type (which approximately factorize S) or of explicit type (which approximately
invert S) at roughly the same number of nonzero entries in M. We adopt the following
acronymes:

* None, means that no preconditioner is used;
* Diag, a simple diagonal scaling, i.e. M is the diagonal of S;

(D+wE)D~!(D+wE")
w(2—w)
we denote by D the diagonal of S and E is the strict lower triangular part of S;
e ILU(0) by Saad (1996), the lower/upper incomplete LU factorization M = LU, L ~

L, U ~ U, S = LU, where the sparsity pattern of L (resp. U) is equal to that of the
lower (resp. upper) triangular part of S;

® SSOR, the symmetric successive overrelaxation method M = , where

* SPAI by Grote & Huckle (1997), an approximate inverse preconditioner M ~ S~!
computed by minimizing ||I — SM||;. The same pattern of S is imposed to M.

e AINV by Benzi et al. (1996), a sparse approximate inverse computed in factorized form
by applying an incomplete biconjugation process to S, and dropping small entries below a
threshold in the inverse factors.

Density of S = 3.18% - Density of M = 1.99%

Precond. | GMRES(30) GMRES(80) GMRES(c0)
None - - 302
Diag - - 272
SSOR - 717 184
ILU(0) - 454 135
SPAI 308 70 70
AINV - - -

Table 2. Number of iterations using GMRES and various preconditioners on a test problem,
a cylinder with an open surface, discretized with n = 1299 edges. The tolerance is set to 10~.
The symbol "~ means that no convergence was achieved after 1000 iterations. The results are
for right preconditioning.

We see that many standard methods fail. Simple preconditioners, like the diagonal of A,
diagonal blocks, or a band, may be effective when the coefficient matrix has some degree of
diagonal dominance (Song et al. (1997)). For ill-conditioned and indefinite matrices, more
robust methods are needed. Techniques that are successful for solving partial differential
equations may be successfully adopted for integral equations; in the next section, we analyse
some of these methods.
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4.2 Sparse approximate inverses preconditioner

Approximate inverse methods are very attractive for parallelism. They explicitly compute and
store an approximation of the inverse of the coefficient matrix M ~ S~!, which may be used
as preconditioner by performing one or more sparse M-V products operations at each step
of an iterative solver. As shown in Figure 6, due to the rapid decay of the Green’s function
the entries of A~! may have a very similar structure to those of A, so that a very sparse
preconditioner M may effectively capture the large contributions to the inverse.

(a) Pattern of large entries of A (b) Pattern of large entries of A1

Fig. 6. Structure of the large entries of A (on the left) and of A~! (on the right). Large to
small entries are depicted in different colors, from red to green, yellow and blue. The test
problem is a small sphere.

The actual entries of M may be computed by minimizing the error matrix ||I — SM||f for
right preconditioning (||I — MS||f resp. left preconditioning). The Frobenius-norm allows
to decouple the constrained minimization problem into n independent linear least-squares
problems, one for each column (resp. row) of M when preconditioning from the right (resp.
from the left). The independence of the least-squares problems can be immediately seen from
the identity

n
2 2
11— SM[E =} llej — Smajll3, )
=1
where ¢; is the jth canonical unit vector and ,; is the column vector representing the jth
column of M. In the case of right preconditioning, the analogous relation

n
1= MS|[z = 1= STMT[E =} llej — STm;al3 (8)
j=1

holds, where mj, is the column vector representing the jth row of M. The preconditioner
is not guaranteed to be nonsingular in general, and additionally it does not preserve any
possible symmetry of A. The condition to ensure non-singularity of M may be derived from
the following estimates of the accuracy of the approximate inverse (Grote & Huckle (1997)):
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THEOREM 1. Letr; = Sm]- —¢ be the residual associated with column m]-forj =1,2,...,n,and
q= lrgjagxn {nnz (rj>} < n. Suppose that Herz <tforj=1,2,...,n, then we have
ISM —I|[p < V/nt, [[M=S7H[p <||S7H|, V/nt,

ISM—1Ill, < v/nt, [M =571, < |[S7H,v/nt,

ISM =1l < gt [[M=s7H[ < [[s7H], vat
[ |

Owing to this result, all the eigenvalues of SM lie in the disk centered in 1 and of radius
Vit the value of g is not known a priori, though, so that one might enforce the condition
v/nt < 1 to prevent singularity or near-singularity of the preconditioned matrix. In practice it
may be too costly to compute M with such a small ¢. For some problems, it may be observed
a lack of robustness of the approximate inverse due to the clustering of small eigenvalues
in the spectrum of the preconditioned matrix. Stabilization techniques based on eigenvalue
deflation may be used to enhance the robustness of M, see e.g. Carpentieri et al. (2003).

The most critical component is the computation of the nonzero structure of M. From Figure 6,
we see that the sparse pattern of S may be a suitable pattern for M. Denoting by

P ={(ij) €[1,n)?s.t mi; #0 }

the nonzero structure of the approximate inverse, we may automatically determine the pattern
of the nonzero entries of the jth column of M as

C; = {i€[Ln]st (i,j) € P}.

and compute the associated entries by solving a small size dense least-squares problem. The
least-squares solution involves only those columns of S indexed by C;; we indicate this subset
by S(:,C;). Because S is sparse, many rows in 5(:, C;) are usually null, not affecting the solution
of the least-squares problems (7). Thus denoting by R; the set of indices corresponding to the
nonzero rows in S(:,C;), by S = S(R;,C;), by i; = m;(C;), and by ¢; = e;(C;), the actual
“reduced” least-squares problems to solve are

minHEj—S\nﬁsz, j=1,.,n )

Usually problems (9) have much smaller size than problems (7) and can be efficiently solved
by dense OR factorization. The parallel implementation of the approximate inverse is highly
scalable as shown in Table 3, while the numerical performance typically tend to deteriorate
for increasing matrix size as can be seen in Table 4.

Approximate inverses may be also computed in factorized form as M = GZ, where G ~ U~
and Z ~ U~ are approximation of the inverse triangular factors of S, see for instance Alléon,
Benzi & Giraud (1997); Chen (1998); Rahola (1998); Samant et al. (1996). One example of
such preconditioner is the AINV method by Benzi et al. (1996), a sparse approximate inverse
computed in factorized form by applying an incomplete biconjugation process to S and
dropping small entries below a threshold in the inverse factors. However, disappointing
results with factorized approximate inverses have been reported on this problem class, see
e.g. Carpentieri et al. (2004). The reason of failure is that for many integral formulations
like EFIE and CFIE, the inverse factors may be totally unstructured. In this case, selecting
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Construction Elapsed time
n (procs) )
time (sec)  precond (sec)
112908 (8) 513 0.39
221952 (16) 497 043
451632 (32) 509 0.48
900912 (64) 514 0.60

Table 3. Parallel scalability of the approximate inverse for solving large-scale boundary
integral equations on a model problem.

FROB GMRES(c0) | GMRES(120)
dof/freq
Density Time|Iter Time | Iter Time
23676 /1.3 Ghz| 0.94 2m [438 20m [+2000 55m
104793 /2.6 " | 019 6m (234 20m | 253 17m
419172 /52 " | 0.05 21m|413 2h44m | 571 2h26m
943137 /7.8 " | 0.02 49m [454 3h 35me| 589 5h 55m

Table 4. Numerical scalability of the approximate inverse for solving large-scale boundary
integral equations. The symbol ® means run on 32 processors. Notation: m means minutes,
hours.

a priori the sparse pattern for the factors can be extremely hard and dynamic pattern selection
strategies, that drop small entries below a user-defined threshold during the computation,
may be very difficult to tune as they can easily discard relevant information and lead
to a very poor preconditioner. For those problems, finding the appropriate threshold to
enable a good trade-off between sparsity and numerical efficiency is challenging and very
problem-dependent.

4.3 Incomplete LU factorization preconditioner

ILU-type methods compute an approximate triangular decomposition of S by means of an
incomplete Gaussian elimination process. The ILU preconditioner writes as M = LU, L ~ L,
U ~ U where L and U denote respectively the lower and upper triangular factors of the
standard LU factorization of S. This class of methods is virtually always used for solving
sparse linear systems. However, mixed success is reported on dense matrix problems, due
to the indefiniteness of the systems arising from the discretization. The root of the problem
is that small pivots often appear during the factorization, leading to highly ill-conditioned
triangular factors and unstable triangular solves (Carpentieri et al. (2004)).

In Table 5 we show an experiment with an ILU preconditioner computed from the sparse
approximation S to A, using different values of density for S. The test case is a sphere of 1
meter length illuminated at 300 MHz; the problem is modeled using EFIE and the mesh is
discretized with 2430 edges. The set F of fill-in entries to be kept for the approximate lower

triangular factor L is defined by
F={ki)|leo(l;) < £},

where the integer ¢ denotes a user specified maximal fill-in level. The level lev(l) ;) of the
coefficient Iy ; of L is computed as follows:
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Initialization
0 if p; #0 or k=i
lev(ly ;) =
oo otherwise
Factorization

lev(ly ;) = min { lev(ly;), lev(l; ;) + lev(ly ;) +1 } .

Observe that the larger ¢, the higher the density of the preconditioner. We denote the resulting
preconditioner by ILU (¢) Saad (1996).

In our results, increasing the fill-in parameter may produce much more robust preconditioners
than ILU(0) applied to a denser sparse approximation of the original matrix; ILU(1) may
deliver a good rate of convergence provided the coefficient matrix is not too sparse. However,
the factorization of a very sparse approximation (up to 2%) of the coefficient matrix can be
stable and accelerate significantly the convergence, especially if at least one level of fill-in is
retained. Then, for higher values of the density of S the factors may become progressively
ill-conditioned, the triangular solves unstable and consequently the preconditioner is useless.
The table also shows that ill-conditioning of the factors is not related to ill-conditioning of A.

Density of S =2%
IC(level) Density of L e (L) |GMRES(30) GMRES(50)

1C(0) 2.0%  2-10° 378 245
IC(1) 51%  1-10° 79 68
IC(2) 9.1%  9-10? 58 48

Density of S = 4%
IC(level) Density of L xe(L) |GMRES(30) GMRES(50)

1C(0) 40%  6-10° - -
IC(1) 11.7%  2-10° - -
IC(2) 19.0%  7-10° 40 38

Density of S = 6%
IC(level) Density of L ke (L) |GMRES(30) GMRES(50)

1C(0) 6.0%  8-101 - -
IC(1) 18.8%  5-1011 - -
IC(2) 29.6%  7-10* - -

Table 5. Number of iterations of GMRES varying the sparsity level of S and the level of fill-in
of the approximate factor L on a spherical model

problem (1 = 2430, koo (A) = || Al|co[| A~ || & O(10%)). The symbol "~ means that
convergence was not obtained after 500 iterations.

A complex diagonal compensation can help to compute a more stable preconditioner, by
shifting along the imaginary axis the eigenvalues close to zero in the spectrum of the
coefficient matrix. However, the value of the shift is not easy to tune a priori and its effect
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on the convergence is difficult to predict (Carpentieri et al. (2004)). Pivoting may be a more
robust approach to overcome the problem according to reported experiment by Malas & Giirel

(2007); in this case, the ith row of the factor is computed as soon as permtol x ‘Sij ‘ > |s;i|, where
permtol is the permutation tolerance and s;; are the entries of S.

We follow a different approach. We report on experiments with multilevel inverse-based ILU
factorization methods to possibly remedy numerical instabilities. Following Bollhofer & Saad
(2006), we initially rescale and reorder the initial matrix A as

PTD,AD,Q = A4, (10)

which yields A% = b for appropriate £, b. The initial step may consist of an optional maximum
weight matching (Duff & Koster (1999)). By rescaling and a one-sided permutation, it attempts
to improve the diagonal dominance. After that, a symmetric reordering is applied to reduce
the fill-/bandwidth. The latter can also be used without an a priori matching step, only
rescaling the entries and symmetrically permuting the rows and the columns. This is of
particular interest for (almost) symmetrically structured problems. Next, an inverse-based
ILU with static diagonal pivoting is computed. Le., during the approximate incomplete
factorization A ~ LDU such that L, U are unit lower triangular factors and D is block
diagonal, the norms ||L~1|, ||| are estimated. If at factorization step I a prescribed bound
x is exceeded, the current row [ and column [ are permuted to the lower right end of the
matrix. Otherwise the approximate factorization is continued. One single pass leads to an
approximate partial factorization

A= (BE) < (L8O) (Pr O ) (UsUr) _| by, (11)
EC te1)\ose)\o 1

with a suitable leading block B and a suitable permutation matrix IT, where |L; <«
u, 1| < k. The remaining system S¢ approximates C — EB~'F. From the relations

B%y + F%, = by N £ = B71(b) — F1y)
E%; 4+ C%p = by (C—EB7'F)%) = by —EB b, ~’

at each step of an iterative solver we need to store and invert only blocks with B and
Sc ~ C — EB~!F while for reasons of memory efficieny, L, U are discarded and implicitly
represented via Lp ~ EUp 1D§1 (resp. Up ~ DgnglF). When the scaling, preordering and
the factorization is successively applied to Sc, a multilevel variant of (10) is computed. E.g.,
after a one additional level we obtain

B K|k Lg 0 |0 Dg 0 |0 Ug Up, | UF,
plleﬁrQ = E1 C11 Cu ~ LE] I |0 0 DC11 0 0 I UC12
Er Cyp ‘sz Lg, LC21 ‘I 0 O ‘522 0 0 ‘ I

The multilevel algorithm ends at some step m when either S¢ is factored completely or it
becomes considerably dense and switches to a dense LAPACK solver. After computing an
m-step ILU decomposition, for preconditioning we have to apply L' AU,,'. From the error
equation Ey; = A — Ly Dy Uy, we see that ||L;,!|| and ||U,,!|| contribute to the inverse error
L EnU,;'. Monitoring the growth of these two quantities during the partial factorization



170 Trends in Electromagnetism — From Fundamentals to Applications

is essential to preserve the numerical stability of the solver, as can be observed comparing
results in Table 5 and Table 6.
Density of S =2%

threshold | Density of L|GMRES(30) GMRES(50)

1.0e-3 0.30 29 29
Density of S = 4%
MILU  |Density of L|GMRES(30) GMRES(50)
1.0e-3 0.39 26 26
Density of S = 6%
MILU  |Density of L|GMRES(30) GMRES(50)
1.0e-3 0.46 24 24

Table 6. Number of iterations of GMRES using a multilevel inverse-based ILU factorization
as preconditioner. The model problem is the same as in Table 5.

5. Concluding remarks

We have discussed some fast iterative solution techniques for solving surface boundary
integral equations. High-frequency simulations of large structures are extremely demanding
for scalable solvers and large computing resources. We have reviewed recent advances for the
class of Krylov subspace methods, sparse approximate inverses, incomplete LU factorizations.

Other approach have been applied in this area of research. Multigrid methods are provably
optimal algorithms for solving various classes of partial differential equations. Attempts
to apply these techniques to dense linear systems have obtained mixed success. Early
experiments on boundary element equations are reported with geometric versions on simple
model problems, typically the hypersingular and single-layer potential integral operators
arising from the Laplace equation (Bramble et al. (1994); Petersdorff & Stephan (1992);
Rjasanow (1987)). Multigrids require a hierarchy of nested meshes to setup the principal
components of the algorithm, i.e. a coarsening strategy to decrease the number of unknowns,
grid transfer operators to move from a grid to another one, coarse grid operators and
smoothing procedure, see e.g. Hackbusch (1985). Thus they are difficult to implement. On the
other hand, algebraic multigrid algorithms use only single grid information extracted from
either the graph or the entries of the coefficient matrix and are nearly as effective as geometric
algorithms in reducing the number of iterations, see e.g Braess (1995); Brandt (1999); Ruge &
Stiiben (1987); Vanek et al. (1996). Langer et al. propose to apply an auxiliary sparse matrix
reflecting the local topology of the mesh on the fine grid to setup all the components of the
multigrid algorithm in a purely algebraic setting (Langer et al. (2003)). This gray-box approach
is fairly robust on model problems and maintains the algorithmic and memory complexity of
the M-V product operation (Langer & Pusch (2005)), thus it is well suited to be combined with
MLEMA. See also Carpentieri et al. (2007) for another multigrid-type solver.

Preconditioners based on wavelet techniques are also receiving interest. The wavelet
compression of integral operators with smooth kernels yields nearly sparse matrices with at
most O(nlog” n) nonzero entries, where a is a small constant that depends on the operator
and the wavelet used, see e.g. earlier work by Beylkin et al. (1991); Dahmen et al. (1993);
Harbrecht & Schneider (2004); Hawkins et al. (2007); Lage & Schwab (1999). The compressed
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matrix is spectrally equivalent to the original matrix and preconditioning is often needed
(Chan & Chen (2000; 2002); Chan et al. (1997); Chen (1999); Ford & Chen (2001); Hawkins
& Chen (2005); Hawkins et al. (2005)). Some efficient wavelet preconditioning algorithms
have been proposed, based on bordered block structure (Ford & Chen (2001); Hawkins et al.
(2005)), multi-level preconditioners (Chan & Chen (2002)), and sparse approximate inverses.
However, most experiments with wavelet preconditioners are reported for model problems,
e.g. Calderon-Zygmund type matrix, single and double layer potentials, the hyper-singular
operator. For oscillatory kernels the compressed matrix may be fairly dense and wavelet
techniques are less useful. For Helmholtz problems, wavelet Galerkin schemes yield matrices
with approximately O (kn) (k is the wavenumber) which becomes O(n?) when the number of
unknowns is related to k.

Further investigations are necessary to identify the best class of methods for the given problem
and the selected computer hardware. The use of more powerful (but also more complex)
computing facilities should help in the search for additional speed, but it will also mean that
there will be even more factors that need to be considered when attempting to identify the
optimal approach in the future.
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1. Introduction

ElectroMagnetic Compatibility (EMC) is the branch of electromagnetism that studies
generation, propagation and reception of involuntary electromagnetic energy in reference to
the undesirable effect (electromagnetic interference) that this energy can induce. Since 1996,
date of the directive 89/336/CEE (Directive 89/336/CEE, 1989) compulsory implementation
concerning the electromagnetic compatibility (called CE) in Europe, and for much longer in
United States, EMC has been playing an increasingly important role.

Most electrical and electronic equipment may be considered as sources of interference because
it generates electromagnetic perturbations that pollute the environment and may disrupt
the operation of other equipment (victims). The EMC is the ability of a device, equipment
or system to operate satisfactorily within its electromagnetic environment and without
producing itself an intolerable electromagnetic disturbance to anything in this environment.
EMC hence controls the electromagnetic environment of the electronic equipment. To this
end, EMC tackles several issues. Firstly, are the emission problems related to the generation
of unwanted electromagnetic energy from a source and the measures that should be taken
to reduce the generation of such disturbances and to prevent the escape of any remaining
energy to the external environment. To verify that the perturbation level does not exceed
a threshold value defined by standards, we measure the electric and/or magnetic fields
radiated at a certain distance in the case of electromagnetic emissions, the voltage and/or
current in the case of conducted disturbances. Secondly the susceptibility problems refer
to the proper functioning of electrical equipment in presence of unplanned electromagnetic
field. In the tests, we inject perturbation (conducting/radiating mode) on a device and
check its good operation. Thirdly, for interference/noise disturbances, the EMC solutions are
mainly obtained by addressing both the emissions and the vulnerability problems. This means
minimizing the interference source levels and hardening the potential victims (shielding for
example).

For measurements, EMC provides as test facilities different tools, the most popular are:
the Anechoic Chamber (AC) (Emerson, 1973) and the Mode Stirred Reverberation Chamber
(MSRC) (Corona et al., 2002; Hill, 1998). The AC is a cavity whose aim is to simulate the
free space. Its walls are covered with ferrite tiles and/or polyurethane pyramids loaded
with carbon absorbing electromagnetic waves and preventing their reflection. The second
tool has grown in popularity over the past twenty years due to its ability to provide a
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statistically uniform and homogeneous electromagnetic field on a relatively large domain
(called Working Volume: WYV). In addition, high field’s levels could be generated in the
Reverberation Chamber (RC) for relatively low injected power. For mechanical stirring,
the "statistical" uniformity is mainly based on the number N of the available independent
configurations (i.e. the number N of the stirrer independent positions) for the RC and the
studied frequency. When the number N tends to infinity, the intern electromagnetic field
proprieties are statistically identical from one point to another in the WV. A statistically
uniform and homogeneous distribution of the field in the MSRC signifies that the same energy
attacks the Equipment Under Test (EUT) from all directions and with the same polarization,
when averaged over the number N of the stirrer positions. A disadvantage of the AC is the
high injected power needed, thus powerful amplifier are required, in addition to the high cost
of the absorbers. In comparison with the AC case, low power in MSRC is needed.

Based on the principle of reciprocity, Time Reversal (TR) is a technique that allows focusing
a field in time and space. Recently, it has been applied for EMC where better results have
been reported in strongly reverberant or diffracting environments. Indeed, different studies
(de Rosny, 2000; Moussa et al., 2009b) in acoustics and electromagnetics have verified how RC
can provide an appropriate environment for TR. One of the main advantages of the MSRC is to
provide the most critical illumination of the EUT. Paradoxically, this benefit may be considered
as a disadvantage, since in this case it becomes impossible to know precisely the characteristics
of the electromagnetic excitation. On the one hand, recent TR studies (Cozza & Moussa, 2009;
Moussa et al., 2009a) have demonstrated how to make benefit of the re-focusing to control the
wave incidence and polarization attacking the EUT. On the other hand, for the same input
power, the TR enables to increase the achievable field levels in the MSRC. These promising
applications of TR justify its characterization in MSRC.

During susceptibility tests of electronic equipments a problem may occur when the EUT is
composed of several components with different field /current threshold values that cannot be
exceeded. Indeed, various immunity levels can coexist on an electronic device (power supply,
components, signal integrity, etc.) or on different zones of a complex structure (automobile,
aircraft, etc.) since the expected reliability might be different from an area or device to
another. But, in a classical susceptibility EMC MSRC test, the illumination is statistically the
same for the whole EUT placed in the working volume and it may damage components that
have a smaller threshold value than the incident field. A solution consists in performing
the susceptibility test independently for each component. Unfortunately, "on table" tests are
not always possible and also might not represent the reality. An alternative approach can be
given via TR technique and selective focusing. As a matter of fact, at the focusing time, only
one component can be illuminated by a desired field level while others parts of the system are
aggressed by lower noise.

In this chapter, after presenting TR basis and theoretical principles, characteristic parameters
of TR are numerically studied in free space and reverberating environment before introducing
an original way for performing impulsive susceptibility testing.

2. Time reversal basis

2.1 Preamble

Originally developed in acoustics (Fink, 1992) by Mathias Fink team in the early 1990
at the ESPCI (Ecole Supérieure de Physique et de Chimie Industrielles) in Paris, TR is
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a physical process that is based on the principle of reciprocity. This technique allows
a wave to propagate backward to its source. This retro-propagation is based on the
reversibility of the wave equation in time. One of the results is to offer the possibility to
focus a given wave both in time and space. Many studies have been led based on the
acoustic wave equation, for applications concerning the detection and selective focusing
(Prada & Fink, 1994), submarine telecommunications (Edelmann, 2005), and ultrasound and
medical imaging (Quieffin, 2004) domains. More recently successful tests have been achieved
in electromagnetics (de Rosny et al., 2007), mainly in telecommunications (Lerosey et al., 2004),
detection and imaging (Liu et al., 2005; Maaref et al., 2008; Neyrat et al., 2008), and EMC
(Davy et al., 2009; El Baba et al., 2009; 2010) fields.
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Fig. 1. (a) First and (b) second phase of time reversal process with a time reversal cavity.

In practice, the TR technique needs two phases. During the first (Fig. 1a), a source located
at (Rp) emits an electromagnetic pulse that spreads in the medium. The source can be either
active (transmission mode) or passive as a source of diffraction (in detection problems targets
or diffusers act as passive sources). The electromagnetic radiation is recorded for a period
At through an array of probes in reception (R;) surrounding the source into a closed entity
and forming a Time Reversal Cavity (TRC). Indeed, the data that arrive first in time travels a
shorter distance than the data that arrive later. During the second phase (Fig. 1b), each probe
retransmits its received signal in reversed time order, so the data that travel a longer distance
are emitted earlier and the data that travel a shorter distance are emitted later (Last In First
Out). Consequently, a returned wave propagates and acts as if it relives exactly its past life
and this leads to a temporal and spatial focusing of the field at the original source location
(Ro) where the focusing moment is considered as the time origin.

Unfortunately, from an experimental point of view and because of the large number of probes
required for such operation, the TRC is not feasible. That's why classical TR experiments
are conducted through a limited opening array forming the Time Reversal Mirror (TRM)
(de Rosny & Fink, 2002).

In the case of a TRM, the focusing protocol by TR remains the same as in the TRC case (Fig. 2).
The decrease in the angular aperture allows the convenient realization of such a mirror, but
in the reemission step (Fig. 2b) only a part of the wave is time reversed leading to a loss of
information reducing the focusing quality.
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Fig. 2. (a) First and (b) second phase of time reversal process with a time reversal mirror.

This loss of information can be partially avoided if the scene takes place in a reverberant cavity.
Different studies have shown that, in the case of a reverberant environment, the probe array
can be replaced by a single probe (Fig. 3). Therefore, the first experiments in electromagnetism
were realized in a RC. The properties of the cavity allow us to benefit from the different
reflections suffered by the wave on the metal walls of the chamber, which ensures that a single
probe collecting these echoes is sufficient to record necessary information for TR experiment.
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Fig. 3. TRM can be replaced by a single probe in a reverberant cavity.

2.2 Time reversal of electromagnetic waves

A propagation medium is called reversible if a field and its time reversed version
can propagate in such an environment, ie. if ®(f) and ®(—t) are solutions of the
same propagation equation. In electromagnetism, the wave equation in a uniform and
non-dissipative medium is given by
1 0*®
— =5 =AD 1
2 ot? @

where ® stands for the electric E or magnetic H field, and c is the propagation celerity of the
electromagnetic waves in the medium.

Assuming that ®y(t) is a solution of (1), the absence of first time derivative in the left-hand
side leads to the existence of another solution chronologically reversed ®;(t) = ®g(—t).
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Therefore (1) is invariant under the TR action, and theoretically, an electromagnetic scene may
be replayed in reverse from time t = At to t = 0s.

Defining the electric field estimated at the position 7 (given by TRM or TRC devices) and time
t by E(r, t), the TR data are first recorded during the experiment time T = At. Then, fields are
returned and reemitted following a reverse chronology, for example, an electric field E(r,t) is
retransmitted during the reversal phase as E(r, T — t), t € [0; T].

An electromagnetic wave is described by four field vectors, the electric field E, the magnetic
field H, the electric induction D, and the magnetic induction B. It has been shown in (Jackson,
1998) that E and D are even vectors; however H and B are odd pseudovectors under the
time reversal action. Therefore if we consider Trg the time inversion operator given by
Trr {®(r,t)} = O(r, —t), we can write

Trr{E(r,t)} = E( —t); Trr{D(r,t)} = D(r,—t); %)
Trr {H(r,t)} = —H(r,—t); Trr {B(r,t)} = —B(r, —t).

3. Theoretical principles

An illustration of the electromagnetic TR in a reverberant environment can be obtained from
Fig. 4, where R is a point source representing the emission antenna, and R; corresponds to
the array of probes in reception (TRM).

The excitation pulse used is a Gaussian modulated sine pattern (Fig. 4a) emitted from the point
Rg. Probes of the TRM (R;) record the six components of the electromagnetic fields, these
signals are returned by time reversal or by the phase conjugate of their Fourier transforms
(method explained in section 3.1 below) and reemitted by R; to obtain a time and space
focusing at R position.

Fig. 4. TR set up, (a): excitation pulse, (b): received signal, (c): reversed received signal, (d)
and (e): time and space focusing.
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3.1 Time reversal and phase conjugate

Let ®(r,w) the Pourier transform of the field ®(r,t). It was verified that time reversing
a signal corresponds to the inverse Fourier transform (FTj,,) of the phase conjugate of its
Fourier transform

Trr{®@ (r,t)} = ®(r, —t) = FTijo{®" (r, w)} ®)

In Fig. 5a we plot the evolution of a signal with respect to time, and in Fig. 5b we verify that
we can reverse a signal in time indifferently by the phase conjugate of its Fourier transform or
by time reversal.
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Fig. 5. (a) Temporal signal ®(t). (b) ®(—t) by time reversal (plain blue curve) and by inverse
Fourier transform of its phase conjugate (red markers).

3.2 Mathematical foundation

The received signal (Fig. 4b) by a TRM probe (following a pulse x() (Fig. 4a) emitted from
Rp) can be written

yi(t) = k(t,Ro — R;) @ x(t) )
where ® is the convolution product, and 1 < i < M with M the number of probes of the TRM,
and k(t, Ry — R;) is the impulse response of the medium at a point R; for a pulse emitted from
Ry. After time reversal of y;(t) (Fig. 4c) and the reemission from R;, the focused signal on Ry
(Fig. 4d) can be written as follows:

M M
Err(t,Ro) = }_k(t,R; = Ro) @ yi(—t) = }_k(t,R; = Ro) @ k(—t,Ry = R;) @ x(—t) (5)
i=1 i=1

The advantage of working in the frequency domain is to replace the convolution product by
an ordinary product. Since reversing a signal versus time corresponds to the phase conjugate
of its Fourier transform, the above equation (5) takes the following form in the frequency
domain

M

ETR((,U,R()) = Zk(w,Ri — Ro).k*(w,RO — Ri).x*(w) (6)

i=1

Switching into matrix notation, (6) takes the following form

ETR(CU,R()) = K(w,Ri — Ro).K*(w,RO — Ri).x*(w) (7)
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Now, if the medium is reversible, thanks to the reciprocity theorem, the position of a point
source and a probe can be reversed without altering the field. Consequently, the impulse
response from Ry to R; is equal to the one from R; to Ry, and therefore the matrix K(w, Ry —
R;) is equal to the matrix K(w,R; — Ry), in other words the matrix K is symmetric. In (7),
the propagation matrix K is the Fourier transform of different impulse responses between one
transmitter and M receivers.

3.3 Time reversal operator

One can build the so-called Time Reversal Operator (TRO) by considering the case where
we have M x M transmitter receivers. The M transmitters emit successively M pulses
x;(£)(i = 1,..., M) that can be described in the frequency domain by a vector X containing
M components for each frequency. The M components given by the receivers can be written
by a matrix product KX. When signals are reversed (phase conjugate in the frequency domain)
and retransmitted, the resulting vector is K!K*X*, with K the M x M propagation matrix and
K its matrix transpose. Therefore (7) can be written

Foc(w) = K (w)K*(w) X*(w) (8)

with Foc the vector containing the M focused signals for each frequency. It is interesting to
note that T(w) = K"(w)K(w), defined as the TRO (Derode et al., 2003), is a symmetrical
square matrix where 1 is the Hermitian conjugate (conjugate-transpose). By performing a
singular value decomposition of the propagation matrix we get K(w) = U(w)A(w)Vi(w),
where U and V are unitary matrices and A is a diagonal matrix whose elements are the
singular values A;. On the other hand, the eigenvalue decomposition of the TRO gives
T(w) = V(w)S(w)V(w), with S(w) = Af(w)A(w) the diagonal matrix of eigenvalues that
are the propagation matrix singular values square, and V' the unit matrix of eigenvectors. This
decomposition of the TRO gives us information on the propagation medium. In the detection
field, Decomposition of the Time Reversal Operator (DORT) (Yavuz & Teixeira, 2006) provides
information on the diffraction strength of the target via the eigenvalues and information on
the position via the eigenvector of the TRO.

4. Definitions, numerical methodologies and outputs

In this study, TR is applied in a numerical way in order to facilitate its characterization in
different configurations. From a practical point of view, it is easier to carry out a parametric
study numerically than experimentally. For instance, a numerical study offers the flexibility
to choose between a TRC and a TRM, to vary the number of probes, their positions in many
test cases, etc. The proposed methodology needs to gather from the TR principles and MSRC
studies. This is why the chosen method must take into account the characteristics of each
domain. Indeed, it is important to consider all elements present in the experimental RC
device: cavity, stirrer, equipment (Corona et al., 2002). From a numerical point of view,
the influence of the metallic elements must be considered in time simulation. Consequently,
the fields temporal distribution must be numerically implemented with special care given to
metal facets (i.e., considered as Perfect Electric Conductor, PEC). For all the above reasons, the
numerical simulations were carried out using an own-made Finite Difference Time Domain
(FDTD) electromagnetic code (Bonnet et al., 2005) with E / H formulation and later for more
complex cases the commercial software CST MICROWAVE STUDIO® without neglecting
the fact that we can use any numerical tool that solves Maxwell’s equations.
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4.1 Focusing quality

To characterize time and space focusing after the TR process, we will define multiple criteria
and parameters.

4.1.1 Maximum magnitude of focusing

The first idea about the quality of focusing is obtained by considering the useful part of the
reconstructed signal (see duration T, Fig. 4d) and implementing the absolute maximum of
the focused signal.

Max (Rg) = maxier, (|ETr(t, Ro)]) ©)

4.1.2 Focal spot

The second criterion characterizing spatial focusing around Ry is the focal spot dimension
(6) which is described in two dimensions by distance along the x and y directions for which
the total electric field focused at time t = 0 (which is the focusing time) is between ETr(Rg)
and ETr(Rp)/2 (in other words where ETr(Rg)/Max (Rg) belongs to [—6 dB; 0 dB]). The
Fig. 6 illustrates this criterion in two dimensions (2-D), the principle can be extended to three
dimensions (3-D). According to Fig. 6, we may write
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Fig. 6. Definition of the focal spot around the focusing point.
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where 11,1, Uy, 1, and 1y are the positions of both sides of Ry at the focusing time (t = 0)
along x and y directions. Note that the width of the focal spot in a reverberating environment,
depending on the diffraction limit, is about A /2 where A is the wavelength corresponding to
the frequency of the excitation pulse. On the other hand, in free space the focal spot is given
by the following formula

AF
=— 11

= an
with F the distance between the focusing point (Rg) and the TRM (R;), and D the size of the
TRM.

)



Time Reversal for Electromagnetism: Applications in Electromagnetic Compatibility 185

4.1.3 Signal to noise ratio

An important criterion to characterize focusing in a reverberation chamber is the Signal To
Noise (STN) ratio, which was theoretically introduced in (de Rosny, 2000) as follows:
4\/TAHAQ

o' | AH

e T

STN = (12)

where we have: A(), the frequency bandwidth of the excitation pulse; a, the ensemble
average of the eigenmodes magnitude of the chamber; AH, the Heisenberg’s time given by
the following formula

AH =2rn(w) (13)
with n(w), the average modal density of the reverberation chamber assumed constant over
the entire bandwidth AQ).

Numerically, this ratio can be calculated from the temporally focused signal in Ry, and it is
known as the temporal STN ratio (ST N;) which is the ratio between the squared magnitude of
the focused signal peak (Fig. 4d, t = 0) and the temporal noise around the peak. It is defined
as the square of the focused field RMS on a part of the simulation time apart the useful signal
(Fig.4d, t ¢ ).

The ratio is given by
<ETR (1’ = Ro,t = 0)>2
<E%R (r=Ro,t ¢ Tu)>

where ETr(Ry, t) represents the focused total electric field in Ry.

STN; = (14)

Similarly to (14), we can also calculate the spatial STN ratio (STN;) which is the ratio of the
squared magnitude of the focused signal peak in Ry on the square of the field RMS value
calculated over the rest of the studied domain at the focusing time (t = 0), this one can be
considered as "spatial noise". So we have

(ET (r = Ry, t = 0))*
(B3 (r # Ro,t =0))

It has been proved in (Moussa et al., 2009a) that for whole averages and as RC are ergodic
systems, temporal STN ratio is equivalent to spatial one. In what follows, for the sake of
simplicity, both temporal and spatial signal to noise ratios are denoted STN.

STN; =

(15)

4.1.4 Delay spread

To characterize the temporal focusing (and linked to spatial aspects) in reverberation chamber,
the delay spread parameter is defined as in (Ziadé et al., 2008). Indeed, the impulse response
shown in Fig. 4b shows that a pulse emitted from a source will be received as a series of
pulses (with different arrival times). This parameter stands for time separating last echo
and straightforward way. The root mean square of the delay spread parameter (linking the
standard deviation of time with the mean value) can be written for the E fields by

|t = tw)? |Err(r, 7)) dt
TRMS = \l f |ETR(7‘,T)\2 it (16)
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with T;;: mean value of E delays. Electric fields ETg are given at location r and time 7. Thus,
the average delay T, is given by

[ t|Emr(r,T) dT
m — .
[ |Err(r, 7)) dt

17)

4.2 FDTD method for time reversal

In the FDTD method, Maxwell’s equations are discretized following the Yee algorithm (Yee,
1966), these equations are invariant to time reversal transformation (Jackson, 1998). For more
simplicity, we will consider here a 2-D formulation; the 3-D case can be straightforward
extended by simple modifications. In the FDTD method, electric and magnetic fields are
calculated by an explicit "leapfrog" scheme for time intervals separated by a half time step,
in other words from the electric field at time f = n — 1/2 and the magnetic field at time t = n,
the electric field at time f = n + 1/2 is calculated as we can see in the discretized Maxwell’s
equation below (18) (2-D TM mode)

En—&-% i+1 .+1 72(—:—¢7th;1—% i+1 ,+1 + 2dt "
z 20T 3) T 2exodt - 27T ) T et oar

Hy (i+1j+4) ~Hy(ij+3) HE(i+hj+1) —H(i+1)) o
dx dy

where dx, dy and dz are the space steps in Cartesian directions (Ox), (Oy), and (Oz), while dt
is the time step. o and € represent conductivity and permittivity of the medium.

Regarding time reversal, we need to reverse the calculation sequence. In fact, the electric field
at time t = n — 1/2 is calculated from the electric field at time t = n 4 1/2 and the magnetic
field at time t = n. To do that, we only need to take the discretized Maxwell’s equations and
rewrite them under the desired shape (Sorrentino et al., 1993)

-1/ 1,1 2¢e+odt ntdl /. 1, 1 2dt
El 2 - e M S z LI
: (’+2’]+2) 2% —odt <1+2’]+2> 2¢ —odt |

H! (i+1,]’+%) ~ H! (i,j+%> ] (i+%,j+1) — (H—%,j) )
dx dy

The above relation (19) should be applied to calculate fields at earlier moments from the later
instants. To check the validity of this TR algorithm, consider a 2-D domain whose boundaries
are simulated by PEC. An excitation point source emitting a Gaussian pulse is located in the
middle of the Computational Domain (CD). The field propagates in the domain for a time
t = t;. Fig. 7a shows the distribution of the electric field E, at time ¢ = f;. Fort > f,
time is reversed and we consider the field distribution E, at time t = t; (Fig. 7a) as initial
condition. After this time, and from the modified FDTD equations, we come to rebuild
the field distribution of the source and found its position (Fig. 7b). This TR algorithm was
effectively applied in (Neyrat, 2009) for buried object detection.
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Fig.7. (a) Electric field E, distribution at time ¢ = ¢;. (b) Reconstructed pulse obtained by
inverse FDTD simulation.

The technique described above may only have numerical applications since fields have to be
recorded for each discretisation point. In our case (applying TR in EMC), our objective is not
detection, but focusing field numerically in a given place and time, and for instance, extending
to experimental developments in further works. To avoid field registration throughout the
whole domain which should be impossible experimentally, we will focus on the technique
briefly described on Fig. 4. In this case, the field is recorded on probes during the first phase
using the FDTD discretization (18), and in the second it is time reversed and retransmitted
without changing the Maxwell’s equations in the FDTD code. This alternative is the one used
in most of TR experiments and TR numerical simulations.

4.3 Numerical configurations

Already mentioned, simulations were performed using an own-made code based on the
FDTD method. Two CDs were considered: the first one is a 2-D TM mode given by
CD; = 3.3 x 3.3 m?, the second is a 3-D CD, = 2.2 x 1.5 x 1 m3 volume. The excitation
signal used for the first phase of the TR process is a Gaussian modulated sine pattern (Fig. 8a)

220 gy

x(t) = Ege~ (77 )zsin(anct) (20)
where Ej is the Gaussian magnitude, zg and ¢ty are respectively the delays with respect to

the origins of space and time, ¢ is the mid-height width of the pulse, and f; is the central
frequency.

The bandwidth AQ) of this pulse is the frequency distance (Fig. 8b) of both sides of the central
frequency with respect to the attenuation (Aft) of the maximum amplitude (the amplitude
corresponding to f;). To calculate AQ), we consider successively different attenuation levels.
For instance, in the case of Att = 2 (corresponding to a —6 dB decrease) we divide the
amplitude corresponding to f. by 2 and calculate f, and f;, and the bandwidth is given by

AQ = o~ fi.

For all FDTD simulations in this chapter, we used a Gaussian modulated at a central frequency
fe = 600 MHz and bandwidth AQ) = 350 MHz calculated at —6 dB. Simulations are
performed with an uniform spatial discretization dx = dy = 3.3 cm for the 2-D domain,
and dx = dy = dz = 3.3 cm for the 3-D domain (corresponding to A f /15, A £l wavelength
corresponding to the central frequency f;).
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Fig. 8. (a) Time response of the excitation signal used for the first phase of TR and (b) its
spectrum.

5. Numerical results

In this section, we investigate the impact of various parameters on the TR process. These will
be studied initially in free space, then we will see how the complexity of the environment
can improve the focusing quality, and finally we will check how reverberant media are ideal
environments to work with TR.

5.1 Preliminary study in free space

The first numerical example treated helps to qualify focusing relatively to the number of
probes in the TRC. For this, we consider the 2-D CD; domain (Fig. 9) where the excitation
source is located in the middle of the area and a TRC composed of 320 probes completely
surrounding the point source. Free space is simulated by Mur absorbing boundary conditions
(Mur, 1981).
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Fig. 9. CD; domain: (0) absorbing conditions, (1) source Ry, (2) TRC probes R;.

A7 ns pulse (Fig. 8a) is emitted from the point source and the TRC probes record the evolution
of the electric field component E; and the magnetic field components Hy and Hy, (TM mode).
After time reversal and reemission of the recorded signals by the TRC probes, we can find
the position of the excitation source as shown in the spatio-temporal evolution of the absolute
value of the electric field E, on Fig. 10.

The returned excitation signals x(—f) and the normalized temporal focusing signal Erg at
the point source are plotted on Fig. 11a. The original shape of the excitation signal and the
position of the emission point are observed (here it is an active source but it can also be a
diffracting object).
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Fig. 10. Electric field spatio-temporal evolution around focusing point (focusing time set as
time origin).
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Fig. 11. (a) Temporal and (b) spatial focus on the point source at focusing time (t = 0).

R

The number of probes used in the previous example (320 probes) is the maximum number
allowed by the used FDTD discretization. In Fig. 12a, curves (1), (2) and (3) demonstrate
the importance of the probes number in the TRC on the maximum magnitude of focusing

criterion. In addition, we note (Fig. 12b) that this criterion increases linearly with the number
of probes.

For a 3-D domain (CD,), two cases were treated. The first one deals with an excitation
emitted by the point source along the three components of the electric field Ey, E, and E;, and
the second one only E, component is considered. The Fig. 13 shows the treated numerical
configuration where the excitation point is in the middle of the CD; (Cartesian coordinates
(0, 0, 0) which corresponds to the mesh (34, 23, 15), and the TRC is composed of 6114 probes
corresponding to the maximum number allowed by the used FDTD discretization.
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Fig. 12. (a) Focused signals (ETr (¢, Ro)) for different number of probes uniformly distributed
on the TRC. (b) Maximum magnitude of focusing criterion with respect to the TRC probes
number.

Fig. 13. CD; domain: (0) absorbing conditions, (1) source Rg, (2) TRC.

In the first case, we can see that the focused signal after TR is along the three polarizations
x, y and z (Fig. 14a), and we can focus on the spatial distribution of the total electric field at
focusing time (Fig. 14b) where an energy concentration appears around the point source.
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Fig. 14. (a) Time focusing for emitted excitation along Ey, Ey, and E;. (b) Total electric field
cartography at focusing time (¢ = 0).

In the second case (where the excitation is along Ey), we see that the electric field is focused
only along the x component (Fig. 15) and this can be verified if we extract E-field over a
plan corresponding to z = 0 and we look to the field cartography at focusing time for all
polarizations (Fig. 16). We clearly note that the electric field corresponding to Ey and E; is
almost zero compared to E,.
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Fig. 15. Time focusing for excitation emitted along Ey.

Fig. 16. E-field slice plan corresponding to (a) Ex, (b) Ey, and (c) E; components at the
focusing time (t = 0).

We deduce that it is theoretically possible to control the polarization of the wave attacking
the EUT without changing the antenna polarization. This application can be very interesting
especially in a reverberant environment, as we shall see later in this chapter.

Given the huge number of probes needed for the TRC and the inability to achieve such an
experimental configuration, in the following simulations TRC is replaced by a TRM with
limited opening (Fig. 17).
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Fig. 17. (a) CD; and (b) CD; domains: (0) absorbing conditions, (1) source Ry, (2) TRM
probes R;.

The previous simulations are repeated with a TRM of 41 probes for 2-D domain and 54 probes
for 3-D domain, comparing temporal focusing (Figs. 18a, 19a) with those obtained with a
TRC (Figs. 12a, 14a), we note that the maximum magnitude of focusing is greatly reduced.
Moreover we note a spatial focusing damage. The Figs. 18b and 19b show that focusing is of
weaker quality comparatively to TRC cases (Figs.11b, 14b).

So, unlike the previous case, recording fields on one side of the domain can not reconstruct
the exact propagation of the wave as it spread, from the fact that the information is reduced
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Fig. 18. CDy: (a) Temporal and (b) spatial focusing on the point source at the focusing time
(t = 0) using a TRM.
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Fig. 19. CD;y: (a) Temporal and (b) spatial focusing on the point source at the focusing time
(t = 0) for an excitation along Ey, Ey, and E; using a TRM.

especially for 3-D. This loss of information can be solved by making the domain more
complex, which will allow recording more information without increasing the number of TRM
probes. In the following, we will only consider the 3-D domain (CDy).

5.2 Introducing multiple reflections

To collect more information on the wave propagation in the first phase of TR, it is better to
increase the TRM angular opening or make the environment more complex. To achieve this,
a metal plate modeled by PEC is added in the domain (Fig. 20).

Fig. 20. CD; domain: (0) absorbing conditions, (1) source Ry, (2) TRM probes R;, (3) metallic
plate.
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The goal here is to take advantage of reflections due to the presence of the metal plate. The
Fig. 21a confirms the expectation about the presence of a diffracting object: we see that the
signal received by a probe of the TRM (component x of the electric field Ey) in a complex
environment contains more information. Indeed, the waves due to the PEC reflections
improve the maximum magnitude of focusing (Fig. 21b).
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Fig. 21. (a) Electric field Ey received by a TRM. (b) The temporal focusing on the source point
in both cases (free space + metallic plate and free space) for an excitation along Ey, Ey, and E,
using a TRM.

Following this idea, we can easily imagine that suitable media to apply the TR are the
reverberating environments, supporting the interests of its application in the MSRC. Indeed,
the multiple reflections suffered by the wave on the metal walls of the chamber will allow us
to replace the TRM by a limited number of probes.

5.3 Time reversal in a reverberant environment (reverberation chamber)

In this section, the previous configuration CD, is preserved with a 8-probes TRM and
excitations along Ey, E, and E;. The purpose of this part is to show the benefits of TR
application in the MSRC across different test cases:

¢ the "free space" data will be compared to a reverberant environment,

¢ the duration of the TR window, in other words duration of the reversed signal, is studied
looking the STN ratio and the link with the modal density of the chamber,

* intrinsic properties of the wave propagation in the cavity will be treated by focusing on the
randomness of the probes location,

¢ and finally, we will study the influence of the excitation source parameters in terms of the
focal spot size.

5.3.1 Comparison with free space

The presence of perfectly metallic boundary conditions replacing absorbing conditions
implies that the impulse response (Fig. 22a) received by one of the 8 probes of the TRM is
composed of several reflections that never decrease, unlike free space case (Fig. 21a). It is
important to note that real losses are not included in this section. As a result, the numerical
energy injected after time reversal appears comparatively higher in RC than with absorbing
conditions. This improves the focusing quality in terms of maximum focusing magnitude:
6.10~* V/m with 51 probes as TRM in free space (Fig. 19a) and 0.04 V/m with a TRM of 8
probes in RC (Fig. 22b).
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Fig. 22. (a) Electric field Ey received by a probe of the TRM in RC. (b) Temporal focusing by
TR in RC.
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To investigate the spatial focusing by studying the focal spot size in all directions and check
the temporal focusing using the delay spread criterion (tgpss), we recorded the total electric
field around the focusing point along x, y and z axis. On the one hand, results given in Fig. 23a
show that focusing is symmetrical and is A, /2 order (dimension of the focal spot = 0.25 m =

AL /2).
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Fig. 23. (a) Total electric field (Erg(r, t = 0)) and (b) delay spread (trps) with respect to the
distance to the focusing point.

On the other hand in Fig. 23b, the delay spread criterion is implemented. Indeed, the signals
are sent back on the principle of first wave arrived last broadcast, so that all waves arrive
simultaneously at the focusing point. The criterion Tgp;s measures the arrival time between
first and last wave. Therefore, the smaller this parameter is over a given point in space, better
the focusing is (in terms of agreement between time and space). For this we can see in Fig. 23b
the smallest value of Tgss (along x, y, and z axis around Rp) corresponds to the point source.
This means that TR has reduced the echoes and the excitation pulse was reconstructed even if
we are in a reverberant environment.

The last studied parameter in this section is the propagation matrix K (section 3.3). This matrix
can be constructed numerically in a simple way. To do this, an array of 24 point sources
(i = 1 to 24) separated by 23 cm from each other is placed on one side of the domain and
the same number of probes (j = 1 to 24) is used on the other side. We measure the 576
inter-element impulse responses (k;;(t)) in both free space and RC. After a Fourier transform
of each k;j(t), the propagation matrix K is known to the whole spectrum of the excitation
pulse. For each frequency a singular value decomposition is applied. The singular values
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of K in both cases are shown in Fig. 24. Note that in the case of RC the number of singular
values is much more representative than the free space case so the matrix K has a higher
rank. For the central frequency f. = 600 MHz, we see that we have 20 singular values for
the RC case and only 5 in free space (with a —32 dB threshold relatively to the first singular
value). Physically the number of significant singular values is approximately the number of
independent probes whose recorded impulse responses are not correlated, which is a crucial
point in the application of TR in a reverberant environment, as we will see later in this chapter.

Fmamrmy (W)

Fig. 24. Singular value decomposition of the propagation matrix K in (a) free space and (b)
RC.

5.3.2 Influence of simulation duration

To study the influence of the reversed signal duration, in other words, the influence of the
simulation duration on the STN ratio, different numerical tests were processed by varying
the duration At and conserving one probe as TRM. To see more representative average data,
each simulation of the second phase of TR is repeated nine times and at each time the receiving
probe is placed in a different position of the chamber.
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Fig. 25. STN ratio with respect to simulation duration (case 1:
fe =400 MHz/AQ = 260 M Hz: blue circles markers, case 2:
fe =800 MHz/AQ = 260 MHz: red squares markers).

On Fig. 25, we plotted for each studied case the STN ratio, numerically calculated from (14),
averaged over the nine positions of the TRM probe, with respect to the simulation duration At.
We note that the STN ratio increases with the central frequency of the excitation signal, also
this ratio becomes stable after a given time called Heisenberg time (AH). From (13), where
n(w) is deduced numerically by counting the resonant modes in the bandwidth (see later
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in this section), we obtain the Heisenberg time value. These results are verified numerically
in Fig. 25 (e.g. in case 1, the Heisenberg time value AH = 0.3 us given by (13) is verified
numerically).
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—Received signal spectrum for At<<AH
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Fig. 26. Impulse response spectrum.

This behavior of STN saturation has been experimentally explained in terms of "information
grains" and used in (de Rosny, 2000). In this model the impulse response of the system
with 1/71 as frequency width (7: time duration of the modulated Gaussian), can be linked
to a succession of uncorrelated information grains whose frequency width is around 1/At.
From Fig. 26, we see that the STN saturation seems to be a consequence of the existence of
a finite number of resonant frequencies in the impulse response spectrum. Thus, for short
time simulation durations, one information grain covers several frequencies (eigenmodes of
the chamber). In this case, the number of information grains is equal to At/7, and the STN
ratio increases with time. However, for longer durations, the number of information grains
that can not be set only on the resonance frequencies stabilizes (number of information grains
is equal to 1/(7éf) with §f: average distance between two successive eigenmodes); all the
frequencies of the chamber are being resolved. The STN ratio becomes independent of the
simulation duration (Fig. 25). This was predicted by the theoretical formula of STN ratio (12).
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Fig. 27. Eigenmodes number with respect to simulation duration (case 1:
fe =400 MHz/AQ = 260 MHz: blue circles markers, case 2:
fe =800 MHz/AQ) = 260 MHz: red squares markers).

This ratio depends on the product AHAQ) which is simply the number of eigenmodes. Thus
Fig. 27 illustrates this saturation phenomenon: the evolution of the eigenmodes number of
the RC in the bandwidth AQ) is plotted as a function of simulation duration. The direct
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estimation of the number of resonance modes from Weyl theoretical formula (Liu et al., 1983)
does not take into account the numerical characteristics of temporal simulation. As such,
the eigenmodes number is defined from the mean total electric field spectrum recorded by
the nine positions of the receiving probe: numerical calculation is achieved by counting the
resonance peaks in the spectrum (Fig. 27). Note that the eigenmodes number stabilizes for
duration greater than the corresponding Heisenberg time, which verifies the saturation of the
STN ratio (Fig. 25).

5.3.3 Contribution of random receivers locations and number

Arnaud Derode has proved in (Derode et al., 1999) that the STN ratio increases with the
root of the number of used probes, and this is caused by the fact that each supplementary
probe brings an additional information uncorrelated with known information. In the RC case,
uncorrelated information are the eigenmodes of the chamber. To study the influence of probe
number in the TRM on the STN ratio, Various FDTD simulations are achieved for the case
where f, = 400 MHz and AQ) = 260 MHz using different numbers of probes (from 1 to 20)
located randomly inside the CD (except on source and PEC boundaries). In order to compute
mean values of outputs, each previous experiment is repeated 50 times for each number of
probes (i.e. 50 random draws following a uniform law for 1 probe, then 50 for 2 probes, ...).
We chose a TR window At = 65 ns much smaller than the corresponding Heisenberg time
(AH = 300 ns).

The Fig. 28a shows that the maximum magnitude of focusing increases linearly with
the number of probes. Contrary to maximum output, the use of STN criterion (more
representative for a RC studies according to multiple reflections on PEC and thus to multiple
sources) seems more relevant to characterize the quality of focusing. From the Fig. 28b (results
obtained from the temporal STN ratio) and assuming a given number np of receiving probes
(np = 8 or 9), focusing may appear independent from the probes number and the STN ratio
stabilizes and does not follow the root law observed in (Derode et al., 1999). Indeed, after
an increase, the STN ratio shows a level of saturation and the mean trend seems to reach a
limit as a function of the probes number (from 10 to 20 probes in this case). This is due to the
fact that the new probes do not provide any additional information since the eigenmodes of
the RC are already resolved. To a weaker extent, the positions of the receiving probes need
particular care. This result may provide great interests for MSRC studies since it is far more
convenient to repeat some measurements using less probes for a given time than multiplying
the number of field sensors for a shorter duration. Obviously, taking advantage of multiple
scattering in RC, the use of a single TR probe needs a sufficient time of experiment to provide
enough information (in comparison with a multi-probes setup).

5.3.4 Spatial resolution

In EMC tests, sometimes we need to obtain a field distribution following a focal spot as
small as possible. In order to study the influence of the excitation pulse parameters in the
focal spot, we computed the normalized total electric field as a function of the distance to Ry
along x axis by varying the central frequency and the bandwidth of the modulated Gaussian.
We note (Fig. 29) that the size of the focal spot (as defined in section 4.1.2) decreases by
increasing the central frequency and the bandwidth of the excitation pulse. Our interest is,
for TR experiences in RC, to increase f. and A() to excite more resonant modes in the RC and
influence the STN ratio quality.



198 Trends in Electromagnetism — From Fundamentals to Applications

=0.035

o

9

&
T

o

025

0.015[

Maximum magnitude of focusing (V/m)
o o
o o
T P

0.005[

i i . i i I
8 10 12 14 16 18 20
Number of probes

(@)

T
o
<

. i i I
8 10 12 14 16 18 20
Number of probes

(b)

Fig. 28. (a) Maximum magnitude of focusing. (b) STN ratio, importance of focusing from 1 to
20 probes: regarding 50 random draws of probes locations each time (stars markers) and
mean trend (plain line).

Fig. 29. Normalized total electric field as a function of the distance to Ry along x: variations
around (a) fc and (b) AQ).

In the final part of this chapter, the TR is numerically applied in the LASMEA (LAboratoire
des Sciences et Matériaux pour I’Electronique et d’ Automatique, Clermont Université) MSRC
(for impulsive susceptibility test and selective focusing).

6. EMC application and selective focusing

Since 2001, a MSRC has been available for the EMC research & applications of LASMEA.
Its dimensions and an internal view are given on Fig. 30. Historically, studies and tests in



Time Reversal for Electromagnetism: Applications in Electromagnetic Compatibility 199

the MSRC were made in the frequency domain to provide an internal volume (WV) where
the characteristics of the electromagnetic field illuminating the EUT are given with the same
probability. A statistically uniform and homogeneous distribution of the electromagnetic field
in MSRC means that the same part of energy attacks the EUT from all directions and with all
polarizations (when averaged over the number of stirrer positions, i.e. over a full rotation of
it). Nevertheless, this means that the illumination is statistically the same for the whole EUT,
which can be a disadvantage, especially if the reliability is not the same for all components of
the EUT.

Fig. 30. Inner view of LASMEA MSRC (6.7 x 8.4 x 3.5 m?3). Characteristics: (0) walls, (1)
emitting and (2) receiving antennas, (3) field’s probe, (4) mechanical stirrer, (5) working
volume.

The application of the TR technique allows us to bring time techniques for EMC studies in
MSRC. One of these intended applications is the impulsive susceptibility test and selective
focusing that will be considered as a solution of the problem described above. To do this,
we will use the commercial software CST MICROWAVE STUDIO® to numerically treat this
case. In the next section, we will point to this software and the numerical set up used.

6.1 Numerical configuration

CST MICROWAVE STUDIO® is a specialist tool for the 3-D electromagnetic simulation.
Inspired by the characteristics of LASMEA MSRC, the Fig. 31 shows the configuration of
our example. Simulations are performed with a spatial discretization of 0.65 cm and 4 cm
respectively corresponding to the smallest and largest mesh, and a time step of 24.4 ps.

The walls of the MSRC are modeled with a conductivity of S; = 1.1 10° S/m, furthermore
the stirrer has a conductivity of 2.74 107 S/m. The support table and the EUT are made
respectively of wood and aluminum (S, = 3.56 107 S/m). In this application, we wish to focus
separately on the three components of the EUT modeled by dipoles (1, 2, and 3 in Fig. 31). The
excitation signal is a Gaussian modulated sine pattern with a central frequency of 250 MHz
and a bandwidth of 300 MHz calculated at —20 dB. The TRM is composed of two 60 cm
half-wavelength antennas.
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Fig. 31. LASMEA MSRC modeled by CST MICROWAVE STUDIO® : (a) walls, (b)
mechanical stirrer, (c) EUT, (1)(2)(3) EUT three components.

6.2 Preliminary study

To justify the choice of the TRM antenna number, the duration of the TR window (At), and
the ability to choose the polarization of the focused signal, a preliminary study is carried
out maintaining the configuration of the Fig. 31 without the table and the EUT; but, here,
an isotropic probe will be used to check focusing properties. Based upon TR principles,
and because the simulator does not allow exciting probes and there are not designated to
broadcast, necessary signals for the second phase of TR may be obtained directly by injecting
excitation signal straightforward on the TRM antennas one by one. The three Cartesians
components of these impulse responses are recorded by an isotropic field probe, and then
back propagated from the TRM. Indeed, during the first phase, the isotropic probe records
the electric field E, (with « = x, y or z: Cartesian component of the field). We can choose
the polarization « of the focused signal (ETr,) from back-propagating by the TRM recorded

signal corresponding either to x, y or z without changing the polarization of the TRM antennas
(Fig. 32).
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Fig. 32. Polarization control of the focused signal.
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To determine the TR window duration (At), we need to calculate the Heisenberg time.
Thus, we plotted on Fig. 33a the evolution of the STN ratio as a function of At for a TRM
composed of a single antenna. Already mentioned above, we note that the STN ratio
stabilizes after a certain duration, we can deduce that the Heisenberg time is about 8 us.
However an 8 ys simulation in comparison with the large dimensions of the LASMEA MSRC
is disadvantageous in terms of computing time, so we chose to reduce simulation time by
increasing the TRM antenna number. Fig. 33b shows that for At = 0.75us the STN ratio
stabilizes for a number of antenna greater than 8.
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Fig. 33. STN ratio evolution: (a) as a function of the TR window for a TRM composed of 1
antenna, (b) as a function of the TRM antenna number with a TR windows of At = 0.75 ps.

The number of antennas needed for a TR experience is given by the ratio AH/At, hence we
chose the duration At = 4 us with 2 antennas as TRM.

6.3 Selective focusing

In this section, we will check the possibility to focus the electric field on one of the three
components of the EUT, while others are aggressed by lower levels (noise). To do this, we
consider the example where the values 15 V/m, 70 V /m and 40 V /m correspond respectively
to the three components threshold that should not be exceeded by the electric field. After
recording the impulse responses k;;(f) with 1 < i < 2: number of TRM antennas and
1 < j < 3: number of components of the EUT, and given the linearity of the system, we can
focus on any component with any desired focusing magnitude by a simple post-processing.
Indeed, if for example we want to focus on the component number 2 (Figs. 34c, 34d),
we will back-propagate through the first antenna of the TRM the signal pkip(—t) and the
signal pkoy(—t) by the second antenna, where p is the weight corresponding to the needed
amplification. The p coefficient stands for the focusing magnitude control offered by TR (the
focusing peak may be increased or decreased throughout the number of TRM antennas, the
TR window duration, or an external amplification weight). We plotted in Fig. 34 temporal
and spatial focusing corresponding to the "on demand" desired peak magnitude separately
on each of the three components. The spatial focusing of the field corresponds to the absolute
maximum value recorded over the entire simulation for each cell of the slice plan).

We note that for the different cases, the maximum of the field corresponds to the desired
spatial location of each component. In addition, we note that for the second case, for example,
we have focused on the component 2 (Figs. 34c, 34d) while respecting the threshold of the
first component (component 1 was aggressed by a field whose numerical value is smaller than
15 V /m), same for the third case. To achieve this desired focusing magnitude on component 2
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Fig. 34. Temporal focusing of the electric field on: (a) component 1 with p = 1, (c) component
2 with p =5, (e) component 3 with p = 3. Spatial focusing corresponding to the absolute
maximum value of the electric field: (b) component 1 with p = 1, (d) component 2 with
p =5, (f) component 3 with p = 3.

(64 V/m) smaller than the corresponding threshold (70 V /m), the impulse responses kq»(—t)
and kyy (—t) were multiplied by the weight p = 5; so we notice that following this way we can
control the time, location, and magnitude of focusing (by the weight p).

Finally, if we wish, for example, to focus on the first and third components with respective
magnitude of 13 V/m and 35 V /m, we sum and back-propagate the needed impulse responses
(on the first TRM antenna we back-propagate the signal p1kiq(—t) + p3kiz(—t) with p; =1
and p3 = 3, on the second TRM antenna we back-propagate the signal p1ky1 (—t) + pskoz(—t)).
The Fig. 35 justifies this approach and shows the ability of selective focusing by TR.
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Fig. 35. Cutting plan (z = 1.4 m) of the absolute maximum value of the electric field obtained
on the: (a) component 1 with p = 1, (b) component 3 with p = 3, (c) two components
togother, 1 with p = 1 and 3 with p = 3.

7. Conclusions

In this chapter, the TR method was presented in electromagnetism for applications concerning
the EMC domain in a reverberating environment. Based upon the equivalence between
backward propagation and reversibility of the wave equation, many TR experiments were led
successfully in acoustics. In this chapter, after an introduction explaining the physical context,
the theoretical principles of TR were described and illustrated numerically using the FDTD
method. The use of the CST MICROWAVE STUDIO® commercial software laid emphasis on
the industrial interest of TR for EMC test devices. First, the TR technique was applied in free
space using a TRC and a TRM, and then the importance of the complexity of the medium was
demonstrated. Relying on intrinsic RC behavior and due to multiple reflections, the results
obtained by applying TR in a reverberating cavity were clearly improved; the aim was to
accurately describe the influence of various parameters above focusing. Thus, a link between
the modal density in a cavity and the TR focusing quality was clearly established through
the STN ratio. A particular interest relies on the number and locations of TR probes and
the excitation pulse parameters impact. Finally we introduced an original way to perform
an impulsive susceptibility test study based on the MSRC use. We presented the possibility
to choose the polarization of the wave aggressing the EUT, and to perform an "on demand"
selective focusing. In further works, it would be interesting to experimentally confirm our
numerical results, so one may expect to proceed to experimental analysis in LASMEA MSRC.
At last, considering the characteristics of EMC applications in MSRC, a closer look might be
set to the advantages of TR numerical tools for innovating studies in reverberation chambers.
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1. Introduction

In conceptual design examples of a fusion reactor power plant, a lithium-bearing blanket in
which a great amount of heat is produced is cooled mainly by helium gas, water or liquid-
metal lithium (Asada et al. Ed., 2007). The liquid-metal lithium is an excellent coolant having
high heat capacity and thermal conductivity and also can breed tritium that is used as fuel
of a deuterium-tritium (D-T) fusion reactor. In cooling the blanket, however, the liquid-
metal lithium needs to pass through a strong magnetic field that is used to magnetically
confine high-temperature reacting plasma in a fusion reactor core. There exists a large
magnetohydrodynamic (MHD) pressure drop arising from the interaction between the
liquid-metal flow and the magnetic field. In particular, the MHD pressure drop becomes
considerably larger in the inlet region or outlet region of the magnetic field than in the fully-
developed region inside the magnetic field for the reason mentioned later in this chapter.

A three-dimensional calculation is indispensable for the exact calculation of MHD channel
flow in the inlet region or outlet region of magnetic field, also as described later in this
chapter. There exist a few three-dimensional numerical calculations on the MHD flows in
rectangular channels with a rectangular obstacle (Kalis and Tsinober, 1973), with abrupt
widening (Itov et al., 1983), or with turbulence promoter such as conducting strips
(Leboucher, 1999). All these calculations, however, were carried out for low Hartmann
numbers (corresponding to low strength of the applied magnetic field) and low Reynolds
number, because of instability problems in numerical calculations.

As to the MHD channel flow in the magnetic-field inlet-region, three-dimensional numerical
calculations were conducted for the cases of Hartmann number of ~10 and Reynolds
number of ~100 (Khan and Davidson, 1979). The calculations were based on what is called
the parabolic approximation, in which the flow and magnetic field effects are assumed to
transfer only in the main flow direction. However, the calculations based on parabolic
approximation cannot predict exactly the MHD flow in the magnetic-field inlet-region. Were
performed full three-dimensional calculations (without any assumptions) on the MHD
rectangular-channel flow in the magnetic-field inlet-region (Sterl, 1990). The calculations
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were conducted mainly for the ranges of Hartmann numbers from 50 to 70 and Reynolds
numbers from 2.5 to 5, and for a smoothly-increasing applied magnetic field. However,
these ranges of Reynolds numbers and Hartmann numbers are unrealistic as conditions that
appear even in laboratory conditions. The laboratory conditions reach Reynolds numbers up
to ~1000 and Hartmann numbers up to ~100 simultaneously.

In fusion reactor conditions, the Reynolds number and the Hartmann number reach ~104
and ~104, respectively, the channel walls are electrically-conducting, the magnetic field
changes in steps at the inlet or the outlet, and the flow changes from non-MHD turbulent
flow to MHD laminar flow. However, because of instability problems in numerical
calculations, it is quite difficult to obtain three-dimensional numerical solutions on MHD
flows in the magnetic-field inlet-region or outlet-region even in the laboratory conditions
that reach Reynolds numbers up to ~1000 and Hartmann numbers up to ~100
simultaneously.

Within the present limit of computer performance, the authors have already performed full
three-dimensional calculations on the MHD flow through a circular pipe in the magnetic-
field inlet-region, in simulating typical laboratory conditions (Kumamaru et al., 2007). In the
calculations, the Hartmann number and the Reynolds number are ~100 and ~1000,
respectively, the channel walls are electrically-insulating, the applied magnetic field changes
in steps, and a laminar non-MHD flow enters the calculation domain. In this study, full
three-dimensional calculations are performed on the MHD flow through a circular pipe in
the magnetic-field outlet-region for the same conditions as for the magnetic-field inlet-
region.

Figure 1 shows schematically the coordinate system, the applied magnetic field and the
induced electric currents, together with the directions of Lorentz force, in the outlet region
of the magnetic field. The applied magnetic field is imposed in the y direction, having a
constant value for z=0~z1, a linear decrease from z=z1~z2, and a value of zero for z=z2~z0,
as shown in Fig. 1(a).

In the region of fully-developed MHD flow near z=0, the induced electric current which is
produced by the vector product of flow velocity and applied magnetic field flows in the
negative x direction as shown in Figs. 1(b) and 1(c1). The induced current returns by passing
through regions very near the walls (in an x-y plane at the same z) where the flow velocity is
nearly zero, in the case of insulating walls. (The induced current can also pass through the
walls in the case of conducting walls.) The induced current loop has a relatively large
electrical resistance, since the current needs to flow in the thin regions near the walls. The
Lorentz force which is caused by the vector product of induced current and applied
magnetic field acts in the negative z direction and produces a large pressure drop.

In the outlet region of magnetic field from z= z1 to z = z2, the induced electric current flows
in the negative x direction, as was the case of fully-developed region, as shown in Fig. 1(b).

However, the induced current can pass through the large region downstream the magnetic
field section (in an x-z plane with the same y) where no magnetic field or small magnetic
field is applied. The electric resistance in this region is much smaller than the resistance in
the thin region near the walls mentioned above. Hence, the induced current becomes larger
in the outlet region than in the fully-developed region. The Lorentz force and thus the
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pressure drop also may become considerably larger in the outlet region than in the fully-
developed region (Moreau, 1990).

B, (y direction)
.
J zl z2 zl ‘
{(a) Applied Magnetic Field
x

M =
i =

|
— = Lorentz Force

(b) Induced Currentsin x-z Plane

(c1) atz=0 (c2) at z=z0

{c) Induced Currentsin x-y Plane

Fig. 1. Coordinate system for magnetic-field outlet-region.

On the other hand, the induced current in the last section of the outlet region near z=z2 can
flow in the positive x direction as shown in Fig. 1(b). Thus, a smaller Lorentz force may act
in the flow direction and thus a small pressure recovery may occur in this section of the
outlet region (Moreau, 1990).

The induced electric currents in the outlet region, flowing in both x- and z-directions and in
y-direction, cannot be calculated by a two-dimensional model. It is also important that a
sufficiently large fluid region downstream the magnetic field section is included in a
calculation domain. For these reasons, in this study, in order to obtaine mainly the pressure
drop quantitatively, the authors have performed three-dimensional numerical calculations
on the MHD flow through a circular pipe in the outlet region of the magnetic field,
including the region of no magnetic field downstream the magnetic field region. To the
authors” knowledge, there have been no numerical calculations or experimental studies on
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the MHD flow through a circular pipe in the magnetic-field outlet-region. In this study,
calculation results on the magnetic-field outlet-region have also been compared with
authors’ calculation results on the magnetic-field inlet-region.

2. Numerical analyses

Numerical calculations are performed for an MHD flow in a circular pipe with an inner
radius of a, shown in Fig. 1. A fully-developed MHD laminar flow enters the calculation
domain at z=0, and a fully-developed non-MHD flow leaves the domain at z=z0. The
applied magnetic field is imposed in the y direction as shown in Fig. 1(a), as was stated
previously.

The basic equations which describe a liquid-metal MHD flow are the continuity equation,
the momentum equation and the induction equation. The equations are expressed
respectively by:

V-v=0, 1)
dv 2 1
Yo ¥+(U-V)v =-Vp+nVv v+Z(V><B)><Bo, 2)
a—B=V><(zv><B )+iV2B 3)
ot 0/ ou '

Here, v is velocity vector, p pressure, B induced magnetic field vector and f time; By is
applied magnetic field vector, and p is density, 77 viscosity, 4 magnetic permeability and o
electric conductivity. The vector B is an induced magnetic field produced by the induced
electric current, and is treated as an unknown variable together with the velocity v and the
pressure p. The induced electric current j can be calculated by the Ampere equation
j=(1/#)(VxB) from B. The third term in the right-hand side of Eq. (2) represents the
Lorentz force. The induction equation, i.e. Eq. (3), is derived from Maxwell’s equations and
Ohm’s law in electromagnetism.

The basic equations are expressed in nondimensional forms by introducing the following
nondimensional variables (indicated by superscript *) and nondimentional numbers:

* t * 7 * 7z
t =———, 1 =—, z =—,
a/vz a

(% * 0 * 0 *

0 =__r/ 09:__0/ UZ:__Z/ p :%/
7 Uz Uz pY;
B B B

By=— ', By=— 0 _ B = Z @)
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Re="2", Ha=Bya |%, Rm=—2-. ()
% n Vin

Here, r, 6, z are coordinates in the cylindrical coordinate systen; v, mean velocity in z-
direction, v kinematic viscosity and Vv, (=1/0x) magnetic kinematic viscosity.
Nondimensional numbers Re, Ha and Rm are Reynolds number, Hartmann number and
magnetic Reynolds number, respectively. The final nondimensional basic equations become
respectively:

V-v=0, ©)
Jv — Vp+Lvipe L
§+(v Viv= Vp+ReV v+Re(V><B)><Ha, @)
oB_ 1 1
—=—V Ha)+—V’B. 8
% " Rm X(vX a)+Rm ®)

Superscript * is omitted to simplify the description in Egs. (6) through (8) and in the
following description. Note that the Hartmann number Ha is a given (known) vector having
only y-component as a given function of z, i.e. Ha(z).

The coordinate system is transformed from the Cartesian coordinate system (x, y, z) to the
curvilinear coordinate system (& 7, ¢) in order to deal with a channel with an arbitrary flow
cross-section in the future, and is thereafter transformed into the cylindrical coordinate
system (r, 6, z) as a special case of the curvilinear coordinate system. Considering the
symmetry, the numerical calculations are carried out for the region of 0<r<1 and 0<é<m/2.
(Note that the inner surface of the wall corresponds to r=1 (x=1 or y=1) in the
nondimensional coordinates.)

As the boundary condition on the flow velocities, the inflow boundary condition is adopted at
the flow inlet, i.e. at z=0, by fixing a fully-developed MHD flow velocity (Kumamaru &
Fujiwara, 1999). The outflow boundary condition is given at the flow outlet, i.e. at z=z0, by
fixing the reference pressure. No-slip condition is given at the wall and the symmetry
condition is adopted at =0 and &=r/2. As the boundary condition on the induced magnetic
fields, 0B /dz =0 and B=0 are specified at the flow inlet and the flow outlet, respectively. The
former reflects the situation that the induced current does not change in the z-direction at the
flow inlet in a fully-developed MHD flow region, and the latter represents that no induced
current exists at the flow outlet in a fully-developed non-MHD flow region. At the wall, B=0 is
specified assuming that the walls are electrically insulating (nonconducting). The boundary
conditions on the induced magnetic fields at the symmetry plane of 6=0 and #=m/2 are not
intuitively clear. Hence, by performing a calculation for the whole cross section in the case of
small Hartmann numbers, it has been confirmed that the conditions are given by:

6=0: A(-6) =—A(6),B(-6) = B(6),C(-8) =-C(6), (9a)

O=m/2:

A(r)2-60)=—A(x/2+6),B(x ) 2-0)=B(x ) 2+6),C(x / 2-0)=C(x /2+8)" )



212 Trends in Electromagnetism — From Fundamentals to Applications

where A, B and C are the x, y and z components of B, respectively.

The discretization of the equations is carried out by the finite difference method. The
calculations are performed using a non-uniform expanding 15 x 15 x 30 grid with grid
elements closely spaced near the channel wall of =1 and the region between or around z=z1
and z=z2. The first-order accurate upwind differencing is adopted for the fluid convection
terms in Eq. (7). The solution procedure follows the MAC method that is widely used in
numerical calculations.

Even for the fully-developed region, it is difficult to obtain a stable numerical solution for
large Hartmann numbers (Kumamaru & Fujiwara, 1999). In the present three-dimensional
calculations, stable numerical solutions have been obtained for Hartmann numbers up to
100 and Reynolds numbers up to 1000 by applying the following means or procedures. (1)
The grids are arranged closely near the wall of =1, i.e. at r=0.0, ..., 0.95, 0.97, 0.99, 0.995, 1.0,
on referring to a velocity profile of the classical Hartmann flow, i.e. fully-developed MHD
flow in infinite parallel plates (Kumamaru and Fujiwara, 1999). (2) Simultaneous linear
equations on the pressure, i.e. Poisson equation, are solved not by the iterative method but
by the elimination method. (3) First, a solution is obtained for Re (Reynolds number) of 0.01,
and thereafter Re is increased gradually to a final value, i.e. 1000.

3. Analysis results
3.1 Pressure along flow axis

Numerical calculations have been performed for a circular pipe with insulating wall under
the conditions of a Reynolds number (Re) of 1000, a Hartmann number (Ha) of 100 (for the
fully-developed MHD region) and a magnetic Reynolds number (Rm) of 0.001. The
Hartmann number (relating to the applied magnetic field) is 100 from z=0 to z1, decreases
linearly from z=z1 to z2, and is zero from z=z2 to z0 (See Fig. 1(a)). The values of z1/z2 are
changed from 10/20 to 10/10.05. (Note that both z1 and z0-z2 are fixed to 10 in all the cases.)
These values for the nondimensional numbers and parameters are selected in order to
simulate those typical to laboratory scales and conditions.

Figure 2 shows calculated pressures along the flow axis, i.e. the z-axis, for the cases of z1/22
from 10/20 to 10/10.05. Figure 3 presents a calculated result only for the case of
z1/22=10/12 as a standard case, indicated by a solid line, together with a corresponding
result for the magnetic-field inlet-region, indicated by a dotted line, which will be explained
in Sec. 3.4. From z=0 to z = z1, the pressure decreases steeply following the pressure drop of
a fully-developed MHD flow. From z=z1 to z=z2, the pressure decreases more sharply
than in the region of z<z1, since a large Lorentz force is produced in the negative z direction
as was mentioned in Chap. 1 and again will be explained in Sec. 3.2. In z>z2, the pressure
decreases slowly, representing the frictional pressure drop as a non-MHD laminar flow.

The steeper the gradient of the applied magnetic field becomes, the more sharply the
pressure decreases from z = z1 to z = z2. However, the pressure drop through the magnetic-
field outlet-region becomes saturated for the steeper gradient of the magnetic field (See the
cases of z1/z2=10/10.1 and 10/10.05). For the slower gradient of the magnetic field, the
effect of the length along the flow axis (i.e. z-axis) contributes more to the pressure drop
through the outlet region than the effect of the outlet region (Compare the cases of
z1/22=10/20 and 10/15).
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Fig. 2. Pressures along z-axis for z1/2z2=10/20 to 10/10.05.
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Fig. 3. Pressures along z-axis for z1/2z2=10/12.

The small pressure recovery, which was also pointed out in Chap. 1 and again will be
expained in Sec. 3.2, is observed in the region near z=z2 for the cases of
z1/22=10/12~10/10.05. The pressure drop appears again outside the magnetic-field region.
This may be due to rapid change in velocity distibution in this region, which will be
explained in Sec. 3.4.

The pressure drops in the fully-developed region of z<z1, -Ap/ Az, are almost the same for all
the cases. The pressure drops agree with a value calculated numerically by the authors for
the fully-developed MHD flow, -Ap/Az = 0.123 (Kumamaru and Fujiwara, 1999), and also
agree nearly with a value predicted by Schercliff’s theoretical approximate equation, -
Ap/Az=0.118 (Schercliff, 1956; Lielausis, 1975), for the case of Ha=100 and Re=1000. As
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mentioned in Chap. 1, no experimental data on the pressure drop through the magnetic-
field outlet-region have been reported. However, pressure drops through the magnetic-field
inlet-region calculated numerically by the authers agreed nearly with those estimated by an
existing equation based on experimental data (Kumamaru 2007; Lielausis, 1975).
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Fig. 4. Induced currents in x-z plane at y=0 for z1/2z2=10/12.

3.2 Induced current distribution

Figure 4 illustrates induced electric current distribution in the x-z plane at y=0 for the case of
z1/22=10/12, i.e. the standard case. Figures 5(a), (b) and (c) give induced current
distributions in the x-y planes at z=4.5, 10 and 12, respectively, for the same case. On the
right side of each figure, is shown the magnitude of the (nondimensional) induced current
vector in the each coordinate direction. In Figs. 5(a) through (c), the induced current vector
is reduced by a factor of 4 for two vectors from the wall at each circumferential angle, in
order to make the figures compact.

In the fully-developed region from z=0 to z = 8, the induced current, flowing mainly in the
negative x-direction, does not change in the z-direction, as shown in Fig. 4. This constant
induced current produces constant Lorentz force (acting in the negative z direction) and
results in constant pressure drop along the z-axis as shown in Fig. 3. The induced current
returns by passing in an extremely thin region very near the wall, as shown in Fig. 5(a).
Almost no induced current (less than 102) flows in the region from z = 14 to z=22, as shown
in Fig. 4, since no magnetic field is applied.

In the magnetic-field outlet-region from z=8 to z=14, the induced current forms a loop
mainly in the x-z plane, as shown in Fig. 4. The induced current is larger in the outlet region
than in the fully-developed region. This is because the electric resistance of the induced
current loop in the outlet region is much smaller than the resistance of the loop in the fully-
developed region. The induced current can return in the large downstream region in the
outlet region, although the current needs to return only in the extremely thin region near the
wall in the fully-developed region.
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Fig. 5. Induced currents in x-y plane for z1/22=10/12.

The induced current flows mainly in the negative x-direction from z = 8 to z=11. Hence, in
this region, a larger Lorentz force than in the fully-developed region acts in the negative z-
direction, and a larger pressure drop is produced along the z-axis as shown in Fig. 3. On the
other hand, the induced current flows mainly in the positive x-direction from z=11.5 to
z=13. Thus, the Lorentz force is exerted in the positive z-direction, and a small pressure
recovery along the z-axis happens from z=11.5 to z=12 as shown in Fig. 3. (No external
magnetic field is applied from z=12 to z=13.) Also in the outlet region, there exists an
induced current loop which returns in an extremely thin region near the wall, as shown in

Fig. 5(b).

3.3 Velocity distribution

Figures 6(a), (b), (c), (d) and (e) show calculated velocity v, distributions at z=4.5, 10, 11, 12
and 17.5, respectively, for the case of z1/z2=10/12, i.e. the standard case. There is no
significant difference among velocity distributions from z=0 to z=8. The velocity profile is a
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Fig. 6. Velocity distribution for z1/z2=10/12.
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flat one, particularly in the direction of applied magnetic field, having a peak value of ~1.1,
as shown in Fig. 6(a). The velocity distribution in this region agrees nearly with a profile
calculated by the authors for the fully-developed MHD flow (Kumamaru, 1999).

The velocity distribution at z=10, shown in Fig. 6(b), is still nearly flat. The velocity profile
changes sharply at z= 11 and shows what is called an M-shape distribution having a peak
near the wall, as shown in Fig. 6(c). This is because the Lorentz force acting in the negative z-
direction suppresses the flow in the z-direction in the fluid bulk region, though small
Lorentz force acts in the negative z-direction in the region near the wall of x=1. The velocity
distribution at z=12, at the outlet of applied magnetic field, shown in Fig. 6(d), is still nearly
the same as that at z=11, shown in Fig. 6(c).

The velocity profile changes sharply, from z=12 to z=13, from the M-shape distribution,
shown in Fig. 6(d), to a parabolic distribution typical to a non-MHD flow, shown in Fig. 6(e).
The pressure decrease from z=12 to z=13, shown in Fig. 3, is attributable to this sharp
change in velosity distribution. It is considered that the pressure decreases largely since the
velocity increases quickly in the fluid bulk region. No significant difference exists among
velocity profiles from z =13 to z=22. The velocity profile is a parabolic one of a non-MHD
laminar flow with a peak value of ~2.

3.4 Comparison with magnetic-field inlet-region

Figure 7 shows schematically the applied magnetic field in the y-direction, the induced
currents in the x-z plane including the directions of Lorentz force and the pressure along the
z-axis, in the inlet region and the outlet region of the magnetic field. The larger Lorentz force
acts and thus the larger pressure drop occurs in the inlet and outlet regions than in the fully-
developed MHD region for the reason mentioned in Chap. 1. On the other hand, a smaller
Lorentz force may act in the flow direction and thus a small pressure recovery may occur in
the first section of the inlet region and in the last section of the outlet region also for the
reason mentioned in Chap. 1. The pressure drop behavior is not completely symmetric,
since the fully- developed non-MHD flow enters the calculation domain in the inlet-region
while the fully-developed MHD flow enters the domain in the outlet-region.

Figure 8 presents pressures along z-axis for the magnetic-field inlet-region, calculated by the
authors and presnted in a previous paper (Kumamaru et al, 2007). The calculation
parameters for Fig. 8 are the same as for Fig. 2, except for the Hartmann number change
along z-axis. The Hartmann number (relating to the applied magnetic field) is 0 from z=0 to
z1, increases linearly from z=z1 to z2, and is 100 from z=z2 to z0. The pressure change for the
case of z1/2z2=10/12, i.e. a standard case, in the inlet region, indicated by a dotted line, is
also compared with the corresponding case in the outlet region in Fig. 3.

The pressure decreases slowly following the drop in a non-MHD laminar flow from z=0 to
z=z1. The pressure recovery appears clearly in the region near z=z1. The pressure
decreases more rapidly in the region from z = z1 to z = z2 than in the fully-developed MHD
region of z>z2. The pressure decreases rapidly following the drop of a fully-developed
MHD flow in the region of z>z2.

Figure 9 illustrates induced electric current distribution in the x-z plane at y=0 for the case of
z1/22=10/12, i.e. the standard case, in the magnetic-field inlet-region. The distribution in the
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Fig. 9. Induced currents for magnetic-field inlet-region.

inlet region, Fig. 9, and that in the outlet region, Fig. 4, are nearly symmetric. For this reason,
the sharp pressure drop in the inlet region from z =11 to z= 13, i.e. -Ap = 0.9, agrees nearly
with that in the outlet region from z=9 to z=11.5, i.e. -Ap=0.9. However, the pressure
recovery in the inlet region from z = 9.5 to z= 11, i.e. -Ap = 0.4 is larger than that in the outlet
region from z=11.5 to z= 12, i.e. -Ap = 0.2. The reason is examined later.

Figures 10(a), (b) and (c) show calculated velocity v, distributions at z=10, 11 and 12,
respectively, for the case of z1/22=10/12, i.e. the standard case, in the magnetic-field inlet-
region. The velocity profile at z=10, shown in Fig. 10(a), still keeps nearly a distribution
typical to a non-MHD fully-developed laminar flow with a peak value of ~2. Hereafter, the
velocity distribution becoms flatter along the channel axis, i.e. the z-axis, as shown in Figs.
10(b) (at z=11) and 10(c) (at z=12). However, the M-shape profile with extreme flow
suppression in the fluid bulk region observed in the outlet region, as shown in Figs. 6(c) and
(d), is not seen in the inlet region, as shown in Figs. 10(b) and (c). The reason may be that the
non-MHD fully-develloped flow with the parabolic plofile enters the inlet region though the
MHD fully-developed flow with the flat profile comes into the outlet region.

It is considered that, in addition to the pressure recovery due to the induced current in the
positive x-direction, the velocity decrease in the fluid central region results in the pressure
increase of Ap = 0.4 in 9.5<z<11 of the magnetic-field inlet-region. On the other hand, it can
be considered that after the pressure recovery of Ap= 0.4 due to the induced current in the
positive x-direction, the pressure decreases by -Ap=0.3 due to the velocity increase in
11.5<z<12 of the magnetic-field outlet-region. From these differences, the pressure drop
through the inlet region may become smaller than that through the outlet region.
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4, Conclusion

Three-dimensional numerical analyses have been performed on liquid-metal
magnetohydrodynamic (MHD) flow through a circular pipe in the outlet region of magnetic
field. The following conclusions have been obtained from the calculation results.

a. Along the flow axis, i.e. the circular pipe axis, the pressure decreases steeply as a fully-
developed MHD flow, drops more sharply in the magnetic-field outlet-region, and
finally decreases slowly as a normal fully-developed non-MHD flow.

b. If examined in detail, in the magnetic-field outlet-region, after the pressure drops most
sharply, it recovers once and thereafter it drops sharply again outside the magnetic-
field region.

c.  The first sharp pressure drop and temporary pressure recovery are due to the formation
of induced current loop which circulates in passing in the region downstream the
magnetic-field region. The second sharp pressure drop is attributable to the change in
velosity distribution outside the magnetic-field region.

d. The distribution of velocity in main flow direction changes from a flat profile of a fully-
developed MHD flow, to an M-shaped profile and finally to a parabolic profile of a
fully-developed non-MHD flow.

e. The total pressure drop through the magnetic-field outlet-region becomes larger than
the corresponding drop through the magnetic-field inlet-region. The main reason may
be that the difference in velocity profile change between the outlet region and the inlet
region.
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1. Introduction

Modern society largely depends on readily available refrigeration methods. Up till now, the
conventional vapor compression refrigerators have been mainly used for refrigeration
applications. Nonetheless, the conventional refrigerators - based on gas compression and
expansion - are not very efficient because the refrigeration accounts for 25% of residential
and 15% of commercial power consumption (Tishin, 1999). Moreover, using gases such as
chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) have detrimental
effects on our environment. Recently, the development of new technologies - such as
magnetic refrigeration - has brought an alternative to the conventional gas compression
technique (Manbh, 2007).

The magnetic refrigeration at room temperature is an emerging technology that has
attracted the interest of researchers around the world (Bouchekara, 2008). Such a technology
applies the magnetocaloric effect which was first discovered by Warburg (Bohigas, 2000;
Zimm, 2007). In 1881, Warburg noticed an increase of temperature when an iron sample was
brought into a magnetic field and a decrease of temperature when the sample was removed
out of it. Thus, the magnetocaloric effect is an intrinsic property of magnetic materials;
where it is defined as the response of a solid to an applied magnetic field which appears as a
change in its temperature (Bohigas, 2000; Zimm, 2007). Such materials are called
magnetocaloric materials. The magnetocaloric effect is present in all transition metals and
lanthanide-series elements, which may have ferromagnetic behaviour. When a magnetic
field is applied, the magnetic moments of these metals tend to align parralel to it, and the
thermal energy released in this process produces the heating of the sample. The magnetic
moments become randomly oriented when the magnetic field is removed, thus the
ferromagnet cools down (Gschneidner, 1998).

The ultimate goal of this technology would be to develop a standard refrigerator for home
use. The use of magnetic refrigeration has the potential to reduce operating and
maintenance costs when compared to the conventional method of compressor-based
refrigeration. By eliminating the high capital cost of the compressor and the high cost of
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electricity to operate the compressor, magnetic refrigeration can efficiently (and
economically) replace compressor-based refrigeration technology. Some potential
advantages of the magnetic refrigeration technology over the compressor-based
refrigeration are: [1] green technology (no toxic or antagonistic gas emission); [2] noiseless
technology (no compressor); [3] higher energy efficiency; [4] simple design of machines; [5]
low maintenance cost; and [6] low (atmospheric) pressure (this is an advantage in certain
applications such as in air-conditioning and refrigeration units in automobiles).

This chapter is concerned with the magnetic refrigeration technology form the material-level
to the system-level. It provides a detailed review of the magnetic refrigeration prototypes
available until now. The operational principle of this technology is explained in depth by
making analogy between this technology and the conventional one. The chapter also
investigates the study of the magnetocaloric materials using the molecular field theory. The
thermal and magnetic study of the magnetic refrigeration process using the finite difference
method (FDM) is also explained and are presented and discussed in detail.

The chapter is organized as follows. Section 2 introduces the magnetocaloric effect and its
application to produce cold. It also introduces active magnetic regenerative refrigeration.
Section 3 reviews ten various magnetic refrigeration systems and highlights their pros and
cons. In Section 4 and 5, the thermal and magnetic study of the magnetic refrigeration process
using the finite difference method are explained and the results from the thermal study are
also presented and discussed in detail. Finally, the conclusions are drawn in Section 6.

2. The magnetocaloric effect
2.1 Definition

The magnetocaloric effect (MCE) is an intrinsic property of magnetic materials; it consists of
absorbing or emitting heat by the action of an external magnetic field (Tishin, 1999). This
results in warming or cooling (both reversible) the material as shown in Fig. 1.

Warming & Cooling
L 44

LY
- - [
e | !
.
=i |
. e

Fig. 1. Magnetocaloric effect (the arrows symbolize the direction of the magnetic moments).

2.2 Thermodynamic approach

The absolute entropy, which is a function of temperature and induction in the magnetocaloric
material is a combination of the magnetic entropy, the entropy of the lattice and the entropy of
the conduction electrons (assumed negligible). It is given by the following equation:

S(T,B)=S,,+5, 1)
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where S (] K1) is the entropy (subscripts m and I are respectively for magnetic and lattice
entropies), T (K) is the temperature and B (T) is the magnetic filed induction.

In magnetocaloric materials, a significant variation of the entropy can be observed by the
application or removal of an external magnetic field. For a given material, MCE depends
only on its initial temperature and the magnetic field. The MCE can be interpreted as the
isothermal entropy change or the adiabatic temperature change.

The separation of entropy into three terms given in (1) is valid only for second order phase
transition materials characterized by a smooth variation of the magnetization as a function
of temperature. For first order transitions (abrupt change of magnetization around the
transition temperature), this separation is not accurate (Kitanovski, 2005). For most
applications, it is sufficient to work with the total entropy which - in its differential form -
can be given as:

dS(T,B)= a_sj ar+( %) ap ©)
aT Jg 0B );
The specific heat capacity Cg (] m= K) of the material is given as:
Cp= (a_s] T ®)
aT J
This gives:
(a_sj _G 4
oT); T
From (2) and (4) we can write:
dS(T,B):&dT+(a—S] dB @)
T dB J;

In the case of an adiabatic process (no entropy change AS =0) the temperature variation can
be written as:

dT = _l(a_sj dB ©)
Cz\ 0B )7
Using the Maxwell relation given as:
dS oM
%57 "
T B

where M (A m?) is the magnetization.

We can write:

dT:—l(aﬂ) dB ®)
Cp\ 3T Jg
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The magnetocaloric effect (the adiabatic variation in temperature) can then be expressed as
follows:

a

Bfl(aM

- = | dB=MCE
5 Cs\oT ]B ©)

In the case of an isothermal process, the temperature does not change during the
magnetization and we can express the entropy as:

ds(T,B) = (g—;l dB (10)

Using the Maxwell relation given by (7), the magnetic entropy change can be expressed as:

B,
: (oM
AS=||—| dB
1{ [ oT jB (11)

and the heat saved in this way is transferred to the lattice thermal motion.

2.3 Theoretical approach of MCE: molecular field theory

The theoretical calculation of the MCE is based on the model of Weiss (MFT: Molecular
Field Theory) and the thermodynamic relations (Huang, 2004). To interpret quantitatively
the ferromagnetism, Weiss proposed a phenomenological model in which the action of the
applied magnetic field B was increased from that of an additional magnetic field
proportional to the volume magnetization density B, as:

B, = AtyM (12)

The energy of a magnetic moment is then:
E=-u(B+B,) (13)
The magnetic moments will tend to move in the direction of this new field. Adapting the

classical Weiss-Langevin classical calculations to a system of quantum magnetic moments,
one finds:

M(x) =ng;ugB; (x) (14)

where:

v J8 g (B + /%M(X))
kT

and
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By(x)= 2]+1Coth[2]+1xJ—icoth[ixJ

2] 2] (16)

where: ] (N m s) is the total angular momentum, n (mol™) is the Avogadro number, g;is
the Landé factor, x5 (] T-1) is the Bohr magnetron, kz (J] K-1) is the Boltzmann constant,
By (x) is the Brillouin function, A is the Weiss molecular field coefficient and , (T m A1) is
the Permeability of vacuum.

The magnetic entropy is given by the relationship of Smart (Allab, 2008):

N e e .

The lattice contribution can be obtained using the Debye model of phonons (Allab, 2008). It
is given by the following equation:

Tp
-Tp 3? 3
T T y
S =R|-3In{1-eT |+12| — d
r n[ e ] [TDJ gey—l Yy (18)

where: Tp, (K) is the Temperature of Debye and R (] K-? mol-) is the universal gas constant.

2.3.1 Application of MFT to gadolinium (Gd)

In this section the theoretical study based on the MFT developed in the previous section is
applied to the gadolinium. Table 1 gives the parameters used to calculate the magnetocaloric
properties.

J n 8] U kg Lo Te Tp

3.5 | 6.02310% 2 9.2740154 10 | 1.380662 10-3 4r 107 293 | 184

Table 1. Parameters used for applying MFT to the gadolinium.

The numerical solution of equations (14), (15) and (16) allows getting the isotherms of
magnetization and its evolution as a function of temperature calculated by the method of
Weiss as shown in Fig. 2 (a) and Fig. 2 (b). Fig. 2 (c) represents the total heat capacity
calculated from the equation (3) for different levels of induction. The magnetic entropy and
its variation with temperature are shown respectively in Fig. 2 (d) and Fig. 2 (e). Finally, Fig.
2 (f) shows the magnetocaloric effect calculated by the MFT.
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Fig. 2. Results of the theoretical study applied to Gd.
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2.4 Application of MCE to produce cold

The magnetic cycles are generally composed of the process of magnetization and
demagnetization, in which heat is discharged or absorbed in four steps as depicted by Fig. 3.
From thermodynamic point of view, the magnetic cooling can be realized by: Carnot,
Stirling, Ericsson and Brayton, where the Ericsson and Brayton cycles are believed to be the
most suitable for such medium or room temperature cooling. Such cycles are predisposed to
yield high cooling efficiency of the magnetic materials (Bouchekara, 2008).
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Fig. 3(a) shows the conventional gas compression process that is driven by continuously
repeating the four different basic processes shown while Fig. 3 (b) shows the magnetic
refrigeration cycle comparison. The steps of the magnetic refrigeration process are
analogous to those of the conventional refrigeration. By comparing (a) with (b) in Fig. 3, one
can see that the compression and expansion are replaced by adiabatic magnetization and
demagnetization, respectively. These processes change the temperature of the material and
heat may be extracted and injected just as in the conventional process.
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Fig. 3. Analogy between magnetic refrigeration and conventional refrigeration.

2.5 The Active Magnetic Regenerative Refrigeration (AMRR)

The direct exploitation of the giant MCE around the room temperature is limited by the fact
that existing MCE materials do not achieve high temperature differences (Lebouc, 2005). For
example, a sample of gadolinium around room temperature produces an MCE of
approximately 10 K in a magnetic field of 5 T.
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Step 1: Magnetization of the material from an initial state where the entire system is at

temperature Ta. Each point of the regenerator material sees its temperature increase by AT
following the application of the magnetic field.
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Step 2: Flow of the fluid from the cold source to the hot source. The heat produced by the
magnetization step is removed by the fluid flowing from the cold source T, to the hot
source Ty. This creates a temperature gradient along the bed.

Step 3: demagnetization of the material. The temperature of Each point of the regenerator decreases
by AT due to the demagnetization.
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Step 4: Flow of fluid from the hot source to cold source. The flow of the fluid from the hot source Ty
to the cold source T transfers its heat to the regenerator. The temperature gradient is amplified.

Fig. 4. Representation of AMRR cycle and temperature profile along the MCE material.

Since the gadolinium is considered as one of the best magnetocaloric materials currently
available (Lebouc, 2005), the MCE corresponds to the absolute maximum value that can be
obtained between the hot tank and cold tank. Thus it is obviously hard to imagine the
exploitation of the MCE in most refrigeration applications (Engelbrecht, 2005).
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This technical barrier has been overcome by the application of the Active Magnetic
Regenerative Refrigeration (AMRR) (Engelbrecht, 2005, Lebouc, 2005, Tura, 2002).
Regeneration in magnetic refrigeration systems allows the heat rejected by the network in
any step of the cycle to be restored and returned to the network in another step in the same
cycle (Yu, 2003). Thus, the capacity used for cooling the network load can be used effectively
to increase the actual change of entropy and the obtained temperature difference (Yu, 2003).

AMRR cycles are illustrated in Fig. 4. The regenerative bed consists of plates of MCE
material that initially have a quasi-linear temperature profile between the hot and cold
tanks.

The bed itself acts as a regenerator. The different solid parts of the regenerator are connected
by the fluid, so the heat does not need to be transferred between two solid parts separated,
but on the same block.

Each particle of the bed undergoes a regenerative Brayton cycle and the entire bed
undergoes a cascade Brayton cycle (Yu, 2003). This cycle is repeated ‘n’ times and the
AT generated is amplified at each cycle to reach the temperatures limits of hot and cold
sources (steady state). This AT is higher than the adiabatic temperature change of
refrigerant material (MCE). In addition, the regenerator bed can be achieved by superposing
different materials of different composition to expand the temperature’s range of variation
and thus to extend the utilization range of the system.

3. Magnetic refrigeration systems

Since the first magnetic refrigeration system manufactured by Brown in 1976, many
researchers around the world have paid considerable attention to the magnetic refrigeration
around room temperature and consecutively developed some interesting systems

(Bouchekara, 2008) (Yu, 2010) (Bjork, 2010). This section reviews - in detail - some of the
magnetic refrigeration systems available until now.

3.1 The magnetic system of Brown

The system of Brown is a rotating system and employs an Ericsson cycle (Yu, 2003). The
magnetic field is produced by an electromagnet (water cooled) with a maximum magnetic
field of 7 T. The MCE material used is the Gd in the form of plates with 1 mm thickness,
separated by stainless steel wires with 1 mm intervals to allow the regenerator fluid to flow
vertically. The fluid is composed of 80% of water and 20% of alcohol. Without load and after
50 cycles, the temperatures reached were 46 ° C for the heat source and -1 ° C for the cold
source, thus AT =47°C . However, the cooling power obtained was not rely important, this
is due to the large AT obtained. Moreover, the cycle can operate only at low frequencies;
the temperature gradient is reduced because both warm and cold sides have time to interact.

3.2 The magnetic system of Steyert

An alternative system with a rotating refrigerant, implementing a Brayton’s cycle has been
designed by Steyert (Yu, 2003). In this system, the porous magnetocaloric material has a
form of rings. This wheel (the regenerator with a ring form) rotates through a first area of
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low magnetic field and a second area of high magnetic field as shown in Fig. 5. The
exchange fluid enters the wheel (regenerator) at the temperature T,, and exits at the
temperature T, , having transferred its heat to the coolant located in the area of weak field.
After receiving the heat of the load to cool Q. the fluid enters the wheel again at a
temperature T,,; +A due to heat exchange with the wheel which is at this instant at the
temperature Tj,, +A . The temperature of the fluid increases to Tj,, +A . Finally, the fluid
transfers heat Q,,,, to the reservoir of the hot source completing one cycle at the same time.
Fig. 5 describes schematically the magnetic system of Steyert.
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Fig. 5. Schematic representation of the Steyert’s magnetic system.

3.3 The magnetic system of Kirol

This system was designed by Kirol (Yu, 2003) on the principle of a rotating machine and
Ericsson’s cycle. The magnetic field is produced by permanent magnets NdFeB and reaches
a maximum value of 0.9 T in the air-gap. The refrigerant rotor is composed of a flat disk of
270 g of gadolinium as magnetocaloric material. During one rotation of the rotor, the four
thermodynamic cycles are operated and a AT of 11 K is obtained.

3.4 The Spanish device

The device shown in Fig. 6 was developed by the team of the Polytechnic University of
Catalonia in Barcelona (Allab, 2008). The magnetocaloric material is a ribbon of gadolinium
(Gd 99.9%) fixed on a plastic disc and immersed in a fluid (olive oil). The magnetic cycle of
magnetization / demagnetization is provided by the rotation of the plastic disc and its
interaction with a magnet. The temperature span is obtained respectively: 1.6 and 5 K for a
magnetic field of 0.3 T and 0.95 T. This corresponds to 2.5 times the MCE of Gd. Even if
obtained performances of this system were weak, this device is the first that has shown the
feasibility of magnetic refrigeration with fields accessible by permanent magnets.
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Fig. 6. The Magnetic device made in Spain (Bohigas, 2000).

3.5 Japanese system

Okamura et al. have constructed a magnetic refrigeration system, as shown in Fig. 7-a
(Okamura, 2006). The yoke has an outer diameter of 27 cm and a length of 40 cm. The
magnetic field is produced by rotating permanent magnets, producing a maximum field of
0.77 T. The bed regenerator is composed of 4 blocks. Each block is composed of a different
alloy GdDy (sphere shaped) to enhance the range of variation of temperature. The fluid
circulation is ensured by a pump and a rotary valve. The power obtained is about 60 W. The
initial system has been improved as shown in Fig. 7-b (Okamura, 2007). The stator used was
a laminated yoke and the magnetic field source was improved (the maximum field is 0.9 T).
This helped to obtain a power of 100 W (using Gd as MCE material).
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Fig. 7. The Japanese Device: (a) The initial one, (b) The improved one (Hirano et al., 2007;
Okamura et al., 2006, 2007).

3.6 The magnetic system of Zimm

The ACM (Astronautics Corporation in Madison) has led many researches on magnetic
refrigeration and achieved several patents in this field (Engelbrecht, 2005). In this
corporation, an AMRR system was designed; it consists of a wheel with 6-bed regenerators
composed of gadolinium powder. This wheel is rotating inside an area of high magnetic
field of 1.5 T. The regenerative beds exchange with the fluid. The flow of the fluid is
adjusted according to the relative position of each bed inside the magnetic field. Fig. 8
shows the photography of this prototype.

For cycles rotating with a frequency varying from 0.16 to 2 Hz and water rate flows varying
from 0.4 to 0.8 1/min, the temperature spans obtained between the heat source and the cold
source are from 4 to 20°C and the cooling power values are from 50 to 100W.

Fig. 8. ACM prototype (Zimm, 2002).
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3.7 Canadian system

At the University of Victoria in Canada, Tura and Rowe (2007) constructed a magnetic
refrigerator containing permanent magnets for a testing of all sorts of magnetic refrigerants
in different configurations. This machine is shown in Fig. 9. A nested Halbach array of
NbFeB permanent magnets was applied and led to a magnetic field of 0.1-1.47 T strength.
Water was the heat transfer fluid with a heat rejection temperature range of 253-311 K, and
the operation frequency was between 0 Hz and 4 Hz. The prototype showed cylindrical
magnetocaloric regenerators (with a porosity of 57%) whose volume, diameter and length
were 20 cm?, 16 mm, and 110 mm, respectively. The void in the regenerator of the hot heat
exchanger and the cold heat exchanger was 0.83 cm? and 0.4 cm3, and the parallel flow paths
in the heat exchangers were optimized with a computational fluid dynamics (CFD)
approach. The system which is designed to be flexible showed many advantages: for
example, a simple design, easy accessibility to all the components and very low heat
leakages. This machine reached a maximum temperature span of 13.2 K (Yu, 2010).
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Fig. 9. Rotary magnetic refrigerator with permanent magnets as presented by researchers of
the University of Victoria in Canada (Tura and Rowe, 2007).

3.8 Cooltech systems

The company Cooltech Applications in France built a rotary magnetic refrigerator composed
of eight pieces of supporting discs positioned in synthetic material (see Fig. 10), which were
mechanically stable and thermally isolated (Vasile and Muller, 2005, 2006).. These inserts
were interchangeable for the test of different magnetocaloric materials, different sensors for
temperature, pressure, air velocity, hydrometry and electrical power. Each insert was
packed with 165 g Gd. The rotating axes were made of stainless steel, where four pieces of
NdFeB permanent magnets were rotating to provide a magnetic field of 1 T. However, the
authors reported on a new type (open Halbach) magnetic assembly, which yielded a
magnetic field between 1 to 2.4 T. The flow of fluid was controlled to improve the cooling
capacity, which was obtained in the range of 100W to 360 W (Yu, 2010).
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Fig. 10. 3D structure form of the Cooltech magnetic refrigerator, some details in further
pictures, photography of the assembly and the open Halbach type of magnet (Vasile and
Muller, 2005, 2006).

A rotary magnetic refrigerator prototype was developed in collaboration between the
National Institute of Applied Sciences INSA of Strasbourg and the company Cooltech
Applications in France (Muller et al., 2007). The system was composed by a rotary magnet
assembly and of four static blocks of magnetocaloric material performed by gadolinium. The
maximum magnetic field was 1.3 T and water was the working fluid. Unfortunately, there is
no more information available. However, from Fig. 11, one may easily verify the manner
how the magnetic field is produced in the magnetocaloric material (Yu, 2010).

Permanen

Fig. 11. A rotary magnetic refrigerator of the joint collaboration action between Cooltech
Applications and INSA in France (Muller et al., 2007).

In France at Cooltech Applications, Bour et al. built a reciprocating prototype as it is shown in
Fig. 12. The AMR bed was composed of 37 parallel plates of Gadolinium of 0.6 mm thickness,
showing a spacing of the heat transfer fluid channels of 0.1 mm and 0.2 mm, respectively. The
Halbach arrays, which produced a magnetic field intensity between 0.8 T and 1.1 T in the air
gap, consisted of an assembly of three sets of NdFeB magnets of 50 mm thickness. The French
experts obtained experimentally the evolutions of the average temperatures at the hot end and
the cold end reservoirs for different initial temperatures and operation frequencies. The device
led to a maximum temperature span of 16.1 K (Yu, 2010).
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Fig. 12. The reciprocating prototype built at Cooltech Application in France (Bour et al.,
2009).

3.9 The G2Elab prototypes

The first device constructed at G2Elab (Grenoble Electrical Engineering Laboratory) is an
alternating device type as shown in Fig. 13. The regenerator is composed of parallel plates of
gadolinium with 1 mm in thickness and 50 mm in length. The magnetic field is produced by
a permanent magnet (Halbach cylinder) creating a magnetic field of 0.8 T. The fluid used is
water. Its circulation is ensured by a peristaltic pump operating in both directions (Clot,
2002). The pneumatic actuator produces the movement of the refrigerant blocs and provides
magnetization / demagnetization phases. The controller is programmed to manage the
Halbach cylinder and the flow of fluid to perform the four phases of the cycle. The system is
closed and there is no exchange with the outside. It was designed to study the Active
Magnetic Regenerative Refrigeration (AMRR) cycles and exploit different materials.

Fig. 13. The G2Elab first device (Clot, 2002).

A second prototype was developed at G2Elab (Allab, 2008), (Bouchekara, 2008), (Dupuis,
2009). This structure is quite similar to a rotating machine. It is also similar to some existing
prototypes (Okamura, 2005, 2007). It consists of a permanent magnet which forms the rotor
and of a stator made of magnetic yoke and four refrigerant beds (see Fig. 14).

The yoke is composed of four poles which are aimed to better conduct the magnetic flux
within the refrigerant bed. The magnetization and demagnetization phases are obtained by
a simple rotation of the permanent magnet. The beds undergo an active magnetic
regenerative refrigeration AMRR cycle and operate two by two in the opposite way.
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Fig. 14. The second prototype of the G2Elab, Components of the prototype (left) and the
Prototype in its actual environment (right) (Bouchekara, 2008).

3.10 The Slovenian system

An interesting prototype of a rotary magnetic refrigerator (Tusek et al., 2009) has been built
on the basis of permanent magnets at the University of Ljubljana in Slovenia. Their rotary
magnetic refrigerator consisted of a rotating drum (cylinder) that rotated around an
internally positioned stationary soft iron core and externally positioned stationary
permanent magnets. As shown in Fig. 15, the magnetic structure was composed of four
NdFeB permanent magnets and low carbon 1010 steel used as a soft ferromagnetic material,
and two magnetic circuits existed to allow the rotary movement of the AMR'’s. After
optimization of the magnet structure geometry, a range of magnetic field intensities from
0.05 T to 0.98 T was obtained in the air gaps. There were 34 AMR’s in the rotary drum and
each AMR had the dimensions 10 mm X 10 mm x 50 mm. Gd plates, with a thickness of 0.3
mm, were filled in the AMR’s and the total mass of Gd was approximately 600 g. The
prototype could operate up to a frequency of 4 Hz. This reference mainly focused on the
experience in development of such a rotary magnetic refrigeration prototype and no
experimental results were reported. However, first predictions according to the researchers
are that approximately a 7 K temperature difference will be achieved (Yu, 2010).

Hotreservoir 2 Hot reservoir 1  MAENETS m&"“!“m

Fig. 15. The rotary magnetic refrigerator developed at the University of Ljubljana in Slovenia
(Tusek et al., 2009).



Magnetic Refrigeration Technology at Room Temperature 241

4. Thermal study

Heat exchanges play an important role in magnetic refrigeration systems, both in the cold
production cycles, and in the interaction with external environments, including the
substance to be cooled. Thus, a thermal study is needed to determine the performance of a
magnetic refrigeration system and optimize it. The aim of this section is to focus on the
thermal modeling of magnetic AMRR system:s.

Most of heat exchanges operating in the magnetic refrigeration are via convection. The
convection represents transfer processes performed by the motion of fluids (Bianchi, 2004).
In a solid (index ‘s”) in contact, with a fluid (index ‘f’), the flow through the wall (index ‘w’)

can be written as:
oT oT
Al—| =4—]| = 19
S(anjws f[anjf (DP ( )

where : n is the normal to the wall and Z[W/ (m K)] is the thermal conductivity

whereas, the continuity of temperatures can be given by:

() =(T7),, 20)

where: (T;) .. is the temperature of the solid at a point ‘M’ of the wall and (Tf)

M
represents the temperature of the fluid at this point. “

According to Newton, there is a linear relationship between the density of heat flow ¢and
temperature difference AT =T, —T; between the solid (T ) and the fluid (T, ):

¢=hAT =h(T, - T) (21)
where: h[W/ sz] represents the coefficient of heat transfer by convection or simply the

convection coefficient.

Using the first law of thermodynamics, by subtracting the mechanical energy, we get the
balance of internal energy that gives us the heat equation governing the temperature field at
any point in the domain (Janna, 2000)

PC, (aa—z + V.gradTJ = ﬁT[% + V.grade +P+®+ A div(gradT) (22)
where: p[kg/ mﬂ is he volume density, C, []/(kg K)]is the specific heat, V [m/s]is the

velocity of the fluid, p [Pa] is the pressure, S [1/K] is the coefficient of dilatation, ® [W] is

the dissipation function and P [W] is the local thermal power produced or absorbed.

For low viscosity fluids and isochors (Janna, 2000), the energy equation reduces to:

pC, [aa—z + V.grade =P+ A div(gradT) (23)
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if a=21/pC,, is defined as the thermal diffusivity of the fluid, thus :

or +V.gradT = P +a.AT (24)
ot C,

4.1 Application to AMRR

Governing equations for AMRR system have been developed throughout the years with the
objective of to analytically or numerically describe the thermal behaviour at specific time
and for a given set of boundary conditions. They consist of a system of two equations, one
for the fluid and the other for the solid matrix. These equations are derived from the energy
balance expression for each phase. Since they are coupled they must be solved
simultaneously (Bouchekara, 2008). The model of an AMRR cycle has been developed in
(Bouchekara, 2008). Fig. 16 illustrates the concept of an AMRR regenerator modelled using
one dimensional (1D) approximation.

Flujd T lxs)

: ! : '. : : v
V «—5 : : : ! ; kA
i 1 | | ! ! i -
: : . : = Je
20 SR S T A S A |
o H(x0) VI ix,)

MCE Muterinl

Fig. 16. Conceptual drawing of a 1D AMRR model.

The system of equations given by the energy balance (explained above) for both the
magnetocaloric material and the fluid by neglecting the axial conduction (this
approximation can be justified for different conditions: low thermal conductivity, very thin
plates, etc.) can be summarized by the following system of equations:

9T, . oT
myC(Ty )[E)_tf + d(t)a—fo =hS(T,, - T) o
T,
mmCm 7 = hS(Tf - Tm)

To solve this system we use the finite difference method. We use a grid of elements that
range from 0 to L for the space and from 0 to 7 for the time. Thus, the derivatives with
respect to the time are calculated using forward formulas, and those with respect to the
space are calculated using backward formulas. This gives a centered discretization scheme.
Thus the system (25) becomes:

Tf( = Afle(’_,j) +Af2Tf(i,H) +Af3TW

i j)
=A T +A T
ml i m2 f(,-']-)

i, j

i+1,j (26)

Mis1,j)
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where: Afl ={1- d(t)ﬁ_}_ hS At AfZ — d(t)ﬁ , Af3 _ h.S At
Ax m.C Ax m.C
= 7
Am1=[1— hS At] and A =( hS At]
mmCm mm. -

The AMRR model has been implemented using Matlab ® commercial software.

4.2 Results

We will now apply the model developed earlier to a regenerator in the form of plates, as
shown in Fig. 17(a). The equivalent cell of the whole regenerator is given in Fig. 17 (b). This
cell has the same parameters as the regenerator except the width thatis [, =N,I (where [,
represents the equivalent width, N, represents the number of plates and [ is the width of
one plate).

‘,:/’_,

N, plates of MCE
material

(@) (b)
Fig. 17. (a) A regenerator in the form of plates, (b) Equivalent cell (plate + fluid).
The model parameters (for this simulation case) are shown in Table 2. The magnetocaloric

material used is gadolinium, the coolant used is water and the magnetic field is generated
by permanent magnets B=1T.

Parameters D €m e Lin leq P G MCE
[ml/s] | [mm] | [mm] | [mm] | [mm] | [kg/m3] | [1/(kgK)] (K]
Values 5 1 0.157 50 573 1000 4185 1.75

Table 2. The parameters used in the simulation.

Fig. 18 (a) shows the temperature evolution of both sides (hot and cold) of the material
versus time. After a transient phase, the two curves reach their steady state. In addition, we
note that the final value is greater than the initial MCE. From this curve we can extract the
evolution of the temperature at the end of each cycle (Fig. 18 (b)). The small delay between
the two curves of this figure is due to programming constraints, i.e. the magnetization phase
has been introduced (programmed) before the demagnetization phase.
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Fig. 18. Temperature profiles given by the AMRR numerical model.

5. Magnetostatic study

From the definition of the MCE, it is obvious that the performance of a magnetic
refrigeration system depends mainly on the efficiency of the MCE material and the strength
of the magnetic field. Thus the study of magnetic field sources dedicated to magnetic
refrigeration systems is of a paramount importance. In this section we will pay a particular
attention to the design of these sources using the finite element method.

The field sources described throughout this section are built with permanent magnets
(Neodymium Iron Boron) with a remanent magnetization of B, =1.46 T and a magnetic
permeability of #, =1.064 . The MCE material used is gadolinium with isotropic magnetic
permeability ¢, =2 . In this study, MCE solid blocks are considered. However, in actuality to
ensure a better heat exchange between the MCE material and the exchanging fluid, other
forms are considered (plates, powder, etc). The yoke, when it exists, is made of XC10 steel.

5.1 Structure A: monobloc linear system

This first structure is suitable for linear magnetic refrigeration systems with direct cycles. It
consists of two magnets (to create the magnetic field), a soft magnetic material yoke (to
canalize the magnetic flux) and a block of MCE material (to create the cold) as shown in Fig.
19 (a). The MCE material has a linear alternating movement along the 'y' axis (to achieve
magnetization and demagnetization phases). The magnetic characteristics (induction and
magnetic force profiles) are shown in Fig. 19 (b) and Fig. 19 (c) while Fig. 19 (d) represents
the distribution of the magnetic induction B in Tesla.

5.2 Structure B: Halbach cylider

The structure B is a Halbach cylinder (Fig. 20). It is a magnetized cylinder composed of ‘N’
segments of ferromagnetic material producing (in the idealized case) an intense magnetic
field confined entirely within the cylinder with zero field outside. This second structure can
be used in an AMRR system. The MCE material, which can be in the form of plates stacked
in a cylinder, is guided by a linear motor or actuator to create the phases of magnetization
(material located inside the cylinder) and the demagnetization phase (material located
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(a) Geometry of the first structure modeled by Flux 3D.
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Fig. 19. Geometry and magnetic characteristics of the Structure A.

outside the cylinder). The opposite way works also; i.e. the material remains fixed and the
magnet is connected to the linear motor. In this case, the magnetic behavior is the same as in

the first case.

Fig. 20. Cylindre d'Halbach made of eight segments.
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We modeled this structure with the commercial software ‘Flux 3D’. The parameters used in
this simulation are given in Table 3.

Parameters R, Rint R, 1
Values [mm] 65 25 22 50

Table 3. The dimensions of the Halbach cylinder used in the simulation.

Fig. 21 (a) shows the induction at the center of the material according to the movement. It
shows clearly the phases of magnetization and demagnetization produced by this structure.
Fig. 21 (b) represents the magnetic forces exerted by the cylinder on the block of MCE
material. The distribution of the magnetic induction is shown in Fig. 21 (c).
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Fig. 21. Magnetic characteristics of the Structure B.

5.2.1 Structure C: double Halbach cylinder

Structure C is a double Halbach cylinder; two cylinders are concentric and have the same
number of segments (Fig. 22). Using this structure for magnetic refrigeration systems allows
having the phases of magnetization and demagnetization simply by rotating one of the
cylinders while the active material remains stationary at the center of the structure. The
magnetic field produced at the center is the sum of the two fields produced by each
cylinder. When the magnetizations of the first cylinder segments are in the same direction of
those of the second cylinder, the magnetic field produced is high and the magnetization
phase is achieved (this position is taken as a reference, i.e.# =0°). However, when the
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magnetizations of the first cylinder are in opposition with those of the second cylinder the
magnetic field produced is low (8 =180°) and the demagnetization phase is achieved.

Cylinder 1
Cvlisdes (20

Fig. 22. Double Halbach cylinder (The two cylinders are opposed in this figure).

5.2.2 Structure D: rotating multiblock system

The structure D presented here has a configuration adapted to rotary magnetic refrigeration
systems with a direct thermal cycle. It has two magnets to create the field; a yoke of soft
material to canalize the magnetic flux and N MCE material blocks for the creation of the
cold (Fig. 23). Table 4 below shows the parameter values used in our simulation for the
rotating multiblock system.

Parameters R LI L, | e, | I, | L, | e | e

Values [mm] | 100 | 50 | 50 | 20 | 50 | 50 | 20 | 3

Table 4. The dimensions used in the simulation of the rotating multiblock system.
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Fig. 24 (b) shows the induction at the center of a block of material by. Fig. 24 (c) and Fig. 24
(d) represent the torque exerted on the blocks and the force exerted on the block by,
respectively. Fig. 24 (e) represents the distribution of the magnetic induction for two

positions 6 =0°and 6 =45°.
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Fig. 24. Magnetic characteristics of the rotating multiblock system.

6. Conclusion

The conventional gas compression refrigerators have been mainly used for refrigeration
applications. Generally, such refrigerators are not power-efficient. In addition, gases used in
these refrigerators causes harmful effects on the environments. This has led to the
development of magnetic refrigeration technology. Over the last decade or so, magnetic
refrigeration at room temperature has become the subject of considerable attention. This
technology is based on the use of magnetocaloric effect: that is the response of a solid to an
applied magnetic field which emerges as a change in its temperature. This technology is
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ultimately aimed at developing a standard refrigerator for home use. Unlike conventional
refrigerators, magnetic refrigerators are cost-effective and environmentally friendly.
Moreover, it is noiseless and power-efficient and requires low maintenance cost and
atmospheric pressure besides that its machines are easy to design.

This chapter introduced the magnetic refrigeration technology. It began by providing some
essential definitions and provided a detailed review of ten magnetic refrigeration prototypes
which are available until now. The operational principle of this technology was explained in
depth through the comparison with the conventional one. The chapter then moved on to
investigate the study of the magnetocaloric material using the Molecular Field Theory. The
thermal study of the magnetic refrigeration process using the finite difference method
(FDM) was then explained with providing some useful simulation results. Finally, the
magnetic study of magnetic refrigerators using the finite element method (EFM) was
presented with some practical results.
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1. Introduction

Recently, the idea of complex materials in which both the permittivity and the permeability
possess negative real values at certain frequencies has received considerable attention. In
1967, Veselago theoretically investigated plane-wave propagation in a material whose
permittivity and permeability were assumed to be simultaneously negative (Veselago, 1968).
For materials with negative permittivity and permeability, several names and terminologies
have been suggested, such as “left-handed” media, media with “negative refractive index”
(NIR), “backward-wave” (BW) media and “double-negative” (DNG) material (Caloz & Itoh,
2005). In this book chapter, materials with negative permittivity and permeability, and
hence negative index of refraction, will be referred indistinctly as left-handed metamaterials
(LHMs) or metamaterials (MTMs) (Caloz & Itoh, 2005).

Metamaterials have found many applications in electromagnetic problems. For instance,
numerous novel MTM-based microwave components have been proposed to control
amplitudes, frequencies, and wave numbers of propagating and non-propagating
electromagnetic modes (Caloz & Itoh, 2005). Advances in MTMs have also stimulated the
development of new couplers with unique coupling mechanisms. Recently, coupled-line
couplers (CLCs) using composite right/left-handed transmission lines (CRLH TLs), which
are the special realization of transmission lines based on the metamaterial concept, with
broad bandwidth and arbitrary loose/tight coupling levels have been developed. But
usually these couplers occupy large length and also, because of using stubs in their
structures, width of them would be large. For eliminating this drawback, we have proposed
some new backward and forward coupled line couplers with high coupling levels, broad
bandwidths and compact sizes, base on the CRLH TLs.

Organization of this chapter is as follows. In Section 2 theory of CRLH TLs, interdigital
capacitor and their equivalent circuit models and parameters, have been explained. Section
3, at first, reviews some conventional CRLH- based CLCs and in continues presents our
proposed couplers. In this section, three CLCs based on the concepts of CRLH CLCs are
presented; a symmetrical backward CLC (Section 3.3.1), an asymmetrical backward CLC
(Section 3.3.2) and a symmetrical forward CLC (Section 3.3.3).
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2. Composite Right/Left Handed Transmission Lines (CRLH TLs)

A conventional transmission line (right-handed TL) is represented by a series inductance
(Lr) and a shunt capacitance (Cr), implying the use of a low pass topology (Pozar, 2004). By
interchanging the position of the inductor and capacitor, the resulting structure is referred to
as left-handed TL with a high pass configuration (Caloz & Itoh, 2005). In these purely left-
handed transmission lines (PLH TLs), the phase and group velocities are opposite to each
other (Pozar, 2004). PLH TLs cannot exist physically because, even if we intentionally
provide only series capacitance and shunt inductance, parasitic series inductance (Lz) and
shunt capacitance (Cy) effects, increasing with increasing frequency, will unavoidably occur
due to currents flowing in the metallization and voltage gradients developing between the
metal patterns of the trace and the ground plane (Caloz & Itoh, 2002). Thus, the composite
right and left handed (CRLH) model represents the most general MTM structure possible.
Equivalent circuit model of a CRLH TL for one cell is shown in Fig. 1(a) (Caloz & Itoh,
2004a). In this figure, Lr and L are right and left handed inductances, respectively, also Cr
and C; are right and left handed capacitances, respectively. Many lumped (using SMT chip
components) or distributed implementations (microstrip, stripline, CPW, etc.) are possible
for CRLH TLs. Interdigital/stub configuration is one of widely used of these
implementations (Caloz & Itoh, 2005). A layout of this configuration for one cell is shown in
Fig. 1(b). A CRLH TL is constructed of these unit cells connected in series as shown in Fig.
1(c). This structure consists of series interdigital capacitor of capacitanceC; and parallel
short-ended stub working as inductor of inductance L;. Moreover, Lz and Cr are parasitic
elements of interdigital capacitor.

._.TYL..._| — T e
R G L
. O Ly
4
@ (b)

)
©)

Fig. 1. (a) Equivalent circuit model of a CRLH TL for one cell. (b) Layout of a CRLH TL by
using interdigital capacitor and shorted stub inductor for one cell. (c) Microstrip
implementation of a CRLH TL.

An interdigital capacitor is a multifinger periodic structure which, as mentioned, can be
used as a series capacitor in microstrip transmission lines technology (Bahl, 2003). This
capacitor uses the capacitance that occurs across a narrow gap between thin-film
conductors. Fig. 2 shows an interdigital capacitor and its equivalent circuit model. As seen
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in this figure, an interdigital capacitor is made of some gaps. The gap meanders back and
forth in a rectangular area forming two sets of fingers that are interdigital. These gaps are
essentially very long and folded to use a small amount of area. By using a long gap in a
small area, compact single-layer small-value series capacitors can be realized. Typically, its
capacitance values range from 0.05 pF to about 0.5 pF. The capacitance can be increased by
increasing the number of fingers, or by using a thin layer of high dielectric constant material
such as a ferroelectric between the conductors and the substrate (Bahl, 2003).

The value of series capacitance of an interdigital structure can be expressed as (Bahl, 2003):

Cumg (N-1) gL ) )

where ¢, is effective permittivity of a strip with width W, N is the number of fingers and

K(k)
K'(k)

is a constant that has been presented in (Bahl, 2003).

As is well-known, the characteristic impedance of a CRLH TL (Z, ) with equivalent circuit
model of Fig. 1(a) is given by (Caloz & Itoh, 2005):

(©)

where

7

L]

(@) (b)

Fig. 2. (a) Interdigital capacitor. (b) Its equivalent circuit model.

According to Fig. 2, the equivalent circuit model of an interdigital capacitor is similar to the
equivalent circuit model of one cell of CRLH TL when L, — co. Inserting L, — o into (2)
results the characteristic impedance (z ™) of a TL consists of cascaded interdigital
capacitors as:
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)

It is seen from above equation that z i is real for »>«,. From TL theory, it is clear that
{L% is the characteristic impedance of a microstrip TL consists of a strip with width
R

W= (4N -T)W .

Similarly, the propagation constant for this TL is obtained as (Caloz & Itoh, 2005):
P = |’LpCr——£ ®)

So, in a transmission line composed of interdigital capacitors which can be named
“interdigital transmission line”’, for > @, , the propagation constant (5™) is real and
positive. It means that in this frequency interval, the interdigital transmission line operates
in the right-handed (RH) band.

3. Coupled-Line Couplers (CLCs)
3.1 Conventional CLCs

Coupled line couplers are indispensable components in radio frequency (RF)/microwave
communication systems. In these structures two unshielded transmission lines are close
together, as indicated typically in Fig. 3, and power can be coupled between the lines. Such
lines are referred to as coupled transmission lines (Mongia et al., 1999). The coupler is
frequently utilized in a variety of circuits including modulators, balanced amplifiers,
balanced mixers, and phase shifters. Rapidly expanding applications such as modern
wireless technology continue to challenge couplers with extremely stringent requirements —
high performance, broad bandwidth, and small size (Pozar, 2004).

In general, two types of CLCs have been proposed; backward and forward CLCs. When the
coupled port is located on the same side of the structure as the input port and power is
subsequently coupled backward to the direction of the source, this coupler is conventionally
called a backward coupler and otherwise the CLC is called forward coupler (Mongia et al.,
1999).

On the other hand, two types of edge-coupled backward CLCs have been presented. The
first is the symmetrical coupler. When the two lines constituting a CLC are the same, the
structure is called symmetric. In the symmetric structures, coupling mechanism is based on
the difference between the characteristic impedances of the even and odd modes. The
second one is the asymmetrical coupler. This coupler is asymmetrical as it is constituted of
two different transmission lines. In this case, decomposition in even and odd modes is not
possible anymore. The analysis becomes more difficult and the even/odd modes have to be
replaced by the more general ¢ and © modes, which are two fundamental independent
modes, as described in (Mongia et al., 1999).



Coupled-Line Couplers Based on the Composite Right/Left-Handed (CRLH) Transmission Lines 255

A 1
o) &
" Coupled line A
& o)
€° (&

Fig. 3. Typical structure of a coupled-line coupler (CLC).

Symmetrical coupled lines represent a very useful but restricted class of couplers. In many
practical cases, it might be more useful or even necessary to design components using
asymmetrical coupled lines. For example, in some situations, the terminal impedance of one
of the coupled lines may be different from those of the other. It may then be more useful to
choose two coupled lines with different characteristic impedances. Also, an asymmetrical
coupled-line coupler has usually broader bandwidth than symmetrical one (Mongia et al.,
1999).

3.2CRLH CLCs

The conventional CLC has several intrinsic drawbacks. First, their operating bandwidths are
usually limited. Second, to raise the coupling level of a coupler, a very small space between
the coupled lines is required and it is usually difficult to obtain due to fabrication
constraints (Mongia et al., 1999).

As mentioned, in the past few years there has been a great interest in the field of
metamaterials, especially composite right/left-handed structures (e.g. interdigital/stub
configurations), and the microwave circuits based on the unusual properties of them (Caloz
& Itoh, 2005). By closely placing two identical CRLH lines in parallel, such as configuration
shown in Fig. 4, a strong contrast exists between the impedances of two fundamental modes
of propagation (i.e. the even and odd mode impedances), which would result in high
coupling-level.

e T I
N B B B

Fig. 4. Prototype of a CRLH edge-coupled directional coupler constituted of two
interdigital /stub CRLH TLs.

For the first time, a novel composite right/left-handed coupled-line directional coupler
composed of two CRLH TLs was proposed in (Caloz et al., 2004) and an even/odd-mode
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theory was used to analyze the phenomenon of complete backward coupling. Then, an
asymmetric RH-CRLH coupler was introduced and studied in (Caloz & Itoh, 2004b). It was
composed of a conventional right-handed transmission line and a CRLH TL. That coupler
showed the advantage of broad bandwidth and tight coupling characteristics, and coupled-
mode theory based on traveling waves was used to discuss these interesting features. In
(Islam & Eleftheriades, 2006), it was shown that the formation of a stop-band and the
excitation of complex modes occurred in the case of coupling between a forward wave and a
backward-wave mode for a range of frequencies around the tuning frequency. Moreover,
authors in (Wang et al., 2007) presented the conditions for tight coupling and detailed
formulas were given to define the edges of the coupling range.

Moreover, some CLCs based on the CRLH TLs with arbitrary coupling levels have been
developed, recently (Fouda et al., 2010; Hirota et al., 2009; Hirota et al., 2011; Kawakami et
al., 2010; Mocanu et al., 2010). In these couplers, the backward coupling depends on the
difference between even and odd modes characteristic impedances and length of the
coupled lines (Caloz & Itoh, 2005).

The interdigital/stub CLCs have been typically adapted to increasing coupling level, but
these couplers increase in size (Caloz et al., 2004; Caloz & Itoh, 2004b; Islam & Eleftheriades,
2006), band width of them is narrow (Hirota et al., 2011; Mocanu et al. 2010; Wang et al.
2007) and the multiconductors of the interdigital construction complicate the design
procedure (Caloz & Itoh, 2005).

It is considerable that the microstrip CRLH TL structures have been mostly implemented in
the form of interdigital capacitors and stub inductors. In the other hand, using shorted stub
inductors with large sizes to achieve the required inductances can cause the structure width
to be also enlarged. For instance, the length and width of 3-dB microstrip coupled-line
coupler proposed in (Caloz et al., 2004) are approximately Ag/3 and Ag/6, respectively. Also,
bandwidth of the CRLH CLCs which presented in (Mocanu et al., 2010) and (Fouda et al.,
2010) are 25% and 30%, respectively.

Also, forward coupling level in CRLH coupled line couplers is low (nearly -10 dB in (Fouda
et al., 2010)).

3.3 Proposed CLCs

In this section, some of the authors” proposed CLCs based on the CRLH concepts to reach
new couplers with better specifications, such as smaller size, broader bandwidth and more
simplicity in fabrication are presented. In these new CLCs one has been trying to eliminate
some drawbacks and disadvantages of conventional CRLH CLCs mentioned in previous
section.

3.3.1 Backward symmetrical CLC

The proposed backward-wave directional coupler is shown in Fig. 5 (Keshavarz et al,,
2011a). It is a coupled-line coupler consisting of an interdigital capacitor with one finger as a
CRLH TL in each coupled-line. It is seen that using only one interdigital capacitor to realize
the interdigital TLs is more suitable to reach a coupler with better matching and wider
bandwidth. As it was mentioned, forg> g , these interdigital TLs will be operating
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completely in their RH range for the presented coupler application. So in this coupler,
similar to the conventional edge-coupled couplers, the coupling coefficient is (Pozar, 2004):
jksin@ k= Z,—-Z,

S5 = rnT
N cosf+ jsin@ ZeetZe

©)

where, 6=(27/\g) is electrical length and ¢ is the length of CLC. Therefore, setting the
interdigital capacitor length as [= Ag/4 or 6=7/2 results in maximum coupling level. On the
other hand, selection of /= Ag/4 preserves the homogeneity condition in CRLH structure

A
(ie,p< Zg , where p is structural cell size) (Caloz & Itoh, 2005).

The equivalent circuits model of the even and odd modes of Fig. 5 for one cell have been
presented in Fig. 6. In this figure, L is the inductance for a strip with width W’ and C,,C,
are the distributed capacitances for the even and odd modes, respectively.

Even and odd mode characteristic impedances (Z,,Z.,) of the coupled-lines composed of
interdigital TLs are obtained from (Caloz & Itoh, 2005) with setting L; — oo as:

Zce= L_ 21 ’ an= L_ 21 (7)
\C. @°C.C, \/ C, o CC
, f L , f L
Zce = C_e ’ Zco = C_o (8)

Z!,and Z/ are even and odd mode characteristic impedances of a conventional microstrip
CLC with strips of width W’ for each TL, where W'(=(4N-1)W)is total width of the
interdigital capacitor.

and

12.8 mm

(@)

Fig. 5. Structure of the proposed microstrip coupled-line backward coupler on FR4
substrate, £ =4.7, thickness of 1.6 mm. (a) Structure layout. (b) Fabricated coupler

(Keshavarz et al., 2011a).
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[ ]
']

@) (b)
Fig. 6. (a) Odd and (b) even modes equivalent circuit models of proposed coupler in Fig. 5
(Keshavarz et al., 2011a).

In the proposed coupler for given even and odd mode characteristic impedances, according
to (7), selection of a small C;leads to larger values of Z,andZ, . This situation is very
suitable for elimination of the fabrication restrictions in CLCs with tight coupling level.
Consequently, to decrease the value of C; in the proposed structure, interdigital capacitors
with only one finger (i.e., N = 1) are used.

In design procedure, for an indicated coupling-level (c) and characteristic impedance ( Z.™),
Z.and Z, can be obtained from conventional expressions as (Pozar, 2004):

i 1+c i 1-c¢
ZCE:ZCnt 1—C, ZCOZZCnt 1+C (9)

With setting N =1, /=1, /4 and the substrate profile being determined, C; and Cg can be
calculated using expressions presented in (Bahl, 2003) and Z/, and Z, are obtained from (7)
and (8). Then, W’ and S can be determined by using achieved Z),, Z/, and relative design
graphs for conventional coupled microstrip lines.

For instant, Fig. 7(a) illustrates the required width of the interdigital TL (V) in the proposed
coupler realized on FR4 substrate, with &, =4.7 and thickness of 1.6 mm, for different values

of Z,,.In addition, the necessary spacing between two coupled interdigital TLs (S) for the
27,7,

ce—co
;7 7

presented structure versus Z,, , where Z,, = has been provided in Fig. 7(b).

m’ _
ce co

As it was mentioned, sinceZ,, and Z, would be larger thanZ,and Z,, for constant

coupling-level (c) and characteristic impedance (Z,™) in comparison with the conventional

CLCs, W’ decreases and S increases. Therefore in the proposed coupler, the fabrication

constrains in conventional edge-coupled couplers to get a tight coupling-level caused very

small spacing between two coupled lines (i.e., S) can be removed.

To validate the proposed technique, a 3-dB coupled line coupler based on the design
procedure and presented expressions has been designed on FR4 substrate with ¢, =4.7,
thickness of 1.6 mm and tan 0 = 0.021. Fig. 5 shows the designed coupler layout and the
fabricated structure. A 3-dB coupled line coupler with nearly 60% bandwidth (from 2.3 to
4 GHz) around the design frequency f,= 3.2 GHz is achieved in the measured prototype.
The spacing between two TLs (S) and width of the interdigital capacitor fingers (V) are 0.2
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Fig. 7. a) Width of the interdigital TL (W) versus 7z’ , b) Spacing between two coupled
interdigital TLs (S), in the proposed coupler on FR4 substrate, £ =4.7, thickness of 1.6 mm
(Keshavarz et al., 2011a).

mm. Also, the length of the TLs is 12.8 mm (see Fig.5). For better matching and wider
bandwidth, we use only one interdigital capacitor, i.e. one cell, in every interdigital TL.
Moreover, to reach a large isolation parameter, spacing between the fingers in the lower
interdigital capacitor is set larger than the upper one, when ports 1 and 4 are the input and
isolated ports, respectively. As shown in the layout of the coupler in Fig. 5, at the all four
ports of the structure, tapered microstrip TLs have been used for the impedance matching to
50 Q, as well as to fit the ports size to the inner conductors of the coaxial-to-microstrip
transitions.

Fig. 8 presents the full-wave simulated (by using Agilent ADS software) and measured S-
parameters for the coupler of Fig. 5. Excellent agreement can be observed between
simulated and experimental results. There is only a small difference between S;; parameter
of simulated and measurement results. Due to small distance between coupler connectors,
we could not connect network analyzer ports to adjacent coupler connectors, directly.
Therefore, two interface cables were connected to the coupler connectors and then S-
parameters were measured. This drawback shows its bad effect on S;; parameter more
strongly than other S-parameters.

Using these figures, a amplitude balance of 2 dB over a bandwidth of 60% (2.3-4 GHz), a
matching (10 dB bandwidth) and an isolation at least =20 dB over a bandwidth of 80% (2.2-
4.6 GHz) are observed. Fig. 9 illustrates the phase difference between ports 2 and 3 of the
coupler. This phase difference is 90°at design frequency and exhibits a phase-balance
(#10°) bandwidth of 1.3 GHz.

In comparison with the conventional CRLH CLCs, the electrical length of the proposed CLC
is more compact than the CRLH CLCs presented in (Islam et al., 2004; Mao & Wu, 2007;
Nguyen & Caloz, 2006; Zhang et al., 2008). Moreover, due to the elimination of the stubs in
the structure, its width is also smaller. For instance, the width of the coupler is nearly 11
times smaller than CRLH CLC reported in (Caloz et al., 2004) and its coupled-line electrical
length is shortened to 60% of the 3-dB CRLH coupler electrical length presented in
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(Keshavarz et al.,, 2011a). Moreover, the bandwidth of the proposed CLC is wider than
CRLH CLCs presented in (Islam et al., 2004) and (Nguyen & Caloz, 2006).

In comparison with the conventional planar microstrip CLC realized in the same substrate
material and similar spacing between coupled TLs, this CLC achieves higher coupling level.
The high coupling level (8 dB or higher) is extremely difficult to achieve in the conventional
CLC due to the present limit in fabrication (Pozar, 2004). Also, simulation results show that
in the proposed structure if the spacing between the coupled lines increases, the bandwidth
increases up to 85% for 7-dB coupling factor. Moreover, this coupler exhibits much higher
design simplicity than the existing CRLH CLCs. Due to the wide bandwidth and compact
size, the proposed coupler is well suitable for microwave and millimeter-wave integrated
circuits, wideband communication systems and many kinds of antenna arrays.
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Fig. 8. S-parameters of the proposed coupler have shown in Fig.5 (a) Full-wave simulation
results. (b) Measurement results (Keshavarz et al., 2011a).
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Fig. 9. Measured phase difference between the through port and the coupled port for the
proposed coupler of Fig. 5 (Keshavarz et al., 2011a).

3.3.2 Backward asymmetrical CLC

In this section, an asymmetrical coupled-line coupler based on the interdigital TL is
presented. Fig. 10 shows layout and circuit model of the interdigital TL and conventional TL
which are adjacent to each other as asymmetrical backward coupled-line coupler. As
depicted in Fig. 10(b), C,, represents the mutual capacitance between interdigital and strip
of the microstrip conductors in the absence of the structure ground conductor while C; and
C, represent the capacitance between interdigital or microstrip strip conductors and
ground, respectively. Moreover, the circuit model includes mutual inductance (L,,) and
self-inductances of interdigital (line 1) and conventional microstrip (line 2) conductors, i.e.
L, and L, , respectively. C,,, is series interdigital capacitor of line 1. It should be stated that
all of parameters in the circuit model are per unit length quantities. Also, Fig. 11 shows the
capacitance representation for quasi-TEM mode of cross section of the proposed
asymmetrical coupler. For structure analysis, it is assumed that lines 1 and 2 are terminated
to impedances Z, and Z; , respectively.

e mI QI
et s P SO
i
ok ol
m—— 1 1
() (b)

Fig. 10. Proposed asymmetrical coupled-line coupler consisted of interdigital TL and
microstrip conventional TL. a) Its layout and b) lumped equivalent circuit model.
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Fig. 11. Capacitance representation for cross section of the asymmetrical coupler presented
in Fig. 10.
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Characteristics of the proposed coupled transmission line can be described by a
superposition of characteristics of c and 7 modes. A set of two coupled lines can support
two fundamental independent modes of propagation (called normal modes). For
asymmetrical coupled lines, the two normal modes of propagation are known as ¢ and =
modes (Mongia et al., 1999). Both ¢ and 7 modes are composed of two traveling waves in
the backward and forward directions. The ¢ mode is characterized by four parameters: y,,
Z.,Z, andR. which are the propagation constant of the mode, the characteristic
impedances of lines 1 and 2 and the ratio of the voltages on the two lines of the ¢ mode,
respectively. Similarly, the 7 mode is also characterized by four parameters:y,, Z,,, Z,,
and R, which are propagation constant of the mode, characteristic impedances of lines 1
and 2 and the ratio of the voltages on the two lines of the 7 mode, respectively (Mongia et
al., 1999).

As it has been shown in (Mongia et al., 1999), the relation between the characteristic
impedances, ie. Z, Z.,, Z,; and Z_,, and also the ratio parameters, i.e. R, and R, are

as:
22 _Zm2 -_R R (10)

So, a total number of only six quantities, i.e. y., ¥, , Zq 0rZ.,, Z, or Z,,,R. and R, are
required to characterize asymmetrical coupled lines. For a lossless TEM-mode coupled-line,
the propagation constants of both ¢ and 7 modes are the same, and are given by (Cristal,
1966):

Ye=Ve=iB (11)

As special case for asymmetrical coupled lines, symmetrical coupled line are completely
characterized by four parameters, the even and odd modes characteristic impedances of any
lines (as both lines are identical) and even and odd modes propagation constants. In
symmetrical coupled lines, R, and R, are equal to 1 and -1, respectively (Mongia et al.,
1999).

By assuming the quasi-TEM mode for proposed structure and according to equations (10),
(11) and (Cristal, 1966) for above asymmetrical coupler (Fig. 10), it is obtained that:
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Z2
Rc=—Rn=JEZ (12)
L
“\c, ©

where Z; and Z, are characteristic impedances of uncoupled lines 1 (interdigital TL) and 2
(conventional microstrip TL), respectively.

where

Moreover, the capacitance matrix of the coupled lines (Fig. 10) can be expressed as (Cristal,

1966):
[C]=|:Cl C121|=|:C1+Cm _Cm:| 14
Cy G| |-C, C,+C, (14)

According to equations (13) and (14), ¢ and 7 mode characteristic impedances of
interdigital transmission line (Z,.",Z,,") and the conventional microstrip transmission line
(Zo.0,Z,," ) are obtained as (Cristal, 1966):

Z a Ll 1
@ ClntCl
1
(Cy+ 2C w Cmt(Cl +2C,,)
{ (15)
Z —
or' c2+2cm
and
L
Zy" = |=F /L 16
Cl / 0x (C1 +2Cm) ( )

7, and Z{) " are ¢ and 7 mode characteristic impedances of a conventional microstrip TL
with a strip of width W', where W’ (= (2N-1)S"+2NW ) is the total width of the
interdigital capacitor.

In coupler design procedure, for an indicated coupling-level (k) and impedance ports Z,
and Z, of lines 1 and 2, respectively, Z,.",Zo,",Zo.. and Z,,” can be calculated from
following equations (Cristal, 1966):
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L,:zﬂzh\h—k2
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o ZoZyN1-K?

 Z,+kJZ.7,

b ZoZyN1-K?

CZ.-kJZ.7,

o ZoZyN1-K?

 Z,+k(Z,2,

Zy

0z
(17)

Oc

0r

In order the values of Z,." and Z,.' to be positive, it is necessary that:

154 g 1520 (18)
2z, 7,

where k? denotes the power coupling coefficient between two coupled lines.

As it was mentioned, for indicated coupling level (k) and ports impedance (Z,,Z,) in the
proposed coupler, the ¢ and 7z characteristic impedances, i.e. Z.",Zy,", Zo.' and Z,,”, can
be determined using (17). It is clear from (15) that selecting a small C;,, in the introduced
coupler, increases values of Z{."and Z;," which can lead to smaller value for C,, . It means
that in this situation, the required spacing between two coupled-lines can be increased in
comparison with the conventional microstrip coupled-lines. It is due to the inverse
relationship between mutual capacitance value and spacing between coupled lines.
Therefore, it is suitable for realizing high coupling-level coupled-line couplers with
relatively larger spacing between two lines than conventional coupled-line couplers.

Fig. 12 illustrates the layout and fabrication of the proposed asymmetrical coupler that
above considerations have been considered in its design (Keshavarz et al., 2011b).

For an asymmetric coupled microstrip line of the type shown in Fig. 12, the design graphs
presented in Figs. 13, 14 and 15 can be used to determine the necessary interdigital and
microstrip strip widths and spacing for a given set of characteristic impedances,

Z" 1 Zol and Z,, on FR-4 substrate with €, =4.6 and thickness of 1.6 mm. In Fig. 15, Z,, is
defined as:

_ 2% 2y

Z
Zch - ZO;rb

m

(19)

The asymmetrical coupled line coupler presented in this study is a 3-dB coupler at center
frequency of 3 GHz which is simulated on FR-4 substrate with 1.6 mm substrate thickness
and a dielectric constant of 4.6. Impedances of all four ports have been considered equal

to50Q (Z,=2,=50Q) . The final structure of designed coupler has been presented in Fig.
12(b) with W; =0.6 mm, W, =1mm and the spacing between two coupled lines (s) is 0.2
mm.
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(@)

(b)

Fig. 12. Proposed asymmetrical backward coupler based on the interdigital and
conventional microstrip coupled TLs. (a) Structure layout. (b) Fabricated coupler.

(Keshavarz et al., 2011b).
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Fig. 13. Design graph for width of the interdigital TL (W, ) on FR-4 substrate versus c mode
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Fig. 14. Design graph for width of the conventional microstrip TL ( W, ) on FR-4 substrate
versus ¢ mode characteristic impedance. (Keshavarz et al., 2011b).
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Fig. 15. Design graph for two lines separation ( S ) on FR-4 substrate versus Z,, . (Keshavarz
etal., 2011b).

So, this coupler is more compact than CRLH coupled line couplers reported in (Abdelaziz et
al., 2009; Garcia-Perez et al., 2010; Joon-Boom et al., 2001), due to the elimination of the
stubs. The structure coupled-line length (/) is equal to 12 mm, which is approximately A/ 4
at center frequency of 3 GHz and is smaller than the CRLH microstrip CLC with the coupled
line length around A,/3 (Caloz et al., 2004).

In addition to the equivalent circuit model which is used to simulate the designed coupler, a
full-wave electromagnetic simulator (ADS) is also used to examine the structure. Fig. 16
illustrates the full-wave and equivalent circuit model analysis results of the proposed
asymmetric backward coupler along with its measured S-parameters. Excellent agreement
can be observed between full-wave simulated and experimental results. The elements of the
equivalent circuit model are obtained using equations (13) and (15) and for this example are
equal to L,=733nH,C,=0.7pF, C,, =182pF, L,=618nH, C, =0.86 pF. Using this
figure, performance of the introduced 3-dB edge-coupled coupled-line coupler can be stated
as the following: the power which is coupled to port 3 is approximately -3 dB, the return loss
is less than -14 dB and the isolation is better than -13 dB over the bandwidth of 66% from 2.2
GHz to 4.2 GHz. Moreover, Fig. 17 shows the phase difference between the ports 2 and 3 of
the coupler. As it is seen, this difference is equal to 90+ 10° for a frequency range from 2.2
GHz to 3.5 GHz. Proposed asymmetrical backward coupler exhibits reachable dimension,
broad bandwidth and smaller size than the conventional and CRLH couplers.
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Fig. 16. Magnitude of the S-parameters for the proposed coupler obtained by full-wave
simulation, equivalent circuit model and measurement results. (a) | S;5 |,| S14 | (b) |S111,1 513

(Keshavarz et al., 2011b).
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Fig. 17. Phase difference between the through and the coupled ports for the proposed

coupler of Fig. 12. (Keshavarz et al., 2011b).
3.3.3 Forward symmetrical CLC

The scattering parameters of an ideal forward-wave directional coupler, as shown in Fig. 3,
are given by (Mongia et al., 1999):

Sll = O
(BB ~
512 = —je 2 Cos[w]
S13=0 0)

—i(Be+B)!
Su=-je % sin

(ﬂe — ﬁo )l
g
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where f, and J, are even and odd mode propagation constants of coupled lines,
respectively. Also, | is length of the coupled line. As it was mentioned, forward-wave
directional couplers cannot be realized using TEM mode transmission lines such as coaxial
lines. It is due to this fact that for the TEM mode, the propagation constant of the even and
odd modes are equal, and as shown in (20), there is no coupling between ports 1 and 4.
Therefore, forward-wave coupling mechanism can only be appeared in non-TEM coupled
TLs such as metallic waveguides, fin lines, dielectric waveguides and also quasi-TEM mode
TLs like microstrip lines at high operating frequencies. In these transmission line structures,
in general, the phase velocities of the even and odd modes are not equal (Mongia et al.,
1999).

From (20), it is clear that complete power can be transferred between lines if the length [ of
the coupled line is chosen as:

T

T1B.-B,

Above result is significant in the sense that even for arbitrarily small values of difference in
the propagation constants of even and odd modes, complete power can be transformed
between the lines if the length of the coupler is chosen according to (21). In this situation, the
directivity and isolation of the coupler are thus infinite. Also, the phase difference between
ports 1 and 4 (5S4 and S, ) is 90°. However, in general, situation (21) cannot be completely
satisfied. Hence, some finite amount of backward-wave coupling always exists between
coupled lines.

! (21)

Our proposed forward-wave coupled-line coupler is shown in Fig. 18(a), where the coupled-
lines have the same width of W and periodic stubs have been loaded between these
coupled-lines (Keshavarz et al., 2010). In this structure, W, and ¢, are the width and length
of the periodic stubs, respectively, and d; is a period of the stubs. The mid plane (red line in
Fig. 18(a)) between the coupled-lines remains two different equivalent circuits for the even
and odd modes. The even and odd modes are associated with a magnetic wall (open-circuit)
and an electric wall (short-circuit), respectively. These two equivalent circuit models have
been presented in Figs. 18(b) and 18(c) for one period. In these circuits, C, and C, are even
and odd mode capacitances per unit length, respectively, and L is inductance per unit
length of the coupled-lines. C, and C, are equal to:

Ce=C=Cp, C,=C;1+2Cp +Ciy (22)

whereC;; and C,, represent the capacitance between one strip conductor and ground in
absence of the other strip conductor, in planar structures. Because of the strip conductors of
the coupled lines are identical in size and location relative to the ground conductor, C;; will
be equal to C,, or Cj; =C,, . From transmission line theory, it is well known that the value
of Cy; is (Pozar, 2004):

&, Z
Cp= \/? (23)
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where g,, is effective permittivity of a microstrip transmission line with a strip with width

W, Z is characteristic impedance of the transmission line and c is the speed of light. Also,
C;, represents the capacitance between the two coupled lines without stubs and ground

conductor. C;,, is capacitance per unit length of the interdigital capacitor formed between

the two coupled lines.
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(b) ©
Fig. 18. (a) Proposed forward-wave coupled-line coupler with periodic stubs. (b) Even
mode, and (c) odd mode equivalent circuit models of each coupled line for one period
(Keshavarz et al., 2010).

Some extra distributed shunt capacitance and inductance per unit length are added to the
equivalent circuit models for the even and odd modes, respectively, which are given based
on the TL theory as (Pozar, 2004):

1, Z I.+s.. Z,B.(,+s
Lu:_(_stanﬁs(s ))z sﬂs(s )
d," @ 2 2wd, )
1,1 li+s. B +s)
=— t = —
=3 Gz A=

where Z; and g, represent characteristic impedance and phase constant of the shunt stubs,

respectively.

Series impedance and shunt admittance of these equivalent circuit models in even and odd
modes are given by:
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Z,=jal, Y, =jo(C,+C,)

. . . (25)
Z,=jawl, Y,=jaC,+1/jwL,

According to the TL theory, the propagation constants and the characteristic impedances of
the transmission coupled-lines in even and odd modes are:

Ve =\ZY, = joJL(C,+C,) = j3,

7o=\ZY, = joL(C, -1/ a™L,) = jB, (26)
and
“ Y, \joC,+C,) \(C,+C,) 7)

7 Z, _ joL _ L
¢ Yo jw(co - 1/w2La> (Co - 1/0)21,”)

Since, the length of the stubs is relatively large, the value of C;, would be very smaller than
Cj;and Cyp, - So, (22) can be approximated as:

int
C,=Cy +2C;, (28)

As it is seen in (26), the difference between £, and S, in proposed structure becomes larger
than conventional structures without stubs in coupled line couplers. Moreover, this
difference can be controlled by stub length, so that for a fixed coupling-level, increasing
length of stubs ( ¢, ) results reduction of structure length (Fig. 19).

In the coupled-line couplers, input matching condition for termination of impedance
Z.(Z,, = Z,) is achieved under condition which is given by (12).

i 2 4 fi
Frequency (GHz)

Fig. 19.| B, — B, | for three lengths of the stubs (I, =2,4 and 6 mm ) (Keshavarz et al., 2010).
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Fig. 20 presents some curves for selecting dimension of the proposed coupler for three
coupling-levels (0-dB, 3-dB and 6-dB) with W, =02mm, d,=0.6mm and S=02mm on
FR-4 substrate (&, =4.6, h=1.6mm). These curves illustrate that with increasing the
coupling-level, dimension of the coupler increase. But, it is interesting to note that for a fixed
coupling-level, the area of the coupler (product of the stub length by the structure length)
will remain constant, approximately.

The proposed structure of the forward-wave CLC in this section is fabricated on FR4
substrate with 1.6 mm thickness and dielectric constant of 4.6, as shown in Fig. 21. The full-
wave simulator Agilent Technologies Advanced Design System (ADS) is used to examine
the structure. For good matching, the width of the microstrip transmission lines for 50Q
port impedances is selected equal to 1 mm (i.e. W =1mm ). To have a coupling level of 0-dB,
according to the derived relations and Fig. 20, the length (!/) and width (I, +2W) of the
structure in Fig. 18 have been chosen equal to 26 mm and 4 mm, which are approximately
Ag/2 and Az/13 at center frequency of 3 GH, respectively.

10K T '

Length of the coupler (mm)

(7 5 15 0

I
Length of the stubs (mm)
Fig. 20. Data for designing dimension of the proposed coupler on FR-4 substrate
(gl_ =4.6, h =1.6 mm) (Keshavarz et al., 2010).

Therefore, the proposed CLC is more compact than the microstrip coupler with the coupled-
line length around 0.75), presented in (Fujii & Ohta, 2005). Also, the width (V, ) and period
distance (d, ) of the stubs are considered as: W, =0.2mm, d, =0.6mm and the space between
the stubs and transmission lines is 0.2 mm (i.e. S=0.2mm).

The measured and simulated S-parameters of the proposed coupler are shown in Fig. 22.
This figure shows the measured amplitude balance of +2 dB over a bandwidth of 66% (2-4
GHz). In this figure, full-wave simulation and equivalent circuit model results have also
been presented for verification. A good agreement between measurement, full-wave
simulation and equivalent circuit model results is obtained and thus the usefulness of the
presented equivalent circuit model is validated. The element values of the equivalent circuit
model (Fig. 18) for the layout are: L=18nH,L,=32nH,C,=01pF, C,=0.2pF
and C,=1.8pF .
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In comparison with the conventional forward CLCs, the electrical length of the proposed
CLC is more compact than CLCs presented in (Chang et al., 2001; Deng et al., 2002; Lauro et
al., 2009). For instance, the coupled-line electrical length of the coupler is shortened to 50%
of the conventional CLC electrical length reported in (Deng et al.,, 2002). Moreover, the
bandwidth of the proposed CLC is wider than forward CLCs presented in (Deng et al., 2002;
Lauro et al., 2009; Chang et al., 2001; Sen-Kuei & Tzong-Lin, 2010). For example, compared
with the forward couplers reported in (Deng et al., 2002) and (Lauro et al.,, 2009), the
proposed structure is capable of producing 65% bandwidth enhancement for the amplitude
and a 0-dB coupling level with a smaller coupled-line length. Moreover, the proposed
structure exhibits broader bandwidth than couplers presented in (Chang et al., 2001; Huang
& Chu, 2010; Ikalainen & Matthaei, 1987; Sen-Kuei & Tzong-Lin, 2010; Lauro et al., 2009).

Fig. 23 shows the even- and odd-mode characteristic impedances computed using full-wave
simulation. This result indicates that the proposed structure is matched to 50 Q port
impedance over the operating bandwidth, such that the additional tapered structure at each
port for impedance matching can be eliminated. Hence, the proposed forward coupler
would be more compact in size. As it was mentioned, for the proposed forward CLC, the
coupler area is approximately constant. It means that reduction of the structure length
results width increasing, proportionally (Fig. 20).

Fig. 21. Proposed forward symmetrical coupler which realized on FR-4 substrate
(gr =4.6, h =1.6 mm ) (Keshavarz et al., 2010).
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Fig. 22. Magnitude of the S-parameters, (a) S;1,5;, (b) Si3,5;4 for the proposed coupler in

Fig. 21 obtained by the full-wave simulation, equivalent circuit model and measurement
results (Keshavarz et al., 2010).
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Fig. 23. Even and odd modes characteristic impedances of the coupler presented in Fig. 21
(Keshavarz et al., 2010).

4. Conclusion

In this chapter, some new techniques for realizing compact and tight coupling microstrip
backward and forward CLCs with obtainable dimension, broad bandwidth and smaller size
than the most conventional microstrip and CRLH couplers have been introduced. We
presented three CLCs based on the concept of CRLH CLCs; a symmetrical backward CLC,
an asymmetrical backward CLC and a symmetrical forward CLC.

New symmetrical backward coupler structure consists of only one interdigital capacitor in
each coupled TL without shorted stubs as the CRLH TL. Designed and fabricated 3-dB
microstrip coupler at center frequency about f,=3.2 GHz exhibits a matching (10-dB)
bandwidth of over 2 GHz, a phase-balance (+10°) bandwidth of 1.3 GHz and at least 20-dB
isolation between adjacent ports. The coupled-line length and the width of the proposed



274 Trends in Electromagnetism — From Fundamentals to Applications

structure are approximately, 4, /4 and 4, /36, respectively. Also, this coupler exhibits
higher design simplicity than the existing CRLH CLCs.

Moreover, a new type of backward CLC composed of two different coupled lines, i.e.
interdigital and conventional microstrip TLs has been proposed, fabricated, and
investigated theoretically and experimentally. In this structure, an interdigital capacitor with
only one finger is used as interdigital TL. This interdigital TL is coupled with a conventional
microstrip TL and achieves an asymmetrical backward CLC. The proposed backward-wave
coupler with 0.2 mm spacing between two coupled lines exhibits the amplitude balance of
12 dB from 2.2 GHz to 4.2 GHz and the phase balance of 90°+10° from 2.2 GHz to 3.5 GHz.

Finally, a forward CLC composed of two identical microstrip TLs and periodic shunt stubs
between them has been proposed and investigated experimentally and theoretically. Using
loaded stubs between two microstrip coupled-lines forms the proposed 0-dB forward CLC
which exhibits the amplitude balance of +2 dB around center frequency of 3 GHz from 2
GHz to 4 GHz (66% bandwidth). A matching (| Sy; | <15-dB) bandwidth of over 4 GHz (1-5

GHz) bandwidth and at least 15 dB isolation between adjacent ports have been seen in
measurement results. In this forward-wave CLC, by increasing the length of the stubs, the
coupler length decreases, proportionally.
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1. Introduction

Metamaterial covers exhibit inimitable electromagnetic properties which make them
popular in antenna engineering. Two important features of metamaterial covers are: (1)
increasing of the transmission rate and (2) control of the direction of the transmission which
enable one to design directive antennas. In this chapter, the possibility of increasing both
bandwidth and directivity of the printed patch antenna using metamaterial covers is
examined. The printed patch antennas are a class of low-profile antennas, which are
conformable to planar surfaces, simple and inexpensive to manufacture using printed-
circuit technology.

Furthermore, novel polarization-dependent metamaterial (PDMTM) covers, whose
transmission phases for two principal polarizations are different, are presented (Veysi et al.,
2011). A full-wave Finite Difference Time Domain (FDTD) numerical technique is adopted
for the simulations. A schematic of the metamaterial cover with square holes is shown in
Fig. 1. It consists of two planar layers with similar square lattices. It was demonstrated in
(Pendry et al., 1996; Tsao & Chern, 2006) that in the frequency range, where the wavelength
is very large compared to the period of the metamaterial cover, this structure acts as a
homogenous medium. The equivalent refractive index of this medium, in the microwave

domain, is given by:
2
=1 7%) "

where fp denotes the plasma frequency and f denotes the operating frequency. If the
operating frequency is selected slightly larger than the natural plasma frequency of the
metamaterial cover, the equivalent refractive index will be extremely low. Consequently, the
transmission phase at the plasma frequency is extremely low.

The ultra refraction phenomena, in which the transmitted rays are parallel to each other, can
be expected where the transmission coefficient reaches its maximum value. In other words,
the zero transmission phase occurs at the same frequencies where the magnitude of the
transmission coefficient becomes maximum. Hence, it acts similar to an equally phase
surface at its plasma frequency. It is evident from Eq.1, that the equivalent refractive index
and thus the antenna directivity are very sensitive to the frequency.

As a starting point, we consider a two-layer metallic grid placed on top of the patch antenna
backed by a ground plane. The simulations have been carried out to examine the
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transmission characteristic of the metamaterial cover, without the ground plane and without
the antenna, using FDTD code developed by the authors.

Fig. 2 shows an effective unit cell model of the metamaterial cover which takes into account
the image effect of the ground plane. This unit cell is a convenient method of computing of
the transmission coefficient of a two layer metamaterial cover placed on top of the patch
antenna backed by a ground plane. Here, Perfect Match Layers (PMLs) are applied to realize
a medium with no reflection. The normalization in the code consists of choosing the peak
magnitude of the transmission coefficient to be unity. Therefore, the magnitude of the
transmitted field from the metamaterial cover has been normalized to that without the
metamaterial cover. We have used the same methodology applied in the measurements
(Enoch et al., 2002). The periodic boundary conditions (PBCs) have been also applied to
model an infinite periodic replication. Since an infinite periodic structure has been
simulated, the peak magnitude of the transmission coefficient is unity, unlike the results
obtained in the measurements (Enoch et al., 2002).

Fig. 1. Schematic view of two layer metamaterial cover together with its unit cell (Veysi et
al., 2011).
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Fig. 2. FDTD model for metamaterial cover analysis (Veysi et al., 2011).
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2. Directivity and bandwidth enhancement of proximity-coupled microstrip
antenna

Directive patch antennas are very popular in electromagnetic community. Their attractive
features, such as low profile, light weight, low cost and compatibility with Microwave
Monolithic Integrated Circuits (MMICs), do not exist in other antennas.

Two distinctive types of directive antennas are parabolic antennas and large array antennas.
Bulk and curved surface of parabolic antennas limits their use in many commercial
applications. Also, complex feeding mechanism and loss in the feeding network are two
major disadvantages associated with microstrip array antennas.

One solution to these problems is to use metamaterial cover over the patch antenna (Alu et
al., 2006; Xu et al., 2008; Zhu et al., 2005; Huang et al., 2009). One of the first works was done
by B. Temelkuaran in 2000, (Temelkuaran et al., 2000). In 2002, S. Enoch proposed a kind of
metamaterial for directive emission, (Enoch et al., 2002). Another problem associated with
microstrip antennas is their narrow bandwidth. The previous works so far (Xu et al., 2008;
Zhu et al., 2005; Huang et al., 2009) have dealt only with the enhancement of the antenna
directivity using metamaterial cover, but the effect of this cover on the antenna input
impedance has not been investigated.

Recently, a new metamaterial cover has been proposed to enhance both the antenna
bandwidth and directivity, (Ju et al, 2009). But, its directivity is significantly lower
compared to the primary metamaterial cover, (Xu et al., 2008; Zhu et al., 2005; Huang et al.,
2009).

In this section, it is demonstrated that both the impedance and directivity bandwidths of the
proximity-coupled patch antenna can be enhanced using the metamaterial cover. It is
known that proximity-coupled patch antennas are sensitive to the transverse feed point
location. In the case at hand, a parasitic microstrip line has been used on the opposite side of
the feed line to mitigate this drawback (Jafargholi et al., 2011). The dimensions of the
analyzed metamaterial cover are:

P=O~4l}\éGHz/ t=0.01 }\6GHZ/ L= 0-31}\6GHZI h=0-49}\6GHz (2)

Where Asch; (50mm) denotes the free space wavelength at 6GHz, P is the periodicity, t is the
thickness of the metallic grids, L is the edge of the square holes and h is the distance
between the two sheets which is the same as the distance between the patch antenna and the
first sheet.

In the FDTD simulations, a uniform 0.01Ascy; grid size is used. The resulting transmission
curve is plotted in Fig.3. As can be seen, this structure has three microwave plasma
frequencies at about 5GHz, 5.81GHz and 8.1GHz which make it suitable for the antenna
applications. When the aforementioned metamaterial cover is placed over the conventional
proximity-coupled patch antenna, the final metamaterial antenna can be approximated by a
homogenous medium terminated in a ground plane.

This approximation is similar to that used for the transmission coefficient calculations. It is a
simple matter to obtain the surface impedance of this grounded slab as a function of
metamaterial parameters. A surface impedance of the grounded slab of thickness / is:
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Z,=jntan(27h / 1) (3)

where 7 and A are the wave impedance and wavelength in the slab, respectively. For the
extremely low values of &, the surface impedance is inductive. In addition, the inductive
reactance is X;=joL.

For equivalence we can equate them, leading to the following equation:
joL = jntan(27h / A) )

Since e<<1 we can apply the small-angle approximation, so that above equation then
becomes L=uoh. Consequently, the operation mechanism of this metamaterial based cover
can be explained using this equivalent inductance.

In addition, coupling between the feed line and the patch antenna is totally capacitive. And
thus, one can expect another resonant frequency due to the reactive cancellation between the
capacitive feeding structure and the inductive metamaterial cover. Consequently, an
appropriate selection of the coupling capacitor value can result in a broadband operation.
To this aim, the metamaterial cover described above is placed over the conventional
proximity-coupled patch antenna.

A schematic of proposed metamaterial patch antenna is shown in Fig. 4. In general, the two
dielectrics can be of different thicknesses and relative permittivity, but here both dielectrics
are 0.762mm Duroid with, &= 2.2. For the case discussed here, the patch of the antenna is
rectangular with 12.45mm width and 16mm length.

The distance between the main microstrip line and the parasitic line is also 7mm. Each
metamaterial cover composed of 9%9 unit cells, as shown in Fig.4. Consequently, the total
size of the dielectric substrate and the metamaterial cover is 184.5mmx184.5mm.
Furthermore, the working frequency of the conventional patch antenna is selected at
5.9GHz.

Transmission

Frequency[GHz]

Fig. 3. FDTD simulated transmission of metamaterial cover.
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Fig. 4. Geometry of a metamaterial proximity-coupled patch antenna, (a) top view and (b)
CToss view.

Reflection coefficient of the proposed metamaterial patch antenna has been simulated and
was compared to the one obtained for the conventional proximity-coupled patch antenna in
Fig. 5. As revealed in the figure, the antenna return loss is significantly improved compared
to the reference patch antenna without the metamaterial cover.

The impedance bandwidth of the patch antenna is increased from 2.9% to 5.23% (ranging
from 5.649GHz to 5.952GHz). Using the usual formulas mentioned in (Garg et al., 2001), the
conventional proximity-coupled patch antenna discussed here has a TMy; mode resonant
frequency of approximately 5.9GHz. The second resonant frequency of the metamaterial
patch antenna is obviously due to the TMy; mode of the conventional patch antenna. (See
Fig.5)

Since the metamaterial superstrate disturbs the current distribution of the TMy; mode, this
resonant frequency slightly shifts down to a lower frequency. An interested reader is
recommended to refer to (Zhong et al., 1994) for more details. The first resonant frequency is
the result of reactive cancellation between the capacitive feeding structure and the inductive
metamaterial cover.

On the other hand, the first resonant frequency is close to the second resonant frequency,
which results in broadband operation. The simulation results of Fig. 5 are in good
agreement with the theoretical predictions discussed above, which serve to justify the
approximations used to model the metamaterial patch antenna as a grounded homogenous
medium.
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It is necessary to mention that the parasitic line section, used on the opposite side of the feed
line, stabilizes the antenna performance at its resonant frequency at the expense of an
additional resonance frequency at about 6.24GHz (Jafargholi et al., 2011). By using the
metamaterial cover over the patch antenna, the antenna radiation patterns in E- and H-
planes are concentrated in a direction perpendicular to the patch antenna (6=0).

The simulated broadside directivity versus frequency is shown in Fig. 6. As can be seen, the
maximum directivity of the patch antenna is increased from 6.25dB t016.16dB using
metamaterial cover. The 3dB directivity bandwidth of the metamaterial antenna is also
between 5.685GHz and 5.91GHz, or 3.88%.
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Fig. 5. Simulated reflection coefficient versus frequency.

The antenna radiation patterns within its bandwidth are also investigated. The E-plane and
H-plane patterns of the metamaterial patch antenna at three frequencies (5.7GHz, 5.8GHz
and 5.9GHz) have been simulated and were compared to the one obtained for the
conventional antenna, at 5.9GHz, in Fig. 7.

Although the radiation pattern of the metamaterial antenna changes a bit at each frequency,
the main lobe of the metamaterial antenna at all frequencies (ranging from 5.65 to 5.95GHz)
is in the broadside direction and maximum directivity is reasonably good. The variation of
the radiation pattern is mainly attributed to the nature of metamaterial cover.

The maximum directivities of the metamaterial antenna at 5.7GHz and 5.9GHz are 13.24dB
and 14dB, respectively. The maximum directivity of an aperture antenna is calculated by
Dyax=4mA /)2, In the present case, the area of the aperture is A=and A=co/fo= 51.724mm, so
that maximum directivity then becomes D= 22dB.

The maximum directivity of the metamaterial patch antenna, occurring at 5.81GHz,
(16.16dB) has approached the maximal directivity obtained, theoretically, with the same
aperture size.
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Fig. 7. CST simulated radiation patterns at different frequencies over the operating
bandwidth, (a) E-plane, and (b) H-plane.

3. Polarization dependent metamaterial cover designs

A considerable part of research at microwave frequencies is focused on isotropic
metamaterial covers that are independent on polarization states. Polarization-dependent
surfaces have recently found useful applications in changing the polarization state of the
incident wave (Yang & Rahmat-samii, 2005; Veysi et al., 2010).

For a traditional metamaterial cover, the transmission phase remains the same regardless of
the x- or y-polarization state of the incident plane wave. In contrast, the transmission phase
of a PDMTM cover is a function of both frequency and polarization state. Hence, when a
PDMTM cover is employed as a director, the polarization state of the transmitted wave is
fully characterized by the transmission phase difference between the x- and y-polarizations
and the polarization state of the incident wave. And thus a proper phase difference between
x- and y-polarized waves leads to a desired change in the polarization state of the
transmitted wave.

Directive circularly polarized antennas are widely used in satellite communication systems.
To obtain directive circularly polarized antenna, various types of metamaterial antenna have
been proposed in the literature (Iriarte et al., 2006; Diblanc et al., 2005; Arnaud et al., 2007). It
was demonstrated in (Iriarte et al., 2006) that the directive circularly polarized antenna can
be realized by metamaterial antenna with a circular feed. A major limitation of this method
is inability to tune mechanically. In other words, the polarization state of the antenna is only
determined by the feed mechanism.

Directive circularly polarized antenna can be also realized using either metallic wire
polarizer (Diblanc et al., 2005) or meander line polarizer (Arnaud et al., 2007) stacked on the
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top of the one-layer metamaterial cover. In this section, instead of using meander line or
metallic wire polarizer, the geometry of the metamaterial cover is changed to provide
circular polarization. Consequently, the second layer (polarizer layer) can be replaced with
another metamaterial cover layer, which in turn results in higher directivity.

Moreover, in contrast to the previous directive circularly polarized antennas (Iriarte et al.,
2006; Diblanc et al., 2005; Arnaud et al., 2007), polarization state of the directive antennas
using our proposed metamaterial cover can be mechanically changed regardless of the feed
mechanism.

In this section, a useful guideline has been established as how to use the magnitude and
phase of the transmission coefficient to identify the operational frequency band of the
directive circularly polarized antennas based on polarization dependent metamaterial
covers.

As revealed in the previous sections, when a plane wave normally impinges upon a
metamaterial cover, the phase and magnitude of the transmitted wave change with
frequency. In order to illustrate the polarization feature of the PDMTM cover, we assume
that a left-hand circularly polarized (LHCP) wave, namely,

E'=axe *4jaye "

where k is the free-space wavenumber, is normally impinged upon a director placed in X-Y
plane. The field transmitted through the director can be easily calculated from the following
equation:

E:e—jkzejex (E+j@ej(0y_0x)) ()

The above field can be decomposed into two circularly polarized components

1—e/(6y=6%) Ve 1+/(0y-6x) (6)

N/ AR

Fl=e/kz¢i0x [er(
Where

E:(ax-f-jay) E (ﬂx—jﬂy)

=h TR
and 6, and 0, denote the transmission phases for the x- and y-polarized waves, respectively.
For a traditional metamaterial cover (0,- 6,=0), the transmitted wave is purely LHCP and
thus the polarization does not change. In order to change the polarization state of the
antenna, the PDMTM cover can be used as a director. At a certain frequency where phase
difference is 180° and transmission is considerable, the transmitted wave is purely right-
hand circularly polarized (RHCP).

The left-hand circularly polarized incident wave can be also converted to the linearly
polarized (LP) wave where the phase difference is 90° and the transmission is also
considerable. One can follow the same procedure for the linearly polarized incident wave,

E'=axe *aye ",
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so that the transmitted field then becomes:

ol @y=0x4m[2) 4 j(Oy-0x+m/2) (7)

\/E )+€z( \/E

Consequently the radiation mechanism of the linearly polarized antenna with metamaterial
cover is conceptually described by Eq. 7. For an isotropic metamaterial cover, the phase
difference between two orthogonal polarizations is zero and thus the polarization state does
not change.

El=are /6209 g i (z-0)

¢ 2 iO%gr( 1+

An interesting feature of the PDMTM covers can be revealed by a closer investigation. When
a PDMTM cover with 90° transmission phase difference is used as a director, the
polarization state of the transmitted wave becomes LHCP. Moreover, when the phase
difference is -90° the polarization state of the transmitted wave is RHCP. Consequently we
can easily switch between LHCP and RHCP using a rotatory cover, which can be rotated
smoothly with a 90° steps.

Based on above discussion, one can conclude that the metamaterial cover can be used as a
changing polarization plane. The operational frequency band of an antenna with PDMTM
cover is defined as the frequency region within which the magnitudes of the transmission
coefficients for both x- and y-polarized waves are close to their maximum values and
transmission phase difference takes the desired value.

This interesting feature has been realized by changing the unit cell geometry, such as cutting
rectangular holes instead of square holes and changing the relative height difference
between the x- and y-directed strips of each layer (Veysi et al., 2011).

3.1 Rectangular hole metamaterial cover

The traditional metamaterial cover uses symmetric square holes so that its transmission
phase for normal incidence remains the same regardless of the x- or y-polarization state of
the incident plane wave. Therefore, the logical step is to replace the square holes by
rectangular ones (Veysi et al., 2011).

First, the design parameters of the metamaterial cover are selected to have a reasonable
transmission at a specified frequency. The effect of different design parameters of the
metamaterial cover on the magnitude of the transmission coefficient can be found in (Huang
et al., 2009).

After the successful design of the isotropic metamaterial cover, the width or/and length of
the square holes are changed to obtain both the desired transmission phase difference and
the maximum transmission within the specified frequency band. When the hole width is
increased, the plasma frequencies shift down to the lower frequencies.

Thus, by adjusting the width and length of the rectangular hole, the polarization sense of the
transmitted wave can be changed. An example design for these parameters is as follows:

h=24.5mm, P=20.5mm, L=17.5mm, W=16.5mm
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For a linearly polarized antenna, namely
E'= axe_]kz+ay ek

The axial ratio of the transmitted wave is plotted in Fig. 8. Also, Fig. 9 shows the
transmission curve for both x- and y-polarized incident plane waves. The frequency band
inside which the axial ratio of the RHCP transmitted wave is below 6dB and the magnitudes
of the transmission coefficients for both the x- and y-polarized incident waves are more than
90% ranges from 4.75GHz to 5GHz (5.12%).

3.2 Metamaterial cover with nonplanar strips

Another approach to realize PDMTM covers is to add space between the x- and y-directed
strips of each layer (Veysi et al., 2011), as shown in Fig. 10. For a traditional metamaterial
cover, the x-directed strip is located on the same plane as the y-directed strip.

For the nonplanar case discussed here the dimensions are chosen as follows: L=W=13.5mm,
P=18.5mm, h=27.5mm, h;=3.5mm, and h,=7mm, where h,; denotes the relative height
between the x- and y-directed strips of the first layer and h,, denotes the same height for the
second layer.

Fig. 11 shows the magnitudes of the transmission coefficients for both x- and y-polarized
waves. The axial ratio of the wave radiated from linearly polarized antenna is also plotted in
Fig. 12. It can be seen from Figs. 11-12, that the operating frequency of the proposed
structure is around 9.1GHz where the metamaterial cover has both the desired transmission
phase difference and the remarkable transmission.

4

Frequency(GHz)

Fig. 8. Axial ratio of the transmitted plane wave from the rectangular hole metamaterial
cover (Veysi et al., 2011).

The FDTD simulated results presented in this section confirm the concepts of the proposed
approach to control both the direction and the polarization of the transmitted wave. The
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authors believe that the proposed cover can find many applications in the broad
electromagnetic areas such as antenna engineering and optical sources.

However, a rigorous characterization should take into account the complex interactions
between the antenna and the metamaterial cover, such as finite size of the ground plane and
the antenna height. Consequently, it is indispensable to use full wave analysis method, such
as the finite difference time domain (FDTD), in the antenna designs in order to obtain
accurate results.

Transmission

Frequency(GHz)

Fig. 9. FDTD simulated transmission of the rectangular hole metamaterial cover (Veysi et al.,
2011).

Fig. 10. A unit cell of metamaterial cover with offset strips (Veysi et al., 2011).
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Fig. 11. FDTD simulated transmission of the metamaterial cover with offset strips (Veysi et
al., 2011).
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Fig. 12. Axial ratio of the transmitted plane wave from the metamaterial cover with
nonplanar strips (Veysi et al., 2011).

4. Conclusions

Metamaterial covers can be applied to conventional antenna to improve their performance. These
include conventional metamaterial covers to increase both the impedance and directivity
bandwidths of the proximity coupled microstrip patch antenna and polarization dependent
metamaterial covers to change the polarization state of the antenna. Thin lattices of ungrounded
metal plates can behave as a metamaterial cover and can be analyzed using a simple FDTD code.
These surfaces have two important properties: (1) increasing of the transmission rate and (2)
control of the direction and polarization of the transmission. Polarization dependent
metamaterial covers can be realized by cutting rectangular holes instead of square holes and
changing the relative height difference between the x- and y-directed strips of each layer.
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