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Preface 

Rapid development of optoelectronic devices and laser techniques poses an important 
task of creating and 

studying, from one side, the structures capable of effectively converting, modulating, 
and recording optical data in a wide range of radiation energy densities and 
frequencies, from another side, the new schemes and approaches capable to activate and 
simulate the modern features. It is well known that nonlinear optical phenomena and 
nonlinear optical materials have the promising place to resolve these complicated 
technical tasks.   

To analyze the nonlinear optical processes one should take into account that when the 
electric field of the laser wave is less than the intra-atomic electric field correlated with 
the electron charge and with the Bohr radius, we should estimate the linear effect. But, 
when the electric field of the laser wave is larger than the intra-atomic electric field, we 
should draw the attention on the nonlinear optical features. Using this aspect, the 
values of optical susceptibility play important role in nonlinear optical effect. Really, 
the most important optical characteristic of the all inorganic or organic materials with 
different symmetry is the induced dipole, whose can be expressed through dipole 
polarizabilities (n). These are in turn related by the proportional dependence to the 
nonlinear susceptibility (n) and to the local volume  of the materials (media). Thus, 
laser-matter interaction provokes the change in polarization of media and predicts the 
change in important properties, such as dynamic, photorefractive and 
photoconductive ones. 

The advanced idea, approach, and information described in this book will be fruitful for 
the readers to find a sustainable solution in a fundamental study and in the industry 
approach. The book can be useful for the students, post-graduate students, engineers, 
researchers and technical officers of optoelectronic universities and companies.  

N. V. Kamanina, Dr.Sci., PhD,
 Head of the Lab for “Photophysics of media with nanoobjects”, 

 Vavilov State Optical Institute, 
Saint-Petersburg, 

 Russia 
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Overview of Nonlinear Optics 
Elsa Garmire 

Dartmouth College, 
USA 

1. Introduction 
The invention of the laser provided enough light intensity that nonlinear optics (NLO) could 
be observed for the first time, almost exactly one year after the first ruby laser –  second 
harmonic generation, observed fifty years ago (Franken, 1961), with a theoretical 
examination of interactions between light waves in a nonlinear dielectric following very 
soon thereafter (Armstrong, 1962). The field has grown so enormously that it is impossible 
to review all topics. Theoretical approaches have bifurcated into macroscopic and 
microscopic viewpoints. Both have validity and usefulness, but this review will focus 
primarily on experimental results and applications, as well as models for optical 
nonlinearities that stress the macroscopic character of materials, with parameters 
determined experimentally. At times the wavelike nature of light is sufficient to explain 
concepts and at other times it is easier to refer to the photon-like nature of light. In nonlinear 
optics we become fluent in both concepts.  

Table 1 shows a classification scheme that tries to put some order into the many phenomena 
that comprise nonlinear optics. Optical nonlinearities occur when the output of a material or 
device ceases to be a linear function of the input power, which is almost always the case for 
high enough intensities. The nonlinearity may cause a light-induced change in refractive 
index or absorption of the medium or it may cause new frequencies to be generated. 
 

Character of 
medium: Transparent Absorbing Scattering Non-Local  

Atom-light 
interaction: 

Non-
resonant Resonant Incoherent Coherent Transient 

Optics 
geometry: Plane Wave Finite Beam Waveguide Wave-

Mixing Reflection 

Device 
Geometries: Bulk Periodic Fibers Resonators Micro-

cavities 

Table 1. Classification of nonlinear optical phenomena 

1.1 Character of the medium 

The character of the dielectric medium may be such that it is transparent, absorbing or 
scattering to the incident light. Usually the medium responds to the local optical intensity; 
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however, in some cases the nonlinearity is non-local, so that light intensity at one point 
creates a change in absorption or refractive index at another point. Examples of non-local 
nonlinearities are absorptive thermal effects and optically-induced carrier-transport, such as 
occurs in photo-refractivity.  

1.2 Atom-light interaction 

When its frequency does not match any atomic or molecular resonance, low intensity light is 
transmitted through transparent media without loss; this non-resonant interaction with the 
medium is expressed as a refractive index. At higher intensities, the nonlinearity is due to a 
nonlinear refractive index. Stimulated scattering such as Stimulated Raman Scattering (SRS), 
and Stimulated Brillouin Scattering (SBS) phenomena represent another class of non-
resonant nonlinearities.  

When its frequency is resonant with atomic or molecular transitions, light is absorbed, with 
a magnitude expressed in terms of an absorption coefficient. At high intensity, saturable 
absorption may occur, due to filling the available upper states. In this case the absorption 
begins to decrease with intensity and the material may become transparent. Even if the 
medium is initially transparent, when the incident light is sufficiently intense, multi-photon 
absorption may take place, as a result of near-resonance between the medium’s absorption 
lines and multiples of the incident light frequency. Multi-photon absorption causes an 
increasingly large absorption as the light intensity increases. 

Typically individual atoms or molecules lose their coherence during their interaction with 
light, so that the light-matter effects can be understood as incoherent phenomena. However, 
with sufficiently short pulses, or long coherence times, nonlinear phenomena will 
demonstrate coherent interactions between the light and the medium, in which phase is 
preserved. Examples are self-induced transparency and pi pulses. A number of transient 
phenomena do not require phase coherence – an example is self-phase modulation. 

Nonlinear optics occurs when any of these interactions are changed by the intensity of the 
incident light, thereby affecting the output. Some authors consider “nonlinear optics” to be 
any phenomenon that changes the way light interacts with a medium, such as by changing 
the refractive index through applying an external voltage (e.g. electro-optical modulators). 
This chapter does not consider these effects. The formal definition of nonlinear optics used 
here requires that the light itself must cause the material properties to change and thereby 
change how it interacts with light (either the initial lightwave or another lightwave).  

In almost all of its manifestations, nonlinear optics can be explained classically – quantum 
mechanics is not usually required. Most of the nonlinear effects can be explained by a 
macroscopic view of the medium through a nonlinear polarization and/or nonlinear 
absorption coefficient. In some cases it is more useful to consider how the microscopic 
behavior of individual molecules adds up to result in nonlinear phenomenon – this is 
particularly true with resonant interactions.  

1.3 Optics geometries 

Many optical nonlinearities use a broad beam of light incident on a nonlinear medium, 
which is modeled as a plane wave. Direct observation of harmonics generated from a plane 
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wave can occur as long as there is phase-matching. Direct observation of nonlinear absorption 
is made through intensity measurements. The nonlinear refractive index is often observed 
through changes in the spatial profile of a beam of finite width, which is most dramatic with 
self-focusing or thermal blooming and is described in the Z-scan discussion in section 2. 

Because diffraction from a finite beam shortens the length over which the nonlinearity is 
large, waveguides are often used in nonlinear optics geometries. If the phase-matching 
condition is met, the beam can be focused into a waveguide and won’t spread out; the 
nonlinear interaction can remain large over rather long lengths.  

Wave-mixing describes the fact that two plane waves overlapping within a nonlinear 
medium can mix the waves together in a nonlinear way. This may occur from nonlinear 
refractive index and/or nonlinear absorption. The nonlinearity introduces a periodicity in 
the medium due to these mixing waves that refracts additional waves. The result is a 
nonlinear diffracting grating. There can be two-wave mixing, three-wave mixing or four-
wave mixing. Measuring the nonlinear refractive index by interfering a beam with a 
reference beam through a nonlinear medium represents another kind of wave-mixing. 

Finally, optical nonlinearities can occur in reflection from a nonlinear interface, which can be 
demonstrated using prism coupling. Surfaces can enhance optical nonlinearities, 
particularly in micro-cavities. 

1.4 Device geometries 

All of the nonlinear processes described above can be used in a variety of device geometries. 
Descriptions generally begin with bulk media, but can be replaced by periodic media that 
can be quasi-phase-matched, or that provide reflective gratings. Fibers have the advantage 
of producing intense light in waveguides of very small cores over very long distances. While 
the glass fibers usually have small nonlinearities, most nonlinear phenomena can build up 
to be quite large in fibers because of their very long length.  

Optical resonators can enhance the optical cavity field, effectively enlarging the optical 
nonlinearities. An example is the intra-cavity frequency-doubled diode-pumped solid-state 
laser used today as the ubiquitous green laser pointer. The Fabry-Perot etalon was shown to 
demonstrate optical bistability, when filled with a nonlinear refractive index and/or 
absorpting material. Another form of optical resonator is the micro-sphere (even quantum 
dots), which have exhibited enhanced optical fields and therefore enhanced nonlinearities. 
Closely related, but not detailed here, are enhanced nonlinearities due to surface polaritons 
at metal-dielectric surfaces. 

1.5 NLO and its applications 

Nonlinear optics is a very broad field, centered in both Physics and Electrical Engineering, 
more specifically in the sub-fields of Optics and Photonics. Select the topic “nonlinear 
optics” in the ISI Web of Science and I found 7,240 papers in September, 2011. Google found 
910,000 pages on the same day! It is interesting that the 50 most cited papers were published 
in 26 different journals! This is because nonlinear optics impacts a wide range of technical 
fields, including optical communications, fiber optics, ultrafast lasers, quantum computing, 
ultra-cold atoms, plasma physics, particle accelerators, etc. Both chemistry and biology are 
using increasing amounts of nonlinear optics. Nonlinear optics applies to numerous specific 
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applications, such as in fiber optics, spectroscopy, photorefractivity, liquid crystals, 
polymers, semiconductors, organics, switching, ultraviolet, X-rays, quantum optics, 
telecommunications and signal processing. This review will not explore applications in 
detail, only introduce a few of the most important. A great deal of information about 
nonlinear optics is now available on the web.1  

This chapter will introduce the important basic phenomena of nonlinear optics and their 
applications, along with some of the most important concepts. Macroscopic, classical 
concepts will be emphasized, although simple quantum mechanics concepts can be 
introduced in a straight-forward manner. 

2. Nonlinear polarization density 
The origin of nonlinear optics is the nonlinear response of the material to internal electric 
fields. The material response is manifest in a susceptibility. The linear susceptibility is related 
to the refractive index through χ1  =  n2 – 1. When intense light enters a transparent material, 
its susceptibility can become nonlinear. It is usually sufficient to consider this heuristically 
as a Taylor expansion in the electric field: 

 χ(E) = χ1 + χ2E + χ3E2 + χ4 E3 … (1) 

All higher orders beyond χ1 represent the nonlinear response of a material to the presence of 
intense light. The higher order terms fall off in magnitude very rapidly unless the light 
intensity is very high. In general the susceptibility is a tensor and the vector component of 
the fields must be taken into account.  

The effect of the susceptibility on the light traveling through the medium is manifest in the 
polarization density, P. In tensor notation the linear polarization is P = ε0χ1:E. The nonlinear 
polarization density is PNL = εoχ(E):E, so the second order polarization is P2 = ε0χ2:EE and the 
third-order nonlinear polarization is P3 = ε0 χ3:EEE. There is no universal notation, however; 
the nonlinear refractive index (a third-order nonlinearity) is often written in terms of 
intensity as n(I)  =  no + n2I. Thus the nonlinear component of the refractive index that is 
linear in intensity is called n2, while the related susceptibility is χ3.  

2.1 Second-order nonlinear polarization density, P2. 

For two incident waves, one at frequency ωo, and the other at ω1, the nonlinear term χ2 will 
introduce (ignoring tensor notation) P2 = χ2Eocos(ωot-koz)E1cos(ω1t-k1z)], where amplitudes 
are Eo and E1 and wave vectors ko and k1 are related to frequencies by their respective 
velocities of light. This product gives two polarization terms, one that oscillates at ωo + ω1 , 
and the other at ωo – ω1. Both terms are proportional to the product of the fields. From the 
quantum mechanical point of view, the nonlinearity has induced two photons to combine 
into one photon. When the two photons have the same frequency, one term yields second 
                                                                          
1 Wikipedia is quite reliable for investigating the phenomena outlined in this paper. Almost any of the 
topics discussed in this paper will be found in Wikipedia. See also, “An Open Access Encyclopedia for 
Photonics and Laser Technology,” written by Dr. Rüdiger Paschotta, a consultant in photonics, 
http://www.rp-photonics.com/topics_nonlinear.html, which covers the basics of nonlinear optics 
rather well, with good search capability. 
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harmonic and the other yields a term with a static field (the frequency dependence cancels 
out). When the incident photons are different, sum and difference frequency photons are 
generated. An important criterion for materials to exhibit a susceptibility linear in the field, 
X2E, is that they contain no center of inversion symmetry. Liquids, gases, amorphous solids 
and crystalline materials with high symmetry will not directly generate second harmonic. 
Typically the goal of X2E terms is to transfer power from one frequency to another, while 
maintaining a coherent beam. This requires phase-matching, which will be discussed later.  

2.1.1 Second Harmonic Generation (SHG) 

Perhaps the most important application of P2 is converting infrared light into visible. The 
green laser pointer consists of a diode-pumped solid state laser emitting in the infrared at 
1.06 μm that is frequency-doubled by a nonlinear crystal to a wavelength of 0.53 nm. For one 
incident wave of frequency ωo, the nonlinear term χ2 introduces into the polarization P2 a 
term that oscillates at 2ωo, the second harmonic. Applications for SHG go considerably 
beyond laser pointers. Lasers that directly emit visible light are less efficient than infrared 
lasers, so when visible light is required, it is preferable to start with the more efficient 
infrared lasers and to frequency-double them. SHG has been a standard complement for 
Nd:YAG lasers for a long time. Diode-pumping has replaced lamp-pumping for most of 
these applications, increasing their efficiency. Visible (or ultra-violet) lasers are commonly 
used to pump other lasers, most notably the titanium-sapphire laser (and formerly, the dye 
laser). The highly inefficient argon laser is rapidly being replaced by frequency-doubled 
diode-pumped solid state lasers for applications such as pumping the ultra-short pulse 
titanium-sapphire lasers, which can be mode-locked to pulses only a few femtoseconds long 
and emit at 800-900 nm wavelengths.  

How are these femtosecond pulses measured?  With an autocorrelator that measures the 
physical length of fs pulses by means of SHG. An autocorrelator is created by splitting an 
ultra-short pulse train into two beams, and colliding them in a SHG crystal in such as way 
that the harmonic occurs only when both pulses overlap (a particular crystal geometry). 
Delaying one beam with respect to the other, and scanning this delay, enables the length of 
the pulse in physical space to be determined. Without SHG, the entire field of ultra-fast 
optics would be severely hampered.  

In addition to simply offering light you can see, SHG is important because each visible or 
UV photon has enough energy to cause a chemical reaction. In non-homogenous materials, 
the generation of second harmonic may select for specific regions. Examples range from 
separating out collagen and microtubules in live tissue (Zipfel, 2003) to observing coupled 
magnetic and electric domains in ferroelectromagnets (Fiebig, 2003). Surface science is an 
important application because the surface breaks the symmetry of the bulk and enables SHG 
that depends critically on the character of the surface. The surface can also offer resonance 
enhancement of the signal (Hsu, 2011); monolayer adsorption can be detected, for example 
of tin on GaAs (Shen, 1994; Mitchell, 2009). In other applications, surface SHG can monitor 
laser melting and separate amorphous from crystalline growth. As a spectroscopic tool, SHG 
has been used in a plethora of applications, such as probing surface states of metals, surface 
magnetization, and, using ultrashort pulses, a wide range ultrafast surface reactions and 
surface dynamics. 
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2.1.2 Sum and Difference Frequency Generation (SFG and DFG) 

When the incident field E contains two frequencies ωo and ωi, sum frequency and/or 
difference frequency generation is possible, as seen directly from Eq. (1); the cross-term 
gives a polarization of the form P2 = χ2EoEi. SFG can convert infrared light at frequency ωi 
into a visible signal at frequency ωs = ωo + ωi. When light at frequency ωo is very intense, 
there is even an effective amplification of the weak infrared signal. SFG is one way to 
provide coherent UV light from visible light. If one of the visible lasers has a tunable 
frequency, the UV light’s frequency can be tuned. 

DFG has been used to create infrared light from two higher frequency laser beams. The term 
DFG usually refers to the case where the beams at the two incident frequencies have 
comparable intensity. The output infrared signal will be at ωs = ωo - ωi. When one beam is 
very intense and the other is weak, amplification will occur (as with SHG). This is often 
called parametric amplification, which will be described later. 

DFG has applications in telecommunications, where Wavelength Division Multiplexing 
(WDM) puts many wavelengths on the same optical fiber. In real WDM systems, a way is 
needed to convert from one wavelength to another. DFG is attractive in several respects: it is 
an instantaneous process that can simultaneously convert up and down multiple channels 
with equal efficiencies, has negligible spontaneous emission noise and no intrinsic frequency 
chirp (Yoo, 1996; Yu, 2007). 

2.1.3 Nonlinear Optical Rectification (NOR)   

The nonlinear term corresponding to Pr = εoχ2EE* has no time dependence, other than that of 
the magnitude of E. It creates a DC static polarization through the time-average of E2. This 
process is traditionally called optical rectification. The major practical application of optical 
rectification has been the generation of Terahertz radiation through optical rectification of 
femtosecond pulses (Dragoman, 2004; Fueloep, 2011). Because of the time-dependence of 
these fs pulses, the “static” field is not time-independent, but rises and falls within the width 
of the fs pulse, generating broadband electromagnetic pulses in free space. This results in 
fields with variation at Terahertz frequencies waves that have sub-mm wavelengths. 
Coherent light in the THz frequency domain is rather new and applications are presently 
being developed, predominantly spectroscopy. For optical rectification, the χ2 materials 
ZnTe and GaAs are typically used. 

Other applications for NOR include accelerating electrons within a small distance by means 
of static field enhancement due to surface plasmons. This enhancement may provide 
nanoscale geometries for high-energy electron sources, where electrons are accelerated in 
the electric field of surface plasmons  (Lenner, 2011). Just as SHG is sensitive to surface 
conditions, so is NOR. It has become an important technique for investigating 
semiconductor heterostructures and nanostructures, such as asymmetric quantum wells 
(Wang, 2009). Optical rectification has even enabled miniature silicon waveguides to detect 
light within the bandgap that would not normally be detected (Baehr-Jones, 2005). 

One of the most exciting applications of NOR comes in “wakefield generation,” which is a 
relativistic version of optical rectification that introduces longitudinal field effects that can 
be as large as transverse effects. Electromagnetic field intensities in excess of 1018 Wcm2 lead 
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to relativistic electron motion in the laser field. In addition to NOR, other effects may occur, 
including relativistic focusing, relativistic transparency, nonlinear modulation and multiple 
harmonic generation, and strong coupling to matter and other fields (such as high-
frequency radiation) (Mourou, 2006). Optics in the relativistic regime is an exciting new 
direction for nonlinear optics (Tsaur, 2011). 

2.2 Phase-matching 

Efficient growth of second harmonic, sum, or difference frequency requires the nonlinear 
polarization P2 to remain in the same relative phase with the incident light over the entire 
interaction length. This is called phase-matching, with the phases of the incident and resultant 
waves remaining in synchronism. Lack of synchronism comes about because the refractive 
index is a function of wavelength (dispersion), with shorter wavelengths (the harmonics) 
typically having higher refractive indices than the fundamental. Phase coherence requires  (n2ω 
- nω)L <  λ/4, which may typically be tens of micrometers. But in SHG the path length required 
to build up substantial signal is usually the order of centimeters. Thus special techniques are 
required to match phases, including anisotropic crystals, periodic domain reversal (quasi-
phase matching) and waveguides (matching dispersion or using Cerenkov output).  

2.2.1 Phase-matching in anisotropic crystals 

In anisotropic crystals the refractive index depends on the direction of the light’s polarization 
and its propagation direction with respect to the crystal. This dependence enables nonlinear 
crystals cut in particular geometries to have their fundamental and second harmonic with 
the same phase velocity. This is the only way that phase-match can be achieved in uniform 
bulk crystals. Anisotropic crystal phase matching can be very sensitive to crystal angle and 
temperature; calculations of suitable angles require complicated tensor calculations, but 
fortunately the commercial venders know how to do this and sell crystals cut to the proper 
orientation. In type I phase matching the fundamental has a single linear polarization and the 
harmonic has a polarization perpendicular to the fundamental. These crystals can be tuned 
by changing temperature or by changing the angle, or both. Type II phase matching requires 
that the nonlinear process mix laser beams with orthogonal polarizations. The harmonic can 
be along either polarization. Critical phase matching uses the angular dependence of the 
refractive index with beams propagating off-axis to match polarizations, while non-critical 
phase matching heats the crystal to achieve phase- matching for beams that propagate along 
the axis (Paschotta, 2011). 

Efficient harmonic generation requires highly nonlinear crystals; a great deal of research has 
gone into finding and growing suitable material. Originally only crystal quartz and 
potassium di-hydrogen phosphate (KDP) were available. Lithium niobate was the first of 
many crystals grown for the purpose of harmonic generation; now a plethora of crystals are 
available, depending on the particular application and wavelength.  

Sum and difference frequency generation is calculated through the coupling between three 
waves, rather than two, but phase-matching is required for these processes, just as for 
second harmonic generation. 

No one crystal is ideal. Phosphates provide the largest nonlinear crystals:  KDP (potassium 
dihydrogen phosphate), KD*P (deuterated potassium dihydrogen phosphate) and ADP 
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(ammonium dihydrogen phosphate) are all grown in water-solution to very large size, and 
are quite impervious to optical damage, although hygroscopic. KDP is being grown in 
tremendous sizes for the inertial confinement fusion laser at Livermore Laboratories in 
California. The phosphates have transparency to below 200 nm and out to 2 μm, but their 
nonlinear coefficient is quite small: deff ~ 0.4 pm/V (pm  = picometers = 10-12m). By 
comparison, KTP (potassium titanyl phosphate) and KTA (potassium titanyl arsenate) have 
an order of magnitude higher nonlinearity:  deff ~ 4 pm/V and are non-hygroscopic, but they 
are hard to grow and only small crystals are available. KTP is commonly used today to 
frequency-double diode-pumped solid state lasers. However, if the optical power becomes 
too high, KTP shows photo-induced “gray-tracks.”   

Lithium niobate has large nonlinearities with a transparency range from 420 nm out to 5.2 μm 
and a very high nonlinearity (deff = 5.8 pm/V) but exhibits debilitating photo-refractive effects 
(see later) unless heated or doped with oxides. Magnesium oxide doping is commonly used. 
Zinc oxide doping increases the nonlinearity to 16 pm/V and has better optical quality and 
lower absorption, but is limited to 250 MW/cm2 of light intensity. Eighty times improvement 
in damage threshold is obtained with zirconium oxide doping, at the expense of roughly half 
the nonlinearity. Lithium Tantalate (LiTaO3) has less optical damage than LN and doesn’t 
require doping, but its nonlinearity is half that of LN. Potassium niobate (KNbO3) has high 
nonlinearity and high damage threshold, which sounds ideal, but it has only a small 
temperature range of phase-matching, and, more importantly, shaking or stressing the crystal 
can cause domain changes, so it must be handled “smoothly,” limiting its use.  

Borates form another class of nonlinear crystals, transparent into the UV, with a high 
threshold to optical damage, but with considerably lower nonlinearity: LBO (lithium 
triborate) is transparent to 150 nm, but deff ~ 0.8 pm/V, roughly twice KDP. BBO (beta-
barium borate) has a more respectable deff ~ 2 pm/V. Bismuth Borate (BiBO) has deff ~ 3.3 
pm/V and the highest damage threshold. These crystals are excellent for high-power 
applications:  they’re inert to moisture, with a large acceptance angle and small walk-off 
angle and suitable for temperature-controllable non-critical phase-matching. 

Research is underway on organic crystals for frequency doubling, but they have not yet 
proven more reliable than the above-mentioned crystals.  

In the infrared, a different set of crystals has been developed, with higher nonlinearities but 
much lower damage thresholds. These include AGS (AgGaS2) , transparent over 0.5 - 13 μm; 
AGSe (AgGaSe2) transparent over 0.7 - 18 μm; also HGS (HgGa2S4) and ZnGeP2. Gallium 
selenide (GaSe) has the record nonlinearitiy, deff =  70 pm/V and doubles out to 13 μm 
wavelength.  

The crystals just discussed are anisotropic, required for birefringent phase matching. Periodic 
poling can provide quasi-phase matching, which removes the need for birefringence. It can 
also increase the nonlinearity in birefringent crystals; periodic poling of lithium niobate 
(PPLN) exhibits the effective nonlinear coefficient 4.5 times relative to homogeneous LN.  

2.2.2 Quasi-Phase Matching (QPM) 

In quasi-phase matching, the nonlinear coefficient is reversed every coherence length 
(coherence length Lc is the length over which the accumulated phase mismatch = π). Quasi-
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phase matching is important when birefringent phase-matching is difficult; the crystal need 
not even be birefringent. Without QPM, the fundamental and harmonic would get out of 
phase after a distance Lc given by (k2 – 2k1)L = π. If the optical axis is flipped periodically 
at this distance, the nonlinearity reverses sign and harmonic conversion can continue to 
build up. Although quasi-phase matching was suggested in the early days of NLO, it did 
not become practical until the invention of periodic poling (Byer, 1997).   

Periodic poling engineers the ferroelectric domains within lithium niobate and similar 
nonlinear crystals. A strong electric field is applied via patterned electrodes on the crystal 
surface. Domain reversal occurs at field strengths above the coercive level, which can be 
anywhere from 2 - 21 kV/mm in LN, depending on the crystal characteristics. The period of 
the electrode pattern determines the wavelengths for which QPM will occur. This process 
works best for waveguides and samples less than 0.5 mm thick; it works best in the infrared, 
where electrode periods can be 10 μm or more. The most common materials that are 
periodically poled are MgO-doped lithium niobate (called PPLN), lithium tantalate and 
KTP, while PP potassium niobate has also been reported. Organic nonlinearities such as 
nonlinear polymers can be poled for QPM (Hung, 2008). Quasi-phase matching has also 
been reported in glasses and fibers. Its most practical application is often in waveguides. 

Periodic poling has extended SHG from anisotropic crystals to polymers and 
semiconductors. In addition to spatially periodic poling by pulsed electric fields that creates 
domains with flipped crystal axes, electron bombardment and thermal pulsing have also 
been successful with QPM. Because of poling enhancement of X2, harmonic output in PPLN 
can be many times what would be observed in a single crystal, for the same intensity 
(Parameswaran, 2002). Second-harmonic generation, difference-frequency generation, and 
optical parametric oscillation all have used QPM. 

2.2.3 Phase-matching in waveguides  

The first reason to use waveguides for SHG is that the intensity of the incident light can be 
maintained over a long length. Before QPM, it was necessary to match the phases of the 
guided fundamental wave with the guided harmonic. This ability was demonstrated by 
choosing a wavelength that matched the phases of an incident TM0 fundamental and the TE1 
mode of its harmonic (Sohler, 1978). Phase-matching in waveguides requires an ability to 
tailor the guide’s effective refractive index. With proper design, the fundamental can create 
a harmonic in a mode whose effective refractive index will match that of the fundamental, 
so that waveguide dispersion cancels the material dispersion. The two modes must also 
have sufficient overlap that a strong harmonic can build up. Some examples have been 
nonlinear Langmuir-Blodgett films (Penner, 1994), corona-poled sputtered glass films 
(Okada, 1992), dye polymers (Sugihara, 1991) and complex semiconductor waveguide 
structures (Abolghasem, 2009; Fiore, 1998; Malis, 2004). To date these techniques have not 
been reliable enough to be used in practical systems. Often coupling into waveguides is not 
easy; bulk SHG crystals are in much greater demand. By the year 2000 SHG in waveguides 
usually has incorporated quasi-phase-matching.  

A different approach uses photonic crystal waveguides, which can be tuned to achieve 
phase-matching for SHG (Martorell, 1997; Broderick, 2000;  Mondia, 2003; Torres 2004). 

For completeness we mention SHG observed as a Cerenkov-phase-matched harmonic from 
a waveguide’s fundamental mode. The harmonic wave has a phase velocity beyond cutoff 
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for the waveguide, so that it propagates freely in the substrate material, acting as the source 
of the observed Cerenkov radiation. This phase-matching technique creates a beam at a 
small angle to the waveguide and has been observed in lithium niobate (Li, 1990; Wang, 
1995) as well as nonlinear photonic crystal waveguides (Zhang, 2008). Cerenkov SHG can be 
important in applications where guided SHG is not desired.  

2.3 Theory of second harmonic generation  

When there is negligible depletion of the fundamental, the amount of second harmonic is 
conveniently solved through the coupled mode equations. These equations demonstrate the 
coupling between the fundamental and its harmonic through the nonlinear susceptibility χ2. 
Using complex notation, the polarization density vector introduced by interaction between 
two input fields is Pk(ω3) = ij εo(ijk/2)Ei(ω1)*Ej(ω2), where it is important to acknowledge 
the tensor character of ijk  For second harmonic, ω1 = ω2 and usually the direction i and j are 
parallel, so Ei = Ej. For any particular configuration of input fields, the summation over all 
relevant values of  can be represented by P3(2ω) = deffεoE(ω)2. By convention the second 
harmonic coefficient deff is most often used as the nonlinear parameter; it is the effective 
magnitude of the tensor dijk = ijk/2, which depends on the specific configuration of the 
optical fields.  

In lossless materials, the fundamental field Eω and its harmonic E2ω can be related by the 
following coupled mode equations: 

Fundamental:   

Eω/z  =  i (ko/nω)Eω* E2ω deff exp(ikz)  

and Harmonic:  

E2ω/z  =  i (ko/n2ω) deff Eω2 exp(-ikz) 

where k is the mismatch of wave-vectors: ∆k = 2kω – 2k2ω  = (nω – n2ω)2ω/c = (nω – n2ω)4/λo 
and deff is the effective nonlinear coefficien and λo is the free-space wavelength of the 
fundamental. Solving such equations demonstrates that power couples from the incident wave 
to its harmonic and then back again along the path length. Power couples into the harmonic 
for a length (∆k/2)Lc = π and then begins to couple back again, so Lc = λo/[2(no - n1)]. Numbers 
for Lc can vary considerably, from less than ten microns to 100 microns or more. In quasi-
phase matching periodic poling compensates every time the two waves reach a distance Lc. 
Solving the coupled mode equation yields the intensity at the second harmonic I(2ω) in terms 
of the intensity at the fundamental, I(ω) as a function of sample length l:  
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where 

 I(2ω,l) << I. 

This is the familiar sinc2 function; for a given crystal length l and intensity I, the maximum 
harmonic intensity falls off as the phase mismatch grows.  
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When phase-matched (∆k = 0), the harmonic intensity will grow quadratically with the 
fundamental intensity and quadratically with distance l, until the fundamental begins to 
deplete. It is then necessary to include depletion of the fundamental into the calculations. In 
the case of exact match, the solution is quite simple: 

  2 0 eff

ω

ωω ω,0 tanh E d lΙ l I
n c

 
     

 
 

In the large conversion limit, tanh  1 and the second harmonic intensity becomes 1; the 
fundamental will be completely converted to harmonic as expected by energy conservation 
(half the number of photons, but twice the frequency for each).  

3. The P3 term 
The third order term produces a polarization proportional to third order in the electric field: 
P3 = εo(χ3E2)E. This leads to a polarization oscillating at the third harmonic, and also to a 
term in which the factor (χ3E2) has no oscillation frequency; this term oscillates at the 
fundamental frequency of the incident light. Thus the third-order nonlinearity causes both 
third harmonic generation (THG) and also an intensity-dependent change in the refractive 
index, which becomes nonlinear, n(I). The third-order term does not require a material with 
a center of inversion symmetry; all materials have χ3 terms. 

3.1 Third and higher-order harmonics 

Third-order nonlinearities arise from expanding the nonlinear susceptibility to third order in 
the electric field. The extension from second- to third- harmonic is relatively 
straightforward, at least in concept. Now there are three electric fields: Eo oscillating at ωo, E2 
oscillating at ω2 and E3 oscillating at ω3. Depending on the medium, third harmonic can be 
considered as being generated by three fundamental photons (requiring phase-matching) or 
by a single incident photon interacting with the harmonic (a different kind of phase-
matching). The detailed interactions are beyond the level of this chapter, but the full 
ramifications of third order nonlinearities were extensively discussed quite early 
(Armstrong, 1962; Maker, 1965; Hellwarth 1977). As soon as third harmonic is generated, the 
light intensity is usually high enough to generate even higher harmonics than the third and 
the Taylor expansion ceases to be a particularly valid way to look at these large 
nonlinearities. The main application of third harmonic is to reach ultraviolet (UV) 
wavelengths where there are few choices for lasers.  

When the electric field strength of the light is high enough, optical nonlinearities can 
generate multiple orders with light having frequencies much greater than the original (up 
into the X-rays!). This is done using femtosecond pulses; proper phasing of the harmonics 
can lead to extremely short, extremely intense pulses, approaching attoseconds in length (10-

18 s). This is the regime of extreme nonlinear optics (Song, 2010). 

It is worth pointing out that phase-matching is not a particularly problem in gases, because 
their refractive indices are so small that dispersion is practically negligible. With high power 
short-pulse lasers, very high harmonics can be observed, out to the extreme UV (XUV, for λ 
< 100 nm) wavelength of 6.7 nm, which was achieved in a helium gas jet, starting with a KrF 
laser (Preston, 1996). The laser intensities were up to 4x1017 W/cm2 in 380-fs pulses. This 
was the 37th harmonic.  
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High harmonic generation (HHG) requires high peak power, sub-picosecond lasers, which 
today are usually mode-locked Ti-doped sapphire (Ti:Al2O3) lasers. A moderate, 
commercially available system is capable of producing a sub-100 fs pulses with mJ pulse 
energies at pulse repetition frequencies of 1 kHz. This laser has revolutionized high field 
nonlinear optics because peak optical intensities of 1015 – 1018 W/cm2 are routinely 
generated (Eden, 2004); specially designed gas jets enable maximum efficiency (Grant-Jacob, 
2011). A later section will discuss special results in nonlinear media observed with pulsed 
lasers. Harmonic emission between 20 and 60 nm could be observed. 

3.2 Nonlinear refractive index 

When the nonlinear refractive index is nonlinear, the phase of the light changes. This does 
not require phase-matching, and so it occurs to some extent in all materials. In bulk 
materials, the nonlinearity in a plane wave cannot be directly observed because it is a pure 
phase-change. However, many geometries have proven to be important in producing 
nonlinear effects from the nonlinear refractive index, as will be described later. They 
include:  1) wave-mixing, when two plane waves intersect at angles in a nonlinear medium, 
which creates a phase-grating that can deflect (or reflect) light beams; 2) self-focusing or de-
focusing of a beam of finite width; 3) formation of stable propagating beams called spatial 
solitons; 4) nonlinear waveguides; 5) nonlinear interfaces; and 6) in transient phenomena, 
where self-phase modulation can change monochromatic light into a frequency continuum.  

The nonlinear refractive index, which depends quadratically on the light’s electric field is 
usually written as  n(I) = no + n2I,  where I is the intensity of the light. Notice that in this 
nomenclature n2 is related to χ3. Because a nonlinear refractive index changes the phase 
experienced by the light, the conceptually simplest way to measure it is by interference with a 
reference beam. A more convenient experimental technique is wave-mixing (discussed below).  

Alternatively, the nonlinear refractive index can be calculated from the Kramers-Kronig 
relation, which relates the nonlinear refractive index to the spectrum of nonlinear 
absorption, assuming the same level of excitation. The Kramers-Kronig relation states that 
when optical intensity I is present at frequency ν, a change in refractive index n can be 
determined by measuring the change in absorption α at all possible frequencies ’, under 
the same excitation conditions, and integrating by means of the following equation: 

2 2 2
0

( )n( )
2

c d  
  

   
 P  

where P   denotes the principal part of the integral. Because of the resonant denominator, 
the nonlinear refractive index due to nonlinear absorption may be quite large near a 
resonance. Indeed, in some geometries, such as an etalon, the nonlinear refractive index may 
have a bigger effect on the light beam than nonlinear absorption. Both the nonlinear 
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High harmonic generation (HHG) requires high peak power, sub-picosecond lasers, which 
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phase front. If the refractive index increases with intensity, an intense light beam will tend 
to “self-focus” as it travels through the medium (as discussed later). The nonlinear medium 
acts like a graded index lens. This lateral change in beam shape due to the nonlinear 
refractive index motivated a new technique called the z-scan that can measure both the 
magnitude and sign of the nonlinear refractive index (as well as the nonlinear absorption) 
(Sheik-Bahae, 1990). 

In the z-scan measurement technique, a sample of the nonlinear material is moved through 
the focus of a laser beam, and an aperture is placed before the detector at some point in the 
expanding beam. The amount of light getting through this aperture is measured as a 
function of the sample position. If the nonlinearity is positive, the beam tends to self-focus, 
reducing the beam divergence and increasing the amount of light transmitted through the 
aperture. If the nonlinearity is negative, the amount of light will decrease. From the 
measured dependence of the detector signal on the sample position, it is possible to 
calculate the magnitude of the nonlinear index. The formula for the transmission is 
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where PT is the transmittance power through the aperture, which is a function of the phase 
distortion ∆Фo, and Pi is the incident power. Experimental data are fit to this equation. The 
fitting parameters are the nonlinear refractive index, together with nonlinear absorption.  

3.2.2 Mechanism of nonlinear refractive index 

The third-order nonlinearity produces a term that provides a nonlinear refractive index that 
is quadratic in the optical field (or linear in the optical intensity). This is sometimes called 
the optical Kerr effect (OKE) because the ordinary Kerr effect describes a refractive index 
change that depends quadratically on applied electric field.  

The classical picture of a nonlinear refractive index is a nonlinear polarization, driven by the 
electric field. The polarization is proportional to the polarizability of the medium. In the 
simple physical picture, this is expressed as the oscillating charge separation introduced by 
the oscillating electric field: a simple harmonic oscillator. When the field is intense enough – 
approaching the value of the internal fields within the medium – the atomic cloud distorts 
and the harmonic oscillator becomes nonlinear. The nonlinearities can be calculated by a 
virtual mixing of the states of the atom or molecule. These classical and quantum 
mechanical pictures offer hints as to what materials will be the most nonlinear. However, for 
most applications, the nonlinear refractive index is determined by measurement. It is 
classically written as  n = no + n2I.  

3.3 Cascading nonlinearity 

It has already been pointed out that the effects at a given order of χ can be cascaded. For 
example, the χ2 nonlinearity interacting with the fundamental can give rise to third 
harmonic. By the same token, one would expect cascading of χ2 with the complex conjugate 
of the fundamental to give rise to an additional component at the fundamental frequency. 
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This shows up as a phase shift, which is equivalent to a nonlinear refractive index. Thus a 
nonlinear refractive index can be created by a cascading nonlinearity in a χ2 material. 
Creating an effective χ3 nonlinearity from χ2 begins with phase-mismatched second-
harmonic generation. Intensity-dependent up- and down- conversion both take place, 
providing an intensity-dependent phase change to the wave – thus mimicking a nonlinear 
refractive index. This can be understood as frequency-degenerate interactions between one 
wave (with itself) or two waves that induce self- or cross-phase modulation. (Stegeman, 
1996; Lee, 2011) 

4. Nonlinear absorption 
Absorption processes can be strongly non-linear, particularly near atomic resonances. 
Assuming a nonlinear form of Beer’s law, the intensity varies with distance z as I = 
Ioexp[α(I)z]. The absorption coefficient α may become larger or smaller with increased 
intensity, depending on the physical process. Increasing absorption, even in transparent 
media, can come from the introduction of multi-photon absorption at high intensity levels. 
Reduced absorption comes from saturating the absorption line with high intensity light. 

4.1 Multi-photon absorption 

The absorption can be written heuristically as a function of intensity through α(I) = αo + α1I + 
α2I2 where αo represents linear absorption, α1 represents two-photon absorption, α2 
represents three-photon absorption, etc. The phenomenon of multi-photon absorption, 
where the absorption increases with intensity, is sometimes called reverse saturable absorption. 
Even though a material is transparent at low intensity, as the intensity grows, the absorption 
may increase. Two-photon absorption, which may occur in transparent materials, can be large 
when the sum of two photon energies comes close an absorption resonance (DeSalvo, 1996). 
This optical nonlinearity decreases the transmission of light as atoms or molecules absorb it 
while transitioning to higher levels. If the matrix elements allow it, these higher levels may 
return to the ground state by emitting fluorescence at twice the frequency of the input light. 
While this doesn’t strictly follow the definition of nonlinear optics given in the first section, 
multi-photon fluorescence has become a very important tool for biological applications (Xu, 
1996, Diaspro, 2006)). 

Higher-order multi-photon resonant excitation processes may induce considerable 
absorption within the material. With enough laser intensity, it is possible to induce 
processes that mix quantum states of an atom or molecule at energies sufficiently high to 
cause ionization (Corkum, 1993; Guo, 2009). Multi-photon ionization is assumed to be the 
cause of the breakdown of air (or transparent materials) at the focal point of a high power 
light beam. Multi-photon absorption continues until ionization occurs and the material is 
damaged, often by the inclusion of microscopic bubbles. A commercial example that 
demonstrates this process is the transparent glass cubes (or other shapes) that can be 
purchased with 3D images written inside. This process is done with intersecting laser beams 
using multi-photon absorption that leads to ionization only where they overlap.  

An important application of multi-photon absorption (or reverse saturable absorption) is 
optical limiting. This is defined as any process the limits the amount of light that can get 
through a material at high intensity. It has the potential application of protecting sensitive 
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detectors and eyes from high power lasers (Tutt, 1993; Chi 2009; Kamina, 2009). With the 
advent of nanocrystals, research to find practical materials has exploded, yet to date it does 
not appear that any particular material stands out as viable. 

4.2 Saturable absorption 

When the frequency of incident light is near an absorption resonance of the material, the 
absorption may saturate as the intensity increases. Saturable absorption occurs when the 
incident intensity is high enough that the ground state population is depleted and the 
population of the upper and lower states equalizes. Although this is a microscopic process, 
it is often modeled heuristically by an absorption of the form α(I) = αoIs/(I+Is), where Is is the 
saturation intensity. Saturable absorption has a number of practical applications, particularly 
for Q-switching and mode-locking lasers. Because the lowest loss occurs when the laser 
modes are locked together into pulses, introduction of a saturable absorber into a laser 
cavity enables it to passively mode-lock, an important way to generate ultra-short pulses. 
Saturable absorbers are also useful for nonlinear filtering outside laser resonators, which can 
clean up pulse shapes. Saturable absorption occurs at wavelength close to a resonance. 
Saturable absorption is particularly strong in semiconductor lasers at wavelengths just 
above the band edge. 

5. Nonlinear scattering processes  
In addition to transmission and absorption, light transmitted through materials can exhibit 
scattering. The linear elastic processes are Rayleigh and Mie scattering from density 
fluctuations in the medium. The non-elastic processes are Raman and Brillouin scattering. 
Rayleigh scattering comes from molecules and fine-scale density fluctuations (this is why 
the sky is blue); Mie scattering from fluctuations with a larger length-scale. Because the 
scattering particles do not move, light-induced density fluctuations appear constant in time 
(if the light is a continuous wave: cw) and appear as a light-induced refractive index change. 
These scattering processes are usually described by the 3 process explained earlier, so this 
section concentrates only on the non-elastic processes.  

5.1 Stimulated Raman Scattering (SRS) 

Raman and Brillouin scattering are inelastic events; the scattered light has a different 
frequency from the incident light. Spontaneous Raman Scattering usually down-shifts light 
to lower frequencies, because molecules in the medium begin to vibrate at frequency ωr. If 
there are already oscillations in the medium, the light coming out will be up-shifted by the 
vibrational energy ωr. Terminology has been developed that the down-shifted scattered 
components are called Stokes light, while the up-shifted components are called anti-Stokes 
light. (Stokes had already explained that in fluorescence, emitted light should always have a 
lower frequency than the incident light.)  Raman spectroscopy has made important 
contributions to chemistry because it can identify molecular vibrations and measure their 
frequencies. These are spontaneous scattering events that can be understood only with 
quantum mechanics, and they have stimulated scattering analogs.  

An analogy with lasers is very useful here; spontaneous emission in lasers is quantum-
mechanical, while gain can be explained classically. Similarly, Raman and Brillouin 
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scattering have their stimulated emission counterparts, offering gain. These processes can be 
understood classically when we assume that the scattered light is already present. We can 
then calculate the gain that the Stokes light experiences in the presence of the incident light. 
The existence of this gain, proportional to the incident light intensity, is what makes these 
nonlinear optical processes. 

Assume the light field consists of incident and scattered components, Eo and E-1 at 
frequencies ωo and ω-1, respectively, where ω-1 = ωo - ωr. When r is resonant with a 
molecular vibration, the frequency difference between these two waves can drive a 
molecular vibration. As with electronic states, this excited vibration can return to its non-
vibrating state by spontaneous emission, or by stimulated emission.  

When the incident light is intense and coherent, the molecular vibration is strongly driven at 
frequency r as a result of interference between the incident and Stokes light (Garmire, 1963). 
The molecular bond length changes by an amount x  (Eo*E-1), where the fields are 
considered vectors. The bond length oscillates at frequency ωr, producing an oscillating 
electric-dipole moment that is proportional to the incident field through   Ex  E (Eo*E-1). 
The dipole moment component at frequency o - r is   (Eo*E-1)Eo, which drives power Ƥ-1 
into the first Stokes through Ƥ-1 = -(d/dt)E*. This product means that the power delivered to 
Stokes light from the incident beam is proportional to the square of the Stokes field: Ƥ-1  |E-

1Eo|2. In other words, the gain is proportional to |Eo|2, the incident optical power. 

When the gain is weak, the Stokes light is spontaneous, emitted diffusely in angle and there is 
no ab initio phase relation between the Stokes and laser beam. The coherent molecular 
vibrations build up with a well-defined phase only when the laser beam intensity |Eo|2 
becomes strong. Then the gain increases rapidly with incident light. For SRS to be practical for 
frequency conversion, a reasonable fraction of the incident light must be down-shifted by the 
SRS process. If equal powers in the incident and Stokes-shifted beams are assumed, in an 
interaction length L, the power requirement can be expressed as  Ƥo(L)  = Ƥ-1(L) = 16AeffgRL, 
where gR is the Raman gain and Aeff is the effective area of the beam (or fiber mode). 

In Raman scattering, incident light induces molecular vibrations at natural resonance 
frequencies r. These molecules have oscillating dipole moments given by the product of the 
molecular polarizability αp and the electric field. When the light is coherent, the light-matter 
interaction transfers the phase coherence of the light to the molecules; the oscillating dipole 
moments induce a polarization density in the macroscopic medium, given by P = NαpE, 
where N is the density of oscillating molecules and E is the light’s electric field at the 
molecule. An alternative picture describes this polarization density as a nonlinear 
susceptibility  through   P = εoE. To first order, SRS can be expressed as a quadratic 
nonlinear susceptibility:   = 1 + 3E2, where 3 is assumed to be highly resonant around the 
Raman resonance (and imaginary) (Shen, 1965). 

As for anti-Stokes, if the electric field is assumed to additionally contain the frequency o + 
r, then a coherent parametric interaction can take place. This interaction is out-of-phase 
relative to the incident field:    (Eo*E-1)Eo*, which means that the anti-Stokes field drives 
the vibrating molecule back down to its ground state. This means that those periodic 
vibrations introduced into the medium by the emission of Stokes light are transferred back 
to the light wave in the form of coherent anti-Stokes emission – a classical resonant 
parametric process. For anti-Stokes to build up, the proper phase relation between the wave 
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vectors must be maintained:  2ko = k1 + k-1. When phase-matched, the power delivered to 
the anti-Stokes light is Ƥ+1  (Eo*E-1)(Eo*E+1), which is linearly proportional to the anti-Stokes 
field. The linear proportionality means that there is no threshold – the anti-Stokes field can 
grow solely from the interaction between the Stokes and incident field (as long as phase-
matching the relationship is obeyed). This can be thought of as a resonant four wave mixing 
process. 

Stokes radiation is usually emitted more strongly in the forward direction because the 
interaction length between the laser and Stokes is longest for the forward-directed 
components. The anti-Stokes is emitted in cones that obey the required phase relation with the 
forward-directed Stokes. When the Raman medium is inside the laser cavity, there is no anti-
Stokes because there is no Stokes emission at the appropriate angles to feed into anti-Stokes. 

The simple classical picture shows that higher order Stokes can be generated either by the 
first Stokes generating the second Stokes in exact analogy with the generation of first Stokes, 
or by a four-wave mixing process in which the molecular vibration due to Eo mixes with E-1 
to produce a dipole moment   (Eo*E-1)E-1’*, where the Stokes wave with field E-1’ does not 
have to travel in the same direction as the wave with field E-1. The power generation at this 
second Stokes is Ƥ-2  (Eo*E-1)(E-1’*E-2). This process has no threshold and requires the 
phase-matching wave vector relationship  ko - k-1  =  k-1’ – k-2. This simple model also 
explains higher order anti-Stokes. Radiation at frequency ω+2 = o + 2r is produced without 
threshold by modulation of the first anti-Stokes by the molecular vibration at frequency r. 
The dipole moment   (Eo*E-1)E1* drives second anti-Stokes power at Ƥ+2 = (Eo*E-1)(E1*E2). 
This requires the phase-matching wave vector relationship ko – k-1  =  k2 – k1. 

The Raman gain is usually measured experimentally, and will be proportional to the 
spontaneous emission spectrum (as is true with lasers). Raman lasers occur when the laser-
pumped Raman-active gain medium is placed between mirrors that reflect the first Stokes 
wavelength. Again, this is analogous to lasers, where the gain medium must be placed 
inside a cavity to achieve laser threshold. On the other hand, the Raman gain is very large, 
and can build up from noise to a substantial signal without any feedback. This strength 
makes SRS in Raman-active liquids very strong, and explains the deleterious SRS that builds 
up in fibers. Once the first Stokes has built up to a substantial signal, all the other 
wavelengths can build up from it by parametric processes.  

Using solid-state terminology, molecular vibrations are optical phonons. With this point of 
view, it is reasonable to expect optically-excited acoustic phonons to have their stimulated 
counterpart. This is Stimulated Brillouin scattering, which will be discussed in the next 
section, but first we’ll look at some SRS applications.  

5.2 Applications of Stimulated Raman Scattering 

A few exciting possibilities made possible with SRS are mentioned here. In most cases the 
value of SRS is that is produces coherent light at frequencies other than those available directly 
from known lasers. In fibers, where intense light travels for a long distance down a Raman-
active medium (fused silica), SRS can build up and be detrimental by shifting the wavelength 
of the incident light. This is a problem in optical fibers for telecommunications and for flexible 
delivery of high-intensity light, although it is an advantage when the Raman light can be used 
as an amplifier. Spectroscopy is another field in which SRS has been particularly useful. 
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5.2.1 Raman lasers 

Raman lasers come in many designs for obtaining new frequencies that are not produced by 
lasers themselves. The way to achieve Raman threshold with the lowest optical intensity is 
to put the Raman medium inside the laser cavity, utilizing the same cavity mirrors as the 
laser (with reflectivity at both the laser and Raman frequencies). For example, yellow light at 
590 nm is a difficult laser color to produce, but can be achieved by frequency-doubling 
coherent light at 1180 nm with a KTP crystal. What source gives light at 1180 nm 
wavelength?  A Raman laser from a barium tungstate (BaWO4) Raman crystal placed inside 
a linear-cavity repetitively Q-switched diode-side-pumped Nd:YAG laser at 1064 nm. An 
average output of 3.14 W at 590 nm has been achieved (Li, 2007).  

Hydrogen and methane under pressure offer the largest Raman shifts of all molecules and 
are used to obtain high-power pulsed lasers at new frequencies. For example, a frequency-
doubled YAG laser Raman-shifted with methane provides output at 630 nm. Pressurized 
gases can be used in single pass, Raman resonator, oscillator-amplifier, and/or waveguide 
design; they don’t have the self-focusing, Brillouin and anti-Stokes that solids have. They 
may be intra-cavity or extra-cavity. 

Parametric Raman lasers can achieve efficient generation of both the second order Stokes 
and first anti-Stokes components emitting nearly diffraction-limited collimated beams. A 
first Raman laser is excited by some of the laser pump energy and produces a 1st Stokes 
component as a collimated beam. In the parametric Raman laser the Stokes beam interacts 
parametrically with the remaining collimated pump beam to produce high power (Grasiuk, 
2004). 

Raman lasers in silicon offer light generation within integrated circuit technology for intra-
chip and chip-to-chip information transmittal. Raman lasers in silicon use a CW pump beam 
from a laser diode and have the first-Stokes laser mirrors integrated right into the silicon 
chip (Service, 2005), a technique necessitated because silicon itself cannot be made into a 
laser. Long-wavelength injection Raman lasers are composed of alloys of aluminum, 
gallium, indium, and arsenic. These Raman lasers are grown on a single chip; some layers 
convert electricity into an initial pump laser and other layers shift the light via first Stokes to 
longer wavelength, out to 9 m (Troccoli, 2005). 

5.2.2 SRS in fibers 

The existence of SRS can be a problem in fiber optics, where over long distances it may 
broaden transmitted spectra. In other cases, SRS gain can be very useful, as an amplifier of 
weak signals, such as used in telecommunication systems. A Raman laser results when an 
SRS medium is placed in an optical cavity. 

Stimulated Raman scattering places a serious limit to delivering power down a fiber. As 
shown earlier, the effective SRS threshold is Ƥ-1th  = 16 Aeff gR Leff, where now Aeff is the 
effective mode area of the fiber and Leff is the length over which the SRS takes place. Larger 
mode area fibers enable more power to be sent down a given length without SRS becoming 
a problem, but they are not usually single mode, and aren’t used in telecommunications. 
The Raman gain coefficient gR ~ 10-13 W/m for silica fibers (and polarized light).  

While often detrimental, the SRS gain in fibers can be useful by providing a Raman 
amplifier, sometimes used in telecommunications. Distributed amplification is particularly 
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laser. Long-wavelength injection Raman lasers are composed of alloys of aluminum, 
gallium, indium, and arsenic. These Raman lasers are grown on a single chip; some layers 
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weak signals, such as used in telecommunication systems. A Raman laser results when an 
SRS medium is placed in an optical cavity. 

Stimulated Raman scattering places a serious limit to delivering power down a fiber. As 
shown earlier, the effective SRS threshold is Ƥ-1th  = 16 Aeff gR Leff, where now Aeff is the 
effective mode area of the fiber and Leff is the length over which the SRS takes place. Larger 
mode area fibers enable more power to be sent down a given length without SRS becoming 
a problem, but they are not usually single mode, and aren’t used in telecommunications. 
The Raman gain coefficient gR ~ 10-13 W/m for silica fibers (and polarized light).  

While often detrimental, the SRS gain in fibers can be useful by providing a Raman 
amplifier, sometimes used in telecommunications. Distributed amplification is particularly 
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appealing because it requires only a single pump source for all of the structure, reducing the 
network’s cost and complexity. The down-side is that Raman amplification tends to require 
significant input powers. Distributed Raman amplification is applied in long-haul, 
broadband transmission systems that use wavelength division multiplexing (WDM) because 
amplifiers must provide a flat gain profile for all the signal channels. Raman amplifiers 
enable control over the Raman gain profile, and thereby reduce amplified spontaneous 
scattering noise. Adding a fiber Raman amplifier to a fiber Erbium amplifier offers a much 
wider gain bandwidth than either component alone (Islam, 2004; Headley, 2005). 

Raman fiber lasers, with feedback to turn the amplifier into a laser, have potential 
applications in WDM systems, optical fiber sensors and spectroscopy. Continuously tunable 
channel spacing can be achieved with a hybrid of an erbium-doped fiber laser that gives 
high power conversion efficiency and a fiber Raman laser that has a large lasing bandwidth, 
both placed in an all-fiber ring cavity (Chen, 2007); stable multi-wavelength lasing has been 
observed over 24 wavelengths.  

5.2.3 Stimulated Raman Spectroscopy   

The nonlinear process of SRS provides a way to enhance the Raman signal for spectroscopic 
applications. The most common method is often called CARS (Coherent anti-Stokes Raman 
Spectroscopy). Light at both the laser and first Stokes frequencies are incident on the Raman-
active medium and the beating between these two laser beams sets up coherent molecular 
vibrations that parametrically generate the anti-Stokes frequency (Begley, 1974). This 
resonant four-wave mixing phenomenon obeys the usual requirement for phase-matching. 
The conversion efficiency from Stokes into anti-Stokes is proportional to the laser intensity 
squared, enabling as much as 105 times increase in the conversion efficiency. This method is 
particularly useful for investigating biological compounds where background fluorescence 
is a problem for conventional spontaneous Raman studies. CARS does, however, require a 
high power tunable laser (or an optical parametric amplifier). The spectroscopic techniques 
that use SRS are described in books and papers (Demtroder, 2008, McCamant, 2004).   

Other stimulated Raman spectroscopy topics under study include transient behavior, 
Raman lasers, waveguides and fibers, and SRS at surfaces and in cavities. The ability of SRS 
to provide frequencies as needed has enabled coherent atom control (Hagley, 1999; Lukin, 
2003) and manipulating quantum states (Bergmann, 1998; Scala, 2011).  

5.3 Stimulated Brillouin Scattering (SBS) 

In solid state physics, Raman-induced vibrations can be described as optical phonons. 
Interaction of light with acoustic phonons results in Brillouin scattering (the acoustic 
phonons are actually hypersonic, i.e. very high frequency acoustic waves). SBS can be 
understood, then, as a straight-forward extension of SRS to acoustic rather than optical 
phonons. SBS gain occurs in similarity with SRS. Stimulated Brillouin scattering occurs 
when two optical waves interact in materials through an acoustic wave generated by 
electrostriction. Electrostriction is the tendency of materials to become compressed in the 
presence of an electric field; electric fields change the density and therefore refractive index 
of electrostrictive materials. Spontaneous Brillouin scattering was known previously, just as 
spontaneous Raman scattering had been known before lasers. As with SRS, the spontaneous 
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process is best explained quantum mechanically; an incident photon of energy hνo is 
scattered by an acoustic phonon of energy hνa, and energy conservation requires that the 
scattered photon has an energy given by hν-1 = hν - haν. On the other hand stimulated 
Brillouin scattering can be explained classically as the beating of the electric fields of two 
optical waves that generate a hypersonic wave through electrostriction. This causes a 
moving index grating that scatters an incident optical wave and is the origin of the nonlinear 
coupling between the waves. The scattered wave frequency will down-shift or up-shift, 
depending on whether the acoustic phonon takes energy from the incident photon h(νo - νa) 
or gives its energy up to the incident photon h(νo + νa), respectively. There is a strong 
thermal excitation of acoustic phonons because the Brillouin shift is very small, so anti-
Stokes up-shifted scattered light is comparable in intensity to Stokes down-shifted light. 
Typical Brillouin shifts are in the GHz regime. For example, the shift in optical fiber at 
wavelengths near 1.55 μm is ~ 9.6 GHz. 

While SRS frequency shifts are given by fundamental characteristics of the scattering 
molecules and first Stokes has no phase-matching requirement, in SBS the acoustic 
frequency that determines the Stokes frequency shift is determined by a phase-matching 
requirement. This is because Raman-excited vibrations are localized on molecules, while 
Brillouin excitations are pressure waves that move with acoustic velocity va. The 
requirement that the hypersonic waves remain in phase with the interfering light waves 
provides the following vector relation: k-1 = ko - ka. For the incident and scattered light to be 
in the same direction, the acoustic frequency would have to be zero. Because the magnitude 
of each vector is inversely proportional its velocity and the acoustic wave is much slower 
than the light waves (by a factor of 10-5), the acoustic wave vector will be much larger than 
the optical wave vector, unless that acoustic frequency shift is very small. The largest the 
frequency shift occurs when the Stokes wave travels opposite the incident wave. In this case 
ωa/ωo = 2nva/c, which is in the multi-GHz range.  

5.3.1 SBS retro-reflection 

The retro-reflection that occurs with SBS is perhaps its most important characteristic. The 
first experimental results on SBS excited in liquids (with a ruby laser) showed that the retro-
reflected Stokes light returned to the (inhomogeneously broadened) laser, where this new 
frequency was amplified and reflected back to the liquid. Another SBS step then produced 
twice-shifted light (Garmire, 1964). It was only later that it was understood that phase-
conjugation was taking place. A normal mirror changes the phase of the incident light upon 
reflection by . Brillouin-reflected light, on the other hand, has a phase that is conjugate to 
that would be reflected off a usual mirror. This explains why SBS light could retrace its steps 
back into the laser, even after traveling through a lens. 

To understand phase conjugation, consider the susceptibility that oscillates with the acoustic 
frequency by beating with a forward incident wave field Eo = Ɛo exp[i(ωt - kz)] and a 
backward-directed Brillouin wave field E-1 =  Ɛ-1 exp{i[(ω-ωr)t + k-1z)]}. Considering complex 
notation, the term which gives the appropriate oscillation frequency for the susceptibility is 
χ = Eo E-1*, which oscillates at frequency ωr, and has a rapid periodicity in z, due to the 
propagation of vector k+k-1. The result is 

χ = ƐoƐ-1* exp{i[ωrt - (k-1 + k)z]}. 
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The oscillating polarization that drives the backward wave E-1 is given by  

P = εoχEo* = εo ƐoƐo*Ɛ-1* exp{-i[(ω–ωr)t + k-1 z]}.  

This a backward going traveling wave with a phase π different from the initial backward-
going wave. This means the phase of this polarization density is conjugate from the initial 
Stokes field. This is the origin of the term “phase conjugation.” 

The “magic” of phase conjugation can be explained by looking at what the phase does for 
any wave leaving a point (x,y,z) on one side of the Brillouin phase conjugator. Assume the 
wave builds up a phase φ as it travels to the conjugator; when it reflects back, its phase in 
conjugated. That is, the phase φ becomes –φ. As that wave retro-reflects back to the point 
(x,y,z), it re-traces its steps and its phase returns to zero. This happens for every point, no 
matter what the phase distribution is between its and the conjugator. Thus any aberrations 
are completely cancelled out. If this were an ordinary mirror, the phase would increase from 
φ to 2φ upon a round-trip, rather than returning to zero. Thus the aberration adds for an 
ordinary mirror and cancels for a phase-conjugate mirror.  

Nonlinear phase conjugation was first understood in the context of SBS and quickly was 
extended to other materials and processes, particularly photo-refractives, while SBS has 
remained a valuable way to reduce aberrations in high pulsed power applications, described 
later.  

5.3.2 Performance limitations due to stimulated Brillouin scattering 

In fiber telecommunications SBS puts a limit on the power that can be transmitted through 
fibers that is even more stringent than SRS. If the light in the fiber is too intense, SBS reflects 
light back where it came from, shifted down in frequency by the Brillouin acoustic  
vibration. This reduces the power that can be transmitted through single mode fibers for 
telecom applications (Shiraki, 1996). There is not a lot of flexibility in the design of 
telecommunications fibers because of requirements for low loss and low dispersion. The SBS 
gain GB and threshold input (monochromatic) power Ƥth through a fiber of effective area 
Aeff, respectively, are given by:   

GB =  (4πneff8p122/λ3ρcν∆νa )(Ƥo/Aeff)  and Ƥth = 21 Aeff /gBLeff 

where ndeff is the effective refractive index, p12  is the longitudinal elasto-optic coefficient, ρ is 
the density, c is the velocity of light (λ and ν are the wavelength and frequency of the 
incident light, respectively), Leff is the effective interaction length and ∆ν is the linewidth of 
the acoustic resonance (Kobyakov, 2005). The usual approach to reducing the effect of SBS is 
to use frequency-broadened pulses that smear the SBS gain over a range of wavelengths.  

The gain is proportional to the intensity, (Ƥo/Aeff), as expected and proportional to the square 
of the elasto-optic coefficient. In narrow line fiber lasers and amplifiers, SBS remains the 
primary limitation on output power. Large mode area fibers decrease the optical intensity in 
the fiber core and raise the SBS threshold, but the maximum output power from narrow 
linewidth optical fiber amplifiers is still limited to approximately 100 Watts. Because SBS in 
an optical fiber occurs when the signal propagating in the core generates an acoustic wave 
that scatters light in the reverse direction, the SBS threshold can be raised by choosing a 
refractive index profile that minimizes the acousto-optic overlap while maintaining the 
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desired optical properties (Kobyakov, 2005). Doping the core of the fiber with alumina 
(Al2O3) creates an optical waveguide but an acoustic anti-guide. Combining alumina and 
germania (GeO2) doping in the fiber core can spatially separate the optical and acoustic 
fields, yielding over 500 Watts of power in a single-mode output, without the onset of SBS. 

In laser-produced plasmas, SBS can be set up by thermal waves. In low-temperature, high-
density high-Z plasmas this instability dominates and can produce significantly more SBS 
that expected (Short, 1992). 

5.4 Applications of Stimulated Brillouin Scattering 

Possible applications of SBS are too numerous to describe in detail. Indeed, several books on 
SBS have already been written (Damzen, 2003; Agrawal, 2008), describing the problems it 
causes in practical systems and how to overcome them, but also how SBS can be used to 
improve other systems. These positive applications broadly can be thought of as improving 
lasers and as improving sensing systems. 

A phase conjugate mirror corrects wavefront aberrations, compensating for distortions of 
the laser beam created by inhomogeneities in the laser medium and/or its optical 
components. The SBS phase conjugate mirror is the simplest means to create phase-
conjugation and is suitable for high power/energy laser systems. One problem needing 
correction by this means is thermal lensing caused by inefficient optical pumping of 
Nd:YAG lasers (Kovalev, 2005).  

Phase conjugate mirrors are excellent for beam combining, although SBS requires the 
multiple lasers to be within the Brillouin gain linewidth. SBS phase conjugation is 
appropriate for combining beams from an amplifier array (Bowers, 1997). Research 
continues on how to combine the many beams needed for laser fusion (Kirkwood, 2011).  

SBS can help clean up laser beams, because the backward-going Stokes has a much 
smoother beam profile than the incident laser beam. Thus it is sometimes practical, for 
example if using a multi-mode fiber, to use the output from a retro-reflected Stokes beam 
rather than the original laser beam (Steinhausser, 2007). 

The SBS effect in a fiber ring sets up an acoustic wave that remains stable as the laser light 
beam travels around the ring, as long as the wavelength of the laser and the circumference 
of the ring are carefully matched. This enables the Brillouin laser to have an extremely 
narrow line, as narrow as 75 Hz (Geng, 2006).  

Brillouin scattering depends on strain and temperature, making possible distributed sensing 
through Brillouin scattering in optical fibers. Brillouin enhanced sensing optical fibers can be 
imbedded in smart composites. The backward scattered Brillouin wave can travel over long 
fibers as an indicator of where the fiber is undergoing strain or other problems. One 
technique involves introducing pump and probe at both ends and doing an optical 
correlation. Both stimulated and spontaneous Brillouin scattering have been used for these 
applications (Horiguchi, 1995; Bao. 2011).  

Laser pulse compression by SBS involves a tapered waveguide within a cell of pressurized 
methane gas. The Stokes pulses in the backward direction are compressed from incident 
nanosecond laser pulses (Hon, 1980). The taper ensures SBS starts at the far end of the cell 
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and the transient dynamics between the incident, reflected and pressure wave all combine to 
reduce pulses to sub-nanosecond. With two cells in a generator-amplifier setup, up to 25 J in 
15 ns pulses have been compressed to 600 ps (Dane, 1994); the two-stage process is much 
more stable than one alone (Erokhin, 2010).  

SBS in photonic crystal fibers (PCF) can be dramatically altered by wavelength-scale 
periodic microstructuring, which alters both the optical and the acoustic properties. A PCF 
guides light through a lattice of hollow micro/nano channels running axially along its 
length. These fibers can be designed to either eliminate SBS or to increase it. The acoustic 
changes are particularly significant in fibers that contain filamentary voids. In one such 
example, the SBS threshold was increased five times when the Stokes frequency shift was in 
the 10-GHz range (Dainese, 2006). 

6. Nonlocal optical/Photorefractive nonlinearities 
Nonlocal phenomena occur when intense light entering the medium at one location in space 
changes the refractive index or absorption at nearby locations. Most typically this is due to 
diffusion of optically-induced excitation away from the initial point of excitation. A simple 
example is thermal nonlinearities, observed when thermal heating due to absorption of laser 
power spreads to adjacent areas, effecting the whole beam, not must the most intense parts of 
the beam. This was observed in increasing absorption in ZnSe waveguides, which exhibited 
optical bistability, which could not have occurred without the non-local nonlinearity  (Kim, 
1987). Most often, thermal nonlinearities cause blooming – in which a powerful beam spreads 
out (“blooms”) because heating lowers the refractive index where the absorption of light is the 
strongest (in the center of the beam) – acting as a negative lens (Smith, 1977). The other main 
origin of non-local nonlinearities is the transport of optically induced charges in electro-optic 
media, which alter the refractive index. When this effect is detrimental, it is usually called 
“optical damage;” it ruins the spatial profile of the Gaussian beam. When these nonlinearities 
are wanted, to explore new phenomena, it is called photorefractivity.   

6.1 Optical damage 

High-power lasers can cause catastrophic optical damage by means of local bubble or crack 
formation, usually as a result of multi-photon ionization. The term optical damage is also 
used for non-catastrophic effects that medium-power lasers can introduce in electro-optic 
media. Such "damage" causes refractive index gradients that cause the beam to deform, 
interfering with its spatial profile or its waveguide properties (Mueller, 1984). This has been 
a particular problem in second harmonic generation, where the non-centrosymmetry 
requirement is also true for electro-optic coefficients. When it is useful, “optical damage” is 
typically called photorefraction; defects or atomic impurities in these crystals causes weak 
absorption of the light, liberating electrons which are free to move in the crystal, either by 
diffusion or drift. This separation of charges that occurs with the movement of electrons, 
creates internal electrical fields that, in turn, alter the refractive index of these electro-optic 
crystals. The altered refractive index affects the propagation of the light through the crystal. 

The ability of light beams to create electric fields through charge separation is called the 
photovoltaic effect. The photovoltaic effect is most deleterious when the material is strongly 
insulating. Providing weak paths of conduction can remove the charge separation and the 
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resulting photorefractivity. In LiNbO3, addition of small amounts of MgO has been shown 
to reduce photo-refractivity by increasing conductivity. 

6.2 Photorefractivity   

In photorefractivity, the refractive index is locally modified by nearby spatial variations of 
the light intensity. Unusual new effects can be observed as a result of photo-excited carriers 
moving about in electro-optic crystals, due either to diffusion or to drift in local electric 
fields. The strongest effects are observed when coherent waves interfere to form a spatially 
varying pattern of illumination. As a result of photo-excited charge migration, a space 
charge is introduced that results in an electric field that changes the refractive index via the 
electro-optic effect (Cronin-Golomb, 1984). Two light beams interfering in a photorefractive 
medium generate photo-carriers in the spatially periodic bright regions. These carriers move 
to the spatially periodic dark regions where they are trapped. These trapped charges 
introduce a periodic electric field that creates a periodic refractive index distribution if the 
material is electro-optic. This refractive index grating is spatially shifted from the incident 
interference pattern and can diffract light into new directions. This can occur at quite low 
optical power levels, although it may take some time for substantial charge distributions to 
build up. Applications include two-beam coupling, dynamic holography, phase conjugation 
and spatial solution formation (Gunter, 1982).  

Photo-refractivity was first discovered in lithium niobate, where it was shown that 
holograms could be written in real-time in the crystal, which offered promise for image 
processing. New crystals were investigated for photorefractivity and barium titanate was 
found to be have a large nonlinearity, resulting in interesting nonlinear effects, particularly 
related to phase conjugation. Photorefractive crystals have the advantage of high sensitivity, 
but tend to be very slow. In barium titanate the effects take seconds to build up; also it is 
sensitive only in the blue (Chang, 1985; Feinberg, 1980). 

Photorefractivity has  been extended to semi-insulating III-V and II-VI semiconductors, 
where the effect is not as large, but can be a thousand times faster, and the light source can 
be in the infrared – even at a wavelength of 1.55 microns in CdTe  (Partovi, 1990). The 
largest effects require kilovolts to be applied to the crystal, but kilohertz response can be 
achieved. If the wavelength is near the band edge of the semiconductor, the local resonant 
nonlinear refractive index can add to the non-local electro-optic refractive index change to 
enhance the photorefractivity (Partovi, 1991). Wave-mixing can be observed with mW of 
incident power (Nolte, 1999).  

More recently photorefractive polymers have proved effective, with the potential of low cost 
real-time holography (Ostroverkhova, 2004).  

6.3 Photo-refractive materials 

In the photorefractive effect, the local index of refraction is modified by spatial variations of 
the light intensity. It is typically most useful when coherent beams interfere with each other to 
form a spatially varying pattern of illumination. As a result, charge carriers are produced in 
the material, which migrate owing to drift or diffusion and space charge separation effects. 
The resulting electric field that is produced induces a refractive index change via the electro-
optic effect. Materials must have a large electro-optic and photo-induced charge carriers. 
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6.3.1 Photorefractive crystals  

The least expensive and commonly used photorefractive crystal, which has been around for 
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gain. Its figure of merit for photorefractive applications is much larger than lithium niobate, 
opening the way to much smaller devices. No applied field is required to enhance two-beam 
coupling. 
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Bi12GeO20 (BGO) show a unique combination of different physical properties. These are the 
fastest photorefractive crystals to date. The coupling gain can be enhanced by applying an 
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materials make possible a wide range of optical devices and systems for spatial 
light modulators, dynamic real-time hologram recording devices, phase conjugation wave-
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and integrated optical devices, as well as in bulk. 

6.3.2 Photorefractive semiconductors 
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photorefractive. They include undopcd and chromium-doped gallium arsenide (GaAs, 
GaAs:Cr), iron-doped and titanium-doped indium phosphide (Fe:InP, Ti:InP), undoped 
gallium phosphide (GaP) and vanadium- and titanium-doped cadmium telluride (CdTe:V, 
CdTe:Ti). These photorefractive semiconductors provide several attractive features for 
information-processing applications and could lead to a new generation of integrated 
optical information processors.  
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as donors and acceptors for supplying and receiving the transferred charges, respectively. 
Furthermore, the photorefractive material has to be insulating or semi-insulating in order to 
avoid Coulomb screening around the charged centers. Typical resistivity of semi-insulating 
GaAs is higher than InP, due to its higher bandgap; semi-insulating CdTe has even higher 
resistivity. A commonly used figure of merit is  n3r/ε, where r is the electro-optic coefficient. 
The figures of merit for GaAs, GaP, lnP, and CdTe are 3.3, 3.7, 4.1, and 16, respectively. 
Other crystals, BSO, SBN, BaTiO3, LiNbO3 and KNbO3, have figures of merit of 1.8, 4.8, 4.9, 
11, and 14, respectively. CdTe has the highest figure of merit among all the materials listed 
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here. In many of the semiconductors, photo-refractivity can be larger if an external field is 
applied. The big advantage of semiconductors is that their response time is high; they turn 
off much more rapidly than the crystals. (The turn-on time depends on incident intensity.) 

6.3.3 Photorefractive organic materials 

The main classes of photorefractive (PR) organic materials include polymer composites, 
small molecular weight glasses, fully-functionalized polymers, polymer-dispersed liquid 
crystals, liquid crystals and hybrid organic-inorganic composites. The best performing 
photorefractive organic materials exhibit two-beam coupling gain coefficients Γ = 200-400 
cm-1, giving nearly 100% diffraction efficiencies in rather thin films. Their grating formation 
times are on the order of several milliseconds (Eralp, 2006). The advantage of polymer 
composites is the ability to tune their photorefractive properties by varying the 
concentration and type of constituents. However, because many components are combined 
in the composites, phase separation and crystallization can reduce the shelf life of devices. 
Also, while adding a plasticizer enhances chromophore orientation, it also increases the 
inert volume, which reduces overall photorefractivity (Grazulevicius, 2003; Marder, 1997). 
Organic glasses resolve these issues, but reduce the flexibility to tune the material’s 
properties (Zhang, 2011). Both the shelf life of photorefractive polymers and the quality of 
starting materials available remain problems that have until now kept photorefractive 
organic materials as research materials. 

6.4 Photo-refractive applications 

Proposed applications include read-time holography, optical image processing, high density 
optical data storage, optical computing, communications, image processing, neural 
networks, associative memories, phase conjugation, laser resonators, and many others. 
Image processing applications include image correlation, image amplification, and dynamic 
novelty filtering. Data can be stored in photorefractive materials in the form of 3D phase 
holograms that have very high density and fast parallel optical access. Phase-conjugation 
has been used to correct image distortions suffered by optical beams in inhomogeneous or 
turbulent media. Photorefractive crystals, semi-insulating semiconductors, and polymer 
films have all been used to demonstrate proposed applications, but there remain no 
widespread commercial applications, due to the high cost of quality crystals and 
performance limitations, particularly the slow hologram formation speed in most materials. 

Some photorefractive applications are on the horizon. Perhaps one of the most exciting is 
real-time holography that can display people, objects or scenes in three dimensions. The 
holograms can be seen with the unassisted eye and are similar to how humans see their 
actual environment. The concept of 3D telepresence, a real-time dynamic hologram 
depicting a scene occurring somewhere else, is surey an application with promise. A 
holographic stereographic technique is used, along with a photorefractive polymer material 
as the recording medium. The holographic display refreshes images every two seconds. A 
50 Hz nanosecond pulsed laser writes holographic pixels. Multicoloured holographic 3D 
images are produced by using angular multiplexing, and the full parallax display employs 
spatial multiplexing (Blanche, 2010). Such applications will certainly increase in the future as 
materials become better. 
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6.5 Charge transport nonlinearities 

A range of other nonlinear phenomena depend on the spatial transport of optically induced 
charge carriers within internal electric fields, particularly in semiconductor devices (Garmire, 
1989). Schottky barriers and pn junctions provide internal fields that can be depleted by motion 
of photo-carriers, offering exquisitely sensitive nonlinearities through the electro-optic effect 
and through band-filling (Dohler, 1986; Jokerst, 1988). The modulation-doped n-i-p-i and 
hetero-n-i-p-i structures are examples, with the nonlinear refractive index due to resonant 
phenomena that can respond in milliseconds to microwatts of optical power (Kost, 1988).  

7. Wave-mixing in nonlinear materials  
Wave-mixing geometries involve two or more plane-waves, incident at an angle in a bulk 
nonlinear medium. The nonlinearity can be absorptive or it can rely on a nonlinear 
refractive index (or both). When the medium is photo-refractive, with mobile optically-
excited charge carriers, the phenomena are particularly interesting.  

7.1 Two-beam coupling 

When two coherent beams interfere in a nonlinear medium, their interference introduces a 
grating in absorption or refractive index inside the material. These beams do not interact if 
the optical nonlinearity is local; they merely pass through each other. If photo-induced 
charges move within the material, however, a grating is set up that moves laterally with 
respect to the incident beams. This grating can diffract one beam into the other. The 
direction of energy transfer is determined by the sign of the mobile charge carriers and the 
electro-optic response. The energy transfer direction can be reversed by changing the 
polarity of the electric field (Partovi, 1987; Kim, 2011). 

Two-beam coupling makes possible the amplification of a weak beam by means of coupling 
from a strong beam. Analysis of the coupled mode equations shows that the ratio of the 
weak beam to the strong beam increases exponentially with two-beam-coupling gain-length 
product L: 

Iwo/Iso  =  (Iwi/Isi)exp(-L)  where   = (4π/λ)(∆n/m) sin. 

where  Iwo  and Iso are the weak and strong output beams, respectively, and Iwi and Isi are the 
weak and strong incident beams, respectively. ∆n is the peak nonlinear refractive index 
introduced by the interference, m is the diffraction order, and  is the lateral phase angle 
between the periodic spatial intensity profile and the refractive index grating (that was 
moved by photo-charge transport). The gain can be used as a polarization-converter if the 
unwanted polarization is used to drive the gain (Heebner, 2000). 

Beam coupling has been observed in the conventional photo-refractive crystals such as 
barium titanate and Fe:LiNbO3. Some possible applications are optical limiting, produced by 
some fraction of the pump beam being reflected back onto itself, thereby robbing the 
incident beam if it becomes too powerful. 

7.2 Three-wave mixing 

Parametric processes involve three waves interacting. An example is parametric down-
conversion, which is at the heart of the optical parametric oscillator (OPO) that will be 
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discussed later. In a χ2 medium, each incident pump photon breaks up into two less-
energetic photons (the signal and the idler) such that the sum of their energies equals that of 
the pump photon. The sum of the signal and idler wave-vectors must also equal that of the 
pump ("phase-matching," as required in second-harmonic generation).  

Parametric down-conversion can be regarded as the inverse process of sum-frequency 
generation, in which two beams at different frequencies create a beam that has a frequency 
equal to the sum of their frequencies. Thus sum- and difference- frequency processes are 
also three-wave mixing processes. In difference-frequency generation, it can be considered 
that both the pump beam and an intense idler beam mix create the signal beam. In 
parametric generation, the idler signal builds up from noise and feeds the signal beam with 
a gain per unit length. This process is enhanced by providing a cavity for the signal beam, in 
which case it has a threshold and becomes an optical parametric oscillator (OPO). These 
processes are particularly important to reach wavelengths in the mid-infrared. 

The mixing of an anti-Stokes Raman wave with the laser beam and a Stokes wave is another 
three-wave mixing process. These processes do not have thresholds (unless they are placed 
in cavities). Three-wave mixing can even be used for generating holograms (Bondani, 2002). 
Three-wave mixing can be effectively applied to wavelength conversion, all-optical gating, 
all-optical switching, optical parametric amplification and oscillation, where it can increase 
the wavelength range over which these applications can operate (Liu, 2002). 

7.3 Four-wave mixing 

Four-wave mixing is a nonlinear effect arising from a third-order optical nonlinearity, χ3. 
The four-wave mixing (FWM) geometry is similar to two-beam coupling: two incident (or 
“pump”) beams (or “waves”) “write” an optically-induced grating by means of nonlinear 
refractive index, non-linear absorption, or both. In FWM there is also a probe, or reading, 
wave that is partially diffracted from the optically induced grating to form a fourth wave, 
called the “signal beam.” In the degenerate FWM geometry (DFWM), all four beams have 
the same wavelength. FWM provides background-free detection of very weak diffraction 
signals, since the signal wave appears at a different angle from the rest of the light. 

The diffracted beam intensity (signal) is typically measured as a function of time, applied 
electric field, writing beam intensities, etc and the diffraction efficiency is determined. 
Typically the probing beam should not disturb the grating, which is achieved by making the 
probe beam much weaker than the pump beams and/or by having the probe beam 
polarized orthogonal to the writing beams. In the approximation of thick (volume) grating, 
the diffraction efficiency (signal intensity divided by incident intensity) in a sample of 
length L is given by: 

η  =  exp(-αL)sin2(π∆nL/λ) 

where αL is any residual (linear) absorption and ∆n is the maximum amplitude of the 
refractive index grating, where it is assumed that the incident and diffracted fields are 
parallel. Note that when the refractive index modulation Δn is small, the diffraction 
efficiency is proportional to (ΔnL)2 .   

If the two waves that interfere are at the same frequency, the grating is stationary. In the 
thick grating limit, the Bragg condition must be satisfied, so in DFWM the probe beam must 
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enter at the same angle as one of the pump beams. If DFWM takes place in a thin film, then 
the Raman-Nath condition holds and the probe beam can be at any angle. If the probe beam 
is a different frequency from the pumps and the grating is thick, the Bragg angle must be 
chosen:   sinθprobe  =  nλprobe/2d, where d is the grating spacing caused by interference of the 
two pump beams. 

When the two pump beams are at different frequencies, then the refractive index grating 
will move back and forth laterally. The probe-wave reflecting off this grating will be 
frequency-shifted by the frequency of the moving grating, just as in an acousto-optic 
modulator.  

Many FWM experiments are possible: FWM measures lifetimes of gratings, spatial motions, 
surface effects, etc. (Abeeluck, 2002). Pulsed pump and probe waves, with a time delay 
between them, is a particularly valuable way to measure transient phenomena, both excited 
state lifetimes and dephasing (Yang, 1994). Many optical nonlinearities can be explained 
under the general concept of FWM, such as some third harmonic processes, SRS, SBS, 
parametric amplification, photo-refractive effect, and self-phase modulation (discussed 
later). The concept is useful to understanding a variety of spectroscopic tools, also discussed 
later. The most significant of these is CARS (coherent anti-Stokes Raman spectroscopy) 
where two input waves generate a detected signal with slightly higher optical frequency 
due to internal molecular vibrations. With a variable time delay between the input beams, it 
is also possible to measure excited-state lifetimes and dephasing rates (Becerra, 2010). 

In fibers, FWM can be both a blessing and a curse. Non-degenerate FWM occurs in a fiber 
when two or more different frequencies propagate together, due to the fact that doped silica 
has a χ3. With two input frequencies, a refractive index modulation at the difference 
frequency occurs, which creates two additional frequency components as sidebands on the 
initial waves. If there is already light at these sideband frequencies, it can be amplified, i.e., 
it experiences parametric amplification. In this way FWM may be a detriment to optical 
communications. As with SRS and SBS, FWM can be useful or harmful, depending on the 
application. Four-wave mixing in fibers is related to self-phase modulation and cross-phase 
modulation, transient effects that will be discussed later; this leads to spectral broadening 
that is particularly deleterious to WDM (wavelength division multiplexing), where it can 
cause cross-talk between different wavelength channels, and/or an imbalance of channel 
powers. One way to suppress this is to avoid equidistant channel spacing. 

7.4 Phase conjugation and its applications 

When two waves are counterpropagating (k1 = -k2) in a nonlinear medium, their 
interference sets up a grating with a periodicity of a half-wavelength. When a third wave at 
the same frequency is incident on this grating, the fourth wave that constitutes its reflection 
(k4 = -k3) will be the phase conjugate of the third wave. As discussed in SBS, where phase-
conjugation is also seen, phase conjugation results in a retroreflection that overcomes 
aberrations. Photorefractive materials enable phase conjugation at relatively low optical 
power levels (Yariv, 1978).  

The phase-conjugating grating exactly reverses the phase of any third wave. Thus, if a beam 
has gone through an aberration and forms a distorted wave, each portion of this wave will 
have its phase reversed upon reflection, so that its path will exactly reverse, re-creating the 
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original beam’s spatial profile after the waves pass through the aberrator. This phenomenon 
occurs in SBS and also in photorefractive materials.  

Practical applications considered for phase conjugation include correcting wavefront 
aberrations in a laser beam (Bach, 2010). In optical beam clean-up, the signal beam that 
contains information about the object is combined with the reference beam in a 
photorefractive material, and a volume hologram of the object is recorded. If the signal 
beam went through an aberrator (which would correspond to the situation when the object 
has to be imaged through a medium with turbulence, refractive index inhomogeneities, 
etc.), then the image would be heavily distorted. If, however, a reading beam 
counterpropagating to the reference beam is introduced, it generates the phase-conjugated 
replica of the signal beam, which retraces its path through the aberrator, creating a cleaned-
up image of the object. Impressive demonstrations have been provided, but practical 
systems for such applications have not yet been developed. 

In the future it may be possible to use phase conjugation to transmit undistorted images 
through optical fibers (or the atmosphere), to provide lensless imaging down to 
submicrometer-size resolution to improve optical tracking of objects, phase locking of lasers 
(although multiple lasers must be close to the same frequency and combining laser beams 
hasn’t yet been shown practical), refreshing of holograms for long-term optical storage, 
optical interferometry, and image processing. Phase conjugation has demonstrated a 
number of remarkable phenomena, particularly related to image processing (novelty 
filtering; edge filtering etc.), but to date only hero demonstrations have been reported. A 
number of practical issues still must be solved before phase conjugation is likely to be 
useful. The most likely application lies in telecommunications where it has been shown that 
nonlinear phase noise is effectively compensated in a midlink optical phase conjugation 
configuration (Jansen, 2006). 

8. Transient nonlinear optics 
Some phenomena occur only in the transient regime. These have become particularly 
important because ultra-short laser pulses (as short as femtoseconds) can provide changes in 
optical fields faster than any characteristic times in the system. Many of these effects, such as 
self-induced transparency (Fleischhauer, 2005) and photon echoes (Zewail, 1980; McAuslan, 
2011), require quantum mechanical coherence of atomic states and will not be discussed here. 

8.1 Self-phase modulation 

Self-phase modulation and cross-phase modulation are important transient phenomena that 
must be included. These phenomena rely on the fact that a pulse traveling through a 
nonlinear medium sees a time-dependent refractive index, due to the fact that the intensity 
changes over the time of the pulse. And a time-dependent refractive index introduces a 
time-variable phase shift that broadens the frequency spectrum of the pulse (Genty, 2007). 
Because the nonlinear refractive index depends on intensity, when the intensity depends on 
time through I(t), so does the refractive index, n(t). To first order, its time dependence can be 
written as n(t)  =  no + t(∂n/∂t)  =  no +  tn2∂I/∂t. A linear variation in time can be considered 
a frequency shift, so the nonlinear refractive index causing the light to modulate its own 
phase means that the light undergoes a frequency shift given by  Δν  =  n2(∂I/∂t)(z/λo). At 
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the beginning of a light pulse, the intensity is small, it rises to a maximum and then returns 
to zero. Thus the phase varies during the duration of the pulse and generates a continuum 
of frequencies. Pure SPM broadens the frequency spectrum of the pulse symmetrically, 
introducing a pure phase shift; it does not change the envelope of the pulse in the time 
domain.  

In any real medium, however, dispersion will also act on the pulse. In regions of normal 
dispersion, the "redder" portions of the pulse have a higher velocity than the "blue" portions, 
and thus the weaker part of the pulse moves faster than its stronger parts, broadening the 
pulse in time. In regions of anomalous dispersion, the opposite is true, and the pulse is 
compressed temporally and becomes shorter. Using femtosecond lasers in specially 
designed fibers, self-phase modulation can be so large as to produce a white-light 
continuum which has proven to be very useful for spectroscopy Ranka, 2000). 

If the pulse is strong enough, the spectral broadening process of SPM can balance the 
temporal compression due to anomalous dispersion and reach an equilibrium state, called 
an optical temporal soliton, discussed later. 

Thus we see that self-phase modulation can introduce spectral broadening, extending all the 
way to a supercontinuum in fiber, or it can compress the pulse in time. When designed 
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propagating second signal. In a second step dispersion leads to a transformation of the 
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8.3 Temporal solitons  

A soliton is a wave with a unique shape that travels undisturbed without changing. Solitons 
require a balance between nonlinearity and dispersion. Optical solitons are most often 
thought of in the time domain, especially in fibers, where pulse compression due to the 
optical nonlinearity can overcome the tendency of dispersion to spread pulses out as they 
travel down a fiber. This happens only for discrete values of the pulse energy and, for 
positive nonlinearities, the dispersion must be anomalous (negative) (Haus, 1996). Solitons 
are also called solitary waves and were first discovered in water waves traveling down a 
canal. Solitons are unique in that they can interact with other solitons and emerge from the 
collision unchanged, except for a phase shift.  

Thus and optical temporal soliton is a pulse of light traveling (usually down a fiber) at its 
group velocity, while maintaining its same shape. Solitons occur because of an exact balance 
between dispersion (that tends to spread out the pulse in time) and self-phase-modulation 
(that tends to widen the spectrum and narrow the pulse). Solitons can be found by solving 
the non-linear wave equation in the presence of dispersion. The unique time-dependence of 
the electric field amplitude of the pulse has the form: E(L,t) = Eo sech(t/To). 

This pulse has a unique amplitude; its peak intensity is linearly proportional to the group 
velocity dispersion (GVD), |2/k2|, and inversely proportional to the pulsewidth 
squared, as shown:  I = no |2/k2|/(on2vg2To2). 

Solitons can be explained by considering that the chirp produced by SPM, with high 
frequencies in back and low frequencies in front, is offset by dispersion, which slows the 
low frequencies in front of the pulse and speeds the high frequencies in the back of the 
pulse. The resulting pulse does not change its shape as it travels down the fiber; the 
dispersion is kept in balance by the nonlinearity and vice versa. If an input pulse does not 
have the exact soliton shape, a clean soliton will eventually emerge after the undesirable 
portions of the excitation spread out in time. 

Higher order solitary waves exist. An N = 2 soliton starts out as a simple pulse, but as it 
travels it sharpens in time while developing side-peaks. It fully recovers after a certain 
period, only to restart the process. The N = 2 soliton requires approximately twice the 
intensity of the N = 1 soliton. Solitons higher than N = 2 always have multiple peaks in time. 
These peaks have interesting behaviors, such as passing through each other without 
interfering. The solutions to the nonlinear wave equation rapidly become very complex and 
will not be further considered here. 

9. Beam-related non-linear effects 
To this point we have generally assumed plane waves, either a single wave or interfering 
waves. (This assumption was violated, however, when describing the Z-scan method for 
evaluating optical nonlinearities.) A number of interesting phenomena occur when a 
Gaussian beam, or any other beam of finite width, travels through a nonlinear medium. 
These effects include self-focusing and optical solitons.  

9.1 Self-focusing  

When an intense beam is focused into a material with a nonlinear refractive index, the phase 
velocity decreases with increasing intensity near the center of the beam. This means equiphase 
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surfaces are compressed near the axis where the beam is more intense. Since rays are normal to 
the equiphase surfaces, they will tend toward the region of highest intensity, coming to a focus 
if they can overcome diffraction. This tendency to self-focus is offset by the tendency to 
diffract. Thus the critical power must be high enough that self-focusing wins.  

Self-focusing occurs if the radiation power is greater than a critical power value   
Pcr  =  αλ2/(4πnon2),  where λ is the radiation wavelength in vacuum and α is a constant that 
depends on the initial spatial distribution of the beam and it is approximately 2 for 
Gaussian-shaped profiles. Of course this critical power depends on the nonlinear coefficient 
n2. For air, n2  ≈ 4×10-23 m2/W for λ = 800 nm, and the critical power is Pcr ≈ 2.4 GW, 
corresponding to an energy of about 0.3 mJ for a pulse duration of 100 fs. For fused silica,  n2 
≈ 2.4×10-20 m2/W, and the critical power is Pcr ≈ 1.6 MW. 

When a beam enters a nonlinear medium, a simple model of a uniform beam of radius a 
entering a nonlinear medium were ∆n = n2I, predicts that it will take a distance zf before self-
focusing occurs, where zf 2 = (a2/4)no/∆n (Garmire, 1966). When intense light self-focuses, 
the intensity becomes large enough that all sorts of additional nonlinearities become large, 
particularly SRS and SBS. If the beam has hot-spots, the self-focusing action can cause it to 
break up into filaments (Brewer, 1968). Local areas can become bright enough that they can 
damage the material. Self-focusing is a real problem that must be overcome in high power 
nonlinear systems.  

9.2 Spatial solitons 

The spatial soliton concept preceded self-focusing but is much harder to create in the 
laboratory. When diffraction and self-focusing are balanced, the nonlinear medium can 
cause the optical beam to trap itself. As a simple estimate, consider the diffraction of a 
circular optical beam with a uniform intensity profile in a nonlinear material whose 
refractive index varies with intensity as n = no + n2I. In a linear medium a beam of diameter 
D is expected to diffract with angle θD = 1.22λ/noD. For a sufficiently intense beam, the 
nonlinearity can cause a large enough dielectric discontinuity at the edge of the beam that 
the critical angle for total internal reflection θC is greater than θD and the beam cannot 
diffract. For larger diameter beams, the critical angle θC becomes smaller, but so does the 
diffraction angle θD. For smaller diameter beams, θC is larger, but so is θD. This means there 
is a particular value of the power, independent of the diameter of the beam, at which we 
expect to see the beam self-trap. This value is Pcr = 1.222πλ2/32n2n2. (Chiao, 1963, Wright, 
1995)  The shape must be calculated numerically, but it is clear that the beam area and peak 
intensity are inversely related, in order to hold the power constant.  

For a slab beam there is an analytic solution for the 1D soliton, in which the ideal beam 
intensity profile is sech2Γy, for which there is a critical power, given by  Pcr = 2π/n2nk02, 
assuming the nonlinear refractive index is expressed as n2I. The size of the beam  
is determined by , which is approximately the inverse beam-width, and is given by   
Γ = ½ ε21/2koEt(0), where Et(0) is the peak value of the optical field.  

In a pure χ3 nonlinearity (optical Kerr effect), the 2D cylindrical beam soliton turns out to be 
unstable at the critical power, resulting in filamentation and multiple self-focusing. 
Nonetheless, stable solitons can be created in media with a saturating nonlinearity, or in 
media with a χ5 term. In Kerr media, 1D solitons (with a slab beam) are stable. Stable 1D 
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solitons lasting as long as 5 cm have been reported in carbon disulfide (Barthelemy, 1985). 
Stable self-trapping can also be observed in the plane of a nonlinear waveguide (Stegeman, 
1986). Waveguide confinement out-of-plane means the optical field follows the 2-D solution 
of the nonlinear wave equation, enabling the beam to travel stably, without diffraction or 
focusing, in a special in-plane spatial distribution. At higher power, the characteristics of 
higher-order spatial solitons can be seen (Maneuf, 1988). An amplified mode-locked dye 
laser with 75 fs pulse-length can to trap itself in a spatial soliton in a glass waveguide 5 mm 
long (Aitchison, 1990); the small nonlinear coefficient of glass requires high peak power to 
trap the beam. The guided beam can retain its original 15 m width at a peak power of  
P ~ 400 kW. While an impressive result, these powers are much too high to be practical. 

Spatial optical solitons are possible in a χ2 medium using the cascading nonlinearity 
discussed above (Torruellas, 1995). With phase matching, both the fundamental and second 
harmonic can be mutually trapped. 

9.2.1 Spatial solitons in photorefractive media 

Spatial solitons can occur in photorefractive media, where the critical power can be on the 
order of 10 W (intensities of about 200 mW/cm2) (Duree, 1993). Photorefractive crystals like 
SBN have a nonlinearity that can be controlled by a DC applied voltage. Only for a small range 
of applied voltages is a shape-preserving spatial profile observed to propagate throughout the 
crystal. These solitons are independent of the light intensity and provide trapping in two 
dimensions. These are quasi-steady-state solitons, existing only in the time window between 
the formation of the space-charge grating and the screening of the applied field. 

A second kind of photorefractive soliton, called the screening soliton, appears in steady state 
due to the nonuniform screening of the applied field because of nonuniform intensity 
distribution that can take place in photo-voltaic media (Segev, 1994). A third kind of photo-
refractive soliton takes place in lithium niobate, which has a strong photovoltaic current. This 
results in a photo-voltaic field that changes the refractive index to enable a one-dimensional 
self-guided spatial soliton (Taya, 1995). The ease with which spatial solitons can now be 
created has opened up a huge field for experimental study (Stegeman, 1999) with creative new 
optical profiles (Shu, 2010). Applications are not so readily available, however. 

9.2.2 Spark tracks in air  

Laser-produced filamentary sparks are the result of instabilities in nonlinear media, 
particularly in air. The separate regions of ionization suggest that the spatial distribution of 
the electric field needed for ionization and created by the focused laser beam has regions of 
maximum and minimum intensities along the beam axis (Berge 2007). Laser-induced 
breakdown and resulting filaments in air is now a very large field, with work underway to 
use in weapons. 

9.3 Nonlinear waveguides 

Waveguides can increase the effective length over which laser light can propagate at high 
intensity down a nonlinear medium. They can also increase the interaction length between 
two light waves, enhancing nonlinear phenomena. In addition, there are some particular 
ways in which the nonlinear refractive index can create or destroy waveguides. Nonlinear 
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waveguides can exhibit optical bistability (which will be discussed in detail later); this may 
include thermal nonlinearities as well as the usual χ3 nonlinearities.  

Waveguides increase the effective path length for NLO processes, such as SHG. These 
processes usually increase quadratically with the interaction length (at least until the process 
begins to saturate). But the process also depends on the intensity. To achieve high intensity, 
it is necessary to focus the beam, which usually results in an interaction length only twice 
the Rayleigh length. Waveguides are the way to overcome this limitation. Waveguides have 
become important for harmonic generation, because quasi-phase matching is often simpler 
to create in waveguides than in bulk. Path lengths go from tens of micrometers in a focused 
beam to several cm, making harmonic generation very practical even for mW lasers.  

Highly nonlinear waveguides can be created or destroyed by intense incident light. This is a 
form of all-optical switching that has been investigated for integrated photonics. Optical 
creation of waveguides can be seen in bulk photorefractive media, when optical solitons are 
formed. The nonlinearity may be located in the waveguiding medium itself or in one or 
more of the media bounding the waveguide.  

Within nonlinear waveguides, the shape of the guided mode and its propagation 
wavevector depend strongly on the optical power. This means incident light power can vary 
its own coupling efficiency into the waveguide, through the variation of the power-
dependent nonlinear refractive index of the spatial layer in the coupling region. In a prism-
coupling setup, the optimum coupling angle at high incident power is different from that at 
low incident power. In end-coupling into a waveguide, the input must have the exact mode 
shape to achieve (in principle) 100% coupling into the one mode in a single-mode guide. In a 
nonlinear waveguide, this mode-shape depends on intensity inside the guide. Because 
coupling into the waveguide depends on the intensity inside the guide, these nonlinear 
waveguides can exhibit optical bistability. By definition, optical bistability means that there 
are two possible output powers for a single input power. As the input intensity is turned up 
from zero, the coupling into the waveguide may be poor, because there may be mode mis-
match. Thus the output power at a particular power, say Po, would be some small fraction of 
the input power. As the input power is turned up toward its maximum, the intensity inside 
the waveguide may move it toward mode-match, so that a higher fraction of the incident 
light is coupled into the guide. Thus coupling into the waveguide is now high. Upon 
lowering the input power back to Po, the waveguide remains closer to mode-match than it 
was when the input power was increased to Po from below. Thus there are two possible 
output states when the input is Po. This is an example of optical bistability arising from a 
non-local nonlinearity. The effective nonlinearity is non-local because the mode-shape arises 
from the waveguide definition of optimum mode shape. Potential applications lie in the area 
of all-optical signal processing:  bistability, switching, upper and lower threshold devices, 
optical limiters. 

Optical bistability has been observed as a result of opto-thermally-induced refractive index 
changes. Temperature-induced dispersive OB depends on the temperature change of the real 
part of the index of refraction affected by a change in the absorption coefficient via the 
Kramers-Kronig relation. The temperature-dependent change in the optical path length ∆(nL) 
is described by a total differential. Neglecting thermal expansion of the sample we have 
∆(nL)=L (∂n/∂t)∆T. This kind of nonlinearity requires feedback, forming a kind of NLFP. 

Another kind of waveguide bistability utilizes the possibility that the absorption is 
nonlinear with temperature. Under the right conditions, this leads to a nonlinear equation 
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that exhibits bistability in output vs. input. Semiconductors present particularly strong 
example of such bistability  (Kim, 1988), as do a number of organic compounds. Polymer 
dispersed liquid crystals can show thermally induced optical bistability (Mormile, 1998).  

Fibers offer an extraordinarily long path length in the χ3 material fused silica. The ability to 
make a photonic fibes, with holes along the fiber (a photonic crystal fiber, or PCF) accurate 
located for specific applications, has made it possible to increase nonlinear effects. PCFs 
offer single-mode propagation over a broad wavelength range with better mode 
confinement, increasing the nonlinearity. It is also possible to engineer their group velocity 
dispersion so as to create phase match. Besides SRS and SBS and FWM, which have been 
already described in fibers, the phenomena of self-phase modulation and cross-phase 
modulation occur strongly in these fibers.  

Air–silica microstructured optical fibers (sometimes called photonic bandgap crystal fibers) 
can exhibit anomalous dispersion at visible wavelengths. This provides the phase-matching 
necessary for a myriad of nonlinear interactions: spectral broadening and continuum 
generation, stimulated Raman and Brillouin scattering, and parametric amplification. Using 
photonic crystal fibers and 100 fs pulses, a supercontinuum can be generated, providing a 
light source from the infrared to the UV (Dudley, 2006). Supercontinuum can be generated 
using laser pulses as long as several ns or even with high power cw sources. Applications 
include optical coherence tomography, spectroscopy and optical frequency metrology, 
leading to the development of a new generation of optical clocks, which has opened up new 
perspectives to study limits on the drift of fundamental physical constants.  

10. Cavity-enhanced nonlinearities 
Another way to increase nonlinear effects is to place the nonlinear material in a reflective 
cavity to resonantly enhance the local optical field. The internal field is increased by the 
cavity Q. An obvious example is cavity-enhanced SHG. For some nonlinearities, the cavity 
can provide feedback so that an amplifying process becomes an oscillation. Examples are 
OPO’s and Raman lasers. Finally, some phenomena require a cavity to be observed at all. 
The nonlinear Fabry-Perot demonstrates optical bistability, for example. 

10.1 Resonantly enhanced wave-mixing 

Placing a SHG crystal inside the pumping laser resonator has long been a way to increase 
the SHG efficiency. Internal intensities can be orders of magnitude larger than the external 
intensity, enabling much larger conversion efficiencies than placing the NLO crystal outside 
the resonator. The internal intensity Iinside = Iout/(1-R), where R is the reflectivity of the 
output mirror, which can be seen by recognizing that (1-R) is the transmission T and Iout  = 
TIinside. As an example, today’s green laser pointers are frequency-doubled diode-pumped 
solid-state lasers with a cavity doubling crystal internal to the laser cavity. An alternative is 
to place the doubling crystal in a cavity external to the laser cavity. Conversion efficiencies as 
high as 75% have been reported with 60 mW cw output (Li 2006) with QPM based on 
periodic poling.  

A cavity can also resonate four-wave mixing, to enhance the output. Examples are photo-
refractive films and polymer films.  
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10.2 Optical Parametric Oscillators (OPOs) 

An OPO converts monochromatic laser emission (the pump) into a tunable output via a 
three-wave mixing process. Quantum efficiencies can exceed 50%. The heart of an OPO is a 
nonlinear-optical (NLO) crystal characterized by an NLO coefficient, deff, and its related NLO 
figure of merit, deff2/n3 (where n is the refractive index). In the NLO crystal, the pump photon 
decays into two less-energetic photons (the signal and the idler) so that the sum of their 
energies equals that of the pump photon. An important further constraint is that the sum of 
the signal and idler wave-vectors must equal that of the pump ("phase-matching" condition). 
The latter condition is never satisfied in the transparency range of isotropic media but can 
be fulfilled in birefringent crystals. Alternatively, it can be fulfilled in quasi-phase-matched 
(QPM) crystals with periodically modulated nonlinearity (periodically poled lithium 
niobate, for example) in which the artificially created grating compensates for the wave-
vector mismatch. 

Parametric frequency down-conversion in an OPO can be regarded as the inverse process of 
sum-frequency generation. Alternatively, an NLO crystal can be viewed simply as the 
impetus for the pump photon into break up into two smaller photons. Rotating the crystal 
changes the ratio between the signal and idler photon energies, and thus tunes the 
frequency of the output. The easiest way to illustrate parametric frequency conversion is to 
consider the case of a short (<1 ns) intense pulse as the pump. In this case, a single pass 
through an NLO crystal is sufficient to convert a substantial fraction of the pump into the 
signal and the idler. This type of single-pass device is called an optical parametric generator 
(OPG). For pump pulses with lower intensity, parametric frequency conversion is weaker; 
therefore, an OPO cavity is required to enhance this process. 

The main value in OPOs is that the signal and idler wavelengths, which are determined by 
phase-matching, can be varied over a wide range. Thus it is possible to produce 
wavelengths which are difficult or impossible to obtain from any laser (e.g. in the mid-
infrared, far-infrared or terahertz regions), with wide wavelength tunability. 

10.2.1 Optical parametric oscillator threshold 

The threshold for an OPO is calculated by equating the gain of the optical parametric 
amplifier to the losses in the cavity. The gain can be found by analyzing coupled mode 
theory for the mixing of the three waves. A strong input pump field E3 at frequency ω3 and a 
weak signal field E2 at frequency ω2, which the parametric process will amplify, are incident 
in a nonlinear medium. The parametric process invokes an idler field at frequency E1 and 
frequency ω1 to complete the interaction, assumed here to be phase-matched:  k1 + k2 = k3. 
The coupled mode approach provides three equations:   

*1
1 3 2

( ) κ ( ) ( )dE z i E z E z
dz

    *2
2 3 1

( ) κ ( ) ( )dE z i E z E z
dz

    3
3 1 2

( ) κ ( ) ( )dE z i E z E z
dz

  

Assuming no input idler light and no pump depletion, the signal intensity increases with 
length ℓ as  I2(ℓ) =  I2(0) sinh2(ℓ),  

where I  is the intensity in W/m2; Δk is the phase mismatch; and Γ is the gain factor defined as 
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Under these assumptions, the signal intensity gain per unit length has a simple form G2(ℓ)  =  
sinh2(ℓ), which for small gains increases quadratically and for large gains increases 
exponentially as exp(2ℓ).  

The threshold for the OPO is found by setting the signal gain per unit length equal to its 
resonator loss per unit length, α, given by exp(2αℓ) = R1R2, to obtain Ith =  
α2(cεon1n2n3λ1λ2)/[8(πℓdeff)2]. The threshold intensity decreases as the resonator loss decreases 
(mirror reflectances increase), and quadratically as the length and nonlinearity increase.  

10.2.2 OPO applications 

OPOs are useful sources for high peak or average power, high conversion efficiency, and 
broad continuous tunability. They are particularly valuable in the mid-IR (wavelengths >2.5 
µm) where there are no tunable lasers similar to Ti:sapphire. New nonlinear-optical materials 
have enabled compact and efficient OPO’s with infrared wavelength tunability far beyond 5 
µm, opening up new applications in molecular spectroscopy, atmospheric monitoring, and 
ultra-sensitive detection. In the 2- to 20-µm portion of the spectrum, gases exhibit uniquely 
identifiable absorption features. Pollution monitoring, atmospheric chemistry, and chemical 
and biological warfare detection can benefit from compact and efficient mid-IR laser sources 
that allow detection of trace gases and vapors by volume, down to the part-per-billion level. 
Other applications include noninvasive medical diagnosis by breath analysis, ultrasensitive 
detection of drugs and explosives down to the parts-per-trillion level using cavity ring-down 
spectroscopy, and short-range terrestrial or near-earth communications. 

The OPO is widely used to generate squeezed coherent states and entangled states of light. 
Considering a single photon in the OPO, each pump photon gives rise to a pair of photons; 
the signal and idler fields are correlated at the quantum level, which is required for 
squeezing. The phases of the signal and idler are correlated as well, leading to 
entanglement, which is a key requirement for quantum computing.  

10.3 Nonlinear resonators: Fabry-Perots and rings 

When feedback is added to a nonlinear refractive index or absorption interaction, optical 
switching, optical bistability and multistability can occur, with potential for all-optical logic 
and computing. While tantalizing for practical applications, the NLFP (nonlinear Fabry-
Perot) has rarely seen practicality. In photonics, the NLR (nonlinear ring) may play more of 
a role. The feedback effect of a cavity can also be artificially created in a hybrid electrical-
optical device, which may have their own applications. 

Understanding the origin of optical bistability in a NLFP is straight-forward. It was first 
described using saturable absorption and later it was realized that bistability could be 
achieved more with a nonlinear refractive index. Suppose a resonator has a characteristic 
transmission of Tr = Iout/Iin = Tr(Iinside), where the last equality defines the functional form of 
the resonator transmission as a function of the nonlinear absorption or refractive index, 
which itself depends on intensity. Note the three different values of the intensity:  input 
intensity Iin, output intensity Iout, and intensity inside the resonator, Iinside. What makes the 



 
Nonlinear Optics 

 

40
2 2

2 eff
3

0 1 2 3 1 2

8π (0)  
ε λ λ

d I
c n n n

   

Under these assumptions, the signal intensity gain per unit length has a simple form G2(ℓ)  =  
sinh2(ℓ), which for small gains increases quadratically and for large gains increases 
exponentially as exp(2ℓ).  

The threshold for the OPO is found by setting the signal gain per unit length equal to its 
resonator loss per unit length, α, given by exp(2αℓ) = R1R2, to obtain Ith =  
α2(cεon1n2n3λ1λ2)/[8(πℓdeff)2]. The threshold intensity decreases as the resonator loss decreases 
(mirror reflectances increase), and quadratically as the length and nonlinearity increase.  

10.2.2 OPO applications 

OPOs are useful sources for high peak or average power, high conversion efficiency, and 
broad continuous tunability. They are particularly valuable in the mid-IR (wavelengths >2.5 
µm) where there are no tunable lasers similar to Ti:sapphire. New nonlinear-optical materials 
have enabled compact and efficient OPO’s with infrared wavelength tunability far beyond 5 
µm, opening up new applications in molecular spectroscopy, atmospheric monitoring, and 
ultra-sensitive detection. In the 2- to 20-µm portion of the spectrum, gases exhibit uniquely 
identifiable absorption features. Pollution monitoring, atmospheric chemistry, and chemical 
and biological warfare detection can benefit from compact and efficient mid-IR laser sources 
that allow detection of trace gases and vapors by volume, down to the part-per-billion level. 
Other applications include noninvasive medical diagnosis by breath analysis, ultrasensitive 
detection of drugs and explosives down to the parts-per-trillion level using cavity ring-down 
spectroscopy, and short-range terrestrial or near-earth communications. 

The OPO is widely used to generate squeezed coherent states and entangled states of light. 
Considering a single photon in the OPO, each pump photon gives rise to a pair of photons; 
the signal and idler fields are correlated at the quantum level, which is required for 
squeezing. The phases of the signal and idler are correlated as well, leading to 
entanglement, which is a key requirement for quantum computing.  

10.3 Nonlinear resonators: Fabry-Perots and rings 

When feedback is added to a nonlinear refractive index or absorption interaction, optical 
switching, optical bistability and multistability can occur, with potential for all-optical logic 
and computing. While tantalizing for practical applications, the NLFP (nonlinear Fabry-
Perot) has rarely seen practicality. In photonics, the NLR (nonlinear ring) may play more of 
a role. The feedback effect of a cavity can also be artificially created in a hybrid electrical-
optical device, which may have their own applications. 

Understanding the origin of optical bistability in a NLFP is straight-forward. It was first 
described using saturable absorption and later it was realized that bistability could be 
achieved more with a nonlinear refractive index. Suppose a resonator has a characteristic 
transmission of Tr = Iout/Iin = Tr(Iinside), where the last equality defines the functional form of 
the resonator transmission as a function of the nonlinear absorption or refractive index, 
which itself depends on intensity. Note the three different values of the intensity:  input 
intensity Iin, output intensity Iout, and intensity inside the resonator, Iinside. What makes the 

 
Overview of Nonlinear Optics 

 

41 

nonlinear resonator unique is that the light intensity inside the resonator does not depend 
directly on the input light intensity. Instead, the intensity coming out of the resonator is 
proportional to the intensity inside. That is, Iout = ToIinside,  where To is the transmission of the 
output port of the resonator. In a Fabry-Perot, To = 1-R, where R is the reflectivity of the 
output mirror. Thus the resonator obeys the following:  Tr(Iout/To) = Iout/Iin.. This can be 
evaluated through plotting Iin = Iout/Tr(Iout/To). If the functional form of Tr is multi-valued, 
such as in a refractive nonlinear Fabry-Perot, whose transmission values repeat modulo 2π, 
plotting the output vs. the input may demonstrate optical bistability or multi-stability. 

Assume a saturable absorption of amount  ∆α,  lying on a base of unsaturable absorption,  
with a form given by α =  αB + ∆α/(1 + I/Is). It can be shown that to observe bistability it is 
necessary that   αL/(T + αBL)  > 8, where T is the transmission of the lossless cavity. Even if 
T  0, bistability still requires that ∆α > 7αB. Nonlinearities are usually not this large, and so 
saturable absorption bistability is not usually the predominant form. 

Bistability in a NLFP is usually due to a nonlinear refractive index. When the nonlinearity is 
saturating, it can be shown that if ∆n is the maximum refractive index change, then the 
condition for bistability is  ∆nkoL > αL + (1–Reff), where α is the (unsaturable) loss per unit 
length inside the cavity and Reff is the average mirror reflectivity (Garmire, 1989). 
Semiconducting quantum wells have been shown to exhibit optical bistability when placed 
in a Fabry-Perot (Vivero, 2010), as does porous silicon (Pham, 2011).  

Laser diodes also exhibit optical bistability. Many suggestions have been made to make 
practical all-optical switching devices in semiconductor materials, but to date few practical 
systems have arisen. One important application for resonating saturable losses has arisen, 
however. Bragg mirrors with semiconductor saturable absorbers have been shown to be 
excellent mode-locking devices for femtosecond lasers (Keller, 1996; Khadour, 2010). 

The ring resonator is analogous to a Fabry-Perot and therefore exhibits bistability. These 
resonators are used in optical waveguide circuits and have become more and more practical 
as technology for micro-circuits has improved. Optical bistability occurs in a 5 μm radius 
ring resonator fabricated on a highly integrated silicon device. Strong light-confinement 
makes possible a nonlinear optical response in silicon with pump power of 45 mW, due to a 
thermal nonlinearity. In such a small device, the thermal speeds can be up to 500 kHz 
(Almeida, 2004). The ring resonator directionally coupled to a channel waveguide forms a 
wavelength-sensitive add-drop filter that is very useful in WDM optical communications. 
The nonlinear ring enables all-optical switching and logic (Parisa, 2009). Photonic crystals 
can be engineered to replace optical waveguides and provide even more light confinement 
and even lower switching powers (Yanik, 2003). While still in the realm of research, 
nonlinear photonic crystal devices are expected to have a bright future in photonics. 

10.4 Hybrid optical bistability 

Optical bistability can be created by use of electrical feedback, forming a hybrid system. 
When some fraction of the output of an optical modulator is incident on a photo-detector, its 
electrical output can be fed back as a change in voltage on the modulator, changing its 
transmission  (Garmire, 1978). This leads to a hybrid bistability that opens up the number of 
devices that can exhibit optical bistability. One example is the development of devices that 
might allow parallel interconnects in complex computer systems (Miller, 2000). 
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11. NLO topics not covered 
This section briefly mentions a number of topics in NLO that were not covered in this 
chapter. Detailed applications of nonlinearities have been skipped, as well as some recent 
cutting edge research. Theoretical work and modeling has been crucial to the development 
of NLO, mostly not discussed here. Indeed, inventive ideas, high quality experiments, 
physically intuitive modeling and deep theoretical understanding have all played their part 
in creating this exciting field of NLO.  

The laser is an exceedingly nonlinear device and, as such, can be used to demonstrate many 
of the topics discussed in this chapter. Nonlinear gain can be considered an analog to 
nonlinear absorption; in semiconductor lasers, a change in gain also changes the refractive 
index. Optical nonlinearities are needed to explain much of the behavior of semiconductor 
lasers. Mode-locking and Q-switching often use nonlinear media inserted into the laser 
cavity, and their interaction with the nonlinearities within the laser must be understood. 
This chapter is limited to passive devices, not including lasers. 

This chapter treats mostly stable nonlinear device performance. However, spatial and 
temporal instabilities can easily arise in nonlinear systems (Cross, 1993), leading to spatial 
multi-filamentation, as well as self-organization and even chaos. In the time domain, self-
pulsing and chaos can also occur, particularly if light is fed back into the nonlinear medium 
with a time delay (Goldstone, 1983). Such nonlinearities are seen particularly in lasers 
(Blaaberg, 2007) and nonlinear fibers (Kibler, 2010).  

Plasmons are created at the surface between a dielectric and a metal film, due to interaction 
between propagating light and the metal; interesting phenomena occur if the dielectric 
medium is nonlinear. Polaritons result from strong coupling between light and an excited 
electric dipole and can lead to optical nonlinearities. Neither are approached here.  

NLO has revolutionized spectroscopy, which now has a vast number of applications, in 
chemistry, in biology, in environmental studies, etc. For example, nonlinear saturation 
enables spectroscopists to make measurements inside inhomogeneously broadened lines; 
multi-photon absorption enables measurement of levels that are symmetry-forbidden in 
usual one-photon spectroscopy. This chapter touches only on a few examples.  

NLO has revolutionized other fields of science. For example, SHG and OPOs provide 
sources for squeezed light, cooling atoms and molecules to achieve Bose-Einstein 
condensation, etc. NLO has made ultra-fast optics possible, exploring ultra-fast processes in 
molecules, solid state materials, chemistry, plasma physics, etc. Nonlinear frequency 
conversion has enabled ultra-stable frequency sources that have become new, highly-
accurate standards, and led to two Nobel prizes. Two-photon fluorescence and Raman 
lasers are just two examples of techniques that are standard in biomedical research. 

The topic categories covered at the 2011 Nonlinear Optics Conference, sponsored by the 
Optical Society of America give a good idea of the breadth of non-linear optics and what is 
cutting-edge NLO research. Fundamental studies and new concepts:  Quantum optics, 
computation and communication; single-photon nonlinear optics; Solitons and nonlinear 
propagation; Ultrafast phenomena and techniques; Surface, interface and nanostructure 
nonlinearities; Microcavity and microstructure phenomena; High intensity and relativistic 
nonlinear optics; Slow light; Coherent control; Pattern formation in nonlinear optical 
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systems. Nonlinear media investigated today are: Atoms, molecules and condensates; Cold 
atoms; Dielectrics; Semiconductors; Nanostructures; Photonic bandgap structures; Fibers 
and waveguides; Photorefractives; Nonlinear nanophotonics. Key areas that merge science 
and applications are:  Novel lasers and frequency converters;  Micro solid-state photonics. 
Applications of interest to the NLO community today include:  Lasers and amplifiers; 
Frequency converters and high harmonics generation; Optical communications; Photonic 
switching; Ultrafast measurement; Nonlinear x-ray optics; Materials processing; Optical 
storage; Biological elements; Laser induced fusion; Frequency combs and optical clocks. 

12. Conclusions 
Nonlinear Optics, has been described here in mostly classical terms. Traditional second 
harmonic generation, sum-frequency and difference-frequency generation, and generation 
of a DC field take place only in transparent media that lack a center of inversion symmetry 
and require phase-matching – with an anisotropic crystal or with periodic poling, or other 
means of quasi-phase matching. Third order nonlinearities do not necessarily require a 
center of inversion symmetry, nor phase-matching, although these may be required by some 
processes. These processes may be enhanced by proximity of an atomic or molecular 
resonance, although these are not required. These NLO processes are described by a 
dielectric susceptibility that depends on the light’s electric field. Closely related are 
parametric processes, such as the optical parametric oscillator and the optical parametric 
amplifier. Nonlinear absorption processes may either cause a decrease in a strong 
absorption line or may increase absorption due to multi-photon processes. Stimulated 
Raman and Brillouin scattering are laser-like manifestations of well-known low-power 
phenomena. The former offers an array of new wavelengths, the latter enables phase 
conjugation.  

This review shows how vast the field of nonlinear optics is today and how far it has come 
since second harmonic generation was demonstrated with a ruby laser in 1961. 
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Stimulated Raman Scattering in Quantum Dots 
and Nanocomposite Silicon Based Materials 
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Italy  

1. Introduction  
Stimulated Raman Scattering (SRS) is one of the first discovered nonlinear optical effects: a 
pump laser beam enters a nonlinear medium and spontaneous generation and amplification 
lead to a beam at a frequency different from the pump. SRS is dependent on the pump 
intensity and on a gain coefficient g, which depends on material scattering efficiency: the 
larger the spontaneous scattering efficiency of materials is, the higher the Raman gain for a 
given intensity is obtained. As a general rule, there is a trade-off between gain and 
bandwidth in all laser gain materials: line-width is bought at the expense of peak gain. Of 
course, this is true for bulk solids, but the question is what happens at nanoscale? 

Nonlinear optics at nanoscale is a recent fascinating research field. Stimulated Raman 
scattering in electrons-confined and photons-confined materials is of great importance from 
both fundamental and applicative point of view. Concerning the fundamental one, there 
have been a number of investigations both experimental and theoretical, but the question is 
still “open”, while from an applicative point of view, there are some important prospective, 
for example to realize micro/nano source, with improved performances. 

In this chapter, experimental investigations of stimulated Raman scattering in silicon 
quantum dots and in silicon nanocomposite are reported. Two Raman amplifiers are 
realized and amplifications due to stimulated Raman scattering are measured. For both of 
them, a significant enhancement of Raman gain and a significant reduction in threshold 
power are demonstrated. Our findings indicate that nanostructured materials show great 
promise for Si-based Raman lasers. 

2. Basis on Stimulated Raman Scattering and Raman amplifier  
SRS belongs to a class of nonlinear optical processes that can be called quasi-resonant. 
Although none of the fields is in resonance with the vibrations in the lattice of the medium 
(optical phonons), the difference between the pump and generated beam equals the transition 
frequency. SRS is used in tunable laser development, high energy pulse compression, etc. 

SRS can be obtained by irradiating a solid with two simultaneous light sources: a light wave 
at frequency L  (the pump laser wave) and a light wave at frequency S L      (the 
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Stokes Raman wave), where   corresponds to a vibrational energy (Fig. 1). The pump 
causes the molecular vibration and thereby impress frequency sidebands (Stokes and anti-
Stokes). From the other side, Stokes wave at frequency S  can beat the laser to produce a 
modulation of the total intensity that coherently excites the molecular oscillation at the 
frequency L S    . These two process due to pump and Stokes waves, reinforce one 
another in the sense that the pump effect leads to a stronger Stokes wave, which in turn 
leads to a stronger molecular vibration (Boyd, 2003). 

 
Fig. 1. Stimulated Raman Scattering. 

In the steady-state (no pump depletion) regime of SRS, the intensity of the output Stokes 
radiation is expressed by (Shen & Bloembergen , 1965) 

 ( ) (0) exp( (0) )S S PI L I I gL   (1) 

where IS0 is the intensity of the input Stokes radiation (Stokes seed), IS is the intensity of the 
output Stokes radiation, IP is the intensity of the pump radiation, g is the Raman gain 
coefficient, and L is the effective length. Assuming no losses at the Stokes frequency, the value 
of the gain coefficient g can be obtained by fitting Eq. (1), which is readily transformed into  

 10
( )10 log 4.34 (0)
(0)

S
P

S

I LSRS gLI
I

 
    

 
 (2) 

where IP = P/A with P as the power incident onto the sample and A as the effective area of 
pump beam. Since the sample transparent to the incident light, L is taken to be equal to the 
thickness of the sample along the path of the incident light. 

Raman lasing can be achieved by using the Stimulated Raman Scattering phenomenon, 
which permits, in principle, the amplification in a wide interval of wavelengths, from the 
ultraviolet to the infrared.  

Fused silica has been, for the past century, the key material used for long and short haul 
transmission of optical signals, because of its good optical properties and attractive figure of 
merit (i.e. trade-off between Raman gain and losses). A breakthrough in fiber optics 
communications was achieved with the reduction of the water absorption peak at 1400 nm, 
which opened up the available communication range to span from 1270 to 1650 nm, 
corresponding to about 50 THz bandwidth (Rivero et al., 2004). This dramatic increase in 
bandwidth rules out the use of existing Er doped fiber amplifiers, leaving Raman gain as the 
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where IP = P/A with P as the power incident onto the sample and A as the effective area of 
pump beam. Since the sample transparent to the incident light, L is taken to be equal to the 
thickness of the sample along the path of the incident light. 

Raman lasing can be achieved by using the Stimulated Raman Scattering phenomenon, 
which permits, in principle, the amplification in a wide interval of wavelengths, from the 
ultraviolet to the infrared.  

Fused silica has been, for the past century, the key material used for long and short haul 
transmission of optical signals, because of its good optical properties and attractive figure of 
merit (i.e. trade-off between Raman gain and losses). A breakthrough in fiber optics 
communications was achieved with the reduction of the water absorption peak at 1400 nm, 
which opened up the available communication range to span from 1270 to 1650 nm, 
corresponding to about 50 THz bandwidth (Rivero et al., 2004). This dramatic increase in 
bandwidth rules out the use of existing Er doped fiber amplifiers, leaving Raman gain as the 
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main mechanism for future amplification needs. However, the main disadvantage of the 
current silica fiber amplifiers is the limited usable bandwidth for Raman amplification (5 
THz, approx. 150 cm-1). 

On the other hand, in the past few years several strategies have been developed to engineer 
efficient light sources and amplifiers in silicon-based materials (Pavesi & Lockwood, 2004; 
Soref, 2006), with the aim to demonstrate a convenient path to monolithic integration of 
optical and electronic devices within the mainstream Si technology. In particular, Raman 
amplification is an interesting approach for optical amplification, because it is only restricted 
by the pump wavelength and Raman active modes of the gain medium (Islam, 2002; Mori et 
al., 2003). Light amplification by stimulated Raman scattering  in silicon waveguides has 
been recently demonstrated, despite intrinsic limitations related to the nature of the bulk Si 
materials have been pointed out (Jalali et al., 2006; Dekker et al., 2007). 

Raman scattering in bulk silicon was studied as early as 1965 (Russell, 1965). Using a 
helium–neon laser with an output wavelength of 0.6328 μm, backward Raman scattering 
from silicon was measured, and it was found that the Raman scattering efficiency in silicon 
was 35 times larger than that for diamond (Russell, 1965). In 1970 (Ralston & Chang, 1970), 
more detailed Raman experiment using a YAG:Nd laser having a wavelength of 1.064 μm 
was performed. Both spontaneous and stimulated Raman scattering efficiency was 
characterized experimentally  (Ralston & Chang, 1970). The observed Raman frequency 
downward shift of 15.6 THz corresponds to optical phonon energy of silicon at the center of 
the Brillouin zone (Hart et al., 1970; Temple & Hathaway, 1973). The first-order resonance, 
which is of primary importance here, has a full-width at half-maximum of 105 GHz (Temple 
&  Hathaway, 1973). This imposes a maximum information bandwidth of approximately 105 
GHz that can be amplified. The Raman linewidth becomes broader when a broadband 
pump is used. These experiments has the merit to prove that silicon has a relatively strong 
Raman scattering efficiency (four orders of magnitude higher than that for silica) (Agrawal, 
1995; Claps et al., 2002; Claps et al., 2003).  

2.1 SRS in silicon waveguide 

SRS has been exploited in optical fibers to create amplifiers and lasers. However, several 
kilometers of fiber is typically required to create a useful device, suggesting that the 
approach is not applicable in integrated devices. Often overlooked was the fact that the gain 
coefficient for SRS in silicon is approximately 103−104 times higher than that in silica fiber. 
Additionally, owing to the large refractive index, silicon waveguides can confine the optical 
field to an area that is approximately 100–1000 times smaller than the modal area in a 
standard single-mode optical fiber, resulting in proportionally higher Raman gain (Claps et 
al., 2002). When combined, these facts make it possible to observe SRS over the interaction 
lengths encountered on a chip (Claps et al., 2002; Claps et al., 2003; OSA Press Room 
Editorial). 

As silicon is transparent in 1.3–1.6 μm (optical communication band), Raman scattering in 
silicon waveguides in such a wavelength range has attracted a great deal of interest in the 
past couple of years (Claps et al., 2002; Rong at al., 2005).  

The use of SRS in silicon waveguides was proposed in 2002 as a means to realize silicon 
amplifiers and lasers (Claps et al., 2002; OSA Press Room Editorial). This was followed by 
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demonstration of stimulated emission (Claps et al., No. 15, 2003) and Raman wavelength 
conversion (Claps et al., No. 22, 2003) in silicon waveguides in 2003. Shortly afterward, the 
approach led to the demonstration of the first silicon laser in 2004: a device that operated in 
the pulsed mode (Boyraz & Jalali, 2004; Nature News Editorial) followed by demonstration 
of continuous-wave (CW) lasing in 2005 (Rong  et al., No. 7027, 2005). 

Pulsed lasing has been achieved using a ring cavity formed by an 8-m-long optical fiber and 
silicon as the gain medium via SRS  (Boyraz & Jalali, 2004). The slope efficiency, which is 
described by the ratio of the output peak power and the input peak pump power, obtained 
was 8.5%. 

An all-silicon Raman CW laser has been demonstrated using centimeter-size silicon 
waveguide (Rong et al., No. 7023, 2005; Rong et al., No. 7027, 2005). Recently, the waveguide 
was replaced by a ring cavity witch have a total length of 3 cm and a bend radius of 400 μm  
(Rong et al., 2006). A slope efficiency of ~10% was obtained. 

2.2 Problems in silicon waveguide Raman amplifiers 

In two-photon absorption (TPA) process an electron absorbs two photons from the laser 
(Fig. 2) at approximately the same time (or within less than a nanosecond) and achieves an 
excited state that corresponds to the sum of the energy of the incident photons. This is a 
nonlinear process, occurring with significant rates only at high optical intensities, because 
the two-photon absorption coefficient is proportional to the optical intensity of pump laser. 
TPA can be eliminated entirely choosing a material for which the lowest-lying excited state 
lies more than 2   above the ground state  (Boyd, 2003). 

 
Fig. 2. Two Photon Absorption. 

As a multiphoton process, TPA is a competitive effect of stimulated Raman scattering. In 
particular the two-photon absorption (TPA) reduces the efficiency of SRS phenomena. 

The main challenge in silicon Raman laser is the loss caused by the free carriers that are 
generated via TPA (Liang & Tsang, 2004; Claps et al., 2004). By determining the steady-state 
density of generated carriers, and hence the magnitude of the pump-induced loss, the 
recombination lifetime is the central parameter in Raman as well as other semiconductor 
nonlinear optical devices. Due to the presence of interface states at the boundary between 
the top silicon and the buried oxide layer, the recombination lifetime in SOI is much shorter 
than that in a bulk silicon sample with comparable doping concentration. This effect 
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depends on the method used for preparation of the SOI wafer and the film thickness, with 
measured and expected values ranging between 10 and 200 ns (Mendicino, 1998; Freeouf & 
Liu, 1995). In SOI waveguides, the lifetime is further reduced to a few nanoseconds, or even 
below in the case of submicrometer waveguides, due to the recombination at the etched 
waveguide facets and, in the case of rib waveguides, due to diffusion into the slab regions 
(Dimitropoulos et al., Vol. 86, 2005; Espinola et al., 2004). By introducing midgap states 
through high-energy irradiation and gold or platinum doping, the lifetime can be further 
reduced. The carrier density can also be reduced by using a reverse-bias p-n junction to 
sweep the carriers out (Liang & Tsang, 2004; Claps et al., 2004), and CW gain using this 
approach has been reported (Liu et al., 2004; Fathpour et al., 2006). However, free-carrier 
screening of the junction electric field, a phenomenon reminiscent of high power saturation 
in photodetectors, limits the usefulness of this technique to modest pump intensities 
(Dimitropoulos et al., Vol. 87,  2005). Furthermore, the diode results in electrical power 
being dissipated on the chip. 

Being optically pumped, it is unlikely that the Raman laser will play a role in optical 
interconnects; on the other hand, by compensating for coupling and propagation losses, a 
Raman amplifier can have an impact. However, the device length will have to be drastically 
lower than the centimeter-length device demonstrated so far. At an intensity of 100 MW/cm2 
(100 mW pump coupled into a 0.1μm2 waveguide) and with silicon’s Raman gain coefficient of 
~20 cm/GW, the gain will be ~1 dB/mm. Such a modest gain per unit length creates a 
challenge for miniaturization of Raman amplifiers, a prerequisite for their integration with 
silicon VLSI-type circuits. The long waveguide length will not be an issue if the device is used 
as a stand-alone discrete amplifier (similar to the role played by the EDWA). 

2.3 Silicon nanostructures 

Taking into account intrinsic limitations related to the nature of the bulk Si materials, that is 
the narrow-band (105 GHz) of stimulated Raman gain, the small Raman effect and the  
competing nonlinear effect of TPA, which reduces the efficiency of SRS, the investigation of 
new materials possessing both large Raman gain coefficients and broader spectral 
bandwidth than fused silica and/or silicon is becoming mandatory in order to satisfy the 
increasing telecommunications demands.  

Nanostructured silicon has generated large interest in the past decades as a promising key 
material to establish a Si-based photonics. An accurate knowledge of both linear and 
nonlinear optical properties of these structures is crucial for the conception and design of 
highly efficient photonic structures and for the control of their performance (Pavesi & 
Lockwood, 2004).  

Strong enhancement (~103) of the spontaneous Raman scattering was reported from 
individual silicon nanowires and nanocones as compared with bulk Si (Cao et al., 2006). The 
observed enhancement was diameter, excitation wavelength, and incident polarization state 
dependent. The observed increase in Raman-scattering intensity with decreasing diameter 
in this system was explained in terms of structural resonances in the local field similar to 
Mie scattering from dielectric spheres. 

We note that SRS from spherical droplets and microspheres, with diameters 5÷20 μm, has 
been observed using both pulsed and continuous wave probe beams (Spillane et al., 2002). 
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Except for report of SRS from individual single walled carbon nanotubes (Zhang et al., 
2006), and the observation of SRS from semiconductor nanowires (Jian Wu et al., 2009), we 
find no other evidence for this important nonlinear optic effect in nanostructured materials. 

3. Broadening and tuning of Spontaneous Raman Scattering in silicon 
nanocrystals 
In this paragraph, some advantages of Raman approach in silicon nanocrystals with respect to 
silicon are theoretically and experimentally demonstrated. In order to provide theoretical basis 
for these results, phonon confinement model is briefly introduced. After that, according to this 
model, we discuss two significant improvements of this approach: the broadening of Raman 
scattering and the tuning of Stokes shift in Si-nc with respect to silicon. 

When the size of the particle reduce to the order of nm, the wave function of optical 
phonons will non longer be a plane wave. The localization of wave function leads a 
relaxation in the selection rule of wave vector conservation. Not only the phonons with zero 
wave vector q=0, but also those with q>0 take part in the Raman scattering process, 
resulting in the red shift of the peak position and the broadening of the peak width. A 
quantitative model, developed by Campbell and Fauchet, calculates that the peak position 
mainly depends on the number of atoms included in a cluster, while the width of spectra 
depends on the shape of crystallites (Ritcher et al, 1981; Campbell & Fauchet, 1986). 

Silicon nanocrystals sample can be modelled as an assembly of quantum dots and the 
phonon confinement is three dimensional. The weight factor of the phonon wave function is 
chosen to be a Gaussian function as follows: 
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where -1
0 520 cm  and 0 02 /q a . 

It was proved that the phonon confinement model is suitable to fit experimental results 
(Sirleto et al., 2006). 

Experimental measurements proving broadening and tuning of Raman spectra have been 
also performed (Ferrara et al., 2008). Unpolarised Raman spectra have been detected at room  
temperature in backscattering geometry using a Jobin Yvon Ramanor U-1000 double 
monochromator, equipped with a microscope Olympus BX40 for micro-Raman sampling 
and an electrically cooled Hamamatsu R943-02 photomultiplier for photon-counting 
detection. The excitation source was a Coherent Innova 70 argon ion laser, operating at 514.5 
nm wavelength. In order to prevent laser-annealing effects, the average laser power was 
about 2 mW at the sample surface. Using a 50X objective having long focal distance, the 
laser beam was focused to a diameter of few microns. Its position on the sample surface was 
monitored with a video camera. All components of the micro-Raman spectrometer were 
fixed on a vibration damped optical table. 

In Fig.3, the Raman spectra of samples of Si-nc having different size are shown. As expected 
on the basis of the phonon confinement model (Campbell & Fauchet, 1986; Ritcher at al, 
1981), the red shift and the asymmetry of the PS Raman peak increase with decreasing size 
of Si-nc.  

 
Fig. 3. Raman spectra (circles) of Si-nc samples with different size of nanocrystals. 

According to the phonon confinement model, in Fig.4 the peak width of spontaneous 
Raman emission as a function of nanocrystal size is reported. It is possible to note that the 
peak width has an inverse dependence on crystal size. Furthermore, considering silicon 
nanocrystals having crystal size of 2 nm, a significant broadening could be obtained 
(bandwidth of about 65 cm-1). 

Si-nc size 
decrease 
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Moreover, according to the same model, in Fig.5 the peak shift of spontaneous Raman 
emission as a function of nanocrystal size is reported. Also the peak shift has an inverse 
dependence on nanocrystal size. For nanocrystal of about 2 nm a peak shift of about 19 cm-1 
can be obtained. Because the width of C-band telecommunication is 146 cm-1, taking into 
account the broadening and the shift of spontaneous Raman emission, we conclude that 
more than the half of C-band could be cover considering Si-nc, without implementing the 
multi-pump scheme. 

 
Fig. 4. Calculated relationship between the Raman peak width and the nanocrystal size. 

 
Fig. 5. Calculated relationship between the Raman peak shift and the nanocrystal size. 

4. Stimulated Raman Scattering measurements  
According with the results discussed above, in this section are reported measurements of 
stimulated Raman scattering in two different sample: silicon nanocrystals embedded in Si-
rich nitride/silicon superlattice structures (SRN/Si-SLs) and silicon nanocomposities 
embedded in SiO2.  
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4.1 Experimental set-up 

In Fig. 6, the experimental setup used in order to measure SRS is shown. The pump laser is a 
CW pump-Raman laser operating at 1427 nm. The probe laser is a tunable external cavity 
diode laser (1520–1620 nm). The probe beam is split by a Y fiber optic junctions. One of the 
branches is used in order to monitor probe fluctuations. The other one and the pump laser are 
combined on a dichroic mirror and subsequently coupled to a long working distance 50X 
infrared objective in order to be focused onto the sample. The sample is mounted parallel to 
the path of the incident beam. Estimated coupling losses were about 4 dB. The transmitted 
signals from the sample are collected by a 20X microscope objective. In order to separate the 
probe from the pump, a dichroic filter and a longpass filter were used. An optically broadband 
photodetector (PD) was used to collect the probe signal. The signal from the PD is 
demodulated by a lock-in amplifier, which is externally referenced to the 180 Hz chopper. 
Each data point is averaged 1000 times before being acquired. Additionally, four measured 
values are averaged for each data point. The accuracy of measurement is ±0.1 dB. 

 
Fig. 6. Experimental setup for SRS measurements: pump-Raman laser; IRC-infra-red 
collimator; F1-bandpass filter at 1427 nm; probe: ECDLexternal cavity diode laser (tunable); 
OI-optical insulator; DF-dichroic filter; OB1 (OB2)-microscope objective lens 50X (20X); F2-
longpass filter at 1500 nm; Ch-Chopper; PD-optically-broadband photodetector; LIA-Lock-
in amplifier. Black lines represent electrical connections and wiring, green lines represent 
freespace optical beams, and magenta lines represent optical fiber. 

4.2 Samples preparation and structural characterization 

Raman amplification measurements were performed both on silicon nanocrystals embedded 
in Si-rich nitride/silicon superlattice structures (SRN/Si-SLs) and on silicon 
nanocomposities embedded in SiO2. 

SRN/Si-SLs samples were fabricated on Si substrates by radio frequency (RF) magnetron 
cosputtering from Si, and Si3N4 targets. The sputtering of the multilayer structures was 
performed in a Denton Discovery 18 confocal-target sputtering system, as described 
elsewhere (Dal Negro et al., 2008). An atomic concentration of 48% Si was measured in the 
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deposited films with energy dispersive x-ray analysis (Oxford ISIS). The multilayer 
structure has been annealed using a rapid thermal annealing furnace in N2/H2 forming gas 
(5% hydrogen) for 10 min at 800 °C. Thermal annealing resulted in a phase separation 
process leading to the nucleation of amorphous Si clusters embedded in the Si nitride layers 
(Dal Negro et al., 2008). Figure 7 shows a TEM bright-field image of our sample in cross-
section, taken using a JEOL 2010 TEM operated at 200 KV. The average amorphous Si (a-Si) 
and SRN layer thicknesses were measured to be 21nm and 26nm, respectively. The structure 
of the sample consists of 10 SRN layers and 9 amorphous Si (a-Si) layers for a total thickness 
of 450 nm. A higher magnification of a SRN layer shows the nucleation of amorphous Si 
nanocrystals marked by the arrows in the inset (panel b). The amorphous Si nanocrystals 
embedded in the Si nitride layers give rise to strong near-infrared photoluminescence with 
nanosecond decay dynamics at room temperature, as discussed in details elsewhere (Dal 
Negro et al., 2006; Dal Negro et al., 2008; Li et al., 2008). 

 
Fig. 7. (a) Cross sectional TEM bright-field micrograph of SRN/Si-SLs consisting of 10 SRN 
layers and 9 a-Si layers for a total thickness of 450 nm. (b) Higher magnification of a SRN 
layer, showing amorphous Si nanocrystals marked by arrows. 

Silicon nanocomposities sample was obtained by sol-gel technique. Si nanoparticles were 
obtained by crushing a silicon wafer and reducing their dimensions by a thermal dry 
oxidation. Afterward, an etching of the oxidized silicon nanoparticles was performed by a 
solution prepared by hydrofluoric acid and ethanol with a volumetric rate of HF:C2H5OH = 
1:1. The SiO2 sol was prepared by mixing the precursor tetraethyl orthosilicate Si(OC2H5)4 
(TEOS–Sigma–Aldrich) with the solvent (94% denaturated ethanol); an homogeneous and 
continuous film was obtained with a 0.5 M solution. Acidulated water (0.01N 
HCl:CH3COOH = 1:1) was added in a hydrolysis ratio HR = 4. Fluorescéine was used as 
surfactant. Suspension was prepared mixing 5 ml of HF:C2H5OH = 1:1 solution with silicon 
nanoparticles into 20 ml of sol–gel solution. The biggest silicon particles were eliminated 
filtering the solution by a membrane with pore radius of 0.2 mm. The deposition onto a 
glass substrate was realised by spin coating. Finally, two thermal treatment, for water and 
alcohol condensation, were performed. The thin-film so obtained has a thickness of 0.5 mm 
and its total length is 1.95 cm. The sample was observed using a JEOL JEM 2010F 
STEM/TEM operated at 200 kV. In Fig.8(a) is shown the EFTEM image in cross view: in 
white contrast the shape of a crystalline silicon nanoparticle is shown. The STEM analysis in 
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plan view configuration (Fig.8(b)) allowed us to evaluate the mean radius (49 nm) of the 
silicon dots and also the dot density (1.62X108 dots/cm2) (Nicotra et al., 2004; Spinella et al., 
2005; Nicotra et al., 2006). 

 
Fig. 8. (a) EFTEM micrograph taken at 16 eV. The white spot is a silicon nanoparticles 
embedded into the silica matrix. (b) STEM micrograph clearly detects Si nanoparticles, white 
spots, embedded into the silica matrix. 

4.3 SRS Measurements 

For both samples we carried out measures of SRS gain. In Fig. 9 and in Fig. 10 (Sirleto et al., 
2008; Sirleto et al., 2009; Ferrara et al., 2010), the maxima of the signal wavelength scans are 
plotted as a function of the effective pump power (including the pass through the filter and 
objective) for both the SRN/Si-SLs sample and the sample of silicon nanocomposities, 
respectively.  

For SRN/Si-SLs sample, the maximum signal gain obtained was 0.87 dB/cm, while in the 
case of the sample of silicon nanocomposities the maximum SRS gain obtained was 1.4 
dB/cm. Both in Fig.9 and Fig.10, the SRS gain in a float zone high purity and high resistivity 
bulk silicon is also plotted as a function of the effective pump power. All plots in Fig.9 and 
in Fig.10 show an approximately linear dependence, as expected for the gain of a Raman 
amplifier as a function of pump power. As shown in Fig.9, SRN/Si-SLs exhibits a Raman 
gain significantly greater than bulk silicon. Although the estimation of the gain coefficient g 
is not straightforward due to the uncertainty in the effective focal volume inside the sample, 
our data clearly demonstrate a value of g which is about four time larger than the value 
reported for silicon (Ralston & Chang, 1970) can be obtained in silicon nanostructures. 
Furthermore, our data prove a threshold power reduction of about 40% in silicon 
nanocrystals (Pth≈150 mW) with respect to silicon (Pth≈250 mW). 

Raman amplifier based on silicon nanocomposites exhibits a SRS gain significantly greater 
than bulk silicon, as shown in Fig.10. By our data, a preliminary evaluation of 
approximately a fivefold enhancement of the gain coefficient in Raman amplifier based on 
silicon nanocomposities with respect to silicon is obtained (Ralston & Chang, 1970). 
Furthermore our data prove a significant threshold power reduction (about 60%) in silicon 
nanocomposities (Pth≈100 mW) with respect to silicon (Pth≈250 mW). 
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Fig. 9. The SRS-gain (amplification of the stokes signal in dB/cm) is plotted against the 
effective pump power at the sample surface both for amorphous Si nanoclusters embedded 
in SRN-Si-SLs (□ red) and for bulk silicon (○ black). 

 
Fig. 10. The SRS gain (amplification of the stokes signal in dB/cm) is plotted against the 
effective pump power at the sample surface both for silicon nanocomposities in SiO2 (□ red) 
and for bulk silicon (○ black). 

5. Discussion of results 
It is well known that third-order non-linear effects are generally characterized by the non-
linear absorption (β) and the non-linear refractive index (γ). The non-linear coefficients, 
namely β and γ, are described by α(I) = α0 + βI and n(I) = n0 + γI where α0 and n0 stand for the 
linear absorption and refractive index respectively. The β and γ values are used to evaluate 
the imaginary (Im χ(3)) and real (Re χ(3)) parts of the third-order non-linear susceptibility, 
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respectively. We note that the real part describes the phenomena related to the intensity 
dependent index of refraction, while the imaginary part describes two photon absorption 
and SRS. 

A way to enhance the real part of cubic nonlinearities in materials is to artificially 
‘shrinking’ the electrons in regions much shorter than their natural delocalization length in 
the bulk. In such morphologies, optical resonances will usual appear, resulting from 
dielectric or quantum confinement, the former prevailing in metal nanocrystals, the latter 
prevailing in semiconductor nanocrystals. Quantum confinement occurs at a nanometer 
scale when the electron and hole envelope functions are restricted within a region whose 
spatial extension is lower than the exciton Bohr radius. This leads to quasi-discrete energy 
level structures, eventually showing sharp absorption lines. The concentration of the 
oscillator strength into these discrete levels leads to enhancement of the optical transitions 
rates and to a size-dependent nonlinear optical susceptibility (Klein, 1996). 

Non resonant nonlinearities take place when the light linear absorption is negligible (at 
frequencies well below the absorption edge). They are related to the anharmonic motion (or 
virtual excitations) of bound electrons, and are very fast: typical recovery times are of the 
order of picoseconds. For χ(3) based nonlinear devices, an enhancement of the real part  
of the third order nonlinear susceptibility in silicon nanostructure, due to quantum 
confinement, in the transparency range has been proved (Hernández et al., 2008). It is 
important to point out that the imaginary part of third order susceptibility of the 
nanostructured/nanocomposite materials, relating to the Raman gain coefficient, has been 
never theoretically investigated before. However,  an enhancement of imaginary part of 
third order nonlinear susceptibility is expected.  

In order to get Raman laser or amplifier in silicon, the main difficult was due to the presence 
of TPA, which reduces the efficiency of SRS. Taking advantage of Si-nc optical properties, 
we explore the possibility to reduce TPA and, at the same time, to enhance SRS. 

It is well known that TPA process vanishes for ħω <1/2 Eg , ħω being the photon energy and  
the band-gap. In Si-nc, due to quantum confinement, an increase of the band-gap with 
respect to the silicon is obtained. Reducing the dot (wires) dimensions, the band-gap 
increases. Therefore, considering a suitable size of the dot for which the relation  is satisfied, 
the reduction of TPA is obtained (Lettieri & Maddalena, 2002). 

In recent years, there is a strong interest in investigation of Raman scattering in electrons-
confined and photons-confined materials. The phenomenon of strong resonant and local 
enhancement of visible electromagnetic (EM) radiation when incident on the surface of 
metallic particles and films resulting from surface plasmon resonances continues to attract 
significant attention for fundamental and applied interests (Kawata et al., 2009). However, 
the possibility of enhancement of EM radiation from semiconducting and insulating 
materials, particularly in silicon, is noteworthy for silicon-based optoelectronic applications 
owing to the potential for monolithically integrating photonic technology and 
semiconductor electronics. 

In the following discussion, we distinguish between Si-nc and silicon nanocomposities, 
because in the former (silicon nanocrystals) the mean radius of silicon dots was less than in 
the latter (low dimensional silicon). The different size of the particles corresponds to a 
fundamental difference between the two experiments reported in this chapter. Concerning 



 
Nonlinear Optics 

 

66

stimulated Raman scattering in silicon nanostructures (SRN/Si-SLs), being the particle 
dimension of about 2 nm, the phonon confinement effect is significant; therefore, we suggest 
that enhancement explanation has to be sought out in the framework of matter confinement 
and related to the enhancement of the third order nonlinear susceptibility in small Si 
clusters (approximately 2nm in diameter) that nucleate in a high density inside silicon-rich 
nitride materials. However, the structure of the SRN/Si interfaces, the stoichiometric 
material disorder, and the cluster dimensionality are also important parameters that are 
expected to significantly influence Raman amplification, a theoretical understanding of their 
respective roles remains to be established. 

Concerning stimulated Raman scattering in silicon nanocomposites in SiO2, being the 
diameter of particles dispersed in silica matrix of about 0.1 micron, the enhancement of SRS 
was due to a photons confinements effect. In order to try to explain why the presence of 
silicon particles can increase the Raman gain coefficient, we suggest two possible option. 
The former, it is well known that the nonlinear optical properties of composites material are 
characterized an “enhancement of local field” (Fischer  et al., 1995). Off resonance, the 
electric field amplitude of an incident laser beam becomes no uniformly distributed between 
the two constituents of composite and the electric field strength within the more nonlinear 
constituent will exceed the spatially averaged field strength. Therefore, the effective real 
part of third order susceptibility of the composite can exceed that of each of its constituents 
(Fischer  et al., 1995). At the same time, strong resonant Raman scattering in dielectric 
particles is obtained, when the wavelength of an incident field is commensurate with that of 
an electromagnetic eigenmode of the particle, which depends on its size and on the 
refractive indices of the particle and the surrounding medium (Murphy & Brueck, 1983). 
This enhancement can be understood by viewing the particle as a cavity whose dimensions 
determine whether or not it is in resonance with either the incident or the emitted EM waves 
or both (i. e. double resonance). The observations of an enhancement of about 100 of the 
intensity of spontaneous Raman scattering were reported in Murphy & Brueck (1983) from a 
variety of Si structures having submicrometer dimensions (x~a/λ~1), where λ is the 
wavelength and a is a characteristic particle dimension; for example spheres, having 
diameters of ~0.1micron, were considered. As expected, the enhanced one-phonon spectra 
reported was a Lorentzian line shape with widths comparable with that of good-quality 
bulk Si, while the exploited resonances were corresponding to electromagnetic cavity modes 
with at least one optical wavelength resonating within the particle. 

The latter, is related to the optical transport properties of complex photonics structures on 
the intermediate regime between complete order or disorder. Light waves in disordered 
materials perform a random walk, which could lead to a multiple scattering process and to a 
strong localization of dielectric field (Wiersma et al., 2005). In a binary system with 
components of refractive indices n1 and n2, the efficiency of light scattering depends on 
how these components are organized in the system, the dimensions of the components, and 
the refractive index ratio n1/n2=m. In a specific regime, light propagation can be inhibited 
due to interference and the field intensity in localized regions can be significantly larger 
than in the surroundings (Schuurmans et al., 1999). As a consequences nonlinear optical 
properties of disordered material should be enhanced. 

In our opinion the localization could play an important role on SRS and the combination of 
localization and SRS gain could be of particular interest for photonic application, where 
disordered materials could provide optical amplification via SRS. 



 
Nonlinear Optics 

 

66

stimulated Raman scattering in silicon nanostructures (SRN/Si-SLs), being the particle 
dimension of about 2 nm, the phonon confinement effect is significant; therefore, we suggest 
that enhancement explanation has to be sought out in the framework of matter confinement 
and related to the enhancement of the third order nonlinear susceptibility in small Si 
clusters (approximately 2nm in diameter) that nucleate in a high density inside silicon-rich 
nitride materials. However, the structure of the SRN/Si interfaces, the stoichiometric 
material disorder, and the cluster dimensionality are also important parameters that are 
expected to significantly influence Raman amplification, a theoretical understanding of their 
respective roles remains to be established. 

Concerning stimulated Raman scattering in silicon nanocomposites in SiO2, being the 
diameter of particles dispersed in silica matrix of about 0.1 micron, the enhancement of SRS 
was due to a photons confinements effect. In order to try to explain why the presence of 
silicon particles can increase the Raman gain coefficient, we suggest two possible option. 
The former, it is well known that the nonlinear optical properties of composites material are 
characterized an “enhancement of local field” (Fischer  et al., 1995). Off resonance, the 
electric field amplitude of an incident laser beam becomes no uniformly distributed between 
the two constituents of composite and the electric field strength within the more nonlinear 
constituent will exceed the spatially averaged field strength. Therefore, the effective real 
part of third order susceptibility of the composite can exceed that of each of its constituents 
(Fischer  et al., 1995). At the same time, strong resonant Raman scattering in dielectric 
particles is obtained, when the wavelength of an incident field is commensurate with that of 
an electromagnetic eigenmode of the particle, which depends on its size and on the 
refractive indices of the particle and the surrounding medium (Murphy & Brueck, 1983). 
This enhancement can be understood by viewing the particle as a cavity whose dimensions 
determine whether or not it is in resonance with either the incident or the emitted EM waves 
or both (i. e. double resonance). The observations of an enhancement of about 100 of the 
intensity of spontaneous Raman scattering were reported in Murphy & Brueck (1983) from a 
variety of Si structures having submicrometer dimensions (x~a/λ~1), where λ is the 
wavelength and a is a characteristic particle dimension; for example spheres, having 
diameters of ~0.1micron, were considered. As expected, the enhanced one-phonon spectra 
reported was a Lorentzian line shape with widths comparable with that of good-quality 
bulk Si, while the exploited resonances were corresponding to electromagnetic cavity modes 
with at least one optical wavelength resonating within the particle. 

The latter, is related to the optical transport properties of complex photonics structures on 
the intermediate regime between complete order or disorder. Light waves in disordered 
materials perform a random walk, which could lead to a multiple scattering process and to a 
strong localization of dielectric field (Wiersma et al., 2005). In a binary system with 
components of refractive indices n1 and n2, the efficiency of light scattering depends on 
how these components are organized in the system, the dimensions of the components, and 
the refractive index ratio n1/n2=m. In a specific regime, light propagation can be inhibited 
due to interference and the field intensity in localized regions can be significantly larger 
than in the surroundings (Schuurmans et al., 1999). As a consequences nonlinear optical 
properties of disordered material should be enhanced. 

In our opinion the localization could play an important role on SRS and the combination of 
localization and SRS gain could be of particular interest for photonic application, where 
disordered materials could provide optical amplification via SRS. 

 
Stimulated Raman Scattering in Quantum Dots and Nanocomposite Silicon Based Materials 

 

67 

6. Conclusions 
In this chapter, we experimentally investigate stimulated Raman scattering in amorphous Si 
nanocrystals and silicon nanocomposite and a number of advantages with respect to silicon 
were demonstrated. 

First, according to phonon confinement model, two significant improvement of Raman 
approach in silicon quantum dots with respect to silicon were reported: the broadening of 
spontaneous Raman emission and the tuning of the Stokes shift. Considering silicon 
quantum dots having crystal size of 2 nm, a significant broadening of about 65 cm−1 and a 
peak shift of about 19 cm−1 were obtained. Taking into account such results, more than the 
half of C-band telecommunication (width = 146 cm−1) could be covered using silicon 
quantum dots, without implementing the multi pump scheme. 

Then, we experimentally demonstrate that amorphous Si nanocrystals and silicon 
nanocomposite can provide larger Raman gain values and a significant reduction in 
threshold power with respect to bulk Si devices. 

We have two significant consequences related to our results. The first, concerning a 
fundamental point of view, the broadening of the Raman gain spectra combined with the 
present observation of enhanced Raman gain lead us to conclude that the traditional 
tradeoff between gain and bandwidth, valid in bulk materials, could be overcome in low-
dimensional materials. 

The second, concerning an applicative point of view, the possibility to enhance the Raman 
gain coefficient and to reduce two-photon absorption, at the same time, in silicon quantum 
dot was addressed. This means that the main limitation of first silicon Raman lasers could be 
overcame. Therefore, we quite optimistic believe that our experimental results can open the 
way to the fabrication of more efficient Raman lasers and amplifiers compatible with Si 
technology. 
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1. Introduction 
Plasmonics has become a route to develop ultracompact optical devices on a chip by using 
extreme light concentration. It also gives the ability to perform simultaneous electrical and 
optical functions, and facilitates dramatic enhancement of localized field intensities via 
metallic nanostructures. On the other hand, nonlinear optical interactions scale with the 
local intensity of the optical field, i.e., the dielectric polarization of a given material responds 
to the local electric field in a high-order way. For a metal-dielectric nanostructure, the 
combination of plasmonics with its nonlinear optical response offers the opportunity to 
manipulate nonlinear optical responses in sub-diffraction-limited volumes. 

Nevertheless, before taking advantage of such opportunity, a strong understanding of the 
nonlinear optical response due to metallic nanoparticles is necessary (Fernández-Hernández et 
al., 2011; Rangel-Rojo et al., 2009, 2010; Reyes-Esqueda et al., 2009; Rodríguez-Iglesias et al., 
2009; Torres-Torres et al., 2008). On doing so, the possibility of conferring anisotropic 
symmetries to metallic nanocomposites (Oliver et al., 2006; Rodríguez-Iglesias et al., 2008; 
Silva-Pereyra et al., 2010) revealed also the anisotropy of their linear and nonlinear optical 
responses (Fernández-Hernández et al., 2011; Rangel-Rojo et al., 2009, 2010; Reyes-Esqueda et 
al., 2008, 2009; Rodríguez-Iglesias et al., 2009). In particular, the anisotropic nonlinear optical 
response, for given wavelength and incident polarization, reveals a complex contribution from 
all the different, nonzero, linearly independent third-order susceptibility tensor’s components 
(Reyes-Esqueda et al., 2009; Rodríguez-Iglesias et al., 2009). Besides, given this anisotropy, 
although the nanocomposite remains being centrosymmetric, there is the possibility of 
measuring a nonzero optical second-order nonlinearity in the form of a second harmonic 
generation (SHG) signal, as it has been shown in previous results (Aktsipetrov et al., 1995; 
Brevet et al., 2011; Dadap et al., 1999, 2004; Figliozze et al., 2005; Gallet et al., 2003; Mendoza et 
al., 2006), and also verified by us experimentally (Rocha-Mendoza et al., 2011). 
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Therefore, in this chapter we first present an overview of recent studies about the nonlinear 
optical response of metallic nanoparticles. Then, we present recent previous results 
regarding the third-order nonlinear optical response of metallic nanocomposites. After that, 
we discuss the dependence of this response on the tensor’s components, making emphasis 
on the anisotropic case. Finally, we calculate the general form of the second-order 
susceptibility tensor for anisotropic nanocomposites, together with some experimental 
results for the polarization dependence of second harmonic generation in these composites. 

2. Nonlinear optical response of metallic nanoparticles 
In recent years, nanostructured materials composed of metal nanoparticles (NPs) have 
attracted much attention due to the possibility of using their nonlinear optical properties for 
photonic nanodevices (Inouye et al., 2000; Matsui, 2005) and plasmonic circuitry (Barnes et 
al., 2003; Tominaga et al., 2001). Their linear and nonlinear optical properties are dominated 
by collective electron-plasma oscillations, the so-called localized surface plasmon resonances 
(LSPRs), and a vast literature can be found elsewhere studying such properties (Aktsipetrov  
et al., 1995; Barnes et al., 2003; Brevet, 2011; Dadap et al., 1999; Inouye et al., 2000; 
Karthikeyan et al., 2008; Kim et al., 2006; Matsui, 2005; McMahon et al., 2007; Rangel-Rojo et 
al., 2009, 2010; Ryasnyansky et al., 2006; Tominaga et al., 2001; Zheludev & Emelyanov, 
2004). In particular, in 2008, when studying Cu NPs embedded in a silica matrix using 
nanosecond and picosecond light pulses, we found that thermal effects for the nanosecond 
regime, and induced polarization for the picosecond one, were the physical mechanisms 
responsible for the saturable optical absorption and the Kerr effect presented by the 
nanocomposites (Torres-Torres et al., 2008). However, by following Hache, et al. (Hache et 
al., 2004), we also remarked the contribution of the hot-electrons generation to the 
observation of saturable absorption. From there, we have widely studied the optical third-
order nonlinearity of randomly arranged, but elongated and aligned in a preferential 
direction, metallic NPs embedded in silica (Fernández-Hernández et al., 2011; Rangel-Rojo 
et al., 2009, 2010; Reyes-Esqueda et al., 2009; Rodríguez-Iglesias et al., 2009). We have put 
especial attention, on one hand, to the contribution to these properties from the electron 
transitions charactheristic of metallic NPs, that is, intra- and inter-band transitions, but also 
to the contribution from the mentioned hot-electrons generation (Fernández-Hernández et 
al., 2011). From here, the dependence of these nonlinearities on the incident wavelength and 
irradiance has been observed, allowing also the observation of sign switching of the 
nonlinear absorption and refraction (Fernández-Hernández et al., 2011). On the other hand, 
the shape-anisotropy of the ion-deformed metallic NPs embedded in a dielectric matrix 
(Oliver et al., 2006; Rodríguez-Iglesias et al., 2008; Silva-Pereyra et al., 2010) induces also an 
anisotropic third-order nonlinear optical response, as we have shown for different temporal 
regimes, in the case of Ag and Au (Fernández-Hernández et al., 2011; Rangel-Rojo et al., 
2009; Reyes-Esqueda et al., 2009; Rodríguez-Iglesias et al., 2009). For the anisotropic 
nanocomposites the analysis is now more complex: there are two LSPRs, one associated to 
the major axis of the elongated NP, and another one associated to its minor axis. This fact 
duplicates the contribution from the intra-band transitions, but also that from the hot-
electrons generation. Besides, the form of the nonlinear susceptibility tensor becomes very 
specific, having now only three linearly independent, nonzero components (Reyes-Esqueda 
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et al., 2009; Rodríguez-Iglesias et al., 2009), where each one of them may be measured 
depending on the incident polarization of the exciting beam, and on the angular position of 
the nanocomposite with respect to the beam’s wavevector. We have shown also the 
possibility of understanding the nonlinear optical absorption behavior by using a two-level 
model (Rangel-Rojo et al., 2009). Thus, for the third-order nonlinear optical response from 
isotropic and anisotropic metallic NPs, besides of being very large, the sign of both the 
nonlinear absorption and refraction can change, depending on the wavelength, irradiance 
and incident polarization (Fernández-Hernández et al., 2011). 

Regarding the second-order nonlinear optical response, metallic NPs are centrosymmetrical 
materials, their crystalline lattice structures are cubic face-centered and, in principle, no SHG 
from the bulk NP takes place in the electric dipole approximation. The SHG origin of such 
materials is attributed then to higher order interactions like electric quadrupole and 
magnetic dipole responses from the NPs bulk and/or electric dipole responses allowed from 
the NPs surfaces (Aktsipetrov et al., 1995; Brevet et al., 2011; Dadap et al., 1999, 2004; 
Figliozze et al., 2005; Gallet et al., 2003; Mendoza et al., 2006), where the inversion symmetry 
of the bulk material is broken. The latter response dominates in the specific case when the 
NP size is much smaller than the wavelength of the exciting (fundamental) beam 
(Aktsipetrov et al., 1995) so that field retardation effects (no spatial dependence of the 
electromagnetic fields) are neglected. Therefore, the problem at the macroscopic level turns 
to be very similar to that of nonlinear media containing particles of non-centrosymmetrical 
material apart from the interfacial second-order origin of the response. In a sense, the 
arrangement of the NPs in the array resembles that of the atoms in a crystal cell, where 
phase-matched SHG signal radiates in specific directions. This principle has been utilized 
for example on planar structures containing metallic 2D arrays of nanoparticles lacking 
inversion symmetry, providing coherent addition of the SH field where the efficiency of the 
process increased rapidly with decreasing nanoparticle size (McMahon et al., 2007; 
Zheludev et al., 2004). In this context, we demonstrate that, similar to the analysis to derive 
molecular orientation information of smaller noncentrosymmetic units at interfacial 
monolayer’s or macromolecules systems using SHG/Sum-Frequency Generation (SFG) 
experiments (Knoesen et al., 2004; Leray et al., 2004; Psilodimitrakopoulos et al., 2009; 
Campagnola & Loew, 2003; Rocha-Mendoza et al., 2007; Shen, 1989; Zhuang et al., 1999), we 
can treat the actual submicrometric layer containing randomly arranged, but highly aligned 
anisotropically shaped Ag-NPs (elongated or nearly spherical), as a nonlinear media; where 
the origin of its macromolecular second-order susceptibility,  2 , is the coherent 
contribution of the SH signal induced on every single nanoparticle. 

3. Third-order nonlinear optical response from isotropic metallic 
nanocomposites 
In order to get more control of the nonlinear optical response from metallic nanocomposites, 
very recently we carefully studied the wavelength dependence of this response (Fernández-
Hernández et al., 2011). To do that, we performed closed- and open-aperture Z-scan 
measurements at several wavelengths in isotropic and anisotropic metallic nanocomposites 
produced by ion implantation. We have observed dramatic changes of sign for both 
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nonlinear refraction and absorption, when passing from Au to Ag and/or varying the 
wavelength and irradiance. The results put into evidence the hot-electron contribution to the 
nonlinear optical response, when compared to inter- and intra-band transitions contribution. 
In this section, we present the main results obtained concerning the isotropic 
nanocomposites, leaving those from the anisotropic ones for the next section. 

3.1 Synthesis of isotropic metallic nanocomposites and optical measurements 

As reported before (Oliver et al., 2006; Reyes-Esqueda et al., 2009), high-purity silica glass 
plates where implanted at 0° of incidence at room temperature with 2 MeV Ag2++ (or Au2++) 
ions at a fluence of 3.35×1016 ion/cm2 (3.10×1016 ion/cm2). The depth of the Ag NPs layer 
was 0.94 μm with a FWHM of 0.72 μm, while for Au the depth was 0.57 μm with a FWHM 
of 0.36 μm. After Ag implantation, the samples were thermally annealed for 1 hr in a 
reducing atmosphere 50%H2+50%N2 at a temperature of 600°C for Ag. In the case of Au, an 
oxidizing atmosphere (air) was used for 1 hr at 1100°C. The metal implanted distributions 
and fluences were determined by Rutherford Backscattering Spectrometry (RBS) 
measurements using a 3 MeV 4He+ beam for Ag and a 2 MeV 4He+ beam for Au. Ion 
implantation and RBS analysis were performed using the IFUNAM’s 3MV Tandem 
accelerator NEC 9SDH-2 Pelletron facility. 

Linear optical absorption measurements were performed with an Ocean Optics Dual 
Channel SD2000 UV-visible spectrophotometer at normal incidence on the surface sample, 
changing only the incident polarization. The third-order nonlinear optical spectroscopy was 
performed by the Z-scan method (Sheik-Bahae et al., 1990) at 355, 500, 532, 600 and 750 nm. 
A picosecond pulsed laser system (PL2143A, 26ps) and an optical parametric generator (PG 
401/SH), both from EKSPLA, were used as light sources. These sources were focused with a 
focal length of 500 mm, where in each case the beam waist was measured by means of the 
knife’s edge method (Khosrofian & Garetz, 1983). The Rayleigh length was calculated to be 
around 1 cm for all the wavelengths considered, much larger than the thickness of the 
samples. It was verified that the nonlinear optical response from the SiO2 matrix was 
negligible when compared to that from the nanocomposite (matrix + NPs layer). The 
reference and transmitted beams (open- and closed-aperture) were measured with Thorlabs 
DET210 fast photodiodes. All optical measurements were performed in the Nonlinear 
Optics Laboratory at IFUNAM.  

3.2 Main results 

The linear absorption spectra of the isotropic nanocomposites are shown in Fig. 1. The 
invariance of the optical absorption for different incident polarizations confirms the optical 
isotropic behavior. In these Fig., it is also shown the wavelength position of the laser beam 
used for performing the Z-scan measurements in each case. 

Since the plasmonic systems usually exhibit positive and negative nonlinear absorption 
(NLA) at the same time, a fact that clearly influences the closed-aperture Z-scan traces for 
nonlinear refraction (NLR), we determined the nonlinear optical coefficients by a theoretical 
fitting, instead of using the approximate relationships that appear in reference (Sheik-Bahae 
et al., 1990), as it is usually done. For NLA, the fitting was made following (Liu et al., 2001; 
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Wang et al., 2010), where the presence of saturable and induced absorption is modeled 
through the following relationship: 

 0

0

,
' (1 / )

dI I I
dz I I
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where 0 is the linear absorption coefficient at the proper wavelength, β is the two-photon 
absorption coefficient, I is the intensity of the laser, and Is is the saturation intensity for the 
saturation of absorption process, respectively. Normally, in the case of third order nonlinear 
optical phenomena, the NLR contribution is written as n=n0+n2I, and the NLA as α=α0+βI, 
where n0 and α0 are the linear refraction and absorption, respectively; n2 is the nonlinear 
refractive index and β is the two-photon absorption coefficient. But when we have 
saturation of absorption, the first part of Eq. 1 can be developed in series in order to obtain 
α≈α0 (1-I/Is), where we define a negative NLA coefficient as β=-α0/Is. Then, we can note that, 
for a proper irradiance, the NLA superposition can result in cancellation of any nonlinear 
absorption effects. In order to show the nonlinear optical response through the entire 
spectral range studied, we resume the results in Figs. 2 and 3, where we have included the 
linear absorption spectra in the graphics in order to see in which zone we were exciting, 
near or far of the plasmon resonance. It is worth mentioning that we have shown in Fig. 3, 
the negative and positive values of  obtained when fitting, by using Eq. 1, the experimental 
data obtained from the z-scan measurements. This will help us later when we discuss the 
physical origin of the observed nonlinear optical behavior for both plasmonic 
nanocomposites. 

    
Fig. 1. Linear optical absorption of isotropic samples. a) Au NPs. b) Ag NPs. 

In Fig. 2, for the Au nanocomposite, we can see that the NLR is always positive and grows 
with wavelength, except at the shortest wavelength used (355 nm), where the sign changes. 
In the case of Ag, the NLR is also positive, but there is a change of sign at 500 nm, near the 
low-energy side of the plasmon resonance. This change of sign was also found at 532 nm for 
low irradiances, but it became positive when increasing the irradiance. Then, we argue that, 
for a higher irradiance at 500 nm, the sign may become positive. This has to do with the type 
of electronic transition being excited in each case, as it will be discussed later. For NLA  
(figure 3), a superposition of effects for both types of nanocomposite is clearly seen, 
confirming that, with the proper irradiance, the nonlinear absorption can be cancelled, as 
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shown for Ag at 600 nm and for Au at 355 nm. It can be also deduced that, for low 
irradiances, a positive NLA dominates, whereas at higher irradiances, NLA changes sign, 
i.e., the nanocomposite’s absorption saturates and becomes more transparent. 

     
Fig. 2. NLR spectroscopy results for isotropic samples. The upper data of each part show the 
value of n2 obtained from the measurements for Au and Ag NPs isotropic samples, while 
the lower curve is the corresponding linear optical absorption. The dotted vertical lines 
represent the wavelength where the NLR measurements were performed. 

     
Fig. 3. NLA spectroscopy results for isotropic samples. The upper data of each part show the 
value of β obtained from the measurements for Au and Ag NPs isotropic samples, while the 
lower curve is the corresponding linear optical absorption. The dotted vertical lines 
represent the wavelength where the NLA measurements were performed. 

3.3 Discussion 

It is well known that the optical response of metallic nanocomposites depends on the 
excitation wavelength, since the induced effects in the NPs can excite inter- and/or intra-
band electronic transitions. In the linear regime, it has been well established that plasmon 
resonances are due to intra-band transitions, and that they can be explained using Drude‘s 
model for metals, by adding a correction of the inter-band transitions when calculating the 
dielectric function of the NPs (Noguez, 2007). Regarding the nonlinear regime, in the 
isotropic case, both electronic transitions contribute with the same sign to the nonlinear 
optical response near the plasmon resonance, as explained by Hache et al. (Hache et al., 
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1986, 1988). Nevertheless, intra-band transitions are present in the whole visible spectrum, 
while inter-band only when the respective band-gap is overcame. In the case of gold, this 
band gap corresponds to 1.7 eV (729 nm) (Hache et al., 1988). 

Additionally, there is another contribution to the optical properties in the nonlinear regime. 
This is the formation of hot-electrons, which contribute with opposite sign to the optical 
response. Following Hache et al. (Hache et al., 1988), near the plasmon resonance, the 
nonlinear optical response is due, principally, to inter-band transitions and the formation of 
hot-electrons. Then, both contributions were present when we use 532 nm for Au and 355 
nm for Ag, since these wavelengths lay near of the respective plasmon resonances. At low 
irradiances dominates the inter-band contribution, which is reflected in a positive NLA, but 
when the irradiance is increased, the formation of hot-electrons increases at the same rate, 
dominating the optical response and changing the sign of the NLA. 

For longer wavelengths, the nonlinear optical response is very similar for both 
nanocomposites, due to the absence of inter-band transitions. In that region, only the free-
electron response, explained by the Drude model, contributes to the optical response, i.e., 
the intra-band transitions and the hot-electrons. But, because of the low energy of the 
photons in this region, the hot-electron contribution is not as strong as near the plasmon 
resonance and, consequently, a positive NLA is always dominant. However, we must 
consider that the shorter the wavelength, the higher the energy of the photon, consequently, 
the production of hot-electrons is higher for shorter wavelengths, and the positive NLA 
ceases to be dominant for a given irradiance and different wavelengths (Fernández-
Hernández et al., 2011). For NLR, there is a simple calculation of the NLR index following 
Boyd (Boyd, 2008), which is given by 
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where e is the charge of the electron and τr is the response time of the material (300 fs). 
Introducing the respective values for our nanocomposites, this shows that n2 is around 10-16 
m2/W, of the order of magnitude found in the measurements, as shown in Fig. 2. The entire 
nonlinear optical response discussed here is due completely to the presence of the NPs into 
the matrix, because, as it was said before, the nonlinear optical response of the matrix was 
negligible. 

4. Third-order nonlinear optical response from anisotropic metallic 
nanocomposites 
The anisotropy of the metallic nanocomposites makes their nonlinear optical response more 
complex. Now the dependence on the angular position of the sample and on the incident 
polarization, due to the form of the third-order nonlinear susceptibility tensor, may cause that 
the contributions to this response come not only from the inter-band transitions, but also from 
the intra-band transitions and the hot-electron contribution from two surface plasmon 
resonances, the one associated to the minor axis and the one associated to the major one. 

4.1 Synthesis of anisotropic metallic nanocomposites and optical measurements 

For the anisotropic nanocomposites, the previously implanted silica plates were cut into 
several pieces and each piece was irradiated at room temperature with 8 MeV Si ions at a 
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fluence of 5.0×1015 ions/cm2 for Ag, and 10 MeV Si ions at a fluence of 1.2×1016 ions/cm2 for 
Au. The Si irradiation was performed under an angle off normal of θ = (0.0° or 80.0°± 0.5°) 
for both, Ag and Au. As it has shown before in previous works (Oliver et al., 2006; 
Rodríguez-Iglesias et al., 2008), this irradiation deforms the formed NPs, transforming them 
in prolate spheroids all oriented along the direction of irradiation. The Si irradiation was 
also performed using the IFUNAM’s 3MV Tandem accelerator NEC 9SDH-2 Pelletron 
facility. Regarding the nonlinear optical measurements, they were performed for different 
incident polarizations, 0°, 45° and 90° for normal incidence of light, where 0° corresponds to 
the polarization aligned with major axis of the NP, and 90° to polarization aligned with the 
NP minor axis, for deformation at 80°. This convention was also maintained for 
nanocomposites deformed at 0°. 

4.2 Results 

The linear absorption spectra of the anisotropic nanocomposites, where the NPs were 
deformed at 0° and 80°, respectively, are shown in Figs. 4 and 5. The spectra for different 
polarizations show isotropy for deformation at 0°, as it was expected, because the light’s  

    
Fig. 4. Linear optical absorption of anisotropic samples with NPs deformed at 0°. 
a) Au NPs. b) Ag NPs. 

    
Fig. 5. Linear optical absorption of anisotropic samples with NPs deformed at 80°. 
a) Au NPs. b) Ag NPs. 
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polarization is parallel in all cases to the minor axis of the deformed NPs; while the 
anisotropic optical behavior is clear for deformation at 80° when varying the polarization. 
This last behavior can be explained with the presence of a second plasmon resonance at 
higher wavelengths, which corresponds to the major axis of the NPs. As before, in these 
Figs., it is also shown the wavelength position of the laser beam used for performing the Z-
scan measurements in each case. 

Regarding the nonlinear response of the anisotropic plasmonic nanocomposites, Figs. 6-9 
show the results for both type of nanocomposites, deformed at 0° and 80°, where we have 
used only the wavelengths of 532 nm and 355 nm, as indicated previously in Figs. 4-5. As 
said before, the incident polarization angles used were 0°, 45° and 90° for normal incidence 
of light, with 0° corresponding to polarization aligned with major axis of the NP, and 90° to 
polarization aligned with the NP minor axis, for deformation at 80°. 

    
Fig. 6. a) Closed- and b) open-aperture Z-scan for the anisotropic nanocomposite with Au 
NPs deformed at 0°. Different symbols are used for the different incident polarizations. The 
empty symbols are used for data obtained at 355 nm, while the filled ones are used for data 
obtained at 532 nm. Lines represent the fitting to these data. The data sets for different 
polarizations have been vertically shifted for clarity. 

    
Fig. 7. a) Closed- and b) open-aperture Z-scan for the anisotropic nanocomposite with Ag 
NPs deformed at 0°. Different symbols are used for the different incident polarizations. The 
empty symbols are used for data obtained at 355 nm, while the filled ones are used for data 
obtained at 532 nm. Lines represent the fitting to these data. The data sets for different 
polarizations have been vertically shifted for clarity. 
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Figures 6-7 show the nonlinear spectroscopy in the case of deformation at 0°, for both Au 
and Ag. It is remarkable the independence of the measurements on the incident 
polarization, confirming the isotropy of the deformed NPs into its transversal section. In the 
case of Au, there is a clear change of sign in NLR when passing from 532 nm to 355 nm, as in 
the isotropic case, where the former wavelength lays on the plasmon resonance and the last 
into the inter-band electronic transitions region. In the case of NLA, a superposition of both 
saturable and induced absorption is clearly observed for both wavelengths; but at 532 nm, 
for comparable irradiances, these effects almost cancel each other in both nanocomposites. 

    
Fig. 8. a) Closed- and b) open-aperture Z-scan for anisotropic nanocomposite with Au NPs 
deformed at 80°. Different symbols are used for the different incident polarizations. The 
empty symbols are used for data obtained at 355 nm, while the filled ones are used for data 
obtained at 532 nm. Lines represent the fitting to these data. 

    
Fig. 9. a) Closed- and b) open-aperture Z-scan for anisotropic nanocomposite with Ag NPs 
deformed at 80°. Different symbols are used for the different incident polarizations. The 
empty symbols are used for data obtained at 355 nm, while the filled ones are used for data 
obtained at 532 nm. Lines represent the fitting to these data. 

In the case of NPs deformed at 80°, from Figs. 8 and 9, it can be seen that, for NLR, in both 
nanocomposites, there is not a change of sign, but the magnitude of the response is larger 
when exciting near the plasmon resonances, 532 nm in the case of Au nanocomposite, and 
355 nm in the case of Ag one. For NLA, a superposition of effects with different sign is 
present again in both samples, where saturable absorption dominates at 532 nm. 
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In the case of NPs deformed at 80°, from Figs. 8 and 9, it can be seen that, for NLR, in both 
nanocomposites, there is not a change of sign, but the magnitude of the response is larger 
when exciting near the plasmon resonances, 532 nm in the case of Au nanocomposite, and 
355 nm in the case of Ag one. For NLA, a superposition of effects with different sign is 
present again in both samples, where saturable absorption dominates at 532 nm. 
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4.3 Analysis 

Regarding the anisotropic nanocomposites, as reported recently (Reyes-Esqueda et al., 2009; 
Rodríguez-Iglesias et al., 2009), there are three linearly independent components of the third 
order nonlinear susceptibility tensor that are responsible for the optical response of the 
nanocomposite, one of them corresponding to the mayor axis of the NP, another to the 
minor axis, and a final one to a linear superposition of them. Consequently, the third-order 
nonlinear polarization for the anisotropic nanocomposite may be written in terms of the 
angle between the electric field and the NP’s axis, which defines the optical axis of the 
nanocomposite, as 

                2 3 3 33 3
1111 1133 3333
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2

E E                 
3
NLP j j k k .  (3) 

When the incident electric field is parallel to the minor axis, the nonlinear polarization is 
trivially given by 

          2 3
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These two equation allows us to analyze the results presented in Figs. 6-9. For the case of 
deformation at 0°, the incident electric field is clearly parallel to the minor axis of the NP, 
being then Eq. 4 the correct one. According to our previous results (Silva-Pereyra et al., 
2010), the minor axis of the NP has a size very similar to the radius of the isotropic NPs. 
Then, in this case, independently of the polarization, the incident light sees always an 
isotropic metallic system. Therefore, one can explain the results presented at Figs. 6 and 7 in 
a similar way as explained for the isotropic case. For Au, at 355 nm, the inter-band 
transitions contribute the most to the nonlinear optical response. At 532 nm, the intra-band 
transitions and the hot-electron contribution dominate now the optical response. For Ag, at 
355 nm, the intra-band transitions and the hot-electron contribution dominate now; but, for 
532 nm, there is only the intra-band transition contributing to the optical response. For both 
cases, one can see the same behavior as for the isotropic case. 

But for deformation at 80°, this analysis is more difficult. Now, for incident polarization of 
0°, Eq. 3 is the correct one to try to explain the nonlinear optical response observed. In this 
case, since the measurements are performed at normal incidence, the angle between the 
electric field and the major axis of the NP is 10°. By evaluating this into Eq. 3, one can 
observe that the larger contribution to the observed behavior comes from the term 
corresponding to the major axis, that is,  3

3333 , although there is also a contribution from the 
term mixing the axes,  3

1133 , and then the contribution from the plasmon resonances. 
Fortunately, for the wavelengths used in this work, the analysis may be done considering 
only one plasmon resonance at a time. This fact allows making the same considerations as 
for the isotropic case, and, for applications, by varying wavelength, polarization and 
angular position of the sample, one can switch the sign of the nonlinear optical response of 
these nanocomposites. For example, for Ag at 355 nm, the resonance associated to the major 
axis almost does not contribute to the optical response since it is rather far from this 
wavelength. Similarly, the inter-band transitions do not contribute. Then, the observed 
response is mostly due to the intra-band transitions and the hot-electron contributions from 



 
Nonlinear Optics 

 

82

the resonance associated to the minor axis. But this is exactly what happened for the 
isotropic case and for the NPs deformed at 0°. In the case of Au at 532 nm, the inter-band 
transitions do not contribute, but now, both resonances contribute to the observed response, 
although the wavelength is nearest to the resonance associated to the major axis, which 
presents also a larger absorbance, increasing the magnitude of the nonlinearity measured 
too. For incident polarization of 90°, Eq. 4 again describes the observed response, which is 
again, in general, as for the isotropic case. However, for the deformation at 80°, for Au, there 
is one discrepancy at 355 nm, for both polarizations the NLR turns to be positive, while for 
deformation at 0° and for the isotropic case, this was negative. This result deserves a more 
careful analysis, which will be done at some other time. 

5. Second-order nonlinear optical response for anisotropic nanocomposites 
Although anisotropic metallic NPs are still centrosymmetrical systems, there is the 
possibility of measuring SHG from them when higher order interactions, like electric 
quadrupole, and magnetic dipole responses from the NPs bulk, and/or electric dipole 
responses allowed from the NPs surfaces (Aktsipetrov et al., 1995; Brevet et al., 2011; Dadap 
et al., 1999, 2004; Figliozze et al., 2005; Gallet et al., 2003; Mendoza et al., 2006), where the 
inversion symmetry of the bulk material is broken, are present. The latter response 
dominates in the specific case the NP size is much smaller than the wavelength of the 
exciting (fundamental) beam (Aktsipetrov et al., 1995), so that field retardation effects (no 
spatial dependence of the electromagnetic fields) are neglected. 

5.1 Theoretical analysis 

In general, the second-order nonlinear polarization,  2
iP , induced by an incident electric 

field, E, for the bulk second-order susceptibility,  2
ijk , is given by    2 2

j ki ijkP E E . For 
materials composed of nonlinear optical scatterers much smaller than the wavelength of 
the fundamental beam, such as in the case of thin films composed of syntectic 
macromolecules or fibrillar proteins for instance (Knoesen et al., 2004; Leray et al., 2004; 
Podlipensky et al., 2003; Rocha-Mendoza et al., 2007), the origins of the bulk second-order 
susceptibility  2

ijk  comes from the coherent summation of the molecular 
hyperpolarizability ' ' 'i j k  of the smaller molecules. In a similar way, due to the fact that 
the elongated NPs of our samples are at least a hundred times smaller than the 
wavelength of the fundamental light and in the limit of weak coupling between each 
nonlinear NP, we can express the macroscopic susceptibility of the thick layer containing 
NPs as 

  2
, ' ' ' ' ' 'ijk i j k i j kijk N R   .  (5) 

where N is the number density of NPs contained within the point spread function of the 
beam, ' ' 'i j k  is the hyperpolarizability tensor for the NPs, and , ' ' 'ijk i j kR  are the elements of 
the Euler rotation matrix that transforms the hyperpolarizability ' ' 'i j k  in the NPs 
coordinate system ( ' ' ' , ,i j k    ) to the laboratory coordinates ( , ,ijk x y z ). The angular 
averaging denoted by  accounts for the angular distribution of the NPs. Fig. 10 shows a 
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schematic representation of the Euler angles, where the z-axis is normal to the sample 
surface and the ζ-axis is along the NP long axis. Assuming the interface between the glass 
substrate and the NPs layer to be azimuthally isotropic (invariance under -rotation), i. e. this 
interface does not contribute to the second harmonic signal, there are only three nonvanishing 
independent components of  2 ,        2 2 2 2

xxz yyz xzx yzy      ,    2 2
zxx zyy   and  2

zzz . 
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Fig. 10. Euler angles,  , ,   , relating the laboratory coordinates system, xyz, and the 
coordinate system,  , of a single El Ag-NP.  is the isotropic azimuthal angle over the ζ-
axis. x1-axis is obtained from the first rotation, .  is the pitch angle formed from the z-axis 
of the laboratory system and the ζ−axis of the NP coordinate system, after the first rotation 
.  is the azimuthal angle over z-axis. 

It is common practice to calculate the average orientation of the sub-molecular units that 
give rise to the macroscopic susceptibility of nonlinear materials using SHG/SFG 
experiments. In the process, analytical expressions of the independent tensor components 
are typically written in terms of the pitch angle, , defined by the z-axis and the 
noncentrosymmetric subunit ζ-axis, and the resulting nonzero elements of the microscopic 
hyperpolarizability, ' ' 'i j k . Such expressions and their derivation are found elsewhere [16-
19,24], and will not be rewritten here. Instead, for the purpose of this work, we followed the 
formalism used in Refs. (Hirose et al., 1992; Knoesen et al., 2004; Zhuang et al., 1999) to 
derive expressions for the effective susceptibility tensor,  2

eff , in terms of the experimental 
variables  and . With  as the angle of the linearly polarized fundamental beam with 
respect to the plane of incidence, and, , as the angle made by the projection of the NP long 
axis, ζ, over the xy plane and the fixed plane of incidence contained in xz. From Fig. 10 we 
can deduce that 90    . The total SH intensity is proportional to the sum of the effective 
susceptibility p and s as follows 

      2 2 22 2 2
, ,SH eff eff p eff sI       ,  (6) 

where the first and second sub indexes (from left to right) of  2
eff  in the right-hand side of 

Eqn. 6 denote the output (fixed) and input (variable) polarization directions, respectively, 
and each component  can be computed from 
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,  (7) 

Here 1ê  and 2ê  are the unit polarization vectors of the fundamental and SHG beams, 
respectively. With 1ê  (or ) =0o (or 180o) for p-polarized light and 90o (or 270o) for s-
polarized light, for example.  L 


 is the Fresnel factor at frequency   at the silicon 

substrate and nonlinear media interface. This parameter is found to be quite sensitive in the 
determination of molecular orientation since it depends on the index of refraction of the 
interfaces involved and the cosine of the angle of incidence/reflection of the 
fundamental/SH beam (Zhuang et al., 1999). However, we already know the orientation 
angle of the NPs and for simplicity, we will approximate this values to unity. 

In the first approximation, we chose to model the elongated NPs as rod particles for which the 
hyperpolarizability tensor is cylindrically symmetric along ζ (invariance under -rotation). We 
also assume that the optical frequencies of the fundamental and SH beams are not in 
resonance with electronic transitions, so that there are only two nonvanishing independent 
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for s-SH, respectively. 

In Eqs. (8) and (9) /r     and a N   are our fitting parameters, while b=1-r. 
Note that    2 2

, , 0eff p eff s    , in the specific case when =0, this result is expected since 
under this configuration the input electric field finds isotropically shaped NPs. For all other 
configurations (=90°; =180° and =270)    2 2

, , 0eff p eff s    and polar traces with different 
lobes of maximum SH are found for p- and s-SH, respectively, as will be shown in our 
discussions. 
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Here 1ê  and 2ê  are the unit polarization vectors of the fundamental and SHG beams, 
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In Eqs. (8) and (9) /r     and a N   are our fitting parameters, while b=1-r. 
Note that    2 2

, , 0eff p eff s    , in the specific case when =0, this result is expected since 
under this configuration the input electric field finds isotropically shaped NPs. For all other 
configurations (=90°; =180° and =270)    2 2

, , 0eff p eff s    and polar traces with different 
lobes of maximum SH are found for p- and s-SH, respectively, as will be shown in our 
discussions. 
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5.2 Sample preparation and optical measurements 

The anisotropic Ag nanocomposites used for SHG measurements were prepared as before, 
only the angle of deformation was modified to 45° and the fluences were 2.4×1017 ion/cm2 
for Ag, and 1×1016 ion/cm2 for Si. The depth of the layer of elongated NPs was 0.9 μm with 
a FWHM of 0.5 μm. 

In order to characterize the NPs orientation in the samples, prior to the SHG experiments, 
we collected optical absorption spectra using linearly polarized light at two mutually 
orthogonal polarizations, one parallel (labeled as p) and the other perpendicular (labeled as 
s) to the plane of incidence. This experiment was performed at three different angles of 
incidence (0o and ±45o) and an UV-visible spectrophotometer was used to perform the 
measurements. Figure 11 shows the schematic of these experiments (a and b) and the 
respective absorption spectra (d and e). Note that Fig. 11 a and b resembles the resulting 
samples of the two ion implantation process. Note that in Fig. 11 b the particles long axes are 
tilted 45o with respect to the substrate normal and lay on the xz planes of the laboratory xyz 
coordinate system. When viewed from the front, the projection of the long axes of the 
deformed NPs point in the direction we label as x. 

 
Fig. 11. Schematics for absorption experiments on spherical (a) and elongated (b) Ag-NPs. In 
the figures, xyz is the laboratory coordinate system; p and s are respectively the parallel and 
perpendicular linear polarization of the incident beam with respect the plane of incidence; 

inc is the angle of incidence (positive for counterclockwise direction) made by the 
propagation direction, k, and the surface normal, n̂ . (c) and (d) are the absorption spectra of 
spherical and elongated Ag NPs respectively, taken at different input polarization and angle 
of incidence (as labeled in (c)). 

The absorption spectra taken under different angles of incidence have no significant changes 
for the case of spherical NPs samples. This is shown in Fig. 11c, where a single SP resonance 
is found at approximately 400 nm. In contrast, from Fig. 11d we can see that for the 
elongated NPs the absorption spectra depends on both the light polarization and the angle 
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of incidence. At normal incidence the SP resonance of the particles is shifted to lower 
wavelengths for s-polarization (red line), while the absorption spectra splits into two 
spectrally separated SP resonances for p-polarization (black line). The shifted resonance at 365 
nm obtained with s-polarized light is associated with the short-axis SP and can be explained by 
the decrease of the NPs size (McMahon et al., 2007) during the second ion implantation 
process. The resonance at 570 nm obtained with p-polarized light is associated with the long-
axis SP and its broadness can be explained by the different NPs sizes formed in the matrix. 
Note that the 365 nm resonance is also present and presumably invariant in the spectra taken 
at the three angles of incidence with p-polarized beams, i. e. at −45o (blue line), 0o (black line) 
and 45o (green line). While in the case of p-polarized light at 45o this result is obvious, since it 
resembles the case of s-polarized light at 0o, the presence of this band in the other two cases, 0o 
and −45o, can be attributed to a residual misalignment with respect to the direction of 
elongation of the particles, or to an actual fraction of smaller spherical NPs remaining in the 
matrix after the second ion-implantation process. Finally, a strong dependence of the 570 nm 
SP is obtained with p-polarized light for different angles of incidence being higher when the 
light propagation is orthogonal to the NPs axes (blue curve). This last result was the criteria 
used to characterize the NPs orientation used in the SHG experiments. 

SHG experiments in the reflection mode with a fixed angle of incidence were conducted 
using a Ti:Sapphire oscillator as the fundamental beam. The schematic representation of 
these experiments is shown in Fig. 12a. The laser delivered linearly polarized femto-second 
pulses with a wavelength centered at 825 nm (pulse width, 88 fs; repetition rate, 94 MHz). 
The angle of polarization, , of the fundamental beam was rotated using a λ /2 wave-plate in 
order to trace the polar SH dependence of our samples. Using a 50 mm focal length lens, the  
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(a) (b) 

Fig. 12. a) SHG experiment in the reflection mode. In the figure, ,2: fundamental and the 
second harmonic frequencies; p/s:parallel/perpendicular linear polarization of the incident 
beam with respect the plane of incidence; inc : angle of incidence made by the propagation 
direction, k, and the surface normal, n̂ ;  : angle of polarization of the fundamental beam; 
: sample rotation angle made by the projection of the NP long axis, ζ, over the xy plane and 
the fixed plane of incidence contained in xz. (b) Different sample orientations, i. e., elongated 
NPs orientations with respect the laboratory system, used on SHG experiments. 
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of incidence. At normal incidence the SP resonance of the particles is shifted to lower 
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elongation of the particles, or to an actual fraction of smaller spherical NPs remaining in the 
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SP is obtained with p-polarized light for different angles of incidence being higher when the 
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used to characterize the NPs orientation used in the SHG experiments. 
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Fig. 12. a) SHG experiment in the reflection mode. In the figure, ,2: fundamental and the 
second harmonic frequencies; p/s:parallel/perpendicular linear polarization of the incident 
beam with respect the plane of incidence; inc : angle of incidence made by the propagation 
direction, k, and the surface normal, n̂ ;  : angle of polarization of the fundamental beam; 
: sample rotation angle made by the projection of the NP long axis, ζ, over the xy plane and 
the fixed plane of incidence contained in xz. (b) Different sample orientations, i. e., elongated 
NPs orientations with respect the laboratory system, used on SHG experiments. 
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beam was focused onto the nanocomposite at an angle of incidence 45inc    with respect 
the sample surface normal. The reflected SH signal was collected at 90o with respect to the 
incoming light using a second lens of 30 mm focal length. A color filter and a grating 
monochromator (not shown) were used to spectrally separate the SH signal from the 
fundamental light. Finally, the signal was detected via a photomultiplier tube connected to a 
current/voltage pre-amplifier circuit and a digital oscilloscope. The p-polarized SH (p-SH) 
and s-polarized SH (s-SH) intensities were also measured using a polarizer cube before 
signal collection. The sample was mounted on a rotation stage in order to vary the NPs long 
axis orientation by rotating the angle . The four different angles used in our experiments 
are represented in Fig. 12b. 

5.3 Results and discussion 

Figure 13 shows both the measured and simulated polar dependence of the total (black), p-
polarized (red) and s-polarized (blue), SHG intensities obtained for the different 90o-shifted 
 configurations described in Sec. 5.2. Note that in the experiment, the four configurations 
produced detectable p- and/or s-SHG signal. We stress out that, in principle, even when the 
centrosymmetry of the ellipsoidal and spherical NPs is locally disrupted by its surface, the 
homogeneous polarizing field induces SHG of mutually cancelling polarizations at opposite 
sides of the circular surface, neglecting then an overall dipolar SHG contribution (Figliozzi 
et al., 2005; Mendoza & Mochan, 2006). However, we have to bear in mind that no perfect 
ellipsoids (or spheres) are present in our samples and that the NP size is almost two orders 
of magnitude smaller that the excitation beam to consider the SH signal as a quadripolar 
contribution from the NPs bulk. In addition, according to rigorous calculations made by 
Valencia et. al. (Valencia et al., 2004, 2009), SHG radiation from centrosymmetric infinite 
cylinders is not symmetric in the back and front surfaces. They find a multi-lobe SHG 
pattern originated at the cylinder surface, where the angle made from the first SHG 
scattered lobes in the first surface is more pronounced as the cylinder width is decreased. 
Seemingly, Bachelier et. al. (Bachelier et al., 2010) modeled both the near-field of the 
harmonic amplitude and the far-field SH intensity distribution in spherical gold NPs, the 
two cases show anisotropic radiation patterns arising from the NP surface. Therefore, we 
attribute this signal to a nonlinear dipolar contribution arising from the NPs surface. 

Figure 13a shows, for example, the case when the incident beam is polarized perpendicular 
to the NP long axis (see Fig. 12a; =0o). Here the cross section of the elongated NPs could be 
considered circularly shaped (from the incident fundamental beam point of view) and 
therefore no SHG signal is expected according to Eqs. 8-9. In this case, in addition to our 
argument that no perfect circularly shaped NPs cross section are present in the sample, we 
attribute this signal to a systematic misalignment in the experiment while rotating the 
samples as will be shown latter. In contrast, lobes of maximum SH intensity are found at α-
angles near the NPs long axes. This is seen in Figs. 13b and d (=90o and =270o), 
respectively, where the s-SH intensity is the main contribution of the total SH signal. 
Seemingly, the main contribution in Fig. 13c (=180o) is the p-SH, instead. Note that Figs. 
12b and d are basically mirror images of each other (with y, or =90o, as the symmetry axis) 
with total SHG maxima at ∼ 115o and ∼ 290o, for b, and ∼ 65o and ∼ 255o for d, respectively; 
the counterpart p-SH intensity has practically no contribution. Otherwise, from Fig. 13c we 
can see that both the p- and s-SH intensities contribute to the total SH when the fundamental 
beam is perpendicular to the NPs long axes (Fig. 12b; =180o). 
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Fig. 13. Experimental and simulated SHG polar dependence of elongated Ag NPs, for the 
four different sample orientations (see Fig. 4) =0o (a), =90 o (b),  =180 o (c) and  =270o (d), 
respectively. In all plots the experimental total, p-polarized and s-polarized, SH are denoted 
by black squares, red circles and blue triangles, respectively. While the simulated SHG 
intensities are denoted using the same color convention in solid lines. An offset has been 
intentionally added in all plots to see the lower signal (see p -SH in b and d, for example). 

The simulated polar traces are in a good agreement with the experimental results; this can 
be seen also in Fig. 13. Table 1 shows specific values of the parameters r and a, used in Eqs. 
8-9, that best fitted with the experimental data, where, sim, stands for the simulated value of 
. The simulated data revealed two extra peaks in between the s-SH maxima (∼ 25 times 
lower), in Figs. 13b and d, respectively, and their values are found also in Tab. 1. Seemingly, 
two extra peaks are also found in Fig. 13c, but at much smaller values (∼ 300 times less). 
Note also that the values of r were fitted in the range of 1.4<1/r<3.5 for cases 2−4 (see table), 
confirming that there is a stronger hyperpolarizability response for fields oscillating along 
the NPs long axis (i.e.    ). These values are very similar to the values obtained in 
synthetic films consisting of helical (PBLG) macromolecules (Knoesen et al., 2004) and native 
fibrillar collagen (Stoller et al., 2003), their hyperpolarizability are reported to be within an 
order of magnitude of that of crystalline quartz (Freund et al., 1986). 
 

Case  1/r a sim   22
, maxeff p    22

,
max

eff s  

1. 0o 1/1.41 16 176o 0o, 180o 45o, 135o 

2. 90o 3.5 52 87o 25o, 115o 

205o, 295o 
65o, 155o 

245o, 335o 

3. 180o 1.4 34 180o 0o, 90o 

180o, 270o 
45o, 135o 

225o, 315o 

4. 270o 3.5 57 271o 66o, 156o 

246o, 336o 
26o, 116o 

206o, 295o 

Table 1. Values of parameters, r and a, and resulting SH maxima positions, to simulate the 
SHG experiments on elongated Ag NPs. 
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Table 1. Values of parameters, r and a, and resulting SH maxima positions, to simulate the 
SHG experiments on elongated Ag NPs. 
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Note that simulating the different cases shown in Figs. 13b-c with the same parameters (r 
and a) would result in obtaining higher SHG maxima in Fig. 13c than in Figs. 13b and d. 
However, in the experiment we obtained less SHG signal in Fig. 13d and we attribute this 
result to the presence of less NPs within the point spread function of the fundamental beam 
and/or a minor hyperpolarizability value. The inhomogeneous NPs distribution in the 
composite film makes extremely challenging maintaining the same irradiated area in the 
experiment while rotating the sample. As a consequence, the value of the parameters a and r 
used to fit the experimental data were different. As can be seen from Tab. 1, in this 
experiment the parameters used in Fig. 13c resulted to be smaller than the respective 
parameter values used to fit the experimental data of Figs. 13b and d. Otherwise, it is 
interesting to note that the experimental case at  = 0o (Fig. 13a) is reproduced for angles sim 
close to 180o and r= 1.41, this simply indicates that we can simulate this result by assuming 
stronger hyperpoplarizability responses for fields oscillating perpendicular to the NPs long 
axis (i.e.    ). The asymmetric polar dependence was obtained using sim confirming 
that our experimental results are most probable due to misalignment. Note also that both 
the p- and s-SHG intensities are comparable in magnitude, while for the case shown in Fig. 
13c the p-SH intensity is ∼5 times larger than s-SH. 

In order to be sure that the results correlate indeed with the known (simulated) structure of 
the elongated NPs, SHG experiments were also made in spherical NPs. Figure 14 shows SH 
signal from samples with embedded spherical NPs. The total SHG (black) presents nearly 
isotropic polar trace where p-SH (red) is the maximum signal contribution. The s-SH 
intensity (blue) also contributes but the signal is ∼ 10 times lower than the p-SH counterpart. 
It presents a characteristic shape with maxima at 45o, 135o, 225o and 315o. We found the same 
dependence for different values 0o and 90o (Fig. 14a and b), respectively, indicating that the 
obtained polar traces are a characteristic of the spherical NPs. The fundamental and SH 
beams spectra for elongated (black) and spherical (red) NPs, with the respective absorption 
spectra (dotted curves) are also shown in Fig. 15a. The absorption traces indicate that for 
elongated NPs the SHG may be enhanced since the fundamental is close to resonance with 
the SP broad band (black dotted line) at 570 nm (see also blue curve on Fig. 11d). Note, 
however, that the SHG suffers also absorption of about the same optical density reducing 
the signal. In contrast, the SP resonance of spherical NPs (red dotted line in Fig. 15a; which 
is the red solid line in Fig. 11c) is far away of the fundamental wavelength and therefore no 
enhancement effect is expected. In addition since the NPs sizes are small compared to the 
fundamental wavelength, this suggest that the SHG in spherical NPs samples arises mainly 
from the electric dipole surface contribution, owing to the actual non perfect spherical shape 
of the particles (Nappa et al., 2005), and must be large enough to be detectable even after 
being absorbed with an optical density of ∼3. Otherwise, the quadratic dependence with 
respect to the input power obtained in both types of samples, Fig. 15b (for elongated NPs) 
and c (for spherical ones), indicates the typical coherent nature of nonlinear scatterers. In 
particular, the result obtained in spherical NPs indicates that the SH observed is not due to 
grating effects such as the hyper Rayleigh scattering (HRS), where incoherent SHG is 
produced for which a typical linear dependence with respect to the input power is observed. 

Our results are in accordance with earlier SHG experiments performed by Podlipensky et. al. 
(Podlipensky et al., 2003) on elongated Ag NPs. The main differences with respect to our  
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Fig. 14. SHG signal of spherical Ag NPs as a function of the polarization angle, , obtained 
for two different sample orientations (see Figure 2): =0o (a) and =90o (b). In the plots, the 
total (opened squares, black), p-polarized (opened circles, red) and s-polarized (opened 
triangles, blue) SHG intensities are shown. 

 
Fig. 15. (a) Fundamental laser spectra used in the SHG experiments and SHG spectra 
obtained for spherical and elongated NPs. In all plots, curves in black stands for elongated 
NPs while curves in red for spherical NPs. SHG signal as a function of the fundamental 
input power for elongated (b) and spherical (c) Ag-NPs, respectively. Here, solid squares 
denote the experimental data while continuous lines indicate the fitted curves. m: is the 
slope obtained from the linear fitting. 

experiments are that this group obtained equivalent intensities for both p- and s-SH signal 
and no measurable signal for spherical NPs was detected. Their SH experiments were 
performed with the fundamental beam at an angle of incidence close to the surface normal, 
15o (SH collected in transmission), and the NPs long axes aligned along the surface normal. 
We consider that such experimental arrangement is close to the case shown in Fig. 12a, since 
the direction of the fundamental beam is also close to the direction of the NPs long axis and 
comparable intensities are obtained for p and s-SH. As discussed above we believe that we 
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and no measurable signal for spherical NPs was detected. Their SH experiments were 
performed with the fundamental beam at an angle of incidence close to the surface normal, 
15o (SH collected in transmission), and the NPs long axes aligned along the surface normal. 
We consider that such experimental arrangement is close to the case shown in Fig. 12a, since 
the direction of the fundamental beam is also close to the direction of the NPs long axis and 
comparable intensities are obtained for p and s-SH. As discussed above we believe that we 
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are able to detect SH from spherical NPs due to the fact that we have smaller NPs sizes (at 
least 10 times smaller) with respect to Podlipensky‘s samples. Note that Eqs. 8-9 do not 
explain this dependence, since they were obtained considering a hyperpolarizability tensor 
with cylindrical symmetry, however, it is interesting to note that our experimental results 
can be explained using analytical expressions obtained by Dadap et. al. (Dadap et al., 1999) 
to describe SH Rayleigh Scattering from spheres of centrosymmetric material, where the 
intensities for vertical and horizontal SH are given by 2

1pI a   and 2
2 sin 2sI a  , 

respectively. In these expressions, p and s, stands for the horizontal and vertical polarization of 
the harmonic generated signals, respectively, , is the fundamental input polarization, and, a1 
and a2, are complex numbers related to the pure effective dipole contribution and quadruple 
contribution, respectively. For p-SHG the intensity is constant, independent of the input 
polarization angle , while for s-SHG intensity the signal is maximum at  = (2n-1)45° and 
vanishes at  = (n-1)90°, with n =integer. Fig. 6b has been intentionally altered in order to see 
such s-SHG polar behavior. In addition, being the p-SH intensity higher with respect to the s-
SH counterpart in our experiments (then a1>>a2), strongly supports our assumption that the 
SHG is dominated by dipolar contributions arising from the surface of each non-perfectly 
spherical Ag-NP and having a quadratic response with respect to the input power (observed 
in Fig. 15c) confirms their coherent summation (Rocha-Mendoza et al., 2011). 

6. Conclusions 
The third-order nonlinear results here presented allows a better understanding of the 
nonlinear optical response of plasmonic nanocomposites, based on the electronic transitions 
occurred in the embedded NPs. For the studied wavelengths, the response depends on the 
incident irradiance, mainly because of the hot-electrons contribution. Regarding anisotropic 
plasmonic nanocomposites, for the wavelengths used in this work, the analysis may be done 
considering only one plasmon resonance at a time. This fact allows making the same 
considerations as for the isotropic case, and, for applications, by varying wavelength, 
polarization and angular position of the sample, one can switch the sign of the nonlinear 
optical response of these nanocomposites, which gives a wide picture of possible 
applications of these nanocomposites into the plasmonics realm. 

Second-harmonic generation from composites containing randomly distributed but aligned 
elongated silver nanoparticles has been presented and modeled as a coherent summation of 
the microscopcic hyperpolarizability associated to each NP. Our experimental data suggest 
that the origin of the hyperpolarizability, in both elongated and spherical NPs, can be 
attributed mainly to a surface nonlinear contribution of each non-perfect ellipsoidal or 
spherical Ag-NP. 
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1. Introduction

Reflection and transmission of transverse-electric (TE) electromagnetic waves at a single
nonlinear homogeneous, isotropic, nonmagnetic layer situated between two homogeneous,
semi-infinite media has been the subject of intense theoretical and experimental investigations
in recent years. In particular, the Kerr-like nonlinear dielectric film has been the focus of a
number of studies in nonlinear optics (Chen & Mills, 1987; 1988; Leung, 1985; 1988; Peschel,
1988; Schürmann & Schmoldt, 1993).

Exact analytical solutions have been obtained for the scattering of plane TE-waves at
Kerr-nonlinear films (Leung, 1989; Schürmann et al., 2001). As far as exact analytical solutions
were considered in these articles absorption was excluded, at most it was treated numerically
(Gordillo-Vázquez & Pecharromán, 2003; Schürmann & Schmoldt, 1996; Yuen & Yu, 1997).

As Chen and Mills have pointed out it is a nontrivial extension of the usual scattering theory
to include absorption (Chen & Mills, 1988) and it seems (to the best of our knowledge) that the
problem was not solved till now. In the following we consider a nonlinear lossy dielectric film
with spatially varying saturating permittivity. In Section 2 we reduce Maxwell’s equations
to a Volterra integral equation (14) for the intensity of the electric field E(y) and give a
solution in form of a uniform convergent sequence of iterate functions. Using these solutions
we determine the phase function ϑ(y) of the electric field, and, evaluating the boundary
conditions in Section 3, we derive analytical expressions for reflectance, transmittance,
absorptance, and phase shifts on reflection and transmission and present some numerical
results in Section 4.

It should be emphasized, that the contraction principle (that is used in this work) (Zeidler,
1995) includes the proof of the existence of the exact bounded solution of the problem and
additionally yields approximate analytical solutions by iterations. Furthermore, the rate of
convergence of the iterative procedure and the error estimate can be evaluated (Zeidler, 1995).
Thus this approach is useful for physical applications.

The present approach can be applied to a linear homogeneous, isotropic, nonmagnetic layer
with absorption. In this case the problem is reduced to a linear Volterra integral equation that
can be solved by iterations without any restrictions. The lossless linear permittivity as well as
the Kerr-like permittivity can be treated as particular cases of the approach.

4



2 Will-be-set-by-IN-TECH

Referring to figure 1 we consider a dielectric film between two linear semi-infinite media
(substrate and cladding). All media are assumed to be homogeneous in x− and z− direction,
isotropic, and non-magnetic. The film is assumed to be absorbing and characterized by a
complex valued permittivity function ε f (y).
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Fig. 1. Configuration considered in this paper. A plane wave is incident to a nonlinear slab
(situated between two linear media) to be reflected and transmitted.

A plane wave of frequency ω0 and intensity E2
0, with electric vector E0 parallel to the

z-axis (TE) is incident on the film of thickness d. Since the geometry is independent of the
z-coordinate and because of the supposed TE-polarization fields are parallel to the z-axis
(E = (0, 0, Ez)). We look for solution E of Maxwell’s equations

rotH = −iω0εE

rotE = iω0μ0H

that satisfy the boundary conditions (continuity of Ez and ∂Ez/∂y at interfaces y ≡ 0 and
y ≡ d) and where (due to TE-polarization) H = (Hx, Hy, 0). Due to the requirement of the
translational invariance in x-direction and partly satisfying the boundary conditions the fields
tentatively are written as (ẑ denotes the unit vector in z-direction)

E(x, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẑ
�

E0ei(px−qc ·(y−d)−ω0t)+

Erei(px+qc ·(y−d)−ω0t)
�

, y > d,

ẑ
�

E(y)ei(px+ϑ(y)−ω0t)
�

, 0 < y < d,

ẑ
�

E3ei(px−qsy−ω0t)
�

, y < 0,

(1)

where E(y), p =
√

εck0 sin ϕ, k0 = ω0
√

ε0μ0, qc, qs, and ϑ(y) are real and Er = |Er| exp(iδr)
and E3 = |E3| exp(iδt) are independent of y.
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A plane wave of frequency ω0 and intensity E2
0, with electric vector E0 parallel to the

z-axis (TE) is incident on the film of thickness d. Since the geometry is independent of the
z-coordinate and because of the supposed TE-polarization fields are parallel to the z-axis
(E = (0, 0, Ez)). We look for solution E of Maxwell’s equations

rotH = −iω0εE

rotE = iω0μ0H

that satisfy the boundary conditions (continuity of Ez and ∂Ez/∂y at interfaces y ≡ 0 and
y ≡ d) and where (due to TE-polarization) H = (Hx, Hy, 0). Due to the requirement of the
translational invariance in x-direction and partly satisfying the boundary conditions the fields
tentatively are written as (ẑ denotes the unit vector in z-direction)

E(x, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẑ
�

E0ei(px−qc ·(y−d)−ω0t)+

Erei(px+qc ·(y−d)−ω0t)
�

, y > d,

ẑ
�

E(y)ei(px+ϑ(y)−ω0t)
�

, 0 < y < d,

ẑ
�

E3ei(px−qsy−ω0t)
�

, y < 0,

(1)

where E(y), p =
√

εck0 sin ϕ, k0 = ω0
√

ε0μ0, qc, qs, and ϑ(y) are real and Er = |Er| exp(iδr)
and E3 = |E3| exp(iδt) are independent of y.
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We assume a permittivity ε(y) of the three layer system modeled by

ε(y)
ε0

=

⎧
⎪⎨
⎪⎩

εc, y > d,

ε f (y) = ε0
f + εR(y) + iε I(y) +

aE2(y)
1+arE2(y) , 0 < y < d,

εs, y < 0,
(2)

with real constants εc, εs, ε0
f , a ≥ 0, r ≥ 0 and real-valued continuously differentiable functions

εR(y), ε I(y) on [0, d]. A particular nonlinearity in (2) of cubic type (r = 0) can be met in the
context of a Kerr-like nonlinear dielectric film, while the case when r > 0 corresponds to the
saturation model in optics (see (Bang et al., 2002; Berge et al., 2003; Dreischuh et al., 1999;
Kartashov et al., 2003)).

The problem to be solved is to find a solution of Maxwell’s equations subject to (1) and (2).
With respect to the physical significance of (1) and (2) some remarks may be appropriate.
Though ansatz (1) widely has been used previously (Chen & Mills, 1987; 1988; Leung, 1985;
1988; Peschel, 1988; Schürmann & Schmoldt, 1993) it should be noted that it is based on
the assumption that the time-dependence of the optical response of the nonlinear film is
described by one frequency ω0. Phase matching is, e.g., assumed to be absent so that small
amplitudes of higher harmonics can be neglected. The permittivity function (2) also represents
an approximation. The dipole moment per unite volume and hence the permittivity is
not simply controlled by the instant value of the electric (macroscopic) field at the point
(x, y, z), due to the time lag of the medium’s response. Further more the response is nonlocal
in space. - The model permittivity (2) does not incorporate these features. Nevertheless,
experimental observations (cf., e.g. (Peschel, 1988)) indicate that (2) has physical significance
(with εR = ε I = r = 0). Finally, Maxwell’s equations, even for an isotropic material, imply
that all field components are coupled if the permittivity is nonlinear. The decomposition into
TE-and TM-polarization is an assumption motivated by mathematical simplicity. To apply the
results below to experiments it is necessary to make sure that TE-polarization is maintained.

2. Nonlinear Volterra integral equation

By inserting (1) and (2) into Maxwell’s equations we obtain the nonlinear Helmholtz
equations, valid in each of the three media (j = s, f , c),

∂2Ẽj(x, y)
∂x2 +

∂2Ẽj(x, y)
∂y2 + k2

0
ε(y)
ε0

Ẽj(x, y) = 0, j = s, f , c, (3)

where Ẽj(x, y) denotes the time-independent part of E(x, y, t).

Scaling x, y, z, p, qc, qs by k0 and using the definition of ε
ε0

in equation (2), equation (3) reads

∂2Ẽj(x, y)
∂x2 +

∂2Ẽj(x, y)
∂y2 + ε j(y)Ẽj(x, y) = 0, j = s, f , c, (4)

where the same symbols have been used for unscaled and scaled quantities. Using ansatz (1)
in equation (4) we get for the semi-infinite media

q2
j = ε j − p2, j = s, c. (5)
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For the film (j = f ), we obtain, omitting tildes,

d2E(y)
dy2 − E(y)

(
dϑ(y)

dy

)2
+

(
ε0

f + εR(y)− p2 +
aE2(y)

1 + arE2(y)

)
E(y) = 0 (6)

and

E(y)
d2ϑ(y)

dy2 + 2
dϑ(y)

dy
dE(y)

dy
+ ε I(y)E(y) = 0. (7)

Equation (7) can be integrated leading to

E2(y)
dϑ(y)

dy
= c1 −

∫ y

0
ε I(τ)E2(τ)dτ, (8)

where c1 is a constant that is determined by means of the boundary conditions:

c1 = E2(0)
dϑ(0)

dy
= −qsE2(0) (9)

Insertion of dϑ(y)/dy according to equation (3) leads to

d2E(y)
dy2 + (q2

f (y)− p2)E(y) +
aE3(y)

1 + arE2(y)
−

(c1 −
y∫

0
ε I(t)E2(t)dt)2

E3(y)
= 0, (10)

with
q2

f (y) = ε0
f + εR(y). (11)

As for real permittivity, real qs (transmission) implies c1 �= 0.

Setting I(y) = aE2(y), a �= 0, multiplying equation (10) by 4E3(y), and differentiating the
result with respect to y we obtain

d3 I(y)
dy3 + 4

d
(
(q2

f (y)− p2)I(y)
)

dy
= 2

d(q2
f (y))

dy
I(y)

−
2I(y) dI(y)

dy (3 + 2rI(y))

(1 + rI(y))2

−4ε I(y)(ac1 −
y∫

0

ε I(t)I(t)dt). (12)

Equation (12) can be integrated with respect to I(y) to yield

d2 I(y)
dy2 + 4κ2 I(y) = −4εR(y)I(y) + 2

∫ y

0

dεR(t)
dt

I(t)dt

− 2
r2

(
2rI(y) +

1
1 + rI(y)

− ln(1 + rI(y))
)

+4
∫ y

0
ε I(t)

(∫ t

0
ε I(z)I(z)dz

)
dt − 4ac1

∫ y

0
ε I(t)dt + c2, (13)
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where κ2 = ε0
f − p2 and c2 is a constant of integration.

In the case a = 0 (it corresponds to the linear case with absorption in Eq. (2)) we obtain the
following analog of (13)

d2 I(y)
dy2 + 4κ2 I(y) = −4εR(y)I(y) + 2

∫ y

0

dεR(t)
dt

I(t)dt

+4
∫ y

0
ε I(t)

(∫ t

0
ε I(z)I(z)dz

)
dt − 4c1

∫ y

0
ε I(t)dt + c2, (14)

where I(y) denotes E2(y). Later on for the case a = 0 under I(y) we always understand E2(y).

The homogeneous equation d2 I(y)/dy2 + 4κ2 I(y) = 0 which corresponds to Eq. (13) has the
solution that satisfies the boundary conditions at y = 0

Ĩ0(y) = a|E3|2 cos(2κy), (15)

so that the general solution of equation (13) reads (Stakgold, 1967)

I(y) = Ĩ0(y) +
∫ y

0
dt

sin 2κ(y − t)
2κ

·
(
−4εR(t)I(t) + 2

∫ t

0

dεR(τ)

dτ
I(τ)dτ

− 2
r2

(
2rI(t) +

1
1 + rI(t)

− ln(1 + rI(t))
)

+4
∫ t

0
ε I(τ)

(∫ τ

0
ε I(z)I(z)dz

)
dτ − 4ac1

∫ t

0
ε I(τ)dτ + c2

)
, (16)

where the constant c2 must be determined by the boundary conditions.

In the case a = 0 the general solution of equation (14) reads

I(y) = Ĩ0(y) +
∫ y

0
dt

sin 2κ(y − t)
2κ

·
(
−4εR(t)I(t) + 2

∫ t

0

dεR(τ)

dτ
I(τ)dτ

+4
∫ t

0
ε I(τ)

(∫ τ

0
ε I(z)I(z)dz

)
dτ − 4c1

∫ t

0
ε I(τ)dτ + c2

)
(17)

with Ĩ0(y) = |E3|2 cos(2κy).

The Volterra equations (16), (17) are equivalent to equation (3) for 0 < y < d for a �= 0 and
a = 0, respectively. According to equations (16) and (17) I(y) and Ĩ0(y) satisfy the boundary
conditions at y = 0. Evaluating some of the integrals on the right-hand side, equations (16)
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and (17) can be written as

I(y) = I0(y) +
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ

− 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ

− 2
rκ

∫ y

0
sin 2κ(y − τ)I(τ)dτ

− 1
κr2

∫ y

0
sin 2κ(y − τ)

1
1 + rI(τ)

dτ

+
1

κr2

∫ y

0
sin 2κ(y − τ) ln(1 + rI(τ))dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)
2κ

(∫ t

τ
ε I(z)dz

)
dt
)

I(τ)dτ, (18)

and

I(y) = I0(y) +
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ

− 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)
2κ

(∫ t

τ
ε I(z)dz

)
dt
)

I(τ)dτ, (19)

respectively, with [on the evaluation of c2 see Appendix B] (in the case a �= 0)

I0(y) = Ĩ0(y) +
c2 sin2 κy

2κ2

−4ac1

∫ y

0

sin2κ(y − t)
2κ

∫ t

0
ε I(z)dzdt, (20)

ac1 = −qs I(0), (21)

c2 = 2I(0)(q2
s + q2

f (0)− p2)− 2I2(0)
1 + rI(0)

+
2
r2

(
2rI(0) +

1
1 + rI(0)

− ln(1 + rI(0))
)

, (22)

where Ĩ0(y) is given by equation (15), and with (in the case a = 0)

I0(y) = Ĩ0(y) +
c2 sin2 κy

2κ2

−4c1

∫ y

0

sin2κ(y − t)
2κ

∫ t

0
ε I(z)dzdt, (23)

c1 = −qs I(0), (24)

c2 = 2I(0)(q2
s + q2

f (0)− p2), (25)
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where Ĩ0(y) = |E3|2 cos(2κy).

Iteration of the nonlinear integral equations (16) and (17) leads to a sequence of functions
Ij(y), 0 < y < d. Subject to certain conditions it can be shown that the limit

I(y) = lim
j→∞

Ij(y)

exists uniformly in 0 < y < d and represents the unique solution of (16) and (17). The error of
approximations can be expressed in terms of the parameters of the problem (see (68) and (69)
in Appendix A).

Iterating (16) and (17) once by inserting I0(y) according to (20) and (23), the first iteration I1(y)
reads (a �= 0)

I1(y) = I0(y) +
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I0(τ)dτ

− 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)I0(τ)dτ

− 2
rκ

∫ y

0
sin 2κ(y − τ)I0(τ)dτ

− 1
κr2

∫ y

0
sin 2κ(y − τ)

1
1 + rI0(τ)

dτ

+
1

κr2

∫ y

0
sin 2κ(y − τ) ln(1 + rI0(τ))dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)
2κ

(∫ t

τ
ε I(z)dz

)
dt
)

I0(τ)dτ, (26)

and (a = 0)

I1(y) = I0(y) +
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I0(τ)dτ

− 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)I0(τ)dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)
2κ

(∫ t

τ
ε I(z)dz

)
dt
)

I0(τ)dτ. (27)

I1(y) is used for numerical evaluation of the physical quantities defined in the following
section.

3. Reflectance, transmittance, absorptance, and phase shifts

Conservation of energy requires that absorptance A, transmittance T, and reflectance R are
related by

A = 1 − R − T, (28)
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with

T =
qs

qc

I(0)
aE2

0
, T =

qs

qc

I(0)
E2

0
, (29)

R =
|Er|2

E2
0

, (30)

for a �= 0 and a = 0, respectively.

Due to the continuity conditions at y = d

E0 + |Er|eiδr = E(d)eiϑ(d) (31)

2E0e−iϑ(d) =
i

qc

dE(y)
dy

|y=d +E(d)(1 − 1
qc

dϑ(y)
dy

|y=d) (32)

reflectance, transmittance, absorptance and the phase shift on reflection, δr, and on
transmission, δt, can be determined. Combination of equations (31) and (32) yields (for a �= 0)

aE2
0 =

1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
dI(y)

dy |y=d

�2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 +

qs I(0) +
d�

0
ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (33)

a|Er|2 =
1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
dI(y)

dy |y=d

�2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 −

qs I(0) +
d�

0
ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (34)

and (for a = 0)

E2
0 =

1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
dI(y)

dy |y=d

�2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 +

qs I(0) +
d�

0
ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (35)

|Er|2 =
1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
dI(y)

dy |y=d

�2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 −

qs I(0) +
d�

0
ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (36)

Inserting equations (33)-(36) into equation (28) and using equations (29), (33) we obtain

A =
1

qcaE2
0

d�

0

ε I(τ)I(τ)dτ, A =
1

qcE2
0

d�

0

ε I(τ)I(τ)dτ, (37)
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⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (33)

a|Er|2 =
1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
dI(y)

dy |y=d

�2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 −

qs I(0) +
d�

0
ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (34)

and (for a = 0)

E2
0 =

1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
dI(y)

dy |y=d

�2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 +

qs I(0) +
d�

0
ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (35)

|Er|2 =
1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
dI(y)

dy |y=d

�2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 −

qs I(0) +
d�

0
ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (36)

Inserting equations (33)-(36) into equation (28) and using equations (29), (33) we obtain

A =
1

qcaE2
0

d�

0

ε I(τ)I(τ)dτ, A =
1

qcE2
0

d�

0

ε I(τ)I(τ)dτ, (37)
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for a �= 0 and a = 0, respectively. The continuity conditions (31), (32) and equations (29), (33)
and (35) imply

δr = − arcsin
dI(y)

dy |y=d

4qcaE2
0
√

1 − T − A
, δr = − arcsin

dI(y)
dy |y=d

4qcE2
0
√

1 − T − A
(38)

for the phase shift on reflection (for a �= 0 and a = 0, respectively), and

δt = ϑ(0) =
d�

0

qs I(0) + qcaE2
0
�A(τ)

I(τ)
dτ + arcsin

⎛
⎝−

dI(y)
dy |y=d

4qc

�
aE2

0 I(d)

⎞
⎠ ,

δt = ϑ(0) =
d�

0

qs I(0) + qcE2
0
�A(τ)

I(τ)
dτ + arcsin

⎛
⎝−

dI(y)
dy |y=d

4qc

�
E2

0 I(d)

⎞
⎠ , (39)

with

�A(τ) :=
1

qcaE2
0

τ�

0

ε I(u)I(u) du, �A(τ) :=
1

qcE2
0

τ�

0

ε I(u)I(u) du, (40)

for the phase shift on transmission (for a �= 0 and a = 0, respectively).

4. Numerical evaluations

A numerical evaluation of the foregoing quantities is straightforward. It is useful to apply a
parametric-plot routine using the first approximation I1(y). If the parameters of the problem
(a, r, εR, ε I , εs, ε0

f , εc, p, d, ω0) satisfy the convergence conditions (48) and (49) (see Appendix A)
the results obtained for I1(y) are in good agreement with the purely numerical solution of
equation (13) and (14) (cf. figure 3).

Fig. 2. Dependence of the field intensity I1(y, aE2
0) inside the slab on the transverse

coordinate y and aE2
0 for

r = 1000, ε I = 0.1, εc = 1, εs = 1.7, ε0
f = 3.5, ϕ = 1.107, d = 1, γ = 0.033, b = 0.1.

For the numerical evaluations the following steps can be performed:
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Fig. 3. Dependence of the field intensity I1(y, aE2
0) inside the slab on the transverse

coordinate y for a|E3|2 = 0.1. The other parameters are as in figure 2. Solid curve
corresponds to the first iteration of equation (26) and dashed curve to the numerical solution
of the system of differential equations (6), (7).

(i) Prescribe the parameters of the problem such that (48) and (49) are satisfied.

(ii) Prescribe a certain upper bound (accuracy) of the right-hand side Rj (see (66) in Appendix
A) and perform a parametric plot of Rj (with I(0) as parameter) with j=1. If R1 is smaller (or
equal) than (to) the prescribed accuracy for all aE2

0 (or E2
0) of a certain interval, accept I1(y) as

a suitable approximation.

(iii) If R1 exceeds the prescribed accuracy calculate I2(y) according to (50) and check again
according to step (ii) or enlarge the accuracy so that R1 is smaller (or equal) than (to) the
prescribed accuracy.

The reason for the satisfactory agreement between the exact numerical solution and the first
approximation I1(y) (cf. figure 3) is due to the foregoing explanation.

If a|E3|2 (or |E3|2) is fixed (as in the numerical example below), and thus aE2
0 (or E2

0) according
to (33) (or (35)), the inequality (68) (or (69)) can be used to optimize the iteration approach
with respect to another free parameter, e.g., d or r or p, as indicated.

Using the first approximation the phase function can be evaluated according to equation (8)
as (for all values of a)

ϑ1(y) = ϑ1(d)− qs I(0)
∫ y

d

dτ

I1(τ)
−

∫ y

d

dτ

I1(τ)

∫ τ

0
ε I(ξ)I1(ξ)dξ, (41)

where

sin ϑ1(d) = −
dI1(y)

dy |y=d

4qc

√
aE2

0 I1(d)
,

sin ϑ1(d) = −
dI1(y)

dy |y=d

4qc

√
E2

0 I1(d)

(42)

for a �= 0 and a = 0, respectively.
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0 (or E2

0) according
to (33) (or (35)), the inequality (68) (or (69)) can be used to optimize the iteration approach
with respect to another free parameter, e.g., d or r or p, as indicated.

Using the first approximation the phase function can be evaluated according to equation (8)
as (for all values of a)

ϑ1(y) = ϑ1(d)− qs I(0)
∫ y

d

dτ

I1(τ)
−

∫ y

d

dτ

I1(τ)

∫ τ

0
ε I(ξ)I1(ξ)dξ, (41)

where

sin ϑ1(d) = −
dI1(y)

dy |y=d

4qc

√
aE2

0 I1(d)
,

sin ϑ1(d) = −
dI1(y)
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4qc
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0 I1(d)

(42)

for a �= 0 and a = 0, respectively.
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Thus, the approximate solution of the problem is represented by equations (26) or (27) and
(41). The appropriate parameter is I(0) = aE2(0) or I(0) = E2(0), since E0 in equation (42)
can be expressed in terms of I(0) as shown in (33) or (35).

For illustration we assume a permittivity according to (a �= 0)

ε f (y) = ε0
f + εR(y) + iε I +

I(y)
1 + rI(y)

, (43)

with
εR(y) = γ cos2 by

d
, (44)

where ε0
f , γ, b, d, r are real constants. For simplicity, ε I is also assumed to be constant. Results

for the first iterate solution I1(y, aE2
0) are depicted in figures 2, 3. Using I1(y, aE2

0), the
phase function ϑ1(y, aE2

0), absorptance A1(d, aE2
0) and phase shift on reflection δr1(y, aE2

0) are
shown in figures 4, 5 and 6, respectively. The left hand side of condition (48) is 0.572 for the
parameters selected in this example. Results for R, T and the phase shift on transmission can
be obtained similarly.

Fig. 4. Phase function ϑ1(y, aE2
0) according to equation (41) inside the slab. Parameters as in

figure 3.

5. Summary

Based on known mathematics we have proposed an iterative approach to the scattering of a
plane TE-polarized optical wave at a dielectric film with permittivities modeled by a complex
continuously differentiable function of the transverse coordinate.

The result is an approximate analytical expression for the field intensity inside the film that can
be used to express the physical relevant quantities (reflectivity, transmissivity, absorptance,
and phase shifts). Comparison with exact numerical solutions shows satisfactory agreement.

It seems appropriate to explain the benefits of the present approach:
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Fig. 5. Absorptance A1 depending on the layer thickness d and on the incident field intensity
aE2

0 for the same parameters as in figure 3.

Fig. 6. Phase shift on reflection δr1 depending on the layer thickness d and on the incident
field intensity aE2

0 for the same parameters as in figure 3.

(i) The approach yields (approximate) solutions in cases where the usual methods (cf. Refs.
(Chen & Mills, 1987; 1988; Leung, 1985; 1988; Peschel, 1988; Schürmann & Schmoldt, 1993))
fail or could not be applied till now.

(ii) The quality of the approximate solutions can be estimated in dependence on the
parameters of the problem.

On the other hand the conditions of convergence explicitly depend on the permittivity
functions in question and thus have to be derived for every permittivity anew (cf. (Serov
et al., 2004; 2010) and (65)).
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7. Appendix

7.1 Appendix A

We introduce in the Banach space C[0, d] bounded integral operators N1, N2, N3, N4, N5, N6 by

N1(I) =
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ,

N2(I) = − 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ,

N3(I) = − 2
κ

∫ y

0
sin 2κ(y − τ)I(τ)dτ,

N4(I) = − 1
κ

∫ y

0
sin 2κ(y − τ)

1
1 + rI(τ)

dτ,

N5(I) =
1
κ

∫ y

0
sin 2κ(y − τ) ln(1 + rI(τ))dτ,

N6(I) = 4
∫ y

0
ε I(s)ψ(y, s)I(s)ds, (45)

where

ψ(y, s) =
∫ y

s

sin2κ(y − t)
2κ

(∫ t

s
ε I(τ)dτ

)
dt, (46)

with the values �N1�, �N2�, �N3�, �N4�, �N5�, �N6�, �I0� which are defined as

�N1� =
1
κ2 max

0≤y≤d

∫ y

0
| sin2 κ(y − τ)| · | dεR(τ)

dτ
|dτ,

�N2� =
2
κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)| · |εR(τ)|dτ,

�N3� =
2
κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ,

�N4� =
1
κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ,

�N5� =
1
κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ = �N4�,

�N6� = 4 max
0≤y≤d

∫ y

0
|ε I(z)| · |ψ(y, z)|dz,

�I0� = max
0≤y≤d

|I0|. (47)

We are in the position now to show that if

�N1�+ �N2�+ �N6�+ �N3�+ 2�N4�
r

< 1 (48)

and
�I0�+ 1

r2 �N4�
1 − (�N1�+ �N2�+ �N6�+ �N3�+�N4�

r )
< ρ, (49)
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then in any ball Sρ(0) there exists a unique solution of the nonlinear integral equation (18) and
this solution can be obtained as a uniform limit

I(y) = lim
j→∞

Ij(y)

of the iterations of (18). Indeed, let us introduce the iterations of (18) as follows:

Ij(y) = I0(y) +
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
Ij−1(τ)dτ

− 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)Ij−1(τ)dτ

− 2
rκ

∫ y

0
sin 2κ(y − τ)Ij−1(τ)dτ

− 1
κr2

∫ y

0
sin 2κ(y − τ)

1
1 + rIj−1(τ)

dτ

+
1

κr2

∫ y

0
sin 2κ(y − τ) ln(1 + rIj−1(τ))dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)
2κ

(∫ t

τ
ε I(z)dz

)
dt
)

Ij−1(τ)dτ, (50)

where j = 1, 2, ..., and I0(y) is given by equation (20). In order to prove that the sequence (50)
is uniformly convergent to the solution of (16) it suffices to check that all conditions of the
Banach Fixed-Point Theorem (see (Zeidler, 1995)) are fulfilled.

We consider the nonlinear operator F as

F(I) := I0(y) + N1(I) + N2(I) +
1
r

N3(I) +
1
r2 N4(I) +

1
r2 N5(I) + N6(I). (51)

Then equation (18) can be rewritten in operator form

I(y) = F(I)(y). (52)

We consider ρ such that �I� = max
0≤y≤d

I(y) ≤ ρ. First we must check whether this operator F

maps the ball Sρ(0) to itself. Indeed, if I(y) ∈ Sρ(0) then

�F(I)� ≤ �I0�+ �N1� · �I�+ �N2� · �I�+ �N6� · �I�+ 1
r
�N3� · �I�

+
1
r2 �N4� · 1

1 + r min
0≤y≤d

I(y)
+

1
r2 �N4� · r�I�

≤ �I0�+ �N1� · ρ + �N2� · ρ + �N6� · ρ +
1
r
�N3� · ρ +

1
r2 �N4�

+
1
r
�N4� · ρ. (53)

Thus, the following inequality must be valid

�I0�+ 1
r2 �N4�+ (�N1�+ �N2�+ �N6�+ 1

r
(�N3�+ �N4�)) · ρ < ρ. (54)
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r
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+
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1 + r min
0≤y≤d

I(y)
+

1
r2 �N4� · r�I�

≤ �I0�+ �N1� · ρ + �N2� · ρ + �N6� · ρ +
1
r
�N3� · ρ +
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Thus, the following inequality must be valid
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This inequality holds if

�I0�+ 1
r2 �N4�

1 − (�N1�+ �N2�+ �N6�+ �N3�+�N4�
r )

< ρ, (55)

and thus if

�N1�+ �N2�+ �N6�+ �N3�+ �N4�
r

< 1. (56)

It means that for this value of ρ continuous map F transfers ball Sρ(0) in itself. Hence, equation
(16) has at least one solution inside Sρ(0). For uniqueness of this solution it remains to prove
that F is contractive (see (Zeidler, 1995)). To prove the contraction of F we consider

F(I1)− F(I2) = N1(I1 − I2) + N2(I1 − I2) + N6(I1 − I2)

+
1
r

N3(I1 − I2) +
1
r2 (N4(I1)− N4(I2)) +

1
r2 (N5(I1)− N5(I2)). (57)

Hence

�F(I1)− F(I2)� ≤ �N1��I1 − I2�+ �N2��I1 − I2�+ �N6��I1 − I2�
+�N3��1

r
(I1 − I2)�+ � 1

r2 (N4(I1)− N4(I2))�

+� 1
r2 (N5(I1)− N5(I2))�. (58)

The following estimations hold

(i) � 1
r2 (N4(I1)− N4(I2))� ≤ max

0≤y≤d
1

κr2

∫ y
0 | sin 2κ(y − τ)|·

∣∣∣ 1
1+rI1(τ)

− 1
1+rI2(τ)

∣∣∣ dτ =

max
0≤y≤d

1
κr2

∫ y
0 | sin 2κ(y − τ)| ·

∣∣∣ rI2(τ)−rI1(τ)
(1+rI1(τ))(1+rI2(τ))

∣∣∣ dτ

≤ 1
r max

0≤y≤d
1
κ

∫ y
0 | sin 2κ(y − τ)|dτ · �I1 − I2�,

hence

� 1
r2 (N4(I1)− N4(I2))� ≤ �N4�

r
· �I1 − I2�. (59)

(ii) � 1
r2 (N5(I1)− N5(I2))� ≤ max

0≤y≤d

1
κr2

∫ y

0
| sin 2κ(y − τ)| ·

|ln(1 + rI1(τ))− ln(1 + rI2(τ))| dτ. (60)

Using

|ln(1 + rI1)− ln(1 + rI2)| =
∣∣∣∣ln

1 + rI1
1 + rI2

∣∣∣∣

=

∣∣∣∣ln
(

1 +
r(I1 − I2)

1 + rI2

)∣∣∣∣ ≤ r�I1 − I2�, (61)
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equation (60) yields

� 1
r2 (N5(I1)− N5(I2))� ≤ 1

r2 · �N4� · r · �I1 − I2� =
�N4�

r
�I1 − I2�. (62)

Thus, from equation (58), one obtains

�F(I1)− F(I2)� ≤ (�N1�+ �N2�+ �N6�+ �N3�
r

+
�N4�

r
+

�N4�
r

)

·�I1 − I2�
= (�N1�+ �N2�+ �N3�+ 2�N4�

r
) · �I1 − I2�, (63)

so that F is contractive if

�N1�+ �N2�+ �N6�+ �N3�+ 2�N4�
r

< 1. (64)

Thus, the uniform convergence follows.

If we denote by m the left-hand side of the inequality (48) the solution I(y) of (16) can be
approximated by the iterations Ij(y) as follows (see (Zeidler, 1995)):

�I − Ij� ≤ mj

1 − m
�I1 − I0�

≤ mj

1 − m

(
1

κr2 max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ + m�I0�

)

≤ mj

1 − m

(
d2

r2 + m�I0�
)

, (65)

where j = 0, 1, 2, ... and I0 is defined in (20).

Let us remark that for the sufficient condition (48) to hold parameters must be chosen such
that (48) holds even if r is small (Equation (18) represents the exact solution I(y) if (48) and
(49) are satisfied). I(y) can be approximated by the first iteration I1(y) with the error d2

r2
m

1−m +
m2

1−m�I0�, where m denotes the left-hand side of (48). Condition (48) must hold for a particular
r > 0. In the limit r → 0 equation (18) transforms to equation

I(y) = I0(y) +
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ

− 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ − 3

2κ

∫ y

0
sin 2κ(y − τ)I2(τ)dτ

+ 4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)
2κ

(∫ t

τ
ε I(z)dz

)
dt
)

I(τ)dτ, (66)

where I0(y) is the same as (23) with the constant c2 which is equal to

c2 = I0(0)(q2
s + q2

f (0)− p2)− 2I2(0).
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equation (60) yields

� 1
r2 (N5(I1)− N5(I2))� ≤ 1

r2 · �N4� · r · �I1 − I2� =
�N4�

r
�I1 − I2�. (62)
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r
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Equation (66) is equivalent to (in the case of lossless medium) (41) in (Serov et al., 2004).
Equation (66) is uniquely solvable in the ball of radius ρ if the following conditions are
satisfied (they are consistent with the corresponding conditions from (Serov et al., 2004; 2010)):

m + 3d2ρ < 1, m + d
√

6�I0� < 1,

where m = �N1�+ �N2�+ �Nc� and the radius ρ is chosen so that

ρ ≥ 1 − m −√
(1 − m)2 − 6d2�I0�

3d2 .

In order to obtain a condition of the type (48) for all 0 < r < 1 (uniformly) combination of
N3, N4, N5 and part of I0 within the estimations is necessary. It seems impossible to obtain a
condition of the type (48) uniformly with respect to all nonnegative r. It is possible only to
obtain such kind of condition uniformly for 0 < r < 1 or for 1 < r < ∞ independently. In this
respect, some mathematical complications arise that are not the main point of this paper.

Estimation of �I0� (cf. Appendix C) gives

�I0� ≤ I(0) +
1
2
|c2|d2 +

2
3

a|c1|�ε I�d3,

�I0� ≤ I(0) +
1
2
|c2|d2 +

2
3
|c1|�ε I�d3, (67)

where constants c1 and c2 are defined by (21) and (22) for a �= 0, and by (24) and (25) for a = 0,
respectively. Combining (65) and (67) we obtain the error of approximation (for a �= 0)

Rj := �I − Ij� ≤ d2

r2 · mj

1 − m
+

mj+1

1 − m

(
I(0) +

1
2
|c2|d2 +

2
3

a|c1|�ε I�d3
)

, (68)

where j = 0, 1, 2, ....

Since for linear case (a = 0) equation (17) is the linear Volterra integral equation this equation
has always a unique solution and the following error of approximation holds:

�I − Ij� ≤ (�I0�md)j+1

(j + 1)!
e�I0�md, (69)

where j = 0, 1, 2, ..., �I0� is estimated in (67), m = �N1�+ �N2�+ �N6� and Ij are defined by

Ij(y) = I0(y) +
1
κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
Ij−1(τ)dτ

− 2
κ

∫ y

0
sin 2κ(y − τ)εR(τ)Ij−1(τ)dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)
2κ

(∫ t

τ
ε I(z)dz

)
dt
)

Ij−1(τ)dτ. (70)
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7.2 Appendix B

The constant of integration c2 is determined by equations (13) and (14) for a �= 0 and for a = 0,
respectively with y = 0 as

c2 =
d2 I(y)

dy2

∣∣∣∣
y=0

+ 4(q2
f (0)− p2)I(0)

+
2
r2

(
2rI(0) +

1
1 + rI(0)

− ln(1 + rI(0))
)

, (71)

c2 =
d2 I(y)

dy2

∣∣∣∣
y=0

+ 4(q2
f (0)− p2)I(0). (72)

According to equation (10), the second derivative of the field intensity I(y) at y = 0 is given
by (for a �= 0)

d2 I(y)
dy2

∣∣∣∣
y=0

= 2q2
s I(0)− 2(q2

f (0)− p2)I(0)− 2I2(0)
1 + rI(0)

, (73)

and (for a = 0)
d2 I(y)

dy2

∣∣∣∣
y=0

= 2q2
s I(0)− 2(q2

f (0)− p2)I(0), (74)

leading to, taking into account boundary conditions, E(0) = E3e−iϑ(0) and dE(y)
dy |y=0= 0,

c2 = 2q2
s I(0) + 2(q2

f (0)− p2)I(0)− 2I2(0)
1 + rI(0)

+
2
r2

(
2rI(0) +

1
1 + rI(0)

− ln(1 + rI(0))
)

, (75)

c2 = 2q2
s I(0) + 2(q2

f (0)− p2)I(0). (76)

for a �= 0 and a = 0, respectively.

7.3 Appendix C

With εR(x) ∈ C1[0, d] and ε I(x) ∈ C[0, d] one obtains

�N1� =
1
κ2 max

0≤y≤d

∫ y

0
| sin2 κ(y − τ)| · |ε�R(τ)|dτ

≤ max
0≤y≤d

∫ y

0
(y − τ)2dτ · �ε�R� =

1
3

d3�ε�R�, (77)

�N2� =
2
κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)| · |εR(τ)|dτ

≤ 4 max
0≤y≤d

∫ y

0
(y − τ)dτ · �εR� = 2d2�εR�, (78)
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∫ y
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1
3
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κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)| · |εR(τ)|dτ

≤ 4 max
0≤y≤d

∫ y

0
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�N3� =
2
κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ ≤ 4 max

0≤y≤d

∫ y

0
(y − τ)dτ = 2d2, (79)

�N4� = �N5� =
1
κ

max
0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ

≤ 2 max
0≤y≤d

∫ y

0
(y − τ)dτ = d2, (80)

�N6� = 4 max
0≤y≤d

∫ y

0
|ε I(z)| · |ψ(y, z)|dz

≤ 4�ε I� max
0≤y≤d

∫ y

0

∫ y

z

| sin 2κ(y − τ)|
2κ

∫ t

z
|ε I(τ)|dτdtdz

≤ 4�ε I�2 max
0≤y≤d

∫ y

0

∫ y

z
(y − t)(t − z)dtdz =

d4

6
�ε I�2, (81)

�I0� ≤ max
0≤y≤d

a|E3|2 · | cos 2κy|+ |c2| max
0≤y≤d

| sin2 κy|
2κ2

+4a|c1| max
0≤y≤d

∫ y

0

| sin 2κ(y − t)|
2κ

∫ t

0
|ε I(τ)|dτdt

≤ a|E3|2 + 1
2
|c2|d2 + 4a|c1| · �ε I� max

0≤y≤d

∫ y

0
(y − t)tdt

= a|E3|2 + 1
2
|c2|d2 +

2
3

a|c1| · �ε I�d3, (82)

where a �= 0 and ε�R denotes the first derivative of εR.

For a = 0 the estimate of �I0� (82) transforms to the following one

�I0� ≤ |E3|2 + 1
2
|c2|d2 +

2
3
|c1| · �ε I�d3, (83)

with c1 and c2 from (24) and (25).

For εR, given by (44), we obtain

�εR� ≤ γ, �ε�R� ≤
{

2γb2

d , 2b ≤ 1,
γb
d , 2b > 1.

(84)
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1. Introduction  
Among the different nonlinear optical processes, second harmonic generation (SHG) is one 
of the most investigated. Briefly, polarization in a dielectric material can be expanded in 
terms of applied electric field. Second harmonic generation corresponds to an optical 
process of coherent radiation from electric-dipoles forming in the nonlinear optical material. 
In particular, SHG is related to the second term of the polarization expansion, thus it can be 
obtained only in materials which are noncentrosymmetric i.e. posses no centre of inversion 
symmetry. From the experimental point of view, the frequency of the incoming –
fundamental- beam, , is doubled by the second order optical susceptibility ijk(2) of the 
material. The SHG processes, along with the structure of the nonlinear optical tensor, ijk(2), 
are strongly dependent on the crystalline structure of the material, thus by choosing the 
appropriate polarization state for the fundamental beam, different amplitude and 
polarization state of the nonlinear optical response can be selectively addressed.  

As a consequence, several experimental techniques have been developed, for the 
determination of the different non-zero components of the third rank tensor ijk(2), with 
reference to a well-characterized sample. The Maker fringes technique (Maker et al, 1962), 
which is based on the investigation of oscillations of the SH intensity by changing the crystal 
thickness, has been without doubt the most employed. Briefly, this technique consists in 
measuring the SH signal transmitted trough the nonlinear crystal as a function of the 
fundamental beam incidence angle, which is continuously varied by placing the sample 
onto a rotation stage. The polarization states of both fundamental and generated beams are 
selected by rotating a half-wave plate (polarizer) and a linear polarizer (analyzer), 
respectively. On a reference line, a small fraction of the fundamental beam is usually sent 
onto a reference crystal, which is hold at a fixed incidence angle, in order to minimize the 
influence of laser energy fluctuations. On the measurement line, the second harmonic signal 
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is detected with a photomultiplier, while interference and dichroic filters are used to 
suppress the fundamental beam. 

Second harmonic signal can also be generated at a surface, being itself responsible for a 
symmetry break (Bloembergen et al, 1968). When looking for surface contributions to the SH 
signal, rather than bulk contribution, the reflective second harmonic generation (RSHG) 
technique has to be employed. This technique involves the detection of the reflected SH 
signal, at a fixed incidence angle of the pump beam, while sample is rotated along its surface 
normal. Specifically, depending on the form of the bulk ijk(2) tensor, there may be some 
particular combinations of the polarization states of fundamental and generated beams may 
inhibit the bulk induced SHG. As a consequence, any signal measured in these polarizations 
combinations would be ascribed to surface effects. 

The noncollinear scheme of SHG experiments was firstly introduced by Muenchausen 
(Muenchausen et al, 1987) and Provencher (Provencher et al, 1993) and, since then, it was 
exploited more recently by different authors. It presents some advantages, with respect to 
conventional collinear SHG, as a reduced coherence length (Faccio et al, 2000) as well as the 
possibility to distinguish between bulk and surface responses (Cattaneo & Kauranen, 2005) 
thus this technique represents a promising tool for surface and thin-film characterization 
(Cattaneo & Kauranen, 2003). 

Very recently, we developed a method, based on the noncollinear scheme of SHG, to 
evaluate the non-zero elements of the nonlinear optical susceptibility. At a fixed incidence 
angle, the generated noncollinear SH signal is investigated while continuously varying the 
polarization state of both fundamental beams. The obtained experimental results show the 
peculiarity of the nonlinear optical response associated with the noncollinear excitation, and 
can be fully explained using the expression for the effective second order optical 
nonlinearity in noncollinear scheme. The resulting polarization chart, recorded for a given 
polarization state of the SH signal, shows pattern which is characteristic of the investigated 
crystalline structure. It offers the possibility to evaluate the ratio between the different non-
zero elements of the nonlinear optical tensor. Moreover, if the measurements are performed 
with reference to a well-characterized sample, i.e. a nonlinear optical crystal as quartz or 
KDP, this method allows the evaluation of the absolute values of the non-zero terms of the 
nonlinear optical tensor, without requiring sample rotation. As a consequence, this 
technique turns out to be particularly appropriate for those experimental conditions where 
the generated SH signal can be strongly affected by sample rotation angle. For instance, if a 
sample is some coherence lengths thick, as the optical path length is changed by rotation, 
the SH signal strongly oscillates with increasing incidence angle (Jerphagnon & Kurtz, 1970) 
according to Maker-fringes pattern, thus a high angle resolution would be required. When 
using short laser pulses, whose bandwidth is comparable or lower than sample thickness, as 
the incidence angle is modified the nonlinear interaction may involve different part of the 
sample and, eventually, surface contributions. For nano-patterned samples, finally, a 
rotation would imply differences into sample surface interested by the pump spot size. With 
respect to the mentioned examples, the method of polarization scan simplifies the 
characterization of the nonlinear optical tensor elements without varying the experimental 
conditions, and turns out to be a sort of nonlinear ellissometry. 

In what follows, we will describe in details some applications that we recently developed, 
where the polarization mapping is employed for the characterization of some nonlinear 
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is detected with a photomultiplier, while interference and dichroic filters are used to 
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optical materials as gallium nitride (GaN), zinc oxide (ZnO) and, more specifically to 
Bacteriorhodopsin films. 

2. Evaluation of the non-zero elements of the (2) tensor components  
As far as noncollinear SHG is concerned, as in our recent works, the number of experimental 
parameters which can be combined, so to determine the polarization and amplitude of the 
SH signal, is increased. As a matter of fact, the two pump beams, tuned at =, having 
different incidence angles,  an , and polarization state,  and , cooperate in the 
determination, and thus in the excitation, of the nonlinear optical polarization, 
P(2)=(2):E1(1)E2(2). 

We successfully tested this kind of nonlinear ellisometry onto a Gallium nitride slab, 302 nm 
thick, grown by metal-organic chemical vapour deposition (MOCVD) onto (0001) c-plane 
Al2O3 substrates (Potì et al, 2006). GaN presents a wurtzite crystal structure without centre 
of inversion, thus leading to efficient second order nonlinear effects (Miragliotta et al, 1993). 
In addition, the wide transparency range, which extends form IR to the near UV, make this 
material extremely appealing from nonlinear optical point of view.  

We employed the output of a mode-locked femtosecond Ti:Sapphire laser system tuned at 
=830 nm (76 MHz repetition rate, 130 fs pulse width), which was split into two beams of 
about the same intensity. The polarization state of both beams ( and ) was varied with 
two identical half wave plates, automatically rotating, that were carefully checked not to 
give nonlinear contribution. Two collimating lenses, 150 mm focal length, were placed 
thereafter, while the sample was placed onto a motorized combined translation and rotation 
stage which allowed the variation of the rotation angle, , with a resolution of 0.5 degrees. 
The temporal overlap of the incident pulses was automatically controlled with an external 
delay line. Several details of the experimental scheme are given in Fig. 1.  

 
Fig. 1. Sketch of the noncollinear scheme adopted for second harmonic generation 
measurements. For a fixed sample rotation angle , measured with respect to the z-axis, the 
corresponding incidence angles of the two pump beams result to be  and , 
respectively.  
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In the experiments reported in (Larciprete et al, 2009) the sample rotation angle was fixed to 
=35°, while the pump beams were sent to intersect in the focus region with the angles =9° 
and = -9° , i.e. the corresponding incidence angles of the two pump beams onto the sample 
result to be  and , respectively.  

GaN crystal structure, i.e. wurtzite, is characteristic of III-V nitrides and presents the 
noncentrosymmetric point group symmetry 6mm with a hexagonal primary cell. The only 
nonvanishing second order susceptibility tensor elements (J.Chen, Z.H.Levine, J.W.Wilkins, 
Appl. Phys. Lett. 66, pp. 1129-1131 (1995)) are 311(2)322(2), 333(2), and 113(2) =131(2) =223(2) 

=232(2), which correspond to 15(2)=24(2), 31(2)=32(2) and 33(2), referring to the piezoelectric 

contraction, or equivalently, being (2)1
2ij ijd   the second order nonlinear optical tensor can 

be written as follows: 

 
15

24

31 32 33

0 0 0 0 0
0 0 0 0 0

0 0 0

d
d d

d d d

 
   
 
 

  (1) 

The five non-zero terms further reduce to three independent coefficients in wavelength 
regimes where it is possible to take advantage of Kleinmann symmetry rules, i.e. 
d15=d24=d31=d32 and d33= -2·d31= - 2 ·d15. 

Given the tensor (1), by selecting the appropriate polarization state for the two fundamental 
beams, it is possible to address the different non-zero components of dij(2) and, consequently, 
to get different polarization state for the generated signal. 

The full expression of the SH power, W, as a function of sample rotation angle , is 
given by:  
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where A1 and A2 are the fundamental beams transverse areas onto sample surface, retrieved 
from the main beam area (A), Wand W are the power of the incident fundamental 
beams. The Fresnel transmission coefficients for the two fundamental fields at the input 
interfaces are 1 1 1( , )t   and 2 2 2( , )t   , while 1 2( , )T     is the Fresnel transmission 
coefficient for the SH power at the output interface. As far as material optical birefringence 
is concerned, Fresnel coefficients and refractive indices of both fundamental and generated 
beams, i.e. 1 1 1( ' , )n   , 2 2 2( ' , )n   and 1 2 1 2( ' , )n       are dependent on the 
propagation angle and polarization state of the respective beam. 

Finally, ΨSHG  is the phase factor given by:  

  1 1 2 2 1 2 1 2
2Ψ cos( ' ) cos( ' ) 2 cos( ' )

2SHG
L n n n       

   
  

         
  

 , (3) 

where L is sample thickness.  
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The analytical expression of the effective nonlinear susceptibility, d ( )eff  can be rather 
complicated, being dependent on the tensor components, the polarization state of the three 
electric fields and, of course, on the fundamental beams incidence angles. However, for 
point group symmetry 6mm, as in the case of GaN, the final expressions for d ( )eff  , as a 
function of polarization angle of the two pumps, becomes: 

           ˆ
15 1 2 2 1 2 1sin cos sin ' cos sin sin 's

effd d             
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where the apex stands for the polarization state of the generated beam and 1 2' , '   are the 
internal propagation angles of the two pump beams inside the sample. Equations (4) quite 
completely and exhaustively describe the interaction of two incident pump beams linearly 
polarized with a noncentrosymmetric material presenting GaN crystalline structure. For any 
other generic polarization angle of the SH beam,  , the d ( )eff   results in a combination of 
terms given by the Eeq.(4):     ˆˆsin cos ps

effeff effd d d    . 

Following these considerations, we measured the generated signal as a function of the 
polarization state of both pump beams, at three different sample rotation angles, i.e. for =35 , 
9 nd 1 degrees. The two half-wave plates were systematically rotated, in the range -180 -+180 
degrees for the first pump beam () and 0 -180 degrees for the second pump beam ().  

We show the obtained measurements in Fig.2.a and Fig.2.b for the two different polarization 
state of the analyzer, namely p  =0°, and s  , =90°, respectively. Considering the p -
polarized SH signal (Fig.2.a) it can be seen that the absolute maxima are achievable when 
both pumps are p -polarized, i.e. when  and  are both 0° or 180°, while relative maxima 
occur when both pumps are s  -polarized, i.e. when polarization angles of both pumps  
are set to ± 90°. Conversely, when the two pump beams have crossed polarization, i.e  
when =0° and =90° and viceversa, the nonlinear optical tensor of GaN do not allow 
second harmonic signal which is p -polarized thus the corresponding measurements go to 
zero. 

A fairly different behavior is observable, when the analyzer is set to s -polarization, i.e. 
=90° (see Fig.2.b). In this case, the maxima generally occur when the two pump beams have 
crossed polarization, but since this condition is no more symmetrical for positive and 
negative rotation angles, the resulting surface plots present some variation at different 
rotation angles. When =35° (Fig.2.b), the absolute maxima take place when the first pump 
is s  -polarized and the second pump is p -polarized, i.e. = ±90° and is equal to either 0° 
or 180°. Relative maxima occur in the reverse situation, when the first pump is p -polarized, 
=0° or ±180°, and the second pump s -polarized, =90°. Finally, if the two pumps are 
equally polarized, either s  or p , the generation of s  -polarized signal is not allowed. 

The calculated polarization charts, reported in Fig.3.a and Fig.3.b, were retrieved from 
Equations (4) by assuming the Kleinmann symmetry rules for the nonlinear optical tensor 
elements.  
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Fig. 2. Noncollinear second harmonic signal experimentally measured as a function of the 
polarization state of the first pump beam () and the second pump beam (). Sample rotation 
angle was fixed to =35° . The polarization state of the analyzer is set to (a) p  i.e. =0° and 
(b) s  , i.e. =90°. 

 
Fig. 3. Noncollinear second harmonic signal theoretically calculated as a function of the 
polarization state of the first pump beam () and the second pump beam (). Sample 
rotation angle was fixed to =35°. The polarization state of the analyzer is set to (a) p  i.e. 
=0° and (b) s  , i.e. =90°. 

The perfect matching between the experimental and theoretical charts verify the rightness of 
the symmetry assumption. Assuming a different relationship between the coefficients d15, d31 
and d33 would in fact lead to evident changes in the polarization charts. 

In order to evaluate the effect of sample rotation angle, we performed further experimental 
measurements at different sample rotation angles. The experimental plots obtained for =1° 
and 9° are shown in Fig.4 and Fig.5, respectively.  

The polarization charts of the noncollinear SH signal generated in p  polarization (see 
Fig.4.a and Fig.5.a) display a similar symmetry at all the sample rotation angles, while 
amplitude is decreasing with decreasing rotation angle. 
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Fig. 4. Noncollinear second harmonic signal experimentally measured as a function of the 
polarization state of the first pump beam () and the second pump beam (). Sample 
rotation angle was fixed to =1°. The polarization state of the analyzer is set to (a) p  i.e. 
=0° and (b) s  , i.e. =90° . 

 
Fig. 5. Noncollinear second harmonic signal experimentally measured as a function of the 
polarization state of the first pump beam () and the second pump beam (). Sample 
rotation angle was fixed to =9°. The polarization state of the analyzer is set to (a) p  i.e. 
=0° and (b) s  , i.e. =90°. 

On the other side, the s -polarized SH signal (see Fig.4.b and Fi.5.b), according with the 
theoretical model, result in a modified trend of both the Fresnell coefficients and the 
effective nonlinearity as a function of  and . As a consequence, when the rotation angle  
is set to 1° (Fig.4.b) we found that the plots appear to be reversed, with respect to  =35°.  

Curiously, when  =9° the same conditions hold for the absolute maxima and for the zero 
signal, while the relative maxima disappeared. This unusual behavior can be explained 
considering that fixing the sample rotation angle to 9°, i.e. fixing , corresponds to a 
situation such that the first pump beam is normally incident onto the sample. For an 
anisotropic uniaxial crystal with the optical axis perpendicular to sample surface, as the 
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investigated GaN film, a normally incident wave always experiences the ordinary refractive 
index, whatever its polarization angle. Thus, from the refractive index point of view, the 
polarization state of the first pump beam always corresponds to the case of s -polarization. 
As a consequence, the condition to get the relative maxima, i.e. the first pump p -polarized 
and the second pump s -polarized, is never fulfilled, since it is replaced with the 
combination of two pumps both having s -polarization and the SH generation of s -
polarized signal is prohibited. As we will show in the next section, this experimental 
configuration, i.e. one of the pump is normally incident onto the sample, is particularly 
suited to put evidence a tilt in the optical axis, since it would result in a modified pattern of 
the s  polarized signal.  

Finally, we have shown that the polarization charts offer all the information to evaluate the 
ratio between the different non-zero elements of the nonlinear optical tensor, thus verifying 
if Kleinman’s symmetry rules can be applied to a given material. The method we have 
described is an extension of Maker fringes technique to the noncollinear case and represents 
a useful tool to characterize the non-zero terms of the nonlinear optical tensor without 
varying relevant experimental conditions as incidence angles. 

3. Evaluation of the optical axis tilt of Zinc oxide films 
We applied the noncollinear nonlinear ellissometry to ZnO films grown by dual ion beam 
sputtering and show that the proposed nonlinear ellissometry is an useful tool to put into 
evidence a tilt angle of the optical axis of a nonlinear optical film with respect to the surface 
normal, for any material whose symmetry class implies an orientation of the optical axis 
almost perpendicular to the surface (Bovino et al, 2009). 

Zinc Oxide was chosen for the large energy gap value (Eg = 3.37 eV) and high nonlinear 
optical coefficients, of both second and third order, it offers (Blachnik et al, 1999). Second 
order nonlinear optical response has been shown in ZnO films grown by different 
techniques implying both high deposition temperature (as reactive sputtering, spray 
pyrolysis, laser ablation) and low deposition temperature (as laser deposition, and dual ion 
beam sputtering). Generally, the reduced deposition temperature results in polycrystalline 
films, where the average orientation of crystalline grains, along with the resulting optical 
axis, can be tilted with respect to the ideal crystal, i.e. normal to sample surface. 

Zinc oxide films, 400 nm thick, were deposited by means of a dual ion beam sputtering 
system onto silica substrates. Preliminary X-ray diffraction investigation performed on the 
obtained films indicate that the films are polycrystalline with the c-axis preferentially 
oriented about the surface normal (Weienrieder & Muller, 1997). 

As well as for GaN, ZnO crystalline structure belongs to the noncentrosymmetric point 
group symmetry 6mm with a hexagonal primary cell, thus the non-zero components are the 
same, i.e. d15=d24=d31=d32 and d33= -2·d31= - 2 ·d15, under Kleinmann’s approximation. 
However, it must be pointed out that this assumption holds only if the optical axis is normal 
to the sample surface. If, on the other hand, the optical axis is somehow tilted, with respect 
to the surface normal, a rotation must be introduced into the expression of the nonlinear 
optical tensor, that in turns results into the introduction of other nonvanishing terms in the 
effective nonlinear susceptibility. 
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The analytical expression of the effective susceptibility, d ( )eff  , for the ZnO crystalline 
structure, considering four combination of polarization states of the two pump beams, 

1 2p p   , 1 2ˆ ˆs s   , 1 2ˆ ˆp s   and 1 2ˆ ˆs p  , four different expressions for d ( )eff  are 
allowed, depending on the SH polarization state, i.e. either p or s : 
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Where 1 2' , '   are the internal propagation angles of the two pump beams inside the 
sample, and 2  is the angle of emission of the SHG inside the crystal.  

Referring to Fig.1, the two pump beams were sent to intersect in the focus region with the 
angles = 9° and = -9° , while was fixed to 9°. As a matter of fact, the fundamental beam 
1 was normally incident onto the sample. The experimental measurements were obtained by 
rotating the two half-wave plates, in the range -180° -+180° for pump beam 1 and 0° -180° 
for pump beam 2.  

The experimental plots, obtained when the analyzer was set to s -polarization, are shown in 
Figure 6.a. As we already mentioned in the previous section, the maxima of SH signal 
should occur when the two pump beams have crossed polarization. However, in this 
particular condition, the absolute maxima still require s -polarization for pump 1 and p -
polarization for pump 2 (i.e. = ± 90 and  equal to either 0 or 180 ), whereas the relative 
maxima totally disappeared. In this configuration, in fact, the pump beam 1 is normally 
incident onto the sample (see Figure 6.b) thus it is always s -polarized, i.e. the condition to 
get a relative maximum ( p -polarization for pump 1 and s -polarization for pump 2) 
vanishes. What is even more interesting, we found out that the experimental configuration 
where one of the pump beams is normally incident onto the sample, is particularly sensitive 
to the orientation of the optical axis.  

The experimental curves were fully reconstructed using the expression for the effective 
second order optical nonlinearity in noncollinear scheme, assuming the Kleinmann 
symmetry rules. Dispersion of both the ordinary and extraordinary refractive indices of ZnO 
are taken from reference (Figliozzi et al, 2005).  

We show in Fig.7.a the calculated curve for =9°, when the optical axis is assumed to be 
perpendicular to sample surface. If compared with the theoretical one, the experimental 
curve appears to be shifted towards higher . This difference between experimental and 
theoretical curves suggest that the optical axis may be averagely tilted with respect to the 
surface normal. From the point of view of the investigated ZnO film, this is a reasonable 
assumption, taking into account the low temperature deposition technique which was 
employed. In order to fit the experimental data, an angular tilt of the optical axis was then 
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introduced in the analytical model through a rotation matrix, applied on the d ( )eff  . This 
rotation produces the arising of some new terms in the nonlinear optical tensor. In Fig. 7.b 
we show the polarization chart calculated in this way, assuming a tilt of only 2 around the x-
axis, as shown in Fig.8.  

 

 

 
 

Fig. 6. (a) Noncollinear SH signal measured as a function of the polarization state of the first 
pump beam () and the second pump beam ().The polarization state of the analyzer is set 
to s  , i.e. =90°. (b) Sketch of the experimental configuration: sample rotation angle was 
fixed to =9°.  

 
 

 
 

Fig. 7. Theoretically calculated curves of s -polarized second harmonic signal as a function 
of the polarization angle of the first pump beam () and the second pump beam (), 
calculated for the optical axis (a) normal to the sample surface and (b) tilted about the x-axis 
of 2 degrees. Sample rotation angle is α= 9° . 
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introduced in the analytical model through a rotation matrix, applied on the d ( )eff  . This 
rotation produces the arising of some new terms in the nonlinear optical tensor. In Fig. 7.b 
we show the polarization chart calculated in this way, assuming a tilt of only 2 around the x-
axis, as shown in Fig.8.  

 

 

 
 

Fig. 6. (a) Noncollinear SH signal measured as a function of the polarization state of the first 
pump beam () and the second pump beam ().The polarization state of the analyzer is set 
to s  , i.e. =90°. (b) Sketch of the experimental configuration: sample rotation angle was 
fixed to =9°.  
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Fig. 8. Sketch of the film orientation. z and z’ represents the optical axis orientation before 
and after rotation about the x-axis, respectively. 

The obtained theoretical curve displays the same -shift evidenced in the experimental curves, 
thus confirming that the film has a partially oriented polycrystalline structure, as also shown 
by the X-ray analysis, but the orientation of the optical axis is not exactly normal to the film 
surface. Similar curves were calculated by tilting the optical axis, along with the nonlinear 
optical tensor, around the other two reference axes. It’s worth to note that for the investigated 
crystalline symmetry group, 6mm, a rotation about the z-axis does not produce any change in 
the nonlinear optical tensor. On the other side, a rotation about the y-axis produce an 
analogous shift in the s -polarized SH pattern, but also a modification in the p -polarized SH 
pattern which was not compatible with the corresponding experimental curves. 

We conclude, from the experimental results obtained from ZnO films deposited by dual ion 
beam sputtering, that the polarization chart of the noncollinear SH signal can provide 
important information on the crystalline structure of the films. Specifically, the polarization 
scanning method adopted is a valid and sensitive tool to probe the orientation of the optical 
axis and to evidence possible angular tilt with respect to surface normal. 

4. Application of the nonlinear ellisometry to Bacteriorhodopsin films 
We recently extended the use of the nonlinear ellisometry to the study of chiral molecules, 
i.e. those molecules lacking an internal plane of symmetry thus having a non-
superimposable mirror image. SHG processes have been extensively used for the 
characterization of optical chirality, due to the large obtainable effects, with respect to 
conventional linear optical techniques. Considering the nonlinear optical tensor, in fact, the 
optical chirality is responsible for the introduction of the so-called chiral components. The 
study of optical chirality by means of SHG was first introduced by Petralli-Mallow and co-
workers from a circularly polarized fundamental beam (Petralli-Mallow et al, 1993). Later 
on, it was demonstrated that also a linearly polarized fundamental beam can be employed 
to discern chiral components of the nonlinear optical tensor (Verbiest et al, 1995). More 
recently, a new technique, based on the use of focused laser beams at normal incidence, was 
applied (Huttunen et al, 2009) to avoid the coupling of possible anisotropy of the sample 
and thus spurious signals. 
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The chiral molecule we investigated is Bacteriorhodopsin (BR), a trans-membrane protein 
found in purple membrane patches in the cell membrane of Halobacterium salinarium, a 
naturally occurring archaeon in salt marshes. BR proteins naturally arrange in trimers to 
form a hexagonal two-dimensional lattice in the purple membrane, as shown in Fig.9.a, 
acting as a natural photonic band gap material (Clays et al, 1993). Furthermore, each BR 
monomer contains a covalently bound retinal chromophore, presenting its own transition 
dipole, which is responsible for its outstanding nonlinear optical response (Verbiest et al, 
1994) as well as for optical chirality (Volkov et al, 1997). 

We examined a 4 µm thick BR film, deposited via an electrophoretic deposition technique 
onto a substrate covered by a 60 nm thick ITO film. In the resulting BR film, composed by 
~800 purple membrane layers (of 5nm thickness each), the chromophore retinal axis is 
oriented at an angle of 23 ± 4° with respect to the plane of the purple membrane (Schmidt & 
Rayfield, 1994), i.e. forming an isotropic conical polar distribution around the normal, as 
shown in Figure 9.b. 

   
Fig. 9. (a) Hexagonal two-dimensional lattice of BR proteins trimers’, as naturally arrange in 
the purple membrane. (b) Orientation of the retinal chromophores, forming a cone around 
the normal to the membrane plane, at an angle of 23± 4° relative to the membrane plane. 

The BR symmetry structure, arising by consecutive stacking of the naturally hexagonal 
lattice represented by the membrane sheets having P3 symmetry is noncentrosymmetric, 
thus its second order susceptibility tensor has three nonvanishing components, i.e. d15=d24, 
d31=d32 and d33. Two additional nonzero components of the nonlinear susceptibility tensor, 
d14= -d25, determine the so-called chiral contribution to the nonlinear optical response, since 
they appear only if molecules have no planes of symmetry (Hecht & Barron, 1996). As a 
result, the nonlinear optical tensor turns out to be: 
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Experimental investigation of the noncollinear SH signal, was performed with the two 
pump beams angles set to = 3° and = -3°, respectively, while was fixed to -40° . The 
polarization state of both pump beams was systematically varied in the range -90° -+90°. 
Measurements corresponding to p - and s -polarized SH are shown in Fig.10. 
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Fig. 10. (a) Noncollinear second harmonic signal experimentally measured as a function of 
the polarization state of the first pump beam () and the second pump beam (). Sample 
rotation angle was fixed to = -40°. The polarization state of the analyzer is set to (a) p  i.e. 
=0° and (b) s  , i.e. =90°. 

The obtained experimental results indicate that it is possible to retrieve important 
information also about the optical chirality of the sample from the polarization charts, and 
in particular from the p -polarized signal. In fact, considering the p -polarized signal 
(Figure 10.a) in absence of optical chirality the maximum signal would be located in 
correspondence of ==0° , i.e. when both pumps are p -polarized. In contrast, the pattern 
shown in Fig.10.a presents a maximum that is somewhat shifted towards the negative 
quadrant, i.e. both and  are <0 . It’s worth to note that a small value of the chiral 
components, as can be for instance │d14│=│d25│= 0.1·d33 (Larciprete et al, 2010), still 
determines an observable effect onto the polarization chart. In Fig.11 the central area of  
 

 
 

Fig. 11. Detail of the noncollinear second harmonic signal experimentally measured as a 
function of the polarization state of both pump beams, i.e.  and . Sample rotation angle 
was = -40° . The polarization state of the analyzer is set to p  i.e. =0°. 
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Fig.10.a. has been magnified, in order to appreciate the described effect. On the other hand, 
it must be said that for achiral structures, being d14=d25= 0 the resulting polarization chart 
would show a maximum signal well-centred onto the axis’ origin. 

Finally, from further experimental measurements, performed by changing other parameters 
as for instance pump beams’ power, we trust to put in evidence the role of different 
potential sources of the nonlinear polarization and in particular the nonlinear magnetic one. 
This part of the work is still in progress and thus it will be accurately described elsewhere.  

5. Conclusion 
In conclusion, we developed a method, based on the detection of noncollinear SHG by 
continuously varying the polarization state of both the fundamental beams within a certain 
range. We have shown that the resulting polarization charts, that can be recorded for a given 
polarization state of the SH signal, present a typical pattern being a signature of a 
characteristic crystalline structure. First of all, this kind of nonlinear ellipsometry, that 
doesn’t require sample rotation, offers the possibility to evaluate the ratio between the 
different non-zero elements of the nonlinear optical tensor, or even their absolute values. 
Furthermore, it represents a valid and sensitive tool to investigate the orientation of the 
optical axis of a given crystalline structure, being able to evidence possible angular tilt with 
respect to surface normal. Finally, the polarization scanning method adopted is also able to 
put in evidence optical chirality, since the so called chiral components of the nonlinear 
optical susceptibility also introduce some changes in the polarization charts.  
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1. Introduction 
Organic materials exhibiting strong nonlinear optical (NLO) properties have attracted 
considerable interest in recent years because of their promising applications in opto-electronic 
and all-optical devices such as optical limiters, optical switches and optical modulators (Munn 
& Ironside, 1993; Zyss, 1994). A variety of organic materials, including conjugated molecules, 
polymers and dyes, have been investigated for their NLO responses (Kamanina, 1999, 2001; 
Kamania & Plekhanov, 2002; Kamanina et al., 2008, 2009). Conjugated organic polymers have 
emerged as a promising class of NLO materials because of their large nonlinear responses 
associated with fast response time, in addition to their structural variety, processability, high 
mechanical strength, and excellent environmental and thermal stability (Prasad & Williams, 
1992). In contrast to misconceptions about the frailty of simple organic molecules, the optical 
damage threshold for polymeric materials can be greater than 10 GW/cm2. Among various -
conjugated materials, thiophene based polymers are currently under intensive investigation as 
materials for nonlinear optics because of their large third-order nonlinear response, chemical 
stability and their readiness of functionalization (Kishino et al., 1998; Nisoli et al, 1993;  
Sutherland, 1996, Udayakumar et al., 2006).  

It has been well-known that, the strong delocalization of -electrons along the backbone of 
conjugated polymers determines very high molecular polarizability and thus causes 
remarkable optical nonlinearities. However, a necessary step in further improving the 
NLO properties of conjugated polymers is to understand the fundamental relationship 
that exists between the molecular structure and the hyperpolarizabilities. A deeper 
understanding in this subject will improve the design of organic conjugated molecules 
and polymers by a judicious choice of functional substituents to tune their optical 
properties for photonic applications. Cassano et al. had reported a strategy for tuning the 
linear and nonlinear optical properties of soluble poly(paraphenylenevinylene) 
derivatives, based on the effect of simultaneous presence of electron-acceptor and 
electron-donor units in the conjugated backbone (Cassano, 2002). Particularly, they 
reported that the value of third-order nonlinear susceptibility (χ(3)) obtained for the 
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polymer containing alternating phenylenevinylene and tetrafluorophenylenevinylene 
units was one order of magnitude larger than that measured for the corresponding 
homopolymer, poly(paraphenylenevinylene) (PPV). Similarly, Chen et al. reported the 
third-order optical nonlinearity of a conjugated 3,3′ - bipyridine derivative, with an 
enhanced nonlinearity due to its symmetrical donor-acceptor-donor structure, in which 
the 3,3′ - bipyridine core was acting as the acceptor group and the thiophene ring as the 
donor group (Chen, 2003). The donor-acceptor (D-A) approach, introduced by Havinga et 
al. (1993) in macromolecular systems via alternating electron-rich and electron-deficient 
substituents along the conjugated backbone, has attracted a good deal of attention in 
recent years. Interaction of the donor–acceptor moieties enhances the double bond 
character between the repeating units, which stabilizes the low band gap quinonoid like 
forms within the polymer backbones. Hence, a conjugated polymer with an alternating 
sequence of the appropriate donor and acceptor units in the main chain can induce a 
reduction in its band gap energy. Recently, molecular orbital calculations have shown that 
the hybridization of the energy levels of the donor and the acceptor moieties result in D-A 
systems with unusually low HOMO-LUMO separation (Brocks & Tol, 1996). If the HOMO 
levels of the donor and the LUMO levels of the acceptor moiety are close in energy, the 
resulting band structure will show a low energy gap. Further reduction in band gap is 
possible by enhancing the strength of donor and acceptor moieties via strong orbital 
interactions. In addition, the presence of strong electron donors and acceptors in 
conjugated polymers increases the -electron delocalization leading to a high molecular 
polarizability and thus improving the nonlinear response of the polymer. In this direction, 
several donor-acceptor type conjugated polymers were synthesized and their third-order 
nonlinear optical properties were investigated (Hegde et al., 2009; Kiran et al., 2006, 
Udayakumar et al., 2006, 2007).  

Metal and semiconductor nanoparticles are also emerging as a promising class of NLO 
materials for nanophotonic applications (Fatti & Vallee, 2001; Gayvoronsky et al., 2005; 
Philip et. al., 2000; Venkatram et. al., 2005; Voisin et al., 2001). For instance, a large nonlinear 
optical response with a third-order NLO susceptibility (χ(3)) value as high as 2 x 10-5 esu has 
been observed for nanoporous layers of TiO2 (Gayvoronsky et al., 2005). Research has shown 
that it is advantageous to embed metal/semiconductor nanoparticles in thin polymer films 
for application purposes because the polymer matrix serves as a medium to assemble the 
nanoparticles and stabilize them against aggregation (Boyd, 1996; Takele et al., 2006). 
Furthermore, the nanocomposite structures are known to substantially enhance the optical 
nonlinearities (Neeves & Birnboim 1988). Therefore, the third-order NLO properties of 
several metal/semiconductor-polymer nanocomposites have been investigated (Gao et al., 
2008; Karthikeyan et al., 2006; Porel et al., 2007). Recently, conjugated polymers are being 
used as host matrix for dispersing metal/semiconductor nanoparticles (Sezer et al., 2009). 
Such nanoparticle/polymer composites are shown to possess a large third-order nonlinear 
susceptibility of the order of 10-7 esu with an ultrafast response time of 1.2 ps (Hu et al., 
2008). The nanocomposites made of Ag nanoparticles dispersed in poly[2-methoxy-5-(2-
ethylhexyloxy)-1,4-phenylenevinylene] matrix have exhibited a large third-order nonlinear 
susceptibility of the order of 10-6 esu (Hu et al., 2009). Higher χ(3) value has been observed for 
polydiacetylene-Ag nanocomposite film when compared with the pure polydiacetylene film 
(Chen et al., 2010).  

In this chapter, we describe the third-order nonlinear optical studies on new donor-acceptor 
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polymer containing alternating phenylenevinylene and tetrafluorophenylenevinylene 
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polymers contain 3,4-diakoxythiophene units as electron donors and 1,3,4-oxadiazole as 
electron acceptor units. Nanocmposites of PThOxad 3c and nano TiO2 were prepared using 
the spin coating method. The third-order nonlinear optical properties of the polymers and 
their composites were investigated using z-scan and degenerate four wave mixing (DFWM) 
techniques. All the polymers exhibit significant third-order nonlinearity. We describe their 
concentration dependent optical limiting behavior using a ns Nd:YAG laser operated at 
532 nm. 

2. Experimental set up  
Z-scan (Bahae et al., 1990) is a technique that is particularly useful when nonlinear refraction 
is accompanied by nonlinear absorption. This method allows the simultaneous 
measurement of both the nonlinear refractive index and the nonlinear absorption coefficient 
of a material. Basically, the method consists of translating a sample through the focus of a 
Gaussian beam and monitoring the changes in the far-field intensity pattern. Because of the 
light-induced lens-like effect, the sample has a tendency to recollimate or defocus the 
incident beam, depending on its z position with respect to the focal plane. By properly 
monitoring the transmittance change through a small aperture placed at the far-field 
position (closed aperture), one is able to determine the amplitude of the phase shift. By 
moving the sample through the focus and without placing an aperture at the detector (open 
aperture), one can measure the intensity-dependent absorption as a change of transmittance 
through the sample.  

A Q-switched Nd:YAG laser with a pulse width of 7 ns at 532 nm was used as a source of 
light in the z-scan experiment. The output of the laser had a nearly Gaussian intensity 
profile. A lens of focal length 26 cm was used to focus the laser pulses onto the sample. The 
resulting beam waist radius at the focused spot, calculated using the formula 

0 1.22 /w f d , where f is focal length of the lens and d is the diameter of the aperture, was 
found to be 20 m. The corresponding Rayleigh length, calculated using the formula, 

2
0 0z w    was found to be 2.3 mm. Thus the sample thickness of 1 mm was less than the 

Rayleigh length and hence it could be treated as a thin medium. The scan was obtained with 
a 50% (S = 0.5) aperture and at pulse energy of 10 μJ, which corresponds to a peak irradiance 
of 0.22 GW/cm2. In order to avoid cumulative thermal effects, data were collected in single 
shot mode (Yang, 2002). The optical limiting measurements were carried out when the 
sample was at focal point by varying the input energy and recording the output energy. 
Both the incident and the transmitted energies were measured simultaneously by two 
pyroelectric detectors with Laser Probe Rj-7620 Energy Ratio meter. Spectral grade 
dimethylformamide (DMF) was used for the preparation of polymer solutions. 

Four-wave mixing refers to the interaction of four waves in a nonlinear medium via the third-
order polarization. When all the waves have same frequency, it is called as degenerate four-
wave mixing. There are several geometries used in studying this phenomenon. One of such 
geometries used in our experiment is the backward geometry or the phase conjugate 
geometry. Here, two counter propagating strong beams are called forward pump beam and 
the backward pump beam. A third wave called the probe beam is incident at small angle θ  
(~ 4o) to the direction of the forward pump. A fourth beam, called the conjugate beam, is 
generated in the process and propagates counter to the probe beam (Sutherland, 1996). In the 
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present study, the laser energy (at 532 nm) at the sample was varied by the combinations of 
neutral density filters. Sample was taken in a 1 mm thick glass cuvette, with a concentration of 
10-5 mol/L. A small portion of the pump beams was picked off and measured by a photodiode 
to monitor the input energy. The DFWM signal generated in the sample solution was 
separated by a second photodiode. The photodiode signals were averaged over a number of 
laser shots and displayed by a Tektronix TDS2002 digital storage oscilloscope. 

3. Polymers and their nanocomposites 
Introduction of strong electron donor and strong electron acceptor groups along polymer 
chain could be a promising molecular design to improve the NLO properties in D-A  
type polymers. Processing of these polymers for application purposes requires good 
solubility in common organic solvents. Another important criterion from the application 
point of view is the good film forming properties of these polymers. Solubility of the 
polymers could be improved by the incorporation of proper solubilising groups either in the 
polymer main chain or in the side chain. Keeping these points in view, three series of  
D-A polymers (PThOxad 1a-c,  PThOxad 2a-c and PThOxad 3a-c) are synthesized  
in the present study and are characterized. The polymer structures consist of electron 
donating 3,4-dialkoxythiophene units and electron accepting 1,3,4-oxadiazole units. In  
3,4-dialkoxythiophnes, introduction of long alkoxy pendants at 3– and 4– positions of the 
thiophene ring not only enhances the electron donating nature of the ring but also improves 
the solvent processability of the corresponding polymer. On the other hand, 1,3,4-oxadiazole 
ring, due to its high electron affinity, is a good electron acceptor for D-A type conjugated 
polymers. However, in the case of poly(3,4-dialkoxythiophene)s the steric interactions of 
alkoxy groups of adjacent thiophene rings reduce the coplanarity and hence it affects the 
conjugation length of the polymer. In order to minimize such steric interactions two 
strategies have been employed in the present study. First one is to introduce a spacer unit, 
like a 1,4-divinylbenzene moiety as is the case in PThOxad 1a-c (Fig. 1) or a phenyl ring 
(PThOxad 3a-c), along the polymeric backbone so that the thiophene rings are well 
separated, which thus minimizes the steric interactions of the alkoxy groups. Second 
method is to replace one of the 3,4-dialkoxythiophene units by a cyclosubstituent fused at 3– 
and 4–positions, i.e. 3,4-ethylenedioxythiophene (EDOT) unit (PThOxad 2a-c), so that there 
will not be any steric interactions. These polymers are synthesized by using a precursor 
polyhydrazide route. As expected, all these polymers showed good solubility in common 
organic solvents, which is an important requirement for the processing of the polymers for 
device applications.  

The chemical structures of the D-A polymers containing 3,4-dialkoxythiophenes and  
1,3,4-oxadiazole units are shown in Fig. 2. The synthetic route for these polymers involves the 
preparation of monomer units, which follows the polycondensation of these monomeric units 
to give the final polymers. As a representative, the synthesis of PThOxad 1a-c is described in 
this section. A series of monomers, 3,4-dialkoxythiophene-2,5-carbonyldihydrazides (6a-c) 
were prepared starting from thiodiglycolic acid (1). Esterification reaction of thiodiglycolic 
acid (1) with ethanol in presence of  conc.sulphuric acid afforded diethylthiodiglycolate (2). 
Compound 2 was then condensed with diethyloxalate in presence of sodium ethoxide and 
ethanol to get diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate disodium salt (3). 
Acidification of the disodium salt with hydrochloric acid afforded the compound 4.  
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Fig. 1. Chemical structures of donor-acceptor conjugated polymers, PThOxd 1a-c, showing 
donor, acceptor and spacer units.  

 
Fig. 2. General structures of the polymers, PThOxad 1a-c, PThOxad 2a-c and PThOxad 3a-c. 

Diethyl 3,4-dialkoxythiophene-2,5-dicarboxylates (5a-c) were synthesized by the 
etherification reaction of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate (4) with the 
corresponding n-bromoalkane in the presence of potassium carbonate and DMF. The 
reaction was completed in 70 h. Diethyl 3,4-dialkoxythiophene-2,5-dicarboxylates (5a-c) 
were then converted into corresponding 3,4-dialkoxythiophene-2,5-carbonyldihydrazides 
(6a-c) by treating them with hydrazine hydrate and methanol. Scheme 2 shows synthetic 
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route to the synthesis of 3,3′-(1,4-phenylene)bis[2-propenoyl chloride] (8), which  
was achieved starting from 1,4-benzenedicarboxaldehyde. Knoevenagel condensation of  
1,4-benzenedicarboxaldehyde (7) with malonic acid in presence of pyridine and a catalytic 
amount of piperidine afforded 3,3′-(1,4-phenylene)bis[2-propenoic acid], which on treatment 
with thionyl chloride utilizing DMF as a catalyst yielded the monomer 8. The chemical 
structures of all the above compounds were confirmed by spectral and elemental analyses.  
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Scheme 1. Synthesis of 3,4-dialkoxythiophene-2,5-carbonyldihydrazides (6a-c). 
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Scheme 2. Synthesis of 3,3′-(1,4-phenylene)bis[2-propenoyl chloride] (8)  

The synthetic route for PThOxad 1a-c is involves the synthesis of precursor polyhydrazides 
followed by the conversion these polyhydrazides into polyoxadiazoles (scheme 3). For the 
preparation of polyhydrazides, a mixture of 10 mmol of appropriate dihydrazide, 20 mmol 
of anhydrous lithium chloride and 0.1 ml of pyridine was taken in 20 ml of N-
methylpyrrolidinone, and 10 mmol of acid chloride (8) was added slowly at room 
temperature under N2 atmosphere. The reaction mixture was stirred at room temperature 
for 5 h. The resultant yellow solution was heated at 80 oC with stirring for 20 h. After cooling 
to room temperature the reaction mixture was poured into water to get a precipitate. The 
precipitate was collected by filtration and was washed thoroughly with water followed by 
acetone and finally dried in vacuum to get the corresponding polyhydrazides in 70-85% 
yield. These polyhydrazides are insoluble in common organic solvents at ambient and even 
at elevated temperatures, as reported for other polyhydrazides. The polyhydrazides were 
converted into the corresponding poly(1,3,4-oxadiazole)s, by cyclodehydration of the 
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route to the synthesis of 3,3′-(1,4-phenylene)bis[2-propenoyl chloride] (8), which  
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of anhydrous lithium chloride and 0.1 ml of pyridine was taken in 20 ml of N-
methylpyrrolidinone, and 10 mmol of acid chloride (8) was added slowly at room 
temperature under N2 atmosphere. The reaction mixture was stirred at room temperature 
for 5 h. The resultant yellow solution was heated at 80 oC with stirring for 20 h. After cooling 
to room temperature the reaction mixture was poured into water to get a precipitate. The 
precipitate was collected by filtration and was washed thoroughly with water followed by 
acetone and finally dried in vacuum to get the corresponding polyhydrazides in 70-85% 
yield. These polyhydrazides are insoluble in common organic solvents at ambient and even 
at elevated temperatures, as reported for other polyhydrazides. The polyhydrazides were 
converted into the corresponding poly(1,3,4-oxadiazole)s, by cyclodehydration of the 
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hydrazide group into 1,3,4-oxadiazole ring, using polyphosphoric acid (PPA), which 
functions both as solvent and dehydrating agent. The reaction was carried out by heating a 
mixture of polyhydrazide (0.5 g) and 50 ml of polyphosphoric acid at 100 oC for 4 h under 
N2 atmosphere. The reaction mixture was then cooled to room temperature and poured into 
excess of water. The resulting precipitate was collected by filtration, washed thoroughly 
with water followed by acetone and dried in oven at 70 oC to get the final polymers in  
70 - 80% yield. The progress of the cyclodehydration reaction was monitored by FTIR 
spectroscopy. The stretching bands of C = O and N – H groups of polyhydrazides (fig.3), 
disappeared in the FTIR spectra of the corresponding poly(oxadiazole)s, where as the band 
corresponding to imine (C = N) in an oxadiazole ring was newly generated (fig. 4). In 
addition, peaks due to =C–O–C= (1,3,4-oxadiazole ring) stretching was also observed for 
these polymers, confirming the conversion of polyhydrazides to polyoxadiazoles.  
 

6a, 9a: R = -C6H13 ;  6b, 9b: R = -C8H17 ; 6c, 9c: R = -C10H21
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Scheme 3. Synthesis of polymers, PThOxad 1a-c.  

The polymers are found to be thermally stable up to ~330 ◦C. DSC studies were performed 
to observe glass transition temperature (Tg) of the polymers. The samples were heated up to 
300 ◦C under nitrogen atmosphere at a heating rate of 5 ◦C/min. No Tg or melting point was 
observed suggesting that the polymers are either having very high Tg or are highly 
crystalline in nature and decompose before melting. 
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Fig. 3. FT-IR sprectrum of polyhydrazide 9c.  

 
Fig. 4. FT-IR sprectrum of polyoxadiazole, PThOxad 1c.  

The UV–vis absorption and fluorescence spectra of the polymers (PThOxad 1a-c) were 
recorded both in solution and in thin film form. As shown in fig. 5, the absorption maxima 
of the polymers in dilute DMF solutions (ca. 10−5) are 373 nm for PThOxad 1a, 378 nm for 
PThOxad 1b and 381 nm for PThOxad 1c. In addition, the absorption spectra of the 
polymers displayed a shoulder at 306 nm. Compared with poly(3,4-dialkoxythiophenes), 
these polymers showed a red shift in absorption spectra. This may be due to the presence of 
1,4- divinylbenzene moiety in PThOxad 1a-c, which serves to alleviate steric effects of the 
alkoxy groups in the adjacent thienylene rings. Hence, electron-donating contributions from 
the alkoxy groups to the electronic structure of the polymers become more prominent. The 
absorption spectra of the polymer thin films (fig. 6) are rather broad and so their λmax values 
could not be precisely determined. However, their optical energy band gap (Eg) was 
calculated from the absorption edge in the thin films to be 2.20–2.38 eV. As shown in fig. 7,  
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Fig. 4. FT-IR sprectrum of polyoxadiazole, PThOxad 1c.  
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Fig. 5. UV-visible absorption spectra of PThOxad 1a-c in DMF solution. 

 
Fig. 6. UV-visible absorption spectra of PThOxad 1a-c as thin films. 

 
Fig. 7. Fluorescence emission spectra for PThOxad 1a-c in DMF solution. 
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the emissive maxima of the polymers in dilute DMF solutions (ca. 10−5) are 470 nm for 
PThOxad 1a, 474 nm for PThOxad 1b, and 479 nm for PThOxad 1c. The Stokes shift was 
determined to be 97, 96 and 98 nm for PThOxad 1a-c, respectively. The fluorescence 
emission spectra of these polymers in thin films are shown in fig. 8. The polymers emit 
intense green light in solid state, with emission peaks at 502, 506 and 512 nm for PThOxad 
1a-c, respectively. Consequently, the fluorescence spectra of the polymer thin films exhibit a 
red shift with respect to those obtained from their solutions. This can be attributed to the 
interchain or/and intrachain mobility of the excitons and excimers generated in the polymer 
in the solid stated phase. Further, a sequential red shift in the λmax was observed in both the 
UV–vis absorption spectra and fluorescence emission spectra of polymers. The increase in 
the length of the alkoxy side chains led to a red shift in the λmax in UV–vis absorption and 
fluorescence emission spectra. This can be interpreted as an expected better side chain 
interdigitation and interchain organization with increasing pendant chain length. The 
fluorescence quantum yields (Davey et al., 1995) of the polymers in solution were 
determined using quinine sulfate as a standard (Demas & Grosby, 1971) and are found to be 
in the range of 26–30%. Following the similar procedure for PThOxad 1a-c, other two series 
of polymers, PThOxad 2a-c and PThOxad 3a-c, were prepared and their optical properties 
were studied. 

 
Fig. 8. Fluorescence emission spectra for PThOxad 1a-c as thin films. 

For the preparation of PThOxad 3c/TiO2 nanocomposite, polymer (PThOxad 3c) and TiO2 
were dispersed in the weight ratio 4:1 in chloroform and chlorobenzene solvent system (10:1 
volume ratio) and sonicated for 2 hrs. Nanocomposite films were prepared on clean glass 
plates through spin coating and the films were dried in vacuum for 1 hr. The thickness of 
the polymer and the nanocomposite films was determined by the SEM cross section, and 
was found to be in the range of 0.5 – 1 micrometer. The linear transmittance of the film 
samples was between 50 to 60 % aqt 532 nm. The thermogravimetric analysis (TGA) of 
PThOxad 3c and PThOxad 3c/TiO2 nanocomposite was carried out under nitrogen 
atmosphere at a heating rate of 5 oC/min. The polymer (PThOxad 3c) decomposed slowly in 
the temperature region of 190 – 310 oC and thereafter a rapid degradation took place up to 
495 oC. The nanocomposite started to decompose at 300 oC (fig. 9) which indicated a higher 
thermal stability of the nanocomposite in comparison with that of the polymer. A similar 
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the emissive maxima of the polymers in dilute DMF solutions (ca. 10−5) are 470 nm for 
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Fig. 8. Fluorescence emission spectra for PThOxad 1a-c as thin films. 
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thermal stabilization of nanocomposite was reported in the literature (Zhu et al., 2008). 
Fig.10 shows the SEM image of the PThOxad 3c/TiO2 nanocomposite. A moderately 
uniform distribution of TiO2 nanoparticles can be observed with average particle sizes 
ranging from 25 to 45 nm.  

 
Fig. 9. TGA graphs for PThOxad 3c  (— ) and PThOxad 3c/TiO2 nanocomposite (---). 
 

 
Fig. 10. SEM images of PThOxad 3c/TiO2 nanocomposite (Inset: magnified image, Mag. = 
100 K X). 

The UV-vis absorption spectra of PThOxad 3c in CHCl3 solution (ca.10-5), PThOxad 3c film 
and PThOxad 3c/TiO2 nanocomposite film are shown in fig. 11. PThOxad 3c in solution 
displayed an absorption maximum at 378 nm, while the PThOxad 3c film showed a red shift 
of 16 nm in the absorption spectrum. The optical energy band gap (Eg) of PThOxad 3c was 
calculated from the absorption edge in the film and was found to be 2.28 eV. The PThOxad 
3c/TiO2 nanocomposite film showed an absorption peak at 412 nm (π→ π* of polymer) and 
at 310 nm and a shoulder at 250 nm (characteristic absorptions of TiO2). Fig. 12 shows the 
fluorescence emission spectra for PThOxad 3c in CHCl3 solution (ca.10-4 g/l), PThOxad 3c 
film and PThOxad 3c/TiO2 nanocomposite film. Incorporation of TiO2 nanoparticles caused 
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a slight red shift in the absorption spectra and a blue shift in the emission spectra. There was 
a shift of 18 nm in the absorption maximum of the nanocomposite film, when compared 
with that of the polymer film. We note that, a similar red shift in the absorption maximum 
was reported for MEH-PPV/TiO2 nanocomposite films (Yang et al., 2007). A blue shift of 26 
nm was observed in the emission maximum of PThOxad 3c/TiO2 nanocomposite film in 
comparison with that of the polymer film. Although the exact reasons for these shifts are not 
well understood, these optical results indicate that some interactions can occur between the 
conjugated polymer chains and TiO2 nanoparticles. It can be suggested that these 
interactions will modify the polaronic states of the polymer and increase the excitonic 
energy. Therefore, the emission spectrum of PThOxad 3c/TiO2 nanocomposite will shift 
toward higher photo energies than those of the PThOxad 3c resulting in a blue shift in the 
emission spectrum (Hsieh et al., 2007).  

 
Fig. 11. UV-vis absorption spectra for polymer solution in chloroform (—), polymer film 
(---) and nanocomposite film (…). 
 

 
Fig. 12. Fluorescence emission specta of the polymer solution in chloroform (---), polymer 
film (— ) and nanocomposite film (…). 
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4. Results and discussion 
4.1 Polythiophenes 

Fig. 13 shows the open aperture z-scan results obtained at 532 nm for PThOxad 1a-c samples 
dissolved in DMF. The transmission is symmetric about the focus (z = 0) where it has a 
minimum transmission. Thus an intensity dependent absorption effect is observed. The 
solid line in Fig. 13 is a fit of data to equation (1), by assuming only two-photon absorption 
(2PA). The normalized transmission for the open aperture condition (Henari et al., 1997) is 
given by,  

 0( ) 1
2 2
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Here,   is the nonlinear absorption coefficient, L is the length of the sample, I is the 
intensity of the laser beam at the focus, z is the position of the sample and z0 is the Rayleigh 
range of the lens. A fit of open aperture data with equation (1) yields the value of   in the 
range of 50 to 80 cm/GW for the polymer samples. We note that, the linear absorption 
spectra of PThOxad 1a-c (fig. 5) show that the polymers are not fully transparent at 532 nm; 
the linear absorption coefficients (α) for polymers at 532 nm are tabulated in Table 1. 
Therefore, there can be various mechanisms, such as the excited state absorption (ESA), that 
are responsible for such a large nonlinear absorption in these polymers. 
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Fig. 13. Open aperture curves for PThOxad 1a (a), PThOxad 1b (b) and PThOxad 1c (c). Solid 
line is a fit of data to equation (1) assuming only 2PA, with   =73.8 cm/GW for PThOxad 
1a,   = 53 cm/GW for PThOxad 1b and  =63.6 cm/GW for PThOxad 1c. 
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Fig. 14 represents different nonlinear absorption (NLA) mechanisms using an energy level 
diagram. The diagram shows the different energy levels of a molecule, the singlet ground 
state S0, the excited singlet states S1 and S2, as well as the triplet excited states T1 and T2. It 
also displays the different transitions taking place between these energy levels. When two 
photons, of the same or different energy are simultaneously absorbed from the ground state 
to a higher excited state (S0 → S1), it is denoted as two-photon absorption (2PA). When the 
excited state absorption (ESA) occurs, molecules are excited from an already excited state to 
a higher excited state (e.g. S1 → S2 and/or T1 → T2). For this to happen the population of the 
excited states (S1 and/or T1) needs to be high so that the probability of photon absorption 
from that state is high. The ESA could be enhanced if the molecules could undergo 
intersystem crossing (ISC) to the triplet state. If more absorption occurs from the excited 
state than from the ground state it is usually called as the reversed saturable absorption 
(RSA). The triplet excited state absorption may result in RSA if the absorption cross section 
of triplet excited state is greater than that of singlet excited state. With excitation of laser 
pulses on the nanosecond scale, triplet-triplet transitions may make a significant 
contribution. Nevertheless, such an increased nonlinear absorption due to additional excited 
state absorption will result in a strong optical limiting activity of the material. 

The excited state cross section (σex) can be measured from the normalized open aperture z-
scan data (Henari et al., 1997). It is assumed that the molecular energy levels can be reduced 
to a three level system in order to calculate σex. Molecules are optically excited from the 
ground state to the singlet-excited state and from this state they relax either to the ground 
state or the triplet state, when excited state absorption can occur from the triplet to the 
higher triplet excited state.  

 
Fig. 14. Energy level diagram showing both two-photon absorption and excited state 
absorption. 

The change in the intensity of the beam as it passes through the material is given by, 

( )ex
dI I N t I
dz

    ,  

where I is the intensity and N is the number of molecules in the excited state. The excited 
state density of molecules appears as a result of a nonlinear absorption process, whose 
intensity dependence can be obtained from, 
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where  is the frequency of the laser. Combining the above two equations and solving for 
the fluence of the laser and integrating over the spatial extent of the beam gives the 
normalized transmission for open aperture as 
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The values of σex of PThOxad 1a-c obtained through a fit of equation (2) to the 
corresponding open aperture data at 532 nm with 0q , are tabulated in Table 1. The value of 
ground state absorption cross-section of the polymers, as calculated from   g aN C , where 

aN  is Avogadro’s number and C is the concentration in moles/cm3 , is also given in Table 1. 
It is clear that the value of σex is larger than the value of  g in all the polymers, which is in 
agreement with the condition for observing the reverse saturable absorption (Henari et al., 
1997; Tutt & Boggess, 1993). Reverse saturable absorption generally arises in a molecular 
system when the excited state absorption cross section is larger than the ground state cross 
section. The background linear absorption at 532 nm and the measured σex values indicate 
that there is a contribution from excited state absorption to the observed NLA. This suggests 
that, the nonlinear absorption observed in the polymers can be attributed to a reverse 
saturable absorption.  
 

Polymer  
(cm-1) 

g 
(x10-18 cm2) 

ex 
(x10-17 cm2) 

PThOxad 1a 0.0487 8.092 9.66 
PThOxad 1b 0.0622 10.32 5.44 
PThOxad 1c 0.068 11.26 5.93 

Table 1. The values of , g and ex for the copolymers. 

The reverse saturable absorption in these polymers can further be verified by plotting the 
nonlinear absorption coefficient against the incident intensity. Fig. 15 shows the plot of   
versus the input intensity for PThOxad 1a-c in DMF at a concentration of 1x10-5 mol/L.  
Generally, nonlinear absorption (NLA) can be caused by free carrier absorption, saturated 
absorption, direct multiphoton absorption or excited state absorption. If the mechanism 
belongs to the simple two-photon absorption,   should be a constant that is independent of 
the on-axis irradiance I0. If the mechanism is direct three-photon absorption   should be a 
linear increasing function of I0 and the intercepts on the vertical axis should be nonzero 
(Guo et al., 2003). As shown in fig. 15,   is found to decrease with increasing input 
intensity. Such fall-off of   with increasing intensity is a consequence of the reverse 
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saturable absorption (Couris et al., 1995). With increasing intensity the total absorption of 
these polymers approaches asymptotically the absorbance of the triplet state. Therefore, the 
  will be reduced at least up to intensities where no other intensity dependence processes 
are involved which can further cause reduction of transmission of polymer solution.  
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Fig. 15.   versus intensity for PThOxad 1a-c in DMF solution (1x10-5mol/L). The 
magnitude of   decreased as intensity increased. 

Fig. 16 shows the normalized transmission for the closed aperture Z-scan obtained for 
PThOxad 1a-c. These pure nonlinear refraction curves were obtained through dividing the 
closed aperture data by the corresponding open aperture data. The z-scan signature shows a 
large negative refractive nonlinearity (self defocusing) for all the polymers. The closed 
aperture data was fitted with equation (3) given below (Bahae et al., 1990; Liu et al., 2001): 
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  for | o | ≤ π. 

The values of nonlinear refractive index (n2) for PThOxad1a-c were found to be of the order 
of 10-10 esu, and they are nearly two orders larger than the n2 values reported for thiophene 
oligomers (Hein, 1994). The χ(3) values of PThOxad 1a-c are comparable with 5x10-12 esu, 
reported for poly(3-dodecyloxymethylthiophene) (PDTh) (Bredas & Chance, 1989). The 
values of n2 and χ(3) estimated for the polymers PThOxad 1a-c are summarized in Table 2. 
These values were found to be consistent in all the trials with a maximum error of <10%. 

Based on the strong reverse saturable absorption observed for PThOxad 1a-c, good optical 
limiting action can be expected from these polymers. In general, optical limiters have been 
utilized in a variety of circumstances where a decreasing transmission with increasing 
excitation is desirable. However, one of the most important applications is eye and sensor 
protection in optical systems (Tutt & Boggess, 1993). Fig. 17 demonstrates the optical  
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Fig. 16. Pure nonlinear refraction curve obtained for PThOxad 1a (a), PThOxad 1b (b) and 
PThOxad 1c (c). Solid lines are fit of data to equation (3) with ΔΦ0 = 1.5 for PThOxad 1a,  
ΔΦ0 = 1.7 for PThOxad 1b and ΔΦ0 = 2.2 for PThOxad 1c. 

 Z – scan                                 DFWM 

Polymer no 
n2 

(x10-10 
esu) 

  
(cm/GW) 

Re χ(3) 

(x10-12 

esu) 

Im χ(3) 
(x10-12 

esu) 

χ(3) 

(x10-12 

esu) 

F 
(x10-11 

esu.cm) 
PThOxad 1a 1.422 -1.942 73.8 -2.086 1.139 2.055 4.21 
PThOxad 1b 1.422 -2.20 53.0 -2.366 0.818 2.39 3.84 
PThOxad 1c 1.415 -2.836 63.6 -3.01 0.968 2.895 4.26 

Table 2. Determined values of linear and nonlinear optical parameters for polymers under 
study. 
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Fig. 17. Optical limiting behavior of PThOxad1a (a), PThOxad1b (b) and PThOxad1c (c), 
dissolved in DMF solution (1x10-5mol/L). 
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limiting behavior of PThOxad 1a-c. The optical limiting was recorded by using the open 
aperture z-scan set up; the output energy transmitted by the sample was measured while 
the sample was kept fixed at the focus of the lens and the input energy was varied. For 
incident pule energies up to 20 μJ, the output was linearly increasing with the input. 
However, for energies more than around 20 μJ, optical limiting of pulses was observed in all 
the polymers. Although both nonlinear absorption and scattering can contribute to the 
optical limiting, no significant scattering from the samples was observed during the 
experiment within the energy limit used. 

Concentration dependence of NLO properties can be analyzed to extract information on the 
NLO properties of the solute. The concentration of polymer in DMF solution was varied and 
the z-scan experiments were repeated on solutions at each concentration to study the 
variation of nonlinear response. Fig. 18 shows the dependence of nonlinear absorption (  ) 
on the concentration of PThOxad 1a-c in solution. From 1x10-5 to 0.25x10-5 mol/L,   
decreased linearly with the concentration, however, it was found to decrease rapidly below 
0.25x10-5 mol/L. The nonlinear absorption as well as the nonlinear refraction decreased as 
the concentration of polymers in the solution decreased from 1x10-5 mol/L to 1.25x10-6 
mol/L. Similarly the optical limiting behavior of the polymers was found to be dependent 
on the concentration. The optical limiting behaviors of PThOxad 1a-c were studied at 
different concentrations (E.g., fig. 19). Both the limiting threshold as well as the clamping 
level was found to vary the concentration. While the clamping level was found to be 
increasing with decreasing concentration, the optical limiting threshold was found to be 
increasing with decreasing concentration of the polymer in the DMF solution.  
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Fig. 18. Concentration dependence of   for polymers PThOxad 1a (a), PThOxad 1b (b) and 
PThOxad 1c (c). 

The third-order NLO properties of two more series of polymers, PThOxad 2a-c and 
PThOxad 3a-c were also studied using the z-scan technique. The z-scan experiments were 
performed at pulse energy of 20 μJ which corresponds to a peak irradiance of 0.44 GW/cm2. 
The sign of the nonlinear refractive index of these copolymers was also found to be negative  
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Fig. 19. Optical limiting behaviors of PThOxad 1a-c at different concentrations: (i) 1x10-5  
Mol/L; (ii) 0.5xX10-5 Mol/L; (iii) 0.25x10-5 Mol/L: (iv) 0.125x10-5 Mol/L. 

at 532 nm. The values of n2 were –1.290x10-10, –1.220x10-10 and –1.354x10-10 esu for PThOxad 
2a-c, respectively. For PThOxad 3a-c, the values of n2 were –1.121x10-10, -1.212 x10-10 and -
1.621 x10-10 esu, respectively. All the polymers exhibited strong reverse saturable absorption 
and very good optical limiting properties at 532 nm. The values of two-photon absorption 
coefficient (  ) were 26, 24 and 32 cm/GW for PThOxad 2a-c, respectively. The 
corresponding values for PThOxad 3a-c were 20, 24 and 36 cm/GW, respectively. The 
magnitude of the χ(3)  was found to be of the order of 10-12 esu for all the polymers. The χ(3)  
values were –1.38x10-12, –1.315x10-12 esu for PThOxad 2a-c, respectively. For PThOxad 3a-c 
the corresponding values were –1.08x10-12, –1.186x10-12 and -1.564 x10-12 esu, respectively. 

Variation of the DFWM signal as a function of the pump intensity PThOxad 1c is shown in 
Fig. 20. The intensity dependence of the amplitude of the DFWM signal in other polymers 
was found to follow the similar pattern shown in the figure. The signal strength was 
proportional to the cubic power of the input intensity as given by the equation,  
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where I( ) is the DFWM signal intensity, 0 ( )I is the pump intensity, l  is the optical 
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where the subscript ‘ref’ refers to the standard reference CS2 under identical conditions, and 
(3)ref  is taken to be 4.0X10-13 esu (Philip et al., 1999; Shrik et al., 1992). The figure of merit F 
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was calculated using the equation (3) /  . F is a measure of the nonlinear response that can be 
achieved for a given absorption loss, and is useful in comparing nonlinear materials in the 
region of absorption. The value of F is given in Table 2, which shows that the polymers 
possess good F values. It can be noted that the largest χ(3)  and F values have been measured 
for the polymer attached with highest electron donor among the copolymers. The value of χ 

(3) measured by DFWM technique very well matches with the value of χ (3) obtained by  
z-scan technique. 
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Fig. 20. Variation of the phase conjugate signal with the pump intensity PThOxad 1c. The 
solid line is a cubic fit of data. 

4.2 Structure – NLO property relationship 

Polymers PThOxad 1a-c contain alternating electron donating and electron withdrawing 
groups in their chain. The lengths of the alkoxy groups (-OR) at 3- and 4- positions of the 
thiophene rings play an important role in the third-order nonlinear response of the 
polymers. The alkoxy groups present in polymers PThOxad 1a-c are hexyloxy (-OC6H13), 
octyloxy (-OC8H17) and decyloxy (-OC10H21) respectively. The χ (3) values of the polymers are 
found to be increasing from PThOxad 1a to PThOxad 1c. This can be attributed to the 
increase in the electron donating abilities of the alkoxy groups with increase in chain length. 
That is, the electron donating ability of alkoxy groups is in the order -OC6H13 < -OC8H17 <  
-OC10H21. Hence polymer PThOxad 1c, containing the longest alkoxy groups (-OC10H21) at  
3- and 4- positions of the thiophene ring, shows the highest nonlinear response among the 
polymers. Therefore, the enhancement in third-order nonlinear response is attributed to the 
increased π-electron delocalization in the polymers. A similar variation has been observed in 
the nonlinear responses of polymers, PThOxad 2a-c. The observed nonlinear response of the 
polymers are in the order PThOxad 2a  < PThOxad 2b < PThOxad 2c. Among three series of 
polymers (PThOxad 1a-c, PThOxad 2a-c and PThOxad 3a-c), polymers of PThOxad 1 series 
showed higher values of n2 and χ(3). The high nonlinear response of these polymers can be 
attributed to an increase in the effective conjugation length of the repeating unit due to the 
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polymers. Therefore, the enhancement in third-order nonlinear response is attributed to the 
increased π-electron delocalization in the polymers. A similar variation has been observed in 
the nonlinear responses of polymers, PThOxad 2a-c. The observed nonlinear response of the 
polymers are in the order PThOxad 2a  < PThOxad 2b < PThOxad 2c. Among three series of 
polymers (PThOxad 1a-c, PThOxad 2a-c and PThOxad 3a-c), polymers of PThOxad 1 series 
showed higher values of n2 and χ(3). The high nonlinear response of these polymers can be 
attributed to an increase in the effective conjugation length of the repeating unit due to the 
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presence of vinylene double bonds of 1,4-divinylbenzene unit in the main chain. Compared 
with PThOxad 3a-c, polymers PThOxad 2a-c show higher nonlinear response due to the 
presence of stronger electron donating 3,4-ethylenedioxythiophene units. These results 
suggest that the nonlinear optical properties of the polymers can be tuned by the structural 
design which involves introduction of alternating donor and acceptor groups along the 
polymer chain. 

4.3 Polymer/TiO2 nanocomposites 

The open aperture z-scan curves obtained for the polymer (PThOxad 3c) film and the 
PThOxad 3c/TiO2 composite films are shown in figs. 21 and 22 respectively. All the films 
show a strong optical limiting behavior. The effect is quite strong because the normalized 
transmission gets decreased to values like 0.1. In polymer composite systems under 
resonant excitation conditions, an optical limiting behavior can be attributed to effects 
such as excited state absorption (excited singlet and/or triplet absorption), two- or three-
photon absorption (2PA, 3PA), self-focusing/defocusing, thermal blooming, and induced 
thermal scattering. Of these, 2PA, 3PA, and self focusing/defocusing are electronic 
nonlinearities that require high laser intensities usually available only from pulsed 
picosecond or femtosecond lasers. In the present case the possibilities are therefore that of 
excited state absorption, thermal blooming and induced thermal scattering. We did not 
visually observe any induced scattering, and the numerical aperture of the detector was 
large enough to accommodate the transmitted beam fully even if moderate thermal 
blooming were to happen. Therefore the cause of the observed optical limiting turns out 
to be excited state absorption. It is possible to model excited state absorption as an 
“effective” 2PA or 3PA for numerical convenience, and when we tried to fit the 
experimental data to standard nonlinear transmission equations accordingly, the existence 
of a relatively weaker saturable absorption also came to light. Therefore an effective 
intensity-dependent nonlinear absorption coefficient of the form, 

 0( )
1 ( )

s

I II
I

  


 (6) 

can be considered, where 0 is the unsaturated linear absorption coefficient at the 
wavelength of excitation, I is the input laser intensity, and Is is the saturation intensity 
(intensity at which the linear absorption drops to half its original value).  I = N is the 
excited state absorption (ESA) coefficient, where  is the ESA cross section and N(I) is the 
intensity-dependent excited state population density. For calculating the transmitted 
intensity for a given input intensity, the propagation equation, 
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was numerically solved. Here z' indicates the propagation distance within the sample. By 
determining the best-fit curves for the experimental data, the nonlinear parameters could be 
calculated.  
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Fig. 21. Open aperture z-scan of polymer film having a linear transmission of 59 % at 532 
nm. The laser pulse energy is 90 microJoules. Circles are data points while the solid curve is 
a numerical fit according to equation (6). 
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Fig. 22. Open aperture z-scan of nanocomposite films having a linear transmission of 51%  
at 532 nm. The laser pulse energy is a) 100 microJoules, b) 75 microJoules. Circles are data 
points while the solid curve is a numerical fit according to equation (6). 

For PThOxad 3c film,   is found to be 1 x 10-7 m/W, while for the nanocomposite film it 
is 2 x 10-7 m/W. Obviously there is an enhancement of nonlinearity in PThOxad 3c/TiO2 
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For PThOxad 3c film,   is found to be 1 x 10-7 m/W, while for the nanocomposite film it 
is 2 x 10-7 m/W. Obviously there is an enhancement of nonlinearity in PThOxad 3c/TiO2 
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nanocomposite film compared to the pure PThOxad 3c film. This is not substantial 
though, the reason being that the polymer films themselves are highly nonlinear in 
nature. From a device point of view both PThOxad 3c and PThOxad 3c/TiO2 
nanocomposite films are equally useful because the optical limiting efficiency exhibited 
by them is high. To put the above  values in perspective, the values obtained in similar 
systems under similar excitation conditions are, 6.0 x 10-8 m/W in p-(N,N-
dimethylamino)dibenzylideneacetone in PMMA matrix (Kiran et al., 2008), 10-7 to 10-9 
m/W in Au:Ag-PVA nanocomposite films and 6.8 x 10-7 m/W in a ZnO/PMMA 
nanocomposite (Sreeja et al., 2010). Obviously, the present films are potentially suited for 
fabricating optical limiters, which can protect sensitive light detectors and also 
human/animal eyes from accidental exposure to high levels of optical radiation, while 
maintaining normal transparency for safe low level inputs. 

5. Conclusions 
The third-order nonlinear optical properties of three series of Donor-Acceptor polymers 
containing oxadiazole and substituted thiophene units and of a polymer/TiO2 
nanocomposite film have been investigated by using z-scan and DFWM techniques in the 
nanosecond domain. The results indicated that a nonlinear refractive index of the order of 
10-10 esu can be readily obtained in these D-A polymers. The magnitude of χ(3) is found to 
be of the order of 10-12 esu for all the polymers. The nonlinear absorption is found to be 
originating from the reverse saturable absorption. The polymers exhibit good optical 
limiting properties at 532 nm. The results showed that the polymer PThOxad 1c, 
containing the longest alkoxy group, exhibits highest nonlinearity among the three series 
of polymers and it may be a potential candidate for optical limiting, optical switching and 
other fast photonic applications. The dependence of NLO parameters on the length of the 
alkoxy substituents present in the polymers indicates that the nonlinearity in these 
polymers originates from the electronic effects. The nonlinear absorption, nonlinear 
refraction and optical limiting behavior of the polymers increase with increasing sample 
concentration in solution. In PThOxad 3c/TiO2 nanocomposite, incorporation of TiO2 

nanoparticles into the polymer matrix is found to improve the thermal stability of the 
polymer. A red shift in the absorption spectra and a blue shift in the emission spectra are 
observed for PThOxad 3c/TiO2 nanocomposite film compared to those of PThOxad 3c 
film. The composite film showed a strong optical limiting behavior, and the incorporation 
of TiO2 marginally enhanced the nonlinear absorption coefficient value of the polymer. 
The present study reveals that the third-order nonlinear optical properties of conjugated 
polymers can be enhanced by increasing the π-electron delocalization along the polymer 
chain through a proper structural modification. Further, the results show that the 
nonlinear effects in a conjugated polymer can be enhanced by incorporating TiO2 

nanoparticles in to the polymer matrix.  
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1. Introduction 
Liquid crystals (LCs) are intermediate phases between the solid and liquid states of matter 
whose interesting properties are owing mainly to two remarkable characteristics: i) they can 
flow as a conventional liquid, ii) they possess positional and orientational order just like 
those of the solid crystals (de Gennes & Prost, 1993). During the last five decades, LCs have 
been widely used in optoelectronical devices due to the great ability of changing their 
properties under the stimuli of external agents as temperature, pressure and electromagnetic 
fields. It is well known that the propagation of an electromagnetic wave through LCs is a 
phenomenon that exhibit unique optical properties and highly nonlinear effects (Zel'dovich 
et al., 1980; Tabiryan et al.,1986). 

It is an experimentally well established fact that a polarized and sufficiently intense laser beam 
may distort the initial orientation of a liquid crystal sample reorienting its molecules against 
the elastic torques producing a new equilibrium orientational configuration. This orientational 
transition of the same mesophase is the so called optical Freedericksz transition (de Gennes & 
Prost, 1993). For pure LCs this phenomenon occurs for linear, circular or elliptically polarized 
beams and, in the reorientation process, different nonlinear dynamical regimes may be 
achieved (Durbin et al., 1981). The understanding of the underlying physical mechanisms and 
the prediction of the ensuing changes in the optical properties of the liquid crystals is an active 
area of research nowadays (Khoo & Wu, 1993; Santamato et al., 1990). 

LCs are anisotropic materials and their linear optical properties are described by a 
symmetric dielectric tensor, instead of a scalar refractive index. Nonetheless, for liquid 
crystal films where an uniform orientation is achieved, the dielectric tensor is constant and 
light propagation through the fluid may be described by the usual laws of crystal optics 
(Born & Wolf , 1975). But for spatially inhomogeneous liquid crystal layers light propagation 
is much more difficult to describe, essentially due to the fact that there is no general method 
to solve Maxwell's equations for an arbitrary spatial dependence of the dielectric tensor. 
However, for important special cases such as the optical phenomena observed in the 
cholesteric phase, exact solutions and useful approximations have been worked out if light 
propagates along the helical axis (Oseen, 1933). For light propagation in an arbitrary 
direction relative to the helix, the description is more difficult. For this situation Berreman 
and Scheffer developed a numerical method to solve Maxwell's equations. This method can 
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be applied to any system where the director changes only in one direction, i. e., for a 
stratified medium (Berreman & Scheffer, 1970; Shelton & Shen, 1972). But since numerical 
methods give little insight into the physical features of the problem, approximate solutions 
of Maxwell's equations have been developed mostly in the context of light propagation in 
cholesterics. One of these cases is the geometrical optics approximation for LC. This 
approximation has been formulated in terms of the concept of adiabatic propagation for an 
arbitrary stratified medium (Allia et al., 1987), or for the case of normal incidence and small 
birefringence (Santamato & Shen, 1987). On the other hand, a rigorous treatment of the 
geometrical optics approximation in the special case of a stratified layer with its director 
oriented everywhere in the plane of incidence of the beam, was presented by Ong (Ong, 1987). 
But apparently, the generalization of the adiabatic or geometrical optics approximations have 
not been extended for two or three dimensional spatial variations of the director. 

When a high intensity beam is propagated in LCs whose configuration is not anchored to 
waveguide boundary conditions, give rise to spatial patterns and solitons as a result of the 
balance between the nonlinear refraction and the spatial diffraction. It is shown that for 
nematic LCs the electromagnetic field amplitude at the center of Gaussian beam (inner 
solution), follows a nonlocal nonlinear Schrödinger equation (McLaughlin et al., 1996). For 
cholesteric LCs and wavelengths outside of the bandgap, it is found that under special 
conditions the nonlinear coupled equations for the wavepackets in the sample reduces to an 
extended nonlinear Schödinger equation with space-dependent coefficients (Avendaño & 
Reyes, 2004 ), whereas for wavelengths within the bandgap (stationary waves) the vectorial 
equation reduces to an extended real Ginzburg-Landau equation (Avendaño &  Reyes, 
2006). In this system the energy exchanging among the four different modes generated in 
the sample due to linear and nonlinear coupling is also studied. 

It is worth mentioning that the analyses made in the above cited works, the nonlinear effects 
are obtained in regions of the system where both orientational and optical field have lost 
influence from the boundary conditions and they have to satisfy only certain mean-field 
matching conditions. Indeed, as long as the confining cell of the liquid crystal turns to be 
larger, the bias-free confinement is more notorious. 

If the boundary conditions are to be considered, the study of transverse magnetic (TM) 
nonlinear modes in nematic LC core waveguides can be realized by two different 
assumptions: i) by assuming hard anchoring boundary conditions for the nematic director, 
an iterative numerical scheme permits determine up to certain approaches the propagation 
constant as a function of optical power (Lin& Palffy-Muhoray, 1994), ii) by considering soft 
anchoring boundary conditions, a numerical but exact procedure allows to obtain the 
propagating parameters, transverse field distribution and nematic configuration as a 
function of the mode intensity (Avendaño & Reyes, 2010). It is shown that the anisotropy of 
the nematic and the intensity of the propagating beam causes simultaneously spatial 
redistribution of the field amplitude and the nematic configuration, as well as changes in the 
propagation constant and on the cut off frequencies. As said above, LCs change their 
properties under external stimuli, so that, it is expected that any external agent will permit 
us to control these nonlinear parameters. 

In next section we review some aspects of the propagation of light in inhomogeneous 
nematic liquid crystal waveguide consisting of an isotropic core and a quiescent nematic 
liquid crystal cladding. To this end an analytic and iterative solution of the nematodynamic 
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equations coupled to Maxwell's equations describing the propagation of a narrow 
wavepacket, is provided. To cubic order in the coupling between the optical field and the 
non-stationary reorientational states of the nematic, a perturbed Nonlinear Schrödinger 
Equation (NLS) is derived. This envelope equation that takes into account the dissipative 
effects due to the presence of hydrodynamic flow in a cylindrical fiber whose nematic 
cladding is initially quiescent, and the dissipation associated with the reorientation are also 
analyzed. 

In last section we are focussed in analyzing the effect of applying an axial uniform electric 
field Edc on the nonlinear TM modes, the propagating parameters and nematic core 
configuration by assuming soft anchoring boundary conditions within a cylindrical 
waveguide made of a nematic liquid crystal core and isotropic cladding. In order to achieve 
this goal, Maxwell equations are written for the proposed system and their corresponding 
boundary conditions. Then, we establish the set of nonlinear coupled equations governing 
the nematic configuration and the transverse field distribution by including the arbitrary 
anchoring conditions under the action of the uniform electric field applied axially. After this, 
we solve numerically the coupled nematic-electromagnetic field system and find 
simultaneously the distorted textures of the nematic inside the cylinder and the nonlinear 
TM modes as a function of Edc. We show that the correlation in the spatial distribution of 
nematic's configuration and nonlinear TM modes, the nonlinear cut-off frequencies and 
dispersion relations can be tuned by varying the external electric field Edc. 

2. Liquid crystal cladding waveguide 

We first consider a cylindrical geometry for an optical fiber that takes into account the 
nonlocal features of the reorientation dynamics. In what follows the coupled time evolution 
equation for both, the Transverse Magnetic TM modes and for the orientational 
configuration are derived in an explicit retarded form in terms of the coupling parameter q , 
which it will be defined later.  

Then, these general equations are solved to linear order in q  for the final stationary 
orientational configuration and are then used to construct the propagation equation of a 
wavepacket of TM modes. It is shown that the envelope of the wavepacket obeys a NLS 
equation which balances self-focussing, dispersion and diffraction in the nematic. For the 
soliton solution we calculate its speed, time and length scales, and nonlinear index of 
refraction. They are estimated by using experimental values for some of the parameters 
(Chen & Chen , 1994). 

2.1 Coupled dynamics  

Let us consider a cylindrical waveguide with an isotropic core of radius a , dielectric 
constant c  and a quiescent nematic liquid crystal cladding of radius b  satisfying planar 
axial boundary hard-anchoring conditions ˆ( , ) zn r a z e  . 

The nematic director is written in terms of the angle   as follows 

 ˆ ˆ ˆ( , ) sin cosr zn r z e e   , (1) 
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where ˆre  and ˆze are the unit cylindrical vectors along the r and z  directions, respectively. 
If the reorientation process is isothermal, the equilibrium orientational configurations are 
determined by minimizing the corresponding total Helmholtz free energy (Frank, 1958) 
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where   is the chirality that we take null for a nematic. 1 2,K K and 3K are the splay, twist 
and bend constants of deformation. Here 1 2 3K K K K    is the elastic constant 
in the equal elastic constant approximation and the asterisk denotes complex  
conjugation. Here we have used the constitutive relation ( , ) ( , ) ( , )    D r r E r  with 

 0 ˆ ˆ) )), ( (( aI nn     r   , where ε0 is the permitivity of the vacuum, ||a    is the 
dielectric anisotropy, whereas that  and || are perpendicular and parallel dielectric 
constants to the optical axis, respectively, and which leads to the retarded relation between 
E and D given by 

  ( , t) '' , t '' ( , t'') ( , ) ( , )
t
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 where Et and Ea are electric fields defined by the following nonlocal and retarded relations 

 
0 0

( , ')1 ( , ') 1( , ) ' '' ,      ( , ) ' ''
ˆ ˆ( '' ')

( '' ')
t a a ttt dt dt t dt dt t t nn

t t  


 

 
   



H r'H r'E r E r 
  

. (4) 

In Eqs. (2), (3) and (4) we have substituted ( , )tD r  in terms of ( , )H r by using Ampere-
Maxwell's law without sources. For the specific geometry Eq. (2) takes the form 
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 If we now minimize Eq. (5) with respect to  , we find the following Euler-Lagrange equation 
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Where /z a  , /x r a , 0 0/( )H H c E    with 1/2
0 01 /( )c    where 0 is the 

magnetic permeability of free space. 0/a
i iE E E , with ,i r z , are dimensionless variables 

and 2 2 2
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where ˆre  and ˆze are the unit cylindrical vectors along the r and z  directions, respectively. 
If the reorientation process is isothermal, the equilibrium orientational configurations are 
determined by minimizing the corresponding total Helmholtz free energy (Frank, 1958) 
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where   is the chirality that we take null for a nematic. 1 2,K K and 3K are the splay, twist 
and bend constants of deformation. Here 1 2 3K K K K    is the elastic constant 
in the equal elastic constant approximation and the asterisk denotes complex  
conjugation. Here we have used the constitutive relation ( , ) ( , ) ( , )    D r r E r  with 

 0 ˆ ˆ) )), ( (( aI nn     r   , where ε0 is the permitivity of the vacuum, ||a    is the 
dielectric anisotropy, whereas that  and || are perpendicular and parallel dielectric 
constants to the optical axis, respectively, and which leads to the retarded relation between 
E and D given by 

  ( , t) '' , t '' ( , t'') ( , ) ( , )
t

t adt t D t t    E r r r E r E r , (3) 

 where Et and Ea are electric fields defined by the following nonlocal and retarded relations 

 
0 0

( , ')1 ( , ') 1( , ) ' '' ,      ( , ) ' ''
ˆ ˆ( '' ')

( '' ')
t a a ttt dt dt t dt dt t t nn

t t  


 

 
   



H r'H r'E r E r 
  

. (4) 

In Eqs. (2), (3) and (4) we have substituted ( , )tD r  in terms of ( , )H r by using Ampere-
Maxwell's law without sources. For the specific geometry Eq. (2) takes the form 
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energy density and elastic one. Notice that we only use the final stationary state for   
defined by (6) due to the large difference between the time scales of reorientation and of 
time variations of the optical field. In this section we ignore all effects due to absorption. 

Since only the TM components are coupled with the reorientation, we assume that the 
optical field is a TM whose electric and magnetic component are ,r zE E  and H . Thus, H is 
governed in general by the nonlinear, nonlocal and retarded equation obtained by 
substituting Eqs. (4)  into Faraday's law, namely, 
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Eq. (6) and (7) define a set of coupled equations for the nematic and optical field (Garcia et 
al., 2000). Next we solve them iteratively in the weakly nonlinear regime. 

2.2 Linear and weakly nonlinear dynamics 

The solution of Eq. (4) to zeroth order in q  and satisfying the axial boundary conditions 
defined above, is (0) 0  . Substitution of this solution into Eq. (7) and taking a 
monochromatic beam of frequency  , we obtain a linear equation for the zeroth order field 

(0)U H which is given by 
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 Solving this equation by the method of separation of variables, its propagating solution is 
given by 
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where 1A  is an arbitrary constant to be determined by using the boundary conditions. Here 
1( )K x is the modified Bessel function of order 1. On the other hand, the monochromatic 

expression of ( , )cH r z  in the isotropic dielectric core (Jackson, 1984) finite at the origin is 
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where 1( )J x is the Bessel function of order 1 and 1B  is also an undetermined constant. To 
find the constants 1A  and 1B , it is necessary to impose the following boundary conditions 
over H  and its derivative at the boundary (Jackson, 1984), 



 
Nonlinear Optics 

 

168 

 1
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  . (11) 

Thus, by substituting Eqs. (9) and (10) into Eq. (11) we obtain a transcendental equation for 
the allowed values of   corresponding to each of the permitted modes in the guide. 

To obtain the weakly nonlinear equations for   and H , we perform another iteration to 
find their next nonvanishing order corrections in q . For this purpose we first insert Eq. (9) 
into Eq. (6) to obtain 
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and look for a solution of the form  

 2(0) (1)2 ( , )U( , ) ( ) ...q A t x t r        (13) 

 where ( , )A t is a slowly varying function of its arguments. Hence the equation for (1)  
takes the form 
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and its solution satisfying the hard anchoring hometropic boundary conditions 
( 1) ( / ) 0x x b a      may be written in terms of the exponential integral function; 

however, the resulting complicated equation can be approximated using the asymptotic 
expressions of these functions with the result is given by 
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If we now insert this expression into Eq. (8) and expand the result up to first order in q , we 
arrive at an equation of the form 

 2ˆ ˆ( , , ) ( ) 0L x H q N H       (16) 

where the linear and nonlinear operators L̂  and N̂  are defined, respectively, by 
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2.3 Wavepacket 

The explicit Fourier representation of a monochromatic field as the one considered in last 
section, depends of the frequency as 0( )   , where   is the delta function. This suggests 
that a narrow wavepacket centered around the frequency 0  may be expressed in the form:  

 0( )
0 0( , , ) ( , ) U ( , ) .i aH x t A e x cc  

        , (19) 

where the function 0( , )A    characterizes the distribution of frequencies around 0 . We 
assume that this distribution has a small dispersion 0 0( ) /q     . Thus, if the amplitude 

( , , )H x    is expanded in a Taylor series around 0   and the inverse Fourier transform 
of ( , , )H x    is taken, we arrive at 
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Eq. (20) can be written in the more compact form 
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T
   

   
   


, (21) 

where ( , )A T  is the Fourier transform of 0( , )A     and is a slowly varying function of 
the variables q   and T qt . Due to the coupling between the reorientation and the 
optical field, it is to be expected that when a monochromatic TM mode propagates along the 
cell, higher harmonics may be generated. Therefore, we assume that the solution of Eq. (16) 
can be written as the superposition 
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The superindices identify the first, second, ..., harmonics. Note that the presence of the 
powers of q  implies that the contribution of the higher order harmonics are smaller than the 
dominant term which is itself a small amplitude narrow wavepacket.  

To describe the dynamics of the envelope ( , )A T we substitute Eq. (22) into Eq. (16) and 
identify the Fourier variables 2

0 1 2/ /a ai i q q         and 0 /i i iq T       , in 
consistency with a narrow wavepacket, and where 1 2Z q q     are the spatial scales 
associated with upper harmonic contributions. Expanding the resulting expressions and 
grouping contributions of the same order in q , we find the following expressions 
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where 0 0( , )iL i a i  , 1,2i   denotes the derivative of 0 0( , )L i a i   with respect to its first 
or second argument. 

 Note Eq. (23) reproduces the usual dispersion relation 0 0 0( , ) ( , ) 0iL i a i U x    . Taking 
the first and second derivatives of Eq. (23) with respect to   we obtain an expression that 
will allow us to simplify Eqs. (24) and (25) to yield 
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This expression is a linear inhomogeneous equation 1U , whose solution is assured to exist 
by imposing the so called alternative Fredholm condition (Zwillinger, 1989), which is 
fulfilled if 0( , ) 0LU r   and 0( , ) 0U r   as r  . In our case this condition reads 

explicitly (1) , 0LU U  and since (1) , 0LU U  , implies that 
1

0ad A
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, 

which expresses the fact that up to second order in q  the envelope A  travels with the 
group velocity /d d  . 

Similarly by taking the second derivative of Eq. (23), substituting the resulting expression 

into Eq. (25) together with 
1

0ad A
d T Z



  
  

  
  it leads to an explicit expression for  2LU  

which upon using again the alternative Fredholm condition (2) , 0LU U  , we find 
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where the dimensionless refraction index 2
2 2 0/n Kn a  is given by. 
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2.4 Soliton dimensions 

Using the above expressions, we calculate the values of the properties of the wavepacket, 
such as the nonlinear contribution 2n  to the refractive index, its coefficient 2 2/d d  , the 
soliton typical length and time scales and its speed. 

For typical values of the dielectric permitivities, from (28) we get a set of values of 2n  
(Frank, 1958) corresponding to the allowed values of a . The value corresponding to 

229.59a   is  25 24
2 2.902 10 /CBn km V  which is several orders of magnitude larger 

than its value for glass, 20 28 2
2 1.2 10 ( / )Sin Km V  . This shows the existence of the giant 

optical nonlinearity expected for a liquid crystal (Reyes & Rodriguez, 2000). Another 
physical quantity is the coefficient 2 2( / )d d   of the wavepacket given by the third  
term of Eq. (27). Using: 0 1 2 2

21 /( )o o on n g      where 0 0.4136on  , 15
1 8.9 10 /rad s   ,  

15
2 6.68 10 /rad s   , 0 30 24.8 10 ( / )og rad s   and 2 30 21.66 10 ( / )og rad s   for 5CB from 

(Tabiryan et al., 1986), we find that 2 2 5 4 2( / ) 1.1 10 /
o

CB
nd k d ps Km   . Thus, the width of 

a picosecond pulse traveling in 5CB in the linear regime is doubled in a distance of 0.1 m; 
while for glass ( 2SiO ), 202 2 2( / ) 1.8 /

o

Si
nd k d ps Km  , it is doubled in a distance of 0.5 Km. 

This is consistent with the fact that liquids are considerably more dispersive than solids. 
Note that Eq. (27) can be rewritten as the NLS equation: 2 2 2

2/ / 0iA A A i A T       , 
by using the dimensionless variables  2 0/Z    and 0/T T T , where 0 0 0A c E  is the 
amplitude of the optical pulse. Here 2 2

0 0/( )aZ K aA  , 2 2 2 2
0 0( / )2 /( )aT d d K A a    ) are 

the soliton length and time scales. As is well known, the NLS equation admits soliton type 
solutions given by (Moloney & Newell, 1992)  

 0 0 0 0( )
0 0 02 sec / / .ik Z Z i TTA A T Zdk d Z T e        (29) 

For a 500mW laser at 0.5 m  , with a beam waist of 10 m , the field amplitude is 
2 6
0 1.9 10 /A V m  . Then by using the materials values given above, the spatial and 

temporal scales for the pulse turn out to be 5
0 4.2 10Z m   and 11

0 0.21 10T s  . 

From Eq. (30) we find that the soliton propagates with the speed /v v c  

 2 2
0 0 0 2( / ) / ( / ) / 2 / ,v Z T d dk n cA n d d       (30) 

which for the chosen values of the parameters yields 0.1nemv  , which is one order of 
magnitude smaller than the speed of light c  in vacuum, and roughly has the same value as 
for glass, 2 12.5 10SiOv   . The difference between nemv and 2SiOv  comes from the product 

2 2
2 0( ) /n d kn d  in Eq. (27), which measures the balance between nonlinearity and 

dispersion. 

3. Electrical control of nonlinear TM modes in cylindrical liquid crystal core 
waveguide 
It is important to stress that spatial solitons (Long et al., 2007) found in nonlinear systems 
are coherent structures formed in regions of the system where both orientational and optical 
fields have lost influence from the boundary conditions. In this sense, all these balanced and 
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robust profiles of energy, called solitons, are asymptotic solutions which are not to be forced 
by strict boundary conditions but they have to satisfy only certain mean-field matching 
conditions. In this section we are interested instead in analyze the role played by the 
boundary conditions within the optical- orientational non linear coupling of a liquid crystal 
cylindrical waveguide.  

Most of the optical calculations in waveguides have been done by assuming hard anchoring 
boundary conditions for the nematic director. This is inconsistent with the high intensity of the 
propagating TM mode since in the cylinder wall the electric force can be stronger than the 
surface elastic force as has been shown before for this geometry (Corella-Madueño et al., 2008). 
Moreover, when liquid crystals are confined to small cavities, its effect is found to be 
significant, particularly when elastic energies imposed by the confining volume compete with 
molecular anchoring energies (Corella-Madueño & Reyes, 2008). Hence we cannot ignore 
surface elastic terms compared with both bulk elastic terms and electric bulk contributions. 

In this section we analyze the behavior of a LC nematic confined within a cylindrical fiber of 
uniform dielectric cladding in which a high intensity TM mode is propagating and a 
transversal uniform electric field is axially applied on the system. Our aim is to discern how 
its propagating parameters, transverse field distribution and nematic configuration depend 
on the optical mode intensity and the external field amplitude, by assuming soft anchoring 
boundary conditions.  

3.1 Transverse magnetic field 

We assume homeotropic anchoring of the nematic LCs molecules at the cylinder wall. For 
infinite circular cylinders the symmetry implies that  only depends on the radial distance 
r  and the director is given by Eq. (1) (see Fig. 1). 

 
Fig. 1. Cylindrical fiber infiltrated by a nematic liquid crystal and subject to the action of an 
axial uniform electric field dcE applied along z – axis. Also, an optical field of incident 
electrical amplitude 0E  is propagating through the sample.  
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As usual, lmTM and lmTE propagating modes are considered in studying waveguides, 
nevertheless, as shown in (Lin & Palffy-Muhoray, 1994), for lmTE modes the anisotropy and 
inhomogeneity of the core does not enter into Maxwell's equations. For these modes the 
resulting equation is equivalent to that of isotropic and homogeneous cylindrical waveguide 
(Jackson, 1984). We concentrate on lmTM  modes for which the amplitudes of the transverse 
fields are azimuthally symmetric (l = 0). To find the equations governing the propagation of 
electromagnetic waves through the nematic fiber we assume monochromatic electric 

rE , zE and magnetic H fields propagating along the cylinder of the form: 

 ( )
r z( ,E ,H ) i z i t

r zE (e ,e ,h )e  
 

  (31) 

where the dimensionless field components are given by the following expression 
     r z 0 0 0 0( , , ) , , , / if

r ze e h E (G r k ,iG r k ,F r k c)e 


 
and 0E  is the incident electric field 

amplitude. Here we have explicitly separated the phase f  and real valued amplitudes 
 0,rG r k

, 
 0,F r k  

of the mode components to simplify the resulting equations. Inserting 
these expressions into Maxwell's equations and separating real and imaginary parts we find 
(Corella-Madueño & Reyes, 2006): 
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 , (35) 

where /x r R , R is the cylinder radius and 0/p k , being   the propagation constant. 
Note that Eqs. (32) and (33) define a self-adjoint equation for F  so that their eigenvalues p  
are real, whereas Eq.(35) provides a phase proportional to the only non diagonal entry of  . 

To solve exactly the 0mTM modes we shall assume that the nematic cylinder is surrounded by 
an infinite homogeneous and isotropic cladding of dielectric constant c . In this way the 
electromagnetic fields should satisfy the boundary conditions analogous to those given by Eqs. 
(11):    0 01, 1, ;ch x k h x k        0 0e 1, 1,c

z x k e x k    and  00, 0h x k   . Where 
 0,ch x k  and  0,c

ze x k are the magnetic and electric fields in the cladding whose expressions 
are    2

0 1 0,c
ch x k AK xk R p  

 
and    2 2

0 0 0 0e ,c
z c cx k Ak R p K xk R p     , where  

 nK x is the modified Bessel function of order n . Note that, the condition  00, 0h x k    
can be derived by realizing that a Frobenius  series  of  the solution of Eq. (32) and (33) has a 
vanishing independent term. Then, inserting these definitions into boundary conditions, it 
turns out to be  
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The boundary value problem defined by Eqs. (32)-(35),  and (36) is twofold: first, it involves 
coefficients which are real valued functions, and second, it is written in terms of self-adjoint 
differential operators. Thus, its eigenvalues and eigenfunctions are real. 

3.2 Nematic configuration 

The continuous medium description of the director is governed by the total free 
energy F containing the elastic and the optical contributions given by Eq. (2) and the external 
electric energy after integrating this expression over the cylindrical volume. Then, the free 
energy per unit length: 
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Where the elastic moduli 1K ,
 2K  and 3K  describe the splay, twist and bend deformations, 

respectively. 24K is called the surface elastic constant because it is the coefficient of a 
divergence term which can be transformed to a surface integral by using Gauss theorem. 
This elastic constant has to be included because analysis of the Frank free energy for 
nematics confined to cylindrical regions indicates that the director pattern is dependent on 
the surface elastic constant K24 if there is weak normal anchoring and escape along the 
cylinder axis (Crawford et al., 1992) 3 1/K K  , 1 24 1/ / 1RW K K K     and Wθ 
denotes the strength of interaction between the liquid crystal and the confining surface in 
units of energy per area. Finally, 2 2

0 1/aq R E K , as seen in section 2, define the ratio 
between the optical energy and the elastic one; 2 2

1/dc
aR E K   is another important 

dimensionless parameter representing the ratio of the external electric and elastic energies; 
for 1   the influence of the applied field is weak, whereas for 1  the field essentially 
overcomes the Van der Waals forces between the molecules. To illustrate the order of 
magnitude of the electromagnetic fields involved, we shall calculate the optical power 
corresponding  to 1q  . Let us assume a fiber radius of 10R m . This assures a strong 
dependence of both texture and electromagnetic fields on the boundary conditions. This 
leads to an electric amplitude 5

0 1.3 10 /E V m   which has an irradiance equal to 
7 2

0 / 2 2.25 10 /I c E W m   . If this energy density is distributed across the transverse 
area of the cylindrical fiber 2R  we shall obtain a laser power 2 37 10P R I W    . The 
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stationary orientational configuration  x  is determined by minimizing the free energy. 
This minimization leads to the Euler-Lagrange equation in the bulk 
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 (38) 

to the condition  0 0x    in the core and to the arbitrary anchoring boundary condition 
at the surface 

 2 2
1 1

/ ( / 2)sin 2 /(cos sin )x x
d dx     

   (39) 

where we have inserted the conditions Eqs. (33) and (34) in the Euler-Lagrange equation. 

3.3 Solutions 

We solve this boundary value problem by using the shooting method in which we employ a 
Runge Kutta algorithm to solve simultaneously Eqs. (32), (33) and (38) by using as initial 
conditions the right expression of Eq. (36) and arbitrary value for  0zG in order to search 
the value of p  and 0/ xd dx    for which the conditions stated in Eqs. (36) and (39) are 
satisfied. Numerical solutions of Eq. (38) were calculated for 5CB at 10INT T C    with the 
transition temperature 35INT C  ,  22 1.33c cn   , 2.2201  , 0.636a  , 1.316  , 

4  , 11
1 1.2 10K N  , 1

1/ 40W K m    and 24 1/ 1K K  (Crawford et al., 1992). 
Previous works (Lin & Palffy-Muhoray, 1994) solved separately the electromagnetic 
boundary problem and the orientational one by following an iterative scheme. Nevertheless, 
this procedure does not allow to observe the strong correlation in the spatial distribution of 
nematic's configuration and the transverse modes and hides the dependence of both fields 
on the optical field intensity, which is related to the parameter q . In addition to this, our 
procedure permits to observe the influence of the external electric field intensity, which is 
related to  , on the optical modes.  

3.3.1 Electrical control of linear TM modes 

Notice that by setting 0q   in Eq. (38), we are considering the regime of the linear TM  
optical modes, for which, the textures of the LC are not distorted due to the propagating 
wave. Then, by varying the parameter  we have the possibility of controlling electrically 
the linear TM modes and their propagating parameters. 

As it is well known, below a certain values of frequencies c , which are called cut-off 
frequencies, the different optical modes are able to escape from the core and they cannot 
propagate through the sample. Cut-off frequencies 0k R  as function of the parameter   are 
plotted in Fig. 2.  Notice that, as   augments, the cut-off frequencies increases as well. This 
means that we can electrically control the frequencies for which the modes can be 
propagated. In fact, any particular propagating mode can be suppressed (or stimulated) by 
increasing (or decreasing) the external field.  
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Fig. 2. Cut-off frequencies 0k R  for the zeroth (solid line), first (dashed line), second (dotted 
line) and third (dot-dashed line) modes versus  .  

In Fig. 3 we plot the slope   of the angle   at the cylinder axis as function of  . From this 
graphic, we see that the values of  are degenerated, i.e., they adopt the same value of   
for each of the different modes. Additionally, the slope decreases as the external field 
increases, reaching a limit value, 0  , for values greater than 19.3  .  
 

 
Fig. 3.  0 /d dx  against   for the first fourth modes. These modes coincide for each of 
the values of  . 
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As expected, near the axis, the original escaped configuration, 0  , has a higher slope than 
in the case when the electric field is applied on the waveguide. The effect of the axial electric 
field dcE on nematic’s molecules is to align them along z  axis, in such a way, as dcE gets 
greater, the slope of  0x   becomes smaller each time. 

Fig. 4 shows the zeroth mode solutions F , rG , zG  and   as function of the variable x  at 
cut-off frequency for different values of  . Notice how in general, inside the cylinder,   
diminishes as   increases, which implies that the effect of electric field over the initial 
configuration has major effect for soft anchoring than for strong one. This effect is so 
notorious that, for sufficiently high values of  , the nematic configuration   goes to zero 
for any value of x . This fact agrees with the Fig. 2, for which, the slope   is approximately 
equal to zero, at the nematic axis, for high electric fields. It is clearly shown that as  gets 
larger, the amplitudes of F  and rG  gets larger as well: in the former case, the maximum 
amplitude of transverse magnetic field moves to the waveguide axis. This is equivalent to 
have a higher concentration of energy near the waveguide cladding by augmenting  . 

Finally, the Fig. 5 shows the dispersion relation for the first four modes parametrized by  . 
The minimum value of vertical axis takes place at the value 1.33cp n  for which the 
modes  cannot  propagate, i. e., at cp n  the  corresponding  values 0k R  are  the  cut-off  
frequencies. Particularly, for 0,2,4  , the first mode cut-off frequencies are 

0 2.7,2.75,2.84k R  , respectively. 

 
Fig. 4. Dimensionless magnetic and electric fields F , rG , zG  and director configuration  , 
at the cut-off frequencies, as function of x  for different values of  : 0  (solid line), 

4  (dashed line), 8  (dotted line), 14  (dot-dashed line) and 19  (large dashed 
line).  
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Fig. 5. Dispersion relation p  vs 0k R  for the first four modes at intensities 0  (solid line), 

2  (dashed line) and 4  (dotted line).  The minimum value of vertical axis takes places 
at  1.33cp n  .  

These results imply that the parameter   plays an important role in controlling the 
propagating modes. In fact, as  increases 0k R  does as well. Thus, for applications in 
technology, this external electrical control will permit to design waveguides whose 
propagating modes can be excited or suppressed by varying the external uniform electric field. 

3.3.2 Nonlinear TM modes 

Nonlinear propagating TM modes can be obtained by arbitrarily increasing the intensity 
value q . In effect, for values 0q  , the nematic configuration given by Eq. (38) depends on 
the electromagnetic wave amplitude. In this subsection we consider the special case 0  , 
for which, the electric field dcE  is absent. 

Fig. 6 shows the cut-off frequencies c  against q for the first four modes. As q  increases, the 
cut-off frequencies diminish; and the influence of q  on the cut-off frequencies is sharper for 
smaller q -values. Usually, for frequencies c  , the corresponding TM mode is not 
propagating. Thus, by enlarging the intensity of the TM mode q , this can be conducted by the 
guide for lower frequencies than for smaller values of q . However, its influence is reduced 
when q is larger than certain value and c tends asymptotically to the values shown in this 
plot. We also notice, by observing Fig. 8, that the influence of q  on the configuration of   is 
sharper for small values of q , and hence on the cut-off frequencies. It is worth mentioning 
that, as mentioned in previous section (see Fig. 2), cut-off frequency values gets larger as 
external electric field   increases, whereas, cut-off frequencies diminishes as q augments. 
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Fig. 6. Cut-off frequencies 0k R  for the zeroth (solid line), first (dashed line), second (dotted 
line) and third (dot-dashed line) modes versus q . As  it can be seen, the  cut-off frequencies 

0k R  gets smaller as optical intensity parameter q  gets larger. 

Fig. 7 shows the slope   of the angle   at the cylinder axis as function of q . Note that, as 
expected, when the electromagnetic field is absent, 0q  , we obtain only one value for 

 0 /d dx  , corresponding to the equilibrium configuration of nematic known as 
escaped configuration. For 0q   the mode amplitude first grows and then decreases against 
q  for different values of the field for each mode. This happens because for small q -values 
the electric field starts to distort the initial escaped configuration, mostly around 1 /2x  . 

However, once the electric force overcomes the surface elastic force at the cylinder wall 
( 1x  ), the texture is also deformed at the cylinder border and in turn   is also increased. 

This causes  0 /d dx   to diminish since   is fixed at zero due to the great amount of 
bulk elastic energy accumulated by the defect of the configuration in the origin.  

In Fig. 8 we plot zeroth mode functions . F ., rG , zG  and   as function of the variable x  at 
cut-off frequency for different values of q . As we can see, the maxima of amplitudes of 
electric field rG  and zG  moves to the cylinder axis,  whereas the maximum of amplitude of 
magnetic field F  displace to the cylinder border. However, the relative variations of both 
F , rG  and zG  versus q  is negligible in comparison with that of  . This can be understood 
on the fact that F , rG  and zG  fulfill hard boundary conditions whereas   satisfies soft 
boundary conditions. In other words, by increasing q , the stationary orientational 
configuration  x  at the cylinder border gets larger. Particularly, for 400q  , the angle 
 x  ranges from  0 0x     to  1 90x    , that is, like a homeotropic configuration; 

while, for 0.001q   the angle   is approximately 74  at the cylinder wall. In other words, 
as light power increases, the nematic molecules align perpendicular to the cylinder wall. 
This behavior means that for arbitrary anchoring conditions the field has major effect over 
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the configuration than for hard-anchoring. In addition to this, we see that away from the 
axis r zG G , and the director tends to align in the radial direction as q  grows. 

 
Fig. 7.  0 /d dx  against q  for the same modes of Fig. 6. Notice that, when the 
electromagnetic field is absent, 0q  , we obtain only one value for  0 /d dx  , in 
agreement with Fig. 3. 

 
Fig. 8. Dimensionless magnetic and electric fields F , rG , zG  and director configuration   at 
the cut-off frequencies, as function of x  for five values of q : 0q  (solid line), 50q  (dashed 
line), 100q  (dotted line), 200q  (dot-dashed line) and 400q  (large dashed line). 
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Fig. 9 depicts the dispersion relation for the first four nonlinear modes at three different 
values of q . As expected, for all modes, the minimum value of parameter p  is 1.33cn  . 
This occurs just at cut-off frequencies, for which, the ratio 0/ k  is simply equal to cn . For 
particular cases q  equal to 0, 5 and 10, the cut-off frequencies 0k R  for the zeroth mode are 
2.7, 2.67 and 2.65, respectively. For practical cases, the waveguides are designed so that they 
can support only the zeroth mode; Fig. 9 can be used for determining some of these useful 
parameters.  

Finally, we mention that, the opposite effect to what we have just said can be seen in Fig. 5, for 
which the cut-off frequency values gets larger as external electric field  increases. Therefore, 
our results show that we can control the propagating or not propagating modes  in the 
waveguide by changing two different parameters: wave amplitude and external electric field. 

 
Fig. 9. Dispersion relation p  vs 0k R  for the first four modes at intensities 0q  (solid line), 

5q  (dashed line) and 10q  (dotted line).  The minimum value of vertical axis takes places 
at  1.33cp n  .  

3.3.3 Electrical control of nonlinear TM modes 

In the most general case in which 0  and 0q   we are able to tune nonlinear TM modes 
by varying the uniform electric field represented by dcE . It is expected that, nematic 
configuration, propagating modes, dispersion relation and cut-off frequencies can be 
adjusted by modifying the applied electrical field and by modulating the amplitude 0E  of 
propagating optical field. As said above, while the cut-off frequencies depend directly on 
 , c  depend inversely on parameter q (see Fig. 2 and Fig. 6). This influence is also 
observed over the dispersion relation for two different cases: i) the curves acquire larger 
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values of frequencies 0k R  as external electric field  increases (see Fig 5), whereas ii) the 
curves adopt smaller values of frequencies as q gets higher (Fig. 9). These two controlling 
parameters have specific roles on the tuning of the different optical properties of the 
cylindrical waveguide.  

In Fig. 10, we plot the same curves of Fig. 5 but now for nonlinear TM modes for which 10q  . 

Notice how the influence of applied field over the relation dispersion is modest in comparison 
to that of Fig. 5 whose curves were clearly modified by the parameter  . In  this particular 
case, the strength of transverse modes are striving against axial uniform electric field. This 
result permit us the tuning of optical nonlinear modes in a more precise manner, since the 
tuning range of  for changing cut-off frequencies is wider than for the linear mode. 

 
Fig. 10. Dispersion relation p  vs 0k R  for the first four modes at intensities 0  (solid line), 

2  (dashed line) and 4  (dotted line). The minimum value of vertical axis takes places 
at  1.33cp n  .  
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1. Introduction 
Complex ferroelectric oxides with excellent optical properties and strong electro-optic (E-O) 
effects have now opened up the potential for guided-wave devices used in multifunctional 
integrated optics (Wessels, 2007). Since an applied electric field can result in a change in 
both the dimensions and orientation of the index ellipsoid of the material through the E-O 
effect, the E-O effect affords convenient and widely used means of controlling the phase or 
intensity of the optical radiation. Electro-optic modulators, in particular operating at near 
infrared wavelengths of 1-1.6 µm, are essential for high-speed and wide bandwidth optical 
communication systems and ultrafast information processing applications (Tang et al., 
2005). Bulk ferroelectric single crystals and transparent ceramics, e.g. LiNbO3 
(Gopalakrishnan et al., 1994; Wooten et al., 2000) and (Pb,La)(Zr,Ti)O3 (Chen et al., 1980; 
Haertling, 1987), are commonly used. However, the realization of thin film E-O devices is of 
strong scientific and technological interest, since they require relatively low driving power 
and possess higher interaction efficiency in comparison to bulk modulators. The use of thin 
films in E-O devices can clearly lead to geometrical flexibility and ability to grow 
waveguides on diverse substrates for possible integration with existing semiconductor 
technologies to produce devices much smaller than bulk hybrid counterparts. 

In spite of its promise, ferroelectric thin films for optical applications are not well developed. 
This results from numerous requirements on material perfection for optical devices. At 
present, only a few laboratories have succeeded to partially master the thin film technology 
for the optical devices (Guarino et al. 2007; Masuda et al. 2011; Nakada et al. 2009; Petraru et 
al. 2002; Suzuki et al. 2008), but steady progress is visible. A typical thin film E-O modulator 
concept comprises: (1) a ferroelectric thin film layer with high E-O coefficient; (2) for 
waveguide devices, the ferroelectric thin film needs to be optically transparent preferably 
with low optical loss. Thus heteroepitaxial deposition is required; (3) the epitaxial 
ferroelectric film must be deposited on substrates with a lower refractive index than the 
layer itself for a strong light confinement and high optical power density; (4) the waveguide 
modulator structure, for instance, a Mach-Zehnder geometry, has to be patterned by 
lithography and etching and also top cladding and electrodes need to be deposited. 

Great efforts have been made to explore suitable ferroelectric oxide materials that have large 
E-O coefficient and can be epitaxially grown on low-refractive-index substrates. To date, the 
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most widely studied ferroelectrics for E-O applications are the titanates and niobates, 
including BaTiO3 (Kim & Kwok, 1995), PbZrxTi1-xO3 (Kang et al., 2008; Zhu et al., 2010), 
(Pb,La)(Zr,Ti)O3 (Adachi & Wasa, 1991; Masuda et al., 2010; Uchiyama et al., 2007), LiNbO3 

(Lee et al., 1996), KNbO3 (Graettinger et al. 1991), (K,Na)NbO3 (Blomqvist et al., 2005), 
KTaxNb1-xO3 (Hoerman et al., 2003), SrxBa1-xNb2O6 (Tayebati et al., 1996) and 
Pb(Mg1/3Nb2/3)O3-PbTiO3 (Lu et al., 1998, 1999) etc. Recently, the deposition of ferroelectric 
oxide thin films by a variety of techniques have been explored including molecular beam 
epitaxy (MBE), pulsed laser deposition (PLD), sputtering, sol-gel and metal-organic 
chemical vapor deposition (MOCVD) (Wessels, 2007). In contrast to other methods, PLD 
permits a stoichiometric transfer of material from the target to the film and film growth at 
high temperatures in reactive ambient gas, in particular, oxygen. However, to produce high 
quality thin films with good optical transparency and low optical loss for waveguide 
applications is still a very challenging task. Ba1-xSrxTiO3, abbreviated as BST, traditionally 
considered as an excellent microwave material for wide applications in wireless 
communication due to its large dielectric tunability at GHz regime, attracts much attention 
in optoelectronic community because of its high E-O coefficients (Kim et al., 2003; Li et al., 
2000; Wang et al., 2007a, 2010). For integration, the films are not only required to have E-O 
properties that are comparable to those of the bulk but also must have a high degree of 
microstructure perfection in order to minimize optical scattering losses. In this case, the 
optical propagation loss has been the most serious barrier for practical applications of 
ferroelectric thin films to waveguide devices. Hence it must be reduced below a level of 
about 1 dB/cm for practical applications (Wessels et al., 1996). Ba1-xSrxTiO3 thin films have 
been proved to possess high optical transparency and acceptable optical loss (Wang et al., 
2006a), which makes Ba1-xSrxTiO3 a very promising candidate for active waveguide 
applications. Furthermore, Ba1-xSrxTiO3 thin films have potential to overcome the major 
drawbacks of  E-O ferroelectric materials, such as the high cost and long optical path length 
of LiNbO3 and LiTaO3 single crystals and the environmental burden of lead content in 
(Pb,La)(Zr,Ti)O3 transparent ceramics and thin films. 

In this chapter, Ba0.7Sr0.3TiO3 ferroelectric thin films with large E-O effect were epitaxially 
grown on single-crystal MgO substrates by pulsed laser deposition technique and the 
important issues of their material properties are tackled. Ba0.7Sr0.3TiO3/MgO rib-type 
waveguides and Mach-Zehnder modulators are designed, fabricated and characterized.  

2. Ba0.7Sr0.3TiO3 thin film deposition 
Orientation engineered Ba0.7Sr0.3TiO3 thin films with surface normal orientations of [001], 
[011] and [111] have been epitaxially deposited on optically double-side polished single-
crystal MgO [001], [011] and [111] substrates, respectively, by pulsed laser deposition using 
a KrF excimer laser (Lambda Physik COMPex 205) with a wavelength of 248 nm, a pulse 
width of 28 ns and a repetition rate of 10 Hz. The laser beam impacts the rotating 
stoichiometric target with an energy density of 2 J /cm2. The distance between the target 
and the substrate was fixed at 5 cm, while the substrate temperature was maintained at 750 
oC. All films were prepared in an oxygen atmosphere with partial pressure of 27 Pa. The 
growth conditions used in this work have been optimized and summarized in Table 1. 

The crystal structures of the Ba0.7Sr0.3TiO3 thin films were examined using an X-ray 
diffractometer equipped with Cu Kα radiation. The θ/2θ scan patterns of [001], [011] and  
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Target- substrate distance 50 mm 
Laser energy 250 mJ 
Repetition rate of pulsed laser 10 Hz 
Ambient gas O2 
Total pressure of ambient gas 200 mTorr 
Substrate temperature 750 oC 
Growth rate ~ 20 nm/min 

Table 1. PLD conditions of Ba0.7Sr0.3TiO3 thin films. 

[111]-oriented Ba0.7Sr0.3TiO3 films on [001], [011] and [111] MgO substrates, respectively, are 
shown in Fig. 1 (a)-(c). No secondary orientations and phases can be seen in any of the three 
XRD patterns, indicating the BST films are oriented along the particular normal of the 
substrates with a pure perovskite phase. The full width at half maximum (FWHM) of the x-
ray rocking curves (ω scan) for the BST [001], [011] and [111] peaks of the [001], [011] and 
[111]-oriented BST films are 0.46o, 0.57o and 1.06o, respectively, implying that the crystallites 
of all three films are fairly well ordered. The in-plane texturing of the BST thin films with 
respect to the major axes of the MgO substrates was confirmed by the XRD φ scan of the BST 
[110], [010] and [100] reflections of the [001], [011] and [111]-oriented BST films. The peaks 
from BST films coincide in position well with those from MgO substrates, as shown in Fig. 1 
(e)-(f), which suggests a nonlattice–rotated epitaxial growth of all the as-deposited BST 
films. For the optical applications, epitaxial growth is strongly desirable because of the basic 
requirements for the reduction of light scattering associated with the refractive index 
mismatch at grain boundaries (Lee et al., 1996) as well as the E-O properties comparable to 
the bulks (Wessels, 2004). 

 
Fig. 1. XRD θ/2θ scan patterns of Ba0.7Sr0.3TiO3 thin films deposited on (a) MgO [001], (b) 
MgO [011] and (c) MgO [111] single crystal substrates; XRD φ scans of (e) Ba0.7Sr0.3TiO3 [110] 
and MgO [110] reflections of [001]-oriented film (f) Ba0.7Sr0.3TiO3 [010] and MgO [010] 
reflections of [011]-oriented film and (f) Ba0.7Sr0.3TiO3 [100] and MgO [100] reflections of 
[111]-oriented film, providing nonlattice-rotating epitaxial growth of Ba0.7Sr0.3TiO3 thin 
films. [Reproduced with permission from Ref. (Wang et al., 2010). Copyright 2010, AIP] 

(e) 

(f) 

(g)



 
Nonlinear Optics 

 

188 

3. Optical properties of Ba0.7Sr0.3TiO3 thin films 
3.1 Optical transmittance and band gap energy 

Optical constants can be evaluated using the “envelop method” developed by (Manifacier et 
al, 1976). For an insulating film on a transparent substrate, assuming the film is weakly 
absorbing and the substrate is completely transparent, the optical band gap energy Egap and 
refractive index n can be derived from the transmission spectra. The optical transmission of 
the Ba0.7Sr0.3TiO3 thin films was measured using a Perkin Elmer (precisely) Lambda 950 UV-
VIS spectrometer in the wavelength range of 200-2000 nm. All three BST films are highly 
transparent in the visible to near infrared regions, as shown in Fig. 2, which is favorable for 
applications in optical communication (e. g. λ = 1.3 and 1.5 µm). The transparency of the 
films drops sharply in the UV region and the threshold wavelength is located at 311, 319 and 
317 nm for [001], [011] and [111]-oriented films, respectively. The optical band gap energy 
Egap of a thin film can be deduced from the spectral dependence of the absorption constant 
α(υ) by applying the Tauc relation (Tauc, 1972):  

 1/( ) r
gaph const h E     (1) 

where υ is the frequency and h is the Planck’s constant, r = 2 for a direct allowed transition. 
The absorption constant α(υ) is determined from the transmittance spectrum using the 
relation (Davis & Mott, 1970):  

  1( ) [ln ] /
( )

d
T

 


  (2) 

where T(υ) is the transmittance at frequency υ and d is the film thickness. Thickness of the 
BST thin films were measured by alpha-step profiler. (187, 193 and 225 nm for [001], [011] 

 
Fig. 2. Optical transmission spectra of [001], [011] and [111]-oriented Ba0.7Sr0.3TiO3 thin films. 
Inset is the plots of (αhυ)2 versus hυ for Ba0.7Sr0.3TiO3 thin films. The optical band gap energy 
Egap is deduced from extrapolation of the straight line to (αhυ)2 = 0. [Reproduced with 
permission from Ref. (Wang et al., 2010). Copyright 2010, AIP] 
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and [111]-oriented films, respectively). The optical band gap energy is then obtained by 
applying a “base line” method (Marple, 1966) in order to minimize the impact of reflectance 
losses at air-film and film-substrate interfaces. Inset of Fig. 2 shows the plots of (αhυ)2 versus 
hυ for Ba0.7Sr0.3TiO3 thin films grown on MgO substrates. The optical band gap energies are 
found to be 3.57 ± 0.01, 3.50 ± 0.02 and 3.55 ± 0.01 eV for for the [001], [011] and [111] 
oriented films, respectively. It is discernable that the absorption edges and optical band gap 
energy of the Ba0.7Sr0.3TiO3 films are orientation dependent. Although the grain size effect on 
optical band gap energy of BST thin films has been reported (Thielsch et al.,1997), it is 
believed that orientation is the predominant factor that is responsible for the observed 
difference of Egap in our case, as the average crystallites dimensions estimated by Scherrer’s 
formula for the three films are comparable. Similar orientation dependence of band gap 
energy has also been observed in other oxygen-octahedral perovskite ferroelectrics, such as 
Pb(Mg1/3Nb2/3)O3-PbTiO3 (Wan et al., 2005) etc.  

The refractive index n of the as-deposited BST films was derived on the basis of the 
following expressions (Manifacier et al., 1976), 

 2 2' ' sn N N n    (3) 

 
2

max min

max min

1 2 ( )'
2

s sn n T TN
T T

 
   (4) 

in which Tmax and Tmin are the corresponding maximum and minimum of the envelop 
around the interference fringes at a certain wavelength λ, ns is the refractive index of MgO, 
which is taken from Ref. (Bass, 1994) based on Sellmeier dispersion equation. The 
experimental values of the refractive index are found to fit closely to a Cauchy function as a 
formula: 

 2 4( / ) ( / )n A B C     (5) 

where A, B, C are determined from fits to the experimental spectra. The calculated n and the 
dispersion of the refractive index for the three BST thin films were given in Fig. 3. The 
dispersion curves rise rapidly towards shorter wavelengths, showing the typical shape of 
dispersion near an electronic interband transition. Conspicuous orientation dependence of 
refractive index is discernable, especially in near infrared region. The [001]-oriented film 
exhibits the highest refractive index in near IR. The optical properties of an oxygen-
octahedral ABO3 perovskite ferroelectric are dominated by BO6 octahedra, which govern the 
low-lying conduction bands and the highest valence bands. This lowest energy oscillator is 
the largest contributor to the dispersion of the refractive index (Chan et al., 2004). 
Meanwhile, voids caused by surface roughness and porosity inside the film is another 
controlling factor for the variation of refractive index (Chan et al., 2004; Yang et al., 2002). 
Moreover, changes in electronic structure due to lattice distortion and some variations of 
atomic coordination caused by the substrate orientations (Tian et al., 2002) may also be 
responsible for the observed variation in refractive index of differently oriented BST thin 
films.  
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Fig. 3. Variation of refractive indices of [001], [011] and [111]-oriented Ba0.7Sr0.3TiO3 thin 
films as a function of wavelength. The solid lines are the fitting curves based on Cauchy 
equation. [Reproduced with permission from Ref. (Wang et al., 2010). Copyright 2010, AIP] 

3.2 Electro-Optic properties 

Although the E-O properties of bulk ferroelectric materials, such as single crystals of LiNbO3 
and BaTiO3, and PLZT transparent ceramics, are well identified, the identification of the E-O 
properties of ferroelectric thin films is not easy since they exhibit processing-dependent 
properties (Nashimoto et al., 1999) and crystallographic anisotropy (Wang et al., 2010). The 
E-O properties of the Ba0.7Sr0.3TiO3 thin films were measured with a transverse geometry at 
the wavelength of 632.8 nm using modified Sénarmont method. The electrode pattern used 
for E-O characterization consisted of two coplanar electrodes, with dimensions 1.0 × 8.0 
mm2 separated by a 20-µm-wide gap. The experimental arrangement for E-O measurement 
is illustrated in Fig. 4. The film surface was set with the direction perpendicular to the 
incident light and the electric field was applied normal to the incident light beam. The light 
beam from a 2 mW stabilized He-Ne laser, after passing through a polarizer set at -45o, 
impinged normally on the film in the gap between two gold electrodes. The laser beam was 
then modulated at 50 kHz by the PEM-90 photoelastic modulator and then passed through 
an analyzer set at + 45o. The transmitted laser beam was detected by a photomultiplier tube 
(PMT). The electrical signal from the PMT was filtered by a band-pass filter and then fed to 
a SRS SR830 DSP lock-in amplifier. An electric field was then applied. The general 
expression for the light intensity I at the detector is given by:  

 1 cos( )cos( ) sin( )sin( )I B A B A    (6) 

where B is the phase retardation in the film sample, A = A0cos(Ωt) is the phase retardation in 
PEM-90 photoelastic modulator. A Fourier series expansion yields: 

 0 0 1 0 2 0[1 cos( ) ( )] 2sin( ) ( )cos( ) 2 cos( ) ( )cos(2 ) ...I B J A B J A t B J A t        (7) 
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Fig. 4. Schematic diagram showing the modified Sénarmont method for the measuring E-O 
coefficients of thin films. [Reproduced with permission from Ref. (Wang et al., 2007a). 
Copyright 2007, AIP] 

where Jn(A0) are the Bessel functions and the first, second and third terms represent the  DC 
term, the fundamental term and the first harmonic term, respectively. Therefore, the 
electrical signals corresponding to these three terms are: 
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then the phase retardation B is given by:  
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Then the electric field induced birefringence change δ(Δn) can be deduced from the phase 
change B: 
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where d is the thickness of the film. 

The field induced birefringence of the thin films was characterized as a function of d. c. 
electric field E at room temperature and the result is shown in Fig. 5, in which strong 
orientation dependence of E-O effect is clearly seen. E-O effect for the [011]-oriented film is 
relatively weak, while large birefringence changes δΔn are revealed in [001] and [111]-
oriented films. All the three films exhibit predominantly linear birefringence change with 
respect to the applied d. c. electric field. A slight hysteresis behavior is observed in the δΔn 
versus E plots for [001]-oriented film, which is consistent with its enhanced ferroelectric 
properties (Wang et al., 2005). Generally, the birefringence shift due to linear E-O effect 
(Pockels effect) is given by Eq. (16) as following,  

 31
2 cn n r E   (16) 

 
Fig. 5. Change in birefringence δ(Δn) as a function of applied d.c. electric field for [001], [011] 
and [111]-oriented Ba0.7Sr0.3TiO3 thin films. The birefringence was determined at a 
wavelength of 632.8 nm. [Reproduced with permission from Ref. (Wang et al., 2010). 
Copyright 2010, AIP] 
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With this Eq. (16), the effective linear electro-optic coefficient rc can be deduced from the 
slope of the δΔn versus E plots. In this case, the linear E-O coefficient rc of the [001], [011] 
and [111]-oriented BST thin films were calculated to be 99.1 pm/V, 15.7 pm/V and 87.8 
pm/V, respectively. The difference in E-O properties in the three kinds of oriented BST films 
may be attributed to the changes in distribution and magnitude of spontaneous polarization 
(electric) in orientation engineered films. The polarization changes could originate from: (1) 
the magnitude variation of the relative displacement of the Ti4+ with respect to O2- in the 
octahedral structure, (2) the change of domain growth mechanism, and (3) the lattice 
distortion caused by the stain in perovskite structure (Lu et al., 1999; Moon et al., 2003). 
Other factors, such as dielectric permittivity, may also be responsible for the orientation 
dependence of E-O effect in our tetragonal-distorted BST thin films (Wan et al., 2004). 
Nevertheless, the linear E-O coefficients rc of [001] and [111]-oriented BST films are 
considerable higher than that of commonly used LiNbO3 single crystals (30.8 pm/V) (Xu, 
1991), showing their potential for use in active waveguide applications. The understanding 
of orientation dependent optical properties of BST thin films is technically important for 
practical optoelectronic device development. Due to its largest E-O coefficient, we will focus 
on [001]-oriented BST thin films in the following sections. 

3.3 Light propagation characteristics 

To characterize the waveguide properties of the Ba0.7Sr0.3TiO3 films, prism coupling 
experiments were performed at wavelengths of both 632.8 nm and 1550 nm. Fig. 6 shows the 
guided mode spectra (m-lines) of a 620 nm thick Ba0.7Sr0.3TiO3 thin film on MgO [001]  

 
Fig. 6. Prism coupling spectra of the Ba0.7Sr0.3TiO3 thin film (620 nm thick) epitaxially grown 
on MgO [001] substrate at both 632.8 nm and 1550 nm. [Reproduced with permission from 
Ref. (Wang et al., 2006a). Copyright 2006, OSA] 
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substrate measured by the prism coupler. Three TE (transverse electric) and three TM 
(transverse magnetic) modes were observed at 632.8 nm, while only a single TE and TM 
mode were found at 1550 nm. The peaks of each guided mode are very sharp and 
distinguishable, indicating that a good confinement of light propagation is achieved and the 
film is potentially useful for optical waveguide devices. The measured film thickness of 
626.0 nm in the TE mode at 632.8 nm was in good agreement with that determined by an α-
step profile measurement. At the wavelength of 632.8 nm, the refractive indices for TE and 
TM modes were determined to be 2.1696 and 2.2185, respectively, giving an index difference 
of 0.0489. The large index difference cannot be fully explained using the intrinsic 
birefringence in the film. Perhaps, this phenomenon is attributed to the strain induced by 
the lattice mismatching. The well-defined and relatively sharpen m-lines suggest that the 
optical losses in the film are rather low since the optical losses are related to the FWHM of 
the m-lines (Dogheche et al.; 2003Vilquin et al., 2003). It is obvious that the FWHM of m-
lines at 1550 nm is smaller than that at 632.8 nm, a lower optical loss is expected at 1550 nm. 

From the knowledge of the effective mode indices, it is possible to determine the refractive 
index profile along the film thickness direction for either TE or TM modes by using the 
inverse Wentzel-Kramers-Brillouin (i-WKB) method (Chiang, 1985). This method only 
depends on the refractive index distribution within the guiding layer. The refractive index 
profile of the Ba0.7Sr0.3TiO3 thin film at 632.8 nm is shown in Fig. 7. It indicates a step-like 
index variation, which is synonymous with a good optical homogeneity along the BST film 
thickness. The refractive index remains constant within the guiding region and drops 
rapidly near the film-substrate interface. It is because plenty of lattice misfit induced 
dislocations exist near the film-substrate interface (Chen et al., 2002), thus degrading the 
optical properties at the interface. 

 
Fig. 7. Reconstruction of the refractive index profile of the Ba0.7Sr0.3TiO3 thin film (620 nm 
thick) epitaxially grown on MgO [001] substrate at 632.8 nm using an i-WKB method. 
[Reproduced with permission from Ref. (Wang et al., 2006a). Copyright 2006, OSA] 
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3.4 Optical loss 

For integration, the films are not only required to have E-O properties comparable to those of 
the bulk but also must have a high degree of microstructure perfection in order to minimize 
optical scattering losses. In this sense, the optical transparency is a demanding requirement for 
thin film waveguides and the optical propagation loss has been the most serious barrier for 
practical applications of ferroelectric thin films in the waveguide devices. Loss of about 2 
dB/cm will reduce the efficiency of an optical device (e. g. frequency doublers) by over 50% 
(Fork et al., 1995). Nevertheless, investigations of the optical losses in ferroelectric thin films 
are insufficient. The optical loss is mainly caused by absorption, mode leakage, internal 
scattering and surface scattering. For a transparent ferroelectric thin film, the dominant loss 
mechanism is the scattering (Lu et al., 1998). In this study, a “moving fibre method” (build-in 
option of Metricon 2010 prism coupler) was employed to determine the surface scattering 
losses in the Ba0.7Sr0.3TiO3 thin film (620 nm thick). The measurement setup is shown 
schematically in Fig. 8. In the moving fibre method, the exponential decay of light is measured 
by a fibre probe scanning down the length of the propagating streak. The optical fibre method 
is identical in concept to the CCD camera approach for measuring the decay of the 
propagating streak as described in previous work (Lu et al., 1998; Walker et al., 1994). 

 
Fig. 8. A schematic diagram of the experimental arrangement for surface scattering loss 
measurements (moving fibre method). [Reproduced with permission from Ref. (Wang et al., 
2006a). Copyright 2006, OSA]. 

The loss was derived for the film from measurements of the out-of-plane scattered light 
intensity for the specified guiding modes. Fig. 9 shows the scattered intensity from TE0 and 
TM0 modes at both 632.8 nm and 1550 nm. A least square fit gives the losses of 2.64 dB/cm 
and 3.04 dB/cm for TE0 and TM0 modes at 632.8 nm, respectively and 0.93 dB/cm and 1.29 
dB/cm for TE0 and TM0 modes at 1550 nm, respectively. Losses with similar magnitude 
were measured for the other guided modes of the Ba0.7Sr0.3TiO3 thin film as summarized in 
Table 2. For the modes of higher order, higher scattered losses were observed. It is 
noticeable that the scattered losses at 1550 nm for the commonly used wavelength in optical 
communication are rather low, which is consistent with our prediction using m-line 
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measurements. The accuracy of our loss results is limited due to the small sample area and 
thus the short scanning length along the light propagation direction. But it gives a good 
approximation and the results are comparable with previous reported data in ferroelectric 
thin films (Beckers et al., 1998; Lu et al., 1998; Walker et al., 1994). 
 

 
 

Fig. 9. Scattered intensity from the TE0 and TM0 modes of a 620 nm thick Ba0.7Sr0.3TiO3 thin 
film epitaxially grown on MgO [001] substrate at both 632.8 nm and 1550 nm. [Reproduced 
with permission from Ref. (Wang et al., 2006a). Copyright 2006, OSA] 

 
                   Losses 

Guided mode at 632.8 nm (dB/cm) at 1550 nm(dB/cm) 

TE0 2.64 0.93 
TE1 6.43 -- 
TE2 8.33 -- 
TM0 3.04 1.29 
TM1 5.39 -- 
TM2 8.85 -- 

Table 2. Surface scattered losses in Ba0.7Sr0.3TiO3 thin film epitaxially grown on MgO [001] 
substrate. 

4. Waveguide device design 
For device speed and efficiency, the ideal waveguide structure should consist of a thin film 
material with a large E-O coefficient deposited onto a substrate possessing a small 
microwave dielectric constant (Lu et al., 1998). The thin films should have low optical loss 
and low surface roughness. Moreover, for better light confinement, a large refractive index 
difference between the substrate and the film is desired. Therefore, the BST/MgO 
configuration is a favorite structure for use in waveguide applications. In this work, the 
effective index method (Dogheche et al., 1996; Kogelnik & Ramaswamy, 1974; Ramaswamy, 
1974) was employed to study the bidimensional waveguide. The physical structure of a 
BST/MgO ridge waveguide was schematically shown in Fig. 10.  
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Fig. 10. Schematic structure of BST/MgO rib waveguide. [Reproduced with permission from 
Ref. (Wang et al., 2006b). Copyright 2006b, Elsevier] 

For guide-wave applications, the design of a bidimensional waveguide begins with the 
optimization of the geometrical parameters of a planar waveguide. Consider the case of an 
asymmetric planar waveguide of an anisotropic active film with an isotropic cladding layer 
and a buffer layer. Since the film is highly oriented with the [001] direction parallel to the x-
direction and the grain orientations in the y and z directions are completely random, we can 
assume that the average index in both y and z direction are the same, i.e., ny = nz, and the 
waveguide is therefore uniaxial. The dispersion equations for an asymmetric uniaxial planar 
thin film waveguide with an isotropic cover layer are given by: 
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for the TE polarization and by 
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for the TM polarization. Where Nm is the effective index of the mode with the mode number 
m = 1, 2, 3 …, ni is the index of the ith layer, d is the film thickness and k (= 2π/λ) is the free 
space wave number. To realize the bidimensional structure, the first step is to study the 
effect of the film thickness d on guided modes propagation. Fig. 11 shows the dispersion of 
the effective index Nm as a function of the guiding layer thickness d. For the planar guiding 
structure, we have studied the transverse confinement of the light. Therefore, we should 
consider only the TE polarization modes. In order to minimize the waveguide losses, it may 
be designed such that the transverse resonance condition could be satisfied; in order to 
allow only the TE0 guided mode to propagate along the active layer. As shown in Fig. 11, the 
number of guided modes increases as the film thickness increases. At a wavelength of 1550 
nm, the cutoff of TE0 and TE1 modes are 0.19 µm and 0.86 µm, respectively. In our study, a 
film thickness of 620 nm corresponds to a single-mode propagation at 1550 nm, resulting in 
the transverse confinement of the mode.  

To establish both the horizontal and vertical guiding confinement of single propagation 
mode, the geometry of the rib (width W and height h) must be determined for a given film 
thickness d (=620 nm). For lateral confinement of the light, the evolution of effective index as 
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a function of the width W was calculated. We consider a rib waveguide as shown in Fig. 12 
(a), where nc, nf and ns are the refractive indices of the cladding layer, film and substrate 
with nf > nc, ns. The basic idea is to replace the rib waveguide structure by a fictive 
equivalent planar waveguide with the effective indices Neff1 and Neff2 obtained from planar 
waveguides of thickness d and (d-h) as shown in Fig. 12 (b) and (c). Then the problem has 
been simplified to solving the “thickness” W in the lateral planar waveguide shown in Fig. 
12 (c) for a given rib height h.  

 
Fig. 11. Dispersion of effective index Nm of the modes versus the film thickness d for a BST/MgO 
structure. (a) λ = 632.8 nm, (b) λ = 1550 nm. [Reproduced with permission from Ref. (Wang et al., 
2006b). Copyright 2006, Elsevier] 

 
Fig. 12. Description of the effective index method for a rib waveguide. (a) the original rib 
waveguide; (b) solving the vertical slab problem to define Neff1 and Neff2; (c) solving the 
equivalent horizontal slab problem to determine the Neff of the whole structure. 
[Reproduced with permission from Ref. (Wang et al., 2006b). Copyright 2006, Elsevier] 
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Fig. 13 shows the simulation results of the evolution of the effective index as a function of 
the rib width W for some given rib height h at both 633 nm and 1550 nm, which gives a good 
description of the influence of rib geometry on the effective index in considering a lateral 
single-mode propagation. The useful region of the single-mode rib waveguide is a function 
of the geometrical parameters of the rib (W and h). The cut-off width of the TE01 mode 
depends on the value of height h. At λ=1550 nm, for h = 50 nm in Figure 6 (b), the 
waveguide becomes multimode for W greater than 2.4 µm. Actually, for a deeper height h, 
the width W has to be narrower to maintain a single-mode lateral propagation. Meanwhile, 
a larger rib height may cause serious scattering loss if optical scattering from the sidewall of 
the waveguide is significant. Although the accuracy of cut-offs calculated by effective index 
method needs to be improved, it does provide a good reference and approximation for us to 
shape the waveguide geometry far from the cut-offs in order to achieve a single-mode rib 
waveguide. 
 

 
(a) (b) 

Fig. 13. Effective index Nm versus rib width W for various heights h of a BST/MgO rib 
waveguide. (a) λ = 632.8 nm, (b) λ = 1550 nm. [Reproduced with permission from Ref. 
(Wang et al., 2006b). Copyright 2006, Elsevier] 

In integrated optics, interferometric devices such as optical sensors and electro-optic 
amplitude modulators are often of the Mach-Zehnder interferometer (MZI) type (Krijnen et 
al., 1995). The proposed structure of the Ba0.7Sr0.3TiO3 Mach-Zehnder modulator 
investigated in this work is shown schematically in Fig. 14. The modulator consists of an 
input waveguide that branches out into two separate parallel waveguides that are finally 
recombined into the output waveguide. By applying a voltage to the coplanar electrodes, 
the phase of the guided light in this branch can be changed. All the waveguides in the 
modulator are of the rib type and the geometry of the rib is chosen based on the numerical 
calculation in order to achieve single mode propagation at a wavelength of 1550 nm. The 
active arm length and the device length are set at 5000 µm and 9000 µm, respectively, to 
assure smooth curvatures at the Y-branches. In practice, the branching angle is usually kept 
below 1o in order to reduce the insertion loss because the loss increases with branching 
angle (Agrawal, 2004). However, due to the limited length (1 cm) of our thin film samples, 
the branching angle is set at 3o.  
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(a) (b) 

Fig. 14. Geometry of the investigated BST/MgO Mach-Zehnder E-O modulator. (a) Planar 
view; (b) Cross-sectional view of the active arm.  

5. Waveguide device processing 
To fabricate a rib waveguide from BST thin film, the process includes standard 
photolithographic patterning and dry etching. The microfabrication flow chart is shown in 
Fig. 15. After cleaning the film surface, a 150 nm thick chromium film was deposited on the 
Ba0.7Sr0.3TiO3 film by rf magnetron sputtering to serve as the etch barrier layer. A positive 
photoresist was then deposited on the chromium layer by spin coating, resulting in a 
photoresist layer of 1 µm thickness. After baking, the photoresist layer was exposed under a 
mask to high intensity ultraviolet light in a mask aligner. The exposed photoresist was then 
immersed in a developer to release the desired waveguide pattern. Using an etching 
solution of Ce(NO3)4 in aceric acid, the chromium layer without the protection of photoresist 
was removed, leaving the bare waveguide patterns of the undeveloped photoresist covering 
the chromium barrier layer on the film surface.  

 
Fig. 15. Microfabrication flow chart of thin film rib waveguides. 
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Dry etch of the BST layer was performed using reactive ion etching in a CF4/Ar ambient. A 
rf power of 200 W was used and the gas pressure was kept at 4.7 Pa. A 30-min etching 
results in ~ 60 nm depth as measured using an alpha-step surface profiler. Fig. 16 shows the 
SEM image of a cleaved BST/MgO rib waveguide. It is clearly seen that geometry of the rib 
is 620 nm of thickness, 60 nm of etched depth and 1.9 µm of width. These dimensions meet 
the requirements for a single-mode ridge waveguide at 1550 nm based on the theoretical 
calculation so that a single-mode propagation along the rib is expected. For Mach-Zehnder 
modulators, Au top electrode layer of 150 nm thick was deposited by rf magnetron 
sputtering, followed by a photolithographic patterning and wet chemical etching. The 
coplanar electrodes length and gap were 5.0 mm and 10 µm, respectively. The modulator 
was oriented along the BST [110] direction. 

 
Fig. 16. SEM image of a cleaved BST/MgO rib waveguide. [Reproduced with permission 
from Ref. (Wang et al., 2006b). Copyright 2006, Elsevier] 

6. Characterization of rib waveguide and Mach-Zehnder modulator 
The near-field output pattern of the BST/MgO rib waveguide was measured using an end-
fire coupling technique (Wang et al., 2006b). Fig. 17 shows a schematic diagram of the end-
fire coupling method. Light source is a TE-polarized semiconductor laser with a wavelength 
of 1550 nm. A polarization-maintaining single mode fibre was used for input and butt-
coupled to the cleaved endface of the waveguide. A charge-coupled device (CCD) camera 
was used to image the output pattern of the waveguide through a micro-objective lens. Fig. 
18 shows the near-field output pattern of the BST/MgO rib waveguide. It illustrates that the 
output intensity is a single mode beam with Gaussian beam profile, showing that a strong 
light beam is propagating along the rib structure.  

The Mach-Zehnder modulator was first tested without applying electric field using the end-
fire coupling method at a wavelength of 1550 nm to confirm its single propagation mode 
characteristics. The E-O response (modulation of light intensity) of the Ba0.7Sr0.3TiO3 Mach-
Zehnder modulator was characterized using the setup shown in Fig. 19 (Wang et al., 2007b). 
A light beam (λ = 1550 nm) from a laser diode was coupled into a single-mode optical fibre. 
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photodetector and then to an optical spectrum analyzer. Two xyz micro-positioning systems 
were used to position the optical fibres at the input and output of the modulator. Contact 
needles, supported by micromanipulators, were used to apply the voltage to the coplanar 
electrodes. The transmitted optical intensity was recorded by an oscilloscope. The half-wave 
voltage Vπ was determined to be 60 V by applying dc bias field to the modulator. To 
evaluate the electro-optic modulation under an ac electric field, a triangular voltage with a 
frequency of 25 Hz and peak voltage of 120 V was applied to the Mach-Zehnder modulator.  

 
Fig. 17. Schematic diagram showing the measurement of the near-field output pattern by the 
end-fire coupling method. [Reproduced with permission from Ref. (Wang et al., 2006b). 
Copyright 2006, Elsevier] 

 
Fig. 18. The output light intensity exhibits a Gaussian profile, showing that only a single 
TE00 mode propagates along the BST/MgO rib waveguide at a wavelength of 1550 nm. 
[Reproduced with permission from Ref. (Wang et al., 2006b). Copyright 2006, Elsevier] 

 
Fig. 19. Experimental setup for the characterization of Mach-Zehnder E-O modulator. 
[Reproduced with permission from Ref. (Wang et al., 2007b). Copyright 2007, Taylor & Francis] 
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The device exhibited good response to the applied ac voltage as shown in Fig. 20. A 
frequency doubling phenomenon was observed in the output signal as compared with the 
driving voltage. The performance of the device was very stable up to a frequency of 1 MHz. 
The E-O coefficient of the Ba0.7Sr0.3TiO3 thin film Mach-Zehnder modulator can be calculated 
from the half-wave voltage Vπ. Since Ba0.7Sr0.3TiO3 thin film grown on MgO [001] substrate 
exhibits the linear E-O effect, the phase change B in the device can be derived from Eqs. (19) 
and (20):  

 
3
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      (19) 

where L is the activation length of the device, s is the coplanar electrode gap spacing, λ the 
wavelength of the light, V the applied voltage, and eff

cr  is the effective E-O coefficient. 
Putting B = π,  
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Fig. 20. E-O response of the BST/MgO Mach-Zehnder modulator when an ac voltage is 
applied. Upper trace is the applied 25 Hz trianglar driving voltage on 5.0-mm-long 
electrode; Bottom trace is the intensity modulation output signal at a wavelength of 1550 
nm. [Reproduced with permission from Ref. (Wang et al., 2007b). Copyright 2007, Taylor & 
Francis] 
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Therefore, the effective E-O coefficient of the device at λ = 1550 nm is calculated to be eff
cr = 

27.0 × 10-12 m/V, which is comparable to that obtained for LiNbO3 E-O modulators (Yariv & 
Yeh, 1983). 

7. Conclusions 
In summary, we studied the optical and electro-optic properties of ferroelectric Ba0.7Sr0.3TiO3 
thin films grown on MgO single-crystal substrates by pulsed laser deposition. XRD 
examination confirmed an epitaxial growth and a pure perovskite phase with good single 
crystal quality. The thin films possess excellent optical clarity with high optical transmission 
in visible light – near infrared regime. E-O properties of the Ba0.7Sr0.3TiO3 thin films were 
measured at a wavelength of 632.8 nm through a modified Sénarmont method. A strong 
correlation between the optical, electro-optic properties and the crystalline orientation of 
epitaxial Ba0.7Sr0.3TiO3 thin films were revealed. The linear electro-optic coefficient rc of the 
[001], [011] and [111]-oriented thin films were found to be 99.1 pm/V, 15.7 pm/V and 87.8 
pm/V, respectively. Understanding of the optical and electro-optic anisotropy in 
ferroelectric thin films is a critical issue for the device design and fabrication. Because of its 
largest E-O coefficient, the [001]-oriented Ba0.7Sr0.3TiO3 thin films have been identified to be 
the most promising candidate for the integrated optics applications. 

Waveguide characteristics of the [001]-oriented Ba0.7Sr0.3TiO3 thin films were determined 
using prism coupling technique. The films showed good optical homogeneity along the 
thickness direction by analyzing the guided mode spectra using the i-WKB method. The 
films exhibited relatively low surface scattered losses of 0.93 dB/cm and 1.29 dB/cm for TE0 
and TM0 modes at 1550 nm, respectively, which is very favorite for use in infrared 
waveguides. Appropriate geometry of the rib waveguide structure was computed using the 
effective index method. A rib waveguide based on Ba0.7Sr0.3TiO3 thin film grown on MgO 
substrate was successfully fabricated by photolithographic patterning and dry etching. A 
single mode (TE00) propagation along the rib was observed, which agrees well with the 
numerical calculation. Thin-film Mach-Zehnder waveguide modulator from the 
Ba0.7Sr0.3TiO3/MgO heterostructures has also been demonstrated. The measured half-wave 
voltage Vπ is 60 V and the effective E-O coefficient eff

cr of this device is calculated to be 27.0 
×10-12 m/V at a wavelength of 1550 nm. Our results show that BST thin film optical 
modulator is attractive promising candidate for the practical applications in optical 
communications.  
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1. Introduction  

Two-photon absorption (2PA) is a nonlinear optical process in which two photons are 
simultaneously absorbed to promote a molecule to the excited state by combination of their 
energy. 2PA can occur even at wavelengths where one-photon absorption does not take 
place. Because of quadratic dependence of 2PA on the incident light intensity, the maximum 
absorption occurs at the focal point of laser allowing high spatial selectivity. These features 
can find a variety of optical applications such as photodynamic therapy (PDT) (Bhawalkar et 
al., 1997; E.A. Wachter et al., 1998), 3D optical data storage (Parthenopoulos & Rentzepis, 
1989; Strickler & Webb, 1991), and optical limiting (Sutherland, 2003). 2PA was first 
predicted by Maria Göppert-Mayer in 1931 (Göppert-Mayer, 1931) and was demonstrated 
experimentally by Kaiser and Garrett using Ruby laser (Kaiser & Garrett, 1961). However, 
the study on 2PA materials had been inactive until 1990’s. After that, new classes of organic 
molecules exhibiting large 2PA cross section values (σ(2)) have been reported and the 
strategies employing donor/acceptor sets with a π-conjugation system in a symmetric (D-π-
D or A-π-A) (Albota et al., 1998) or asymmetric (D-π-A) arrangement (Reinhardt et al., 1998) 
have been proposed.  

Porphyrins are attractive target materials for 2PA applications because they have a highly 
conjugated 18π-electron system leading to a small HOMO-LUMO energy difference. 
Further, it is interesting in view of visible-light (the Soret band around 400 nm and Q band 
around 500-700 nm) absorbing and emitting materials as candidates for opto-electronics 
application as well as nonlinear optics (NLO) including 2PA materials. Novel NLO 
materials may not be obtained from simple monomeric porphyrins, but be produced when 
strong electronic interactions between porphyrins are induced by self-assembly to bring 
porphyrins close together or connecting their π-conjugation systems.  

A lot of multiporphyrin systems have been reported either by covalent or noncovalent 
approaches (Chambron et al., 1999; Chou et al., 1999; Ogawa & Kobuke, 2004) and some of 
them showed such the strong electronic interactions between porphyrins. In most of 
covalent approaches, strong interactions have been found in linear porphyrin arrays by 
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connecting porphyrins at meso-positions (Osuka & Shimidzu, 1997; Aratani et al., 2005; 
Tsuda & Osuka, 2001; Anderson, 1994; Anderson, 1999; Lin et al., 1994).  

In contrast to the covalent approaches, noncovalent approaches allow easy construction of 
multiporphyrin arrays. However, studies on self-assembled porphyrin arrays exhibiting 
strong excitonic and electronic interactions are limited because it is hard to arrange porphyrins 
in an appropriate position to invoke strong excitonic interaction between porphyrins.  

We have reported that zinc imidazolylporphyrin 1 (Fig. 1) allows formation of stable slipped 
cofacial dimer 2D through complementary coordination of the imidazolyl to zinc in another 
porphyrin with a stability constant over 1011 M-1 (Kobuke & Miyaji, 1994). Then, we 
challenged to construct one-dimensional supramolecular linear porphyrin arrays by 
connecting the complementary coordination dimer units in a linear fashion. As a result,  
a giant supramolecular porphyrin array 3P of over 800 porphyrin units could be  
obtained by linking two imidazolylporphyrin units directly at the meso positions (Ogawa & 
Kobuke, 2000). The polymeric structure can easily be cleaved by adding coordinating 
solvents such as MeOH or pyridine, and reorganized again by removing the solvents.  
When this reorganization was performed in the presence of 3P and another 
imidazolylporphyrinatozinc dimer 4D, oligomer 5n having terminal units of 4M was 
obtained. Thus, the reorganization can serve an efficient method for introducing appropriate 
donor and/or acceptor groups at the molecular terminals of the array as a substituent R2. 
For example, when freebase porphyrin was used as an acceptor, large enhancements of the 
real part of the molecular second hyperpolarizability were observed (Ogawa et al., 2002). 
However, almost no nonlinear absorption was observed in femtosecond optical Kerr effect 
(OKE) measurements at the off-resonant wavelength of 800 nm.   
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Fig. 1. Formation of self-assembled porphyrin dimer and giant porphyrin array by 
complementary coordination of imidazolyl to zinc. 

2. Strong 2PA of conjugated porphyrins by self-coordination  
In order to extend the use of this supramolecular porphyrin system to 2PA materials (i.e. to 
obtain a large 2PA cross section) we designed a novel porphyrin assembly 7D (Fig. 2) 
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Fig. 1. Formation of self-assembled porphyrin dimer and giant porphyrin array by 
complementary coordination of imidazolyl to zinc. 

2. Strong 2PA of conjugated porphyrins by self-coordination  
In order to extend the use of this supramolecular porphyrin system to 2PA materials (i.e. to 
obtain a large 2PA cross section) we designed a novel porphyrin assembly 7D (Fig. 2) 
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(Ogawa et al., 2003) according to the general strategy as mentioned above. At first, two 
porphyrins were connected by butadiynylene to allow π-conjugation by taking a coplanar 
orientation of two porphyrins. In the case of meso-meso linked bisporphyrins shown in Fig. 1, 
orthogonal orientation between porphyrins prevents the desired porphyrin-porphyrin π-
conjugation. The conjugated porphyrin arrays, covalently linked by butadiynylene and 
ethynylene linkages (Piet et al., 1997; Anderson, 1994; Anderson, 1999; Thorne et al., 1999; 
Screen et al., 2002; Karotki et al., 2004; Drobizhev et al., 2004; Lin et al., 1994; Lin et al., 1995; 
Angiolilloet al., 2004), are assumed to be converted to cumulenic structures upon 
photoexcitation. This may make the absorption of the second photon favorable and enhance 
their nonlinear optical properties. Next, free base porphyrins as electron acceptors were 
introduced at both terminals of the array to induce molecular polarization. 
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Fig. 2. Structures of compounds investigated. 

2.1 Effect of the expansion of π-conjugation between porphyrins on 2PA 

The butadiynylene linkage in 7D allows a coplanar orientation between bisporphyrins, 
leading to the expansion of π-conjugation. On the other hand, in the case of 6D, two 
porphyrins directly connected at meso-positions are almost orthogonal to each other, 
preventing π-conjugation between two porphyrins. Fig. 3 shows one-photon absorption 
spectra of 6D (dotted line) and 7D (bold solid line) in CHCl3. Both self-assemblies show 
strong one-photon absorption in the range of 400 nm to 500 nm, which corresponds to the S2 
state (the Soret band). On the other hand, only very weak absorptions are observed over 800 
nm. These observations suggest that two photons at the wavelength over 800 nm will be 
absorbed simultaneously to promote the molecules to the S2 state. The Q-band (the S1 state) 
of 7D was red-shifted to 740 nm compared to that of 6D (660 nm), and was also significantly 
intensified suggesting the expansion of the porphryin-porphyrin π-conjugation due to the 
butadiynylene linkage. 

The 2PA cross sections were measured using an open aperture Z-scan method (Sheik-Bahae 
et al., 1990) at wavelengths from 810 to 1300 nm, with a femtosecond optical parametric 
amplifier. This technique detects nonlinear absorption, i.e. two- or multi-photon absorption, 
by scanning the sample around the focal point along the direction of laser beam (Z-axis). 
The nonlinear absorption is observed most strongly at the focal point, where the peak 
intensity of the incident light becomes maximum. The σ(2) value can be estimated by curve 
fitting using theoretical equations.  

2PA spectra of 6D and 7D measured in CHCl3 are shown in Fig. 4. The maximum σ(2) values 
were obtained as 370 GM at 964 nm for 6D and 7,600 GM at 887 nm for 7D, respectively. The 
maximum value obtained for 7D is almost 20 times larger than that for 6D, showing that the 
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expansion of π-conjugation between porphyrins by introducing the butadiynylene linkage is 
the most important factor to enhance the σ(2) value. The value of 7,600 GM was the largest 
class among reported organic compounds measured in femtosecond time scale at that time. 

 
Fig. 3. One-photon absorption spectra of 6D (dotted line) and 7D (bold solid line) in CHCl3. 
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Fig. 4. 2PA spectra of 6D (cross) and 7D (circle) measured using femtosecond pulses in CHCl3. 

2.2 Effects of complementary coordination and monozinc metalation on the 
enhancement of the 2PA cross section 

As described in the above section, the expansion of π-conjugation between two porphyrins is 
one of the significant reasons for the enhancement of the σ(2) value. From a viewpoint of the 
relationship between structure and 2PA property, it is interesting to examine the effect of the 
complementary coordination of imidazolyl to zinc and the monozinc metalation, which 
induces the molecular polarization. Therefore, we examined the 2PA properties of 
bisporphyrins in the forms of monozinc complex 7M, di-zinc complex 8M, and free base 9 in 
CHCl3 solution containing 3,000 equivalents of 1-methylimidazole, which acted as a 
competing ligand to lead the cleavage of the complementary coordination. The 2PA absorption 
spectra of 7M, 8M, and 9 are shown in Fig. 5. These compounds without the complementary 
coordination also exhibited relatively large σ(2) values of 1,800, 1,200, and 1,000 GM, 
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respectively. The σ(2) value of 7M was almost twice of those obtained for 8M and 9, suggesting 
that monozinc metalation is effective for 2PA enhancement. Since free base porphyrin works 
as an electron acceptor against zinc porphyrin, the monozinc metalation induces the molecular 
polarization which may cause intramolecular charge transfer in the 2PA transition process. On 
the other hand, the σ(2) value of 1,800 GM obtained for 7M was four times smaller than that for 
7D. This indicates that the complementary coordination is another effective enhancement 
factor. In 7D, the complementary coordination brings in the extended electronic 
communication through the coordination bonds. Further, the complementary coordination 
may also contribute to the larger σ(2) value of 7D by the enhancement of the transition dipole 
moments as a result of the excitonic coupling (McRae & Kasha, 1958).  
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Fig. 5. 2PA spectra of 7M (circle), 8M (cross), and 9 (square) in CHCl3 with 1-
methylimidazole (1.5 M). 

2.3 Effect of polymerization on the enhancement of the 2PA cross section 

Reaction of free base 9 with excess amount of zinc acetate give di-zinc complex, which 
allows the formation of one-dimensionally propagated polymer 8P by the successive 
complementary coordination of imidazolyl to zinc. Molecular weight of 8P was analyzed by 
using gel permeation chromatography (GPC) with a column having an exclusion limit of 
500,000 Dalton eluted by CHCl3. The mean molecular weights, Mw and Mn of 8P were 
estimated by comparing the data with those of polystyrene standards as 200,000 and 
150,000, respectively.  

The 2PA cross section of 8P was measured in CHCl3. Strong two-photon absorption was also 
observed in the Z-scan experiment and the σ(2) value per biszinc unit was estimated to be 
4,000 GM at 873 nm. The enhancement factor for polymerization is 3.3 compared with the 
value obtained for 8M. The mean σ(2) value of polymer 8P was estimated to be ~400,000 GM, 
using the Mn value of 150,000 corresponding to 110 bisporphyrin units. The two-photon 
absorption spectra of 8P are shown in Fig. 6. This value is extremely large compared with 
the value for 8M with an enhancement factor of 360. Although the σ(2) value per dimer unit 
of 8P shows the enhancement factor of 3.3 compared with that of 8M, the value of 4,000 GM 
is almost the same as that of 7D (3,800 GM), suggesting that the elongation effect more than 
three dimer units is not so significant for the 2PA enhancement. 
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Fig. 6. 2PA spectra of 8P in CHCl3. 

2.4 Nonlinear absorption measured with nanosecond pulses 

Generally, the σ(2) value obtained with nanosecond laser pulses is 2 or 3 orders of magnitude 
larger than that measured using femtosecond pulses due to the excited state absorption 
(ESA) (Swiatkiewicz et al., 1998; Kim et al., 2000; Lei et al., 2001). This contribution is 
difficult to remove from the Z-scan data. However, on considering application of 2PA 
materials such as 2PA-PDT or 3-D optical memory, the nanosecond pulse system may be 
more appropriate because of availability and the easiness of operation. Therefore, we 
examined nonlinear absorption properties of nanosecond region for 7D and 8P by Z-scan 
measurements with a nanosecond optical parametric oscillator (OPO) pumped by a 
Nd:YAG laser. Fig. 7 shows plots of two-photon absorbance q0 (Ogawa et al., 2005) against 
incident light intensity I0 for 8P at 850 nm. The pulse energy was varied between 1.0 mJ and 
2.1 mJ. The value of q0 was almost proportional up to I0 of 1.1 × 1014 W/m2, corresponding to 

 
Fig. 7. Plots of the two-photon absorbance q0 against peak intensity I0 for 8P at 850 nm with 
nanosecond pulses.  
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2.4 Nonlinear absorption measured with nanosecond pulses 

Generally, the σ(2) value obtained with nanosecond laser pulses is 2 or 3 orders of magnitude 
larger than that measured using femtosecond pulses due to the excited state absorption 
(ESA) (Swiatkiewicz et al., 1998; Kim et al., 2000; Lei et al., 2001). This contribution is 
difficult to remove from the Z-scan data. However, on considering application of 2PA 
materials such as 2PA-PDT or 3-D optical memory, the nanosecond pulse system may be 
more appropriate because of availability and the easiness of operation. Therefore, we 
examined nonlinear absorption properties of nanosecond region for 7D and 8P by Z-scan 
measurements with a nanosecond optical parametric oscillator (OPO) pumped by a 
Nd:YAG laser. Fig. 7 shows plots of two-photon absorbance q0 (Ogawa et al., 2005) against 
incident light intensity I0 for 8P at 850 nm. The pulse energy was varied between 1.0 mJ and 
2.1 mJ. The value of q0 was almost proportional up to I0 of 1.1 × 1014 W/m2, corresponding to 
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I0 = 15 mW. This result shows that the ESA is significant at the high intensity region over 15 
mW. Therefore, the effective σ(2) (effσ(2)) spectrum was measured at the lowest intensity of 1.0 
mJ as shown in Fig. 8. These spectra were similar to those obtained using femtosecond 
measurements and absorption maxima were observed at 890 nm in both compounds. The 
maximum effσ(2) values for 7D and 8P were estimated as 210,000 and ~22,000,000, 
respectively, which were 30 to 50 times larger than those observed by femtosecond pulses, 
indicating the presence of the ESA contribution.  

 
Fig. 8. 2PA spectra of 7D and 8P measured with nanosecond pulses. The pulse energy was 
1.0 mJ for all the measurements. 

2.5 Three-photon absorption 

The higher-order nonlinear absorption than 2PA was found for 7D at wavelengths longer 
than 1180 nm. The most probable higher-order nonlinear absorption process observed on 
using the femtosecond pulses originates from three-photon absorption (3PA). 
Furthermore, the wavelengths were almost three times long as that of the Soret band, 
suggesting 3PA. 2PA and 3PA can occur simultaneously in this wavelength range. When 
the observed data were analyzed as only 3PA was taken into account, a linear relationship 
between 3PA parameter p0 (Tykwinski et al., 2002; Ogawa et al., 2005) and I0 was 
obtained. This linear relationship does not necessarily mean the observation of the 
intrinsic 3PA (i.e. the simultaneous absorption of three photons), since two-step 3PA (e.g. 
2PA followed by an excited state absorption process) also shows the same linear 
relationship. Although the possibility of two-step 3PA process cannot be completely ruled 
out, the observation may originate from the intrinsic 3PA process because the σ(2) values 
decreased as the irradiation wavelength approached the wavelength range in which 3PA 
was observed, and furthermore this range corresponds to three times the wavelength of 
the Soret band. The 3PA cross sections were estimated to be 7.1 × 10-77 m6s2 and 1.8 ×10-77 
m6s2 at 1190 and 1280 nm, respectively. Materials exhibiting 3PA may be interesting for 
further high-resolution 3D optical memory, 3D fabrication, and PDT applications with 
merit of using longer NIR wavelength light.  
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2.6 Effects of water-solubilization and ethynylene connection on 2PA 

Photodynamic therapy (PDT) is a medical treatment of cancers, which uses a photosensitizer 
without surgery, and is a one of the possible 2PA applications as described in Introduction. 
The penetration depth of visible light used in currently available PDT (630 nm) is limited 
only to reach tissue surface due to absorption and scattering by biological tissue, indicating 
that this method cannot be applied to the treatment of deep cancers. However, the 
penetration depth can be improved by using longer wavelength range of 700-1500 nm which 
is relatively transparent for biological tissue and called as the optical window. Since 
porphyrin compounds have strong one-photon absorption bands between 400 and 500 nm 
(the Soret band) corresponding to the combined energy of two photons in the wavelength 
range from 800 to 1000 nm, which is just laid in the optical window, 2PA using porphyrins 
is suitable for PDT for deep cancers. Quadratic dependence on the laser intensity is another 
advantage of the use of 2PA. This allows high spatial selectivity by focusing the laser beam 
at the target point and prevents damages to healthy tissue. So, we have studied 2PA-PDT 
using conjugated porphyrins having high 2PA efficiency. First, compound 7D was modified 
to be solubilized in water. Because porphyrins are tend to stack in water and this may affect 
optical properties of compounds, effect of water-solubilization on 2PA was examined. The 
water-solubility was obtained by introducing a carboxylic group instead of heptyl at each 
meso-position (10D (Fig. 9)) (Ogawa et al., 2006). Further, ethynylene-linked compound 11D, 
obtained from a direct hetero-coupling reaction between donor zincporphyrin and acceptor 
freebase porphyrin, was also synthesized. 

The σ(2) values in water were measured by a femtosecond open aperture Z-scan method at 850 
nm. Strong nonlinear absorption was also observed at the focal point even in a dilute solution 
of 0.37 mM. The σ(2) value of 10D was determined as 7,500 GM. This value is almost same as 
that of 7D in chloroform, indicating no water-solubilization effect on 2PA. The σ(2) value of 
ethynylene compound 11D was also measured as 7,900 GM, being almost equivalent to that of 
10D. These results show that the water-soluble porphyrin assemblies 10D and 11D, exhibiting 
strong two-photon absorption, are possible candidates for the 2PA-PDT agent. 
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Fig. 9. Structures of water-soluble self-assembled porphyrins 10D and 11D.  

2.7 Effect of elongation of conjugated bisporphyrin on 2PA 
Bis(imidazolylporphyrin) generates not only polymers but also discrete shorter porphyrin 
arrays by the addition of monomeric imidazolylporphyrins as terminators through the 
complementary coordination of imidazolyl to zinc (Ogawa & Kobuke, 2000; Kobuke & 
Ogawa, 2003; Ogawa & Kobuke, 2006). The conjugated bisporphyrins also gives regulated 
porphyrin arrays by the self-assembly. Consequently, we synthesized a butadiynylene-
bridged bisporphyrin monomer 12 and dimer 13 terminated with monomeric porphyrins on 
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Fig. 9. Structures of water-soluble self-assembled porphyrins 10D and 11D.  

2.7 Effect of elongation of conjugated bisporphyrin on 2PA 
Bis(imidazolylporphyrin) generates not only polymers but also discrete shorter porphyrin 
arrays by the addition of monomeric imidazolylporphyrins as terminators through the 
complementary coordination of imidazolyl to zinc (Ogawa & Kobuke, 2000; Kobuke & 
Ogawa, 2003; Ogawa & Kobuke, 2006). The conjugated bisporphyrins also gives regulated 
porphyrin arrays by the self-assembly. Consequently, we synthesized a butadiynylene-
bridged bisporphyrin monomer 12 and dimer 13 terminated with monomeric porphyrins on 
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both ends and examined the effect of incremental elongation of butadiynylene-linked 
porphyrin arrays on 2PA (Dy et al., 2008). 

Absorption spectra are illustrated in Fig. 11. Zinc-imidazolyl coordinated dimer 14 shows 
characteristic splitting of the Soret band at 415 and 438 nm. On the other hand, the Soret 
band of 12 having one butadiynylene-linked bisporphyrin unit exhibits broader and red-
shifted peaks at 434, 461, and 495 nm due to not only larger head-to-tail interaction between 
chromophores but also the expansion of π-conjugation. Furthermore, strong Q-bands 
corresponding to HOMO-LUMO absorption were observed at longer wavelengths of 666 
and 728 nm, also indicating the expansion of π-conjugation. Q-bands of 13 which consists of 
two butadiynylene-linked bisporphyrin units appeared at 670 and 733 nm which are slightly 
red-shifted and amplified compared to 12. The amplification of Q-bands is not two times but 
almost three times the intensity, indicating stronger dipole moments caused by excitonic 
interaction between the two bisporphyrins, and may contribute to larger resonance 
enhancement for 13.  

The 2PA spectra were measured using the open-aperture z-scan method with 120 fs pulses 
at off-resonant wavelengths from 820 to 940 nm, as described above. Compounds 12 and 13 
exhibited maximum σ(2) values of 10,000 and 61,000 GM at 870 nm, respectively (Fig. 12), 
showing a six times enhancement of σ(2). Self-assembled porphyrin dimer 14 was not 
measured due to its too weak 2PA (less than 20 GM). The large σ(2) value observed for 12 is 
mainly due to the expansion of π-conjugation by the butadiynylene linkage as evidenced by 
the large and red-shifted Q-band (Fig. 11).  

The insertion of another butadiynylene-linked bisporphyrin unit by complementary 
coordination resulted in a further enhanced σ(2) value. As described in the one-photon 
absorption spectra, the amplification of the Q-band of 13 is almost three times the value of 
12 due to the larger transition dipole moments caused by the excitonic interaction between 
two butadiynylene-linked bisporphyrins. Since the σ(2) value is proportional to the square of 
the transition dipole moment of the  one-photon absorption (Birge & Pierce, 1979), the 
amplification of the Q-band may contribute to larger enhancement for 13.  
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Fig. 10. Structures of compounds 12, 13, and 14. 
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Fig. 11. One-photon absorption spectra of compounds 12, 13, and 14. 

 

820 840 860 880 900 920 940
0

10000

20000

30000

40000

50000

60000

70000


(2

)  / 
G

M

Wavelength / nm

13

12

 
Fig. 12. 2PA spectra of 12 and 13.  

2.8 Nonlinear absorption by self-assembled porphyrin-phthalocyanine conjugates  
As discussed above, we have developed supramolecular conjugated porphyrins linked with 
a ethynylene or butadiynylene bond exhibiting the largest class of σ(2) values reaching an 
order of 104 GM and relatively strong 3PA, too. Then, we have developed further 
multichromophore systems, in which porphyrin and other chromophores are connected 
using an ethynylene inducing a molecular polarity. Phthalocyanines are of attractive interest 
because they have an 18π conjugation system as large as porphyrins and are chemically 
stable. In this respect, it is interesting to construct a porphyrin-phthalocyanine conjugate 
using the ethynylene bridge. Here, we introduce large multiphoton absorption, 2PA and 
3PA, behavior of self-organized dimers of imidazolylporphyrin-zincphthalocyanine 15 
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2.8 Nonlinear absorption by self-assembled porphyrin-phthalocyanine conjugates  
As discussed above, we have developed supramolecular conjugated porphyrins linked with 
a ethynylene or butadiynylene bond exhibiting the largest class of σ(2) values reaching an 
order of 104 GM and relatively strong 3PA, too. Then, we have developed further 
multichromophore systems, in which porphyrin and other chromophores are connected 
using an ethynylene inducing a molecular polarity. Phthalocyanines are of attractive interest 
because they have an 18π conjugation system as large as porphyrins and are chemically 
stable. In this respect, it is interesting to construct a porphyrin-phthalocyanine conjugate 
using the ethynylene bridge. Here, we introduce large multiphoton absorption, 2PA and 
3PA, behavior of self-organized dimers of imidazolylporphyrin-zincphthalocyanine 15 
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(H2(ImPor)-Zn(Pc)) and 16 (Zn(ImPor)-Zn(Pc)) in the antiparallel fashion (Fig 13) (Morisue 
and Kobuke, 2008; Morisue et al., 2010). A high association constant of complementary 
coordination of imidazolyl to zinc (~1014 M-1) allows organization of M(ImPor)-Zn(Pc) into 
the dimer. The dimer composed of porphyrin and phthalocyanine tetrad gives following 
advantages for exhibiting strong multiphoton absorption. One is the coplanar π-conjugation 
between porphyrin and phthalocyanine through the ethynylene bond. The other is the 
possibility of the resonance enhancement of 2PA transition, because the Q band of 
phthalocyanine would give a small detuning energy for a 2PA transition in the near-IR 
range. Furthermore, the dimer may form a 2D quadrupolar structure different from the 1D 
ones, for example D–π–A–π–D or A–π–D–π–A. In addition, electron-withdrawing nature of 
porphyrin can be tuned further by metalation of the porphyrin center, for example, 15 
having free base porphyrin gives higher charge-transfer ability than 15 having 
zincporphyrin.  
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Fig. 13. Structures of the antiparallel dimers 15 (M=H2) and 16 (M=Zn). The dimer is a 
regioisomeric mixture due to the presence of the regioisomeric mixtures of ethynylene linker 
and tert-butyl groups at the β-position of phthalocyanine. 

Nonlinear absorption (NLA) was measured with the same femtosecond Z-scan system as 
above Chapters varying the incident laser wavelength from 800 to 1550 nm. The NLA 
behavior depended on the wavelength range. At a wavelength shorter than 996 nm, the 
simultaneous 2PA process was dominant. In the wavelength region shorter than 900 nm 
where the edge of one-photon absorption remains, the saturable absorption (SA) of one-
photon absorption was observed. The Z-scan data was analyzed by considering the SA 
process (Morisue et al., 2010). As shown in 2PA spectra (Fig. 14), σ(2) value increased with 
decreasing the incident wavelength and no peak top was observed. The maximum σ(2) 
values in the wavelength region where SA and 3PA are negligible (900–996 nm) were 16,000 
and 7,000 GM at 900 nm for 15 and 16, respectively. These σ(2) values are relatively large 
compared to those of related compounds as discussed in above Chapters. The σ(2) value of 
15 having free base porphyrin is twice larger than that of 16 having zincporphyrin, 
suggesting that larger molecular polarity amplified the σ(2) value for 15. The obtained large 
values suggest considerable π-delocalization over tetrad through complementary 
coordination between imidazolylporphyrin–zincphthalocyanine dimers. Unfortunately, the 
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comparable value of the dissociated dimer could not be obtained due to its extremely large 
association constant of 1014 M-1. 
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Fig. 14. 2PA spectra of 15 (square) and 16 (cross). 

On the other hand, in the wavelength region longer than 996 nm, the higher-order NLA 
other than 2PA was observed for all the samples. When the observed data were analyzed as 
3PA, a good linear relationship between 3PA parameter p0 and I0 was obtained. The 3PA 
spectra are shown in Fig 15. 3PA were observed around 1000–1100 nm, which corresponds 
to three times the wavelength of the Soret band of phthalocyanine part (around 350 nm). 
Since 3PA has the same parity selection rule with one-photon absorption, a one-photon-
allowed excited state is always 3PA-allowed even for the centrosymmetric system unlike the 
case of 2PA. Therefore, the final state of the 3PA transition is considered to be the Soret band 
of phthalocyanine part. The maximum σ(3) values were estimated as 7.6 × 10–76 cm6 s2 at 1020  
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nm and 3.8 × 10–76 cm6 s2 at 996 nm for 15 and 16, respectively. The values are almost 10 
times larger than those obtained for 7D. This large σ(3) values may arise from the resonance 
enhancement of the 2PA state or the two-step 3PA process: i.e., the 2PA followed by the 
excited state absorption (ESA).  

3. Conclusion 
Recent progress in the nonlinear absorption (2PA and 3PA) properties of self-assembled 
porphyrin arrays has been reviewed. These studies demonstrate that self-coordination for 
constructing porphyrin arrays based on complementary coordination of imidazolyl to zinc 
is a convenient and powerful tool enhancing the nonlinear absorption. We believe that these 
investigations open the way for further exploration of new types of nonlinear absorption 
materials. Moreover, the enhancement of the cross-sections will make possible the 
production of future 2PA applications.  
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