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Preface

Quantum Field Theory was developed as the theory unifying Quantum Mechanics
and Relativistic Field Theory for the purpose of describing physics of elementary
particles. Quantum Electrodynamics, electro-weak theory, Quantum Chromodyna-
mics and the Standard Model of elementary particles are all particular examples of
Quantum Field Theory, which had great success in high-energy physics. At the same
time, it was realized that a straightforward application of Quantum Field Theory to
Einstein gravity does not give a physically sensible quantum gravity theory because of
its nonrenormalizability.

More recent applications of Quantum Field Theory are no longer limited to physics of
elementary particles. They also include many successful applications to nuclear
physics, condensed matter physics and pure mathematics. At the same time, the
formalism of Quantum Field Theory has to be further developed because of the new
challenges, such as quantum gravity and quantization with higher derivatives, strong
coupling and bound states, computational techniques in quantum perturbation theory,
and more rigorous mathematical foundations.

In the first part of the book, some recent progress in describing clothed particles by
unitary transformations together with their physical applications to nucleon scattering
and deuteron form-factors are discussed. A light-front quantization in the Hamiltonian
approach and a quantization of Pais-Uhlenbeck oscillator, both in the Hamiltonian
approach and in the path integral approach, are given.

In the second part of the book, some applications of Quantum Field Theory to low-
energy physics are considered, namely, (i) electro-weak interactions in a chiral
effective Lagrangian for nuclei, (ii) Landau-Ginsburg theory of phase transitions, and
(iii) exciton correlators and quantum entanglement in semiconductors.

In the third part of the book, various relations between Quantum Field Theory and
mathematics are presented, including knot invariants and Chern- Simons-Witten field
theory, solutions to a linearized model of Heisenberg equation, quantum anomalies
and Atiyah-Singer index theorems.

Though the book does not include all actual aspects of Quantum Field Theory and all
its recent advances, it does include some of the relevant ones, with a broad spectrum
of physical and mathematical applications.
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The Method of Unitary Clothing Transformations
in Quantum Field Theory: Applications in the
Theory of Nuclear Forces and Reactions

A. V. Shebeko

Institute for Theoretical Physics
National Research Center “Kharkov Institute of Physics & Technology”
Ukraine

1. Introduction

In what follows we will show how one can realize the notion of "clothed " particles (Greenberg
& Schweber, 1958) for field theoretical treatments based upon the so-called instant form of
relativistic dynamics formulated by Dirac (Dirac, 1949). In the context, let us recall that the
notion points out a transparent way for including the so-called cloud or persistent effects
in a system of interacting fields (to be definite, mesons and nucleons). A constructive
step (see surveys (Shebeko & Shirokov, 2000; 2001) and refs. therein) is to express the
total field Hamiltonian H and other operators of great physical meaning, e.g., the Lorentz
boost generators and current density operators, which depend initially on the creation and
destruction operators for the "bare" particles, through a set of their "clothed" counterparts.
It is achieved via unitary clothing transformations (UCTs) (see article (Korda et al., 2007))
in the Hilbert space H of meson-nucleon states and we stress, as before, that each of such
transformations remains the Hamiltonian unchanged unlike other unitary transformation
methods (Glockle & Miiller, 1981; Kobayashi, 1997; Okubo, 1954; Stefanovich, 2001))1 for
Hamiltonian-based models. In the course of the clothing procedure a large amount of
virtual processes associated in our case with the meson absorption/emission, the NN-pair
annihilation/production and other cloud effects turns out to be accumulated in the creation
(destruction) operators for the clothed particles. The latter, being the quasiparticles of the
method of UCTs, must have the properties (charges, masses, etc.) of physical (observable)
particles. Such a bootstrap reflects the most significant distinction between the concepts of
clothed and bare particles.

At the same time, after Dirac, any relativistic quantum theory may be so defined that the
generator of time translations (Hamiltonian), the generators of space translations (linear
momentum), space rotations (angular momentum) and Lorentz transformations (boost
operator) satisfy the well-known commutations. Basic ideas, put forward by Dirac with his
"front", "instant” and "point" forms of the relativistic dynamics, have been realized in many
relativistic quantum mechanical models. In this context, the survey (Keister & Polyzou, 1991),

being a remarkable introduction to a subfield called the relativistic Hamiltonian dynamics,

1 Some specific features of these methods are discussed in (Shebeko & Shirokov, 2001) and (Korda et al.,
2007)
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represents various aspects and achievements of relativistic direct interaction theories. Among
the vast literature on this subject we would like to note an exhaustive exposition in lectures
(Bakker, 2001; Heinzl, 2001) of the appealing features of the relativistic Hamiltonian dynamics
with an emphasis on "light-cone quantization”. Following a pioneering work (Foldy, 1961),
the term "direct" is related to a system with a fixed number of interacting particles, where
interactions are rather direct than mediated through a field. In the approach it is customary
to consider such interactions expressed in terms of the particle coordinates, momenta and
spins. Along the guideline the so-called separable interactions and relativistic center-of-mass
variables for composite systems were built up by assuming that the generators of the Poincaré
group (IT) can be represented as expansions on powers of 1/c? or, more exactly, (v/c)?,
where v is a typical nuclear velocity (cf. the (p/m) expansion, introduced in (Friar, 1975),
where m is the nucleon mass and p is a typical nucleon momentum). Afterwards, similar
expansions were rederived and reexamined (with new physical inputs) in the framework of a
field-theoretic approach (Glockle & Miiller, 1981). There, starting from a model Lagrangian for
"scalar nucleons" interacting with a scalar meson field (like the Wentzel model (Wentzel, 1949))
the authors showed (to our knowledge first) how the Hamiltonian and the boost generator
(these noncommuting operators), determined in a standard manner (Schwinger, 1962), can
be blockdiagonalized by one and the same unitary transformation after Okubo (Okubo, 1954).
The corresponding blocks derived in leading order in the coupling constant act in the subspace
with a fixed nucleon number (the nucleon "sector” of the full space H ). In general, the work
(Glockle & Miiller, 1981) and its continuation (Kriiger & Glockle, 1999) exemplify applications
of local relativistic quantum field theory (RQFT), where the generators of interest, being
compatible with the basic commutation rules for fields, are constructed within the Lagrangian
formalism using the Nother theorem and its consequences. Although the available covariant
perturbation theory and functional-integral methods are very successful when describing
various relativistic and quantum effects in the world of elementary particles, the Hamilton
method can be helpful too. As known, it is the case, where one has to study properties of
strongly interacting particles, e.g., as in nuclear physics with its problems of bound states for
meson-nucleon systems. Of course, any Hamiltonian formulation of field theory, not being
manifestly covariant, cannot be ab initio accepted as equivalent to the way after Feynman,
Schwinger and Tomonaga. However, in order to overcome the obstacle starting from a field
Hamiltonian H one can consider it as one of the ten infinitesimal operators (generators)
of space-time translations and pure Lorentz transformations that act in a proper Hilbert
space. Taken together they compose a basis of the Lie-Poincaré algebra (see below) to ensure
relativistic invariance (RI) in the Dirac sense, being referred to the RI as a whole.

The purpose of the present exposition is twofold. First, we consider an algebraic method
(Shebeko & Frolov , 2011) to meet the Poincaré commutators for a wide class of field theoretic
models (local and nonlocal ones taking into account their invariance with respect to space
translations). In particular, this recursive method is appropriate for models with derivative
couplings and spins >1, typical of the meson theory of nuclear forces, where only some
part of the interaction density in the Dirac picture has the property to be a Lorentz scalar.
The antiparticle degrees of freedom are included together with such an important issue as
mass renormalization vs relativistic invariance in the Dirac sense. Second, special attention is
paid to finding analytic expressions for the generators in the clothed-particle representation,
in which the so-called bad terms are simultaneously removed from the Hamiltonian and the
boosts. Moreover, the mass renormalization terms introduced in the Hamiltonian at the outset
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turn out to be related to certain covariant integrals that are convergent in the field models
with proper cutoff factors. After constructing interactions between the clothed particles and
addressing an equivalence theorem for evaluation of the S-matrix we derive the approximate
eigenvalue equations for the simplest bound and scattering states. The latter can be found in
a nonperturbative way using the methods elaborated in the theory of nuclear structure and
reactions that is demonstrated by a few examples.

However, before to apply the UCT method (in particular, beyond the Lagrangian formalism
with its local interaction densities) we would like to mention the two algebraic procedures to
solve the basic commutator equations of I1 (see Sec. 2). One of them, proposed in (Shebeko
& Frolov , 2011), has some touching points with the other developed in (Kita, 1966; 1968) and
essentially repeated many years after by Chandler (Chandler, 2003). In paper (Kita, 1968)
the author considers three kinds of neutral spinless bosons and nonlocal interaction between
them in a relativistic version of the Lee model with a cutoff in momentum space. A similar
model for two spinless particles has been utilized in (Chandler, 2003) with a Yukawa-type
interaction that belongs to the realm of the so-called models with persistent vacuum (see, for
instance, (Eckmann, 1970)). Certain resemblance between our and those explorations is that
we prefer to proceed within a corpuscular picture (see Chapter IV in monograph (Weinberg,
1995)), where each of the ten generators of the Poincaré group II (and not only they) may be
expressed as a sum of products of particle creation and annihilation operators a' (1) and a(n)
(n =1,2,..), e.g., bosons and/or fermions. Some mathematical aspects of the corpuscular
notion were formulated many years ago in (Friedrichs, 1953) (Chapter III). As in (Weinberg,
1995), a label # is associated with all the necessary quantum numbers for a single particle: its
momentum p ,2, spin z-component (helicity for massless particles) y,, and species &,. The
operators a (1) and a(n) satisfy the standard commutation relations such as Eqs. (4.2.5)-(4.2.7)
in (Weinberg, 1995).

In the framework of such a picture the Hamiltonian of a system of interacting mesons and
nucleons can be written as

H= Z Z HCA/ (1)
C=0A=0
Hep = IHCA(l’,Z’,...,n’C; 1,2,m4)a’ (1) (2)..a’ (ng)a(ng)..a(2)a(1), 2)

where the capital C(A) denotes the particle-creation (annihilation) number for the operator
substructure Hc4. Sometimes we say that the latter belongs to the class [C.A] . Operation
Y implies all necessary summations over discrete indices and covariant integrations over
continuous spectra.

Further, it is proved (Weinberg, 1995) that the S-matrix meets the so-called cluster
decomposition principle, if the coefficient functions H-4 embody a single three-dimensional
momentum-conservation delta function, viz.,

Hca(1,2,..,C12,..,A) = J(pﬁ +Pht ot p& —P1—P2— - —Pa)

X hea(PLHi 8L paphh, o POUCCE; PLIAEL, P2H2C2, o PAMACA), 3)

2 Or the 4-momentum p,, = (p%, p,) on the mass shell p% = p%2 — p2 = m?2 with the particle mass 1,
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where the c-number coefficients i 4 do not contain delta function.

Following the guideline “to free ourselves from any dependence on pre-existing field theories
”(cit. from (Weinberg, 1995) on p.175), the three boost operators N =(N!, N2, N?) can be
written as

N=Y Y Nca )
C=0A=0
Nca :z:NCA(l’,Z’,..., ne 1,2, ma)at (1)at (2))..at (nf)a(na)..a(2)a(1). (5)

In turn, the operator H, being divided into the no-interaction part Hr and the interaction Hj,
owing to its translational invariance allows Hj to be written as

H; = /HI(X)EIX. (6)

Our consideration is focused upon various field models (local and nonlocal) in which the
interaction density Hj(x) consists of scalar Hy:(x) and nonscalar Hys:(x) contributions,

Hj(x) = Hsc(x) + Hpsc(x), @)
where the property to be a scalar means
Ur(A)Hse(x)Up" = Hye(Ax), Vx = (t,x) 8)

for all Lorentz transformations A. Henceforth, for any operator O(x) in the Schrodinger (S)
picture it is introduced its counterpart O(x) = exp(iHpt)O(x) exp(—iHpt) in the Dirac (D)
picture.

2. Basic equations in relativistic theory with particle creation and annihilation

When seeking links between the coefficients in the r.h.s. of Egs. (2) and (5) one considers the
fundamental relations of the Lie-Poincaré algebra, which can be divided into the three kinds
for:

no-interaction generators

(PPl =0, (o] = ieilk,  UiP] = ieijP, )
relations linear in H and N
[P,H] =0, [H]=0, [iNj]=iexNy, [P,N;] =id;H, (10)
and ones nonlinear in H and N
[H,N] =iP, [N;Nj] = —iejjJk, (11)

(i,j,k=1,2,3),

where P = (P!, P2, P3) and J = (J', J%,J?) are the linear momentum and angular momentum
operators, respectively. In this context, let us remind that in the instant form of relativistic
dynamics after Dirac (Dirac, 1949) only the Hamiltonian and the boost operators carry
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interactions with conventional partitions H = Hp + H; and N = Nf + Nj, while P = Pr
and J = Jr. In short notations, we distinguish the set G = {Hf, P, Jr, Nr} for free particles
and the set G = {H, Pg,Jr, N} for interacting particles.

In turn, every operator Hc 4 can be represented as Hcy = | Hea(X)dx, if one uses the formula
1 j /
5 / i(p—pP')x 4.
(p—p)= @np ) ¢ X
Thus, we come to the form H = | H(x)dx well known from local field models with the density

-LE

(12)

HMS

For instance, in case with C = A = 2, where sz(lllzl;llz) _ J(Pll n p’2 Cpy -
p2)h(1,2';1,2), we have

Hy(x) = (ley)Iexp[—i(pg +ph—p1—p2)xh(1,2;1,2)a" (1) a" (2')a(2)a(1). (13)

Further, we will employ the transformation properties of the creation and annihilation
operators with respect to I1. For example, in case of a massive particle with the mass m and
spin j one considers that

Up(A, b)a® (p, p)U5 (A, b) = ¢PDY) (W(A, p))at (Ap, i), (14)

VA € Ly and arbitrary spacetime shifts b = (b%, b)

with D-function whose argument is the Wigner rotation W(A, p), L+ the homogeneous
(proper) orthochronous Lorentz group.  The correspondence (A,b) —  Up(A,b)
between elements (A,b) € IT and unitary transformations Up(A, b) realizes an irreducible
representation of I1 on the Hilbert space H (to be definite) of meson-nucleon states. In this
context, it is convenient to employ the operators a(p, 1) = a(p, ),/po that meet the covariant
commutation relations

la(p', 1), a" (p. 1)) = pod(p — 0"y,
la(p', 1), a(p, )] = [a" (P, 1), 0" (p, o)) = 0. (15)
Here pg = \/p? + m? is the fourth component of the 4-momentum p = (py, p).

3. A possible way for constructing generators of the Poincaré group

Let us recall that within the Lagrangian formalism the 4-vector P¥ = (H, P) for any local field
model, where requirements of relativistic symmetry are manifestly provided at the beginning,
is determined by the Nother integrals

V= / T%(x)dx (v =0,1,2,3), (16)
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where 7% (x) are the components of the energy-momentum tensor density 7 (x) at t = 0.

Other Nother integrals are expressed through the angular-momentum tensor density
MEI (x) = x TP (x) — xVTPE (x) + 2P (%), 17)

that contains, in general, so-called polarization part ZP["13 associated with spin degrees of
freedom. Namely, the six independent integrals

M = / MO (3)dx (18)
t=0
are considered as the generators of space rotations
JP=eqM (i,k1=1,2,3) (19)
and the boosts
Nk = MOk = / T (x) dx+ / 00K (x)dx, (k = 1,2,3). (20)

The reminder is not accidental as far as we strive to go out beyond the traditional QFT
with local Lagrangian densities via special regularization of interactions in a total initial
Hamiltonian.

3.1 The Belinfante ansatz. Application to interacting pion and nucleon fields

Regarding an illustration of these general relations let us write, the Lagrangian density

Lscu(x) = %EEH(X)(I"YF?V = mo) P (x) + %@H(x)(*i’ﬂ‘(gy —mo)Pp(x)
+ 3 018" 1 () — kB ()] — igoBr ()15 r (X)), @y

for interacting pion ¢ and nucleon ¢ fields with the PS coupling (see, e.g.,(Schweber, 1961)).
Then, one has (omitting argument x): i) energy-momentum tensor density

oL _ oL oL
T]/n/ _ _SCH v + SCH v + SCH v W
SCH = 31, Yy ET Yut PHy ¢ — 8" LscH
= Tlf,w +TE T, (22)
where . .
i i _
T = EIPHVﬂavll’H - EvﬂlPHaleH - 8" Ly, (23)
TH =9teudVey — "L, (24)
7" = igog" Purs¥reH, (25)

3 Henceforth, the symbol [«, B] for any labels « and f means the property ff = —fl&fl for its carrier f.
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and ii) polarization contribution

nE0 = it PR+ 2 g, 26)
where .
£ = F gt ).
In formulae (21)-(25) unlike operators O(x) in the D picture, we have operators
O (x) = eHtO(x)e i,
in the Heisenberg picture. We prefer to employ the definitions:

{r" 7Y = 28" = vorur0. {vp 15} = 0,7 = 107570 = —75-

The corresponding Hamiltonian density is given by

HSCH (X) = 7“508H(x) = H?erm(x) + H%(X) + V;g)s (X), (27)
where 1 - , -
() = 29017 T +molp(0 + S900HT T +molplx),  28)

—~

HY(0) = 3 [0 + Vo) Vp(x) + ide? ()], 29)

Vps (%) = g0 (x) 15 () p(x), (30)
where, as usually, 77(x) denotes the canonical conjugate variable for the pion field. One should
note that the second integral in the r.h.s. of Eq. (20) does not contribute to the model boost
since operator (26) with § = u = 0 and v = k is identically equal zero. Thus we arrive to the
relation

Ngcy = —/x SCOH(x)dx = —/xHSCH(x)dx, (31)

that exemplifies the so-called Belinfante ansatz:
N=- / xH(x)dx, (32)

which, as it has first been shown in (Belinfante, 1940), holds for any local field model with a
symmetrized density 7#(x) = T"#(x). Such a representation helps (Shebeko & Shirokov,
2001) to get simultaneously a sparse structure for the Hamiltonian and the generators of
Lorentz boosts in the CPR #. We shall come back to this point later.

Further, the Hamiltonian density can be represented as

Hscp(x) = Hr(x) + Hy(x) (33)

# The relation (32) also has turned out to be useful when formulating a local analog of the Siegert theorem
in the covariant description of electromagnetic interactions with nuclei (Shebeko, 1990).
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with the free part
HF(X) =Hxn (x) + errm (x) (34)
and the interaction density
Hi(x) = Vps(x) + Hren (x), Vps(x) = igP(x) 159 (x) (x), (35)

where we have introduced the mass and vertex counterterms:

Hyen (%) = M (x) + Migr™ (x) + Hi (x), (36)

—_

Mg (x) = 5 (6 — 1) 9% (x),

MET (x) = (mg — m)P(x)p(x)
and

Hig(x) = i(g0 — 8)P(x) 159 (x) 9 (x).

One should note that the densities in Egs. (34)-(35) are obtained from Egs. (28)-(29) replacing
the bare values mg, ug and go, respectively, by the "physical" values m, yu; and g. Such a
transition can be done via the mass-changing Bogoliubov-type transformations (details in
(Korda et al., 2007)). In particular, the fields involved can be expressed through the set
a = a'(a),b(b),d" (d) of the creation (destruction) operators for the bare pions and nucleons
with the physical masses,

o(x) = (271)372 / (2w) "2 [a(K) + at (—K)exp(ikx)dk, 37)
n(x) = —i(2m)~3/? /(wk/2)1/2[a(k) — at(—k)]exp(ikx)dk, (38)

p(x) = (27) 2 [(m/Ep)"* Llu(pi)t (pp)
4

+o(=ppu)d" (—pp)lexp(ipx)dp. (39)
Substituting (33) into (31), we find
N=Nr+N;
with
NF = Nygyy + Ny = — /foerm(x)dx - /an(x)dx
and

N;=-— /xHI(x)dx.

Now, taking into account the transformation properties of the fermion field 1(x) and the pion
field ¢(x) with respect to I, it is readily seen that in the D picture density (33) is a scalar, i.e.,

Up(A,b)Hscp (x)Up (A, b) = Hscp(Ax +1), (40)

SO
U (A, b)Hy(x)Uz (A, b) = Hi(Ax +Db). (41)
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It is well known (see, e.g., Sect. 5.1 in (Weinberg, 1995)) that for a large class of theories the
property (41) with the corresponding interaction densities Hy(x), being supplemented by the
condition

[H;(x"), Hr(x)] =0 for (¥ —x)? <0, (42)

plays a crucial role for covariant calculations of the S-matrix.

3.2 An algebraic approach within the Hamiltonian formalism

After these preliminaries, let us consider field models with the decomposition
Hj = Hqe + Hyse = / Hee (x)dx + / Huse(x)dx. 43)
It means that only the density in the first integral has the property (41), i.e.,
Ur (A, b)Hee (x)Up (A, b) = Hye(Ax +b). (44)

It is the case, where the pseudoscalar (v and 7), vector (p and w) and scalar (6 and o)
meson (boson) fields interact with the 1/2 spin (N and N) fermion ones via the Yukawa-type
couplings V =}, Vj = Vs + Vs + Vi in

H; = V 4+ mass and vertex counterterms (45)

with
Ve = gs [ dFG@Y(E)s(2), (46)
Vps = lgpS/df (X) 759 (%) pps (%) (47)

and

Vo= [ { i @np@el (1) + L i@ap@et ()]

- 2 T h
+f dx{ PEPEDPE) 1005 + 2 <f>"0f¢(f>l/’(f)"°f"’(f)}’ )

where ¢’ (¥) = 9"¢%(X) — 0" ¢k (¥) is the tensor of the vector fields involved (details in
(Dubovyk & Shebeko, 2010)).

In the context we would like to remind that in "...theories with derivative couplings or spins
j > 1, it is not enough to take Hamiltonian as the integral over space of a scalar interaction
density; we also need to add non-scalar terms to the interaction density to compensate
non-covariant terms in the propagators” (quoted from Chapter VII in (Weinberg, 1995)).

Then, taking into account that the first relation (11) is equivalent to the equality
[NF/HI] = [H/NI}/ (49)

we will evaluate its Lh.s.. In this connection, let us regard the operator

He(t / Hee(x (50)
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and its similarity transformation
PN Hye(1)e PN = [ He(L(B))ax (51)

where L(B) is any Lorentz boost with the parameters § = (8!, 2, ).
From (51) it follows that

il NF N, He (£)]eF'NF = a‘zl / Hye(L(B")x)dx, (52)
whence, for instance,

i[N},HSC(t)] = lim 9 / Hsc(t‘—/Slxl,xl —,Blt,xz,x3)dx

1
Bl—0 a,Ba ; (53)
_ 1
- —/(t@Hsc(x) 22 Hoel(x))ax
since for the infinitesimal boost
L(B)x = (t— px,x— pt)
In turn, from (53) we get
INE Had] = ilim [ (<it[PY, Huc()] + ix! [Hp, Hec ()] )dx
H
SO
[N, Hee] = — / x[H, Hye (x))dx. (54)
By using Eq. (54) equality (49) can be written as
- /X[HF/ Hsc(x>]dx = [HF/ NI] + [HI/ NI] + [Hnsm NF]~ (55)
Evidently, this equation is fulfilled if we put
N;=Np=-— /xHSC(x)dx (56)
and _
[Hee, Nj = — / xix / dx' [Hee (x'), Hee (x)] = [NF + Ny, Hysc] (57)
or

/ dx / dx' (X' — x)[Hse(x'), Hse (x)]
- / xddx / dx'[Hyse (x'), He (x) + Hae (%)]. (58)

In a model with H,sc = 0 the latter reduces to

/ e PXPXgx — (59)
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where
1—-1 /rdru1 L), Ho (=10 (60)
- 2 SC 2 7 SC 2 .

By running again the way from Eq. (49) to Eqs. (59)-(60) we see that the nonlinear
commutation (11)
[H,N] =iP

will take place once along with the Belinfante-type relation (56) the interaction density meets

the condition . ,

/rdr[Hsc(Er),Hsc(—Er)] =0. (61)
One should note that we have arrived to Eq. (56) being inside the Poincare algebra itself
without addressing the Nother integrals, these stepping stones of the Lagrangian formalism.
In the context, we would like to stress that the condition (61) is weaker compared to the

constraint . .
[Hse(51), Hse(—z1)] =0 (62)

2 2
imposed for all r excepting, may be, the point r = 0. But we recall it as a special case of
the microcausality requirement that is realized in local field models. Beyond such models, as
shown in Appendix B of (Shebeko & Frolov , 2011), Egs. (56) and (49) may be incompatible. It

makes us seek an alternative to assumption (56) in our attempts to meet Eq. (55).

At this point, we put N; = Np + D to get the relationship

[HF/ D] = [NB + D/ Hsc] + [NF + NB + D/ Hnsc]/ (63)

that replaces the commutator [H, N] = iP and determines the displacement D.

Further, assuming that the scalar density Hsc(x) is of the first order in coupling constants
involved and putting

Hpse(x) = Z r(irs]c) (x), (64)
p=2

we will search the operator D in the form
D=) D, (65)

i.e., as a perturbation expansion in powers of the interaction Hs.. Here the label (p) denotes
the pth order in these constants. By the way, one should keep in mind that the terms in
the rh.s. of Eq. (64) are usually associated with perturbation series for mass and vertex
counterterms. Evidently, their incorporation may affect the corresponding higher-order
contributions with p > 2 to the boost. Therefore, to comprise different situations of practical
interest let us consider field models in which Hysc(x) = Vise(x) + Vien(x) with a nonscalar
interaction V5 = f Vise (X)dx and some "renormalization” contribution V., = f Vyen (x)dx.
The latter may be scalar or not. Of course, such a division of Hys(x) can be done at the
beginning in Eq. (43). But the scheme presented here seems to us more flexible.



14 Advances in Quantum Field Theory

By substituting the expansions (64) and (65) into Eq. (63) we get the chain of relations

[Hr, D®] = [Np, Hi2) + [N, Hed), (66)

[Hp, D®)] = [Np, HY] + D@, Hy] + [N, HZ), (67)

[HFID(p)] = [Np, H;ggg} + [NB/H;SISC_U] + [D(p_l)rHSC] + [D, Hnsc](V), (68)
(p=4,5,...)

for a recursive finding of the operators D(P) (p = 2,3,...).

Further, after such substitutions into the commutators
[Py, Nj] = ixiH, [Jx, Nj] = iegiN;, [N, Nj] = —iegji])

we deduce, respectively, the following relations:

[Pk, D}p)] = i5ij7(£c> (p=23,.) (69)

from
[Py, D]’] = 10 Hnsc, (70)
[k, D] = ieg D} (71)

from
[Jx, Dj] = iex;i Dy (72)

and

[Nrk, Npj] + [Npk, Nij] = 0, (73)

The remaining Poincaré commutations are fulfilled once one deals with any rotationally and
translationally invariant theory.

Now, keeping in mind an elegant method by Chandler (Chandler, 2003), we invoke on the
property (see (Friedrichs, 1953)) of a formal solution Y of the equation

[Hg, Y] = X (74)
to be any linear functional F(X) of a given operator X # 0. In other words, it means that
[Hp, F(X)] = X (75)

with F(A1 X1 + A2X5) = A F(X1) + A2F(Xy), where A and A, are arbitrary c-numbers. In
addition, one can see that

[He, F(X)] = F([HF, X]). (76)

Moreover, it turns out that
[P, F(X)] = F([P,X]), 77)
0, F(X)] = F([J, X]), (78)

[NF, F(X)] = F(INg, X]) +iF(F([P, X])). (79)
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In order to prove the relations let us employ the Jacobi identity
[A,[B,C]] +[C,[A, B]] + [B,[C, A]] = 0 (80)

and write

[0, [HF, F(X)]] = —[F(X), (O, HF]] + [HF, [0, F(X)]]

with some operator O. Then
[0, F(X)] = F([O, X]) + F([F(X), [0, HF]]). (81)

Of course, to be more constructive one needs to have a definite realization of the functional
F(X). In this connection, we will use the representation
o0
Y = —i lim X(t)e "t (82)
n—0+J0
of the operator Y that enters the equation (74). The existence proof for such a solution is
sufficiently delicate (see discussion in Appendix A of Ref. (Shebeko & Shirokov, 2001)).

3.3 Application to a nonlocal field model

We will show how the method proposed works in combination with introducing certain cutoff
(vertex) functions that makes an initial local model be nonlocal. In spite of our consideration
may be extended to more realistic models its main idea becomes transparent for a simple
system of "scalar nucleons" (more precisely, charged spinless bosons) and neutral scalar
bosons with the interaction density Hj(x) = Vjoc(x) + Vien(x) (cf. (Glockle & Miiller, 1981;
Shirokov, 2002)):
Vioe (%) = g5 (x) : 5 (x) (x) : (83)

and

Vien(x) = 0pts = 92(%) = +8p = 9} () 4y (x) - (84)
with the mass shifts ous = (43, — p2), oy = %(y%b — p2). In order to regard a nonlocal
extension of this local model let us substitute the expansions

P la) +at ()™ gy = 2T [ Plo(p) +at (po )P

gs(x) = 22m)°] 71/
Wik P

into Egs. (83) and (84) to get
_ g /dP’ /dP dK o/ ripxtikx
Vi -6 i it 4 e tP P
Toc (X) 2[2(271)3]1/2 | Ep’ ] Ep wke

xa(k) : [ (p")b(p) + b (p")d" (p—) +d(p_)b(p) +d(p_)d" (p-)] : +He.  (85)
and Vien (x) = dps(x) + opp(x) with

Opis () 27T / it [a(k') + a® (k) )™+ ¥[a (k) + at (k_)] ;, (86)
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o) = gty [ [ G2 L8+ A+ o)) 6

It is implied that the operators a(a*), b(b) and d(d") meet the commutation relations
[a(k)/a+ (k/)] = kO(s(k - k/)/ (88)

[b(p), b (p")] = [d(p),d"(p)] = pod(p — p') (89)

with all the remaining ones being zero.

The interaction operator itself Hy = [ Hj(x)dx = V,c + Vien with

d
Vloc /anoc d 27‘[ 1/2/ P/ / _P_k)

xa(k) : [b"(p")b(p) + b+(Pl)d+(P—) +d(p_)b(p) +d(pl)d* (p-)] : +He,  (90)
Vren = /MHS(X) + Opp (x)]dx. o1

Let us consider its nonlocal extension

HI = anoc + M;s + Mbr (92)

where in accordance with the representation (3) we introduce the following normally-ordered

structures: o p
Viloc :/anoc(x)d’(: /%/Fp

x{6(p" —p —K)g11(p, p. Kb (p")b(p) + 6(p" + p — K)g12(p', P, k)BT (p')d" (p)
+6(p" +p +K)g21(p', p, )d(p")b(p)
+o(p" —p—K)gn(p, p.k)d" (p")d(p) }a(k) + H.c. (93)

Furthermore, the creation/destruction operators have the transformation properties like (14).
For example,
Up(A)a(k)Ug (A) = a(Ak). (94)

Therefore, in the Dirac picture
UF(A)Viae ()UE " (A) = Vioe (A%), (9)
i.e., the interaction density V},.(x) is a Lorentz scalar.

For our nonlocal model we will retain the property assuming that

UF(A) nloc( )UF ( ):anoc(Ax)' (96)

It is readily seen that this relation holds if the coefficients g,/ meet the condition

gs’s(Ap/rAprAk) = gs’s(p/r p,k). 97)
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On the mass shells with p’? = p? = ],ti and k* = 2 the latter means that the functions
gee(p', p, k) can depend only upon the invariants p'p, p’k and pk.

The transition from Vj,. to V,;,. can be interpreted as an endeavor to regularize the theory.
In the context, the introduction of some cutoff functions g, in momentum space is aimed at
removing ultraviolet divergences typical of local field models with interactions like expression

(83).

An associated exploration carried out in (Shebeko & Frolov , 2011) with covariant cutoffs

gee(p', P k) = vee([k+ (=1)p = (=1)pllk = (=1)*p" + (~1)°p]) (98)

has allowed us to evaluate the lowest-order correction D(2) to the Belinfante operator and get
the leading-order analytic expressions for the coefficients in the "mass renormalization" terms

M= [ 25t (00t 0a(k) + ma()lat 0 () +akat ]}, 09
k

My = /%{mn(p)b*(zﬂ)b(;ﬂ)+m12(p)b*(p)d*(r)—)+mzl(p)b(P)d(P—)+mzz(p)d*(z9)d<p)}~
: P
(100)

4. The method of unitary clothing transformations in action

As shown in (Shebeko & Shirokov, 2001), the Belinfante ansatz turns out to be useful when
constructing the Lorentz boosts in the CPR, viz., the generator N = N(«), being a function of
the primary operators {a} (such as a'(a), b*(b) and d'(d) for the examples regarded above)
in the BPR, is expressed through the corresponding operators {a.} for particle creation and
annihilation in the CPR. The transition {#} = {a.} is implemented via the special unitary
transformations W(a) = W(a,), viz.,

o= Wiae)acWH (a). (101)
These transformations satisfy certain physical requirements:

i) The physical vacuum (the H lowest eigenstate) must coincide with a new no—particle state
(), i.e,, the state that obeys the equations

2 (K) Q) = be(F, 1) [Q) = de(F, 1) 1) =0, V. B, 1 (102)
QQ) =1.
ii) New one-particle states |k). = af (k)Q) etc. are the H eigenvectors as well.
K(ace)[K)e = K (ae) [K)e = wilk)e (103)

Ki(ac)|k)e =0 (104)

iii) The spectrum of indices that enumerate the new operators must be the same as that for the
bare ones .
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iv) The new operators «, satisfy the same commutation rules as do their bare counterparts «
that is provided via the link (101) with a unitary operator W to be obtained as in (Shebeko &
Shirokov, 2001).

4.1 The Hamiltonian and other generators of the Poincaré group in the clothed-particle
representation

A key point of the clothing procedure exposed in (Shebeko & Shirokov, 2001) is to remove the
so-called bad terms from the Hamiltonian

H=H(a) = Hr(a) + Hy(a) = W(ae)H(ae)WH () = K(ac), (105)

more exactly, from a primary interaction V(«) in Hj(a) = V() 4 Vien (). For example, these
terms bibcal, bidtac, bidlal, d.dial enter V(a.) determined by Eq. (90) after the replacement
of the bare operators in it by the clothed ones. These terms should be removed together
with their Hermitian conjugate counterterms! to retain the hermiticity of the similarity
transformation (105). In general, such terms prevent the physical vacuum |Q)) (the H lowest
eigenstate) and the one-clothed-particle states |1). = af (1n)|Q) to be the H eigenvectors for all
n included. Here creation operators a/ (1) are clothed counterparts of those operators a'(n)
that are contained in expansion (2). The bad terms occur every time when any normally

ordered product
at(1)a’ (2)..at (nz)a(ny)..a(2)a(1)

of the class [C.A] embodies, at least, one substructure which belongs to one of the classes [k.0]
(k=1,2,..)and [k.1]) (k=0,1,...).

Strictly speaking such a departure point should be specified and sometimes modified. Indeed,
by trying to meet the requirements i) and ii) we, at first sight, leave out of consideration
such undesirable terms in V., (). Nevertheless, it is not accidental since the renormalization
contribution is canceled in the course of the procedure itself that is some attractive feature of
the UCT method as a whole (see below). In addition, it has turned out (Dubovyk & Shebeko,
2010) that the nonscalar contribution (the second integral in the rh.s. of Eq. (48)) to the
operator V4 () is canceled too when eliminating bad terms only from its scalar part (in fact,
the first integral in the r.h.s. of Eq. (48 )). Keeping this in mind, when handling the division

Hi(a) = / H;(x)dx = Hae (&) + Hpsc(a), (106)

we assume Hsc(a) = Vpga(a) + Vgooa(a) to remove the bad part Vi, from the similarity
transformation
K(ae) = W(ae)[Hp (ac) + Hy () W' (ac)

= W(ae)[Hr () + Viaa (oc) + Voo (ac) + Husc (ac) JW* (axc). (107)

Remind that term "good", as an antithesis of "bad", is applied here to those operators (e.g.,
of the class [k.2] with k > 2) which destroy both the no-clothed-particle state () and the
one-clothed-particle states.
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For unitary transformation (UCT) W = exp R with R = —Rt it is implied that we will
eliminate the bad terms V},;; in the r.h.s. of

K(6c) = Hr(ac) + Viaa(6c) + [R He] + R, Viga] + 3[R [R, H

1
+ 5 [R R, Viaa]] + . + R Vigoae R + R Hyse ™8 (108)
(cf. Eq. (2.19) in (Shebeko & Shirokov, 2001)) by requiring that
[Hr, R] = Vyad (109)

for the operator R of interest.

One should note that unlike the original clothing procedure exposed in (Shebeko & Shirokov,
2001), (Korda et al., 2007) we eliminate here the bad terms only from H;. interaction in spite
of such terms can appear in the nonscalar interaction as well. This preference is relied upon
the previous experience (Dubovyk & Shebeko, 2010) when applying the method of UCTs in
the theory of nucleon-nucleon scattering. Now we get the division

H = K(a;) = K +K; (110)
with a new free part Kp = Hr(a.) ~ ala, and interaction

K; = Vgood (ac) + Hysc(ae) + [R, Vgood]

1 1
+ E[R’ Viad] + [R, Hysc] + g[Rr [R, Vpadl] + -, (111)

where the rh.s. involves along with good terms other bad terms to be removed via subsequent
UCTs described in Subsec. 2.4 of (Shebeko & Shirokov, 2001) and Sec. 3 of (Korda et al., 2007).

In parallel, we have
N = N(a) = Np(#) + Nj(a) = W(ae)N(ae) W' (ac) = B(ac) (112)

or
B(a;) = Np(ac) + Ny(ac) + [R,Ng] + [R,Nf] + ..., (113)

where accordingly the division
N; =Nz +D, (114)

Np = — /XHSC (x)dx = Npgg + Ngoodr

Eq. (113) can be rewritten as

B(ac) = Np(ac) + Npga(ae) + [R,Nf] + [R, Npgq] + %[R/ [R,NF]]

1
+ 3[R, [R, Npaal] + .+ " Ngooae X + efDe K. (115)



20 Advances in Quantum Field Theory

But it turns out (see the proof of Eq. (3.26) in (Shebeko & Shirokov, 2001)) that if R meets the
condition (109), then

[NER] = Nugs = = [ XViaa(x)dx (116)

so the boost generators in the CPR can be written likely Eq. (110),
N = B(a;) = Br + By, (117)
where Br = Np(ac) is the boost operator for noninteracting clothed particles while Bj

includes the contributions induced by interactions between them

B = Ngooa(c) + D(ac) + [R, Ngpoq]

+ %[R, Np.4] + [R, D] + %[R, [R, Npaal] + - (118)

One should note that in formulae (111) and (118) we are focused upon the R-commutations
with the first-eliminated interaction Vj,;. As shown in (Shebeko & Shirokov, 2001), the
brackets, on the one hand, yield new interactions responsible for different physical processes
and, on the other hand, cancel (as a recipe!) the mass and other counterterms that stem from
Hyse(ac) and D(ac).

But at this place we will come back to our model with Vypg = Viyjoc, Vgoos = 0 and R = Ry
to calculate the simplest commutator [Ry,joc, Vyioc] in which accordingly condition (109) the
clothing operator R, is determined by

[HF/ Rnloc} = anoc~ (119)

From the equation it follows (cf. Appendix A in (Shebeko & Shirokov, 2001)) that its solution
can be given by

dk
Ryjoe = / S RRIOF,  a(k) = Hee. = Rytoe — R (120)

nloc
k

with the row Ff = [b(p),d"(p)] and the column F, (cf. Eq.(A.8) in (Shebeko & Shirokov,
2001)). The matrix R(k) is composed of the elements

/ _ g_e’s(plrp'k) NN 1)\¢
RE’S(p ’p’k) - Wi + (_1)€!Ep/ _ (_1)£Epd(k+( l) P ( 1) P) (121)

(¢,e=1,2)

Such a solution is valid if ys < 2p. In other words, under such an inequality the operator
R,.10c has the same structure as V. itself. Then, all we need is to evaluate the commutator

[Rnlocr anoc]'

For example, our calculations result in the boson-boson interaction operator

1 dpy [dpa [dpy [ dp: /
2 Rautoes Vatoe) (b = bb) = / 5 | Eowitrs—pi-pa
2 nlocs Vnloc 4 EPz EP] 2
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xg11(p1, 1. k)g11(p2, pa, k)

1 1
+ bE(p5)bT (p))be(po)be 122
x { (p1 — pa)2 _ yg (pr— plz)z — yg } (P2)be (p1)be(p2)be(p1) (122)

with k = p] — p1 and the respective contribution to By,

1
E [Rnlou NB] (bb - bb)

:f/dP/z dpa dP1 dp1 9 Y
4

!/ /
+p2—P1—P2)
Epz Epl ap1 P1 | %) P

xgn(ﬁ’l,m,k)gn(;ﬂ’z, p2,k)

1 1 + +
X {(m ! + (pzp’z)Zyg}bC(p )be (p1)be(p2)be(p1) (123)

In Egs. (122) and (123) we encounter a covariant (Feynman-like) "propagator"

1 1 1
= + , (124)
2 {(m—p’lﬁ—zﬁ (pz—p’z)2—u§}
which on the energy shell
Ep, +Ep, = EP% + Epé (125)

is converted into the genuine Feynman propagator for the corresponding S matrix (cf. the first
results in (Shebeko & Shirokov, 2001)).

4.2 Relativistic interactions between clothed particles in meson-nucleon systems

Following the same scenario one can derive analytical expressions for separate contributions
to the operator

Ky ~alblache (TN — 7iN) + bl bbb (NN — NN) 4 didid.d.(NN — NN)
+ b bI bl bbb (NNN — NNN) + ... + [atalbede + He)(NN 5 27) + ..
+ [a'b! bl bebe + He]J (NN <> TNN) 4 ... (126)
and, in particular, the operator
K\ = K(NN = NN) + K(NN = NN) + K(NN = NN) + K(bN — bN) + K(bN — bN)
+K(bt' — NN) + K(NN — bb') (127)

if one starts with the interactions by Eqgs. (50)-(52). It has been done in (Shebeko & Shirokov,
2001) and (Korda et al., 2007) so many technical details of those derivations can be found
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Fig. 1. Different contributions to the 7N quasipotential.

therein. Note only that the normal ordering is an essential element of them. We will
confine ourselves to the two examples that originate from the corresponding commutator
3[R, V(bad)].

4.2.1 Pion-nucleon interaction operator

As a result, we show the contribution
K(nN — niN) = / dp1dpydkydky Van (ky, ik, Br)al (k2)bE (Fa)ac(ke)be(Fr), (128
with the following covariant (Feynman-like) form:

- gz m I I
Van(ko, Pos k1, 1) = o(p1+ki — P2 —kz)

2027)° | Jwy, wy, Eg Ep,
1 1
i(p2) {2

= + =
]ﬁ1+k1+m ﬁ2+k2+m

}”(51)

1 1 1
+5 | = +——
2| p1—katm  pp—kitm
For brevity, the spin and isospin indices have been omitted.

The corresponding 77N quasipotential in momentum space is determined by
Vo (o, oo, ) = (at ()bl () QK (AN — 7N)lal B (F)Q)  (129)

Graphs in Fig. 1 are topologically equivalent to the well-known time-ordered Feynman
diagrams. However, in Schrodinger picture used here, where all events are related to one
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and the same instant t = 0, such an analogy could be misleading: line directions in Fig. 1 are
given with the sole scope to discriminate between nucleon and antinucleon states. Moreover,
the energy conservation is not assumed in constructing this and other quasipotentials. Indeed,
the coefficients in front of afbfa b, generally do not fulfill the on-energy-shell condition

Ef"l + CUI-(‘I = Eﬁz + (U]'(‘Z,

In this connection, the “left” four-vector s; is not necessarily equal to the “right” Mandelstam
vector s; = pp + ko.

4.2.2 Nucleon-nucleon interaction operator

Accordingly (Dubovyk & Shebeko, 2010) the operator of interest has the following structure:

K(NN — NN) =Y K;(NN — NN),
b

K,(NN — NN) idpld L dp dp,Vy(1,2;1,2)bF (1)1 (2)be (1)b:(2),  (130)

where, for example, the c-number matrix V, in the second order in the PS coupling is given
by

1 m?
Vys(1/,2:1,2) = 5 () + 7 — By — Ba) 0ps(1,2'31,2), (131)
PS( ) (27_[>3 E-'/ Ep EplE (pl P2 —P1 PZ) ps( )
! /. gz =/ 1 R~y —
vps(1,2;1,2) = = ~i(py)ys5u(p1) 5~ (P2)r5u(pP2), (132)

(Pl - p/1)2 — Mps
omitting again the discrete quantum numbers. Here ms the mass of the clothed pion (its
physical value).

Corresponding relativistic and properly symmetrized NN quasipotential

(31, B8 1, 72) = (BEGFDBE(FIQ | K | BE(51)BE (2)2)
can be written as

2
8ps m?

1 I
VNN(F’lz Pzr p1,p2) = 2 (2r)3 2\/%5@1/ + pzl — P —P2)
17P2P1 P2

x a(py)ysu(pr)

NI~

1
{ (p1—py)? — mps
1

+(P2—Pz)ps} a(Fy)vsu(fa) — (143 2). ()
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Meson Bonn B UCT
7 g% /4m 14.4 13.395
Axr 1700 2500
My 138.03 138.03
7 85 /4m 3 5.0
Ay 1500 1219
my 548.8 548.8
P 83 /47 0.9 12
Ay 1850 1593.0
fo/ 80 6.1 6.1
p 769 769
w g% /4T 24.5 17.349
Aw 1850 2494
My 782.6 782.6
) §3/4m 2.488 5.0
As 2000 2169
ms 983 983

o, T=0,T=1 g%/4r 18.3773,8.9437 22.015,5.514
Ao 2000, 1900 1200, 2500
My 720,550  691.78, 510.62

Table 1. The best-fit parameters for the two models. The column Potential B (UCT ) taken
from Table A.1 in (Machleidt, 1989) (obtained by least squares fitting the OBEP values in
Table 1 of that survey). All masses are in MeV.

Distinctive feature of potential (*) is the presence of covariant (Feynman-like) “propagator”,

R
2l —p? =1 (p=p) -1 )
On the energy shell for NN scattering, that is
Ei= Eﬁ1 + Eﬁ2 = Eﬁll + Eﬁz/ = Ef/
this expression is converted into the genuine Feynman propagator.

A little part of our numerical results with the best-fit values of the coupling constants g, and
cutoff parameters A; in the meson-nucleon vertices are compared with those by the Bonn
group (Machleidt, 1989) in Table 1 and Fig. 2. They labeled by abbreviation UCT have been
obtained by solving the partial Lippmann-Schwinger equations (coupled and uncoupled) for
the R-matrix of the nucleon-nucleon scattering. Details are in (Dubovyk & Shebeko, 2010).

4.3 Deuteron properties

Besides, we would like to outline the basic elements of another our exploration that is in
progress. It is the case, where relying upon the available experience of relativistic calculations
of the deuteron static moments and the deuteron form factors (see reviews (Bondarenko et
al., 2002) and (Garcon & Van Orden, 2002) and refs. therein) one has to deal with the matrix
elements (P/, M'|J#(0)|P = 0, M) (to be definite in the laboratory frame). Here the operator
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Fig. 2. Neutron-proton phase parameters plotted versus nucleon kinetic energy in lab.
system. Solid curves calculated for Potential B. Dashed (dotted) - for UCT potential with
Potential B (UCT) parameters from Table 1. The rhombs show original OBEP results.

J#(0) is the Nother current density J#(x) at x = 0, sandwiched between the eigenstates of a
"strong" field Hamiltonian H (cf., discussion in Sec. 5 of lecture (Shebeko & Shirokov, 2000)).
In the CPRwith H = K(«.) (Eq. (110)) and N = B(«a) (Eq. (112)) the deuteron state |P = 0, M)
(|P" = q, M’)) in the rest (the frame moving with the velocity v = q/m;) meets the eigenvalue
equation

P'|P, M) = P} |P, M) (133)

with the three-momentum transfer q, four-momentum P; = (E4,P), E; = /P2 + mé, my =
mp + my — 4 and the deuteron binding energy ¢; > 0.

We know that such observables as the charge, magnetic and quadrupole moments of
the deuteron can be expressed through the matrix elements in question (e.g., within the
Bethe-Salpeter (BS) formalism (Bondarenko et al., 2002)) by introducing the corresponding
covariant form factors. With the aid of cumbersome numerical methods the latter have
been evaluated in terms of the Mandelstam current sandwiched between the deuteron BS
amplitudes.

Unlike this, following Shebeko & Shirokov (2000) , we consider the expansion in the
R-commutators

1
JH(0) = WIE (W' = J£ (0) + [R,J¢ (0)] + 5 [R, [R, JE(O)]] + .. (134)
where J¥(0) is the initial current in which the bare operators {a} are replaced by the
clothed ones {«.}. Decomposition (134) involves one-body, two-body and more complicated
interaction currents, if one uses the terminology customary in the theory of meson exchange
currents. Further, to the approximation

K; = K(NN — NN) ~ bib}b.b, (135)
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and
B; = B(NN — NN) ~ biblb.b, (136)

(see, respectively, (122) and (123)) the eigenvalue problem (133) becomes simpler so its
solution acquires the form

P, M) = / dp / dp2 D ([P); prpus; p2p2)bZ (P )b (p2p2) ). (137)
In this connection, let us recall the relation
|9, M) = expliBB (ac)][0, M) (138)
with § = fn, n = n/n and tanh § = v, that takes place owing to the property
¢/PBpre=iPB — pr I (F), (139)

where L(B) is the matrix of the corresponding Lorentz transformation. Note also that
the label M = (£1,0) denotes the eigenvalue of the third component of the total
(field) angular-momentum operator in the deuteron center-of-mass (details can be found in
(Dubovyk & Shebeko, 2010)). The c-coefficients Dy in Eq. (137) are calculated by solving the
homogeneous Lippmann-Schwinger equation with the quasipotentials taken from (Dubovyk
& Shebeko, 2010) (see formulae (67)-(69) therein). Numerical results can be obtained either
using the angular-momentum decomposition (as in (Dubovyk & Shebeko, 2010)) or without
it.

Several our results are shown in Table 2 and Fig. 3.

Parameter|Bonn B| UCT | Experiment
as (fm) | -23.71 |-23.57|-23.748+0.010
75 (fm) 271 | 2.65 | 2.75%0.05
a; (fm) | 5.426 | 5.44 | 5.41940.007
r (fm) | 1.761 | 1.79 | 1.754+0.008

gg (MeV) | 2223 [2.224 | 2.224575
Pp (%) | 499 | 4.89

Table 2. Deuteron and low-energy parameters. The experimental values are from Table 4.2 of
Ref. (Machleidt, 1989).

u(p) [fm™)

0 1 2 3 .o i 2 3 4
plfm] plim’]

Fig. 3. Deuteron wave functions 4 (p) = u(p) and ¢4 (p) = w(p). Solid(dotted) curves for
Bonn Potential B (UCT) potential.



The Method of Unitary Clothing Transformations in Quantum Field Theory:
Applications in the Theory of Nuclear Forces and Reactions 27

In its turn, the operator (134) being between the two-clothed-nucleon states contributes as
176]# (O)UC = ]gnefbody + ]tywofbody’ (140)

where the operator
L e body = / dp'dpE}, (p', p)bl (p)be(p) (141)
with
Fyn(p',p) = et(p ) E[ " [(p = p)PIn + o™ (9 = p) " [(p = p)2Ju(p)  (142)
that describes the virtual photon interaction with the clothed proton (neutron)®.

Its appearance follows from the observation, in which the primary Néther current operator,
being between the physical (clothed) states |¥y) = bl |Q), yields the usual on-mass-shell
expression

<‘Fp,n(P/)|]H(O)|qJP,n(P)> = F{?l,l’l(p/’P)

in terms of the Dirac and Pauli nucleon form factors.®

By keeping in the rh.s. of Eq. (140) only the one-body contribution we arrive to certain
off-energy-shell extrapolation of the so-called relativistic impulse approximation (RIA) in the
theory of em. interactions with nuclei (bound systems). In a recent work by Dubovyk
and Shebeko the deuteron magnetic and quadrupole moments have been calculated to be
submitted to Few Body Systems.

Of course, the RIA results should be corrected including more complex mechanisms of e-d
scattering, that are contained in

ff;,o_body = /dplldpﬁdpldpzpﬁgc(ﬁrpﬁf' p1,P2)bt (p1)bY (p1)be (p1)be (p2)- (143)

Analytic (approximate) expressions for the coefficients FKAEC stem from the R-commutators
(beginning with the third one) in the expansion (134), which, first, belong to the class [2.2], as
in Eq. (141), and, second, depend on even numbers of mesons involved. It requires a separate
consideration aimed at finding a new family of meson exchange currents, as we hope not only
for the e-d scattering.

At last, one should note that, as before, we prefer to handle the explicitly gauge-independent
(GI) representation of photonuclear reaction amplitudes with one-photon absorption or
emission (Levchuk & Shebeko, 1993). That representation is an extension of the Siegert
theorem, in which, the amplitude of interest is expressed through the Fourier transforms of
electric (magnetic) field strengths and the generalized electric (magnetic) dipole moments
of hadronic system. It allows us to retain the GI in the course of inevitably approximate
calculations.

% In Egs. (140) 7. is the projection operator on the subspace Hay € H spanned on the two-clothed-nucleon
states [2N) = bl b} |Q)

6 Of course, all nucleon polarization labels are implied here together with necessary summations over
them in Eq. (141) and so on
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5.Summary

We propose a constructive way of ensuring the RI in QFT with cutoffs in momentum space.
In contrast to the traditional approach, where the generators of I1 are determined as the
Nother integrals of the energy-momentum tensor density , we do not utilize the Lagrangian
formalism so fruitful in case of local field models. Our purpose is to find these generators as
elements of the Lie algebra of I starting from the total Hamiltonian whose interaction density
in the Dirac picture includes a Lorentz-scalar part Hsc(x). Respectively, the algebraic aspect
of the RI as a whole for the present exploration with the so-called instant form of relativistic
dynamics is of paramount importance.

In the context, using purely algebraic means the boost generators can be decomposed
into the Belinfante operator built of Hs. and the operator which accumulates the chain of
recursive relations in the second and higher orders in Hys.. Thereby, it becomes clear that the
Poincaré commutations are not fulfilled if the Hamiltonian does not contain some additional
ingredients, which we call the mass renormalization terms, though beyond local field models
such a terminology looks rather conventional. The UCT method enables us to determine the
corresponding operators including their nonlocal extensions that satisfy the requirements of
special relativity and preserve certain continuity with local QFTs.

We see that our approach is sufficiently flexible being applied not merely to local field models
including ones with derivative couplings and spins j > 1. Within the approach all interactions
constructed are responsible for physical (not virtual) processes in a given system of interacting
fields. Such interactions are Hermitian and energy independent including the off-energy-shell
and recoil effects (the latter in all orders of the 1/c? - expansion). In particular, we have
managed to build up a new family such interactions in the system of 77—, #—, p—, w—, 6—and o -
mesons and nucleons. Besides, the interaction operators for processes of the type NN — NN,
nN — N, and NN < NN are derived on one and the same physical footing.

After constructing the interaction operators in the CPR we express the conventional S matrix
through the clothed-particle interactions and states that simplifies the initial field-theoretical
task. It becomes possible owing to the isomorphism between the a-algebra with the bare
vacuum and the a.-algebra with the physical vacuum when, first, the requirement iii) is
fulfilled and, second, the R - generators of unitary clothing transformations in the Dirac
picture come to zero in the distant past and future (see our talk in Durham (Shebeko, 2004)).

In the course of our current work we are trying to understand to what extent the deuteron
quenching in flight affects the deuteron electromagnetic form factors. In our opinion, the
exposed approach has promising prospects, e.g., in the theory of decaying states (after
evident refinements), certainly in quantum electrodynamics and, we believe, in quantum
chromodynamics. Such endeavors are under way.

At last, we offer not only a fresh look at constructing the interactions in question but also a
nonstandard renormalization procedure in relativistic quantum field theory. In this context,
let us remind the prophetic words by Dirac (Dirac, 1963): “I am inclined to suspect that
renormalization theory is something that will not survive in the future, and the remarkable
agreement between theory and experiment should be looked on as a fluke”.
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Ab Initio Hamiltonian Approach to Light-Front
Quantum Field Theory
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1. Introduction

Non-perturbative solutions of quantum field theory represent opportunities and challenges
that span particle physics and nuclear physics. Increasingly, it is also gaining attention
in condensed matter physics. Fundamental understanding of, among others, the phase
structure of strongly interacting systems, the spin structure of the proton, the neutron
electromagnetic form factor, and the generalized parton distributions of the baryons should
emerge from results derived from a non-perturbative light-front Hamiltonian approach. The
light-front Hamiltonian quantized within a basis function approach as described here offers a
promising avenue that capitalizes on theoretical and computational achievements in quantum
many-body theory over the past decade.

By way of background, one notes that Hamiltonian light-front field theory in a discretized
momentum basis (1) and in transverse lattice approaches (2; 3) have shown significant
promise. I outline here a Hamiltonian basis function approach following Refs. (4-10)
that exploits recent advances in solving the non-relativistic strongly interacting nuclear
many-body problem (11; 12). There are many issues faced in common - i.e. how to (1)
define the Hamiltonian; (2) renormalize for the available finite spaces while preserving all
symmetries; (3) solve for eigenvalues and eigenvectors; (4) evaluate experimental observables;
and, (5) take the continuum limit.

I begin with a brief overview of recent advances in solving light nuclei with realistic
nucleon-nucleon (NN) and three-nucleon (NNN) interactions using ab initio no-core
methods. After reviewing some advances with two-dimensional theories, I outline a
basis function approach suitable for light front gauge theories including the issues of
renormalization/regularization. I present an introduction to the approach for cavity-mode
QED, to systems in the absence of an external cavity and I discuss its extension to QCD.

2. No Core Shell Model (NCSM) and No Core Full Configuration (NCFC) methods

To solve for the properties of self-bound strongly interacting systems, such as nuclei, with
realistic Hamiltonians, one faces immense theoretical and computational challenges. Recently,
ab initio approaches have been developed that treat all the nucleons on an equal footing,
preserve all the underlying symmetries and converge to the exact result given sufficient
computational effort. The basis function approach (11; 12) is one of several methods shown
to be successful. The primary advantages are its flexibility for choosing the Hamiltonian, the
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method of renormalization/regularization and the basis space. These advantages support the
adoption of the basis function approach in light-front quantum field theory.

Refs. (11; 13-18) and (12; 19; 20) provide examples of the recent advances in the ab initio
NCSM and NCEFC, respectively. The NCSM adopts a renormalization method that provides
an effective interaction dependent on the chosen many-body basis space (e.g. on the
harmonic oscillator length scale) and on its cutoff (Ny.x below). The NCFEC either retains the
un-renormalized interaction or adopts a basis-space independent renormalization so that the
exact results are obtained either by using a sufficiently large basis space or by extrapolation
to the infinite matrix limit. Recent results for the NCSM employ realistic nucleon-nucleon
(NN) and three-nucleon (NNN) interactions derived from chiral effective field theory to solve
nuclei with Atomic Numbers 10-13 (15) and Atomic Number 14 (17). For an overview of
the NCSM including applications to reactions and to effective interactions with a core, see
Ref. (18). Recent results for the NCFC feature a realistic NN interaction that is sufficiently
soft that binding energies and spectra from a sequence of finite matrix solutions may be
extrapolated to the infinite matrix limit (20). Experimental binding energies, spectra, magnetic
moments and Gamow-Teller transition rates are well-reproduced in both the NCSM and
NCFC approaches. Convergence of long range observables such as the RMS radius and the
electric quadrupole are more challenging since they are sensitive to the exponential tails of the
nuclear wavefunctions.

It is important to note two recent analytical and technical advances. First, non-perturbative
renormalization has been developed to accompany these basis-space methods and their
success is impressive. Several schemes have emerged and current research focuses on
understanding of the scheme-dependence of convergence rates. Among the many issues
to consider, I note that different observables converge at different rates (19) even within a
fixed scheme. Second, large scale calculations are performed on leadership-class parallel
computers to solve for the low-lying eigenstates and eigenvectors and to evaluate a suite
of experimental observables. Low-lying solutions for matrices of basis-space dimension
10-billion on 215,000 cores with a 5-hour run is the current record. However, one expects
these limits to continue growing as the techniques are evolving rapidly (16) and the computers
are also growing dramatically. Matrices with dimensions in the several tens of billions will
soon be solvable with strong interaction Hamiltonians. Note, however, that it is not simply
the matrix dimension that controls the level of the computational challenge but a set of
issues that includes the sparsity of the Hamiltonian matrix (which depends dramatically on
whether NNN interactions are employed), the density of the eigenvalue spectrum, the range
of excitation energies desired, etc.

In a NCSM or NCFC application, one adopts a 3D harmonic oscillator (HO) with HO energy
w (using 1 = 1 units) for all the particles in the nucleus, treats the neutrons and protons
independently, and generates a many-fermion basis space that includes the lowest oscillator
configurations as well as all those generated by allowing up to Ny oscillator quanta of
excitations. The single-particle states specify the orbital angular momentum projection and
the basis is referred to as the m-scheme basis. For the NCSM one also selects a renormalization
scheme linked to the basis truncation while in the NCFC the renormalization is either absent or
of a type that retains the infinite matrix problem. In the NCFC case (12), one either proceeds
to a sufficiently large basis that converged results are obtained (if that is computationally
feasible) or extrapolates to the continuum limit as I now illustrate.
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Fig. 1. (Color online) Calculated ground state (gs) energy of 12C for Ny = 2—10 (symbols)
at selected values of w indicated in the legend. For each w, the results are fit to an
exponential plus a constant, the asymptote, constrained to be the same for all w(12).
Horizontal lines indicate the experimental gs and the NCFC result (uncertainty = 0.5 MeV).

I show in Fig. 1 results for the ground state (gs) of 12¢ as a function of Nj,y obtained with a
realistic NN interaction, JISP16 (14). The smooth curves portray fits that achieve asymptotic
independence of Ny and w. The NCFC gs energy (the common asymptote) of —94.5 MeV
indicates ~ 3% overbinding. The assessed uncertainty in the NCFC result is 0.5 MeV indicated
in parenthesis in the figure. The largest 12 calculations correspond to Ny, = 10, with a
matrix dimension near 8 billion. N,y = 12 produces a matrix dimension near 81 billion
which we hope to solve in the future.

In order to further illustrate the successes of the ab initio NCSM, I display in Fig. 2 the
natural-parity excitation spectra of four nuclei in the middle of the 0p—shell with both the
NN and the NN+NNN effective interactions from YEFT (15). Overall, the NNN interaction
contributes significantly to improve theory in comparison with experiment. This is especially
well-demonstrated in the odd mass nuclei for the lowest, few excited states. The case of the
g.s. spin of 19B and its sensitivity to the presence of the NNN interaction is clearly evident.
The results of numerous ab initio NCSM applications not only show good convergence with
regard to increasing size of the basis space but also have reproduced known properties of
Op-shell nuclei (nuclei up to '°0) as well as explained existing puzzles and made predictions
of, as yet, unexplained nuclear phenomena. I cite another prominent example to illustrate this
point.

We recently evaluated the Gamow-Teller (GT) matrix element for the beta decay of l4c,
including the effect of chiral NNN forces (17). These investigations showed that the very
long lifetime for 14C arises from a cancellation between Op-shell NN-and NNN-interaction
contributions to the GT matrix element, as shown in Figure 3. The net result is a GT matrix
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Fig. 2. States dominated by Op-shell configurations for 108 11B 12C and 13C calculated at
Nmax = 6 using 71Q) = 15 MeV (14 MeV for 10B). Most of the eigenstates are isospin T=0 or
1/2, the isospin label is explicitly shown only for states with T=1 or 3/2. The excitation
energy scales are in MeV (adopted from Ref (15)).

element close to zero (final point of the green curve in the lower half of Fig. 3) which is far
more consistent with the 5730 year halflife of 1*C. The same calculations show that including
the NNN-interactions also bring the binding energies of 1*C and N into closer agreement
with experiment. These A=14 beta decay results were obtained in the largest basis space
achieved to date with NNN interactions, Nmax = 8, or approximately one billion m-scheme
configurations.

Other noteworthy results include calculations for 1?C explaining the measured '>C B(M1)
transition from the g.s. to the (17,1) state at 15.11 MeV and showing more than a factor
of 2 enhancement arising from the NNN interaction (13). Neutrino elastic and inelastic
cross sections on '2C were shown to be similarly sensitive to the NNN interaction and their
contributions significantly improve agreement with experiment (13). Working in collaboration
with experimentalists, we uncovered a puzzle in the GT-excited state strengths in A=14
nuclei (21). Its resolution may lie in the role of intruder-state admixtures, but this will require
further work.

In addition to numerous successful applications to spectra and electroweak transitions in light
nuclei, major efforts are underway to develop extensions to ab initio nuclear reactions(18).
Key motivations include the goal to further refine our understanding of the fundamental
strong interactions among the constituent nucleons and to provide, at the same time, accurate
predictions of crucial reaction rates for nuclear astrophysics.

An ab initio approach to nuclear reactions based on the NCSM requires a precise treatment
of the wave-function asymptotics and the coupling to the continuum. These requirements
have led to a new approach, the ab initio NCSM/RGM (22; 23), capable of simultaneously
describing both bound and scattering states in light nuclei, by combining the resonating-group
method (RGM) (24) with the ab initio NCSM. The RGM is a microscopic cluster technique
based on the use of A-nucleon Hamiltonians, with fully anti-symmetric many-body wave
functions built assuming that the nucleons are grouped into clusters. By combining the NCSM
with the RGM, one complements the ability of the RGM to deal with scattering and reactions
with the utilization of realistic interactions and a consistent ab initio microscopic description of
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Fig. 3. (Color online) Contributions to the 1*C beta decay matrix element as a function of the
3D harmonic oscillator shell in the basis space when the nuclear structure is described by the

XEFT interaction (adopted from Ref. (17)). Top panel displays the contributions with (two

right bars, the red and green, of each triplet) and without (leftmost bar, the blue bar, of each

triplet) the NNN force at Nmax = 8. Contributions are summed within each shell to yield a

total for that shell. The bottom panel displays the running sum of the GT contributions over
the shells with the same color coding scheme. Two reasonable choices for coupling constants

(red and green components of the histogram and lines) in the NNN-interaction lead to

similar strong suppression of the GT matrix element. Note, in particular, the

order-of-magnitude suppression of the Op-shell contributions arising from the NNN force.

the nucleonic clusters, while preserving important symmetries, including the Pauli exclusion

principle and translational invariance.

3. Light-front Hamiltonian field theory

It has long been known that light-front Hamiltonian quantum field theory has similarities
with non-relativistic quantum many-body theory and this has prompted applications with
established non-relativistic many-body methods (see Ref. (1) for a review). These applications
include theories in 1+1, 2+1 and 3+1 dimensions. Several of my efforts in 1+1 dimensions, in
collaboration with others, have focused on developing an understanding of how one detects
and characterizes phase transition phenomena in the Hamiltonian approach. To this end, I list

the following developments:
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Fig. 4. Expectation value of the square of the scalar field as a function of the coupling
constant A at light-front harmonic resolution K=55 for the lowest five excitations of two
dimensional ¢* in the broken phase (27). The pattern of transitions correspond to 5 states
falling with increasing A and crossing the 5 lowest states, thus replacing them and becoming
the new 5 lowest states. At selected values of A, the character of the lowest states is indicated

on

the figure with the top level of each column signifying the nature of the lowest state.

Successive excited states are signified by the labels proceeding down the column. The letter
“K” represents “kink” while “KKK” represents “kink-antikink-kink”.

1.

identification and characterization of the quantum kink solutions in the broken symmetry
phase of two dimensional ¢* including the extraction of the vacuum energy and kink mass
that compare well with classical and semi - classical results (25);

. detailed investigation of the strong coupling region of the topological sector of the

two-dimensional ¢* theory demonstrating that low-lying states with periodic boundary
conditions above the transition coupling are dominantly kink-antikink coherent states (26);

. switching to anti-periodic boundary conditions in the strong coupling region of the

topological sector of the two-dimensional ¢* theory and demonstrating that low-lying
states above the critical coupling are dominantly kink-antikink-kink states as well as
presenting evidence for the onset of kink condensation(27). Fig. 4 presents the
detailed transition of the lowest 5 mass eigenstates in the broken phase from kink to
kink-antikink-kink structure over a narrow range in the coupling. Increasing the resolution
K shrinks the range in coupling over which the transitions occur.

More recently, full-fledged applications to gauge theories in 3+1 dimensions have appeared
along with roadmaps for addressing QCD. A brief summary of some of the major
developments in 3+1 dimensional Hamiltonian light front field theory includes the solutions

of:

1.
2.

light-front QED wave equations for the electron plus electron-photon system (28-30)

simplified gauge theories with a transverse lattice (2; 3; 31)



Ab Initio Hamiltonian Approach to Light-Front Quantum Field Theory 37

3. Hamiltonian QED for the electron plus electron-photon system in a trap with a basis
function approach (4; 7; 8) that I discuss in the next section.

4. Hamiltonian QED for the electron plus electron-photon system without an external trap
that I also discuss in the next section(9; 10)

These successes open pathways for ambitious research programs to evaluate non-perturbative
amplitudes and to address the multitude of experimental phenomena that are conveniently
evaluated in a light-front quantized approach. As one important example, consider the
deeply virtual Compton scattering (DVCS) process which provides the opportunity to study
the 3-dimensional coordinate space structure of the hadrons. Recent efforts with model
3+1 dimensional light-front amplitudes (32) have shown that the Fourier spectra of DVCS
should reveal telltale diffractive patterns indicating detailed properties of the coordinate space
structure.

Additional applications include the non-perturbative regime of QED that future experiments
with ultra-strong pulsed lasers will explore, for example, looking for non-perturbative lepton
pair production (33-35). Yet another application resides with the strong time-dependent
QED fields generated in relativistic heavy-ion collisions where puzzling excesses of
electron-positron pairs have been observed (36; 37).

4. Basis light-front quantization applied to QED

We define our light-front coordinates as x* = x¥ 4 x3, x* = (x!,x?), where the variable x*
is light-front time and x~ is the longitudinal coordinate. We adopt x* = 0, the “null plane",
for our quantization surface. Here we adopt basis states for each constituent that consist
of transverse 2D harmonic oscillator (HO) states combined with discretized longitudinal
modes, plane waves, satisfying selected boundary conditions. This basis function approach
follows Refs. (4-6). Note that the choice of basis functions is arbitrary except for the standard
conditions of orthonormality and completeness. Adoption of this particular basis is consistent
with recent developments in AdS/QCD correspondence with QCD (38; 39).

The HO states are characterized by a principal quantum number 7, orbital quantum number
m, and HO energy. Here we adopt the convention that () represents both the energy of the
transverse HO trap and the basis representation when the trap is present (i.e we match the
basis to the trap potential). To signal that the trap is absent we use w to represent the frequency
choice for the basis.

Working in momentum space, it is convenient to write the 2D oscillator as a function of the
dimensionless variable p = |p|/+/MQ), and My has units of mass. The orthonormalized HO
wave functions in polar coordinates (p, ¢) are then given in terms of the generalized Laguerre

polynomials, LLm‘ (0?), by

Do, 9) = (p@|nm)

: img |m| ,—p?/27 Im|
\/MOQ\/|m+n) PoMe L %), M

with HO eigenvalues E;, ;, = (21 + |m| + 1)Q). The HO wavefunctions have the same analytic
structure in both coordinate and momentum space, a feature reminiscent of a plane-wave
basis.
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The longitudinal modes, ik, in our basis are defined for —L < x~ < L with periodic boundary
conditions for the photon and antiperiodic boundary conditions for the electron:

- T izmkx
x ) = e’ Lt 2
Pelx) = = 2
where k = 1,2,3,... for periodic boundary conditions (we neglect the zero mode) and

k = %, %, %, ... for antiperiodic boundary conditions. The full 3D single-particle basis state

is defined by the product form

Yinm(x™,0,0) = P(x7)Pum(0, ¢)- ©)

For illustrative purposes, we select a transverse mode with n = 1,m = 0 joined together with
the k = ! longitudinal antiperiodic boundary condition mode of Eq. 2 and display slices of
the real part of this 3-D basis function at selected longitudinal coordinates, x~ in Fig. 5. For
comparison, we present a second example with box boundary conditions for the longitudinal
mode in Fig. 6. Our purpose in presenting both Figs. 5 and 6 is to suggest the richness,
flexibility and economy of texture available for solutions in a basis function approach.

Next, we introduce the total invariant mass-squared M? for the low-lying physical states in
terms of a Hamiltonian H times a dimensionless integer for the total light-front momentum K

M? 4P, P, — M?+ const =PTP~ =KH (4)

where we absorb the constant into M?. For simplicity, the transverse functions for both
the electron and the photon were taken as eigenmodes of the external trap in our initial
application (7) which we discuss here (below, we present results with the external trap
removed). The noninteracting Hamiltonian Hy = 2MyP;" for this system with a trap is then
defined by the sum of the occupied modes 7 in each many-parton state:

_ 2MpQ y 2n; + |m;| + 1+ m?/ (2MpQ)

H,
0 K

, ©)
i Xi

where 77; is the mass of the parton i. The photon mass is set to zero throughout this work
and the electron mass . is set at the physical mass 0.511 MeV in our nonrenormalized

calculations. We also set My = 17,.

The light-front QED Hamiltonian interaction terms we need are the electron to
electron-photon vertex, given as

Veser = [ derdx B ¥ (0 A, (x)| ®)
xt=0
and the instantaneous electron-photon interaction,
g 2. @ oal
Viysey = & / dxed?x, Tyl A, o (AY)| @)
2 id =0

where the coupling constant g = 47ta, and « is the fine structure constant. The nonspinflip
vertex terms of Eq.(6) are o« M), whereas spinflip terms are o /MyQ,. Selecting the initial
state electron helicity in the single electron sector always as “up” the process e — e is nonzero
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k=1/2,n=1, m=0

P

Fig. 5. (color online) Transverse sections of the real part of a 3-D basis function involving a
2-D harmonic oscillator and a longitudinal mode of Eq. 2 with antiperiodic boundary
conditions. The quantum numbers for this basis function are given in the legend. The basis
function is shown for the full range —L < x~ < L (adapted from Ref. (4)).

for three out of eight helicity combinations, and the process ey — ey is nonzero only with all
four spin projections aligned (two out of 16 combinations), resulting in a sparse matrix.

We implement a symmetry constraint for the basis by fixing the total angular momentum
projection [, = M+ S = %, where M = ) ; m; is the total azimuthal quantum number, and
S = Y ;s; the total spin projection along the x~ direction. For cutoffs, we select the total
light-front momentum, K, and the maximum total quanta allowed in the transverse mode of
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0 <x<+L
k=1, n=0, m=3

f—

p

Fig. 6. (color online) Transverse sections of a 3-D basis function involving a 2-D harmonic
oscillator and a longitudinal mode with box boundary conditions (wavefunction vanishes at
+L). The quantum numbers for this basis function are given in the legend. The basis function
is shown for positive values of x~ and is antisymmetric with respect to x~ = 0 (adapted
from Ref. (4)).

each one or two-parton state, Ny, such that

1
Lx=1=g Lk ®)
Zzni + |ml| +1 < Niax, 9)
i
where, for example, k; defines the longitudinal modes of Eq.(2) for the i parton. Equation

(8) signifies total light-front momentum conservation written in terms of boost-invariant
momentum fractions, x;. Since we employ a mix of boundary conditions and all states have
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Fig. 7. (color online). Eigenvalues (multiplied by K) for a nonrenormalized light-front QED
Hamiltonian for an electron in an external trap with Q2 = 0.05 MeV which includes the
electron-photon vertex and the instantaneous electron-photon interaction. The cutoffs for the
basis space dimensions are selected such that K increases simultaneously with the Nyy.

half-integer total K, we will quote K values rounded downwards for convenience, except
when the precise value is required.

In our approach, the HO parameters (), M, the electron mass ., and the total longitudinal
momentum K appear as prefactors for the matrix elements in the Hamiltonian. Therefore, we
can rather straightforwardly vary the size of the Hamiltonian matrix by keeping Ny fixed,
and changing K alone. This facilitates examination of the convergence rates at each value of
Nmax.

In our initial applications, we focus on QED and consider a system including only |e) and
ley) sectors in a transverse scalar harmonic trap (7) and, more recently, in the absence of the
external trap (10; 40). Both of these setups, once the Fock space is extended, will be useful for
addressing a range of strong field QED problems such as electron-positron pair production in
relativistic heavy-ion collisions and with ultra-strong pulsed lasers planned for the future. We
adopt the sector dependent non-perturbative renormalization scheme (41).

In Fig. 7 we show the eigenvalues (multiplied by K) for a nonrenormalized light-front QED
Hamiltonian given in Eqs.(5,6,7), with fixed ) = 0.05 MeV and simultaneously increasing K
and Nyay. The resulting dimension of the Hamiltonian matrix increases rapidly. For Nyy =
K = 2,10, and 20, the dimensions of the corresponding symmetric d x d matrices are d =
2, 1670, and 26 990, respectively.

The number of the single electron basis states, considering all the symmetries, increases slowly
with increasing Nyj.x = K cutoff. For Ny, = K = 2,10, and 20 the number of single
electron basis states is 1,5, and 10, respectively. Our lowest-lying eigenvalue corresponds
to a solution dominated by the electron with n = m = 0. The ordering of excited states, due
to significant interaction mixing, does not always follow the highly degenerate unperturbed
spectrum of Eq.(5). States dominated by spin-flipped electron-photon components are evident
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in the solutions. Nevertheless, the lowest-lying eigenvalues appear with nearly harmonic
separations in Fig. 7 as would be expected at the coupling of QED. The multiplicity of the
higher eigenstates increases rapidly with increasing Ny, = K and the states exhibit stronger
mixing with other states than the lowest-lying states. In principle, the electron-photon
basis states interact directly with each other in leading order through the instantaneous
electron-photon interaction, but numerically the effect of this interaction is very weak,
and thus does not contribute significantly to the mixing. Even though we work within a
Fock-space approach, our numerical results should approximate the lowest order perturbative
QED results for sufficiently weak external field.

In the most recent application to QED, we still retain the truncated basis including only |e)
and |ey) sectors as in Ref. (7). However, we introduce major extensions and improvements.
For a more complete description, I refer to the paper by Zhao, et al. (10) and to a separate
paper (40). Here, I simply list a few of the key extensions and improvements.

1. In order to expand the range of applications, we extend the application of BLFQ to a free
space system by omitting the external transverse trap.

2. In order to improve computational efficiency and numerical precision, we replace
numerical integrations previously used in Ref. (7) to evaluate matrix elements of QED
interaction vertices with newly-developed analytic methods.

3. To achieve improved convergence, we allow the HO basis length scale to be fixed
separately in each Fock sector which allows a more efficient treatment of the transverse
center-of-momentum degree of freedom.

4. We correct the evaluation of the anomalous magnetic moment 4, and a factor appearing in
the vertex matrix elements. These corrections go in opposing directions for the previously
evaluated 4, in an external trap (7) and updated results will be provided in a separate
paper (40).

5. Results for electron anomalous magnetic moment 4,

With the methods and improvements summarized in Secs. 3 and 4, we evaluate and
diagonalize the light-front QED Hamiltonian in |e) and |ey) sectors without the external
transverse trap and evaluate a, from the resulting light-front amplitude for the lowest mass
eigenstate.

In Ref. (7) the electron anomalous magnetic moment was approximated (based on
non-relativistic quantum mechanics) by the squared modulus of the helicity-flip (for the
constituent electron) components of the eigenstates. The precise definition of the electron
anomalous magnetic moment in relativistic QED is a,, the electron Pauli form factor F,
evaluated at momentum transfer q2 — 0(42),

1, = == = lim F(¢%). (10)

In BLEQ the g, can be calculated by sandwiching the operator corresponding to F, (0) with the
solution for the ground state for the electron with opposing helicities,
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Here (ev,i'|F,(0)|e7y, i) is the matrix element of the Pauli form factor in the BLFQ basis. The

(ey,i |‘I’Zm> is the wavefunction of a physical electron with helicity up (down) in the |e7)
sector (the only sector contributing to a. in our truncated basis). The i denotes a complete
set of quantum numbers. Although Eq.(11) involves two electron eigenstates with opposite
helicities, in practice one needs only to solve for one of them and infer the other by exploiting
the parity symmetry in light-front QED (43). The explicit expression for (e7y, ' |F>(0)|e7, i) and
the exact relation between (e7y, i |‘I’Z> and (e, i |‘I’i> will be reported in a later work (40).

In this work without the external trap we reduce the QED coupling constant a by a factor of
10% in order to reduce higher order effects and facilitate comparison with a, from perturbation
theory (44). In addition, we omit the instantaneous electron exchange vertex for the same
reason.

We define our basis space with total longitudinal momentum K=80 which we found adequate
for the present application but will be extended in the future. In fact, the results presented
in Ref. (10) already extend the basis to K=160. Furthermore, we use 2D HO single-particle
states with frequencies w ranging from 0.01MeV to 1.4MeV. These w’s bracket the electron
mass m,=0.511 MeV, the only scale-setting parameter in the QED Hamiltonian. At each w we
calculate g, with Npax in the range of 10 to 118 to map out its convergence behavior with
increasing Nmax. Larger Nmax translates to a larger basis with higher effective ultraviolet
cutoff and lower effective infrared cutoff in the transverse plane. We expect that, with
increasing Nmax, the results more closely approximate the Schwinger result. The rate of
convergence may be different for different w’s, depending on 4.’s sensitivity to the effective
cutoffs of the basis space. Our results agree with this expectation and approach the Schwinger
result uniformly as Nmax increases with increments of 4.

In Fig. 8 I present the results evaluated with w=0.1MeV. For comparison, see the results
in Ref. (10) at w=0.02MeV and w=0.5MeV. For each w the results exhibit a simple pattern
with increasing Nmax: the results with even Npmax/2 are systematically larger than those
with odd Nmax/2 so that the former and the latter separate into two individual groups.
Within each group the results define a trend which is understandable by analysis of the
perturbative calculation in light-front QED (10; 39; 40). Other features of these results are
similarly understandable (10; 40).

The data points in Fig. 8 appear to define straight lines as a function of 1/+/Nmax as can be seen
by the linear fits to all the points shown (solid lines). We can therefore easily extrapolate to
the limit of no basis truncation (Nmax — ©0) where we expect to recover the Schwinger result.
Indeed as seen in Fig. 8 the lines converge close to the Schwinger result in this limit. Their
intercepts at 1/ Nmax=0 are: 0.1131(1.0%) and 0.1133(1.4%) for even Nmax/2 and odd Nmax/2,
respectively. The percentages in the parenthesis are their corresponding relative deviation

from the Schwinger result, % = >%,=-1, ~0.012665.
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Fig. 8. (Color online) Anomalous magnetic moment of the electron calculated in BLFQ
compared to the Schwinger result (44). The vertical axis is the square root of anomalous
magnetic moment normalized to electron charge, e, so the Schwinger value is

v/ # = 0.11254. The horizontal axis is the square root of the reciprocal of Nmax. Symbols are
for the BLFQ results. Squares: even Nmax/2; circles: odd Nmax/2. The HO frequency for the
basis is 0.1 MeV as indicated in the legend. The lines are linear extrapolations of BLFQ results

based on all the points shown which span Npax = 10 — 118

What is not so apparent from a visual inspection of Fig. 8 is the fact that the extrapolated
values come closer to the Schwinger result if one limits the linear fit to results for only
the larger values of Nmax. For example, if the linear fit is performed for Nmax > 64 the
extrapolated values improve to 0.1129(0.7%) and 0.1130(0.9%) for even Nmax/2 and odd
Nmax/2, respectively. Continuing this avenue of investigation, if the linear fit is performed
only for results with Nmax > 100 the extrapolated values improve to 0.1128(0.4%) and
0.1129(0.6%) for even Nmax/2 and odd Nmax/2, respectively. This is an encouraging sign
of expected systematic improvement with increasing Nmax.

What is also important to note is that these results are systematically improvable. We will
extend the calculations to larger K and Nmax values to further improve accuracy and reduce
extrapolation uncertainties. That is, we will evaluate additional results in regions where they

are expected to scale more accurately as a function of 4/ ﬁ In order to compare with the
perturbative result for a, with the rescaling as shown in Fig. 8 (i.e. to achieve results for %) it
is also advantageous to further decrease the fine structure constant below 10~%4, the value for

the results presented here.
6. Conclusion

The recent history of light-front Hamiltonian field theory features many advances that pave
the way for non-perturbative solutions of gauge theories. The goal is to evaluate the light-front
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amplitudes for strongly interacting composite systems and predict experimental observables.
High precision tests of the Standard Model may be envisioned as well as applications to
theories beyond the Standard Model.

We can extend the BLFQ approach to QCD by implementing the SU(3) color degree of freedom
for each parton - 3 colors for each fermion and 8 for each boson. We have investigated two
methods for implementing the global color singlet constraint and we illustrate the resulting
multiplicity of color configurations for each space-spin configuration in Fig. 9. In the first
case, we follow Ref. (45) by constraining all color components to have zero color projection
and adding a Lagrange multiplier term to the Hamiltonian to select global color singlet
eigenstates. This produces the upper curves in each panel of Fig. 9. In the second case,
we restrict the basis space to global color singlets (4-6; 46). The second method produces
the lower curves in each panel of Fig. 9 and shows a factor of 30-40 lower many-parton
basis space dimension at the cost of increased computation time for matrix elements. Either
implementation provides an exact treatment of the global color symmetry constraint but the
use of the second method provides overall more efficient use of computational resources.
Nevertheless, the computational requirements of this approach are substantial, and we foresee
extensive use of leadership-class computers to obtain practical results.
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Fig. 9. (color online) Number of color space states that apply to each space-spin configuration
of selected multi-parton states for two methods of enumerating the color basis states. The
upper curves are counts of all color configurations with zero color projection. The lower
curves are counts of global color singlets (adapted from Ref. (4)).
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I would like to close by mentioning that we are extending the QED application in several
directions. One specific goal is to include the capability for treating strong time-dependent
laser pulses to address non-perturbative QED processes (35). In addition, we are launching
an initial effort to evaluate the properties of charmonium in a BLFQ treatment of QCD with
a first application to the heavy-quarkonia sector leading to predictions for the hybrid states
(states dominated by g-gbar-glue configurations).

7. Acknowledgments

The author thanks all his collaborators on the cited publications as well as K. Tuchin,
J. Hiller, S. Chabysheva, V. Karmanov, A. Ilderton, Y. Li and P. Wiecki for fruitful
discussions. Computational resources were provided by the National Energy Research
Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported
in part by US DOE Grants DE-FG02-87ER40371 and DE-FC02-09ER41582 (UNEDF SciDAC
Collaboration). This work was also supported in part by US NSF grant 0904782.

8. References

[1] H. C. Pauli and S. J. Brodsky, Solving Field Theory In One Space One Time Dimension, Phys.
Rev. D 32,(1985)1993; S.]J. Brodsky, H. C. Pauli and S. S. Pinsky, Quantum Chromodynamics
and Other Field Theories on the Light Cone, Phys. Reports 301 (1998) 299 [hep-ph/9705477].

[2] D. Chakrabarti, A. Harindranath and J. P. Vary, A Study of g-qbar States in Transverse
Lattice QCD Using Alternative Fermion Formulations, Phys. Rev. D 69 , (2004) 034502
[hep-ph/0309317].

[3] D.Grunewald, E. M. Ilgenfritz, E. V. Prokhvatilov and H. J. Pirner, Formulating Light Cone
QCD on the Lattice, Phys. Rev. D 77 (2008) 014512.

[4] ].P. Vary, H. Honkanen, J. Li, P. Maris, S. J. Brodsky, A. Harindranath, G. E de Teramond,
P. Sternberg, E. G. Ng and C. Yang, Hamiltonian light-front field theory in a basis function
approach, Phys. Rev. C 81,(2010) 035205.

[5] J. P. Vary, H. Honkanen, Jun Li, P. Maris, S. J. Brodsky, A. Harindranath,
G. F. de Teramond, P. Sternberg, E. G. Ng, C. Yang, Hamiltonian light-front field theory
within an AdS/QCD basis, Nucl. Phys. B 199, 64 (2010).

[6] ].P. Vary, H. Honkanen, Jun Li, P. Maris, A. M. Shirokov, S. J. Brodsky, A. Harindranath,
G.F. de Teramond, P. Sternberg, E. G. Ng, C. Yang and M. Sosonkina, Ab initio Hamiltonian
approach to light nuclei and to quantum field theory, Pramana nl of Phys. 75, 39 (2010).

[7]1 H. Honkanen, P. Maris, J. P. Vary and S. J. Brodsky, Electron in a transverse harmonic cavity,”
Phys. Rev. Lett. 106, 061603 (2011).

[8] J. P. Vary, Non-Perturbative Hamiltonian Light-Front Field Theory: Progress and Prospects,
Proceedings of Science, PoS(LC2010)001 (available online).

[9] J. P. Vary, Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects,
Few-Body Systems (to appear), 2012; arXiv:1110.1071.

[10] X. Zhao, H. Honkanen, P. Maris, J. P. Vary and S. J. Brodsky Electron Anomalous Magnetic
Moment in Basis Light-Front Quantization Approach, Few-Body Systems (to appear), 2012;
arXiv:1110.0553.

[11] P.Navrétil, J. P. Vary and B. R. Barrett, Properties of 12-C in the ab-initio Nuclear Shell Model,
Phys. Rev. Lett. 84 (2000) 5728; Large-basis ab-initio No-core Shell Model and its application to
12-C, Phys. Rev. C 62 (2000) 054311.



Ab Initio Hamiltonian Approach to Light-Front Quantum Field Theory 47

[12] P. Maris, J. P. Vary and A. M. Shirokov, Ab Initio no-core full configuration calculations of
light nuclei, Phys. Rev. C. 79 (2009) 014308 [nucl-th/0808.3420].

[13] A. C. Hayes, P. Navratil and J. P. Vary, Neutrino-12C Scattering in the ab initio Shell Model
with a Realistic Three-Body Interaction Phys. Rev. Lett. 91, 012502 (2003); nucl-th/0305072.

[14] A.M. Shirokov, J. P. Vary, A.I. Mazur and T. A. Weber, Realistic Nuclear Hamiltonian: Ab
exitu approach, Phys. Letts. B 644 (2007) 33 [nucl-th/0512105].

[15] P. Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand and A. Nogga, Structure of A
= 10-13 nuclei with two- plus three-nucleon interactions from chiral effective field theory, Phys.
Rev. Lett. 99 (2007)042501 [nucl-th/0701038].

[16] P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng and C. Yang, Scaling of ab-initio nuclear physics
calculations on multicore computer architectures, International Conference on Computer
Science, ICCS 2010, Procedia Computer Science 1 (2010) 97.

[17] P.Maris, J. P. Vary, P. Navratil, W. E. Ormand, H. Nam, D. J. Dean, Origin of the anomalous
long lifetime of 14C, Phys. Rev. Lett. 106, 202502(2011).

[18] B. R. Barrett, P. Navratil and J. P. Vary, Ab initio No Core Shell Model, Nuclear Physics
News International, 21, 5 (2011).

[19] S.K. Bogner, R.]. Furnstahl, P. Maris, R.]. Perry, A. Schwenk and J. P. Vary, Convergence
in the no-core shell model with low-momentum two-nucleon interactions, Nucl. Phys. A 801,
(2008) 21[nucl-th/0708.3754].

[20] P.Maris, A. M. Shirokov and J. P. Vary, Ab initio nuclear structure simulations: the speculative
14F nucleus, Phys. Rev. C 81 (2010) 021301(R).

[21] A. Negret, et al., Gamow-Teller Strengths in the A = 14 Multiplet: A Challenge to the Shell
Model, Phys. Rev. Lett. 97, 062502 (2006).

[22] S. Quaglioni and P. Navratil, Phys. Rev. Lett. 101, 092501 (2008).

[23] S. Quaglioni and P. Navrétil, Phys. Rev. C 79, 044606 (2009).

[24] K. Wildermuth and Y. C. Tang, A unified theory of the nucleus (Vieweg, 1977,
Braunschweig).

[25] D. Chakrabarti, A. Harindranath, L. Martinovic and J. P. Vary, Kinks in discrete light cone
quantization, Phys. Lett. B 582, (2004) 196 [arXiv:hep-th/0309263].

[26] D. Chakrabarti, A. Harindranath, L. Martinovic, G. B. Pivovarov and ]. P. Vary, Ab initio
results for the broken phase of scalar light front field theory, Phys. Lett. B 617, (2005) 92
[arXiv:hep-th/0310290].

[27] D. Chakrabarti, A. Harindranath and J. P. Vary, A transition in the spectrum of the
topological sector of phi**4(2) theory at strong coupling, Phys. Rev. D 71, (2005) 125012
[arXiv:hep-th/0504094].

[28] S.]. Brodsky, V. A. Franke, J. R. Hiller, G. McCartor, S. A. Paston and E. V. Prokhvatilov,
A nonperturbative calculation of the electron’s magnetic moment, Nucl. Phys. B 703 (2004) 333;

[29] S. S. Chabysheva and ]. R. Hiller, A nonperturbative calculation of the electron’s magnetic
moment with truncation extended to two photons, Phys. Rev. D 81 (2010) 074030;

[30] S.S. Chabysheva and J. R. Hiller, On the nonperturbative solution of Pauli-Villars-regulated
light-front QED: A comparison of the sector-dependent and standard parameterizations, Annals
Phys. 325 (2010) 2435.

[31] S. Dalley and B. van de Sande, Transverse lattice calculation of the pion light-cone
wavefunctions, Phys. Rev. D 67 (2003) 114507, [arXiv:hep-ph/0212086].

[32] S.J. Brodsky, D. Chakrabarti, A. Harindranath, A. Mukherjee and J. P. Vary, Hadron
optics: Diffraction patterns in deeply virtual Compton scattering, Phys. Lett. B 641, (2006) 440
[arXiv:hep-ph/0604262]; S. ]J. Brodsky, D. Chakrabarti, A. Harindranath, A. Mukherjee



48 Advances in Quantum Field Theory

and J. P. Vary, Hadron optics in three-dimensional invariant coordinate space from deeply virtual
Compton scattering, Phys. Rev. D 75, 014003 (2007) [arXiv:hep-ph/0611159].

[33] M. Ruf, G. R. Mocken, C. Muller, K. Z. Hatsagortsyan and C. H. Keitel, Pair production in
laser fields oscillating in space and time, Phys. Rev. Lett. 102 (2009) 080402.

[34] C. K. Dumlu and G. V. Dunne, The Stokes Phenomenon and Schwinger Vacuum Pair
Production in Time-Dependent Laser Pulses, Phys. Rev. Lett. 104 (2010) 250402,

[35] A.Ilderton, Trident pair production in strong laser pulses, Phys. Rev. Lett. 106, 020404 (2011).

[36] A. Adare et al. [PHENIX Collaboration], Detailed Measurement Of The EYE~ Pair
Continuum In P + P And Au+Au Collisions At /sy, = 200 Gev And Implications For Direct
Photon Production, Phys. Rev. C 81 (2010) 034911.

[37] K. Tuchin, Photon decay in strong magnetic field in heavy-ion collisions, Phys. Rev. C83,
017901 (2011).

[38] G.FE deTeramond and S. ]. Brodsky, Light-Front Holography: A First Approximation to QCD,
Phys. Rev. Lett. 102, 081601 (2009).

[39] S. J. Brodsky and G. F. de Teramond, Light-Front hadron dynamics and AdS/CFT
correspondence, Phys. Lett. B 582 (2004) 211 [hep-th/0310227]; A. Karch, E. Katz, D. T. Son
and M. A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74, (2006)015005.

[40] X. Zhao, H. Honkanen, P. Maris, J. P. Vary and S. ]J. Brodsky, Electron in a transverse
harmonic cavity, in preparation.

[41] V. A. Karmanov, J.-E. Mathiot and A. V. Smirnov, Systematic renormalization scheme
in light-front dynamics with Fock space truncation, Phys. Rev. D 77 (2008) 085028
[hep-th/0801.4507]

[42] S. ]. Brodsky and S. D. Drell, The Anomalous Magnetic Moment and Limits on Fermion
Substructure, Phys. Rev. D 22, 2236 (1980).

[43] S.]. Brodsky, S. Gardner and D. S. Hwang, Discrete symmetries on the light front and a
general relation connecting nucleon electric dipole and anomalous magnetic moments, Phys. Rev.
D 73, 036007 (2006).

[44] ]. S. Schwinger, On Quantum Electrodynamics And The Magnetic Moment Of The Electron,
Phys. Rev. 73 (1948) 416.

[45] R. ]J. Lloyd and J. P. Vary, All-charm Tetraquarks, Phys. Rev. D 70 (2004) 014009
[hep-ph/0311179].

[46] Jun Li, Light front Hamiltonian and its application in QCD Ph. D. thesis, Iowa State
University (2009), unpublished.



3

Quantizing with a Higher Time Derivative

Sergei V. Ketov!?2, Genta Michiaki! and Tsukasa Yumibayashi1

"Department of Physics, Graduate School of Science, Tokyo Metropolitan University,
Hachioji-shi, Tokyo
2Institute for the Physics and Mathematics of the Universe, The University of Tokyo,
Kashiwa-shi, Chiba

Japan

1. Introduction

It is commonplace in Quantum Field Theory (QFT) that a QFT with higher (time) derivatives
is believed to be doomed from the point of view of physics, because of ghosts or states of
negative norm, and thus it should be dismissed. The standard reference is the very old result
(known in the literature as the Ostrogradski theorem (1)) claiming a linear instability in any
Hamiltonian system associated with the Lagrangian having the higher (ie. more than one)
time derivative that cannot be eliminated by partial integration.

The key point of the Ostrogradski method (1) is a canonical quantization of the clasically
equivalent theory without higher derivatives via considering the higher derivatives of the
initial coordinates as the independent variables.

The interest in the higher-derivative QFT was recently revived due to some novel
developments in the gravitational theory, related to the so-called f(R)-gravity theories — see
eg., ref. (2) for areview. The f(R) gravity theories are defined by replacing the scalar curvature
R in the Einstein action by a function f(R). The f(R) gravity theories give the self-consistent
non-trivial alternative to the standard A-CDM Model of Cosmology, by providing the
geometrical phenomenological description of inflation in the early universe and Dark Energy
in the present universe. Despite of the apparent presence of the higher derivatives, a classical
f(R) gravity theory can be free of ghosts and tachyons. A supersymmetric extension of f(R)
gravity was recently constructed in superspace (3).

Already the simplest model of (R + R?) gravity (4) is known as the viable model of chaotic
inflation, because it is consistent with the recent WMAP measurements of the Cosmic
Macrowave Background (CMB) radiation (5). Its supersymmetric extension was recently
constructed in refs. (6; 7).

On the one side, any quadratically generated (with respect to the curvature) quantum theory
of gravity has ghosts in its perturbative quantum propagator (8). However, on the other side,
any f(R) gravity theory is known to be classically equivalent to the scalar-tensor gravity (ie.
to the usual quintessence) (9-11), while the stability conditions in the f(R) gravity ensure the
ghost-and-tachyon-freedom of the classically equivalent quintessence theory (12; 13). It now
appears that in some cases the presence of the higher derivatives may be harmless (14). It also
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gives rise to the non-trivial natural question of how to make sense out of the quantized f(R)
gravity?

The f(R) gravity theories are just the particular case of the higher-derivative quantum gravity
theories which have been investigated in the past. They were found to be renormalizable
(15) and asymptotically free (16). A generic higher-derivative gravity suffers, however,
from the presence of ghosts and states of negative norm which apparently spoil those QFT
from physical applications. However, the issue of ghosts and their physical interpretation
deserves a more detailed study. The complexity of the higher-derivative gravity is the
formidable technical obstacle for that. It is, therefore, of interest to consider simpler QFT
as the toy-models.

Similar features (like renormalizability and asymptotic freedom) exhibit the quantum
Non-Linear Sigma-Models with higher derivatives, which have striking similarities to the
higher-derivative quantum gravity (17-19). However, even those QFT are too complicated
because of their high degree of non-linearity.

Perhaps, the simplest toy-model is given by the Pais-Uhlenbeck (PU) quantum oscillator in
Quantum Mechanics (20). As was demonstrated by Hawking and Hertog (21), it may be
possible to give physical meaning to the Euclidean path integral of the PU oscillator, as the set
of consistent rules for calculation of observables, even when “living with ghosts”. The basic
idea of ref. (21) is to abandom unitarity, while never producing and observing negative norm
states.

The idea of Hawking and Hertog found further support in refs. (22; 23) where the physical
propagator of the PU oscillator was calculated by using the van Vleck-Pauli approach (the
saddle point method for the Euclidean path integral) and Forman’s theorem (24). In this
Chapter we systematically review the classical and quantum theory of the PU oscillator from
the first principles, along the lines of refs. (14; 21-23).

2. Ostrogradski method with higher derivatives

Consider a one-dimensional mechanical system with the action
Slq] = /dt L(q,Dg,---,D"q) @2.1)

in terms of the Lagrange function L of g(t) and its time derivatives, where n > 2 and D = %
The Euler-Lagrange equation reads

L (=D)5piy =0 22)

The Ostrogradski method (1) gives the Hamiltonian formulation of the higher derivative
Lagrange formulation by introducing more independent variables.

The independent generalized coordinates Q; are defined by

Q=D  (i=1---,n) (2.3)
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The generalized momentum P, is defined by

JL
a(D"q)| 1o,

Dg=A

=D, (2.4)

There are n + 1 independent variables {Q1, - - - , Qn, Py } that are in correspondence to the n + 1
variables {D’, - - - , D"q} of the higher derivative action (2.1).

By solving eq.(2.4) with respect to A = D" g (assuming that it is possible), one gets
:A(Qll /inpl’l) (25)

Therefore, the Lagrange dynamics can be represented in terms of the # + 1 independent
variables {Q1,- -+, Qn, Py} as

LZL(QII"' rQn/A(Ql/"' /anpn)) (2-6)

A Legendre transformation is used to pass from the Lagrange formulation to the Hamiltonian
one. With the generalized coordinates {Q1,- - ,Qn} and the generalized momentum P, as
the independent variables, the total differential of the Lagrangian is given by

1 oL
=1, a(Df—lq) "

j=1 Dg=A

dQ; + PydA
g+2 mldg+mm

]:

(2.7)
where we have used egs. (2.2) and (2.4), and
" 0A d0A
Let us now define the n — 1 generalized momenta as
z dL
P, =) (-D)™ : i=1,--,n-1 (2.9)
’ ];1 o(Dig) ( )
They satisfy the relations
oL
——— = P+ DP, 2.10
a (Dl q) 1 + i+1 ( )

Therefore, eq. (2.7) can be rewritten to the form

n—1

d|Y P(DQ;)+P,A-L| =~ f(DPi)in + i(DQi)dPi (2.11)
i=1

i=1 i=1
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Equation (2.11) gives rise to the Hamiltonian in the form
n—1
H= Z% Pi(DQj) + PrA L (2.12)
j=

The Hamilton equations of motion are given by

oH oH
=P and DP; = ~30;

DQ; (2.13)

3. PU oscillator

The PU oscillator (20) is an extension of the harmonic oscillator with the higher time
derivatives, and is the particular case of the higher-derivative theory introduced in Sec. 2.
The special features of the PU opscilator are
(i) the equation of motion is linear:

F(D)g=0 (3.1)

where F is a linear differential operator;
(ii) the F is polynomial (with respect to D) with constant coefficients:

F(D) = f a;D! (3.2)
i=0

where ag, - - -, a, are the real constants;
(iii) there is the time reversal invariance with respect to t — —t. Hence, the polynomial F has
only even powers of the time derivative D.

The Lagrangian of the one-dimensional PU oscillator reads

L(q,Dg,---,D"q) = — L(Dig)? (ag # 0,4, #0) (3.3)

.M:
N|D

i=0

where a; (i =0,--- ,n) are real constants. The Euler-Lagrange equation of motion is given by

0= Y:(-D) | ~aiDig

i=0

=—a [Z(—l)f”iDZ'}q (34)

i=0 fo
Accordingly, the differential operator F(D) reads

“Lp2 (3.5)

The equation of motion can be rewritten to the form

F(D)q =0 (3.6)
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The PU Lagrangian takes the form (up to a boundary term)

L=—2qF(D)g (37)

The differential operator F(D) can be brought to the factorized form

n D2
F(D) = ]‘[(1 + 2) (3.8)
i=1 wj

where the constants w; (i = 1, -+, n) are the solutions (roots) of the equation F(iw) = 0. Let
us introduce n new operators

n D2
G,-(D)—H<1+2> (i=1,---,n) (3.9)
j=1 w;
i
and define the n generalized coordinates as
Qi = GI(D)q (1 =1,--- ,1’1) (310)

Those generalized coordinates Q; are called harmonic coordinates. By using the harmonic
coordinates, the PU Euler-Lagrange eq. (3.6) can be rewitten to the n equations

2
{1 + Dz} Qi=0 (3.11)
Wi

It means that the PU oscillator can be interpreted as n harmonic oscillators. Accordingly, the
PU Lagrangian (3.7) can be rewritten to the form

- ap n D2
L=-= Y 1iQ; <1 + w?) Qi (3.12)

i=1

where the n constants 7; have been introduced as

dF -1
7 (wl 4(D?) DZ——w,Z) (3.13)

To prove eq. (3.13), we first notice that it amounts to

f 1:Gi(D) =1 (3.14)
i=1

By the definiton of G(D) in eq.(3.9) we have

n w
= 51-]-1'[( - ]2> (3.15)
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so that
n
Y 1Gi(D) =1 (3.16)
i=1
3 2 2 - w/z
l; ’7iGi(D = —w]») = 17]1—[<1 — w%) =1 (3.17)

indeed. Therefore, the constants #; are given by
n AN
M= [H( - ’2)} (3.18)

Next, we prove that

n 2
_ H(l - “’12) (3.19)

By the use of eq.(3.8) we find

Gi(D) (320

so that

[10--5) (3.21)

Equation (3.19) is now confirmed and, hence, via eq. (3.18) also eq. (3.13) follows.

In terms of the harmonic coordinates (3.10), the Lagrangian L,

= a
L= *jqu(D)q
2

_ v 4. P,
— 2£m@“+wﬁ@ (3.22)
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with the constants 7; given by eq. (3.13), can be rewritten to the form
~ ap L 2
L== Zi (T(DQz) -Q7) (3.23)
1= l

up to a boundary term.

The Lagrangian (3.23) is just a sum of the Lagrangians of n harmonic oscillators. Hence,
similarly to a free system of n particles, we can change the Lagrangian formulation into the
Hamiltonian formulation. We define the generalized momenta P; by taking the harmonic
coordinates Q; and the velocities DQ); as the Lagrange variables,
oL

P‘ = —

© 9(DQi)
aopn; .
_ Zz DO; (i=1,---,n) (3.24)

i

The system of n free particles does not have higher derivatives, so its Hamiltonian is

n

H=) P(DQj)—-L (3.25)
i=1
Equations (3.23) and (3.24) imply
4 207 2

H= 2(211 m P? > Qi) (3.26)

By rescaling the harmonic coordinates and the generalized momenta as

- Vaoln] 5 _ Wi/ |1l

Qi—Qi="+—=—0Q; and P — P = P; 3.27
1 1 C()l 1 1 1 771\/% 1 ( )

we get the final Hamiltonian
1 & 2
=3 }J (P? + w2G;°) (3.28)

The presence of both positive and negative values of the constants #; in the Hamiltonian
implies both positive and negative values of energy. The constants 7; are given by eq. (3.18).
If w; satisfy i < j = w; < wj, the constants 7; are positive for the odd number i, and are
negative for the even number i. Therefore, the Hamiltonian is

i )™ 1<15i2+w,-2Qi2> (3.29)

I\J \

This Hamiltonian can be interpreted as that of n harmonic oscillators, with the positive and
negative energy levels appearing alternatively. Because of that reason, the PU oscillator has
an instability (for any interaction). It is related to a possible ghost state of negative norm in PU
quantum theory (see Sec. 6). In what follows we consider the simplest case of PU oscillator
with n = 2 only.
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4. PU oscillator for n = 2: explicit results

Let us consider the Lagrangian

2 2 /42N 2
[ — ;(‘2) _V(q)_aZ(‘;tZ) (where & # 0) (4.1)

with a scalar potential V(g). In the case of the PU oscillator, the potential V() is a quadratic
function of g. Since the (mass) dimension of time is —1 (in the natural units # = ¢ = 1), the
dimension of the Lagrangian L is 1, the dimension of g is —1/2, and that of the constant « is
—1.

Let the trajectory q be a sum of the classical trajectory g, and the displacement 4, ie. 4 =
qc1 + §, where the classical trajectory gq,; is a solution to the equation of motion (EOM) with the
boundary conditions (21)

o q0)=q0, q(T)=4qr, 40) =40, 4(T)=4qr 4.2)
where the dots above stand for the time derivatives.

With the boundary conditions (4.2), the boundary condition of § is

: §(0)=0, §(T)=0, §(0)=0, §(T)=0 (43)
The action of gy + § is given by

~ T 1 22 ~ ~1 7/ 0(2 =D
S[9c1 + 4] = S[qa] +/0 dt(zq ~ V(e +4) +V(qa) +4V'(ger) — EX ) (4.4)

where we have introduced the notation

av

V'(qq) = a7 (4.5)

‘qqcl

In eq.(4.4) the term V(g + §) — V(q.) — GV’ (4.;) represents the gap between the full action
S[g] and the classical action S[g.;], which generically depends on both the classical trajectory
go and the displacement 4. After expanding the scalar potential V in Taylor series,

. . 1.
V(@ +3) = V(ga) +3V' (@) + 5,3V (@a) + - (4.6)

we find that, when the second derivative V" is constant, the gap V(g +§) — V(94) — GV (941)
does not depend on the classical trajectory q.;. It is the case when the potential V is a quadratic
function of g, like the PU oscillator.

In the path integral quantization (sec. 7), the gap between the full action and the classical
action is a quantum effect. When the potential is a quadratic function (like that of the PU
oscillator), that quantum effect does depend on §, but does not depend on the classical
trajectory. In what follows, we only consider a quadratic function for the scalar potential
in the form

Vig) = -1 (4.7)
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ie. the scalar potential of a harmonic oscillator with the mass m > 0, The Lagrangian is given
by
m2

1 ) 2 062
L = — _ —
PU 24 2 q

.2
o (4.8)

The parameter « measures a contribution of the second derivative to the harmonic oscillator.
Therefore, we can expect the classical trajectory to behave just like that of the harmonic
oscillator when « is small.

The Euler-Lagrange EOM of the Lagrangian (4.8) are given by eq.(2.2),

°T izo(_D)iagfq)
= —m?q—j—a®q 4.9)
or, equivalently,
<m2 +D>+ a2D4> g=0 (4.10)

It is not difficult to find clasical solutions to the EOM in eq. (4.10). When searching for the
classical trajectory in the oscillatory form g, = exp(iAt), the EOM reads

(m2 A2+ a2A4> M =0 (4.11)
and, therefore, we have
1+ V1 — 4a2m?
A2 = T“m (4.12)

When A is real, the Lagrangian L(PU) is an extension of the harmonic oscillator indeed.
Hence, we need the condition

1
0<am< 5 (4.13)

It means that the Lagrangina Lp;; has the oscillating solution which is similar to the trajectory
of the harmonic oscillator. A general solution reads

q(t) = Ay cos(Ayt) + By sin(Aqt) + A_cos(A_t) + B_sin(A_t) (4.14)

where A4, By, A_, B_ are the integration constants, and

1F V1 — 4a2m?
Ay = ]FT (4.15)

The values of the constants (A4, B+, A_, B_) are determined by the boundary conditions.

The Hamiltonian formulation for the Lagrangian (4.8) can be obtained by the Ostrogradski
method. The generalized coodinates and momenta are given in Sec. 2, ie.

oL oL
oL

Q=4 and P, (4.16)

Kz
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which imply
P1 = q+ 0(2'67.
P, = —a?j (4.17)
The Hamiltonian is given by eq.(2.12). ie.
H=P(DQ1)+PA-L

1 1 m?
= PQ—55P — 50+ 5O (4.18)
or, equivalently,
2 2
1
H = %5 — %q‘z 50+ %qz (4.19)

Since the Hamiltonian does not evolve with time, we can find the energy by substituting g(t)
of eq. (4.14) at t = O into eq. (4.19), as well as q,4, 4 and 4 att = 0, ie.

E](O) = A+ + A_
§(0) = ByAy +B_A_
§(0) = —A1A3 —A_AZ (4.20)
§(0) = —B4A3 —B_A%
It is now straightforward to calculate the Hamiltonian (4.19). We find
20OV o o 1o m
H = a%4(0)9(0) — -4(0)" + 54(0)" + —-4(0) (4.21)
= %/\i V1 —4a2m2(A% + B2) — %)\2, V1 —4a2m?(A% + B?)

To get the Hamiltonian formulation in the harmonic coordinates, we begin with the EOM in
the form (4.10), whose differential operator F(D) is defined by

D2 a2D4
F(D) :1+W+F (4.22)
It can be factorized as
(D) <1+ D2)<1+D2> (4.23)
F(D) = — — .
A% A2
where A4 are given by eq. (4.15). Therefore, the harmonic coodinates are given by
D? D?
Q+ = <1+2)q and Q7 = <1+2)q (424)
A% AL

The constants 7; of eq. (3.13) can be computed as follows. We have

dr 1 2a2D?
a0 T (4.25)
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so that
dF -
— (A2
1= ( *dD? D2_—/\§t>
23 !
= (2(1 —20&1))
A2 -
= (imi; V1- 4zx2m2>
2
m
"V aw (426
Therefore, the generalized momenta in eq. (3.24) are
p, - M DQ
+ Ai +
m! DQ (4.27)
_ i .
M V1 — 4a2m?
and the Hamiltonian is given by
A2 m?y;
H= ( I p2 "1 Q2>
j:Zi 2m2,7]. ] 2 ]
m* 2 2
_ ; DQ; +A.Q,> 4.28
j;iJZ/\?\/l—4a2m2 <( 2 I=i (.28)
where we have substituted the classical solution (4.14).
The harmonic coodinates (4.24) read
AZ AZ
Q. = A, (1 — );) cos(A4t) + By (1 — A;) sin(At) (4.29)
A2 A?
Q- =A_ (1 - 2‘) cos(A_t) + B <1 - 2‘) sin(A_t) (4.30)
AL AL
where
_ & = Ai( 1 1 >
2 2 2
AL AL A%
)\2
= j:ﬂ% V1 — 4a2m? (4.31)
Hence, we find
)LZ
Q+ = j:m—jzt V1 —4a2m? <Ai cos(A+t) + Bxsin(A+ t)) (4.32)
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Substituting them into the Hamiltonian (4.28), we get

1 1
H=-A2\1—4a2m2(A% + B2) — 52& V1 —4a2m?(A%* + B%) (4.33)

2

Equations (4.22) and (4.33) are the same. Therefore, we conclude that the Hamiltonian
formulation by the Ostrogradski method is consistent with the Hamiltonian formulation in
the harmonic coordinates, as they should.

The integration constants (A4, B) correspond to the harmonic oscillator with positive
energy, while the integration constants (A_, B_) correspond to the harmonic oscillator with
negative energy.

5. Boundary conditions and spectrum

Going back to the Lagrangian (4.8), let us consider its action over a finite time period T,

T
Slgl = /0 dt Lpy (5.1)

with the trajectory g being a sum of the classical trajectory g.; and the displacement §, g =
go + 4. In quantum theory, the displacement § is a quantum coordinate. The action can be
rewritten as

T cese . .en T
S[g] = Slqu] + Sla] — /0 dt (q‘gz+m2qd+a2qd>r7+ {qdq—wzqdqwzm (5.2)
0

Here the first term is the action of the classical trajectory 4., and the second term is the action
of the quantum part 4. The integrand of the third term vanishes because the classical trajectory
is a solution of the (Euler-Lagrange) EOM. The fourth term depends on the boundary.
However, if the boundary condition on § is given by

: §(0)=0, (T)=0, §(0)=0, §(T)=0 (5.3)
the fourth term in eq. (5.2) also vanishes. That boundary condition is the same as that of

o q0)=4q0, q(T)=4qr, 4(0) =40, 4(T)=4qr (5.4)

which was proposed in ref. (21). The quantum action now takes the form

- T 1, m?, %y
S[q]—/o dt (2”7 -1 —2’1>
1T 1[.. 2T
— _7/ dtq<D2+m2+a2D4>q+[qq—a2qq+a2qq
2 Jo 2 0

(5.5)

where the (last) boundary term vanishes due to the boundary condition (5.3).

The boundary term in eq. (5.5) also vanishes by another boundary condition,

' §(0)=0, 4(T)=0, §(0)=0, §(T)=0 (5.6)
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As a result, the action (5.5) takes the Gaussian form, which is quite appropriate for a path
integral quantization with the Gaussian functional

T
—% ; dtq<D2+m2+a2D4>q (5.7)

Let us now compute the spectrum of the operator D? + m? + a?D*. For this purpose, we need
to find the solutions uy to the eigenvalue equation

(D? + m? + a®D*)u (t) = kuy (t) (5.8)
with the eigenvalues k. A general solution is
u(t) = Ajcos(wyt) + Agsin(wyt) + Az cos(w—t) + Agsin(w_t)

ws = \/1]F V1= dai(n — k) (59)

20

where A1, Ay, A3, Ay is the constants of integration. The function § can be expanded in terms
of uy,

gj= / dk u(t) (5.10)

The spectrum of k is now determined by appying the physical boundary conditions (5.3) or
(5.6) to uy in the form of eq. (5.9). Applying the boundary condition (5.3) at t = 0 yields

G0)=A;1+ A3 =0, §(0) = Apwy + Agw— =0 (5.11)
The boundary condition (5.3) at t = T then takes the form
§(T) = Ay cos(wiT) + Apsin(wy T) — Ay cos(w_T)
wy .
—Ar— _T) =
2~ sin(w-T) =0
§(T) = —Aywy sin(wi T) + Apwy cos(wT)
+Ajw_sin(w_T) — Apwy cos(w_T) =0
In particular, the determinant of the matrix on the left side of this equation,
w- [COS(CU+ T) — cos (w_T)] w_sin(w4T) — wy sin(w_T)

det
—wy sin(wyT) +w_sin(wsT) wy [cos (w4 T) — cos(w-T)

—wi-[cos(ws T) - cos(w-w]z

+CU+(4)_

sin® (w4 T) + sin® (w_ T)} — (0} + w?)sin(w4 T) sin(w-T)

=2w,w_ [1 —cos(wT) cos(w— T)} — (. + w? ) sin(w. T) sin(w-T) (5.12)
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must vanish. We find

2w w— [1 — cos (w4 T) cos(w- T)} = (W} +w?)sin(wy T) sin(w-T)

7 _
Zme [1 — cos (w4 T) cos(w- T)} = “1—2 sin(w. T) sin(w_T)
1= cos(wT) cos(w-T) = - sin(w4.T) sin(w-T)
av'm? —k

(5.13)
where w4 (k) ar given by eq. (5.9). Apparently, there is no simple solution here.

When employing the boundary conditions (5.6) with eq. (5.9) on 1y, the boundary condition
int = 0 yields

§(0) = A1+ A3 =0, §(0) = —Ajw} — Azw? =0 (5.14)
so that we find Ay = A3 = 0 when w # w_. Now the boundary condition at t = T reads
§(T) = Apsin(w4T) 4+ Agsin(w_T) =0
§(T) = —Axw? sin(w4 T) — Agw? sin(w-T) =0 (5.15)

To get a nontrivial solution, the correspending determinant must vanish, which yields the
condition

(Wi — w?)sin(w, T)sin(w-T) =0 (5.16)
Since w4 # w—, we find
sin(wyT) =0 or sin(w-T) =0 (5.17)
It means i it
Wi = or w- = — (where n is an integer) (5.18)

and w+ are the solutions to the equation
2 4m? 4yt =k (5.19)
Therefore, the spectrum of k with the boundary condition /" has the simple form
nm\? o nm 4
k= (T) +m°+a (T) (5.20)

6. Canonical quantization and instabilities

In this section we recall about istabilities and ghosts in the quantum PU oscillator (14). The
most straightforward way is based on identifying the energy rasing and lowering operators
(14). The classical solution (4.14) can be rewritten to the form

q(t) = %(A+ —iBy et 4 %(AJr +iBy )e M+t

1 ‘ 1 ,
(A —iB_)eMt + S(A-+ iB_)e~iA+t (6.1)

2
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Since the A_ modes have negative energy, the lowering operator must be proportional to
the (A_ —iB_) amplitude. Similarly, since the A; modes have negative energy, the raising
operator must be proportional to the (A4 + iB4 ) amplitude, ie.

x+ ~ Ay +iBy

N .
~ SR 1—4a2m2)Q1iiP1$%(1:F 1—4a2m?) — Ay P

6.2)
where we have used )
Y
Ay =TT (63
AL —AL
and )
224
= Jo A0 (64)
Ar(AL =A%)
as well as !
Q1 =140 (6.5)
Q2=14o (6.6)
Py = do +a*d 6.7)
P, = —a%y (6.8)
It is now straightforward to derive the commutation relations,
s, af] =1 (6.9)
The next step depends upon physical interpretation (14).
(I) The ‘empty’ (or ‘ground’) state may be defined by the condition
ar|Q) =o' |Q) =0 (6.10)
Then the ‘empty’ state wave function Q(Q1, Q2) (in the Q-representation, with P = —id/9Q)
reads
- V1 —4a2m? .
Q(Q1, Q) = Nexp | — 57— 5 (A+A-Qf = Q) — imaQ1Q; (6.11)

and is infinite or not normalizable, because the size of the wave function gets bigger with the
increase of Qy, so that the integral over the whole space diverges.

In addition, when the eigenstate | N, N_) with the eigenvalues N = (N, N_) is defined by

o ¢l
Ny, N_) = S = 1) (6.12)

! The canonical variables were calculated at the initial time value because the operators in Schrodinger
picture do not depend upon time.
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the norm of the (0, 1) state is given by
<0,110,1> = (Ofa’a_|Q)
= (O (-1+a-a")|Q)
=-<QQ>
=-1 (6.13)

which is a ghost. The non-normalizable quantum ‘states” are physically unacceptable, so the
interpretation (I) should be dismissed (14).

(I) It is, however, possible to treat all particles (with positive or negative energy) as the truly
ones by defining the ‘empty’ state () differently, namely, as

L |Q) =0 (6.14)

In this interpretation the negative energy can arbitrarily decrease and the Hamiltian is
unbounded from below. The ‘empty’ state solution ((Q1, Q) in the Q representation is now

given by
V1 — 4a2m?
2A-+A4)

and is apparently finite or normalizable, because the first term in the exponential is negative.

0(Q1,Q2) = Nexp |- (A4+A-QF + QF) + imaQ1 Qo (6.15)

The eigenstate [N, N_) of the eigenvalues N = (N, N_) is now given by

t t
N N-) = | (6.16)

while the norm of the (0, 1) state is

<0,10,1 > = (Qa—a’ |OQ)
=(Q|(1-ala)|Q)
=<0 >
=1 (6.17)

ie. it is not a ghost.

In the correct physical interpretation (II) the correspondence principle between the classical
and quantum states is preserved, but the system has indefinite energy. When interactions
are switched on, mixing the negative and positive energy states would lead to instabilities in
the classical theory, and the exponentially growing and decaying states in quantum theory
(25; 26). Excluding the negative energy states would lead to the loss of unitarity (21).

7. Path integral quantization and Forman theorem

The idea of ref. (21) is to define the quantum theory of the PU oscillator as the Euclidean path
integral and then Wick rotate it back to Minkowski case. It makes sense since the Euclidean
action of the PU oscillator — see eq. (8.3) below — is positively definite. It can also make
the difference to the canonical quantization and the Ostrogradski method (Sec. 2) when one
integrates over the path only, but not over its derivatives.
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Let us first recall some basic facts about a path integral in QFT, according to the standard
textbooks in Quantum Field Theory - see, for example, ref. (27).

The definition of the probability amplitude for a one-dimensional quantum particle by

Feynman path integral is given by

b i [t
Z(qp ty; Gasta) = | Pqexp {h /t dtL] (7.1)
Jqa a
where the integration goes over all paths q(f) between g, and g;,. After Wick rotation
t—t=—it (7.2)

the path integral takes the form?

qb 1 ™
Z(qp, ty; Gas ta) :/ 2q exp [_h/ d’[‘LE} (7.3)
0 T
It is called the Euclidean path integral. In the case of the PU oscillator the Euclidean path
integral is Gaussian. Let us recall some basic properties of the Gaussian integrals.
The simplest Gaussian integral reads

/ dxe o = % 0> 0 (7.4)

It can be easily extended to a quadratic form in the exponential as

« —ax?—bx _ [T ﬁ
/_oo dxe = \/:exp (4a> (7.5)

It can also be easily extended to the case of several variables with the diagonal quadratic form

as
/oo [d"x] exp <— Zapc?) _ 1 - (7.6)
— i=1 2

n 2
i=14

where we have introduced the normalized measure [dx| = dx/+/7.

By diagonalizing a generic (non-degenerate) quadratic form, one can prove a general
finite-dimensional formula,

/ [d"x]exp (—x'Ax — b'x) = % exp <ibtA_1b> (7.7)
b i=1""

_ 1 1,
_detAexp(4bA b)

Finally, when formally sending the number of integrations to infinity, one gets the Gaussian
path integral,

" gqexp |- [ aaF D)0 +0)1(0)

Jqa

T @0 |1 L wer o) s

2 The sign factor in the Wick rotation is chosen to make the path integral converging.
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where DetF(D) is now the functional determinant.

A generic functional determinant diverges since it is defined as the product of all the
eigenvalues in the spectrum of a differential operator. Therefore, one needs a regularization.
It is most convenient to use the zeta function regularization in our case — see, for example,
ref. (28) for a comprehensive account. The Riemann zeta function is defined by

qOEDY ni (7.9)
n=1

in the convergence area of the series. It is then expanded for Re(s) > 1 by analytic
continuation. It is often useful to employ an integral representation of the zeta function in
the form

_ 1 *© s—1 - —n
é(s)—@/o dtt n;e f (7.10)

where the (Euler) gamma function has been introduced,

T(s) = /Ooo drplet (7.11)

Equation (7.10) allows one to define the zeta function for an elliptic operator L as
1 00
s|L) = —/ dt e 't 7.12
{610 = 157, (712)

where tre~*! is given by

e—/\lt
o—Mat 0
tre L = tr , =Y e Mt (7.13)
) n=1

in terms of the positive eigenvalues A, of L. One easily finds

(o) 1 (o) B
gL =Y i Y emsinAx (7.14)
n=1 n=0

Differentiating both sides of this equation with respect to s at s = 0, one finds

dg(s|L) -
= — InA
ds |—p n; "

o0
—1In H An
n=1
= —InDetL (7.15)

so that the functional determinant of an elliptic operator L is given by

DetL = ¢ ¢'ls=0 (7.16)
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The zeta function regularization of the right hand side of this equation is

00 4L
lnDetL;lEZ:) = —lg (e Lz> = _ﬁ_/o dtte_ltre tﬂz
1 ]’126 © 1 ]’126
- oy L
GZ() € = AL e§(|)

W

~ L+ e ) EOIL) + e (O]L) +O(e)

_ _ég(0|L) —Z/(0|L) — In 427 (0L) + O(e?) (7.17)

where we have introduced the regularization parameter € and the dimension parameter .

The zeta-function renormalization amounts to deleting the first term in eq. (7.17), since it
UV-diverges in the limit € — 0, as well as the third term since it IR-diverges in the limit
u—0.

To put equation (7.17) into a more explicit form, without resorting to the spectrum of the
differential operator, it is convenient to use Forman’s theorem (24): 3

Let K, and K ; are the differential operators defined by

n—1

{K_ PO( >dT” +O(d(i—n—l) (7 18)
_ dn-1 .
K: PO( )dTYl +O(d1—7171)

over the domain [0, T]. Consider a linear differential equation

Kh(t) =0 (7.19)
with a boundary condition
(0) h(0)
11 (0) 11 (0)
oM _ +N : =0 (7.20)
nn1) () nn1) ()

and take the boundary condition </ to be smoothly connected to </. The time evolution
operator Yx(7) is introduced as

h(t) h(0)
: = Yk(7) : (7.21)
h=1 () h=1(0)
so that the boundary condition can be written to
h(0)
(M + NYk(T)) : =0 (7.22)
p(n—1) (0)

3 Forman theorem is an extension of the Gel’fand-Yaglom theorem.
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The Forman theorem is given by the statement:

DetK,  det (M + NYg(T))
DetK ;  det (M + NYg(T))

(7.23)

This theorem is effective for finding the functional determinant of the operator K with
unknown spectrum by connecting it to the one with a simple spectrum via changing the
boundary conditions.

8. Path integral of PU oscillator

The Euclidean path integral of the PU oscillator over a domain [0, T] was calculated in
refs. (21-23). Here we confirm the results of ref. (22) by our calculation.

The path integral of PU oscillator with the action

T 1 A 2 mz 2 0(2 N2
Spu = [ e (3302 = 507 - 02 1)
after the Wick rotation (t — it) takes the form
qr
Z(q1,T;q0,0) = /q 749 exp (=Sg) 82)
0
where the Euclidean PU action is given by
T 1. 5 m2 ) IXZ 2
e = [ dr (G007 + a0 + S0 53)

This Sg is positively definite, so that the Euclidean path integral is well defined.

Since our discussion of the classical theory (Sec. 4), the integral trajectory is a sum of a classical
trajectory g, and quantum fluctuations §, § = g + 4. Accordingly, the action can be also
written down as a sum,

Sela) = Su + Sl (8.4)

and the path integral of the PU oscillator takes the form

0
Z(q1,Tiq0,0) = [ Ziexp (~S[i]) 55

where the quantum action S[4] is given by

4 d2
sla) = 2/ ﬁ—@+ i (8.6)

after integration by parts.

Let us denote the differential operator « ;? - W + m? with the boundary condition .7 as
Kz. Then the path integral can be written down in the form

0 T
21, T;90,0) =5 [ Fgexp (; I dtt?KM) (8.7)
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The path integral of the PU oscillator is Gaussian and, therefore, can be computed along the

lines of Sec. 7 as

Z(qt,T;q0,0) (—=Sa)

N
= JDek,, O

(8.8)

where N is the normalization constant. The classical part S; was found in ref. (21), and it is
quite involved. The functional determinant is the key part of a quantum propagator of PU
oscillator, which is of primary physical interest. It can be computed by the use of Forman

theorem (Sec. 7).

First, one calculates the time evolution operator Y. It is given by

ulgtg uggt; L@,Et% u4Et§
u1(t) o (t) tia(t) 1tig(t
Ye(®) = | (1) s (t) () iz (0

i3 (8) i3 (1) i3 (1) i3 (1)

where

and the inital condition is
Y, (0) =1

The operator K ; is equal to K, so they have Yx(t) is common.

By solving the equation Ku; = 0 for u; with

one gets its general solution in the form

u;(t) = Ajsinh(A4t) + B;cosh(A1t) + C;sinh(A_f) 4+ D; cosh(A_t)

The boundary condition Yg(0) = 1 amounts to the relations
Bi + Dj = &y
AL Ai +A_Ci = dy;
A% B; + A2 D; = &
)\%,-Ai +A3 C; =y

Therefore, the solutions are

A2 A%

U = m COSh(A+t) + m COSh(/\ft)

A2 A2
Uy = — 2= sinh(Ash) + ——Fsinh(A_f)

Ap(A2 =A%) (A% =A%)

1 1
Uz = —m COSh()\+t) - m COSh(/\ft)
by = ———— L sinh(Asf)+ —— sinh(A_t)

T2 -2) L - A2) B

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

8.14)
8.15)
8.16)
8.17)

o~ o~ o~

(8.18)

(8.19)

(8.20)

(8.21)
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Next, one writes down the boundary conditions </ and &/ in terms of the matrices M and N
appearing in the Forman theorem. The boundary condition 47 is

 :§(0)=0,4(T)=0,4(0)=0,4(T) =0 (8.22)

so that its matrices M and N are given by

1000
0100
M= 0000 (8.23)
0000
and
0000
N — 0000

1000
0100

(8.24)

In the same way, the boundary condition & is
o 2 4(0)=0,4(T)=0,4(0)=0,4(T)=0 (8.25)

so that its matrices M and N are given by

1000
. 00-10
M=1{000 0 (8.26)
00 0O
and
0000
- 0000
N=1{1000 (8.27)
0010
Having found M, N and Y, as well as M, N and Yg, we calculate
det(M + NYg(T))
3 Ve, P J1 =
. ! sinh? MT — sinh? MT (8.28)
m |1+ 2ma 2 1—2ma 2w
and
det(M + NYg(T))
= % |sint? <V1;2’”"‘T) _ sinh? (WT)} (8.29)
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A calculation of DetK ; goes along the standard lines (21-23),

o %) B %) ) ﬂ 4 g 2 )
Deth—’gkn—r[[l(a(T)—i-(T)—l—m) (8.30)
- sinh? 7V1—|—2mth — ginh? 7@—2mth (8.31)
mT? 2w 20
By using the Forman formula, one gets the final answer:
det (M + NYg(T))
DetK y = - DetK 7
RS T et (M + NYg(T))
3 /
— (1 +2am) ' sinh? (HZW‘T>
mT 2w
—(1— 20m) " sinh? (”12;’”‘" T)] (8.32)

in full agreement with ref. (22) in its last (v2) version. In the large T limit one finds

exp( 1—|—2mzx%) 1exp( 1—2mzx§)

DetKy ~ % (14 2am) ; —(1=2am)~ 5 , (8.33)
2T 2T
(%) (%)
and in the small T limit one gets
T2
DetKoy ~ 5 + O(T*) (8.34)

The ground state probability amplitude (or the Euclidean quantum propagator) of PU
oscillator, is given by

. . _ 27 _
<qr, 91T = Tl|q0,40; T =0 >= etk exp (—Sg(qal) (8.35)

The classical Euclidean action Sg[q.] was calculated in Appendix of ref. (21). It is finite for
large T > 1 and behaves like % for small T < 1. Hence, the transition amplitude (or the
quantum Euclidean propagator) is exponentially suppressed both for small and large T, ie. the
transition amplitude is normalizable and the Euclidean path integral is well defined indeed.

9. Conclusion

The procedure of calculating Euclidean transition probabilities (for observables) in the
quantum PU theory was outlined in ref. (21). The probabilities in the Minkowski space can be
obtained by analytic continuation. It is, therefore, possible to make physical sense out of the
quantum PU theory.

In classical PU theory with interactions, even at a very small value of the parameter « > 0,
one gets runaway production of states with negative and positive energy. However, as
was suggested in ref. (21), the Euclidean formulation of the quantum theory implicitly
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imposes certain restrictions that can remove classical instabilities. The price of removing
the instabilities is given by an apparent violation of unitarity (21). Indeed, integrating over
the basic trajectory, and not over its derivatives in the Euclidean path integral formulation
of the quantum PU oscillator given above is not in line with the canonical quantization and
the Ostrogradski method. By doing it, one looses some information and, hence, one loses
unitarity. As was argued in ref. (21), one can, nevertheless, never produce a negative norm
state or get a negative probability, so that the departure from unitarity may be very small at
the low energies (say, in the present universe), but important at the very high energies (say, in
the early universe). Of course, it is debateable whether the ‘price” of loosing unitarity is too
high or not.

Apparently, the f(R) gravity theories are special in the sense that for each of them there
exist the classically equivalent scalar-tensor field theory without higher derivatives, under the
physical stability conditions. Still, as the quantum field theories, they may be very different.
It may be possible to quantise f(R) gravity without loosing unitarity. Figuring out details is
still a challenge.
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1. Introduction

The understanding of electroweak (EW) interactions in nuclei has played an important role in
nuclear and particle physics. Previously, the electromagnetic (EM) interaction has provided
valuable information about nuclear structure. On the other hand, weak interactions, which
are intrinsically correlated with the EM interaction, can be complementary to the EM probe.
Moreover, a good knowledge of (anti)neutrino-nucleus scattering cross sections is needed
in other processes, including neutrino-oscillation experiments, neutrino astrophysics, and
others.

To understand EW interactions in nuclei, we need to deal with the strong interaction
that binds nucleons together. The fundamental theory of the strong interaction is
quantum chromodynamics (QCD), which is a relativistic field theory with local gauge
invariance, whose elementary constituents are colored quarks and gluons. In principle, QCD
should provide a complete description of nuclear structure and dynamics. Unfortunately,
QCD predictions at nuclear length scales with the precision of existing (and anticipated)
experimental data are not available, and this state of affairs will probably persist for some
time. Even if it becomes possible to use QCD to describe nuclei directly, this description is
likely to be cumbersome and inefficient, since quarks cluster into hadrons at low energies.

How can we make progress towards understanding the EW interactions of nuclei? We will
employ a framework based on Lorentz-covariant, effective quantum field theory and density
functional theory. Effective field theory (EFT) embodies basic principles that are common
to many areas of physics, such as the natural separation of length scales in the description
of physical phenomena. In EFT, the long-range dynamics is included explicitly, while the
short-range dynamics is parameterized generically; all of the dynamics is constrained by the
symmetries of the interaction. When based on a local, Lorentz-invariant lagrangian (density),
EFT is the most general way to parameterize observables consistent with the principles of
quantum mechanics, special relativity, unitarity, gauge invariance, cluster decomposition,
microscopic causality, and the required internal symmetries.

Covariant meson-baryon effective field theories of the nuclear many-body problem (often
called quantum hadrodynamics or QHD) have been known for many years to provide
a realistic description of the bulk properties of nuclear matter and heavy nuclei. [See
Refs. (Furnstahl, 2003; Serot & Walecka, 1986; 1997; Serot, 2004), for example.] Some time
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ago, a QHD effective field theory (EFT) was proposed (Furnstahl et al., 1997) that includes all
of the relevant symmetries of the underlying QCD. In particular, the spontaneously broken
SU(2)L ® SU(2)g chiral symmetry is realized nonlinearly. The motivation for this EFT and
illustrations of some calculated results are discussed in Refs. (Furnstahl et al., 1997; Hu et al.,
2007; Huertas, 2002; 2003; 2004; Mclntire et al., 2007; MclIntire, 2008; Serot, 2007; 2010), for
example. This QHD EFT has also been applied to a discussion of the isovector axial-vector
current in nuclei (Ananyan et al., 2002).

This QHD EFT has three desirable features: (1) It uses the same degrees of freedom to describe
the currents and the strong-interaction dynamics; (2) It respects the same internal symmetries,
both discrete and continuous, as the underlying QCD; and (3) Its parameters can be calibrated
using strong-interaction phenomena, like 7t N scattering and the properties of finite nuclei (as
opposed to EW interactions with nuclei).

In this work, we focus on the introduction of EW interactions in the QHD EFT, with the Delta
(1232) resonance (A) included as manifest degrees of freedom. To realize the symmetries
of QCD in QHD EFT, including both chiral symmetry SU(2); ® SU(2)g and discrete
symmetries, we apply the background-field technique (Gasser & Leutwyler, 1984; Serot,
2007). Based on the EW synthesis in the Standard Model, a proper substitution of background
fields in terms of EW gauge bosons in the lagrangian, as constrained by the EW interactions
of quarks (Donoghue et al., 1992), leads to EW interactions of hadrons at low energy. This
lagrangian has a linear realization of the SU(2)y isospin symmetry and a nonlinear realization
of the spontaneously broken SU(2); ® SU(2)g (modulo SU(2)y) chiral symmetry (when the
pion mass is zero). It was shown in Ref. (Furnstahl et al., 1997) that by using Georgi’s naive
dimensional analysis (NDA) (Georgi, 1993) and the assumption of naturalness (namely, that
all appropriately defined, dimensionless couplings are of order unity), it is possible to truncate
the lagrangian at terms involving only a few powers of the meson fields and their derivatives,
at least for systems at normal nuclear densities (Miiller & Serot, 1996). It was also shown
that a mean-field approximation to the lagrangian could be interpreted in terms of density
functional theory (Kohn, 1999; Miiller & Serot, 1996; Serot & Walecka, 1997), so that calibrating
the parameters to observed bulk and single-particle nuclear properties (approximately)
incorporates many-body effects that go beyond Dirac-Hartree theory. Explicit calculations
of closed-shell nuclei provided such a calibration and verified the naturalness assumption.
This approach therefore embodies the three desirable features needed for a description of
electroweak interactions in the nuclear many-body problem.

Moreover, the technical issues involving spin-3/2 degrees of freedom in relativistic quantum
field theory are also discussed here (Krebs et al., 2010; Pascalutsa, 2008). Following the
construction of the lagrangian, we apply it to calculate certain matrix elements to illustrate the
consequences of chiral symmetries in this theory, including the conservation of vector current
(CVCQC) and the partial conservation of axial-vector current (PCAC). To explore the discrete
symmetries, we talk about the manifestation of G parity in these current matrix elements.

This chapter is organized as follows: After a short introduction, we discuss chiral symmetry
and discrete symmetries in QCD in the framework of background fields. The EW interactions
of quarks are also presented, and this indicates the relation between the EW bosons and
background fields. Then we consider the nonlinear realization of chiral symmetry and other
symmetries in QHD EFT, as well as the EW interactions. Following that, we outline the
lagrangian with the A included. Subtleties concerning the number of degrees of freedom
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and redundant interaction terms are discussed. Finally, some concrete calculations of
matrix elements serve as examples and manifestations of symmetries in the theory. We
also briefly touch on how this formalism can be used to study neutrino—nucleus scattering
(Serot & Zhang, 2010; 2011a;b; Zhang, 2012).

2. QCD, symmetries, and electroweak synthesis

In this section, we talk about various symmetries in QCD including Lorentz-invariance, C, P,
and T symmetries, and approximate SU(2) ® SU(2)g chiral symmetry (together with baryon
number conservation). The last one is the major focus. Here, we consider only 1 and d quarks,
and their antiquarks, while others are chiral singlets. Moreover, the EW interactions, realized
in the electroweak synthesis of the Standard Model, are also discussed with limited scope.

2.1 Symmetries

To consider the symmetries, we apply the background-field technique (Gasser & Leutwyler,
1984). First we introduce background fields into the QCD lagrangian, including v# = v'!'7; /2
(isovector vector), v?‘s) (isoscalar vector), a# = a'f't;/2 (isovector axial-vector), s = s't;/2

(isovector scalar), and p = p't;/2 (isovector pseudoscalar), wherei = x,y,zor + 1,0, —1 (the
convention about i = +1, 0 will be shown in Sec. 3.1):

£ = Lacp + 37" + Bvfy) +753")7 — (s — i75p)g
= Lacp + T, 7p (1" + Bv())aL + Trmu(r™ + Bv(,) )ar

—qp(s—ip)qr —qgr(s +ip)qL
= [’QCD + Lext - D

Here, 1t = v/ 4 al, I = v —al', qp = 5(1—75)q, qr = 5(1+75)q,q = (u,d)T and
B = 1/3 is the baryon number. To preserve C, P, and T invariance of £, the change of
background fields under these discrete symmetry transformations are determined by the the
properties of the currents coupled to them. The details are in Tabs. 1 and 2. Inside the tables,
Pl = diag(1, -1, -1, —1),y and T = diag(—1,1,1,1),,. Moreover, the Lorentz-invariance
is manifest, considering the definition of these background fields.

iz " H
\% v(s) a s|p
_yTu _J# Tu T| T
\% \Y a S
(s) P

P, P | PIVY [ =Plav|s|—p

(s)
T 77;}‘\/1/ 77;14\,1/ 77;}‘31/ s|—p

s)

Table 1. Transformations of background fields under C, P, and T operations. The
transformations of spacetime arguments are not shown here.
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rt 1" fruv fruw fspw
= o | Ao | e
Pl PYIY | PUrY | PPl frac | PuPifrac | PaPyforo
T| = T/ | =T 1| =TT frao| =T TS fiae| =Tt T fore

Table 2. Continuation of Tab. 1.

To understand SU(2); ® SU(2)g ® U(1)p symmetry, we can see that the £ defined in Eq. (1)
has this symmetry with the following local transformation rules:

i

B
qLa — exp {_iG(?)x)} (exp [—i@Li(x) ;]) gLB = exp {—ie(;) (L)quB , ()

A
O(x . Tl 0(x

gr — exp {—1(3)} exp {—z@Ri(x) 21 qr = exp {—zg)} Rqr, (3)
" — LIMLT +iLo*LT, (4)
r* — Rr*RT +iRo¥RT, (5)

i [T
Vis) — Vis) 00, (6)
s+ip — R(s+ip)LT. ()

We can also construct field strength tensors that transform homogeneously:

fipw = Ouly — vl — i [1y, 1] — LfrL’, ®)
fRuv = Oury — dyry — i [ru, 1] = RfgRT, )
fsl’“/ = aVV(S)V — aVV(S)H — fS‘uV . (10)

2.2 Electroweak synthesis

Now we can discuss the electroweak synthesis (SUL(2) ® Uy (1)) of the Standard Model,
which is mostly summarized in Tab. 3 (electric charge Q = Y/2 + TE) (Donoghue et al., 1992;
Itzykson & Zuber, 1980). We ignore the Higgs fluctuations and gauge boson self-interactions:
_ Ty Y . Y
Lp=—q" (gjwit +8/§By)f1L —qrY" (g/EB}l)QR

_ T T 1., _ T Y
= —qr"g (Wi W gL — T (85 Wi+ 8 5 By

o Y
- QR’Y”(g/EBu)QR : (11)
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TL|T? | Q| Y |B
w3l 2 | 3|33
AHEIEIEE
ug| 0 0 | 3 |43
ax[o] 0 [-§]-3]8

Table 3. Multiplets in electroweak synthesis.

Here g, ¢’ and e are the SU(2);, U(1)y and U(1)gpy charges. To make sure that Ugy(1) is
preserved, we impose the following redefinition of excitations relative to the vacuum (6, is
the weak mixing angle):

B = cos 0y, A* —sinf,ZH (12)
WO = cos0,Z" + sin Oy, A*, (13)
gsinfy, = ¢’ cosby =e. (14)

After substituting Egs. (12) to (14) into Eq. (11), we have the right coupling for the EM
interaction. Let’s compare Eq. (11) with Eq. (1); we deduce the following (V,,; describes u
and d mixing):

0
T 2
Iy = —e 5 Ay + o sin“ 6, 5 Zy
0
8 T _ +1 1 111
cos by 2 Zp = 8Vud (W” 2 T Wi 2 ) ! (15)
Y ¢ .. T
=y Ay + cos 6y sin” 6y 5 Zy, (16)
1 .91
Visiu = —¢ > Ay + cos by sin” By 2 Zy . 17)
Furthermore,
0 0 0
__,°T 8§ s2p T 8§ T
fuww = = 5 A+ o 0y b0 5 Zal ™ cos 0w 2 Zlup
1 -1

—8Vud B W+l[v,y] —8Vud o W—l[v,y]

+ interference terms including (WZ), (WA), (WW), but no (ZA),  (18)

0 0
T . T .
frRuw = —¢ > A[V’y] + cof@w sin? 6, 5 Z[W] (no interference terms), (19)
1 g .o, 1
fouw = —¢ 5 A[V,H] + 050 sin” Oy 5 Z[Vr#} . (20)
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Here A[ = 8FAV — HVA}, and so are the indices of other fields. If we define [see Eq. (1)]

v,

Lext = Viy Vit — a,-yAi” + V(S)PJB”

= Jh TR v, g™ (21)
_ EM 8 NC L +1u L -1
L= ey M Al = oo Tu 2! = gVua Ly W = gVia T2, W, 22)

and use Egs. (15) to (17), we can discover

1
]1Ly = E (Vly +Aiy) ’ (23)
R _1
Jin = 5 (Vig — Aip) (24)
1
LM =Vi+sTi, (25)
INE = Ji0 —sin® 6, JFM . (26)

Here ]ﬁ is the baryon current, defined to be coupled to v?s). These relations are consistent
with the charge algebra Q = TO + B/2 (B is the baryon number). Vit and A are the
isovector vector current and the isovector axial-vector current, respectively. ]PI}’ c, ]ily are
the conventional neutral current (NC) and charged current (CC) up to normalization factors.

3. QHD EFT, symmetries, and electroweak interactions

Here we present parallel discussions about QHD EFT’s symmetries and EW interactions.
The QHD EFT, as an EFT of QCD at low energy, should respect all the symmetries of
QCD. Moreover, the approximate global chiral symmetry SU(2); ® SU(2)g @ U(1)p in two
flavor QCD is spontaneously broken to SU(2)y ® U(1)p, and is also manifestly broken due
to the small masses of the quarks. To implement such broken global symmetry in the
phenomenological lagrangian using hadronic degrees of freedom, it was found that there
exists a general nonlinear realization of such symmetry (Callan et al., 1969; Coleman et al.,
1969; Weinberg, 1968). Here, we follow the procedure in Ref. (Gasser & Leutwyler, 1984). The
discussion about the conventions is presented first.

3.1 Conventions

In this work, the metric g,y = diag(1, =1, —1, —1),,, and for the Levi-Civita symbol "B the
convention is €912% = 1. Since we are going to talk about the A, which is the lowest isospin I =
3/2 nucleon resonance, we define the conventions for isospin indices. The following example,
which shows the relation between two isospin representations for A, may help explain the
convention:

A* =T, AMA 27)

Here a = £3/2,+1/2,i = £1,0, and A = +1/2. The upper components labeled as ‘a’,
‘i’, and ‘A’ furnish D(>/2), D(), and D(1/2) representations of the isospin SU(2) group. (We
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work with spherical vector components for I = 1 isospin indices, which requires some care
with signs.) We can immediately realize that T% , = (1, 1;i, A|3; ), which are CG coefficients.
It is well known that the complex conjugate representation of SU(2) is equivalent to the
representation itself, so we introduce a metric linking the two representations to raise or lower
the indices 4,7, and A. For example, A, = (A*7)* = = T}iAA; 4, where T4 = <2,a|1, %,1 A),
should also be able to be written as

Y L (28)

Here, 5 denotes a metric for one of the three representations. It can be shown that in this
convention, T 4 = Ti4. Details about the conventions are given in Appendix 7.A.

3.2 QHD’s symmetry realizations

Now we proceed to discuss a low-energy lagrangian involving N4, A, 7/, pL, and the chiral
singlets Vi and ¢ (Furnstahl et al., 1997; Serot & Walecka, 1997). Under the transformations
shown in Egs. (2) to (7), the symmetry is realized nonlinearly in terms of hadronic degrees of
freedom (Gasser & Leutwyler, 1984):

U =exp {ZiM t’} — LUR? , (29)

fr
F=VU=exp [th] — Lgh" = heR', (30)
Oy = 71[5 ©u — i) &+ @y —iry )& = Tyt — hoyht —ihd,h', (31)
iy = S [2 @ — )& = 0y — ir)E"] = Ayt — haht, (32)
0l = 9,U —il,U + ilr, — L3, UR", (33)
@u)e = @y + 0y — iv(s),B)L v — exp [~i8(x)B] h @u9)p , (34)
% = —i[dy, dy) = houh', (35)
= &y E+ S €1 — REGT, (36)
Fﬁﬂ = & i €~ Efrw &1 — hER T, (37)
NEE) = E) +i6y, E)] = ho FSRt (38)

In the preceding equations, t' are the generators of reducible representations of SU(2).

Specifically, they could be generators of D(l/ 2 g D(l) @ D(3/ 2>, which operate on
non-Goldstone isospin multiplets including the nucleon Y meson and A. We generically label
these fields by s = (Na, pi, Aa) « Most of the time, the choice of t! is clear from the context.
B is the baryon number of the particle. The transformations of the isospin and chiral singlets
Vy and ¢ are trivial (¢ — ¢, V;, — V},). h is generally a local SU(2)y matrix. We also make
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Jw = ehvepF ‘Eﬁi), which have the same chiral

use of the dual field tensors, for example, f(i

transformations as the ordinary field tensors. Here we do not include the background fields s
and p mentioned in Eq. (1), which are the source of manifest chiral-symmetry breaking in the
Standard Model.

The C, P, and T transformation rules are summarized in Tabs. 4 and 5. A plus sign
means normal, while a minus sign means abnormal, i.e., an extra minus sign exists in the
transformation. The convention for Dirac matrices sandwiched by nucleon and/or A fields are

- ~NTTTN', 1;
CNTNC ™ ={ 0 - o v o (39)
N'T!'N , abnormal .
— — _ATTTNT - NTTT AT , normal;
C(ATN+NTA)C! = N — (40)
+A'T' N +N!'T*A", abnormal.
- _ ATTTNT —iNTTTAT 1
CI(ATN-Nrayc 1= {78 & N =i - 8, normal (41)
—iA*T* N +iN'T*A", abnormal.

Here, in Egs. (39), (40), and (41), the extra minus sign arises because the fermion fields
anticommute. The factor of i in Eq. (41) is due to the requirement of Hermiticity of the
lagrangian. To make the analysis easier for ATN + C.C., we can just attribute a minus sign
to an 7 under the C transformation. Whenever an i exists, the lagrangian takes the form
i(ATN — NTA). When no i exists, the lagrangian is like ATN + NTA.

For P and T transformations, the conventions are the same for N and A fields, except for an
extra minus sign in the parity assignment for each A field (Weinberg, 1995a), so we list only
the N case:

PNT,NP~! = NPTy N, normal; (42)
¥ |-N P;TyN, abnormal.

TNT,NT ! = N7y IuN,  normal; (43)
—-N 7;}’ I'yN, abnormal.

It is easy to generalize these results to 'y, etc.

Now a few words about isospin structure are in order. Suppose an isovector object is denoted
as Oy = Oiytl, then the conventions are explained below:

T .
COyC_l _ Oy ,T normal ; (44)
—Oy , abnormal .

PO p-1 — Pﬁov , normal ; (45)
" —P;j O, , abnormal.

TO,T™!

{7;}’0,/ , normal ; (46)

—7;}’01, , abnormal .
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YH V| T | yHys|iys| i ig etvap
Cl—| = |+ + |+ ||| +
Pl+|+ |+ = | = |+ +]| —
T —| = |+ — | = |-|—| —

Table 4. Transformation properties of objects under C, P, and T. Here '+’ means normal and
‘—" means abnormal.

EIP

Ay | | Oyuw | O Oy [Py | Vi | View | Vi | fo Fﬁ) Fsuw
c+l=1=-1-T-1-1-1-1-[F [~ * |-
Pl—[+|+ [+|+ |- |+|+ |- | £ [+ ]| F |-
=== == |+ |- =+ - |-+ |+

Table 5. Continuation of Tab. 4.

The same convention applies to the isovector (pseudo)tensors. For isovector (pseudo)scalars,
the P and 7 should be changed to 1. For the C transformation, OT means transposing both
isospin and Dirac matrices in the definition of O, if necessary.

3.3 QHD EFT lagrangian (without A) and electroweak interactions

Now we begin to discuss the QHD EFT lagrangian. Based on the symmetry transformation
rules discussed above, we can construct the lagrangian as an invariant of these
transformations by using the building blocks shown in Egs. (29) to (38). In principle, there are
an infinite number of possible interaction terms in this lagrangian. However, power counting
(Furnstahl et al., 1997; Hu et al., 2007; McIntire et al., 2007) and Naive Dimensional Analysis
(NDA) (Georgi & Manohar, 1984; Georgi, 1993) enable us to truncate this series of interactions
to achieve a good approximation. Following the discussion in Ref. (Furnstahl et al., 1997), we
associate with each interaction term a power-counting index:

Ed+g+b. 47)

Here d is the number of derivatives (small momentum transfer) in the interaction, n is the
number of fermion fields, and b is the number of heavy meson fields.

The QHD theory has been developed for some time. Details can be found in
Refs. (Furnstahl et al., 1997; Serot & Walecka, 1997; Serot, 2007). Here, we give a complete
treatment of electroweak interactions in this theory. (However, we do not discuss “seagull” terms
of higher order in the couplings.) We begin with

Lnpw<s) = N(i’yyﬁy +igoou +igoVul + a5 dy — M+ gs¢)N
_ 280 Now N - f 50 WV N = 2 N0 N

4ﬁn

v NNTr(@, ") +

2M2 N'yyavN Tr (a"a")

n ﬁ No# (240 fp + AVEGN, (48)
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~ = L +—
where 9, is defined in Eq. (34), 9y = 90y — (dy — iTy + iv(s)v), and the new field tensors are
Vi = 9y Vy — 9y V), and

ov = 00y + 18, low, o) + [T, o] — 1 > v) = hpuh® . 49)

The superscripts () and (1) denote the isospin. In Appendix 7.B, details about the tilde objects
(which are defined exactly above) are shown explicitly in terms of pion and background fields.

Next is a purely mesonic lagrangian:
c = Lowatg+ LR TEUE U + LR T Ut - 2)

meson (7 < 4)

1 1
— E TI'(PVVp‘uV) - 1 V‘uVVyV

1 8P | M gd*\ o 1, 5 2
+§ (1+771M+2 M2 mUVyV”—l—Iéogv(VyV”)

1 « x 0202

1 1
+ 2, (Tr(F(JF)Mpr) +3 fs’”vw) ) (50)
r
The v = 3 and v = 4 terms in L on(s<4) are important for describing the bulk

properties of nuclear many-body systems (Furnstahl etal., 1995; 1996; 1997). The only
manifest chiral-symmetry breaking is through the nonzero pion mass. It is well known that
there are other 7 = 4 terms involving pion-pion interactions. Since multiple pion interactions
and chiral-symmetry-violating terms other than the pion mass term are not considered, this
additional lagrangian is not shown here.

Finally, we have

1 — v 3 N (=
Lnn(o=1) = 2—WN7y(2ﬁ(O>au ! +,B(1)8VF(+)HV+,BEA})’Y58VF( )N

— @ Te(Fly) ) + w2 Te(@ 0y FOM) + o3 Tr (@ [, FCOM])

2 2
— gprm L;T "[‘r(pﬂvijv)
Mp

1 = +(+) €1 — Z
5 NN Tr (#F’) + 5 Ny Ny,

C1p8p 5 -
LR NYNTe (77, ) +

+

e
+

}\j{gzv Ny @ NV, . (51)
Note that Ly 7 (y—4) is not a complete list of all possible 7 = 4 interaction terms. However, B

and /3(1) are used in the form factors of the nucleon’s vector current, w; 5 3 contribute to the
form factor of the pion’s vector current, and g, is used in the form factors that incorporate
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vector meson dominance (VMD).! Special attention should be given to the cy,e1,¢1p, and
e, couplings, since they are the only relevant # = 4 terms for NC photon production
(Serot & Zhang, 2011a;b).

The construction of these high-order terms, Ly (;—4) for example, is carried out by
exhaustion. Based on the various symmetry transformation rules, at a given order there
are a finite number of interaction terms, although the number can be big. For example, the
interaction terms involving two pions and only one nucleon at ¥ = 4 without chiral symmetry
breaking are (Ellis & Tang, 1998)

L d
No"io* N Tr (8 )ﬁﬂﬁv) and other contractions of Lorentz indices,

Nyyi [5"5" , EV} N and other contractions of Lorentz indices .

3.4 Introducing A resonances

The pathologies of relativistic field theory with spin-3/2 particles have been investigated
in the canonical quantization framework for some time. There are two kinds of problems:
one is the so-called Johnson-Sudarshan problem (Capri& Kobes, 1980; Hagen, 1971;
Johnson & Sudarshan, 1961); the other one is the Velo-Zwanzinger problem (Capri & Kobes,
1980; Singh, 1973; Velo & Zwanziger, 1969). It was realized in (Kobayashi & Takahashi,
1987) that the two problems may both be related to the fact that the classical equation of
motion, as the result of minimizing the action, fails to eliminate redundant spin components,
because the invertibility condition of the constraint equation is not satisfied all the time. For
example, in the Rarita-Schwinger formalism, the representation of the field is y*: (%, He

5.008(0,3))=(L32)®(31)®(5,0)D(0,5) (Weinberg, . It can be shown that the
1,00 (0,3 Lhel 1o (,0 o(0,1) (Weinberg, 1995b). It can be shown that th
spin-1/2 components are not dynamical in the free theory, which is generally not true after

introducing interactions. Another issue is about the so-called off-shell couplings, which have
the form «,p*, 9, ", P, and 9, " (still in the Rarita-Schwinger representation).

Recently, the problem has been investigated in a path-integral formalism in Ref. (Pascalutsa,
1998), where a gauge invariance is required for interactions. But this constraint conflicts
with the manifest nonlinear chiral-symmetry realization in chiral EFT. Subsequently,
in (Krebsetal., 2009; Pascalutsa, 2001), the authors realized that the commonly used
non-invariant interactions are related to gauge-invariant interactions by field redefinitions,
up to some contact interaction terms. Moreover, from the modern chiral EFT viewpoint,
it has been concluded (Krebs et al., 2010; Tang & Ellis, 1996) that the off-shell couplings are
redundant, since they lead to contributions to contact interactions without spin-3/2 degrees
of freedom. Furthermore, it has been proved that off-shell couplings with 9, changed to 5y
are also redundant, which makes the manifest realization of chiral symmetry possible with a
spin-3/2 particle.

However, the modern argument, which makes use of field redefinitions and gauge invariance
for the EFT, looks abstract. The whole argument is that the field redefinitions, constructed to
transform non-invariant terms to gauge-invariant terms, is applicable here, which requires us

1 VMD in QHD EFT has been discussed in detail in Ref. (Serot, 2007). We will discuss VMD for the form
factor of the transition current involving A and N.
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to be far away from the singularities of these transformations, i.e., to stay at low-energy and
in weak-field regions (Krebs et al., 2009). This leads us to give another interesting argument,
based directly on this assumption. In the Hamiltonian formalism, these two issues are
somewhat clarified,” however the quantization of the EFT and hence Lorentz-invariance are
not straightforward. So we use the path-integral approach.

Let’s focus on the spin-3/2 propagator in the Rarita-Schwinger representation. First, we can
decompose the free propagator into different spin components:

SgW(P) = m g - %’Y”?V + W — ?,Zﬁp”p"
= —mp(%)w_ ﬁpg)w _ ﬁp&)w

+3%(ﬁ+M)P2(§)”V, (52)
PRI — gV — %,YW + 3;27“‘10”] y- ;zr)”;ﬂ”, (53)
P = %’Y”’YV - 3;27“‘;0”] P 3;2??‘?”, (54)
P = \/épz(—P”PV +9'p P, (55)
P = Jgpz (P"p" = "p" 1), (56)
Pz(é = %P’* pY. (57)

By using the identities shown in Egs. (114) to (119) in Appendix 7.C, we can immediately write
down

0(p) = PO —1__p(d)
SF(P) P2 p_m+i€P2
3 1 1 1 1 1y 2 1 3
HPED | b R g s (P mpy) | PO
= )2 4 5050, (58)

2 In the perturbative calculation of EFT, the time-ordered free propagator defined in the Hamiltonian
formalism for a spin-3/2 particle always satisfies the constraint on the degrees of freedom. (Assume
we have a well defined Hamiltonian for the EFT.) For finite sums of the series of diagrams involving this
propagator, the constraint is always satisfied. Moreover, those off-shell terms when either contracted
to external legs or to the internal propagator of spin-3/2 degrees of freedom, give zero value. We may
conclude that they are redundant. However, it is not clear whether the two conclusions hold for infinite
sums. Moreover, as we know, the time-ordered propagator is not covariant, and leads to the difficulty
of understanding Lorentz-invariance.
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In principle, the decomposition shown in Eq. (58) should be obvious in the beginning, because
Lorentz-invariance is preserved. However the key is that only the spin-3/2 component has
pole structure, while the spin-1/2 components resemble contact vertices.

Furthermore, given certain interaction terms, we can carry out the calculation of the
self-energy insertion, as done in Ref. (Ellis & Tang, 1998), for example. Based on the same
argument as given above, the self-energy for renormalization should also be decomposed into
a diagonal form for the spin. The details are as follows. The self-energy of the A can be defined
as Ly = 8¢y + 0%,y We see immediately that 6%,,,’s indices can only have a structure like
the products of (7, pu) x (Diracmatrices) x (yv, pv). Then we find

T =13l +o% (59)
= p)x8ep(3) 4 pGLzp(zL)
+p(%)(ZAg+(5z)p(%l)+p(%l)(zﬂg+5z)p(%)_ (60)

So, we can conclude that X = pB/2)xApB/2) 4 pB3/2L)ypB3/2L) = 5(3/2) 4 x3/21) In the
proof, we make use of [P(3/2) , ZA} =0, {P@’/ZL) , ZA| = 0, because the only possible spin
structures of £2 are 1, p and 75 (parity violation), which commute with the two projection
operators. Then P(/2)x2¢p(3/2L) — 0 and P(/2)LxA¢p(3/2) = 0. Also we make use of
Eqs. (115) and (116), so we get P3/2)5xp(3/2L) — g and P(3/21)sx.p(3/2) = 0.

Based on previous discussions, we can have the following renormalization of the spin-3/2
propagator:

5p = (Sp )+ 83 ) 4 (53 4+ ) (D) GO (sEH 4 )E ) 4
_ ) | D), ©)
R A T I ©

So the renormalized propagator is decomposed into two different components: Sy = 523/2) +

51(:3/2”. The resonant contribution is S(F3/2) = 52(3/2) + 52(3/2)2(3/ 2)523/2). The background

contribution is Sg/u) = 52(3/2L) + 52(3/21_)2(3/2@51(?3/2@' The renormalization shifts the

pole position of the resonant part. For the nonresonant part, as long as power counting
is valid, ie.,, O(X/m) < 1, we are away from any unphysical pole in the renormalized
nonresonant part; [1—O(X/ m)]_1 never diverges. This also suggests that we will not
see the unphysical pole in the renormalized propagator, when working in the low-energy
perturbative region. Meanwhile, the argument helps to clarify the redundancy of the off-shell

couplings. We have seen that the self-energy due to these couplings does not contribute in the

renormalization of 51(:3/2). But it indeed changes the nonresonant part. However, the effect

is power expandable. So essentially it is the same as higher-order contact terms without the
A. This justifies the redundancy of these couplings. To ignore them in a way which does not
break chiral symmetry on a term-by-term basis, we can always associate the 0# with 7 fields
so that it becomes . This indicates that those couplings having o or y* contracted with Ay can be
ignored without breaking manifest chiral symmetry.
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A few words on the singularity of 1/ p2 are in order here. [See Egs. (52) to (57).] The whole
calculation is only valid in the low-energy limit, and in this limit we should not find any
diagrams with A’s that are far “off shell". Take pion scattering for example; we assume the
pion energy to be small, and hence p? is always roughly equal to the incoming nucleon’s
invariant mass. So the singularity in 1/ p? should not be a problem in the low-energy theory
from a very general perspective.

3.5 QHD with A
Consider first L (7 < 3), which is essentially a copy of the corresponding lagrangian for the

nucleon as shown in Eq. (48):

La = { ", a hP ﬁ hy Y —m+ hs )}a Ahu+hAAy ﬁa75Ay

2

foltp « A foho + A
— m AAP}WO'PWA — W A/\V;“/U'P“/A

~ _ _ 4~ _ ~

_ AT AN + 4px MMM Te(a 7). (63)
m m

Here the sub- and superscripts a,b = (£3/2,£1/2), and the isospin conventions and T matrix

have been discussed in Sec. 3.1.

To produce the N ++ A transition currents, we construct the following lagrangians (7 < 4):

['A,N,n = hAKay T;iA ﬁinA +C.C., (64)

EA,N,background 1A AV'YV’)/ TﬂAF( )}WN + M }l ivs ThA(a F( )VV) Ny

C
+1\?1A2 A)\UWTJ”A@A ( )W)iNA

d id 4=
_ﬁA szA(aV (- )yV)iNA_ AKZAA T;zAPi( )HVNA

lﬁg Ao THA@ ECIM),N, + C.C., (65)

ic1ap ; iC3Ap <0 . A5
LaNnp = i Ay Y5 T+ lAPf-WNA + sz Ay iys T;lA(aVPW)iNA

6Ap
M2

It can be checked that the interaction terms respect all of the required symmetries. Terms
omitted from these lagrangians are either redundant or are not relevant to the transition
interaction involving N and A (at tree level). The construction of terms is by means of
exhausting all the possibilities. Here we give an example:

+ Ayouy THA( p); N4 + C.C.. (66)

Ay NeM RS = 20,y ysNECOM 4 iFL DR s (yigaf — gy )N (67)
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(+)

The preceding identity indicates that EZ%T; iAF, "Ny differs from the ¢;5 coupling in

Eq. (65) by off-shell terms, which can be ignored.
Moreover, the terms in the lagrangian in Eq. (66) and the 1/g, coupling in Eq. (50) are

necessary for the realization of transition form factors using VMD. First, we make the
following definitions:

(B, a,pa|VIF(A)N, A, pN) = T A ipg (pa) Tﬂ{/’éA)(Q) un(pn) - (68)

Based on the lagrangians given previously, formulas shown in Appendix 7.B, and the
definitions of currents in Eq. (21), we find (note that Uwe”““ﬁ o ic*Pys)

2c 2 2c 2
= 7%5’ ) (g~ g yys + 73&(;’ ) (g — 5P
8¢ 2 .
N % g c™igyys,
Cin(2) = cip + 00 7 i=1,36 (69)
qu = GiA ngyqz—m% 7~y Yy

g 2 24
% = —hs (g""‘ - qf_me ) + g @ =) = T @ =gt )
7T

- 4}6{—7? g*otiqy , (70)
where h4 is from Eq. (64). Quite similar to the c;p (qz), we can introduce axial-vector meson
[41(1260)] exchange into the axial transition current, which leads to a structure for the d;5 (4°)
that is similar to the vector transition current form factors. There is one subtlety associated
with the realization of h4(g?): with our lagrangian, we have the pion-pole contribution
associated only with the /14 coupling, and all the higher-order terms contained in 6k 4 (%) =
ha(q%) — ha conserve the axial transition current. With the limited information about manifest
chiral-symmetry breaking, we ignore this subtlety and still use the form similar to the c14 (%)
to parameterize 4 (4°). The axial-vector meson couplings h Aay and djp,, are the combinations
of g4, (a1 and isovector axial-vector external field coupling strength) and the coupling strength
of the Aaq N interaction. My, is the ‘mass” of the meson. So we have

2
a
2
dz‘A(qZ) = dip +dipg, quimz i=2,4,7. (72)
m

To determine the coefficients in the transition form factors shown in Egs. (69), (71), and
(72), we need to compare ours with the conventional ones used in the literature. In
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Refs. (Graczyk et al., 2009; Hernédndez et al., 2007) for example, the definition is
. 1, cY cy
S licc+IN, =5) = talpa) { [Aj (8" 4= a"v") + 35 (@ Pag™ —a"P))

_A,_Cig/( “ll_véﬂ)

qupNg 4 PnN)| 75
A
3

A

C C
+ |5 @ A=) + 55 (@ pag™ —a"py)

CA
+ G W‘] } u(pn) - (73)

The basis given above is known to be complete. The determination of the couplings through
comparing our results with the conventional ones has been given in Ref. (Serot & Zhang,
2010). There we find that our meson dominance form factors are accurate up to Q* ~ 0.3 GeV~.
Moreover, CVC and PCAC can be easily checked for the transition currents. The details can
be found in Ref. (Serot & Zhang, 2010).

4. Application

In this section, we briefly discuss the weak production of pions from nucleons. We focus only
on two properties of the Feynman diagrams in this problem, including the G parity and the
current’s Hermiticity. Then we talk about the production from nuclei, in which A dynamics
is the key component (for both the interaction mechanism and the final state interaction of
the pion). This points out the importance of understanding the strong interaction, associated
with nuclear structure and A dynamics, in the study of the electroweak response of nuclei.
So it is necessary to have a framework that includes the two and also provides for efficient
calculations. The details of these subjects are presented in Refs. (Serot & Zhang, 2010) and
(Serot & Zhang, 2011a;b).

4.1 Weak production of pions from free nucleons

The relevant Feynman diagrams are shown in Fig. 1 for weak production of pions due to
(anti)neutrino scattering off free nucleons. The ‘C’ in the figure stands for various currents
including the vector current, axial current, and baryon current, of which both CC and NC
are composed according to Sec. 2.2. The details about these diagrams can be found in
(Serot & Zhang, 2010). Here we begin with G parity. We use (N, B, 7, j|J#|N, A) to represent
the contribution of diagrams, where ‘A" and ‘B’ denote isospin-1/2 projections. From G parity,
we have

GAMG™1 = —AlH,
GVH(Jp)G " = V¥ (Jp) .
By applying this to the current’s matrix elements, we get

(N,B, m,j|A"|N,A) = (N,B,m,j|AM|N, A), (74)
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(@) (b) (©) (d) (e) (f)

Fig. 1. Feynman diagrams for pion production. Here, C stands for various types of currents
including vector, axial-vector, and baryon currents. Some diagrams may be zero for some
specific type of current. For example, diagrams (a) and (b) will not contribute for the
(isoscalar) baryon current. Diagram (e) will be zero for the axial-vector current. The
pion-pole contributions to the axial current in diagrams (a) (b) (c) (d) and (f) are included in
the vertex functions of the currents.

(N, B, 70, jlV*(J5)IN, A) = —(N, B, m,j|V¥(J5)IN, A) . (75)

Egs. (74) and (75) give a relation between a current’s matrix element involving nucleon states
and a matrix element involving antinucleon states. Because of the isospin symmetry, we can
define

(N,B,ps;m,j ka| AN, A, p;)
= 805 u(p)Thym(ps ki pis q)u(pi)
k

A
(T _
+i€ly <2> T(p)Chsym(p g ke pi ) u(pi) - (76)
B

Vector currents can be decomposed in the same way. From crossing symmetry, we can see

(N,B,pf;m,j kx| A [N, A, p;)

= _(5;‘5§ 5(pi)rgym(_pifk”; —Pf,l])U(Pf)
. TkT P
— ieljk <—2 > AE(Pi)FZsym(_pirkﬂ; _pflq)v(pf)
; _ T
= 553 u(py) (~CTHm(—pirkni—ps, 0)C) u(pi)

A

. g Tk _

— el <2> W(pg) (~Clabym(=piki—p,0)C) u(pi) . (77)
B
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In Eq. (77), the —% " appears because antiparticles furnish the complex conjugate
representation. (It is equivalent to the original representation.) C is the charge conjugation
matrix applied to a Dirac spinor, i.e., ¢ (x) = C((x))”. By comparing Eq. (77) with Eq. (74),
we have the following constraint on the axial current’s matrix element:

— CF(T:)sym(—pi,kn;—Pf,q)C - (i—)r;(‘a)sym(pf’k"’. pird) 78

Similarly, we have the following constraint on vector current’s matrix element:

Tu

B Cr(u)sym(_pi’k”; —pgq)C =

(I)F}(@Sym(lj ok ping) - (79)

For the baryon current (N, B/, ,j|J5|N, A) = (3 Tj)g} ﬁ(pf)l“g(pf,kn; pi,q)u(p;), G parity
indicates

- Cr?‘(_pirkn}_Pf/Q)C = —Th(ps knipirq) - (80)

Now we can see how adding a crossed diagram involving the A is necessary to satisfy G parity.
For example, let’s talk about the vector current’s matrix element. If we define it for diagrams
(a) and (b) in Fig. 1 as follows:

(VI)a = T T AT (pp ks i g)ui, (81)
(Vi) = TYTH AT Thoss(p g, ks pis @) - (82)

Then by using Eq. (98), we get [here we include only diagram (a) and (b) contributions]

2
M _ M M
1q(a)sym ~ 3 <rdir + rCVOSS) . (83)

By calculating the diagrams, it is straightforward to prove that

— CTlass(—pikr; —pp)C =T (pf.knipisq) - (84)

This equation justifies the G parity of the vector current’s matrix elements. Other currents’
matrix elements can be justified in a similar way.

Now we discuss the Hermiticity of the current. Let’s consider (N, 7wout|J#|N, in):
(N, Pf, 70, ke, out|J#|N, p;, in)* = (N, pi,in|]+”|N, Pf, 7T, ky, out)
£ (N, p;,out|J™"|N, Pr 7k, in) (85)
But how do we generally understand (i,in|O|f, out)? Naively, we would have the following:

(i, in|O|f, out) = (i|U(—oc0,0)U(0, )o(£)U(t,0)L(0, +-00)| )

= (ilTo(t)expli [ dtHi(1)]|f) (56)
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Here O and o(t) are the operators in the Heisenberg and interaction pictures. T is another type
of time ordering;: THI(tl)H[(tz) =0(tp — t1)H(t1)Hi(t2) + 0(ty — t2)Hy(t2)Hy(#1). It is easy
to realize that in momentum space, if we mirror the pole of the T defined Green’s function,
and apply (—) to the overall Green’s function, we get the T defined Green’s function. Second,
each interaction vertex in the (i,in|O|f, out) calculation differs from that of (i, out|O|f,in) by
a (—) sign. Third, since now all the poles are in the first and third quadrants in the complex
momentum plane, the corresponding loop integration differs from the normal loop integration
by a (—) sign! So, without a rigorous proof, we have that after calculating (i, out|O|f,in),
if we mirror all the poles relative to the real axis for the propagator and apply a phase
(—)(V=Vo)HI+L — (_)Vo=1 to it, then we get the corresponding (i,in|O|f,out). Here V,V,,I,
and L are the number of vertices in the graph, vertices in the operator O, internal lines, and
loops. For the current operator J#, V, = 1 and hence the phase is (+).

Now let’s proceed to see the consequence of the Hermiticity of J#(x = 0), i.e., J*T =] l” :
(N,B,ps, 7, j kn,out| J* N, A, p;,in)*
= (N, A, pi,in|JI|N, B, pg, 7, j,kr, out)
= (N, A, pi,out|J'|N, B, pf, 70,j, K, 1) pm

= 601 (N, A, pj, 70, ', — ks, out| J'F|N, B, p g, in) [ pm - (87)

Here |y, indicates poles are mirrored with respect to the real axis. In the following, we
decompose the general current matrix element into symmetric and antisymmetric parts, as
we did in in Eq. (76):

(N,B,ps, ], kn,out|*|N, A, p;, in)*

. - _ L T\ B _
= 8108 u(pi) Ty (P ks pis )u(py) — i€]* (%‘)Au(m)FZ‘sym(Pf,kn;pi,q)u(r’f)- (88)

Here, T = 7°T*90. Meanwhile, Eq. (87) can be rewritten as

(N, A,pis 70, ~km,out| J'* N, B, py, i) 8501

= 6087|6108 T3 (i kg~ )y
B
. ¥ — I
+i€hy | o | u(pi)Tasym(pis —kmi pg, —q)ulpy)
A pm
= 8165 0(pi)Thym (pis ki pr —)u(py)|
iOA WPi) L sym\Pir —Km; Pfr —q)UPf) pm
gk (T B
+ie/ (Ek)A w(pi)Thsym (pis—kms pr =) u(pf) [pm - (89)
If we compare Eq. (88) with Eq. (89), we see the Hermiticity constraint is

YOI sym P ki pin )] ™70 = (j)F’(a)sym(pi, —k; g —4)|pm - (90)
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Now let’s focus on the constraint on diagrams (a) and (b) in Fig. 1. We can check by calculating
diagrams:

fgir(Pf/ kr; pi, Q) = r?ross(Pi/ —kr; Pf _5])|pm . (91)

We can choose kinematics where no poles and cuts arise, i.e., there is no phase shift, and
then test the constraint without |p,. The preceding observation, with Eq. (83) taken into
account, leads to the satisfaction of the constraint in Eq. (90). The Hermiticity of the baryon
current can be studied in a similar way, and hence is not shown explicitly here. Moreover, it is
interesting to see that the higher-order contact terms satisfy the requirements due to G parity
and Hermiticity on a term-by-term basis.

4.2 Weak production of pions from nuclei, A dynamics

With the development of neutrino-oscillation experiments, precise knowledge about the
neutrino (antineutrino)-nuclei scattering cross sections is needed for the understanding of the
experiments’ background. Take MiniBooNE (Aguilar-Arevalo et al., 2009; 2010), for example;
the median energy of the neutrino (antineutrino) beam is around 0.6 (0.5) GeV, and the
high-energy tail extends up to 2 GeV. In this regime, the A is the most important resonance for
the interaction mechanism, except in the very low-energy region. Therefore, to understand
pion production, we need to study A dynamics in the nucleus. This subject has been
extensively discussed in the nonrelativistic framework (Hirata et al., 1976; Horikawa et al.,
1980; Oset & Salcedo, 1987), and it has also been initiated in the relativistic framework in
(Herbert et al., 1992; Wehrberger et al., 1989; Wehrberger & Wittman, 1990; Wehrberger, 1993).
It is shown that the A width increases in the normal nuclear medium, since new decay
channels are opened, like AN — NN, for example. The real part of the A’s self-energy has
also been studied. From the lagrangian in Eq. (63), we can see that the two parameters /; and
hy in the lagrangian are impor’cant.3 However, the information in (Boguta, 1982; Kosov et al.,
1998; Wehrberger et al., 1989; Wehrberger, 1993) is still limited. In (Serot & Zhang, 2011a;b),
we have realized that these A-meson couplings are responsible for the A’s spin-orbit coupling
in the nucleus, and based on this we provide some information about the couplings from this
new perspective.

Meanwhile, the A dynamics is also strongly correlated with the pion dynamics in the
nuclear medium, and hence is important for understanding the pion’s final state interactions,
especially in the energy regime of these neutrino-oscillation experiments.

5. Summary

In this work, we have studied EW interactions in QHD EFT. First, we discuss the EW
interactions at the quark level. Then we include EW interactions in QHD EFT by using
the background-field technique. The completed QHD EFT has a nonlinear realization of
SU(2)L ® SU(2)gr @ U(1)p (chiral symmetry and baryon number conservation), as well as
realizations of other symmetries including Lorentz-invariance, C, P, and T. Meanwhile,
as we know, chiral symmetry is manifestly broken due to the nonzero quark masses; the
P and C symmetries are also broken because of weak interactions. All these breaking
patterns are parameterized in a general way in the EFT. Moreover, we have included the

3 hp should not play an important role in normal nuclei with small asymmetry.
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A resonance as manifest degrees of freedom in our QHD EFT. This enables us to discuss
physics at the kinematics where the resonance becomes important. As a result, the effective
theory uses hadronic degrees of freedom, satisfies the constraints due to QCD (symmetries
and their breaking pattern), and is calibrated to strong-interaction phenomena. (The EW
interaction of individual hadrons, like the transition currents discussed in this work, need to
be parameterized.) So this effective field theory satisfies the three listed points laid out in the
Introduction.

The technical issues that arise when introducing the A in the EFT need to be emphasized
here. It has been proven that the general EFT with conventional interactions has no redundant
degrees of freedom (Krebs et al., 2009). (Unphysical degrees of freedom have been considered
in the canonical quantization scheme as the reason for pathologies in field theory with
high-spin fields.) However, the proof rests on the work of (Pascalutsa, 1998), which claims that
gauge invariance could eliminate the redundant degrees of freedom. Here, we have provided
another perturbative argument about this issue, which indicates that as long as we work in
the low-energy and weak-field limit, the unphysical degrees of freedom do not show up. This
condition is satisfied in the EFT. Throughout the argument, we do not need to make use of the
gauge-invariance requirement. And in this way, we can easily see the redundancy of off-shell
interactions, which has also been rigorously addressed in (Krebs et al., 2010). Moreover, the
argument can be easily generalized to other high-spin fields.

To appreciate the importance of the symmetries realized in QHD EFT, we have discussed the
currents” matrix elements in pion production from nucleons. The calculation and results are
detailed in (Serot & Zhang, 2010). Here, we first briefly mention the consequence of chiral
symmetry (and its breaking), i.e., CVC and PCAC. These two principles provide important
constraints on the EW interactions at the hadronic level. The G parity is then studied for pion
production. This provides another constraint on the analytical structure of matrix elements.
Meanwhile, it also points out the importance of including cross diagrams involving the A.
When combining the A’s contribution in the s and u channels, the full result respects G
parity. Moreover, the constraint due to the Hermiticity of current operators is explored. It is
important to notice that other contact terms respect all these constraints. So, it is necessary to
have a theoretical framework that satisfies these constraints. The QHD EFT, with symmetries
included, clearly provides such a framework.

However, the calibration of a model on the hadronic level does not guarantee its success
at the nuclear level. To study EW interactions in nuclei, we clearly have to understand
how the nucleons are bound together to form nuclei. QHD has been applied extensively to
this kind of problem (Serot & Walecka, 1986; 1997), and the recently developed chiral QHD
EFT has also been tested in the nuclear many-body problem (Furnstahl etal., 1997). The
mean-field approximation is understood in terms of density functional theory (Kohn, 1999),
and hence the theory calibrated to nuclear properties includes many-body correlations beyond
the Hartree approximation. Moreover, the power counting of diagrams in terms of O(k/M)
(k can be the Fermi momentum, mean-field strength, or other dimensional quantities) in the
many-body calculations has also been studied in this framework with the justification that
fitted parameters are natural (Hu et al., 2007; McIntire et al., 2007). This enables us to discuss
the EW interactions order-by-order in the nuclear many-body system using QHD EFT.

As mentioned before, we have initiated the study of weak production of pions due to neutrino
and antineutrino scattering off nuclei in this framework (Serot & Zhang, 2010; 2011a;b).
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Moreover, we also studied the production of photons, in which the conservation of the EM
current is clearly crucial. The discussion of power counting has been presented in these
references. Furthermore, we should also anticipate the importance of A dynamics modified in
nuclei. It has been studied in the nonrelativistic framework, but just started in the relativistic
framework. The study indicates that the A decay width increases at normal nuclear density
because the reduced pion-decay phase space is more than compensated by the opening of
other decay channels. But a detailed discussion on this is still needed. The real part of the
A self-energy is still unclear. As we pointed out, the s and h, couplings in Eq. (63) play
important roles, but there are still limited constraints on them. (Some constraints have been
gained from an equation of state perspective, and others come from electron scattering.) As
we realized in (Serot & Zhang, 2011a;b), the phenomenologically fitted spin-orbit coupling of
the A in the nucleus may shed some light on this issue. Clearly, more efforts are needed to
study A dynamics, which in the meantime is closely related to pion dynamics in the nuclear
many-body system.
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7. Appendix
A. Isospin indices, T matrices

Suppose f are the generators of some (ir)reducible representation of SU(2); then it is easy to
prove that (6 = —e~int")

~—1

Fr =575 . (92)

(_?T) ij _ gikz‘kl gl]. = Fij ,e., —t =

53]

Here the superscript T denotes transpose. This equation justifies the use of & as a metric
linking the representation and the equivalent complex-conjugate representation. One easily

finds for D3/2), D) and D(1/2),

0001 000-1
— 00-10 ~ 0010
6% = , Oap = , (93)
0100 0-10 0
-10 00 1000
00-1 00-1
si=1o010}|, sy=1010 [, (94)
-10 0 -10 0

s (01 - (o1
w00, ae-(07) .
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We now turn to the T matrices. As discussed in Sec. 3.1,

; 3 1.
T; iA = <§/a|1/ E/Z/A> 7

(%)
1. .3
ia= (50 Ala)

It is easy to prove the following relations (here ' is a Pauli matrix):
Ty =5+ i'é;k’rk , 97)

NP o ptiB_5izB_1.__j\B
(Pl.)A =TT =05 - 3@}, (98)
THATY, = 5b. (99)

Here Plj is a projection operator that projects H1/2) @ HO) onto #O/2).
A few words about E;k are in order here. We have the following transformations of pion fields:

i I

7T :nuli here,i=+1,0,-1; I=xy,z,
1,1
V2 V2
(et 7% ) = (¥, n¥, m*) | i, —i | (100)
V2 V2
010

Under such transformations,

giik = u’} u]] ’I‘<6”K = det(uli)eijk = —ielk

ik _ {—i, if ijk = +1,0,—1;

—idp, ifijk="P(+1,0,-1).

(101)

Here Jp is the phase related with the P permutation. It is + (—) with an even (odd) number
of permutations. To simplify the notation, we will ignore the tilde on 6 and € in other places.

B. Expansion of tilde objects

Here we show some details about 5;1, E;,, Fp(,,ﬂf) and others, which are needed for understanding
electroweak interactions in QHD EFT. The pion-decay constant is f; ~ 93 MeV.

Tr(—[U ,0*U™) ~ 2iefk 2L 27K 102
(2 [ ) o (102)
Tl + ,ayni

Tr(={U,"U"}) ~ —2i , (103)
2 fr
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i 7 ,
¢oiristt R, (104)
tT e 2T kT
5 -igtt s e, (105)
~ 1 T; T ik 7T
Uy R ﬂe TTi0y Tk 5 ~Vingy ijk f—] ?k iy, (106)
~ 1 Tl e 7T
ay ~ £ o oy i b +a1y 5 + €l f—i Ekvi’4 , (107)
Ty 72 %0, ;0,1 EI
1 i T
—~,a t+e€ ik 7 ] v )
~([far 3 a2 3] 0oy
+ background interference terms, (108)
g
pPW :a[ypv]+i§p[Py/PV}‘FZ.(W;MPV]_VHV)/ (109)
fLVV +fRP“/ = 28[}4\/1/} — Zi[VH p VV] — 2i[ay , a,,] , (110)
fruw — fRuv = —20p,a, +2i[vy, ay] +2ifay, v, (111)
(nv]
F}(J) ~ 20, + 2eiit 7 f a[y iv] + background interference, (112)
s
P}(,; ) ~ —20,a,) — 2e”k f T B[H iv] + background interference. (113)
T

C. Properties of projection operators in the spin-3/2 propagator

We have properties about these spin projectors:

) ()n = (PO (114
i) = By =0, (115)
pﬂpﬁ) = Pﬁ)pv =0. (116)

Based on the above identities, we can prove that

P 4l 1 p) — 1, (117)
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P 4 PP = pGL), (118)
[P, 4] = [Pl(f), 4 = {Pz%), p] =0, (119)
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1. Introduction

In this chapter, we review some aspects of physical systems described by quantum fields
defined on spaces with compactified dimensions. For a D-dimensional space, this means we

are considering a space which has a topology of the type I') = (Sl)d x RP~4, with d (< D)
being the number of compactified dimensions, each with the topology of a circle. This is the
type of topology that emerges, for instance, in quantum field theory at finite temperature: the
Matsubara formalism imposes that the time direction is compactified in a circle with length
B = 1/T , where T is the temperature; its topology is then I'; = S! x R3 in the notation
introduced above. Another important example involves spacetimes of dimensions D larger
than four, with the “extra” or “hidden” dimensions being compactified and assumed to be
very small, as in Kaluza—Klein and string theories. In any case, the topology FdD mentioned
above corresponds to a generalized Matsubara formalism, in which imaginary-time and
spatial coordinates may be simultaneously compactified.

In the last few decades, this generalized Matsubara formalism has been employed in many
instances of condensed-matter and particle physics. Some of them are: (1) the Casimir
effect, studied in various geometries, topologies, fields, and physical boundary conditions
[Bordag et al. (2001); Milonni (1993); Mostepanenko & Trunov (1997)], in a diversity of
subjects ranging from nanodevices to cosmological models [Bordag et al. (2001); Boyer (2003);
Levin & Micha (1993); Milonni (1993); Mostepanenko & Trunov (1997); Seife (1997)]; (2) the
confinement/deconfinement phase transition of hadronic matter, in the Gross-Neveu and
Nambu-Jona-Lasinio models as effective theories for quantum chromodynamics [Abreu et
al. (2009); Khanna et al. (2010); Malbouisson et al. (2002)]; (3) quantum electrodynamics with
one extra compactified dimension, which leads to estimates of the size of extra dimensions
compatible with present-day experimental data [Ccapa Tira et al. (2010)]; (4) the study of
superconductors in the form of films, wires and grains [Abreu et al. (2003; 2005); Khanna
et al. (2009); Linhares et al. (2006; 2007); Malbouisson (2002); Malbouisson et al. (2009)], in
which the Ginzburg-Landau model for phase transitions is defined on a three-dimensional
Euclidean space with one, two or three dimensions compactified.

When studying the compactification of spatial coordinates, however, it is argued in Khanna
et al. (2009) from topological considerations, that we may have a quite different interpretation
of the generalized Matsubara prescription: it provides a general and practical way to account
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for systems confined in limited regions of space at finite temperatures. Distinctly, we shall
be concerned here with stationary field theories and employ the generalized Matsubara
prescription to study bounded systems by implementing the compactification of spatial
coordinates; no imaginary-time compactification will be done, temperature will be introduced
through the mass parameter in the Ginzburg-Landau Hamiltonian. We will consider a
topology of the type T'Y) = RP~7 x (§1); x (S1)y x - -+ x (S')4, where (S!)q,...,(S!), refer
to the compactification of d spatial dimensions.

In the following, we shall concentrate on Euclidean scalar field theories defined on such
spaces, with the Matsubara formalism applied to spatial coordinates. Our aim is to describe
the influence of compactification on physical phenomena as phase transitions in which, for
instance, the critical temperature depends on the parameters of compactification, that is, on
the “size” of the system. This means that, for instance, superconductors inside spatially bound
spaces such as films, wires and grains may have a critical temperature distinct from the same
material in the bulk form.

In this chapter, the way in which the critical temperature for a second-order phase transition
is affected by the presence of confining boundaries is investigated on general grounds. We
consider that the system is a portion of material of some size, the behavior of which in the
critical region is derived from a quantum field theory calculation of the dependence of the
physical mass parameter on its size. We focus in particular on the mathematical aspects of
the formalism, which furnish the tools to study boundary effects on the phase transition. We
consider the D-dimensional Ginzburg-Landau model compactified in d (< D) of the spatial
dimensions. The Ginzburg-Landau Hamiltonian, considering only the term A¢*, is known
to lead to second-order transitions. In its version with N-components, in the large-N limit,
we are able to take into account nonperturbatively corrections to the coupling constant. In
this case, we shall obtain expressions for the transition temperature in the general situation.
Particularizing for D = 3and d = 1,d = 2 and d = 3, we have the critical temperature
Tc(L) for the system in the form of a film of thickness L, an infinitely long wire having
a square cross-section L2, and for a cubic grain of volume L3, respectively. We show that
Tc(L) decreases as the size L is diminished and a minimal size for the suppression of the
second-order transition is obtained.

We also consider the model which, besides the quartic scalar field self-interaction, a sextic
one is present. The model with both interactions taken together leads to a renormalizable
quantum field theory in three dimensions and it may describe first-order phase transitions.
We consider this formalism in a general framework, taking the Euclidean D-dimensional
~Alo[*+119/® (A, 7 > 0) model with d = 1, 2, 3 compactified dimensions. It is known that
such potential ensures that the system undergoes a first-order transition. We obtain formulas
for the dependence of the transition temperature on the parameters delimiting the spatial
region within which the system is confined. Surely, there are other potentials which may be
considered, for instance, the Halperin-Lubensky-Ma potential [Halperin et al. (1974)], which
also engender first-order transitions in superconducting materials by effect of integration over
the gauge field and takes the form —ag® + Bo*.

We start from the effective potential, which is related to the physical mass and
coupling constant through renormalization conditions. These conditions, however, reduce
considerably the number of relevant contributing Feynman diagrams, if one wishes to be
restricted to 1- or 2-loop approximations. For second-order transitions, we need to consider
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only the tadpole diagram to correct the mass and the 1-loop four-point function to correct the
coupling constant. For first-order transitions, we will not, for simplicity, make corrections to
the coupling constant. In this case, just two diagrams need to be considered: a tadpole graph
with the ¢* coupling (one loop) and a “shoestring” graph with the ¢° coupling (two loops).
No diagram with both couplings needs to be considered. The size dependence appears from
the treatment of the loop integrals. The dimensions of finite extent are treated in momentum
space using the formalism of Khanna et al. (2009).

It is worth noticing that for superconducting films with thickness L, a qualitative agreement
of our theoretical L-dependent critical temperature is found with experiments. This occurs in
particular for thin films (in the case of first-order transitions) and for a wide range of values of
L for second-order transitions [Linhares et al. (2006)]. Moreover, available experimental data
for superconducting wires are compatible with our theoretical prediction of the first-order
critical temperature as a function of the transverse cross section of the wire.

Finally, we discuss the infrared behavior and the fixed-point structure for the N-component
Ag* model in the large-N limit, with a compactified subspace. We study the cases in which
the system has no external influence and in which the system is submitted to the action of an
external magnetic field. In both situations, with or without a magnetic field, we get the result
that the existence of an infrared stable fixed-point depends only on the space dimension; it
does not depend on the number of compactified dimensions.

2. Critical behavior of the compactified A¢* model

We start by considering the complex scalar field model described by the Ginzburg-Landau
Hamiltonian density in a Euclidean D-dimensional space, in the absence of any geometrical
constraints, given by (in natural units, # = c = kg = 1)

1 1 oo A4
HZE‘aWHa”(I’HEmOW +Z|90\ , 1)

where A > 0 is the physical coupling constant. As usual, near criticality, the bare mass is taken
asm} = a(T — Tp), with « > 0 and T being a parameter with the dimension of temperature,

which is interpreted as the bulk transition temperature.

Let us now take the system in D dimensions confined to a region of space delimited by d < D
pairs of parallel planes. Each plane of a pair j is at a distance L; from the other member of
the pair, j = 1,2,...,d, and is orthogonal to all other planes belonging to distinct pairs {i},
i # j. This may be pictured as a parallelepipedal box embedded in the D-dimensional space,
whose parallel faces are separated by distances Ly, Ly, ..., L;. To simplify matters, we shall
take all L; = L. Let us define Cartesian coordinates r = (x1,xp,...,%4, z), where z is a
(D — d)-dimensional vector, with corresponding momentum k = (k1,kp,..., ks, q), g being
a (D — d)-dimensional vector in momentum space. The generating functional of Schwinger
functions is written in the form

Ly Ly
Z:/Dq)Dgo*exp (— [ dxl---/o dxd/dDdz’}-[(|gv|,Vq))), @)

with the field ¢(xq, ..., x4, z) satisfying the condition of confinement inside the box, ¢(x; <
0,z) = ¢(x; > 0, z) = const. Then, following the procedure developed in Khanna et al.
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(2009), we introduce a generalized Matsubara prescription, in which the Feynman rules are
modified through the replacements

+00 .
2 N 3)

dk

1
L

Notice that compactification can be implemented in different ways, as for instance by
imposing specific conditions on the fields at spatial boundaries. We here choose periodic
boundary conditions.

In principle, the effective potential for systems with spontaneous symmetry breaking is
obtained, following the Coleman-Weinberg analysis [Coleman & Weinberg (1973)], as an
expansion in the number of loops in Feynman diagrams. Accordingly, to the free propagator
and to the tree diagrams, radiative corrections are added, with increasing number of loops.
Thus, at the 1-loop approximation, we get the infinite series of 1-loop diagrams with all
numbers of insertions of the ¢* vertex (two external legs in each vertex).

At the 1-loop approximation, the contribution of loops with only |¢|* vertices to the effective
potential in unbounded space is

(Pozz

s+1

L [algoP]” [ (2:()D (kzdf:;z)s, @

where m is the physical mass and the parameter s counts the number of vertices on the loop.

In the following, to deal with dimensionless quantities in the regularization procedures, we
introduce parameters ¢ = m?/4n?, 1> = a~!, ¢ = 3\/87m?, where @ is the normalized
vacuum expectation value of the field (the classical field). In terms of these parameters
and performing the Matsubara replacements (3), the one-loop contribution to the effective
potential can be written in the form

+
t(go,a) = a3, C g

s=1
/ L ;. ©
a(nf+ n3) + 2+ 47

ny,.. ,"d——°°

It is easily seen that only the s = 1 term contributes to the renormalization condition

9*U(¢o)

= m?. (6)
993

$0=0

It corresponds to the tadpole diagram. The integral over the D — d noncompactified
momentum variables is performed using a well-known dimensional regularization formula
[Zinn-Justin (2002)] so that, for s = 1, we obtain

1 _ D—d 2—D+d
(o) = 50t 0r (1 228 ez (225500), @
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where Zgz ( 2712) +4. ) is one of the Epstein-Hurwitz zeta functions, defined by

—+o0
Z{flz (v;aq,...,a3) = Z (aln% 4+ adné + cz)_v, (8)

ny,...,ng=—09

valid for Re(v) > 1.

Next, we can use the generalization to several dimensions of the mode-sum regularization
prescription described in Elizalde (1995). It results that the multidimensional
Epstein-Hurwitz function has an analytic extension to the whole v complex plane,
which may be written as

_d _d
7§ (v;L) = 2 e L {2”51;11‘12% (1/ - d)
r(1-2534) 1(v) 2

d—V

2y () L
() kg

MR

—V
ad m

nl,...,ndzl L\/m
Xvag (mLMH ) ©)

where the K, (z) are modified Bessel functions of the second kind. Taking v = (2 —D +d)/2
in Eq. (9), we obtain from Eq. (7) the effective potential in D dimensions with a compactified
d-dimensional subspace:

_ 3Meol® [,-pj2-1,,p-2p (2-D
U]((P(),L)— (27T)D/2 2 m r 2

+24

© m\D/2—-1
) KD/zfl(Tl’lLTl) + -

+d Y (H
D/2-1

Ly/n?+

+
N
*
E —
LM
I
HS
S
H
Iy
IS S

.....

xKp /21 (mL./n%+~~+n§>}, (10)

where we have returned to the original variables, A and L.

Notice that in Eq. (10) there is a term proportional to I (%), which is divergent for even
dimensions D > 2, and should be subtracted in order to obtain finite physical parameters. For
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odd D, the above gamma function is finite, but we also subtract this term (corresponding to a
finite renormalization), for the sake of uniformity. We get

n=1

_ 3Algol o (m\P/2-1
Uy r(po, L) = (ZT)D/Z dy. (H) Kpjp—1(mLn) +---

D/2-1
(o)

+2 1y m

nl,...,nd:l L\/m
ks (o) "

Then the physical mass is obtained from Eq. (6), using Eq. (11) and also taking into account the
contribution at the tree level; it satisfies a generalized Dyson-Schwinger equation depending
on the finite extension L of the confining box:

D/2-1
) Kpjp—1(mLn) +---

6A X rm
mz(L) zmé—l—i [d > (H
D/2-1

WY m

ni,..., Hd:1 L\/m
XKp/a—1 (mL\/m>} . (12)

It is not envisageable to solve the above equation analytically for the mass. However, if we
limit ourselves to the neighborhood of criticality, then we can put m?(L) = 0, and we may also
use an asymptotic formula for a Bessel function with a small argument, K, (z) ~ 3T'(v)(2/z)
(z ~ 0). In this way, the coefficients and arguments of the Bessel functions cancel out and we
rewrite (12) as

3A D d D
2 ~ 1372 .
D D
+d(d—1)E; (2 — 1;L) R +2‘HEd (2 — 1;L)] ,

(13)
where the E,(v; L) are generalized Epstein-Hurwitz zeta functions defined by Kirsten (1994)

c- o (2 AN
E(vl)=1" Y -} (m4e+nd) (14)

n=1 np=1

[for details, see Malbouisson et al. (2002)]. Notice that, for p = 1, Ej, reduces to the Riemann
zeta function {(z) = Y77 1 n %

Having developed the general case of a d-dimensional compactified subspace, we consider an
illustrative example. We choose d = 1, the compactification of just one dimension, along the
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x1-axis, say, meaning that we are considering that the system is confined between two planes,
separated by a distance L (film of thickness L). Then, Eq. (13) simplifies to

3A D
2 ~ 1112 _ _
where {(z) is the Riemann zeta function. This equation is well defined for D > 3, but not
for D = 3, due to the pole of the zeta function. However, we can assign it a meaning
for the significative dimension D = 3 by adopting a regularization procedure: we use the
well-known formula .

lim{(z) = ——+7, (16)

z—1 z—1
where v &~ 0.5772 is the Euler-Mascheroni constant, for { (D — 2) in Eq. (15) and afterwards
we suppress the pole term at D = 3 (z = 1). Then, remembering that m% =ua(T - Tp), we get
the L-dependent critical temperature,

: A
Tcﬁlm(L) =Tp—-CG E' 17
with C; = 3—7 )
L= on

We see that, for L < (37/2m) (A/aTp), the critical temperature becomes negative, meaning
that the transition does not occur.

With analogous steps, we can take the cases of d = 2 and d = 3, in which the system is
confined within an infinite wire of rectangular cross section L2 = A and a grain of volume
L3 = V, respectively. In those cases, it is not necessary to renormalized the bare mass,
as we have done for a film, as the divergences coming from the zeta and gamma functions
completely cancel out algebraically. One obtains [Abreu et al. (2005)]

TY(A) = Ty~ o7y
1/27
. aA (18)
Tcgrama/) =To— CSW,
where C, and C3 are numerical constants. We note that, in all cases, it is found that the
boundary-dependent critical temperature decreases linearly with the inverse of the linear
dimension L, T,(L) = Ty — C4A/aL, where « and A are the Ginzburg-Landau parameters, Ty is
the bulk transition temperature and C; is a constant depending on the number of compactified
dimensions. This is in accordance with arguments raised from finite-size scaling [Zinn-Justin
(2002)].

Such behavior suggests the existence of a minimal size of the system, below which the
transition is suppressed. It seems to be in qualitative agreement with experimental results
which indicate a minimal thickness of a film for the disapearance of superconductivity [Abreu
et al. (2004); Kodama et al. (1983)]; also, the behavior of nanowires and nanograins have been
studied [Shanenko et al. (2006); Zgirski et al. (2005)], searching for a limit on its size for the
material while retaining its superconducting character.
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3. First-order phase transitions

In the previous section, we have studied the Ginzburg-Landau Hamiltonian density,
solely containing the interaction term Ag* with A > 0, which describes second-order
phase transitions. Here we pass to consider the Ginzburg-Landau model in a Euclidean
D-dimensional space, including both ¢* and ¢° interactions, in the absence of external fields;
its Hamiltonian is given by (again, in natural units, # = ¢ = kg = 1)

1 1 o0 A4 1 6
H:§|au(l’| |ay¢|+§mo|4’| —ZW +g\§0| / (19)

where A > 0 and 5 > 0 are the physical quartic and sextic coupling constants. Near criticality,
the bare mass is given by m5 = a(T/Ty — 1), with & > 0 and Ty being a parameter with the
dimension of temperature. A potential of this type, with the minus sign in the quartic term,
ensures that the system undergoes a first-order transition. Recall that the critical temperature
for a first-order transition described by the Hamiltonian above is higher than Tj. This will
be explicitly stated in Eq. (25) below. Our purpose will be to develop the general case of
compactifying a d-dimensional subspace, in order to compare results for films, wires and
grains with the second-order ones given above.

We thus consider the system in D dimensions confined to a region of space delimited by
d < D pairs of parallel planes, as was done in the previous section, and introduce a
generalized Matsubara prescription as in Eq. (3), with periodic boundary conditions. We
again start from establishing the effective potential, related to the physical mass through a
renormalization condition, Eq. (6). This condition, however, reduces considerably the number
of relevant Feynman diagrams contributing to the mass, if we restrict ourselves to first-order
terms in both coupling constants: in fact, just two diagrams need to be considered in this
approximation, a tadpole graph with the ¢* coupling (1 loop) and a “shoestring” graph with
the ¢° coupling (2 loops).

Within our approximation, we do not take into account the renormalization conditions for the
interaction coupling constants, i.e., they are considered as already renormalized when they
are written in the Hamiltonian (the same was assumed in the previous section).

At the 1-loop approximation, the contribution of loops with only |¢|* vertices to the effective
potential is obtained directly from the previous section, Eq. (5). As before, we see that only the
s = 1 term contributes to the renormalization condition in Eq. (6). It corresponds to the tadpole
diagram. It is then also clear that all | pg|®-vertex and mixed |@o|*- and | pg|°-vertex insertions
on the 1-loop diagrams do not contribute when one computes the second derivative of similar
expressions with respect to the field at zero field: only diagrams with two external legs should
survive. This is impossible for a |g|®-vertex insertion at the 1-loop approximation. Therefore,
the first contribution from the |@y|® coupling must come from a higher-order term in the loop
expansion. Two-loop diagrams with two external legs and only |@g|* vertices are of second
order in its coupling constant, and we neglect them, as well as all possible diagrams with
vertices of mixed type. However, the 2-loop shoestring diagram, with only one |@g|® vertex
and two external legs is a first-order (in #) contribution to the effective potential, according to
our approximation.

The tadpole contribution to the effective potential was treated in the previous section, through
dimensional and Epstein-Hurwitz zeta-function regularizations and subtraction of a polar
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term, resulting in the expression Uj g of Eq. (11), in terms of modified Bessel functions. Now,
proceeding analogously for the 2-loop shoestring diagram contribution, we arrive at

2 ®© o \D/2-1
Uy r(po, L1, ..., Lg) = 417(|2(€$)|D {d 21 (H) Kpja-1(mLn) +---
n=

D/2-1
4od-1 i m

=1 L\/;?i;fff]f;g
2
xKp/z-1 (mLMH . (20)

Then the physical mass m?(L) with both contributions is obtained from Eq. (6), using Egs. (11),
(20) and also taking into account the contribution at the tree level; it satisfies a generalized
Dyson-Schwinger equation depending on the extensions L of each dimension of the confining
box, as in Eq. (12). We should remember that the tadpole part has a change of sign with respect
to (12), reflecting the sign of A in the Hamiltonian (19).

A first-order transition occurs when all the three minima of the potential
1 A
U(go) = 5m*(L)lgol* = Flgol* + LIgol®, @1)

where m(L) is the renormalized mass defined above, are simultaneously on the line U (@) =
0. This gives the condition
_3)2

2
L)y=—. 22
For D = 3, the Bessel functions have an explicit form, K; /Z(z) = /e %/ V/2z, which is to
be replaced in the expression for the renormalized mass. Performing the resulting sums, and

remembering that m% =a(T/Ty— 1), we get

20y o L q) LA (g )
m(L)—oc(TO 1)+4H{Lln(1 e )-l—

0o e—m(L)L n3+-4nj

Ny, g=1 7’1%4‘"'—!-7’1%

nre[d _emLLY 4
82 [Lln(l e bh) +

0 e~ M(L)L/ni+-+n]

nl,.‘.,ndzl L\/m

424-1

(23)
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Then, introducing the value of the mass, Eq. (22), in Eq. (23), one obtains the critical

temperature
-1
32 3\ [d 1,22
T.(L) =T <1— (1 — |=In(1- oy
o) C{ <+16171x) {4mx Ln( ¢ )+
i eiL\/%\/m
m =t LyJnd 4
Ui d _L,/32
———— |=In(1- 1oy
64720 {L n( ¢ +

Tl],...,nd:l L\/m

31
T. =T (1 + 16174%) (25)

is the bulk (L — o) critical temperature for the first-order phase transition.

+2771

2

4211

, (24)

where

Specific formulas for particular values of d are now given. If we choose d = 1, this corresponds
physically to a film of superconducting material, and we have that the transition occurs at the
critical temperature T2™ (L) given by

. 2\ 1 2
Thm(1) = Tc{l <1+ 3A ) { 3A ln(leLV?g’?>

lona 4dral
2
L, 32
i (=) ] } 26)

In the case of a wire, d = 2, the critical temperature is written in terms of L as

. 3)\2
wire _ _
TVire(L) = T, {1 (1+ 16171%)

2 2
x{ 31 [1n(1—eLV?6\77>+ln<1—eLV?é’l>

2t L

[3)2 [ 37
(] e_L 16y Vl1+7’l2

oy ¢
ni,na=1 1/1’[% + n%
7 2
U (ln(l—eLV?Q’?)—i—ln(l—eLV?é\’i)

-1

3271206L2
2
o efL‘/%7 \/n%Jrn%

+2 Z _—
ninp=1 \/ 1’1% + 1’1%

(27)
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Finally, if we compactify all three dimensions (d = 3), which leaves us with a system in the
form of a cubic “grain” of some material, the dependence of the critical temperature on its
linear dimension L is given by

< 302\ [ 3A
TE(L) = T {1 B <1 + 1617@) {meL
2
X [3ln(leLV MT’?)Jr

0 e—L,/ %y/ﬂ%—&-n%—«—n%
+4 )
ny,e.m3=1 4 /n% -+ n% -+ I’I%

_L 3ln(1_37L %)+
327202
2
o Ly R
+4 ) ) (28)

Comparing Egs. (26)-(28) with the general behavior of the critical temperature obtained in
the previous section, we see that in all cases (film, wire or grain), there is a sharp contrast
between the simple inverse linear behavior of T, (L) for second-order transitions and the rather
involved dependence on L of the critical temperature for first-order transitions.

In Linhares et al. (2006; 2007), we have shown that our general formalism could be not of a
purely academic interest, but that it could be used to describe some experimentally observable
situations. Experimental data on the critical temperature obtained from superconducting films
and wires can be compared with our theoretical expressions. In Linhares et al. (2006), the
coupling constants A and 7 have been determined as functions of the microscopic parameters
of the material, which was done generalizing Gorkov’s [Kleinert (1989)] microscopic
derivation done for the A¢* model, in order to include the additional interaction term 7¢®
in the free energy. See Linhares et al. (2006; 2007) for details.

As described in Linhares et al. (2006), the transition temperature as a function of the thickness
for a film grows from zero at a nonnull minimal allowed film thickness above the bulk
transition temperature T, as the thickness is enlarged, reaching a maximum and afterwards
starting to decrease, going asymptotically to T. as L — 0. Our theoretical curve is in
qualitatively good agreement with measurements, especially for thin films [Strongin et al.
(1970)]. This is illustrated in Figure 1. This behavior can be contrasted with the one shown
by the critical temperature for a second-order transition. As one can see in Figure 2, in
this case, the critical temperature increases monotonically from zero, again corresponding
to a finite minimal film thickness, going asymptotically to the bulk transition temperature
as L — oo [Abreu et al. (2004)]. Such behavior has been experimentally found for a variety
of transition-metal materials [Kodama et al. (1983); Minhaj et al. (1994); Pogrebnyakov et al.
(2003); Raffy et al. (1983)]. Since in this section a first-order transition is explicitly assumed,
it is tempting to infer that the transition described in the experiments of Strongin et al. (1970)
is first order. In other words, one could say that an experimentally observed behavior of
the critical temperature as a function of the film thickness may serve as a possible criterion
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Fig. 1. Critical temperature T™ (K) as a function of the thickness L(A), with data
from Strongin et al. (1970) for a superconducting film made from aluminum.
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Fig. 2. Critical temperature T/!™(K) as a function of the thickness L(A) for a second-order
transition, with data from Kodama et al. (1983) for a superconducting film made from
niobium.

to decide about the order of the superconductivity transition: a monotonically increasing
critical temperature as L grows would indicate that the system undergoes a second-order
transition, whereas if the critical temperature presents a maximum for a value of L larger than
the minimal allowed one, this would be signaling the occurrence of a first-order transition.
If we consider a sample of superconducting material in the form of an infinitely long wire
with a cross section L?, the same arguments and rescaling procedures used for films apply. In
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this case, the theoretical curve T} ire yg [, together with Al data from Shanenko et al. (2006);
Zgirski et al. (2005) agree quite well, for not extremely thin wires. One may conclude that the
phase transition of these superconducting aluminum wires is first order, just as for aluminum
films. The interested reader will find details in Linhares et al. (2006; 2007).

4. Coupling-constant corrections for second-order transitions

We have so far discussed the critical properties of confined superconducting matter under the
assumption that the coupling constants, as they appear in the Hamiltonian, are the physical
ones. It is however expected that the compactification of spatial dimensions as we have
described also has an influence on the coupling constants and consequently on the behavior
of the transition temperature with respect to the size of the compactified space. To undertake
such study, we shall consider the four-point function at zero external momenta, which is the
basic object for our definition of the renormalized coupling constant. We shall analyze it in
the O(N)-symmetric version of the D-dimensional Ginzburg-Landau model, described by the
Hamiltonian density

A
H = 0y 9ad”" g0 + m%(T)G”u(Pa + N (Paga)®, (29)

and take the large-N limit. In Eq. (29), A is the coupling constant and m3(T) = a(T — Tp) is
the bare mass, as before. The compactification procedure is the same as that implemented in
section 2 and we look for the 1-loop contribution from ¢* vertices for the effective potential
after compactification of d dimensions. We may use directly Eq. (10), taking care that the
convention for the coupling constant has changed: A/4 — A. The mass is obtained from the
normalization condition (6) and the coupling constant from

o* A

— U(¢o) = (30)
2

a(po 90=0 N

where U is the sum of the tree-level and 1-loop contributions to the effective potential.

The coupling constant is defined in terms of the 4-point function for zero external momenta,
which, at leading order in 1/ N, is given by the sum of all chains of 1-loop diagrams, which
has the formal expression

@, B A/N
Ip(p=0m L) = e 1)’ 31
where II(m,L) = II(p = 0,m,L) corresponds to the one-loop four-point diagram, after

compactification. Next, we use the renormalization condition (30), from which we deduce
formally that the one-loop four-point function IT(m,L) is obtained from the coefficient of
the fourth power of the field (s = 2) in Eq. (10). A divergent (for even dimensions) term
is subtracted to give the finite one-loop four-point function ITg(m, L), which corresponds
to (11). Such subtraction is performed even in the case of odd dimensions, where no pole
singularity occurs (finite renormalization). From the properties of Bessel functions, we see
that TIgx(m,L) — 0 as L — oo, whereas it diverges when L — 0. We conclude that the
renormalized one-loop four-point function is positive for all values of D and L.
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Let us define the the L-dependent renormalized coupling constant Ag(m, L), at leading order
in1/N, as

(4) ) _ _ _ A
NIpR(p=0,mL)=Ag(mL) = T AR (m, L) (32)

(4)

In the absence of constraints, the L — oo limit of I'y; (p = 0,m, L) defines the corresponding
renormalized coupling constant Ag(m). We get simply that Ag(m) = A. This means that a
renormalization scheme has been chosen so that the constant A appearing in the Hamiltonian
corresponds to the renormalized coupling constant in the absence of boundaries.

The physical mass is obtained at 1-loop from (12), with A/4 — A, and (6), after also changing
A — Ar(m, L), given by (32). One should remember, however, that Ag(m, L) is itself a function
of m = m(T,L). Therefore, m(T,L) is given by a complicated set of coupled equations. Just
like in the situation in section 2, without the corrections in A, it has no analytical solution
in general. Nevertheless, as before, if we limit ourselves to the neighborhood of criticality,
m?(T, L) ~ 0, the behavior of the system can be studied by using the approximation K, (z) ~
IT(v)(2/z), for z ~ 0. The same kind of simplifications occurs and we regain Eq. (13), with
A — Ar(D, L) given by

AR(D,L) ~ A {1 +AC(D)L* P [d7(D — 4) +2d(d —1)E; (D/2 - 2,1)

+---+2d*15d(D/2—2,1)]} ) (33)

where C(D) = M%HF (% — 2). It then ensues that we obtain the critical temperature as a
function of L. Taking D = 3, we have a similar situation as that of section 2. We find modified

Fig. 3. Reduced transition temperature (t;) as a function of the inverse of the reduced
compactification length (I), for films (d = 1), square wires (d = 2) and cubic grains (d = 3).
The full and dashed lines correspond to results with and without correction of the coupling
constant, respectively.
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L-dependent transition temperatures, which are given by

; 48TC A
Thlmy = T _ 1 .
(L) 07 487al + AalZ’
. 4
Tyie(A) = ) - 2k (4
487t/ A + Ex A
487C; A

grain o

(L) =To 487taV1/3 4 E3AaV2/37

with Cq, C; and C3 as before and where &, and &3 are constants, resulting from sums involving
the Bessel functions [Malbouisson et al. (2009)]. We see that the critical temperature has the
same kind of dependence on the size extension L for d = 1, 2, 3, only constants differ in each
case. The functional behavior does not depend on the number of compactified dimensions,
only on the dimension of the Euclidean space, which we have computed for D = 3. One
can also notice that the minimal size of the compact superconductor has lesser values than
those computed without taking into account corrections to the coupling constant. This can
be seen in Figure 3, where we have plotted the reduced transition temperature t, = T,/ Ty
as a function of the inverse of the reduced compactification length | = L/Ly,, where Ly,
is the corresponding minimal allowed linear extension without coupling constant boundary
corrections.

5. Infrared fixed-point structure for the A¢* model

5.1 The system in the absence of an external magnetic field

In this subsection, we study the fixed-point structure of the compactified model described by
the Hamiltonian density in Eq. (29) in the large-N limit. We start from the four-point function
at the critical point (m = 0) and for small external momenta, before compactification, which is
given by
A/N

1+ Al (p)
In the equation above, Il (p) is the one-loop four-point function at the critical point;
introducing a Feynman parameter X, it is written in the form

de 1
Ier (p . 36
/ / k2 +p2x(1— x)] (36)

Performing the Matsubara replacements (3) for d dimensions, Eq. (36) becomes (w; = 27tn; /L)

Hcr(p/L):% Z / /dDd

ni,..., nj=—o0

r(p) = (35)

X 5 (37)
(42 +wn1+“‘+“’nd+l’2x(1—x)]

and we define the effective L-dependent coupling constant in the large-N limit as

A

Ap, L) = hm NF()(P' L)= T+ ALl(p, L)’

(38)
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The sum over the n; and the integral over g above can be treated using the formalism
developed in Khanna et al. (2009) and described in section 2. We obtain

I1 = /2 (! —p2_1 o v D
«(p, L) = (2n) /0 dx |2 (27'[)2p x(1—x) r <2 - 2)

D/2-2
+dn§‘1 <2nLn Kpja—z ( 51/pPx(1=x) )+
D/2-2
o > —
241y p?x(1—x)
ny,...,ng=1 ZNL\/m

XKp/a—2 <2L7T\/PZX(1—x)\/n%—|—~~—|—n§>}, (39)

which, replaced in Eq. (38), gives the boundary-dependent four-point function in the large-N
limit. We can write Eq. (39) in the form

I(p,L) = A(D)|p|”~* +B4(D, L), (40)

with the d-independent coefficient of the |p|-term being

A(D) = (2m)*3P/2p=D/2p(D)T (2 - [2)) , (41)
and where we have defined
1 r(%-1)
b(D) = / dx [x(1 — x)]P/22 = 23-D nﬁ, for Re(D) > 2. 42)
L=

We remark that, for the physically interesting dimension D = 3, b(3) = 7. This implies that
A(3) = /4.

If an infrared-stable fixed point exists for any of the models with d compactified dimensions,
it is possible to determine it by a study of the infrared behavior of the Callan-Symanzik p
function. Therefore, we investigate the above equations for |p| ~ 0. With this restriction,
we may use the asymptotic formula for small values of the argument of the Bessel functions,
and the expressions for B; simplify considerably [see the reasoning leading to Eq. (13)]. The
result is expressed in terms of one of the multidimensional Epstein-Hurwitz zeta functions of
Eq. (14). In this limit, the p?>-dependence of the Bessel functions exactly compensates the
one coming from the accompanying factors. Thus, the remaining p?-dependence is only
that of the first term of (39), which is the same for all number of compactified dimensions
d. For general and detailed expressions, see Linhares et al. (2011). One can also construct
analytical continuations and recurrence relations for the multidimensional Epstein functions,
which permit to write them in terms of modified Bessel and Riemann zeta functions [Khanna
et al. (2009); Kirsten (1994)]. We thus are able to derive expressions for each particular value of
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d, from 1 to D, in the |p| ~ 0 limit, but let us restrict ourselves to the most expressive values,
corresponding to materials in the form of a film, a wire, or a grain.

Therefore, for a film, we obtain
By_1(D,L) ~ (271)~P/22DP/2=34=Dy (12) - 2) 7(D—4). (43)
The above expression is valid for all odd dimensions D > 5, due to the poles of the I' and

¢ functions. We can obtain an expression for smaller values of D by performing an analytic
continuation of the Riemann zeta function {(D — 4) by means of its reflection property,

1 1—z _
g(z)—r(z/z)r( 5 )nz 1271 -2). (44)
Then Eq. (43) leads to an expression valid for 2 < D < 4 given by
~3_(D-9)/274-Dy (22— D
B;—1(D,L)=27°n L*~T 5 {(5-D). (45)

For D = 3, we have B;_1(3,L) = L/48m. For d = 2 and d = 3, similar expressions are
obtained. An analysis of the singularity structure of the quantities B; shows that their domain
of existence can be extended to 2 < D < 4 [Linhares et al. (2011)].

To discuss infrared properties of these compactified models, we insert Eq. (40) in Eq. (38) and
we get the (p, L)-dependent coupling constant

A

A ~0,D, L)~ . 46
(P10 D) = 4 S AP+ + 5, (D, )] 4o

Let us take |p| as a running scale, and define the dimensionless coupling constant
g=A(p.D,L)[pIP* 47)

We recall that in these expressions p is a D-dimensional vector. The Callan-Symanzik p
function controls the rate of the renormalization-group flow of the running coupling constant
and a (nontrivial) fixed point of this flow is given by a (nontrivial) zero of the  function. For
|p| =~ 0, it is obtained straightforwardly from Eq. (47),

_ 1% ~(p_ _ 2
Bl&) = Iplgy; = (D=4 [z = AD)E] (48)
from which we get the infrared-stable fixed point
(49)

We see that the L-dependent B;-part of the subdiagram Il.. does not play any role in
this expression and, as remarked before, A(D) is the same for all number of compactified
dimensions, so is g only dependent on the space dimension.
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5.2 The system with an external magnetic field

We now take the N-component Ginzburg-Landau model of the previous subsection to
describe the behavior of d-confined systems, now in the presence of an external magnetic
field, at leading order in 1/ N. The Hamiltonian density (29) is then modified to

. . A
Ho= [ (3 —ieAS*) gu [(2 —ieA™) o] +m2gugu + 1 (9uga)?,  (50)

where m*> = «(T — T.), with « > 0. For D = 3, from a physical point of view, such
Hamiltonian is supposed to describe type-II superconductors. In this case, we assume that the
external magnetic field H is parallel to the z-axis and we choose the gauge A®** = (0,xH,0).
In the present D-dimensional case, we assume analogously a gauge A = (0,x1H,0,0,...,0),
with {x;} = x1,xp,...,xp, meaning that the applied external magnetic field lies on a f1xed
direction along one of the coordinate axis; for simplicity, in the calculations that follow, we
have adopted the notation x; = x, x, = y. If we consider the system in unlimited space, the
field ¢ should be written in terms of the well-known Landau-level basis,

dp dP-2p
/ y/ = 2(P5,py,p?fé,p,,p( r), (51)
where Xg,py’p(l’) are the Landau-level eigenfunctions given in terms of Hermite polynomials
Hy by
1 w\ /4 i(P"’*va) —w(x—py/w)?/2 Py
T Vo \n ‘ ! H, , 52
X@,Py’p(r) \/275! ( ) ‘ ¢ 4 \/5 (52)

with energy eigenvalues E; (|p|) = |p|> + (204+1)w + m? and w = eH is the so-called
cyclotron frequency. In the above equation, p and r are (D — 2)-dimensional vectors.

In the following, we consider only the lowest Landau level £ = 0. For D = 3, this assumption
usually corresponds to the description of superconductors in the extreme type-II limit. Under
this assumption, we obtain that the effective |go|4 interaction in momentum space and at the
critical point (m = 0) is written as

Mp, Lw) = 1 +Awe(1/2w)();%+p%)n(p, Liw) (53)
where the single 1-loop four-point function, IT(p, L; w), is given by
1 4 gb—d- 2
(p, L;w) = TjZZ/dx/andZ
><[qz—I—w%]—|—---+w,%d+p2x(1—x)}_2. (54)

This is the same kind of expression that is encountered in the previous subsection, Eq. (37),
with the only modification that D — D — 2. The analysis is then performed along the same
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lines and we obtain, analogously,

I(p, L;w) = (27.[)1—D/2 [21—1)/2 ( > D/;;_ 3
o mﬂW) s (L st )

, D/2-3
1 ol —
_|_..._|_2d*1/ dx 2 px(l x)
P oLy i+l
1
—\/p2x(1— 24 . fp2
xKp/2-3 <2n \/P x(1 X)\/n1 oot ndﬂ , (55)

where

r(2-2
/dx )P/23 5D A2 ") r(z-2) forRe(D) > 4.  (56)

r(%2)

As for the infrared behavior of the f function, it suffices to study it in the neighborhood of
|[p| = 0, so that we can again use the asymptotic formula for Bessel functions for small values
of the argument, as before. It turns out that in the |p| ~ 0 limit, the bubble I is written in
the form

Mer(|p| = 0, L;w) = A1(D) |p|°~® + C4(D, L), (57)
with
A1(D) = (2m)~P/27121-D/2(D)r (3 - 2) , (58)

and where the quantity C4(D, L) is obtained by simply making the change D — D — 2 in the
formula for B;(D, L) in the preceding subsection.

Let us remind Eq. (53) and define the dimensionless coupling constant
g = wA(pr = p2=0,D,L)[p|P~°, (59)

where we remember that in this context p is a (D — 2)-dimensional vector. As before, we
take as a running scale |p| and after performing manipulations entirely analogous to those
in the previous subsection and recalling Eq. (56), we have the extended domain of validity
4 < D < 6 for the quantities C;_1(D; L), for all d = 1,2,3. We then get the p function for

lp| =~ 0,

%Y o ) m)?
Ble) = Ip1 %5 ~ (D=6 [ = 41(D) ()] (60)
from which the infrared-stable fixed point is obtained
1
(D) = . (61)




122 Advances in Quantum Field Theory

6. Concluding remarks

Investigations on the dependence of the critical temperature for films with its thickness have
been done in other contexts and approaches, different from the one we adopt. For instance,
in Zinn-Justin (2002), an analysis of the renormalization group in finite-size geometries can be
found and scaling laws have been studied. Also, such a dependence has been investigated
in Asamitsu et al. (1994); Minhaj et al. (1994); Quateman (1986); Raffy et al. (1983) from
both experimental and theoretical points of view, explaining this effect in terms of proximity,
localization and Coulomb interaction. In particular, Quateman (1986) predicts, as our model
also does, a suppression of the superconducting transition for thicknesses below a minimal
value. More recently, in Shanenko et al. (2006) the thickness dependence of the critical
temperature is explained in terms of a shape-dependent superconducting resonance, but no
suppression of the transition is predicted or exhibited.

In this chapter, we have adopted a phenomenological approach, discussing the (A|¢|*) p and

(=Algl* +17|9|°) , theories compactified in d < D Euclidean dimensions. We have presented
a general formalism which, in the framework of the Ginzburg-Landau model, is able to
describe phase transitions for systems defined in spaces of arbitrary dimensions, some of
them being compactified. We have focused in particular on the situations with D = 3 and d =
1,2,3, corresponding (in the context of condensed-matter systems) to films, wires and grains,
respectively, undergoing phase transitions which may be described by Ginzburg-Landau
models. This generalizes previous works dealing with first- and second-order transitions in
low-dimensional systems [Abreu et al. (2005); Linhares et al. (2006); Malbouisson et al. (2002)].

We have observed the contrasting behavior of the critical temperature on the size of the
system, whether the transition is first- or second-order. This may indicate that from this shape
dependence one can infer the order of the transition the system undergoes.

In what a renormalization group approach is concerned, we have discussed the infrared
behavior and the fixed-point structure of the compactified O(N) A¢* in the large-N limit.
We have shown that, whether in the absence or presence of an external magnetic field, the
existence of an infrared-stable fixed point depends only on the space dimension D, not on the
number of compactified dimensions.
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1. Introduction

The usual ideology when dealing with many-body systems using second quantization is
to treat elementary excitations, say electrons, as the main entities determining the physical
properties of the system: the states are enumerated by population numbers, the response is
described using Green’s functions defined in terms of the elementary excitation, and so on.
The situation changes drastically when interaction allows for the formation of bound states.
The whole view of the system has to be revisited. Perhaps the most famous example is given
by superconductors. In the normal state the material fits the canonical universal description
when, roughly speaking, most of the properties are explained (at least qualitatively) by
the position of the Fermi level. In the superconducting state, however, one has complete
reconstruction of the ground state. Now properties of the material are defined by Cooper pairs
with behavior qualitatively different from that of individual electrons. For one the exclusion
principle has significantly diminished effect, so that pairs can even condense. Such change
in the character of elementary excitations leads to significant consequences: resistivity drops
practically to zero.

In the present chapter we review the basic approaches to treating such new states in
semiconductors, where elementary excitations, electrons and holes, have opposite charge
and the Coulomb attraction leads to formation of excitons, bound states of electron-hole
pairs. Excitons are the major factor determining the semiconductor optical response below
the fundamental absorption edge: they are responsible for resonant absorption at these
frequencies, where in the absence of excitons the material would be transparent. Therefore the
problem of main interest addressed in the present chapter is the interaction with an external
electromagnetic field tuned in resonance with interband transitions.

In Section 2 we present the general description of semiconductor optical response based
on the perturbative treatment of light-matter interaction. We develop a diagrammatical
representation of the perturbation series which we use to discuss the optical response
of initially unperturbed semiconductor and semiconductor where dark excitons form
Bose-Einstein condensate. The essential component of such a description is the solid
knowledge of the dynamics of semiconductor many-body excitations. In Section 3 the
application of time-dependent density functional theory (TDDEFT) to the problem of exciton
dynamics is reviewed. TDDEFT is a rapidly growing area of research, which shows a great
potential to be used in studies of the dynamics of real systems, including ultrafast processes.
We review our recent results on studies of the bound states, excitons and biexcitons, using this
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approach. Also, we discuss some nonlinear effects in the excitonic systems obtained by means
of the TDDFT approach.

2. Semiconductor optical response

2.1 Dynamics of semiconductor excitations

In the most general setup the problem of combined time evolution of semiconductor
excitations and electromagnetic field requires considering very complex Hamiltonians of
electrons in a periodic lattice and coupled to quantized field, whose dynamics, in turn,
may be affected by the spatial variation of the dielectric function. However, the physics of
phenomena of our main interest, as will be seen, is quite rich on its own. Therefore, in order
to demonstrate the major effects we consider the simplest case of a semiconductor with well
separated spherical bands excited by a classical electromagnetic field. An example of such a
material is GaAs, where the approximation of spherical bands proved to be good. Keeping in
mind the applications of techniques discussed below for GaAs we consider the case when
the states in the valence band are characterized by the projections ¢ = £3/2 of angular
momentum (heavy holes).

We will be interested in interband optical transitions, when the external electromagnetic
field has its frequency tuned close to the value of the gap separating the conduction and
valence bands. Due to the high main frequency the vector potential can be presented in a
form convenient for adopting the rotating wave approximation A(x,t) = Aq(x,t)e™ " +
A} (x, t)e'¥ with relatively slowly changing amplitude A (x, t).

The dynamics of excitations is described by the semiconductor-light Hamiltonian H = Hgc +
Hr + Hexe, which is composed of the Hamiltonians of the nonperturbed semiconductor Hgc,
the free electromagnetic field H g and the light-matter interaction H.y.. We will concentrate on
interband optical transitions so that the frequency of the relevant photon modes is close to the
value of the gap (throughout the chapter we use units with 7z = 1). If the external field is not
too strong such an interaction is well described by the rotating wave approximation that takes
into account only resonant transitions. Adopting this approximation and using the coordinate
representation we have in the rotating frame

Hse = [ dx [;cnx) (- - 30) s~ Lot (e0+ zvmzh ~10) m)]

1
+s /dxldXZ Y el (xa)ed (%) V(x1 — x2) s, (x2) s, (%1)
S1%2 1
1
+5 /dxldxz Y o (x1)vh, (%) V(%1 — X2) 00, (X2) 0 (x1)

01,02

- /dxldxz ZC:(X1)U;(X2)V(X1 —x2)vs(x2)cs (X1).

5,0

Here we have introduced c{ (x) and vy (x), operators creating electron with spin s and hole in
spin state o, respectively, at point x. These are fermion operators satisfying the canonical

anticommutation relations {cs,(x1),¢5,(x2)} = {cl (x1),¢l,(x2)} = {ve,(x1),00,(x2)} =



Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 127

{031(X1),vf§2(x2)} =0and

{entx)ch0)} =bamita —x2),  {on(x)oh00)} = bnmita—x). @

The first line in Eq. (1) represents the Hamiltonian of non-interacting electrons and holes with
m, j, being the respective masses and €. and €, denoting the positions of the bottom of the
conduction band and of the top of the valence band, respectively, so that e; — €5 is the gap.
The last three lines describe the electrostatic interaction with the Coulomb potential V(x).

The Hamiltonian of interaction with external electromagnetic field is

Howe = [dx L [Aa(xt) - dsool (x)e! (x) + AR (x,1) - doscs ()20 ()] 3)
s,0
where ds; = dj; = —i(s| V|0)e/mg, with mg the electron mass in vacuum, quantifies

coupling between the respective states in conduction and valence bands. Interaction of light
with the semiconductor occurs through absorption and emission of electron-hole pairs thus
specifying the quantity of main interest.

Because the main technical tool used in this part is perturbation theory, it is convenient to
incorporate the time dependence into the Heisenberg representation of quantum operators
O = eMsct@e~Hsct 5o that 190 /ot = [Hgc, O). For electron-hole pair operator the equation
of motion has the form

.0 -
i500(x)e; (x1) = —Loo(x1,%2)05 (x2)c} (x1) = 05 (xa)es (xa) U (x1) —U(x2)], - (4)
where operator fw(xl, xp) describes the one-pair dynamics
~ 1 1
L5/0<X1,X2) :ec—ey_Q— Tmev%_ %v%—V(X1 —XZ) (5)

and U (x) accounts for interaction of the pair with surrounding charges
U =[x Vix=x) [Zv:f,(x’)w(x’) - Zc:<x’>cs<x’>] . ©
g S

In the case when its contribution vanishes (for instance, when operators in Eq. (4) act
on vacuum state, i.e. state with empty conduction band and filled valence band) the
semiconductor dynamics becomes very simple and the structure of excitations is determined
by the spectral decomposition

Loalxt, ) flx1, %) = L Eui (v %0) [ i (x4, ) £ (x4, X0, @)
K

where the formal summation over y implies summing over the discrete quantum numbers
and integrating over continuous ones. In Eq. (7) E;, and ¢, are, respectively, the eigenvalues
and the eigenfunctions, fgb;, = Ey¢y. The operator L is self-adjoint and, hence, its eigenvalues
are real and the eigenfunctions form a complete orthonormal set. Convoluting both sides of
Eq. (4) (taken with ¢/ = 0) with ¢, we find that operators

B; = / dxqdx; (PV(XL XZ)U;(XZ)C: (Xl) ®)
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acting on vacuum create eigenstates of the semiconductor Hamiltonian ’H,SCBZ |0y =

E, B;ﬂ |0). Such electron-hole states are called excitons and, respectively, B; are called exciton
operators. As follows from Eq. (7) excitons are characterized by a set of quantum numbers
describing the solutions of the respective Schrédinger equation. For convenience we also
include the spin variables into this set, so that u = {s;, 0y, 1y, £, K}, where K, is the
momentum of the exciton center of mass, n, is the principal quantum number, and ¢ is
orbital momentum.

Among the full variety of exciton states not all of them play an equally important role in the
dynamics of a semiconductor interacting with external electromagnetic field. In order to see
this we employ the fact that wave-functions ¢, form a complete set and obtain the relation
between electron-hole and exciton operators

op, (a)ed () = ) Bigi(x1,%), )

R

where the sum is taken for fixed values of electron and hole spins. This relation allows us to
express Hexc in terms of the exciton operators

Hexe = 1 (A(1)By + Au(t)BY), (10)
M
where A, (t) are the projections of the external field onto the respective exciton mode

Ay(t) = / dx A (%, 1) - ds, o, @5 (%, X). (11)

As aresult only states with £ = 0 are directly coupled with the electromagnetic field. Among
four possible heavy-hole exciton states two of them are dark because the respective transitions
between valence and conduction bands are dipole-forbidden (Ivchenko, 2005). This results
in a life-time of dark excitons that is significantly greater than the life time of bright states.
Additionally, the interaction of bright excitons with light raises their energy compared to dark
excitons (Combescot & Leuenberger, 2009). These circumstances are very important from the
perspective of exciton Bose-Einstein condensation as will be discussed below.

2.2 Dark excitons

A simple way to see why the dark exciton states have lower energies than the bright exciton
states (Combescot & Leuenberger, 2009) is to rearrange the electron-hole exchange scattering
diagram as shown in Fig. 1. Then it becomes obvious that the electron-hole exchange
corresponds to the exchange of a virtual photon between electron-hole pairs. Since only
bright excitons interact with photons, it is only possible for bright excitons to exchange
virtual photons among each other. This interaction pushes the energies of the bright excitons
above the energies of the dark excitons. The reason for adding energy can be intuitively
understood by comparing direct and exchange Coulomb interactions for electrons; i.e. the
direct interaction among electrons leads to repulsion, corresponding to adding energy, while
the exchange interaction leads to attraction, corresponding to reducing energy. In the case of
the Coulomb interaction between electrons and holes, this situation is completely reversed;
i.e. the direct interaction between electrons and holes leads to attraction, corresponding to
reducing energy, while the exchange interaction leads to repulsion, corresponding to adding
energy. It is this exchange-based repulsion which lets the bright exciton energies be higher
than the dark exciton energies.
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(@) Interband Coulomb (b) Valence-conduction
exchange exchange diagram

(d) Exchange diagram with electron-hole

Fig. 1. Interband Coulomb exchange interaction which shifts the bright exciton energy above
the dark exciton energy. Transition process either in terms of valence-conduction electrons
(b) and (c), or in terms of electron-hole (d). This interband Coulomb process is nothing but an
exchange of virtual photon between electron-hole pairs.

2.3 Perturbation theory

Coupled operator equations of motion of semiconductor excitations and electromagnetic field,
turn out to be too complex for a detailed analysis and, therefore, a reliable approximation
scheme must be applied. While such scheme can be worked out at the level of the equations
of motion it is convenient to start from the Hamiltonian formulation of the problem and to use
the standard approach developed in the quantum field theory on the ground of interaction
representation.

The equation of motion of the external electromagnetic field driven by semiconductor
excitations has the form of classical wave equation

A1)~ VAL 1) = ~uod(x 1 (12)
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with a source

Jxt) =) do, s, Pp (% %) (By) - (13)
M
This shows that the effect of material excitations is described by the exciton polarization

Pu(t) = (Bu) = Tr [o(t)By] , (14)

where p(t) is the density matrix at instant t. Specifying the semiconductor state by the density
matrix allows one to address the most general situation. We, however, start from the special
case when the system at all times is in some pure state ['¥(t)), so that P, (t) = (Y (t)| By [¥(t)).
Next, we treat the interaction with the electromagnetic field, Hxc as a perturbation and follow
the standard prescription. First, we account the nonperturbed dynamics by introducing

‘%)> = exp [iHsct] [¥(t)), which satisfies i “T’(t)> Jot = Hexe(t) (\?(t) > where Hexc(t)
is the Hamiltonian of light-matter interaction in the Heisenberg picture

ﬁgxc(t) = eiHsctngce_i,Hsct. (15)

Iterating the equation of motion we find

[#(1)) = S() [¥(0)) = S(1) [¥(0)), (16)
where

Sty =1+Y (—i)”/-~~/t< ety Hee (1) Fese (). (17)
) (s

In what follows we will need the explicit form of such expansion. For a compact notation,
however, it is convenient to introduce the time ordering operator 7, so that one has

S(t) = T; exp {—i fot At Hoxe(t )} Following the same line of arguments we can also derive
<‘T’(t)‘ = <‘¥’(0)‘ S*(t), where ST(t) = T_exp {ifot dt’ﬁexc(t')}. Thus we obtain for the

exciton polarization (and, actually, for any observable)

Pu(t) = (¥ (1)

el?{sctBefl/Hsct

‘T’(t)> = (¥(0)] ST(1)By(t)S(t) [¥(0)). (18)

Finally, the perturbational series for Py(t) is obtained substituting instead of S(t) and S (1)
their expansions following Eq. (17).

This was the general consideration, which is applicable for arbitrary system and perturbation.
For the problem of our main interest, however, the fact of great importance is that exciton
operators entering .y change the total number of electrons and holes. In particular, if the
initial state ['¥(0)) is characterized by a definite number of particles this form of perturbation
implies that only terms with matching numbers of exciton creation and annihilation operators
would make nonzero contribution. At the same time a lot of terms enter even low orders of
the perturbation series [as illustrated by Eq. (21) below]. Therefore, for analysis of the series it
is convenient to represent terms graphically using as building blocks

Cf/ = iiA;j(t)gy(t),

K = +iAu (B (1) (19)
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The raising (lowering) line corresponds to the exciton annihilation (creation) operator in
the interaction representation at particular instant and a hollow vertex attached to the line
corresponds to the external field taken at the same instant. Thus the order of the diagram is
determined by the number of vertices. Integration over time is shown by filled vertex and
taking the diagonal matrix element is indicated by a horizontal line, for example

N = B )= /Ofdtz /0 % it A7 (1) Au(b) (Bu(h)Bl(k2)), . (0)

While writing down an expression corresponding to particular term in the perturbational
series for P, (t) one should take into account that elements to the left and to the right from
By originate from expansions for St and S, respectively, which have factors i and —i in
correspondence rule (19). The diagrammatical representation of the first few terms of the
perturbational series for Py (t) has the form

Pu(t) :Z+&+ﬂ+...: <Ey(t)>‘y—

(21)
*i/ot at’ <gu(f)l§3(t’)>q, Ay(t) +i/0t dr' <l§v(t’)l§y(t)>\y AS(E) ...

2.4 Linear and nonlinear responses of initially unperturbed semiconductor

We illustrate the application of this analysis by considering the optical response of a
non-perturbed semiconductor (Erementchouk & Leuenberger, 2010b; Ostreich et al., 1998),
that is when the initial state is vacuum |0) (empty conduction band and filled valence band).
We will emphasize this fact by using the dashed horizontal (vacuum) line in diagrams. It is
seen that only diagrams starting and ending at the vacuum line and above it provide non-zero
contributions into the series. The total number of lines in this case is even and, hence, the total
number of vertices is odd implying that we have only odd orders of the perturbation theory
in this case. In particular among the diagrams shown in Eq. (21) only the second diagram
survives yielding the polarization of linear response

P = 1N = —iZ/Ot t' (Bue Mect=BY) Ay (). (22)

For the following consideration it is constructive to analyze this expression in somewhat
excessive details. We introduce the vacuum exciton propagator @;,%(T) = <Bye_m5cTBI>0
and differentiating with respect to T we find that it satisfies the dynamical equation

CDFSOV(T) =—i <Bye_m5CT {HSC,BH >0 = *iEvCI);(fl)/(T) (23)

with the initial value CD;B,),(O) = 0y,v, where we have taken into account that B, B} |0) = 8, |0)

following from the commutation relation for the exciton operators
B BE| = 6 = Cu- (24)

Operators Cy,, describe the deviation of excitons from bosons

Cpuv :/dxldxzdxﬂdxéqb;i(xl,xz)qbv(x/l,x’z) )

X [0k, ()00, (x2)85,5,6 00 = X7) + c, (x s, (x1)3i7,0, 6062 = X5)] -
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Thus we find

t . .
PO () = 4/0 dt'e Bt 4, (1), 26)

Simple but important feature of the linear response is that wave vectors containing in the
external excitation directly transferred to the linear exciton polarization. For example, if

A(x) o« e®X then P;Sl) x 0(Ky — K).

In the next (third) order the exciton polarization is given by the following diagrams

PP =N\ NN

" (27)
NG

In order to present this expression in more familiar form we differentiate Eq. (27) with respect
to t remembering that we also need to differentiate the upper limits of the respective integrals.
This yields

where the elements with the hollow vertices are taken at the instant ¢ and the respective
diagrams describe the modification of the instantaneous effect of the electromagnetic field
and thus account for the phase-space filling effect. It can be seen that fifth and fourth
diagram cancel each other by virtue of [By, By] = 0. The first and the second diagrams

combine together yielding —iA,(t) ¥, |PV(1>(t)|2. This term is canceled by the commutator
appearing after combining the third and the sixth diagrams. Thus the phase-space filling
effect is described by

Ku(t) =i Y <BACV,VB;>OAv(t)pg”*(t)p,&”(t). (29)

KAV

The effect of the Coulomb interaction is described by the last term in Eq. (28), which has the
form

* 't t3 . ~ ~
Mu(t) = Y P [ty [t Au(ta)Ax(tr) (Dae Bl (1) BE()) (60

KAV

where we have introduced D, , = [B s [By, H SC]] . This operator can be presented as

Dyu = /dxldxzdx'ldx’zBA(xl,xz)B},(x’l,xé)>< 1)

[Vixi —=x]) + V(x2 —x3) = V(x1 —x3) — V(x] = x2)],



Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 133

where we have denoted By (x1,%2) = ¢u(x1,%2)cs, (X1)0s, (x2). Thus operator D, ,, describes
the Coulomb interaction between excitons A and y. Taking into account the symmetry with
respect to v <+ k we can rewrite M, (t) in terms of polarizations of linear response resulting in

cr e {K’LP%PU + / ar' By (e— )P (R ()|, (32)

K)\l/

where ,BX'; = <DA,HB,J§B,‘: >0 and FX; = <D,\,He_i7'[sctD$,K>0. These coefficients contain

typical average of the form (B, B, B B} ), which determines the spin selection rules governing
different optical processes. In order to derive them we present this average in terms of the
electron and hole operators and rearrange operators to have (vvv'o"), (ccc’c’) and then
expand each term using the Wick theorem for fermions. It produces four terms, which are
represented by the diagrams in Fig. 2. The points on the upper line of a diagram represent the
spin states of electrons in the conduction band and the points on the lower line stand for the
spin states of holes in the valence band. For example, the anticommutator {o{ , Vo, } & 0,
requires the equality of the respective hole spins in the valence band. We denote this equality
by connecting the vertices x and p on the lower line by the arc.

(a) (b) © @
COVN 05N 05 O

K X W p

NP AN S A AW 5 N N
Fig. 2. The spin diagrams corresponding to non-zero terms in (B, B, Bf B} ). Upper and
lower lines correspond to electron and hole spins, respectively. Arcs connecting two vertices
denote equal spins. The diagrams (a) and (b) lead to helicity selection rules « &4, dy, ¢, and

« bg,,0,00,,0,, T€spectively. Diagrams (c) and (d) enter the average with minus sign and for
bright excitons require the spin states in the conduction band to be the same.

Also, diagrams in Fig. 2 show which coordinates are identified by delta-functions appearing
after anti-commutation and thus demonstrate how exciton wave functions are convoluted in
such averages. Thus diagrams in Fig. 2a and 2b describe direct exciton scattering, while those
shown in Fig. 2c and 2d take into account scattering with exchange by electron or hole.

The memory term in Eq. (32) accounts for the effect of exciton-exciton interaction.
Unfortunately, an exact evolution of this integral is impossible (it is related to four-particle
propagator) and one has to rely on approximation schemes. It should be noted, however, that
the most significant effect of this interaction is when excitons form a bound state (possibly
metastable). When the contribution of such a state is small or non-existent (e.g. there are no
bound states in the spectrum of two copolarized excitons) one can employ a short memory
approximation, which accounts for the effect of the nonlocal term as a modification of ,BK';

The essential difference between linear and nonlinear responses is that the latter is a
combination of several linear polarizations. As a result if the external excitation has
components with different wave vectors the nonlinear polarization contains not only all of

them but also their combinations. More precisely one can easily show that P;SS) x 0(Ky + Ky —
Ky — Ki). The four momenta have to add up to zero and therefore this is called four-wave
mixing response. Because the direction of the response is different from the direction of
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excitation this allows observing the effect of interaction that is not blurred by linear response
or non-absorbed light. This makes four-wave mixing spectroscopy possible.

We would like to emphasize the generality of the derivation of the exciton optical response.
For example, the specific form of the exciton states has not been used for the derivation of
main formulas and therefore the same arguments can be repeated for excitons in arbitrary
confinement potential. This allows using this approach for description of nonlinear optical
response of disordered quantum wells (Erementchouk et al., 2011).

Another important feature of the diagrammatic representation is that it establishes the
connection between nonlinear optical response and other phenomena which involve exciton
dynamics. As an example we would like to discuss the problem of entanglement of photons
interacting with a semiconductor quantum well. For simplicity we neglect the possible
effect of variation of the dielectric function and assume that the states of the quantized
electromagnetic field are plane waves so that the vector potential is presented as

1 1
(22 %(6); \/@

where k = {¢,k} combines all photon quantum numbers, polarization and wave vector. Then
the two-photon states are described by the density matrix, which in the interaction picture has
the form

A= %l +he, (33)

PR () = (¥ ()] af b, 19, o

where [¥(t)) is the state of the semiconductor-photon system. As the first approximation
it suffices to consider vacuum as the initial state of the semiconductor [¥(0)) = |0) and to
neglect the processes of photon re-absorption, which is justified if the photon lifetime within
the quantum well is short (it should be noted that the situation may change in a cavity). In the
lowest approximation the photon annihilation operators in Eq. (34) act on a two-photon state

yielding the factorization pkl’kz( t) = ‘I’;‘l qz( )‘Fﬁl % (t), where

Yo (D) = (o, (Dag (0S®) (35)

0

where a;(t) are the photon operators in the Heisenberg representation. The interaction
Hamitonian in this case has the form Hexc = 1, (A+ By + Ayt )B*) where

Al (36)

H - 3/2 Z \/>d‘7;u5;4 €kaA/dx(P’,[ X, X) ka

Thus the same diagrams as before can be drawn with the only difference that B line is
accompanied with A". Quick analysis shows that only two diagrams contribute into ¥

Yot </ K/ K / /K\ (37)

It is immediately seen that the first diagrams describes the emission of photons along the
direction of external excitation and the emitted photons are disentangled: the polarization
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two-photon state is the direct product of the external excitation polarization. The two-exciton
process represented by the second diagram, however, admits oblique emission with
non-trivial dependence of entanglement of emitted photons on the direction of observation
and the polarization state of the excitation field (Erementchouk & Leuenberger, 2010a) as
is summarized in Fig. 3. The polarization of external excitation is described using Poincare
sphere, that is the excitation is presented as a combination of left- and right-polarized
components with amplitudes A_ = ¢~*/2sin(/2) and Ay = eX/2cos(B/2), respectively,
where S is the polar angle on the Poincare sphere and x is azimuthal angle (x /2 is the angle
between the axis of the ellipse of polarization and the plane spanned by the wave vectors
of emitted photons). Near the frequency of the heavy-hole exciton resonance entanglement
may reach maximum Exy = 1 only in the case of linear polarization of the pump field
and entanglement demonstrates interesting dependence on the orientation of the plane of
polarization. Near the light-hole exciton resonance the most advantageous orientation of the
ellipse of polarization is x = 0, however, the direction along which the most emitted photons
are emitted strongly depends on the ellipticity of the external excitation.

(b)

Entanglement
Entanglement

Fig. 3. Dependence of two-photon entanglement on detection angle and on polarization of
external excitation in the vicinities of (a) heavy-hole and (b) light-hole exciton resonances.

2.5 Optical response of Bose-Einstein condensate

Bose-Einstein condensation (BEC) is a phenomenon when at non-zero temperature the
majority of particles occupy only a few states. This is in striking contrast to a distribution
prescribed by the classical theory, where it is governed by the Boltzmann exponent
exp(—E/kpT) and significant difference in occupations may be expected only when the
energy levels are sufficiently far away from each other AE/kgT > 1. The Bose-Einstein
condensation, as is well known from the standard textbook consideration of ideal Bose gases
(see e.g. Chapter 12 in (Huang, 1987), where it is clearly shown how a condensate emerges
during the transition to the thermodynamic limit), does not require such level separation and
may as well appear in a system with continuous spectrum.

The effect of BEC is tightly connected to such highly unusual from the classical point of
view phenomena as superconductivity and superfluidity, which enjoy detailed developed
theories (Lifshitz & Pitaevskii, 2002) and still are inexhaustible sources of new questions.
In contrast to superfluidity and superconductivity, for which experiments have taken the
lead over theoretical considerations, experimental studies of BEC fall well behind the theory
(Moskalenko & Snoke, 2000): being predicted in 1925 BEC was obtained in a laboratory
only in 1995. The difficulty of observing BEC motivates the constant search for more
optimal systems. With this regard the significant attention has been paid to excitons in
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semiconductors. The physics of transition of semiconductors into the condensate state is
similar to the superconducting transition (in conventional superconductors). While the
elementary excitations are electrons, at sufficiently low temperatures Cooper pairs of electrons
play the important role, which are formed by phonon-mediated attraction. Pairs are no
longer subject to the exclusion principle and, moreover, at low densities obey the boson
commutation relation. Thus, they may undergo the transition into the BEC-state. With
excitons in semiconductors a similar scenario may take place and may even be more favorable
because the Coulomb interaction binds electron and hole instead of preventing them from
forming a bound state as it is in superconductors.

The finite life time of excitons, however, makes it difficult to reach the condensate state —
excitons decay before the equilibrium is established. Therefore, recently indirect excitons in
coupled quantum wells became the object of special interest (Butov, Gossard & Chemla, 2002;
Butov, Lai, Ivanov, Gossard & Chemla, 2002; Snoke et al., 2002). The electrons and holes
are spatially separated in such a structure that leads to increased life-time. Recently another
possibility, BE condensate formed by dark excitons, started to attract attention (Combescot &
Leuenberger, 2009).

The obvious difficulty related to dark excitons is how to observe them. One of possible ways
to test properties of dark excitons is to use indirect interband spectroscopy, which relies on
dynamics of bright states modified by the presence of dark excitons.

The problem of the optical response can be approached along the same lines as in the previous
sections. The Hamiltonian of light-matter interaction is treated as perturbation and using the
interaction picture the exciton polarization of bright excitons P = (B) is found in terms of S
operator, which produces the perturbation theory. Before we apply this ideology we need to
revisit the notion of averaging in formulas containing (...). In Section 2.4 the initial state of
semiconductor was taken to be vacuum. Here, however, we need to take into account that
initially the system is in thermal equilibrium and therefore its state is given by density matrix
p rather than by a vector of state. Thus for an operator O we need to consider

(O) =Tr[pO]. (38)

In the case when the system has BE condensate this expression significantly simplifies because
the main contribution results from the condensate states, which contain the macroscopic
number of particles. This observation is formally expressed by the spectral decomposition
for the density matrix p = Y, wy |$n) (¥n|, where |¢,) are some orthogonal states and wj
are their weights. The ratio of the weights of non-condensate and condensate states is small,
wWpe/we < 1, and thus the contribution of the respective terms in Eq. (38) can be neglected
leaving us with

(0) =Y we (Ye| Qe - (39)

We model the condensate state by a coherent state, which is obtained from vacuum by
Glauber’s shift operator |¢.) = D} (1) |0), where

Do (M) = exp [A (B: - BC)} (40)

with B = [ dxjdxp x(x1,x2)v} (x2)ct (x1). Here A and function y are parameters of the state
and will be determined later. It should be noted, however, that translational symmetry of the
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system implies that x(x1, xp) should posses the symmetry with respect to translations of both
arguments x(x| +a,xo +a) = eP2x(x,xp) with some P. Clearly P can be eliminated in a
moving frame and, hence, among states created by B, the smallest energy would be of those
with P = 0. Thus we need to consider

BY = [ dxadxa x(xi = x2)ol (xa)e (x1). (41)

The spin states of hole and electron entering the pair creation operator B} are denoted by
o = {0,s} and are such that the pair does not interact with the electromagnetic field. As has
been shown above, there are two such states with o_ = {3/2, —1/2} and oy = {-3/2,1/2}.
In the absence of external static magnetic field the energy of these states is the same thus we
naturally have fragmented condensate approximately described by the density matrix p =
(|9+) (4| + |9-) (¥—|)/2, where [p-) = D} |0). Using this approximation in Eq. (39) we
obtain

(0) = 2 [(p+1O19s) + -1 Oly-)], @)

which reduces the problem of finding exciton polarization to the problem with pure initial
state similar to analyzed in Section 2.4. The first and the second terms in Eq. (42) turn into each
other under the inversion of spins in the condensate, which does not present any difficulty.
Therefore, we consider in details only the first term. In order to simplify notations we denote
the spin states of the condensate by simply ¢ and s and the complementary values by ¢ and
5. Thus for |1 ) we have ¢ = —3/2 and s = 1/2 while ¢ = 3/2 and § = —1/2. The bright
excitons correspond to spins {7, s} and {c, 5}, while {7, 5} are the spins in the another fraction
(spanned by | )).

Applying the diagrammatic representation of the perturbation series (as illustrated in Eq. (21)
one can immediately see that the series will contain only the same diagrams as in Section 2.4.
In contrast, if the condensate was made of bright excitons then all diagrams shown in Eq. (21)
would contribute. For example, the first diagram, without the external field, would describe
the radiative decay of excitons in the condensate. For dark condensate, however, this diagram
turns to zero because (cs),, = (cs)y, = 0. Thus one can see that only diagrams with
matching number of creation and annihilation operators of electrons or holes not containing
in the condensate are not vanishing and one need to keep only diagrams with the vacuum
line, where vacuum is understood for electrons with spin 5 or for holes with spin 7.

Unitarity of the shift operator D (A) allows one to present the average as taken over vacuum
(§+1 O[p+) = (O(A))y, where

O(A) = D+ (A)ODL(A). (43)

Only electron and hole operators with spins s and ¢ are affected by this transformation. In
order to find how they transform it is convenient to use the momentum representation, e.g.
ve(x) = (271)7%/2 [ dkv(k)e® X with d being the dimensionality of the problem. In this
representation we have

Bl = [ dkx(k)ob k)t (—k) (@)
and thus

2 00(1;1) = D+ (1) [BL 00 (k)] DL(A) = —x(—K)ct(~IsA). (45)
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Solving the system of equations we find the transformation induced by the shift operator is
equivalent to the Bogoliubov transformation

vr(k;A) = v (K)a(k) —cl (—K)B(=k),  cs(lGA) = cs(k)a(k) +of(=k)B(—k),  (46)
where
#(k) = cos[Ax(K)],  B(K) = sin[Ax (k). @)

In order to clarify the physical meaning of the transformation we present Eq. (46) in coordinate
representation

v (x; A /dx x — X' )vg(x /dx B(x —x)c (x), (48)

where &(x) is the Fourier transform of 2sin?[Ax (k) /2].

Under transformation (43) the Heisenberg representation e/*scfOe~*sct is mapped into the
Heisenberg representation with transformed Hamiltonian e/#sc()tOQ(A)e~Msc(A)t, Thus the
transformation can be interpreted as a transition to new particles. The condition of the
quadratic part of Hsc(A) to be diagonal yields an equation with respect to function x (k)

£ -2 [ dav(k - (@) a0p0) = [1200) - (0] [ davik - qaa)pla) @

where E (K) = ec — ey — Q + K?/2m, + K?/2my,. As the zeroth approximation we obtain
a(k) = 1and B(k) = c¢(k), where ¢p(k) = 2,/2r3/[m(r}k? + 1)?] is the Fourier transform
of 1s-exciton states in 3d and rp is the exciton Bohr radius. The constant ¢ is found from the
“normalization condition": the electron (or hole) density is equal to the condensate density

1 ' ix-(g—
ny = <c;r(x)cs(x)>+ = P / dkdqe™ (97 (et (1 1 )es (q;1)), = / kB2 (k
(50)
that is ¢> = n4 (271)3. In the dilute regime, when the condition
n=64mn ry <1 (51)

holds we have (k) <« 1 and hence Ax (k) ~ c¢(k) thus completely defining the condensate
state.

The major effect of the dark condensate on bright excitons is that the condensate changes
the structure of excitons. In order to see this we consider the polarization of linear response
given by Eq. (22) with transformed exciton operators. Let us consider for definiteness the case
of right polarized external excitation, which is coupled to bright exciton with o = {0,5} =
{—3/2,—1/2}. The time dependence of propagator ®,, ,(7) is determined by

D (1) [Hsc, ol kn)ek (k)] DL(1) 10) = — [ daL(ks, kai @)of (kq — p)ek (ko + ) [0)
+ [ dpdqV(p) [} (ki — p)el (ka)a(ks — p) 52)

ot (ki )ed (ko = p)a(kr)] ol (@)ck (p — @) A(p, ) [0),
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where A(p,q) = «(q)B(q — p) — «(q — p)B(q) and

k? K3
Llkidoiq) = [ec—eo =+ o L+ [dpV(p)plks —p)A(p ki) + 5,

—V(q) [1 - p(k1)A(q, —k1)] .

The last term in Eq. (52) yields the modification of the energy through perturbation of the
condensate. This term can be estimated to lead to relatively long beatings in the linear
response and will be neg