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Preface 

Quantum Field Theory was developed as the theory unifying Quantum Mechanics 
and Relativistic Field Theory for the purpose of describing physics of elementary 
particles. Quantum Electrodynamics, electro-weak theory, Quantum Chromodyna-
mics and the Standard Model of elementary particles are all particular examples of 
Quantum Field Theory, which had great success in high-energy physics. At the same 
time, it was realized that a straightforward application of Quantum Field Theory to 
Einstein gravity does not give a physically sensible quantum gravity theory because of 
its nonrenormalizability. 

More recent applications of Quantum Field Theory are no longer limited to physics of 
elementary particles. They also include many successful applications to nuclear 
physics, condensed matter physics and pure mathematics. At the same time, the 
formalism of Quantum Field Theory has to be further developed because of the new 
challenges, such as quantum gravity and quantization with higher derivatives, strong 
coupling and bound states, computational techniques in quantum perturbation theory, 
and more rigorous mathematical foundations. 

In the first part of the book, some recent progress in describing clothed particles by 
unitary transformations together with their physical applications to nucleon scattering 
and deuteron form-factors are discussed. A light-front quantization in the Hamiltonian 
approach and a quantization of Pais-Uhlenbeck oscillator, both in the Hamiltonian 
approach and in the path integral approach, are given. 

In the second part of the book, some applications of Quantum Field Theory to low-
energy physics are considered, namely, (i) electro-weak interactions in a chiral 
effective Lagrangian for nuclei, (ii) Landau-Ginsburg theory of phase transitions, and 
(iii) exciton correlators and quantum entanglement in semiconductors.

In the third part of the book, various relations between Quantum Field Theory and 
mathematics are presented, including knot invariants and Chern- Simons-Witten field 
theory, solutions to a linearized model of Heisenberg equation, quantum anomalies 
and Atiyah-Singer index theorems. 

Though the book does not include all actual aspects of Quantum Field Theory and all 
its recent advances, it does include some of the relevant ones, with a broad spectrum 
of physical and mathematical applications. 
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A. V. Shebeko
Institute for Theoretical Physics

National Research Center “Kharkov Institute of Physics & Technology”
Ukraine

1. Introduction

In what follows we will show how one can realize the notion of "clothed " particles (Greenberg
& Schweber, 1958) for field theoretical treatments based upon the so-called instant form of
relativistic dynamics formulated by Dirac (Dirac, 1949). In the context, let us recall that the
notion points out a transparent way for including the so-called cloud or persistent effects
in a system of interacting fields (to be definite, mesons and nucleons). A constructive
step (see surveys (Shebeko & Shirokov, 2000; 2001) and refs. therein) is to express the
total field Hamiltonian H and other operators of great physical meaning, e.g., the Lorentz
boost generators and current density operators, which depend initially on the creation and
destruction operators for the "bare" particles, through a set of their "clothed" counterparts.
It is achieved via unitary clothing transformations (UCTs) (see article (Korda et al., 2007))
in the Hilbert space H of meson-nucleon states and we stress, as before, that each of such
transformations remains the Hamiltonian unchanged unlike other unitary transformation
methods (Glöckle & Müller, 1981; Kobayashi, 1997; Okubo, 1954; Stefanovich, 2001))1 for
Hamiltonian-based models. In the course of the clothing procedure a large amount of
virtual processes associated in our case with the meson absorption/emission, the NN̄-pair
annihilation/production and other cloud effects turns out to be accumulated in the creation
(destruction) operators for the clothed particles. The latter, being the quasiparticles of the
method of UCTs, must have the properties (charges, masses, etc.) of physical (observable)
particles. Such a bootstrap reflects the most significant distinction between the concepts of
clothed and bare particles.

At the same time, after Dirac, any relativistic quantum theory may be so defined that the
generator of time translations (Hamiltonian), the generators of space translations (linear
momentum), space rotations (angular momentum) and Lorentz transformations (boost
operator) satisfy the well-known commutations. Basic ideas, put forward by Dirac with his
"front", "instant" and "point" forms of the relativistic dynamics, have been realized in many
relativistic quantum mechanical models. In this context, the survey (Keister & Polyzou, 1991),
being a remarkable introduction to a subfield called the relativistic Hamiltonian dynamics,

1 Some specific features of these methods are discussed in (Shebeko & Shirokov, 2001) and (Korda et al.,
2007)
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represents various aspects and achievements of relativistic direct interaction theories. Among
the vast literature on this subject we would like to note an exhaustive exposition in lectures
(Bakker, 2001; Heinzl, 2001) of the appealing features of the relativistic Hamiltonian dynamics
with an emphasis on "light-cone quantization". Following a pioneering work (Foldy, 1961),
the term "direct" is related to a system with a fixed number of interacting particles, where
interactions are rather direct than mediated through a field. In the approach it is customary
to consider such interactions expressed in terms of the particle coordinates, momenta and
spins. Along the guideline the so-called separable interactions and relativistic center-of-mass
variables for composite systems were built up by assuming that the generators of the Poincaré
group (Π) can be represented as expansions on powers of 1/c2 or, more exactly, (v/c)2,
where v is a typical nuclear velocity (cf. the (p/m) expansion, introduced in (Friar, 1975),
where m is the nucleon mass and p is a typical nucleon momentum). Afterwards, similar
expansions were rederived and reexamined (with new physical inputs) in the framework of a
field-theoretic approach (Glöckle & Müller, 1981). There, starting from a model Lagrangian for
"scalar nucleons" interacting with a scalar meson field (like the Wentzel model (Wentzel, 1949))
the authors showed (to our knowledge first) how the Hamiltonian and the boost generator
(these noncommuting operators), determined in a standard manner (Schwinger, 1962), can
be blockdiagonalized by one and the same unitary transformation after Okubo (Okubo, 1954).
The corresponding blocks derived in leading order in the coupling constant act in the subspace
with a fixed nucleon number (the nucleon "sector" of the full space H ). In general, the work
(Glöckle & Müller, 1981) and its continuation (Krüger & Glöckle, 1999) exemplify applications
of local relativistic quantum field theory (RQFT), where the generators of interest, being
compatible with the basic commutation rules for fields, are constructed within the Lagrangian
formalism using the Nöther theorem and its consequences. Although the available covariant
perturbation theory and functional-integral methods are very successful when describing
various relativistic and quantum effects in the world of elementary particles, the Hamilton
method can be helpful too. As known, it is the case, where one has to study properties of
strongly interacting particles, e.g., as in nuclear physics with its problems of bound states for
meson-nucleon systems. Of course, any Hamiltonian formulation of field theory, not being
manifestly covariant, cannot be ab initio accepted as equivalent to the way after Feynman,
Schwinger and Tomonaga. However, in order to overcome the obstacle starting from a field
Hamiltonian H one can consider it as one of the ten infinitesimal operators (generators)
of space-time translations and pure Lorentz transformations that act in a proper Hilbert
space. Taken together they compose a basis of the Lie-Poincaré algebra (see below) to ensure
relativistic invariance (RI) in the Dirac sense, being referred to the RI as a whole.

The purpose of the present exposition is twofold. First, we consider an algebraic method
(Shebeko & Frolov , 2011) to meet the Poincaré commutators for a wide class of field theoretic
models (local and nonlocal ones taking into account their invariance with respect to space
translations). In particular, this recursive method is appropriate for models with derivative
couplings and spins ≥1 , typical of the meson theory of nuclear forces, where only some
part of the interaction density in the Dirac picture has the property to be a Lorentz scalar.
The antiparticle degrees of freedom are included together with such an important issue as
mass renormalization vs relativistic invariance in the Dirac sense. Second, special attention is
paid to finding analytic expressions for the generators in the clothed-particle representation,
in which the so-called bad terms are simultaneously removed from the Hamiltonian and the
boosts. Moreover, the mass renormalization terms introduced in the Hamiltonian at the outset

4 Advances in Quantum Field Theory
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turn out to be related to certain covariant integrals that are convergent in the field models
with proper cutoff factors. After constructing interactions between the clothed particles and
addressing an equivalence theorem for evaluation of the S-matrix we derive the approximate
eigenvalue equations for the simplest bound and scattering states. The latter can be found in
a nonperturbative way using the methods elaborated in the theory of nuclear structure and
reactions that is demonstrated by a few examples.

However, before to apply the UCT method (in particular, beyond the Lagrangian formalism
with its local interaction densities) we would like to mention the two algebraic procedures to
solve the basic commutator equations of Π (see Sec. 2). One of them, proposed in (Shebeko
& Frolov , 2011), has some touching points with the other developed in (Kita, 1966; 1968) and
essentially repeated many years after by Chandler (Chandler, 2003). In paper (Kita, 1968)
the author considers three kinds of neutral spinless bosons and nonlocal interaction between
them in a relativistic version of the Lee model with a cutoff in momentum space. A similar
model for two spinless particles has been utilized in (Chandler, 2003) with a Yukawa-type
interaction that belongs to the realm of the so-called models with persistent vacuum (see, for
instance, (Eckmann, 1970)). Certain resemblance between our and those explorations is that
we prefer to proceed within a corpuscular picture (see Chapter IV in monograph (Weinberg,
1995)), where each of the ten generators of the Poincaré group Π (and not only they) may be
expressed as a sum of products of particle creation and annihilation operators a†(n) and a(n)
(n = 1, 2, ...), e.g., bosons and/or fermions. Some mathematical aspects of the corpuscular
notion were formulated many years ago in (Friedrichs, 1953) (Chapter III). As in (Weinberg,
1995), a label n is associated with all the necessary quantum numbers for a single particle: its
momentum p n

2, spin z-component (helicity for massless particles) μ n, and species ξ n. The
operators a†(n) and a(n) satisfy the standard commutation relations such as Eqs. (4.2.5)-(4.2.7)
in (Weinberg, 1995).

In the framework of such a picture the Hamiltonian of a system of interacting mesons and
nucleons can be written as

H =
∞

∑
C=0

∞

∑
A=0

HCA, (1)

HCA =
∫
∑ HCA(1

�, 2�, ..., n�
C; 1,2,...,nA)a†(1�)a†(2�)...a†(n�

C)a(nA)...a(2)a(1), (2)

where the capital C(A) denotes the particle-creation (annihilation) number for the operator
substructure HCA. Sometimes we say that the latter belongs to the class [C.A] . Operation∫
∑ implies all necessary summations over discrete indices and covariant integrations over
continuous spectra.

Further, it is proved (Weinberg, 1995) that the S-matrix meets the so-called cluster
decomposition principle, if the coefficient functions HCA embody a single three-dimensional
momentum-conservation delta function, viz.,

HCA(1
�, 2�, ..., C; 1,2, ...,A) = δ(p�

1 + p�
2 + ... + p�

C − p1 − p2 − ... − pA)

× hCA(p�1μ�
1ξ �1, p�2μ�

2ξ �2, ..., p�Cμ�
Cξ �C; p1μ1ξ1, p2μ2ξ2, ..., pAμAξA), (3)

2 Or the 4-momentum p n = (p0
n, p n) on the mass shell p2

n = p02
n − p2

n = m2
n with the particle mass mn

5
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where the c-number coefficients hCA do not contain delta function.

Following the guideline “to free ourselves from any dependence on pre-existing field theories
”(cit. from (Weinberg, 1995) on p.175), the three boost operators N =(N1, N2, N3) can be
written as

N =
∞

∑
C=0

∞

∑
A=0

NCA, (4)

NCA =
∫
∑ NCA(1

�, 2�, ..., n�
C; 1,2, ...,nA)a†(1�)a†(2�)...a†(n�

C)a(nA)...a(2)a(1). (5)

In turn, the operator H, being divided into the no-interaction part HF and the interaction HI ,
owing to its translational invariance allows HI to be written as

HI =
∫

HI(x)dx. (6)

Our consideration is focused upon various field models (local and nonlocal) in which the
interaction density HI(x) consists of scalar Hsc(x) and nonscalar Hnsc(x) contributions,

HI(x) = Hsc(x) + Hnsc(x), (7)

where the property to be a scalar means

UF(Λ)Hsc(x)U−1
F = Hsc(Λx), ∀x = (t, x) (8)

for all Lorentz transformations Λ. Henceforth, for any operator O(x) in the Schrödinger (S)
picture it is introduced its counterpart O(x) = exp(iHFt)O(x) exp(−iHFt) in the Dirac (D)
picture.

2. Basic equations in relativistic theory with particle creation and annihilation

When seeking links between the coefficients in the r.h.s. of Eqs. (2) and (5) one considers the
fundamental relations of the Lie-Poincaré algebra, which can be divided into the three kinds
for:
no-interaction generators

[Pi,Pj] = 0, [Ji,Jj] = iεijk Jk, [Ji,Pj] = iεijkPk, (9)

relations linear in H and N

[P,H] = 0, [J,H] = 0, [Ji,Nj] = iεijk Nk, [Pi,Nj] = iδij H, (10)

and ones nonlinear in H and N

[H, N] = iP, [Ni,Nj] = −iεijk Jk, (11)

(i, j, k = 1, 2, 3),

where P = (P1, P2, P3) and J = (J1, J2, J3) are the linear momentum and angular momentum
operators, respectively. In this context, let us remind that in the instant form of relativistic
dynamics after Dirac (Dirac, 1949) only the Hamiltonian and the boost operators carry

6 Advances in Quantum Field Theory
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interactions with conventional partitions H = HF + HI and N = NF + NI , while P = PF
and J = JF. In short notations, we distinguish the set GF = {HF, PF, JF, NF} for free particles
and the set G = {H, PF, JF, N} for interacting particles.

In turn, every operator HCA can be represented as HCA =
∫

HCA(x)dx, if one uses the formula

δ(p − p�) =
1

(2π)3

∫
ei(p−p�)xdx.

Thus, we come to the form H =
∫

H(x)dx well known from local field models with the density

H(x) =
∞

∑
C=0

∞

∑
A=0

HCA(x). (12)

For instance, in case with C = A = 2, where H22(1�, 2�; 1, 2) = δ(p�
1 + p�

2 − p1 −
p2)h(1�, 2�; 1, 2), we have

H22(x) =
1

(2π)3

∫
∑ exp[−i(p�

1 + p�
2 − p1 − p2)x]h(1�, 2�; 1, 2)a† (1�

)
a† (2�

)
a (2) a (1) . (13)

Further, we will employ the transformation properties of the creation and annihilation
operators with respect to Π. For example, in case of a massive particle with the mass m and
spin j one considers that

UF(Λ, b)a†(p, μ)U−1
F (Λ, b) = eiΛpbD(j)

μ�μ(W(Λ, p))a†(Λp, μ�), (14)

∀Λ ∈ L+ and arbitrary spacetime shifts b = (b0, b)

with D-function whose argument is the Wigner rotation W(Λ, p), L+ the homogeneous
(proper) orthochronous Lorentz group. The correspondence (Λ, b) → UF(Λ, b)
between elements (Λ, b) ∈ Π and unitary transformations UF(Λ, b) realizes an irreducible
representation of Π on the Hilbert space H (to be definite) of meson-nucleon states. In this
context, it is convenient to employ the operators a(p, μ) = a(p, μ)

√
p0 that meet the covariant

commutation relations

[a(p�, μ�), a†(p, μ)]± = p0δ(p − p�)δμ�μ,

[a(p�, μ�), a(p, μ)]± = [a†(p�, μ�), a†(p, μ)]± = 0. (15)

Here p0 =
√

p2 + m2 is the fourth component of the 4-momentum p = (p0, p).

3. A possible way for constructing generators of the Poincaré group

Let us recall that within the Lagrangian formalism the 4-vector Pμ = (H, P) for any local field
model, where requirements of relativistic symmetry are manifestly provided at the beginning,
is determined by the Nöther integrals

P ν =
∫

T 0ν(x)dx (ν = 0, 1, 2, 3), (16)

7
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where T 0ν(x) are the components of the energy-momentum tensor density T μν(x) at t = 0.

Other Nöther integrals are expressed through the angular-momentum tensor density

Mβ[μν](x) = x μT βν(x)− x νT βμ(x) + Σβ[μν](x), (17)

that contains, in general, so-called polarization part Σβ[μν]3 associated with spin degrees of
freedom. Namely, the six independent integrals

Mμν =
∫

M0[μν](x)dx
∣∣∣∣
t=0

(18)

are considered as the generators of space rotations

Ji = εikl Mkl (i, k, l = 1, 2, 3) (19)

and the boosts

Nk ≡ M0k = −
∫

xkT 00(x)dx+
∫

Σ0[0k](x)dx, (k = 1, 2, 3). (20)

The reminder is not accidental as far as we strive to go out beyond the traditional QFT
with local Lagrangian densities via special regularization of interactions in a total initial
Hamiltonian.

3.1 The Belinfante ansatz. Application to interacting pion and nucleon fields

Regarding an illustration of these general relations let us write, the Lagrangian density

LSCH(x) =
1
2

ψ̄H(x)(iγ μ−→∂ μ − m0)ψH(x) +
1
2

ψ̄H(x)(−iγ μ←−∂ μ − m0)ψH(x)

+
1
2
[∂ μ ϕH(x)∂ μ ϕH(x)− μ2

0 ϕ2
H(x)]− ig0ψ̄H(x)γ5ψH(x)ϕH(x), (21)

for interacting pion φ and nucleon ψ fields with the PS coupling (see, e.g.,(Schweber, 1961)).
Then, one has (omitting argument x): i) energy-momentum tensor density

T μν
SCH =

∂LSCH
∂ψ̄H μ

ψ̄ ν
H +

∂LSCH
∂ψH μ

ψ ν
H +

∂LSCH
∂ϕH μ

ϕ ν
H − gμνLSCH

≡ T μν
N + T μν

π + T μν
I , (22)

where
T μν

N =
i
2

ψ̄Hγ μ∂ νψH − i
2

γ μψH∂νψ̄H − gμνLN , (23)

T μν
π = ∂ μ ϕH∂ ν ϕH − gμνLπ , (24)

T μν
I = ig0gμνψ̄Hγ5ψH ϕH , (25)

3 Henceforth, the symbol [α, β] for any labels α and β means the property f [β,α] = − f [α,β] for its carrier f .

8 Advances in Quantum Field Theory
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and ii) polarization contribution

Σ β[μν]
SCH =

1
2

iψ̄H{γ βΣ μν + Σ μνγ β}ψH , (26)

where
Σ μν =

i
4
[γ μ, γ ν].

In formulae (21)-(25) unlike operators O(x) in the D picture, we have operators

OH(x) = eiHtO(x)e−iHt,

in the Heisenberg picture. We prefer to employ the definitions:

{γ μ, γ ν} = 2gμν, γ†
μ = γ0γ μγ0, {γ μ, γ5} = 0, γ†

5 = γ0γ5γ0 = −γ5.

The corresponding Hamiltonian density is given by

HSCH(x) = T 00
SCH(x) = H0

f erm(x) + H0
π(x) + V0

ps(x), (27)

where
H0

f erm(x) =
1
2

ψ̄(x)[−i−→γ −→
∂ + m0]ψ(x) +

1
2

ψ̄(x)[+i←−γ ←−
∂ + m0]ψ(x), (28)

H0
π(x) =

1
2

[
π2(x) +∇ϕ(x)∇ϕ(x) + μ2

0 ϕ2(x)
]

, (29)

V0
ps(x) = ig0ψ̄(x)γ5ψ(x)ϕ(x), (30)

where, as usually, π(x) denotes the canonical conjugate variable for the pion field. One should
note that the second integral in the r.h.s. of Eq. (20) does not contribute to the model boost
since operator (26) with β = μ = 0 and ν = k is identically equal zero. Thus we arrive to the
relation

NSCH = −
∫

xT 00
SCH(x)dx = −

∫
xHSCH(x)dx, (31)

that exemplifies the so-called Belinfante ansatz:

N = −
∫

xH(x)dx, (32)

which, as it has first been shown in (Belinfante, 1940), holds for any local field model with a
symmetrized density T μν(x) = T νμ(x). Such a representation helps (Shebeko & Shirokov,
2001) to get simultaneously a sparse structure for the Hamiltonian and the generators of
Lorentz boosts in the CPR 4. We shall come back to this point later.

Further, the Hamiltonian density can be represented as

HSCH(x) = HF(x) + HI(x) (33)

4 The relation (32) also has turned out to be useful when formulating a local analog of the Siegert theorem
in the covariant description of electromagnetic interactions with nuclei (Shebeko, 1990).
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with the free part
HF(x) = Hπ(x) + Hf erm(x) (34)

and the interaction density

HI(x) = Vps(x) + Hren(x), Vps(x) = igψ̄(x)γ5ψ(x)ϕ(x), (35)

where we have introduced the mass and vertex counterterms:

Hren(x) = Mmes
ren (x) + M f erm

ren (x) + Hint
ren(x), (36)

Mmes
ren (x) =

1
2
(μ2

0 − μ2
π)ϕ2(x),

M f erm
ren (x) = (m0 − m)ψ̄(x)ψ(x)

and
Hint

ren(x) = i(g0 − g)ψ̄(x)γ5ψ(x)ϕ(x).

One should note that the densities in Eqs. (34)-(35) are obtained from Eqs. (28)-(29) replacing
the bare values m0, μ0 and g0, respectively, by the "physical" values m, μπ and g. Such a
transition can be done via the mass-changing Bogoliubov-type transformations (details in
(Korda et al., 2007)). In particular, the fields involved can be expressed through the set
α = a†(a), b†(b), d†(d) of the creation (destruction) operators for the bare pions and nucleons
with the physical masses,

ϕ(x) = (2π)−3/2
∫
(2ωk)

−1/2[a(k) + a†(−k)]exp(ikx)dk, (37)

π(x) = −i(2π)−3/2
∫
(ωk/2)1/2[a(k)− a†(−k)]exp(ikx)dk, (38)

ψ(x) = (2π)−3/2
∫
(m/Ep)1/2 ∑

μ
[u(pμ)b(pμ)

+ v(−pμ)d†(−pμ)]exp(ipx)dp. (39)

Substituting (33) into (31), we find
N = NF + NI

with
NF = N f erm + Nπ = −

∫
xHf erm(x)dx −

∫
xHπ(x)dx

and
NI = −

∫
xHI(x)dx.

Now, taking into account the transformation properties of the fermion field ψ(x) and the pion
field ϕ(x) with respect to Π, it is readily seen that in the D picture density (33) is a scalar, i.e.,

UF(Λ, b)HSCH(x)U−1
F (Λ, b) = HSCH(Λx + b), (40)

so
UF(Λ, b)HI(x)U−1

F (Λ, b) = HI(Λx + b). (41)

10 Advances in Quantum Field Theory
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It is well known (see, e.g., Sect. 5.1 in (Weinberg, 1995)) that for a large class of theories the
property (41) with the corresponding interaction densities HI(x), being supplemented by the
condition

[HI(x�), HI(x)] = 0 f or (x� − x)2 ≤ 0, (42)

plays a crucial role for covariant calculations of the S-matrix.

3.2 An algebraic approach within the Hamiltonian formalism

After these preliminaries, let us consider field models with the decomposition

HI = Hsc + Hnsc ≡
∫

Hsc(x)dx +
∫

Hnsc(x)dx. (43)

It means that only the density in the first integral has the property (41), i.e.,

UF(Λ, b)Hsc(x)U−1
F (Λ, b) = Hsc(Λx + b). (44)

It is the case, where the pseudoscalar (π and η), vector (ρ and ω) and scalar (δ and σ)
meson (boson) fields interact with the 1/2 spin (N and N̄) fermion ones via the Yukawa–type
couplings V = ∑b Vb = Vs + Vps + Vv in

HI = V + mass and vertex counterterms (45)

with
Vs = gs

∫
d�x ψ̄(�x)ψ(�x)ϕs(�x), (46)

Vps = igps

∫
d�x ψ̄(�x)γ5ψ(�x)ϕps(�x) (47)

and

Vv =
∫

d�x
{

gvψ̄(�x)γμψ(�x)ϕ
μ
v(�x) +

fv

4m
ψ̄(�x)σμνψ(�x)ϕ

μν
v (�x)

}

+
∫

d�x
{

g2
v

2m2
v

ψ̄(�x)γ0ψ(�x)ψ̄(�x)γ0ψ(�x) +
f 2
v

4m2 ψ̄(�x)σ0iψ(�x)ψ̄(�x)σ0iψ(�x)
}

, (48)

where ϕ
μν
v (�x) = ∂μ ϕν

v(�x) − ∂ν ϕ
μ
v(�x) is the tensor of the vector fields involved (details in

(Dubovyk & Shebeko, 2010)).

In the context we would like to remind that in "...theories with derivative couplings or spins
j ≥ 1, it is not enough to take Hamiltonian as the integral over space of a scalar interaction
density; we also need to add non-scalar terms to the interaction density to compensate
non-covariant terms in the propagators" (quoted from Chapter VII in (Weinberg, 1995)).

Then, taking into account that the first relation (11) is equivalent to the equality

[NF, HI ] = [H, NI ], (49)

we will evaluate its l.h.s.. In this connection, let us regard the operator

Hsc(t) =
∫

Hsc(x)dx (50)
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and its similarity transformation

ei�βNF Hsc(t)e−i�βNF =
∫

Hsc(L(�β)x)dx, (51)

where L(�β) is any Lorentz boost with the parameters �β = (β1, β2, β3).

From (51) it follows that

ieiβ1 N1
F [N1

F, Hsc(t)]e−iβ1 N1
F =

∂

∂β1

∫
Hsc(L(β1)x)dx, (52)

whence, for instance,

i[N1
F, Hsc(t)] = lim

β1→0

∂

∂β1

∫
Hsc(t − β1x1, x1 − β1t, x2, x3)dx

= −
∫
(t

∂

∂x1 Hsc(x) + x1 ∂

∂t
Hsc(x))dx,

(53)

since for the infinitesimal boost

L(�β)x = (t − �βx, x − �βt).

In turn, from (53) we get

[N1
F, Hsc] = i lim

t→0

∫
(−it[P1, Hsc(x)] + ix1[HF, Hsc(x)])dx

so
[NF, Hsc] = −

∫
x[HF, Hsc(x)]dx. (54)

By using Eq. (54) equality (49) can be written as

−
∫

x[HF, Hsc(x)]dx = [HF, NI ] + [HI , NI ] + [Hnsc, NF]. (55)

Evidently, this equation is fulfilled if we put

NI = NB ≡ −
∫

xHsc(x)dx (56)

and
[Hsc, NI ] = −

∫
xdx

∫
dx�[Hsc(x�), Hsc(x)] = [NF + NI , Hnsc] (57)

or ∫
dx

∫
dx�(x� − x)[Hsc(x�), Hsc(x)]

=
∫

xdx
∫

dx�[Hnsc(x�), HF(x) + Hsc(x)]. (58)

In a model with Hnsc = 0 the latter reduces to
∫

e−iPXIeiPXdX = 0, (59)

12 Advances in Quantum Field Theory



10 Will-be-set-by-IN-TECH

and its similarity transformation

ei�βNF Hsc(t)e−i�βNF =
∫

Hsc(L(�β)x)dx, (51)

where L(�β) is any Lorentz boost with the parameters �β = (β1, β2, β3).

From (51) it follows that

ieiβ1 N1
F [N1

F, Hsc(t)]e−iβ1 N1
F =

∂

∂β1

∫
Hsc(L(β1)x)dx, (52)

whence, for instance,

i[N1
F, Hsc(t)] = lim

β1→0

∂

∂β1

∫
Hsc(t − β1x1, x1 − β1t, x2, x3)dx

= −
∫
(t

∂

∂x1 Hsc(x) + x1 ∂

∂t
Hsc(x))dx,

(53)

since for the infinitesimal boost

L(�β)x = (t − �βx, x − �βt).

In turn, from (53) we get

[N1
F, Hsc] = i lim

t→0

∫
(−it[P1, Hsc(x)] + ix1[HF, Hsc(x)])dx

so
[NF, Hsc] = −

∫
x[HF, Hsc(x)]dx. (54)

By using Eq. (54) equality (49) can be written as

−
∫

x[HF, Hsc(x)]dx = [HF, NI ] + [HI , NI ] + [Hnsc, NF]. (55)

Evidently, this equation is fulfilled if we put

NI = NB ≡ −
∫

xHsc(x)dx (56)

and
[Hsc, NI ] = −

∫
xdx

∫
dx�[Hsc(x�), Hsc(x)] = [NF + NI , Hnsc] (57)

or ∫
dx

∫
dx�(x� − x)[Hsc(x�), Hsc(x)]

=
∫

xdx
∫

dx�[Hnsc(x�), HF(x) + Hsc(x)]. (58)

In a model with Hnsc = 0 the latter reduces to
∫

e−iPXIeiPXdX = 0, (59)

12 Advances in Quantum Field Theory The Method of Unitary Clothing Transformations in Quantum Field Theory: Applications in The Theory of Nuclear Forces and Reactions 11

where
I =

1
2

∫
rdr[Hsc(

1
2

r), Hsc(−
1
2

r)]. (60)

By running again the way from Eq. (49) to Eqs. (59)-(60) we see that the nonlinear
commutation (11)

[H, N] = iP

will take place once along with the Belinfante-type relation (56) the interaction density meets
the condition ∫

rdr[Hsc(
1
2

r), Hsc(−
1
2

r)] = 0. (61)

One should note that we have arrived to Eq. (56) being inside the Poincarè algebra itself
without addressing the Nöther integrals, these stepping stones of the Lagrangian formalism.
In the context, we would like to stress that the condition (61) is weaker compared to the
constraint

[Hsc(
1
2

r), Hsc(−
1
2

r)] = 0 (62)

imposed for all r excepting, may be, the point r = 0. But we recall it as a special case of
the microcausality requirement that is realized in local field models. Beyond such models, as
shown in Appendix B of (Shebeko & Frolov , 2011), Eqs. (56) and (49) may be incompatible. It
makes us seek an alternative to assumption (56) in our attempts to meet Eq. (55).

At this point, we put NI = NB + D to get the relationship

[HF, D] = [NB + D, Hsc] + [NF + NB + D, Hnsc], (63)

that replaces the commutator [H, N] = iP and determines the displacement D.

Further, assuming that the scalar density Hsc(x) is of the first order in coupling constants
involved and putting

Hnsc(x) =
∞

∑
p=2

H(p)
nsc (x), (64)

we will search the operator D in the form

D =
∞

∑
p=2

D(p), (65)

i.e., as a perturbation expansion in powers of the interaction Hsc. Here the label (p) denotes
the pth order in these constants. By the way, one should keep in mind that the terms in
the r.h.s. of Eq. (64) are usually associated with perturbation series for mass and vertex
counterterms. Evidently, their incorporation may affect the corresponding higher-order
contributions with p ≥ 2 to the boost. Therefore, to comprise different situations of practical
interest let us consider field models in which Hnsc(x) = Vnsc(x) + Vren(x) with a nonscalar
interaction Vnsc =

∫
Vnsc(x)dx and some "renormalization" contribution Vren =

∫
Vren(x)dx.

The latter may be scalar or not. Of course, such a division of Hnsc(x) can be done at the
beginning in Eq. (43). But the scheme presented here seems to us more flexible.
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By substituting the expansions (64) and (65) into Eq. (63) we get the chain of relations

[HF, D(2)] = [NF, H(2)
nsc] + [NB, Hsc], (66)

[HF, D(3)] = [NF, H(3)
nsc] + [D(2), Hsc] + [NB, H(2)

nsc], (67)

[HF, D(p)] = [NF, H(p)
nsc ] + [NB, H(p−1)

nsc ] + [D(p−1), Hsc] + [D, Hnsc]
(p), (68)

(p = 4, 5, . . .)

for a recursive finding of the operators D(p) (p = 2, 3, ...).

Further, after such substitutions into the commutators

[Pk, Nj] = iδkj H, [Jk, Nj] = iεkjl Nl , [Nk, Nj] = −iεkjl Jl

we deduce, respectively, the following relations:

[Pk, D(p)
j ] = iδkj H

(p)
nsc (p = 2, 3, ...) (69)

from
[Pk, Dj] = iδkj Hnsc, (70)

[Jk, D(p)
j ] = iεkjl D

(p)
l (71)

from
[Jk, Dj] = iεkjl Dl (72)

and
[NFk, NBj] + [NBk, NFj] = 0, (73)

The remaining Poincaré commutations are fulfilled once one deals with any rotationally and
translationally invariant theory.

Now, keeping in mind an elegant method by Chandler (Chandler, 2003), we invoke on the
property (see (Friedrichs, 1953)) of a formal solution Y of the equation

[HF, Y] = X (74)

to be any linear functional F(X) of a given operator X �= 0. In other words, it means that

[HF, F(X)] = X (75)

with F(λ1X1 + λ2X2) = λ1F(X1) + λ2F(X2), where λ1 and λ2 are arbitrary c-numbers. In
addition, one can see that

[HF, F(X)] = F([HF, X]). (76)

Moreover, it turns out that
[P, F(X)] = F([P, X]), (77)

[J, F(X)] = F([J, X]), (78)

[NF, F(X)] = F([NF, X]) + iF(F([P, X])). (79)
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The remaining Poincaré commutations are fulfilled once one deals with any rotationally and
translationally invariant theory.

Now, keeping in mind an elegant method by Chandler (Chandler, 2003), we invoke on the
property (see (Friedrichs, 1953)) of a formal solution Y of the equation

[HF, Y] = X (74)

to be any linear functional F(X) of a given operator X �= 0. In other words, it means that

[HF, F(X)] = X (75)

with F(λ1X1 + λ2X2) = λ1F(X1) + λ2F(X2), where λ1 and λ2 are arbitrary c-numbers. In
addition, one can see that

[HF, F(X)] = F([HF, X]). (76)

Moreover, it turns out that
[P, F(X)] = F([P, X]), (77)

[J, F(X)] = F([J, X]), (78)

[NF, F(X)] = F([NF, X]) + iF(F([P, X])). (79)
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In order to prove the relations let us employ the Jacobi identity

[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0 (80)

and write
[O, [HF, F(X)]] = −[F(X), [O, HF]] + [HF, [O, F(X)]]

with some operator O. Then

[O, F(X)] = F([O, X]) + F([F(X), [O, HF]]). (81)

Of course, to be more constructive one needs to have a definite realization of the functional
F(X). In this connection, we will use the representation

Y = −i lim
η→0+

∫ ∞

0
X(t)e−ηtdt (82)

of the operator Y that enters the equation (74). The existence proof for such a solution is
sufficiently delicate (see discussion in Appendix A of Ref. (Shebeko & Shirokov, 2001)).

3.3 Application to a nonlocal field model

We will show how the method proposed works in combination with introducing certain cutoff
(vertex) functions that makes an initial local model be nonlocal. In spite of our consideration
may be extended to more realistic models its main idea becomes transparent for a simple
system of "scalar nucleons" (more precisely, charged spinless bosons) and neutral scalar
bosons with the interaction density HI(x) = Vloc(x) + Vren(x) (cf. (Glöckle & Müller, 1981;
Shirokov, 2002)):

Vloc(x) = gϕs(x) : ψ†
b (x)ψb(x) : (83)

and
Vren(x) = δμs : ϕ2

s (x) : +δμb : ψ†
b (x)ψb(x) : (84)

with the mass shifts δμs = 1
2 (μ

2
0s − μ2

s ), δμb = 1
2 (μ

2
0b − μ2

b). In order to regard a nonlocal
extension of this local model let us substitute the expansions

ϕs(x) = [2(2π)3]−1/2
∫ dk

ωk
[a(k)+ a†(k−)]eikx, ψb(x) = [2(2π)3]−1/2

∫ dp
Ep

[b(p)+ d†(p−)]eipx

into Eqs. (83) and (84) to get

Vloc(x) =
g

2[2(2π)3]1/2

∫ dp�

Ep�

∫ dp
Ep

∫ dk
ωk

e−ip�x+ipx+ikx

× a(k) : [b†(p�)b(p) + b†(p�)d†(p−) + d(p�−)b(p) + d(p�−)d
†(p−)] : +H.c. (85)

and Vren(x) = δμs(x) + δμb(x) with

δμs(x) =
δμs

2(2π)3

∫ dk�

ωk�

∫ dk
ωk

: [a(k�) + a†(k�−)]e
ik�x+ikx[a(k) + a†(k−)] :, (86)
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δμb(x) =
δμb

2(2π)3

∫ dp�

Ep�

∫ dp
Ep

: [b†(p�) + d(p�−)]e
−ip�x+ipx[b(p) + d†(p−)] : . (87)

It is implied that the operators a(a†), b(b†) and d(d†) meet the commutation relations

[a(k), a†(k�)] = k0δ(k − k�), (88)

[b(p), b†(p�)] = [d(p), d†(p�)] = p0δ(p − p�) (89)

with all the remaining ones being zero.

The interaction operator itself HI =
∫

HI(x)dx = Vloc + Vren with

Vloc =
∫

Vnloc(x)dx =
g

2[2(2π)3]1/2

∫ dp�

Ep�

∫ dp
Ep

∫ dk
ωk

δ(p� − p − k)

× a(k) : [b†(p�)b(p) + b†(p�)d†(p−) + d(p�−)b(p) + d(p�−)d
†(p−)] : +H.c., (90)

Vren =
∫
[δμs(x) + δμb(x)]dx. (91)

Let us consider its nonlocal extension

HI = Vnloc + Ms + Mb, (92)

where in accordance with the representation (3) we introduce the following normally-ordered
structures:

Vnloc =
∫

Vnloc(x)dx =
∫ dp�

Ep�

∫ dp
Ep

∫ dk
ωk

×{δ(p� − p − k)g11(p�, p, k)b†(p�)b(p) + δ(p� + p − k)g12(p�, p, k)b†(p�)d†(p)

+δ(p� + p + k)g21(p�, p, k)d(p�)b(p)

+ δ(p� − p − k)g22(p�, p, k)d†(p�)d(p)}a(k) + H.c. (93)

Furthermore, the creation/destruction operators have the transformation properties like (14).
For example,

UF(Λ)a(k)U−1
F (Λ) = a(Λk). (94)

Therefore, in the Dirac picture

UF(Λ)Vloc(x)U−1
F (Λ) = Vloc(Λx), (95)

i.e., the interaction density Vloc(x) is a Lorentz scalar.

For our nonlocal model we will retain the property assuming that

UF(Λ)Vnloc(x)U−1
F (Λ) = Vnloc(Λx). (96)

It is readily seen that this relation holds if the coefficients gε�ε meet the condition

gε�ε(Λp�, Λp, Λk) = gε�ε(p�, p, k). (97)
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On the mass shells with p�2 = p2 = μ2
b and k2 = μ2

s the latter means that the functions
gε�ε(p�, p, k) can depend only upon the invariants p�p, p�k and pk.

The transition from Vloc to Vnloc can be interpreted as an endeavor to regularize the theory.
In the context, the introduction of some cutoff functions gε�ε in momentum space is aimed at
removing ultraviolet divergences typical of local field models with interactions like expression
(83).

An associated exploration carried out in (Shebeko & Frolov , 2011) with covariant cutoffs

gε�ε(p�, p, k) = vε�ε([k + (−1)ε� p� − (−1)ε p][k − (−1)ε� p� + (−1)ε p]) (98)

has allowed us to evaluate the lowest-order correction D(2) to the Belinfante operator and get
the leading-order analytic expressions for the coefficients in the "mass renormalization" terms
:

Ms =
∫ dk

ω2
k
{m1(k)a†(k)a(k) + m2(k)[a†(k)a†(k−) + a(k)a(k−)]}, (99)

Mb =
∫ dp

E2
p
{m11(p)b†(p)b(p)+m12(p)b†(p)d†(p−)+m21(p)b(p)d(p−)+m22(p)d†(p)d(p)}.

(100)

4. The method of unitary clothing transformations in action

As shown in (Shebeko & Shirokov, 2001), the Belinfante ansatz turns out to be useful when
constructing the Lorentz boosts in the CPR, viz., the generator N ≡ N(α), being a function of
the primary operators {α} (such as a†(a), b†(b) and d†(d) for the examples regarded above)
in the BPR, is expressed through the corresponding operators {αc} for particle creation and
annihilation in the CPR. The transition {α} =⇒ {αc} is implemented via the special unitary
transformations W(α) = W(αc), viz.,

α = W(αc)αcW†(αc). (101)

These transformations satisfy certain physical requirements:

i) The physical vacuum (the H lowest eigenstate) must coincide with a new no–particle state
Ω, i.e., the state that obeys the equations

ac(�k) |Ω� = bc(�p, μ) |Ω� = dc(�p, μ) |Ω� = 0, ∀ �k, �p, μ (102)

�Ω|Ω� = 1.

ii) New one-particle states |�k�c ≡ a†
c (�k)Ω etc. are the H eigenvectors as well.

K(αc)|�k�c = KF(αc)|�k�c = ωk|�k�c (103)

KI(αc)|�k�c = 0 (104)

iii) The spectrum of indices that enumerate the new operators must be the same as that for the
bare ones .

17
The Method of Unitary Clothing Transformations in Quantum Field Theory:
Applications in the Theory of Nuclear Forces and Reactions



16 Will-be-set-by-IN-TECH

iv) The new operators αc satisfy the same commutation rules as do their bare counterparts α
that is provided via the link (101) with a unitary operator W to be obtained as in (Shebeko &
Shirokov, 2001).

4.1 The Hamiltonian and other generators of the Poincaré group in the clothed-particle
representation

A key point of the clothing procedure exposed in (Shebeko & Shirokov, 2001) is to remove the
so-called bad terms from the Hamiltonian

H ≡ H(α) = HF(α) + HI(α) = W(αc)H(αc)W†(αc) ≡ K(αc), (105)

more exactly, from a primary interaction V(α) in HI(α) = V(α) + Vren(α). For example, these
terms b†

c bca†
c , b†

c d†
c ac, b†

c d†
c a†

c , dcd†
c a†

c enter V(αc) determined by Eq. (90) after the replacement
of the bare operators in it by the clothed ones. These terms should be removed together
with their Hermitian conjugate counterterms! to retain the hermiticity of the similarity
transformation (105). In general, such terms prevent the physical vacuum |Ω� (the H lowest
eigenstate) and the one-clothed-particle states |n�c = a†

c (n)|Ω� to be the H eigenvectors for all
n included. Here creation operators a†

c (n) are clothed counterparts of those operators a†(n)
that are contained in expansion (2). The bad terms occur every time when any normally
ordered product

a†(1�)a†(2�)...a†(n�
C)a(nA)...a(2)a(1)

of the class [C.A] embodies, at least, one substructure which belongs to one of the classes [k.0]
(k = 1, 2, ...) and [k.1] (k = 0, 1, ...).

Strictly speaking such a departure point should be specified and sometimes modified. Indeed,
by trying to meet the requirements i) and ii) we, at first sight, leave out of consideration
such undesirable terms in Vren(α). Nevertheless, it is not accidental since the renormalization
contribution is canceled in the course of the procedure itself that is some attractive feature of
the UCT method as a whole (see below). In addition, it has turned out (Dubovyk & Shebeko,
2010) that the nonscalar contribution (the second integral in the r.h.s. of Eq. (48)) to the
operator Vv(α) is canceled too when eliminating bad terms only from its scalar part (in fact,
the first integral in the r.h.s. of Eq. (48 )). Keeping this in mind, when handling the division

HI(α) =
∫

HI(x)dx = Hsc(α) + Hnsc(α), (106)

we assume Hsc(α) = Vbad(α) + Vgood(α) to remove the bad part Vbad from the similarity
transformation

K(αc) = W(αc)[HF(αc) + HI(αc)]W†(αc)

= W(αc)[HF(αc) + Vbad(αc) + Vgood(αc) + Hnsc(αc)]W†(αc). (107)

Remind that term "good", as an antithesis of "bad", is applied here to those operators (e.g.,
of the class [k.2] with k ≥ 2) which destroy both the no-clothed-particle state Ω and the
one-clothed-particle states.
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For unitary transformation (UCT) W = exp R with R = −R† it is implied that we will
eliminate the bad terms Vbad in the r.h.s. of

K(αc) = HF(αc) + Vbad(αc) + [R, HF] + [R, Vbad] +
1
2
[R, [R, HF]]

+
1
2
[R, [R, Vbad]] + ... + eRVgoode−R + eR Hnsce−R (108)

(cf. Eq. (2.19) in (Shebeko & Shirokov, 2001)) by requiring that

[HF, R] = Vbad (109)

for the operator R of interest.

One should note that unlike the original clothing procedure exposed in (Shebeko & Shirokov,
2001), (Korda et al., 2007) we eliminate here the bad terms only from Hsc interaction in spite
of such terms can appear in the nonscalar interaction as well. This preference is relied upon
the previous experience (Dubovyk & Shebeko, 2010) when applying the method of UCTs in
the theory of nucleon-nucleon scattering. Now we get the division

H = K(αc) = KF + KI (110)

with a new free part KF = HF(αc) ∼ a†
c ac and interaction

KI = Vgood(αc) + Hnsc(αc) + [R, Vgood]

+
1
2
[R, Vbad] + [R, Hnsc] +

1
3
[R, [R, Vbad]] + ..., (111)

where the r.h.s. involves along with good terms other bad terms to be removed via subsequent
UCTs described in Subsec. 2.4 of (Shebeko & Shirokov, 2001) and Sec. 3 of (Korda et al., 2007).

In parallel, we have

N ≡ N(α) = NF(α) + NI(α) = W(αc)N(αc)W†(αc) ≡ B(αc) (112)

or
B(αc) = NF(αc) + NI(αc) + [R, NF] + [R, NI ] + ..., (113)

where accordingly the division
NI = NB + D, (114)

NB = −
∫

xHsc(x)dx = Nbad + Ngood,

Eq. (113) can be rewritten as

B(αc) = NF(αc) + Nbad(αc) + [R, NF] + [R, Nbad] +
1
2
[R, [R, NF]]

+
1
2
[R, [R, Nbad]] + ... + eRNgoode−R + eRDe−R. (115)
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But it turns out (see the proof of Eq. (3.26) in (Shebeko & Shirokov, 2001)) that if R meets the
condition (109), then

[NF, R] = Nbad = −
∫

xVbad(x)dx (116)

so the boost generators in the CPR can be written likely Eq. (110),

N = B(αc) = BF + BI , (117)

where BF = NF(αc) is the boost operator for noninteracting clothed particles while BI
includes the contributions induced by interactions between them

BI = Ngood(αc) + D(αc) + [R, Ngood]

+
1
2
[R, Nbad] + [R, D] +

1
3
[R, [R, Nbad]] + ... (118)

One should note that in formulae (111) and (118) we are focused upon the R-commutations
with the first-eliminated interaction Vbad. As shown in (Shebeko & Shirokov, 2001), the
brackets, on the one hand, yield new interactions responsible for different physical processes
and, on the other hand, cancel (as a recipe!) the mass and other counterterms that stem from
Hnsc(αc) and D(αc).

But at this place we will come back to our model with Vbad = Vnloc, Vgood = 0 and R = Rnloc
to calculate the simplest commutator [Rnloc, Vnloc] in which accordingly condition (109) the
clothing operator Rnloc is determined by

[HF, Rnloc] = Vnloc. (119)

From the equation it follows (cf. Appendix A in (Shebeko & Shirokov, 2001)) that its solution
can be given by

Rnloc =
∫ dk

ωk
: F†

b R(k)Fb : a(k)− H.c. = Rnloc −R†
nloc. (120)

with the row F†
b =

[
b(p), d†(p)

]
and the column Fb (cf. Eq.(A.8) in (Shebeko & Shirokov,

2001)). The matrix R(k) is composed of the elements

Rε�ε(p�, p, k) = − ḡε�ε(p�, p, k)
ωk + (−1)ε� Ep� − (−1)εEp

δ(k + (−1)ε�p� − (−1)εp). (121)

(ε�, ε = 1, 2)

Such a solution is valid if μs < 2μb. In other words, under such an inequality the operator
Rnloc has the same structure as Vnloc itself. Then, all we need is to evaluate the commutator
[Rnloc, Vnloc].

For example, our calculations result in the boson-boson interaction operator

1
2
[Rnloc, Vnloc](bb → bb) = −1

4

∫ dp�
2

Ep�
2

∫ dp2
Ep2

∫ dp�
1

Ep�
1

∫ dp1
Ep1

δ(p�
1 + p�

2 − p1 − p2)
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×g11(p�1, p1, k)g11(p�2, p2, k)

×
{

1
(p1 − p�1)

2 − μ2
s
+

1
(p2 − p�2)

2 − μ2
s

}
b†

c (p�2)b
†
c (p�1)bc(p2)bc(p1) (122)

with k = p�
1 − p1 and the respective contribution to BI ,

1
2
[Rnloc, NB](bb → bb)

=
i
4

∫ dp�
2

Ep�
2

∫ dp2
Ep2

∫ dp�
1

Ep�
1

∫ dp1
Ep1

∂

∂p�
1

δ(p�
1 + p�

2 − p1 − p2)

×g11(p�1, p1, k)g11(p�2, p2, k)

×
{

1
(p1 − p�1)

2 − μ2
s
+

1
(p2 − p�2)

2 − μ2
s

}
b†

c (p�2)b
†
c (p�1)bc(p2)bc(p1) (123)

In Eqs. (122) and (123) we encounter a covariant (Feynman-like) "propagator"

1
2

{
1

(p1 − p�1)
2 − μ2

s
+

1
(p2 − p�2)

2 − μ2
s

}
, (124)

which on the energy shell
Ep1 + Ep1 = Ep�

1
+ Ep�

2
(125)

is converted into the genuine Feynman propagator for the corresponding S matrix (cf. the first
results in (Shebeko & Shirokov, 2001)).

4.2 Relativistic interactions between clothed particles in meson-nucleon systems

Following the same scenario one can derive analytical expressions for separate contributions
to the operator

KI ∼ a†
c b†

c acbc(πN → πN) + b†
c b†

c bcbc(NN → NN) + d†
c d†

c dcdc(N̄N̄ → N̄N̄)

+ b†
c b†

c b†
c bcbcbc(NNN → NNN) + ... + [a†

c a†
c bcdc + H.c.](NN̄ ↔ 2π) + ...

+ [a†
c b†

c b†
c bcbc + H.c.](NN ↔ πNN) + ... (126)

and, in particular, the operator

K(2)
I = K(NN → NN) + K(N̄N̄ → N̄N̄) + K(NN̄ → NN̄) + K(bN → bN) + K(bN̄ → bN̄)

+ K(bb� → NN̄) + K(NN̄ → bb�) (127)

if one starts with the interactions by Eqs. (50)-(52). It has been done in (Shebeko & Shirokov,
2001) and (Korda et al., 2007) so many technical details of those derivations can be found

21
The Method of Unitary Clothing Transformations in Quantum Field Theory:
Applications in the Theory of Nuclear Forces and Reactions



20 Will-be-set-by-IN-TECH

Fig. 1. Different contributions to the πN quasipotential.

therein. Note only that the normal ordering is an essential element of them. We will
confine ourselves to the two examples that originate from the corresponding commutator
1
2 [R, V(bad)].

4.2.1 Pion-nucleon interaction operator

As a result, we show the contribution

K(πN → πN) =
∫

d�p1d�p2d�k1d�k2 VπN(�k2,�p2;�k1,�p1)a†
c (�k2)b†

c (�p2)ac(�k1)bc(�p1), (128)

with the following covariant (Feynman-like) form:

VπN(�k2,�p2;�k1,�p1) =
g2

2(2π)3
m√

ω�k1
ω�k2

E�p1
E�p2

δ(�p1 +�k1 − �p2 −�k2)

ū(�p2)

{
1
2

[
1

p̂1 + k̂1 + m
+

1
p̂2 + k̂2 + m

]

+
1
2

[
1

p̂1 − k̂2 + m
+

1
p̂2 − k̂1 + m

]}
u(�p1)

For brevity, the spin and isospin indices have been omitted.

The corresponding πN quasipotential in momentum space is determined by

ṼπN(�k2,�p2;�k1,�p1) =
〈

a†
c (�k2)b†

c (�p2)Ω|K(πN → πN)|a†
c (�k1)b†

c (�p1)Ω
〉

(129)

Graphs in Fig. 1 are topologically equivalent to the well-known time-ordered Feynman
diagrams. However, in Schrödinger picture used here, where all events are related to one
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and the same instant t = 0, such an analogy could be misleading: line directions in Fig. 1 are
given with the sole scope to discriminate between nucleon and antinucleon states. Moreover,
the energy conservation is not assumed in constructing this and other quasipotentials. Indeed,
the coefficients in front of a†

c b†
c acbc generally do not fulfill the on-energy-shell condition

E�p1
+ ω�k1

= E�p2
+ ω�k2

,

In this connection, the ”left” four-vector s1 is not necessarily equal to the ”right” Mandelstam
vector s2 = p2 + k2.

4.2.2 Nucleon-nucleon interaction operator

Accordingly (Dubovyk & Shebeko, 2010) the operator of interest has the following structure:

K(NN → NN) = ∑
b

Kb(NN → NN),

Kb(NN → NN) =
∫
∑ d�p�1 d�p�2 d�p1 d�p2Vb(1

�, 2�; 1, 2)b†
c (1

�)b†
c (2

�)bc(1)bc(2), (130)

where, for example, the c–number matrix Vb in the second order in the PS coupling is given
by

Vps(1�, 2�; 1, 2) =
1

(2π)3
m2

√
E�p�1 E�p�2 E�p1

E�p2

δ
(
�p�1 + �p�2 − �p1 − �p2

)
vps(1�, 2�; 1, 2), (131)

vps(1�, 2�; 1, 2) =
g2

ps

2
ū(�p�1)γ5u(�p1)

1
(p1 − p�1)

2 − m2
ps

ū(�p�2)γ5u(�p2), (132)

omitting again the discrete quantum numbers. Here mps the mass of the clothed pion (its
physical value).

Corresponding relativistic and properly symmetrized NN quasipotential

ṼNN(�p �
1,�p �

2;�p1,�p2) =
〈

b†
c (�p

�
1)b

†
c (�p

�
2)Ω | KNN | b†

c (�p1)b†
c (�p2)Ω

〉

can be written as

ṼNN(�p �
1,�p �

2;�p1,�p2) =
1
2

g2
ps

(2π)3
m2

2
√

E�p1
E�p2

E�p �
1
E�p �

2

δ(�p �
1 + �p �

2 − �p1 − �p2)

× ū(�p �
1)γ5u(�p1)

1
2

{
1

(p1 − p�1)
2 − m2

ps

+
1

(p2 − p�2)
2 − m2

ps

}
ū(�p �

2)γ5u(�p2)− (1 ↔ 2). (*)
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Meson Bonn B UCT

π g2
π/4π 14.4 13.395
Λπ 1700 2500
mπ 138.03 138.03

η g2
η/4π 3 5.0
Λη 1500 1219
mη 548.8 548.8

ρ g2
ρ/4π 0.9 1.2
Λρ 1850 1593.0

fρ/gρ 6.1 6.1
mρ 769 769

ω g2
ω/4π 24.5 17.349
Λω 1850 2494
mω 782.6 782.6

δ g2
δ/4π 2.488 5.0
Λδ 2000 2169
mδ 983 983

σ, T = 0, T = 1 g2
σ/4π 18.3773, 8.9437 22.015, 5.514
Λσ 2000, 1900 1200, 2500
mσ 720, 550 691.78, 510.62

Table 1. The best-fit parameters for the two models. The column Potential B (UCT ) taken
from Table A.1 in (Machleidt, 1989) (obtained by least squares fitting the OBEP values in
Table 1 of that survey). All masses are in MeV.

Distinctive feature of potential (*) is the presence of covariant (Feynman-like) “propagator”,

1
2

{
1

(p1 − p�1)
2 − μ2 +

1
(p2 − p�2)

2 − μ2

}
.

On the energy shell for NN scattering, that is

Ei ≡ E�p1
+ E�p2

= E�p �
1
+ E�p �

2
≡ Ef ,

this expression is converted into the genuine Feynman propagator.

A little part of our numerical results with the best-fit values of the coupling constants gb and
cutoff parameters Λb in the meson-nucleon vertices are compared with those by the Bonn
group (Machleidt, 1989) in Table 1 and Fig. 2. They labeled by abbreviation UCT have been
obtained by solving the partial Lippmann-Schwinger equations (coupled and uncoupled) for
the R-matrix of the nucleon-nucleon scattering. Details are in (Dubovyk & Shebeko, 2010).

4.3 Deuteron properties

Besides, we would like to outline the basic elements of another our exploration that is in
progress. It is the case, where relying upon the available experience of relativistic calculations
of the deuteron static moments and the deuteron form factors (see reviews (Bondarenko et
al., 2002) and (Garcon & Van Orden, 2002) and refs. therein) one has to deal with the matrix
elements �P�, M� |Jμ(0)|P = 0, M� (to be definite in the laboratory frame). Here the operator
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Fig. 2. Neutron-proton phase parameters plotted versus nucleon kinetic energy in lab.
system. Solid curves calculated for Potential B. Dashed (dotted) - for UCT potential with
Potential B (UCT) parameters from Table 1. The rhombs show original OBEP results.

Jμ(0) is the Nöther current density Jμ(x) at x = 0, sandwiched between the eigenstates of a
"strong" field Hamiltonian H (cf., discussion in Sec. 5 of lecture (Shebeko & Shirokov, 2000)).
In the CPR with H = K(αc) (Eq. (110)) and N = B(αc) (Eq. (112)) the deuteron state |P = 0, M�
(|P� = q, M��) in the rest (the frame moving with the velocity v = q/md) meets the eigenvalue
equation

Pμ|P, M� = Pμ
d |P, M� (133)

with the three-momentum transfer q, four-momentum Pμ
d = (Ed, P), Ed =

√
P2 + m2

d, md =

mp + mn − εd and the deuteron binding energy εd > 0.

We know that such observables as the charge, magnetic and quadrupole moments of
the deuteron can be expressed through the matrix elements in question (e.g., within the
Bethe-Salpeter (BS) formalism (Bondarenko et al., 2002)) by introducing the corresponding
covariant form factors. With the aid of cumbersome numerical methods the latter have
been evaluated in terms of the Mandelstam current sandwiched between the deuteron BS
amplitudes.

Unlike this, following Shebeko & Shirokov (2000) , we consider the expansion in the
R-commutators

Jμ(0) = W Jμ
c (0)W† = Jμ

c (0) + [R, Jμ
c (0)] +

1
2
[R, [R, Jμ

c (0)]] + ..., (134)

where Jμ
c (0) is the initial current in which the bare operators {α} are replaced by the

clothed ones {αc}. Decomposition (134) involves one-body, two-body and more complicated
interaction currents, if one uses the terminology customary in the theory of meson exchange
currents. Further, to the approximation

KI = K(NN → NN) ∼ b†
c b†

c bcbc (135)
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and
BI = B(NN → NN) ∼ b†

c b†
c bcbc (136)

(see, respectively, (122) and (123)) the eigenvalue problem (133) becomes simpler so its
solution acquires the form

|P, M� =
∫

dp1

∫
dp2DM([P]; p1μ1; p2μ2)b†

c (p1μ1)b†
c (p2μ2)|Ω�. (137)

In this connection, let us recall the relation

|q, M� = exp[i�βB(αc)]|0, M� (138)

with �β = βn, n = n/n and tanh β = v, that takes place owing to the property

ei�βBPμe−i�βB = PνLμ
ν (�β), (139)

where L(�β) is the matrix of the corresponding Lorentz transformation. Note also that
the label M = (±1, 0) denotes the eigenvalue of the third component of the total
(field) angular-momentum operator in the deuteron center-of-mass (details can be found in
(Dubovyk & Shebeko, 2010)). The c-coefficients DM in Eq. (137) are calculated by solving the
homogeneous Lippmann-Schwinger equation with the quasipotentials taken from (Dubovyk
& Shebeko, 2010) (see formulae (67)-(69) therein). Numerical results can be obtained either
using the angular-momentum decomposition (as in (Dubovyk & Shebeko, 2010)) or without
it.

Several our results are shown in Table 2 and Fig. 3.

Parameter Bonn B UCT Experiment
as (fm) -23.71 -23.57 -23.748±0.010
rs (fm) 2.71 2.65 2.75±0.05
at (fm) 5.426 5.44 5.419±0.007
rt (fm) 1.761 1.79 1.754±0.008

εd (MeV) 2.223 2.224 2.224575
PD (%) 4.99 4.89

Table 2. Deuteron and low-energy parameters. The experimental values are from Table 4.2 of
Ref. (Machleidt, 1989).

.

Fig. 3. Deuteron wave functions ψd
0(p) = u(p) and ψd

2(p) = w(p). Solid(dotted) curves for
Bonn Potential B (UCT) potential.
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In its turn, the operator (134) being between the two-clothed-nucleon states contributes as

ηc Jμ(0)ηc = Jμ
one−body + Jμ

two−body, (140)

where the operator

Jμ
one−body =

∫
dp�dpFμ

p,n(p�, p)b†
c (p)bc(p) (141)

with
Fμ

p,n(p�, p) = eū(p�)Fp,n
1 [(p� − p)2]γμ + iσμν(p� − p)νFp,n

2 [(p� − p)2]u(p) (142)

that describes the virtual photon interaction with the clothed proton (neutron)5.

Its appearance follows from the observation, in which the primary Nöther current operator,
being between the physical (clothed) states |ΨN� = b†

c |Ω�, yields the usual on-mass-shell
expression

�Ψp,n(p�)|Jμ(0)|Ψp,n(p)� = Fμ
p,n(p�, p)

in terms of the Dirac and Pauli nucleon form factors.6

By keeping in the r.h.s. of Eq. (140) only the one-body contribution we arrive to certain
off-energy-shell extrapolation of the so-called relativistic impulse approximation (RIA) in the
theory of e.m. interactions with nuclei (bound systems). In a recent work by Dubovyk
and Shebeko the deuteron magnetic and quadrupole moments have been calculated to be
submitted to Few Body Systems.

Of course, the RIA results should be corrected including more complex mechanisms of e-d
scattering, that are contained in

Jμ
two−body =

∫
dp�

1dp�
2dp1dp2Fμ

MEC(p
�
1, p�

2; p1, p2)b†
c (p

�
1)b

†
c (p

�
1)bc(p1)bc(p2). (143)

Analytic (approximate) expressions for the coefficients Fμ
MEC stem from the R-commutators

(beginning with the third one) in the expansion (134), which, first, belong to the class [2.2], as
in Eq. (141), and, second, depend on even numbers of mesons involved. It requires a separate
consideration aimed at finding a new family of meson exchange currents, as we hope not only
for the e-d scattering.

At last, one should note that, as before, we prefer to handle the explicitly gauge-independent
(GI) representation of photonuclear reaction amplitudes with one-photon absorption or
emission (Levchuk & Shebeko, 1993). That representation is an extension of the Siegert
theorem, in which, the amplitude of interest is expressed through the Fourier transforms of
electric (magnetic) field strengths and the generalized electric (magnetic) dipole moments
of hadronic system. It allows us to retain the GI in the course of inevitably approximate
calculations.

5 In Eqs. (140) ηc is the projection operator on the subspace H2N ∈H spanned on the two-clothed-nucleon
states |2N� = b†

c b†
c |Ω�

6 Of course, all nucleon polarization labels are implied here together with necessary summations over
them in Eq. (141) and so on
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5. Summary

We propose a constructive way of ensuring the RI in QFT with cutoffs in momentum space.
In contrast to the traditional approach, where the generators of Π are determined as the
Nöther integrals of the energy-momentum tensor density , we do not utilize the Lagrangian
formalism so fruitful in case of local field models. Our purpose is to find these generators as
elements of the Lie algebra of Π starting from the total Hamiltonian whose interaction density
in the Dirac picture includes a Lorentz-scalar part Hsc(x). Respectively, the algebraic aspect
of the RI as a whole for the present exploration with the so-called instant form of relativistic
dynamics is of paramount importance.

In the context, using purely algebraic means the boost generators can be decomposed
into the Belinfante operator built of Hsc and the operator which accumulates the chain of
recursive relations in the second and higher orders in Hnsc. Thereby, it becomes clear that the
Poincaré commutations are not fulfilled if the Hamiltonian does not contain some additional
ingredients, which we call the mass renormalization terms, though beyond local field models
such a terminology looks rather conventional. The UCT method enables us to determine the
corresponding operators including their nonlocal extensions that satisfy the requirements of
special relativity and preserve certain continuity with local QFTs.

We see that our approach is sufficiently flexible being applied not merely to local field models
including ones with derivative couplings and spins j ≥ 1. Within the approach all interactions
constructed are responsible for physical (not virtual) processes in a given system of interacting
fields. Such interactions are Hermitian and energy independent including the off-energy-shell
and recoil effects (the latter in all orders of the 1/c2 - expansion). In particular, we have
managed to build up a new family such interactions in the system of π–, η–, ρ–, ω–, δ– and σ -
mesons and nucleons. Besides, the interaction operators for processes of the type NN → NN,
πN → πN, and NN ↔ πNN are derived on one and the same physical footing.

After constructing the interaction operators in the CPR we express the conventional S matrix
through the clothed-particle interactions and states that simplifies the initial field-theoretical
task. It becomes possible owing to the isomorphism between the α-algebra with the bare
vacuum and the αc-algebra with the physical vacuum when, first, the requirement iii) is
fulfilled and, second, the R - generators of unitary clothing transformations in the Dirac
picture come to zero in the distant past and future (see our talk in Durham (Shebeko, 2004)).

In the course of our current work we are trying to understand to what extent the deuteron
quenching in flight affects the deuteron electromagnetic form factors. In our opinion, the
exposed approach has promising prospects, e.g., in the theory of decaying states (after
evident refinements), certainly in quantum electrodynamics and, we believe, in quantum
chromodynamics. Such endeavors are under way.

At last, we offer not only a fresh look at constructing the interactions in question but also a
nonstandard renormalization procedure in relativistic quantum field theory. In this context,
let us remind the prophetic words by Dirac (Dirac, 1963): “I am inclined to suspect that
renormalization theory is something that will not survive in the future, and the remarkable
agreement between theory and experiment should be looked on as a fluke”.
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recursive relations in the second and higher orders in Hnsc. Thereby, it becomes clear that the
Poincaré commutations are not fulfilled if the Hamiltonian does not contain some additional
ingredients, which we call the mass renormalization terms, though beyond local field models
such a terminology looks rather conventional. The UCT method enables us to determine the
corresponding operators including their nonlocal extensions that satisfy the requirements of
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At last, we offer not only a fresh look at constructing the interactions in question but also a
nonstandard renormalization procedure in relativistic quantum field theory. In this context,
let us remind the prophetic words by Dirac (Dirac, 1963): “I am inclined to suspect that
renormalization theory is something that will not survive in the future, and the remarkable
agreement between theory and experiment should be looked on as a fluke”.
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1. Introduction

Non-perturbative solutions of quantum field theory represent opportunities and challenges
that span particle physics and nuclear physics. Increasingly, it is also gaining attention
in condensed matter physics. Fundamental understanding of, among others, the phase
structure of strongly interacting systems, the spin structure of the proton, the neutron
electromagnetic form factor, and the generalized parton distributions of the baryons should
emerge from results derived from a non-perturbative light-front Hamiltonian approach. The
light-front Hamiltonian quantized within a basis function approach as described here offers a
promising avenue that capitalizes on theoretical and computational achievements in quantum
many-body theory over the past decade.

By way of background, one notes that Hamiltonian light-front field theory in a discretized
momentum basis (1) and in transverse lattice approaches (2; 3) have shown significant
promise. I outline here a Hamiltonian basis function approach following Refs. (4–10)
that exploits recent advances in solving the non-relativistic strongly interacting nuclear
many-body problem (11; 12). There are many issues faced in common - i.e. how to (1)
define the Hamiltonian; (2) renormalize for the available finite spaces while preserving all
symmetries; (3) solve for eigenvalues and eigenvectors; (4) evaluate experimental observables;
and, (5) take the continuum limit.

I begin with a brief overview of recent advances in solving light nuclei with realistic
nucleon-nucleon (NN) and three-nucleon (NNN) interactions using ab initio no-core
methods. After reviewing some advances with two-dimensional theories, I outline a
basis function approach suitable for light front gauge theories including the issues of
renormalization/regularization. I present an introduction to the approach for cavity-mode
QED, to systems in the absence of an external cavity and I discuss its extension to QCD.

2. No Core Shell Model (NCSM) and No Core Full Configuration (NCFC) methods

To solve for the properties of self-bound strongly interacting systems, such as nuclei, with
realistic Hamiltonians, one faces immense theoretical and computational challenges. Recently,
ab initio approaches have been developed that treat all the nucleons on an equal footing,
preserve all the underlying symmetries and converge to the exact result given sufficient
computational effort. The basis function approach (11; 12) is one of several methods shown
to be successful. The primary advantages are its flexibility for choosing the Hamiltonian, the

Department of Physics and Astronomy, Iowa State University, Ames, Iowa

0

Ab Initio Hamiltonian Approach to Light-Front
Quantum Field Theory

James P. Vary

USA

2



2 Will-be-set-by-IN-TECH

method of renormalization/regularization and the basis space. These advantages support the
adoption of the basis function approach in light-front quantum field theory.

Refs. (11; 13–18) and (12; 19; 20) provide examples of the recent advances in the ab initio
NCSM and NCFC, respectively. The NCSM adopts a renormalization method that provides
an effective interaction dependent on the chosen many-body basis space (e.g. on the
harmonic oscillator length scale) and on its cutoff (Nmax below). The NCFC either retains the
un-renormalized interaction or adopts a basis-space independent renormalization so that the
exact results are obtained either by using a sufficiently large basis space or by extrapolation
to the infinite matrix limit. Recent results for the NCSM employ realistic nucleon-nucleon
(NN) and three-nucleon (NNN) interactions derived from chiral effective field theory to solve
nuclei with Atomic Numbers 10-13 (15) and Atomic Number 14 (17). For an overview of
the NCSM including applications to reactions and to effective interactions with a core, see
Ref. (18). Recent results for the NCFC feature a realistic NN interaction that is sufficiently
soft that binding energies and spectra from a sequence of finite matrix solutions may be
extrapolated to the infinite matrix limit (20). Experimental binding energies, spectra, magnetic
moments and Gamow-Teller transition rates are well-reproduced in both the NCSM and
NCFC approaches. Convergence of long range observables such as the RMS radius and the
electric quadrupole are more challenging since they are sensitive to the exponential tails of the
nuclear wavefunctions.

It is important to note two recent analytical and technical advances. First, non-perturbative
renormalization has been developed to accompany these basis-space methods and their
success is impressive. Several schemes have emerged and current research focuses on
understanding of the scheme-dependence of convergence rates. Among the many issues
to consider, I note that different observables converge at different rates (19) even within a
fixed scheme. Second, large scale calculations are performed on leadership-class parallel
computers to solve for the low-lying eigenstates and eigenvectors and to evaluate a suite
of experimental observables. Low-lying solutions for matrices of basis-space dimension
10-billion on 215,000 cores with a 5-hour run is the current record. However, one expects
these limits to continue growing as the techniques are evolving rapidly (16) and the computers
are also growing dramatically. Matrices with dimensions in the several tens of billions will
soon be solvable with strong interaction Hamiltonians. Note, however, that it is not simply
the matrix dimension that controls the level of the computational challenge but a set of
issues that includes the sparsity of the Hamiltonian matrix (which depends dramatically on
whether NNN interactions are employed), the density of the eigenvalue spectrum, the range
of excitation energies desired, etc.

In a NCSM or NCFC application, one adopts a 3D harmonic oscillator (HO) with HO energy
ω (using h̄ = 1 units) for all the particles in the nucleus, treats the neutrons and protons
independently, and generates a many-fermion basis space that includes the lowest oscillator
configurations as well as all those generated by allowing up to Nmax oscillator quanta of
excitations. The single-particle states specify the orbital angular momentum projection and
the basis is referred to as the m-scheme basis. For the NCSM one also selects a renormalization
scheme linked to the basis truncation while in the NCFC the renormalization is either absent or
of a type that retains the infinite matrix problem. In the NCFC case (12), one either proceeds
to a sufficiently large basis that converged results are obtained (if that is computationally
feasible) or extrapolates to the continuum limit as I now illustrate.
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Fig. 1. (Color online) Calculated ground state (gs) energy of 12C for Nmax = 2−10 (symbols)
at selected values of ω indicated in the legend. For each ω, the results are fit to an
exponential plus a constant, the asymptote, constrained to be the same for all ω(12).
Horizontal lines indicate the experimental gs and the NCFC result (uncertainty = 0.5 MeV).

I show in Fig. 1 results for the ground state (gs) of 12C as a function of Nmax obtained with a
realistic NN interaction, JISP16 (14). The smooth curves portray fits that achieve asymptotic
independence of Nmax and ω. The NCFC gs energy (the common asymptote) of −94.5 MeV
indicates ∼ 3% overbinding. The assessed uncertainty in the NCFC result is 0.5 MeV indicated
in parenthesis in the figure. The largest 12C calculations correspond to Nmax = 10, with a
matrix dimension near 8 billion. Nmax = 12 produces a matrix dimension near 81 billion
which we hope to solve in the future.

In order to further illustrate the successes of the ab initio NCSM, I display in Fig. 2 the
natural-parity excitation spectra of four nuclei in the middle of the 0p−shell with both the
NN and the NN+NNN effective interactions from χEFT (15). Overall, the NNN interaction
contributes significantly to improve theory in comparison with experiment. This is especially
well-demonstrated in the odd mass nuclei for the lowest, few excited states. The case of the
g.s. spin of 10B and its sensitivity to the presence of the NNN interaction is clearly evident.
The results of numerous ab initio NCSM applications not only show good convergence with
regard to increasing size of the basis space but also have reproduced known properties of
0p-shell nuclei (nuclei up to 16O) as well as explained existing puzzles and made predictions
of, as yet, unexplained nuclear phenomena. I cite another prominent example to illustrate this
point.

We recently evaluated the Gamow-Teller (GT) matrix element for the beta decay of 14C,
including the effect of chiral NNN forces (17). These investigations showed that the very
long lifetime for 14C arises from a cancellation between 0p-shell NN-and NNN-interaction
contributions to the GT matrix element, as shown in Figure 3. The net result is a GT matrix
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Fig. 2. States dominated by 0p-shell configurations for 10B, 11B, 12C, and 13C calculated at
Nmax = 6 using h̄Ω = 15 MeV (14 MeV for 10B). Most of the eigenstates are isospin T=0 or
1/2, the isospin label is explicitly shown only for states with T=1 or 3/2. The excitation
energy scales are in MeV (adopted from Ref (15)).

element close to zero (final point of the green curve in the lower half of Fig. 3) which is far
more consistent with the 5730 year halflife of 14C. The same calculations show that including
the NNN-interactions also bring the binding energies of 14C and 14N into closer agreement
with experiment. These A=14 beta decay results were obtained in the largest basis space
achieved to date with NNN interactions, Nmax = 8, or approximately one billion m-scheme
configurations.

Other noteworthy results include calculations for 12C explaining the measured 12C B(M1)
transition from the g.s. to the (1+, 1) state at 15.11 MeV and showing more than a factor
of 2 enhancement arising from the NNN interaction (13). Neutrino elastic and inelastic
cross sections on 12C were shown to be similarly sensitive to the NNN interaction and their
contributions significantly improve agreement with experiment (13). Working in collaboration
with experimentalists, we uncovered a puzzle in the GT-excited state strengths in A=14
nuclei (21). Its resolution may lie in the role of intruder-state admixtures, but this will require
further work.

In addition to numerous successful applications to spectra and electroweak transitions in light
nuclei, major efforts are underway to develop extensions to ab initio nuclear reactions(18).
Key motivations include the goal to further refine our understanding of the fundamental
strong interactions among the constituent nucleons and to provide, at the same time, accurate
predictions of crucial reaction rates for nuclear astrophysics.

An ab initio approach to nuclear reactions based on the NCSM requires a precise treatment
of the wave-function asymptotics and the coupling to the continuum. These requirements
have led to a new approach, the ab initio NCSM/RGM (22; 23), capable of simultaneously
describing both bound and scattering states in light nuclei, by combining the resonating-group
method (RGM) (24) with the ab initio NCSM. The RGM is a microscopic cluster technique
based on the use of A-nucleon Hamiltonians, with fully anti-symmetric many-body wave
functions built assuming that the nucleons are grouped into clusters. By combining the NCSM
with the RGM, one complements the ability of the RGM to deal with scattering and reactions
with the utilization of realistic interactions and a consistent ab initio microscopic description of
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Fig. 2. States dominated by 0p-shell configurations for 10B, 11B, 12C, and 13C calculated at
Nmax = 6 using h̄Ω = 15 MeV (14 MeV for 10B). Most of the eigenstates are isospin T=0 or
1/2, the isospin label is explicitly shown only for states with T=1 or 3/2. The excitation
energy scales are in MeV (adopted from Ref (15)).

element close to zero (final point of the green curve in the lower half of Fig. 3) which is far
more consistent with the 5730 year halflife of 14C. The same calculations show that including
the NNN-interactions also bring the binding energies of 14C and 14N into closer agreement
with experiment. These A=14 beta decay results were obtained in the largest basis space
achieved to date with NNN interactions, Nmax = 8, or approximately one billion m-scheme
configurations.

Other noteworthy results include calculations for 12C explaining the measured 12C B(M1)
transition from the g.s. to the (1+, 1) state at 15.11 MeV and showing more than a factor
of 2 enhancement arising from the NNN interaction (13). Neutrino elastic and inelastic
cross sections on 12C were shown to be similarly sensitive to the NNN interaction and their
contributions significantly improve agreement with experiment (13). Working in collaboration
with experimentalists, we uncovered a puzzle in the GT-excited state strengths in A=14
nuclei (21). Its resolution may lie in the role of intruder-state admixtures, but this will require
further work.

In addition to numerous successful applications to spectra and electroweak transitions in light
nuclei, major efforts are underway to develop extensions to ab initio nuclear reactions(18).
Key motivations include the goal to further refine our understanding of the fundamental
strong interactions among the constituent nucleons and to provide, at the same time, accurate
predictions of crucial reaction rates for nuclear astrophysics.

An ab initio approach to nuclear reactions based on the NCSM requires a precise treatment
of the wave-function asymptotics and the coupling to the continuum. These requirements
have led to a new approach, the ab initio NCSM/RGM (22; 23), capable of simultaneously
describing both bound and scattering states in light nuclei, by combining the resonating-group
method (RGM) (24) with the ab initio NCSM. The RGM is a microscopic cluster technique
based on the use of A-nucleon Hamiltonians, with fully anti-symmetric many-body wave
functions built assuming that the nucleons are grouped into clusters. By combining the NCSM
with the RGM, one complements the ability of the RGM to deal with scattering and reactions
with the utilization of realistic interactions and a consistent ab initio microscopic description of

34 Advances in Quantum Field Theory Ab Initio Hamiltonian Approach to Light-Front Quantum Field Theory 5

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

G
T

 m
at

ri
x 

el
em

en
t

no 3NF forces
with 3NF forces (c

D
= -0.2)

with 3NF forces (c
D

= -2.0)

s p sd pf sdg pfh sdgi pfhj sdgik pfhjl

shell

-0.1

0

0.1

0.2

0.3

0.2924

Fig. 3. (Color online) Contributions to the 14C beta decay matrix element as a function of the
3D harmonic oscillator shell in the basis space when the nuclear structure is described by the
χEFT interaction (adopted from Ref. (17)). Top panel displays the contributions with (two
right bars, the red and green, of each triplet) and without (leftmost bar, the blue bar, of each
triplet) the NNN force at Nmax = 8. Contributions are summed within each shell to yield a
total for that shell. The bottom panel displays the running sum of the GT contributions over
the shells with the same color coding scheme. Two reasonable choices for coupling constants
(red and green components of the histogram and lines) in the NNN-interaction lead to
similar strong suppression of the GT matrix element. Note, in particular, the
order-of-magnitude suppression of the 0p-shell contributions arising from the NNN force.

the nucleonic clusters, while preserving important symmetries, including the Pauli exclusion
principle and translational invariance.

3. Light-front Hamiltonian field theory

It has long been known that light-front Hamiltonian quantum field theory has similarities
with non-relativistic quantum many-body theory and this has prompted applications with
established non-relativistic many-body methods (see Ref. (1) for a review). These applications
include theories in 1+1, 2+1 and 3+1 dimensions. Several of my efforts in 1+1 dimensions, in
collaboration with others, have focused on developing an understanding of how one detects
and characterizes phase transition phenomena in the Hamiltonian approach. To this end, I list
the following developments:
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Fig. 4. Expectation value of the square of the scalar field as a function of the coupling
constant λ at light-front harmonic resolution K=55 for the lowest five excitations of two
dimensional φ4 in the broken phase (27). The pattern of transitions correspond to 5 states
falling with increasing λ and crossing the 5 lowest states, thus replacing them and becoming
the new 5 lowest states. At selected values of λ, the character of the lowest states is indicated
on the figure with the top level of each column signifying the nature of the lowest state.
Successive excited states are signified by the labels proceeding down the column. The letter
“K” represents “kink” while “KK̄K” represents “kink-antikink-kink”.

1. identification and characterization of the quantum kink solutions in the broken symmetry
phase of two dimensional φ4 including the extraction of the vacuum energy and kink mass
that compare well with classical and semi - classical results (25);

2. detailed investigation of the strong coupling region of the topological sector of the
two-dimensional φ4 theory demonstrating that low-lying states with periodic boundary
conditions above the transition coupling are dominantly kink-antikink coherent states (26);

3. switching to anti-periodic boundary conditions in the strong coupling region of the
topological sector of the two-dimensional φ4 theory and demonstrating that low-lying
states above the critical coupling are dominantly kink-antikink-kink states as well as
presenting evidence for the onset of kink condensation(27). Fig. 4 presents the
detailed transition of the lowest 5 mass eigenstates in the broken phase from kink to
kink-antikink-kink structure over a narrow range in the coupling. Increasing the resolution
K shrinks the range in coupling over which the transitions occur.

More recently, full-fledged applications to gauge theories in 3+1 dimensions have appeared
along with roadmaps for addressing QCD. A brief summary of some of the major
developments in 3+1 dimensional Hamiltonian light front field theory includes the solutions
of:

1. light-front QED wave equations for the electron plus electron-photon system (28–30)

2. simplified gauge theories with a transverse lattice (2; 3; 31)
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constant λ at light-front harmonic resolution K=55 for the lowest five excitations of two
dimensional φ4 in the broken phase (27). The pattern of transitions correspond to 5 states
falling with increasing λ and crossing the 5 lowest states, thus replacing them and becoming
the new 5 lowest states. At selected values of λ, the character of the lowest states is indicated
on the figure with the top level of each column signifying the nature of the lowest state.
Successive excited states are signified by the labels proceeding down the column. The letter
“K” represents “kink” while “KK̄K” represents “kink-antikink-kink”.

1. identification and characterization of the quantum kink solutions in the broken symmetry
phase of two dimensional φ4 including the extraction of the vacuum energy and kink mass
that compare well with classical and semi - classical results (25);

2. detailed investigation of the strong coupling region of the topological sector of the
two-dimensional φ4 theory demonstrating that low-lying states with periodic boundary
conditions above the transition coupling are dominantly kink-antikink coherent states (26);

3. switching to anti-periodic boundary conditions in the strong coupling region of the
topological sector of the two-dimensional φ4 theory and demonstrating that low-lying
states above the critical coupling are dominantly kink-antikink-kink states as well as
presenting evidence for the onset of kink condensation(27). Fig. 4 presents the
detailed transition of the lowest 5 mass eigenstates in the broken phase from kink to
kink-antikink-kink structure over a narrow range in the coupling. Increasing the resolution
K shrinks the range in coupling over which the transitions occur.

More recently, full-fledged applications to gauge theories in 3+1 dimensions have appeared
along with roadmaps for addressing QCD. A brief summary of some of the major
developments in 3+1 dimensional Hamiltonian light front field theory includes the solutions
of:

1. light-front QED wave equations for the electron plus electron-photon system (28–30)

2. simplified gauge theories with a transverse lattice (2; 3; 31)
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3. Hamiltonian QED for the electron plus electron-photon system in a trap with a basis
function approach (4; 7; 8) that I discuss in the next section.

4. Hamiltonian QED for the electron plus electron-photon system without an external trap
that I also discuss in the next section(9; 10)

These successes open pathways for ambitious research programs to evaluate non-perturbative
amplitudes and to address the multitude of experimental phenomena that are conveniently
evaluated in a light-front quantized approach. As one important example, consider the
deeply virtual Compton scattering (DVCS) process which provides the opportunity to study
the 3-dimensional coordinate space structure of the hadrons. Recent efforts with model
3+1 dimensional light-front amplitudes (32) have shown that the Fourier spectra of DVCS
should reveal telltale diffractive patterns indicating detailed properties of the coordinate space
structure.

Additional applications include the non-perturbative regime of QED that future experiments
with ultra-strong pulsed lasers will explore, for example, looking for non-perturbative lepton
pair production (33–35). Yet another application resides with the strong time-dependent
QED fields generated in relativistic heavy-ion collisions where puzzling excesses of
electron-positron pairs have been observed (36; 37).

4. Basis light-front quantization applied to QED

We define our light-front coordinates as x± = x0 ± x3, x⊥ = (x1, x2), where the variable x+

is light-front time and x− is the longitudinal coordinate. We adopt x+ = 0, the “null plane",
for our quantization surface. Here we adopt basis states for each constituent that consist
of transverse 2D harmonic oscillator (HO) states combined with discretized longitudinal
modes, plane waves, satisfying selected boundary conditions. This basis function approach
follows Refs. (4–6). Note that the choice of basis functions is arbitrary except for the standard
conditions of orthonormality and completeness. Adoption of this particular basis is consistent
with recent developments in AdS/QCD correspondence with QCD (38; 39).

The HO states are characterized by a principal quantum number n, orbital quantum number
m, and HO energy. Here we adopt the convention that Ω represents both the energy of the
transverse HO trap and the basis representation when the trap is present (i.e we match the
basis to the trap potential). To signal that the trap is absent we use ω to represent the frequency
choice for the basis.

Working in momentum space, it is convenient to write the 2D oscillator as a function of the
dimensionless variable ρ = |p⊥|/√M0Ω, and M0 has units of mass. The orthonormalized HO
wave functions in polar coordinates (ρ, ϕ) are then given in terms of the generalized Laguerre

polynomials, L|m|
n (ρ2), by

Φnm(ρ, ϕ) = �ρϕ|nm�

=

√
2π

M0Ω

√
2n!

(|m|+ n)!
eimϕρ|m|e−ρ2/2L|m|

n (ρ2), (1)

with HO eigenvalues En,m = (2n + |m|+ 1)Ω. The HO wavefunctions have the same analytic
structure in both coordinate and momentum space, a feature reminiscent of a plane-wave
basis.
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The longitudinal modes, ψk, in our basis are defined for −L ≤ x− ≤ L with periodic boundary
conditions for the photon and antiperiodic boundary conditions for the electron:

ψk(x−) =
1√
2L

ei π
L k x−

, (2)

where k = 1, 2, 3, ... for periodic boundary conditions (we neglect the zero mode) and
k = 1

2 , 3
2 , 5

2 , ... for antiperiodic boundary conditions. The full 3D single-particle basis state
is defined by the product form

Ψk,n,m(x−, ρ, ϕ) = ψk(x−)Φn,m(ρ, ϕ). (3)

For illustrative purposes, we select a transverse mode with n = 1, m = 0 joined together with
the k = 1

2 longitudinal antiperiodic boundary condition mode of Eq. 2 and display slices of
the real part of this 3-D basis function at selected longitudinal coordinates, x− in Fig. 5. For
comparison, we present a second example with box boundary conditions for the longitudinal
mode in Fig. 6. Our purpose in presenting both Figs. 5 and 6 is to suggest the richness,
flexibility and economy of texture available for solutions in a basis function approach.

Next, we introduce the total invariant mass-squared M2 for the low-lying physical states in
terms of a Hamiltonian H times a dimensionless integer for the total light-front momentum K

M2 + P⊥P⊥ → M2 + const = P+P− = KH (4)

where we absorb the constant into M2. For simplicity, the transverse functions for both
the electron and the photon were taken as eigenmodes of the external trap in our initial
application (7) which we discuss here (below, we present results with the external trap
removed). The noninteracting Hamiltonian H0 = 2M0P−

c for this system with a trap is then
defined by the sum of the occupied modes i in each many-parton state:

H0 =
2M0Ω

K ∑
i

2ni + |mi|+ 1 + m̄2
i /(2M0Ω)

xi
, (5)

where m̄i is the mass of the parton i. The photon mass is set to zero throughout this work
and the electron mass m̄e is set at the physical mass 0.511 MeV in our nonrenormalized
calculations. We also set M0 = m̄e.

The light-front QED Hamiltonian interaction terms we need are the electron to
electron-photon vertex, given as

Ve→eγ = g
∫

dx+d2x⊥Ψ(x)γμΨ(x)Aμ(x)
∣∣∣∣
x+=0

, (6)

and the instantaneous electron-photon interaction,

Veγ→eγ =
g2

2

∫
dx+d2x⊥ Ψγμ Aμ

γ+

i∂+
(γν AνΨ)

∣∣∣∣
x+=0

, (7)

where the coupling constant g2 = 4πα, and α is the fine structure constant. The nonspinflip
vertex terms of Eq.(6) are ∝ M0Ω, whereas spinflip terms are ∝

√
M0Ωme. Selecting the initial

state electron helicity in the single electron sector always as “up” the process e → eγ is nonzero
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Fig. 5. (color online) Transverse sections of the real part of a 3-D basis function involving a
2-D harmonic oscillator and a longitudinal mode of Eq. 2 with antiperiodic boundary
conditions. The quantum numbers for this basis function are given in the legend. The basis
function is shown for the full range −L ≤ x− ≤ L (adapted from Ref. (4)).

for three out of eight helicity combinations, and the process eγ → eγ is nonzero only with all
four spin projections aligned (two out of 16 combinations), resulting in a sparse matrix.

We implement a symmetry constraint for the basis by fixing the total angular momentum
projection Jz = M + S = 1

2 , where M = ∑i mi is the total azimuthal quantum number, and
S = ∑i si the total spin projection along the x− direction. For cutoffs, we select the total
light-front momentum, K, and the maximum total quanta allowed in the transverse mode of
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Fig. 6. (color online) Transverse sections of a 3-D basis function involving a 2-D harmonic
oscillator and a longitudinal mode with box boundary conditions (wavefunction vanishes at
±L). The quantum numbers for this basis function are given in the legend. The basis function
is shown for positive values of x− and is antisymmetric with respect to x− = 0 (adapted
from Ref. (4)).

each one or two-parton state, Nmax, such that

∑
i

xi = 1 =
1
K ∑

i
ki, (8)

∑
i

2ni + |mi|+ 1 ≤ Nmax, (9)

where, for example, ki defines the longitudinal modes of Eq.(2) for the ith parton. Equation
(8) signifies total light-front momentum conservation written in terms of boost-invariant
momentum fractions, xi. Since we employ a mix of boundary conditions and all states have

40 Advances in Quantum Field Theory
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Fig. 6. (color online) Transverse sections of a 3-D basis function involving a 2-D harmonic
oscillator and a longitudinal mode with box boundary conditions (wavefunction vanishes at
±L). The quantum numbers for this basis function are given in the legend. The basis function
is shown for positive values of x− and is antisymmetric with respect to x− = 0 (adapted
from Ref. (4)).

each one or two-parton state, Nmax, such that

∑
i

xi = 1 =
1
K ∑

i
ki, (8)

∑
i
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where, for example, ki defines the longitudinal modes of Eq.(2) for the ith parton. Equation
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momentum fractions, xi. Since we employ a mix of boundary conditions and all states have
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Fig. 7. (color online). Eigenvalues (multiplied by K) for a nonrenormalized light-front QED
Hamiltonian for an electron in an external trap with Ω = 0.05 MeV which includes the
electron-photon vertex and the instantaneous electron-photon interaction. The cutoffs for the
basis space dimensions are selected such that K increases simultaneously with the Nmax.

half-integer total K, we will quote K values rounded downwards for convenience, except
when the precise value is required.

In our approach, the HO parameters Ω, M0, the electron mass me, and the total longitudinal
momentum K appear as prefactors for the matrix elements in the Hamiltonian. Therefore, we
can rather straightforwardly vary the size of the Hamiltonian matrix by keeping Nmax fixed,
and changing K alone. This facilitates examination of the convergence rates at each value of
Nmax.

In our initial applications, we focus on QED and consider a system including only |e� and
|eγ� sectors in a transverse scalar harmonic trap (7) and, more recently, in the absence of the
external trap (10; 40). Both of these setups, once the Fock space is extended, will be useful for
addressing a range of strong field QED problems such as electron-positron pair production in
relativistic heavy-ion collisions and with ultra-strong pulsed lasers planned for the future. We
adopt the sector dependent non-perturbative renormalization scheme (41).

In Fig. 7 we show the eigenvalues (multiplied by K) for a nonrenormalized light-front QED
Hamiltonian given in Eqs.(5,6,7), with fixed Ω = 0.05 MeV and simultaneously increasing K
and Nmax. The resulting dimension of the Hamiltonian matrix increases rapidly. For Nmax =
K = 2, 10, and 20, the dimensions of the corresponding symmetric d × d matrices are d =
2, 1670, and 26 990, respectively.

The number of the single electron basis states, considering all the symmetries, increases slowly
with increasing Nmax = K cutoff. For Nmax = K = 2, 10, and 20 the number of single
electron basis states is 1, 5, and 10, respectively. Our lowest-lying eigenvalue corresponds
to a solution dominated by the electron with n = m = 0. The ordering of excited states, due
to significant interaction mixing, does not always follow the highly degenerate unperturbed
spectrum of Eq.(5). States dominated by spin-flipped electron-photon components are evident
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ae ≡
g − 2

2
= lim

q2→0
F2(q2). (10)
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in the solutions. Nevertheless, the lowest-lying eigenvalues appear with nearly harmonic
separations in Fig. 7 as would be expected at the coupling of QED. The multiplicity of the
higher eigenstates increases rapidly with increasing Nmax = K and the states exhibit stronger
mixing with other states than the lowest-lying states. In principle, the electron-photon
basis states interact directly with each other in leading order through the instantaneous
electron-photon interaction, but numerically the effect of this interaction is very weak,
and thus does not contribute significantly to the mixing. Even though we work within a
Fock-space approach, our numerical results should approximate the lowest order perturbative
QED results for sufficiently weak external field.

In the most recent application to QED, we still retain the truncated basis including only |e�
and |eγ� sectors as in Ref. (7). However, we introduce major extensions and improvements.
For a more complete description, I refer to the paper by Zhao, et al. (10) and to a separate
paper (40). Here, I simply list a few of the key extensions and improvements.

1. In order to expand the range of applications, we extend the application of BLFQ to a free
space system by omitting the external transverse trap.

2. In order to improve computational efficiency and numerical precision, we replace
numerical integrations previously used in Ref. (7) to evaluate matrix elements of QED
interaction vertices with newly-developed analytic methods.

3. To achieve improved convergence, we allow the HO basis length scale to be fixed
separately in each Fock sector which allows a more efficient treatment of the transverse
center-of-momentum degree of freedom.

4. We correct the evaluation of the anomalous magnetic moment ae and a factor appearing in
the vertex matrix elements. These corrections go in opposing directions for the previously
evaluated ae in an external trap (7) and updated results will be provided in a separate
paper (40).

5. Results for electron anomalous magnetic moment ae

With the methods and improvements summarized in Secs. 3 and 4, we evaluate and
diagonalize the light-front QED Hamiltonian in |e� and |eγ� sectors without the external
transverse trap and evaluate ae from the resulting light-front amplitude for the lowest mass
eigenstate.

In Ref. (7) the electron anomalous magnetic moment was approximated (based on
non-relativistic quantum mechanics) by the squared modulus of the helicity-flip (for the
constituent electron) components of the eigenstates. The precise definition of the electron
anomalous magnetic moment in relativistic QED is ae, the electron Pauli form factor F2
evaluated at momentum transfer q2 → 0 (42),

In BLFQ the ae can be calculated by sandwiching the operator corresponding to F2(0) with the
solution for the ground state for the electron with opposing helicities,
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Here �eγ, i� |F2(0)|eγ, i� is the matrix element of the Pauli form factor in the BLFQ basis. The
�eγ, i|Ψ↑(↓)

e � is the wavefunction of a physical electron with helicity up (down) in the |eγ�
sector (the only sector contributing to ae in our truncated basis). The i denotes a complete
set of quantum numbers. Although Eq.(11) involves two electron eigenstates with opposite
helicities, in practice one needs only to solve for one of them and infer the other by exploiting
the parity symmetry in light-front QED (43). The explicit expression for �eγ, i� |F2(0)|eγ, i� and
the exact relation between �eγ, i|Ψ↑

e � and �eγ, i|Ψ↓
e � will be reported in a later work (40).

In this work without the external trap we reduce the QED coupling constant α by a factor of
104 in order to reduce higher order effects and facilitate comparison with ae from perturbation
theory (44). In addition, we omit the instantaneous electron exchange vertex for the same
reason.

We define our basis space with total longitudinal momentum K=80 which we found adequate
for the present application but will be extended in the future. In fact, the results presented
in Ref. (10) already extend the basis to K=160. Furthermore, we use 2D HO single-particle
states with frequencies ω ranging from 0.01MeV to 1.4MeV. These ω’s bracket the electron
mass me=0.511 MeV, the only scale-setting parameter in the QED Hamiltonian. At each ω we
calculate ae with Nmax in the range of 10 to 118 to map out its convergence behavior with
increasing Nmax. Larger Nmax translates to a larger basis with higher effective ultraviolet
cutoff and lower effective infrared cutoff in the transverse plane. We expect that, with
increasing Nmax, the results more closely approximate the Schwinger result. The rate of
convergence may be different for different ω’s, depending on ae’s sensitivity to the effective
cutoffs of the basis space. Our results agree with this expectation and approach the Schwinger
result uniformly as Nmax increases with increments of 4.

In Fig. 8 I present the results evaluated with ω=0.1MeV. For comparison, see the results
in Ref. (10) at ω=0.02MeV and ω=0.5MeV. For each ω the results exhibit a simple pattern
with increasing Nmax: the results with even Nmax/2 are systematically larger than those
with odd Nmax/2 so that the former and the latter separate into two individual groups.
Within each group the results define a trend which is understandable by analysis of the
perturbative calculation in light-front QED (10; 39; 40). Other features of these results are
similarly understandable (10; 40).

The data points in Fig. 8 appear to define straight lines as a function of 1/
√

Nmax as can be seen
by the linear fits to all the points shown (solid lines). We can therefore easily extrapolate to
the limit of no basis truncation (Nmax → ∞) where we expect to recover the Schwinger result.
Indeed as seen in Fig. 8 the lines converge close to the Schwinger result in this limit. Their
intercepts at 1/Nmax=0 are: 0.1131(1.0%) and 0.1133(1.4%) for even Nmax/2 and odd Nmax/2,
respectively. The percentages in the parenthesis are their corresponding relative deviation
from the Schwinger result, ae

e2 = α
2πe2 = 1

8π2 ≈0.012665.

ae ≡
g − 2

2
= �Ψ↓

e |F2(0)|Ψ↑
e �

= ∑
i� ,i
�Ψ↓

e |eγ, i���eγ, i� |F2(0)|eγ, i��eγ, i|Ψ↑
e �. (11)
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Fig. 8. (Color online) Anomalous magnetic moment of the electron calculated in BLFQ
compared to the Schwinger result (44). The vertical axis is the square root of anomalous
magnetic moment normalized to electron charge, e, so the Schwinger value is√

1
8π2 = 0.11254. The horizontal axis is the square root of the reciprocal of Nmax. Symbols are

for the BLFQ results. Squares: even Nmax/2; circles: odd Nmax/2. The HO frequency for the
basis is 0.1 MeV as indicated in the legend. The lines are linear extrapolations of BLFQ results
based on all the points shown which span Nmax = 10 − 118

What is not so apparent from a visual inspection of Fig. 8 is the fact that the extrapolated
values come closer to the Schwinger result if one limits the linear fit to results for only
the larger values of Nmax. For example, if the linear fit is performed for Nmax ≥ 64 the
extrapolated values improve to 0.1129(0.7%) and 0.1130(0.9%) for even Nmax/2 and odd
Nmax/2, respectively. Continuing this avenue of investigation, if the linear fit is performed
only for results with Nmax ≥ 100 the extrapolated values improve to 0.1128(0.4%) and
0.1129(0.6%) for even Nmax/2 and odd Nmax/2, respectively. This is an encouraging sign
of expected systematic improvement with increasing Nmax.

What is also important to note is that these results are systematically improvable. We will
extend the calculations to larger K and Nmax values to further improve accuracy and reduce
extrapolation uncertainties. That is, we will evaluate additional results in regions where they

are expected to scale more accurately as a function of
√

1
Nmax

. In order to compare with the

perturbative result for ae with the rescaling as shown in Fig. 8 (i.e. to achieve results for ae
e2 ) it

is also advantageous to further decrease the fine structure constant below 10−4α, the value for
the results presented here.

6. Conclusion

The recent history of light-front Hamiltonian field theory features many advances that pave
the way for non-perturbative solutions of gauge theories. The goal is to evaluate the light-front
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the larger values of Nmax. For example, if the linear fit is performed for Nmax ≥ 64 the
extrapolated values improve to 0.1129(0.7%) and 0.1130(0.9%) for even Nmax/2 and odd
Nmax/2, respectively. Continuing this avenue of investigation, if the linear fit is performed
only for results with Nmax ≥ 100 the extrapolated values improve to 0.1128(0.4%) and
0.1129(0.6%) for even Nmax/2 and odd Nmax/2, respectively. This is an encouraging sign
of expected systematic improvement with increasing Nmax.

What is also important to note is that these results are systematically improvable. We will
extend the calculations to larger K and Nmax values to further improve accuracy and reduce
extrapolation uncertainties. That is, we will evaluate additional results in regions where they

are expected to scale more accurately as a function of
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. In order to compare with the

perturbative result for ae with the rescaling as shown in Fig. 8 (i.e. to achieve results for ae
e2 ) it

is also advantageous to further decrease the fine structure constant below 10−4α, the value for
the results presented here.

6. Conclusion

The recent history of light-front Hamiltonian field theory features many advances that pave
the way for non-perturbative solutions of gauge theories. The goal is to evaluate the light-front
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amplitudes for strongly interacting composite systems and predict experimental observables.
High precision tests of the Standard Model may be envisioned as well as applications to
theories beyond the Standard Model.

We can extend the BLFQ approach to QCD by implementing the SU(3) color degree of freedom
for each parton - 3 colors for each fermion and 8 for each boson. We have investigated two
methods for implementing the global color singlet constraint and we illustrate the resulting
multiplicity of color configurations for each space-spin configuration in Fig. 9. In the first
case, we follow Ref. (45) by constraining all color components to have zero color projection
and adding a Lagrange multiplier term to the Hamiltonian to select global color singlet
eigenstates. This produces the upper curves in each panel of Fig. 9. In the second case,
we restrict the basis space to global color singlets (4–6; 46). The second method produces
the lower curves in each panel of Fig. 9 and shows a factor of 30-40 lower many-parton
basis space dimension at the cost of increased computation time for matrix elements. Either
implementation provides an exact treatment of the global color symmetry constraint but the
use of the second method provides overall more efficient use of computational resources.
Nevertheless, the computational requirements of this approach are substantial, and we foresee
extensive use of leadership-class computers to obtain practical results.
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Fig. 9. (color online) Number of color space states that apply to each space-spin configuration
of selected multi-parton states for two methods of enumerating the color basis states. The
upper curves are counts of all color configurations with zero color projection. The lower
curves are counts of global color singlets (adapted from Ref. (4)).
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I would like to close by mentioning that we are extending the QED application in several
directions. One specific goal is to include the capability for treating strong time-dependent
laser pulses to address non-perturbative QED processes (35). In addition, we are launching
an initial effort to evaluate the properties of charmonium in a BLFQ treatment of QCD with
a first application to the heavy-quarkonia sector leading to predictions for the hybrid states
(states dominated by q-qbar-glue configurations).
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1. Introduction

It is commonplace in Quantum Field Theory (QFT) that a QFT with higher (time) derivatives
is believed to be doomed from the point of view of physics, because of ghosts or states of
negative norm, and thus it should be dismissed. The standard reference is the very old result
(known in the literature as the Ostrogradski theorem (1)) claiming a linear instability in any
Hamiltonian system associated with the Lagrangian having the higher (ie. more than one)
time derivative that cannot be eliminated by partial integration.

The key point of the Ostrogradski method (1) is a canonical quantization of the clasically
equivalent theory without higher derivatives via considering the higher derivatives of the
initial coordinates as the independent variables.

The interest in the higher-derivative QFT was recently revived due to some novel
developments in the gravitational theory, related to the so-called f (R)-gravity theories – see
eg., ref. (2) for a review. The f (R) gravity theories are defined by replacing the scalar curvature
R in the Einstein action by a function f (R). The f (R) gravity theories give the self-consistent
non-trivial alternative to the standard Λ-CDM Model of Cosmology, by providing the
geometrical phenomenological description of inflation in the early universe and Dark Energy
in the present universe. Despite of the apparent presence of the higher derivatives, a classical
f (R) gravity theory can be free of ghosts and tachyons. A supersymmetric extension of f (R)
gravity was recently constructed in superspace (3).

Already the simplest model of (R + R2) gravity (4) is known as the viable model of chaotic
inflation, because it is consistent with the recent WMAP measurements of the Cosmic
Macrowave Background (CMB) radiation (5). Its supersymmetric extension was recently
constructed in refs. (6; 7).

On the one side, any quadratically generated (with respect to the curvature) quantum theory
of gravity has ghosts in its perturbative quantum propagator (8). However, on the other side,
any f (R) gravity theory is known to be classically equivalent to the scalar-tensor gravity (ie.
to the usual quintessence) (9–11), while the stability conditions in the f (R) gravity ensure the
ghost-and-tachyon-freedom of the classically equivalent quintessence theory (12; 13). It now
appears that in some cases the presence of the higher derivatives may be harmless (14). It also
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gives rise to the non-trivial natural question of how to make sense out of the quantized f (R)
gravity?

The f (R) gravity theories are just the particular case of the higher-derivative quantum gravity
theories which have been investigated in the past. They were found to be renormalizable
(15) and asymptotically free (16). A generic higher-derivative gravity suffers, however,
from the presence of ghosts and states of negative norm which apparently spoil those QFT
from physical applications. However, the issue of ghosts and their physical interpretation
deserves a more detailed study. The complexity of the higher-derivative gravity is the
formidable technical obstacle for that. It is, therefore, of interest to consider simpler QFT
as the toy-models.

Similar features (like renormalizability and asymptotic freedom) exhibit the quantum
Non-Linear Sigma-Models with higher derivatives, which have striking similarities to the
higher-derivative quantum gravity (17–19). However, even those QFT are too complicated
because of their high degree of non-linearity.

Perhaps, the simplest toy-model is given by the Pais-Uhlenbeck (PU) quantum oscillator in
Quantum Mechanics (20). As was demonstrated by Hawking and Hertog (21), it may be
possible to give physical meaning to the Euclidean path integral of the PU oscillator, as the set
of consistent rules for calculation of observables, even when “living with ghosts”. The basic
idea of ref. (21) is to abandom unitarity, while never producing and observing negative norm
states.

The idea of Hawking and Hertog found further support in refs. (22; 23) where the physical
propagator of the PU oscillator was calculated by using the van Vleck-Pauli approach (the
saddle point method for the Euclidean path integral) and Forman’s theorem (24). In this
Chapter we systematically review the classical and quantum theory of the PU oscillator from
the first principles, along the lines of refs. (14; 21–23).

2. Ostrogradski method with higher derivatives

Consider a one-dimensional mechanical system with the action

S[q] =
∫

dt L
(
q, Dq, · · · , Dnq

)
(2.1)

in terms of the Lagrange function L of q(t) and its time derivatives, where n ≥ 2 and D = d
dt .

The Euler-Lagrange equation reads

n

∑
i=0

(−D)i ∂L
∂(Diq)

= 0 (2.2)

The Ostrogradski method (1) gives the Hamiltonian formulation of the higher derivative
Lagrange formulation by introducing more independent variables.

The independent generalized coordinates Qi are defined by

Qi = Di−1q
(
i = 1, · · · , n

)
(2.3)
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The generalized momentum Pn is defined by

∂L
∂(Dnq)

∣∣∣∣ Di−1q=Qi
Dnq=A

= Pn (2.4)

There are n+ 1 independent variables {Q1, · · · , Qn, Pn} that are in correspondence to the n+ 1
variables {D0q, · · · , Dnq} of the higher derivative action (2.1).

By solving eq.(2.4) with respect to A = Dnq (assuming that it is possible), one gets

Dnq = A(Q1, · · · , Qn, Pn) (2.5)

Therefore, the Lagrange dynamics can be represented in terms of the n + 1 independent
variables {Q1, · · · , Qn, Pn} as

L = L
(
Q1, · · · , Qn, A(Q1, · · · , Qn, Pn)

)
(2.6)

A Legendre transformation is used to pass from the Lagrange formulation to the Hamiltonian
one. With the generalized coordinates {Q1, · · · , Qn} and the generalized momentum Pn as
the independent variables, the total differential of the Lagrangian is given by

dL =
n

∑
j=1

∂L
∂(Dj−1q)

∣∣∣∣ Di−1q=Qi
Dnq=A

dQj + PndA

=
∂L
∂q

dQ1 +
n

∑
j=2

∂L
∂(Dj−1q)

dQj + PndA

= D
n

∑
j=1

(−D)j−1 ∂L
∂(Djq)

dQ1 +
n−1

∑
j=1

∂L
∂(Djq)

dQj+1 + PndA

(2.7)

where we have used eqs. (2.2) and (2.4), and

dA =
n

∑
j=1

∂A
∂Qj

dQj +
∂A
∂Pn

dPn (2.8)

Let us now define the n − 1 generalized momenta as

Pi =
n

∑
j=i

(−D)j−i ∂L
∂(Djq)

(
i = 1, · · · , n − 1

)
(2.9)

They satisfy the relations
∂L

∂(Diq)
= Pi + DPi+1 (2.10)

Therefore, eq. (2.7) can be rewritten to the form

d
[n−1

∑
i=1

Pi(DQi) + Pn A − L
]
= −

n

∑
i=1

(DPi)dQi +
n

∑
i=1

(DQi)dPi (2.11)
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Equation (2.11) gives rise to the Hamiltonian in the form

H =
n−1

∑
j=1

Pj(DQj) + Pn A − L (2.12)

The Hamilton equations of motion are given by

DQi =
∂H
∂Pi

and DPi = − ∂H
∂Qi

(2.13)

3. PU oscillator

The PU oscillator (20) is an extension of the harmonic oscillator with the higher time
derivatives, and is the particular case of the higher-derivative theory introduced in Sec. 2.
The special features of the PU opscilator are
(i) the equation of motion is linear:

F(D)q = 0 (3.1)

where F is a linear differential operator;
(ii) the F is polynomial (with respect to D) with constant coefficients:

F(D) =
n

∑
i=0

aiDi (3.2)

where a0, · · · , an are the real constants;
(iii) there is the time reversal invariance with respect to t → −t. Hence, the polynomial F has
only even powers of the time derivative D.

The Lagrangian of the one-dimensional PU oscillator reads

L
(
q, Dq, · · · , Dnq

)
= −

n

∑
i=0

ai
2
(Diq)2 (

a0 �= 0, an �= 0
)

(3.3)

where ai (i = 0, · · · , n) are real constants. The Euler-Lagrange equation of motion is given by

0 =
n

∑
i=0

(−D)i
[
−aiDiq

]

=− a0

[ n

∑
i=0

(−1)i ai
a0

D2i
]

q (3.4)

Accordingly, the differential operator F(D) reads

F(D) =
n

∑
i=0

(−1)i ai
a0

D2i (3.5)

The equation of motion can be rewritten to the form

F(D)q = 0 (3.6)
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The PU Lagrangian takes the form (up to a boundary term)

L̄ = − a0
2

qF(D)q (3.7)

The differential operator F(D) can be brought to the factorized form

F(D) =
n

∏
i=1

(
1 +

D2

ω2
i

)
(3.8)

where the constants ωi (i = 1, · · · , n) are the solutions (roots) of the equation F(iω) = 0. Let
us introduce n new operators

Gi(D) =
n

∏
j=1
j �=i

(
1 +

D2

ω2
j

)
(i = 1, · · · , n) (3.9)

and define the n generalized coordinates as

Qi = Gi(D)q (i = 1, · · · , n) (3.10)

Those generalized coordinates Qj are called harmonic coordinates. By using the harmonic
coordinates, the PU Euler-Lagrange eq. (3.6) can be rewitten to the n equations

[
1 +

D2

ω2
i

]
Qi = 0 (3.11)

It means that the PU oscillator can be interpreted as n harmonic oscillators. Accordingly, the
PU Lagrangian (3.7) can be rewritten to the form

L̄ = − a0
2

n

∑
i=1

ηiQi

(
1 +

D2

ω2
i

)
Qi (3.12)

where the n constants ηi have been introduced as

ηi =

(
ω2

i
dF

d(D2)

∣∣∣∣
D2=−ω2

i

)−1

(3.13)

To prove eq. (3.13), we first notice that it amounts to

n

∑
i=1

ηiGi(D) = 1 (3.14)

By the definiton of G(D) in eq.(3.9) we have

Gi(D2 = −ω2
j ) =

n

∏
k=1
k �=i

(
1 −

ω2
j

ω2
k

)

= δij

n

∏
k=1
k �=j

(
1 −

ω2
j

ω2
k

)
(3.15)
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so that

n

∑
i=1

ηiGi(D) = 1 (3.16)

n

∑
i=1

ηiGi(D2 = −ω2
j ) = ηj

n

∏
k=1
k �=j

(
1 −

ω2
j

ω2
k

)
= 1 (3.17)

indeed. Therefore, the constants ηi are given by

ηi =

[ n

∏
k=1
k �=i

(
1 − ω2

i
ω2

k

)]−1

(3.18)

Next, we prove that

ω2
i

dF
dD2

∣∣∣∣
D2=−ω2

i

=
n

∏
k=1
k �=i

(
1 − ω2

i
ω2

k

)
(3.19)

By the use of eq.(3.8) we find

dF
dD2 =

d
dD2

n

∏
j=1

(
1 +

D2

ω2
j

)

=
n

∑
k=1

1
ω2

k

n

∏
j=1
j �=k

(
1 +

D2

ω2
j

)

=
n

∑
j=1

1
ω2

j
Gj(D) (3.20)

so that

dF
dD2

∣∣∣∣
D2=−ω2

i

=
n

∑
j=1

1
ω2

j
Gj(D2 = −ω2

i )

=
n

∑
j=1

1
ω2

j
δji

n

∏
k=1
k �=i

(
1 − ω2

i
ω2

k

)

=
1

ω2
i

n

∏
k=1
k �=i

(
1 − ω2

i
ω2

k

)
(3.21)

Equation (3.19) is now confirmed and, hence, via eq. (3.18) also eq. (3.13) follows.

In terms of the harmonic coordinates (3.10), the Lagrangian L̄,

L̄ = − a0
2

qF(D)q

= − a0
2

n

∑
i=1

ηiQi
(
1 +

D2

ω2
i

)
Qi (3.22)
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with the constants ηi given by eq. (3.13), can be rewritten to the form

L̃ =
a0
2

n

∑
i=1

ηi
( 1

ω2
i
(DQi)

2 − Q2
i
)

(3.23)

up to a boundary term.

The Lagrangian (3.23) is just a sum of the Lagrangians of n harmonic oscillators. Hence,
similarly to a free system of n particles, we can change the Lagrangian formulation into the
Hamiltonian formulation. We define the generalized momenta Pi by taking the harmonic
coordinates Qi and the velocities DQi as the Lagrange variables,

Pi =
∂L̃

∂(DQi)

=
a0ηi

ω2
i

DQi (i = 1, · · · , n) (3.24)

The system of n free particles does not have higher derivatives, so its Hamiltonian is

H =
n

∑
i=1

Pi(DQi)− L (3.25)

Equations (3.23) and (3.24) imply

H =
n

∑
i=1

(
ω2

i
2a0ηi

P2
i +

a0ηi
2

Q2
i

)
(3.26)

By rescaling the harmonic coordinates and the generalized momenta as

Qi → Q̃i =

√
a0|ηi|
ωi

Qi and Pi → P̃i =
ωi

√
|ηi|

ηi
√

a0
Pi (3.27)

we get the final Hamiltonian

H =
1
2

n

∑
i=1

ηi
|ηi|

(
P̃i

2
+ ω2

i Q̃i
2) (3.28)

The presence of both positive and negative values of the constants ηi in the Hamiltonian
implies both positive and negative values of energy. The constants ηi are given by eq. (3.18).
If ωi satisfy i < j ⇒ ωi < ωj, the constants ηi are positive for the odd number i, and are
negative for the even number i. Therefore, the Hamiltonian is

H =
1
2

n

∑
i=1

(−1)i−1
(

P̃i
2
+ ω2

i Q̃i
2
)

(3.29)

This Hamiltonian can be interpreted as that of n harmonic oscillators, with the positive and
negative energy levels appearing alternatively. Because of that reason, the PU oscillator has
an instability (for any interaction). It is related to a possible ghost state of negative norm in PU
quantum theory (see Sec. 6). In what follows we consider the simplest case of PU oscillator
with n = 2 only.
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4. PU oscillator for n = 2: explicit results

Let us consider the Lagrangian

L =
1
2

(
dq
dt

)2

− V(q)− α2

2

(
d2q
dt2

)2 (
where α �= 0

)
(4.1)

with a scalar potential V(q). In the case of the PU oscillator, the potential V(q) is a quadratic
function of q. Since the (mass) dimension of time is −1 (in the natural units h̄ = c = 1), the
dimension of the Lagrangian L is 1, the dimension of q is −1/2, and that of the constant α is
−1.

Let the trajectory q be a sum of the classical trajectory qcl and the displacement q̃, ie. q =
qcl + q̃, where the classical trajectory qcl is a solution to the equation of motion (EOM) with the
boundary conditions (21)

A : q(0) = q0, q(T) = qT , q̇(0) = q̇0, q̇(T) = q̇T (4.2)

where the dots above stand for the time derivatives.

With the boundary conditions (4.2), the boundary condition of q̃ is

˜A : q̃(0) = 0, q̃(T) = 0, ˙̃q(0) = 0, ˙̃q(T) = 0 (4.3)

The action of qcl + q̃ is given by

S[qcl + q̃] = S[qcl ] +
∫ T

0
dt
(

1
2

˙̃q2 − V(qcl + q̃) + V(qcl) + q̃V�(qcl)−
α2

2
¨̃q2
)

(4.4)

where we have introduced the notation

V�(qcl) =
dV
dq

∣∣∣∣
q=qcl

(4.5)

In eq.(4.4) the term V(qcl + q̃)− V(qcl)− q̃V�(qcl) represents the gap between the full action
S[q] and the classical action S[qcl ], which generically depends on both the classical trajectory
qcl and the displacement q̃. After expanding the scalar potential V in Taylor series,

V(qcl + q̃) = V(qcl) + q̃V�(qcl) +
1
2!

q̃2V��(qcl) + · · · (4.6)

we find that, when the second derivative V�� is constant, the gap V(qcl + q̃)−V(qcl)− q̃V�(qcl)
does not depend on the classical trajectory qcl . It is the case when the potential V is a quadratic
function of q, like the PU oscillator.

In the path integral quantization (sec. 7), the gap between the full action and the classical
action is a quantum effect. When the potential is a quadratic function (like that of the PU
oscillator), that quantum effect does depend on q̃, but does not depend on the classical
trajectory. In what follows, we only consider a quadratic function for the scalar potential
in the form

V(q) =
m2

2
q2 (4.7)
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ie. the scalar potential of a harmonic oscillator with the mass m > 0, The Lagrangian is given
by

LPU =
1
2

q̇2 − m2

2
q2 − α2

2
q̈2 (4.8)

The parameter α measures a contribution of the second derivative to the harmonic oscillator.
Therefore, we can expect the classical trajectory to behave just like that of the harmonic
oscillator when α is small.

The Euler-Lagrange EOM of the Lagrangian (4.8) are given by eq.(2.2),

0 =
2

∑
i=0

(−D)i ∂L
∂(Diq)

= −m2q − q̈ − α2....
q (4.9)

or, equivalently, (
m2 + D2 + α2D4

)
q = 0 (4.10)

It is not difficult to find clasical solutions to the EOM in eq. (4.10). When searching for the
classical trajectory in the oscillatory form qcl = exp(iλt), the EOM reads

(
m2 − λ2 + α2λ4

)
eiλt = 0 (4.11)

and, therefore, we have

λ2 =
1 ±

√
1 − 4α2m2

2α2 (4.12)

When λ is real, the Lagrangian L(PU) is an extension of the harmonic oscillator indeed.
Hence, we need the condition

0 < αm <
1
2

(4.13)

It means that the Lagrangina LPU has the oscillating solution which is similar to the trajectory
of the harmonic oscillator. A general solution reads

q(t) = A+ cos
(
λ+t

)
+ B+ sin

(
λ+t

)
+ A− cos

(
λ−t

)
+ B− sin

(
λ−t

)
(4.14)

where A+, B+, A−, B− are the integration constants, and

λ± =

√
1 ∓

√
1 − 4α2m2

2α2 (4.15)

The values of the constants (A+, B+, A−, B−) are determined by the boundary conditions.

The Hamiltonian formulation for the Lagrangian (4.8) can be obtained by the Ostrogradski
method. The generalized coodinates and momenta are given in Sec. 2, ie.

Q1 = q and P1 =
∂L
∂q̇

− D
∂L
∂q̈

Q2 = q̇ and P2 =
∂L
∂q̈

(4.16)
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which imply

P1 = q̇ + α2...
q

P2 = −α2q̈ (4.17)

The Hamiltonian is given by eq.(2.12). ie.

H = P1(DQ1) + P2 A − L

= P1Q2 −
1

2α2 P2
2 − 1

2
Q2

2 +
m2

2
Q2

1 (4.18)

or, equivalently,

H = α2q̇
...
q − α2

2
q̈2 +

1
2

q̇2 +
m2

2
q2 (4.19)

Since the Hamiltonian does not evolve with time, we can find the energy by substituting q(t)
of eq. (4.14) at t = 0 into eq. (4.19), as well as q, q̇, q̈ and

...
q at t = 0, ie.

q(0) = A+ + A−
q̇(0) = B+λ+ + B−λ−
q̈(0) = −A+λ2

+ − A−λ2
− (4.20)

...
q (0) = −B+λ3

+ − B−λ3
−

It is now straightforward to calculate the Hamiltonian (4.19). We find

H = α2q̇(0)
...
q (0)− α2

2
q̈(0)2 +

1
2

q̇(0)2 +
m2

2
q(0)2 (4.21)

=
1
2

λ2
+

√
1 − 4α2m2(A2

+ + B2
+)−

1
2

λ2
−
√

1 − 4α2m2(A2
− + B2

−)

To get the Hamiltonian formulation in the harmonic coordinates, we begin with the EOM in
the form (4.10), whose differential operator F(D) is defined by

F(D) = 1 +
D2

m2 +
α2D4

m2 (4.22)

It can be factorized as

F(D) =

(
1 +

D2

λ2
+

)(
1 +

D2

λ2
−

)
(4.23)

where λ± are given by eq. (4.15). Therefore, the harmonic coodinates are given by

Q+ =

(
1 +

D2

λ2
−

)
q and Q− =

(
1 +

D2

λ2
+

)
q (4.24)

The constants ηi of eq. (3.13) can be computed as follows. We have

dF
dD2 =

1
m2 +

2α2D2

m2 (4.25)
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so that

η± =

(
λ2
±

dF
dD2

∣∣∣∣
D2=−λ2

±

)−1

=

(
λ2
±

m2 (1 − 2α2λ2
±)

)−1

=

(
±λ2

±
m2

√
1 − 4α2m2

)−1

= ± m2

λ2
±
√

1 − 4α2m2
(4.26)

Therefore, the generalized momenta in eq. (3.24) are

P± =
m2η±

λ2
±

DQ±

= ± m4

λ4
±
√

1 − 4α2m2
DQ± (4.27)

and the Hamiltonian is given by

H = ∑
j=±

( λ2
j

2m2ηj
P2

j +
m2ηj

2
Q2

j

)

= ∑
j=±

j
m4

2λ4
j

√
1 − 4α2m2

(
(DQj)

2 + λjQ2
j

)
(4.28)

where we have substituted the classical solution (4.14).

The harmonic coodinates (4.24) read

Q+ = A+

(
1 − λ2

+

λ2
−

)
cos

(
λ+t

)
+ B+

(
1 − λ2

+

λ2
−

)
sin

(
λ+t

)
(4.29)

Q− = A−

(
1 − λ2

−
λ2
+

)
cos

(
λ−t

)
+ B−

(
1 − λ2

−
λ2
+

)
sin

(
λ−t

)
(4.30)

where

1 − λ2
±

λ2
∓

= λ2
±

(
1

λ2
±
− 1

λ2
∓

)

= ±λ2
±

m2

√
1 − 4α2m2 (4.31)

Hence, we find

Q± = ±λ2
±

m2

√
1 − 4α2m2

(
A± cos

(
λ±t

)
+ B± sin

(
λ±t

))
(4.32)
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Substituting them into the Hamiltonian (4.28), we get

H =
1
2

λ2
+

√
1 − 4α2m2(A2

+ + B2
+)−

1
2

λ2
−
√

1 − 4α2m2(A2
− + B2

−) (4.33)

Equations (4.22) and (4.33) are the same. Therefore, we conclude that the Hamiltonian
formulation by the Ostrogradski method is consistent with the Hamiltonian formulation in
the harmonic coordinates, as they should.

The integration constants (A+, B+) correspond to the harmonic oscillator with positive
energy, while the integration constants (A−, B−) correspond to the harmonic oscillator with
negative energy.

5. Boundary conditions and spectrum

Going back to the Lagrangian (4.8), let us consider its action over a finite time period T,

S[q] =
∫ T

0
dt LPU (5.1)

with the trajectory q being a sum of the classical trajectory qcl and the displacement q̃, q =
qcl + q̃. In quantum theory, the displacement q̃ is a quantum coordinate. The action can be
rewritten as

S[q] = S[qcl ] + S[q̃]−
∫ T

0
dt

(
q̈cl + m2qcl + α2....

q cl

)
q̃ +

[
q̇cl q̃ − α2q̈cl ˙̃q + α2...

q cl q̃
]T

0
(5.2)

Here the first term is the action of the classical trajectory qcl , and the second term is the action
of the quantum part q̃. The integrand of the third term vanishes because the classical trajectory
is a solution of the (Euler-Lagrange) EOM. The fourth term depends on the boundary.
However, if the boundary condition on q̃ is given by

˜A : q̃(0) = 0, q̃(T) = 0, ˙̃q(0) = 0, ˙̃q(T) = 0 (5.3)

the fourth term in eq. (5.2) also vanishes. That boundary condition is the same as that of

A : q(0) = q0, q(T) = qT , q̇(0) = q̇0, q̇(T) = q̇T (5.4)

which was proposed in ref. (21). The quantum action now takes the form

S[q̃] =
∫ T

0
dt

(
1
2

˙̃q2 − m2

2
q̃2 − α2

2
¨̃q2
)

= −1
2

∫ T

0
dt q̃

(
D2 + m2 + α2D4

)
q̃ +

1
2

[
q̃ ˙̃q − α2 ˙̃q ¨̃q + α2q̃

...
q̃
]T

0
(5.5)

where the (last) boundary term vanishes due to the boundary condition (5.3).

The boundary term in eq. (5.5) also vanishes by another boundary condition,

˜A � : q̃(0) = 0, q̃(T) = 0, ¨̃q(0) = 0, ¨̃q(T) = 0 (5.6)
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As a result, the action (5.5) takes the Gaussian form, which is quite appropriate for a path
integral quantization with the Gaussian functional

− 1
2

� T

0
dt q̃

�
D2 + m2 + α2D4

�
q̃ (5.7)

Let us now compute the spectrum of the operator D2 + m2 + α2D4. For this purpose, we need
to find the solutions uk to the eigenvalue equation

�
D2 + m2 + α2D4�uk(t) = kuk(t) (5.8)

with the eigenvalues k. A general solution is

uk(t) = A1 cos
�
ω+t

�
+ A2 sin

�
ω+t

�
+ A3 cos

�
ω−t

�
+ A4 sin

�
ω−t

�

ω± =

�
1 ∓

�
1 − 4α2(m2 − k)

2α2 (5.9)

where A1, A2, A3, A4 is the constants of integration. The function q̃ can be expanded in terms
of uk,

q̃ =
�

dk uk(t) (5.10)

The spectrum of k is now determined by appying the physical boundary conditions (5.3) or
(5.6) to uk in the form of eq. (5.9). Applying the boundary condition (5.3) at t = 0 yields

q̃(0) = A1 + A3 = 0, ˙̃q(0) = A2ω+ + A4ω− = 0 (5.11)

The boundary condition (5.3) at t = T then takes the form

q̃(T) = A1 cos
�
ω+T

�
+ A2 sin

�
ω+T

�
− A1 cos

�
ω−T

�

−A2
ω+

ω−
sin

�
ω−T

�
= 0

˙̃q(T) = −A1ω+ sin
�
ω+T

�
+ A2ω+ cos

�
ω+T

�

+A1ω− sin
�
ω−T

�
− A2ω+ cos

�
ω−T

�
= 0

In particular, the determinant of the matrix on the left side of this equation,

det

⎛
⎜⎜⎝

ω−

�
cos

�
ω+T

�
− cos

�
ω−T

��
ω− sin

�
ω+T

�
− ω+ sin

�
ω−T

�

−ω+ sin
�
ω+T

�
+ ω− sin

�
ω+T

�
ω+

�
cos

�
ω+T

�
− cos

�
ω−T

��

⎞
⎟⎟⎠

=ω+ω−

�
cos

�
ω+T

�
− cos

�
ω−T

��2

+ ω+ω−

�
sin2�ω+T

�
+ sin2�ω−T

��
− (ω2

+ + ω2
−) sin

�
ω+T

�
sin

�
ω−T

�

=2ω+ω−

�
1 − cos

�
ω+T

�
cos

�
ω−T

��
− (ω2

+ + ω2
−) sin

�
ω+T

�
sin

�
ω−T

�
(5.12)
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must vanish. We find

2ω+ω−

[
1 − cos

(
ω+T

)
cos

(
ω−T

)]
= (ω2

+ + ω2
−) sin

(
ω+T

)
sin

(
ω−T

)

2
√

m2 − k
α

[
1 − cos

(
ω+T

)
cos

(
ω−T

)]
=

1
α2 sin

(
ω+T

)
sin

(
ω−T

)

1 − cos
(
ω+T

)
cos

(
ω−T

)
=

1

α
√

m2 − k
sin

(
ω+T

)
sin

(
ω−T

)

(5.13)

where ω±(k) ar given by eq. (5.9). Apparently, there is no simple solution here.

When employing the boundary conditions (5.6) with eq. (5.9) on uk, the boundary condition
in t = 0 yields

q̃(0) = A1 + A3 = 0, ¨̃q(0) = −A1ω2
+ − A3ω2

− = 0 (5.14)

so that we find A1 = A3 = 0 when ω+ �= ω−. Now the boundary condition at t = T reads

q̃(T) = A2 sin
(
ω+T

)
+ A4 sin

(
ω−T

)
= 0

¨̃q(T) = −A2ω2
+ sin

(
ω+T

)
− A4ω2

− sin
(
ω−T

)
= 0 (5.15)

To get a nontrivial solution, the correspending determinant must vanish, which yields the
condition

(ω2
+ − ω2

−) sin
(
ω+T

)
sin

(
ω−T

)
= 0 (5.16)

Since ω+ �= ω−, we find

sin
(
ω+T

)
= 0 or sin

(
ω−T

)
= 0 (5.17)

It means
ω+ =

nπ

T
or ω− =

nπ

T
(
where n is an integer

)
(5.18)

and ω± are the solutions to the equation

x2 + m2 + α2x4 = k (5.19)

Therefore, the spectrum of k with the boundary condition ˜A � has the simple form

k =

(
nπ

T

)2

+ m2 + α2
(

nπ

T

)4

(5.20)

6. Canonical quantization and instabilities

In this section we recall about istabilities and ghosts in the quantum PU oscillator (14). The
most straightforward way is based on identifying the energy rasing and lowering operators
(14). The classical solution (4.14) can be rewritten to the form

q(t) =
1
2
(A+ − iB+)eiλ+t +

1
2
(A+ + iB+)e−iλ+t

+
1
2
(A− − iB−)eiλ−t +

1
2
(A− + iB−)e−iλ+t (6.1)
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2ω+ω−

[
1 − cos

(
ω+T

)
cos

(
ω−T

)]
= (ω2

+ + ω2
−) sin

(
ω+T

)
sin

(
ω−T

)

2
√

m2 − k
α

[
1 − cos

(
ω+T

)
cos

(
ω−T

)]
=

1
α2 sin

(
ω+T

)
sin

(
ω−T

)

1 − cos
(
ω+T

)
cos

(
ω−T

)
=

1

α
√

m2 − k
sin

(
ω+T

)
sin

(
ω−T

)

(5.13)
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Since the λ− modes have negative energy, the lowering operator must be proportional to
the (A− − iB−) amplitude. Similarly, since the λ+ modes have negative energy, the raising
operator must be proportional to the (A+ + iB+) amplitude, ie.

α± ∼ A± ± iB±

∼ λ±
2

(1 ±
√

1 − 4α2m2)Q1 ± iP1 ∓
i
2
(1 ∓

√
1 − 4α2m2)− λ±P2

(6.2)

where we have used

A± =
q̈0 + λ2

∓q0

λ2
∓ − λ2

±
(6.3)

and

B± =

...
q 0 + λ2

∓ q̇0

λ±(λ2
∓ − λ2

±)
(6.4)

as well as 1

Q1 = q0 (6.5)

Q2 = q̇0 (6.6)

P1 = q̇0 + α2...
q 0 (6.7)

P2 = −α2q̈0 (6.8)

It is now straightforward to derive the commutation relations,

[α±, α†
±] = 1 (6.9)

The next step depends upon physical interpretation (14).

(I) The ‘empty’ (or ‘ground’) state may be defined by the condition

α+
∣∣Ω̄〉

= α†
−
∣∣Ω̄〉

= 0 (6.10)

Then the ‘empty’ state wave function Ω̄(Q1, Q2) (in the Q-representation, with P = −i∂/∂Q)
reads

Ω̄(Q1, Q2) = N exp

[
−
√

1 − 4α2m2

2(λ− − λ+)
(λ+λ−Q2

1 − Q2
2)− imαQ1Q2

]
(6.11)

and is infinite or not normalizable, because the size of the wave function gets bigger with the
increase of Q2, so that the integral over the whole space diverges.

In addition, when the eigenstate |N̄+, N̄−� with the eigenvalues N̄ = (N̄+, N̄−) is defined by

|N̄+, N̄−� =
a†
+√

N+!
a−√
N−!

∣∣Ω̄〉
(6.12)

1 The canonical variables were calculated at the initial time value because the operators in Schrodinger
picture do not depend upon time.
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the norm of the (0, 1) state is given by

< 0, 1̄|0, 1̄ > =
〈
Ω̄
∣∣ α†

−α−
∣∣Ω̄〉

=
〈
Ω̄
∣∣ (−1 + α−α†

−)
∣∣Ω̄〉

= − < Ω̄|Ω̄ >

= −1 (6.13)

which is a ghost. The non-normalizable quantum ‘states’ are physically unacceptable, so the
interpretation (I) should be dismissed (14).

(II) It is, however, possible to treat all particles (with positive or negative energy) as the truly
ones by defining the ‘empty’ state Ω differently, namely, as

α± |Ω� = 0 (6.14)

In this interpretation the negative energy can arbitrarily decrease and the Hamiltian is
unbounded from below. The ‘empty’ state solution Ω(Q1, Q2) in the Q representation is now
given by

Ω(Q1, Q2) = N exp

[
−
√

1 − 4α2m2

2(λ− + λ+)
(λ+λ−Q2

1 + Q2
2) + imαQ1Q2

]
(6.15)

and is apparently finite or normalizable, because the first term in the exponential is negative.

The eigenstate |N̄+, N̄−� of the eigenvalues N̄ = (N̄+, N̄−) is now given by

|N+, N−� =
a†
+√

N+!
a†
−√

N−!
|Ω� (6.16)

while the norm of the (0, 1) state is

< 0, 1|0, 1 > = �Ω| α−α†
− |Ω�

= �Ω| (1 − α†
−α−) |Ω�

= < Ω|Ω >

= 1 (6.17)

ie. it is not a ghost.

In the correct physical interpretation (II) the correspondence principle between the classical
and quantum states is preserved, but the system has indefinite energy. When interactions
are switched on, mixing the negative and positive energy states would lead to instabilities in
the classical theory, and the exponentially growing and decaying states in quantum theory
(25; 26). Excluding the negative energy states would lead to the loss of unitarity (21).

7. Path integral quantization and Forman theorem

The idea of ref. (21) is to define the quantum theory of the PU oscillator as the Euclidean path
integral and then Wick rotate it back to Minkowski case. It makes sense since the Euclidean
action of the PU oscillator — see eq. (8.3) below — is positively definite. It can also make
the difference to the canonical quantization and the Ostrogradski method (Sec. 2) when one
integrates over the path only, but not over its derivatives.
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Let us first recall some basic facts about a path integral in QFT, according to the standard
textbooks in Quantum Field Theory – see, for example, ref. (27).

The definition of the probability amplitude for a one-dimensional quantum particle by
Feynman path integral is given by

Z(qb, tb; qa, ta) =
∫ qb

qa

Dq exp
[

i
h̄

∫ tb

ta

dtL
]

(7.1)

where the integration goes over all paths q(t) between qa and qb. After Wick rotation

t → t = −iτ (7.2)

the path integral takes the form2

Z(qb, tb; qa, ta) =
∫ qb

qa

Dq exp
[
− 1

h̄

∫ τb

τa

dτLE

]
(7.3)

It is called the Euclidean path integral. In the case of the PU oscillator the Euclidean path
integral is Gaussian. Let us recall some basic properties of the Gaussian integrals.

The simplest Gaussian integral reads
∫ ∞

−∞
dxe−ax2

=

√
π

a
a > 0 (7.4)

It can be easily extended to a quadratic form in the exponential as
∫ ∞

−∞
dxe−ax2−bx =

√
π

a
exp

(
b2

4a

)
(7.5)

It can also be easily extended to the case of several variables with the diagonal quadratic form
as ∫ ∞

−∞
[dnx] exp

(
−

n

∑
i=1

aix2
i

)
=

1

∏n
i=1 a

1
2
i

(7.6)

where we have introduced the normalized measure [dx] = dx/
√

π.

By diagonalizing a generic (non-degenerate) quadratic form, one can prove a general
finite-dimensional formula,

∫ ∞

∞
[dnx] exp

(
−xt Ax − btx

)
=

1
∏n

i=1 λi
exp

(
1
4

bt A−1b
)

(7.7)

=
1

detA
exp

(
1
4

bt A−1b
)

Finally, when formally sending the number of integrations to infinity, one gets the Gaussian
path integral,

∫ qb

qa

Dq exp
[
−

∫ tb

ta

dt(q(t)F(D)q(t) + q(t)J(t))
]

=
1√

DetF(D)
exp

[
−1

4

∫ tb

ta

dtJ(t)F−1(D)J(t)
]

(7.8)

2 The sign factor in the Wick rotation is chosen to make the path integral converging.
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where DetF(D) is now the functional determinant.

A generic functional determinant diverges since it is defined as the product of all the
eigenvalues in the spectrum of a differential operator. Therefore, one needs a regularization.
It is most convenient to use the zeta function regularization in our case — see, for example,
ref. (28) for a comprehensive account. The Riemann zeta function is defined by

ζ(s) =
∞

∑
n=1

1
ns (7.9)

in the convergence area of the series. It is then expanded for Re(s) > 1 by analytic
continuation. It is often useful to employ an integral representation of the zeta function in
the form

ζ(s) =
1

Γ(s)

� ∞

0
dt ts−1

∞

∑
n=1

e−nt (7.10)

where the (Euler) gamma function has been introduced,

Γ(s) =
� ∞

0
dt ts−1e−t (7.11)

Equation (7.10) allows one to define the zeta function for an elliptic operator L as

ζ(s|L) = 1
Γ(s)

� ∞

0
dt ts−1tre−tL (7.12)

where tre−tL is given by

tre−tL = tr

⎛
⎜⎜⎜⎝

e−λ1t

e−λ2t

. . .

⎞
⎟⎟⎟⎠ =

∞

∑
n=1

e−λnt (7.13)

in terms of the positive eigenvalues λn of L. One easily finds

ζ(s|L) =
∞

∑
n=1

1
λs

n
=

∞

∑
n=0

e−s ln λn (7.14)

Differentiating both sides of this equation with respect to s at s = 0, one finds

dζ(s|L)
ds

����
s=0

= −
∞

∑
n=1

ln λn

= − ln
∞

∏
n=1

λn

= − ln DetL (7.15)

so that the functional determinant of an elliptic operator L is given by

DetL = e−ζ � |s=0 (7.16)
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The zeta function regularization of the right hand side of this equation is

ln Det
L(�)
μ2 = −1

�
ζ

�
�

����
L

μ2

�
= − 1

Γ(� + 1)

� ∞

0
dt t�−1tre

−t L
μ2

= −1
�

∞

∑
n=1

1�
λn
μ2

�� = −μ2�

�

∞

∑
n=1

1
λ�

n
= −μ2�

�
ζ(�|L)

= −1
�
(1 + � ln μ2)(ζ(0|L) + �ζ �(0|L)) + O(�2)

= −1
�

ζ(0|L)− ζ �(0|L)− ln μ2ζ(0|L) + O(�2) (7.17)

where we have introduced the regularization parameter � and the dimension parameter μ.

The zeta-function renormalization amounts to deleting the first term in eq. (7.17), since it
UV-diverges in the limit � → 0, as well as the third term since it IR-diverges in the limit
μ → 0.

To put equation (7.17) into a more explicit form, without resorting to the spectrum of the
differential operator, it is convenient to use Forman’s theorem (24): 3

Let KA and K̄ ¯A are the differential operators defined by
�

K = P0(τ)
dn

dτn + O( dn−1

dτn−1 )

K̄ = P0(τ)
dn

dτn + O( dn−1

dτn−1 )
(7.18)

over the domain [0, T]. Consider a linear differential equation

Kh(τ) = 0 (7.19)

with a boundary condition

A : M

⎛
⎜⎜⎜⎝

h(0)
h(1)(0)

...
h(n−1)(0)

⎞
⎟⎟⎟⎠+ N

⎛
⎜⎜⎜⎝

h(0)
h(1)(0)

...
h(n−1)(0)

⎞
⎟⎟⎟⎠ = 0 (7.20)

and take the boundary condition ¯A to be smoothly connected to A . The time evolution
operator YK(τ) is introduced as

⎛
⎜⎝

h(τ)
...

h(n−1)(τ)

⎞
⎟⎠ = YK(τ)

⎛
⎜⎝

h(0)
...

h(n−1)(0)

⎞
⎟⎠ (7.21)

so that the boundary condition can be written to

(M + NYK(T))

⎛
⎜⎝

h(0)
...

h(n−1)(0)

⎞
⎟⎠ = 0 (7.22)

3 Forman theorem is an extension of the Gel’fand-Yaglom theorem.
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The Forman theorem is given by the statement:

DetKA

DetK̄ ¯A
=

det (M + NYK(T))
det (M̄ + N̄YK̄(T))

(7.23)

This theorem is effective for finding the functional determinant of the operator K with
unknown spectrum by connecting it to the one with a simple spectrum via changing the
boundary conditions.

8. Path integral of PU oscillator

The Euclidean path integral of the PU oscillator over a domain [0, T] was calculated in
refs. (21–23). Here we confirm the results of ref. (22) by our calculation.

The path integral of PU oscillator with the action

SPU =
∫ T

0
dt

(
1
2

q̇(t)2 − m2

2
q(t)2 − α2

2
q̈(t)2

)
(8.1)

after the Wick rotation (t → it) takes the form

Z(qT , T; q0, 0) =
∫ qT

q0

Dq exp (−SE) (8.2)

where the Euclidean PU action is given by

SE =
∫ T

0
dt

(
1
2

q̇(t)2 +
m2

2
q(t)2 +

α2

2
q̈(t)2

)
(8.3)

This SE is positively definite, so that the Euclidean path integral is well defined.

Since our discussion of the classical theory (Sec. 4), the integral trajectory is a sum of a classical
trajectory qcl and quantum fluctuations q̂, q = qcl + q̂. Accordingly, the action can be also
written down as a sum,

SE[q] = Scl + S[q̂] (8.4)

and the path integral of the PU oscillator takes the form

Z(qT , T; q0, 0) = e−Scl

∫ 0

0
D q̂ exp (−S[q̂]) (8.5)

where the quantum action S[q̂] is given by

S[q̂] =
1
2

∫ T

0
dt q̂

(
α2 d4

dt4 − d2

dt2 + m2

)
q̂ (8.6)

after integration by parts.

Let us denote the differential operator α2 d4

dt4 − d2

dt2 + m2 with the boundary condition A as
KA . Then the path integral can be written down in the form

Z(qT , T; q0, 0) = e−Scl

∫ 0

0
D q̂ exp

(
−1

2

∫ T

0
dt q̂KA q̂

)
(8.7)
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(
−1

2

∫ T

0
dt q̂KA q̂

)
(8.7)
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The path integral of the PU oscillator is Gaussian and, therefore, can be computed along the
lines of Sec. 7 as

Z(qT , T; q0, 0) =
N√

DetKA
exp (−Scl) (8.8)

where N is the normalization constant. The classical part Scl was found in ref. (21), and it is
quite involved. The functional determinant is the key part of a quantum propagator of PU
oscillator, which is of primary physical interest. It can be computed by the use of Forman
theorem (Sec. 7).

First, one calculates the time evolution operator YK . It is given by

YK(t) =

⎛
⎜⎜⎝

u1(t) u2(t) u3(t) u4(t)
u̇1(t) u̇2(t) u̇3(t) u̇4(t)
ü1(t) ü2(t) ü3(t) ü4(t)...
u1(t)

...
u2(t)

...
u3(t)

...
u4(t)

⎞
⎟⎟⎠ (8.9)

where
Kui(t) = 0 (i = 1, . . . , 4) (8.10)

and the inital condition is
Yk(0) = 1 (8.11)

The operator K ¯A is equal to KA , so they have YK(t) is common.

By solving the equation Kui = 0 for ui with

K = α2 d4

dt4 − d2

dt2 + m2 (8.12)

one gets its general solution in the form

ui(t) = Ai sinh(λ+t) + Bi cosh(λ+t) + Ci sinh(λ−t) + Di cosh(λ−t) (8.13)

The boundary condition YK(0) = 1 amounts to the relations

Bi + Di = δ1i (8.14)

λ+Ai + λ−Ci = δ2i (8.15)

λ2
+Bi + λ2

−Di = δ3i (8.16)

λ3
+Ai + λ3

−Ci = δ4i (8.17)

Therefore, the solutions are

u1 =
λ2
−

λ2
− − λ2

+

cosh(λ+t) +
λ2
+

λ2
+ − λ2

−
cosh(λ−t) (8.18)

u2 =
λ2
−

λ+(λ2
− − λ2

+)
sinh(λ+t) +

λ2
+

λ2(λ
2
+ − λ2

−)
sinh(λ−t) (8.19)

u3 = − 1
λ2
− − λ2

+

cosh(λ+t)− 1
λ2
+ − λ2

−
cosh(λ−t) (8.20)

u4 = − 1
λ+(λ2

− − λ2
+)

sinh(λ+t) +
1

λ2(λ
2
+ − λ2

−)
sinh(λ−t) (8.21)

69Quantizing with a Higher Time Derivative



22 Will-be-set-by-IN-TECH

Next, one writes down the boundary conditions A and ¯A in terms of the matrices M and N
appearing in the Forman theorem. The boundary condition A is

A : q̂(0) = 0 , q̂(T) = 0 , ˙̂q(0) = 0 , ˙̂q(T) = 0 (8.22)

so that its matrices M and N are given by

M =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (8.23)

and

N =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ (8.24)

In the same way, the boundary condition ¯A is

¯A : q̂(0) = 0 , q̂(T) = 0 , ¨̂q(0) = 0 , ¨̂q(T) = 0 (8.25)

so that its matrices M and N are given by

M̄ =

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (8.26)

and

N̄ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠ (8.27)

Having found M, N and YK , as well as M̄, N̄ and YK̄ , we calculate

det(M + NYK(T))

=
α3

m

�
1

1 + 2mα
sinh2

�√
1 + 2mα

2α
T

�
− 1

1 − 2mα
sinh2

�√
1 − 2mα

2α
T

��
(8.28)

and

det(M̄ + N̄YK̄(T))

=
α

m

�
sinh2

�√
1 + 2mα

2α
T

�
− sinh2

�√
1 − 2mα

2α
T

��
(8.29)
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A calculation of DetK ¯A goes along the standard lines (21–23),

DetK ¯A =
∞

∏
n=1

kn =
∞

∏
n=1

�
α2

�nπ

T

�4
+

�nπ

T

�2
+ m2

�
(8.30)

=
α

mT2

�
sinh2

�√
1 + 2mα

2α
T

�
− sinh2

�√
1 − 2mα

2α
T

��
(8.31)

By using the Forman formula, one gets the final answer:

DetKA =
det (M + NYK(T))
det (M̄ + N̄YK̄(T))

DetK ¯A

=
α3

mT2

�
(1 + 2αm)−1 sinh2

�√
1 + 2mα

2α
T

�

−(1 − 2αm)−1 sinh2

�√
1 − 2mα

2α
T

��
(8.32)

in full agreement with ref. (22) in its last (v2) version. In the large T limit one finds

DetKA ≈ α

m

⎡
⎢⎣(1 + 2αm)−1

exp
�√

1 + 2mα T
α

�

�
2T
α

�2 − (1 − 2αm)−1
exp

�√
1 − 2mα T

α

�

�
2T
α

�2

⎤
⎥⎦ , (8.33)

and in the small T limit one gets

DetKA ≈ T2

12
+O(T4) (8.34)

The ground state probability amplitude (or the Euclidean quantum propagator) of PU
oscillator, is given by

< qT , q̇T ; τ = T|q0, q̇0; τ = 0 >=

�
2π

DetKA
exp (−SE[qcl ]) , (8.35)

The classical Euclidean action SE[qcl ] was calculated in Appendix of ref. (21). It is finite for
large T � 1 and behaves like 1

2T for small T � 1. Hence, the transition amplitude (or the
quantum Euclidean propagator) is exponentially suppressed both for small and large T, ie. the
transition amplitude is normalizable and the Euclidean path integral is well defined indeed.

9. Conclusion

The procedure of calculating Euclidean transition probabilities (for observables) in the
quantum PU theory was outlined in ref. (21). The probabilities in the Minkowski space can be
obtained by analytic continuation. It is, therefore, possible to make physical sense out of the
quantum PU theory.

In classical PU theory with interactions, even at a very small value of the parameter α > 0,
one gets runaway production of states with negative and positive energy. However, as
was suggested in ref. (21), the Euclidean formulation of the quantum theory implicitly
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imposes certain restrictions that can remove classical instabilities. The price of removing
the instabilities is given by an apparent violation of unitarity (21). Indeed, integrating over
the basic trajectory, and not over its derivatives in the Euclidean path integral formulation
of the quantum PU oscillator given above is not in line with the canonical quantization and
the Ostrogradski method. By doing it, one looses some information and, hence, one loses
unitarity. As was argued in ref. (21), one can, nevertheless, never produce a negative norm
state or get a negative probability, so that the departure from unitarity may be very small at
the low energies (say, in the present universe), but important at the very high energies (say, in
the early universe). Of course, it is debateable whether the ‘price’ of loosing unitarity is too
high or not.

Apparently, the f (R) gravity theories are special in the sense that for each of them there
exist the classically equivalent scalar-tensor field theory without higher derivatives, under the
physical stability conditions. Still, as the quantum field theories, they may be very different.
It may be possible to quantise f (R) gravity without loosing unitarity. Figuring out details is
still a challenge.
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Applications to Low-Energy Physics 



 



 

1. Introduction

The understanding of electroweak (EW) interactions in nuclei has played an important role in
nuclear and particle physics. Previously, the electromagnetic (EM) interaction has provided
valuable information about nuclear structure. On the other hand, weak interactions, which
are intrinsically correlated with the EM interaction, can be complementary to the EM probe.
Moreover, a good knowledge of (anti)neutrino–nucleus scattering cross sections is needed
in other processes, including neutrino-oscillation experiments, neutrino astrophysics, and
others.

To understand EW interactions in nuclei, we need to deal with the strong interaction
that binds nucleons together. The fundamental theory of the strong interaction is
quantum chromodynamics (QCD), which is a relativistic field theory with local gauge
invariance, whose elementary constituents are colored quarks and gluons. In principle, QCD
should provide a complete description of nuclear structure and dynamics. Unfortunately,
QCD predictions at nuclear length scales with the precision of existing (and anticipated)
experimental data are not available, and this state of affairs will probably persist for some
time. Even if it becomes possible to use QCD to describe nuclei directly, this description is
likely to be cumbersome and inefficient, since quarks cluster into hadrons at low energies.

How can we make progress towards understanding the EW interactions of nuclei? We will
employ a framework based on Lorentz-covariant, effective quantum field theory and density
functional theory. Effective field theory (EFT) embodies basic principles that are common
to many areas of physics, such as the natural separation of length scales in the description
of physical phenomena. In EFT, the long-range dynamics is included explicitly, while the
short-range dynamics is parameterized generically; all of the dynamics is constrained by the
symmetries of the interaction. When based on a local, Lorentz-invariant lagrangian (density),
EFT is the most general way to parameterize observables consistent with the principles of
quantum mechanics, special relativity, unitarity, gauge invariance, cluster decomposition,
microscopic causality, and the required internal symmetries.

Covariant meson–baryon effective field theories of the nuclear many-body problem (often
called quantum hadrodynamics or QHD) have been known for many years to provide
a realistic description of the bulk properties of nuclear matter and heavy nuclei. [See
Refs. (Furnstahl, 2003; Serot & Walecka, 1986; 1997; Serot, 2004), for example.] Some time
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ago, a QHD effective field theory (EFT) was proposed (Furnstahl et al., 1997) that includes all
of the relevant symmetries of the underlying QCD. In particular, the spontaneously broken
SU(2)L ⊗ SU(2)R chiral symmetry is realized nonlinearly. The motivation for this EFT and
illustrations of some calculated results are discussed in Refs. (Furnstahl et al., 1997; Hu et al.,
2007; Huertas, 2002; 2003; 2004; McIntire et al., 2007; McIntire, 2008; Serot, 2007; 2010), for
example. This QHD EFT has also been applied to a discussion of the isovector axial-vector
current in nuclei (Ananyan et al., 2002).

This QHD EFT has three desirable features: (1) It uses the same degrees of freedom to describe
the currents and the strong-interaction dynamics; (2) It respects the same internal symmetries,
both discrete and continuous, as the underlying QCD; and (3) Its parameters can be calibrated
using strong-interaction phenomena, like π N scattering and the properties of finite nuclei (as
opposed to EW interactions with nuclei).

In this work, we focus on the introduction of EW interactions in the QHD EFT, with the Delta
(1232) resonance (Δ) included as manifest degrees of freedom. To realize the symmetries
of QCD in QHD EFT, including both chiral symmetry SU(2)L ⊗ SU(2)R and discrete
symmetries, we apply the background-field technique (Gasser & Leutwyler, 1984; Serot,
2007). Based on the EW synthesis in the Standard Model, a proper substitution of background
fields in terms of EW gauge bosons in the lagrangian, as constrained by the EW interactions
of quarks (Donoghue et al., 1992), leads to EW interactions of hadrons at low energy. This
lagrangian has a linear realization of the SU(2)V isospin symmetry and a nonlinear realization
of the spontaneously broken SU(2)L ⊗ SU(2)R (modulo SU(2)V) chiral symmetry (when the
pion mass is zero). It was shown in Ref. (Furnstahl et al., 1997) that by using Georgi’s naive
dimensional analysis (NDA) (Georgi, 1993) and the assumption of naturalness (namely, that
all appropriately defined, dimensionless couplings are of order unity), it is possible to truncate
the lagrangian at terms involving only a few powers of the meson fields and their derivatives,
at least for systems at normal nuclear densities (Müller & Serot, 1996). It was also shown
that a mean-field approximation to the lagrangian could be interpreted in terms of density
functional theory (Kohn, 1999; Müller & Serot, 1996; Serot & Walecka, 1997), so that calibrating
the parameters to observed bulk and single-particle nuclear properties (approximately)
incorporates many-body effects that go beyond Dirac–Hartree theory. Explicit calculations
of closed-shell nuclei provided such a calibration and verified the naturalness assumption.
This approach therefore embodies the three desirable features needed for a description of
electroweak interactions in the nuclear many-body problem.

Moreover, the technical issues involving spin-3/2 degrees of freedom in relativistic quantum
field theory are also discussed here (Krebs et al., 2010; Pascalutsa, 2008). Following the
construction of the lagrangian, we apply it to calculate certain matrix elements to illustrate the
consequences of chiral symmetries in this theory, including the conservation of vector current
(CVC) and the partial conservation of axial-vector current (PCAC). To explore the discrete
symmetries, we talk about the manifestation of G parity in these current matrix elements.

This chapter is organized as follows: After a short introduction, we discuss chiral symmetry
and discrete symmetries in QCD in the framework of background fields. The EW interactions
of quarks are also presented, and this indicates the relation between the EW bosons and
background fields. Then we consider the nonlinear realization of chiral symmetry and other
symmetries in QHD EFT, as well as the EW interactions. Following that, we outline the
lagrangian with the Δ included. Subtleties concerning the number of degrees of freedom
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and redundant interaction terms are discussed. Finally, some concrete calculations of
matrix elements serve as examples and manifestations of symmetries in the theory. We
also briefly touch on how this formalism can be used to study neutrino–nucleus scattering
(Serot & Zhang, 2010; 2011a;b; Zhang, 2012).

2. QCD, symmetries, and electroweak synthesis

In this section, we talk about various symmetries in QCD including Lorentz-invariance, C, P,
and T symmetries, and approximate SU(2)L ⊗ SU(2)R chiral symmetry (together with baryon
number conservation). The last one is the major focus. Here, we consider only u and d quarks,
and their antiquarks, while others are chiral singlets. Moreover, the EW interactions, realized
in the electroweak synthesis of the Standard Model, are also discussed with limited scope.

2.1 Symmetries

To consider the symmetries, we apply the background-field technique (Gasser & Leutwyler,
1984). First we introduce background fields into the QCD lagrangian, including vμ ≡ viμτi/2
(isovector vector), vμ

(s) (isoscalar vector), aμ ≡ aiμτi/2 (isovector axial-vector), s ≡ siτi/2

(isovector scalar), and p ≡ piτi/2 (isovector pseudoscalar), where i = x, y, z or + 1, 0,−1 (the
convention about i = ±1, 0 will be shown in Sec. 3.1):

L = LQCD + qγμ(v
μ + Bvμ

(s) + γ5a
μ)q − q(s− iγ5p)q

= LQCD + qLγμ(lμ + Bvμ

(s))qL + qRγμ(rμ + Bvμ

(s))qR

− qL(s− ip)qR − qR(s+ ip)qL

≡ LQCD + Lext . (1)

Here, rμ = vμ + aμ, lμ = vμ − aμ, qL = 1
2 (1 − γ5) q, qR = 1

2 (1 + γ5) q, q = (u , d)T and
B = 1/3 is the baryon number. To preserve C, P, and T invariance of L, the change of
background fields under these discrete symmetry transformations are determined by the the
properties of the currents coupled to them. The details are in Tabs. 1 and 2. Inside the tables,
Pμ

ν = diag(1,−1,−1,−1)μν and T μ
ν = diag(−1, 1, 1, 1)μν. Moreover, the Lorentz-invariance

is manifest, considering the definition of these background fields.

vμ v
μ
(s) aμ s p

C − vTμ −v
μ

(s) aTμ sT pT

P Pμ
ν v

ν Pμ
ν v

ν
(s) −Pμ

ν a
ν s −p

T − T μ
ν vν −T μ

ν vν
(s) −T μ

ν aν s −p

Table 1. Transformations of background fields under C, P, and T operations. The
transformations of spacetime arguments are not shown here.
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rμ lμ fRμν fLμν fsμν

C − lTμ −rTμ − f T
Lμν − f T

Rμν − f T
sμν

P Pμ
ν lν Pμ

ν rν Pλ
μPσ

ν fLλσ Pλ
μPσ

ν fRλσ Pλ
μ Pσ

ν fsλσ

T − T μ
ν rν −T μ

ν lν −T λ
μ T σ

ν fRλσ −T λ
μ T σ

ν fLλσ −T λ
μ T σ

ν fsλσ

Table 2. Continuation of Tab. 1.

To understand SU(2)L ⊗ SU(2)R ⊗ U(1)B symmetry, we can see that the L defined in Eq. (1)
has this symmetry with the following local transformation rules:

qLA → exp
[
−i

θ(x)
3

](
exp

[
−iθLi(x)

τi

2

]) B

A

qLB ≡ exp
[
−i

θ(x)
3

]
(L) B

A qLB , (2)

qR → exp
[
−i

θ(x)
3

]
exp

[
−iθRi(x)

τi

2

]
qR ≡ exp

[
−i

θ(x)
3

]
RqR , (3)

lμ → L lμL† + iL ∂μL† , (4)

rμ → R rμR† + iR ∂μR† , (5)

v
μ

(s) → v
μ

(s) − ∂μθ , (6)

s+ ip → R(s+ ip)L† . (7)

We can also construct field strength tensors that transform homogeneously:

fLμν ≡ ∂μlν − ∂νlμ − i
[
lμ , lν

]
→ L fLμνL† , (8)

fRμν ≡ ∂μrν − ∂νrμ − i
[
rμ , rν

]
→ R fRμνR† , (9)

fsμν ≡ ∂μv(s)ν − ∂νv(s)μ → fsμν . (10)

2.2 Electroweak synthesis

Now we can discuss the electroweak synthesis (SUL(2) ⊗ UY(1)) of the Standard Model,
which is mostly summarized in Tab. 3 (electric charge Q = Y/2 + T3

L) (Donoghue et al., 1992;
Itzykson & Zuber, 1980). We ignore the Higgs fluctuations and gauge boson self-interactions:

LI = −qLγμ(g
τi
2

Wi
μ + g�

Y
2

Bμ)qL − qRγμ(g�
Y
2

Bμ)qR

= −qLγμg(
τ+1

2
W+1

μ +
τ−1

2
W−1

μ )qL − qLγμ(g
τ0
2

W0
μ + g�

Y
2

Bμ)qL

− qRγμ(g�
Y
2

Bμ)qR . (11)
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TL T3
L Q Y B

uL
1
2

1
2

2
3

1
3

1
3

dL
1
2 − 1

2 − 1
3

1
3

1
3

uR 0 0 2
3

4
3

1
3

dR 0 0 − 1
3 − 2

3
1
3

Table 3. Multiplets in electroweak synthesis.

Here g, g� and e are the SU(2)L, U(1)Y and U(1)EM charges. To make sure that UEM(1) is
preserved, we impose the following redefinition of excitations relative to the vacuum (θw is
the weak mixing angle):

Bμ = cos θw Aμ − sin θwZμ , (12)

W0μ = cos θwZμ + sin θw Aμ , (13)

g sin θw = g� cos θw ≡ e . (14)

After substituting Eqs. (12) to (14) into Eq. (11), we have the right coupling for the EM
interaction. Let’s compare Eq. (11) with Eq. (1); we deduce the following (Vud describes u
and d mixing):

lμ = −e
τ0

2
Aμ +

g
cos θw

sin2 θw
τ0

2
Zμ

− g
cos θw

τ0

2
Zμ − gVud

(
W+1

μ
τ+1

2
+ W−1

μ
τ−1

2

)
, (15)

rμ = −e
τ0

2
Aμ +

g
cos θw

sin2 θw
τ0

2
Zμ , (16)

v(s)μ = −e
1
2

Aμ +
g

cos θw
sin2 θw

1
2

Zμ . (17)

Furthermore,

fLμν = −e
τ0

2
A[ν,μ] +

g
cos θw

sin2 θw
τ0

2
Z[ν,μ] −

g
cos θw

τ0

2
Z[ν,μ]

− gVud
τ+1

2
W+1[ν,μ]− gVud

τ−1

2
W−1[ν,μ]

+ interference terms including (WZ), (WA), (WW), but no (ZA) , (18)

fRμν = −e
τ0

2
A[ν,μ] +

g
cos θw

sin2 θw
τ0

2
Z[ν,μ] (no interference terms) , (19)

fsμν = −e
1
2

A[ν,μ] +
g

cos θw
sin2 θw

1
2

Z[ν,μ] . (20)
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Here A[ν,μ] ≡ ∂μ Aν − ∂ν Aμ and so are the indices of other fields. If we define [see Eq. (1)]

Lext ≡ viμViμ − aiμ Aiμ + v(s)μJBμ

= JL
iμ liμ + JR

iμ riμ + v(s)μJBμ , (21)

LI = −eJEM
μ Aμ − g

cos θw
JNC
μ Zμ − gVud JL

+1μW+1μ − gVud JL
−1μW−1μ , (22)

and use Eqs. (15) to (17), we can discover

JL
iμ ≡ 1

2
(Viμ + Aiμ) , (23)

JR
iμ ≡ 1

2
(Viμ − Aiμ) , (24)

JEM
μ = V0

μ +
1
2

JB
μ , (25)

JNC
μ = JL0

μ − sin2 θw JEM
μ . (26)

Here JB
μ is the baryon current, defined to be coupled to v

μ

(s). These relations are consistent

with the charge algebra Q = T0 + B/2 (B is the baryon number). Viμ and Aiμ are the
isovector vector current and the isovector axial-vector current, respectively. JNC

μ , JL
±1μ are

the conventional neutral current (NC) and charged current (CC) up to normalization factors.

3. QHD EFT, symmetries, and electroweak interactions

Here we present parallel discussions about QHD EFT’s symmetries and EW interactions.
The QHD EFT, as an EFT of QCD at low energy, should respect all the symmetries of
QCD. Moreover, the approximate global chiral symmetry SU(2)L ⊗ SU(2)R ⊗ U(1)B in two
flavor QCD is spontaneously broken to SU(2)V ⊗ U(1)B, and is also manifestly broken due
to the small masses of the quarks. To implement such broken global symmetry in the
phenomenological lagrangian using hadronic degrees of freedom, it was found that there
exists a general nonlinear realization of such symmetry (Callan et al., 1969; Coleman et al.,
1969; Weinberg, 1968). Here, we follow the procedure in Ref. (Gasser & Leutwyler, 1984). The
discussion about the conventions is presented first.

3.1 Conventions

In this work, the metric gμν = diag(1,−1,−1,−1)μν, and for the Levi–Civita symbol �μναβ, the
convention is �0123 = 1. Since we are going to talk about the Δ, which is the lowest isospin I =
3/2 nucleon resonance, we define the conventions for isospin indices. The following example,
which shows the relation between two isospin representations for Δ, may help explain the
convention:

Δ∗a ≡ Ta
iAΔ∗iA . (27)

Here a = ±3/2,±1/2, i = ±1, 0, and A = ±1/2. The upper components labeled as ‘a’,
‘i’, and ‘A’ furnish D(3/2), D(1), and D(1/2) representations of the isospin SU(2) group. (We
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work with spherical vector components for I = 1 isospin indices, which requires some care
with signs.) We can immediately realize that Ta

iA = �1, 1
2 ; i, A| 3

2 ; a�, which are CG coefficients.
It is well known that the complex conjugate representation of SU(2) is equivalent to the
representation itself, so we introduce a metric linking the two representations to raise or lower
the indices a, i, and A. For example, Δa ≡ (Δ∗a)∗ = T† iA

a ΔiA, where T† iA
a = � 3

2 ; a|1, 1
2 ; i, A�,

should also be able to be written as

Δa = TiA
a ΔiA ≡ Tb

jB δ̃ba δ̃ji δ̃BA ΔiA . (28)

Here, δ̃ denotes a metric for one of the three representations. It can be shown that in this
convention, T† iA

a = TiA
a . Details about the conventions are given in Appendix 7.A.

3.2 QHD’s symmetry realizations

Now we proceed to discuss a low-energy lagrangian involving NA, Δa, πi, ρi
μ, and the chiral

singlets Vμ and φ (Furnstahl et al., 1997; Serot & Walecka, 1997). Under the transformations
shown in Eqs. (2) to (7), the symmetry is realized nonlinearly in terms of hadronic degrees of
freedom (Gasser & Leutwyler, 1984):

U ≡ exp
[

2i
πi(x)

fπ
ti
]
→ LUR† , (29)

ξ ≡
√

U = exp
[

i
πi
fπ

ti
]
→ Lξh† = h ξR† , (30)

ṽμ ≡ −i
2
[ξ†(∂μ − ilμ)ξ + ξ(∂μ − irμ)ξ

†] ≡ ṽiμti → h ṽμh† − ih ∂μh† , (31)

ãμ ≡ −i
2
[ξ†(∂μ − ilμ)ξ − ξ(∂μ − irμ)ξ

†] ≡ ãiμti → h ãμh† , (32)

∂̃μU ≡ ∂μU − ilμU + iUrμ → L ∂̃μUR† , (33)

(∂̃μψ)α ≡ (∂μ + i ṽμ − iv(s)μB) β
α ψβ → exp [−iθ(x)B] h β

α (∂̃μψ)β , (34)

ṽμν ≡ −i[ãμ , ãν] → h ṽμνh† , (35)

F(+)
μν ≡ ξ† fLμν ξ + ξ fRμν ξ† → hF(+)

μν h† , (36)

F(−)
μν ≡ ξ† fLμν ξ − ξ fRμν ξ† → hF(−)

μν h† , (37)

∂̃λF(±)
μν ≡ ∂λF(±)

μν + i[ṽλ , F(±)
μν ] → h ∂̃λF(±)

μν h† . (38)

In the preceding equations, ti are the generators of reducible representations of SU(2).

Specifically, they could be generators of D(1/2)
N ⊕ D(1)

ρ ⊕ D(3/2)
Δ , which operate on

non-Goldstone isospin multiplets including the nucleon, ρ meson, and Δ. We generically label
these fields by ψα = (NA, ρi, Δa)α. Most of the time, the choice of ti is clear from the context.
B is the baryon number of the particle. The transformations of the isospin and chiral singlets
Vμ and φ are trivial (φ → φ, Vμ → Vμ). h is generally a local SU(2)V matrix. We also make
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use of the dual field tensors, for example, F (±)μν ≡ �μναβF(±)
αβ , which have the same chiral

transformations as the ordinary field tensors. Here we do not include the background fields s
and p mentioned in Eq. (1), which are the source of manifest chiral-symmetry breaking in the
Standard Model.

The C, P, and T transformation rules are summarized in Tabs. 4 and 5. A plus sign
means normal, while a minus sign means abnormal, i.e., an extra minus sign exists in the
transformation. The convention for Dirac matrices sandwiched by nucleon and/or Δ fields are

CN ΓNC−1 =

{
−NT ΓT NT , normal ;

NT ΓT NT , abnormal .
(39)

C(Δ ΓN + N ΓΔ)C−1 =

{
−ΔT ΓT NT − NT ΓT ΔT , normal ;

+ΔT ΓT NT
+ NT ΓT ΔT , abnormal .

(40)

Ci(Δ ΓN − N ΓΔ)C−1 =

{
+iΔT ΓT NT − iNT ΓT ΔT , normal ;

−iΔT ΓT NT
+ iNT ΓT ΔT , abnormal .

(41)

Here, in Eqs. (39), (40), and (41), the extra minus sign arises because the fermion fields
anticommute. The factor of i in Eq. (41) is due to the requirement of Hermiticity of the
lagrangian. To make the analysis easier for Δ ΓN + C.C., we can just attribute a minus sign
to an i under the C transformation. Whenever an i exists, the lagrangian takes the form
i(Δ ΓN − N ΓΔ). When no i exists, the lagrangian is like Δ ΓN + N ΓΔ.

For P and T transformations, the conventions are the same for N and Δ fields, except for an
extra minus sign in the parity assignment for each Δ field (Weinberg, 1995a), so we list only
the N case:

PN ΓμNP−1 =

{
N Pν

μ Γν N , normal ;
−N Pν

μ Γν N , abnormal .
(42)

TN ΓμNT−1 =

{
N T ν

μ Γν N , normal ;
−N T ν

μ Γν N , abnormal .
(43)

It is easy to generalize these results to Γμν, etc.

Now a few words about isospin structure are in order. Suppose an isovector object is denoted
as Oμ ≡ Oiμti, then the conventions are explained below:

COμC−1 =

{
OT

μ , normal ;
−OT

μ , abnormal .
(44)

POμP−1 =

{
Pν

μOν , normal ;
−Pν

μOν , abnormal .
(45)

TOμT−1 =

{
T ν

μ Oν , normal ;
−T ν

μ Oν , abnormal .
(46)
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γμ σμν 1 γμγ5 iγ5 i i
↔
∂ �μναβ

C − − + + + − − +

P + + + − − + + −
T − − + − − − − −

Table 4. Transformation properties of objects under C, P, and T. Here ‘+’ means normal and
‘−’ means abnormal.

ãμ ṽμ ṽμν ρμ ρμν ρμν Vμ Vμν Vμν F(±)
μν fsμν F (±)

μν f sμν

C + − − − − − − − − ∓ − ∓ −
P − + + + + − + + − ± + ∓ −
T − − − − − + − − + − − + +

Table 5. Continuation of Tab. 4.

The same convention applies to the isovector (pseudo)tensors. For isovector (pseudo)scalars,
the P and T should be changed to 1. For the C transformation, OT means transposing both
isospin and Dirac matrices in the definition of O, if necessary.

3.3 QHD EFT lagrangian (without Δ) and electroweak interactions

Now we begin to discuss the QHD EFT lagrangian. Based on the symmetry transformation
rules discussed above, we can construct the lagrangian as an invariant of these
transformations by using the building blocks shown in Eqs. (29) to (38). In principle, there are
an infinite number of possible interaction terms in this lagrangian. However, power counting
(Furnstahl et al., 1997; Hu et al., 2007; McIntire et al., 2007) and Naive Dimensional Analysis
(NDA) (Georgi & Manohar, 1984; Georgi, 1993) enable us to truncate this series of interactions
to achieve a good approximation. Following the discussion in Ref. (Furnstahl et al., 1997), we
associate with each interaction term a power-counting index:

ν̂ ≡ d +
n
2
+ b . (47)

Here d is the number of derivatives (small momentum transfer) in the interaction, n is the
number of fermion fields, and b is the number of heavy meson fields.

The QHD theory has been developed for some time. Details can be found in
Refs. (Furnstahl et al., 1997; Serot & Walecka, 1997; Serot, 2007). Here, we give a complete
treatment of electroweak interactions in this theory. (However, we do not discuss “seagull” terms
of higher order in the couplings.) We begin with

LN(ν̂� 3) = N(iγμ[∂̃μ + igρρμ + igvVμ] + gAγμγ5 ãμ − M + gsφ)N

− fρgρ

4M
Nρμνσμν N − fvgv

4M
NVμνσμν N − κπ

M
N ṽμνσμνN

+
4βπ

M
NN Tr(ãμ ãμ) +

iκ1

2M2 Nγμ

↔
∂̃ν N Tr (ãμ ãν)

+
1

4M
Nσμν(2λ(0) fsμν + λ(1)F(+)

μν )N , (48)
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where ∂̃μ is defined in Eq. (34),
↔
∂̃ν ≡ ∂̃ν − (

←
∂ν − iṽν + iv(s)ν), and the new field tensors are

Vμν ≡ ∂μVν − ∂νVμ and

ρμν ≡ ∂[μρν] + igρ[ρμ , ρν] + i([ṽμ , ρν]− μ ↔ ν) → h ρμνh† . (49)

The superscripts (0) and (1) denote the isospin. In Appendix 7.B, details about the tilde objects
(which are defined exactly above) are shown explicitly in terms of pion and background fields.

Next is a purely mesonic lagrangian:

Lmeson(ν̂� 4) =
1
2

∂μφ ∂μφ +
1
4

f 2
π Tr[∂̃μU(∂̃μU)†] +

1
4

f 2
π m2

π Tr(U + U† − 2)

− 1
2

Tr(ρμνρμν)− 1
4

VμνVμν

+
1
2

(
1 + η1

gsφ

M
+

η2

2
g2

s φ2

M2

)
m2

v VμVμ +
1
4!

ζ0 g2
v(VμVμ)2

+

(
1 + ηρ

gsφ

M

)
m2

ρ Tr(ρμρμ)−
(

1
2
+

κ3

3!
gsφ

M
+

κ4
4!

g2
s φ2

M2

)
m2

s φ2

+
1

2gγ

(
Tr(F(+)μνρμν) +

1
3

f μν
s Vμν

)
. (50)

The ν = 3 and ν = 4 terms in Lmeson(ν̂� 4) are important for describing the bulk
properties of nuclear many-body systems (Furnstahl et al., 1995; 1996; 1997). The only
manifest chiral-symmetry breaking is through the nonzero pion mass. It is well known that
there are other ν̂ = 4 terms involving pion-pion interactions. Since multiple pion interactions
and chiral-symmetry-violating terms other than the pion mass term are not considered, this
additional lagrangian is not shown here.

Finally, we have

LN,π(ν̂= 4) =
1

2M2 Nγμ(2β(0)∂ν f μν
s + β(1)∂̃νF(+)μν + β

(1)
A γ5∂̃νF(−)μν)N

− ω1 Tr(F(+)
μν ṽμν) + ω2 Tr(ãμ∂̃νF(−)μν) + ω3 Tr

(
ãμi

[
ãν , F(+)μν

])

− gρππ
2 f 2

π

m2
ρ

Tr(ρμν ṽμν)

+
c1

M2 NγμN Tr
(

ãν F(+)
μν

)
+

e1

M2 Nγμ ãν N f sμν

+
c1ρgρ

M2 NγμN Tr
(

ãν ρμν

)
+

e1vgv

M2 Nγμ ãν N Vμν . (51)

Note that LN,π(ν̂= 4) is not a complete list of all possible ν̂ = 4 interaction terms. However, β(0)

and β(1) are used in the form factors of the nucleon’s vector current, ω1,2,3 contribute to the
form factor of the pion’s vector current, and gρππ is used in the form factors that incorporate
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M2 Nγμ ãν N Vμν . (51)

Note that LN,π(ν̂= 4) is not a complete list of all possible ν̂ = 4 interaction terms. However, β(0)

and β(1) are used in the form factors of the nucleon’s vector current, ω1,2,3 contribute to the
form factor of the pion’s vector current, and gρππ is used in the form factors that incorporate

84 Advances in Quantum Field Theory Electroweak Interactions in a Chiral Effective Lagrangian for Nuclei 11

vector meson dominance (VMD).1 Special attention should be given to the c1, e1, c1ρ, and
e1v couplings, since they are the only relevant ν̂ = 4 terms for NC photon production
(Serot & Zhang, 2011a;b).

The construction of these high-order terms, LN,π(ν̂= 4) for example, is carried out by
exhaustion. Based on the various symmetry transformation rules, at a given order there
are a finite number of interaction terms, although the number can be big. For example, the
interaction terms involving two pions and only one nucleon at ν̂ = 4 without chiral symmetry
breaking are (Ellis & Tang, 1998)

Nσμνi
↔
∂̃λ N Tr

(
∂̃λ ãμ ãν

)
and other contractions of Lorentz indices ,

Nγμi
[
∂̃μ ãν , ãν

]
N and other contractions of Lorentz indices .

3.4 Introducing Δ resonances

The pathologies of relativistic field theory with spin-3/2 particles have been investigated
in the canonical quantization framework for some time. There are two kinds of problems:
one is the so-called Johnson–Sudarshan problem (Capri & Kobes, 1980; Hagen, 1971;
Johnson & Sudarshan, 1961); the other one is the Velo–Zwanzinger problem (Capri & Kobes,
1980; Singh, 1973; Velo & Zwanziger, 1969). It was realized in (Kobayashi & Takahashi,
1987) that the two problems may both be related to the fact that the classical equation of
motion, as the result of minimizing the action, fails to eliminate redundant spin components,
because the invertibility condition of the constraint equation is not satisfied all the time. For
example, in the Rarita–Schwinger formalism, the representation of the field is ψμ: ( 1

2 , 1
2 ) ⊗(

( 1
2 , 0)⊕ (0, 1

2 )
)
= (1, 1

2 )⊕ ( 1
2 , 1)⊕ ( 1

2 , 0)⊕ (0, 1
2 ) (Weinberg, 1995b). It can be shown that the

spin-1/2 components are not dynamical in the free theory, which is generally not true after
introducing interactions. Another issue is about the so-called off-shell couplings, which have
the form γμψμ, ∂μψμ, ψ

μ
γμ, and ∂μψ

μ (still in the Rarita–Schwinger representation).

Recently, the problem has been investigated in a path-integral formalism in Ref. (Pascalutsa,
1998), where a gauge invariance is required for interactions. But this constraint conflicts
with the manifest nonlinear chiral-symmetry realization in chiral EFT. Subsequently,
in (Krebs et al., 2009; Pascalutsa, 2001), the authors realized that the commonly used
non-invariant interactions are related to gauge-invariant interactions by field redefinitions,
up to some contact interaction terms. Moreover, from the modern chiral EFT viewpoint,
it has been concluded (Krebs et al., 2010; Tang & Ellis, 1996) that the off-shell couplings are
redundant, since they lead to contributions to contact interactions without spin-3/2 degrees
of freedom. Furthermore, it has been proved that off-shell couplings with ∂μ changed to ∂̃μ

are also redundant, which makes the manifest realization of chiral symmetry possible with a
spin-3/2 particle.

However, the modern argument, which makes use of field redefinitions and gauge invariance
for the EFT, looks abstract. The whole argument is that the field redefinitions, constructed to
transform non-invariant terms to gauge-invariant terms, is applicable here, which requires us

1 VMD in QHD EFT has been discussed in detail in Ref. (Serot, 2007). We will discuss VMD for the form
factor of the transition current involving Δ and N.
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to be far away from the singularities of these transformations, i.e., to stay at low-energy and
in weak-field regions (Krebs et al., 2009). This leads us to give another interesting argument,
based directly on this assumption. In the Hamiltonian formalism, these two issues are
somewhat clarified,2 however the quantization of the EFT and hence Lorentz-invariance are
not straightforward. So we use the path-integral approach.

Let’s focus on the spin-3/2 propagator in the Rarita–Schwinger representation. First, we can
decompose the free propagator into different spin components:

S0μν
F (p) =

−( � p + m)

p2 − m2 + i�

[
gμν − 1

3
γμγν +

pμγν − pνγμ

3m
− 2

3m2 pμ pν

]

≡ − 1
� p − m + i�

P( 3
2 )μν − 1√

3m
P
( 1

2 )μν
12 − 1√

3m
P
( 1

2 )μν
21

+
2

3m2 ( � p + m)P
( 1

2 )μν
22 , (52)

P( 3
2 )μν = gμν − 1

3
γμγν +

1
3p2 γ[μpν] � p − 2

3p2 pμ pν , (53)

P
( 1

2 )μν
11 =

1
3

γμγν − 1
3p2 γ[μpν] � p − 1

3p2 pμ pν , (54)

P
( 1

2 )μν
12 =

1√
3p2

(−pμ pν + γμ pν � p) , (55)

P
( 1

2 )μν
21 =

1√
3p2

(pμ pν − γν pμ � p) , (56)

P
( 1

2 )μν
22 =

1
p2 pμ pν . (57)

By using the identities shown in Eqs. (114) to (119) in Appendix 7.C, we can immediately write
down

S0
F(p) = P( 3

2 )
−1

� p − m + i�
P( 3

2 )

+P( 3
2 ⊥)

[
− 1√

3m
P
( 1

2 )
12 − 1√

3m
P
( 1

2 )
21 + P

( 1
2 )

22
2

3m2 ( � p + m)P
( 1

2 )
22

]
P( 3

2 ⊥)

≡ S
0( 3

2 )
F + S

0( 3
2 ⊥)

F . (58)

2 In the perturbative calculation of EFT, the time-ordered free propagator defined in the Hamiltonian
formalism for a spin-3/2 particle always satisfies the constraint on the degrees of freedom. (Assume
we have a well defined Hamiltonian for the EFT.) For finite sums of the series of diagrams involving this
propagator, the constraint is always satisfied. Moreover, those off-shell terms when either contracted
to external legs or to the internal propagator of spin-3/2 degrees of freedom, give zero value. We may
conclude that they are redundant. However, it is not clear whether the two conclusions hold for infinite
sums. Moreover, as we know, the time-ordered propagator is not covariant, and leads to the difficulty
of understanding Lorentz-invariance.
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In principle, the decomposition shown in Eq. (58) should be obvious in the beginning, because
Lorentz-invariance is preserved. However the key is that only the spin-3/2 component has
pole structure, while the spin-1/2 components resemble contact vertices.

Furthermore, given certain interaction terms, we can carry out the calculation of the
self-energy insertion, as done in Ref. (Ellis & Tang, 1998), for example. Based on the same
argument as given above, the self-energy for renormalization should also be decomposed into
a diagonal form for the spin. The details are as follows. The self-energy of the Δ can be defined
as Σμν = ΣΔgμν + δΣμν. We see immediately that δΣμν’s indices can only have a structure like
the products of (γμ, pμ)× (Dirac matrices)× (γν, pν). Then we find

Σ = ΣΔg + δΣ (59)

= P( 3
2 )ΣΔgP( 3

2 ) + P( 3
2 ⊥)ΣP( 3

2 ⊥)

+ P( 3
2 )(ΣΔg + δΣ)P( 3

2 ⊥) + P( 3
2 ⊥)(ΣΔg + δΣ)P( 3

2 ) . (60)

So, we can conclude that Σ = P(3/2)ΣΔP(3/2) + P(3/2⊥)ΣP(3/2⊥) ≡ Σ(3/2) + Σ(3/2⊥). In the
proof, we make use of

[
P(3/2) , ΣΔ

]
= 0,

[
P(3/2⊥) , ΣΔ

]
= 0, because the only possible spin

structures of ΣΔ are 1, � p and γ5 (parity violation), which commute with the two projection
operators. Then P(3/2)ΣΔgP(3/2⊥) = 0 and P(3/2)⊥ΣΔgP(3/2) = 0. Also we make use of
Eqs. (115) and (116), so we get P(3/2)δΣP(3/2⊥) = 0 and P(3/2⊥)δΣP(3/2) = 0.

Based on previous discussions, we can have the following renormalization of the spin-3/2
propagator:

SF = (S
0( 3

2 )
F + S

0( 3
2 ⊥)

F ) + (S
0( 3

2 )
F + S

0( 3
2 ⊥)

F )(Σ( 3
2 ) + Σ( 3

2 ⊥))(S
0( 3

2 )
F + S

0( 3
2 ⊥)

F ) + . . .

= S
0( 3

2 )
F + S

0( 3
2 )

F Σ( 3
2 )S

0( 3
2 )

F + . . . (61)

+S
0( 3

2 ⊥)
F + S

0( 3
2 ⊥)

F Σ( 3
2 ⊥)S

0( 3
2 ⊥)

F + . . . . (62)

So the renormalized propagator is decomposed into two different components: SF ≡ S(3/2)
F +

S(3/2⊥)
F . The resonant contribution is S(3/2)

F = S0(3/2)
F + S0(3/2)

F Σ(3/2)S(3/2)
F . The background

contribution is S(3/2⊥)
F = S0(3/2⊥)

F + S0(3/2⊥)
F Σ(3/2⊥)S(3/2⊥)

F . The renormalization shifts the
pole position of the resonant part. For the nonresonant part, as long as power counting
is valid, i.e., O(Σ/m) � 1, we are away from any unphysical pole in the renormalized
nonresonant part; [1 − O(Σ/m)]−1 never diverges. This also suggests that we will not
see the unphysical pole in the renormalized propagator, when working in the low-energy
perturbative region. Meanwhile, the argument helps to clarify the redundancy of the off-shell
couplings. We have seen that the self-energy due to these couplings does not contribute in the

renormalization of S(3/2)
F . But it indeed changes the nonresonant part. However, the effect

is power expandable. So essentially it is the same as higher-order contact terms without the
Δ. This justifies the redundancy of these couplings. To ignore them in a way which does not
break chiral symmetry on a term-by-term basis, we can always associate the ∂μ with π fields
so that it becomes ∂̃μ. This indicates that those couplings having ∂̃μ or γμ contracted with Δμ can be
ignored without breaking manifest chiral symmetry.
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A few words on the singularity of 1/p2 are in order here. [See Eqs. (52) to (57).] The whole
calculation is only valid in the low-energy limit, and in this limit we should not find any
diagrams with Δ’s that are far “off shell". Take pion scattering for example; we assume the
pion energy to be small, and hence p2 is always roughly equal to the incoming nucleon’s
invariant mass. So the singularity in 1/p2 should not be a problem in the low-energy theory
from a very general perspective.

3.5 QHD with Δ

Consider first LΔ (ν̂ � 3), which is essentially a copy of the corresponding lagrangian for the
nucleon as shown in Eq. (48):

LΔ =
−i
2

Δ
a

μ {σμν , (i � ∂̃ − hρ �ρ − hv �V − m + hsφ)} b
a Δbν + h̃AΔ

a
μ � ã b

a γ5Δμ
b

− f̃ρhρ

4m
Δλ ρμνσμνΔλ − f̃vhv

4m
ΔλVμνσμνΔλ

− κ̃π

m
Δλ ṽμνσμνΔλ +

4β̃π

m
ΔλΔλ Tr(ãμ ãμ) . (63)

Here the sub- and superscripts a, b = (±3/2,±1/2), and the isospin conventions and T matrix
have been discussed in Sec. 3.1.

To produce the N ↔ Δ transition currents, we construct the following lagrangians (ν̂ � 4):

LΔ,N,π = hAΔ aμ
T† iA

a ãiμNA + C.C. , (64)

LΔ, N, background =
ic1Δ
M

Δ a
μ γνγ5 T† iA

a F(+)μν
i NA +

ic3Δ
M2 Δ a

μ iγ5 T† iA
a (∂̃νF(+)μν)i NA

+
c6Δ
M2 Δ a

λ σμνT† iA
a (∂̃λF(+)μν

)i NA

− d2Δ
M2 Δ a

μ T† iA
a (∂̃νF(−)μν)i NA − id4Δ

M
Δ a

μ γν T† iA
a F(−)μν

i NA

− id7Δ
M2 Δ a

λ σμνT† iA
a (∂̃λF(−)μν)iNA + C.C. , (65)

LΔ,N,ρ =
ic1Δρ

M
Δ a

μ γνγ5 T† iA
a ρ

μν
i NA +

ic3Δρ

M2 Δ a
μ iγ5 T† iA

a (∂̃νρμν)i NA

+
c6Δρ

M2 Δ a
λ σμν T† iA

a (∂̃λ ρ μν)i NA + C.C. . (66)

It can be checked that the interaction terms respect all of the required symmetries. Terms
omitted from these lagrangians are either redundant or are not relevant to the transition
interaction involving N and Δ (at tree level). The construction of terms is by means of
exhausting all the possibilities. Here we give an example:

ΔμγνN�μναβF(+)
αβ = 2iΔμγνγ5NF(+)μν + iF(+)

αβ Δμγ5(γ
μγαγβ − gαβγμ)N . (67)
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ΔλΔλ Tr(ãμ ãμ) . (63)

Here the sub- and superscripts a, b = (±3/2,±1/2), and the isospin conventions and T matrix
have been discussed in Sec. 3.1.

To produce the N ↔ Δ transition currents, we construct the following lagrangians (ν̂ � 4):

LΔ,N,π = hAΔ aμ
T† iA

a ãiμNA + C.C. , (64)

LΔ, N, background =
ic1Δ
M

Δ a
μ γνγ5 T† iA

a F(+)μν
i NA +

ic3Δ
M2 Δ a

μ iγ5 T† iA
a (∂̃νF(+)μν)i NA

+
c6Δ
M2 Δ a

λ σμνT† iA
a (∂̃λF(+)μν

)i NA

− d2Δ
M2 Δ a

μ T† iA
a (∂̃νF(−)μν)i NA − id4Δ

M
Δ a

μ γν T† iA
a F(−)μν

i NA

− id7Δ
M2 Δ a

λ σμνT† iA
a (∂̃λF(−)μν)iNA + C.C. , (65)

LΔ,N,ρ =
ic1Δρ

M
Δ a

μ γνγ5 T† iA
a ρ

μν
i NA +

ic3Δρ

M2 Δ a
μ iγ5 T† iA

a (∂̃νρμν)i NA

+
c6Δρ

M2 Δ a
λ σμν T† iA

a (∂̃λ ρ μν)i NA + C.C. . (66)

It can be checked that the interaction terms respect all of the required symmetries. Terms
omitted from these lagrangians are either redundant or are not relevant to the transition
interaction involving N and Δ (at tree level). The construction of terms is by means of
exhausting all the possibilities. Here we give an example:

ΔμγνN�μναβF(+)
αβ = 2iΔμγνγ5NF(+)μν + iF(+)

αβ Δμγ5(γ
μγαγβ − gαβγμ)N . (67)
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The preceding identity indicates that Δa
μγνT† iA

a F(+)μν
i NA differs from the c1Δ coupling in

Eq. (65) by off-shell terms, which can be ignored.

Moreover, the terms in the lagrangian in Eq. (66) and the 1/gγ coupling in Eq. (50) are
necessary for the realization of transition form factors using VMD. First, we make the
following definitions:

�Δ, a, pΔ |Viμ(Aiμ)|N, A, pN� ≡ T† iA
a uΔα(pΔ) Γαμ

V(A)
(q) uN(pN) . (68)

Based on the lagrangians given previously, formulas shown in Appendix 7.B, and the
definitions of currents in Eq. (21), we find (note that σμν�μναβ ∝ iσαβγ5)

Γαμ
V =

2c1Δ(q2)

M
(qαγμ− �qgαμ)γ5 +

2c3Δ(q2)

M2 (qαqμ − gαμq2)γ5

− 8c6Δ(q2)

M2 qασμνiqνγ5 ,

ciΔ(q
2) ≡ ciΔ +

ciΔρ

2gγ

q2

q2 − m2
ρ

i = 1, 3, 6, (69)

Γαμ
A = −hA

(
gαμ − qαqμ

q2 − m2
π

)
+

2d2Δ
M2 (qαqμ − gαμq2)− 2d4Δ

M
(qαγμ − gαμ �q)

− 4d7Δ
M2 qασμνiqν , (70)

where hA is from Eq. (64). Quite similar to the ciΔ(q2), we can introduce axial-vector meson
[a1(1260)] exchange into the axial transition current, which leads to a structure for the diΔ(q2)
that is similar to the vector transition current form factors. There is one subtlety associated
with the realization of hA(q2): with our lagrangian, we have the pion-pole contribution
associated only with the hA coupling, and all the higher-order terms contained in δhA(q2) ≡
hA(q2)− hA conserve the axial transition current. With the limited information about manifest
chiral-symmetry breaking, we ignore this subtlety and still use the form similar to the c1Δ(q2)
to parameterize hA(q2). The axial-vector meson couplings hΔa1 and diΔa1 are the combinations
of ga1 (a1 and isovector axial-vector external field coupling strength) and the coupling strength
of the Δa1 N interaction. ma1 is the ‘mass’ of the meson. So we have

hA(q
2) ≡ hA + hΔa1

q2

q2 − m2
a1

, (71)

diΔ(q
2) ≡ diΔ + diΔa1

q2

q2 − m2
a1

i = 2, 4, 7. (72)

To determine the coefficients in the transition form factors shown in Eqs. (69), (71), and
(72), we need to compare ours with the conventional ones used in the literature. In
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Refs. (Graczyk et al., 2009; Hernández et al., 2007) for example, the definition is

�Δ,
1
2
|jμ

cc+|N,− 1
2
� ≡ uα(pΔ)

{[
CV

3
M

(gαμ �q − qαγμ) +
CV

4
M2 (q · pΔ gαμ − qα pμ

Δ)

+
CV

5
M2 (q · pN gαμ − qα pμ

N)

]
γ5

+

[
CA

3
M

(gαμ �q − qαγμ) +
CA

4
M2 (q · pΔ gαμ − qα pμ

Δ)

+ CA
5 gαμ +

CA
6

M2 qμqα

]}
u(pN) . (73)

The basis given above is known to be complete. The determination of the couplings through
comparing our results with the conventional ones has been given in Ref. (Serot & Zhang,
2010). There we find that our meson dominance form factors are accurate up to Q2 ≈ 0.3 GeV2.
Moreover, CVC and PCAC can be easily checked for the transition currents. The details can
be found in Ref. (Serot & Zhang, 2010).

4. Application

In this section, we briefly discuss the weak production of pions from nucleons. We focus only
on two properties of the Feynman diagrams in this problem, including the G parity and the
current’s Hermiticity. Then we talk about the production from nuclei, in which Δ dynamics
is the key component (for both the interaction mechanism and the final state interaction of
the pion). This points out the importance of understanding the strong interaction, associated
with nuclear structure and Δ dynamics, in the study of the electroweak response of nuclei.
So it is necessary to have a framework that includes the two and also provides for efficient
calculations. The details of these subjects are presented in Refs. (Serot & Zhang, 2010) and
(Serot & Zhang, 2011a;b).

4.1 Weak production of pions from free nucleons

The relevant Feynman diagrams are shown in Fig. 1 for weak production of pions due to
(anti)neutrino scattering off free nucleons. The ‘C’ in the figure stands for various currents
including the vector current, axial current, and baryon current, of which both CC and NC
are composed according to Sec. 2.2. The details about these diagrams can be found in
(Serot & Zhang, 2010). Here we begin with G parity. We use �N, B, π, j|Jμ|N, A� to represent
the contribution of diagrams, where ‘A’ and ‘B’ denote isospin-1/2 projections. From G parity,
we have

GAiμG−1 = −Aiμ ,

GViμ(Jμ
B)G

−1 = Viμ(Jμ
B) .

By applying this to the current’s matrix elements, we get

�N, B, π, j|Aiμ|N, A� = �N, B, π, j|Aiμ|N, A� , (74)
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Fig. 1. Feynman diagrams for pion production. Here, C stands for various types of currents
including vector, axial-vector, and baryon currents. Some diagrams may be zero for some
specific type of current. For example, diagrams (a) and (b) will not contribute for the
(isoscalar) baryon current. Diagram (e) will be zero for the axial-vector current. The
pion-pole contributions to the axial current in diagrams (a) (b) (c) (d) and (f) are included in
the vertex functions of the currents.

�N, B, π, j|Viμ(Jμ
B)|N, A� = −�N, B, π, j|Viμ(Jμ

B)|N, A� . (75)

Eqs. (74) and (75) give a relation between a current’s matrix element involving nucleon states
and a matrix element involving antinucleon states. Because of the isospin symmetry, we can
define

�N, B, p f ; π, j, kπ | Aiμ |N, A, pi�

≡ δi
jδ

A
B u(p f )Γ

μ
sym(p f , kπ; pi , q)u(pi)

+ i�i
jk

(
τk

2

) A

B

u(p f )Γ
μ
asym(p f , kπ ; pi, q)u(pi) . (76)

Vector currents can be decomposed in the same way. From crossing symmetry, we can see

�N, B, p f ; π, j, kπ | Aiμ |N, A, pi�

= −δi
jδ

A
B v(pi)Γ

μ
sym(−pi, kπ;−p f , q)v(p f )

− i�i
jk

(
− τk

2

T)B

A

v(pi)Γ
μ
asym(−pi, kπ ;−p f , q)v(p f )

= δi
jδ

A
B u(p f )

(
−CΓTμ

sym(−pi, kπ;−p f , q)C
)

u(pi)

− i�i
jk

(
τk

2

) A

B

u(p f )
(
−CΓTμ

asym(−pi, kπ ;−p f , q)C
)

u(pi) . (77)
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In Eq. (77), the − 1
2 τkT

appears because antiparticles furnish the complex conjugate
representation. (It is equivalent to the original representation.) C is the charge conjugation
matrix applied to a Dirac spinor, i.e., ψC(x) = C(ψ(x))T. By comparing Eq. (77) with Eq. (74),
we have the following constraint on the axial current’s matrix element:

− CΓTμ
(a)sym(−pi, kπ;−p f , q)C = +

(−)
Γμ
(a)sym(p f , kπ ; pi, q) . (78)

Similarly, we have the following constraint on vector current’s matrix element:

− CΓTμ
(a)sym(−pi, kπ;−p f , q)C = −

(+)
Γμ
(a)sym(p f , kπ ; pi, q) . (79)

For the baryon current �N, B�, π, j|Jμ
B |N, A� ≡ ( 1

2 τj)
A

B� u(p f )Γ
μ
B(p f , kπ ; pi, q)u(pi), G parity

indicates

− CΓTμ
B (−pi, kπ ;−p f , q)C = −Γμ

B(p f , kπ ; pi, q) . (80)

Now we can see how adding a crossed diagram involving the Δ is necessary to satisfy G parity.
For example, let’s talk about the vector current’s matrix element. If we define it for diagrams
(a) and (b) in Fig. 1 as follows:

�Viμ�a ≡ Ta
BjT

† iA
a u f Γμ

dir(p f , kπ ; pi, q)ui , (81)

�Viμ�b ≡ Tai
BT† A

ja u f Γμ
cross(p f , kπ ; pi, q)ui . (82)

Then by using Eq. (98), we get [here we include only diagram (a) and (b) contributions]

Γμ
(a)sym =

2
3

(
Γμ

dir +
(−)

Γμ
cross

)
. (83)

By calculating the diagrams, it is straightforward to prove that

− CΓTμ
cross(−pi, kπ ;−p f , q)C = −Γμ

dir(p f , kπ ; pi, q) . (84)

This equation justifies the G parity of the vector current’s matrix elements. Other currents’
matrix elements can be justified in a similar way.

Now we discuss the Hermiticity of the current. Let’s consider �N, π out|Jμ|N, in�:

�N, p f , π, kπ, out|Jμ|N, pi, in�∗ = �N, pi, in|J†μ|N, p f , π, kπ , out�

�= �N, pi, out|J†μ|N, p f , π, kπ , in� . (85)

But how do we generally understand �i, in|O| f , out�? Naively, we would have the following:

�i, in|O| f , out� = �i|U(−∞, 0)U(0, t)o(t)U(t, 0)U(0,+∞)| f �

= �i|To(t) exp[i
∫

dtHI(t)]| f � . (86)
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Here O and o(t) are the operators in the Heisenberg and interaction pictures. T is another type
of time ordering: THI(t1)HI(t2) = θ(t2 − t1)HI(t1)HI(t2) + θ(t1 − t2)HI(t2)HI(t1). It is easy
to realize that in momentum space, if we mirror the pole of the T defined Green’s function,
and apply (−) to the overall Green’s function, we get the T defined Green’s function. Second,
each interaction vertex in the �i, in|O| f , out� calculation differs from that of �i, out|O| f , in� by
a (−) sign. Third, since now all the poles are in the first and third quadrants in the complex
momentum plane, the corresponding loop integration differs from the normal loop integration
by a (−) sign! So, without a rigorous proof, we have that after calculating �i, out|O| f , in�,
if we mirror all the poles relative to the real axis for the propagator and apply a phase
(−)(V−Vo)+I+L = (−)Vo−1 to it, then we get the corresponding �i, in|O| f , out�. Here V, Vo , I,
and L are the number of vertices in the graph, vertices in the operator O, internal lines, and
loops. For the current operator Jμ, Vo = 1 and hence the phase is (+).

Now let’s proceed to see the consequence of the Hermiticity of Jμ(x = 0), i.e., Jiμ† = Jμ
i :

�N, B, p f , π, j, kπ , out| Jiμ |N, A, pi , in�∗

= �N, A, pi, in|Jμ
i |N, B, p f , π, j, kπ , out�

= �N, A, pi, out|Jμ
i |N, B, p f , π, j, kπ , in�|pm

= δii�δ
jj� �N, A, pi, π, j�,−kπ, out|Ji�μ|N, B, p f , in�|pm . (87)

Here |pm indicates poles are mirrored with respect to the real axis. In the following, we
decompose the general current matrix element into symmetric and antisymmetric parts, as
we did in in Eq. (76):

�N, B, p f , π, j, kπ , out|Jiμ|N, A, pi, in�∗

= δ
j
i δB

A u(pi)Γ
μ
sym(p f , kπ ; pi, q)u(p f )− i� jk

i

( τk
2

) B

A
u(pi)Γ

μ
asym(p f , kπ ; pi, q)u(p f ) . (88)

Here, Γ = γ0Γ†γ0. Meanwhile, Eq. (87) can be rewritten as

�N, A, pi, π, j�,−kπ, out| Ji�μ |N, B, p f , in�|pm δii�δ
jj�

= δii�δ
jj�
[

δi�
j� δ

B
A u(pi)Γ

μ
sym(pi,−kπ; p f ,−q)u(p f )

+ i�i�
j�k

(
τk

2

) B

A

u(pi)Γ
μ
asym(pi,−kπ; p f ,−q)u(p f )

]

pm

= δ
j
i δB

A u(pi)Γ
μ
sym(pi,−kπ; p f ,−q)u(p f )|pm

+ i� jk
i

(τk
2

) B

A
u(pi)Γ

μ
asym(pi,−kπ; p f ,−q)u(p f )|pm . (89)

If we compare Eq. (88) with Eq. (89), we see the Hermiticity constraint is

γ0[Γμ

(a)sym(p f , kπ; pi , q)]†γ0 = +
(−)

Γμ

(a)sym(pi ,−kπ; p f ,−q)|pm . (90)
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Now let’s focus on the constraint on diagrams (a) and (b) in Fig. 1. We can check by calculating
diagrams:

Γμ
dir(p f , kπ ; pi, q) = Γμ

cross(pi,−kπ; p f ,−q)|pm . (91)

We can choose kinematics where no poles and cuts arise, i.e., there is no phase shift, and
then test the constraint without |pm. The preceding observation, with Eq. (83) taken into
account, leads to the satisfaction of the constraint in Eq. (90). The Hermiticity of the baryon
current can be studied in a similar way, and hence is not shown explicitly here. Moreover, it is
interesting to see that the higher-order contact terms satisfy the requirements due to G parity
and Hermiticity on a term-by-term basis.

4.2 Weak production of pions from nuclei, Δ dynamics

With the development of neutrino-oscillation experiments, precise knowledge about the
neutrino (antineutrino)-nuclei scattering cross sections is needed for the understanding of the
experiments’ background. Take MiniBooNE (Aguilar-Arevalo et al., 2009; 2010), for example;
the median energy of the neutrino (antineutrino) beam is around 0.6 (0.5) GeV, and the
high-energy tail extends up to 2 GeV. In this regime, the Δ is the most important resonance for
the interaction mechanism, except in the very low-energy region. Therefore, to understand
pion production, we need to study Δ dynamics in the nucleus. This subject has been
extensively discussed in the nonrelativistic framework (Hirata et al., 1976; Horikawa et al.,
1980; Oset & Salcedo, 1987), and it has also been initiated in the relativistic framework in
(Herbert et al., 1992; Wehrberger et al., 1989; Wehrberger & Wittman, 1990; Wehrberger, 1993).
It is shown that the Δ width increases in the normal nuclear medium, since new decay
channels are opened, like ΔN → NN, for example. The real part of the Δ’s self-energy has
also been studied. From the lagrangian in Eq. (63), we can see that the two parameters hs and
hv in the lagrangian are important.3 However, the information in (Boguta, 1982; Kosov et al.,
1998; Wehrberger et al., 1989; Wehrberger, 1993) is still limited. In (Serot & Zhang, 2011a;b),
we have realized that these Δ-meson couplings are responsible for the Δ’s spin-orbit coupling
in the nucleus, and based on this we provide some information about the couplings from this
new perspective.

Meanwhile, the Δ dynamics is also strongly correlated with the pion dynamics in the
nuclear medium, and hence is important for understanding the pion’s final state interactions,
especially in the energy regime of these neutrino-oscillation experiments.

5. Summary

In this work, we have studied EW interactions in QHD EFT. First, we discuss the EW
interactions at the quark level. Then we include EW interactions in QHD EFT by using
the background-field technique. The completed QHD EFT has a nonlinear realization of
SU(2)L ⊗ SU(2)R ⊗ U(1)B (chiral symmetry and baryon number conservation), as well as
realizations of other symmetries including Lorentz-invariance, C, P, and T. Meanwhile,
as we know, chiral symmetry is manifestly broken due to the nonzero quark masses; the
P and C symmetries are also broken because of weak interactions. All these breaking
patterns are parameterized in a general way in the EFT. Moreover, we have included the

3 hρ should not play an important role in normal nuclei with small asymmetry.
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the interaction mechanism, except in the very low-energy region. Therefore, to understand
pion production, we need to study Δ dynamics in the nucleus. This subject has been
extensively discussed in the nonrelativistic framework (Hirata et al., 1976; Horikawa et al.,
1980; Oset & Salcedo, 1987), and it has also been initiated in the relativistic framework in
(Herbert et al., 1992; Wehrberger et al., 1989; Wehrberger & Wittman, 1990; Wehrberger, 1993).
It is shown that the Δ width increases in the normal nuclear medium, since new decay
channels are opened, like ΔN → NN, for example. The real part of the Δ’s self-energy has
also been studied. From the lagrangian in Eq. (63), we can see that the two parameters hs and
hv in the lagrangian are important.3 However, the information in (Boguta, 1982; Kosov et al.,
1998; Wehrberger et al., 1989; Wehrberger, 1993) is still limited. In (Serot & Zhang, 2011a;b),
we have realized that these Δ-meson couplings are responsible for the Δ’s spin-orbit coupling
in the nucleus, and based on this we provide some information about the couplings from this
new perspective.

Meanwhile, the Δ dynamics is also strongly correlated with the pion dynamics in the
nuclear medium, and hence is important for understanding the pion’s final state interactions,
especially in the energy regime of these neutrino-oscillation experiments.

5. Summary

In this work, we have studied EW interactions in QHD EFT. First, we discuss the EW
interactions at the quark level. Then we include EW interactions in QHD EFT by using
the background-field technique. The completed QHD EFT has a nonlinear realization of
SU(2)L ⊗ SU(2)R ⊗ U(1)B (chiral symmetry and baryon number conservation), as well as
realizations of other symmetries including Lorentz-invariance, C, P, and T. Meanwhile,
as we know, chiral symmetry is manifestly broken due to the nonzero quark masses; the
P and C symmetries are also broken because of weak interactions. All these breaking
patterns are parameterized in a general way in the EFT. Moreover, we have included the

3 hρ should not play an important role in normal nuclei with small asymmetry.
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Δ resonance as manifest degrees of freedom in our QHD EFT. This enables us to discuss
physics at the kinematics where the resonance becomes important. As a result, the effective
theory uses hadronic degrees of freedom, satisfies the constraints due to QCD (symmetries
and their breaking pattern), and is calibrated to strong-interaction phenomena. (The EW
interaction of individual hadrons, like the transition currents discussed in this work, need to
be parameterized.) So this effective field theory satisfies the three listed points laid out in the
Introduction.

The technical issues that arise when introducing the Δ in the EFT need to be emphasized
here. It has been proven that the general EFT with conventional interactions has no redundant
degrees of freedom (Krebs et al., 2009). (Unphysical degrees of freedom have been considered
in the canonical quantization scheme as the reason for pathologies in field theory with
high-spin fields.) However, the proof rests on the work of (Pascalutsa, 1998), which claims that
gauge invariance could eliminate the redundant degrees of freedom. Here, we have provided
another perturbative argument about this issue, which indicates that as long as we work in
the low-energy and weak-field limit, the unphysical degrees of freedom do not show up. This
condition is satisfied in the EFT. Throughout the argument, we do not need to make use of the
gauge-invariance requirement. And in this way, we can easily see the redundancy of off-shell
interactions, which has also been rigorously addressed in (Krebs et al., 2010). Moreover, the
argument can be easily generalized to other high-spin fields.

To appreciate the importance of the symmetries realized in QHD EFT, we have discussed the
currents’ matrix elements in pion production from nucleons. The calculation and results are
detailed in (Serot & Zhang, 2010). Here, we first briefly mention the consequence of chiral
symmetry (and its breaking), i.e., CVC and PCAC. These two principles provide important
constraints on the EW interactions at the hadronic level. The G parity is then studied for pion
production. This provides another constraint on the analytical structure of matrix elements.
Meanwhile, it also points out the importance of including cross diagrams involving the Δ.
When combining the Δ’s contribution in the s and u channels, the full result respects G
parity. Moreover, the constraint due to the Hermiticity of current operators is explored. It is
important to notice that other contact terms respect all these constraints. So, it is necessary to
have a theoretical framework that satisfies these constraints. The QHD EFT, with symmetries
included, clearly provides such a framework.

However, the calibration of a model on the hadronic level does not guarantee its success
at the nuclear level. To study EW interactions in nuclei, we clearly have to understand
how the nucleons are bound together to form nuclei. QHD has been applied extensively to
this kind of problem (Serot & Walecka, 1986; 1997), and the recently developed chiral QHD
EFT has also been tested in the nuclear many-body problem (Furnstahl et al., 1997). The
mean-field approximation is understood in terms of density functional theory (Kohn, 1999),
and hence the theory calibrated to nuclear properties includes many-body correlations beyond
the Hartree approximation. Moreover, the power counting of diagrams in terms of O(k/M)
(k can be the Fermi momentum, mean-field strength, or other dimensional quantities) in the
many-body calculations has also been studied in this framework with the justification that
fitted parameters are natural (Hu et al., 2007; McIntire et al., 2007). This enables us to discuss
the EW interactions order-by-order in the nuclear many-body system using QHD EFT.

As mentioned before, we have initiated the study of weak production of pions due to neutrino
and antineutrino scattering off nuclei in this framework (Serot & Zhang, 2010; 2011a;b).
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Moreover, we also studied the production of photons, in which the conservation of the EM
current is clearly crucial. The discussion of power counting has been presented in these
references. Furthermore, we should also anticipate the importance of Δ dynamics modified in
nuclei. It has been studied in the nonrelativistic framework, but just started in the relativistic
framework. The study indicates that the Δ decay width increases at normal nuclear density
because the reduced pion-decay phase space is more than compensated by the opening of
other decay channels. But a detailed discussion on this is still needed. The real part of the
Δ self-energy is still unclear. As we pointed out, the hs and hv couplings in Eq. (63) play
important roles, but there are still limited constraints on them. (Some constraints have been
gained from an equation of state perspective, and others come from electron scattering.) As
we realized in (Serot & Zhang, 2011a;b), the phenomenologically fitted spin-orbit coupling of
the Δ in the nucleus may shed some light on this issue. Clearly, more efforts are needed to
study Δ dynamics, which in the meantime is closely related to pion dynamics in the nuclear
many-body system.
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7. Appendix

A. Isospin indices, T matrices

Suppose�t are the generators of some (ir)reducible representation of SU(2); then it is easy to
prove that (�δ ≡ −e−iπty

)

(−�t T) i
j =

�δik�t l
k
�δl j ≡�t i

j , i.e. , −�t T
= �δ�t �δ −1

. (92)

Here the superscript T denotes transpose. This equation justifies the use of �δ as a metric
linking the representation and the equivalent complex-conjugate representation. One easily
finds for D(3/2), D(1), and D(1/2),

�δab =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 −1 0

0 1 0 0
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⎛
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0 1 0
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⎞
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�δAB =
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−1 0

�
, �δAB =

�
0 −1

1 0

�
. (95)
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We now turn to the T matrices. As discussed in Sec. 3.1,

T† iA
a = �3

2
; a|1,

1
2

; i, A� ,

Ta
iA = �1,

1
2

; i, A| 3
2

; a� .
(96)

It is easy to prove the following relations (here τi is a Pauli matrix):

τi τj = �δ i
j + i �� i

jkτk , (97)

�
Pj

i

� B

A
≡ Ta

iA T† jB
a = �δj

i
�δ B

A − 1
3
(τiτ

j) B
A , (98)

T† iA
a Tb

iA = �δ b
a . (99)

Here Pj
i is a projection operator that projects H(1/2) ⊗H(1) onto H(3/2).

A few words about �� i
jk are in order here. We have the following transformations of pion fields:

πi = π Iu i
I here, i = +1, 0,−1 ; I = x, y, z ,

�
π+1, π0, π−1� =

�
πx, πy, πz�
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−1√
2

0
1√
2
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0
−i√
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. (100)

Under such transformations,

�� ijk ≡ ui
I uj

J uk
K �I JK = det(ui

I)�
ijk = −i �ijk

=⇒ �� ijk =

�
−i, if ijk = +1, 0,−1 ;
−i δP , if ijk = P(+1, 0,−1) .

(101)

Here δP is the phase related with the P permutation. It is + (−) with an even (odd) number
of permutations. To simplify the notation, we will ignore the tilde on �δ and �� in other places.

B. Expansion of tilde objects

Here we show some details about �vμ, �aμ, F(±)
μν and others, which are needed for understanding

electroweak interactions in QHD EFT. The pion-decay constant is fπ ≈ 93 MeV.

Tr(
τi

2
[U , ∂μU†]) ≈ 2i�ijk πj

fπ

∂μπk

fπ
, (102)

Tr(
τi

2
{U , ∂μU†}) ≈ −2i

∂μπi

fπ
, (103)
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ξ† τi

2
ξ + ξ

τi

2
ξ† ≈ τi , (104)

ξ† τi

2
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τi

2
ξ† ≈ −�ijk πj

fπ
τk , (105)

ṽμ ≈ 1
2 f 2

π
�ijkπj∂μπk

τi
2
− viμ

τi

2
− �ijk πj

fπ

τk
2
aiμ , (106)

ãμ ≈ 1
fπ

∂μπi τi
2
+ aiμ

τi

2
+ �ijk πj

fπ

τk
2
viμ , (107)

ṽμν ≈ 1
f 2
π

�ijk∂μπj∂νπk
τi
2

−
(

i
[

1
fπ

∂μπi τi
2

, aν + �ijk πj

fπ

τk
2
viν

]
− (μ ↔ ν)

)

+ background interference terms, (108)

ρμν = ∂[μρν] + igρ[ρμ , ρν] + i([ṽμ , ρν]− μ ↔ ν) , (109)

fLμν + fRμν = 2∂[μvν] − 2i[vμ , vν]− 2i[aμ , aν] , (110)

fLμν − fRμν = −2∂[μaν] + 2i[vμ , aν] + 2i[aμ , vν ] , (111)

F(+)
μν ≈ 2∂[μvν] + 2�ijk πj

fπ

τk
2

∂[μaiν] + background interference, (112)

F(−)
μν ≈ −2∂[μaν] − 2�ijk πj

fπ

τk
2

∂[μviν] + background interference. (113)

C. Properties of projection operators in the spin-3/2 propagator

We have properties about these spin projectors:

(P(I)
ij )μν(P(J)

kl )νλ = δI Jδjk(P
(I)
il )

μ
λ , (114)

γμP
( 3

2 )
μν = P

( 3
2 )

μν γν = 0 , (115)

pμP
( 3

2 )
μν = P

( 3
2 )

μν pν = 0 . (116)

Based on the above identities, we can prove that

P( 3
2 ) + P

( 1
2 )

11 + P
( 1

2 )
22 = 1 , (117)
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P
( 1

2 )
11 + P

( 1
2 )

22 ≡ P( 3
2 ⊥) , (118)

[
P( 3

2 ) , � p
]
=

[
P
( 1

2 )
11 , � p

]
=

[
P
( 1

2 )
22 , � p
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1. Introduction

In this chapter, we review some aspects of physical systems described by quantum fields
defined on spaces with compactified dimensions. For a D-dimensional space, this means we

are considering a space which has a topology of the type Γd
D =

(
S1)d × RD−d, with d (≤ D)

being the number of compactified dimensions, each with the topology of a circle. This is the
type of topology that emerges, for instance, in quantum field theory at finite temperature: the
Matsubara formalism imposes that the time direction is compactified in a circle with length
β = 1/T , where T is the temperature; its topology is then Γ1

4 = S1 × R3 in the notation
introduced above. Another important example involves spacetimes of dimensions D larger
than four, with the “extra” or “hidden” dimensions being compactified and assumed to be
very small, as in Kaluza–Klein and string theories. In any case, the topology Γd

D mentioned
above corresponds to a generalized Matsubara formalism, in which imaginary-time and
spatial coordinates may be simultaneously compactified.

In the last few decades, this generalized Matsubara formalism has been employed in many
instances of condensed-matter and particle physics. Some of them are: (1) the Casimir
effect, studied in various geometries, topologies, fields, and physical boundary conditions
[Bordag et al. (2001); Milonni (1993); Mostepanenko & Trunov (1997)], in a diversity of
subjects ranging from nanodevices to cosmological models [Bordag et al. (2001); Boyer (2003);
Levin & Micha (1993); Milonni (1993); Mostepanenko & Trunov (1997); Seife (1997)]; (2) the
confinement/deconfinement phase transition of hadronic matter, in the Gross–Neveu and
Nambu–Jona-Lasinio models as effective theories for quantum chromodynamics [Abreu et
al. (2009); Khanna et al. (2010); Malbouisson et al. (2002)]; (3) quantum electrodynamics with
one extra compactified dimension, which leads to estimates of the size of extra dimensions
compatible with present-day experimental data [Ccapa Tira et al. (2010)]; (4) the study of
superconductors in the form of films, wires and grains [Abreu et al. (2003; 2005); Khanna
et al. (2009); Linhares et al. (2006; 2007); Malbouisson (2002); Malbouisson et al. (2009)], in
which the Ginzburg–Landau model for phase transitions is defined on a three-dimensional
Euclidean space with one, two or three dimensions compactified.

When studying the compactification of spatial coordinates, however, it is argued in Khanna
et al. (2009) from topological considerations, that we may have a quite different interpretation
of the generalized Matsubara prescription: it provides a general and practical way to account
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for systems confined in limited regions of space at finite temperatures. Distinctly, we shall
be concerned here with stationary field theories and employ the generalized Matsubara
prescription to study bounded systems by implementing the compactification of spatial
coordinates; no imaginary-time compactification will be done, temperature will be introduced
through the mass parameter in the Ginzburg-Landau Hamiltonian. We will consider a
topology of the type Γd

D = RD−d × (S1)1 × (S1)2 × · · · × (S1)d, where (S1)1, . . . , (S1)d refer
to the compactification of d spatial dimensions.

In the following, we shall concentrate on Euclidean scalar field theories defined on such
spaces, with the Matsubara formalism applied to spatial coordinates. Our aim is to describe
the influence of compactification on physical phenomena as phase transitions in which, for
instance, the critical temperature depends on the parameters of compactification, that is, on
the “size” of the system. This means that, for instance, superconductors inside spatially bound
spaces such as films, wires and grains may have a critical temperature distinct from the same
material in the bulk form.

In this chapter, the way in which the critical temperature for a second-order phase transition
is affected by the presence of confining boundaries is investigated on general grounds. We
consider that the system is a portion of material of some size, the behavior of which in the
critical region is derived from a quantum field theory calculation of the dependence of the
physical mass parameter on its size. We focus in particular on the mathematical aspects of
the formalism, which furnish the tools to study boundary effects on the phase transition. We
consider the D-dimensional Ginzburg–Landau model compactified in d (≤ D) of the spatial
dimensions. The Ginzburg–Landau Hamiltonian, considering only the term λϕ4, is known
to lead to second-order transitions. In its version with N-components, in the large-N limit,
we are able to take into account nonperturbatively corrections to the coupling constant. In
this case, we shall obtain expressions for the transition temperature in the general situation.
Particularizing for D = 3 and d = 1, d = 2 and d = 3, we have the critical temperature
Tc(L) for the system in the form of a film of thickness L, an infinitely long wire having
a square cross-section L2, and for a cubic grain of volume L3, respectively. We show that
Tc(L) decreases as the size L is diminished and a minimal size for the suppression of the
second-order transition is obtained.

We also consider the model which, besides the quartic scalar field self-interaction, a sextic
one is present. The model with both interactions taken together leads to a renormalizable
quantum field theory in three dimensions and it may describe first-order phase transitions.
We consider this formalism in a general framework, taking the Euclidean D-dimensional
−λ |ϕ|4 + η |ϕ|6 (λ, η > 0) model with d = 1, 2, 3 compactified dimensions. It is known that
such potential ensures that the system undergoes a first-order transition. We obtain formulas
for the dependence of the transition temperature on the parameters delimiting the spatial
region within which the system is confined. Surely, there are other potentials which may be
considered, for instance, the Halperin–Lubensky–Ma potential [Halperin et al. (1974)], which
also engender first-order transitions in superconducting materials by effect of integration over
the gauge field and takes the form −αϕ3 + βϕ4.

We start from the effective potential, which is related to the physical mass and
coupling constant through renormalization conditions. These conditions, however, reduce
considerably the number of relevant contributing Feynman diagrams, if one wishes to be
restricted to 1- or 2-loop approximations. For second-order transitions, we need to consider
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only the tadpole diagram to correct the mass and the 1-loop four-point function to correct the
coupling constant. For first-order transitions, we will not, for simplicity, make corrections to
the coupling constant. In this case, just two diagrams need to be considered: a tadpole graph
with the ϕ4 coupling (one loop) and a “shoestring” graph with the ϕ6 coupling (two loops).
No diagram with both couplings needs to be considered. The size dependence appears from
the treatment of the loop integrals. The dimensions of finite extent are treated in momentum
space using the formalism of Khanna et al. (2009).

It is worth noticing that for superconducting films with thickness L, a qualitative agreement
of our theoretical L-dependent critical temperature is found with experiments. This occurs in
particular for thin films (in the case of first-order transitions) and for a wide range of values of
L for second-order transitions [Linhares et al. (2006)]. Moreover, available experimental data
for superconducting wires are compatible with our theoretical prediction of the first-order
critical temperature as a function of the transverse cross section of the wire.

Finally, we discuss the infrared behavior and the fixed-point structure for the N-component
λϕ4 model in the large-N limit, with a compactified subspace. We study the cases in which
the system has no external influence and in which the system is submitted to the action of an
external magnetic field. In both situations, with or without a magnetic field, we get the result
that the existence of an infrared stable fixed-point depends only on the space dimension; it
does not depend on the number of compactified dimensions.

2. Critical behavior of the compactified λϕ4 model

We start by considering the complex scalar field model described by the Ginzburg–Landau
Hamiltonian density in a Euclidean D-dimensional space, in the absence of any geometrical
constraints, given by (in natural units, h̄ = c = kB = 1)

H =
1
2

∣∣∂μ ϕ
∣∣ |∂μ ϕ|+ 1

2
m2

0 |ϕ|2 +
λ

4
|ϕ|4 , (1)

where λ > 0 is the physical coupling constant. As usual, near criticality, the bare mass is taken
as m2

0 = α(T − T0), with α > 0 and T0 being a parameter with the dimension of temperature,
which is interpreted as the bulk transition temperature.

Let us now take the system in D dimensions confined to a region of space delimited by d ≤ D
pairs of parallel planes. Each plane of a pair j is at a distance Lj from the other member of
the pair, j = 1, 2, . . . , d, and is orthogonal to all other planes belonging to distinct pairs {i},
i �= j. This may be pictured as a parallelepipedal box embedded in the D-dimensional space,
whose parallel faces are separated by distances L1, L2, . . . , Ld. To simplify matters, we shall
take all Li = L. Let us define Cartesian coordinates r = (x1, x2, . . . , xd, z), where z is a
(D − d)-dimensional vector, with corresponding momentum k = (k1, k2, . . . , kd, q), q being
a (D − d)-dimensional vector in momentum space. The generating functional of Schwinger
functions is written in the form

Z =
∫

DϕDϕ∗ exp
(
−

∫ L1

0
dx1 · · ·

∫ Ld

0
dxd

∫
dD−dzH(|ϕ| , |∇ϕ|)

)
, (2)

with the field ϕ(x1, ..., xd, z) satisfying the condition of confinement inside the box, ϕ(xi ≤
0, z) = ϕ(xi ≥ 0, z) = const. Then, following the procedure developed in Khanna et al.
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(2009), we introduce a generalized Matsubara prescription, in which the Feynman rules are
modified through the replacements

∫ dki
2π

→ 1
L

+∞

∑
ni=−∞

; ki →
2niπ

L
, i = 1, 2..., d. (3)

Notice that compactification can be implemented in different ways, as for instance by
imposing specific conditions on the fields at spatial boundaries. We here choose periodic
boundary conditions.

In principle, the effective potential for systems with spontaneous symmetry breaking is
obtained, following the Coleman–Weinberg analysis [Coleman & Weinberg (1973)], as an
expansion in the number of loops in Feynman diagrams. Accordingly, to the free propagator
and to the tree diagrams, radiative corrections are added, with increasing number of loops.
Thus, at the 1-loop approximation, we get the infinite series of 1-loop diagrams with all
numbers of insertions of the ϕ4 vertex (two external legs in each vertex).

At the 1-loop approximation, the contribution of loops with only |ϕ|4 vertices to the effective
potential in unbounded space is

U1(ϕ0) =
∞

∑
s=1

(−1)s+1

2s

[
3λ|ϕ0|2

]s ∫ 1

(2π)D
dDk

(k2 + m2)s , (4)

where m is the physical mass and the parameter s counts the number of vertices on the loop.

In the following, to deal with dimensionless quantities in the regularization procedures, we
introduce parameters c2 = m2/4π2, L2 = a−1, g = 3λ/8π2, where ϕ0 is the normalized
vacuum expectation value of the field (the classical field). In terms of these parameters
and performing the Matsubara replacements (3), the one-loop contribution to the effective
potential can be written in the form

U1(φ0, a) = ad/2
∞

∑
s=1

(−1)s+1

2s
gs|ϕ0|2s

×
+∞

∑
n1,...,nd=−∞

∫ dD−dq[
a
(
n2

1 + · · ·+ n2
d
)
+ c2 + q2

]s . (5)

It is easily seen that only the s = 1 term contributes to the renormalization condition

∂2U(ϕ0)

∂ϕ2
0

∣∣∣∣∣
ϕ0=0

= m2. (6)

It corresponds to the tadpole diagram. The integral over the D − d noncompactified
momentum variables is performed using a well-known dimensional regularization formula
[Zinn-Justin (2002)] so that, for s = 1, we obtain

U1(φ0, a) =
1
2

ad/2π(D−d)/2Γ
(

1 − D − d
2

)
g|ϕ0|2Zc2

d

(
2 − D + d

2
; a
)

, (7)
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momentum variables is performed using a well-known dimensional regularization formula
[Zinn-Justin (2002)] so that, for s = 1, we obtain
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, (7)
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where Zc2

d ( 2−D+d
2 ; a) is one of the Epstein–Hurwitz zeta functions, defined by
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valid for Re(ν) > 1.

Next, we can use the generalization to several dimensions of the mode-sum regularization
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Epstein–Hurwitz function has an analytic extension to the whole ν complex plane,
which may be written as
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⎠

d
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�
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�
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��
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where the Kν(z) are modified Bessel functions of the second kind. Taking ν = (2 − D + d)/2
in Eq. (9), we obtain from Eq. (7) the effective potential in D dimensions with a compactified
d-dimensional subspace:
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d

��
, (10)

where we have returned to the original variables, λ and L.

Notice that in Eq. (10) there is a term proportional to Γ
�

2−D
2

�
, which is divergent for even

dimensions D ≥ 2, and should be subtracted in order to obtain finite physical parameters. For
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odd D, the above gamma function is finite, but we also subtract this term (corresponding to a
finite renormalization), for the sake of uniformity. We get
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d

��
. (11)

Then the physical mass is obtained from Eq. (6), using Eq. (11) and also taking into account the
contribution at the tree level; it satisfies a generalized Dyson–Schwinger equation depending
on the finite extension L of the confining box:

m2(L) = m2
0 +

6λ

(2π)D/2

�
d
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� m
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d

��
. (12)

It is not envisageable to solve the above equation analytically for the mass. However, if we
limit ourselves to the neighborhood of criticality, then we can put m2(L) ≈ 0, and we may also
use an asymptotic formula for a Bessel function with a small argument, Kν(z) ≈ 1

2 Γ(ν)(2/z)ν

(z ∼ 0). In this way, the coefficients and arguments of the Bessel functions cancel out and we
rewrite (12) as

m2(L) ≈ m2
0 +

3λ

πD/2 Γ
�

D
2
− 1

� �
d
2

E1

�
D
2
− 1; L

�

+d(d − 1)E2

�
D
2
− 1; L

�
+ · · ·+ 2d−2Ed

�
D
2
− 1; L

��
,

(13)

where the Ep(ν; L) are generalized Epstein–Hurwitz zeta functions defined by Kirsten (1994)

Ep(ν; L) = Lν
∞

∑
n1=1

· · ·
∞

∑
np=1

�
n2

1 + · · ·+ n2
p

�−ν
, (14)

[for details, see Malbouisson et al. (2002)]. Notice that, for p = 1, Ep reduces to the Riemann
zeta function ζ(z) = ∑∞

n=1 n−z.

Having developed the general case of a d-dimensional compactified subspace, we consider an
illustrative example. We choose d = 1, the compactification of just one dimension, along the
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x1-axis, say, meaning that we are considering that the system is confined between two planes,
separated by a distance L (film of thickness L). Then, Eq. (13) simplifies to

m2(L) ≈ m2
0(L) +

3λ

2πD/2LD−2 Γ
(

D
2
− 1

)
ζ (D − 2) , (15)

where ζ(z) is the Riemann zeta function. This equation is well defined for D > 3, but not
for D = 3, due to the pole of the zeta function. However, we can assign it a meaning
for the significative dimension D = 3 by adopting a regularization procedure: we use the
well-known formula

lim
z→1

ζ(z) =
1

z − 1
+ γ, (16)

where γ ≈ 0.5772 is the Euler–Mascheroni constant, for ζ (D − 2) in Eq. (15) and afterwards
we suppress the pole term at D = 3 (z = 1). Then, remembering that m2

0 = α(T − T0), we get
the L-dependent critical temperature,

Tfilm
c (L) = T0 − C1

λ

αL
,

with C1 =
3γ

2π
.

(17)

We see that, for L < (3γ/2π) (λ/αT0), the critical temperature becomes negative, meaning
that the transition does not occur.

With analogous steps, we can take the cases of d = 2 and d = 3, in which the system is
confined within an infinite wire of rectangular cross section L2 ≡ A and a grain of volume
L3 ≡ V, respectively. In those cases, it is not necessary to renormalized the bare mass,
as we have done for a film, as the divergences coming from the zeta and gamma functions
completely cancel out algebraically. One obtains [Abreu et al. (2005)]

Twire
c (A) = T0 − C2

λ

αA1/2 ,

Tgrain
c (V) = T0 − C3

λ

αV1/3 ,
(18)

where C2 and C3 are numerical constants. We note that, in all cases, it is found that the
boundary-dependent critical temperature decreases linearly with the inverse of the linear
dimension L, Tc(L) = T0 −Cdλ/αL, where α and λ are the Ginzburg–Landau parameters, T0 is
the bulk transition temperature and Cd is a constant depending on the number of compactified
dimensions. This is in accordance with arguments raised from finite-size scaling [Zinn-Justin
(2002)].

Such behavior suggests the existence of a minimal size of the system, below which the
transition is suppressed. It seems to be in qualitative agreement with experimental results
which indicate a minimal thickness of a film for the disapearance of superconductivity [Abreu
et al. (2004); Kodama et al. (1983)]; also, the behavior of nanowires and nanograins have been
studied [Shanenko et al. (2006); Zgirski et al. (2005)], searching for a limit on its size for the
material while retaining its superconducting character.
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3. First-order phase transitions

In the previous section, we have studied the Ginzburg–Landau Hamiltonian density,
solely containing the interaction term λϕ4, with λ > 0, which describes second-order
phase transitions. Here we pass to consider the Ginzburg–Landau model in a Euclidean
D-dimensional space, including both ϕ4 and ϕ6 interactions, in the absence of external fields;
its Hamiltonian is given by (again, in natural units, h̄ = c = kB = 1)

H =
1
2

∣∣∂μ ϕ
∣∣ |∂μ ϕ|+ 1

2
m2

0 |ϕ|2 −
λ

4
|ϕ|4 + η

6
|ϕ|6 , (19)

where λ > 0 and η > 0 are the physical quartic and sextic coupling constants. Near criticality,
the bare mass is given by m2

0 = α(T/T0 − 1), with α > 0 and T0 being a parameter with the
dimension of temperature. A potential of this type, with the minus sign in the quartic term,
ensures that the system undergoes a first-order transition. Recall that the critical temperature
for a first-order transition described by the Hamiltonian above is higher than T0. This will
be explicitly stated in Eq. (25) below. Our purpose will be to develop the general case of
compactifying a d-dimensional subspace, in order to compare results for films, wires and
grains with the second-order ones given above.

We thus consider the system in D dimensions confined to a region of space delimited by
d ≤ D pairs of parallel planes, as was done in the previous section, and introduce a
generalized Matsubara prescription as in Eq. (3), with periodic boundary conditions. We
again start from establishing the effective potential, related to the physical mass through a
renormalization condition, Eq. (6). This condition, however, reduces considerably the number
of relevant Feynman diagrams contributing to the mass, if we restrict ourselves to first-order
terms in both coupling constants: in fact, just two diagrams need to be considered in this
approximation, a tadpole graph with the ϕ4 coupling (1 loop) and a “shoestring” graph with
the ϕ6 coupling (2 loops).

Within our approximation, we do not take into account the renormalization conditions for the
interaction coupling constants, i.e., they are considered as already renormalized when they
are written in the Hamiltonian (the same was assumed in the previous section).

At the 1-loop approximation, the contribution of loops with only |ϕ|4 vertices to the effective
potential is obtained directly from the previous section, Eq. (5). As before, we see that only the
s = 1 term contributes to the renormalization condition in Eq. (6). It corresponds to the tadpole
diagram. It is then also clear that all |ϕ0|6-vertex and mixed |ϕ0|4- and |ϕ0|6-vertex insertions
on the 1-loop diagrams do not contribute when one computes the second derivative of similar
expressions with respect to the field at zero field: only diagrams with two external legs should
survive. This is impossible for a |ϕ0|6-vertex insertion at the 1-loop approximation. Therefore,
the first contribution from the |ϕ0|6 coupling must come from a higher-order term in the loop
expansion. Two-loop diagrams with two external legs and only |ϕ0|4 vertices are of second
order in its coupling constant, and we neglect them, as well as all possible diagrams with
vertices of mixed type. However, the 2-loop shoestring diagram, with only one |ϕ0|6 vertex
and two external legs is a first-order (in η) contribution to the effective potential, according to
our approximation.

The tadpole contribution to the effective potential was treated in the previous section, through
dimensional and Epstein–Hurwitz zeta-function regularizations and subtraction of a polar
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term, resulting in the expression U1,R of Eq. (11), in terms of modified Bessel functions. Now,
proceeding analogously for the 2-loop shoestring diagram contribution, we arrive at

U2,R(ϕ0, L1, . . . , Ld) =
η|ϕ0|2

4(2π)D

�
d

∞

∑
n=1

� m
Ln

�D/2−1
KD/2−1(mLn) + · · ·

+2d−1
∞

∑
n1,...,nd=1

⎛
⎝ m

L
�

n2
1 + · · ·+ n2

d

⎞
⎠

D/2−1

×KD/2−1

�
mL

�
n2

1 + · · ·+ n2
d

��2
. (20)

Then the physical mass m2(L) with both contributions is obtained from Eq. (6), using Eqs. (11),
(20) and also taking into account the contribution at the tree level; it satisfies a generalized
Dyson–Schwinger equation depending on the extensions L of each dimension of the confining
box, as in Eq. (12). We should remember that the tadpole part has a change of sign with respect
to (12), reflecting the sign of λ in the Hamiltonian (19).

A first-order transition occurs when all the three minima of the potential

U(ϕ0) =
1
2

m2(L)|ϕ0|2 −
λ

4
|ϕ0|4 +

η

6
|ϕ0|6, (21)

where m(L) is the renormalized mass defined above, are simultaneously on the line U(ϕ0) =
0. This gives the condition

m2(L) =
3λ2

16η
. (22)

For D = 3, the Bessel functions have an explicit form, K1/2(z) =
√

πe−z/
√

2z, which is to
be replaced in the expression for the renormalized mass. Performing the resulting sums, and
remembering that m2

0 = α(T/T0 − 1), we get

m2(L) = α

�
T
T0

− 1
�
+

3λ

4π

�
d
L

ln
�

1 − e−m(L)L
�
+ · · ·

+2d−1
∞

∑
n1,...,nd=1

e−m(L)L
√

n2
1+···+n2

d�
n2

1 + · · ·+ n2
d

⎤
⎦

+
ηπ

8 (2π)3

�
d
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ln
�

1 − e−m(L)L
�
+ · · ·

+2d−1
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n2
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d

L
�
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d

⎤
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2

. (23)
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Then, introducing the value of the mass, Eq. (22), in Eq. (23), one obtains the critical
temperature

Tc(L) = Tc

�
1 −

�
1 +
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16ηα

�−1 � 3λ

4πα

�
d
L
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1 − e−L
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, (24)

where

Tc = T0

�
1 +

3λ

16ηα

�
(25)

is the bulk (L → ∞) critical temperature for the first-order phase transition.

Specific formulas for particular values of d are now given. If we choose d = 1, this corresponds
physically to a film of superconducting material, and we have that the transition occurs at the
critical temperature Tfilm

c (L) given by

Tfilm
c (L) = Tc

�
1 −

�
1 +
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16ηα

�−1 � 3λ

4παL
ln

�
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�
3λ2
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3λ2
16η )

�2��
. (26)

In the case of a wire, d = 2, the critical temperature is written in terms of L as

Twire
c (L) = Tc
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. (27)
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�
1 −

�
1 +

3λ2

16ηα

�−1

×
�

3λ

2παL

�
ln

�
1 − e−L

�
3λ2
16η

�
+ ln

�
1 − e−L

�
3λ2
16η

�

+2
∞

∑
n1,n2=1

e−L
�

3λ2
16η

√
n2

1+n2
2

�
n2

1 + n2
2

⎤
⎦

− η

32π2αL2

�
ln

�
1 − e−L

�
3λ2
16η

�
+ ln

�
1 − e−L

�
3λ2
16η

�

+2
∞

∑
n1,n2=1

e−L
�

3λ2
16η

√
n2

1+n2
2

�
n2

1 + n2
2

⎞
⎠

2⎤
⎥⎦

⎫⎪⎬
⎪⎭

. (27)
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Finally, if we compactify all three dimensions (d = 3), which leaves us with a system in the
form of a cubic “grain” of some material, the dependence of the critical temperature on its
linear dimension L is given by

Tgrain
c (L) = Tc

�
1 −

�
1 +

3λ2

16ηα

�−1 � 3λ

2παL

×
�

3 ln(1 − e−L
�

3λ2
16η ) + · · ·

+4
∞

∑
n1,...,n3=1

e−L
�

3λ2
16η

√
n2

1+n2
2+n2

3

�
n2

1 + n2
2 + n2

3

⎤
⎦

− η

32π2αL2

�
3 ln(1 − e−L

�
3λ2
16η ) + · · ·

+4
∞

∑
n1,...,n3=1

e−L
�

3λ2
16η

√
n2

1+n2
2+n2

3

�
n2

1 + n2
2 + n2

3

⎤
⎦

2⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭

. (28)

Comparing Eqs. (26)-(28) with the general behavior of the critical temperature obtained in
the previous section, we see that in all cases (film, wire or grain), there is a sharp contrast
between the simple inverse linear behavior of Tc(L) for second-order transitions and the rather
involved dependence on L of the critical temperature for first-order transitions.

In Linhares et al. (2006; 2007), we have shown that our general formalism could be not of a
purely academic interest, but that it could be used to describe some experimentally observable
situations. Experimental data on the critical temperature obtained from superconducting films
and wires can be compared with our theoretical expressions. In Linhares et al. (2006), the
coupling constants λ and η have been determined as functions of the microscopic parameters
of the material, which was done generalizing Gorkov’s [Kleinert (1989)] microscopic
derivation done for the λϕ4 model, in order to include the additional interaction term ηϕ6

in the free energy. See Linhares et al. (2006; 2007) for details.

As described in Linhares et al. (2006), the transition temperature as a function of the thickness
for a film grows from zero at a nonnull minimal allowed film thickness above the bulk
transition temperature Tc as the thickness is enlarged, reaching a maximum and afterwards
starting to decrease, going asymptotically to Tc as L → ∞. Our theoretical curve is in
qualitatively good agreement with measurements, especially for thin films [Strongin et al.
(1970)]. This is illustrated in Figure 1. This behavior can be contrasted with the one shown
by the critical temperature for a second-order transition. As one can see in Figure 2, in
this case, the critical temperature increases monotonically from zero, again corresponding
to a finite minimal film thickness, going asymptotically to the bulk transition temperature
as L → ∞ [Abreu et al. (2004)]. Such behavior has been experimentally found for a variety
of transition-metal materials [Kodama et al. (1983); Minhaj et al. (1994); Pogrebnyakov et al.
(2003); Raffy et al. (1983)]. Since in this section a first-order transition is explicitly assumed,
it is tempting to infer that the transition described in the experiments of Strongin et al. (1970)
is first order. In other words, one could say that an experimentally observed behavior of
the critical temperature as a function of the film thickness may serve as a possible criterion
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Fig. 1. Critical temperature Tfilm
c (K) as a function of the thickness L(Å), with data

from Strongin et al. (1970) for a superconducting film made from aluminum.

Fig. 2. Critical temperature Tfilm
c (K) as a function of the thickness L(Å) for a second-order

transition, with data from Kodama et al. (1983) for a superconducting film made from
niobium.

to decide about the order of the superconductivity transition: a monotonically increasing
critical temperature as L grows would indicate that the system undergoes a second-order
transition, whereas if the critical temperature presents a maximum for a value of L larger than
the minimal allowed one, this would be signaling the occurrence of a first-order transition.
If we consider a sample of superconducting material in the form of an infinitely long wire
with a cross section L2, the same arguments and rescaling procedures used for films apply. In
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this case, the theoretical curve Twire
c vs. L, together with Al data from Shanenko et al. (2006);

Zgirski et al. (2005) agree quite well, for not extremely thin wires. One may conclude that the
phase transition of these superconducting aluminum wires is first order, just as for aluminum
films. The interested reader will find details in Linhares et al. (2006; 2007).

4. Coupling-constant corrections for second-order transitions

We have so far discussed the critical properties of confined superconducting matter under the
assumption that the coupling constants, as they appear in the Hamiltonian, are the physical
ones. It is however expected that the compactification of spatial dimensions as we have
described also has an influence on the coupling constants and consequently on the behavior
of the transition temperature with respect to the size of the compactified space. To undertake
such study, we shall consider the four-point function at zero external momenta, which is the
basic object for our definition of the renormalized coupling constant. We shall analyze it in
the O(N)-symmetric version of the D-dimensional Ginzburg–Landau model, described by the
Hamiltonian density

H = ∂μ ϕa∂μ ϕa + m2
0(T)ϕa ϕa +

λ

N
(ϕa ϕa)

2 , (29)

and take the large-N limit. In Eq. (29), λ is the coupling constant and m2
0(T) = α(T − T0) is

the bare mass, as before. The compactification procedure is the same as that implemented in
section 2 and we look for the 1-loop contribution from ϕ4 vertices for the effective potential
after compactification of d dimensions. We may use directly Eq. (10), taking care that the
convention for the coupling constant has changed: λ/4 → λ. The mass is obtained from the
normalization condition (6) and the coupling constant from

∂4

∂ϕ2
0

U(ϕ0)

∣∣∣∣∣
ϕ0=0

=
λ

N
, (30)

where U is the sum of the tree-level and 1-loop contributions to the effective potential.

The coupling constant is defined in terms of the 4-point function for zero external momenta,
which, at leading order in 1/N, is given by the sum of all chains of 1-loop diagrams, which
has the formal expression

Γ(4)
D (p = 0, m, L) =

λ/N
1 + λΠ(m, L)

, (31)

where Π(m, L) ≡ Π(p = 0, m, L) corresponds to the one-loop four-point diagram, after
compactification. Next, we use the renormalization condition (30), from which we deduce
formally that the one-loop four-point function Π(m, L) is obtained from the coefficient of
the fourth power of the field (s = 2) in Eq. (10). A divergent (for even dimensions) term
is subtracted to give the finite one-loop four-point function ΠR(m, L), which corresponds
to (11). Such subtraction is performed even in the case of odd dimensions, where no pole
singularity occurs (finite renormalization). From the properties of Bessel functions, we see
that ΠR(m, L) → 0 as L → ∞, whereas it diverges when L → 0. We conclude that the
renormalized one-loop four-point function is positive for all values of D and L.
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Let us define the the L-dependent renormalized coupling constant λR(m, L), at leading order
in 1/N, as

N Γ(4)
D,R(p = 0, m, L) ≡ λR(m, L) =

λ

1 + λΠR(m, L)
. (32)

In the absence of constraints, the L → ∞ limit of Γ(4)
D,R(p = 0, m, L) defines the corresponding

renormalized coupling constant λR(m). We get simply that λR(m) = λ. This means that a
renormalization scheme has been chosen so that the constant λ appearing in the Hamiltonian
corresponds to the renormalized coupling constant in the absence of boundaries.

The physical mass is obtained at 1-loop from (12), with λ/4 → λ, and (6), after also changing
λ → λR(m, L), given by (32). One should remember, however, that λR(m, L) is itself a function
of m = m(T, L). Therefore, m(T, L) is given by a complicated set of coupled equations. Just
like in the situation in section 2, without the corrections in λ, it has no analytical solution
in general. Nevertheless, as before, if we limit ourselves to the neighborhood of criticality,
m2(T, L) ≈ 0, the behavior of the system can be studied by using the approximation Kν(z) ≈
1
2 Γ(ν)(2/z)ν, for z ∼ 0. The same kind of simplifications occurs and we regain Eq. (13), with
λ → λR(D, L) given by

λR(D, L) ≈ λ
{

1 + λC(D)L4−D [dζ(D − 4) + 2d(d − 1)E2 (D/2 − 2, 1)

+ · · ·+ 2d−1Ed (D/2 − 2, 1)
]}−1

, (33)

where C(D) = 1
8πD/2 Γ

(
D
2 − 2

)
. It then ensues that we obtain the critical temperature as a

function of L. Taking D = 3, we have a similar situation as that of section 2. We find modified
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Fig. 3. Reduced transition temperature (tc) as a function of the inverse of the reduced
compactification length (l), for films (d = 1), square wires (d = 2) and cubic grains (d = 3).
The full and dashed lines correspond to results with and without correction of the coupling
constant, respectively.
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L-dependent transition temperatures, which are given by

Tfilm
c (L) = T0 −

48πC1λ

48παL + λαL2 ;

Twire
c (A) = T0 −

48πC2λ

48πα
√

A + E2λαA
; (34)

Tgrain
c (L) = T0 −

48πC1λ

48παV1/3 + E3λαV2/3 ,

with C1, C2 and C3 as before and where E2 and E3 are constants, resulting from sums involving
the Bessel functions [Malbouisson et al. (2009)]. We see that the critical temperature has the
same kind of dependence on the size extension L for d = 1, 2, 3, only constants differ in each
case. The functional behavior does not depend on the number of compactified dimensions,
only on the dimension of the Euclidean space, which we have computed for D = 3. One
can also notice that the minimal size of the compact superconductor has lesser values than
those computed without taking into account corrections to the coupling constant. This can
be seen in Figure 3, where we have plotted the reduced transition temperature tc = Tc/T0
as a function of the inverse of the reduced compactification length l = L/Lmin, where Lmin
is the corresponding minimal allowed linear extension without coupling constant boundary
corrections.

5. Infrared fixed-point structure for the λϕ4 model

5.1 The system in the absence of an external magnetic field

In this subsection, we study the fixed-point structure of the compactified model described by
the Hamiltonian density in Eq. (29) in the large-N limit. We start from the four-point function
at the critical point (m = 0) and for small external momenta, before compactification, which is
given by

Γ(4)
cr (p) =

λ/N
1 + λΠcr(p)

. (35)

In the equation above, Πcr(p) is the one-loop four-point function at the critical point;
introducing a Feynman parameter x, it is written in the form

Πcr (p) =
∫ 1

0
dx

∫ dDk
(2π)D

1

[k2 + p2x(1 − x)]2
. (36)

Performing the Matsubara replacements (3) for d dimensions, Eq. (36) becomes (ωi = 2πni/L)

Πcr(p, L) =
1
Ld

∞

∑
n1,...,nd=−∞

∫ 1

0
dx

∫ dD−dq
(2π)D−d

× 1[
q2 + ω2

n1 + · · ·+ ω2
nd + p2x(1 − x)

]2 , (37)

and we define the effective L-dependent coupling constant in the large-N limit as

λ(p, L) ≡ lim
N→∞

NΓ(4)
D (p, L) =

λ

1 + λΠ(p, L)
. (38)
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The sum over the ni and the integral over q above can be treated using the formalism
developed in Khanna et al. (2009) and described in section 2. We obtain

Πcr(p, L) = (2π)−D/2
� 1

0
dx

⎡
⎣2−D/2

�
1

(2π)2 p2x(1 − x)

�D/2−2

Γ
�

2 − D
2

�

+d
∞

∑
n=1

��
p2x(1 − x)

2πLn

�D/2−2

KD/2−2

�
Ln
2π

�
p2x(1 − x)

�
+ · · ·

+2d−1
∞

∑
n1,...,nd=1

⎛
⎝

�
p2x(1 − x)

2πL
�

n2
1 + · · ·+ n2

d

⎞
⎠

D/2−2

×KD/2−2

�
L

2π

�
p2x(1 − x)

�
n2

1 + · · ·+ n2
d

��
, (39)

which, replaced in Eq. (38), gives the boundary-dependent four-point function in the large-N
limit. We can write Eq. (39) in the form

Π(p, L) = A(D)|p|D−4 + Bd(D, L), (40)

with the d-independent coefficient of the |p|-term being

A(D) = (2π)4−3D/2 2−D/2b(D)Γ
�

2 − D
2

�
, (41)

and where we have defined

b(D) =
� 1

0
dx [x(1 − x)]D/2−2 = 23−D√π

Γ
�

D
2 − 1

�

Γ
�

D−1
2

� , for Re(D) > 2. (42)

We remark that, for the physically interesting dimension D = 3, b(3) = π. This implies that
A(3) = π/4.

If an infrared-stable fixed point exists for any of the models with d compactified dimensions,
it is possible to determine it by a study of the infrared behavior of the Callan–Symanzik β
function. Therefore, we investigate the above equations for |p| ≈ 0. With this restriction,
we may use the asymptotic formula for small values of the argument of the Bessel functions,
and the expressions for Bd simplify considerably [see the reasoning leading to Eq. (13)]. The
result is expressed in terms of one of the multidimensional Epstein–Hurwitz zeta functions of
Eq. (14). In this limit, the p2-dependence of the Bessel functions exactly compensates the
one coming from the accompanying factors. Thus, the remaining p2-dependence is only
that of the first term of (39), which is the same for all number of compactified dimensions
d. For general and detailed expressions, see Linhares et al. (2011). One can also construct
analytical continuations and recurrence relations for the multidimensional Epstein functions,
which permit to write them in terms of modified Bessel and Riemann zeta functions [Khanna
et al. (2009); Kirsten (1994)]. We thus are able to derive expressions for each particular value of
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d, from 1 to D, in the |p| ≈ 0 limit, but let us restrict ourselves to the most expressive values,
corresponding to materials in the form of a film, a wire, or a grain.

Therefore, for a film, we obtain

Bd=1(D, L) ∼ (2π)−D/22D/2−3L4−DΓ
(

D
2
− 2

)
ζ(D − 4). (43)

The above expression is valid for all odd dimensions D > 5, due to the poles of the Γ and
ζ functions. We can obtain an expression for smaller values of D by performing an analytic
continuation of the Riemann zeta function ζ(D − 4) by means of its reflection property,

ζ(z) =
1

Γ (z/2)
Γ
(

1 − z
2

)
πz−1/2ζ (1 − z) . (44)

Then Eq. (43) leads to an expression valid for 2 < D < 4 given by

Bd=1(D, L) = 2−3π(D−9)/2L4−DΓ
(

5 − D
2

)
ζ(5 − D). (45)

For D = 3, we have Bd=1(3, L) = L/48π. For d = 2 and d = 3, similar expressions are
obtained. An analysis of the singularity structure of the quantities Bd shows that their domain
of existence can be extended to 2 < D < 4 [Linhares et al. (2011)].

To discuss infrared properties of these compactified models, we insert Eq. (40) in Eq. (38) and
we get the (p, L)-dependent coupling constant

λ (|p| ≈ 0, D, L) ≈ λ

1 + λ
[
A(D)|p|D−4 + Bd (D, L)

] . (46)

Let us take |p| as a running scale, and define the dimensionless coupling constant

g = λ (p, D, L) |p|D−4. (47)

We recall that in these expressions p is a D-dimensional vector. The Callan-Symanzik β
function controls the rate of the renormalization-group flow of the running coupling constant
and a (nontrivial) fixed point of this flow is given by a (nontrivial) zero of the β function. For
|p| ≈ 0, it is obtained straightforwardly from Eq. (47),

β(g) = |p| ∂g
∂|p| ≈ (D − 4)

[
g − A(D)g2

]
, (48)

from which we get the infrared-stable fixed point

g∗(D) =
1

A(D)
. (49)

We see that the L-dependent Bd-part of the subdiagram Πcr does not play any role in
this expression and, as remarked before, A(D) is the same for all number of compactified
dimensions, so is g∗ only dependent on the space dimension.
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5.2 The system with an external magnetic field

We now take the N-component Ginzburg–Landau model of the previous subsection to
describe the behavior of d-confined systems, now in the presence of an external magnetic
field, at leading order in 1/N. The Hamiltonian density (29) is then modified to

H =
[(

∂μ − ieAext
μ

)
ϕa

] [(
∂μ − ieAext,μ) ϕa

]
+ m2 ϕa ϕa +

λ

N
(ϕa ϕa)

2, (50)

where m2 = α(T − Tc), with α > 0. For D = 3, from a physical point of view, such
Hamiltonian is supposed to describe type-II superconductors. In this case, we assume that the
external magnetic field H is parallel to the z-axis and we choose the gauge Aext = (0, xH, 0).
In the present D-dimensional case, we assume analogously a gauge Aext = (0, x1H, 0, 0, . . . , 0),
with {xi} = x1, x2, . . . , xD, meaning that the applied external magnetic field lies on a fixed
direction along one of the coordinate axis; for simplicity, in the calculations that follow, we
have adopted the notation x1 ≡ x, x2 ≡ y. If we consider the system in unlimited space, the
field ϕ should be written in terms of the well-known Landau-level basis,

ϕ(r) =
∞

∑
�=0

∫ dpy

2π

∫ dD−2 p

(2π)D−2 ϕ̃�,py ,pχ�,py ,p(r), (51)

where χ�,py ,p(r) are the Landau-level eigenfunctions given in terms of Hermite polynomials
H� by

χ�,py ,p(r) =
1√
2��!

(ω

π

)1/4
ei(p·r+pyy)e−ω(x−py/ω)2/2H�

(√
ωx − py√

ω

)
, (52)

with energy eigenvalues E� (|p|) = |p|2 + (2�+ 1)ω + m2 and ω = eH is the so-called
cyclotron frequency. In the above equation, p and r are (D − 2)-dimensional vectors.

In the following, we consider only the lowest Landau level � = 0. For D = 3, this assumption
usually corresponds to the description of superconductors in the extreme type-II limit. Under
this assumption, we obtain that the effective |ϕ|4 interaction in momentum space and at the
critical point (m = 0) is written as

λ(p, L; ω) =
λ

1 + λωe−(1/2ω)(p2
1+p2

2)Π(p, L; ω)
, (53)

where the single 1-loop four-point function, Π(p, L; ω), is given by

Π(p, L; ω) =
1
Ld

d

∑
i=1

∞

∑
ni=−∞

∫ 1

0
dx

∫ dD−d−2q
(2π)D−d−2

×
[
q2 + ω2

n1
+ · · ·+ ω2

nd
+ p2x(1 − x)

]−2
. (54)

This is the same kind of expression that is encountered in the previous subsection, Eq. (37),
with the only modification that D → D − 2. The analysis is then performed along the same
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5.2 The system with an external magnetic field

We now take the N-component Ginzburg–Landau model of the previous subsection to
describe the behavior of d-confined systems, now in the presence of an external magnetic
field, at leading order in 1/N. The Hamiltonian density (29) is then modified to

H =
[(

∂μ − ieAext
μ

)
ϕa

] [(
∂μ − ieAext,μ) ϕa

]
+ m2 ϕa ϕa +

λ

N
(ϕa ϕa)

2, (50)

where m2 = α(T − Tc), with α > 0. For D = 3, from a physical point of view, such
Hamiltonian is supposed to describe type-II superconductors. In this case, we assume that the
external magnetic field H is parallel to the z-axis and we choose the gauge Aext = (0, xH, 0).
In the present D-dimensional case, we assume analogously a gauge Aext = (0, x1H, 0, 0, . . . , 0),
with {xi} = x1, x2, . . . , xD, meaning that the applied external magnetic field lies on a fixed
direction along one of the coordinate axis; for simplicity, in the calculations that follow, we
have adopted the notation x1 ≡ x, x2 ≡ y. If we consider the system in unlimited space, the
field ϕ should be written in terms of the well-known Landau-level basis,

ϕ(r) =
∞

∑
�=0

∫ dpy

2π

∫ dD−2 p

(2π)D−2 ϕ̃�,py ,pχ�,py ,p(r), (51)

where χ�,py ,p(r) are the Landau-level eigenfunctions given in terms of Hermite polynomials
H� by

χ�,py ,p(r) =
1√
2��!

(ω

π

)1/4
ei(p·r+pyy)e−ω(x−py/ω)2/2H�

(√
ωx − py√

ω

)
, (52)

with energy eigenvalues E� (|p|) = |p|2 + (2�+ 1)ω + m2 and ω = eH is the so-called
cyclotron frequency. In the above equation, p and r are (D − 2)-dimensional vectors.

In the following, we consider only the lowest Landau level � = 0. For D = 3, this assumption
usually corresponds to the description of superconductors in the extreme type-II limit. Under
this assumption, we obtain that the effective |ϕ|4 interaction in momentum space and at the
critical point (m = 0) is written as

λ(p, L; ω) =
λ

1 + λωe−(1/2ω)(p2
1+p2

2)Π(p, L; ω)
, (53)

where the single 1-loop four-point function, Π(p, L; ω), is given by

Π(p, L; ω) =
1
Ld

d

∑
i=1

∞

∑
ni=−∞

∫ 1

0
dx

∫ dD−d−2q
(2π)D−d−2

×
[
q2 + ω2

n1
+ · · ·+ ω2

nd
+ p2x(1 − x)

]−2
. (54)

This is the same kind of expression that is encountered in the previous subsection, Eq. (37),
with the only modification that D → D − 2. The analysis is then performed along the same
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lines and we obtain, analogously,

Π(p, L; ω) = (2π)1−D/2

�
21−D/2 1

(2π)2 c(D)Γ
�

3 − D
2

��
p2
�D/2−3

+
� 1

0
dx d

∞

∑
n=1

��
p2x(1 − x)

2πLn

�D/2−3

KD/2−3

�
Ln
2π

�
p2x(1 − x)

�

+ · · ·+ 2d−1
� 1

0
dx

∞

∑
n1,...,nd=1

⎛
⎝

�
p2x(1 − x)

2πL
�

n2
1 + · · ·+ n2

d

⎞
⎠

D/2−3

×KD/2−3

�
1

2π

�
p2x(1 − x)

�
n2

1 + · · ·+ n2
d

��
, (55)

where

c(D) =
� 1

0
dx (x(1 − x))D/2−3 = 25−D√π

Γ
�

D
2 − 2

�

Γ
�

D−3
2

� , for Re(D) > 4. (56)

As for the infrared behavior of the β function, it suffices to study it in the neighborhood of
|p| = 0, so that we can again use the asymptotic formula for Bessel functions for small values
of the argument, as before. It turns out that in the |p| ≈ 0 limit, the bubble Πcr is written in
the form

Πcr(|p| ≈ 0, L; ω) = A1(D) |p|D−6 + Cd(D, L), (57)

with

A1(D) = (2π)−D/2−1 21−D/2c(D)Γ
�

3 − D
2

�
, (58)

and where the quantity Cd(D, L) is obtained by simply making the change D → D − 2 in the
formula for Bd(D, L) in the preceding subsection.

Let us remind Eq. (53) and define the dimensionless coupling constant

g(1) = ωλ(p1 = p2 = 0, D, L)|p|D−6, (59)

where we remember that in this context p is a (D − 2)-dimensional vector. As before, we
take as a running scale |p| and after performing manipulations entirely analogous to those
in the previous subsection and recalling Eq. (56), we have the extended domain of validity
4 < D < 6 for the quantities Cd=1(D; L), for all d = 1, 2, 3. We then get the β function for
|p| ≈ 0,

β(g) = |p| ∂g(1)

∂|p| ≈ (D − 6)
�

g(1) − A1(D)
�

g(1)
�2

�
, (60)

from which the infrared-stable fixed point is obtained:

g(1)∗ (D) =
1

A1(D)
. (61)
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6. Concluding remarks

Investigations on the dependence of the critical temperature for films with its thickness have
been done in other contexts and approaches, different from the one we adopt. For instance,
in Zinn-Justin (2002), an analysis of the renormalization group in finite-size geometries can be
found and scaling laws have been studied. Also, such a dependence has been investigated
in Asamitsu et al. (1994); Minhaj et al. (1994); Quateman (1986); Raffy et al. (1983) from
both experimental and theoretical points of view, explaining this effect in terms of proximity,
localization and Coulomb interaction. In particular, Quateman (1986) predicts, as our model
also does, a suppression of the superconducting transition for thicknesses below a minimal
value. More recently, in Shanenko et al. (2006) the thickness dependence of the critical
temperature is explained in terms of a shape-dependent superconducting resonance, but no
suppression of the transition is predicted or exhibited.

In this chapter, we have adopted a phenomenological approach, discussing the
(
λ|ϕ|4

)
D and(

−λ|ϕ|4 + η|ϕ|6
)

D theories compactified in d ≤ D Euclidean dimensions. We have presented
a general formalism which, in the framework of the Ginzburg–Landau model, is able to
describe phase transitions for systems defined in spaces of arbitrary dimensions, some of
them being compactified. We have focused in particular on the situations with D = 3 and d =
1, 2, 3, corresponding (in the context of condensed-matter systems) to films, wires and grains,
respectively, undergoing phase transitions which may be described by Ginzburg–Landau
models. This generalizes previous works dealing with first- and second-order transitions in
low-dimensional systems [Abreu et al. (2005); Linhares et al. (2006); Malbouisson et al. (2002)].

We have observed the contrasting behavior of the critical temperature on the size of the
system, whether the transition is first- or second-order. This may indicate that from this shape
dependence one can infer the order of the transition the system undergoes.

In what a renormalization group approach is concerned, we have discussed the infrared
behavior and the fixed-point structure of the compactified O(N) λϕ4 in the large-N limit.
We have shown that, whether in the absence or presence of an external magnetic field, the
existence of an infrared-stable fixed point depends only on the space dimension D, not on the
number of compactified dimensions.
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1. Introduction

The usual ideology when dealing with many-body systems using second quantization is
to treat elementary excitations, say electrons, as the main entities determining the physical
properties of the system: the states are enumerated by population numbers, the response is
described using Green’s functions defined in terms of the elementary excitation, and so on.
The situation changes drastically when interaction allows for the formation of bound states.
The whole view of the system has to be revisited. Perhaps the most famous example is given
by superconductors. In the normal state the material fits the canonical universal description
when, roughly speaking, most of the properties are explained (at least qualitatively) by
the position of the Fermi level. In the superconducting state, however, one has complete
reconstruction of the ground state. Now properties of the material are defined by Cooper pairs
with behavior qualitatively different from that of individual electrons. For one the exclusion
principle has significantly diminished effect, so that pairs can even condense. Such change
in the character of elementary excitations leads to significant consequences: resistivity drops
practically to zero.

In the present chapter we review the basic approaches to treating such new states in
semiconductors, where elementary excitations, electrons and holes, have opposite charge
and the Coulomb attraction leads to formation of excitons, bound states of electron-hole
pairs. Excitons are the major factor determining the semiconductor optical response below
the fundamental absorption edge: they are responsible for resonant absorption at these
frequencies, where in the absence of excitons the material would be transparent. Therefore the
problem of main interest addressed in the present chapter is the interaction with an external
electromagnetic field tuned in resonance with interband transitions.

In Section 2 we present the general description of semiconductor optical response based
on the perturbative treatment of light-matter interaction. We develop a diagrammatical
representation of the perturbation series which we use to discuss the optical response
of initially unperturbed semiconductor and semiconductor where dark excitons form
Bose-Einstein condensate. The essential component of such a description is the solid
knowledge of the dynamics of semiconductor many-body excitations. In Section 3 the
application of time-dependent density functional theory (TDDFT) to the problem of exciton
dynamics is reviewed. TDDFT is a rapidly growing area of research, which shows a great
potential to be used in studies of the dynamics of real systems, including ultrafast processes.
We review our recent results on studies of the bound states, excitons and biexcitons, using this
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approach. Also, we discuss some nonlinear effects in the excitonic systems obtained by means
of the TDDFT approach.

2. Semiconductor optical response

2.1 Dynamics of semiconductor excitations

In the most general setup the problem of combined time evolution of semiconductor
excitations and electromagnetic field requires considering very complex Hamiltonians of
electrons in a periodic lattice and coupled to quantized field, whose dynamics, in turn,
may be affected by the spatial variation of the dielectric function. However, the physics of
phenomena of our main interest, as will be seen, is quite rich on its own. Therefore, in order
to demonstrate the major effects we consider the simplest case of a semiconductor with well
separated spherical bands excited by a classical electromagnetic field. An example of such a
material is GaAs, where the approximation of spherical bands proved to be good. Keeping in
mind the applications of techniques discussed below for GaAs we consider the case when
the states in the valence band are characterized by the projections σ = ±3/2 of angular
momentum (heavy holes).

We will be interested in interband optical transitions, when the external electromagnetic
field has its frequency tuned close to the value of the gap separating the conduction and
valence bands. Due to the high main frequency the vector potential can be presented in a
form convenient for adopting the rotating wave approximation A(x, t) = AΩ(x, t)e−iΩt +
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Ω(x, t)eiΩt with relatively slowly changing amplitude AΩ(x, t).

The dynamics of excitations is described by the semiconductor-light Hamiltonian H = HSC +
HF +Hexc, which is composed of the Hamiltonians of the nonperturbed semiconductor HSC,
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representation we have in the rotating frame

HSC =
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dx
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∑
s

c†
s (x)

(
�c −

∇2

2me
− 1

2
Ω
)

cs(x)− ∑
σ

v†
σ(x)

(
�v +

∇2

2mh
− 1

2
Ω
)

vσ(x)

]

+
1
2

∫
dx1dx2 ∑

s1,s2

c†
s1
(x1)c

†
s2
(x2)V(x1 − x2)cs2(x2)cs1(x1)

+
1
2

∫
dx1dx2 ∑

σ1,σ2

v†
σ1
(x1)v

†
σ2
(x2)V(x1 − x2)vσ2(x2)vσ1 (x1)

−
∫

dx1dx2 ∑
s,σ

c†
s (x1)v

†
σ(x2)V(x1 − x2)vσ(x2)cs(x1).

(1)

Here we have introduced c†
s (x) and vσ(x), operators creating electron with spin s and hole in

spin state σ, respectively, at point x. These are fermion operators satisfying the canonical
anticommutation relations {cs1(x1), cs2(x2)} = {c†

s1
(x1), c†

s2
(x2)} = {vσ1(x1), vσ2(x2)} =
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{v†
σ1
(x1), v†

σ2
(x2)} = 0 and

{
cs1(x1), c†

s2
(x2)

}
= δs1,s2δ(x1 − x2),

{
vσ1(x1), v†

σ2
(x2)

}
= δσ1,σ2 δ(x1 − x2). (2)

The first line in Eq. (1) represents the Hamiltonian of non-interacting electrons and holes with
me,h being the respective masses and �c and �v denoting the positions of the bottom of the
conduction band and of the top of the valence band, respectively, so that �c − �v is the gap.
The last three lines describe the electrostatic interaction with the Coulomb potential V(x).

The Hamiltonian of interaction with external electromagnetic field is

Hexc =
∫

dx ∑
s,σ

[
AΩ(x, t) · ds,σv†

σ(x)c
†
s (x) + A∗

Ω(x, t) · dσ,scs(x)vσ(x)
]

, (3)

where ds,σ = d∗
σ,s = −i �s| ∇ |σ� e/m0, with m0 the electron mass in vacuum, quantifies

coupling between the respective states in conduction and valence bands. Interaction of light
with the semiconductor occurs through absorption and emission of electron-hole pairs thus
specifying the quantity of main interest.

Because the main technical tool used in this part is perturbation theory, it is convenient to
incorporate the time dependence into the Heisenberg representation of quantum operators
Õ = eiHSCtOe−iHSCt, so that i∂O/∂t = [HSC,O]. For electron-hole pair operator the equation
of motion has the form

i
∂

∂t
v†

σ(x2)c
†
s (x1) = −L̂s,σ(x1, x2)v

†
σ(x2)c

†
s (x1)− v†

σ(x2)c
†
s (x1) [U (x1)− U (x2)] , (4)

where operator L̂s,σ(x1, x2) describes the one-pair dynamics

L̂s,σ(x1, x2) = �c − �v − Ω − 1
2me

∇2
1 −

1
2mh

∇2
2 − V(x1 − x2) (5)

and U (x) accounts for interaction of the pair with surrounding charges

U (x) =
∫

dx� V(x − x�)

[
∑
σ

v†
σ(x

�)vσ(x�)− ∑
s

c†
s (x

�)cs(x�)

]
. (6)

In the case when its contribution vanishes (for instance, when operators in Eq. (4) act
on vacuum state, i.e. state with empty conduction band and filled valence band) the
semiconductor dynamics becomes very simple and the structure of excitations is determined
by the spectral decomposition

L̂s,σ(x1, x2) f (x1, x2) = ∑
μ

Eμφ∗
μ(x1, x2)

∫
dx�1dx�2 φμ(x�1, x�2) f (x�1, x�2), (7)

where the formal summation over μ implies summing over the discrete quantum numbers
and integrating over continuous ones. In Eq. (7) Eμ and φμ are, respectively, the eigenvalues
and the eigenfunctions, L̂φμ = Eμφμ. The operator L̂ is self-adjoint and, hence, its eigenvalues
are real and the eigenfunctions form a complete orthonormal set. Convoluting both sides of
Eq. (4) (taken with U = 0) with φμ we find that operators

B†
μ =

∫
dx1dx2 φμ(x1, x2)v

†
σ(x2)c

†
s (x1) (8)
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acting on vacuum create eigenstates of the semiconductor Hamiltonian HSCB†
μ |0� =

EμB†
μ |0�. Such electron-hole states are called excitons and, respectively, B†

μ are called exciton
operators. As follows from Eq. (7) excitons are characterized by a set of quantum numbers
describing the solutions of the respective Schrödinger equation. For convenience we also
include the spin variables into this set, so that μ = {sμ, σμ, nμ, �μ, Kμ}, where Kμ is the
momentum of the exciton center of mass, nμ is the principal quantum number, and �μ is
orbital momentum.

Among the full variety of exciton states not all of them play an equally important role in the
dynamics of a semiconductor interacting with external electromagnetic field. In order to see
this we employ the fact that wave-functions φμ form a complete set and obtain the relation
between electron-hole and exciton operators

v†
σμ
(x2)c

†
sμ
(x1) = ∑

μ|sμ,σμ

B†
μφ∗

μ(x1, x2), (9)

where the sum is taken for fixed values of electron and hole spins. This relation allows us to
express Hexc in terms of the exciton operators

Hexc = ∑
μ

(
A∗

μ(t)Bμ + Aμ(t)B†
μ

)
, (10)

where Aμ(t) are the projections of the external field onto the respective exciton mode

Aμ(t) =
∫

dx AΩ(x, t) · dsμ,σμ φ∗
μ(x, x). (11)

As a result only states with � = 0 are directly coupled with the electromagnetic field. Among
four possible heavy-hole exciton states two of them are dark because the respective transitions
between valence and conduction bands are dipole-forbidden (Ivchenko, 2005). This results
in a life-time of dark excitons that is significantly greater than the life time of bright states.
Additionally, the interaction of bright excitons with light raises their energy compared to dark
excitons (Combescot & Leuenberger, 2009). These circumstances are very important from the
perspective of exciton Bose-Einstein condensation as will be discussed below.

2.2 Dark excitons

A simple way to see why the dark exciton states have lower energies than the bright exciton
states (Combescot & Leuenberger, 2009) is to rearrange the electron-hole exchange scattering
diagram as shown in Fig. 1. Then it becomes obvious that the electron-hole exchange
corresponds to the exchange of a virtual photon between electron-hole pairs. Since only
bright excitons interact with photons, it is only possible for bright excitons to exchange
virtual photons among each other. This interaction pushes the energies of the bright excitons
above the energies of the dark excitons. The reason for adding energy can be intuitively
understood by comparing direct and exchange Coulomb interactions for electrons; i.e. the
direct interaction among electrons leads to repulsion, corresponding to adding energy, while
the exchange interaction leads to attraction, corresponding to reducing energy. In the case of
the Coulomb interaction between electrons and holes, this situation is completely reversed;
i.e. the direct interaction between electrons and holes leads to attraction, corresponding to
reducing energy, while the exchange interaction leads to repulsion, corresponding to adding
energy. It is this exchange-based repulsion which lets the bright exciton energies be higher
than the dark exciton energies.
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(a) Interband Coulomb
exchange

(b) Valence-conduction
exchange diagram

(c) Rearranging the exchange diagram (b)

(d) Exchange diagram with electron-hole

Fig. 1. Interband Coulomb exchange interaction which shifts the bright exciton energy above
the dark exciton energy. Transition process either in terms of valence-conduction electrons
(b) and (c), or in terms of electron-hole (d). This interband Coulomb process is nothing but an
exchange of virtual photon between electron-hole pairs.

2.3 Perturbation theory

Coupled operator equations of motion of semiconductor excitations and electromagnetic field,
turn out to be too complex for a detailed analysis and, therefore, a reliable approximation
scheme must be applied. While such scheme can be worked out at the level of the equations
of motion it is convenient to start from the Hamiltonian formulation of the problem and to use
the standard approach developed in the quantum field theory on the ground of interaction
representation.

The equation of motion of the external electromagnetic field driven by semiconductor
excitations has the form of classical wave equation

1
c2 Ä(x, t)−∇2A(x, t) = −μ0J(x, t) (12)
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with a source
J(x, t) = ∑

μ
dσμ,sμ φμ(x, x)

〈
Bμ

〉
. (13)

This shows that the effect of material excitations is described by the exciton polarization

Pμ(t) =
〈
Bμ

〉
= Tr

[
ρ(t)Bμ

]
, (14)

where ρ(t) is the density matrix at instant t. Specifying the semiconductor state by the density
matrix allows one to address the most general situation. We, however, start from the special
case when the system at all times is in some pure state |Ψ(t)�, so that Pμ(t) = �Ψ(t)| Bμ |Ψ(t)�.
Next, we treat the interaction with the electromagnetic field, Hexc as a perturbation and follow
the standard prescription. First, we account the nonperturbed dynamics by introducing∣∣∣Ψ̃(t)

〉
= exp [iHSCt] |Ψ(t)�, which satisfies i∂

∣∣∣Ψ̃(t)
〉

/∂t = H̃exc(t)
∣∣∣Ψ̃(t)

〉
, where H̃exc(t)

is the Hamiltonian of light-matter interaction in the Heisenberg picture

H̃exc(t) = eiHSCtHexce−iHSCt. (15)

Iterating the equation of motion we find
∣∣∣Ψ̃(t)

〉
= S(t)

∣∣∣Ψ̃(0)
〉
= S(t) |Ψ(0)� , (16)

where

S(t) = 1 +
∞

∑
n=1

(−i)n
∫

· · ·
∫

t1≤...≤tn≤t
dt1 . . . dtn H̃exc(t1) . . . H̃exc(tn). (17)

In what follows we will need the explicit form of such expansion. For a compact notation,
however, it is convenient to introduce the time ordering operator T+, so that one has

S(t) = T+ exp
{
−i

∫ t
0 dt�H̃exc(t�)

}
. Following the same line of arguments we can also derive〈

Ψ̃(t)
∣∣∣ =

〈
Ψ̃(0)

∣∣∣ S†(t), where S†(t) = T− exp
{

i
∫ t

0 dt�H̃exc(t�)
}

. Thus we obtain for the
exciton polarization (and, actually, for any observable)

Pμ(t) =
〈

Ψ̃(t)
∣∣∣ eiHSCtBe−iHSCt

∣∣∣Ψ̃(t)
〉
= �Ψ(0)| S†(t)B̃μ(t)S(t) |Ψ(0)� . (18)

Finally, the perturbational series for Pμ(t) is obtained substituting instead of S(t) and S†(t)
their expansions following Eq. (17).

This was the general consideration, which is applicable for arbitrary system and perturbation.
For the problem of our main interest, however, the fact of great importance is that exciton
operators entering Hexc change the total number of electrons and holes. In particular, if the
initial state |Ψ(0)� is characterized by a definite number of particles this form of perturbation
implies that only terms with matching numbers of exciton creation and annihilation operators
would make nonzero contribution. At the same time a lot of terms enter even low orders of
the perturbation series [as illustrated by Eq. (21) below]. Therefore, for analysis of the series it
is convenient to represent terms graphically using as building blocks

= ±iA∗
μ(t)B̃μ(t),

= ±iAμ(t)B̃†
μ(t).

(19)
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The raising (lowering) line corresponds to the exciton annihilation (creation) operator in
the interaction representation at particular instant and a hollow vertex attached to the line
corresponds to the external field taken at the same instant. Thus the order of the diagram is
determined by the number of vertices. Integration over time is shown by filled vertex and
taking the diagonal matrix element is indicated by a horizontal line, for example

ν

μ

Ψ

≡ �Ψ| |Ψ� = −
∫ t

0
dt2

∫ t2

0
dt1 A∗

μ(t1)Aν(t2)
〈
B̃μ(t1)B̃†

ν(t2)
〉

Ψ
. (20)

While writing down an expression corresponding to particular term in the perturbational
series for Pμ(t) one should take into account that elements to the left and to the right from
Bμ originate from expansions for S† and S , respectively, which have factors i and −i in
correspondence rule (19). The diagrammatical representation of the first few terms of the
perturbational series for Pμ(t) has the form

Pμ(t) = + . . . =
〈
B̃μ(t)

〉
Ψ
−

− i
∫ t

0
dt�

〈
B̃μ(t)B̃†

ν(t
�)
〉

Ψ
Aν(t�) + i

∫ t

0
dt�

〈
B̃ν(t�)B̃μ(t)

〉
Ψ

A∗
ν(t

�) + . . . .
(21)

2.4 Linear and nonlinear responses of initially unperturbed semiconductor

We illustrate the application of this analysis by considering the optical response of a
non-perturbed semiconductor (Erementchouk & Leuenberger, 2010b; Ostreich et al., 1998),
that is when the initial state is vacuum |0� (empty conduction band and filled valence band).
We will emphasize this fact by using the dashed horizontal (vacuum) line in diagrams. It is
seen that only diagrams starting and ending at the vacuum line and above it provide non-zero
contributions into the series. The total number of lines in this case is even and, hence, the total
number of vertices is odd implying that we have only odd orders of the perturbation theory
in this case. In particular among the diagrams shown in Eq. (21) only the second diagram
survives yielding the polarization of linear response

P(1)
μ (t) = = −i ∑

ν

∫ t

0
dt�

〈
Bμe−iHSC(t−t�)B†

ν

〉
0

Aμ(τ). (22)

For the following consideration it is constructive to analyze this expression in somewhat

excessive details. We introduce the vacuum exciton propagator Φ(0)
μ,ν(τ) =

〈
Bμe−iHSCτB†

ν

〉
0

and differentiating with respect to τ we find that it satisfies the dynamical equation

Φ̇(0)
μ,ν(τ) = −i

〈
Bμe−iHSCτ

[
HSC,B†

ν

]〉
0
= −iEνΦ(0)

μ,ν(τ) (23)

with the initial value Φ(0)
μ,ν(0) = δμ,ν, where we have taken into account that BμB†

ν |0� = δμ,ν |0�
following from the commutation relation for the exciton operators

[
Bμ,B†

ν

]
= δμ,ν − Cμ,ν. (24)

Operators Cμ,ν describe the deviation of excitons from bosons

Cμ,ν =
∫

dx1dx2dx�1dx�2φ∗
μ(x1, x2)φν(x�1, x�2)

×
[

v†
σν
(x�2)vσμ(x2)δsμ,sν δ(x1 − x�1) + c†

sν
(x�1)csμ(x1)δσμ,σνδ(x2 − x�2)

]
.

(25)
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Thus we find

P(1)(t) = −i
∫ t

0
dt�e−iEμ(t−t�)Aμ(t�). (26)

Simple but important feature of the linear response is that wave vectors containing in the
external excitation directly transferred to the linear exciton polarization. For example, if

A(x) ∝ eiK·x then P(1)
μ ∝ δ(Kμ − K).

In the next (third) order the exciton polarization is given by the following diagrams

P(3)
μ (t) = +

+ + .

(27)

In order to present this expression in more familiar form we differentiate Eq. (27) with respect
to t remembering that we also need to differentiate the upper limits of the respective integrals.
This yields

Ṗ(3)
μ (t) = −iωμP(3)

μ (t)+ + +

+ + +

+

i
t

,

(28)

where the elements with the hollow vertices are taken at the instant t and the respective
diagrams describe the modification of the instantaneous effect of the electromagnetic field
and thus account for the phase-space filling effect. It can be seen that fifth and fourth
diagram cancel each other by virtue of [Bμ,Bν] = 0. The first and the second diagrams

combine together yielding −iAμ(t)∑ν |P(1)
ν (t)|2. This term is canceled by the commutator

appearing after combining the third and the sixth diagrams. Thus the phase-space filling
effect is described by

Kμ(t) = i ∑
κ,λ,ν

〈
BλCμ,νB†

κ

〉
0

Aν(t)P
(1)
λ

∗
(t)P(1)

κ (t). (29)

The effect of the Coulomb interaction is described by the last term in Eq. (28), which has the
form

Mμ(t) = ∑
κ,λ,ν

P(1)
λ

∗
(t)

∫ t

0
dt3

∫ t3

0
dt1 Aν(t3)Aκ(t1)

〈
Dλ,μe−iHSCtB̃†

ν(t3)B̃†
κ (t1)

〉
0

, (30)

where we have introduced Dλ,μ =
[
Bλ,

[
Bμ,HSC

]]
. This operator can be presented as

Dλ,μ =
∫

dx1dx2dx�1dx�2Bλ(x1, x2)Bμ(x�1, x�2)×
[
V(x1 − x�1) + V(x2 − x�2)− V(x1 − x�2)− V(x�1 − x2)

]
,

(31)
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where we have denoted Bμ(x1, x2) = φμ(x1, x2)csμ(x1)vσμ(x2). Thus operator Dλ,μ describes
the Coulomb interaction between excitons λ and μ. Taking into account the symmetry with
respect to ν ↔ κ we can rewrite Mμ(t) in terms of polarizations of linear response resulting in

Mμ(t) =
1
2 ∑

κ,λ,ν
P(1)

λ

∗
(t)

[
iβν,κ

λ,μP(1)
κ (t)P(1)

ν (t) +
∫ t

0
dt� Fν,κ

λ,μ(t − t�)P(1)
κ (t�)P(1)

ν (t�)
]

, (32)

where βν,κ
λ,μ =

〈
Dλ,μB†

νB†
κ

〉
0

and Fν,κ
λ,μ =

〈
Dλ,μe−iHSCtD†

ν,κ

〉
0
. These coefficients contain

typical average of the form
〈
BλBμB†

κB†
ν

〉
, which determines the spin selection rules governing

different optical processes. In order to derive them we present this average in terms of the
electron and hole operators and rearrange operators to have

〈
vvv†v†〉

0

〈
ccc†c†〉

0 and then
expand each term using the Wick theorem for fermions. It produces four terms, which are
represented by the diagrams in Fig. 2. The points on the upper line of a diagram represent the
spin states of electrons in the conduction band and the points on the lower line stand for the
spin states of holes in the valence band. For example, the anticommutator {v†

σκ
, vσμ} ∝ δσκ,σμ

requires the equality of the respective hole spins in the valence band. We denote this equality
by connecting the vertices κ and μ on the lower line by the arc.

v

c

(a) (c) (d)(b)

Fig. 2. The spin diagrams corresponding to non-zero terms in
〈
BλBμB†

κB†
ν

〉
. Upper and

lower lines correspond to electron and hole spins, respectively. Arcs connecting two vertices
denote equal spins. The diagrams (a) and (b) lead to helicity selection rules ∝ δκ,σν δσλ,σμ and
∝ δσκ,σμ δσλ,σν , respectively. Diagrams (c) and (d) enter the average with minus sign and for
bright excitons require the spin states in the conduction band to be the same.

Also, diagrams in Fig. 2 show which coordinates are identified by delta-functions appearing
after anti-commutation and thus demonstrate how exciton wave functions are convoluted in
such averages. Thus diagrams in Fig. 2a and 2b describe direct exciton scattering, while those
shown in Fig. 2c and 2d take into account scattering with exchange by electron or hole.

The memory term in Eq. (32) accounts for the effect of exciton-exciton interaction.
Unfortunately, an exact evolution of this integral is impossible (it is related to four-particle
propagator) and one has to rely on approximation schemes. It should be noted, however, that
the most significant effect of this interaction is when excitons form a bound state (possibly
metastable). When the contribution of such a state is small or non-existent (e.g. there are no
bound states in the spectrum of two copolarized excitons) one can employ a short memory
approximation, which accounts for the effect of the nonlocal term as a modification of βν,κ

λ,μ.

The essential difference between linear and nonlinear responses is that the latter is a
combination of several linear polarizations. As a result if the external excitation has
components with different wave vectors the nonlinear polarization contains not only all of

them but also their combinations. More precisely one can easily show that P(3)
μ ∝ δ(Kμ +Kλ −

Kν − Kκ). The four momenta have to add up to zero and therefore this is called four-wave
mixing response. Because the direction of the response is different from the direction of
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excitation this allows observing the effect of interaction that is not blurred by linear response
or non-absorbed light. This makes four-wave mixing spectroscopy possible.

We would like to emphasize the generality of the derivation of the exciton optical response.
For example, the specific form of the exciton states has not been used for the derivation of
main formulas and therefore the same arguments can be repeated for excitons in arbitrary
confinement potential. This allows using this approach for description of nonlinear optical
response of disordered quantum wells (Erementchouk et al., 2011).

Another important feature of the diagrammatic representation is that it establishes the
connection between nonlinear optical response and other phenomena which involve exciton
dynamics. As an example we would like to discuss the problem of entanglement of photons
interacting with a semiconductor quantum well. For simplicity we neglect the possible
effect of variation of the dielectric function and assume that the states of the quantized
electromagnetic field are plane waves so that the vector potential is presented as

A =
1

(2π)3/2 ∑
k̂

(�)k̂
1√
2ωk̂

eik·xa†
k̂
+ h.c., (33)

where k̂ = {σ, k} combines all photon quantum numbers, polarization and wave vector. Then
the two-photon states are described by the density matrix, which in the interaction picture has
the form

ρk̂1,k̂2
q̂1,q̂2

(t) = �Ψ(t)| a†
q̂1

a†
q̂2

ak̂1
ak̂2

|Ψ(t)� , (34)

where |Ψ(t)� is the state of the semiconductor-photon system. As the first approximation
it suffices to consider vacuum as the initial state of the semiconductor |Ψ(0)� = |0� and to
neglect the processes of photon re-absorption, which is justified if the photon lifetime within
the quantum well is short (it should be noted that the situation may change in a cavity). In the
lowest approximation the photon annihilation operators in Eq. (34) act on a two-photon state

yielding the factorization ρk̂1,k̂2
q̂1,q̂2

(t) = Ψ∗
q̂1,q̂2

(t)Ψk̂1,k̂2
(t), where

Ψk̂1,k̂2
(t) =

〈
ak̂1

(t)ak̂2
(t)S(t)

〉
0

, (35)

where ak̂(t) are the photon operators in the Heisenberg representation. The interaction

Hamitonian in this case has the form Hexc = ∑μ

(
A†

μBμ + Aμ(t)B†
μ

)
, where

A†
μ =

1
(2π)3/2 ∑

k̂

1√
2ωk̂

dσμ,sμ · εk̂ a†
k̂

∫
dx φμ(x, x)eik·x. (36)

Thus the same diagrams as before can be drawn with the only difference that B line is
accompanied with A†. Quick analysis shows that only two diagrams contribute into Ψ

Ψk̂1,k̂2
(t) = + . (37)

It is immediately seen that the first diagrams describes the emission of photons along the
direction of external excitation and the emitted photons are disentangled: the polarization

134 Advances in Quantum Field Theory



10 Will-be-set-by-IN-TECH

excitation this allows observing the effect of interaction that is not blurred by linear response
or non-absorbed light. This makes four-wave mixing spectroscopy possible.

We would like to emphasize the generality of the derivation of the exciton optical response.
For example, the specific form of the exciton states has not been used for the derivation of
main formulas and therefore the same arguments can be repeated for excitons in arbitrary
confinement potential. This allows using this approach for description of nonlinear optical
response of disordered quantum wells (Erementchouk et al., 2011).

Another important feature of the diagrammatic representation is that it establishes the
connection between nonlinear optical response and other phenomena which involve exciton
dynamics. As an example we would like to discuss the problem of entanglement of photons
interacting with a semiconductor quantum well. For simplicity we neglect the possible
effect of variation of the dielectric function and assume that the states of the quantized
electromagnetic field are plane waves so that the vector potential is presented as

A =
1

(2π)3/2 ∑
k̂

(�)k̂
1√
2ωk̂

eik·xa†
k̂
+ h.c., (33)

where k̂ = {σ, k} combines all photon quantum numbers, polarization and wave vector. Then
the two-photon states are described by the density matrix, which in the interaction picture has
the form

ρk̂1,k̂2
q̂1,q̂2

(t) = �Ψ(t)| a†
q̂1

a†
q̂2

ak̂1
ak̂2

|Ψ(t)� , (34)

where |Ψ(t)� is the state of the semiconductor-photon system. As the first approximation
it suffices to consider vacuum as the initial state of the semiconductor |Ψ(0)� = |0� and to
neglect the processes of photon re-absorption, which is justified if the photon lifetime within
the quantum well is short (it should be noted that the situation may change in a cavity). In the
lowest approximation the photon annihilation operators in Eq. (34) act on a two-photon state

yielding the factorization ρk̂1,k̂2
q̂1,q̂2

(t) = Ψ∗
q̂1,q̂2

(t)Ψk̂1,k̂2
(t), where

Ψk̂1,k̂2
(t) =

〈
ak̂1

(t)ak̂2
(t)S(t)

〉
0

, (35)

where ak̂(t) are the photon operators in the Heisenberg representation. The interaction

Hamitonian in this case has the form Hexc = ∑μ

(
A†

μBμ + Aμ(t)B†
μ

)
, where

A†
μ =

1
(2π)3/2 ∑

k̂

1√
2ωk̂

dσμ,sμ · εk̂ a†
k̂

∫
dx φμ(x, x)eik·x. (36)

Thus the same diagrams as before can be drawn with the only difference that B line is
accompanied with A†. Quick analysis shows that only two diagrams contribute into Ψ

Ψk̂1,k̂2
(t) = + . (37)

It is immediately seen that the first diagrams describes the emission of photons along the
direction of external excitation and the emitted photons are disentangled: the polarization

134 Advances in Quantum Field Theory Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 11

two-photon state is the direct product of the external excitation polarization. The two-exciton
process represented by the second diagram, however, admits oblique emission with
non-trivial dependence of entanglement of emitted photons on the direction of observation
and the polarization state of the excitation field (Erementchouk & Leuenberger, 2010a) as
is summarized in Fig. 3. The polarization of external excitation is described using Poincare
sphere, that is the excitation is presented as a combination of left- and right-polarized
components with amplitudes A− = e−iχ/2 sin(β/2) and A+ = eiχ/2 cos(β/2), respectively,
where β is the polar angle on the Poincare sphere and χ is azimuthal angle (χ/2 is the angle
between the axis of the ellipse of polarization and the plane spanned by the wave vectors
of emitted photons). Near the frequency of the heavy-hole exciton resonance entanglement
may reach maximum EN = 1 only in the case of linear polarization of the pump field
and entanglement demonstrates interesting dependence on the orientation of the plane of
polarization. Near the light-hole exciton resonance the most advantageous orientation of the
ellipse of polarization is χ = 0, however, the direction along which the most emitted photons
are emitted strongly depends on the ellipticity of the external excitation.

(a) (b)

Fig. 3. Dependence of two-photon entanglement on detection angle and on polarization of
external excitation in the vicinities of (a) heavy-hole and (b) light-hole exciton resonances.

2.5 Optical response of Bose-Einstein condensate

Bose-Einstein condensation (BEC) is a phenomenon when at non-zero temperature the
majority of particles occupy only a few states. This is in striking contrast to a distribution
prescribed by the classical theory, where it is governed by the Boltzmann exponent
exp(−E/kBT) and significant difference in occupations may be expected only when the
energy levels are sufficiently far away from each other ΔE/kBT � 1. The Bose-Einstein
condensation, as is well known from the standard textbook consideration of ideal Bose gases
(see e.g. Chapter 12 in (Huang, 1987), where it is clearly shown how a condensate emerges
during the transition to the thermodynamic limit), does not require such level separation and
may as well appear in a system with continuous spectrum.

The effect of BEC is tightly connected to such highly unusual from the classical point of
view phenomena as superconductivity and superfluidity, which enjoy detailed developed
theories (Lifshitz & Pitaevskii, 2002) and still are inexhaustible sources of new questions.
In contrast to superfluidity and superconductivity, for which experiments have taken the
lead over theoretical considerations, experimental studies of BEC fall well behind the theory
(Moskalenko & Snoke, 2000): being predicted in 1925 BEC was obtained in a laboratory
only in 1995. The difficulty of observing BEC motivates the constant search for more
optimal systems. With this regard the significant attention has been paid to excitons in
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semiconductors. The physics of transition of semiconductors into the condensate state is
similar to the superconducting transition (in conventional superconductors). While the
elementary excitations are electrons, at sufficiently low temperatures Cooper pairs of electrons
play the important role, which are formed by phonon-mediated attraction. Pairs are no
longer subject to the exclusion principle and, moreover, at low densities obey the boson
commutation relation. Thus, they may undergo the transition into the BEC-state. With
excitons in semiconductors a similar scenario may take place and may even be more favorable
because the Coulomb interaction binds electron and hole instead of preventing them from
forming a bound state as it is in superconductors.

The finite life time of excitons, however, makes it difficult to reach the condensate state —
excitons decay before the equilibrium is established. Therefore, recently indirect excitons in
coupled quantum wells became the object of special interest (Butov, Gossard & Chemla, 2002;
Butov, Lai, Ivanov, Gossard & Chemla, 2002; Snoke et al., 2002). The electrons and holes
are spatially separated in such a structure that leads to increased life-time. Recently another
possibility, BE condensate formed by dark excitons, started to attract attention (Combescot &
Leuenberger, 2009).

The obvious difficulty related to dark excitons is how to observe them. One of possible ways
to test properties of dark excitons is to use indirect interband spectroscopy, which relies on
dynamics of bright states modified by the presence of dark excitons.

The problem of the optical response can be approached along the same lines as in the previous
sections. The Hamiltonian of light-matter interaction is treated as perturbation and using the
interaction picture the exciton polarization of bright excitons P = �B� is found in terms of S
operator, which produces the perturbation theory. Before we apply this ideology we need to
revisit the notion of averaging in formulas containing �. . .�. In Section 2.4 the initial state of
semiconductor was taken to be vacuum. Here, however, we need to take into account that
initially the system is in thermal equilibrium and therefore its state is given by density matrix
ρ rather than by a vector of state. Thus for an operator O we need to consider

�O� = Tr [ρO] . (38)

In the case when the system has BE condensate this expression significantly simplifies because
the main contribution results from the condensate states, which contain the macroscopic
number of particles. This observation is formally expressed by the spectral decomposition
for the density matrix ρ = ∑n wn |ψn� �ψn|, where |ψn� are some orthogonal states and wn
are their weights. The ratio of the weights of non-condensate and condensate states is small,
wnc/wc � 1, and thus the contribution of the respective terms in Eq. (38) can be neglected
leaving us with

�O� = ∑
c

wc �ψc| Q |ψc� . (39)

We model the condensate state by a coherent state, which is obtained from vacuum by
Glauber’s shift operator |ψc� = D†

c (λ) |0�, where

Dσ(λ) = exp
[
λ
(
B†

c −Bc

)]
(40)

with B†
σ =

∫
dx1dx2 χ(x1, x2)v†

σ(x2)c†
s (x1). Here λ and function χ are parameters of the state

and will be determined later. It should be noted, however, that translational symmetry of the

136 Advances in Quantum Field Theory



12 Will-be-set-by-IN-TECH

semiconductors. The physics of transition of semiconductors into the condensate state is
similar to the superconducting transition (in conventional superconductors). While the
elementary excitations are electrons, at sufficiently low temperatures Cooper pairs of electrons
play the important role, which are formed by phonon-mediated attraction. Pairs are no
longer subject to the exclusion principle and, moreover, at low densities obey the boson
commutation relation. Thus, they may undergo the transition into the BEC-state. With
excitons in semiconductors a similar scenario may take place and may even be more favorable
because the Coulomb interaction binds electron and hole instead of preventing them from
forming a bound state as it is in superconductors.

The finite life time of excitons, however, makes it difficult to reach the condensate state —
excitons decay before the equilibrium is established. Therefore, recently indirect excitons in
coupled quantum wells became the object of special interest (Butov, Gossard & Chemla, 2002;
Butov, Lai, Ivanov, Gossard & Chemla, 2002; Snoke et al., 2002). The electrons and holes
are spatially separated in such a structure that leads to increased life-time. Recently another
possibility, BE condensate formed by dark excitons, started to attract attention (Combescot &
Leuenberger, 2009).

The obvious difficulty related to dark excitons is how to observe them. One of possible ways
to test properties of dark excitons is to use indirect interband spectroscopy, which relies on
dynamics of bright states modified by the presence of dark excitons.

The problem of the optical response can be approached along the same lines as in the previous
sections. The Hamiltonian of light-matter interaction is treated as perturbation and using the
interaction picture the exciton polarization of bright excitons P = �B� is found in terms of S
operator, which produces the perturbation theory. Before we apply this ideology we need to
revisit the notion of averaging in formulas containing �. . .�. In Section 2.4 the initial state of
semiconductor was taken to be vacuum. Here, however, we need to take into account that
initially the system is in thermal equilibrium and therefore its state is given by density matrix
ρ rather than by a vector of state. Thus for an operator O we need to consider

�O� = Tr [ρO] . (38)

In the case when the system has BE condensate this expression significantly simplifies because
the main contribution results from the condensate states, which contain the macroscopic
number of particles. This observation is formally expressed by the spectral decomposition
for the density matrix ρ = ∑n wn |ψn� �ψn|, where |ψn� are some orthogonal states and wn
are their weights. The ratio of the weights of non-condensate and condensate states is small,
wnc/wc � 1, and thus the contribution of the respective terms in Eq. (38) can be neglected
leaving us with

�O� = ∑
c

wc �ψc| Q |ψc� . (39)

We model the condensate state by a coherent state, which is obtained from vacuum by
Glauber’s shift operator |ψc� = D†

c (λ) |0�, where

Dσ(λ) = exp
[
λ
(
B†

c −Bc

)]
(40)

with B†
σ =

∫
dx1dx2 χ(x1, x2)v†

σ(x2)c†
s (x1). Here λ and function χ are parameters of the state

and will be determined later. It should be noted, however, that translational symmetry of the

136 Advances in Quantum Field Theory Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 13

system implies that χ(x1, x2) should posses the symmetry with respect to translations of both
arguments χ(x1 + a, x2 + a) = eiP·aχ(x1, x2) with some P. Clearly P can be eliminated in a
moving frame and, hence, among states created by B†

σ the smallest energy would be of those
with P = 0. Thus we need to consider

B†
σ =

∫
dx1dx2 χ(x1 − x2)v†

σ(x2)c†
s (x1). (41)

The spin states of hole and electron entering the pair creation operator B†
σ are denoted by

σ = {σ, s} and are such that the pair does not interact with the electromagnetic field. As has
been shown above, there are two such states with σ− = {3/2,−1/2} and σ+ = {−3/2, 1/2}.
In the absence of external static magnetic field the energy of these states is the same thus we
naturally have fragmented condensate approximately described by the density matrix ρ =
(|ψ+� �ψ+|+ |ψ−� �ψ−|)/2, where |ψ±� = D†

σ± |0�. Using this approximation in Eq. (39) we
obtain

�O� = 1
2
[�ψ+| O |ψ+�+ �ψ−|O |ψ−�] , (42)

which reduces the problem of finding exciton polarization to the problem with pure initial
state similar to analyzed in Section 2.4. The first and the second terms in Eq. (42) turn into each
other under the inversion of spins in the condensate, which does not present any difficulty.
Therefore, we consider in details only the first term. In order to simplify notations we denote
the spin states of the condensate by simply σ and s and the complementary values by σ̄ and
s̄. Thus for |ψ+� we have σ = −3/2 and s = 1/2 while σ̄ = 3/2 and s̄ = −1/2. The bright
excitons correspond to spins {σ̄, s} and {σ, s̄}, while {σ̄, s̄} are the spins in the another fraction
(spanned by |ψ−�).
Applying the diagrammatic representation of the perturbation series (as illustrated in Eq. (21)
one can immediately see that the series will contain only the same diagrams as in Section 2.4.
In contrast, if the condensate was made of bright excitons then all diagrams shown in Eq. (21)
would contribute. For example, the first diagram, without the external field, would describe
the radiative decay of excitons in the condensate. For dark condensate, however, this diagram
turns to zero because �cs̄�ψ± = �cσ̄�ψ± = 0. Thus one can see that only diagrams with
matching number of creation and annihilation operators of electrons or holes not containing
in the condensate are not vanishing and one need to keep only diagrams with the vacuum
line, where vacuum is understood for electrons with spin s̄ or for holes with spin σ̄.

Unitarity of the shift operator D+(λ) allows one to present the average as taken over vacuum
�ψ+| O |ψ+� = �O(λ)�0, where

O(λ) = D+(λ)OD†
+(λ). (43)

Only electron and hole operators with spins s and σ are affected by this transformation. In
order to find how they transform it is convenient to use the momentum representation, e.g.
vσ(x) = (2π)−d/2 ∫ dkvσ(k)eik·x with d being the dimensionality of the problem. In this
representation we have

B†
+ =

∫
dk χ(k)v†

σ(k)c
†
s (−k) (44)

and thus
∂

∂λ
vσ(k; λ) = D+(λ)

[
B†
+, vσ(k)

]
D†

+(λ) = −χ(−k)c†
s (−k; λ). (45)
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Solving the system of equations we find the transformation induced by the shift operator is
equivalent to the Bogoliubov transformation

vσ(k; λ) = vσ(k)α(k)− c†
s (−k)β(−k), cs(k; λ) = cs(k)α(k) + v†

σ(−k)β(−k), (46)

where
α(k) = cos[λχ(k)], β(k) = sin[λχ(k)]. (47)

In order to clarify the physical meaning of the transformation we present Eq. (46) in coordinate
representation

vσ(x; λ) = vσ(x)−
∫

dx� α̃(x − x�)vσ(x�)−
∫

dx� β(x − x�)c†
s (x

�), (48)

where α̃(x) is the Fourier transform of 2 sin2[λχ(k)/2].

Under transformation (43) the Heisenberg representation eiHSCtOe−iHSCt is mapped into the
Heisenberg representation with transformed Hamiltonian eiHSC(λ)tO(λ)e−iHSC(λ)t. Thus the
transformation can be interpreted as a transition to new particles. The condition of the
quadratic part of HSC(λ) to be diagonal yields an equation with respect to function χ(k)
[

Ẽ(k)− 2
∫

dqV(k − q)β2(q)
]

α(k)β(k) =
[
α2(k)− β2(k)

] ∫
dqV(k − q)α(q)β(q), (49)

where Ẽ(k) = �c − �v − Ω + k2/2me + k2/2mh . As the zeroth approximation we obtain

α(k) = 1 and β(k) = cφ(k), where φ(k) = 2
√

2r3
B/[π(r2

Bk2 + 1)2] is the Fourier transform
of 1s-exciton states in 3d and rB is the exciton Bohr radius. The constant c is found from the
“normalization condition": the electron (or hole) density is equal to the condensate density

n+ =
〈

c†
s (x)cs(x)

〉
+
=

1
(2π)3

∫
dkdqeix·(q−k)

〈
c†

s (k; λ)cs(q; λ)
〉

0
=

1
(2π)3

∫
dkβ2(k),

(50)
that is c2 = n+(2π)3. In the dilute regime, when the condition

η = 64πn+r3
B < 1 (51)

holds we have β(k) � 1 and hence λχ(k) ≈ cφ(k) thus completely defining the condensate
state.

The major effect of the dark condensate on bright excitons is that the condensate changes
the structure of excitons. In order to see this we consider the polarization of linear response
given by Eq. (22) with transformed exciton operators. Let us consider for definiteness the case
of right polarized external excitation, which is coupled to bright exciton with σ = {σ, s̄} =
{−3/2,−1/2}. The time dependence of propagator Φμ,ν(τ) is determined by

D+(λ)
[
HSC, v†

σ(k1)c
†
s̄ (k2)

]
D†

+(λ) |0� = −
∫

dqL(k1, k2; q)v†
σ(k1 − p)c†

s̄ (k2 + p) |0�

+
∫

dpdq V(p)
[
v†

σ(k1 − p)c†
s̄ (k2)α(k1 − p)

−v†
σ(k1)c

†
s̄ (k2 − p)α(k1)

]
v†

σ(q)c
†
s (p − q)A(p, q) |0� ,

(52)
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where A(p, q) = α(q)β(q − p)− α(q − p)β(q) and

L(k1, k2; q) =

[
�c − �v − Ω +

k2
1

2mh
+

∫
dpV(p)β(k1 − p)A(p, k1) +

k2
2

2me

]
δ(q)

− V(q) [1 − β(k1)A(q,−k1)] .

(53)

The last term in Eq. (52) yields the modification of the energy through perturbation of the
condensate. This term can be estimated to lead to relatively long beatings in the linear
response and will be neglected in the following.

Similarly to the case of the dynamics of initially unperturbed semiconductor Eq. (52) provides
the structure of elementary excitations given by the spectral decomposition of the kernel
L̃(k1, k2; k�

1, k�
2) = δ(k1 + k2 − k�

1 − k�
2)L(k1, k2; k1 − k2): its eigenfunctions define the

modified exciton operators, which then should be used in expansion (9). We present results
for the lowest energy state in Fig. 4.

Fig. 4. Modification of bright excitons due to interaction with dark BE condensate. (a)
Variation of the exciton binding energy (left scale) and the exciton radius (right scale) with
the condensate density [see Eq. (51)]. (b) Absorption spectra for different values of η: solid,
dashed, dotted and dash-dotted lines correspond to η = 0, 0.3, 0.6, 0.9, respectively. The inset
shows the exciton wave function in the momentum representation.

The exchange by hole with condensate leads to renormalizations of the mass of the hole
and its interaction with electron within the bright exciton. As a result the observed exciton
states exhibit a blue shift for the binding energy and increasing radius (see Fig. 4a and inset
in Fig. 4b) as functions of the condensate density. In Fig. 4 we have plotted the absorption
spectrum for different densities taking into account the variation of the exciton oscillator
strength, which is determined by |φ(x = 0)|2 ∝ 1/r3

B(η).

3. Ab initio approach - time-dependent density functional theory

In this Section, we present an alternative, ab initio, approach to describe ultrafast processes,
based on time-dependent density functional theory (TDDFT).(Runge & Gross, 1984) The main
advantage of this approach compared to the Green’s function many-body theory methods
is its simplicity. Being an effective single-electron theory, TDDFT uses time-dependent
single-electron density to describe the nonequilibrium response. The corresponding
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single-particle Kohn-Sham wave equation depends on one vector coordinate and one time
variable, which gives a big advantage compared to the Green’s function approaches,
where in strongly nonequilibrium case one needs to take into account many-time Green’s
functions, and the truncation used to have a finite system of equations is often not well
justified. Moreover, technically to solve this system of many-time Green’s functions is a very
complicated task since in general case there is no time translation invariance, and one cannot
use Fourier transforms and needs to consider time variables on the complex Keldysh type
time-contour (see for example (Kadanoff & Baym, 1962)). This analysis can consume a very
large amount of time (see, e.g., Refs. (Freericks et al., 2006; Onida et al., 2002)).

Another difficulty in the Green’s function case comes from the correct treating of the Coulomb
interaction. In the case of pulses shorter than the Coulomb scattering time, one cannot take
these effects into account within a phenomenological scattering time parameter, like in the
Boltzmann equation approach. Thus, one needs to take into account the electron correlation
effects more accurately in this case, which is a very complicated problem in the majority of
cases. In TDDFT, provided one has the correct exchange-correlation (XC) potential, these
effects are taken into account exactly in the framework of a simple single-particle Kohn-Sham
equation with relatively simple XC potential responsible for the electron correlation effects.
Even though the form of such a potential in the case of materials containing transition
metal atoms or atoms with f-electrons in the valence band is not solved yet, in the case of
familiar semiconductor and molecular systems standard local-density approximation (LDA)
and generalized gradient approximation (GGA) are often proved to be good approximations,
like in description of single-electron excitations in molecular systems.(Elliott et al., 2009)

One of the most important questions in TDDFT is its ability as an effective single-particle
theory to describe multi-particle effects, including multiple-electron excitations and bound
electron-hole states, like excitons and biexcitons. To be more specific, one needs to find
the form of the corresponding XC potential to describe these effects. At the moment
our knowledge about the structure of such potentials is rather limited. Though, recently
significant progress in this direction has been made.

In the case of a weak and slow perturbation, the algorithm based on the many-body
Bethe-Salpeter equation (BSE) to construct the XC potential able to describe excitonic
effects was proposed in Refs. (Botti et al., 2004; Marini et al., 2003; Reining et al., 2002).
It was shown also that in the linear response regime in frequency representation one
can construct a pure TDDFT potential, the time-dependent optimized effective potential
in exact-exchange approximation (XX-TDOEP), to describe excitonic effects in the optical
absorption spectra.(Kim & Görling, 2002a;b) Despite the progress of the approaches
mentioned above, these methods are rather complicated, which makes them difficult to apply
in general nonlinear case of strong ultrafast perturbations. Moreover, the question whether
they can describe higher order effects, like biexcitons or other nonlinear collective effects,
including Bose-Einstein condensation of excitons remains open.

Recently, we proposed formally simple and rather general TDDFT approach based on the
density-matrix representation, which is able to describe some of the phenomena mentioned
above.(Turkowski et al., 2009; Turkowski & Ullrich, 2008; Turkowski et al., 2010) In this
Section, we present the general formalism used in this approach. In particular, we present the
system of the TDDFT equations for the density matrix elements, which is the TDDFT version
of semiconductor Bloch equations, that includes nonlinear excitonic effects in all orders of

140 Advances in Quantum Field Theory



16 Will-be-set-by-IN-TECH

single-particle Kohn-Sham wave equation depends on one vector coordinate and one time
variable, which gives a big advantage compared to the Green’s function approaches,
where in strongly nonequilibrium case one needs to take into account many-time Green’s
functions, and the truncation used to have a finite system of equations is often not well
justified. Moreover, technically to solve this system of many-time Green’s functions is a very
complicated task since in general case there is no time translation invariance, and one cannot
use Fourier transforms and needs to consider time variables on the complex Keldysh type
time-contour (see for example (Kadanoff & Baym, 1962)). This analysis can consume a very
large amount of time (see, e.g., Refs. (Freericks et al., 2006; Onida et al., 2002)).

Another difficulty in the Green’s function case comes from the correct treating of the Coulomb
interaction. In the case of pulses shorter than the Coulomb scattering time, one cannot take
these effects into account within a phenomenological scattering time parameter, like in the
Boltzmann equation approach. Thus, one needs to take into account the electron correlation
effects more accurately in this case, which is a very complicated problem in the majority of
cases. In TDDFT, provided one has the correct exchange-correlation (XC) potential, these
effects are taken into account exactly in the framework of a simple single-particle Kohn-Sham
equation with relatively simple XC potential responsible for the electron correlation effects.
Even though the form of such a potential in the case of materials containing transition
metal atoms or atoms with f-electrons in the valence band is not solved yet, in the case of
familiar semiconductor and molecular systems standard local-density approximation (LDA)
and generalized gradient approximation (GGA) are often proved to be good approximations,
like in description of single-electron excitations in molecular systems.(Elliott et al., 2009)

One of the most important questions in TDDFT is its ability as an effective single-particle
theory to describe multi-particle effects, including multiple-electron excitations and bound
electron-hole states, like excitons and biexcitons. To be more specific, one needs to find
the form of the corresponding XC potential to describe these effects. At the moment
our knowledge about the structure of such potentials is rather limited. Though, recently
significant progress in this direction has been made.

In the case of a weak and slow perturbation, the algorithm based on the many-body
Bethe-Salpeter equation (BSE) to construct the XC potential able to describe excitonic
effects was proposed in Refs. (Botti et al., 2004; Marini et al., 2003; Reining et al., 2002).
It was shown also that in the linear response regime in frequency representation one
can construct a pure TDDFT potential, the time-dependent optimized effective potential
in exact-exchange approximation (XX-TDOEP), to describe excitonic effects in the optical
absorption spectra.(Kim & Görling, 2002a;b) Despite the progress of the approaches
mentioned above, these methods are rather complicated, which makes them difficult to apply
in general nonlinear case of strong ultrafast perturbations. Moreover, the question whether
they can describe higher order effects, like biexcitons or other nonlinear collective effects,
including Bose-Einstein condensation of excitons remains open.

Recently, we proposed formally simple and rather general TDDFT approach based on the
density-matrix representation, which is able to describe some of the phenomena mentioned
above.(Turkowski et al., 2009; Turkowski & Ullrich, 2008; Turkowski et al., 2010) In this
Section, we present the general formalism used in this approach. In particular, we present the
system of the TDDFT equations for the density matrix elements, which is the TDDFT version
of semiconductor Bloch equations, that includes nonlinear excitonic effects in all orders of

140 Advances in Quantum Field Theory Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 17

magnitude. As we demonstrate, the solution of these equations in the case of excitons, and
their generalization on the case of biexcitons, gives the corresponding energies of the bound
states and wave functions, allows to analyze nonlinear effects like exciton-exciton interaction,
which can be applied to the description of four-wave mixing experiments. Finally, we discuss
the possibility to describe with the approach a highly nonlinear, collective effect of the Bose
condensation of excitons.

3.1 General formalism

In TDDFT the time evolution of the system is studied by solving time-dependent Kohn-Sham
equation:

i
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t), (54)

where the time-dependent Hamiltonian

Ĥ(t) = −∇2

2
+ Vnucl(r) + VH [n](r, t) + Vxc[n](r, t) + V(r, t), (55)

consists of the kinetic energy part (first term), the nuclear potential Vnucl(r) for the electrons,
the Hartree potential VH [n](r) =

∫
dr�n(r�)/|r − r�|, the XC potential Vxc[n](r, t) and the

external field term V(r, t). Generally speaking, in the case of an external electric field
E(r, t), this field has to be included into the Kohn-Sham Hamiltonian through the standard
substitution ∇ → ∇ − (i/c)Aext(r, t), and the scalar potential term ϕext(r, t), where the
external vector potential Aext(r, t) and ϕext(r, t) define the electric field:

E(r, t) = −∇ϕext(r, t)− 1
c

∂Aext(r, t)
∂t

. (56)

In the case of extended systems one needs to use the vector potential in order to describe
the periodic system. Moreover, one should use the current-TDDFT with the macroscopic
current that leads to the periodicity of the system. However, in the case when the field
frequency is larger than the level spacing, the scalar potential V(r, t) = ϕext(r, t) =
−E(t)r, which significantly simplifies the solution and which we shall use below, is a good
approximation.(Schäfer & Wegener, 2002)

The XC potential takes into account all electron exchange and correlation effects beyond the
Hartree approximation. The Hartree and the XC potentials depend on the time-dependent
electron charge density, which can be expressed in terms of the wave-functions Ψi

k(r, t),
solutions of Equation (54),

n(r, t) = 2 ∑
i,k

|Ψi
k(r, t)|2θ(εF − εvi

k ), (57)

where k is the momentum and i is the band (with the energy εvi
k ) and all other quantum

number indices, and εF is the Fermi energy in the case of extended bulk system. The
bandstructure and the Fermi energy can be obtained from the stationary solution of the
Kohn-Sham problem (standard DFT theory(Kohn, 1999)). It is easy to generalize the
corresponding problem on the case of finite systems. The simplest well-known approximation
for the XC potential (the exchange only part) is the adiabatic LDA approximation:
VxLDA(n(r)) = − (3/π)1/3 n1/3(r). In the case of highly-correlated systems and strongly
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nonequilibrium processes more complicated forms for Vxc[n](r, t) have to be used. In
particular, in the case of the ultrafast processes the memory effects (dependence of the XC
potential on the charge densities in all previous times) can play an important role.

In order to study the optical transitions in the system, it is convenient to express the
time-dependent wave functions as linear combinations of the ground-state wave functions:

Ψvi
k (r, t) = ∑

j

[
c

vivj

k (t)ψ
vj

k (r) + c
vicj

k (t)ψ
cj

k (r)
]

, (58)

where c
vilj

k (t) are momentum and time-dependent complex coefficients, and li = vi, ci are
the valence and conduction band indices. One can solve the problem by studying the
time dependence of these coefficients, however from the physical point of view it is more

convenient to analyze the solution for the density matrix: ρvi ;lml̄n
k;qp (t) = cvilm

kq (t)
[
cvi l̄n

kp (t)
]∗

.
The elements of this matrix correspond are related to the probability of the optical transitions
between different bands and their occupation. The density matrix satisfies the Liouville-von
Neumann equation:

i
∂

∂t
ρ

vi;lml �n
k (t) = [H(t), ρ]

vi;lml �n
k = ∑

l ��j

[
H

lml ��j
kk (t)ρ

vi;l ��j l �n
k (t)− ρ

vi;lml ��j
k (t)H

l ��j l �n
k (t)

]
, (59)

where

Hlml �n
kq (t) =

∫

cell
drψlm∗

k (r)H(t)ψl �n
q (r) = εlm

k δlml �n + E(t)dlml �n
kq + Vlml �n

Hkq(t) + Vlml �n
xckq(t), (60)

dlml �n
kq =

∫
cell drψlm∗

k (r)rψ
l �n
q (r) are the dipole matrix elements, and the space integration is

performed over the unit cell. In Eq. (60), Vlml �n
Hkq(t) and Vlml �n

xckq(t) are the matrix elements for the
difference between the time-dependent and ground state (at t ≤ t0) potentials VH [n](r, t)−
VH [n](r, t0) and VXC[n](r, t)− VXC[n](r, t0) . The Liouville-von Neumann equation has to be
solved together with the corresponding charge density equation

n(r, t) = 2 ∑
i,lm,l �n,k,q,p

ρ
vi;lml �n
k,q,p (t)ψl �n∗

p (r)ψlm
q (r)θ(εF − εvi

k ). (61)

As follows from the last equation, the density matrix defines the time-dependence of the
electron charge density. It also allows to calculate many other physical quantities, including

the dynamical polarization D(t) = ∑i,lm,l �n,k,q,p ρ
vi ;lml �n
k;qp (t)dl �nlm

pq .

3.2 Exciton states

To analyze the possibility of excitonic states in the optical absorption spectrum of the
system, in principle it is enough to find the dynamical polarization from the solution of the
Liouville-von Neumann equations (59) in the case of an external perturbation, like an external
femtosecond pulse: E(t) = E0e−t2/τ2

(τ ∼ 1 − 100fs). The optical absorption spectrum A(ω)
can be found from the expression for the polarization P(ω): A(ω) = −2Re[P(ω)/E(ω)]. In
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the last equation the total polarization is the sum of polarizations for all possible interband
transitions:

Pcivj (ω) = i(4π/
√

�b)(ε
ci
0 − ε

vj

0 )Ωcell

∫ dk
(2π)3

∫
dteiωt|dvjci

k |2ρ
civj

k (t) (62)

where �b is the dielectric constant, εci
0 − ε

vj

0 is the corresponding bandgap and Ωcell is the
volume of the unit cell.

For simplicity, in this Subsection we shall concentrate on the two-band case with 2× 2 density
matrix with two independent matrix elements: the conduction band occupancy ρcc

k (t) and
the polarization ρcv

k (t). The other two elements, the valence band occupancy ρvv
k (t) and the

polarization de-excitation matrix element ρvc
k (t), can be found from the first two elements by

using the conservation of particles equation ρvv
k (t)+ ρcc

k (t) = 1 and the definition of the matrix
elements, which gives ρvc

k (t) = ρcv∗
k (t). The independent TDDFT matrix equations have the

following form:

∂

∂t
ρvv

k (t) = −2Im [(E(t)dcv
k + Vcv

Hk + Vcv
xck)ρ

vc
k (t)] , (63)

∂

∂t
ρcv

k (t) = −i[εc
k − εv

k]ρ
cv
k (t)− i[ρvv

k (t)− ρcc
k (t)]E(t)dcv

k

− i[ρvv
k (t)− ρcc

k (t)](Vcv
Hk(t) + Vcv

xck(t))

− i[Vcc
Hk(t) + Vcc

xck(t)− Vvv
Hk(t)− Vvv

xck(t)]ρ
cv
k (t). (64)

They correspond to the many-body theory semiconductor Bloch equations,(Haug & Koch,
2004) but in the TDDFT case the correlation effects are taken into account exactly without
making the Hartree-Fock truncation.

In order to get a better feeling of the correspondence between both theories, it is instructive
to compare both systems of the equations. Applying the same expansion of the wave
function in terms of the stationary wave functions and writing down the corresponding
Liouville-von-Neumann equation for the density matrix in the case of the Hartree-Fock
equation

i
∂Ψv

k(r, t)
∂t

=

[
−∇2

2
− E(t)r +

∫
dr�

∑q Ψv∗
q (r�, t)Ψv

q(r
�, t)

|r − r�|

]
Ψv

k(r, t)

−
∫

dr�
∑q Ψv∗

q (r�, t)Ψv
q(r, t)

|r − r�| Ψv
k(r

�, t), (65)

one can obtain familiar set of the semiconductor Bloch equations (in linear expansion in the
polarization, see below):

∂

∂t
ρvv

k (t) = − 2Im
[(

E(t)dcv
k +

∫ dq
(2π)3 V(k − q)ρcv

q (t)
)

ρvc
k (t)

]
, (66)

∂

∂t
ρcv

k (t) = − i[εc
k − εv

k −
∫ dq

(2π)3 V(k − q)(ρcc
q (t)− ρvv

q (t))]ρcv
k (t)

− i[ρvv
k (t)− ρcc

k (t)]
(

E(t)dcv
k −

∫ dq
(2π)3 V(k − q)ρcv

q (t)
)

. (67)
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Comparizon of the systems of equations (63), (64) and (66), (67) suggests that the electron-hole
interaction term

∫ dq
(2π)3 V(k− q)ρcv

q (t) resposible for the Rydberg series of the bound states in

the Bloch equation case is contained in the nonlinear functional of the polarization ρcv
q (t) of the

matrix element Vcv
xck(t) (through the polarization that enters in the charge density, Eq. (61)).

We have analyzed the optical absorption spectrum in the case of several XC potentials and
found that in some cases the spectrum contains an excitonic peak below the conduction band
edge.(Turkowski & Ullrich, 2008) In particular, we have found that the optical absorption
spectrum demonstrates a pronounceable excitonic peak when the XC kernel contains the
Coulomb singularity 1/q2, like in the case of the KLI and Slater potentials.(Krieger et al., 1992)
This result is in agreement with Kim and Görling (Kim & Görling, 2002a;b) who showed that
in the translational-invariant systems in order to have the excitonic peaks one needs to have
such a singularity. On the other hand, it was found that the standard LDA and GGA potentials
are "too weak" to produce the peaks.

In order to get a deeper understanding of the structure of the XC kernels necessary to produce
the excitonic bound state one can analyze the linearized TDDFT equation for the polarization
which corresponds to the Wannier equation

[
−(∇2/2mr)− (1/�r)

]
φ(r) = Eφ(r) for the

exciton eigenenergies and eigenfunctions (mr is the reduced electron-hole effective mass and �
is the static dielectric constant of the material).(Wannier, 1937) The solution of the last equation
demonstrates a Rydberg series of the excitonic binding energies qualitatively described by the
Elliott formula (Haug & Koch, 2004).

The corresponding TDDFT Wannier equation can be obtained by linearizing equation (64):

∑
q

[
ωcv

q δkq + Fkq(ω)
]

ρcv
q (ω) = ωρcv

k (ω) (68)

with the effective electron-hole interaction

Fkq(ω) =
2

Ω2

∫

Ω
d3r

∫

Ω
d3r� ψ∗

ck(r)ψvk(r) fxc(r, r�, ω)ψ∗
vq(r

�)ψcq(r�) (69)

(in the momentum representation). The corresponding real-space equation can be
obtained after the Fourier transforms ρ(R, ω) = ∑k e−ikRρcv

k (ω) and Veh(R, R�, ω) =

∑k,q e−ikRFkq(ω)eiqR�
, where R is a direct lattice vector. Since the excitonic wave function

extends over many lattice sites, one can consider R as a continuous variable. In this case the
TDDFT Wannier equation takes the following form

[
− h̄2∇2

2mr
+ EKS

g − ω

]
ρi(r) +

∫
all

space

d3r�Veh(r, r�, ω)ρi(r
�) = 0 , (70)

(m−1
r = m−1

c + m−1
v is the reduced mass and EKS

g is the KS band gap). The solution of the
last equation gives the exciton eigenfunctions ρ(R, ω) and eigenenergies, which are defined
by a nonlocal, frequency-dependent electron-hole interaction Veh(r, r�, ω). This interaction is
defined by the XC kernel. The analysis of the solution in the case of the of LDA kernel, shows
again that it is too weak to produce bound states. On the other hand, it was found that a
phenomenological local kernel f contact

xc (r, r�) = −Aδ(r − r�) (A is a positive constant), and a
long-range kernel with the Coulomb singularity ∼ 1/q2 in the momentum space, f LRC

xc (r, r�) =
−α/4π|r− r�| (α is an adjustable parameter, which might be interpreted as an effective inverse
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screening), give correct lowest excitonic energy at proper choice of the parameters A and α.
These values are of the same order of magnitude for one group of semiconductors - zincblende
or wurtzite, but can be one or two orders of magnitude different for the semiconductors from
different groups.(Turkowski et al., 2009) This suggests that these kernels, similarly to the LDA
case, might be defined by system parameters, in particular the electron density and the volume
of the unit cell. The generalization of this formalism, based on two-particle density matrix,
was used to study the biexcitonic binding energies.(Turkowski et al., 2010)

3.3 Biexcitons

The above formalism can be generalized to the case of multiple excitations, in particular
on the case of biexcitons, correlated double electronic excitations.(Turkowski et al., 2010)
In principle, one can obtain double excitations and possibly coupled (biexcitonic) states
within single-particle TDDFT in the case of non-adiabatic XC kernel. In this case, nonlinear
Casida equation for the eigenenergies will have extra solutions in addition to single-particle
excitations. In this Subsection, we analyze how one can obtain biexcitonic states within
adiabatic approximation since this case corresponds to a transparent biexciton eigenproblem.
In order to find such an approach, one may use the natural orbital (NO) representation for the
stationary electron eigenfunctions.(Giesbertz et al., 2008; 2009; Pernal et al., 2007) In this case
multi-particle excited states can be described by elements of one- and two-electron density
matrices, defined as

γ(x1, x�1, t) = N
∫

dx2

∫
dx3...

∫
dxNΨ(x1, x2, ..., xN , t)Ψ∗(x�1, x2, ..., xN , t), (71)

Γ(x1, x2, x�1, x�2, t) = N(N − 1)
∫

dx3...
∫

dxNΨ(x1, x2, ..., xN , t)Ψ∗(x�1, x�2, ..., xN , t), (72)

where Ψ is the N-particle wave function and xi = (ri, si) denotes the space coordinate and
spin index.(Giesbertz et al., 2008; 2009; Pernal et al., 2007) In principle, all ground state
properties can be obtained from the the single-particle matrix γ(x1, x�1), due to one-to-one
correspondence between the matrix and the ground state many-body wave function Ψ (the
density matrix functional theory generalization of the Hohenberg-Kohn theorem (Gilbert,
1975)). Though to study the excited states the two-electron density matrix is necessary. We
shall concentrate on an effective two-electron theory described by the Hamiltonian

Ĥ(r1, r2, t) = ĥad(r1, t) + ĥad(r2, t) + w[n2](r1, r2, t), (73)

where ĥad is the single-particle TDDFT Hamiltonian (55). In order to have biexcitonic
states in the adiabatic approximation, one can introduce an effective two-particle interaction
w[n2](r1, r2, t) which depends on two-particle density n2(r1, r2, t) = Ψ∗(r1, r2, t)Ψ(r1, r2, t).
Similar to the excitonic case, one can expand the two-electron wave-function in terms of the
NOs χk(r), which in the singlet case gives Ψ(r, r�, t) = ∑k,l Ckl(t)χk(r)χl(r�), where Ckl(t) is a
symmetric matrix with respect to quantum number indices k abd l. In this case, it is easy to
show that

γ(x1, x�1, t) = ∑
k,l

γkl(t)χk(x1)χ
∗
l (x

�
1), (74)

Γ(x1, x2, x�1, x�2, t) = ∑
klmn

Γklmn(t)χk(x1)χl(x2)χ
∗
m(x

�
1)χ

∗
n(x

�
2), (75)
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where γkl(t) = 2 ∑m Ckm(t)C∗T
lm (t) and Γklmn(t) = 2Ckl(t)C∗

mn(t). Some of the elements of the
last two matrices are proportional to the excitonic and the biexcitonic wave functions (with
indices cv and ccvv in the notations of the previous Subsection, correspondingly). Matrix
elements Ckl(t) satisfy the following equation of motion:

i
∂Ckl(t)

∂t
= ∑

r
(hkr(t)Crl(t) + Ckr(t)hrl(t)) +∑

rs
wklrs(t)Crs(t) (76)

with the initial condition Ckl(t = 0) ∼ δkl . The matrix elements hkr(t) are defined above and

wklmn(t) =
∫

dr1

∫
dr2χ∗

k (r1)χ
∗
l (r2)w[n2](r1, r2, t)χm(r1)χn(r2). (77)

From equation (76) one can obtain the equations for γkl(t) and Γklmn(t):

i
∂γkl
∂t

= ∑
r
(hkrγrl − γkrhrl) + ∑

r,s,m
(Γ∗

krsmw∗
msrl − Γkrsmwmsrl) , (78)

i
∂Γklmn

∂t
= ∑

r
(hkrΓrlmn + hrlΓkrmn − hrmΓklrn − hrnΓklmr) + ∑

r,s
(wklrsΓrsmn − w∗

mnrsΓklrs) .(79)

This is a closed system of equations and is the generalization of the single-electron problem
problem from the previous Subsection (at w = 0 and Γ = 0) on the two-electron case. Namely,
at w = 0 in the linear approximation for two bands one obtains the TDDFT-Wannier equation:

Ev
nqγcv

nk,q = ∑
k�

[(
εc

k�+q − εv
k�

)
δkk� + Fkk�

]
γcv

nk�,q , (80)

where k is the electron momentum and q is the sum of the electron and hole momenta (we
consider more general case of nonzero exciton momentum). The electron-hole interaction Fkk�

is defined in Eq. (69).

Similarly, in the case of two-bands one can obtain the equation for the biexciton function:

0 =

[
i

∂

∂t
− εc

k+q − εc
k� + εv

k + εv
k�+q

]
Γccvv

k+q,k�,k,k�+q −∑
k�

Gk+q,k�;k̄+q̄,k̄�,k̄,k̄�+q̄Γccvv
k̄+q̄,k̄�,k̄,k̄�+q̄ ,

(81)
where Gk+q,k�;k̄+q̄,k̄�,k̄,k̄�+q̄ are the matrix elements of the one- and two-electron density

kernels g1(r, r1, r2) =
δVxc(r)

δn(r1,r2)
and g2(r1, r2, r3, r4) =

δw(r1,r2)
δn(r3,r4)

with respect to the Kohn-Sham
eigendunctions, similar to Fkk� (we refer the reader to paper (Turkowski et al., 2010), where the
explicit expression for the matrix elements is presented). Eq. (81) can be solved by expanding
the biexcitonic function in terms of the complete set of the excitonic functions γcv

n,k,q with
eigenenergies En,q (n is the number of the bound state). These quantities can be found from
the solution of Eq. (80). The next step is to antisymmetrize the corresponding function with
respect to interchange of holes and electrons. Then one can get the following expressions for
the singlet (−) and triplet (+) biexcitonic functions(Schäfer & Wegener, 2002; Turkowski et al.,
2010):

Γ̃cc�vv�±
k+q,k�,k,k�+q = ∑

n,m

[
γv

n,k+q,qγv�
m,k�+q,−qb±nm,q ∓ γv

n,k�,k�−kγv�
m,k+q,k−k�b±nm,k�−k

]
. (82)
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The solution of the eigenproblem for b±nm,q

∑
n�,m�,q�

[(
ω − Enq − Emq

)
δnn�δmm�δqq� − H±

nm,n�m�,qq�

]
b±n�m�,q� = 0, (83)

gives one the biexcitonic eigenvectors and eigenenergies. In the last equation H±
nm,n�m�,qq�

are functionals of the excitonic functions and interaction elements Fkk� and Gkk�pp� (see
Ref. (Turkowski et al., 2010)).

We tested the formalism in the case of several semiconductors by using phenomenological
local one-particle kernel f contact

xc (r, r�) and two-particle "contact biexciton" kernels
glocal

1 (r, r1, r2) = −C0A1δ(r − r1)δ(r − r2) and glocal
2 (r, r�, r1, r2) = −A2δ(r − r�)δ(r −

r1)δ(r − r2). It was found that indeed the TDDFT can describe the biexcitonic states in the
adiabatic approximation.

3.4 Nonlinear effects

It is straightforward to extend the formalism developed above to the nonlinear case, including
dynamical exciton-exciton interaction and memory effects. These processes play an important
role in the case of ultrafast processes, including four-wave mixing experiments. So far, these
nonlinear effects were studied only in the framework of many-body effective models. In most
cases, the problem was analyzed by solving a third-order polarization equation. Beyond the
importance of developing the TDDFT approach to describe the ultrafast processes, there is
another important reason for this. Namely, from the experimental data one can learn about
the non-adiabatic structure of the XC kernels, since our knowledge on the non-adiabatic
kernels is much more limited comparing to the static adiabatic case. Below, we analyze
some possible types of the response of the system by taking into account the memory effects
and by using the known asymptotic limits of the XC kernels at low and high frequencies,
and compare qualitatively the TDDFT results with the corresponding phenomenological
many-body solution.

From equation (64) one can obtain the system of equations for the first and the third order
polarizations:

i
∂

∂t
P(1)

k (t) = [εc
k − εv

k] P(1)
k (t) + ∑

q

∫
dt�αkq(t, t�)P(1)

q (t�) + dcv
k E(t), (84)

i
∂

∂t
P(3)

k = [εc
k − εv

k] P(3)
k + ∑

q

∫
dt�ᾱkq(t, t�)P(1)

k (t)|P(1)
q (t�)|2

+ ∑
q,p,p�

∫
dt�

∫
dt��

∫
dt���βkqpp� (t, t�, t��, t���)P∗(1)

k (t�)P(1)
p (t��)P(1)

p� (t���), (85)

where

αkq(t, t�) = 2
∫

dr
∫

dr�Ψc(0)∗
k (r)Ψv(0)

k (r) fxc(r, r�, t, t�)Ψc(0)∗
q (r�)Ψv(0)

q (r�) (86)

ᾱkq(t, t�) = 2
∫

dr
∫

dr�Ψc(0)∗
k (r)Ψv(0)

k (r) fxc(r, r�, t, t�)Ψc(0)∗
q (r�)Ψv(0)

q (r�), (87)
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and βkqpp� (t, t�, t��, t���) is a sum of matrix elements of fXC and its first two derivatives
with respect to the particle density, similar to Eqs. (86) and (87). In the case of four-wave
mixing experiments the system of equations (84), (85) can be solved by solving first the
linear equation, and then the nonlinear effects can be found by solving Eq. (85). To study
nonlinear effects one can also analyze the approximate effective third order equation for the
total polarization which corresponds to the system (84), (85):

i
∂P
∂t

=

(
δ +

β

2
|P|2

)
P − 1

2

(
1 − |P|2

nc

)
Ω − iP∗

2

∫ t

−∞
F(t − t�)P(t�)2dt�, (88)

similar to the many-body equation analyzed in Refs. (Ostreich et al., 1995; 1998). In the last
equation,

δ = εc
k − εv

k,

β � 2
[
α

cc(3)
Hkk − α

vv(3)
Hkk − 2α

cv(1)
Hkk − 2α

cv(1)
kk

]
(0, 0)

+ 2
[

β
cc(2)
kkk − β

vv(2)
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k (r��), (89)

Ω is the Rabi frequency and nc is the maximum density corresponding to the Pauli blocking
term (we neglect the momentum variable below).

As it follows from Eq. (89), the nonlinear time-dependent effects are defined by the
memory function F(t − t�), which depends on the non-adiabatic part of the XC kernel.
In the many-body approach, the memory function usually depends on the exciton-exciton
correlation function, which is difficult to find, so in this case a phenomenological approach
has to be used. For example, as it was proposed in Ref. (Ostreich & Sham, 1999), in the case of
slowly varying polarization the memory term can be approximated by

− iP∗
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−∞
F(t − t�)P(t�)2dt� � − iP∗

2
P(t)2

∫ t

0
F(t − t�)dt�, (90)

so the time-correlation effects are defined by the function g(t) =
∫ t

0 F(t�)dt�. This function
can be expressed in terms of the spectral density ρ(ω): g(t) ∼

∫ ∞
0 dωρ(ω)ω−1e−iωt. In the

low-frequency limit, which defines the long-time asymptotic behavior of the system, the
spectral density can be approximated by a power low-function ρ(ω) ∼ ωα. This function
defines the dissipation processes in the system, i.e. the role of the environment (other excitons)
on the behavior of given exciton. In the cases when α is smaller, equal or larger than 1, the
dissipation is called "sub-ohmic", "ohmic" and "super-ohmic" (Caldeira & Leggett, 1983). Since
the spectral function must decay at large frequencies, the general form of the spectral density
was approximated by

ρ(ω) = Aωαe−ω/ωF , (91)

where ωF is the frequency scale and A is the normalization constant. Thus, the memory
function can be approximated by(Ostreich & Sham, 1999)

F(t) = A
∫ ∞

0
dωωαe−ω/ωF e−iωt. (92)
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on the behavior of given exciton. In the cases when α is smaller, equal or larger than 1, the
dissipation is called "sub-ohmic", "ohmic" and "super-ohmic" (Caldeira & Leggett, 1983). Since
the spectral function must decay at large frequencies, the general form of the spectral density
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In the case of an one-dimensional model for excitons, the authors of Ref. (Ostreich & Sham,
1999) found α = 1.

One can in principle construct an fXC such that the functions on the right hand sides of the
Eqs. (89) and (92) are equal. In this case, the equation for polarization will coincide with the
many-body equation, and the solution in both cases will be the same. However, as we show
below due to some constraints on the frequency-dependent fXC, the last equation should be
corrected. Namely, it is known that the exact asymptotic of the XC kernel at large frequencies
is fXC ∼ a + bω−2 (van Leeuwen, 2001). In the case of low frequencies, the information about
the exact behavior of fXC is more limited. In particular, it is known that it can have poles in
the case of finite system in the discrete part of the spectrum. To get an idea about possible
frequency-dependence of the XC kernel for all ranges of frequencies one can consider the case
of the homogeneous electron gas, when fXC(ω → 0) → 0, fXC(ω → ∞) → ω−3/2 (Marques
& Gross, 2003). From these results one can suggest the following rather general form for the
non-adiabatic part of the XC kernel:

fXC(ω) = A
ωα

1 + (ω/ωF)
α+β

, (93)

where α is of order of 1, and β = 2, though the case β = 3/2 is also worth of special
attention. Below we solve Eq. (88) in the case of different values of α and β = 1.5 and 2.
We approximate the XC kernel in the following way: fXC(r, t, t�) = f A

XC[n(r, t)] fXC(t − t�),
where f A

XC[n(r, t)] is the adiabatic part and fXC(t − t�) the last term is defined in Eq. (93).
Substitution of this expression into Eq. (89) leads to the following form of the memory
function: F(t) = A

∫ ∞
0 dωωα[1 + (ω/ωF)

α+β]−1e−iωt, where A is the integral over the
derivative of the adiabatic part with respect to the particle density multiplied by the static
wave functions (see Eq. (89)).

We analyze qualitatively possible solutions of Eq. (88) by considering two characteristic cases:
an approximate time-evolution of the excitonic density and collective excitations in the case of
two different memory functions: the exponentially decaying kernel (91) and the TDDFT-type
algebraically decaying kernel (93). The time-dependence of the excitonic density n(t) can
be obtained from the equation for polarization by using the ansatz P0 =

√
n(t)exp(iφ),

which gives n(t) � n(0)[1 + n(0)Re
∫ t

0 g(t�)dt�]−1. One can show that the equilibration takes
much longer time in a more realistic case of the TDDFT spectral function, comparing to the
exponential one (see Fig. 5).

One can analyze the collective excitations in the excitonic system by separating the slow and
fast components of polarization, P = P0 + P1, so the fast component satisfies the following

approximate equation: ∂P1/∂t = −|P0|2
[
iβP1 +

∫ t
0 F(t − t�)P1(t�)dt�

]
. The eigenvalues of

this equations can be found numerically from the corresponding equation in frequency
representation:

ω/n = β − F(0)
∫ ∞

0

ρ(ω�)dω�

ω� − ω − i0
(94)

(for details, in particular for the normalization of the function ρ and the spectral sum rule
for F(t), see Ref. (Ostreich & Sham, 1999)). It is possible to show that the number of possible
collective modes increases from 0 to 2 with the exciton density increasing (the zero-frequency
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Fig. 5. The time-dependence of the exciton density in the case of β = 2" (a) and exponential
spectral function (b). We have used the parameters for the 3D model of semiconductor from
(Ostreich & Sham, 1999): β = 52ωx/3, F(0) = 14ω2

x, ωx = 6.7meV. The time is given in units
of 1/ωx and n(0) = 0.1.

mode corresponds to the Goldstone mode). Since at small frequencies the change of the
right hand side of Eq. (94) with frequency is faster in the case of power spectral function,
the critical value for the density above which there are collective oscillations is lower in this
case. Also, the corresponding energies for these oscillations are lower in the case of power
spectral function.

Finally, similar to the many-body case, one can analyze the two-dimensional Fourier spectrum
of the system by taking into account memory effects. It is possible to show that the presence
of the memory function in Eq. (88) can not only result in a shift of the excitonic peak in the
spectrum but also lead to coupled exciton-exciton states. The detailed results of these studies
will be published in the nearest future.

To summarize, we have shown that our TDDFT approach for excitons, despite being at the
early stage of the development, shows to be a very promising and powerful method that can
be used in many applications, in particular in studies of ultrafast processes.
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1. Introduction

Massey-Milnor linking theory was developed by J. Milnor [Mi1, Mi2] and W. Massey [Ma, Po]
algebraically and homological-theoretically in 1960’s, but still remains quite mysterious as the
explicit formulae thereof is missing.

Chern-Simons-Witten configuration space integrals are the Feynman graphs in the aspect
of perturbative quantum field theory, and are developed by E. Witten [ADW, AF1, AF2,
At, Aw, Ba1, Ba2, HM, MV, RT, Tu, Wi] in 1990’s. But, as in almost all quantum field
theories to compute Feynman graphs explicitly is always beyond any rigorous mathematical
attack for the time being [PS]. Nevertheless in this paper, in the aspect of the first
nonvanishing Massey-Milnor linking [Ma, Mi1, Mi2, Po] we compute explicitly the related
Chern-Simons-Witten configuration space integrals [HKT, Hs1, Hs2, Hs3, Hs4, Hs5, Hs6, Hs7,
HY], from which we derive the combinatorial formulae of the Massey-Milnor linking when
the link under study is represented as a link diagram on the plane R

2.

2. Set-up

In this section for the forthcoming presentation of Massey-Milnor linking theory and
Chern-Simons-Witten graphs in perturbative quantum field theory [AF1, AF2, Ba2, Wi], we
define the related concept as follows.

For the set-up suppose that a given link L = {L0, L1, . . . , Ln} oriented with base points
{xj ∈ Lj|j = 0, 1, . . . , n}, is in a general position with pairwise crossings specified in R

2 and is
represented schematically as

To be more precise, each component Lj is represented schematically by a trivial circle with
the base point xj placed outer the most on Lj of L = {L0, L1, . . . , Ln} which is arranged
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counter-clockwise with L0 as the root. Moreover each Lj is oriented counter-clockwise as
shown schematically.

Also for the link L = {L0, L1, . . . , Ln} of (n + 1) components, to define the invariant
Ln,n−1,...,1,0 below we assume that all invariants of strictly lower degrees vanish namely
that Lm,m−1,...,1,0 = 0, for any permutation of any subset {L∗

0, L∗
1, . . . , L∗

m} ⊆ L of (m + 1)
components and for any m ≤ n − 1.

3. Chern-Simons-Witten graphs

In this section we present the key concept of Chern-Simons-Witten configuration space
integrals in the framework of perturbative quantum field theory. Beyond that we define our
first knot invariant Ln,n−1,...,1 for a link {L0, L1, . . . , Ln}, for which all invariants of strictly
lower degrees vanish as in the setup.

Definition 1. (1) Given an oriented link L = {L0, L1, . . . , Ln−1, Ln} as above, a
Chern-Simons-Witten graph Γ supported on L is a uni-trivalent rooted tree with all univalent vertices
supported on L.—Notice that our trees are “honest” trees in strict sense that all edges rooted at a vertex
are all going upward therefrom.

(2) Given a Chern-Simons-Witten graph on L we define its degree to be

degree Γ = #{ edges of Γ} − #{ trivalent vertices of Γ}.

(3) Given a Chern-Simons-Witten graph Γ supported on L we define the associated
Chern-Simons-Witten configuration space to be the space as follows.

(3-1) For each trivalent vertex we assign a copy of R
3.

(3-2) For a univalent vertex supported on the component Lj of L we assign Lj to it.

And if some univalent vertices {U1, U2, . . . , Uk} ordered linearly with respect to the orientation and
the base point xi ∈ Lj are supported on Lj, then we assign to {U1, U2, . . . , Uk} the subset of (Lj)

k

which respects the linear order of Lj, namely the subset {(y1, y2, . . . , yk)|xj ≤ y1 ≤ y2 ≤ · · · ≤ yk ≤

xj} ⊆ (Lj)
k with the induced orientation.

As the configuration space of Γ we take the abstract product of the spaces in (3-1) and (3-2), but with
the orientation specified (or the ordering of the factors of the product) as follows:

(3-2-1) Always start with the root L0.

(3-2-2) Going up for each edge.

(3-2-3) From the right edge to the left edge at each trivalent vertex.

(3-2-4) Endow the connected subgraphs with the above orientations and then take the product of the
orientation of all components. It does not matter how to get the product of the orientation of the
components as all components are even dimensional spaces.

(4) For an edge joining vertices A and B in Γ, we assign a differential 2-form to it by pulling-back the

standard area form on the unit sphere in R
3 by the map

A − B

|A − B|
where vertex A sits below vertex B

in Γ. And we define the differential form associated to Γ to be the product of the 2-forms indexed by
all edges of Γ. Notice that it does not matter how we “arrange” the order of the product, as all these
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differential forms are 2-forms. Also notice that if univalent vertices U1, . . . , Uk are supported on a
component Lj, then they are “positioned” on Lj with the same “height”.

(5) Finally for a Chern-Simons-Witten graph Γ supported on a given link L = {L0, L1, . . . , Ln−1, Ln},
we define the associted Chern-Simons-Witten configuration space integral to be the integral of the
differential form constructed in (4) over the configuration space constructed in (3).

Next in Definition 2 we define the first non-vanishing invariant Ln,n−1,...,1,0 for the link
{L0, L1, . . . , Ln} represented diagrammatically as in the setup. We coin the construction as
HIST-transform where HI comes from the IHX-relation and ST comes from the STU-relation
in the perturbative Chern-Simons-Witten quantum field theory [Oh, Wi, Ye].

Definition 2. (1) We define the HI-transform as:

.

where vertices A, B, C and D are generic vertices of a Chern-Simons-Witten graph which are not
necessarily uni-valent ones.

(2) We define the ST-transform as:

.

where vertices A and B are generic vertices and vertex i is a univalent vertex sitting on some knot
component.

(3) For the construction of connected Chern-Simons-Witten graphs of degree n supported on
{L0, L1, . . . , Ln}, and to ease the notation, we define “double round brackets” ((n, n − 1, . . . , 2, 1))
as follows.

(3-1) ((2, 1)) = 2 ∧ 1

(3-2) ((3, 2, 1)) = ((3, 2)) ∧ 1 + 3 ∧ ((2, 1))

(3-3) ((4, 3, 2, 1)) = ((4, 3, 2)) ∧ 1 + ((4, 3)) ∧ ((2, 1)) + 4 ∧ ((3, 2, 1))

· · · · · ·

(3-4) ((n, n− 1, . . . , 2, 1)) = ((n, n− 1, . . . , 2))∧ 1+((n, n− 1, . . . , 3))∧ ((2, 1))+ · · ·+((n, n−
1)) ∧ ((n − 2, n − 3, . . . , 2, 1)) + n ∧ ((n − 1, n − 2, . . . , 2, 1))

(4) The construction of connected Chern-Simons-Witten graphs of degree n on {L0, L1, . . . , Ln} is as
follows.
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(4-1) For generic vertices A and B, we assign to (A ∧ B), this is we connect vertices A and
B arranged as above, to a new vertex—the root shown here—by a “Y”. And by definition the new
vertex—the root—is denoted as (A ∧ B), if we need to continue doing this construction therefrom.

(4-2) For two connected Chern-Simons-Witten graphs A and B, to (A + B) we assign the disjoint
copies of A and B.

(5) On {L0, L1, . . . , Ln} for the construction of the first non-vanishing Chern-Simons-Witten graph
Ln,n−1,...,1,0: Start with the connected ones in (4) and apply ST-transform exactly once to get the
set of all Chern-Simons-Witten graphs of two components; repeat ST-transforms till we get finally
the Chern-Simons-Witten graphs of exactly n components. And Ln,n−1,...,1,0 is the “sum” of the
Chern-Simons-Witten graphs constructed above.

Before giving some examples we make the following remarks to make more sense of
Definition 2.

Note 1. (1) It is easy to see that the connected Chern-Simons-Witten graphs constructed in (4) of
Definition 2 is closed under the HI-transforms.

(2) If we coin the connected Chern-Simons-Witten graphs as 0-connected, those ones of two components
as (−1)-connected, the ones of three components as (−2)-connected and so forth and so on, then
it is easy to see that for any l the set of l-connected Chern-Simons-Witten graphs of degree n
supported on L = {L1, . . . , Ln} are closed under HI-transform; moreover, the set of l-connected
Chern-Simons-Witten graphs constructed as above will produce exactly the set of (l − 1)-connected
ones after doing ST-transform exactly once.

(3) Our Chern-Simons-Witten graphs are always not edge-overlapping, that is when edges of the graphs
are represented as line segment in R

2 they never intersect with one another except obviously at the
vertices proper.

Here are some examples to show the idea.

Example 1. For n = 2, L = {L0, L1, L2}, the connected Chern-Simons-Witten graph of degree 2 is:

. As usual to ease the notation we use numerials i, j, k, . . . for the knot component Li, Lj, Lk

etc. The set of (−1)-connected ones are

It is easy to see that starting with the connected Chern-Simons-Witten graphs we get the set
of (−1)-connected ones after doing ST-transform exactly once.

Example 2. For n = 3, L = {L0, L1, L2, L3}, from the construction in (3), (4) of Definition 2 it is to

see that the connected Chern-Simons-Witten graphs of degree 3 are: and .
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For the (−1)-connected Chern-Simons-Witten graphs,we apply ST-transform exactly once to the set of
connected ones to get:

→

, , ,

→

, , ,

For the set of (−2)-connected Chern-Simons-Witten graphs, we apply ST-transform exactly once to
the set of (−1)-connected ones to get the graphs of three components in L3,2,1,0 listed below.
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Also by Definition 1, the relevant Chern-Simons-Witten configuration space integrals of the above
example are shown in example 5.

Example 3. For n = 1, L = {L0, L1}, the invariant L1,0 is nothing but the integration of the 2-form
corresponding to the edge, over the configuration space L0 × L1:

L1,0 =
1

4π

�

L0

�

L1

det

⎛
⎝

y0 − y1

dy0

dy1

⎞
⎠ 1

|y0 − y1|3
,

which is exactly the classic Gauss linking.

Example 4. n = 2, L = {L0, L1, L2} for which the invariants of strictly lower degrees Li,j = 0,
∀i �= j, then L2,1,0 is the sum of the Chern-Simons-Witten configuration space integrals corresponding
to the Chern-Simons-Witten graphs listed in Example 1.

�

L0

�

R3

�

L1

�

L2

(0 − x) ∧ (x − 1) ∧ (x − 2),

�

L0

� 0

x0

�

L1

�

L2

(x − 1) ∧ (x − 2),

�

L0

�

L1

� 1

x1

�

L2

(0 − 1) ∧ (x − 2),
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∫

L0

∫

L1

∫

L2

∫ 2

x2

(0 − 2) ∧ (x − 1).

Example 5. n = 3, L = {L0, L1, L2, L3} for which the invariants of strictly lower degrees
vanish: Li,j = 0, Li,j,k = 0 for all distinct i, j, k, then the invariant L3,2,1,0 is the sum of the
following 22 Chern-Simons-Witten configuration space integrals which are the relevant integrals of
the Chern-Simons-Witten graphs listed in Example 2.

(A) =
∫

L0

∫
R3

∫
L1

∫
R3

∫
L2

∫
L3
(0 − x) ∧ (x − 1) ∧ (x − y) ∧ (y − 2) ∧ (y − 3),

(B) = −
∫

L0

∫
R3

∫
L3

∫
R3

∫
L1

∫
L2
(0 − x) ∧ (x − 3) ∧ (x − y) ∧ (y − 1) ∧ (y − 2),

(C) =
∫

L0

∫
L1

∫ 1
x1

∫
R3

∫
L2

∫
L3
(0 − 1) ∧ (x − y) ∧ (y − 2) ∧ (y − 3),

(D) =
∫

L0

∫
L3

∫ 3
x1

∫
R3

∫
L1

∫
L2
(0 − x) ∧ (3 − y) ∧ (y − 1) ∧ (y − 2),

(E) =
∫

L0

∫ 0
x0

∫
L1

∫
R3

∫
L2

∫
L3
(x − 1) ∧ (0 − y) ∧ (y − 2) ∧ (y − 3),

(F) = (+)
∫

L0

∫
R3

∫
L2

∫ 2
x2

∫
L1

∫
L3
(0 − x) ∧ (x − y) ∧ (y − 1) ∧ (x − 2),

(G) = (+)
∫

L0

∫
R3

∫
L1

∫ 1
x1

∫
L2

∫
L3
(0 − x) ∧ (x − 1) ∧ (y − 2) ∧ (x − 3),

(H) =
∫

L0

∫
R3

∫
L1

∫
L3

∫ 3
x3

∫
L2
(0 − x) ∧ (x − 1) ∧ (x − y) ∧ (y − 2),

(I) =
∫

L0

∫ 0
x0

∫
R3

∫
L1

∫
L2

∫
L3
(x − y) ∧ (y − 1) ∧ (y − 2) ∧ (0 − 3),

(J) =
∫

L0

∫
R3

∫
L1

∫
L2

∫ 2
x2

∫
L3
(0 − x) ∧ (x − 1) ∧ (x − 2) ∧ (y − 3),

(K) =
∫

L0

∫
L3

∫ 3
x3

∫
L2

∫ 2
x2

∫
L1
(0 − x) ∧ (3 − y) ∧ (2 − 1),

(L) =
∫

L0

∫ 0
x0

∫
L1

∫
Lx3

∫ 3
x3

∫
L2
(x − 1) ∧ (0 − y) ∧ (3 − 2),

(M) =
∫

L0
int0

x0

∫
L1

∫ 1
x1

∫
L2

∫
L3(x − 1) ∧ (y − 2) ∧ (1 − 3),

(N) =
∫

L0

∫
L1

∫ 1
x1

∫
L2

∫ 2
x2

∫
L3
(0 − 1) ∧ (x − 2) ∧ (y − 3),

(O) =
∫

L0

∫ 0
x0

∫ y
x0

∫
L1

∫
L2

∫
L3
(x − 1) ∧ (y − 2) ∧ (0 − 3),

(P) =
∫

L0

∫
L3

∫ 3
x3

∫ y
x3

∫
L1

∫
L2
(0 − x) ∧ (y − 1) ∧ (3 − 2),

(Q) =
∫

L0

∫
L2

∫ 2
x2

∫ y
x2

∫
L1

∫
L3
(0 − y) ∧ (x − 3) ∧ (2 − 1),

(R) =
∫

L0

∫
L1

∫ 1
x1

∫ y
x1

∫
L2

∫
L3
(0 − 1) ∧ (x − 2) ∧ (y − 3),

(S) =
∫

L0

∫
L3

∫ 3
x3

∫
L1

∫ 1
x1

∫
L2
(0 − x) ∧ (3 − 1) ∧ (y − 2),

(T) =
∫

L0

∫ 0
x0

∫
L3

∫ y
L2

∫ 2
x2

∫
L1
(0 − 3) ∧ (x − y) ∧ (2 − 1),

(U) =
∫

L0

∫
L1

∫ 1
x1

∫
L3

∫ 3
x3

∫
L2
(0 − 1) ∧ (x − y) ∧ (3 − 2),

(V) =
∫

L0

∫ 0
x0

∫
L1

∫
L2

∫ 2
x2

∫
L3
(x − 1) ∧ (0 − 2) ∧ (y − 3),

161Quantum Field Theory and Knot Invariants



8 Will-be-set-by-IN-TECH

4. Massey-Milnor linking theory

Although Massey-Milnor linking theory was developed in 1960’s [Fe, Ma, Mi1, Mi2, Po], the
explicit and combinatorial formulae thereof is still missing. In this section we develop the
“absolute version” of homological theory of Massey-Milnor linking [HKT, Hs1, Hs2, Hs3, Hs4,
Hs5, Hs6, Hs7, HY] in contrast to the relative homological theory of Massey’s [Fe, Ma, Po] for
the purpose of the first non-vanishing linking L∗

n,n−1,...,1,0 and its combinatorial formulae for

link L = {L0, L1, . . . , Ln} as in the set-up. First we need the following definition.

Definition 3. (1) For each component Lj ∈ L = {L0, L1, . . . , Ln}, we define a closed 1-form denoted
as j(x) associated to it as:

j(x) =
1

4π

�

Lj

det

⎛
⎝

x − y
dx
dy

⎞
⎠ 1

|x − y|3
�
=

�

Lj

(x − y),

which is a smooth 1-form as long as x /∈ Lj. Notice also that by convention and by notation we set

(x − y)
def
=

1

4π
det

⎛
⎝

x − y
dx
dy

⎞
⎠ 1

|x − y|3
def
=

1

4π
det

⎛
⎝

x1 − y1 x2 − y2 x3 − y3

dx1 dx2 dx3

dy1 dy2 dy3

⎞
⎠ 1

|x − y|3

=
1

4π

1

|x − y|3
((x1 − y1)(dx2 ∧ dy3 − dx3 ∧ dy2)

+ (x2 − y2)(dx3 ∧ dy1 − dx1 ∧ dy3)

+ (x3 − y3)(dx1 ∧ dyx − dx2 ∧ dy1)).

This is nothing but the pull-back of the standard area form of the unit sphere S2 ⊆ R
3 by the map

x − y

|x − y|
, x, y in R

3.

(2) Whenever the Gauss linking (here for convenience, we coin it as the Massey-Milnor linking of
degree one)

L∗
i,j =

�

Li

�

Lj

(x − y) =
1

4π

�

Li

�

Lj

det

⎛
⎝

x − y
dx
dy

⎞
⎠ 1

|x − y|3

vanishes, we define a well-defined function as: d−1i(x) =
x�

xj

�
i

(t − y), where t ∈ Li, x ∈ Lj and

xj ∈ Lj is the base point of Lj.

Similarly, whenever a given 1-form ψ defined on Lj with
�

Lj
ψ = 0, we define the relevant function

ψ(x), x ∈ Lj as: ψ(x) = d−1(ψ) =
� x

xj
ψ, where xj ∈ Lj is the base point. And we also coin a

function of this sort as linking function.

(3) Given a closed 2-form φ in R
3, for simplicity we set 1-form φ

def
= d−1(φ)(x, y, z) =

� x
∞ φ(t, y, z),

where the path of integration is taken along the
∂

∂x
-direction starting from (−∞, y, z) up to (x, y, z),

the point of interests.
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|x − y|3
def
=

1

4π
det

⎛
⎝

x1 − y1 x2 − y2 x3 − y3

dx1 dx2 dx3

dy1 dy2 dy3

⎞
⎠ 1

|x − y|3

=
1

4π

1

|x − y|3
((x1 − y1)(dx2 ∧ dy3 − dx3 ∧ dy2)

+ (x2 − y2)(dx3 ∧ dy1 − dx1 ∧ dy3)

+ (x3 − y3)(dx1 ∧ dyx − dx2 ∧ dy1)).

This is nothing but the pull-back of the standard area form of the unit sphere S2 ⊆ R
3 by the map

x − y

|x − y|
, x, y in R

3.

(2) Whenever the Gauss linking (here for convenience, we coin it as the Massey-Milnor linking of
degree one)

L∗
i,j =

�

Li

�

Lj

(x − y) =
1

4π

�

Li

�

Lj

det

⎛
⎝

x − y
dx
dy

⎞
⎠ 1

|x − y|3

vanishes, we define a well-defined function as: d−1i(x) =
x�

xj

�
i

(t − y), where t ∈ Li, x ∈ Lj and

xj ∈ Lj is the base point of Lj.

Similarly, whenever a given 1-form ψ defined on Lj with
�

Lj
ψ = 0, we define the relevant function

ψ(x), x ∈ Lj as: ψ(x) = d−1(ψ) =
� x

xj
ψ, where xj ∈ Lj is the base point. And we also coin a

function of this sort as linking function.

(3) Given a closed 2-form φ in R
3, for simplicity we set 1-form φ

def
= d−1(φ)(x, y, z) =

� x
∞ φ(t, y, z),

where the path of integration is taken along the
∂

∂x
-direction starting from (−∞, y, z) up to (x, y, z),

the point of interests.
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(4) Using i(x)
def
= d−1(i)(x), φ(x) = d−1(φ)(x), whenever they make sense we define inductively

closed 2-form in R
3: the “round brackets” (m, m− 1, . . . , 1), and closed 1-forms of interests the “sharp

brackets” < m, m − 1, . . . , 1 > as follows.

(4-1) We define the round bracket (j, i) = (j) ∧ (i) + j(di)− i(dj) is a closed 2-form in R
3. Notice

that di is a Dirac-like singular 2-form supported on the knot component Li, and that j(x) in j(x)(di)
refers to x ∈ Li and is a well-defined function thereon (a so-called linking function) as we assume that
L∗

i,j = 0. Similar remarks hold for i(x)(dj), with x ∈ Lj.

Next, we define the sharp bracket < j, i >= (j, i) + j(x)i(x) which is a closed 1-form in a tubular
neighborhood of Lk with k �= i, k �= j.

(4-2) We define the round bracket

(k, j, i) = (k, j)∧ i + k ∧ (j, i) +< k, j >(di)− ki(dj) +< i, j >(dk)

which is a closed 2-form in R
3. We notice that (di)(x) is a Dirac-like singular 2-form supported on the

knot component Li, and that < k, j >(x) refers to x ∈ Li and is a well-defined function on Li(a linking
function), as we assume that the Massey-Milnor linkings of degree 2 vanish there. Similar remarks
hold for ki(dj) and < i, j >(dk).

Next, we define the sharp bracket which is a closed 1-form < k, j, i > (x) for x ∈ Ll, l �= i, j, k as:

< k, j, i > (x) = (k, j, i)(x) + (k, j)(x)i(x) + k(x)< j, i >(x)

which is well-defined as L∗
i.l = 0 and L∗

j,i,l = 0 by the assumption of vanishing of Massey-Milnor

linkings of lower degrees.

(4-3) Inductively, we define the closed 2-form (j, j − 1, . . . , 2, 1) in R
3 as

(j, j − 1, . . . , 2, 1)

=(j, j − 1, . . . , 2) ∧ 1 + (j, j − 1, . . . , 3) ∧ (2, 1)

+ · · ·+ (j, j − 1) ∧ (j − 2, . . . , 1) + j ∧ (j − 1, j − 2, . . . , . . . , 1)

+< j, j − 1, . . . , 2 >(d1)−< j, j − 1, . . . , 3 >i(d2)

+< j, j − 1, . . . , 4 ·< 1, 2 >(d3) + · · ·+ (01)j
< 1, 2, . . . , j − 1 >(dj),

which is well-defined by the assumption of vanishing of Massey-Milnor linkings of strictly lower
degrees.

Next, we define the closed 1-form < j, j − 1, . . . , 1 > (x), x ∈ Ll with l �= 1, 2, . . . , j as:

< j, j − 1, . . . , 1 > (x)

=(j, j − 1, . . . , 1)(x) + (j, j − 1, . . . , 2(x)1(x)

+ (j, j − 1, . . . , 3)(x)< 2, 1 >(x) + . . .

+ (j, j − 1)(x)(j − 2, j − 3, . . . , 1)(x)

+ j(x)< j − 1, j − 2, . . . , 1 >(x),

which is a well-defined function on Ll, as we assume that Massey-Milnor linkings of strictly lower
degrees vanish.
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(5) Finally for a link L = {L0, L1, . . . , Ln} of (n + 1) components for which all Massey-Milnor
linkings L∗’s of strictly lower degrees vanish, we define the first non-vanishing Massey-Milnor linking

L∗
n,n−1,...,1,0 =

�

L0

< n, n − 1, . . . , 2, 1 > .

To conclude the presentation of Massey-Milnor linkings L∗
n,n−1,...,1, we notice that L∗

n,n−1,...,1,0
is an ambient isotopy invariant with respect to L0 as < n, n − 1, . . . , 1 > is a closed
1-form in a tubular neighborhood of L0 which is disjoint from {L1, L2, . . . , Ln}. But a
beautiful theorem of J. Milnor [Mi1, Mi2] asserting that L∗

n,n−1,...,0 = L∗
n−1,n−2,...,0,n =

L∗
n−2,n−3,...,0,n,n−1 = L∗

0,n,n−1,...,1 implies that the first non-vanishing Massey-Milnor linking
L∗

n,n−1,...,1,0 is an ambient isotopy invariant with respect to Li for i = 0, 1, . . . , n. And

notice that the “double round brackets” ((n, n − 1, . . . , 1)) defined in (3) of Definition 2 are
nothing but the “connected” part of (n, n − 1, . . . , 1), and also notice that the difference
between ((n, n − 1, . . . , 1)) and (n, n − 1, . . . , 1) is a Dirac-like singular 2-form supported on
{L1, L2, . . . , Ln}.

5. Some calculus lemma

Armed with the link L = {L0, L1, . . . , Ln} as in the setup—for example the cyclic
arrangement of L as shown there and the assumption of the vanishing of both invariants
L’s (Chern-Simons-Witten invariants defined in Section 3) and L∗’s (Massey-Milnor linkings
defined in Section 4) of strictly lower degrees—and for the purpose of the equality L = L∗

and the combinatorial formulae thereof, we prepare some calculus lemmas which mostly are
localization computation as our link L is represented as a link diagram lying entirely on the
plane R

2, except possibly the infinitesimally small neighborhood of crossings of L.

Lemma 1.

dA(A − B)− dB(A − B)

=(−)δ(A − B)(dA1 ∧ dA2 ∧ dB3 + dA2 ∧ dA3 ∧ dB1 + dA3 ∧ dA1 ∧ dB2),

where A, B ∈ R
3 are dummy variables,

(A − B)
def
=

�
1

4π

�
1

|A − B|3
det

⎛
⎝

A − B
dA
dB

⎞
⎠

and

(A − B)
def
=

�
1

8π

�
1

|A − B|3
det

⎛
⎝

A − B
dA
dA

⎞
⎠ ;

and δ(A − B) is the Dirac function in R
3.

Proof.

dA(A − B)

=dA(
1

4π
)

1

|A − B|3

⎛
⎝

A1 − B1 A2 − B2 A3 − B3

dA1 dA2 dA3

dB1 dB2 dB3

⎞
⎠ = dA

⎛
⎝

Γ1(A − B) Γ2(A − B) Γ3(A − B)
dA1 dA2 dA3

dB1 dB2 dB3

⎞
⎠ ,
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⎛
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if we set Γ(x) = 1
4π|x|

=dA[Γ1(dA2 ∧ dB3 − dA3 ∧ dB2) + Γ2(dA3 ∧ dB1 − dA1 ∧ dB3)

+ Γ3(dA1 ∧ dB2 − dA2 ∧ dB1)]

=(Γ11dA1 + Γ12dA2 + Γ13dA3) ∧ (dA2 ∧ dB3 − dA3 ∧ dB2)

+ (Γ21dA1 + Γ22dA2 + Γ23dA3) ∧ (dA3 ∧ dB2 − dA1 ∧ dB3)

+ (Γ31dA1 + Γ32dA2 + Γ33dA3) ∧ (dA1 ∧ dB2 − dA2 ∧ dB1)

=(Γ11 + Γ22 + Γ33(dA1 ∧ dA2 ∧ dB3 + dA2 ∧ dA3 ∧ dB1)

+ dA3 ∧ dA1 ∧ dB2)

− (Γ11dA2 ∧ dA3 ∧ dB1 + Γ12dA2 ∧ dA3 ∧ dB2 + Γ13dA2 ∧ dA3 ∧ dB3)

− Γ21dA3 ∧ dA1 ∧ dB1 + Γ22dA3 ∧ dA1 ∧ dB2 + Γ23dA3 ∧ dA1 ∧ dB3)

− (Γ31dA1 ∧ dA2 ∧ dB1 + Γ32dA1 ∧ dA2 ∧ dB2 + Γ33dA1 ∧ dA2 ∧ dB3)

=− δ(A − B) + dB(Γ1dA2 ∧ dA3 + Γ2dA3 ∧ dA1 + Γ3dA1 ∧ dA2)

=− δ(A − B) =
1

8π
dB

1

|A − B|3
det

⎛
⎝

A − B
dA
dA

⎞
⎠

Lemma 2. For the variation with respect to A, we have

dA

⎛
⎜⎝ +

⎞
⎟⎠ = −

⎡
⎢⎣ + + +

+ + + +

⎤
⎥⎦

where A, B, C, and D are distinct indices (or dummy variables) in {0, 1, 2, . . . , n}.

Proof. By definition, the configuration space integrals corresponding to +
are: �

AxByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (y − C) ∧ (y − D)

+
�

Dx AyBC
(D − x∧(x − A) ∧ (x − y) ∧ (y − B) ∧ (y − C).
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Taking dA, the exterior derivative of the LHS with respect to A, by our convention, is to take dA

of the associative configuration space integrals omitting the integration over A-chain, thereby
we get a 2-form in dA. To be more explicit,

dA

∫

xByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (y − C) ∧ (y − C)

− dA

∫

xDyBC
(A − x) ∧ (x − D) ∧ (x − y) ∧ (y − B) ∧ (y − C)

=(−)
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

xByCD
dx(A − x) ∧ (x − B) ∧ (x − y) ∧ (c − C) ∧ (y − D)

−
∫

xDyBC
dx(A − x) ∧ (x − D) ∧ (x − y) ∧ (y − B) ∧ (y − C)

=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

−
∫

xByCD
(A − x) ∧ (dx(x − B)) ∧ (x − y) ∧ (y − C) ∧ (y − D)

+
∫

xDyBC
(A − x) ∧ (dx(x − D)) ∧ (x − y) ∧ (y − D) ∧ (y − C)

−
∫

xByCD
(A − x) ∧ (x − B) ∧ (dx(x − y)) ∧ (y − C) ∧ (y − D)

+
∫

xDyBC
(A − x) ∧ (x − D) ∧ (dx(x − y)) ∧ (y − B) ∧ (y − C)

=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − B) ∧ (B − y) ∧ (y − C) ∧ (y − D)

−
∫

DyBC
(A − D) ∧ (D − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − y) ∧ (y − B) ∧ (y − C)∧ (y − D)

−
∫

DyBC
(A − y) ∧ (y − D) ∧ (y − B) ∧ (y − C)

−
∫

xByCD
(A − y) ∧ (y − D) ∧ (y − B) ∧ (y − C)

−
∫

xByCD
(A − x) ∧ (x − B) ∧ (dy(x − y)) ∧ (y − C)∧ (y − D)

+
∫

xDyBC
(A − x) ∧ (x − D) ∧ (Dy(x − y)) ∧ (y − B) ∧ (y − C)
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=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − B) ∧ (B − y) ∧ (y − C) ∧ (y − D)

−
∫

DyBC
(A − D) ∧ (D − y) ∧ (y − B) ∧ (y − C)

+
∫

xByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (Dy(y − C)) ∧ (y − D)

−
∫

xDyBC
(A − x) ∧ (x − D) ∧ (x − y) ∧ (Dy(y − B) ∧ (y − C)

+
∫

xByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (y − C) ∧ (Dy(y − D))

−
∫

xDyBC
(A − x) ∧ (x − D) ∧ (x − y) ∧ (y − B) ∧ (Dy(y − D))

=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − B) ∧ (B − y) ∧ (y − C) ∧ (y − D)

−
∫

yBCD
(A − D) ∧ (D − y) ∧ (y − B) ∧ (y − C)

−
∫

xDBC
(A − x) ∧ (x − B) ∧ (x − C) ∧ (C − D)

+
∫

xDBC
(A − x) ∧ (x − D) ∧ (x − B) ∧ (B − C)

−
∫

xBCD
(A − x) ∧ (x − B) ∧ (x − D) ∧ (D − C)

+
∫

xDBC
(A − x) ∧ (x − D) ∧ (x − C) ∧ (C − B).
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The last eight integrals are difficult to read in general. So for the purpose of book-keeping
we use the graphic representation for them as in the above Lemma 2. Obviously the
correspondence and the association of Chern-Simons-Witten configuration space integrals to
edge-contracted Chern-Simons-Witten graphs, and vice versa are well-defined.

By definition the eight terms after the last equality sign in the above are the right hand side of
Lemma 2.

Lemma 3. d0( + ) = 0, if A �= B in {0, 1, 2, . . . , n}.

Proof. By the definition of the associated Chern-Simons-Witten configuration space integrals
both sides of the above equality are 2-forms in dL0. That is

LHS =d0

∫

R3

∫

BA
(0 − x) ∧ (x − B) ∧ (x − A) + d0

∫ 0

x0

∫

BA
(x − B) ∧ (0 − A)

=(−)
∫

BA
(0 − B) ∧ (0 − A)−

∫

BA
(0 − A) ∧ (A − B)

−
∫

BA
(0 − B) ∧ (B − A) +

∫

BA
(0 − B) ∧ (0 − A)

=−
∫

BA
(0 − A) ∧ (A − B)−

∫

BA
(0 − B) ∧ (B − A).

Observe that (0 − A) and (0 − B) are both functions in A and B which do not involve any
differential forms in (dA) or (dB) respectively; so to carry out the above two integrations
we may regard (0 − A) and (0 − B) as weight functions by computing first

∫
BA(A − B) and∫

BA(B− A) to get Gauss signs of crossings of LA ∩ LB when L = {L0, L1, . . . , Ln} is in a generic

position in R
2 with pairwise crossings specified. Also observe that

−
∫

BA
(0 − A)(A − B) = − ∑

LA∩LB

(0 − A)(A, B)

and ∫

BA
(0 − B)(B − A) = + ∑

LA∩LB

(0 − B)(A, B)

where (A, B), for the moment, stands for the Gaussian signs of crossings LA ∩ LB which is a
finite sum supported on LA ∩ LB; and this concludes the proof.

Lemma 4. d0( + ) = 0, if A, B are two sharp brackets.

Proof. The proof is exactly the same as that of Lemma 3. By integration-by-parts and by
Lemma 1, we could regard both A and B as d-closed since both of them are sharp brackets.
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R3

∫

BA
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∫ 0

x0

∫

BA
(x − B) ∧ (0 − A)

=(−)
∫

BA
(0 − B) ∧ (0 − A)−

∫

BA
(0 − A) ∧ (A − B)

−
∫

BA
(0 − B) ∧ (B − A) +

∫

BA
(0 − B) ∧ (0 − A)

=−
∫

BA
(0 − A) ∧ (A − B)−

∫

BA
(0 − B) ∧ (B − A).
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2 with pairwise crossings specified. Also observe that

−
∫

BA
(0 − A)(A − B) = − ∑

LA∩LB
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BA
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LA∩LB

(0 − B)(A, B)
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From now on we assume that L = {L0, L1, . . . , Ln} is in a generic position in R
2 with pairwise

crossings specified.

First we introduce some more notations: (2, 1)∗ = 2 ∧ 1, (3, 2, 1)∗ = (3, 2)∗ ∧ 1 + 3 ∧

(2, 1)∗, and in general, (n, n − 1, . . . , 1)∗ = (n, . . . , 2)∗ ∧ 1 + (n, . . . , 3)∗ ∧ (2, 1)∗ + · · · + n ∧

(n − 1, . . . , 1)∗.

Lemma 5. The outer edge contractions of + at Li of the variation cancel

each other, where the graph components containing vertex B connect Li to L0.

Proof. Starting with the exterior differentiation at L0, d0 the integration by parts as in Lemma 2
up to x in the first graph, which is a dummy variable on Li to get the same resulting integrals
for the above graph of two components. Then do the integrations by part again at x and at y,
to get the same outer edge-contraction at Li except for a difference of (−) sign, so these two
outer edge contractions at Li cancel each other. This concludes the poof.

Lemmas 1 to 5 are essentially preparatory computation for the calculus relevant to
Ln,n−1,...,1,0—the Chern-Simons-Witten invariants; next we do some preparatory computation
for L∗

n,n−1,...,1,0—the Massey-Milnor linking theory.

Lemma 6. Denote( , respectively) as (+) ((−), respectively) for crossings of L =

{L0, L1}, then we have
�
(+)(0 − 1) =

1

2
and

�
(−)(0 − 1) = −

1

2
where to ease the notation we

keep the convention and notation in (1) of Definition 3.

Proof. Without loss of generality, we need only to prove

1

4π

�

(+)

⎛
⎝

x − y
dx
dy

⎞
⎠ 1

|x − y|3
=

1

2
× lim

�→0
δ→0
δ��

��

−�

δdxdy

(x2 + y2 + δ2)
=

1

2

as above the 1 form

i ∧ j(x) =
� x

−∞
i(t) ∧ j(t)

Note 2. As our link L = {L0, L1, . . . , Ln} is represented by a link diagram in the plane R
2 with

arbitrarily small “germs” of pairwise crossings specified, it is easy to see that the only contribution of
Gauss linking—which is equal to both L∗

i,j and Li,j—comes from the crossing part of Li and Lj, and is

denoted as (i, j) or (j, i).

Lemma 7. For two knot components Li and Lj in {Li, Lj, Lk} with the associated 1-form i(x), j(x)
as above the 1-form

i j( )
� x

i( ) j( )
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x ∈ R
2 is a Dirac-like 1-form supported on the horizontal positive

∂

∂x
-ray through the crossing of Li

and Lj in the link diagram of {Li, Lj, Lk}. Moreover,

�

Lk

i ∧ j(x)
def
= (i, j)k

=

⎧⎪⎨
⎪⎩

1

4
— if , , ,

−
1

4
— if , , ,

Proof. By the very defintion of integration along positive
∂

∂x
-direction in the plane R

2, we

have
� x
−∞ i(t)∧ j(t) ≡ (

� x
−∞ i(t))∧ j(x)− i(x)∧

� x
−∞ j(t)). And also notice that

� x
−∞ i(t)∧ j(t)

as a 1-form in x ∈ R
2, is supported on the horizontal

∂

∂x
-ray passing through the crossing of

the link diagram of Li and Lj by a simple localization computation. Another simple localized

estimate shows that
�

Lk
i ∧ j =

�
Lk
(
� x
−∞ i(t))∧ j(x)−

�
Lk

i(x)∧ (
� x
−∞ j(t)) = (i, j)k as claimed.

6. Main theorem

In this section we will state the main theorem of this paper and some proofs for the case of
low degrees: L1,0 = L∗

1,0, L2,1,0 = L∗
2,1,0 and L3,2,1,0 = L∗

3,2,1,0. We will come back to the proof
of the main theorem in Section 7 in full generality.

Here is the main theorem and as usual we use numerals i, j, k, . . . , etc. for the corresponding
knot components Li, Lj, Lk, . . . , etc. to ease the notation.

Theorem 1. Given a link L = {L0, L1, . . . , Ln} of (n + 1) components arranged diagrammatically
as in the setup for which all Chern-Simons-Witten graphs Lm,m−1,...,1,0 = 0, and all Massey-Milnor
linkings L∗

m,m−1,...,1,0 = 0, where the sublink {L∗
0, L∗

1, . . . , L∗
m} ⊆ {L0, L1, . . . , Ln} is any ordered

subset of (m+ 1) components, m ≤ n − 1, then for the first non-vanishing invariants Ln,n−1,...,1,0 and
∗
n,n−1,...,1,0 we have

(1) Ln,n−1,...,1,0 = L∗
n,n−1,...,1,0, and

(2) Both Ln,n−1,...,1,0 and L∗
n,n−1,...,1,0 are independent of the base point xj ∈ Lj, for j = 0, 1, 2, . . . , n.

We will prove this theorem in full generality in Section 7. Here to make the presentation
smoother and to show the idea, we do the “detailed” proof of: L1,0 = L∗

1,0, L2,1,0 = L∗
2,1,0 and

L3,2,1,0 = L∗
3,2,1,0 as follows.

Example 6. For n = 1 and L = {L0, L1}, by the very definition of L1,0 and L∗
1,0 it is obvious

that both L1,0 and L∗
1,0 are exactly the Gauss linking and are formulated combinatorically as L1,0 =

L∗
1,0 = ∑L1∩L0

(1, 0). Here we follow the convention and notation of the Note 2 after Lemma 6:

(1, 0) = (± 1
2 ) according to the arrangement of L1 and L0 around the crossing “L1 ∩ L0” in the link

diagram of {L0, L1}.
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Example 7. For n = 2 and L = {L0, L1, L2}, we assume that all pairwise invariants Li,j = 0 = L∗
i,j

then for the first non-vanishing invariants: L2,1,0 = L∗
2,1,0 and they can be computed combinatorically

as follows. First recall that invariants L2,1,0—the Chern-Simons-Witten graph defined in Section 4—is
the sum of 4 configuration space integrals defined in Example 1; and L∗

2,1,0—the Massey-Milnor linking
defined in Definition 4—is

Example 8. For n = 3, L = {L0, L1, L2, L3}, for which all pairwise Li,j = L∗
i,j = 0 and all triple-wise

Li,j,k = L∗
i,j,k = 0, then for the first non-vanishing invariants: we have L3,2,1,0 = L∗

3,2,1,0 and also they

can be computed as listed below correspondingly, both graphically and combinatorically as follows:

L2,1,0 = (2, 1)0 + ∑
1<

0
2
(1, 0)(2, 0) + ∑

2<
1

0
(2, 1)(0, 1)

+ ∑
0<

2
1
(0, 2)(1, 2)

And this concludes the proof that L2,1,0 = L∗
2,1,0. And by using the combinatoric formulae of

L∗
2,1,0—that in Lemma 6 and Lemma 7—we derive the explicit formulae of L2,1,0 = L∗

2,1,0

∫

0
2 ∧ 1 =

∫

0
dφ =

∫

0
dφ +

∫

0
dφ =

∫

0
φ = the configuration space integral of “Y��.

Proof. With the link L = {L0, L1, L2} represented by a link diagram in the plane R
2 and in the

spirit of localization computation of Lemma 6 and Lemma 7, a direct computation concludes
the proof by using the integration by part in Lemma 1.

And so,

φ(0)
def
=

∫

R3

∫

L1

∫

L2

(0 − x) ∧ (x − 1) ∧ (x − 2)

which is a part of the configuration space integrals of the Chern-Simons-Witten graph “Y”, then
dφ(0) = (2 ∧ 1)(0).

So to prove L2,1,0 = L∗
2,1,0, we need only to prove that the configuration space integral of

“Y-graph”—which is nothing but the first integral in Example 4—in Example 1 is
∫

0 2 ∧ 1 in
L∗

2,1,0.

Claim 1. If we set the 1-form

L∗
2,1,0 =

∫

0
2 ∧ 1 +

∫

0
2 ∧ d1 −

∫

0
1d2 +

∫

0
21
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+ + +

+ + + +

+ + + +

+ + + +

+ + + +

+ +
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+ + +

+ + + +

+ + + +

+ + + +

+ + + +

+ +
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and

∑
(2,1)<

0
3

(2, 1)0(3, 0) + ∑
1<

0
(3,2)

(3, 2)0(1, 0) + ∑
(3,2)<

1
0

(3, 2)1(0, 1)

+ ∑
2<

1
(0,3)

(0, 3)1(2, 1) + ∑
(0,3)<

2
1

(0, 3)2(1, 2) + ∑
3<

2
(1,0)

(1, 0)2(3, 2)

+ ∑
(1,0)<

3
2

(1, 0)3(2, 3) + ∑
0<

3
(2,1)

(2, 1)3(0, 3) + ∑
1<

0
2<

0
3

(0, 1)(0, 2)(0, 3)

+ ∑
2<

1
3<

1
0

(1, 2)(1, 3)(1, 0) + ∑
3<

2
0<

2
1

(2, 3)(2, 0)(2, 1) + ∑
0<

3
1<

3
2

(3, 0)(3, 1)(3, 2)

+ ∑
1<

0
3

2<
1

0

(1, 0)(3, 0)(2, 1) + ∑
2<

1
0

3<
2

1

(2, 1)(0, 1)(3, 2) + ∑
3<

2
1

0<
3

2

(3, 2)(1, 2)(0, 3)

+ ∑
0<

3
2

1<
0

3

(0, 3)(2, 3)(1, 0) + ∑
2<

0
3

0<
2

1

(2, 0)(3, 0)(1, 2) + ∑
2<

1
3

0<
3

1

(2, 1)(3, 1)(0, 3)

+ ∑
3<

1
0

1<
3

2

(3, 1)(0, 1)(2, 3) + ∑
1<

0
2

3<
2

0

(1, 0)(2, 0)(3, 2) .

For this example we try to be as explicit as possible to show the general scheme of the proof
of the main theorem.

First we derive the related combinatorical formulae of the Massey-Milnor linkings L∗
n,n−1,...,1,0

as defined in Section 4 from which we do use the vanishing of Massey-Milnor linkings of
strictly lower degrees. Also to ease the notation we use: j(x) =

∫ x
xi

j(t), where xi, x ∈ Li and xi

is the base point of Li, whenever Li,j = 0. And < j, k >(x) =
∫ x

xi
< j, k > (t) where xi , x ∈ Li

and xi is the base point of Li, whenever Lj,k,i = 0. And obviously by induction they could be
represented graphically as follows:

j(x) =

and

< j, k >(x) = + + +
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Recalling that:

L∗
3,2,1,0 =

∫

0
< 3, 2, 1 >=

∫

0
(3, 2, 1) +

∫

0
(3, 2)1 +

∫

0
3< 2, 1 >

=
∫

0
(3, 2) ∧ 1 +

∫

0
3 ∧ (2, 1) +

∫

0
< 3, 2 >d1

−
∫

0
31d2 +

∫

0
< 1, 2 >d3 +

∫

0
(3 ∧ 2)1

+
∫

0
3d21 −

∫

0
2d31 +

∫

0
3< 2, 1 >

=
∫

0
(3 ∧ 2) ∧ 1 +

∫

0
(3d2) ∧ 1 −

∫

0
(3d2) ∧ 1

+
∫

0
3 ∧ (2 ∧ 1) +

∫

0
3 ∧ (2d1)−

∫

0
3 ∧ (1d2)

+
∫

0
< 3, 2 >d1 −

∫

0
31d2 +

∫

0
< 1, 2 >d3 +

∫

0
(3 ∧ 2)1

+
∫

0
3d21 −

∫

0
2d31 +

∫

0
3< 2, 1 >;

and using the above inductive scheme and by induction we have combinatorically,

L∗
3,2,1,0

=
∫

0
(3 ∧ 2 ∧ 1 +

∫

0
3 ∧ (2 ∧ 1) + ∑

3<
2
(1,0)

(1, 0)2(3, 2)

+ ∑
(1,0)<

3
2

(1, 0)3(2, 3) + ∑
2<

1
(0,3)

(0, 3)1(2, 1) + ∑
(0,3)<

2
1

(0, 3)2(1, 2)

+ ∑
(3,2)<

1
0

(3, 2)1(0, 1) + ∑
2<

1
3<

1
0

(2, 1)(3, 1)(0, 1) + ∑
2<

1
0

3<
2

1

(2, 1)(0, 1)(3, 2)

+ ∑
3<

1
0

1<
3

2

(3, 1)(0, 1)(2, 3) + ∑
3<

2
0<

2
1

(3, 2)(0, 2)(1, 2) + ∑
1<

3
(2,1)

(2, 1)3(0, 3)

+ ∑
0<

3
1<

3
2

(0, 3)(1, 3)(2, 3) + ∑
3<

2
1

0<
3

2

(3, 2)(1, 2)(0, 3) + ∑
2<

1
3

0<
3

1

(2, 1)(3, 1)(0, 3)

+ ∑
1<

0
(3,2)

(3, 2)0(1, 0) + ∑
1<

0
2

3<
2

0

(1, 0)(2, 0)(3, 2) + ∑
1<

0
3

0<
3

2

(1, 0)(3, 0)(2, 3)

+ ∑
(2,1)<

0
3

(2, 1)0(3, 0) + ∑
1<

0
2<

0
3

(1, 0)(2, 0)(3, 0) + ∑
2<

1
0

1<
0

3

(2, 1)(0, 1)(3, 0)

+ ∑
2<

0
3

0<
2

1

(2, 0)(3, 0)(1, 2)
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3
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3

2
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3
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For the reamining two integrals above we have

Claim 2.

∫

0
(3 ∧ 2) ∧ 1 = 0 and

∫

0
3 ∧ (2 ∧ 1) = 0.

Proof. Firstly we do the Massey-Milnor linking: L∗
3,2,1,0. By notation for a given over-barred

2-form φ which is 1-form after doing the horizontal
∂

∂x
-integration which is the inverse of

exterior differentiation, (after gauge-fixing) evaluated on the plane R
2—as all integrations

defined in the Massey-Milnor linkings L∗
n,n−1,...,1,0 are carried out in the plane R

2. We need to

define the suitable d−1 as the average of horizontal
∂

∂x
-integrations, both infinitesimally above

R
2 and infinitesimally below R

2. And so for each wedge product 2-form like (3 ∧ 2) ∧ 1, once

we do the horizontal
∂

∂x
-integration again (the average of two, one above R

2 infinitesimally

and one below R
2 infinitesimally) we always get zero by simply observing that (3 ∧ 2) ∧ 1 =

(−)(3 ∧ 2)1 = 0

Next we do the Chern-Simons-Witten graph: L3,2,1,0. By induction the new and nontrivial

graphs appearing in the Chern-Simons-Witten graphs L3,2,1,0 are: and of which

the Chern-Simons-Witten configuration space integrals are defined in Example 5. Now by
shifting gear we regard these two configuration space integrals as two suitable 1-forms in d0
before carrying out the “final” integration over L0; namely the two relevant 1-forms in d0 are:

φ(0) =
∫

R3

∫

1

∫

R3

∫

2

∫

3
(0 − x) ∧ (x − 1) ∧ (x − y) ∧ (y − 2) ∧ (y − 3),

and

ψ(0) =
∫

R3

∫

R3

∫

1

∫

2

∫

3
(0 − x) ∧ (x − y) ∧ (y − 1) ∧ (y − 2) ∧ (y − 3).

By stoke’s theorem:
∫

0
φ(0) + ψ(0) =

∫

0
dφ(0) + dψ(0) = sum of following eight integrals

(which will be made explicit in lemma 10 in Section 7):

+ + + + + + +

In L3,2,1,0, corresponding to the above eight contracted graphs we have eight lower
Chern-Simons-Witten linking together with an extra 1-chord:
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But to compute the latter 8 Chern-Simons-Witten configuration space integrals aiming at the
combinatorial formulae we need to take into account the boundary terms for each related
Chern-Simons-Witten graphs of degree 2—say the first graph along L0. For example by
induction L2,1,0 = L∗

2,1,0, but not now; as we don’t have full cycles as before (as L0 is cut
into finitely many pieces of arcs by L3). And the beauty of computing the extra correction due
to the end points of the set of arcs along L0 is that: the correction is compensated by those 8
integrals in

∫
0 φ(0) + ψ(0) which is just a discrete sum on the corresponding end points of the

pieces of arcs—cut by the attached chord in the contracted Chern-Simons-Witten graphs—of
the configuration space integrals of Y-graphs thereof.

In greater details: take and as an example to show the details proper. For

simplicity we assume that a piece of arc lying on L0 is cut out by L1 as shown.

By induction: applying linking of degree 2 to this piece of arc as shown we need to artificially
attach two horizontal rays to both A and B to make it a cycle as shown above. Then on

this full cycle, we could compute both integrals of and , by replacing the

original sub-arc AB with the full “cycle” made up of two horizontal rays and AB to get two
extra corrections of opposite signs along the two added horizontal rays at A and B in the
above two integrals. More precisely these two corrections—up to signs—are nothing but the
configuration space integrals of Y-graph: , where ray at the root denotes the added ray
and numeral 2 (respectively numeral 3) stands for L2 (respectively L3).

With the same computation for the other 7 pairs of Chern-Simons-Witten graphs listed above,
we are done with the proof of L∗

3,2,1,0 = L3,2,1,0 if we have proved the following.

Claim 3. Consider as either a 2-form in d0: η(0) =
∫
(0 − 1)(1 − x)(x − 2)(x − 3) or a

2-form in d1: η(1) =
∫
(0 − 1)(1 − x)(x − 2)(x − 3) where we carry out all related integrations

except that over L0 in η(0) and except that over L1 in η(1), then we have
∫

L0
η(0) =

∫
L1

η(1).
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Note 3. Before giving the proof we notice that this scheme of proof works fine for the other contracted
Chern-Simons-Witten graphs in L3,2,1,0. And this proves that L3,2,1,0 = L∗

3,2,1,0, and also derives the
combinatorial formulae of L∗

3,2,1,0.

Note 4. We will repeat the same trick for connected Chern-Simons-Witten graphs in Ln,n−1,...,1,0 in
Lemma 10, and will be more explicit in detail in this aspect. More precisely there are three aspects in
this trick: firstly, we do contraction on the set of connected Chern-Simons-Witten graphs to get a bunch
of 2-forms in d0 (namely those ones corresponding to the connected Chern-Simons-Witten graphs
contracted at uni-valent vertices); secondly, for a connected Chern-Simons-Witten graph contracted at

a vertex Lj with j �= 0, we repeat the proof of the above claim to show:
∫

L0
η(0) =

∫
Lj

η(j); thirdly, we

compute explicitly
∫

Lj
η(j) and prove that it compensates the corresponding correction coming from the

disconnected Chern-Simons-Witten graph which has the same contracted graph after being contracted
at vertex Lj.

Now we come to the proof of the claim.

Proof. Recall that the over-bars on 2-forms, by definition, are horizontal
∂

∂x
-integrations from

x = −∞ up to points of interests; and that if the point of interests is a planar point, the

horizontal
∂

∂x
-integration should be defined as the average of the one infinitesimally above

R
2 and the one infinitesimally below R

2.

(A) First we define and state contracted Chern-Simons-Witten graphs and the corresponding
2-forms—either in d0 or d1 explicitly. But this is nothing but the content of Lemma 1 and
Lemma 2 in Section 5.

(B) Next we compute:
∫

L1
η(1) = ∑L0∩L1

(0, 1)
∫

hori

∫
2

∫
3

∫
R3 (h − x)(x − 2)(x − 3), where hori

stands for horizontal
∂

∂x
-ray starting/ending at the crossings of L1 and L0, (0, 1) is the Gauss

linking of L1 and L0, and h denotes the dummy variable on the horizontal
∂

∂x
-rays stated

above.

(C) Next we compute
∫

L0
η(0). To apply the calculus Lemma 1 and Lemma 2 to an sub-arc on

L1 cut-off by crossing with L0, we need to artificially add two horizontal
∂

∂x
-rays at the ends

of this arc to make it a full cycle. Now carry out the fundamental theorem of calculus as stated
in Lemma 1 and Lemma 2 for this sub-arc of L1 to get exactly the extra boundary evaluation
at the ends of the configuration space integrals of Y-graph , and then identify Y-graph
with symbols (3, 2)1 = (2, 1)3 = (1, 3)2 for L2, L3 and the artificial cycle L1 (which is the union

of the above sub-arc and two horizontal
∂

∂x
-rays) to conclude the proof of the claim.

Note 5. The proof of the claim applies also to any double round brackets in Definition 2, the
so-called connected Chern-Simons-Witten graphs. In short in the Massey-Milnor linkings L∗n,n−1,...,1,0,
connected Chern-Simons-Witten graphs always contribute nothing except those connected Y-graphs of
degree 2.

Note 6. We notice that we could only do the trick of contraction for connected graphs as above, but not
for non-connected ones.
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Note 7. In next section we will repeat the same trick of contracting connected Chern-Simons-Witten
graphs to compensate the corrections on the “cut-points”—due to lower linking functions (by
induction, a discrete sum) along a specific knot component of interests—of suitable configuration
space integrals involving artificial horizontal rays starting/ending at the cut-points, and other knot
components proper.

Note 8. In essence the proof and the computation for L∗
3,2,1,0 = L3,2,1,0 and the combinatorial formulae

thereof prevail in general case, because we assume the vanishing of linkings; and so we could compute
the related lower linking functions along some specific knot component—which by induction are just
some discrete sums along that knot component.

7. Proof of the main theorem—general case

In this section we prove the main theorem of this paper. Here are some preparatory lemmas.

Lemma 8. In the Massey-Milnor linking L∗
n,n−1,...,1,0 or the associated 1-form < n, n − 1, . . . , 2, 1 >

on L0, the Dirac-like singular one-form when evaluated at x ∈ R
2, dj(x) is nothing but the one-form

j(x) =
�

Lj
(x − t) where (x − t) =

1

4π

1

|x − t|3
det

⎛
⎝

x − t
dt
dx

⎞
⎠, and the over-bar denotes the horizontal

∂

∂x
-integration as defined in Definition 3.

Proof. By de Rham theory for any 1-form j(x) in R
3 we have j(x) = dj + dj, where as usual

the over-bar stands for the inverse of exterior differentiation—after gauge-fixing, which is the

horizontal
∂

∂x
-integration from x = −∞ up to the point of interests. But in Massey-Milnor

linking the integrations of either j(x) or dj(x) are carried out in R
2, so the suitable horizontal

∂

∂x
-integration (namely the over-bar) in dj should be defined as the average of the two natural

ones—either infinitesimally above R
2 or infinitesimally below R

2. Hence j(x) = 0 when
restricted to the plane R

2, and this concludes the proof.

Note 9. From Lemma 8 when restricted to the plane R
2 dj ∧ i is nothing but j(x) ∧ i(x), so in

particular
�

0 dj ∧ j =
�

0 j ∧ i = (j, i)0, in the notation of Lemma 7.

Lemma 9. In Massey-Milnor linking L∗
n,n−1,...,1,0, all connected Chern-Simons-Witten graphs of

degree larger than 2 contribute nothing.

Proof. For connected Chern-Simons-Witten graphs of degree larger than 2 we have double
round brackets of length larger than 2. Take a double round bracket of length 3 such as�

0 (3 ∧ 2 ∧ 1 = +
�

0 (3 ∧ 2) ∧ 1 −
�

0 (3 ∧ 2) ∧ 1 = 0, we get nothing simply because the term

(3 ∧ 2) has repeated
∂

∂x
-integrations and 1(x) vanishes by the proof of Lemma 8. So any

double round bracket of length larger than 2 also contributes nothing as it contains double
round brackets of length 3.

For the Chern-Simons-Witten perspective Ln,n−1,...,1,0, we have the following.
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Lemma 10. (A) Regard the set of connected Chern-Simons-Witten graphs in Ln,n−1,...,1,0—namely
those corresponding to double round brackets in Definition 2—as 1-forms in d0 after doing all related
integrations except the one over the component L0. And if we take the exterior differentiation once with
respect to d0 of the sum of these 1-forms, then we are left with only those Chern-Simons-Witten graphs
contracted at the uni-vertices.

(B) For any contracted Chern-Simons-Witten graph in (A), if the contracted vertex—only one such
for each contracted Chern-Simons-Witten graph—is Lj, j �= 0, then it is the same as the contracted
Chern-Simons-Witten graph when considered as taking the exterior differential with respect to the
coordinate j(the dummy variable for Lj). More precisely, for example if the contracted connected
Chern-Simon-Witten graph Γ looks like

Then
∫∫

D0
Γ =

∫∫
Dj

Γ, where the Γ inside the integral sign on the left hand side is considered as a

2-form in d0, say η(0)—as we take an exterior differentiation with respect to d0 once; and where the Γ
in the integral sign on the right hand side is considered as a 2-form in dj, say η(j)—as, this time we

take an exterior differentiation with respect to djonce. In short,
∫∫

D0
η(0) =

∫
L0

η(0) =
∫∫

Dj
η(j) =

intLj
η(j).

Proof. (A) The content (A) is nothing but a corollary of Lemma 1 and Lemma 2 in Section 5.

(B) We repeat the trick and the proof of the claims in Example 8. That is to each connected
Chern-Simons-Witten graph contracted at a vertex Lj, with j �= 0, we associated two 2-forms

(one in d0 ∧ d0, and one in dj ∧ dj), η(0) and η(j). We will proceed by induction:
∫

L0
η(0) =

∫
Lj

η(j), where the over-bars are the average of horizontal
∂

∂x
-integration: one infinitesimally

above R
2 and one infinitesimally below R

2 from x = −∞ up to the points of interests in R
2.

(B-1) We treat
∫

Lj
η(j) first. The connected Chern-Simons-Witten graph contracted at the vertex

Lj is considered now in another perspective, as the contraction of two distinct connected
graphs of strictly lower degree at the vertex Lj. By induction a connected component of the
above two distinct graphs could be regarded as a part of linking function of lower degree
at Lj, and hence would cut off Lj into finitely many sub-arcs. Repeat the trick of the claims
in Example 8 for the set of knot components attached to the other graph compoment and a

specific subarc of Lj to get the horizontal
∂

∂x
-rays start/end at the ends of the sub-arc of Lj

cut-off by the combinatorial formulae (a part of the lower linking function associated to that
graph component).

Repeat the same computaton with the roles of these two graph components switched. That

is obvious as η(j) = α(j) ∧ β(j) = α(j)β(j)− α(j)β(j) which is a nontrivial and key formulae
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in our discrete computation of horizontal
∂

∂x
-integration, but it is easy to see in the following

set-up: cut the knot component Lj by the discrete contributions due to these two connected
Chern-Simons-Witten graphs (which give rise to two 1-forms α(j) and β(j) above); and as

above we add artificially horizontal
∂

∂x
-rays strating/ending at these cut-point so that we

could apply induction scheme for these two subgraphs of lower degree to suitable knot
components attached thereon and the artificial cycles, each of which consists of a subarc of

Lj and the two horizontal
∂

∂x
-rays added onto the boundary points of the subarc. Finally do

the obvious discrete sum along Lj to get the net contribution as claimed.

(B-2) Next we treat
∫

L0
η(0).

As the graph component containing L0 is of strictly lower degree than n, by induction
and after carrying out all the integrations of the configuration space integral of that graph
component we are left with an honest function (not a differential form) on Lj. This also can
be regarded as the boundary evaluation of the associated configuration space integral when

adding the artificial horizontal
∂

∂x
-ray to the sub-arc of Lj to make a full cycle so that we

could apply Lemma 1 and Lemma 2. And this boundary evaluation is exactly the horizontal
∂

∂x
-integration of the configuration space integral by the trick of Example 8.

Similarly switch the roles of these two graph components to get the other horizontal
∂

∂x
-integration of the configuration space integral of one graph component; while the other

graph component plays the role of lower linking function and so is just a discrete evaluation
there; and hence cuts off Lj into sub-arcs whose boundary points support the artificially

horizontal
∂

∂x
-rays as above. In short the boundary evaluation at the ends of a specific

subarc of Lj of the configuration space integral of the subgraph containing L0, by Lemma 1

and Lemma 2 is exactly the horizontal
∂

∂x
-integration of the artificial rays as above simply

by computing the Chern-Simons-Witten configuration space integrals in two ways—one, we
integrate over just that specific sub-arc to get the extra boundary evaluation; and the other,
we integrate over the full cycle consisting of the above sub-arc and two added horizontal
∂

∂x
-rays.

With all the preparatory lemmas we come to the proof of Theorem 1 in Section 6.

Step 1. Massey-Milnor linking L∗
n,n−1,...,1,0.

By assumption all Massey-Milnor linkings of lower degree vanish and by Lemma 9 all
connected Chern-Simons-Witten graphs of degree larger than 2 contribute nothing to
L∗

n,n−1,...,1,0. The combinatorial formulae of L∗
n,n−1,...,1,0 could be read out directly from the

expansion of the sharp bracket < n, n − 1, . . . , 2, 1 >. More precisely, regard lower linkings
as linking functions supported on some knot component Lj which corresponds to some dj
in < n, n − 1, . . . , 1 >. By induction only those Chern-Simons-Witten connected graphs
of degree one and two contribute to the combinatorial formulae of L∗

n,n−1,...,1,0. Also for a
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connected Chern-Simons-Witten graph of degree 2 which is not symmetric with respect
to its vertices {i, j, k}, the symbol (k, j)i is naturally and canonically assigned to this Y-graph
without ambiguity simply by inspecting the related linking function therewith.

Step 2. Chern-Simons-Witten graph Ln, n − 1, . . . , 1, 0.

(A) Consider the set of connected Chern-Simons-Witten graphs first. Mimicking the trick
of contraction of connected Chern-Simons-Witten graphs in L3,2,1,0 in Section 6, we regard
this set of contracted connected Chern-Simons-Witten graphs a sum of 2-forms with only one

contracted vertex for each, along which we will construct artificially horizontal
∂

∂x
-rays as

before. And as in the Section 6 this kind of Chern-Simons-Witten configuration space integrals
that involves the artificial horizontal rays will compensate those boundary evaluation of the
associated lower linking functions at the contracted vertex (equivalently the knot component
corresponding to the vertex numeral). In short even in Chern-Simons-Witten graphs, the
connected graphs of degree larger than two do not contribute anything to the combinatorial
formulae thereof. This is obvious by the above argument and by induction.

(B) For Chern-Simons-Witten graphs of degree 3 L3,2,1,0, we have explicit combinatorial
formulae as given in Example 8. And so by induction only connected Chern-Simons-Witten
graphs of degree one and two contribute to the combinatorial formulae of Ln,n−1,...,1,0. And
for Y-graph , joining 3 knot components {Li, Lj, Lk} we need to apply the identification
of Massey-Milnor linkings and Chern-Simons-Witten graphs of strictly lower degrees to
determine the suitable symble (k, j)i for this Y-graph.

Step 3. Massey-Milnor linkings = Chern-Simons-Witten graphs; that is L∗
n,n−1,...,1,0 = Ln,n−1,...,1,0.

(A) We have done this for n = 1, 2 in Section 6.

(B) By induction.

Assume that we are done for all such of degrees less than n, that is we have identified all
those non-connected Chern-Simons-Witten graphs once they are grouped together in the
manner of lower linking function which correspond to those over-barred sharp brackets
with some dj attached besides, in L∗

n,n−1,...,1,0. And obviously, we are left with only
those connected Chern-Simons-Witten graphs of degree n in both Massey-Milnor linking
and Chern-Simons-Witten graph set-ups. In the former, connected Chern-Simons-Witten
graphs correspond to double round brackets, and so contribute nothing by Lemma 10 to
L∗

n,n−1,...,1,0; in the latter, the connected Chern-Simons-Witten graphs will compensate the

artificial horizontal
∂

∂x
-rays derived from the lower linkings functions and the suitable

sub-graphs contracted there on.

Step 4. Both Ln,n−1,...,1,0 and L∗
n,n−1,...,1,0 are independent of the base points xj ∈ Lj, j =

0, 1, 2, . . . , n.

Due to cyclic symmetry of L∗
n,n−1,...,1,0—as is obvious from the Chern-Simons-Witten

perspective—we need only to prove that L∗
n,n−1,...,1,0 is independent of the choice of x0 ∈ L0.

And we denote the change or the variation due to the change of base point x0 ∈ L0 by the
notation δ. For example, δ may stand for changing the old base point x0 ∈ L0 to the new base
point x∗0 ∈ L0; and within [x0, x∗0 ] ⊆ L0, we may have
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or .

By definition, L∗
n,n−1,...,1,0 =

∫
0 (n, n − 1, . . . , 1 +

∫
0 (n, . . . , 2)1 +

∫
0 (n, . . . , 3) · < 2, 1 > +

· · · +
∫

0 n< n − 1, . . . , 1 >, and if for some k such that δ< k, k − 1, . . . , 1 > = c �= 0 and

δ< k − 1, . . . , 1 > = 0 = δ< k − 2, . . . , 1 > = · · · = δ< 3, 2, 1 > = δ< 2, 1 > = δ1 = 0,
then we have

Claim 4.
δ< k + 1, k, . . . , 1 > = C(k + 1),

δ < k + 2, k + 1, . . . , 1 >= C< k + 2, k + 1 >,

δ < k + 3, k + 2, . . . , 1 >= C< k + 3, k + 2, k + 1 >,

. . . . . . . . .

δ< n − 1, n − 2, . . . , 1 > = C< n − 1, n − 2, . . . , k + 1 >.

Proof. By the very definition of < k + 1, . . . , 1 >, < k + 2, . . . , 1 >, · · · , < n − 1, n − 2, . . . , 1 >,
for x ∈ L0 we have (being the dumming variable of L0), δ< k + 1, . . . , 1 >(x) =

δ
x∫

x0

(k + 1, . . . , 1) + δ
x∫

x0

(k + 1, . . . , 2)1 + δ
x∫

x0

(k + 1, . . . , 3)< 21 > + · · · + δ
x∫

x0

(k +

1)< k, . . . , 1 > = C
x∫

x0

(k + 1) = C(k + 1)(x), where as usual, for j ∈ {1, 2, . . . , n}, j(x)

is regarded as 1-form.

Similarly, δ< k + 2, k + 1, . . . , 1 > = δ
x∫

x0

(k + 2, . . . , 1) + δ
x∫

x0

(k + 2, . . . , 2)1 + · · · + δ
x∫

x0

(k +

2)< k + 1, . . . , 1 > = C
x∫

x0

(k + 2, k + 1) + C
x∫

x0

(k + 2)< k + 1 > = C< k + 2, k + 1 >(x).

In general, δ < l, l − 1, . . . , 1 >= δ
x∫

x0

(l, l − 1, . . . , 1) + δ
x∫

x0

(l, l − 1, . . . , 2)1 + · · · +

δ
x∫

x0

l< l − 1, l − 2, . . . , 1 > = C
x∫

x0

(l, l − 1, . . . , k + 1) + C
x∫

x0

(l, l − 1, . . . , k + 2)(k + 1) + · · · +

C
x∫

x0

l< l − 1, . . . , k + 1 > = C< l, l − 1, . . . , k + 1 >(x). And this concludes the proof of the

claim.

Now, we come back to the proof of independence of the choice of base point x0 ∈ L0.
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By the very definition of L∗
n,n−1,...,1,0, we have

δL∗
n,n−1,...,1,0

=δ
∫

0
(n, n − 1, . . . , 1) + δ

∫

0
(n, n − 1, . . . , 2)1

+ δ
∫

0
(n, n − 1, . . . , 3)< 2, 1 >+ · · ·

+ δ
∫

0
n< n − 1, n − 2, . . . , 1 >

=C
∫

0
(n, n − 1, . . . , k + 1)

+ C
∫

0
(n, n − 1, . . . , k + 2)< k + 1 >+ · · ·

+ C
∫

0
(n, n − 1)< n − 2, . . . , k + 1 >

+ C
∫

0
n< n − 1, n − 2, . . . , k + 1 >

=L∗
n,n−1,...,k+2,k+1,0

=0,

by the assumption that all Massey-Milnor linkings of lower degrees vanish.

And this concludes the proof of Theorem 1.
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2Japan

1. Introduction

The theory of quantized fields has its roots in the quantum theory of M. Planck [Planck
(1900)]. For the solution of the problem of black body radiation, he introduced the universal
quantum of action to the theory of electromagnetic fields. Nonrelativistic quantum mechanics
is established by W. Heisenberg [Heisenberg (1925)] and E. Schrödinger [Schrödinger (1926)].
M. Born, W. Heisenberg and P. Jordan [Born et al. (1926)] realized the quantization of
electromagnetic fields, and P.A.M. Dirac [Dirac (1927)] quantized electromagnetic fields in
interaction with a material system. But P. Ehrenfest noticed soon that the theory had to lead
to infinities. The existence of the positron is suggested by the theory of P.A.M. Dirac [Dirac
(1928; 1931)]. The discovery of the positron by C.D. Andersen (1932) established the theory of
quantum electrodynamics which treats the behavior of electron, positron and electromagnetic
fields. But this theory still has to lead to infinities, and these difficulties are (partially) removed
by S. Tomonaga [Tomonaga (1946)], H.A. Bethe [Bethe (1947)] and J. Schwinger [Schwinger
(1948)] using the subtraction formalism in perturbation theory. R.P. Feynman [Feynman
(1948)] developed the method of path integral which simplifies the calculation and F.J. Dyson
[Dyson (1949)] derives Feynman’s prescription from Tomonaga-Schwinger theory. Thus the
prescription of the subtraction formalism in electrodynamics was completely worked out.
Those theories in which the infinity of each term in the perturbation series can be subtracted
consistently are called renormalizable theories. But for these renormalizable theories, there
are still doubts about summability of the series in perturbation theory. In electrodynamics,
the expansion parameter (the coupling constant) is small and the sum of the first few terms
gives an amazing agreement with experiments, but there are no proofs about the convergence
of the series. In some theory of strong interaction the parameter is greater than 1, and
this subtraction formalism does not work. The main question is: What is hidden behind
these formal infinite series? To this question, one answer is given by the formalism of A.S.
Wightman and L. Gårding [Wightman & Gårding (1964)], which is a mathematically rigorous
study of quantum fields. Since the structure of the theory is axiomatic, the theory is called
axiomatic quantum field theory. The axioms formulate the basic physical postulates (e.g.,
relativistic invariance of the state space, spectral property, unique existence of a vacuum state,
Poincaré-covariance of the fields, locality or micro causality, etc., and some technical postulate:
temperedness of the fields, etc.) in a mathematical language. Nowadays the strong interaction
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is described by the quantum chromodynamics. Its renormalizability was proven in [’t Hooft
(1971)], and its asymptotic freedom discovered by [Gross & Wilczek (1973); Politzer (1973)]
gave it excellent predictability as well as quantum electrodynamics. But we know nothing
about its summability of perturbation series and the perturbation theory does not work in the
low-energy region where the coupling constant becomes large. The situation is not so different
from 1940’s. The axioms show the way to reconcile the principles of quantum mechanics
and those of special relativity. Quantum field theory is also important as effective theory in
low-energy approximation to a deeper theory like a string theory where it is said that there is
a length � > 0 (fundamental length) such that one cannot distinguish events which occur in a
smaller distance than � (see [Polchinski (1998)]). From this perspective, quantum field theory
with a fundamental length becomes interesting.

In 1958, Heisenberg and Pauli introduced the equation

γμ
∂

∂xμ
ψ(x)± l2γμγ5 : ψ(x)ψ̄(x)γμγ5ψ(x) : = 0 (1.1)

which was later called Heisenberg’s fundamental field equation or the equation of universe
and studied in [Dürr et al. (1959); Heisenberg (1966)]. The equation contains a parameter l of
the dimension of length and accordingly one might speculate that this parameter can play the
rôle of the fundamental length of a quantum field theory with a fundamental length. In order
to verify this speculation one must solve two eminent problems:

(A) Formulate a relativistic quantum field theory with a fundament length in an axiomatic
way and establish its main properties;

(B) Solve this equation with a field theory according to (A).

As a mathematical theory a solution to problem (A) has been suggested in [Brüning &
Nagamachi (2004)]. According to this suggestion a relativistic quantum field theory with a
fundamental length is a relativistic quantum field theory similar to the Gårding - Wightman
theory (see [Wightman & Gårding (1964)]) where the fields are operator valued tempered
ultra-hyperfunctions instead of operator valued tempered (Schwartz) distributions. The
physically important aspect of this theory is that for the first time in a mathematical
rigorous way, the fundamental length is realized on the level of the fields, not on the
level of the geometry of the space-time on which these fields are defined. This allows to
rely on the established concepts and theories of Physics based on a standard space-time.
The fundamental length is introduced through the use of a class of generalized functions
(tempered ultrahyperfunctions) which distinguish events in space-time only when they are
separated by more than a certain length, the fundamental length �. Certainly, up to now there
is now no? physical evidence that this is the appropriate way of defining the fundamental
length.
Concerning problem (B) we recall that nobody knows to solve Heisenberg’s fundamental field
equation. However there is a simplification of this equation which is solvable in the sense of
classical field theory, namely the system of equations (: · : indicates the Wick product)

⎧⎨
⎩

(�+ m2)φ(x) = 0�
iγμ ∂

∂xμ − M
�

ψ(x) = −2l2γμ :
∂φ(x)
∂xμ φ(x)ψ(x) :

(1.2)
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for a Klein-Gordon field φ and a spinor field ψ. It is this system of coupled equations which
we discuss in the framework of [Brüning & Nagamachi (2004)], i.e., for a given Klein-Gordon
field φ we define an operator valued tempered ultrahyperfunction ψ such that the pair
(φ, ψ) satisfies equation (1.2). This system has been studied first by [Okubo (1961)] as a
quantum field theory although this interaction is un-renormalizable in the usual sense of
perturbation theory, and Green’s functions are calculated. There are some interactions which
look un-renormalizable but actually are renormalizable if the use of perturbations is avoided
(see [Okubo (1954)]).

2. Overview

The basic idea to solve the system (1.2) is quite natural:

Take a Klein-Gordon field of mass m and suppose that we can show the following statements:

A) the Wick power series

ρ(x) =: eil2φ(x)2
:=

∞

∑
n=0

inl2n : φ(x)2n : /n! (2.1)

and

ρ∗(x) =: e−il2φ(x)2
:=

∞

∑
n=0

(−i)nl2n : φ(x)2n : /n!

are well-defined as operator-valued ultra-hyperfunctions.

B) ρ(x) satisfies

∂

∂xμ ρ(x) = 2il2 :
∂φ(x)
∂xμ φ(x)eil2φ(x)2

:= 2il2 :
∂φ(x)
∂xμ φ(x)ρ(x) : . (2.2)

C) the free Dirac field ψ0(x) is a multiplier for the field ρ and thus we can define the field

ψ(x) = ρ(x)ψ0(x). (2.3)

D) Show that the field ψ defined in C) is indeed al relativistic quantum field with a
fundamental length.

E) Calculate

(
iγμ ∂

∂xμ − M
)

ψ(x) = ρ(x)
[(

iγμ ∂

∂xμ − M
)

ψ0(x)
]
+ γμ ∂ρ(x)

∂xμ ψ0(x)

= −2l2γμ :
∂φ(x)
∂xμ φ(x)ρ(x)ψ0(x) := −2l2γμ :

∂φ(x)
∂xμ φ(x)ψ(x) : .

Thus, if A) – E) hold, the operator-valued ultra-hyperfunctions φ(x), ψ(x) satisfy the system
of equations (1.2).

Note that the above Wick power series do not converge in the sense tempered distributions.
They even do not converge in the sense Fourier hyperfunctions (see [Ito (1988); Nagamachi
(1981a;b)]). But as we show they converge in the sense of tempered ultra-hyperfunctions.

Remark 2.1.
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The definition of a relativistic quantum field with a fundamental length has been proposed in
[Brüning & Nagamachi (2004)] and there the functional characterization has been derived for
the case of a scalar field. The functional characterization for a spinor field is given in [Brüning
& Nagamachi (2008)].

Naturally the localization properties of a relativistic quantum field with a fundament length
� > 0 are very different from those of a standard quantum field. According to their definition
these fields do not distinguish events in space-time which are separated by �� < � (see Remark
3.11).

According to these new localization properties the counter part of the “locality or causality
condition for standard fields” looks quite different. It is called “extended causality” and the
verification of this condition is the major difficulty in verifying that the fields ρ and ψ as
introduced above are indeed relativistic quantum fields with a fundamental length.

Remark 2.2. The key to our approach is the use of tempered ultra-hyperfunctions (see
[Morimoto (1970; 1975a;b)]) and their localization properties (see [Nagamachi & Brüning
(2003)]). This has first been suggested in [Brüning & Nagamachi (2004)]. This class of
generalized functions is not too well known and therefore we will briefly explain what
tempered ultra-hyperfunctions are and that and how these localization properties arise.

3. Tempered ultra-hyperfunctions

For any subset A of R
n, denote by T(A) = R

n + iA ⊂ C
n the tubular set with base A. For a

convex compact set K of R
n, Tb(T(K)) is, by definition, the space of all continuous functions

f on T(K) which are holomorphic in the interior of T(K) and which satisfy

� f �T(K),j = sup{|zp f (z)|; z ∈ T(K), |p| ≤ j} < ∞, j = 0, 1, . . . (3.1)

where p = (p1, . . . , pn) and zp = zp1
1 · · · zpn

n . Tb(T(K)) is a Fréchet space with the semi-norms
� f �T(K),j. If K1 ⊂ K2 are two compact convex sets, we have the canonical mapping:

Tb(T(K2)) → Tb(T(K1)). (3.2)

For a convex open set O in R
n we define

T (T(O)) = lim← Tb(T(K)), (3.3)

where K runs through the convex compact sets contained in O and the projective limit is taken
following the restriction mappings (3.2).

Definition 3.1. A tempered ultra-hyperfunction is by definition a continuous linear functional
on T (T(Rn)).

The Fourier transformation F is well defined on T (T(Rn)) by the standard formula (3.8). In
order to determine the range of F on T (T(Rn)) we introduce another function space.

The gauge functional hK of a compact convex set K ⊂ R
n is defined by

hK(x) = sup{�x, ξ�; ξ ∈ K}. (3.4)
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For a convex compact set K of R
n, denote by Hb(R

n; K) the space of all C∞ functions f on R
n

which satisfy, for j = 0, 1, . . .,

� f �K,j = sup{exp(hK(x))|Dp f (x)|; x ∈ R
n, |p| ≤ j} < ∞. (3.5)

Equipped with the system of semi-norms � f �K,j, Hb(R
n; K) is a Fréchet space. If K1 ⊂ K2 are

two compact convex sets, then hK1 ≤ hK2 and thus one has the canonical mappings:

Hb(R
n; K2) → Hb(R

n; K1). (3.6)

For a convex open set O ⊂ R
n the space H(Rn; O) is the projective limit of the spaces

Hb(R
n; K) along the restriction mappings (3.6), i.e.,

H(Rn; O) = lim← Hb(R
n; K), (3.7)

where K runs through the convex compact sets contained in O.

In order to relate the space H(Rn; R
n) to the Schwartz space S(Rn) we derive a more direct

characterization of H(Rn; R
n). Observe that for any convex compact set K ⊂ R

n there is a
number k > 0 such that K ⊆ [−k, k]n. For the sets K = [−k, k]n the gauge function hK is easily
determined:

hK(x) = sup{�x, ξ�; ξ ∈ K} = k
n

∑
i=1

|xi|,

and the system of continuous norms takes the form, using the notation |x| = ∑n
i=1 |xi|,

� f �K,j = sup{exp(hK(x))|Dp f (x)|; |p| ≤ j, x ∈ R
n}

= sup{ek|x| |Dp f (x)|; |p| ≤ j, x ∈ R
n}.

Thus, the space H(Rn; R
n) can be defined as the projective limit of the spaces Hb(R

n; K)
along the restriction mappings (3.6), where K = [−k, k]n, 0 < k < ∞. Accordingly, the space
H(Rn; R

n) is the space of all C∞-functions on R
n which, together with all derivatives, decrease

faster than any (linear) exponential. An easy consequence is

Corollary 3.2. 1. The space H(Rn; R
n) is continuously embedded into the Schwartz space S(Rn);

2. The elements of S(Rn) are multipliers for the space H(Rn; R
n), and for each g ∈ S(Rn) the map

f �→ g f is a continuous linear map of H(Rn; R
n) into itself.

Proof : See [Hasumi (1961); Morimoto (1975b)]. �

The following theorem collects the basic facts about the spaces introduced above.

Theorem 3.3. For the spaces introduced above the following statements hold, for any convex compact
set K respectively convex open set O.

1. The space of D(Rn) all C∞ functions with compact support is dense in H(Rn; O).

2. The space H(Rn; R
n) is dense in H(Rn; O) and in H(Rn; K).

3. H(Rm; R
m)⊗ H(Rn; R

n) is dense in H(Rm+n; R
m+n).

Proof : For the proof of the first two items we refer to [Hasumi (1961); Morimoto (1975b)]. The proof the
last item can be found in [Brüning & Nagamachi (2004)]. �
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Proposition 3.4. The Fourier transformation f �→ f̃ ≡ F f ,

f̃ (p) = (2π)−n/2
∫

Rn
f (z)ei�p,z�dz (3.8)

is a topological isomorphism between the spaces T (T(O)) and H(Rn; O), for any open convex
nonempty set O ⊂ R

n. The inverse transformation is

f (z) = F̄ f̃ = (2π)−n/2
∫

Rn
f̃ (p)e−i�p,z�dp. (3.9)

Proof : See [Hasumi (1961); Morimoto (1975b)]. �

Proposition 3.5. Let O ⊂ R
n be a nonempty convex open subset. Then the spaces H(Rn; O) and

T (T(O)) are nuclear Fréchet spaces and thus, in particular, reflexive.

Proof : In the case of O = R
n Hasumi [Hasumi (1961)] proved this result, and his proof is valid in the

general case. A sketch of the proof for H(Rn; O) is provided in [Brüning & Nagamachi (2004)]. �

Theorem 3.6 (Corollary of Theorem 34.1 of [Treves (1967)]). Let E be a Fréchet space, E1 a
metrizable space, G a locally convex space. Then a separately continuous bilinear map of E × E1
into G is continuous.

Theorem 3.7 (Kernel theorem for ultra-hyperfunctions). Let M be a separately continuous
multi-linear map of [T (T(R4))]n into a Banach space G. Then there is a unique continuous linear
map F of T (T(R4n)) into G such that, for all fi ∈ T (T(R4)), i = 1, . . . , n,

M( f1, . . . , fn) = F( f1 ⊗ · · · ⊗ fn).

Proof : The proof is quite involved and lengthy. Details are again given in [Brüning & Nagamachi (2004)].
�

For an open set V in R
n and a positive number � introduce the set V� defined by

V� = {z ∈ C
n; ∃ x ∈ V, |Re z − x| < �, |Im z|β < �},

where |y|β is a norm of R
n satisfying |y|β ≥ |y| for the Euclidean norm |y|. Let Kp be the

closure of V�/(1+1/p) in C
n and Lp = {w ∈ C

m; |Im w| ≤ p}. Denote U = V� × C
m and

Mp = Kp × Lp. Tb(Mp) is, by definition, the space of all continuous functions f on Mp which
are holomorphic in the interior of Mp and satisfy, for k = 1, 2, . . .,

� f �Mp ,k = sup{|zswt f (z, w)|; (z, w) ∈ Mp, |s|+ |t| ≤ k} < ∞;

Tb(Mp) is a Fréchet space with the seminorms � f �Mp ,k.

If k < m, then we have the canonical mappings:

Tb(Mm) → Tb(Mk). (3.10)
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We define
T (U) = lim← Tb(Mm), (3.11)

where the projective limit is taken following the restriction mappings (3.10).

Theorem 3.8. T (T(Rn+m)) is dense in T (U).

Proof : The proof is similar to the proofs of Proposition 2.4 of [Nishimura & Nagamachi (1990)] and
Proposition 9.1.2 of [Hörmander (1983)]. For more details we refer to the appendix of [Brüning &
Nagamachi (2004)]. �

Theorem 3.9. Let V be a closed convex cone and K a convex compact set in R
n. Define a function

hK,V(ξ), ξ ∈ R
n, and a set V0

K as follows (see Equation (3.4) for the definition of hK):

hK,V(ξ) = sup
x∈V

hK(x)− �x, ξ�, and V0
K = {ξ ∈ R

n; hK,V(ξ) < ∞}.

Then for every μ ∈ H(Rn; O)� with support in the cone V there is a function

μ̂(ζ) = �μ, ei�·, ζ�� (3.12)

with the following properties: μ̂ is well defined and holomorphic in the interior of R
n × iV0

K and satisfies
there the following estimate, for a suitable K ⊂ O.

|μ̂(ζ)| ≤ C(1 + |ζ|)j exp(hK,V(Im ζ)). (3.13)

μ̂ is called the Laplace transform of the tempered ultra-hyperfunction μ.

Proof : See [Brüning & Nagamachi (2004)]. �

Remark 3.10. Let |x|∞ = max{|x0|, |x|} be a norm in R
4 and V̄+ the closed forward light-cone

in R
4. Abbreviate V = V̄n

+ and for �i > 0 introduce hK(x) = ∑n
i=1 �i|xi|∞. Then we estimate

hK,V(ξ) = sup
xi∈V̄+

n

∑
i=1

(�i|xi|∞ − �xi, ξi�) ≤
n

∑
i=1

sup
xi∈V̄+

(�i|xi|∞ − �xi, ξi�).

Let V+ be the open forward light-cone. It follows

sup
x∈V̄+

−�x, η� < ∞

for η ∈ V+. Let ξi = ηi + (�i,0) ∈ V+ + (�i,0). Since |x|∞ = x0 in V̄+, we find

sup
xi∈V̄+

(�i|xi|∞ − �xi, ξi�) = sup
xi∈V̄+

(�ix0
i − �xi, ηi� − x0

i �i) = sup
xi∈V̄+

−�xi, ηi� < ∞.

Thus the set
V+(�1, . . . , �n) = {(ξ1, . . . , ξn) ∈ R

4n; ξi ∈ V+ + (�i,0)} (3.14)

is contained in V0
K .

191Solution of a Linearized Model of Heisenberg’s Fundamental Equation



8 Will-be-set-by-IN-TECH

The reason why we use tempered ultra-hyperfunctions for the formulation of relativistic
quantum field theory with a fundamental length is illustrated in the following remark.

Remark 3.11. If f (z) is a holomorphic function in the strip |Im z| < � around the real axis, then,
for |a| < �, we have

�
∞

∑
n=0

an

n!
δ(n)(x), f (x)� =

∞

∑
n=0

(−a)n

n!
f (n)(0) = f (0 − a) = �δ(x + a), f (x)�, (3.15)

that is, as an equation for functionals defined on the function space T (T(−�, �)) whose
elements are holomorphic functions in T(−�, �) = R + i(−�, �) ⊂ C, the identity

∞

∑
n=0

an

n!
δ(n)(x) = δ(x + a)

holds, i.e., the sequence of generalized functions SN = ∑N
n=0

an

n!
δ(n)(x) with support {0}

converges (weakly, in the dual space of T (T(−�, �))) to the generalized function δ(x + a)
with support {−a}, as N → ∞. However, if |a| > �, then this sequence does not converge
in T (T(−�, �))�. This phenomenon can be understood as follows. If |a| < �, then elements
in T (T(−�, �))� do not distinguish between the points {0} and {−a} , but if |a| > � then
elements in T (T(−�, �))� can distinguish between the points {0} and {−a}. Since |a| < � is
arbitrary, one can say that elements in T (T(−�, �))� do not distinguish between points which
are separated by less than �.

Remark 3.12. Let U = (−�, �) + i(−�, �). Then the functional (3.15) is considered to be
a functional on T (U) (the space of holomorphic functions on U), i.e., it is continuously
extendable to T (U). If a functional μ on T (T(R)) is continuously extendable to T (U),
one says that a carrier of μ is contained in U. The notion of carrier for tempered
ultra-hyperfunctions is the counterpart of the notion of support for distributions. We can
recognize the similarity of these notions: If a distribution μ ∈ S�(R) is continuously
extendable to E(U) for some open set U ⊂ R, then we know that the support of μ is contained
in U.

4. Relativistic quantum fields with a fundamental length and their functional
characterization

4.1 Wightman’s Axioms for relativistic quantum fields with a fundamental length

In Wightman’s scheme, the concept of a relativistic quantum field φ(κ) of type κ plays a
fundamental role. Such a field, for example a scalar, tensor or spinor field, has a finite number

of Lorentz components φ
(κ)
j (j = 1, . . . , rκ).

The field components φ
(κ)
j (x) are operator-valued tempered ultra-hyperfunctions, i.e., for f ∈

T (T(R4)),

φ
(κ)
j ( f ) =

∫
φ
(κ)
j (x) f (x)d4x

are densely defined linear operators in a complex Hilbert space H. They are not assumed to
be bounded.
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Here we state Wightman’s axioms for the ultra-hyperfunction quantum field theory [Brüning
& Nagamachi (2008)]. For the neutral scalar fields, these axioms are the axioms listed in
[Brüning & Nagamachi (2004)].

W.I. Relativistic invariance and state space: There is a complex Hilbert space H with
positive metric in which a unitary representation U(a, A) of the Poinaré spinor group P0 acts.
(a, A) �→ U(a, A) is weakly continuous.

W.II. Spectral property: The spectrum Σ of the energy-momentum operator P which generates
the translations in this representation, i.e., eiaP = U(a, 1), is contained in the closed forward
light cone
V̄+ = {p = (p0, . . . , p3) ∈ R

4; p0 ≥ |p|}.

W.III. Existence and uniqueness of the vacuum: In H there exists unit vector Φ0 (called
the vacuum vector) which is unique up to a phase factor and which is invariant under all
space-time translations U(a, 1), a ∈ R

4.

W.IV. Fields as operator-valued tempered ultra-hyperfunctions: The components φ
(κ)
j of

the quantum field φ(κ) are operator-valued generalized functions φ
(κ)
j (x) over the space

T (T(R4)) with common dense domain D; i.e., for all Ψ ∈ D and all Φ ∈ H,

T (T(R4)) � f → (Φ, φ
(κ)
j ( f )Ψ) ∈ C

is a tempered ultra-hyperfunction. It is supposed that the vacuum vector Φ0 is contained in

D and that D is invariant under the action of the operators φ
(κ)
j ( f ) and U(a, A), i.e.,

φ
(κ)
j ( f )D ⊂ D, U(a, A)D ⊂ D.

Moreover it is assumed that there exist indices κ̄, j̄ such that φ
(κ̄)
j̄ ( f̄ ) ⊂ φ

(κ)
j ( f )∗ where ∗

indicates the Hilbert space adjoint of the operator in question.

W.V. Poincaré-covariance of the fields: According to the type of the field, there is a finite
dimensional real or complex matrix representation V(κ)(A) of SL(2, C) such that

U(a, A)φ
(κ)
j (x)U(a, A)−1 = ∑

�

V(κ)
j,� (A−1)φ

(κ)
� (Λ(A)x + a),

i.e., for any f ∈ T (T(R4)) and Ψ ∈ D,

U(a, A)φ
(κ)
j ( f )U(a, A)−1Ψ = ∑

�

V(κ)
j,� (A−1)φ

(κ)
� ( f(a,A))Ψ,

where f(a,A)(x) = f (Λ(A)−1(x − a)). We have V(κ)(−1) = ±1. If V(κ)(−1) = 1, then the

field is called a tensor field. If V(κ)(−1) = −1, then the field is called a spinor field.

W.VI. Extended causality or extended local commutativity: Any two field components

φ
(κ)
j (x) and φ

(κ�)
l (y) either commute or anti-commute if the space-like distance between x
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and y is greater than �: In some Lorentz frame1 , for any �� > � and arbitrary elements Φ, Ψ in
D,

a) the functionals

T (T(R4))⊗ T (T(R4)) � f ⊗ g → (Φ, φ
(κ)
j ( f )φ(κ�)

l (g)Ψ)

and
T (T(R4))⊗ T (T(R4)) � f ⊗ g → (Φ, φ

(κ�)
l (g)φ(κ)

j ( f )Ψ)

can be extended continuously to T (T(L�� )), where

T(L�) = {(z1, z2) ∈ C
4·2; |Im z1 − Im z2|1 < �},

with |y|1 = |y0|+
√

∑3
i=1(yi)2, and moreover,

b) the carrier of the functional

f ⊗ g → (Φ, [φ(κ)
j ( f ), φ

(κ�)
l (g)]∓Ψ)

on T (T(R4))⊗ T (T(R4)) is contained in the set

W�� = {(z1, z2) ∈ C
4·2; z1 − z2 ∈ V�� },

where
V� = {z ∈ C

4; ∃ x ∈ V, |Re z − x| < �, |Im z|1 < �}

with |y| =
√

∑3
i=0(yi)2 is a complex neighborhood of light cone V, i.e., this functional can be

extended continuously to T (W�� ).

W.VII. Cyclicity of the vacuum: The set D0 of finite linear combinations of vectors of the form

φ
(κ1)
j1

( f1) · · · φ
(κn)
jn

( fn)Φ0, f j ∈ T (T(R4)) (n = 0, 1, . . .)

is dense in H.

Remark 4.1. Condition a) of axiom W.VI expresses the fact that if the distance between x and
y is greater than � then x and y are distinguishable (see Remark 3.11). Condition b) of axiom
W.VI corresponds to the locality condition of ordinary quantum field theory (see Remark 3.12).

4.2 Main properties of the system of vacuum expectation values

A vector-valued generalized function Φ(κn)
μ

n
( f ) is defined as follows: First, for g(x1, . . . , xn) =

f1(x1) · · · fn(xn), f j ∈ T (T(R4)), define Φ(κ1...κn)
μ1...μn (g) by:

Φ(κ1...κn)
μ1...μn (g) = φ

(κ1)
μ1 ( f1) · · · φ

(κj)
μj ( f j) · · · φ

(κn)
μn ( fn)Φ0.

1 In [Nagamachi & Brüning (2010)] it is shown that the fundamental length does actually not dependent
on the Lorentz frame.
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This mapping is naturally extended to T (T(R4))⊗n by linearity. Then, by the same argument

as Proposition 4.1 of [Brüning & Nagamachi (2004)]and using Theorem 3.7, Φ(κ1...κn)
μ1...μn (g) is

extended to a continuous mapping

T (T(R4n)) � f → Φ(κ1...κn)
μ1...μn ( f ) ∈ H.

The Wightman (generalized) function W (κ1...κn)
μ1...μn ( f ) is defined by

T (T(R4n)) � f → W (κ1...κn)
μ1...μn ( f ) = (Φ0, Φ(κ1...κn)

μ1...μn ( f )) ∈ C.

With the definition of the Fourier transform Φ̃(κn)
μ

n
of Φ(κn)

μ
n

by

Φ(κn)
μ

n
( f ) = Φ̃(κn)

(μ
n
)
( f̃ ).

we find

U(a, 1)Φ̃(κn)
μ

n
( f̃ ) = U(a, 1)Φ(κn)

μ
n
( f ) = Φ(κn)

μ
n
( f(a,1)) = Φ̃(κn)

μ
n

(
f̃ e[i(∑

n
k=1 pk a)]

)
.

According to the standard strategy we use this identity to determine support properties of the
Fourier transforms of the field operators. For h ∈ T (T(R4)) calculate

(2π)2h̃(P)Φ̃(κn)
μ

n
( f̃ ) =

∫

R4
h(a)U(a, 1)daΦ̃(κn)

μ
n
( f̃ )

= (2π)2�Φ̃(κn)
μ

n
(p1, . . . , pn), h̃(p1 + · · ·+ pn) · f̃ (p1, . . . , pn)�.

Let χn be the linear mapping defined by

(p1, . . . , pn) = χn(q0, . . . , qn−1), pk = qk−1 − qk(k = 1, . . . , n − 1), pn = qn−1.

The inverse mapping χ−1
n is:

qk =
n

∑
j=k+1

pj (k = 0, . . . , n − 1).

Define Z̃(κn)
μ

n
by

Z̃(κn)
μ

n
( f̃ ◦ χn) = Φ̃(κn)

μ
n
( f̃ ).

Then
Z̃(κn)

μ
n

(g̃) = Φ̃(κn)
μ

n
(g̃ ◦ χ−1

n ).

In particular, for g̃2 ∈ H(R4(n−1); R
4(n−1)) and g̃1 ∈ H(R4; R

4) we find

h̃(P)Z̃(κn)
μ

n
(g̃1 ⊗ g̃2)) = Z̃(κn)

μ
n

(h̃ · g̃1 ⊗ g̃2)) = g̃1(P)Z̃(κn)
μ

n
(h̃ ⊗ g̃2)).
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These identities show that the vector-valued generalized function

H(R4; R
4) � g̃1 → Z̃(κn)

μ
n

(g̃1 ⊗ g̃2)) ∈ H

has its support contained in the spectrum Σ of energy-momentum operator P (see Proposition

4.5 of [Brüning & Nagamachi (2004)]), moreover we can define a functional W̃(κn)
μ

n
by

(2π)2 g̃1(0)W̃
(κn)
μ

n
(g̃2) = (Φ0, Z̃(κn)

μ
n

(g̃1 ⊗ g̃2)),

and we have

(Z̃(κm)
μ

m
(g̃1), Z̃(κn)

μ
n

(g̃2)) = (2π)2�W̃(κm+n)
μ

m+n
(q1, . . . , qm+n−1), g̃1(qm, . . . , q1)g̃2(qm, . . . , qm+n−1)�.

This identity implies that the support of W̃(κn)
μ

n
(q1, . . . , qn−1) is contained in Σn−1 (see

Proposition 4.6 of [Brüning & Nagamachi (2004)]). Moreover, the equality

(Z̃(κn)
μ

n
(g̃), Z̃(κn)

μ
n

(g̃)) = (2π)2�W̃(κ2n)
μ

2n
(q1, . . . , q2n−1), g̃(qn, . . . , q1)g̃(qn, . . . , q2n−1)�

shows that the support of Z̃(κn)
μ

n
(q0, . . . , qn−1) is contained in Σn.

From this support property it follows that Z̃(κn)
μ

n
(g̃) exists for a much wider class of test

functions g̃ than was originally considered. For example, the function

g̃ζ(q) = (2π)−2nei[∑n−1
j=0 qjζ j ], Im ζ j ∈ V+ + �j(1,0)

belongs to the class of test functions for sufficiently large �j. We investigate the region of
holomorphy of the following function

�W̃(κ2n)
μ

2n
(q1, . . . , q2n−1), g̃∗ζ � (q1, . . . , qn)g̃ζ(qn, . . . , q2n−1)�

=
1

(2π)4n �W̃
(κ2n)
μ

2n
(q1, . . . , q2n−1), e−i[∑n

j=1 qn+1−j ζ̄
�
j−1]ei[∑n

k=1 qn+k−1ζk−1]�

= W(κ2n)
μ

2n
(−ζ̄ �n−1, . . . ,−ζ̄ �0 + ζ0, . . . , ζn−1).

Now recall the following proposition.

Proposition 4.2 (Proposition 4.7 of [Brüning & Nagamachi (2004)]). There exist decreasing
functions Rij(r) defined for � < r such that W(κ2n)

μ
2n

(ζ1, . . . , ζ2n−1) is holomorphic in

2n−1⋃

i=1
{ζ ∈ C

4(2n−1); Im ζi ∈ V+ + (��,0), Im ζ j ∈ V+ + (Rij(�
�),0), � < ��, j �= i}.

This proposition shows that Z(κn)
μ

n
(ζ0, . . . , ζn−1) is holomorphic in the domain Im ζ0 ∈ V+ +

(�,0)/2 and Im ζk ∈ V+ + (�k,0) for sufficiently large �k for k = 1, . . . , n.
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Note that

(g̃ζ ◦ χ−1
n )(p1, . . . , pn) = (2π)−2nei�ζ,χ−1

n p� = (2π)−2nei�χ−1T
n ζ,p� = (2π)−2nei�z,p�,

where z = χ−1T
n ζ and ζ = χT

n z, that is,

ζ0 = z1, ζ j = zj+1 − zj (j = 1, . . . , n − 1), z1 = ζ0, zj =
j−1

∑
k=0

ζk (j = 2, . . . , n).

Therefore we get

Z(κn)
μ

n
(ζ0, . . . , ζn−1) = Z̃(κn)

μ
n

(g̃ζ) = Φ̃(κn)
μ

n
(g̃ζ ◦ χ−1

n ) = Φ(κn)
μ

n
(z1, . . . , zn),

and

Φ(κn)
μ

n
( f ) =

∫
Φ(κn)

μ
n
(x1 + i�0, . . . , xn + i

n

∑
k=1

�k−1) f (x1 + i�0, . . . , xn + i
n

∑
k=1

�k−1)dx1 · · · dxn,

where �0 = �/2 + � for any � > 0.

Note that the Poincaré group acts on g̃ζ(q) as

(a, A) : g̃ζ(q) → g̃ζ(Λ(A)−1q)eiaq0 = (2π)−2nei[∑n−1
j=0 Λ(A)−1qjζ j ]eiaq0

= (2π)−2n exp i[
n−1

∑
j=0

qjΛ(A)ζ j]eiaq0 = g̃Λ(A)ζ(q) exp iaq0.

Then the formula of covariance

U(a, A)Φ(κn)
μ

n
( f ) = ∑

ν1,...,νn

n

∏
j=1

V
(κj)
μj ,νj (A−1)Φ(κ1...κn)

ν1...νn ( f(a,A))

implies the following simple formula of covariance in the domain of holomorphy of

Φ(κn)
μ

n
(z1, . . . , zn) in complex space:

U(a, A)Φ(κn)
μ

n
(z1, . . . , zn)

= ∑
ν1,...,νn

n

∏
j=1

V
(κj)
μj ,νj (A−1)Φ(κ1...κn)

ν1...νn (Λ(A)z1 + a, . . . , Λ(A)zn + a). (4.1)

4.3 Functional characterization of fundamental length quantum fields

The analysis of the previous sections has shown that the sequence of vacuum expectation
values of an ultra-hyperfunction quantum field theory has a number of specific properties. In
analogy to standard quantum field theory we single out a set of properties of these vacuum
expectation values which actually characterizes an ultra-hyperfunction quantum field theory
up to isomorphisms. For the use in Section 5 (and because of space restrictions), we state them
only in case of a scalar field.
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Properties of UHQFT functionals:

(R1) W0 = 1, Wn ∈ T (T(R4n))� for n ≥ 1, and Wn( f ∗) = Wn( f ), for all f ∈ T (T(R4n)) ≡
E(n), where f ∗(z1, . . . , zn) = f (z̄n, . . . , z̄1).

(R2) For the Fourier transform W̃n ∈ H(R4n; R
4n)� of Wn, there exists W̃n−1 ∈

H(R4(n−1); R
4(n−1))� such that

W̃n ◦ χn(q0, . . . , qn−1) = (2π)2δ(q0)W̃n−1(q1, . . . , qn−1)

and supp W̃n−1 ⊂ Σn−1.

(R3) For a space-like vector a ∈ R
4 and gn ∈ E(n) introduce, for all λ > 0,

gn,λ(x1, . . . , xn) = gn(x1 − λa, . . . , xn − λa).

Then, for every fm ∈ E(m) and gn ∈ E(n) as λ → ∞,

Wm+n( fm ⊗ gn,λ) → Wm( fm)Wn(gn).

(R4) For any finite set f0, f1, . . . , fN of test functions such that f0 ∈ C, fn ∈ T (T(R4n)) for
1 ≤ n ≤ N, one has

N

∑
m,n=0

Wm+n( f ∗m ⊗ fn) ≥ 0.

(R5) Wn( f ) = Wn( f(a,Λ)) for all (a, Λ) ∈ P↑
+, all f ∈ T (T(R4n)), and all n = 1, 2, . . ..

(R6) For all n = 2, 3, . . . and all i = 1, . . . , n − 1 denote

L�
i = {x = (x1, . . . , xn) ∈ R

4n; |xi − xi+1|1 < �},

W�
i = {(z1, . . . , zn) ∈ C

4n; zi − zi+1 ∈ V�}.

Then, for any �� > �,

(i) Wn ∈ T (T(R4n))� belongs to T (T(L��
i ))

� and

(ii) Wn ◦ cn
i belongs to T (W��

i )�,
where

(Wn ◦ cn
i )( f ) = Wn(cn

i ( f )),

cn
i ( f )(x1, . . . , xn) = f (x1, . . . , xi, xi+1, . . . , xn)− f (x1, . . . , xi+1, xi, . . . , xn).

The derivation of the properties (R1) - (R6) is found in [Brüning & Nagamachi (2004)].

Theorem 4.3 (reconstruction theorem). To a given sequence (Wn)n∈N of tempered
ultra-hyperfunctions satisfying the conditions (R1) - (R6), there corresponds a neutral scalar field A( f )
which obeys all the axioms W.I - W.VII and has the given tempered ultra-hyperfunctions as vacuum
expectation values. The field A is unique up to isomorphisms.

Proof : The proof of the theorem is found in [Brüning & Nagamachi (2004)].
�
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5. : exp (il2φ(x)2) : as a fundamental length quantum field

We are going to construct models of relativistic quantum fields with a fundamental length by
constructing a sequence of n-point functionals which satisfies conditions (R1) – (R6) and then
applying the reconstruction theorem (Theorem 4.3). Our starting point are the well-known
results of Jaffe [Jaffe (1965)] on formal Wick power series of free fields. If we consider the
power series of a free field φ

ρ(i)(x) =
∞

∑
n=0

a(i)n
: φ(x)n :

n!
, (5.1)

then we have the following theorem.

Theorem 5.1 (Theorem A.1 of [Jaffe (1965)]). As a formal power series

(Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0) =
∞

∑
rij=0; 1≤i<j≤n

A(R)TR

R!
(5.2)

rij = rji, rii = 0, Ri =
n

∑
j=1

rij, A(R) =
n

∏
j=1

a(j)
Rj

R! = ∏
1≤i<j≤n

(rij)!, TR = ∏
1≤i<j≤n

(tij)
rij (5.3)

tij = (Φ0, φ(xi)φ(xj)Φ0) = D(−)
m (xi − xj).

Therefore

(Φ0, ρ(i)(x)ρ(i)(y)Φ0) =
∞

∑
n=0

a(i)2n
n!

D(−)
m (x − y)n,

D(−)
m (x) = (2π)−3

∫

R3
[2ω(k)]−1e−iω(k)x0

eik·xdk

(k · x = k0x0 − k · x, ω(k) =
√

k2 + m2).

If the coefficients {a(i)n } satisfy limn→∞[|a(i)n |2/n!]1/n = 0 then the series (5.1) defines a
hyperfunction quantum field (see [Nagamachi & Mugibayashi (1986)]).

Now we assume that for some σ > 0

lim sup
n→∞

[|a(i)n |2/n!]1/n = σ. (5.4)

For example, consider

ρ(x) =: egφ(x)2
:=

∞

∑
n=0

gn : φ(x)2n :
n!

=
∞

∑
n=0

gn (2n)!
n!

: φ(x)2n :
(2n)!

. (5.5)

Then

σ = lim
n→∞

[
|gn|2 (2n)!

(n!)2

]1/2n
= 2|g| (5.6)
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and

(Φ0, ρ(x)ρ(y)Φ0) =
∞

∑
n=0

�
gn (2n)!

n!

�2 1
(2n)!

D(−)
m (x − y)2n.

Since

(1 − x)−α = 1 + αx +
α(α + 1)

2!
x2 + . . . +

α(α + 1) · · · (α + n − 1)
n!

xn + . . . ,

and for α = 1/2
α(α + 1) · · · (α + n − 1)

n!
=

(2n)!
4nn!

1
n!

,

we get, in the sense of formal power series,

(Φ0, ρ(x)ρ(y)Φ0) = [1 − 4g2D(−)
m (x − y)2]−1/2. (5.7)

Now we investigate the convergence of this power series, in the sense of tempered
ultra-hyperfunctions. To this end consider the power series

∞

∑
rij=0; 1≤i<j≤n

A(R)ZR

R!
(5.8)

in the variables zij (1 ≤ i < j ≤ n), where ZR = ∏1≤i<j≤n(zij)
rij . Let

�R� = ∑
1≤i<j≤n

rij (5.9)

and tij(1 ≤ i < j ≤ n) be positive constants. Suppose

lim sup
�R�→∞

� |A(R)|TR

R!

�1/�R�
≤ 1.

Then the fact that the series (5.8) converges if |zij| < tij (1 ≤ i < j ≤ n) follows from the
following theorem of Lemire.

Theorem 5.2. The associate convergence radii (r1, . . . , rn) of a series ∑ aν1,...,νn zν1
1 · · · zνn

n satisfy

lim sup
ν1+···+νn→∞

[|aν1,...,νn |rν1
1 · · · rνn

n ]1/(ν1+···+νn) = 1.

The multinomial theorem implies

Ri!
n

∏
j=1

t
rij

ij

(rij)!
≤

⎛
⎝ n

∑
j=1

tij

⎞
⎠

Ri

.

and according to equations (5.3) and (5.9) we know

n

∑
i=1

Ri = 2�R�,
n

∏
i=1

n

∏
j=1

(rij)! = (R!)2,
n

∏
i=1

n

∏
j=1

t
rij

ij = (TR)2;
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hence � |A(R)|TR

R!

�2

=
∏n

i=1 |a
(i)
Ri
|2(TR)2

(R!)2 =
n

∏
i=1

⎛
⎝|a(i)Ri

|2
n

∏
j=1

t
rij

ij

(rij)!

⎞
⎠

and

� |A(R)|TR

R!

�1/�R�
=

n

∏
i=1

⎡
⎣|a(i)Ri

|2
n

∏
j=1

t
rij

ij

(rij)!

⎤
⎦

1/2�R�

=
n

∏
i=1

⎡
⎣ |a(i)Ri

|2
Ri!

Ri!
n

∏
j=1

t
rij

ij

(rij)!

⎤
⎦

1/2�R�

≤
n

∏
i=1

⎡
⎢⎣
|a(i)Ri

|2
Ri!

⎛
⎝ n

∑
j=1

tij

⎞
⎠

Ri
⎤
⎥⎦

1/2�R�

=
n

∏
i=1

⎡
⎣
�
|a(i)Ri

|2
Ri!

�1/Ri
⎛
⎝ n

∑
j=1

tij

⎞
⎠
⎤
⎦

Ri/2�R�

.

Suppose that tkk+1 < 1/σ, and the other tij’s are so small that

∑
1≤i<j≤n

tij <
1
σ

.

This then implies

lim sup
�R�→∞

n

∏
i=1

⎡
⎣
�
|a(i)Ri

|2
Ri!

�1/Ri
⎛
⎝ n

∑
j=1

tij

⎞
⎠
⎤
⎦

Ri/2�R�

≤ 1

and the power series (5.8) is convergent for |zij| < tij(1 ≤ i < j ≤ n). This shows the
convergence of the vacuum expectation value

(Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0)

in the sense of tempered ultra-hyperfunctions.
Now we consider the case of m = 0 for simplicity. In this case the growth of the two-point
function of the free field is easier to estimate. In the case of m > 0, see Proposition 8.3. Recall

D(−)
0 (x) = lim

�→+0
(2π)−2[(x0 − i�)2 − x2]−1,

|(x0 − i�)2 − x2| = |x2 − �2 − 2i�x0|.
We claim that we can find � ≥ 0 such that

|(2π)−2[(x0 − i�)2 − x2]−1| < 1/σ = 1/(2|g|),

where we used the relation (5.6). For x2 ≤ 0, |x2 − �2 − 2i�x0| ≥ |x2 − �2| ≥ |x2|+ �2, and
for x2 ≥ 0, |x2 − �2 − 2ix0| ≥ |x2 − �2 − 2i�

√
x2| = x2 + �2, and (|x2|+ �2)−1 < (2π)2/σ is

equivalent to �2 > σ/(2π)2 − |x2|. Choose a number r� >
√

σ/(2π) and define

�(x) =
�

max{r�2 − |x2|, 0}. (5.10)
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For such a choice one has

|(2π)−2[(x0 − i�(x))2 − x2]−1| < 1/σ.

Finally we fix the fundamental length for these models:

� =
√

σ/(2π) =
√

2|g|/(2π) = l/(
√

2π), (5.11)

where we used the relation g = il2 for l > 0. It is easily seen that for any �� > � there exist
�(x) such that

{(x0 + i�(x), x1, x2, x3); x ∈ R
4} ⊂ V�� .

Therefore, for any �� > � there exists R > 0 such that (in formal but suggestive notation)

Wn−1(ζ) = Wn(z) = (Φ0, ρ(z1) · · · ρ(zk)ρ(zk+1) · · · ρ(zn)Φ0)

is a well-defined holomorphic function for

Im ζk = Im (zk+1 − zj) ∈ V+ + (��, 0, 0, 0)

and
Im ζ j = Im (zj+1 − zj) ∈ V+ + (R, 0, 0, 0), (j �= k). (5.12)

This implies that Wn satisfies the condition (i) of the axiom (R6). That is, the mapping

T (T(R4n)) � f → W( f ) =
∫

∏n−1
i=0 Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1

is continuous and can be extended continuously to

T (T(L��
k )) � f → W( f ) =

∫

∏n−1
i=0 Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1,

where, with �(x) according to (5.10) and R sufficiently large,

Γk = {(x0 + i�(x), x1, x2, x3); x ∈ R
4}, Γj = {(x0 + iR, x1, x2, x3); x ∈ R

4}

and g(ζ) = f (ζ0, ζ0 + ζ1, . . . , ζ0 + · · ·+ ζn−1). Now consider the formula

∏
1≤i<j≤n

(ti,j)
ri,j = (tk,k+1)

rk,k+1 ∏
1≤i<j≤n, i �=k, j �=k+1

(ti,j)
ri,j

× ∏
1≤i<k

(ti,k)
ri,k ∏

k+1<j≤n
(tk,j)

rk,j

× ∏
1≤i<k

(ti,k+1)
ri,k+1 ∏

k+1<j≤n
(tk+1,j)

rk+1,j .

The transposition of xk and xk+1 causes the transposition of (tk,k+1)
rk,k+1 and (tk+1,k)

rk+1,k in
the first line, and the transposition of the second line and the third line. If xk and xk+1 are
space-like separated, then tk,k+1 = tk+1,k. The function

Wk
n−1(ζ) = (Φ0, ρ(z1) · · · ρ(zk+1)ρ(zk) · · · ρ(zn)Φ0)
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is also holomorphic in a domain defined by (5.12) and

−Im ζk ∈ V+ + (��, 0, 0, 0).

Moreover, if ζk lies in R
4\V�� , the functions Wn−1(ζ) and Wk

n−1(ζ) are well-defined and
coincide. Thus we have

(Wn ◦ cn
k )( f ) =

∫

∏n−1
i=0 Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1 −
∫

−Γk ∏i �=k Γi

Wk
n−1(ζ)g(ζ)dζ0 · · · dζn−1

=
∫

Γ��
k ∏i �=k Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1 −
∫

−Γ��
k ∏i �=k Γi

Wk
n−1(ζ)g(ζ)dζ0 · · · dζn−1,

where
Γ�

k = {(x0 + i�(x), x1, x2, x3); x ∈ R
4 ∩ V�}

and we used the fact that Wn−1(ζ) and Wk
n−1(ζ) coincides for ζk ∈ R

4\V�� . The above formula
shows that the functional Wn ◦ cn

k belongs to T (T(W��
k ))� for any �� > � which shows condition

(ii) of axiom (R6). We can show that Wn’s satisfy the axioms (R1), (R3), (R4) and (R5) in a

similar way as [Brüning & Nagamachi (2001)] where it is shown that if the coefficients {a(i)n }
satisfy limn→∞[|a(i)n |2/n!]1/n = 0 then the series (5.1) define hyperfunction quantum fields.
There, a Wick polynomial ρN(x) is introduced as a truncation of ρ(x),

ρN(x) =
N

∑
n=0

gn : φ(x)2n :
n!

.

Then the Wightman functions WN
n (x) = (Φ0, ρN(x1) · · · ρN(xn)Φ0) for ρN(x) satisfy all the

standard Wightman axioms, and they converge weakly to Wn(x) = (Φ0, ρ(x1) · · · ρ(xn)Φ0) as
N → ∞ in the sense of tempered ultra-hyperfunctions. Thus they satisfy the above axioms.
The proof of the spectral condition (R2) is easier than in the case of hyperfunction quantum
field theory because W̃N

n−1(q) and W̃n−1(q) are distributions, and W̃N
n−1(q) converge weakly

to W̃n−1(q) as N → ∞ in the sense of distributions. Since the limit in the sense of distributions
preserves the support, (R2) is valid for ρ(x). Accordingly we formulate the main result of the
section.

Theorem 5.3 (Existence of fields with fundamental length). For a free field φ of mass m ≥ 0 the
Wick power series (5.1) (or more specifically (5.5)) define ultra-hyperfunction quantum fields with a
fundamental length � given by equations (5.4) and (5.11).

Remark 5.4. We explained this only in the case of m = 0, but the above theorem is valid for
m ≥ 0. For details we have to refer to [Brüning & Nagamachi (2008)].

For the explicit form of (Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0), we have the following proposition.

Proposition 5.5. Abbreviate
ρ(j)(xj) =: e−rj il2φ(xj)

2
:

with rj = ±1. Then the vacuum expectation values of these fields are given by

(Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0) = (det A)−1/2, (5.13)

203Solution of a Linearized Model of Heisenberg’s Fundamental Equation



20 Will-be-set-by-IN-TECH

where A is the n × n symmetric matrix whose entries aj,k are given by

aj,k = ak,j = 2hrj hrk l2D(−)
m (xj − xk)

for h±1 = e±iπ/4, j < k and aj,j = 1.

Proof. The proof is given in [Brüning & Nagamachi (2008)].

6. Proof of equation 2.2

In order to prove statement B) we need some further properties of Wick products. Thus we
begin by recalling some basic facts about Wick products of free fields which are then used to
derive this statement.

Let H be the Hilbert space defined by

H = ⊕∞
n=0Hn.

Here, Hn is the set of symmetric square-integrable functions on the direct product of the
momentum space hyperboloids

ξ2
k = m2, ξ0

k > 0, k = 1, . . . , n (6.1)

with respect to the Lorentz invariant measure
n

∏
k=1

dΩm(ξk), given by

dΩm(ξ) =
dξ1dξ2dξ3

√
∑3

k=1(ξ
k)2 + m2

.

In the fundamental paper [Wightman & Gårding (1964)], we find the following quite general
formula (3.44) for the definition of Wick products of a free field φ of mass m as operators in H:
For f ∈ S(R4) and Φ ∈ H one has:

(: Dα(1)
φDα(2)

φ · · · Dα(l)
φ : ( f )Φ)(n)(ξ1, . . . , ξn) (3.44)

=
πl/2

(2π)2(l−1)

l

∑
j=0

[
(n − l + 2j)!

n!

]1/2 ∫
· · ·

∫ (
j

∏
k=1

dΩm(ηk)

)
×

∑
1≤k1<k2<...<kl−j≤n

(j!)−1 ∑
P

P
(
(−iη1)

α(1) · · · (−iηj)
α(j)

(iξk1
)α(j+1) · · ·

· · · (iξkl−j
)α(l)

f̃

(
j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

))
Φ(n−l+2j)(η1, . . . , ηj, ξ1, . . . , ξ̂k1

, . . . , ξ̂kl−j
, . . . , ξn),
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where in the summation
l

∑
j=0

, only those terms are to be retained for which n − l + 2j ≥ 0,

and the sum ∑
P

is over all permutation P of the variables η1, . . . , ηj, (−ξk1
), . . . , (−ξkl−j

). We

reconsider this formula in the sense of operator-valued ultra-hyperfunctions. Let |β| = 1 and
|α(1)| = |α(2)| = . . . = |α(l)| = 0. Then we have from (3.44)

(: φl : (−Dβ f )Φ)(n)(ξ1, . . . , ξn) =
πl/2

(2π)2(l−1)

l

∑
j=0

�
(n − l + 2j)!

n!

�1/2 �
· · ·

� �
j

∏
k=1

dΩm(ηk)

�

×∑
1≤k1<k2<...<kl−j≤n

(j!)−1 ∑
P

P

⎛
⎝i

�
j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

�β

f̃

�
j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

�⎞
⎠×

×Φ(n−l+2j)(η1, . . . , ηj, ξ1, . . . , ξ̂k1
, . . . , ξ̂kl−j

, . . . , ξn).

=
πl/2

(2π)2(l−1)

l

∑
j=0

�
(n − l + 2j)!

n!

�1/2 �
· · ·

� �
j

∏
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dΩm(ηk)

�
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(j!)−1 ∑
P

P

�
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�
j
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ξkr

��
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∑
P
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P

P
�
−ξkr

�
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∑
P

P
�
(ηi)

β
�
= ∑

P
P
�
(−ξkr )

β
�

and therefore

∑
P

P

⎛
⎝i

�
j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

�β

f̃

�
j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

�⎞
⎠ = ∑

P
P

�
l(iη1)

β f̃

�
j
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r=1

ηr −
l−j

∑
r=1

ξkr

��
.

On the other hand, we also have from (3.44), for |α(1)| = 1, and |α(2)| = . . . = |α(l)| = 0

(: (Dα(1)
φ)φl−1 : ( f )Φ)(n)(ξ1, . . . , ξn)

=
πl/2

(2π)2(l−1)

l

∑
j=0

�
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n!

�1/2 �
· · ·

� �
j

∏
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dΩm(ηk)

�

×∑
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(j!)−1 ∑
P

P

�
(iη1)
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�
j
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ηr −
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∑
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ξkr

��

205Solution of a Linearized Model of Heisenberg’s Fundamental Equation



22 Will-be-set-by-IN-TECH

×Φ(n−l+2j)(η1, . . . , ηj, ξ1, . . . , ξ̂k1
, . . . , ξ̂kl−j

, . . . , ξn).

This shows that
(: φl : (−Dα(1)

f )Φ)(n) = l(: (Dα(1)
φ)φl−1 : ( f )Φ)(n), (6.2)

that is,
Dα(1)

: φ(x)l := l : (Dα(1)
φ(x))φl−1(x) : . (6.3)

Let D0 be the set generated by the vectors of the form

ρ(1)( f1) · · · ρ(n)( fn)Φ0, fk ∈ T (T(R4)),

where ρ(k)(x) is one of φ(x), ρ(x) and ρ∗(x), and Φ ∈ D0. Then it follows from the weak
conveargence of

ρ(−Dα(1)
f )Φ =: eigφ2

: (−Dα(1)
f )Φ =

∞

∑
l=0

(ig)l

l!
: φ2l : (−Dα(1)

f )Φ

which we have seen in the previous section that the above series is also strongly convergent,
and by (6.2)

: φ2l : (−Dα(1)
f )Φ = l : (Dα(1)

φ)φl−1 : ( f )Φ.

This shows that

∞

∑
l=0

(ig)l

l!
: φ2l : (−Dα(1)

f )Φ =
∞

∑
l=1

(ig)l

(l − 1)!
2 : (Dα(1)

φ)φφ2(l−1) : ( f )Φ

=
∞

∑
l=0

2(ig)
(ig)l

l!
: (Dα(1)

φ)φφ2l : ( f )Φ.

We write the last expression as

= 2(ig) : (Dα(1)
φ)φ

∞

∑
l=0

(ig)l

l!
φ2l : ( f )Φ = 2ig : (Dα(1)

φ)φρ : ( f )Φ.

That is, the formal expression (which is difficult to give a direct meaning)

2ig : (Dα(1)
φ(x))φ(x)(: eigφ(x)2

:) : Φ = 2ig : (Dα(1)
φ(x))φ(x)

∞

∑
l=0

(ig)l

l!
: φ2l(x) :: Φ

should be understood to be

∞

∑
l=0

2ig : (Dα(1)
φ(x))φ(x)

(ig)l

l!
φ2l(x) : Φ =

∞

∑
l=1

2 : (Dα(1)
φ(x))

(ig)l

(l − 1)!
φ2l−1(x) : Φ.

Then by (6.3), the above expression equals

∞

∑
l=1

(ig)l

l!
Dα(1)

: φ2l(x) : Φ,
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and this is equal to

Dα(1)
∞

∑
l=1

(ig)l

l!
: φ2l(x) : Φ = Dα(1)

ρ(x)Φ

in the sense of generalized functions. In the above understanding, we have

Dα(1)
ρ(x)Φ = 2ig : (Dα(1)

φ(x))φ(x)ρ(x) : Φ, (6.4)

that is, if the Wick product
: (Dα(1)

φ(x))φ(x)ρ(x) :

is defined by the Wick power series

∞

∑
l=0

2ig : (Dα(1)
φ(x))φ(x)

(ig)l

l!
φ2l(x) :,

then (6.4) holds and (2.2) follows.

7. Multiplier

As stated at the end of Section 5, {H, Φ0, U(a, Λ), φ(x), ρ(x), ρ∗(x)} satisfies the axioms of
UHFQFT (= ultrahyperfunction quantum field theory). Let ρ(κ)(x) = ρ(x) and ρ(κ̄)(x) =

ρ∗(x). Then, as we learned in Section 4.2, the vector-valued function ρ(λ1)(z1) · · · ρ(λn)(zn)Φ0
is holomorphic in

{(z1, . . . , zn) ∈ C
4n; Im z1 ∈ V+ + (�/2,0), Im (zj+1 − zj) ∈ V+ + (�j,0)}

for some �j > � > 0 (j = 1, . . . , n − 1), where ρ(λ)(x) is one of ρ(κ)(x), ρ(κ̄)(x) and φ(x). Let

ψ
(κ)
0,α (x) = ψ0,α(x) and ψ

(κ̄)
0,ᾱ (x) = ψ̄0,ᾱ(x) be free Dirac fields of mass M. Then the system

{K, Ψ0, V(a, Λ), ψ
(κ)
0,α (x), ψ

(κ̄)
0,ᾱ (x)}

satisfies the axioms of standard quantum field theory in terms of tempered distributions (and

consequently, that of UHFQFT), and therefore ψ
(λ1)
0,β1

(z1) · · ·ψ
(λn)
0,βn

(zn)Ψ0 is holomorphic in

{(z1, . . . , zn) ∈ C
4n; Im z1 ∈ V+, Im (zj − zj−1) ∈ V+},

where λ = κ, β = α or λ = κ̄, β = ᾱ. Therefore, ρ(z)Φ for Φ = ρ(λ2)( f2) · · · ρ(λn)( fn)Φ0,
f j ∈ T (T(R4)) is holomorphic in

{z ∈ C
4; Im z ∈ V+ + (�/2,0)}

and ψ0,α1 (z)Ψ for Ψ = ψ
(λ2)
0,β2

(g2) · · ·ψ
(λn)
0,βn

(gn)Ψ0, gj ∈ S(R4) is holomorphic there too.
The composite system

{H ⊗K, Φ0 ⊗ Ψ0, U(a, Λ)⊗ V(a, Λ), φ(x)⊗ IK , ρ(x)⊗ IK ,

ρ∗(x)⊗ IK , IH ⊗ ψ0,α(y), IH ⊗ ψ̄0,ᾱ(y)}
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is the tensor product of two systems and thus satisfies all the axioms of UHFQFT. Although
the tensor product is well-defined, the pointwise product is not necessarily well-defined for
generalized (vector-valued) functions. In the category of distributions, the following theorem
is well-known:

Theorem 7.1 (Theorem 8.2.10 of [Hörmander (1983)]). If u, v ∈ D�(X) then the product uv can
be defined as the pullback of the tensor product u ⊗ v by the diagonal map δ : X → X × X unless
(x, ξ) ∈ WF(u) and (x,−ξ) ∈ WF(v).

In our case, the condition that ρ(z)Φ and ψ0,α1 (z)Ψ have the common domain of holomorphy,

{z ∈ C
4; Im z ∈ V+ + (�/2,0)},

which corresponds to the condition of the wave front sets WF(u) and WF(v) of distributions,
implies that the product (ρψ0,α)( f ) is well-defined by the formula

(ρψ0,α)( f )(Φ ⊗ Ψ) =
∫

ΓN

f (z)ρ(z)Φ ⊗ ψ0,α(z)Ψdz, ΓN = {z ∈ C
4; z = x + i(N,0)}

for suitable N > 0. Thus the field ψ0(x) is a multiplier of the field ρ(x). Similarly one can
show that ∂

∂xμ ψ0,α is a multiplier for ρ(x) and then we calculate

(
∂

∂xμ (ρψ0,α))( f )Φ ⊗ Ψ = (ρψ0,α)(−
∂

∂xμ f )Φ ⊗ Ψ =
∫

ΓN

(− ∂

∂xμ f (z))ρ(z)Φ ⊗ ψ0,α(z)Ψdz

=
∫

ΓN

f (z){ρ(z)Φ ⊗ ∂

∂xμ ψ0,α(z)Ψ +
∂

∂xμ ρ(z)Φ ⊗ ψ0,α(z)Ψ}dz

= (ρ
∂

∂xμ ψ0,α)( f )Φ ⊗ Ψ + ((
∂

∂xμ ρ)ψ0,α)( f )Φ ⊗ Ψ.

This gives

∂

∂xμ (ρ(x)ψ0,α(x))(Φ ⊗ Ψ) = ρ(x)
∂

∂xμ ψ0,α(x)Φ ⊗ Ψ + (
∂

∂xμ ρ(x))ψ0,α(x)Φ ⊗ Ψ.

Let ψ(x) = ρ(x)ψ0(x) and ψ̄(x) = ρ∗(x)ψ̄0(x). We can easily see that the fields
ψ(x), ψ̄(x), φ(x) satisfy the axioms of UHFQFT except for the condition of extended causality,
which is proven in the next section. In fact, W.I - W.V follow from those of the systems

{H, Φ0, U(a, Λ), φ(x), ρ(x), ρ∗(x)} and {K, Ψ0, V(a, Λ), ψ
(κ)
0,α (x), ψ

(κ̄)
0,ᾱ (x)} (for W.V the relation

(4.1) is used). For W.VI, we have only to restrict the Hilbert space H ⊗ K to the subspace
generated by

φ
(κ1)
j1

( f1) · · · φ
(κn)
jn

( fn)Φ0 ⊗ Ψ0, f j ∈ T (T(R4)) (n = 0, 1, . . .),

where φ
(κ)
j (x) is ψα(x) = (ρ(x)⊗ IK) · (IH ⊗ ψ0,α(x)) = ρ(x)⊗ ψ0,α(x) or ψ̄ᾱ(x) = (ρ∗(x)⊗

IK) · (IH ⊗ ψ̄0,ᾱ(x)) = ρ∗(x)⊗ ψ̄0,ᾱ(x) or φ(x)⊗ IK .
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8. Fundamental length quantum fields

In this section we are going to prove the condition of extended causality (the axiom W.VI).
In a first step we prove that Axiom W.VI is equivalent to a condition R6 for the Wightman
functionals. Then we proceed to verify condition R6.

Proposition 8.1. Assuming the validity of the other axioms, the axiom of extended causality WVI is
equivalent to the following condition

R6 For all n = 2, 3, . . . and all i = 1, . . . , n − 1 denote

L�
i = {x = (x1, . . . , xn) ∈ R

4n; |xi − xi+1|1 < �},

W�
i = {x = (z1, . . . , zn) ∈ C

4n; zi − zi+1 ∈ V�},

V� = {z ∈ C
4; ∃ x ∈ V, |Re z − x| < �, |Im z|1 < �}. (8.1)

Then, for any �� > �,
a) the functional

T (T(R4n)) � f → W (κ1...κn)
μ1...μn ( f ) ∈ C

is extended continuously to T (T(L��
i )), and

b) the functional on T (T(R4n))

f → W (κ1...κjκj+1...κn)
μ1...μjμj+1...μn ( f ) +W (κ1...κj+1κj+ ...κn)

μ1...μj+1μj ...μn ( f ) ∈ C

is extended continuously to T (W��
i ).

Proof. Since the spinor/tensor indices do not play a role in this statement the proof given
in [Brüning & Nagamachi (2004)] for the scalar case applies (see Propositions 4.3, 4.4 and
Theorem 5.1 of [Brüning & Nagamachi (2004)]).

Proposition 8.2. The Wightman functions W r
α as given in [Nagamachi & Brüning (2008)] or in

formula (8.6) below satisfy condition R6.

Proof. The determinant det A of (5.13) can be expressed as

det A = 1 + Pn(aj,k) (8.2)

where Pn(aj,k) is the sum of homogeneous polynomials of degrees m = 2, · · · , n in the entries
aj,k, 1 ≤ j < k ≤ n with integer coefficients.

Introduce
Qn,j(ai,k) = ∑

(i,k,...,l) �=(1,2,...,n)
(i,k,...,l) �=(1,2,...,j+1,j,...,n)

sgn (i, k, . . . , l)a1,ja2,k · · · an,l (8.3)

and denote by σ(j + 1, j) the permutation (1, . . . , j − 1, j, j + 1, . . . , n) −→ (1, . . . , j − 1, j +
1, j, . . . , n). Then we have
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Pn(ai,k) = sgn (σ(j + 1, j))a1,1a2,2 · · · aj−1,j−1aj,j+1aj+1,jaj+1,j+1 · · · an,n

+ Qn,j(ai,k) = −a2
j,j+1 + Qn,j(ai,k) = ±4l2D(−)

m (zj − zj+1)
2 + Qn,j(ai,k).

Hence we can rewrite (8.2) as

det A = 1 + Pn(ai,k) = 1 ± 4l4D(−)
m (zj − zj+1)

2 + Qn,j(ai,k).

It is clear from (8.2), (8.3) and the details provided about the polynomial Pn that each term of

Qn,j(ai,k) contains products of 2-points functions D(−)
m at arguments different from zj − zj+1.

Assume
y0

j+1 − y0
j > � = l/(

√
2π). (8.4)

Then we have |4l4D(−)
m (zj − zj+1)

2| < 1 by the estimate

|D(−)
m (x0 − i�,x)| ≤ (2π�)−2 for all x ∈ R

4. (8.5)

If we choose the arguments y0
k − y0

i (i < k) in these 2-points functions sufficiently large,
Qn,j(ai,k) becomes very small; and for these points zj the determinant (det A(z))−1/2

is holomorphic and the function (det A(z))−1/2W r
0,α(z1, . . . , zn) defines a functional in

T (T(L��
j ))

� for any �� > � by the formula

W r
α( f ) =

∫

∏n
j=1 Γj

(det A(z))−1/2W r
0,α(z1, . . . , zn) f (z)dz (8.6)

for all f ∈ T (T(L��
j )), where Γj = R

4 + i(y0
j , 0, 0, 0) and

W r
0,α(z1, . . . , zn) = (Ψ0, ψ

(r1)
0,α1

(z1) · · ·ψ
(rn)
0,αn

(zn)Ψ0)

is the Wightman function of free Dirac field. In fact, for �� > �, we choose �� > y0
j+1 − y0

j > �

and the other y0
k − y0

i sufficiently large so that (det A(z))−1/2 is a bounded function of x. Then
the corresponding integration path ∏n

j=1 Γj of (8.6) is contained in

T(L��
j ) = {z = x + iy ∈ C

4n; |yj − yj+1|1 < ��},

where |y|1 = |y0|+ |y|. We conclude that the functional defined by

(det A(z))−1/2W r
0,α(z1, . . . , zn)

satisfies condition a) of R6.

The transposition of zj and zj+1 causes the change of aj,j+1 = aj+1,j:

D(−)
m (zj − zj+1) → D(−)

m (zj+1 − zj)
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+ Qn,j(ai,k) = −a2
j,j+1 + Qn,j(ai,k) = ±4l2D(−)

m (zj − zj+1)
2 + Qn,j(ai,k).

Hence we can rewrite (8.2) as

det A = 1 + Pn(ai,k) = 1 ± 4l4D(−)
m (zj − zj+1)

2 + Qn,j(ai,k).

It is clear from (8.2), (8.3) and the details provided about the polynomial Pn that each term of

Qn,j(ai,k) contains products of 2-points functions D(−)
m at arguments different from zj − zj+1.

Assume
y0

j+1 − y0
j > � = l/(

√
2π). (8.4)

Then we have |4l4D(−)
m (zj − zj+1)

2| < 1 by the estimate

|D(−)
m (x0 − i�,x)| ≤ (2π�)−2 for all x ∈ R

4. (8.5)

If we choose the arguments y0
k − y0

i (i < k) in these 2-points functions sufficiently large,
Qn,j(ai,k) becomes very small; and for these points zj the determinant (det A(z))−1/2

is holomorphic and the function (det A(z))−1/2W r
0,α(z1, . . . , zn) defines a functional in

T (T(L��
j ))

� for any �� > � by the formula

W r
α( f ) =

∫

∏n
j=1 Γj

(det A(z))−1/2W r
0,α(z1, . . . , zn) f (z)dz (8.6)

for all f ∈ T (T(L��
j )), where Γj = R

4 + i(y0
j , 0, 0, 0) and

W r
0,α(z1, . . . , zn) = (Ψ0, ψ

(r1)
0,α1

(z1) · · ·ψ
(rn)
0,αn

(zn)Ψ0)

is the Wightman function of free Dirac field. In fact, for �� > �, we choose �� > y0
j+1 − y0

j > �

and the other y0
k − y0

i sufficiently large so that (det A(z))−1/2 is a bounded function of x. Then
the corresponding integration path ∏n

j=1 Γj of (8.6) is contained in

T(L��
j ) = {z = x + iy ∈ C

4n; |yj − yj+1|1 < ��},

where |y|1 = |y0|+ |y|. We conclude that the functional defined by

(det A(z))−1/2W r
0,α(z1, . . . , zn)

satisfies condition a) of R6.

The transposition of zj and zj+1 causes the change of aj,j+1 = aj+1,j:

D(−)
m (zj − zj+1) → D(−)

m (zj+1 − zj)
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and for an index k with j < k �= j + 1 the change

aj,k = ak,j = D(−)
m (zj − zk) → D(−)

m (zj+1 − zk) = aj+1,k = ak,j+1,

aj+1,k = ak,j+1 = D(−)
m (zj+1 − zk) → D(−)

m (zj − zk) = aj,k = ak,j,

results while for an index k with j > k �= j + 1 the change is

aj,k = ak,j = D(−)
m (zk − zj) → D(−)

m (zk − zj+1) = aj+1,k = ak,j+1,

aj+1,k = ak,j+1 = D(−)
m (zk − zj+1) → D(−)

m (zk − zj) = aj,k = ak,j.

We consider the matrix B = (bi,j) obtained from A by the change of j-th and (j + 1)-th rows
and j-th and (j + 1)-th columns. Then we have det A = det B. Next we consider the matrix
C = (cj,k) obtained from B by changing only bj,j+1 = bj+1,j = aj,j+1 = aj+1,j, i.e., cj,j+1 =

cj+1,j = D(−)
m (zj+1 − zj). If xj and xj+1 are space-like separated, then D(−)

m (xj − xj+1) is

analytic (space-like points x are Jost points of D(−)
m (x)) and D(−)

m (xj − xj+1) = D(−)
m (xj+1 −

xj). Therefore for space-like separated xj, xj+1 (y0
j − y0

j+1 = 0) and the other y0
k − y0

i sufficiently
large, we have det A = det C. Note that W r

0,α(z1, . . . , zn) is also expressed by the sum of
the products of the two-point functions of the free Dirac field as in the scalar case, and for
space-like separated xj, xj+1 (y0

j − y0
j+1 = 0) and the other y0

k − y0
i positive, one has

W r
0,α(z1, . . . , xj, xj+1, . . . , zn) = −W r

0,α(z1, . . . , xj+1, xj, . . . , zn).

In order to proceed, we need some estimate for D(−)
m (xj − xj+1).

Proposition 8.3 (Corollary 2.4 of [Brüning & Nagamachi (2008)]). Denote by dist (x, V̄) the
distance between x and the closed light cone V̄, and for � > 0,

V� = {x ∈ R
4; dist (x, V) < �}.

Define ��(x) by ��(x) = � if dist (x, V̄) < �/
√

2, ��(x) =
√

2�2 − 2dist (x, V̄)2 if �/
√

2 ≤
dist (x, V̄) < � and ��(x) = 0 if dist (x, V̄) ≥ �. Then 0 ≤ ��(x) ≤ � and supp ��(x) ⊂ V̄�. Let
� = l/(

√
2π) and assume ml < 2. Then, if ��� > �, the estimate

2l2|D(−)
m (x0 − i���� (x),x)| < 1

holds.

For any �� > �, we choose � < ��� < ��. Let �(x) = ���� (x) and aj,j+1 = D(−)
m (xj − xj+1 + i�(xj −

xj+1)) and for other ai,k, y0
k − y0

i sufficiently large. Then (det A(x))−1/2 and (det C(x))−1/2

are well-defined continuous functions of x and (det A(x))−1/2 = (det C(x))−1/2 if xj − xj+1 ∈
R

4\V�� . Denote
W r

α(z1, . . . , zn) = (det A(z))−1/2W r
0,α(z1, . . . , zn)

and
W r,j

α (z) = W r�
α� (z�), z� = (z1, . . . , zj+1, zj, . . . , zn),
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r� = (r1, . . . , rj+1, rj, . . . ,n ), α� = (α1, . . . , αj+1, αj, . . . , αn).

Then, by deforming the path Γj × Γj+1 in Eq. (8.6) into Gj,j+1, we can write

W r
α( f ) +W r,j

α ( f ) =
∫

Gj,j+1 ∏i �=j,j+1 Γi

W r
α(z) f (z)dz +

∫

Gj+1,j ∏i �=j,j+1 Γi

W r,j
α (z) f (z)dz,

where y0
j = y0

j+1 and

Gj,j+1 = {(x0
j + iy0

j − i�(xj − xj+1),xj, x0
j+1 + iy0

j+1,xj+1); (xj, xj+1) ∈ R
2·4},

Gj+1,j = {(x0
j + iy0

j ,xj, x0
j+1 + iy0

j+1 − i�(xj+1 − xj),xj+1); (xj, xj+1) ∈ R
2·4}.

Since W r
α(z) +W r,j

α (z) = 0 for xj − xj+1 ∈ R
4\V�� ,

W r
α( f ) +W r,j

α ( f ) =
∫

G��
j,j+1 ∏i �=j,j+1 Γi

W r
α(z) f (z)dz +

∫

G��
j+1,j ∏i �=j,j+1 Γi

W r,j
α (z) f (z)dz,

where

G��
j,j+1 = {(x0

j + iy0
j − i�(xj − xj+1),xj, x0

j+1 + iy0
j+1,xj+1); (xj, xj+1) ∈ R

2·4 ∩ V�� },

G��
j+1,j = {(x0

j + iy0
j ,xj, x0

j+1 + iy0
j+1 − i�(xj+1 − xj),xj+1); (xj, xj+1) ∈ R

2·4 ∩ V�� }.

Since G��
j,j+1 ∏i �=j,j+1 Γi, G��

j+1,j ∏i �=j,j+1 Γi ⊂ W��
j , this shows that

T (W��
j ) � f → W r

α( f ) +W r,j
α ( f ) ∈ C

is continuous and satisfies the condition b) of R6.

Remark 8.4. In our previous paper [Brüning & Nagamachi (2004)], we defined a complex
neighbourhood V�� by

V�� = {z ∈ C
4; ∃x ∈ V; |Re z − x|+ |Im z|1 < ��}. (8.7)

But we found that to treat the present model, the neighbourhood (8.1) is convenient, and by
this change of the ��-neighbourhood of V, our theory [Brüning & Nagamachi (2004)] is not
affected.

9. Conclusion

In the space of operator-valued tempered ultrahyperfunctions we have solved Heisenberg’s
linearized equation (1.2). This equation contains a parameter l which has the dimension of a
length and it has been found that this parameter l is proportional to the fundamental length
� of our recently developed relativistic quantum field theory with a fundamental length. We
found (see (5.11), (8.4) and Proposition 8.3)

� = l/(
√

2π).
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The use of tempered ultrahyperfunctions was unavoidable, at least in our solution strategy.
In this sense we conclude that Heisenberg’s linearized equation only has a solution in
the framework of relativistic quantum field theory with a fundamental length, not in the
framework of ordinary relativistic quantum field theory.
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Topological Singularity of Fermion Current in 
Abelian Gauge Theory 
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1. Introduction 
Since calculations in a quantized theory are often plagued by divergencies , we have to 
impose a regularization scheme in order to eliminate the singularity from ill-field functions 
such as the infrared-divergence problem in quantum electrodynamics[1,2]. Among these 
divergence phenomena, a type of divergence appears in product of quantum operators 
taken at the same time. The product of the local operators is often singular, which can 
destroy symmetries of conservation currents and classical equations of motions.  For 
instance, in derivation of the conservation equation for the axial vector current, the 
differential equation of motion for fermion fields can not be used to reduce fermion-photon 
vertex in quantum electrodynamics in the most straightforward way[3]. Through standard 
perturbative treatments of singularity in the operator product of fermion current, a closer 
look at the manipulations reveals some subtleties. These unavoidable divergences reflect the 
feature that the symmetry of the classical theory may be ruined in quantum theory by 
quantum anomaly. Usually, we deal with the divergence of the anomaly by examining the 
“triangle graph”, which consist of an internal fermion loop connected to two vector fields 
and to one axial vector field. These triangle graphs give rise to anomaly in orders of 
perturbation theory, which arise from momentum-space integrals. In consequence, the 
anomaly is affected by interactions of gauge bosons attached to the fermion loop[4,5]. 

From the path-integral viewpoint, the anomaly term associated with the axial-vector 
current can be understood in the path-integral formulation of quantum gauge theory as a 
consequence of the fact that the functional measure is not invariant with respect to the 
relevant local group transformations on the fields[6]. The chiral anomaly responds to local 
group transformations but vanishes for a class of space-independent transformations. One 
discovers that the anomaly has a topological character given by the index of a Dirac 
operator in a gauge background[1]. The mathematical explanation of such a anomaly is 
directly related to Atiyah-Singer index theorem. The theorem relates the number of 
chirality zero modes of Dirac operator to the topological charge of the gauge field. 
Furthermore, a number of papers have addressed the relationships among chiral 
anomalies,the geometry of the space of vector potentials and families of Dirac 
operators[7,8,9]. The authors showed that the first characteristic class of the index bundle 
for the Dirac operator is related to anomalies. In particular, in the gravitation case,the 
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Abelian and non-Abelian chiral anomalies in 2n  dimensional spacetime is determined by 
a variation of gauged effective action in differential geometric form which satisfies the 
Wess-Zumino consistency condition. Obviously, the use of the family’s index theorem in 
the study of gravitational anomalies has the advantage over using Feynman diagram 
methods, which enables us to obtain the anomalies without having to calculate Feynman 
diagrams[10]. This implies that singularity in fermion currents connects to the non-
perturbative effects of anomalies in the presences of topologically non-trivial field 
configurations. This sort of problem also implies the index of Dirac operator relates to 
quantization of the space integral of the anomaly ,and the supertrace of the kernel 
function of the square of a Dirac operator is the quantization of the topological character 
of the corresponding connection on a manifold[11]. From this point of view, it is natural 
how to find a means to distinguish the divergence of various fermion currents coupling 
with gauge field becomes extremely important. In this paper we present an exposition 
that the topological singularity of operator product of various fermion current in gauge 
theory can be described in terms of Atiyah-Segal-Singer index theorem for Dirac operator.   

2. Transformation property of fermion current  
Now we are in position to specify a transformation of operator product of fermion current in 
Abelian quantum field to determine the property of the current.  According to the form of 
fermion current coupling with gauge field ( )B x in Dirac equation, the fermion current 
coupling with gauge field is defined as 

        I x x       (1) 

where    indicates the corresponding Dirac matrix, which is also an element of Dirac 
algebra,  x and  x   is Dirac spinors. 

One easily verifies that these fermion currents possess bilinear covariant property under 
Lorentz transformation. Some of the "products of currents" itself have quantum field 
theoretical meaning, which is subject to infinitesimal change of varibles along the symmetry 
direction. To do this, in the broad sense, a set of the changing variables of matter field in 
quantum theory can be transformed as [3] 
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where the matrices    ,H h  
   are the functions composed of both Dirac matrix and field 

variables,  the group parameter    x is a real function. 

In the light of Eq,(2), the  infinitesimal local transformation of fermion fields in Abelian  
gauge theory is taken tentatively as [12] 
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configurations. This sort of problem also implies the index of Dirac operator relates to 
quantization of the space integral of the anomaly ,and the supertrace of the kernel 
function of the square of a Dirac operator is the quantization of the topological character 
of the corresponding connection on a manifold[11]. From this point of view, it is natural 
how to find a means to distinguish the divergence of various fermion currents coupling 
with gauge field becomes extremely important. In this paper we present an exposition 
that the topological singularity of operator product of various fermion current in gauge 
theory can be described in terms of Atiyah-Segal-Singer index theorem for Dirac operator.   

2. Transformation property of fermion current  
Now we are in position to specify a transformation of operator product of fermion current in 
Abelian quantum field to determine the property of the current.  According to the form of 
fermion current coupling with gauge field ( )B x in Dirac equation, the fermion current 
coupling with gauge field is defined as 

        I x x       (1) 

where    indicates the corresponding Dirac matrix, which is also an element of Dirac 
algebra,  x and  x   is Dirac spinors. 

One easily verifies that these fermion currents possess bilinear covariant property under 
Lorentz transformation. Some of the "products of currents" itself have quantum field 
theoretical meaning, which is subject to infinitesimal change of varibles along the symmetry 
direction. To do this, in the broad sense, a set of the changing variables of matter field in 
quantum theory can be transformed as [3] 
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where the matrices    ,H h  
   are the functions composed of both Dirac matrix and field 

variables,  the group parameter    x is a real function. 

In the light of Eq,(2), the  infinitesimal local transformation of fermion fields in Abelian  
gauge theory is taken tentatively as [12] 
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In fact, there is no contradiction between Eq.(2) and Eq.(3). In the case of QED, the origin of 
the Wald-Takahashi identities relative to femion currents lies in the gauge invariance of the 
generating functional of QED. We know that the generating functional   , ,Z B x    

remains the same. This is because changing variables in an integral never affects its value. In 
this sense, we can consider a gauge transformation to be more general type of field 
redefinition.This is the transfornation Eq.(2) as a guiding rule.  

Thus, to discuss the property of the fermion current, we need to choose a comparatively 
simple transformation on the fields for fermion currents. This is transformation Eq.(3), in 
which the term coupling with the spacetime derivative of    x  is not included. 

To expand the fermion current carefully, let us introduce a complete set of eigenstates n  of 

the Dirac operator    iD i igB x
     as follows  

    n n niD x x    (4) 

here real n  is the discrete eigenvalues.  This means the fermion fields can be decomposed 
in this set of eigenstates  
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where d  stands for the eigenstate space dimension. It is true that the anticommuting 
coefficients ' ',n nc c  of Dirac spins  ' x and  ' x   span a Grassmann algebra.  

Thus under the transformation Eq.(3), the fermion current Eq.(1) is changed into  
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To find the relation between the fermion current and the corresponding integral measure, 
let's construct the power function  dI   of the fermion current over  x and  x : 
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where d  denotes power of the operator function    I x , its value is equal to the dimension 
of the eigenspace of the regulation operator(see Eq.(4)). In like manner, due to the 
transformation Eq.(3), the power function     'I x  over  ' x and  ' x  can be expressed as 
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Obviously in the light of the property of the Grassmann algebra, the expression (8) implies 
that    'dI x  links with the operator product of the expansion coefficients ' ',n nc c . 

In order to  understand the meaning of the operator product composed of '
nc and '

nc   in the 
expression    'dI x  , we now recall the algebraic property of functional measure in the 
path integral formulation. Under the transformation Eq.(3), the corresponding functional 
measure  

'd   over  ' x  and  ' x  has the transformation property 
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where 'd is the functional measure over   ' x  and  ' x ,  J   is the Jacobian determinant 
of the corresponding transformation of the fermion variables, which is a key quantity for 
anomaly current. Then we see that the Jacobian of differential operator d  connects with 
the transformation of the operator function  , which is  defined as the operator product of 
the anticommuting coefficient  ,n mc c  of  x  and  x  

 n m
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c c                                               (10) 

After the transformation Eq.(3), the expression of the Grassmann operator function   is 
changed explicitly into  
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where  J   is the Jacobian determinant of the transformations Eq.(3). 

From the properties of the Grassmann algebra we find the identity 

    
1J J 
     (12) 

It shows that the Jacobian  J   corresponding to the operator product    connects with the 
inverse of the Jacobian of the corresponding transformation of the integral measure. 

Having clarified the relation between the operator product of fermion current and the 
integral measure, we therefore see that the power function of fermion current Eq.(8) can be 
rewritten as 
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This is the desired result, which is just the transformation identity of fermion current. The 
expression illustrates that the property of fermion current is presented in its functional 
Jacobian through the operator product  function  . In other words, the mathematical 
property of fermion current can be characterized by the nature of Jacobian of functional 
integral measure due to transformation of fermion field. For instance, the process of 
regularization of  Jacobian in the functional measure gives rise to the anomaly for the axial 
vector current. Its topological property of the anomaly term is described by Atiyah-Singer 
index theorem for Dirac operator. 

3. Topological property of fermion current 
From the topological viewpoint, the non-perturbative effect of the Abelian anomaly 
associated with Ward-Takahashi type's identity for axial vector current is related to the 
topological character in the presence of topologically non-trivial field configuration [14,15]. 
The topological exposition of the quantum anomaly for the current is addressed by Atiyah-
Singer index theorem in a gauge background .The Abelian anomaly term can be derived by 
using path integral formulation in Euclidean spacetime E4. Of particular interest is 
applications of the index theorem for Dirac operator, because it can be used to discuss the 
topological property of fermion current. 

First restricting ourselves to the axial-vector current case, we calculate the analytical index 
and topological index for Dirac operator. For the following discussion, think of Euclidean 
spacetime E4 as a four-dimensional space-time. The spacetime manifold E4 is compacted into 
4-dimensional sphere manifold S4. 

If E is a vector bundle  on S4, let  4 ,S E  be the space of smooth section of E . Thus In terms 
of 5 , the Dirac spin space   is decomposed into two subspace  E 

 and  E 
 , in 

which the eigenvectors of  Dirac operator  can be chosen eigenvectors of definite chirality 
with eigenvalue 1 . That is  

 0niD  ,  5
n n       (14) 
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Naturally the analytical index definition aInd D of D  to be integer is defined as [11,16,17] 

      dim dimaInd D Ker D Ker D

n n

 

 

 

 
   (15) 

where D  is the restriction of D  to  4 ,S E ,   dim Ker D  is the dimension of the 
kernel  Ker D , here n  are the numbers of zero modes of the Dirac operator. 

In the mean time, in explicitly performing the regulariaztion for anomaly function, we find a 
local expression giving the analytical index of the Dirac operator 

 

     

   

 

 

54

54

4
2

4
2

1
32

4
32

a n n
n

Ind D d x x x

d xA x

d x Trace F F

d xTrace B B


 


   

 







 



 

   









  (16) 

with ”trace” here denoting a trace only over indices labeling the various fermion species, 
which could consider as a regularization of the trace in function space. F  is the field 
strength, and    5A x   is the anomaly function. 

This formula shows that the index of D  is given in terms of the restriction to the diagonal of 
the kernel of 2D  at arbitrarily large masses, which we know by the asymptotic expansion of 
the kernel to be given by local formula in the curvature of the connection. In the above 
equation, the following identity is used 

    4F F B B 
                                           (17) 

The fact reveals the important information that the integral of the local anomaly 
function    5A x  can not change smoothly under variations in the gauge field. Since the 
anomaly function in Eq.(16) can be written as a total derivative, the space integral of the 
anomaly function depends only the behavior of  the gauge field at the boundaries. That is, 
there exists a number of singularities of the E  vector bundle on the manifold. 

 Since D  is an elliptic operator, the Atiyah-Singer local index theorem gives a formula for 
the topological index tInd D  of D  in terms of the Chern character of ChE  and the Â -genus 
of 4E [18,19] 

 a tInd D Ind D                                     (18) 

So that [11] 

    ˆ
t

M

Ind D A M Ch E                                     (19) 
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Here the more natural definition of Â -genus form with respect the Riemannian curvature R is  
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R
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                                      (20) 

and the Chern character form is  

    2
Ch E Str e                                          (21) 

Substituting this and Eq.(20) into Eq.(19) yields 
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                             (22) 

Obviously, the quantity on the right of the Eq.(22) is kown as  Chern-Pontrjagin term. 

Since the anomaly function    5A x  does not vanish in the Jacobian determinant J , we have 
the explicit identity 
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                                (23) 

The gauge group parameter    x  is independent of the topological index. 

The Abelian anomaly arisen from axial vector current is a local quantity, because it is a 
consequence of short distance singularities, which does violate the chiral symmetry. That is, 
the topological singularity of operator product of fermion current Eq.(13) is presented by 
Jacobian of the measure due to the transformation of fermion fields. 

Now we turn to calculations of anomaly function in the transformation of measure for other 
fermion currents.  Due to the Eq.(3),the anomaly function    A x  corresponding to the 
defined fermion currents Eq.(1) is given by the formula(see appendix) 

 
         

 

n n
n

A x x x

x x

 



  

 


                           (24) 

In virtue of path –integral technique, the anomaly emerging from the functional measure for 
the fermions arises from regularization of the covariant derivative acting on the fermions. 
Thus the anomaly function becomes  
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We noticed that the quantity   
2

2
Dx f x

M
  

   
 

 is a kernel function of Dirac operator, 

which is also a section of the endorphisms ( )End E  on Euclidean manifold 4E . 

In analogy to the axial-vector current case, we have a generalization of the local index 

theorem for D  which enable us to calculate the  
2

2
Dx f x

M
  

   
 

 for arbitrary    .Here 

the element    ( Dirac matrix) lies in a compact group,which is a representation of Clifford 
algebra. 

According to the local Atiyah-Segal-Singer index theorem, the existence of an asymptotic 

expansion for  
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 at M   is presented by the index   ,Ind D   of Dirac 

operator D  on the manifold as follows 
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Here the kernel function in Eq.(26) is no other than the anomaly function for Jacobian of 
functional measure. 

This is what we do. It is shown that the index theorem for the operator   2 2D Me   
associated to the square of Dirac operator D  is a statement about the relationship between 
the kernel and the topological character of the associated connection in gauge theory. 

Fortunately, the asymptotic expansion of the kernel of the operator    2 2D Me   on the right  
of the Eq.(26) can evaluated by Fujikawa’s method(see appendix) for these fermion currents. 

The computation shows that anomaly functions for many fermion currents vanish. In other 
words, there is no topological singularity for these currents. 

4. An Example of Abelian gauge theory 
As one see from the following quantum electrodynamics case, the above argument provides 
a approach to examine the topological singularity in the operator products of the fermion 
current. Let us consider an Abelian gauge field to show our argument. The Lagrangian 
density based on the minimal coupling ansatz for quantum electrodynamics is the following 
[4] 

              21 1
4 2effL x igB x x x m x F F B  

       


          (27) 

where g  and m  denote, respectively, the charge and mass of the electron. In this case, the 
gauge field is just the photon field  B x ,   is the gauge constant. 
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Then the generating functional of QED is given by  

    
4

, , , , i d x L B JZ J D B e


  
    

        (28) 

Noted that the path integral method allows us to generalize WT identies relative to fermion 
currents, because the functional  , ,Z B    is gauge invariant under gauge tranformations. 
This means that the fact holds irrespecttive whether these re-naming field variables take the 
form of symmetry of action, or not. Therefore, this implicitly expect that a anomaly might 
take place at the quantum measure, which is the failure of a class symmetry to survive the 
process of quantization and regularization. Normally, under gauge transformation, the 
determinant in the measure transformation is descarded because it appears to be a constant. 
However, closer analysis of this term shows that it is actually divergent and here requires 
regularization. 

Following Fujikawa's prescription[6,20], the regularization procedure for the variation of the 
integral measure can provide access to a wider class of such anomaly objects. In order to 
analyze the topology property of various fermion current, the  anomaly functions    A x  
corresponding to Dirac matrix    in the transformation Eq.(3) can be written as the limit of 
a manifestly convergent integral[14] 
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Thus the Jacobian  J   of measure can be put in the form 

  
               4 4i d xA x x i d xA x xJ e e
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The corresponding Jacobian  J   is evaluated below for various fermion currents 
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iii.      ; 

       0A x    and    1J   .                                           (34) 

 
iv.  5
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v.  5
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vi.     ;     0A x      

   1J     (37) 

 
vii.  5

5
                5 5A x A x    

  5 1J                                                              (38) 

The above computation shows that the anomaly function in Jacobian vanishes for many 
fermion currents,(in other words, they cancel each other in regularization).  

For simplicity, we take a two-dimensional eigenspace ( 2)d   of the regulation operator 
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e


  as an following example  to illustrate in detail the link between the Jacobian of the 
integral measure and the topological property of the fermion current. In the path-integral 
formulation of gauge theory, the functional measure over  ' x  and  ' x . can be read off 
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and operator product ' in Eq.(9) is given by       
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with the Grassmann expansion coefficients of  ' x  and  ' x  
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The corresponding expansion of the fermion current can be performed in the eigenspace 
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In accordance with Eq.(11), the square of the fermion current    'I x  is written out 
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Further by taking the property of Grassmann algebra into account, the calculus leads 
straightforwardly to the following result 
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From this example, we see clearly that the topological property of products of the fermion 
currents    2I x  (    . .i e I x ) relates with the corresponding Jacobian factor. Combining 
the evaluated Jacobians of various fermion currents Eq.（32~38） and the Atiyah-Singer 
local index theorem Eq.(26), we find that only axial-vector current        5 5I x x i x      
has topological singularity, which is coincident with previous analysis made by 
perturbational methods. 

5. Conclusion 
We have presented that the topological singularity  in operator product of various fermion  
currents coupling to a gauge field is characterized by the topological properties of anomaly 
function in a quantum gauge background in terms of Atiyah-Singer index theorem for Dirac 
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operator. The anomaly functions corresponding to various fermion currents have been 
evaluated through the calculus of the kernel of Dirac operator.  

As the above illustration, the topological singularity of various fermion currents coupling 
gauge field is indeed understand on  Atiyah-Singer index theorem in quantum field theory 
as a consequence of the fact that the Jacobian of integration measure possesses anomaly 
terms. That is, the kernel of the Dirac operator may have short distance singularities. 

No doubt, the singularity of the fermion current has to be considered when dealing with 
reduction of the interaction vertex by using the Dirac differential equation of motion in the 
Dyson-schwinger equation. Also in the non-abelian gauge case, the relation of anommalies 
in conservation o general axial currents to the indes of the Dirac operator in a gauge 
background need to discussed further. In addition, the property of quantum anomaly 
associated with Ward-Takahashi relation plays an important role in the nonperturbative 
study of gauge theories, such as the dynamical chiral symmetry breaking. 

6. Appendix: Regularization of measure for anomaly 

a. regularization prescription for low-rank tensor current (      x x   ) 

Following Fujikawa’s method, we work out a calculation of Jacobian of anomaly function in 
the transformation of measure due to the Eq.(3). The change in functional measure is in the 
form 

   ' 11' ' 'det detn n nm nm m m
n n m m

d d dc dc f f dc dc 
             (A1) 

with 

         

 4 i x
nm n mf d x x e x


 

   .                                         (A2) 

The corresponding Jacobian factor is given explicitly by  

  
       4 0 01'det i d x A x x

nmf e


      ,                                       (A3) 

where anomaly function     A x  denotes the trace of Dirac matrix     in the function 
space above     

          n n
n

A x x x    .                                           (A4) 

Based on the use of path integrals in Euclidean space, regularization of the anomaly function 

is achieved by inserting the convergent factor
2

2
2

2

D
MDf e

M

 
   
 

 and taking the limit as 

M  . To do this the above anomaly function can be written as the limit of a manifestly 
convergent integral  
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In terms of the trace over Dirac indices, when we expand the regularization operator 
 2 2( /f D M  in D , the terms with less than four   gamma matrices evaluate to zero. In the 

light of the limit over M (mass), terms with more than four D s will also drop out. 

In the last step, we have used the operator identities 
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In the case of   5    for the chiral anomaly, the    5A x  becomes into 
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It is just the well-known result. 

b. regularization description for high rank tensor current  

In a similar way, we discuss the regularization of the anomaly faction    A x   for high rank 
Dirac matrix transformation.The expression of the anomaly function    A x  for the case of 
Eq.(37) can be put in the regulating form 
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In terms of the symmetry of metric and antisymmetry of 4-dimensional field strength tensor, 
we expand the anomaly function and find that it equals zero. So that, the Jacobian becomes 
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By the parallel procedure, for the case of the transformation Eq.(38), the axial vector 
anomaly function  is given by 
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The corresponding Jacobian is    

  5 1J                                                (A12) 

In the above calculation, we have employed the following operator identities 
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Obviously the results in Eq.(A10) and Eq.(A12) is perfectly consistent with result of 
derivation of transverse vector and axial vector anomalies in four-dimensional  1U  gauge 
theory using perturbative methods[21,22]. 

Now we have completed our computation in Euclidean space, it is necessary to transform 
the conclusions back into Minkowski space. According to the Wick substitutions,then, there 
is no change in the form of the final formula. 
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