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Preface

Since the earliest algorithm of Model Predictive Control was proposed by French
engineer Richalet and his colleagues in 1978, the explicit background of industrial
application has made MPC develop rapidly. Different from most other control
algorithms, the research trajectory of MPC is originated from engineering application
and then expanded to theoretical field, while ordinary control algorithms often have
applications after sufficient theoretical work.

Nowadays, MPC is not just the name of one or some specific computer control
algorithms, but the name of a specific controller design thought, which can derive
many kinds of MPC controllers for almost all kinds of systems, linear or nonlinear,
continuous or discrete, integrated or distributed. However, the basic characters of
MPC can be simply summarized as a model used for prediction, online optimization
based on prediction and feedback compensation, while there is no special demand on
the form of the system model, the computational tool for online optimization and the
form of feedback compensation.

The linear MPC theory is now comparatively mature, so its applications can be found
in almost every domain in modern engineering. But robust MPC and nonlinear MPC
(NMPC) are still problems for us. Though there are some constructive results because
many efforts have been made on them in these years, they will remain the focus of
MPC research for a long period in the future.

In the first part of this book, to present recent theoretical developments of MPC,
Chapter 1 to Chapter 3 introduce three kinds of Fast Model Predictive Control, and
Chapter 4 presents Model Predictive Control for distributed systems. Model Predictive
Control for nonlinear systems, multi-variable systems and other special model are
proposed in Chapters 5 through 10.

To give the readers successful examples of MPC’s recent applications, in the second
part of the book, Chapters 11 through 18 introduce some of them, from sugar
crystallization process to paper-making system, from linear system to nonlinear
system. They can, not only help the readers understand the characteristics of MPC
more clearly, but also give them guidance how to use MPC to solve practical
problems.
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Preface

Authors of this book truly want it to be helpful for researchers and students who are
concerned about MPC, and further discussions on the contents of this book are
warmly welcome.

Finally, thanks to InTech and its officers for their efforts in the process of edition and
publication, and thanks to all the people who have made contributes to this book,
including our dear family members.

ZHENG Tao
Hefei University of Technology,
China
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Fast Model Predictive Control and its Application
to Energy Management of Hybrid
Electric Vehicles

Sajjad Fekri and Francis Assadian

Automotive Mechatronics Centre, Department of Automotive Engineering
School of Engineering, Cranfield University

UK

1. Introduction

Modern day automotive engineers are required, among other objectives, to maximize fuel
economy and to sustain a reasonably responsive car (i.e. maintain driveability) while still
meeting increasingly stringent emission constraints mandated by the government. Towards
this end, Hybrid Electric Vehicles (HEVs) have been introduced which typically combine two
different sources of power, the traditional internal combustion engine (ICE) with one (or more)
electric motors, mainly for optimising fuel efficiency and reducing Carbon Dioxide (CO;) and
greenhouse gases (GHG) (Fuhs, 2008).

Compared to the vehicles with conventional ICE, hybrid propulsion systems are potentially
capable of improving fuel efficiency for a number of reasons: they are able to recover some
portion of vehicle kinetic energy during braking and use this energy for charging the battery
and hence, utilise the electric motor at a later point in time as required. Also, if the torque
request (demanded by driver) is below a threshold torque, the ICE can be switched off as well
as during vehicle stop for avoiding engine idling. These are in fact merely few representative
advantages of the hybrid vehicles compared to those of conventional vehicles. There are also
other benefits hybrid electric vehicles could offer in general, e.g. engine downsizing and
utilising the electric motor /motors to make up for the lost torque. It turns out that the internal
combustion engine of the hybrid electric vehicle can be potentially designed with a smaller
size and weight which results in higher fuel efficiency and lower emissions (Steinmaurer &
Del Re, 2005).

Hybrid electric vehicles have been received with great enthusiasm and attention in recent
years (Anderson & Anderson, 2009). On the other hand, complexity of hybrid powertrain
systems have been increased to meet end-user demands and to provide enhancements to fuel
efficiency as well as meeting new emission standards (Husain, 2003).

The concept of sharing the requested power between the internal combustion engine and
electric motor for traction during vehicle operation is referred to as "vehicle supervisory
control” or "vehicle energy management" (Hofman & Druten, 2004). The latter term, employed
throughout this chapter, is particularly referred to as a control allocation for delivering the
required wheel torque to maximize the average fuel economy and sustain the battery state of
charge (SoC) within a desired charging range (Fekri & Assadian, 2011).
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The vehicle energy management development is a challenging practical control problem and
a significant amount of research has been devoted to this field for full HEVs and Electric
Vehicles (EVs) in the last decade (Cundev, 2010). To tackle this challenging problem, there are
currently extensive academic and industrial research interests ongoing in the area of hybrid
electric vehicles as these vehicles are expected to make considerable contributions to the
environmentally conscious requirements in the production vehicle sector in the future — see
(Baumann et al., 2000) and other references therein.

In this regard, we shall analysis and extend the study done by (Sciarretta & Guzzella, 2007)
on the number of IEEE publications published between 1985 and 2010. Figure 1 depicts the
number of publications recorded at the IEEE database! whose abstract contains at least one of
the strings "hybrid vehicle" or "hybrid vehicles".

From Figure 1, it is obvious that the number of publications in the area of hybrid electric
vehicles (HEVs) has been drastically increased during this period, from only 2 papers in
1985 to 552 papers in 2010. Recall that these are only publications of the IEEE database -
there are many other publications than those of the IEEE including books, articles, conference
papers, theses, filed patents, and technical reports which have not been taken into account in
this study. Besides, a linear regression analysis of the IEEE publications shown in Figure 1
indicates that research in the field of hybrid vehicles has been accelerated remarkably since
2003. One may also predict that the number of publications in this area could be increased up
to about 1000 articles in 2015, that is nearly twice as many as in 2010 - this is a clear evidence
to acknowledge that HEVs research and development is expected to make considerable
contributions to both academia and industry of production automotive sector in the future.
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Fig. 1. Hybrid vehicle research trend based on the number of publications of the IEEE over

the period 1985 to 2010.

Here are the facts and regulations which must be taken into consideration by automotive
engineers:

* Due to the ever increasing stringent regulations on fuel consumption and emissions,
there are tremendous mandates on Original Equipment Manufacturers (OEMs) to deliver
fuel-efficient less-polluting vehicles at lower costs. Hence, the impact of advanced controls
for the application of the hybrid vehicle powertrain controls has become extremely
important (Fekri & Assadian, 2011).

1 Gee http:/ /ieeexplore.ieee.org for more information.
P p g
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* It is essential to meet end-user demands for increasingly complex new vehicles towards
improving vehicle performance and driveability (Cacciatori et al., 2006), while continuing
to reduce costs and meeting new emission standards.

* There is a continuous increase in the gap between the theoretical control advancement
and the control strategies being applied to the existing production vehicles. This
gap is resulting on significant missed opportunities in addressing some fundamental
functionalities, e.g.  fuel economy, emissions, driveability, unification of control
architecture and integration of the Automotive Mechatronics units on-board vehicle. It
seems remarkably vital to address how to bridge this gap.

¢ Combined with ever-increasing computational power, fast online optimisation algorithms
are now more affordable to be developed, tested and implemented in the future production
vehicles.

There are a number of energy management methods proposed in the literature of hybrid
vehicles to minimize fuel consumption and to reduce CO; emissions (Johnson et al., 2000).
Among these energy management strategies, a number of heuristics techniques, say e.g. using
rule-based or Fuzzy logic, have attempted to offer some improvements in the HEV energy
efficiency (Cikanek & Bailey, 2002; Schouten et al., 2002) where the optimisation objective is, in
a heuristic manner, a function of weighted fuel economy and driveability variables integrated
with a performance index, to obtain a desired closed-loop system response. However, such
heuristics based energy management approaches suffer from the fact that they guarantee
neither an optimal result in real vehicle operational conditions nor a robust performance
if system parameters deviate from their nominal operating points. Consequently, other
strategies have emerged that are based on optimisation techniques to search for sub-optimal
solutions. Most of these control techniques are based on programming concepts (such
as linear programming, quadratic programming and dynamic programming) and optimal
control concepts, to name but a few (Ramsbottom & Assadian, 2006; Ripaccioli et al., 2009;
Sciarretta & Guzzella, 2007). Loosely speaking, these techniques do not offer a feasible casual
solution, as the future driving cycle is assumed to be entirely known. Moreover, the required
burdensome calculations of these approaches put a high demand on computational resources
which prevent them to be implemented on-line in a straightforward manner. Nevertheless,
their results could be used as a benchmark for the performance of other strategies, or to derive
rules for rule-based strategies for heuristic based energy management of HEVs (Khayyam et
al., 2010).

Two new HEV energy management concepts have been recently introduced in the literature.
In the first approach, instead of considering one specific driving cycle for calculating
an optimal control law, a set of driving cycles is considered resulting in the stochastic
optimisation approach. A solution to this approach is calculated off-line and stored in
a state-dependent lookup table. Similar approach in this course employs Explicit Model
Predictive Control (Beccuti et al., 2007; Pena et al., 2006). In this design methodology, the entire
control law is computed offline, where the online controller will be implemented as a lookup
table, similar to the stochastic optimisation approach. The lookup table provides a quasi-static
control law which is directly applicable to the on-line vehicle implementation. While this
method has potential to perform well for systems with fewer states, inputs, constraints, and
"sufficiently short" time-horizons (Wang & Boyd, 2008), it cannot be utilised in a wide variety
of applications whose dynamics, cost function and/or constraints are time-varying due to e.g.
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parametric uncertainties and /or unmeasurable exogenous disturbances. In other words, any
lookup table based optimisation approach may end up with severe difficulties in covering
a real-world driving situation with a set of individual driving cycle. A recent approach has
endeavored to decouple the optimal solution from a driving cycle in a game-theoretic (GT)
framework (Dextreit et al., 2008). In this approach, the effect of the time-varying parameters
(namely drive cycle) is represented by the actions of the first player while the effect of the
operating strategy (energy management) is modeled by the actions of the second player.
The first player (drive cycle) wishes to maximize the performance index which reflects the
optimisation objectives, say e.g. to minimise emission constraints and fuel consumption,
while the second player aims to minimize this performance index. Solutions to these
approaches are calculated off-line and stored in a state-dependent lookup tables. These look
up tables provide a quasi-static control law which is directly suitable for on-line vehicle
implementation. Similar to previous methods, the main drawbacks of the game-theoretic
approach are the lack of robustness and due to quasi-static nature of this method, it cannot
address vehicle deriveability requirements.

If only the present state of the vehicle is considered, optimisation of the operating points of
the individual components can still be beneficial. Typically, the proposed methods define
an optimisation criterion to minimise the vehicle fuel consumption and exhaust emissions
(Kolmanovsky et al., 2002). A weighting factor can be included to prevent a drift in the
battery from its nominal energy level and to guarantee a charge sustaining solution. This
approach has been considered in the past, but it is still remained immensely difficult task to
select a weighting factor that is mathematically sound (Rousseau et al., 2008). An alternative
approach is to extend the objective function with a fuel equivalent term. This term includes the
corresponding fuel use for the energy exchange with the battery in the optimisation criterion
(Kessels, 2007).

Hybrid modeling tools have been recently developed to analyse and optimise a number of
classes of hybrid systems. Among many other modeling tools developed to represent the
hybrid systems, we shall refer to Mixed Logical Dynamical (MLD) (Bemporad & Morary,
1999), HYbrid Systems Description Language (HYSDEL) (Torrisi & Bemporad, 2004), and
Piecewise Affine (PWA) models (Ripaccioli et al., 2009; Sontag, 1981), to name but a few.
In addition, Hybrid Toolbox for MATLAB (Bemporad, 2004) is developed for modeling,
simulation, and verifying hybrid dynamical models and also for designing hybrid model
predictive controllers. Almost all of these hybrid tools, however, are only suitable for slow
applications and can not attack the challenging fast real-time optimisation problems, e.g., for
the use of practical hybrid electric vehicle energy management application.

Two fundamental drawbacks of aforementioned strategies are firstly their consideration of
driveability being an afterthought and secondly the driveability issue is considered in an
ad-hoc fashion as these approaches are not model-based dynamic. Applicable techniques
such as game-theoretic based optimisation method utilise quasi-static models which are not
sufficient to address driveability requirements (Dextreit et al., 2008).

Towards a feasible and tractable optimisation approach, there are a number of model-based
energy management methods such as Model Predictive Controls (MPC). A recently developed
package for the hybrid MPC design is referred to as Hybrid and Multi-Parametric Toolboxes
(Narciso et al., 2008) which is based on the traditional model predictive control optimisation
alternatives using generic optimisers. The main shortcoming of traditional model predictive
control methods is that they can only be used in applications with "sufficiently slow" dynamics
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(Wang & Boyd, 2008), and hence are not suitable for many practical applications including
HEV energy management problem. For this reason the standard MPC algorithms have been
retained away from modern production vehicles. In fact, a number of inherent hardware
constraints and limitations integrated with the vehicle electronic control unit (ECU), such
as processing speed and memory, have made on-line implementations of these traditional
predictive algorithms almost impossible. In a number of applications, MPC is currently
applied off-line to generate the required maps and then these maps are used on-line. However,
generation and utilisation of maps defeat the original purpose of designing a dynamic
compensator which maintains driveability. Therefore, there is a vital need of increased
processing speed, with an appropriate memory size, so that an online computation of "fast
MPC" control law could be implemented in real applications.

In this chapter, we shall describe a method for improving the speed of conventional model
predictive control design, using online optimisation. The method proposed would be a
complementary for offline methods, which provide a method for fast control computation
for the problem of energy management of hybrid electric vehicles. We aim to design and
develop a practical fast model predictive feedback controller (FMPC) to replace the current
energy management design approaches as well as to address vehicle driveability issues.
The proposed FMPC is derived based on the dynamic models of the plant and hence
driveability requirements are taken into consideration as part of the controller design. In
this development, we shall extend the previous studies carried out by Stephen Boyd and his
colleagues at Stanford University, USA, on fast model predictive control algorithms. In this
design, we are also able to address customising the robustness analysis in the presence of
parametric uncertainties due to, e.g., a change in the dynamics of the plant, or lack of proper
estimation of the vehicle load torque (plant disturbance).

In this chapter, we shall also follow and overview some of theoretical and practical aspects
of the fast online model predictive control in applying to the practical problem of hybrid
electric vehicle energy management along with representing some of simulation results. The
novelty of this work is indeed in the design and development of the fast robust model
predictive control concept with practical significance of addressing vehicle driveability and
automotive actuator control constraints. It is hoped that the results of this work could make
automotive engineers more enthusiastic and motivated to keep an eye on the development
of state-of-the-art Fast Robust Model Predictive Control (FMPC) and its potential to attack a
wide range of applications in the automotive control system designs.

In the remaining of this chapter, we will describe in detail the mathematical description,
objectives and constraints along with the optimisation procedure of the proposed fast model
predictive control. We shall also provide dynamical model of the hybrid electric vehicle
(parallel, with diesel engine) to which the FMPC will be applied. Simulation results of the
HEV energy management system will be demonstrated to highlight some of the concepts
proposed in this chapter which will offer significant improvements in fuel efficiency over the
base system.

2. Fast Model Predictive Control

The Model Predictive Control (MPC), referred also to as Receding Horizon Control (RHC),
and its different variants have been successfully implemented in a wide range of practical
applications in industry, economics, management and finance, to name a few (Camacho &
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Bordons, 2004; Maciejowski, 2002). A main advantage of MPC algorithms, which has made
these optimisation-based control system designs attractive to the industry, is their abilities to
handle the constraints directly in the design procedure (Kwon & Han, 2005). These constraints
may be imposed on any part of the system signals, such as states, outputs, inputs, and most
importantly actuator control signals which play a key role in the closed-loop system behaviour
(Tate & Boyd, 2001).

Although very efficient algorithms can currently be applied to some classes of practical
problems, the computational time required for solving the optimisation problem in real-time
is extremely high, in particularly for fast processes, such as energy management of hybrid
electric vehicles. One method to implement a fast MPC is to compute the solution of a
multiparametric quadratic or linear programming problem explicitly as a function of the
initial state which could turn into a relatively easy-to-implement piecewise affine controller
(Bemporad et al., 2002; Tondel et al., 2003). However, as the control action implemented
online is in the form of a lookup table, it could exponentially grow with the horizon, state
and input dimensions. This means that any form of explicit MPC could only be applied to
small problems with few state dimensions (Milman & Davidson, 2003). Furthermore, due to
there being off-line lookup table, explicit MPC cannot deal with applications whose dynamics,
cost function and/or constraints are time-varying (Wang & Boyd, 2008). A non-feasible
active set method was proposed in (Milman & Davidson, 2003) for solving the Quadratic
Programming (QP) optimisation problem of the MPC. However, to bear further explanation,
these studies have not addressed any comparison to the other earlier optimisation methods
using primal-dual interior point methods (Bartlett et al., 2000; Rao et al., 1998). Another
fast MPC strategy was introduced in (Wang & Boyd, 2010) which has tackled the problem
of solving a block tridiagonal system of linear equations by coding a particular structure of
the QPs arising in MPC applications (Vandenberghe & Boyd, 2004; Wright, 1997), and by
solving the problem approximately. Starting from a given initial state and input trajectory,
the fast MPC software package solves the optimization problem fast by exploiting its special
structure. Due to using an interior-point search direction calculated at each step, any problem
of any size (with any number of state dimension, input dimension, and horizon) could be
tackled at every operational time step which in return will require only a limited number of
steps. Therefore, the complexity of MPC is significantly reduced compared to the standard
MPC algorithms. While this algorithm could be scaled in any problem size in principle, a
drawback of this method is that it is a custom hand-coded algorithm, ie. the user should
transform their problem into the standard form (Wang & Boyd, 2010; 2008) which might be
very time-consuming. Moreover, one may require much optimisation expertise to generate a
custom solver code. To overcome this shortcoming, a very recent research (Mattingley & Boyd,
2010a;b; 2009) has studied a development of an optimisation software package, referred to as
CVXGEN, based on an earlier work by (Vandenberghe, 2010), which automates the conversion
process, allowing practitioners to apply easily many class of convex optimisation problem
conversions. CVXGEN is effectively a software tool which helps to specify one’s problem
in a higher level language, similar to other parser solvers such as SeDuMi or SDPT3 (Ling
et al., 2008). The drawback of CVXGEN is that it is limited to optimization problems with
up to around 4000 non-zero Karush-Kuhn-Tucker (KKT) matrix entries (Mattingley & Boyd,
2010b). In the next section, we will extend the work done by (Mattingley & Boyd, 2010b) and
propose a new fast KKT solving approach, which alleviates the aforementioned limitation to
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some extent. We will implement our method on a hybrid electric vehicle energy management
application in Section 4.

2.1 Quadratic Programming (QPs)

In convex QP problems, we typically minimize a convex quadratic objective function subject
to linear (equality and/or inequality) constraints. Let us assume a convex quadratic
generalisation of the standard form of the QP problem is

min (1/2)xTQx +cTx
subject to Gx < h, (1)
Ax =b.

where x € R" is the variable of the QP problem and Q is a symmetric n X n positive
semidefinite matrix.

An interior-point method, in comparison to other methods such as primal barrier method, is
particularly appropriate for embedded optimization, since, with proper implementation and
tuning, it can reliably solve to high accuracy in 5-25 iterations, without even a "warm start"
(Wang & Boyd, 2010).

In order to obtain a cone quadratic program (QP) using the QP optimisation problem of
Equation (1), it is expedient for the analysis and implementation of interior-point methods
to include a slack variable s and solve the equivalent QP

min (1/2)xTQx +cTx
subjectto Gx+s =1,
Ax =D,
s > 0.

where x € R" and s € RP are the variables of the cone QP problem.
The dual problem of Equation (3) can be simply derived by introducing an additional variable
w: (Vandenberghe, 2010)

max — (1/2)w’Qw —hTz—bTy
subjectto GTz+ ATy +c+Quw =0, ©)
z > 0.

where y € R™ and z € RP are the Lagrange multiplier vectors for the equality and the
inequality constraints of (1), respectively.

The dual objective of (3) provides a lower bound on the primal objective, while the primal
objective of (1) gives an upper bound on the dual (Vandenberghe & Boyd, 2004). The vector
x* € R™is an optimal solution of Equation (1) if and only if there exist Lagrange multiplier
vectors z* € RP and y* € R™ for which the following necessity KKT conditions hold for
(x,y,2) = (x*,y*,z%); see (Potra & Wright, 2000) and other references therein for more details.
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Qx+ATy+Glz+¢
Ax —b
F(x,y,z,5) = Grts—h =0,
ZSe

(s,z) >0

where S = diag(s1,82,...,51), Z = diag(zq,2p,...,2,) and e is the unit column vector of size
nx1.

The primal-dual algorithms are modifications of Newton’s method applied to the KKT
conditions F(x,y,z,s) = 0 for the nonlinear equation of Equation (4). Such modifications lead
to appealing global convergence properties and superior practical performance. However,
they might interfere with the best-known characteristic of the Newton’s method, that is "fast
asymptotic convergence” of Newton’s method. In any case, it is possible to design algorithms
which recover such an important property of fast convergence to some extent, while still
maintaining the benefits of the modified algorithm (Wright, 1997). Also, it is worthwhile to
emphasise that all primal-dual approaches typically generate the iterates (xy, ¥y, zx, Sx) while
satisfying nonnegativity condition of Equation (4) strictly, i.e. s > 0 and zz > 0. This
particular property is in fact the origin of the generic term "interior-point” (Wright, 1997)
which will be briefly discussed next.

4)

2.2 Embedded QP convex optimisation

There are several numerical approaches to solve standard cone QP problems. One alternative
which seems suitable to the literature of fast model predictive control is the path-following
algorithm — see e.g. (Potra & Wright, 2000; Renegar & Overton, 2001) and other references
therein.

In the path-following method, the current iterates are denoted by (xy, yx, zx, Sx) while the
algorithm is started at initial values (xy, yk, zx, 5x) = (X0,Y0,20,50) where (so,z9) > 0. For
most problems, however, a strictly feasible starting point might be extremely difficult to find.
Although it is straightforward to find a strictly feasible starting point by reformulating the
problem — see (Vandenberghe, 2010, §5.3)), such reformulation may introduce distortions that
can potentially make the problem harder to solve due to an increased computational time to
generate real-time control law which is not desired for a wide range of practical applications,
e.g. the HEV energy management problem — see Section 4. In §2.4, we will describe one
tractable approach to obtain such feasible starting points.

Similar to many other iterative algorithms in nonlinear programming and optimisation
literature, the primal-dual interior-point methods are based on two fundamental concepts:
First, they contain a procedure for determining the iteration step and secondly they are
required to define a measure of the attraction of each point in the search space. The utilised
Newton’s method in fact forms a linearised model for F(x, y, z,s) around the current iteration
point and obtains the search direction (Ax, Ay, Az, As) by solving the following set of linear
equations:

o yzs) |\ | = —F(x,y,2,5) (5)
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where ] is the Jacobian of F at point (xy, Yk, zx, Sk )-
Let us assume that the current point is strictly feasible. In this case, a Newton "full step” will
provide a direction at

QAT GT 07 [Ax

A0 00| |Ay|

G 0 0 I AZk - F(xk/yklzklsk) (6)
00 S Z||As

and the next starting point for the algorithm will be

(%10 Vi1 Zkt 1, Sk+1) = (X + Axg, Y + Ay, zi + Az, 55 + Asy)

However, the pure Newton’s method, i.e. a full step along the above direction, could often
violate the condition (s,z) > 0 - see (Renegar & Overton, 2001). To resolve this shortcoming,
a line search along the Newton direction is in a way that the new iterate will be (Wright, 1997)

(X Vi 2k, Sk) + i (Axg, Dy, Az, Asy)

for some line search parameter « € (0,1]. If « is to be selected by user, one could only take a
small step (¢« < 1) along the direction of Equation (6) before violating the condition (s,z) > 0.
However, selecting such a small step is not desirable as this may not allow us to make much
progress towards a sound solution to a broad range of practical problems which usually are
in need of fast convenance by applying "sufficiently large" step sizes.

Following the works (Mattingley & Boyd, 2010b) and (Vandenberghe, 2010), we shall intend
to modify the basic Newton’s procedure by two scaling directions (i.e. affine scaling
and combined centering & correction scaling). Loosely speaking, by using these two
scaling directions, it is endeavoured to bias the search direction towards the interior of the
nonnegative orthant (s,z) > 0 so as to move further along the direction before one of
the components of (s,z) becomes negative. In addition, these scaling directions keep the
components of (s,z) from moving "too close" to the boundary of the nonnegative orthant
(s,z) > 0. Search directions computed from points that are close to the boundary tend to be
distorted from which an inferior progress could be made along those points — see (Wright,
1997) for more details. Here, we shall list the scaling directions as follows.

2.3 Scaling iterations

We follow the works by (Vandenberghe, 2010, §5.3) and (Mattingley & Boyd, 2010b) with
some modifications that reflect our notation and problem format. Starting at initial values
(2,9,2,8) = (x0,Y0,20,50) where sy > 0, zg > 0, we consider the scaling iterations as
summarised here.

e Step 1. Setk =0.
* Step 2. Start the iteration loop at time step k.

e Step 3. Define the residuals for the three linear equations as:

Ty 0 QAT GT] % c
ry|=|0]+[A 0 O | |g]+]|-D
rs 3 GO0 0 2 —h
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Step 4. Compute the optimality conditions:

0 Q ATGT] [«x c
0l=|-A0 0 yl+|b]|, (sz)>0.
S -G 0 0 z h

e Step 5. If the optimality conditions obtained at Step 4 satisfy ||(x,v,z,5) — (£,7,2,8) |« < €,
for some small positive € > 0, go to Step 13.

* Step 6. Solve the following linear equations to generate the affine direction (Mattingley &
Boyd, 2010b):

QATGT o ks
A0 00| Ay
GO0 0 I||aff = —F(x i 21 51) %)
00 §Z aff
As;

e Step 7. Compute the duality measure y, step size « € (0,1], and centering parameter
oce[0,1]

n
_1 _zTs
p=, X sz ="
i=1
T 3
| (staps™) (za Dz
v= sTz

and
ae = sup{a € [0,1]|(s + acAsYf, 2 + a.AZFF) > 0}

e Step 8. Solve the following linear equations for the combined centering-correction
direction?:

QAT GT 07 [Axce 0
A0 00| |Aye] 0
GO 0 I]||aAzec| ™ 0
00 S Z| |[As< ope — diag(Asf)Azff

This system is well defined if and only if the Jacobian matrix within is nonsingular (Peng
etal., 2002, §6.3.1).

¢ Step 9. Combine the two affine and combined updates of the required direction as:
Ax = AxFf 4 Axee
Ay = Ayaff + Aycc
Az = AZ*F 4 Azee
As = As"Ff 4 Asee

* Step 10. Find the appropriate step size to retain nonnegative orthant (s, z) > 0,
a = min{1,0.99 sup(a > 0|(s + aAs,z + aAz) > 0)}
2 This is another variant of Mehrotra’s predictor-corrector algorithm (Mehrotra, 1992), a primal-dual

interior-point method, which yields more consistent performance on a wide variety of practical
problems.
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¢ Step 11. Update the primal and dual variables using;:

X X Ax
y|._|Y Ay
z| " |z T Az
S As

e Step 12. Set (£,7,2,8) = (xx, Yk, 2, 5x) and k := k + 1; Go to Step 2.
* Step 13. Stop the iteration and return the obtained QP optimal solution (x, y,z,s).

The above iterations will modify the the search direction so that at any step the solutions
are moved closer to feasibility as well as to centrality. It is also emphasised that most of the
computational efforts required for a QP problem are due to solving the two matrix equalities
in steps 6 and 8. Among many limiting factors which may make the above algorithm
failed, floating-point division is perhaps the most critical problem of an online optimisation
algorithm to be considered (Wang & Boyd, 2008). In words, stability of an optimisation-based
control law (such as model predictive control) are significantly dependent on the risk of
algorithm failures, and therefore it is vital to develop robust algorithms for solving these linear
systems leading towards fast optimisation-based control designs, which is the focal point of
our work. We should also stress that robustness of any algorithm must be taken into account
at starring point. In particular, many practical problems are prone to make optimisation
procedures failed at the startup. For instance, (possibly large) disparity between the initial
states of the plant and the feedback controller might lead to large transient control signals
which consequently could violate feasibility assumptions of the control law — this in turn may
result into an unstable feedback loop. Therefore, the initialisation of the optimisation-based
control law is significantly important and must be taken into consideration in advance. The
warm start is also an alternative to resolve this shortcoming — see e.g. (Wang & Boyd, 2010).
Here, we shall discuss a promising initialisation method for the solution of the linear systems
which is integrated within the framework of our fast model predictive control algorithm.

2.4 Initialisation

We shall overview the initialisation procedure addressed in (Vandenberghe, 2010, §5.3) and
(Mattingley & Boyd, 2010b). If primal and dual starting points (%, 7,2, ) are not specified by
the user, they are chosen as follows:

* Solve the linear equations (see §2.5 for a detailed solution of this linear system.)

QAT GT] [«x —c
A0 O yl=10b 8
G 0 —I z h

to obtain optimality conditions for the primal-dual pair problems of

min (1/2)x7Qx +cTx + (1/2)]s]3
subjectto Gx+s="h 9)
Ax=1b
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and
max — (1/2)wTQw —hTz —bTy — (1/2)|2|3

(10)
subject to Qw +Glz+ ATy +c=0.

¢ From the above, £ = x, ) = y are found as the two initialisation points. The initial value of
§ is calculated from the residual h — Gx = —z, as

e -z ap <0
- | —z+ (1 +ap)e otherwise

where & = inf{a| — z+ we > 0}. Also, the initial value of £ is computed as

5 — z g <0
lz+ (1+ay)e otherwise
where oy = inf{a|z + xe > 0}.

2.5 Fast KKT solution
As explained earlier, the most time-consuming parts of QP optimisation problem is due to
solving the linear KKT systems of the format

QAT GT 07 [x Ty
A0 00O vyl _|ry
GO0 0 I z| |1 (11)
00 S Z S Ts

In Ref. (Mattingley & Boyd, 2010b) a numerical method has been introduced, using the
permuted LDLT factorisation, to solve the KKT linear systems of Equation (11) in the
compact form of KX = R to find optimal variables of X. In the so-called "iterative
refinement approach”, see (Mattingley & Boyd, 2010b, §5.3)), the original KKTs is regularised
by choosing a small € > 0 to ensure that such a factorisation exists and that it is numerically
stable. However, since the solution of the modified KKT system is an approximation to the
original KKT system, it could potentially affect both the affine and combined step sizes, as
well as the feasibility conditions and the rate of global convergence. In words, such an
approximation could introduce additional "hold-ups” to the QP problem at each time step
which is not desirable for the purpose of the fast real-time optimisation applications, such the
one considered in Section 4 as a case study.

In order to obtain "fast”" and 'reliable" solutions of Equation (11) at each iteration, it is
significantly important to avoid any sort of calculation of unstructured (possibly sparse)
matrix inverse, as well as to reduce the number of the KKT linear systems. Due to the
particular structure of the original exact KKT system given in Equation (11), however, we
shall employ a more reliable and stable interior-point solver of the convex QP optimisation
problem, even for the KKT systems with sparse matrices. To this end, we start by eliminating
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the variable s among the KKT linear systems. After some algebra, we will have

QAT GT X Iy
A0 0 y| = ry (12)
GO0 -z1s]| |z r;—Z7 g

which reduces the number of original KKT systems solved per iteration by three. To calculate
s, we could use s = —Gx + 5.

The Cholesky factorisation method is the preferred KKT equation solver for linear and
quadratic programs. However, due to the particular structure of Z~1S, being a diagonal
matrix, there is no longer a need to carry out the Cholesky factorization of the diagonal matrix
of Z~1S given in Equation (12). In fact, Z~'S = WTW with diagonal matrix W = WT will
lead to Z~1S = W?2. We can now obtain a reduced order of KKT system of Equation (12) with
only two equations as

Q+GTw—2G AT] [x} _ [rx +GTW2(r, — Z71ry) 13)
A 0 Y Ty

From x and y, the solution z follows as Wz = W’T(Gx -1, +7Z ’1rs). Recall that matrices
S, Z and W are diagonal matrices, and hence calculation of inverses of wT =w1l=
diag(1/W(i,i)) and A diag(1/Z(i,i)), i = 1,2,...,n are straightforward and fast, even
for large sparse problems.

Using the Cholesky factorization Q + GTW~2G = LLT, the KKT solutions of Equation (13)
are computed as follows — see also (Vandenberghe, 2010).

e Casel. IfQ+ GTW~2Gis nonsingular, y and x are computed from the following equations,
respectively:

ALTTL ATy = ALTTL Y (re + GTW 2 (r, — Z71r5)) — 1y
T Tw—2 -1 T (14)
LL'x=ry+G' W =(r; —Z 'r5) — A'y
e Case2. If Q + GTW~2G is singular, the exact solutions of iy and x are obtained respectively
as
ALTLYATy = ALTTL (re + GTW 2(r, = Z7r) + ATry) — 1y

LLTx =y + GTW=2(r, — Z7 1) + AT(ry —v) (15)

The above algorithm will provide the KKT linear systems to be solved reliably, and to
precise accuracy, in a limited number of iterations. This, along with previous optimisation
requirements addressed earlier, will help develop a fast reliable optimisation algorithm
leading towards fast model predictive control which is briefly discussed in the subsequent
section.

2.6 Tracking control problem using fast MPC

As we discussed earlier, standard MPC-based algorithms are great tools in the literature of
feedback control system designs, mainly due to their abilities in handling constraints, e.g.
actuator saturations, which are successfully taken into consideration in the design of an MPC.
However, to provide an appropriate input control signal, MPC and its standard variants
suffer from a major drawback due to having a desperate need of excessive computational
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time for solving the online minimization problems, at each sampling interval, particularly in
the presence of large number of horizons, constraints, optimisation parameters or parametric
uncertainties. This shortcoming is an outstanding motivation to look for some sort of efficient
model predictive algorithms, to solve an integrated optimisation problems "sufficiently fast"
in real time.

Any MPC tracking reference problem subject to constraints, being also the focal point of this
section, results in the optimization of a quadratic programming (QP) problem as the objective
function is quadratic — see §2.1.

The reference tracking control for a discrete-time linear dynamical system is described as the
following quadratic optimisation problem:

N
min 2 (= 37) Qule i) + uf Qi
subject to Xg+1 = Axy + Buy + wy
Vi = Cxy + vk (16)
Xmin < Xk < Xmax
Umin < U < Umax
1-.flmin < uk < Umax

where Qy and Q, are positive semidefinite weighting matrices for penalizing the tracking
error and control effort, respectively; A € R"*", B € R"*™, C € RP*" and xg € R" are the
discrete-time plant data, wy and vy are plant disturbance and measurement noise, respectively;

y,rff is the reference signal to be tracked at the plant output; N is the horizon; The optimisation
variables are the system state x;(k = 1,2,..., N) and input control signals u;(k = 0,1,...,N —
1).

Recall that here we only consider the linear time-invariant (LTI) systems. Nonetheless, the
proposed method could be extended to the time-varying and/or nonlinear cases (Del Re et
al., 2010). Also, regarding the fact that most of the physical plants are continuous-time, we
shall consider a continuous-time linear dynamic system driven by stationary continuous-time
white noise. To simulate such a continuous-time dynamics on a digital computer (or
microprocessor) using an equivalent discrete-time dynamics, it is required to utilise equated
linear discrete-time system and its noise statistics, so that both systems have identical
statistical properties at the discrete time instants (Gelb, 1974, pp. 72-75). Moreover, any type of
continuous-time plant dynamics could be transformed, with an appropriate sampling time, to
the equivalent discrete-model in the format of the one shown in the subjective of Equation (16)
—see (Grewal & Andrews, 1993, pp. 88-91).

The output tracking control system design in Equation (16) could be transformed to the
standard quadratic programming problem illustrated in Equation (1). Therefore, we could
use the fast KKT solutions following the initialisation. In Section 4, the proposed optimisation
procedure of the fast model predictive control design approach will be implemented to the
case study of the HEV energy management.

3. Hybrid diesel electric vehicle model

In Section 1, we briefly discussed the history of hybrid electric vehicles which, in some
extent, could clarify the importance of our work carried out in the field of advanced energy
management for the HEV applications. In this section, we will investigate how to model a
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simplified hybrid electric vehicle to replace the sophisticated nonlinear dynamic of the diesel
internal combustion engine. We shall integrate this simplified HEV model, for the first time,
with recent advances on fast model predictive control architecture described in Section 2 based
on embedded convex optimisation.

Before describing the structure of our hybrid diesel electric vehicle, let us first overview a
generic HEV structure. A representative configuration of an advanced 4x4 parallel hybrid
electric vehicle conﬁguration is shown in Figure 2.

- Clutch {IJ
—{HCIMG?:} eﬁ
? +
b=

s R |
|Setpom1 ’» [ Controller !

| Torque =® (FMPC)
| | Commands - -

Fig. 2. Schematic structure of a parallel 4x4 Hybrid Electric Vehicle (HEV). Low-level control
components such as high voltage electric battery, electric rear axle drive etc are excluded in
this high-level energy management configuration.

The hybrid electric vehicle structure shown in Figure 2 is equipped with a turbocharged diesel
engine and a crankshaft integrated motor/generator (CIMG) which is directly mounted on the
engine crankshaft. The CIMG is used for starting and assisting the engine in motoring-mode,
and also for generating electric energy via charging a high-voltage battery (not shown in
the figure). As our intention in this study is to investigate the "full-hybrid" mode, we shall
assume that the integrated ICE-CIMG clutch is fully engaged and hence our descriptive HEV
dynamical model (see §3.3) excludes a clutch dynamics as it is shown in Figure 2. Likewise,
the gearbox is shown in Figure 2 but no gear setting was considered in our simplified HEV
demonstration. This is due to the fact that our empirical diesel engine model is derived with
engine speed range of w = [1200,2000]rpm running at the first gear.

It is also worthwhile to emphasise that our design methodology on the development of the
HEV energy management is a high-level design strategy. For this reason, most of the common
low-level subsystems, integrated within the typical HEV dynamics, are not considered in
the HEV configuration as shown in Figure 2. These low-level subsystems include CIMG
low-level motor control, high voltage battery management, low level clutch control, low level
transmission control, and electrical distribution including DC-DC converter, to name just a
few. Furthermore, the dynamics of the engine model includes the average torque responses
of both diesel engine and CIMG over all four cylinders, which are the quantities of interest.
For designing a well balanced feedback control law, control engineers should possess a good
comprehension of the physics of the plant under investigation. One of the challenging
aspect of any model based engine control development is the derivation of a simplified yet
insightful model. For instance, the frequency range of the engine system, the nonlinearities
associated with the internal engine processes (i.e. combustion process, heat distribution,
air flow), the severe cross coupling, the inherent sampling nature of the four cycle internal
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combustion engine, and the limited output sensor dynamic capabilities all contribute to make
this modelling step a most arduous task (Lewis, 1980).

There are two main reasons to highlight the importance of simplified HEV dynamical models:
First, it is not usually possible to obtain a detailed diesel engine data (or model) from the
production vehicle manufacturer (Kaszynski & Sawodny, 2008). Secondly, obtaining a precise
mathematical model of a HEV powertrain is a very challenging task particularly due to
multi-energetic nature and switching dynamics of a powertrain.

For the above reasons, and for the ease of development of an advanced HEV energy
management system, it is essential to obtain a straightforward and realistic model of the
propulsion system to which an efficient control strategy, such as our proposed fast MPC
design methodology, could be applied. Generally speaking, this model shall be used for the
simulation of the overall vehicle motion (at longitudinal direction). Therefore, we do not
intend to utilise any detailed model of the internal engine processes, but rather a high-level
torque manager model that will generate control efforts based on a given set-point torque
commands. Recall that this torque management structure could be easily adopted to other
engine configurations in a straightforward manner.

As stated earlier, our developments towards a simplified hybrid model are based on a high
fidelity simulation model of the overall diesel hybrid electric vehicle. This HEV dynamical
model is modeled using two subsystems, a diesel internal combustion engine (ICE) and an
armature-controller DC electric motor. The mathematical modeling of these two subsystems
will be discussed in the remainder of this section.

3.1 Simplified diesel engine model

In this section, we shall present a simplified dynamical model of a turbo-charged diesel
engine. This simplified model is based upon the nonlinear diesel engine dynamics and the
fact that it must capture both the transient and steady-state dominant modes of the diesel
engine during operational conditions.

The engine indicated torque Tj,; is assumed to be mapped from the delayed fueling input
proportionally, and has limited bandwidth due to internal combustion dynamic effects,
arising e.g. due to combustion and turbo lag. In a mathematical representation, we will have

() = Zye g TH (0 1a(@)) 17
where T is the speed-dependant time constant due to combustion lag, t; is the
speed-dependant time-delay due to fueling course and Tgem is the mapped fueling input
representing the required ICE crankshaft (brake) torque.

Our simplified diesel engine model is empirically derived using a turbo-charged diesel
engine at speed range of w = [1200,2000]rpm with operational brake torque acting at
Tg = [50, 100]NM. The speed-dependant fueling delay (t;) and combustion lag (7) are given
in Table 1.

Our diesel model also contains a speed-dependant torque loss T7,gs arising due to friction
torque, ancillary torque and pumping loss. Such a total torque loss is typically a nonlinear
function of the engine speed. However, at the studied operating range of engine speed and
brake torque, namely w = [1200,2000]rpm and T = [50,100]NM, the total engine torque
loss is a linear function of w modeled as T ,ss = mw where m = 0.12 with w’s dimension in
[rad/sec].
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| w [Tpta] 7|
1200] 50 [100] 144
1200[100(140142
1600 50 | 84 [140
1600[100] 96 [137
2000 50 | 80 [140
2000(100] 72 |134

Table 1. Experimental results of fueling delay, t; [msecs], and combustion lag, T [msecs], as
functions of diesel engine speed [rpm] and brake torque [NM]. These results are captured by
measuring the step response of the engine to a step change in the engine brake torque.

For the purpose of this study, we shall employ a 1-st order Pade approximation to model the
fueling time-delay by a rational 1st-order LTI model of

e—tdS o _S+2/td

S+2/td (18)

The simplified diesel engine model can now be described as the following state-space
equations:

J.Cl = —%xl —|—Tgem

: 4 1 dem

Xp=7x1—zx2— T

2= T T2 B (19)
Tross = mw

Tg = %xZ — TLoss
where x1 and x; are the states associated with the Pade approximation, and combustion lag
dynamics, respectively.
The diesel dynamic shown in Equation (19) will be used in the overall configuration of the
HEV dynamics.

3.2 Simplified CIMG Model

Assuming that the hybrid electric drivetrain includes an armature-controlled CIMG (DC
motor), the applied voltage v, controls the motor torque (Tys) as well as the angular velocity
w of the shaft.

The mathematical dynamics of the CIMG could be represented as follows.

1 d
Iy = m(vaem - vemf) (20)
Uemf = khw
Tyt = kla

where kj; and k;, are torque and back emf constants, vze’" is control effort as of armature
voltage, v, 7 is the back emf voltage, I, is armature current, L, and R, are inductance and
resistance of the armature, respectively.
Regarding the fact that the engine speed is synchronised with that of the CIMG in full-hybrid
mode, the rotational dynamics of the driveline (of joint crankshaft and motor) is given as
follows:

Jo+bw=Tg+Ty—Tr (21)
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where w is the driveline speed, | is the effective combined moment of rotational inertia of both
engine crankshaft and motor rotor, b is the effective joint damping coefficient, and T}, is the
vehicle load torque, which is representing the plant disturbance.

The armature-controlled CIMG model in Equation (20) along with the rotational dynamics of
Equations (20) and (21) could be integrated within the following state-space modelling:

iy = ofem — fexy — fpxy
. 1 Ky b
Xg =X+ 72x3 — 7x4 — Tross — TL
T ! ) (22)
w = 73{4
K
TM = L—bxg

a

where x3 and x4 are the states associated with the armature circuit, and driveline rotational
dynamics, respectively.

A simplified but realistic simulation model with detailed component representations of diesel
engine and DC electric motor (CIMG) will be used as a basis for deriving the hybrid model as
discussed in the subsequent section.

3.3 Simplified hybrid diesel electric vehicle model

Based on the state-space representation of both the diesel ICE and electric CIMG, given in
Equation (19) and Equation (22), respectively, we can now build our simplified 4-state HEV
model to demonstrate our proposed approach.

A schematic representation of the simplified parallel hybrid diesel electric vehicle model is
shown in Figure 3.
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Fig. 3. Simplified model of the parallel Hybrid Diesel Electric Vehicle.

Recall that, as illustrated in Figure 2, the setpoint torque commands (indicated by T;eq and
T;Zq) are provided to the controller by a high-level static optimisation algorithm, not discussed
in this study - see (Dextreit et al., 2008) for more details. Also, in this figure the engine
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brake torque and the CIMG torque are estimated feedback signals. However, the details of
the estimation approach are not included here. For the sake of simplicity, in this work we
shall assume that both engine and CIMG output torques are available to measure.

In addition, due to there being in "full hybrid" mode, it is assumed that the ICE-CIMG clutch
is fully engaged and hence the clutch model is excluded from the main HEV dynamics - it
was previously shown in Figure 2. Also, the gear setting is disregarded at this simplified
model, as discussed earlier. Furthermore, the look-up mapping table of CIMG torque request
vs armature voltage request (v4") is not shown in this model for the sake of simplicity.

The overall state-space equations of the simplified HEV model is represented by

2
ya 01 0 0 10 0
. r -t O 0 10 0
X = ?)1 ()T_a K x + 01 u—+ 0 TL
b (23)
0 1 K nm+b 00 -1
- T L,
0io-—m
= T ]
"“look o |*

where x € R* is the state of the system obtained from Equations (19) and (22), u =
[Tdem pdem]T and y = [T Ta]T are control signals and HEV torque outputs, respectively.

The state-space equations of Equation (23) will be used in designing the proposed fast model
predictive control described in Section 2. Some representative simulation results of HEV
energy management case study will be shown in the next section to highlight some advances
of our proposed embedded predictive control system.

4. Simulation results

In this section, we shall present our proposed Fast MPC algorithm described in Section 2
for the application of the simplified HEV energy management system discussed in Section 3.
The problem addressed in the next subsection is to discuss required setpoint torque tracking
problem with appropriate optimisation objective leading towards applying our fast MPC
design to the HEV energy management problem as illustrated by some of our simulation
results.

4.1 HEV energy management optimisation objective and control strategy

For the HEV energy management application subject to the objective function and constraints,
HEV demanded torques are found at each time step by solving the optimisation problem of
Equation (16) with the following data:

Xmin = [0, =56, —300, 0]

Xmax = [18, 56, 300, 360]"

Upin = [0, —380]7 (24)
Umax = [400, 380]"

Umax = —Upyin = [0.5, 4]T
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For our HEV setpoint tracking problem, based on Equation (16), yx = [Tg Tp]" is the HEV
torque outputs (ICE torque and CIMG torque, respectively), yfq = [ngq T;Zq] T is the tracking
setpoint torques commands , wy, € R* is the discretised vehicle load torque, uy = [Tae™ vdem|T
is the demanded HEV torques (control efforts) generated in real-time by the controller.

An equated LTI discrete-time system of the continuous-time state-space dynamics described
in Equation (23) is obtained using a sampling interval ¢; (see Table 2). The plant initial
condition xy € R* is assumed zero in our simulations.

The parameters used in the proposed Fast MPC design together with other physical constants
of the simplified HEV model are provided in Table 2.

[Parameter | Value  [Unit |
Sampling time (t;) 8 msecs

ICE fueling delay (t;) 90 msecs

ICE combustion lag (7) 140 msecs

Motor armature resistance (R,) 1 Ohms

Motor armature inductance (L,) 0.3 Henrys

Motor torque constant (k) 0.25 NM.Ampf1
Motor back emf constant (k;) 0.25 Volts.secs.rad ~!
Effective hybrid rotational inertia (J) 0.6 kg.m?/s?
Effective hybrid rotational damping (b) 0.125 Nms

FMPC horizon (N) 20 -

Output penalising matrix (Qy) diag(400,200) |-

Control penalising matrix (Qy) diag(0.01,0.01) |-

Table 2. Physical constants and FMPC design parameters in regard to the HEV model case
study.

In the next subsection, the closed-loop behavior of the HEV energy management problem with
our FMPC controller placed in the feedback loop has been evaluated based on the high-fidelity
simplified model of the HEV described in Section 3.

4.2 Simulation results

Our simulations have been carried out in Simulink and implemented in discrete-time using a
zero-order hold with a sampling time of t; = 8 msecs — see Table 2.

We shall emphasis that optimization based model predictive control (MPC) techniques,
including the proposed fast MPC design methodology, require knowledge about future
horizon (driving conditions in this case study). These future driving conditions in our case
study include setpoint torque commands (requested by driver) and vehicle load torque. This
fact will make implementation of all sort of optimisation based predictive control algorithms
even more arduous to be applied in real time.

For the purpose of simulations, assuming that the future driving cycle (i.e. torque references
and vehicle load) are entirely known could be perhaps an acceptable assumption. In our
simulations, the future driving cycle is unknown whilst retaining constant for the whole
horizon of N samples. However, if the future driving cycle could be entirely known, the
performance of the proposed FMPC would be superior than those shown here.
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Figure 4 shows a typical simulation results for the period of 20 secs in tracking requested
setpoint HEV torques. During this simulation period, the system is in hybrid mode as both
ICE torque and CIMG torque are requested.
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Fig. 4. Simulation results of the HEV torque setpoints and outputs using the proposed FMPC
algorithm.

As shown in Figure 4, despite the fact that the HEV energy management is a coupled
Two-Input Two-Output (TITO) dynamical system, both the diesel ICE and the DC electric
motor have successfully tracked the requested torque setpoints. At times ¢ = 5 secs and
t = 15 secs , the TITO controller is requested for an increased and decreased ICE torques,
respectively to which the fast MPC algorithm could precisely follow those commands, as
illustrated in Figure 4(a). Similarly, there was an increased request for the CIMG torque (from
20 NM to 40 NM) at time t = 10 secs, and the controller has successfully delivered this torque
request, as depicted in Figure 4(b).

This is noted that our torque manager structure, as stated earlier, assumes that setpoint torque
commands are provided by some sort of static optimisation algorithms. The designed FMPC
is then enquired to optimise control efforts so as to track the requested torque references.
Figure 5 shows the load torque transient used in our simulations (being modeled as a plant
disturbance), ICE torque loss and control efforts generated by the FMPC. We have assumed
that plant disturbance (vehicle load) is known and available to controller. In reality, this might
be an infeasible assumption where an estimation algorithm is required to estimate the vehicle
load torque wy, over the prediction horizon. Also, as mentioned earlier, the estimation of future
driving conditions must be made online. Due to lack of space, however, we shall preclude
addressing a detailed discussion in this course.

Figure 5(c) shows that the FMPC fully satisfies the required optimisation constraints as of
Equation (24).

Figure 6 shows simulation results in regard to driveline speed and vehicle speed. It
is worthwhile to point out that as illustrated in Figure 6(a), by requesting large torque
commands, we have in fact violated our empirical HEV modeling assumption in that driveline
speed must be limited to w = [1200, 2000]rpm. However, it can be seen that the FMPC can still
successfully control the HEV energy endamagement dynamics in real-time. The vehicle speed
shown in Figure 6(b) has been calculated using a dynamic model of the vehicle as a function
of the driveline speed which is not discussed here.

It is also important to mention that fueling delay and combustion lag are functions of engine
speed and brake torque — see Table 1. However, in designing our fast MPC algorithm we



24 Advanced Model Predictive Control

40 T T
Ancilary Torque
Friction
30 Pumping loss
= = Total losses
= =
g Z
) o 201 N\
] 8 \
S S
= =
ol \/ /
101
0 : : : 0 : - :
0 5 10 15 20 0 5 10 15 20
Time (Secs) Time (Secs)
(a) Vehicle (load) Torque. (b) Torque Loss.

400

— — ICE[NM]
——— CIMG [Volt]

300}

100

0 5 10 15 20
Time (Secs)

(c) Control signals.

Fig. 5. Simulation results of vehicle load, Torque loss, and Control efforts.

3000 T T T 25

2500 20}
= 2000 = 15¢
£ <
g E
2 1500 > 10t

1000 5

500 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20
Time (Secs) Time (Secs)
(a) Driveline Speed. (b) Vehicle Speed.

Fig. 6. Simulation results of parallel diesel HEV driveline speed and vehicle speed.

require to utilise an LTI model of the HEV energy management plant. Towards this end, we
use the numerical values of T = 140 msecs and t; = 90 msecs, in our design to capture worst
case of the ICE speed-dependant parameters. However, the simulation results are based on
the actual time-varying speed-dependant parameters of the ICE, namely 7 and ¢,.

Regarding the real-time simulations in Simulink (fixed-step) using our Matlab custom
S-function codes with a sampling time of t;, the simulation time required for a single run
of 20 secs was approximately 500 times faster than real-time running a Toshiba Portege
laptop with an Intel(R) Core(TM) i5 processor, at 2.4GHz under Windows 7 Pro platform.
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Without doubt, this shows a significant improvement on the computational capability of the
control action that could potentially permit any sort of fast MPC algorithms to be run using
inexpensive low-speed CPUs under possibly kilo Hertz control rates.

5. Conclusions

The aim of this chapter was to present a new Fast Model Predictive Control (FMPC) algorithm
with an application for the energy management of hybrid electric vehicles (HEVs). The
main goal of energy management in hybrid electric vehicles is to reduce the CO, emissions
with enhanced fuel consumption for a hybrid powertrain control system. The applicability
of conventional MPC in the energy management setting, however, has shown a main
drawback of these algorithms where they currently cannot be implemented on-line due to
the burdensome real-time numerical optimisation, arising due to e.g. hardware constraints
and limitation of online calculations. The proposed FMPC design architecture could resolve
such shortcomings of the standard MPC algorithms. In fact, such a custom method, is able
to speed up the control action, by exploiting particular structure of the MPC problem, much
faster than that of the conventional MPC methods. Moreover, our proposed FMPC design
methodology does not explicitly utilise any knowledge in regard to the future driving cycle.
Simulation results illustrated that FMPC could be a very promising on-line control design
algorithm and could play a key role in a wide variety of challenging complex automotive
applications in the future.
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1. Introduction

Model predictive control (MPC) refers to a class of computer control algorithms that utilize
a process model to predict the future response of a plant. During the past twenty years, a
great progress has been made in the industrial MPC field. Today, MPC has become the most
widely implemented process control technology. One of the main reasons for its application
in the industry is that it can take account of physical and operational constraints. In classical
model predictive control (MPC), the control action at each time step is obtained by solving
an online optimization problem. If it is possible, MPC algorithms based on linear models
should be used because of low computational complexity [Maciejowski J,2002]. Since
properties of many technological processes are nonlinear, different nonlinear MPC
techniques have been developed [Qin, S. J et al, 2003]. The structure of the nonlinear model
and the way it is used on-line affect the accuracy, the computational burden and the
reliability of nonlinear MPC. Several different attempts to reduce computational complexity
have been released during the last thirty years. The simplest way to reduce on-line
computation is to transform the NMPC problem into LMPC. The nonlinear system is
transformed into a linear system using a feedback-linearizing law, the input constraints are
mapped into constraints on the manipulated input of the transformed system and the
obtained constrained linear system is controlled using LMPC [Kurtz M.] et al,1997]. An
interesting strategy is presented in [Arahal M.R et al.,1998], when the linear model is used to
predict future process behavior and the nonlinear model is used to compute the effect of the
past input moves. The most straightforward technique used to implement fuzzy models
[Fischer M et al., 1998] is based on a linearization method. The accuracy of the linear model
can be improved by relinearizing the model equations several times over a sampling period
or by linearizing the model along the computed trajectory [Mollov S.et al.,2004]. Another
approach has been used by a number of researchers such as in [Brooms A et al., 2000], where
the NMPC problem is reduced to an LMPC problem at each time step using a successive
linearization. The structure of certain nonlinear empirical models allows the NMPC
optimization problem to be solved more efficiently than is possible with other forms. Such
an approach will be followed in [Abonyi, ] et al,2000]. An algorithm for controller
reconfiguration for non-linear systems based on a combination of a multiple model
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estimator and a generalized predictive controller is presented in [Kanev, S et al., 2000], in
which a set of models are constructed. Each corresponding to a different operating condition
of the system and an interacting multiple model estimators is utilized to yield a
reconstruction of the state of the non-linear system. For unconstrained control based on
linear process models and a quadratic cost function, the control sequence can be analytically
calculated. When linear constraints are taken into account, the solution can be found using
quadratic programming techniques. With the introduction of a nonlinear model into MPC
scheme, a nonlinear programming technique (NLP) has to be solved at each sampling time
to compute the future manipulated variables in on-line optimization that is generally non-
convex which make their implementation difficult for real time control. During the past
decade significant theoretical results as well as advances in the implementation strategies of
NMPC have been obtained and NMPC has been successfully applied in practice to relatively
slow plants, mainly in the process industry. However, the application of such techniques for
fast nonlinear systems remains a widely opened problem due to the computation burden
associated with solving an open loop optimal control problem. Most of the research has
focused on computations carried out by one agent. In [Negenborn R et al., 2004], a survey
how a distributed multi-agent MPC setting can reduce the computations of a single MPC
agent. Moreover, researchers have investigated feedback linearization model predictive
control (FLC-MPC) schemes for their ability to handle constraints on input and output
[Soest Van W.R et al, 2005]. These approaches reduce the on-line computation by
transforming the NLMPC problem into a LMPC and quadratic programming can be used to
handle constraints. When sampling times become so short, the computation times for QP
solution can no longer be neglected [Jaochim H et al., 2006]. In [Didier G ,2006], a distributed
model predictive control is considered and the proposed strategy allows dramatic reduction
of the computational requirement for solving large-scale nonlinear MPC problem due to
computation parallelism. However, recent advancements in MPC allow for a faster online
solution by shifting some of the computational burden off-line. We can notice that many
optimization algorithm solutions for NMPC have been investigated lately; however, an
analytical solution in NMPC approach is usually impossible to find. One possible way to
address computational complexity is to decentralize the optimization tasks. Attention has
been focused on multi-agent model predictive control approach [H.Ben Nasr et
al.,2008a,b,c,d,e]. There are multiple agents in multi-agent model predictive control. Each
uses a model of its sub-system to determine which action to take. Decentralized agent
architecture and decentralized model decomposition are then chosen, in which there are
numerous agents that do not have any interaction among one another. A methodology
based multiagent has been investigated in the implementation of a given predictive control
law for nonlinear systems. Such procedure relies on the decomposition of the overall system
into subsystems and a multiple agents each uses a model of its sub-system to determine
which action to take.

In this chapter book, new NMPC scheme based MAMPC (Multiagent model predictive
control) is implemented to reduce the computational effort. The performance of the proposed
controllers is evaluated by applying to single input-single output (SISO) control of non linear
system. Moreover, in general, the optimization problem is nonconvex and leads to many
difficulties impacting on implementation of MPC. These difficulties are related to feasibility
and optimality, computation and stability aspects. In order to avoid solving nonconvex
optimization problem, MAMPC (Multiagent model predictive control) optimization
procedure, a method for convex NMPC was also developed in this chapter book. Theoretical
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analysis and simulation results demonstrate better performance of the MAMPC over a
conventional NMPC based on sequential quadratic programming (SQP) in tracking the set
point changes as well as stabilizing the operation in the presence of input disturbances. In this
work, our main objective has been to illustrate the potential advantage of nonlinear predictive
control based multiagent when applied to nonlinear systems. The suggested approach was to
identify a new control algorithm that in essence is a bridge between linear and nonlinear
control. This resulted in the development of the MAMPC approach. Through simulation-based
comparisons, it is shown that a MAMPC control algorithm is capable of delivering
significantly improved control performance in comparison to a conventional NMPC, so that
the difficulty of minimizing the performance function for nonlinear predictive control is
avoided, which is usually carried by the use of NLP solved at each sampling time that
generally is non-convex. In this chapter book we describe algorithm that find the solution of a
non-convex programming and also demonstrated that global nonlinear requirements can
effectively be resolved by considering smaller regimes. The simulation example shows that the
multi-agent compares favorably with respect to a numerical optimization routine. Moreover,
the MAMPC reduces the online computational burden and hence has the potential to be
applied to the system with faster time constants.

2. Statement of the problem

2.1 Process model

A broad class of physical systems can be represented using the Volterra model. Particularly,
it was shown that a truncated Volterra model could represent any non-linear system, time-
invariant with fading memory. This model is thus particularly attractive for non-linear
systems modeling and identification purpose. One of the main advantages of the Volterra
model is its linearity-in-parameters, i.e. the kernel coefficients. This property allows the
extension of some results established for linear model identification to this model. In this
work, we consider the control of a class of single-input single output non-linear system
described by the following non-linear discrete-time parametric second-order Volterra model
(Haber et al. 1999a,b):

n, i

y(k)y=y, + Zy:aiy(k —1)+ ibiu(k —i)+ z Z bu(k —i)u(k - j) + &(k) 1)
i=1 i=1

i=1j=1

Where y, is a bias term, y(k) is the output, u(k)is the input, 4;,b;and b; are the parameters
of the parametric Volterra model, n,and n, are the number of lags on the input and the
output, respectively. £(k) Contains all terms up to second-order. One advantage of using the
parametric Volterra model is that the one-ahead prediction problem can be formulated as a
linear regression, which simplifies the identification of the parameters from input-output
data. Therefore, the model given by “Equation (1)” can be written as:

y(k) = 6" g(k) + &(k). @
With:
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Where ¢(k) and 6 are the regressor and the parameter vectors, respectively. The model
“Equation (3)” is linear in parameters, and its regressors and parameters may be identified
from input output information. Moreover, from identification point of view, parametric
Volterra models are superior to Volterra series models in the sense that the number of
parameters needed to approximate a process are generally much less with parametric
Volterra models. This is due to the fact that Volterra models only include previous inputs,
while the model (1) includes previous outputs as well as previous inputs.

2.2 Optimization criteria

The purpose of the control strategy is to compute future control moves which will minimize
some performance function based on the desired output trajectory over a prediction
horizon, subject to constraints on input and output signals [D.W. Clarke et al., 1987]. The
most common objective cost function, also used here, is:

N, N,
J(N1,Na, N, 8)= > (w(k+j)- y(k+j /) Z (KAu(k+j-1))° ©)
j=Nq j=1

Subject to

Aty SAu(j+j-1) S Ay, for 1Sj<N,

oK) Sk ) S () for 155N, ©
Where N, is the minimum prediction horizon, N, is the maximum prediction horizon,
y(k+j / k) is an optimum j-step ahead prediction of the system output on data up to time k,
w(k+j)is a sequence of future set points, N,<N,is the control horizon, and
(4))j=1...N, = (4y,+++, Ay, ) are control-weighting factors usually assumed to be equal to each
other used to penalize the control increments. Au(k+j—1),je[1,N,], is a sequence of future
control increments computed by the optimization problem at time k; Au(k+j—1)=0 for
j>N, . For the constraints 1, Up;g,, Allj,, Altyg), , are respectively the lower limit, upper
limit, lower derivative limit and higher derivative limit of the control input. Using the
quadratic prediction equation of the model, the cost function becomes fourth degree
equation in the control increments. Th objective finction never exeeds fourth order,
regardless of the value of the prediction horizon. (Haber, 1999a, 1999b)

2.3 Nonlinear Predictive Control

Despite of the wide exposure of and the intensive research efforts attracted over the past few
decades on Nonlinear model predictive control (NLMPC), this control strategy is still being
perceived as an academic concept rather than a practicable control technique. However,
nonlinear model predictive control is gaining popularity in the industrial community. The
formulations for these controllers vary widely, and almost the only common principle is to
retain nonlinearities in the process model [Matthew et al.,2002]. In nonlinear control, a
receding horizon approach is typically used, which can be summarized in the following
steps:
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1. At time k, solve, on-line, an open-loop optimal control problem over some future
interval, taking into account the current and future constraints.

2. Apply the first step in the optimal control sequence.

3. Receding strategy so that at each instant the horizon is displaced towards the future,
which involves the application of the first control signal of the sequence calculated at
each step.

The process to control is assumed to be represented by a mono-variable second order

parametric Volterra model. The model given by (1) can be expressed as:

A0 = yo + By(q ™ yu(k) + By a7 g3y () + % )

Where are two polynomials of the backward shifting operator g given by :

na

A(q_l) =1+ alq_l +ot anaq_ (8)
B1(‘I_l) =1+ bnq_l teeet blan_”b

B,(q;',9;") represents the quadratic term of the Volterra model, this quantity is defined
by:

nb  nb
Bo(qr 2 uP (k) = 3, D byyti(k —m)u(k — m) ©)

n=0m=n

The incremental predictive form of the parametric Volterra model can be expressed as a
function of the current and future control increments :

y(k+ ) =05 +0{ (g7 )Auk + )+ 05 (4" 32 )Au® (i + j) (10)
With

. nb+j-1 nb+j-1 X X

vh =y, +Gy(k)+ DGyt Y Sylu (k+ j—m) |Au (k+j—i)
i=j+1 m=i

, nbl+j-1 X

U{i =0yt Z 521'771Au (k+]_m) i:1’2"“’j (11)
m=j+1

v} =i i=1,2,,j and m=1,2,--,j

The effect of selecting the parameters and the coefficient of the predictive control are not
investigated here, for more detail see(Haber et al., 1999a) . Replacing the incremental output
by his expression, the cost function (5) can be written as follows:
~ ~2.7 ~ ~2 ~T~
J=(vg—w+vu+v,u ) (vg—w+ovUu+v,u )+ Au u (12)
With constraints, the cost function can be minimized numerically by a one-dimensional

search algorithm (dynamic algorithm programming). Without constraints the solution leads
to a third-degree one-dimensional equation [F.J.Doyle et al.,1995].
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3. Multi-agent Model Predictive Control

3.1 Control and design

The main idea of the proposed concept model predictive control is to transform the
nonlinear optimization procedure used in a standard way into sub-problems, in which the
global task can be resolved. The objective of this approach is to regulate the nonlinear
system output to the expected values and satisfying the above constraints. This can be done
as follows. The global system can first be decomposed on sub-systems independent of one
another, for each sub-system an MPC unit sub-system is made constituting the agent
controller i. Based on an analytical solution, which corresponds to the solution of the local
receding horizon sub-problems, a logic unit switching tries to find the best sequence of
actions sent to the nonlinear system and gives the desired trajectory. Sequences of actions
that bring the global system in a desired trajectory are made and avoid any violated
constraints on actions. The multi-agent controller consists of synchronizing the output of the
true system at every decision step k with the reference trajectory. In fact, at every decision
step the right action is the one that will cause the agent to be the most successful. The
parallel controller structure is based on the fact that a neural network can be used to learn
from the feedback error controller non linear system. A neural network controller is also
made on, in objective to take handle the results of the actions on the global system and
monitor the closed-loop system. Figure 1, shows the architecture of the multi-agent
controller. In the multi-agent context, the agents are the controllers and the non linear
system is the environment.

AcHon Perlormance evalualor

Multi-agent

npul Environmenl Qulpul

_ . Supervisor loop
Update action

Fig. 1. Architecture of Multi-agent Controller

The basic structure of the control strategy proposed is shown in figure 2. The control
problem to solve should be decomposed into supposedly independent subproblems. Each
subproblem is solved by designing a controller-agent. The controller-agent is realized by
some control algorithm that is operational only under particular operating conditions of the
plant being controlled. Moreover, the controller-agent’s action consist of the analytical
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optimal control sequence elaborated in each sub-system after having learned the trajectory
of the control to follow and by minimizing a local cost function. The individual solutions or
controller-agents are combined into one overall solution. This implies addressing the global
problems by selecting an appropriate coordination mechanism. The conceptual design
consists of the following three stages:

Structuring: The control problem to solve should be decomposed into supposedly
independent subproblems. The global system can first be decomposed on sub-systems
independent of one another.

Solving individual subproblems: Each subproblem is solved by designing a controller-
agent. An MPC unit sub-system is made constituting the controller agent. A supervisor
based on performance measure [, is used. By means of the output errors ¢, for each
agent’s action, the supervisor decides then what action should be applied to the plant
during each sampling interval k . The performance measure is given by:

]k = gk - Sk_le_ﬂ,ﬂ > 0 (13)

Where, ¢, is the error for the agent I defined by:
& =setpoint—y, (14)

And y, is the plant output after agent’s action.

Combining individual solutions The individual solutions or controller-agents are combined
into one overall solution. The parallel controller structure is based on the fact that a neural
network can be used to learn from the feedback error controller nonlinear system., to take
handle the results of the actions on the global system and monitor the closed-loop system.

System

|
| |
! Sefpoint |
I Meural ' :
: [ Netwos I
I Au “ :
I ¥ ¥
LN Monlinear Output |
™ I
| |

|

Fig. 2. Architecture of Multi-agent Controller
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3.2 Control problem decomposition

The extension of MPC for the use of nonlinear process models is one of the most interesting
research topics. These algorithms generally lead to the use of computationally intensive
nonlinear techniques that make application almost impossible. In order to avoid this
problem, the proposed concept algorithm utilizes a linear model extracted from the
nonlinear model. A decentralized model and decentralized goals are then considered. A
decentralized problem model consists of multiple smaller, independent subsystems in
witch subsystem in an overall nonlinear system have his own independent goals and
represented by a discrete model of the form:

{xl(k +1) = Ay (k) + By (k) (15)

vy (k) =Cx (k)

Where x,€ R™ is the local state space; y,€ R is the measurement output of each
subsystem; u; € R"™ is the local control input. Therefore the overall nonlinear system can be
seen as a collection of smaller subsystems that are completely independent from one another
witch is referred as a decentralized model. The variable control of every agent sent to the
nonlinear system consists of its agent's optimal input control given by minimizing local
standard MPC cost function:

N, &
Ji =itk + )= Setpoint(k+ P, + 3wk + i) "
N, =1

Where Q;,R; are suitable weighting matrixes.
One of the advantages of the state-space representation is that it simplifies the prediction;
the prediction for this model is given:

yy(k+i[k) = C)(A) x,(k[k)+ > A/ "By (k +i - jlk) (17)
j=1

For local suitable matrix ¥;,I';,®; and A;, we can rewrite the local predictive model output
for future time instants as:

Yy (k) =¥, (k) + Ty (k = 1) + ©,Au (k) (18)
Where
L ca ]
5 C,B,
ClAll\]u Nu_l .
= 0,=C Y AlB (19)
CZAINMH J'IO'
' Ny-1
cAN C X Al
) ) j=0 J
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C/B, - ...0
C(AB+B) - -0
N,-1
j=0
N,-1 N,-N,
C Y. AB - C ). AlB
j=0 j=0

The cost function (16) can be rewritten as:

Ti=&(k)" Qe (k)= Auy(k)' G, + Auy(k)" H Auy(k) (20)
Where:
£,(k) = Setpoint(k) — ¥ ,x,(k) - Ty (k= 1) - A,

G, =20," Qe (k) (21)
H, = @zTQl®1 +R

Therefore the control law that minimizes the local cost function (16) is given by:
1.4
A”z(k)=EHz G (22)
In order to take into account constraints on the manipulated variables, a transformation

method for each action is made. The control action based on (22) is transformed into new
action with the following transformation [R. Fletcher, 1997].

uy(k)—
ul(k) = fmoy + famp tanh(M)
amp
fmoy — f max > f min
f — f max T f min (23)
amp )
fmax = min(ulmax/ul(k - 1) + Aulmax)
fmin = max(ulmin'ul(k - 1) + AMlmin)

The optimum control law (22) for each agent does not guarantee the global optimum.
Accordingly to that, nonlinear system requires coordination among the control agent’s
action. The required coordination is done by a logic switch added to supervisory loop
based neural networks which compute the global optimum control subject to
constraints.
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3.3 The supervisor loop

A neural network is used with the proper control architecture by changing the results of
switched input u; of each agent’s action through a stable online NN weights which can
guarantee the tracking performance of the overall closed-loop nonlinear system. Moreover,
the neural network should reduce the deleterious effect of constraints attached with the
different actions [Wenzhi, G et al., 2006]. In this work the neural network is represented by
feed-forward single-input single output. The neural network tries to optimize the control
action Au.

Au= fNNZ- —z)+ZZb,,u —i)u(k - ) (24)

i=1 i=1j=1

The method of Levenberg Marquardt was designed for the optimization due to its
properties of fast convergence and robustness. The main incentive of the choice of the
algorithm of Levenberg Marquardt rests on the fast guarantee of the convergence toward a
minimum.

4, Simulation results

The chosen example used in aim to valid the theory exposed above is given [B.Laroche et
al.,2000]. A continuous state space representation of this example is as follow:

0
.

X3 =Xy — X + 2%, (U—X,)

The system model is implanted in the Matlab-simulink environment of which the goal is to
get the input/output vector for the identification phase. Matlab® discrete these equations by
the 4t order Runge-Kutta method. The vector characterizing the Volterra model that
linking the output x, with the input u is given by:

A=[1 -1.9897 .9997]",B, =[-0.0318 —0.0096]
0.0396 0.0656 0
B,=| 0 00388 0
0 0 0

(26)

Moreover, the Chiu procedure is developed to divide the nonlinear system into independent
subsystem [Chiu S.L, 1994]. The modeling of the dynamic system, led to the localization of
two centers with respective valuesc; =0.0483,c, =0.5480 . The classification parameters
adopted for the algorithm are as follows : r,=.6; , =1.25r,; & =.5; €, =.1. The procedure
of identification and modeling has been applied to the whole measures input/output come
out of the global system, driving to the different following subsystem models:
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0552 1 0.0496
A1 = ’B1 =
02155 0 0.1419
07962 1 0.0239
A2 = ’BZ =
0.0481 0 -.0088
The result of modelisation is reported in figure 3. These results showed the application Chiu

algorithm for the classification which has a better quality of local approximation of the
system.

(27)

15 T T T T T T T

T T
= = modeled output
= process output

-1 5 | | | | | | | | |
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Fig. 3. Validation of the obtained model

4.1 Set point tracking

The proposed concept as seen in section 3 is used, to control the nonlinear system. The
tuning parameters of the multi-agent consists of the parameters values of each agent given
by: N;=1;N,=5;N,=1;R; =R, =4;. Assuming for the sake of simplicity but without
loss of generality, the prediction and control horizons are the same for each agent. The
tuning parameters for the NMPC are: N;=1 ;N,=5 ;N, =1 ;6=.001. The gradient of the
control Au;. and Au_, are taken, respectively, equal to —0.2 and 0.1 and the control is
limited between 0 and 1. In this application example, the neural network was a feedforward
network and it consisted of three hidden layer nodes with tangent sigmoid transfer
functions and one output layer node with linear transfer function .In this section, we present
a comparative study between the proposed method and the NMPC procedure. The results
shown in Fig. 4 and Fig. 5 are obtained in the constrained case

max
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Fig. 4. Evolution of the set point, the output and the control (NMPC): constrained case
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Fig. 5. Evolution of the set point, the output and the control (MAMPC): constrained case
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It is clear from this figures that the new strategy of control leads to satisfactory results with
respect to set-point changes. Indeed, the tracking error is reduced and with a smooth control
action. It is shown that NMPC also gives consistently a good performance for the range
examined. The two controllers are remarkably similar, which indicates that the MAMPC
controller is close to optimal for this control problem. Moreover, the new controller meets all
the required performance specifications within given input constraints and the results show
a significant improvement in the system performance compared with the results obtained
when only nonlinear programming model is used and the multi-agent compares favorably
with respect to a numerical optimization routine as shown in Figure 6, the final control law
to the nonlinear system obeying the specified constraints and with the proposed concept the
constrained input and rate of change inputs cannot violate the specified range premise.

4.2 Effect of load disruptions and noise

In order to test the effect of load disruptions, we have added to the system output a constant
equals to 0.02 from iteration 100 to iteration 125 and from iteration 200 to iteration 225. And in
the case of noise, we have added to the output of the process an uncertain pseudo-noise of
maximal amplitude equal to 0.025. Figs. 6 and 7 present the evolutions of the set point, the
outputs obtained, respectively, with the presence of load disruption and noise. Fig. 6 shows the
evolutions of the set point, the outputs signals obtained with both NMPC and MAMPC control
strategy. It is clear from this figure that the presence of load disruptions, from iteration70 to
iteration 90 and from iteration 120 to iteration 140, does not lead to a correct pursuit. Thus, the
presence of load disruptions has more effect on NMPC control than the MAMPC strategy. Fig. 8
shows the evolutions of the set point, the outputs obtained with NMPC and MAMPC strategy.
According to the obtained results, we notice that the MAMPC controller is capable to deliver a
less fluctuate output than that obtained with NMPC approach.

7

= = NMPC
s MAMPC
1 getpoint

0 I I ]
0 50 100 150

samples

Fig. 6. Evolution of the set point, the output NMPC and MAMPC control in the case of load
disruptions.
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= MAMPC
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Fig. 7. Evolution of the set point, the outputs NMPC and MAMPC control in the case of the
effect of the noise.
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4.3 Convex optimization approach

In order to avoid solving nonconvex optimization problem, MAMPC optimization
procedure, a method for convex NMPC was also developed in this chapter book. The
performance of the proposed controllers is evaluated by applying to the same process and
the attention has been focused on multi-agent model predictive control approach as a
possible way to resolve non-convex optimization tasks. We have shown in Figure 8, a new
constraint where the control is limited between 0 and .5. The nonlinear programming
algorithm (NLP) cannot find a solution for the optimization problem. So because of the use
of a nonlinear model, the NMPC calculation usually involves a non-convex nonlinear
program, for which the numerical solution is very challenging. Therefore, finding a global
optimum can be a difficult and computationally very demanding task, if possible at all. In
other words, non-convexity makes the solution of the NLP uncertain. The proposed
approach describe algorithm that find the solution of a non-convex programming.

T
= MAMPC

111 Setpoint
= = NMPC

2 I I I I I
50 60 70 80 90 100 110 120 130 140 150

0 80 90 100 110 120 130 140 150

Samples

Fig. 8. Evolution of the set point, the outputs NMPC and MAMPC control: Restriction
applicability of the NMPC
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4.4 Computational time study

The load computational time constitutes a gate in the scheme of the predictive control
indeed (Leonidas et al, 2005). The performances of the computational load established with
the proposed concept are compared to a nonlinear programming In Figure 9 the time
required to compute the control input at each time step k for the two approaches is plotted.
We also reported in Table I, the mean and the maximum value of the implementation time
required for the control law for the two cases. In Figure 10, the CPU time required to
compute the control input at each time step k for the two approaches is plotted. It is very
easy to see, from figure 9, 10 and table 1, that the NLMPC controller is too CPU time
consuming and the computation for optimization in the new design procedure is simpler,
faster and has good response curve and control performance because it uses a simple
analytical solution to the minimization of the performance objective. On average, the NMPC
method was about ten times slower than the novel approach and the control input in the
MAMPC procedure require a twenty time smaller in the operating action.
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Fig. 9. Computational time requirement



Fast Nonlinear Model Predictive Control using
Second Order Volterra Models Based Multi-agent Approach 45

0 50 100 150

samples

CPU(s)

0 50 100 150

samples

Fig. 10. CPU time comparison

Mean Max
NMPC 0.0224 0.7190
MAMPC 9.6875e-004 0.032

Table 1. Comparison of operating time
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4.5 Controller performance comparison

Through simulation-based comparisons, it is shown that a MAMPC control system is
capable of delivering significantly improved control performance in comparison to a
conventional NMPC, so that the difficulty of minimizing the performance function for
nonlinear predictive control is avoided, which is usually carried by the use of NLP solved at
each sampling time that generally is non-convex. Moreover, the nonlinear controls based on
MAMPC approach provide excellent performance, both in terms of disturbance rejection,
noise suppression and set point tracking. The NMPC controller is also good for disturbance
rejection and noise suppression, but the set point tracking is not succeeded. In order to make
a comparison of the novel concept to the NLMPC controller, the performance of the
controller was measured by the following performance indices in unconstrained and
constrained cases given by [Abonyi J,2003]:

SSE = i (Setpoint—y(k))?.

k=1

SSU = i(u(k) —u(k-1))% (28)
k=1

N
SSAU =Y Au? (k).

k=1
Where SSE denotes the sum of the square error, SSU the sum of the square of the control
signal, SSAU the sum of the square of the change of the control signal and N is the number
of samples. The values are summarized in Tablel, shows that the MAMPC achieving control
performance improves more with the use of the NLMPC controller. Moreover the MAMPC
produces the best tracking performance and the smallest energy consumption.

Constrained case

SSE SSU e-011 SSAU e-013
NMPC 0.0135 5.5415 16754
MAMPC 0.0042 1.2464 3.8622

Table 2. Control performance comparison

5. Conclusions

One of the main drawbacks of NMPC schemes is the enormous computational effort these
controllers require. On the other hand, linear MPC methods can be implemented solving
just Quadratic Programming (QP) or Linear Programming problems (LP).The main focus of
this chapter is to develop a new control algorithm that in essence is a bridge between linear
and nonlinear control. This resulted in the development of the MAMPC (Multiagent model
predictive control) approach. The new NMPC scheme based MAMPC is implemented to
reduce the computational effort. The control performance of MAMPC algorithm is
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evaluated by illustrative comparison with general NMPC. All the results prove that
MAMPC approach is a fairly promising algorithm by delivering significantly improved
control. The performance of the proposed controllers is evaluated by applying to single
input-single output control of non linear system. Theoretical analysis and simulation results
demonstrate better performance of the MAMPC over a conventional NMPC based on
sequential quadratic programming in tracking the setpoint changes as well as stabilizing the
operation in the presence of input disturbances.
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1. Introduction

Model predictive control (MPC) has made a significant impact on control engineering. It has
been applied in almost all of industrial fields such as petrochemical, biotechnical, electrical
and mechanical processes. MPC is one of the most applicable control algorithms which refer
to a class of control algorithms in which a dynamic process model is used to predict and
optimize process performance. Linear model predictive control (LMPC) has been
successfully used for years in numerous advanced industrial applications. It is mainly
because they can handle multivariable control problems with inequality constraints both on
process inputs and outputs.

Because properties of many processes are nonlinear and linear models are often inadequate
to describe highly nonlinear processes and moderately nonlinear processes which have large
operating regimes, different nonlinear model predictive control (NMPC) approaches have
been developed and attracted increasing attention over the past decade [1-5].

On the other hand, since the incorporation of nonlinear dynamic model into the MPC
formulation, a non-convex nonlinear optimal control problem (NOCP) with the initial state
must be solved at each sampling instant. At the result only the first element of the control
policy is usually applied to the process. Then the NOCP is solved again with a new initial
value coming from the process. Due the demand of an on-line solution of the NOCP, the
computation time is a bottleneck of its application to large-scale complex processes and
NMPC has been applied almost only to slow systems. For fast systems where the sampling
time is considerably small, the existing NMPC algorithms cannot be used. Therefore, solving
such a nonlinear optimization problem efficiently and fast has attracted strong research
interest in recent years [6-11].

To solve NOCP, the control sequence will be parameterized, while the state sequence can be
handled with two approaches: sequential or simultaneous approach. In the sequential
approach, the state vector is handled implicitly with the control vector and initial value
vector. Thus the degree of freedom of the NLP problem is only composed of the control
parameters. The direct single shooting method is an example of the sequential method. In
the simultaneous approach, state trajectories are treated as optimization variable. Equality
constraints are added to the NLP and the degree of freedom of the NLP problem is
composed of both the control and state parameters. The most well-known simultaneous
method is based on collocation on finite elements and multiple shooting.
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Both single shooting method and multiple shooting based optimization approaches can then
be solved by a nonlinear programming (NLP) solver. The conventional iterative
optimization method * such as sequential quadratic programming (SQP) has been applied
to NMPC. As a form of the gradient-based optimization method, SQP performs well in local
search problems. But it cannot assure that the calculated control values are global optimal
because of its relatively weak global search ability. Moreover, the performance of SQP
greatly depends on the choice of some initialization values. Improper initial values will lead
to local optima or even infeasible solutions.

Genetic Algorithms (GAs) are a stochastic search technique that applies the concept of
process of the biological evolution to find an optimal solution in a search space. The
conceptual development of the technique is inspired by the ability of natural systems for
adaptation. The increasing application of the algorithm has been proved to be efficient in
solving complicated nonlinear optimization problems, because of their ability to search
efficiently in complicated nonlinear constrained and non-convex optimization problem,
which makes them more robust with respect to the complexity of the optimization problem
compared to the more conventional optimization techniques.

Compared with SQP, GAs can reduce the dimension of search space efficiently. Indeed, in
SQP the state sequence is treated as additional optimization variables; as such, the number
of decision variables is the sum of the lengths of both the state sequence and the control
sequence. In contrast, in GAs, state equations can be included in the objective function, thus
the number of decision variables is only the length of control sequence. Furthermore, the
search range of the input variable constraints can be the search space of GA during
optimization, which makes it easier to handle the input constraint problem than other
descent-based methods.

However, a few applications of GAs to nonlinear MPC [12][13] can partially be explained by
the numerical complexity of the GAs, which make the suitable only for processes with slow
dynamic. Moreover, the computational burden is much heavier and increases exponentially
when the horizon length of NMPC increases. As a result, the implementation of NMPC
tends to be difficult and even impossible.

In this paper an improved NMPC algorithm based on GA is proposed to reduce the severe
computational burden of conventional GA-based NMPC algorithms. A conventional NMPC
algorithm seeks the exact global solution of nonlinear programming, which requires the
global solution be implemented online at every sampling time. Unfortunately, finding the
global solution of nonlinear programming is in general computationally impossible, not
mention under the stringent real-time constraint. We propose to solve a suboptimal descent
control sequence which satisfies the control, state and stability constraints in the paper. The
solution does not need to minimize the objective function either globally or locally, but only
needs to decrease the cost function in an effective manner. The suboptimal method has
relatively less computational demands without deteriorating much to the control
performance.

The rest of the paper is organized as follows. Section 2 briefly reviews nonlinear model
predictive control. Section 3 describes the basics of GAs, followed by a new GA-based
computationally efficient NMPC algorithm. Section 4 analyses the stability property of
our nonlinear model predictive control scheme for closed-loop systems. Section 5
demonstrates examples of the proposed control approach applied to a coupled-tank
system and CSTR. Finally we draw conclusions and give some directions for future
research.
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2. Nonlinear model predictive control

2.1 System
Consider the following time-invariant, discrete-time system with integer k representing the
current discrete time event:

2(k+1) = flx(k) u(k)] )

In the above, x(k) e X ¢ R™ is the system state variables; u(k)eU c R™ is the system input
variables; the mapping f:R™xR™ —>R™ is twice continuously differentiable
and f(0,0)=0.

2.2 Objective function
The objective function in the NMPC is a sum over all stage costs plus an additional final
state penalty term [14], and has the form:

P-1

J(k)=F(x(k+ Pl k) + > Lx(k+ j k), ulk + | k) (2)
j=0

where x(k+j | k) and u(k+j | k) are predicted values at time k of x(k+j),u(k+j). P is the prediction
horizon. In general, F(x)=x"Qx and I(x,u)=x"Qx+u’Ru . For simplicity, Q>0 defines a
suitable terminal weighting matrix and Q=0,R>0.

2.3 General form of NMPC
The general form of NMPC law corresponding to (1) and (2) is then defined by the solution
at each sampling instant of the following problem:

u(klk),u k+1rlnlc)i,2u(k+1)71|k)](k) (32)
stx(k+i+1]k)= fx(k+i|k),u(k+i|k)) (3b)
x(k+ilk)ye X,u(k+i|k)el,i=0,1,..,P-1 (30)
x(k+P|k)e X, (3d)

where Xr is a terminal stability constraint, and u(k)=[u(k k) ,...,u(k+P-1|k)] is the control
sequence to be optimized over.

The following assumptions Al - A4 are made:

Al: Xrc X, Xrclosed, Oc Xr

A2: the local controller xr(x)e U, Vxe Xr

A3: f(x, kr(x)) € X, V x€ Xr

A4: F(f(x, xr(x)))-F(x)+I(x, xr(x)) <0, Vxe X

Based on the formulation in (3), model predictive control is generally carried out by solving
online a finite horizon open-loop optimal control problem, subject to system dynamics and
constraints involving states and controls. At the sampling time k, a NMPC algorithm
attempts to calculate the control sequence u(k) by optimizing the performance index (3a)
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under constraints (3b) (3c) and terminal stability constraint (3d). The first input u(k|k) is
then sent into the plant, and the entire calculation is repeated at the subsequent control
interval k+1.

3. NMPC algorithm based on genetic algorithm

3.1 Handling constraints

An important characteristic of process control problems is the presence of constraints on
input and state variables. Input constraints arise due to actuator limitations such as
saturation and rate-of-change restrictions. Such constraints take the form:

U min < u(k) <U max (4&)

AU min SAU(k) SAUmax (4b)

State constraints usually are associated with operational limitations such as equipment
specifications and safety considerations. System state constraints are defined as follows:

Xinin <X (k) SXimax (4¢)

where Au(k)=[u(k | k)-ur-1,..., u(k +P-1|k)- u(k +P-2| k)], x(k)=[x(k+1|k),...,.x(k+P | k)].
The constraints (4a) and (4b) can be written as an equivalent inequality:

I umax
-1 k) < “Umin 5
I u(k)< SAu,,, +cuy_4 ©)

B! —SAu,;, —Cly_q

where
i 0 0
1 0
§= ,e=[LL. I
|1

3.2 Genetic algorithm

GA is known to have more chances of finding a global optimal solution than descent-based
nonlinear programming methods and the operation of the GA used in the paper is
explained as follows.

3.2.1 Coding
Select the elements in the control sequence u(k) as decision variables. Each decision variable is
coded in real value and #,*P decision variables construct the n,*P -dimensional search space.

3.2.2 Initial population
Generate initial control value in the constraint space described in (5). Calculate the
corresponding state value sequence x(k) from (3b). If the individual (composing control
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value and state value) satisfies the state constraints (4c) and terminal constraints (3d), select
it into the initial population. Repeat the steps above until PopNum individuals are selected.

3.2.3 Fitness value
Set the fitness value of each individual as 1/ (J+1).

3.2.4 Genetic operators

Use roulette method to select individuals into the crossover and mutation operator to
produce the children. Punish the children which disobey the state constraints (4c) and
terminal constraints (3d) with death penalty. Select the best PopNum individuals from the
current parent and children as the next generation.

3.2.5 Termination condition
Repeat the above step under certain termination condition is satisfied, such as evolution
time or convergence accuracy.

3.3 Improved NMPC algorithm based on GA
In recent years, the genetic algorithms have been successfully applied in a variety of fields
where optimization in the presence of complicated objective functions and constraints. The
reasons of widely used GAs are its global search ability and independence of initial value. In
this paper GAs are adopted in NMPC applications to calculate the control sequence. If the
computation time is adequate, GAs can obtain the global optimal solution. However, it
needs to solve on line a non-convex optimization problem involving a total number of n,*P
decision variables at each sampling time. To obtain adequate performance, the prediction
horizon should be chosen to be reasonably large, which results in a large search space and
an exponentially-growing computational demand. Consequently, when a control system
requires fast sampling or a large prediction horizon for accurate performance, it becomes
computationally infeasible to obtain the optimal control sequence via the conventional GA
approach. There is thus a strong need for fast algorithms that reduce the computational
demand of GA.
The traditional MPC approach requires the global solution of a nonlinear optimization
problem. This is in practice not achievable within finite computing time. An improved
NMPC algorithm based on GA does not necessarily depend on a global or even local
minimum. The optimizer provides a feasible decedent solution, instead of finding a global
or local minimum. The feasible solution decreases the cost function instead of minimizing
the cost function. Judicious selection of the termination criterions of GA is the key factor in
reducing the computation burden in the design of the suboptimal NMPC algorithm. To this
end, the following two strategies at the (k+1)-th step are proposed.

e The control sequence output at the k-th control interval in the genetic algorithm is
always selected as one of the initial populations at the (k+1)-th control interval.
Furthermore, some of the best individuals at the k-th control interval are also selected
into the current initial population. Most of all, the elite-preservation strategy is
adopted. Figure 1 shows one of the choices of the initial population per iteration. This
strategy guarantees the quality of current population and the stability of the NMPC
algorithm.
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Time £:
Solution u(k) ulktl) | u(k+2) u(k+P-3) | u(k+P-2) | u(k+P-1)
/ / / / / ‘Apt
Time k+1: (k+1) (k+2) (k+3) (k+P-2) | u(k+P-1) | u(k+P-1)
Initial Population | “ u u u u u

Fig. 1. The choice of initial population per iteration

e  Stopping criterions of GA are the key factor of decreasing the computation burden. GA
is used to compute the control sequence. The objective value J(k+1) at the (k+1)-th
control interval is computed and compared with (k) that stored at the k-th control
interval. If J(k+1) is smaller than J(k), that at the k-th control interval, then the control
sequence u(k+1) is retained as a good feasible solution, and its first element u(k+1 | k+1)
is sent to the plant. Otherwise, if there does not exist a feasible value for u(k+1) to yield
J(k+1) < J(k), then the best u(k+1) is chosen to decrease the objective function the most.

The traditional MPC approach requires the global solution of a nonlinear optimization
problem. This is in practice not achievable within finite computing time. An improved
NMPC algorithm based on GA does not necessarily depend on a global or even local
minimum. The optimizer provides a feasible decedent solution, instead of finding a global
or local minimum. The feasible solution decreases the cost function instead of minimizing
the cost function. Judicious selection of the termination criterions of GA is the key factor in
reducing the computation burden in the design of the suboptimal NMPC algorithm. To this
end, the following two strategies at the (k+1)-th step are proposed.

With the above two strategies, the computational complexity of the control calculation is

substantially reduced. Summarizing, our proposed improved NMPC algorithm performs

the following iterative steps:

Step 1. [Initialization]:

choose parameters P, Xr, Q, R, Q" and model x(k+1) = f(x(k),u(k)); initialize the state and

control variables at k = 0; compute and store J(0).

Step 2. [modified Iteration]:

e at the k-th control interval, determine the control sequence u(k) using GA satisfies
constraints (3b) (3c), terminal stability constraint (3d) and J(k) < J(k-1). The first input
u(k | k) is then sent into the plant.

e store J(k) and set k = k+1;

e  if there does not exist a feasible value for u(k) to yield J(k) < J(k-1), then the best u(k) is
chosen to decrease the objective function the most.

Step 3. [Termination]

The entire calculation is repeated at subsequent control interval k+1 and goes to Step 2.

Though the proposed method does not seek a globally or locally optimal solution within

each iteration step, it may cause little performance degradation to the original GA due to its

iterative nature, which is known to be capable of improving suboptimal solution step by
step until reaching near-optimal performance at the final stage. Besides its near-optimal
performance, the proposed algorithm possesses salient feature; it guarantees overall system
stability and, most of all, leads to considerable reduction in the online computation burden.

Finding a control sequence that satisfies a set of constraints is significantly easier than

solving a global optimization problem. Here it is possible to obtain the suboptimal control
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sequence via GA for practical systems with very demanding computation load, that is,
systems with a small sampling time or a large prediction horizon.

4. Stability of nonlinear model predictive control system

The closed-loop system controlled by the improved NMPC based on GA is proved to be
stable.

Theorem 1: For a system expressed in (1) and satisfying the assumption A1-A4, the closed-
loop system is stable under the improved NMPC framework.

Proof: Suppose there are an admissible control sequence u(k) and a state sequence x(k) that
satisfy the input, state and terminal stability constraints at the sampling time k.

At the sampling time k, the performance index, which is related to u(k) and x(k), is described
as

J(k) =T (k;u(k), x(K)) ©)

In the closed-loop system controlled by the improved NMPC, define the feasible input and
state sequences for the successive state are x*=f(x, u(k | k)).

ut(k+1)=[u" (k+1]k),...,u" (k+P-1|k),Kp(x(k+P| k)]’

x*(k+1)=[x" (k+1|k),...x" (k+ P|k), f(x(k + P | k), Kg (x(k + P| k))) " 7
The resulting objective function of u(k+1) and x(k+1) at the (k+1)-th sampling time is
J (k+1)=J(k+1;u(k +1),x(k + 1)) 8)
If the optimal solution is found, it follows that
J(k+1)-] ()< (k+ 1)~ (k -
==10x, Kp(x)) + F(f (x, K¢ (%)) — F(x) + I(x, Kg (%))
From A4, the following inequality holds
T (k+1)~J (k) <=~I(x,Kp(x)) (10)
Or using the improved NMPC algorithm, it follows that
J(k+1)-] ()< J* (k+1)-] (k) <O 1

Thus the sequence ] (k+i)over P time indices decreases. As such and given the fact that the
cost function I(x,u) is lower-bounded by zero, it is evident that | (k+i) converges. Taking
the sum, we obtain

P
I (k+P) =] (k) < Y [-1(x(k + i), u(k + )] (12)
i=1

Also, because the sequence ]*(k +i)is decreasing, then as N —o,we have
I(x(k +1),u(k +i)) > 0 and x — 0. Hence, the closed-loop system is stable.



56 Advanced Model Predictive Control

5. Simulation and experiment results

5.1 Simulation results to a continuous stirred tank reactor plant

5.1.1 Model of continuous stirred tank reactor plant

Consider the highly nonlinear model of a chemical plant (continuous stirred tank reactor-
CSTR). Assuming a constant liquid volume, the CSTR for an exothermic, irreversible
reaction, A—B, is described by

Cp= %(CAf ~Cy)—koe H/E0C,
(13)

T= %(Tf -T)+ ﬂkoe"g/ ®Dc, + ua (To -T)

PCp VpCp

where C, is the concentration of A in the reactor, T is the reactor temperature and T, is the
temperature of the coolant stream. The parameters are listed in the Table 1.

Variables Meaning Value Unit
q the inlet flow 100 1/ min
Vv the reactor liquid volume 100 1
Car the concentration of inlet flow 1 mol/1
ko reaction frequency factor 7.2¥10%0 min-1
E/R 8750 K
E activation energy
R gas constant 8.3196*103 J/ (mol K)
Ty the temperature of inlet flow 350 K
AH the heat of reaction -5*104 J/mol
p the density 1000 g/l
Cp the specific heat capacity of the fluid 0.239 J/ (g K)
UA 5410+ J/ (min K)
u the overall heat transfer coefficient
A the heat transfer area

Table 1. List of the model parameters

5.1.2 Simulation results

The paper present CSTR simulated examples to confirm the main ideas of the paper. The
nominal conditions, C4 = 0.5mol/1, T = 350K, T. = 300K, correspond to an unstable operating
point. The manipulated input and controlled output are the coolant temperature (T.) and
reactor temperature (T). And the following state and input constraints must be enforced:

X

CA 2
eR?|0<C, <1,280<T <370
T (14)

U={T. eR|280 < T, <370}
The simulation platform is MATLAB and simulation time is 120 sampling time. The

sampling time is Ts = 0.05s, mutation probability is P, =0.1, population size is 100, maximum
generation is 100, and the fitness value is 1/ (J+1).
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For comparison, the same simulation setup is used to test both the conventional NMPC
algorithm based GA and the suboptimal NMPC algorithm. The resulting control values are
depicted in Fig 2. Table 2 compares the performance of the two algorithms using the metrics
settling time and percent of overshoot. The conventional NMPC algorithm has a faster
transient phase and a smaller percentage of overshoots.

When the population sizes or the maximum generation is relatively large, the time
consumption of the two methods is compared in Fig 3.

From Fig 2 and Table 2, it is apparent that the control performance of the two methods is
almost same. But from Fig 3, it is evident that the suboptimal NMPC algorithm based on GA
has a considerably reduced demand on computational complexity.

5.2 Simulation results to a coupled-tank system

5.2.1 Model of coupled-tank system

The apparatus [15], see Fig.4, consists of two tanks Ty and T», a reservoir, a baffle valve V; and
an outlet valve V5. T has an inlet commanded through a variable pump based on PMIWV and
T> has an outlet that can be adjusted through a manually controlled valve only. The outlets
communicate to a reservoir from which the pumps extract the water to deliver it to the tank.
The two tanks are connected through the baffle valve, which again can only be adjusted
manually. The objective of the control problem is to adjust the inlet flow so as to maintain
the water level of the second tank close to a desired setpoint.

The water levels h1 and ho, which are translated through the pressure transducer into a DC
voltage ranging from 0V to 5V, are sent to PC port via A/D transition. The tank pump
control, which is computed by the controller in PC with the information of the water level
and hy, is a current level in the range 4mA to 20mA, where these correspond to the pump not
operating at all, and full power respectively.

& ‘ Q!input

V3

12

NN

V1 12

.
%
;

Fig. 4. Coupled-tank apparatus
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The dynamics of the system are modeled by the state-space model equations:

dh
A di’l = Qinput _Q12
(15)

dh,
T Q2 = Qo
where the flows obey Bernoulli’s equation(!f], i.e.

Qi = mSsgn(y —hy)(28|hy ~hy)'/? (16)

Q0 = 1,5(28h,)"/? 17)

1,z>0
and sgn(z) = 12<0

The output equation for the system is

is the symbol function of parameter z.

y=hy (18)

The cross-section areas, i.e. A and S, are determined from the diameter of the tanks and
pipes. The flow coefficients, p1 and pu; have experimentally (from steady-state
measurements) been determined. Table 3 is the meanings and values of all the parameters in
Eqn.15

Signal Physics Meaning Value
A Cross-section area of tank 6.3585x10-*m?
S Cross-section area of pipe 6.3585x10-5m2
g acceleration of gravity 9.806m/s?
W flow coefficient 1 0.3343
Mo flow coefficient 2 0.2751

Table 3. Meanings and value of all the parameters

Several constraints have to be considered. Limited pump capacity implies that values of
Qipput Tange from 0 to 50cm%s. The limits for the two tank levels, i1 and hy, are from 0 to
50cm.

5.2.2 Simulation results
The goal of the couple-tank system is to control the level of Tank 2 to setpoint. The initial

levels of the two tanks, hi, hy, are Ocm. The objectives and limits of the tank system: Input
constraint is 0<u<100%; State objectives are 0<hy, 1,<0.5m, and the setpoint of Tank 2 is 0.1m.
The simulation platform is MATLAB and simulation time is 80 sample time. In NMPC,
select prediction horizon P=10, weighting parameters Q=Q =8, R=1, sample time Ts=5s,
mutation probability Pc=0.1, population size is 200, maximum generation is 100, the fitness
value is 1/(J+1).
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For the purpose of comparison the same simulation is carried out with the conventional
NMPC algorithm based GA and the fast NMPC algorithm. The result is shown in Fig 5. The
performance indexes of the two algorithms are shown in Table 4.

0 . . _ | — NMPC algorithm based on GAs
— - fast NMPC algorithm based on GAs
s 20r
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= 1k
|:| 1 1 1 1 1 1 1
1] f0 100 160 200 250 300 350 400
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It time,s

Fig. 5. Compared simulation results based on conventional NMPC and fast NMPC
algorithm

method Settling time, s percent overshoot, %
NMPC algorithm based on GA 70 3
Fast NMPC algorithm based on GA 100 7

Table 4. Performance index of simulation results

When the population sizes or the maximum generation is relatively larger, the time
consumptions of the two method is shown in Fig 6.
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From Fig 5 and Table 4, it is apparent that the control performance of the two methods is
almost same. But from Fig 6, the computation demand reduces significant when the fast
NMPC algorithm based on GA is brought into the system.

5.2.3 Experiment results

The objectives and limits of the system: Input constraint is 0<u<100%; State objectives are
0<h1,hp<0.5m, and the setpoint of Tank 2 is 0.1m. Select prediction horizon P=10, weighting
parameters Q = Q =8, R=1, sample time Ts=5s, mutation probability Pc=0.1, population size
is 200, maximum generation is 100.

The tank apparatus is controlled with the NMPC algorithm based on conventional GA, the
experimental curve is shown in Fig 7 and performance index is shown in Table 5.
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Fig. 7. Experimental curve of NMPC based on GA

Time, s 0-400 401-800 801-1200
Setpoint, m 0.1 0.15 0.07
Settling time, s 159 190 210
Percent overshoot None None None

Table 5. Performance index of experimental result with conventional NMPC

The same experiment is carried out with fast NMPC algorithm based on GA. The result is
shown in Fig 8 and performance index is shown in Table 5.
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Fig. 8. Experimental curve of fast NMPC based on GA

Time, s 0-400 401-800 801-1200
Setpoint, m 0.1 0.15 0.07
Settling time, s 190 190 260
Percent overshoot None None None

Table 6. Performance index of experimental result with fast NMPC

6. Conclusions

In this paper an improved NMPC algorithm based on GA has been proposed. The aim is to
reduce the computational burden without much deterioration to the control performance.
Compared with traditional NMPC controller, our approach has much lower computational
burden, which makes it practical to operate in systems with a small sampling time or a large
prediction horizon.

The proposed approach has been tested in CSTR and a real-time tank system. Both
computer simulations and experimental testing confirm that the suboptimal NMPC based
on GA resulted in a controller with less computation time.
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1. Introduction

Model predictive control (MPC) is widely recognized as a high performance, yet practical,
control technology. This model-based control strategy solves at each sample a discrete-time
optimal control problem over a finite horizon, producing a control input sequence. An
attractive attribute of MPC technology is its ability to systematically account for system
constraints. The theory of MPC for linear systems is well developed; all aspects such
as stability, robustness,feasibility and optimality have been extensively discussed in the
literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski,
2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the
availability of fast computational resources. These requirements limit the application base for
MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004),
manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are
becoming more widespread.

Two common paradigms for solving system-wide MPC calculations are centralised and
decentralised strategies. Centralised strategies may arise from the desire to operate the
system in an optimal fashion, whereas decentralised MPC control structures can result from
the incremental roll-out of the system development. An effective centralised MPC can be
difficult, if not impossible to implement in large-scale systems (Kumar & Daoutidis, 2002;
Lu, 2003). In decentralised strategies, the system-wide MPC problem is decomposed into
subproblems by taking advantage of the system structure, and then, these subproblems
are solved independently. In general, decentralised schemes approximate the interactions
between subsystems and treat inputs in other subsystems as external disturbances. This
assumption leads to a poor system performance (Sandell Jr et al., 1978; Siljak, 1996). Therefore,
there is a need for a cross-functional integration between the decentralised controllers, in
which a coordination level performs steady-state target calculation for decentralised controller
(Aguilera & Marchetti, 1998; Aske et al., 2008; Cheng et al., 2007; 2008; Zhu & Henson, 2002).
Several distributed MPC formulations are available in the literature. A distributed MPC
framework was proposed by Dumbar and Murray (Dunbar & Murray, 2006) for the class
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of systems that have independent subsystem dynamic but link through their cost functions
and constraints. Then, Dumbar (Dunbar, 2007) proposed an extension of this framework that
handles systems with weakly interacting dynamics. Stability is guaranteed through the use of
a consistency constraint that forces the predicted and assumed input trajectories to be close to
each other. The resulting performance is different from centralised implementations in most
of cases. Distributed MPC algorithms for unconstrained and LTI systems were proposed in
(Camponogara et al., 2002; Jia & Krogh, 2001; Vaccarini et al., 2009; Zhang & Li, 2007). In (Jia
& Krogh, 2001) and (Camponogara et al., 2002) the evolution of the states of each subsystem
is assumed to be only influenced by the states of interacting subsystems and local inputs,
while these restrictions were removed in (Jia & Krogh, 2002; Vaccarini et al., 2009; Zhang &
Li, 2007). This choice of modelling restricts the system where the algorithm can be applied,
because in many cases the evolution of states is also influenced by the inputs of interconnected
subsystems. More critically for these frameworks is the fact that subsystems-based MPCs only
know the cost functions and constraints of their subsystem. However, stability and optimality
as well as the effect of communication failures has not been established.

The distributed model predictive control problem from a game theory perspective for LTI
systems with general dynamical couplings, and the presence of convex coupled constraints
is addressed. The original centralised optimisation problem is transformed in a dynamic
game of a number of local optimisation problems, which are solved using the relevant
decision variables of each subsystem and exchanging information in order to coordinate
their decisions. The relevance of proposed distributed control scheme is to reduce the
computational burden and avoid the organizational obstacles associated with centralised
implementations, while retains its properties (stability, optimality, feasibility). In this context,
the type of coordination that can be achieved is determined by the connectivity and capacity of
the communication network as well as the information available of system’s cost function and
constraints. In this work we will assume that the connectivity of the communication network
is sufficient for the subsystems to obtain information of all variables that appear in their local
problems. We will show that when system’s cost function and constraints are known by all
distributed controllers, the solution of the iterative process converge to the centralised MPC
solution. This means that properties (stability, optimality, feasibility) of the solution obtained
using the distributed implementation are the same ones of the solution obtained using the
centralised implementation. Finally, the effects of communication failures on the system’s
properties (convergence, stability and performance) are studied. We will show the effect of
the system partition and communication on convergence and stability, and we will find a
upper bound of the system performance.

2. Distributed Model Predictive Control

2.1 Model Predictive Control

MPC is formulated as solving an on-line open loop optimal control problem in a receding
horizon style. Using the current state x(k), an input sequence U (k) is calculated to minimize
a performance index J (x(k), U(k)) while satisfying some specified constraints. The first
element of the sequence u(k k) is taken as controller output, then the control and the
prediction horizons recede ahead by one step at next sampling time. The new measurements
are taken to compensate for unmeasured disturbances, which cause the system output to be
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different from its prediction. At instant k, the controller solves the optimisation problem
i x(k), U(k
min] (x(k), U(k))
st. @)
X(k+1) =Ix(k) + HU(k)
U(k) el

where I and H are the observability and Haenkel matrices of the system (Maciejowski, 2002)
and the states and input trajectories at time k are given by

X(k) =[x(kk) - x(k+V,0)]T V>M,
U(k) = [u(k,k) - u(k+M,k)]"

The integers V and M denote the prediction and control horizon. The variables x(k + i, k) and
u(k +1i,k) are the predicted state and input at time k + i based on the information at time k
and system model

x(k+1) = Ax(k) + Bu(k), ()

where x(k) € R" and u(k) € U C R"™. The set of global admissible controls Y = {u € R
|Du < d,d > 0} is assumed to be non-empty, compact and convex set containing the origin in
its interior.

Remark 1. The centralised model defined in (2) is more general than the so-called composite model
employed in (Venkat et al., 2008), which requires the states of subsystems to be decoupled and allows
only couplings in inputs. In this approach, the centralised model can represent both couplings in states
and inputs.

In the optimisation problem (1), the performance index J (x(k),U(k)) measures of the
difference between the predicted and the desired future behaviours. Generally, the quadratic
index

1% M
J(x(k),U(k)) = Y xT(k+i,k)Qix(k+i,k) + Y u (k+i,k)Ru(k +ik) 3)
i=0 i=0
is commonly employed in the literature. To guarantee the closed-loop stability, the weighting
matrices satisfy Q; = Q >0, R, =R >0 Vi< Mand Q; =Q Vi> M, where Qis givenby
ATQA-Q0 = -Q (Maciejowski, 2002). For this choice of the weighting matrices, the index
(3) is equivalent to a performance index with an infinite horizon.

Joo (x(k Tk +i,k)Qu(k+1,k) +ul (k +i,k)Ru(k + i, k).

||Mg

In many formulations an extra constraint or extra control modes are included into (1) to ensure
the stability of the closed-loop system (Maciejowski, 2002; Rossiter, 2003).

2.2 Distributed MPC framework

Large-scale systems are generally composed of several interacting subsystems. The
interactions can either be: 1) dynamic, in the sense that the states and inputs of each subsystem
influence the states of the ones to which it is connected, b) due to the fact that the subsystems
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share a common goal and constraint, or ¢) both. Systems of this type admit a decomposition
into m subsystems represented by

k+1 ZAIPXP —|—Blj€/\/'pu]'e_/\[p(k) I=1,...,m (4)

where x; € R"™ C R"™ and u; € Uy C R™ C R™ are the local state and input respectively.
The set of control inputs indices of subsystem [ is denoted N}, and the set Z denotes all control
input indices such that u(k) = ujcz (k).

Remark 2. This is a very general model class for describing dynamical coupling between subsystems
and includes as a special case the combination of decentralised models and interaction models in (Venkat
et al., 2008). The subsystems can share input variables such that

M=

u > ny. )

I=1

Each subsystem is assumed to have local convex independent and coupled constraints, which
involve only a small number of the others subsystems. The set of local admissible controls
U = {u; € R"™ | Dju; < d;,d; > 0} is also assumed to be non-empty, compact, convex set
containing the origin in their interior.

The proposed control framework is based on a set of m independent agents implementing a
small-scale optimizations for the subsystems, connected through a communication network
such that they can share the common resources and coordinate each other in order to
accomplish the control objectives.

Assumption 1. The local states of each subsystem x;(k) are accessible.
Assumption 2. The communication between the control agents is synchronous.
Assumption 3. Control agents communicates several times within a sampling time interval.

This set of assumption is not restrictive. In fact, if the local states are not accessible they
can be estimated from local outputs y; (k) and control inputs using a Kalman filter, therefore
Assumption 1 is reasonable. As well, Assumptions 2 and 3 are not so strong because in
process control the sampling time interval is longer with respect the computational and the
communication times.

Under these assumptions and the decomposition, the cost function (3) can be written as
follows

J (<00, 8, 4) = s (<), Uy 09, Uy 6. ©

where A = [w], &y > 0, Y10 = 1, Uj(k) is the j-th system input trajectory. This
decomposition of the cost function and input variable leads to a decomposition (1) into m
coupled optimisation problems

n ] (x(k), U(k), A)

mi
Uje/\/‘,(")
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st.
X(k+1) =Tx(k) +HU(k) )
Ujen, (k) € Ujen,
Ujez-n;(k) € Ujez

where Ujez z; denotes the assumed inputs of others agents. The goal of the decomposition is
to reduce the complexity of the optimisation problem (1) by ensuring that subproblems (7) are
smaller than the original problem (fewer decision variables and constraints), while they retain
the properties of the original problem. The price paid to simplify the optimisation problem (1)
is the needs of coordination between the subproblems (7) during their solution. In this way,
the optimisation problem (1) has been transformed into a dynamic game of m agents where each
one searches for their optimal decisions through a sequence of strategic games, in response to
decisions of other agents.

Definition 1. A dynamic game {(m,U,]; (x(k),U7(k), A),D(q,k)) models the interaction of m
agents over iterations q and is composed of: i) m € IN agents; ii) a non empty set U that corresponds
to the available decisions U7 (k) for each agent; iii) an utility function J; (x(k), U7(k), A) = x(k) x
Ui(k) — R for each agent; iv) an strategic game G(q, k) that models the interactions between agents
at iteration q and time k; v) a dynamic process of decision adjustment D(q,k) : (U1(k),G(q,k),q) —
uitl (k).

At each stage of the dynamic game, the joint decision of all agents will determine the outcome
of the strategic game G(q,k) and each agent has some preference U]'?E w; (k) over the set of

possible outcomes . Based on these outcomes and the adjustment process D(g, k), which
in this framework depends on the cost function J;(-) and constraints, the agents reconcile
their decisions. More formally, a strategic game is defined as follows (Osborne & Rubinstein,
1994)

Definition 2. A finite strategic game G(q,k) = (m,U;, J; (x(k), U9 (k), A)) models the interactions
between m agents and is composed of: i) a non empty finite set Uy C U that corresponds the set
of available decisions for each agent; ii) an utility function J; (x(k), U1(k), A) : x(k) x U9(k) —
R U9(k) € U for each agent.

In general, one is interested in determining the choices that agents will make when faced with
a particular game, which is sometimes referred to as the solution of the game. We will adopt
the most common solution concept, known as Nash equilibrium (Nash, 1951): a set of choices
where no individual agent can improve his utility by unilaterally changing his choice. More
formally, we have:

Definition 3. A group of control decisions U (k) is said to be Nash optimal if

q q—1 q—1 q-1
I (o0, Ul (), U (R)) < gy (o), U (), U ()
where q > 0 is the number of iterations elapsed during the iterative process.

If Nash optimal solution is achieved, each subproblem does not change its decision U]qe N (k)

because it has achieved an equilibrium point of the coupling decision process; otherwise the
local performance index J; will degrade. Each subsystem optimizes its objective function
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using its own control decision U?e N (k) assuming that other subsystems’ solutions U]-qe T-M (k)
are known. Since the mutual communication and the information exchange are adequately
taken into account, each subsystem solves its local optimisation problem provided that the
other subsystems’ solutions are known. Then, each agent compares the new solution with
that obtained in the previous iteration and checks the stopping condition

Hu]‘?eM(k) - u?e_Alfz(k)Hw <eg I=1,...,m (8)

If the algorithm is convergent, condition (8) will be satisfied by all agents, and the whole
system will arrive to an equilibrium point. The subproblems m (7) can be solved using the
following iterative algorithm

Algorithm 1

Given Q;, R, 0 < gax < 00, >0 Vi=1,---,m
Foreachagent! [=1,---,m
Step 1 Initialize agent !
1.a Measure the local state x;(k),q =1,
pr=¢e ¢>1
1.b U%(k) = [u(k,k—1) - u(k+M,k—1)0]
Step 2 while p; > ¢; and g < Guax
2.2 Solve problem (7) to obtain CI?G ~; (k)
2b forp=1,--- ,mandp #1
Communicate l:l]q6 ; (k) to agent p
end
2.c Update the solution iterate g Vj € N,
ul (k) = Sy aplUi y i (k)
+ (1 — Yy apcard (] ﬁj\fl)) U]‘Fl(k)

24 pr = Ul (0~ UL )

g=g+1
end
Step 3 Apply u;(k, k)

Step 4 k = k +1 and goto Step 1

At each k, quqx represents a design limit on the number of iterates g and ¢; represents the
stopping criteria of the iterative process. The user may choose to terminate Algorithm 1 prior
to these limits.

3. Properties of the framework

3.1 Performance
Given the distributed scheme proposed in the previous Section, three fundamental questions
naturally arise: a) the behavior of agent’s iterates during the negotiation process, b) the



Distributed Model Predictive Control Based on Dynamic Games 71

location and number of equilibrium points of the distributed problem and c) the feasibility
of the solutions. One of the key factors in these questions is the effect of the cost function and
constraints employed by the distributed problems. Therefore, in a first stage we will explore
the effect of the performance index in the number and position of the equilibrium points.
Firstly, the optimality conditions for the centralised problem (1) are derived in order to have
a benchmark measure of distributed control schemes performance. In order to make easy the
comparison, the performance index (3) is decomposed into m components related with the
subsystems, like in the distributed problems (7), as follows

J (x(R),U(K),©) = Y- 61Jy (x(k), U(K)), 6, > 0, Y6, = 1. ©)
I=1 I=1

This way writing the performance index corresponds to multiobjective characterization of the
optimisation problem (1). Applying the first-order optimality conditions we obtain

i W+ATDJENP_O p=1,...,m, (10a)
AT (D]eNpujeNp(k) _ b) -0, (10b)

where D/ is the j-th column vector of D. The solution of this set of equations U* (k) is the
optimal solution of the optimisation problem (1) and belongs to Pareto set, which is defined as
(Haimes & Chankong, 1983).

Definition 4. A solution U* (k) € U is said to be Pareto optimal of the optimisation problem (1) if
there exists no other feasible solution VU (k) € U such that J; (x(k), U(k)) < J; (x(k), U*(k)) VI=
1,...,m.

In distributed control the agents coordinate their decisions, through a negotiation process.
Applying the first-order optimality conditions to decentralised cost (6) we obtain

- 0]y (x(k), U(k)) TjeN, _ —
; au—()-i-/\ D/ =0 p=1,...,m, (11a)
AT (DI Ui (k) — b) = 0. (11b)

By simple inspection of (10) and (11) we can see that these equations have the same structure,
they only differ on the weights. Therefore, the location of the distributed schemes equilibrium
will depend on the selectionof ;) [ =1,...,m. There are two options:

e Ifa; =1,ap4 = 0the optimality condition (11) becomes

of (x(k), U(k)) | \Tpjen; _ _
T ® +A'D/ =0 I=1,...,m, (12a)
AT (DJ'ENI Ujen; (k) — b) =0. (12b)

This condition only evaluates the effect of Ujcp;, given Ujez y;, in subsystem !
without taking into account its effects in the remaining agents (selfish behavior). This
configuration of the distributed problem leads to an incomplete and perfect information
game that can achieve Nash optimal solutions for a pure strategy (Cournot equilibrium)
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(Osborne & Rubinstein, 1994). By simple comparison of (10) and (12) we can conclude
that the solution of this equations lies outside of the Pareto set (Dubey & Rogawski,
1990; Neck & Dockner, 1987). The reason of Nash equilibrium inefficiency lies in the fact
that the information of each agent decision variable effects” on the remaining agents is
neglected (a4 = 0 incomplete information game). Therefore, each agent minimizes their
performance index, accommodating the effects of other agents” decisions, without taking
in account its effects on the rest of the system. Besides the lack of optimality, the number of
equilibrium points generated by the optimality condition (12) can grow with the number
of agents (Bade et al., 2007).

¢ If @) > 0 the optimality condition (11) becomes

ﬁ ‘—ﬂlau—l(lk()k)) +ATDIENy =0 p=1,...,m (13a)
AT (D]EN”UjeN,,(k) _ b) =0. (13b)

This condition evaluates the effect of Ujc z;, given Ujez v, in the entire system, taking in
account the effect of interactions between the subsystems (cooperative behavior), leading
to a complete and perfect information game. By simple comparison of (10) and (13) it is
easy to see that these two equations have a similar structure, therefore we can conclude
that their solutions lie in the Pareto set. The position of distributed MPC solutions will
depend on the values of «;. In the particular case of a; = 6, [ =1,...,m the solution of
the centralised and distributed schemes are the same.

The value of weights a; [ = 1,...,m depends on the information structure; that is the
information of the cost function and constraints available in each agent. If the cost function
and constraints of each agent are known by all the others, for example a retailer company,
«; can be chosen like the second distributed scheme (¢; > 0 VI = 1,...,m). In this
case the centralised optimisation problem is distributed between m independent agents that
coordinate their solutions in order to solve the optimisation problem in a distributed way. For
this reason we call this control scheme distributed MPC. On the other case, when the local
cost function and constraints are only known by the agents, for example a power network
where several companies compete, the weights a; should be chosen like the first scheme
(0 = Layy =0 Vl,p =1,...,m). In this case the centralised optimisation problem is
decentralised into m independent agents that only coordinate the effects of their decisions to
minimize the effect of interactions. For this reason we call this control scheme coordinated
decentralised MPC.

Remark 3. The fact that agents individually achieve Nash optimality does not imply the global
optimality of the solution. This relationship will depend on the structure of agents’ cost function and
constraints, which depends on the value of weights w;, and the number of iterations allowed.

The structure of Ujen, determine the structure of constraints that can be handled by the
distributed schemes. If the subproblems share the input variables involved in the coupled
constraints (N; NN, p#l 7 ©), the distributed MPC schemes can solve optimisation problems
with coupled constraints. On the other hand, when subproblems do not include the input
variables of coupled constraints (N; NN, = @), the distributed MPC schemes can only
solves optimisation problems with independent constraints (Dunbar, 2007; Jia & Krogh, 2001;
Venkat et al., 2008). These facts become apparent from optimality conditions (12) and (13).
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3.2 Convergence

During the operation of the system, the subproblems (7) can compete or cooperate in the
solution of the global problem. The behavior of each agent will depend on the existence,
or not, of conflictive goals that can emerge from the characteristics of the interactions, the
control goals and constraints. The way how the system is decomposed is one of the factors
that defines the behavior of the distributed problem during the iterations, since it defines how
the interactions will be addressed by distributed schemes.

The global system can be partitioned according to either the physical system structure or
on the basis of an analysis of the mathematical model, or a combination of both. Heuristic
procedures for the partitioning the system based on input—output analysis (see (Goodwin
et al., 2005; Henten & Bontsema, 2009; Hovd & Skogestad, 1994)), an state—space analysis
based (see (Salgado & Conley, 2004; Wittenmark & Salgado, 2002) or on performance metric
for optimal partitioning of distributed and hierarchical control systems (see (Jamoom et al.,
2002; Motee & Sayyar-Rodsari, 2003)) have been proposed. In all these approaches the
objective is to simplify the control design by reducing the dynamic couplings, such that the
computational requirements are evenly distributed to avoid excessive communication load.
It is important to note that the partitioning of a state—space model can lead to overlapping
states both due to coupled dynamics in the actual continuous system and due to discrete-time
sampling, which can change the sparsity structure in the model.

Assumption 4. The model employed by the distributed MPC algorithms are partitioned following the
procedures described in (Motee & Sayyar-Rodsari, 2003).

To analysed the effect of the system decomposition on the distributed constrained scheme,
firstly we will analysed its effects on unconstrained problem. Solving the optimality condition
(11) for an unconstrained system leads to

ui(k) = Kou(k) + Kyx(k) Vg >0, (14)

which models the behavior of the distributed problem during the iterative process. Its stability
induces the convergence of the iterative process and it is given by

A (Ko)| < 1. (15)

The gain K is the decentralised controller that computes the contribution of x (k) to U(k) and
has only non—zero elements on its main diagonal K7 = [K;;] [ =1,...,m. On other hand,
Ko models the interaction between subsystems during the iterative process, determining its
stability, and has non zero elements on its off diagonal elements

0 Ko - K
Ko 0 Kom
Ko = . ) .
Ile T ICmmfl 0
The structure of the components of Ky and K7 depends on the value of the weights a;:

e If the coordinated decentralised MPC is adopted (a; = 1,ap,2; = 0) the elements of K are
given by given by
IClp = —K”Hlp l,p =1,...,m (17)
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where K;; = (’HITIQ”’H” + R”) ! ”HITIQ”. Therefore, the way in which the global
problem (1) was partitioned and how the controllers” parameters were tuned defines the
convergence of the coordinated decentralised MPC. Under Assumption 2 the convergence of
the algorithm can be guaranteed for those systems that exhibit weak interactions.

* On the other hand, when the distributed MPC is adopted («; > 0) the gain K is given by
IClp:_Kllep l,pzl,...,m (18)

-1
where the controller gains are given by K;, = (HlTlelep + Rlp) HlTlep' Since the
distributed MPC is designed to guarantee the stability of the entire system, its convergence
is guaranteed independently of the way of partitioning the system.

Now, we will consider constrained systems. In this case, under Assumption 2, the
convergence for constrained systems can be analysed using Lyapunov arguments. The key
idea is to show the contractivity of the sequence of global cost functions J (x(k, U9(k)), A)
generated by Algorithm 1 along the iterative process.

Lemma 1. Let’s assume that the system has been partitioned following a decentralised design procedure
and the distributed MPC problems (7) VI = 1,...,m are feasible, then the sequence of cost functions
J (x(k,U1(k)), A) generated by Algorithm 1 during the iterative process is non increasing Vg > 0 at
any time k.

Proof. See appendix 8.A. O

3.3 Feasibility

Although in current literature it is typically assumed that an initial centralised feasible
solution exist and is available, in this Section we will provide a simple and implementable
way of constructing it in a distributed way assuming that the global initial state is available in
advanced.

An initial feasible solution input U]Oe N (k) at k = 0 can be computed locally by using an inner

approximation of the global feasible set I/ based on all the constraints appearing in (1) and
the global initial state x(0), which is assumed to be available. Consider an inner-hyperbox
approximation ) of U, which then takes the form of a Cartesian product

Q=0 % - QucCU. (19)

This approximation essentially decomposes and decouples the constraints among subsystems
by performing constraint tightening. Each subsystem ! will thus have to include €); in their
local problem setup. Since the Cartesian product of these local constraint sets are included
in the globally feasible set I/, any combination of local solutions within (); will be globally
feasible as well. The local constraint sets that arise from this inner-hyperbox approximation
will be in general quite conservative, but at the same time will allow the construction of a
feasible solution locally to initialize Algorithm 1.

Calculation of the inner-hyperbox approximation can be performed a priori and the local
) constraints distributed to each subsystem. A polynomial-time procedure to compute a
maximum volume inner box of could follow the procedure described in (Bemporad et al.,
2004). Obtaining the local component-wise constraints (); is then straightforward. For time
steps k > 0, we construct a feasible solution by performing Step 1 of Algorithm 1

U/Qe/\fl(k) = [”jef\/z(k,k—l) ujeM(k+M,k—1)0}
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The feasibility throughout the iterations is maintained because in step 2.a m feasible solutions

l:l?e ; (k) are obtained. Then, in step 2.c, the new control profile qu ; (k) is built as a convex

]
combination of these solutions. Since problem (7) is a convex constrained QP, any convex

combination of U?e I (k) also satisfies the convex constraint set. Therefore U7(k) is a feasible
solution of optimisation problem (7) for all /.

3.4 Stability

Showing nominal stability of the resulting closed-loop system follows standard arguments for
the most part (Mayne et al., 2000). The proof in this section is closely related to the stability
proof of the FC-MPC method in (Venkat et al., 2008) with the addition of Assumption 2. The
key idea is to show the contractivity of the sequence of global cost functions | generated by
Algorithm 1 along the system operation and the stability of the origin.

Theorem 1. Let us assume that the system has been partitioned following a decentralised design
procedure and the optimisation problem (7) solved using Algorithm 1 is feasible, then the origin is an
exponentially stable equilibrium point.

Proof. See appendix 8.B. O

4. System behavior under communication failures

In the proposed framework agents coordinate their actions by exchanging information
through the communication network. Since the agents extensively use the communication
network some questions related to the system behavior arise if communications fail: Which
are the conditions for the convergence of the iterative process? How closed-loop stability is
affected? How does system performance change?

In a first stage, the failures in the communication system are modeled introducing three
matrices: i) the connection matrix C which represents the communication structure, ii) the
transmission failure matrix T which models the transmission failures and iii) reception failure
matrices R that models the reception failures in the system. The matrix C is defined as

_ _] 0 I=p
€= [Cl”}’cl”{loro I#p, 20)

where ¢;, = 1 indicates the connection between agents I and p, while ¢;, = 0 shows no
connection between these agents. Then, the failures in the communication system can be
modeled combining the connection matrix with the others matrices that models the reception
(R ) and transmission (7') failures, RCT, which are given by

1 I=p,

R_[rlp}/rlp_{o Z#Z/ (21&)
1 1=p,

=[] mw={o 170 21b)

An element t;; = 1 (r;; = 1) corresponds to a perfect transmission (reception) of agent /, while
t;; = 0 (r;; = 0) corresponds to a transmission (reception) failure of agent I. A failure between
agents [ and p is represented with the transition from 1 — 0 of the corresponding elements of
Rand T.
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Following the same procedure like in Section 3.2, the solution for the distributed problem at
each iteration is
Ui(k) = KoRCTUT (k) + K1 RCTx(k) g>1

Its behavior is related with its stability, which is given by
1A (KoRET)|1 < 1 (22)

Under communication failure each agent cannot exchange information properly, which will
modify the iterative process driving it to another solution. In this case, the agent with
communication failure will become a decentralised controller that will receive information
about the decision of the others agents through the system. This will deteriorate the stability
margins and performance due to the presence of the interactions not accounted during the
iterative process, which will act like non measurable disturbances. In the extreme case
KoRCT = 0, the control structure will correspond to the fully decentralised control architecture,
and the stability will depend on the way that the system was partitioned. If the controllers
are designed following a decentralised design procedure (Wittenmark & Salgado, 2002), the
stability of the closed-loop system can be guaranteed.

Once the convergence of the iterates can be guaranteed, the next issue to be addressed is the
effect of the communication failures on the closed-loop stability. In order to establish their on
the closed-loop behavior, the control action

U(k) = (I — KoRCT) ' KyRCTTx(k)
is replaced in the open-loop model of the system, leading to the closed-loop system
x(k+1) = (A= BZ(1- KyRCT) ™ KyRCTT ) x(k).
Then, the stability of the closed-loop system under communication failures is determined by
‘/\ (A~ BI(1-KyRCT) ™' K4RCTT) ‘ <1 (23)

Under the communication failure, each agent can not exchange information properly therefore
the stability of the closed-loop system will depend on the dynamic characteristics of the
interactions between subsystems. In the extreme case RC7T = 0, the stability condition is
always satisfied corresponding to the full decentralised architecture. The interactions act like
non measurable disturbances for the controllers, reducing the stability margins and degrading
the system performance.

Theorem 2. Let us assume that the system has been partitioned in a way that the convergence
condition (15) is satisfied, its performance at time instant k under the local communication failure is

(k) < (1 n ”W(k)”) ", (24)

where the performance degradation is bounded by

JO) =T _ W
]* o )\min(]:)

(25)
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where Ay, (F) denotes the minimal eigenvalue of
F= (K- K) —”H)TQ (KT (1= Ko) = H) +R,
Winax = Shax (HTQH + R ) Smax,
Smax =21 = [I+ (1= Ko) ™ (I1+ Ko)] -
Proof. See appendix 8.C. U

5. Simulations

In this Section, we will illustrate the applicability and limitations of the theoretical results
presented in this paper through two problems: i) a LTI MIMO system and ii) the operation of
a heat—exchanger network (HEN). In the first case we analyse and evaluate the ideas discussed
in previous sections through the control of a strongly coupled MIMO LTI system. In the
second problem we will evaluate the applicability and limitations of the proposed framework
to system with complex dynamic.

5.1 LTI System
To explore the ideas discussed in previous Sections, let’s consider the following MIMO linear

system
{yl(S)] _ lu%l 751%1] [M(S)} (26)

e [m s | [00)

This system shows a strong interaction with a non cooperative behavior between both
subsystem due to the difference in the sign of the gain. Besides, the interaction between
y1 and uy is faster than the dynamic between y; and u;. The models for the distributed
and coordinated decentralized MPC algorithms were obtained by dividing the system in two
agents

1 1

Agent1:yi(s) = o n 71(8) = o= n 12(s), (27a)
1.5 1.5

Agent2 : y(s) = s+ 1u1(s) + 5% n 1u2(s). (27b)

Agent 1 solves the optimization problem using u; as decision variable, while agent 2 solves
its optimization problem using up. The parameters of the predictive control algorithms are
M =5 V=20, Qi = I, Ri =2hyy i=0,---,M—1,and the stopping condition for the
decentralized and distributed MPC algorithms was fixed to €1 = e, = 0.005 and gax = 30.

Figure 1 shows the closed-loop responses for different MPC schemes. In this figure we can
see that the performance of centralized and distributed MPC are similar, while the performance
of the coordinated decentralized MPC is worst than the others control schemes. In general,
the response obtained by the coordinated decentralized MPC shows stronger interactions that
deteriorate the overall system performance. This phenomenon is due to the fact that the
coordinated decentralized MPC does not optimize the effect of the agents decision variable on
the performance of the other agent. Figure 1.b shows the resulting manipulated variables
where we can see the behavior of the three MPC schemes. Even though all algorithms achieve
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Fig. 1. System responses to different MPC schemes (- - Centralized MPC, — Distributed MPC
and -.- Coordinated decentralized MPC).
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Fig. 2. Behavior of the controllers’ cost functions during the iterative procedure (- -
Centralized MPC, — Distributed MPC and -.- Coordinated decentralized MPC).

the same steady-state conditions, the inputs / outputs trajectories followed by the coordinated
decentralized MPC are different from the centralized and distributed MPC.

Figure 2 shows the behavior of MPC controllers cost functions during the iterative procedure
for the first set point change. The first thing to see is the oscillatory behavior of the iterative
process of the coordinated decentralized MPC, in contrast with the monotonous behavior of
the distributed MPC. This behavior is due to the nature interactions and the characteristics
Balderud et al. (2008). The cost function of the distributed MPC converges to the solution
of the centralized MPC, which is globally optimal, in few iterations. If the iterative process
is stopped before (4 < 4), the resulting solution will be suboptimal however it will lead
to a stable closed-loop system. The earlier the iterative process is stopped, the bigger the
difference to the centralized solution.
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5.2 Heat-exchanger network

The heat-exchanger network (HEN) system studied here is represented schematically in
Figure 3. It is a system with only three recovery exchangers (I;, I, and I3) and three service
(51, S2 and S3) units. Two hot process streams (/17 and hy) and two cold process streams (c;
and cy) take part of the heat exchange process. There are also three utility streams (s1,s, and
s3) that can be used to help reaching the desired outlet temperatures.

G 5
1
l 1
1
1
1
1
1
h : Y1
1 <~ - s
i y3 l ’ l
1
i s
Uy !
1
1
1
1
1
1

G)

Ya

Fig. 3. Schematic representation of the HEN system.

The main purpose of a HEN is to recover as much energy as necessary to achieve the system
requirements from high—temperature process streams (h1 and /) and to transfer this energy
to cold—process streams (c; and cp). The benefits are savings in fuels needed to produce utility
streams s1, 5 and s3. However, the HEN has to also provide the proper thermal conditioning
of some of the process streams involved in the heat transfer network. This means that a
control system must i) drive the exit process—-stream temperatures (y1, 2,3 and y4) to the
desired values in presence of external disturbances and input constraints while ii) minimizes
the amount of utility energy.

The usual manipulated variables of a HEN are the flow rates at bypasses around heat
exchangers (u1,uy and u4) and the flow rates of utility streams in service units (13, u5 and
ug), which are constrained

0<u(k) <10 j=1,...,6

A fraction 0 < u; < 1 of bypass j means a fraction u; of corresponding stream goes through
the bypass and a fraction 1 — u; goes through the exchangers, exchanging energy with other
streams. If u; = 0 the bypass is completely closed and the whole stream goes through the
exchangers, maximizing the energy recovery. On the other hand, a value of u; = 1 the bypass
is completely open and the whole stream goes through the bypass, minimizing the energy
recovery.

The HEN studied in this work has more control inputs than outlet temperatures to be
controlled and so, the set of input values satisfying the output targets is not unique. The
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possible operation points may result in different levels of heat integration and utilities
consumption. Under nominal conditions only one utility stream is required (s; or s3) for the
operation of the HEN, the others are used to expand the operational region of the HEN.

The inclusion of the control system provides new ways to use the extra utility services (s, and
s3) to achieve control objectives by introducing new interactions that allow the redirection of
the energy through the HEN by manipulating the flow rates. For example, any change in the
utility stream s3 (1) has a direct effect on output temperature of c; (y4), however the control
system will redirect this change (through the modification of u7) to the output temperature of
h1 (y1),h2 (y2), and ¢; (y3). In this way, the HEN has energy recycles that induces feedback
interaction, whose strength depends on the operational conditions, and leads to a complex
dynamic: i) small energy recycles induce weak couplings among subsystems, whereas ii) large
energy recycles induce a time scale separation, with the dynamics of individual subsystems
evolving in a fast time scale with weak interactions, and the dynamics of the overall system
evolving in a slow time scale with strong interactions Kumar & Daoutidis (2002).

A complete definition of this problem can be found in Aguilera & Marchetti (1998). The
controllers were developed using the following linear model

Y = A(s) x U,
where
20.6 e~013s 19.9 ¢~289s 17.3 e 48 0 0 0
38.85+1 2545+1 23.85+1
4.6 ¢~%04 0 0 79 131.4s+0.8 20.1 e 4l 0
A(s) = 48457 T 131.45+1.0 25.65+1.0
- 16.9 e~ %7 —39 222.85+0.8 0 0 0 0
3955+1 *<22.85+1.0
24 448.252+4.OS+0.05 0 0 _84 e 188 0 16.3 e~35
"+ 48.2524+3.95+0.06 2279541 20.1s+1.0
and

U:[u1u2u3u4u5u6]T,
Y=[nnyul

The first issue that we need to address in the development of the distributed controllers is
selection of the input and output variables associated to each agent. The decomposition was
carried after consideration of the multi-loop rules (Wittenmark & Salgado, 2002). The resulting
decomposition is given in Table 1: Agent 1 corresponds to the first and third rows of A(s),
while agents 2 and 3 correspond to the second and fourth rows of A(s) respectively. Agents 1
and 2 will mainly interact between them through the process stream cy.

For a HEN not only the dynamic performance of the control system is important but also the
cost associated with the resulting operating condition must be taken into account. Thus, the
performance index (3) is augmented by including an economic term [, such that the global
cost is given by | + Ji;, defined as follows

Ju = ugsRyuss. (28)

where ugs = [uz(k+ M, k) us(k + M, k) ug(k + M, k)] for the centralized MPC. In the case of
the distributed and coordinated decentralized MPC, ugg is decomposed among the agents of the
control schemes (1155 = us(k + M, k) for Agent 1, uss = us(k + M, k) for Agent 2 and ugs =
ug(k + M, k) for Agent 3). Finally, the tuning parameters of the MPC controllers are: t; =
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0.2min; V; =50, M; = 5; g = 0.01; gpax = 10 [ = 1,2,3, the cost functions matrices are
given in Table 2.

MATLAB based simulation results are carried out to evaluate the proposed MPC algorithms
(coordinated decentralized and distributed MPC) through performance comparison with a
centralized and decentralized MPC. The MPC algorithms used the same routines during the
simulations, which were run in a computer with an Intel Quad-core Q9300 CPU under Linux
operating system. One of the processors was used to execute the HEN simulator, while the
others were used to execute the MPC controllers. Only one processor was used to run the
centralized MPC controller. In the case of the distributed algorithms, the controllers were
distributed among the other processors. These configurations were adopted in order to make
a fair comparison of the computational time employed for each controller.

We consider the responses obtained for disturbance rejection. A sequence of changes is
introduced into the system: after stabilizing at nominal conditions, the inlet temperature of /1
(T;;*ll) changes from 90°C to 80°C; 10 min later the inlet temperature of iy (T,i’;) goes from 130°C

to 140°C and after another 10 min the inlet temperature of ¢y (ng';) changes from 30°C to 40°C.
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Fig. 4. Controlled outputs of the HEN system using (—) distributed MPC and (-.-)
coordinated decentralized MPC.

Figures 4 and 5 show the dynamic responses of the HEN operating with a distributed MPC
and a coordinated decentralized MPC. The worse performance is observed during the first and
second load changes, most notably on y; and y3. The reasons for this behavior can be found
by observing the manipulated variables. The first fact to be noted is that under nominal
steady-state conditions, uy is completely closed and y; is controlled by us (see Figures 5.b),
achieving the maximum energy recovery. Observe also that 1 is inactive since no heating
service is necessary at this point. After the first load change occurs, both control variables u;
and u3 fall rapidly (see Figures 5.2). Under this conditions, the system activates the heater
flow rate u¢ (see Figures 5.b). The dynamic reaction of the heater to the cool disturbance is
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also stimulated by u,, while u¢ takes complete control of 1, achieving the maximum energy
recovery. After the initial effect is compensated, y3 is controlled through u; —which never
saturates—, while 1 takes complete control of y;. Furthermore, Figure 5.b show that the cool
perturbation also affects y,, where u5 is effectively taken out of operation by u4. The ensuing
pair of load changes are heat perturbations featuring manipulated movements in the opposite
sense to those indicated above. Though the input change in h; allows returning the control of
y1 from ug to u3z (see Figures 5.a).

EXARS

i L il
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time [ min ] Time [ min ]

(a) u1(t), ua(t), us(t) (b) uy(t), us(t), us(t)

Fig. 5. Manipulated inputs of the HEN system using (—) distributed MPC and (-.-)
coordinated decentralized MPC.

In these figures we can also see that the coordinated decentralized MPC fails to reject the first
and second disturbances on i1 and y3 (see Figures 4.2 and c) because it is not able to properly
coordinate the use of utility service i to compensate the effects of active constraints on u, and
u3. This happens because the coordinated decentralized MPC is only able to address the effect
of interactions between agents but it can not coordinate the use of utility streams s, and s3 to
avoid the output-unreachability under input constraint problem. The origin of the problem lies
in the cost function employed by the coordinated decentralized MPC, which does not include
the effect of the local decision variables on the other agents. This fact leads to different
steady-state values in the manipulated variables to those ones obtained by the distributed MPC
along the simulation.

Figure 6 shows the steady-state value of the recovered energy and utility services used by the
system for the distributed MPC schemes. As mentioned earlier, the centralized and distributed
MPC algorithms have similar steady-state conditions. These solutions are Pareto optimal,
hence they achieve the best plant wide performance for the combined performance index.
On the other hand, the coordinated decentralized MPC exhibited a good performance in energy
terms, since it employs less service energy, however it is not able of achieving the control
objectives, because it is not able of properly coordinate the use of utility flows us and ug. As
it was pointed out in previous Sections, the fact that the agents achieve the Nash equilibrium
does not implies the optimality of the solution.

Figure 7 shows the CPU time employed for each MPC algorithm during the simulations. As
it was expected, the centralized MPC is the algorithm that used more intensively the CPU.
Its CPU time is always larger than the others along the simulation. This fact is originated
on the size of the optimization problem and the dynamic of the system, which forces the
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centralized MPC to permanently correct the manipulated variable along the simulation due to
the system interactions. On the other hand, the coordinated decentralized MPC used the CPU
less intensively than the others algorithms, because of the size of the optimization problem.
However, its CPU time remains almost constant during the entire simulation since it needs to
compensate the interactions that had not been taken into account during the computation.
In general, all algorithms show larger CPU times after the load changes because of the
recalculation of the control law. However, we have to point out that the value of these peak
are smaller than sampling time.

6. Conclusions

In this work a distributed model predictive control framework based on dynamic games is
presented. The MPC is implemented in distributed way with the inexpensive agents within
the network environment. These agents can cooperate and communicate each other to achieve
the objective of the whole system. Coupling effects among the agents are taken into account
in this scheme, which is superior to other traditional decentralized control methods. The
main advantage of this scheme is that the on-line optimization can be converted to that
of several small-scale systems, thus can significantly reduce the computational complexity
while keeping satisfactory performance. Furthermore, the design parameters for each agent
such as prediction horizon, control horizon, weighting matrix and sample time, etc. can
all be designed and tuned separately, which provides more flexibility for the analysis and
applications. The second part of this study is to investigate the convergence, stability,
feasibility and performance of the distributed control scheme. These will provide users better
understanding to the developed algorithm and sensible guidance in applications.
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8. Appendices
A. Proof of Lemma 1

Proof. From definition of the J(-) we have
J (), U (k), A) = ] (x(k), [Uly (k) ULy ()], 4) 29)

From definition of U]qe e have

J (k) UT(k), A) =] (x(K), [wjen; 0F (6) + (1= ajens ) ULy, (K) -
“jeana7€Nm (k) + (1 B afeNm) ufqe_f\lﬂ'l(k)} 'A)
=1 (000, [mjens [Bs 00 U ()] -

wjew, [Ulon, () Ul (0], 4)
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By convexity of J(-) we have

and from Algorithm 1 we know that

J (200, Ty (), Uz pq (), A) < T (x(k), U7 (K), ),
then

J (x(k), (), A) < ] (x(k), Ul (0), Uy (), A) < T (x(k), U k), A) . @31)

Subtracting the cost functions at 4 — 1 and g we obtain
- -1 -1
A] (x(k), u 1(k),A) < —AUL (TR AU (k).

This shows that the sequence of cost {]7 (k)} is non-increasing and the cost is bounded below

by zero and thus has a non-negative limit. Therefore as 4 — oo the difference of cost AJ7(k) —
0 such that the J7(k) — J*(k). Because R > 0, as AJ7(k) — 0 the updates of the inputs
AUT~1(k) — 0 as g — oo, and the solution of the optimisation problem U (k) converges to a
solution U(k). Depending on the cost function employed by the distributed controllers, U (k)
can converge to U*(k) (see Section 3.1). O

B. Proof of Theorem 1

Proof. First it is shown that the input and the true plant state converge to the origin, and then
it will be shown that the origin is an stable equilibrium point for the closed-loop system. The
combination of convergence and stability gives asymptotic stability.

Convergence. Convergence of the state and input to the origin can be established by showing
that the sequence of cost values is non-increasing.

Showing stability of the closed-loop system follows standard arguments for the most part
Mayne et al. (2000), Primbs & Nevistic (2000). In the following, we describe only the most
important part for brevity, which considers the nonincreasing property of the value function.
The proof in this section is closely related to the stability proof of the FC-MPC method in
Venkat et al. (2008).

Letg(k) and q(k + 1) stand for iteration number of Algorithm 1 at time k and k + 1 respectively.
Let J(k) = J(x(k),U(k),A) and J(k+1) = J(x(k+1),U(k+ 1), A) denote the cost value
associated with the final combined solution at time k and k + 1. At time k+ 1, let J;(k +

1) =] <x(k +1), U;?G ~; (k) U]qulf ~;(K), A) denote the global cost associated with solution of
subsystem [ at iterate 4.
The global cost function J (x(k), U(k)) can be used as a Lyapunov function of the system, and

its non-increasing property can be shown following the chain
J(x(k+1),U(k+1),A) <+ < J(x(k+1),UT(k+1),A) <
o ] (2O 1), U (k1), A) < T (x(h), LK), A) — x(6)T Qx(k) — u(k) Ru(k)
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The inequality J (x(k+1), U7(k+1),A) < J(x(k+1), U (k+1),A) is consequence of
Lemma 1. Using this inequality we can trace back to g = 1

J(e(k+1),Uk+1),A) < - < ] (x(k+ 1), UT(k + 1), A) <
~S](x(k+l),ul(k+1),A).

At time step ¢ = 1, we can recall the initial feasible solution U°(k + 1). At this iteration,
the distributed MPC optimizes the cost function with respect the local variables starting from
U°(k + 1), therefore VI = 1,...,m

J (k4 1), Ul s (0), Uz (), A) < T (x(k+1),U0(k), A)

i (k+,kTQux(k +1,k) +u(k +i,k)TRu(k +i,k)
i=1

< J (x(k), U(k), A) = x (k)T Qx(k) — u(k)" Ru(k)

Due to the convexity of | and the convex combination up date (Step 2.c of Algorithm 1), we
obtain

J (x(0), U (k), 4) < zw( x(k+1), Ul (0), Weg_y; (0), A) (32)

then,

Subtracting J* (k) from J*(k + 1)

J*(k+1) = J* (k) < —x (k)" Q(k) — u(k) Ru(k) Vk. (33)

This shows that the sequence of optimal cost values {J*(k)} decreases along closed-loop
trajectories of the system. The cost is bounded below by zero and thus has a non-negative
limit. Therefore as k — oo the difference of optimal cost AJ*(k + 1) — 0. Because Q and R
are positive definite, as AJ*(k + 1) — 0 the states and the inputs must converge to the origin
x(k) — 0and u(k) — 0 as k — oo.

Stability. Using the QP form of (6), the feasible cost at time k = 0 can be written as follows
J(0) = x(0)TQx(0), where Q is the solution of the Lyapunov function for dynamic matrix
O=ATQA+Q.

From equation (33) it is clear that the sequence of optimal costs {J*(k)} is non-increasing,
which implies J*(k) < J*(0) Vk > 0. From the definition of the cost function it follows that
xT(k)Qx(k) < J*(k) Vk, which implies

xT(k)Qx(k) < x(0)TQx(0) Vk.
Since Q and Q are positive definite it follows that

[x(®)| <y x(O)]| Vk>0
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where

Amax (Q)

Amin (Q) .
Thus, the closed-loop is stable. The combination of convergence and stability implies that the
origin is asymptotically stable equilibrium point of the closed-loop system. O

C. Proof of Theorem 2

Proof. The optimal solution of the distributed control system with communications faults is
given by
U(k) = (I — KoRCT) L KyRCTTx(k). (34)

Using the matrix decomposition technique, it gives
(I—KoRCT) = (I-Kg) ! (21 - [1 + (1K)t
(14 Ko — 2K0RCT)] ™) + (1 — Ko) ™
In general (I—Ko) ' and (I4 Ky—2KoRCT) ™! all exist, therefore the above equation

holds. Now, from (34) we have K1Tx(k) = (I —Ky) U(k), then U(k) can be written as a
function of the optimal solution U (k) as follows

(k) = (S + 1) U(k)

where § =21 — [+ (I - Ko) ™" (I + Ko — 2K¢RCT) |
The cost function of the system free of communication faults [* can be written as function of
U(k) as follows

2
I = et = o) ut) = Hue) |+ ) = U] (35)
where T
F= (KM 1-Ko) = 1) QK7 (1-Ko) = H) +R.
In the case of the system with communication failures we have
T<T + Uy (36)

where W = ST (HTQH + R) S. Finally, the effect of communication can be related with J*
through

1l
U k 2 < || *, 37
Uy < 5 2 @)
where A,,;, denotes the minimal eigenvalue of . From the above derivations, the relationship
between | and J* is given by

. [R4a > .

< |1+ . 38)

] < /\min (]: ) ] (

and the degradation is

]* a /\min(]:).
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Inspection of (36) shows that ||W| depends on R and 7. So in case of all communication
failures existed, |WW|| can arrive at the maximal value

Wnax = (21 = [1+ (1= Ko) ™ (14 K) _1> ' (H"QH +R)

-1 -1
21 [1+(1=Ko) " (1 +Ko)| ),
and the upper bound of performance deviation is

]N_]* < HWmaXH.
]* - /\min(]:)

(40)
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1. Introduction

Model predictive control (MPC) refers to the class of computer control algorithms in which a
dynamic process model is used to predict and optimize process performance. Since its lower
request of modeling accuracy and robustness to complicated process plants, MPC for linear
systems has been widely accepted in the process industry and many other fields. But for
highly nonlinear processes, or for some moderately nonlinear processes with large operating
regions, linear MPC is often inefficient. To solve these difficulties, nonlinear model
predictive control (NMPC) attracted increasing attention over the past decade (Qin et al.,
2003, Cannon, 2004). Nowadays, the research on NMPC mainly focuses on its theoretical
characters, such as stability, robustness and so on, while the computational method of
NMPC is ignored in some extent. The fact mentioned above is one of the most serious
reasons that obstruct the practical implementations of NMPC.

Analyzing the computational problem of NMPC, the direct incorporation of a nonlinear
process into the linear MPC formulation structure may result in a non-convex nonlinear
programming problem, which needs to be solved under strict sampling time constraints and
has been proved as an NP-hard problem (Zheng, 1997). In general, since there is no accurate
analytical solution to most kinds of nonlinear programming problem, we usually have to
use numerical methods such as Sequential Quadric Programming (SQP) (Ferreau et al., 2006)
or Genetic Algorithm (GA) (Yuzgec et al., 2006). Moreover, the computational load of NMPC
using numerical methods is also much heavier than that of linear MPC, and it would even
increase exponentially when the predictive horizon length increases. All of these facts lead
us to develop a novel NMPC with analytical solution and little computational load in this
chapter.

Since affine nonlinear system can represents a lot of practical plants in industry control,
including the water-tank system that we used to carry out the simulations and experiments,
it has been chosen for propose our novel NMPC algorithm. Follow the steps of research
work, the chapter is arranged as follows:

In Section 2, analytical one-step NMPC for affine nonlinear system will be introduced at first,
then, after description of the control problem of a water-tank system, simulations will be
carried out to verify the result of theoretical research. Error analysis and feedback
compensation will be discussed with theoretical analysis, simulations and experiment at last.
Then, in Section 3, by substituting reference trajectory for predicted state with stair-like
control strategy, and using sequential one-step predictions instead of the multi-step
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prediction, the analytical multi-step NMPC for affine nonlinear system will be proposed.
Simulative and experimental control results will also indicate the efficiency of it. The
feedback compensation mentioned in Section 2 is also used to guarantee the robustness to
model mismatch.

Conclusion and further research direction will be given at last in Section 4.

2. One-step NMPC for affine system

2.1 Description of NMPC for affine system
Consider a time-invariant, discrete, affine nonlinear system with integer k representing the
current discrete time event:

Xjer1 =L (X)) T8 (x5 ) XUy +E (1a)
s.t. x, eXcR" (1b)

u, eUcR™ (1c)

g, <R" (1d)

In the above, uy x5, are input, state and disturbance of the system respectively,

fR" >R", gR" >R™Mare corresponding nonlinear mapping functions with proper
dimension.

Assume X4 are predictive values of x,;at time k, Aug=ui-u,; and Ady, are the
solutions of future increment of u,,; at time k, then the objective function J, can be written
as follow:

p-1
Je=F(Xuep k )+ZG(§<k+j kAU 1) )
i=0

The function F (.) and G (. , .) represent the terminal state penalty and the stage cost
respectively, where p is the predictive horizon.
In general, J, usually has a quadratic form. Assume wy;, is the reference value of xy,; at

time k which is called reference trajectory (the form of wy;, will be introduced with detail

in Section 2.2 and 3.1 for one-step NMPC and multi-step NMPC respectively), semi-positive
definite matrix Q and positive definite matrix R are weighting matrices, (2) now can be
written as :

p R 5 Pl 2
Ji= Z:"Xkﬂ'lk - Wk+jlk||Q * Z "Auk*ﬂk"R ©)
=1 i=0

Corresponding to (1) and (3), the NMPC for affine system at each sampling time now is
formulated as the minimization of J,, by choosing the increments sequence of future

control input [Auy,  Auyq - Aty i ], under constraints (1b) and (1c).
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By the way, for simplicity, In (3), part of J, is about the system state x,, if the output of the
system y, =Cx,, which is a linear combination of the state (C is a linear matrix), we can
rewrite (3) as follow to make an objective function J, about system output:

P » Bl 2 B 2 R 2
J= Z||ka+j|k _Wk+j|k||Q + Z||Auk+j|k||R =2 Yk+jlk _Wk+j|k||Q + Z||Auk+j|k||R )
=1 j=0 =1 j=0
And sometimes, Auy, ;i in Ji could also be changed as uy,;; to meet the need of practical
control problems.

2.2 One-step NMPC for affine system

Except for some special model, such as Hammerstein model, analytic solution of multi-step
NMPC could not be obtained for most nonlinear systems, including the NMPC for affine
system mentioned above in Section 2.1. But if the analytic inverse of system function exists
(could be either state-space model or input-state model), the one-step NMPC always has the
analytic solution. So all the research in this chapter is not only suitable for affine nonlinear
system, but also suitable for other nonlinear systems, that have analytic inverse system
function.

Consider system described by (1la-1d) again, the one-step prediction can be deduced directly
as follow with only one unknown data Auyy = uyy —uy_; at time k:

X = F(xi) + 8 (%) Ui = £(xa) +8(xi) - Wieq + (%) - Ay = )A(i+1|k +g(x ) Auge ()

In (5), X 1) means the part which contains only known data (x, and uy ) at time k, and
g(xx) - Auyy is the unknown part of predictive state X,y -
If there is no model mismatch, the predictive error of (5) will be X1y = X1 = Xjsqp = Syn -

Especially, if &, is a stationary stochastic noise with zero mean and variance E[¢, ]=87, it is
easy known that E[Xyqy]=0, and E[(Xjqu — ElRiqi])’ - (R — ElXieq D] =08, in

another word, both the mean and the variance of the predictive error have a minimum
value, so the prediction is an optimal prediction here in (5).
Then if the setpoint is xg,, and to soften the future state curve, the expected state value at

time k+1 is chosen as w ), =oxy +(1-a)x, , where o €[0,1) is called soften factor, thus

sp 4
the objective function of one-step NMPC can be written as follow:

. 2 2
Ju= ||Xk+l|k _Wk+l|k||Q + ||Auk|k||R (6)
To minimize ], without constraints (1b) and (1c), we just need to have I =0 and
Uy k
2
% >0, then:
OAu

Auyy = ‘(8(Xk)T ‘Q-gx )+ R)71 (8(xi)-Q- ()A(i+1|k ~Wiqk)) 7)
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Mark H=g(x)"-Q-g(x)+R and F:g(xk)-Q-(Wk+1|k—)?iﬂlk), so the increment of

instant future input is:

But in practical control problem, limitations on input and output always exist, so the result
of (8) is usually not efficient. To satisfy the constraints, we can just put logical limitation on
amplitudes of u, and x,, or some classical methods such as Lagrange method could be
used. For simplicity, we only discuss about the Lagrange method here in this chapter.

First, suppose every constraint in (1b) and (lc) could be rewritten in the form as

aiTAuklk <b;, i=1,2,---q, then the matrix form of all constraints is:
AAuy <B )

. T T
In which, A = [a¥ a, . aﬂ B= [bl b, .. bq] .
Choose  Lagrange  function as L&) =T + kiT(a;rAuH «—b),i=12,--q, let

oL

=HAuy, +F+a;k; =0 and % = aiTAuklk —-b; =0, then:

Auyy = “H'(F+a;) (10a)
Try-1
alH'F+b,
A= - T 10b
' aiTH’lai (10b)

If A; <0in (10b), means that the corresponding constraint has no effect on Auy,, we can
choose A; =0, butif A; >0 in (10b), the corresponding constraint has effect on Auy indeed,
so we must choose); =4, , finally, the solution of one-step NMPC with constraints could
be:

Auyy =-H ' (F+ATA) (11)

Inwhich, A=[%; &, - %]

2.3 Control problem of the water-tank system

Our plant of simulations and experiments in this chapter is a water-tank control system as
that in Fig. 1. and Fig. 2. (We just used one water-tank of this three-tank system). Its affine
nonlinear model is achieved by mechanism modeling (Chen ef al., 2006), in which the
variables are normalized, and the sample time is 1 second here:

Xi1 = X —0.2021,/x; +0.01923u, (12a)

s. . x, €[0%,100%] (12b)
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u, €[0%,100%] (12)

In (12), x, is the height of water in the tank, and u, is the velocity of water flow into the

tank, from pump P; and valve Vi, while valve V3 is always open. In the control problem of
the water-tank, for convenience, we choose the system state as the output, that means

Vi =X, and the system functions are f(x )= x; —0.2021\/5 and g(xy)=0.01923.

Fig. 1. Photo of the water-tank system

S

noo |

O V2 |
L - I

Fig. 2. Structure of the water-tank system

To change the height of the water level, we can change the velocity of input flow, by
adjusting control current of valve Vi, and the normalized relation between the control
current and the velocity uy is shown in Fig. 3.
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100% ‘ ‘ ‘ ‘ ‘ ——

80%;
60%
=

40%

20%¢

0, _ L L I
0 /6% 25% 50% 75% 100%
control current

Fig. 3. The relation between control current and input uy

2.4 One-step NMPC of the water-tank system and its feedback compensation
Choose objective function  Ji = (Xy,qp — Wi +1|k)2 + 0.00lAuﬁ‘k , Xgp=30%and soften

factor o =0.95, to carry out all the simulations and the experiment in this section. (except for
part of Table 1., where we choose o =0.975)

Suppose there is no model mismatch, the simulative control result of one-step NMPC for
water-tank system is obtained as Fig. 4. and it is surely meet the control objective.

40%

30%
x

20%

0, 1 I
10% 50 100 150

80%

70%

5 60%!/ —

50%|

0, ! I

40% 50 . 100 150
time(sec)

Fig. 4. Simulation of one-step NMPC without model mismatch and feedback compensation

To imitate the model mismatch, we change the simulative model of the plant from
X1 = Xg — 0.20214/x; +0.019231; to Xy ,q =X, —110% x 0.2021,/x, +90% x 0.01923u,,, but

still use x3,q =Xy —0.2021@ +0.01923u, to be the predictive model in one-step NMPC,

the result in Fig. 5. now indicates that there is obvious steady-state error.
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40%
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20%

0, L I
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80%
70% ¢t

560% /\
50%
40% ‘ ‘

0 50 . 100 150
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Fig. 5. Simulation of one-step NMPC with model mismatch but without feedback
compensation

Proposition 1: For affine nonlinear system 1 =£'(x)+8'(xy) -y, if the setpoint is xg,

steady-state is u; and x,, and the predictive model is x,,; =f(x;)+g(xy ) u, , without

consideration of constraints, the steady-state error of one-step NMPC is
_ (F0x) —£(x,)) +(8'(x) ~8(%s)) - ug

P 1-a

Proof: If the system is at the steady-state, then we have x,_; =x, =x, and u,_; =y, =u,.

e=X,—X ,in which o is the soften factor.

Since u_;=u,=uy, so Au,=0, from (8), we know matrix F=0, or equally

21
(Wk+1|k - Xk+1|k) =0.

Update the process of one-step NMPC at time k, we have:

Wi =X + (1 - a)xg, =axg +(1- oc)xsp (13)

P
)A(ll<+l|k = (%) + 8% ) - wg = £(xs) +8(xs) - ug (14)
(13)-(14), and notice that x, =f'(x,) + g'(x,) - u, for steady-state, we get:
0= oXs + (1 _(X')Xsp _f(xs) _g(xs) “Ug =X _f(xs) _g(xs) “Ug + (1 _a')xsp - (1 - (l)XS

= (fl(xs) - f(Xs)) + (g,(xs) - g(xs)) “Ug + (1 - 0t) ’ (Xsp - Xs)
So:
('(xs) = £(x5)) + (8'(xs) = 8(x)) - ug

e=X, — Xy, =
s sp 1-a (15)

Proof end.
Because the soften factor o €[0,1), thus 1-oa #0always holds, the necessary condition for

e=0 is (f'(x;)—f(xs))+(g'(xs) — 8(x,)) - ug =0 . When there is model mismatch, there will be

steady-state error, while this error is independent of weight matrix Q and dependent of the
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soften factor a . For corresponding discussion on steady-state error of one-step NMPC with
constraints, the only difference is (11) will take the place of (8) in the proof.

Table 1. is the comparison on e =x, —xy, between simulation and theoretical analysis, and
they have the same result. (simulative model x,,; = x; —110% x 0.2021,/x; +90% x0.01923u,,
predictive model x,; = x; —0.2021,/x, +0.01923u, )

o o e =X, —Xgp e =Xg —Xgp
Simulation(%) Value of (15)(%)
0 -8.3489 -8.3489
0.975 | 0.001 -8.3489 -8.3489
0.01 -8.3489 -8.3489
0 -4.5279 -4.5279
095 0.001 -4.5279 -4.5279
0.01 -4.5279 -4.5279

Table 1. Comparison on e = x, — X, between simulation and theoretical analysis

From (15) we know, we cannot eliminate this steady-state error by adjusting a , so feedback
compensation could be used here, mark the predictive error e, at time k as follow:

€ = Xy —>A<k|k—1 =X~ (f(bk—l +8(Xi_1) - Auy_q) (16)

In which, x, is obtained by system feedback at time k, and X,_; is the predictive value of
X, at time k-1.
Then add e, to the predictive value of x,,; at time k directly, so (5) is rewritten as follow:

X = £(4) +8(xx) - wyeg +8(Xi) - Ay + €y = %i+l|k +8(x) - Aty + ey 17)

Use this new predictive value to carry out one-step NMPC, the simulation result in Fig. 6.
verify its robustness under model mismatch, since there is no steady-state error with this
feedback compensation method.

The direct feedback compensation method above is easy to understand and carry out, but it
is very sensitive to noise. Fig. 7. is the simulative result of it when there is noise add to the
system state, we can see that the input vibrates so violently, that is not only harmful to the
actuator in practical control system, but also harmful to system performance, because the
actuator usually cannot always follow the input signal of this kind.

To develop the character of feedback compensation, simply, we can use the weighted
average error ¢ instead of single e, in (17):

S S
)A(k+1|k = ii+l|k +g(x ) Auyg + Zhi i1 T 7A<L1|1< +8(xy) - Aty + €, Zhi =1 (19

i=1 i=1
Choose i=20, h; =0.05, the simulative result is shown in Fig. 8. Compared with Fig. 7. it
has almost the same control performance, but the input is much more smooth now. Using
the same method and parameters, experiment has been done on the water-tank system, the
result in Fig. 9. also verifies the efficiency of the proposed one-step NMPC for affine systems

with feedback compensation.
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Fig. 6. Simulation of one-step NMPC with model mismatch and direct feedback compensation
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Fig. 8. Simulation of one-step NMPC with model mismatch, noise and smoothed feedback
compensation
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Fig. 9. Experiment of one-step NMPC with setpoint x, =30%
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3. Efficient multi-step NMPC for affine system

Since reference trajectory and stair-like control strategy will be used to establish efficient
multi-step NMPC for affine system in this chapter, we will introduce them in Section 3.1 and
3.2 at first, and then, the multi-step NMPC algorithm will be discussed with theoretical
research, simulations and experiments.

3.1 Reference trajectory for future state

In process control, the state usually meets the objective in the form of setpoint along a softer
trajectory, rather than reach the setpoint immediately in only one sample time. This may
because of the limit on control input, but a softer change of state is often more beneficial to
actuators, even the whole process in practice. This trajectory, usually called reference
trajectory, often can be defined as a first order exponential curve:

wk+j|k = 0“Nk+j—1|l< + (1 - (X)Xsp,j =1,2,- S Pp- 1 (19)

In which, Xep still denotes the setpoint, a €[0,1)is the soften factor, and the initial value of
the trajectory is wy, =x, .The value of o determines the speed of dynamic response and

the curvature of the trajectory, the larger it is, the softer the curve is. Fig. 10. shows different
trajectory with different o . Generally speaking, suitable o could be chosen based on the
expected setting time in different practical cases.

setpoint— - —— ==

X
— alfa=0
— alfa=0.8
—— alfa=0.95
. ‘ ‘
) 50 100 150

time

Fig. 10. Reference trajectory with different soften factor o

3.2 Stair-like control strategy

To lighten the computational load of nonlinear optimization, which is one of the biggest obstacles
in NMPC'’s application, stair-like control strategy is introduced here. Suppose the first unknown
control input’s increment Auy, =u, —u,_; =A, and the stair coefficient f is a positive real

number, then the future control input’s increment can be decided by the following expression:

Auy =B Au =P Auy =p-A,j=1,2,-,p-1 (20)
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Instead of the full future sequence of control input’s increment: [Au;,  Auy,; - Auk+P_1] ,

which has p independent variables. Using this strategy, in multi-step NMPC, it now need
only compute Auy . The computational load now is independent of the length of predictive

horizon, which is very convenient for us to choose long predictive horizon in NMPC to
obtain a better control performance (Zheng et al., 2007).

Since the dynamic optimization process will be repeated at every sample time, and only
instant input uy =uy + Auy will be carried out actually in NMPC, this strategy is efficient

here. In the strategy, it supposes the future increase of control input will be in a same
direction, which is the same as the experience in control practice of the human beings, and
prevents the frequent oscillation of the input, which is very harmful to the actuators in real
control plants. Fig. 11. shows the input sequences with differentf3.

3.3 Multi-step NMPC for affine system

The one-step NMPC in Section 2 is simple and fast, but it also has one fatal disadvantage.
Its predictive horizon is only one step, while long predictive horizon is usually needed for
better performance in MPC algorithms. One-step prediction may lead overshooting or other
bad influence on system’s behaviour. So we will try to establish a novel efficient multi-step
NMPC based on proposed one-step NMPC in this section.

In this multi-step NMPC algorithm, the first step prediction is the same as (5), then follows
the prediction of X,y in (5), the one-step prediction of Xy,j,j=2,3,+,p could be

obtained directly:

16
----- beta=2
141 PEETE
beta=1
12-{— beta=05 - --- - - - - - -+ - - -
10F---—-—-"-"-""-""-""-"""-"—"—"—"—"—-"F-~———+
> 8F--"-"—"-"-""“"“"“"“"“"“"“"-"—"—"—"—"—"—"“"b—-———
6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4 ,,,,,,,,,,,,,,,,, S E...._...__...........
2 ,,,,,,,,,,,,,,,,,,,,,
0 | L 1 L
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Fig. 11. Stair-like control strategy
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Xieajikc = £ (Xacjope) + 8 (Kiewjoti) - Uitk (21)
Since X,y already contains nonlinear function of former data, one may not obtain the

analytic solution of (21) for prediction more than one step. Take the situation of j=2 for
example:

§(k+2|k = f()A(k+1|k) + g(&k+1|k) U = FEG) + (%0 ) - ) + 8(E(xi) + 8 (X)) - i) - Uy (22)

For most nonlinear f(.) and g(.), the embedding form above makes it impossible to get an
analytic solution of u, ; and further future input. So, using reference trajectory, we

modified the one-step predictions when j>2 as follow:

-1
Xieajikc = F(Wiejo110) + (W) - Uieajor = (W) + 8(Wierjoa) - (Ugeer + ZAuk+i|k) (23)
i=0

Using the stair-like control strategy, mark Au,, =A, (23) can be transformed as:

-1
e = EWisjoap) + 8(Wisjoap) - (g + 2 B'A)
i
i1
= (Wi jap) + 8(Wiesj1i) Uk + 8(Wiejap) - DA

i=0

i1
= Kisjic + 8(Wicrjap) - D B'A (24)
i-0

Here, Xi +ji contains only the known data at time k, while the other part is made up by the

increment of future input, thus the unknown data are separated linearly by (24), so the
analytic solution of A can be achieved.
For j=1,2,---,p, write the predictions in the form of matrix:

A 21
Xi+1]k Xi+1]k Wik Auye A
N 1
S Xi+2/k X W2k Aty pA
X A1 p-1
Xi+plk Xierplk Wicsplk Aty o1k BPTA
8(Wk|1<) =g(xx) 0 0 s, 0 - 0
g - g(Wii1k) g(Wisak) 0 |82 s - 0
k —_ : : . . . —_ . . . .

g(Wk+p—l|k) g(wk+p—1|k) g(Wk+p—1|k) Sp Sp "t Sp
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51

s,(1+B)

S, -AU, = A=S,-A (25)

sp(1+B+---+BP’1)

Thus )A(k =X +S, -AU, =X} +S, -A, for minimization of traditional quadric objective
function min], = min[()ﬂ(k - Wy )TQ()A(k ~W,)+AU[RAU, |, where semi-positive definite
A A

%y

matrix Q and positive definite matrix R are weighting matrices, by ?—X =0 and A2 >0,

the control solution of multi-step prediction is then obtained. Especially for single input

problem, with objective function minJ, = min[()A(k -w)" ()A(k ~W, ) +1AUL AU, ], it is easily
A A
denoted as follow:

_ Sk (Wi —X4)
SIS, +r(1+p%+---+p*PY)

(26)

At last, the instant input uy, =u;_;+A can be carried out actually. As mentioned in

Section 2, and if the model mismatch can be seen as time-invariant in p sample time (usually
satisfied in the case of steady state in practice), to maintain the robustness, e, or e, can be

also added to every prediction as mentioned in (17) and (18):
>A<1<+1\1< =£(x) +g(Xk) - Uy + €

Xk = E(Wiejoap) + 8(Wihjoap) Ui T €, j =23, (27)

Though there are approximate predictions in the novel NMPC which may take in some
inaccuracy, the feedback compensation mentioned above and the new optimization process
at every sample time will eliminate the error before its accumulation, to keep the efficiency
of the algorithm. The constraints also could be handled by methods mentioned Section 2 or
by other numerical optimizing algorithm, thus we would not discuss about it here again.

3.4 Multi-step NMPC of the water-tank system
Choose aa=0.975, B=0.5, r=0.005, Xgp = 60%0r30% and predictive horizon p=10 to carry

out simulations. Still use the different plant model and predictive model as that of Fig. 5. and
Fig. 6. to imitate the model mismatch, the result in Fig. 12. and Fig. 13. shows the efficiency and
robustness of this efficient multi-objective NMPC.

Choose a=0.975, =05, r=0.005, Xep = 60% to carry out experiments. Comparing

control result between one-step NMPC and multi-step NMPC in Fig. 14. and Fig. 15., we can
see the obvious developments on both input and output of the water-tank system when
longer predictive horizon is used. It also verifies the efficiency of proposed novel multi-step
NMPC algorithm. At last, Fig. 16. is the satisfactory performance of the efficient multi-step
NMPC under disturbance (we open an additional outlet valve of the tank for 20 seconds).
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Fig. 12. Simulation of multi-step NMPC with model mismatch but without feedback
compensation
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Fig. 13. Simulation of multi-step NMPC with model mismatch and feedback compensation
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Fig. 14. Experiment of one-step NMPC with setpoint x,, =60% (Overshooting exists when
setpoint is higher than Fig. 9.)
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Fig. 15. Experiment of one-step NMPC with setpoint x,, =60% (p=10 and and No

overshooting)
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Fig. 16. Experiment of one-step NMPC under disturbance

4. Conclusion and acknowledgement

Using a series of approximate one-step predictions instead of the traditional multi-step
prediction, the proposed multi-step NMPC leaded to an analytic result for nonlinear control
of affine system. The use of stair-like control strategy caused a very little computational load
and the feedback compensation brought robustness of model mismatch to it.

The simulations and experiments verify the practicability and efficiency of this multi-step
NMPC for affine system, while the theoretical stability and other analysis will be the future
work with considerable value.
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1. Introduction

Model predictive control (MPC) is a control method (or group of control methods) which
make explicit use of a model of the process to obtain the control signal by minimizing an
objective function. Control law is easy to implement and requires little computation, its
derivation is more complex than that of the classical PID controllers. The main benefit of
MPC is its constraint handling capacity: unlike most other control strategies, constraints on
inputs and outputs can be incorporated into the MPC optimization (Camacho, E., 2004).
Another benefit of MPC is its ability to anticipate to future events as soon as they enter the
prediction horizon. The implementation supposes good knowledge of system for the
purpose of model creation using the system identification. Modeling and identification as a
methodology dates back to Galileo (1564-1642), who also is important as the founder of
dynamics (Johanson, R., 1993). Identification has many aspects and phases. In our work we
use the parametric identification of real system using the measured data from control centre.
For the purpose of identification it is interesting to describe the sought process using input-
output relations. The general procedure for estimation of the process model consists of
several steps: determination of the model structure, estimation of parameters and
verification of the model. Finally we can convert the created models to any other usable
form. This chapter gives an introduction to model predictive control, and recent
development in design and implementation. The controlled object is an urban tunnel tube.
The task is to design a control system of ventilation based on traffic parameters, i.e. to find
relationship between traffic intensity, speed of traffic, atmospheric and concentration of
pollutants inside the tunnel. Nowadays the control system is designed as tetra - positional
PID controller using programmable logic controllers (PLC). More information about safety
requirements for critical processes control is mentioned in the paper (Zdéansky, J., Résto¢ny,
K. and Zahradnik, ]., 2008). The ventilation system should be optimized for chosen criteria.
Using of MPC may lead to optimize the control way for chosen criteria. Even more we can
predict the pollution in the tunnel tube according to appropriate model and measured
values. This information is used in the MPC controller as measured disturbances. By
introducing predictive control it will be made possible to greatly reduce electric power
consumption while keeping the degree of pollution within the allowable limit.
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2. Tunnel ventilation system

Emissions from cars are determined not only by the way they are built but also by the way
they are driven in various traffic situations. Various gases are emitted by combustion
engine. They consist largely of oxides of nitrogen (NOy), carbon monoxide (CO), steam
(H20) and particles (opacity). Because of these dangerous gases, it is necessary to provide
fresh air in longer tunnels. The fresh air which is used to lower the concentration of CO also
serves to improve visibility. The purpose of ventilation is to reduce the noxious fumes in a
tunnel to a bearable amount by introducing fresh air. Every tunnel has some degree of
natural ventilation. But a mechanical ventilation system should have to be installed. In order
to create air stream, jet fans are installed on the ceiling or side walls of the tunnel. The fans
take in tunnel air and blow it out at higher speed along the axis of the tunnel. In the tunnel
is mounted several fans with about hundred kW each.

The design and industrial implementation of automatic control systems requires powerful
and economic techniques together with efficient tools. In order to solve a control problem it
is necessary to first describe somehow the dynamic behaviors of the system to be controlled.
Traditionally this is done in terms of a mathematical model. Mathematical models are
mathematical expressions of essential characteristics of an existing system that describe
knowledge about the system in a usable form.

Ventilation control system will base on model and sensors information about NOj, opacity,
velocity, number of vehicles and CO measurements. According to the amounts of pollutants
in exhaust gas, air flow driven by the vehicles and degree of pollution inside the tunnel,
optimized operation commands will given to the jet fans. “Optimum” means that pollutant
concentration is kept within the allowable limit (for CO, 75 ppm or less), and at the same
time electric power consumption is minimized. Another criterion is also possible, for
example: number of switching the jet fans.

2.1 Tunnel description

The ventilation system in urban tunnel Mrazovka in Prague represents one function unit
designed as longitudinal ventilation with a central efferent shaft and protection system
avoiding spread of harmful pollutants into the tunnel surround area. Ventilation is
longitudinal facing in direction of traffic with air suction at the south opening of the eastern
tube (ETT) and at the branch B, with air being transferred at the north opening to the
western tunnel tube (WTT) (Pavelka, M. and Pfibyl, P., 2006). The task is to design a control
system of ventilation based on traffic parameters, i.e. to find relationship between traffic
intensity, speed of traffic, atmospheric and concentration of pollutants inside the tunnel. To
do that the eastern tunnel tube (ETT) has been chosen as a model example due to principle
of mixing polluted air from ETT to WTT (measured concentrations of pollutants in the WTT
are also influenced by traffic intensity in the ETT).

To get the required description, the following data has been taken from the tunnel control
centre: traffic intensity of trucks and cars, their speed, concentrations of CO (carbon
monoxide), NOy (oxides of nitrogen), OP (opacity-visibility) from the ETT, atmospheric
pressure etc. These values are measured by sensors installed inside the tunnel (at five
different places of the ETT). Traffic parameters are measured at three places, air flow at
three places and concentrations of NOy and atmospheric pressure in the north portal.

Traffic intensity is sensed by a camera system and the cars are then counted and sorted by
categories in database system. More information about monitoring of the traffic can be
found in (Pirnik, R., Capka, M. and Halgas, J., 2010). About the security by transferring the
data is discussed in (Holecko, P., Krbilov4, L., 2006).
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Fig. 1. Simplified diagram of road tunnel (length of 1230m)

3. Mathematical models for MPC

Mathematical models are mathematical expressions of essential characteristics of an existing
or designed system that describe knowledge about the system in a usable form. Turbulence
inside the tunnel, variety of traffic and atmospherics make the system behavior stochastic.
To make the models we use the parametric identification. The MATLABs tools allowed a
conversion between several types of models. The main tasks of system identification were
the choice of model type and model order. For Single-input Multiple-output discrete time
linear systems we can write the metrics equation for jet fan characteristics:

ya(k) Gy (k)
Yo (k) |=| Ga (k) |- [ (k)] 1)
Yo (k) G (k)

The “Jet Fan Model” is a model in the MPC format that characterizes effect of ventilator on
CO concentration, NOy concentration and visibility (opacity). It is a system with 1 input (u)
and 3 outputs (dilution of CO-Outl, NOy concentration-Out2 and opacity OP-Out3). One of
the main advantages of predictive control is incorporation of limiting conditions directly to
the control algorithm. The “Jet Fan Model” characteristics are shown in Fig. 2.

The “Disturbance Model” is a model of the tunnel tube in state space representation:

x (t)= A(r)-x(r)+ B(r)-u(r) @)
¥(t)=Clt)-x(t)+ D(¢)- u(t)

This model is used to predict the pollutions inside the tunnel tube. These data enter to the
measured disturbances input (MD) of MPC controller for the purpose of switching the jet
fans before the limit will be exceeded.

Created model was validated by several methods (Hrbcek, J., 2009). The purpose of model
validation is to verify that identified model fulfills the modeling requirements according to
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Fig. 2. Model of the tunnel tube. Out 1 - Concentration of CO, Out 2 -OP-opacity inside the
tunnel, Out 3 - Concentration of NOx

subjective and objective criteria of good model approximation. In method “Model and
parameter accuracy” we compare the model performance and behavior with real data. A
deterministic simulation can be used, where real data are compared with the model
response to the recorded input signal used in the identification. This test should ascertain
whether the model response is comparable to real data in magnitude and response delay.
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Fig. 3. Model and parameter accuracy test for CO concentrations. Measured data is shown
by black line and simulated data are shown by gray dashed line.
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This method showed graphically accuracy between simulated values and measured values.
Although the simulated and measured data not fit precisely, this result is sufficient for most
stochastic system like pollution inside the road tunnel.

An Akaike Final Prediction Error (FPE) for estimated model was also determinate. The
average prediction error is expected to decrease as the number of estimated parameters
increase. One reason for this behavior is that the prediction errors are computed for the data
set that was used for parameter estimation. It is now relevant to ask what prediction
performance can be expected when the estimated parameters are applied to another data
set. This test shows the flexibility of the model structure. We are looking for minimum value
of FPE coefficient.

4. Model predictive control of ventilation system

Under the term “Model Predictive Control” we understand a class of control methods that
have certain characteristic features. MPC refers to a class of computer control algorithms
that utilize an explicit process model to predict the future response of a plant. From this
model the future behaviour of the system is predicted over a finite time interval, usually
called prediction horizon, starting at the current time t.

4.1 The basic idea of predictive control
The receding horizon strategy is shown in Fig. 4.

A
past future

<t
w(t)
y(t+k )
y(t) L
o (k| B

u(t)

| | | | »
t-1 t =+1 ... tH+k ... t+N

Fig. 4. The receding horizon strategy, the basic idea of predictive control.

The future outputs for a determined horizon N, called the prediction horizon, are predicted
at each instant t using the process model. These predicted outputs y(t + k|f) 1 for k =1...N
depend on the known values up to instant t (past inputs and outputs) and on the future
control signals u(t+k | ), k = 0... N-1, which are those to be sent to the system and calculated.
The set of future control signals is calculated by optimizing a determined criterion to keep
the process as close as possible to the reference trajectory w(t + k) (which can be the setpoint
itself or a close approximation of it). This criterion usually takes the form of a quadratic
function of the errors between the predicted output signal and the predicted reference
trajectory. The control effort is included in the objective function in most cases. An explicit
solution can be obtained if the criterion is quadratic, the model is linear, and there are no
constraints; otherwise an iterative optimization method has to be used. Some assumptions
about the structure of the future control law are also made in some cases, such as that it will
be constant from a given instant.
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The control signal u(t|t) is sent to the process whilst the next control signals calculated are
rejected, because at the next sampling instant y(t+1) is already known and step 1 is repeated
with this new value and all the sequences are brought up to date. Thus the u(t+1|t+1) is
calculated ( which in principle will be different from the u(t+1|t) because of the new
information available) using the receding horizon concept (Camacho, E. F., Bordons, C., 2004).
The notation indicates the value of the variable at the instant ¢ + k calculated at instant ¢.

4.2 Application to real system

Tunnel ventilation is expected to fulfil the following requirements at least (Godan, J. at

all. 2001):

e Concentration of emissions in the tunnel kept within the acceptable limits for the
monitored harmful pollutants, in consideration of time spent by persons inside the tunnel;

e Good visibility for through passage of vehicles under polluted air inside the tunnel;

e Reduction of effects of smoke and heat on persons in the case of vehicle fire;

e Regulation of dispersion of pollutants in the air caused by petrol fumes from vehicles
into the surround environment of the tunnel.

Model Predictive Control (MPC) comes from the late seventies when it became significantly

developed (Camacho, E. F., Bordons, C., 2004) and several methods were defined. In this

work we have applied the Dynamic Matrix Control (DMC) method which is one of the most

spread approaches and creates the base of many commercially available MPC products. It is

based on the model obtained from the real system:

N
y(k)=> hu(k-1), ®)
i=1

where h; are FIR (Finite Impulse Response) coefficients of the model of the controlled
system. Predicted values may be expressed:

Jn+k|n)=Y hAu(n+k—i)+d(n+k|n)=

)
= ZhiAu(n+ k-1)+ ZhiAu(n+ k-1)+ &(n+ k|n)
We assume that the additive failure is constant during the prediction horizon:
d(r-+ k| n)=d(n | n) =y,, (1)~ (| ) ©)

Response can be decomposed to the component depending on future values of control and
to the component determined by the system state in time n:

Jn+k|n)= Y hdu(n+k—i)+ f(n+k), ©6)

where f(n+k) is that component which does not depend on future values of action quantity:

fn+k)y=y,(n)= X (s = hy)Au(n ). )
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Predicted values within the prediction horizon p (usually p>>N) can be arranged to the
relation (8):

yn+1|n)=hAun)+ f(n+1)
Yn+2|n)=hAu(n)+hAu(n+1)+ f(n+2)
®)
P
J+pln)= 3, hAu(n+p-i)+f(n+p) ,

i=p—m+

where the prediction horizon is k=1...p, with respect to m control actions. Regulation circuit
is stable if the prediction horizon is long enough. The values may be arranged to the
dynamic matrix G:

h 0 0
h, hy .. 0

G = '2 '1 . 7 (9)
hp hp—l hp—m+1

and expression used for prediction can be written in the matrix form:
y=Gu+f , (10)

where 7] is a vector of contributions of action quantity and f are free responses.

The MATLAB’s Model Predictive Control Toolbox uses linear dynamic modeling tools. We
can use transfer functions, State-space matrices, or its combination. We can also include
delays, which are in the real system. The model of the plant is a linear time-invariant system
described by the equations:

x(k +1) = Ax(k) + B, u(k)B,v(k) + B,d(k)
Y (k) =C,x(k) + Dy, 0(k) + Dy, (k) (11)
Yy (k) =C,x(k) + Dy, (k) + Dy, d(k),

where x(k) is the n, -dimensional state vector of the plant, u(k) is the n,-dimensional vector
of manipulated variables (MV), i.e., the command inputs, v(k) is the n,-dimensional vector of
measured disturbances (MD), d(k) is the ng-dimensional vector of unmeasured disturbances
(UD) entering the plant, y,, (k) is the vector of measured outputs (MO), and y,(k) is the vector
of unmeasured outputs (UO). The overall n,-dimensional output vector y(k) collects v (k)
and y,(k). In the above equations d(k) collects both state disturbances (B#0) and output
disturbances (D#0).

The unmeasured disturbance d(k) is modeled as the output of the linear time invariant
system:

x4(k+1)= Ax, (k) + Bn, (k)

d(k) = Cx, (k) + Dn (k).
The system described by the above equations is driven by the random Gaussian noise n,(k),
having zero mean and unit covariance matrix. For instance, a step-like unmeasured

(12)
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disturbance is modeled as the output of an integrator. In many practical applications, the
matrices A, B, C, D of the model representing the process to control are obtained by
linearizing a nonlinear dynamical system, such as

x'= f(x,u,0,d)

y=h(x,u,v,d). (13)

at some nominal value x=xo, u=uy, v=vy, d=do. In these equations x~ denotes either the time
derivative (continuous time model) or the successor x(k+1) (discrete time model).
The MPC control action at time k is obtained by solving the optimization problem:

-1 /s n, 2
min{ Au(k|k),...,Au(m—1+k|k),g[PZ(Z|w;‘+L].(yj(k+i+1|k)—rj(k+i+1))|
i=0 j=1 (14)

2 2
+Z|wA”Au (k+i|K)| +Z|w,] 1+ 1 ) = g ( + ) )+p€£2] } p
where the subscript "( )j" denotes the j-th component of a vector, "(k+i| k)" denotes the value

predicted for time k+i based on the information available at time k; r(k) is the current sample
of the output reference, subject to

ujmin(l) gvmm(l)<u'(k+i|k)gu )+€Vmax(l)

i)+ €V,max (i)

jmax(z
Aujmin(z)—eVAn'im(z) < Auj(k+i | k)< At (
Yimin ()= Vinin () Sy (k+1+ 11 k) SYjmae (i) + €V/ax (D),

Au(k+h|k)=0, (15)
where

i=0,.,p-1,

h=m,..,p-1,

20,

with respect to the sequence of input increments { Au(k| k),...,Au(m—1+k| k) } and to the slack

variable ¢, and by setting u(k)=u(k-1)+ Au(k|k), where Au(k|k) is the first element of the
optimal sequence. Note that although only the measured output vector y.(k) is fed back to
the MPC controller, r(k) is a reference for all the outputs. When the reference r is not known
in advance, the current reference r(k) is used over the whole prediction horizon, namely
r(k+i+1)=r(k) in Equation 14.

In Model Predictive Control the exploitation of future references is referred to as anticipative
action (or look-ahead or preview). A similar anticipative action can be performed with respect
to measured disturbances v(k), namely v(k+i)=v(k) if the measured disturbance is not known in
advance (e.g. is coming from a Simulink block) or v(k+i) is obtained from the workspace. In the
prediction, d(k+i) is instead obtained by setting n4(k+i)=0. The wAuij, wuij, wyij, are nonnegative
weights for the corresponding variable. The smaller w, the less important is the behavior of the
corresponding variable to the overall performance index. And ujmin, Wjmaxs Athjming Nthjmaxs Yjming
Yjmax are lower/upper bounds on the corresponding variables. The constraints on u, Au, and y
are relaxed by introducing the slack variable e> 0. The weight pe on the slack variable &
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penalizes the violation of the constraints. The larger pe with respect to input and output
weights, the more the constraint violation is penalized. The Equal Concern for the Relaxation
vectors Viin, Vi, VAyin, VP, Vinin, Ve have nonnegative entries which represent the
concern for relaxing the corresponding constraint; the larger V, the softer the constraint. V=0
means that the constraint is a hard one that cannot be violated (Bemporad A., Morari M., N.
Lawrence Ricker., 2010).

4.3 Constraints

In many control applications the desired performance cannot be expressed solely as a
trajectory following problem. Many practical requirements are more naturally expressed as
constraints on process variables. There are three types of process constraints: Manipulated
Variable Constraints: these are hard limits on inputs u(k) to take care of, for example, valve
saturation constraints; Manipulated Variable Rate Constraints: these are hard limits on the
size of the manipulated variable moves Au(k) to directly influence the rate of change of the
manipulated variables; Output Variable Constraints: hard or soft limits on the outputs of the
system are imposed to, for example, avoid overshoots and undershoots (Maciejovski,
J.M., 2002). We use the Output constraints and Manipulated Variable Constraints.

5. Simulation in MATLAB

Models of the tunnel and ventilator have been obtained through identification of real
equipments. Higher traffic intensity causes increase of pollutant concentrations in the
tunnel. This intensity is expressed as a vector containing really measured data. The
MATLAB environment is used to simulate behavior of the system according to the Fig. 5.

Traffic Intensity,
Velocity and Atmospherics >

Tunnel Tube —

. .
Disturbances Model
Measured Disturbance| |,
with predlctlons" y - Output
Constraints ——p u +| (CO, NOy and Visibility)
Required , —>| MPC Jet Fan * CVD
value " | Controller

Fig. 5. Improved MPC of multi-dimensional ventilation system

It is a closed-loop control (regulation) of the system with limitations imposed to control
quantity and outputs. It uses the internal model and solves optimization problem with the
use of quadratic programming. We can choose the prediction horizon P and the control
horizon M. The output constraints were set to 6, because this is the maximum input for three
pairs of jet fans corresponding with real system. Weight matrix is selected as a diagonal
matrix, with each element weighting the corresponding control signal. For instance, if the
influence of particular control is to be reduced, then the corresponding diagonal element
will be increased to reflect this intention. Weight tuning is the essential task to set the
controller. In Fig. 7 we can see the results in comparison to Fig. 6.
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Fig. 6. Simulated values of CO pollution inside the tunnel with (grey line) and without
(black line) MPC controller and fan number (number of acting jet fans)

5.1 Simulation results

The presented simulation results are obtained for the following concentration limits: 6
ppm for CO concentrations, 0.02 ppm for NOx concentrations and 0.05 ppm for
visibility concentrations. These values are below really defined maximum limits.
According to the curve of the output quantity (Fig. 6) it is apparent, that no emission
value has extended the defined limit. However, the value of under-set maximum limit
may be extended since one ventilator need not be able to dilute CO concentration
sufficiently.

The abbreviation ppm is a way of expressing very dilute concentrations of substances. Just
as per cent means out of a hundred, so parts per million or ppm means out of a million. It
describes the concentration of something in air.

For this simulation we have six acting jet fans in this part of road tunnel. In the next
simulations we have used a possibility to set weighing matrices (uwt) for tuning the
controller. The control quantity u is adapted to the input of Jet Fan control unit. The black
lines represent the concentrations of pollution without using the controller. They are
named CO. The grey lines represent the concentrations of pollution with using the
controller. They are named COr. Opacity and concentration of NOy is below the
dangerous limits. The jet fans were switched on two times per day for chosen limits. We
can see how affect the ventilation system to reduce the pollution. In this paper we pointed
out only to concentration of CO, because this type of pollution is most dangerous for
human organism.

As it was mentioned in the previous section the weight tuning is also important part of
controller creation.

Well tuned controller leads to optimal control. After changing the weights, the jet fans were
switched on only once per day, furthermore the next day all the fans were not switched on
in the same conditions.
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Fig. 7. Weight tuning. Simulated values of CO pollution inside the tunnel with (grey line)
and without (black line) MPC controller and fan number (number of acting jet fans)

Opacity and concentration of NOy is below the dangerous limits. The jet fans were switched
on once per day for chosen limits. The concentrations of NO, and opacity (OP) are shown in
Fig. 8.
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Fig. 8. Simulated values of NOy concentrations inside the tunnel tube (black line) and
opacity (grey line)

For this simulation the NO, concentrations and opacity was below defined maximum limits.
When the jet fans are switched on these pollutions are also decreased.

5.2 Implementation

The biggest advantage of Automatic Code Generation affects those developers who already
use MATLAB and Simulink for simulation and solutions design and to developers who
used to tediously rework implemented structures in a language supported by Automation
Studio in the past. In the procedures listed below the Automatic Code Generation tool
provided by B&R represents an innovation with endless possibilities that help to
productively reform the development of control systems. The basic principle is simple: The
module created in Simulink is automatically translated using Real-Time Workshop and
Real-Time Workshop Embedded Coder into the optimal language for the B&R target system
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guaranteeing maximum performance of the generated source code. Seamless integration
into an Automation Studio project makes the development process perfect (B&R
Automation Studio Target for Simulink. 2011). Since the tunnel ventilation system use
programmable logic controllers (PLC) it is suitable for real implementation. In our
department we have appropriate equipment for this solution.

Simulink Model

C code

\4

Automation Studio
Project

C code

A\ 4

Automation
System (PLC)

Fig. 9. Workflow of the Automatic Code Generation

The elimination of extensive reengineering in Automation Studio allows simple transfer of
complex and sophisticated Simulink models to the PLC (Hardware-in-the-Loop). Closed-
loop controllers can also be easily tested and optimized on the target system without
requiring the user to adjust large amounts of code and run the risk of creating coding errors
(Rapid Prototyping). Rapid prototyping: Automatic Code Generation makes it possible to
quickly and easily transform sophisticated Simulink based control systems into source code
and integrate them into an Automation Studio project. Many potentially successful ideas
have been immediately rejected due to the large amount of time required for conversion into
executable machine code and the risk of developing a dead end solution.

The “Rapid Prototyping” concept brings an end to this. Using Simulink and the Automatic
Code Generation tool provided by B&R, any system, no matter how complex, can be
intuitively built, compiled and tested in a short amount of time. This practically eliminates
implementation errors as the Automatic Code Generation tool has been well-proven over
several years in critical fields like aviation or automotive industry (B&R Automation Studio
Target for Simulink. 2011). Nowadays the control algorithm is implemented and awaiting
for connection to the real system. Fig. 11. shows the model in Simulink.

We created the model in Simulink according to model for simulations. We replaced the
simulated inputs by “B&R IN” blocks and simulated output by the “B&R OUT” block. The
Real-time Workshop provides utilities to convert the SIMULINK embedded models in C
code and then, with the compiler, compile the code into a real-time executable file. Although
the underlying code is compiled into a real-time executable file via the C compiler, this
conversion is performed automatically without much input from the user. The concept in
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Fig. 10. shows that a simulation model can be used in the simulation testing of the predictive
control system, and after completing the test, then with simple modification to the original
Simulink programs, the same real-time predictive control system can be connected to the
actual plant for controlling the plant.

Fig. 10. The control system

®' = Ax+Bu
B&R IN —{ MO
¥=CxtDu
_LOCAL LREAL MO{D..3]
MO MV B&R OUT

_LOCAL LREAL MO[0..3] _LOCAL LREAL MV

Tunnel Model

h 4

B&R IN

-]
Y
——
h 4

Levels

Predictive Controller

NCx level

0.05

OF level

Fig. 11. The control system in Simulink
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6. Conclusion

The paper presents a methodology that has been used for design parametric models of the
road tunnel system. We needs identification of system based on data obtained from the real
ventilation system. Model from one week data has been created and verified in MATLAB
environment. This part is the ground for best design of ventilation control system. Presented
results point out that created model by identification method should be validate by several
method. Model of a three-dimensional system has been created and simulated in MATLAB
environment using the predictive controller. Presented results confirm higher effectiveness
of predictive control approach. The weight tuning is important part of controller creation as
the simulation results had proved. The predictive controller was successfully implemented
to programmable logic controller.
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1. Introduction

Predictive control is a model-based strategy used to calculate the optimal control action, by
solving an optimization problem at each sampling interval, in order to maintain the output
of the controlled plant close to the desired reference. Model predictive control (MPC) based
on linear models is an advanced control technique with many applications in the process
industry (Rossiter, 2003). The next natural step is to extend the MPC concept to work with
nonlinear models. The use of controllers that take into account the nonlinearities of the plant
implies an improvement in the performance of the plant by reducing the impact of the
disturbances and improving the tracking capabilities of the control system.

In this chapter, Nonlinear Model Predictive Control (NMPC) is studied as a more applicable
approach for optimal control of multivariable processes. In general, a wide range of
industrial processes are inherently nonlinear. For such nonlinear systems it is necessary to
apply NMPC. Recently, several researchers have developed NMPC algorithms (Martinsen et
al., 2004) that work with different types of nonlinear models. Some of these models use
empirical data, such as artificial neural networks and fuzzy logic models. The model
accuracy is very important in order to provide an efficient and adequate control action.
Accurate nonlinear models based on soft computing (fuzzy and neural) techniques, are
increasingly being used in model-based control (Mollov et al., 2004).

On the other hand, the mathematical model type, which the modelling algorithm relies on,
should be selected. State-space models are usually preferred to transfer functions, because
the number of coefficients is substantially reduced, which simplifies the computation;
systems instability can be handled; there is no truncation error. Multi-input multi-output
(MIMO) systems are modelled easily (Camacho et al., 2004) and numerical conditioning is
less important.

A state-space representation of a Takagi-Sugeno type fuzzy-neural model (Ahmed et al,,
2010; Petrov et al., 2008) is proposed in the Section 2. This type of models ensures easier
description and direct computation of the gradient control vector during the optimization
procedure. Identification procedure of the proposed model relies on a training algorithm,
which is well-known in the field of artificial neural networks.

Obtaining an accurate model is the first stage of the of the NMPC predictive control
strategy. The second stage involves the computation of a future control actions sequence. In
order to obtain the control actions, a previously defined optimization problem has to be
solved. Different types of objective and optimization algorithms (Fletcher, 2000) can be used
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in the optimization procedure. Two different approaches for NMPC are proposed in Section
3. They consider the unconstrained and constrained model predictive control problem. Both
of the approaches use the proposed Takagi-Sugeno fuzzy-neural predictive model.

The proposed techniques of fuzzy-neural MPC are studied in Section 4, by experimental
simulations in Matlab® environment in order to control the levels in a multi tank system
(Inteco, 2009). The case study is capable to show how the proposed NMPC algorithms
handle multivariable processes control problem.

2. Multivariable fuzzy-neural predictive model

The Takagi-Sugeno fuzzy-neural models are powerful modelling tools for a wide class of
nonlinear systems. Fuzzy reasoning is capable of handling uncertain and imprecise
information while neural networks can learn from samples. Fuzzy-neural networks combine
the advantages of both artificial intelligent techniques and incorporate them in adaptive
features. Those futures, based on a real time learning algorithm are the main advantage of
the fuzzy-neural models.

The importance of the used in MPC strategy models and their adaptive characteristics is
obvious. The accuracy of the model determines the accuracy of the control action. The
proposed fuzzy-neural model is implemented in a classical NMPC scheme (Fig. 1) as a
predictor (Camacho et al., 2004).

Past inputs Predicted Reference
and outputs outputs trajectory
+

— | Fuzzy-Neural
Model — ( )

Future
inputs

Optimizer

Future error

Cost function Constraints

Fig. 1. Basic structure of the proposed Fuzzy-Neural NMPC

In this chapter a nonlinear discrete time state-space implementation is considered to
represent the system dynamic:

x(k+1) = fo(x(k),u(k)

99 = £, (), u(l) @

where x(k) € R", u(k) € R"and y(k) € R7 are state, control and output variables of the
system, respectively. The unknown nonlinear functions f, and f, can be approximated by
Takagi-Sugeno type fuzzy rules in the next form:
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R :if z(k)isMy and ... and zi(k)is My and ... z,(k)is M,

{xl(k +1)=A;x(k)+ B, u(k) )
then
Yy (k) =Cy x(k) + Dy u(k)

where R; is the [ rule of the rule base. Each rule is represented by an if-then conception.
The antecedent part of the rules has the following form “zi(k) is M;” where z;(k) is an i
linguistic variable (i model input) and M;;is a membership function defined by a fuzzy set

of the universe of discourse of the input z;. Note that the input regression vector z(k) € R” in
this chapter contains the system states and inputs z(k)=[x(k) u(k)]T. The consequent part of
the rules is a mathematical function of the model inputs and states. A state-space

implementation is used in the consequent part of R, where A; € R, Bie R™", C;e R
and D; e RT" are the state-space matrices of the model (Ahmed et al., 2009).
The states in the next sampling time %(k+1) and the system output j(k) can be obtained by

taking the weighted sum of the activated fuzzy rules, using

L
(k+1)= Zﬁyl(k)(Alx(k) + Bu(k))
) ®)
(k) + Dyu(k))

Mw

=l

On the other hand the state-space matrices A, B, C, and D for the global state-space plant
model could be calculated as a weighted sum of the local matrices Aj;, B, Cj, and D; from the
activated fuzzy rules (2):

L L
(k)= Y Adig(k)  BK)= Y Bty (k)

I=1 =1
L L )

C(k) Z Cyity (k) D(k):lle/_lyz(k)
=1

=1

L
where 1, = u, ; My is the normalized value of the membership function degree 74y upon
the I activated fuzzy rule and L is the number of the activated rules at the moment k.

l/tij

Fig. 2. Gaussian membership functions of the i input

Fuzzy implication in the I rule (2) can be realized by means of a product composition
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4
My = H:Uij ()
i=1

where p;; specifies the membership degree (Fig. 2) upon the activated jt fuzzy set of the
corresponded i input signal and it is calculated according to the chosen here Gaussian
membership function (6) for the [ activated rule:

(zi - CGij ) 2
,Ui]‘(Zi) =eXp-—/—— (6)
205
where z; is the current input value of the i model input, cg; is the centre (position) and g;; is
the standard deviation (wide) of the j#» membership function (j=1, 2, .., s) (Fig.2).

2.1 Identification procedure for the fuzzy—neural model

The proposed identification procedure determines the unknown parameters in the Takagi-
Sugeno fuzzy model, i.e. the parameters of membership functions, according to their shape
and the parameters of the functions f; and f, in the consequent part of the rules (2). It is
realised by a five-layer fuzzy-neural network (Fig. 3). Each of the layers performs typical
fuzzy logic strategy operations:

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
21 | Hn
aij
Z | A R,
35
Fis R
2
Hy1
i1 Hi R, 8
1
aij yA(k)
Z { Hi Hy2 £ Y
s R4 i
}Iia‘
Hyl ﬂ’
W Fo R,
Z, % | By
s R,
}Ips

Fig. 3. The structure of the proposed fuzzy - neural model

Layer 1. The first layer represents the model inputs through its own input nodes Z;, Z, ...,
Z,. The network synaptic weights are set to one, so the model inputs are directly passed
through the nodes to the next layer. Neurons here are represented by the elements of the
regression vector z(k).
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Layer 2. The fuzzification procedure of the input variables is performed in the second layer.
The weights in this layer are the parameters of the chosen membership functions. Their
number depends on the type and the number of the applied functions. All these parameters
a;j are adjustable and take part in the premise term of the Takagi-Sugeno type fuzzy rule
base (2). In that section the membership functions for each model input variable are
represented by Gaussian functions (Fig. 2). Hence, the adjustable parameters a; are the
centres cg;j and standard deviations o;; of the Gaussian functions (6). The nodes in the second
layer of the fuzzy-neural architecture represent the membership degrees pii(z;) of the
activated membership functions for each model input z;(k) according to (6). The number of
the neurons depends on the number of the model inputs p and the number of the
membership functions s in corresponding fuzzy sets. It is calculated as pxs .

Layer 3. The third layer of the network interprets the fuzzy rule base (2). Each neuron in the
third layer has as many inputs as the input regression vector size p. They are the corresponding
membership degrees for the activated membership functions calculated in the previous layer.
Therefore, each node in the third layer represents a fuzzy rule R, defined by Takagi-Sugeno
fuzzy model. The outputs of the neurons are the results of the applied fuzzy rule base.

Layer 4. The fourth layer implements the fuzzy implication (5). Weights in this layer are set
to one, in case the rule R; from the third layer is activated, otherwise weights are zeros.
Layer 5. The last layer (one node layer) represents the defuzzyfication procedure and forms
the output of the fuzzy-neural network (3). This layer also contains a set of adjustable
parameters - ;. These are the parameters in the consequent part of Takagi-Sugeno fuzzy
model (2). The single node in this layer computes the overall model output signal as the
summation of all signals coming from the previous layer.

L L
5_ < 5 < 2 fukty fatty
P =3 fotty or I =3 fany 0°=ElL _oro°=tl
=1 =1

L
2 Myl Dy
1=1 =1

where f,; = Ax(k)+Bu(k) and f,; =Cx(k)+ Dyu(k).

)

2.2 Learning algorithm of the fuzzy—neural model

Two-step gradient learning procedure is used as a learning algorithm of the internal fuzzy-
neural model. It is based on minimization of an instant error function Epyn. At time k the
function is obtained from the following equation

Epnn (k)= 52(k)/2 ®

where the error ¢(k) is calculated as a difference between the controlled process output y(k)
and the fuzzy-neural model output §j(k):

&(k) = y(k) = y(k) ©)

During step one of the procedure, the consequent parameters of Takagi-Sugeno fuzzy rules
are calculated according to summary expression (10) (Petrov et al., 2002).

m<k+1>=ﬁz(k>+n(—ai,%j (10)
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where 7 is a learning rate and p; represents an adjustable coefficient aj;, by, cij di (11) for the
activated fuzzy rule R; (2). The coefficients take part in the state matrix A;, control matrix B;
and output matrices C; and D; of the Ih activated rule (Ahmed et al., 2009). The matrices
approximate the unknown nonlinear functions f, and f; according to defined fuzzy rule
model (2). The matrix dimensions are specified by the system parameters - numbers of
inputs m, outputs q and states n of the system.

a1 o gy byy - by, 1 " C1g dyp - dyy,

L R bnl bnm

In order to find a weight correction for the parameters in the last layer of the proposed

d EFNN

fuzzy-neural network the derivative of the instant error should be determined.

1
Following the chain rule, the derivative is calculated considering the expressions (7) and (8)

2y oL 12
B oy or o 12

After the calculation of the partial derivatives, the matrix elements for each matrix of the
state-space equations corresponding to the [ activated rule (2) are obtained according to
the summary expression (12) (Petrov et al., 2002; Ahmed et al., 2010):

ay(k+1) = ay (k) +ne(k) i@, (k)x;(k) ~ i=j=1+n

b(k+1)= by (k) +ne()E(kyuy(k)  i=1=n,j=1+m
cij(k+1)=c;(k)+ne(k)i, (k)x;(k) ~ i=1+q,j=1+n
dij(k+1) =dy (k) +ne(k) i, (kyu;(k) — i=1+q,j=1+m

(13)

The proposed fuzzy-neural architecture allows the use of the previously calculated output
error (8) in the next step of the parameters update procedure. The output error Epnn is
propagated back directly to the second layer, where the second group of adjustable
parameters are situated (Fig. 3). Depending on network architecture, the membership
degrees calculated in the fourth and the second network layer are related as pyu — pi.
Therefore, the learning rule for the second group adjustable parameters can be done in
similar expression as (10):

a,-]-<k+1)=oay<k>+n[—a§%j (14
ij

where the derivative of the output error Epnn is calculated by the separate partial
derivatives:

IEpny _ IEpn 9§ My (15)
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The adjustable premise parameters of the fuzzy-neural model are the centre cg;j and the
deviation o0; of the Gaussian membership function (6). They are combined in the
representative parameter a;;, which corresponds to the 7" model input and its j* activated
fuzzy set. Following the expressions (14) and (15) the parameters are calculated as follows
(Petrov et al., 2002; Ahmed et al., 2010):

[z;(k) - CGij(k)]

k1) =iy (0 + eV (0L ~ 90— 5 2 (16)
ij

[zi(k) - CGij(k)]z

03k +1) = 0(k) +ne(OR (L fy ~ 0I5 5
ij

(17)

The proposed identification procedure for the fuzzy-neural model could be summarized in
the following steps (Table 1).

Step 1. Initialize the membership functions - number, shape, parameters;

Step 2. Assign initial values for the network inputs;

Step 3. Start the algorithm at the current moment k;

Step 4. Fuzzify the network inputs and calculate the membership degrees upon the
activated fuzzy set of the membership functions according to (6);

Step 5. Perform fuzzy implication according to (5);

Step 6. Calculate the fuzzy-neural network output, which is represented by state-space
description of the modelled system - (3) and (4);

Step 7. Calculate the instant error according to (8) and (9);

Step 8. Start training procedure for fuzzy-neural network;

Step 9. Adjust the consequent parameters according to (13);

Step 10. Adjust the premise parameters according to (16) and (17).

Repeat the algorithm from Step 3 for each sampling time.

Table 1. Fuzzy-neural model identification procedure

3. Optimization algorithm of multivariable model predictive control strategy

The model provided by the Takagi-Sugeno type fuzzy-neural network is used to formulate
the objective function for the optimization algorithm and to calculate the future control
actions. The second stage of the predictive control strategy includes an optimization
procedure. It utilizes the obtained results during the first (modelling) stage predictive model
of the system. Using the Takagi-Sugeno fuzzy-neural model (3), the optimization algorithm
computes the future control actions at each sampling period, by minimizing the typical for
MPC strategy (Generalized Predictive Control - GPC) cost function (Akesson, 2006):

H,+H,~1 , Hol )
Jy=" > |ite+i)=r(k+i)s+ 3 [Autk+i) (18)
iZH, i=0

where §j(k), r(k) and Au(k) are the predicted outputs, the reference trajectories, and the
predicted control increments at time k, respectively. The length of the prediction horizon is
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H,, and the first sample to be included in the horizon is Hy,. The control horizon is given by
H,.Q 20 and R>0 are weighting matrices representing the relative importance of each

controlled and manipulated variable and they are assumed to be constant over the H,.
The cost function (18) may be rewritten in a matrix form as follows

(k) =Y (k) - TR, + AU (19)

where Y(k), T(k), AU(k), Q and R are predicted output, system reference, control variable
increment and weighting matrices, respectively,

(k| k) (k| k) Au(k| k)
Y(k)= : , T(k)= : , AU(k) = :
y(k+HP~1|k) r(k+H,-1|k) Au(k+H, -1|k)
Q(1) 0 [{(1) 0
Q= : R=| - :
0 - QH) 0 - R(H,)

The linear state-space model used for Takagi-Sugeno fuzzy rules (2) could be represented in
the following form:

&(k +1) = Ax(k) + Bu(k — 1)+ BAu(k)

§i(k) = Cx(k) + Du(k — 1) + DAu(k) (20)

Based on the state-space matrices A, B, C and D (4), the future state variables are calculated
sequentially using the set of future control parameters:

(k +1) = Ax(k) + Bu(k — 1)+ BAu(k)
2(k +2) = A%x(k) + (AB+ B)u(k — 1)+ (AB+ B)Au(k) + BAu(k +1)
2(k+3) = A%x(k)+ (A’B+ AB + B)u(k — 1) + (A’B+ AB + B)Au(k) + (AB + B)Au(k + 1) + BAu(k +2)

] -1 -1 j-1-i
X(k+j)=Alx(k)+ Y A'Bu(k=1)+ > A'B > Au(k+m)
i=0 i=0 m=0
i H,-1 H,-1 H,-2 .
X(k+H,)=A"x(k)+ Y, A'Bu(k=1)+ Y A'BAu(k)+ Y A'BAu(k+1)+---+A"" "“BAu(k+H, 1)
i=0 i=0 i=0

The predictions of the output  for j steps ahead could be calculated as follows

Y(k+1)=Cx(k+1)+ Du(k +1) = CAx(k) + (CB+ D)u(k = 1) + (CB + D)Au(k) + DAu(k + 1)
(k +2) = CA%x(k) + (CAB +CB + D)u(k — 1)+ (CAB + CB + D)Au(k) + (CB + D)Au(k + 1) + DAu(k + 2)
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y(k+j)=CAf [CiAB+DJ (k-1)+ (C]Z}‘AB+DJAu(k)+(CB+D)Au(k+j—1)+DAu(k+j)
i=0 i=0

H,-2 H -2
9(k+Hp—1)=CAH”_1x(k)+[C i AfB+D] (k—1)+ [c > A B+DJAu(k)+
i=0 i=0

H,-3 H -H,-1
[CZAB+DJAu(k+1+ +[c Z lB+DJAu(k+Hu—1)

i=0 i=0

The recurrent equation for the output predictions (k+j,), where jp=1, 2,.., H, -1, is in the
next form:

—.
<

1 .
[c > A/B+DJAu(k+i),]‘p <H,

: P i= i=
ikt j,) =CAx(k) + [c pz A'B+ D]u(k ~1)+ HO ) =0 . (21)
= c Z AJB+D |su(k+i),j, > H,
i=0 j=0
The prediction model defined in (21) can be generalized by the following matrix equality
Y(k) = ¥x(k) + Tu(k -1) + OAU(k) (22)
where
[ D 0 0 1

_ ) r D 7 CB+D D :

C .

A CB+D CAB+CB+D CB+D :
: 0
AB+CB+D
wo| ca? | po|CABFCBEDL 1L
: C Y A'B+D D
) H,-2 i=0
cafr-1 Cy AB+D :
B ) L =0 J H,-2 H,-H,-1
C Y AB+D - C A'B+D
L =0 i=0 J

All matrices, which take part in the equations above, are derived by the Takagi-Sugeno
fuzzy-neural predictive model (4).
It is also possible to define the vector

E(k) = T(k) - Tu(k -1) - OAU(K) (23)

This vector can be thought as a tracking error, in the sense that it is the difference between the
future target trajectory and the free response of the system, namely the response that would
occur over the prediction horizon if no input changes were made, i.e. AU(k)=0. Hence, the
quantity of the so called free response F(k) is defined as follows

F(k) = Wx(k) +Tu(k - 1) (24)
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3.1 Unconstrained model predictive control

In this section, the study is focused on the optimization problem of the unconstrained
nonlinear predictive control with the quadratic cost function (18). The section presents an
approximate solution of the problem where the information given by the obtained fuzzy-
neural model is used to solve the problem.

The unconstrained optimization problem can be formulated in a matrix form. First, the
predictor can be constructed as follows

Y(k) = © AU (k) + F(k) (25)

Second, the cost function (19) can be rewritten as

J(AU) = (T =)' Q(T - Y) + AUTRAU (26)

Hence, substituting the predictive model (25) into expression (26), the cost function of the
model predictive optimization problem can be specified as follows:

J(AU) = AUT(©TQO+R)AU+ 2(F-T)" QOAU + (T - F)'Q(T - F) 27)

The minimum of the function J(AU) can be obtained by calculating the input sequence AU so
that 9]/0AU = 0:

J _ J TraT T T - _
Al ](AU)—aA—u[AU (0" QO+R)AU +2(F-T)' QOAU + (F-T)'Q(F-T) |=0  (28)

Then the optimal sequence AU" is

AU =(0'Qe+R) ' 0'Q(T-F) (29)

The input applied to the controlled plant at time k is computed according to the receding
horizon principle, i.e. the first element from the control sequence Au*(k) of the vector AU" is
taken. Then, control signal is calculated from:

u(k)=u(k-1)+Au" (k) (30)

It is evident that the expression given by the matrix equation (29) is the same as expression
obtained for the generalized predictive control. However, in the GPC formulation the
components involved in the calculation of the formula (29) are obtained from a linear model.
In the present case the components introduced in this expression are generated by the
designed nonlinear fuzzy-neural model. A more rigorous formulation of (29) will be
representation of the components as time-variant matrices, as they are shown in the
expression (22). In this case the matrix ©(k) and the vectors W(k), T(k) are being reconstructed
at each sampling time. The vector W(k) is obtained by simulating the fuzzy model with the
current input u(k); the matrix ©(k) is also rebuilt using a method described below.

AU (k) = [@%k)gg@(k)ﬂ%]1 0 (k)Q[T (ky-F(k)] (31)

The proposed method solves the problem of unconstrained MPC. A system of equations is
solved at each sampling time k. The proposed approach decreases computational burden
avoiding the necessity to inverse the gain matrix in (31) at each sampling time k.



Fuzzy—neural Model Predictive Control of Multivariable Processes 135

Applying this method, minimization of the GPC criterion (18) is based on a calculation of
the gradient vector of the criterion cost function | at the moment k subject to the predicted
control actions:

W(k){ k) (k) (k) }T )
oAu(k) oAu(k+1)""" dAu(k+ H, 1)

Each element of this gradient vector (32) can be calculated using the following derivative
matrix equation:

9J (k)
AU (k)

:{ [Tk -YH)] Q %ﬂm(k)%%im (33)

From the above expression (33) it can be seen that it is necessary to obtain two groups of

partial derivatives. The first one is M , and the second one is M . The first
oAU (k) dAU (k)
partial derivatives in (33) have the following matrix form:
0§(k+H,) . _dj(k+H,) |
d Au(k) dAu(k+H,-1)
Y(K) _ ; : o0
dAU(k) ' ‘
®) dy(k+H,+H,-1) dy(k+H,+H,-1)
0 Au(k) dAu(k+H,-1)

For computational simplicity assume that H,=0 (18). Then each element of the matrix (34)
is calculated by the expressed equations according to the Takagi-Sugeno rules consequents (2).
For example the derivatives from first column of the matrix (34) have the following form:

k) &
o (,Z) = 20784 (35)
Mk+1) & -
giuzrk)) ) zzl(ClBl + Dl)'u}/l(k"' 1 (36)
a7 - 7
gg;;j) ) ;(CIAIBI +CiB; + D) Ay (k +2) (37)
89(k+Hp _1) ~ L H,-2 B
98u(k) _;[C’ 2 A +D1Jﬂyl(k+Hp - >

The second group partial derivatives in (33) has the following matrix form:
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dAu(k) dAu(k)
d Au (k) 7 9Au(k+H,-1)
0 AU(k) _ (39)
dAU (k)
dAu(k+H,-1) dAu(k+H,-1)
0 Au (k) " 9Au(k+H,-1)|
Since Au(k)=u(k)—u(k—1), the matrix (39) has the following form:
1 0 - 0
dAU(k) _ (40)
d AU (k) '
. |
-1 1 - -1

Following this procedure it is possible to calculate the rest column elements of the matrix
(34) which belongs to the next gradient vector elements (32). Finally, each element of the
gradient-vector (32) could be obtained by the following system of equations:

9 (k) WD) o 51 ) 2VEHH)
TR =28(k + 1)Q(1) g 2é(k+H,)Q(H,) TR "
+2R(1)Au(k) - 2R(2)Au(k +1)+...—2R(H,)Au(k+H, -1)=0
k) 8y(k+1) ay(k+H,)
ohu(k+2) T RO e ke TR H PQH, )5 Ak +1) 42)

+2R(2)Au(k +1) - 2R(3)Au(k +2) +...— 2R(H, )Au(k + H, - 1) =0

%=2é(k+1)@ﬂ)%+...+2é(k+H \O(H )%+
u . (43)

+2R(H, -1)Au(k+H, —2)—2R(H,)Au(k+ H, -1) =0

(k) s s A(k+1) : S )Tk Hy)
k1) DR G oy T R RS (44)

+2R(H,)Au(k+H, -1)=0
where e(k+j)=r(k+j)-y(k+j), j=1,2,...,Hy is the predicted system error.

The obtained system of equations (41)-(44) can be solved very easily, starting from the last
equation (44) and calculating the last control action u(k+H,-1) first. Then, the procedure can
continue with finding the previous control action u(k+H,-2) from (43). The calculations
continue until the whole number of the control actions over the horizon H, is obtained. The
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calculation order of the control actions is very important, since the calculations should
contain only known quantities. After that, only the first control action u(k) (30) will be used
at the moment k as an input to the controlled process. The software implementation of the
proposed algorithm is realized easily according to the following equations:

Au(k+H, ~1) = R(H,)™" {é(k +1)A(1) — dj(k+1)

e(k+H,)QH Wi+ H,) 45
u(kTu—l)—i—m+E( +H,)Q(H ) (45)

JAu(k+H, -1)
Au(k+H, -2)=Au(k+H, -1)+

S Al . Hlk+1) - ay(k+H,) |(46)
+R(H, -1) {e(k + 1)Q(1)—8Au(k TH._2) +otek+ Hy))QH)) ——————

P oru(k+ H, -2)

; j(k+H
Au(k+1) =Au(k +2)+R(2)™ {é(k + 1)@(1)% +-+é(k+ H,)Q(H p)%} 47)
_ s 180D s o 0 Hy)
Au(k) =Au(k +1)+R(1) {e(k +1)Q(1) onu(l) +--+e(k+H,)Q(H,) 28u(l) (48)

The proposed unconstrained predictive control algorithm could be summarized in the
following steps (Table 2).

Step 1. Initial identification of the Takagi-Sugeno fuzzy-neural predictive model;

Step 2. Start the algorithm at the sample k with the initial parameters;

Step 3. Calculate the predicted model output fj(k+j) using the tuned fuzzy-neural model (2);

Step 4. Calculate the derivatives for the matrix (34) according to the equations (35)-(38);

Step 5. Calculate predicted control actions according to (45)-(48) and update the sequence;

Step 6. Apply the first optimal control action u(k);

Step 7. Modify the model parameters into the rule (3) and update them for the next step 3
for the next sample k

Table 2. Basic fuzzy-neural model unconstrained predictive control algorithm

3.2 Constrained model predictive control

The constrained nonlinear predictive control problem can be described as a problem of
finding the “optimal” input sequence to move a dynamic system to a desired state, taking
into account the constraints on the inputs and the outputs of the control systems. This
section reveals the formulation of the constrained control problem for MPC uses.
Essentially, the problem becomes a quadratic programming problem with linear inequality
constraints (LICQP). It follows by the nature of the operational constraints, which are
usually described by linear inequalities of the control and plant variables.

The problem of nonlinear constrained predictive control is formulated as a nonlinear
quadratic optimization problem. By means of local linearization (20) the problem can be
solved using QP. That way the solution to the linear constrained predictive control problem
is obtained. At each sampling time the LICQP is solved with new parameters, which are
obtained by the Takagi-Sugeno fuzzy-neural model. An active set method is used for
solving the constructed quadratic programming problem.
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3.2.1 Constraint types in model predictive control

The operational constraints may be classified in three major types according to the type of
the system variables, which they are imposed on. The first two types of constraints deal with
the control variable incremental variation Au(k) and control variable u(k). The third type is
concerned with output y(k) or state variable x(k) constraints.

Related to the origin model predictive control problem, the constraints are expressed in a set
of linear equations. All types of constraints are taken into consideration for each moving
horizon window.

Upiy (k) < U (k) < U (K)
AU, (k) < AU(k) < AU, (k) (49)
Yoin (k) < Y (k) < Y00 (K)
Where
] M ]
Upt=| D sy =) (D
N, 1) NN, 1)
ot ® ] M ® ]
U] Oy | St
mln(k+N -1)] mm(k+N -1)]
RO
Vo= T

_ymax(k + Np - 1)

ymin(k)

(k+1
Ymin (k) — ymm (: )

_ymin(k + Np _1)_

Therefore, for multi-input case the number of the constraints for the change of the control
variable Au(k) is mxN,. Similarly, the number of the constraints for the control variable
amplitude is also m*N, and for the output constraints it is gxNj.

3.2.2 Quadratic programming in use of constrained MPC

Since the cost function J(k) (19) is quadratic and the constraints are linear inequalities, the
problem of finding an optimal predictive control becomes one of finding an optimal solution
to a standard quadratic programming problem with linear inequality constraints
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minJ(x) =%xTHx+fo (50)

subject to Ax <b

where H and f are the Hessian and the gradient of the Lagrange function, x is the decision
variable. Constraints on the QP problem (50) are specified by Ax < b according to (49).
The Lagrange function is defined as follows

N
L(x,A)=J(x)+ > Aa;, i=1,2,..N, (51)
i=1
where A; are the Lagrange multipliers, a; are the constraints on the decision variable x, N is
the number of the constraints considered in the optimization problem.
Several algorithms for constrained optimization are described in (Fletcher, 2000). In this
chapter a primal active set method is used. The idea of active set method is to define a set S
of constraints at each step of algorithm. The constraints in this active set are regarded as
equalities whilst the rest are temporarily disregarded and the method adjusts the set in
order to identify the correct active constraints on the solution to (52)

min J(x) = %xTHx +flx

subject to a;x = b, (52)
a;x <b;

At iteration k a feasible point x(k) is known which satisfies the active constraints as
equalities. Each iteration attempts to locate a solution to an equality problem (EP) in which
only the active constraints occur. This is most conveniently performed by shifting the origin
to x(k) and looking for a correction (k) which solves

min{l 5"Hx + chs}
5 (2 (53)
subject to a,0=0 a,€S

1

where f(k) is defined by f(k) =f + Hx(k) and is V]J(x(k)) for the function defined by (52). If

o(k) is feasible with regard to the constraints not included in S, then the feasible point in
next iteration is taken as x(k+ 1) = x(k) + 6(k). If not, a line search is made in the direction of
o(k) to find the best feasible point. A constraint is active if the Lagrange multipliers 1;> 0, i.e.
it is at the boundary of the feasible region defined by the constraints. On the other hand, if
there exist A; < 0, the constraint is not active. In this case the constraint is relaxed from the
active constraints set S and the algorithm continues as before by solving the resulting
equality constraint problem (53). If there is more than one constraint with corresponding
i< 0, then the 121511/11 (k) is selected (Fletcher, 2000).

The QP, described in that way, is used to provide numerical solutions in constrained MPC
problem.
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3.2.3 Design the constrained model predictive problem
The fuzzy-neural identification procedure from the Section 2 provides the state-space matrices,
which are needed to construct the constrained model predictive control optimization problem.
Similarly to the unconstrained model predictive control approach, the cost function (18) can
be specified by the prediction expressions (22) and (23).
J(K) = [Px(k) + Tu(k -1) + @AU(k)—T(k)]T Q[Wx(k) + Tu(k -1) + ®AU(K)-T(k)]+AU" ()RAU (k)=
= [@AU(k)-E(k)]T Q[OAU(K)-E(k)|+AU T (k)RAU (k)=
= AU" ()| ©'QO+R |AU(K) + E (K)QE(K) - 2AU" (K)©' QE(K)
Assuming that

H = 0'QO+R and ® = 20" QE(k), (54)
the cost function for the model predictive optimization problem can be specified as follow
J(k) = AUT (k)H AU(k) - AU (k)@ + E" (k)QE(k) (35)

The problem of minimizing the cost function (55) is a quadratic programming problem. If
the Hessian matrix H is positive definite, the problem is convex (Fletcher, 2000). Then the
solution is given by the closed form

AU =%H‘1<I> (56)

The constraints (49) on the cost function may be rewritten in terms of AU(k).

umin(k) < qu(k'1)+IAuAu(k) < Umax(k)
Aumin(k) s AU(k) s Aumax(k) (57)

Yoin (k) < Wx(k) + Tu(k -1) + OAU(k) < Y. (k)
m I, 0 0
Xm 3 : ; ; Im N, Im Im =0 N, xmN
where I,e R is an identity matrix, [, =| " | e R™" 1, =| " " . e RN,
Im Im Im Im
All types of constraints are combined in one expression as follows
—_IAu _umin +qu(k_l)
IAu umax _qu(k_l)
-1 AU,
AU < (58)
I AU,
-0 =Y in + (Wx(k) + Tu(k - 1))
| © | | Yinax — (Px(k) +Tu(k -1)) |
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where e R"N"Nu s an identity matrix.

Finally, following the definition of the LIQP (50), the model predictive control in presence of
constraints is proposed as finding the parameter vector AU that minimizes (55) subject to the
inequality constraints (58).

min J(k) = AU'H AU - AU"® +E"QE

. (59)
subject to QAU < w

In (59) the constraints expression (58) has been denoted by QAU < @, where Q is a matrix
with number of rows equal to the dimension of @ and number of columns equal to the
dimension of AU. In case that the constraints are fully imposed, the dimension of ® is equal
to 4xmxN, + 2xqxN,, where m is the number of system inputs and g is the number of
outputs. In general, the total number of constraints is greater than the dimension of the AU.
The dimension of ® represents the number of constraints.

The proposed model predictive control algorithm can be summarized in the following steps
(Table 3).

At each sampling time:

Step 1. Read the current states, inputs and outputs of the system;

Step 2. Start identification of the fuzzy-neural predictive model following Algorithm 1;

Step 3. With A(k), B(k), C(k), D(k) from Step 2 calculate the predicted output Y(k) according
to (17);

Step 4. Obtain the prediction error E(k) according to (23);

Step 5. Construct the cost function (55) and the constraints (58) of the QP problem;

Step 6. Solve the QP problem according to (59);

Step 7. Apply only the first control action u(k).

Table 3. State-space implementation of fuzzy-neural model predictive control strategy

At each sampling time, LIQP (59) is solved with new parameters. The Hessian and the
Lagrangian are constructed by the state-space matrices A(k), B(k), C(k) and D(k) (4) obtained
during the identification procedure (Table 1). The problem of nonlinear constrained
predictive control is formulated as a nonlinear quadratic optimization problem. By means of
local linearization a relaxation can be obtained and the problem can be solved using
quadratic programming. This is the solution of the linear constrained predictive control
problem (Espinosa et al., 2005).

4. Fuzzy-neural model predictive control of a multi tank system. Case study

The case study is implemented in MATLAB/Simulink® environment with Inteco® Multi
tank system. The Inteco® Multi tank System (Fig. 4) comprises from three separate tanks
fitted with drain valves (Inteco, 2009). The additional tank mounted in the base of the set-up
acts as a water reservoir for the system. The top (first) tank has a constant cross section,
while others are conical or spherical, so they are with variable cross sections. This causes the
main nonlinearities in the system. A variable speed pump is used to fill the upper tank. The
liquid outflows the tanks by the gravity. The tank valves act as flow resistors C;, C;, Cz. The
area ratio of the valves is controlled and can be used to vary the outflow characteristic. Each
tank is equipped with a level sensor PS;, PS;, PS3 based on hydraulic pressure measurement.
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Fig. 4. Controlled laboratory multi tank system

The linearized dynamical model of the triple tank system could be described by the linear
state-space equations (2) where the matrices A, B, C and D are as follow (Petrov et al., 2009):

—% 0 0
awH,
A= % % 0
w(c+bH1/H1max)H117al u)(c+bHZ/HZmax)H;7(M2
0 a, -,
w\/Rz - (HSmax - HS) ? H;dv w\/R2 - (H3ma>< - H3 )2 H;’”@
1 -1
— i 0 0
aw  qwH; ™
-1
B=| 0 0 — 0
w(c + bHZ/HZmax)HZ 2
0 0 0 =
w\/R2 - (H3max - H3)2 Hé_%
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The parameters a;, o2 and a3 are flow coefficients for each tank of the model. The described
linearized state-space model is used as an initial model for the training process of the fuzzy-
neural model during the experiments.

4.1 Description of the multi tank system as a multivariable controlled process

Liquid levels H;, Hz, Hs in the tanks are the state variables of the system (Fig. 4). The Inteco
Multi Tank system has four controlled inputs: liquid inflow g and valves settings C;, Cp, Cs.
Therefore, several models of the tanks system can be analyzed (Fig. 5), classified as pump-
controlled system, valve-controlled system and pump/valve controlled system (Inteco, 2009).

a_ H,
CJ—> H,
C, Tank system ?
2
C H,
e ——
inputs outputs

Fig. 5. Model of the Multi Tank system as a pump and valve-controlled system

In this case study a multi-input multi-output (MIMO) configuration of the Inteco Multi Tank

system is used (Fig. 5). This corresponds to the linearized state-space model (60). Several

issues have been recognized as causes of additional nonlinearities in plant dynamics:

¢ nonlinearities (smooth and nonsmooth) caused by shapes of tanks;

e saturation-type nonlinearities, introduced by maximum or minimum level allowed in
tanks;

¢ nonlinearities introduced by valve geometry and flow dynamics;

¢ nonlinearities introduced by pump and valves input/output characteristic curve.

The simulation results have been obtained with random generated set points and following

initial conditions (Table 4):

Model predictive Prediction horizon H,=10
controller parameters First included sample of the prediction horizon H,=1
Control horizon H,=3

Inteco Multi tank Flow coefficients for each tank

system parameters 01=0.29; 02=0.2256; 0.3=0.2487

Operational constraints | Constraints on valve cross section ratio 0 < C; < 2e-04, i=1,2,3
on the system Constraint on liquid inflow 0 < g < Te-04 m3/s

Constraints on liquid level in each tank 0 < H; < 0.35 m, i=1,2,3

Simulation parameters | Time of simulation 600 s
Sample time Ts=1 s

Table 4. Simulation parameters for unconstrained and constrained fuzzy-neural MPC



144 Advanced Model Predictive Control

Figures below show typical results for level control problem. The reference value for each
tank is changed consequently in different time. The proposed fuzzy-neural identification
procedure ensures the matrices for the optimization problem of model predictive control at
each sampling time T.. The plant modelling process during the unconstrained and
constrained MPC experiments are shown in Fig. 6 and Fig. 9, respectively.

4.2 Experimental results with unconstrained model predictive control

The proposed unconstrained model predictive control algorithm (Table 2) with the Takagi-
Sugeno fuzzy-neural model as a predictor has been applied to the level control problem. The
experiments have been implemented with the parameters in Table 4. The weighting

matrices are specified as follow: Q =0.01*diag(1, 1, 1) and R= 10e4 * diag(1, 1, 1, 1). Note
that the weighting matrix R is constant over all prediction horizon, which allows to avoid

matrix inversion at each sampling time with one calculation of R™" at time k=0.

plant output ||
model output ||

identification H1, m

identification H2, m

identification H3, m

time,sec

Fig. 6. Fuzzy-neural model identification procedure of the multi tank system -
unconstrained NMPC

The next two figures - Fig. 7 and Fig. 8, show typical results regarding level control, where
the references for H;, H; and H; are changed consequently in different time. The change of
every level reference behaves as a system disturbance for the other system outputs (levels).
It is evident that the applied model predictive controller is capable to compensate these
disturbances.
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Fig. 7. Transient responses of multi tank system outputs - unconstrained NMPC
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Fig. 8. Transient responses of multi tank system inputs - unconstrained NMPC
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4.3 Experimental results with fuzzy-neural constrained predictive control

The experiments with the proposed constrained model predictive control algorithm (Table
3) have been made with level references close to the system outputs constraints. The
weighting matrices in GPC cost function (19) are specified as Q=diag(1, 1, 1)and
R =15e4*diag(1, 1, 1, 1). System identification during the experiment is shown on Fig. 9.
The proposed identification procedure uses the linearized model (60) of the Multi tank
system as an initial condition.

identification H2, m

identification H3, m

identification H1, m

0.4 ‘ ‘ \
03777777777: 77777777 L 7777777777777777 - plant output ||
’ I L L O ettt model output
| |
02F =~~~ e i e T A
|
| |
(UM ] s [ i R [ A A
| | | |
0 1 1 1 1
100 200 300 400

| | | | |

| | | | |

-0.2 | I I ! |
0 100 200 300 400 500 600

|

| | | | |

-0.2 | | | | |
100 200 300 400 500 600

time,sec

Fig. 9. Fuzzy-neural model identification procedure of the multi tank system -
constrained NMPC

The proposed constrained fuzzy-neural model predictive control algorithm provides an
adequate system response as it can be seen on Fig. 10 and Fig. 11. The references are achieved
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Fig. 10. Transient responses of the multi tank system outputs - constrained NMPC
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Fig. 11. Transient responses of the multi tank system inputs - constrained NMPC
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without violating the operational constraints specified in Table 4. Similarly to the
unconstrained case, the Takagi-Sugeno type fuzzy-neural model provides the state-space
matrices A, B and C (the system is strictly proper, i.e. D=0) for the optimization procedure of
the model predictive control approach. Therefore, the LIQP problem is constructed with
“fresh” parameters at each sampling time and improves the adaptive features of the applied
model predictive controller. It can be seen on the next figures that the disturbances, which
are consequences of a sudden change of the level references, are compensated in short time
without violating the proper system work.

5. Conclusions

This chapter has presented an effective approach to fuzzy model-based control. The
effective modelling and identification techniques, based on fuzzy structures, combined with
model predictive control strategy result in effective control for nonlinear MIMO plants. The
goal was to design a new control strategy - simple in realization for designer and simple in
implementation for the end user of the control systems.

The idea of using fuzzy-neural models for nonlinear system identification is not new,
although more applications are necessary to demonstrate its capabilities in nonlinear
identification and prediction. By implementing this idea to state-space representation of
control systems, it is possible to achieve a powerful model of nonlinear plants or processes.
Such models can be embedded into a predictive control scheme. State-space model of the
system allows constructing the optimization problem, as a quadratic programming problem.
It is important to note that the model predictive control approach has one major advantage -
the ability to solve the control problem taking into consideration the operational constraints
on the system.

This chapter includes two simple control algorithms with their respective derivations. They
represent control strategies, based on the estimated fuzzy-neural predictive model. The two-
stage learning gradient procedure is the main advantage of the proposed identification
procedure. It is capable to model nonlinearities in real-time and provides an accurate model
for MPC optimization procedure at each sampling time.

The proposed consequent solution for unconstrained MPC problem is the main contribution
for the predictive optimization task. On the other hand, extraction of a “local” linear model,
obtained from the inference process of a Takagi-Sugeno fuzzy model allows treating the
nonlinear optimization problem in presence of constraints as an LIQP.

The model predictive control scheme is employed to reduce structural response of the
laboratory system - multi tank system. The inherent instability of the system makes it
difficult for modelling and control. Model predictive control is successfully applied to the
studied multi tank system, which represents a multivariable controlled process. Adaptation
of the applied fuzzy-neural internal model is the most common way of dealing with plant’s
nonlinearities. The results show that the controlled levels have a good performance,
following closely the references and compensating the disturbances.

The contribution of the proposed approach using Takagi-Sugeno fuzzy model is the
capacity to exploit the information given directly by the Takagi-Sugeno fuzzy model. This
approach is very attractive for systems from high order, as no simulation is needed to obtain
the parameters for solving the optimization task. The model’s state-space matrices can be
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generated directly from the inference of the fuzzy system. The use of this approach is very
attractive to the industry for practical reasons related with the capacity of this model
structure to combine local models identified in experiments around the different operating
points.
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1. Introduction

Due to the ability to handle control and state constraints, MPC has become quite popular
recently. In order to guarantee the stability of MPC, a terminal constraint and a terminal cost
are added to the on-line optimization problem such that the terminal region is a positively
invariant set for the system and the terminal cost is an associated Lyapunov function [1, 9].
As we know, the domain of attraction of MPC can be enlarged by increasing the prediction
horizon, but it is at the expense of a greater computational burden. In [2], a prediction
horizon larger than the control horizon was considered and the domain of attraction was
enlarged. On the other hand, the domain of attraction can be enlarged by enlarging the
terminal region. In [3], an ellipsoidal set included in the stabilizable region of using linear
feedback controller served as the terminal region. In [4], a polytopic set was adopted. In [5],
a saturated local control law was used to enlarge the terminal region. In [6], SVM was
employed to estimate the stabilizable region of using linear feedback controller and the
estimated stabilizable region was used as the terminal region. The method in [6] enlarged
the terminal region dramatically. In [7], it was proved that, for the MPC without terminal
constraint, the terminal region can be enlarged by weighting the terminal cost. In [8], the
enlargement of the domain of attraction was obtained by employing a contractive terminal
constraint. In [9], the domain of attraction was enlarged by the inclusion of an appropriate
set of slacked terminal constraints into the control problem.

In this paper, the domain of attraction is enlarged by enlarging the terminal region. A novel
method is proposed to achive a large terminal region. First, the sufficient conditions to
guarantee the stability of MPC are presented and the maximal terminal region satisfying these
conditions is defined. Then, given the terminal cost and an initial subset of the maximal
terminal region, a subsets sequence is obtained by using one-step set expansion iteratively. It is
proved that, when the iteration time goes to infinity, this subsets sequence will converge to the
maximal terminal region. Finally, the subsets in this sequence are separated from the state
space one by one by exploiting SVM classifier (see [10,11] for details of SVM).

2. Model predictive control

Consider the discrete-time system as follows
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Xer = f (%50 ) @

where x, € R", u, e R" are the state and the input of the system at the sampling time k
respectively. x;,,€ R" is the successor state and the mapping f:R"™ > R" satisfying
£(0,0)=0 is known. The system is subject to constraints on both state and control action.
They are given by x, € X, u,e U, where X is a closed and bounded set, U is a compact
set. Both of them contain the origin.

The on-line optimization problem of MPC at the sample time k, denoted by Py(x), is

stated as

z

71q(x(i,xk),u(i,xk)) +F(x(N,x))

f(x(ix) u(i xg) )
x(i+1,x,)e X,u(i,x.)e U,x(N,x;)e Xy

min u,x, )=
u(i,xk)eUIN( ! k)

™

TR

1

st x(i+1,x;)

where x(0,x,)=x, is the state at the sample time k, g(x,u) denotes the stage cost and it is

positive definite, N is the prediction horizon, X f denotes the terminal region and it is
closed and satisfies 0e X fcX, F (-) satisfying F(0)=0 is the terminal cost and it is

continuous and positive definite.

Consider an assumption as follows.

Assumption 1. For the terminal region and the terminal cost, the following two conditions
are satisfied [1]:

(C1) F(-) is a Lyapunov function. For any xe X, there exists

F(x)= rgbr}{q(x,u) +F(f (x,u))} .
(C2) X, is a positively invariant set. For any xe X, by using the optimal control resulting
from the minimization problem showed in (C1), denoted by u,,, , we have f (x,uopt € X;.
Let Jy(x;) be the minimum of Py (x,) and u;(xk)={u;,(0,xk),~-v,u;(N—l,xk)J be the
optimal control trajectory. The control strategy of MPC is that, at the sample time k,
uy (0,x;) is inputted into the real system and at the sample time k+1, the control inputted
into the system is not uy(1,x,) but the first element of the optimal control trajectory
resulting from the similar on-line optimization problem. At the sample time k+1, the state
is xp=f (xk,ujv(O,xk)) and the on-line optimization problem, denoted by Py (x;,,), is
same as (2) except that x; is replaced by x,,;. Similarly, let Jy (x.,;) be the minimum of
Py (%4.1) and uy (x4,1) ={u; (0,221 ), 1ty (N=1,x;44 )} be the optimal control trajectory.
The control inputted into the system at the sample time k+1 is uy (0,%;.;) . So, the control
law of MPC can be stated as u, (x;) =ty (0,x;),k=0,1,2,-,00.
The closed-loop stability of the controlled system is showed in lemma 1.
Lemma 1. For any x,€ X, if x, satisfies xy (N,xy)e X s and assumption 1 is satisfied, it is
guaranteed that, x, will be steered to 0 by using the control law of MPC.
The proof can be found in [1].
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Proof. The proof of lemma 1 is composed of two parts: the existence of feasible solution; the
monotonicity of Jy (-).

Part 1. At the sample time 1, x;=x"(1,x))=f (xo,u* (O,xo)) is obtained by inputting
u” (0,xy) into the system, where u” (0,x9) denotes the first element of the optimal solution
of Py(xy).Itis obvious that, u(x;)= u* (Lxg), Lt (N—l,xo),uop, (x* (N,xo)) is a feasible
solution of Py(x;) since x (N,xj)e X; and f(x*(N,xo),uopt(x*(N,xo)))e X; as
assumption 1 shows.

Part 2. When u(x,) is used, we have

In (u(xl)’xl)_];\l(xo)
= q(x* (N,xg), tgp (x* (N,xo))) +F(f(x* (N, %), tgp (x* (N,xo))))
—q(x* (O,xo),u* (O,xo)) —F(x* (N/xo))

S—q(x*(O,xo),M* (O,xo))
<0

Since Jy (x1) <]y (u(xy), %), it follows that, Jy (x;) -]y (x,)<0.
Endproof.

3. Using subsets sequence to approach the maximal terminal region

Using SVM classifier to estimate the terminal region is not a new technology. In [6], a large
terminal region was achieved by using SVM classifier. However, the method in [6] is
somewhat conservative. The reason is that, the obtained terminal region actually is the
stabilizable region of using a predetermined linear feedback controller.

In this section, a novel method of computing a terminal region is proposed. Given the
terminal cost and a subset of the maximal terminal region, a subsets sequence is constructed
by using one-step set expansion iteratively and SVM is employed to estimate each subset in
this sequence. When some conditions are satisfied, the iteration ends and the last subset is
adopted to serve as the terminal region.

3.1 The construction of subsets sequence

Consider an assumption as follows.

Assumption 2. A terminal cost is known.

If the stage cost is a quadratic function as g(x,u)= x"Qx+u"Ru in which Q, R are
positive definite, a method of computing a terminal cost for continuous-time system can be
found in [3]. In this paper, the method in [3] is extended to discrete-time system. Consider
the linearization of the system (1) at the origin

X1 = AgXy + By

with A; =(df /9x)(0,0) and B, =(df /du)(0,0).
A terminal cost can be obtained through the following procedure:
Step 1. Solving the Riccati equation to get G,
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-1
Gy = AiGoAs—(ATGoB, )(BiGoBs+R) (BiGoAs)+Q
Step 2. Getting a locally stabilizing linear state feedback gain K,
-1
K=—(BjGyB;+R) (BiGyA,)

Step 3. Computing Gy by solving the following Riccati equation,

(aAk )T Gy (Ax) = Gg =-Qk

where Ag=A,;+B,K, Q¢=Q+K'RK, and @e[l,+) is an adjustable parameter
satisfying a|ﬂmax (Ag )| <1.Then, F(x)=x"Ggx can serve as a terminal cost.
Given F () and from conditions (C1,C2), the terminal region X § can be defined as

Xs :={xeX|F(x)2F§f (x)} 3)
where F;f (x) is the minimum of the following optimization problem

minFy (x) =q(x,u)+ F(f (x,0))

st. f(xu)e X; @)

Remark 1. The construction of X, has two meanings: (I) the optimization problem (4) has
feasible solution, that is to say, Juel, st. f (x,u) eX 1% (II) the minimum of the
optimization problem satisfies that F;f (x)<F(x).

Remark 2. From the definition of X, it is obvious that, the terminal region is essentially a
positively invariant set of using the optimal control resulting from the optimization problem
(4) when F(:) is given.

Remark 3. In [3,4,6], the linear feedback control is attached to the construction of X f and

X is the stabilizable region of using the linear feedback controller. In [5], a saturated local

control law was used. But, in this paper, there is no explicit control attached to the definition
of X, . So, the requirement on X, is lower than that in [3-6] while guaranting the stability

of the controlled system.
From the definition of X, it can not be determined whether a state point belongs to X .

The difficulty lies in that, the X itself acts as the constraint in the optimization problem (4).

To avoid this problem, the method of using one-step set expansion iteratively is adopted.
Define X .. as the largest terminal region and consider an assumption.

Assumption 2. A subset of X/ .., denoted by X? and containing the origin, is known.
Assumption 3. X?c is a positively invariant set, that is to say, for any xe X;)r, Juel, st
F(x)2q(x,u)+F(f(x,u)) and f(x,u)e Xj.

Given X? , another subset of X f,max 7 denoted by X} , can be constructed as
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X} {xeX|F() F*?(x)} ®)

where F;o (x) is the minimum of
7

min g ()= () +F(F (x,0) ©)

st.  f(xu)e Xg’(

As mentioned in remark 1, the construction of le; contains two meanings: (I) for any
xe Xy, Juel, st f(x,u)e X}; (1) the minimum of (6) satisfies Fy, (x)<F(x). The
constructions of X } in sequel have the similar meanings. !

Lemma 2. If assumption 3 is satisfied, there is X? c X} .

Proof. If assumption 3 is satisfied, it is obvious that, for any xe X! 5o Juel, st
F(x)2¢q(x, u)+F(f(x u)) and f(x,u)eX}. It follows that, F(x)2F, 0( ). From the
construction of X} 7, wecan know xe X} , namely, XY jx= X3 Iz

Endproof.

Remark 4. From the construction of X? o it is obvious that, if assumption 3 is satisfied, x? f is
a positively invariant set. We know that, for any xe X; f, Juel, st
F(x)2q(x,u)+F(f(x,u)) and f(x,u)e Xf Because of Xf c X} as showed in lemma 2, we
have f(x,u)e X;}.

Similarly, by replacing X? with X} in the constraint of (6), another subset, denoted by XJ% ,

can be obtained as follows
X2 {xeX|F( )2 F, (x)} @)

where F}; (x) is the minimum of
1

Ilf;il}?[:x} (x) :q(x,u)+F(f(x,u)) 3
st. f(x,u)e X} ®

Repeatedly, XJ][ , j=3,4,---,00 can be constructed as

X} {xeX|F() Fxél(x)} )

where E s (x) is the minimum of
1
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This method of constructing Xj]; given X]jfl is defined as one-step set expansion in this
paper. By employing it iteratively, a subsets sequence of largest terminal region, denoted by
{ j,} j=1,2,--,00, can be achived.

Remark 5. Similar with lemma 2 and remark 4, any subset in this sequence is positively

invariant and any two neighbouring subsets satisfy X}'_l c X} .

As j increases, {X}} will converge to a set, denoted by X;™. Theorem 1 will show that,
X} is equal to the largest terminal region. 4

Theorem 1. If assumption 2 and assumption 3 are satisfied, for X} constructed in (9) and (10),
when j goes to infinity, {X}} will converge to Xy .y -

Proof. This theorem is proved by contradiction.

(A) Assume that, there exists a set which is denoted by X,,, satisfying X, © X/ ., and
X} — X, when j— +eo. From remark 5, we can know X0 c Xy It is obvious that
0e X,,, because of Oe X? as showed in assumption 2. It follows that 06 X max \ Xgpo and
for any xe X; . \ X, we have F(x)>0 since F(-) is positive definite. Define £ as the
infimum of {F(x)|x€ X \ Xy} , it is satisfied that, £>0.

From the construction of X} , we know that, for any x,€ Xy ... \ X, , there exists no such
a uel satisfying F(xo)2q(xo,u)+F(f(xo,u)) and f(xo,u)eX,, because of
Xopo © Xf max - However, from (Cl) and (C2), we know that, Ju(xg)elU, st
F(x0)2q(x0,u(x0))+F(x;) and x;€ X/, where x; = f(xo,u(xp)). It is obvious that,
X1 & Xy, So we have, x;€ X .\ X, . Similarly, we can know, Ju(x;)elU, st
F(xy)2q(x,u(x))+F(x,) and x,e Xt max \ X where  x, = f(xy,u(x,)), since
X1 € X max \ Xepo -

Repeatly, for —x;€ X; 0\ X, Ju(x;)eU, st F(x;)2q(x,u(x;))+F(xy,) and
%41 € X max \ Xgpo » Where x;,1 = f(x;,u(x;)), i=2,--,°0. It is clear that, F(x;) >0 when
i — oo . We know that, for the infimum of {P (X)[x€ X¢ max \Xspo |+ defined as &, thereisa
positive real number & satisfing 0<d<¢ . Since F(x;) >0 when i —eo, ANy >0, s.t. for
any i>Ng, we have F(x )< 0 . Obviously, this is contradicted with that & is the infimum
of { ( )lxexfmax\xspoj

(B) Similarly, assume that, there exists a X, satisfying X,,, > X; .., and X} — X0 When
j— +eo. Forany xe X, , we have that F( )>m1n{q(x u)+F(f(x, )) and f(x, u)e Xopo -
Obviously, this is contradicted with that X . 15'the largest one satisfying (C1) and (C2).
Endproof.

Remark 6. In this paper, the largest terminal region means the positively invariant set satisfying
conditions (C1) and (C2). But, (C1) and (C2) are sufficient conditions to guarantee the stability of
the controlled system, not the necessary conditions. There may be a set larger than X/ ., and
the stability of the controlled system can be guaranteed by using this set as the terminal region.
Remark 7. In the calculation of X ., it is impossible to keep iteration computatlon until
j— +oo When the iteration time goes to ] E(Eisa posmve integer), if X% 5 is equal to
X5 f in principle, it can be deemed that { } converges to X% # inrough. Hence, Xk f can be
taken as the terminal region and it is a good approximation to X, .. .

Remark 8. If the iteration time does not go to infinity, the obtained set may be just a large
positively invariant subset of X ... This has no effect on the stability of the controlled

spo 7
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system. The only negative influence is that its corresponding domain of attraction is smaller
than that corresponding to X .. . .

Untill now, it seems that we can choose any X} in the subsets sequence as the terminal
region. This is infeasible. Since X} is not described in explicit expression, it can not serve as
the terminal constraint in the optimization problem (2) directly. Then, an estimated one
described in explicit expression is needed. Due to the strong optimizing ability of SVM,
SVM is exploited to separate each X} from the state space.

3.2 Support vector machine

SVM is the youngest part in the statistical learning theory. It is an effective approach for
pattern recognition. In SVM approach, the main aim is to obtain a function, which
determines the decision boundary or hyperplane. This hyperplane optimally separates two
classes of input data points.

Take the example of separating X into A and X\ A. For each x;e€ A, an additional
variable y; =+1 is introduced. Similarly, for each x;e X\ A, y; =-1 is introduced. Define
I":={i:y;=+1} and I :={i:y;=-1}, SVM will find a separating hyperplane, denoted by
O(x)=w-¢(x;)+b=0, between A and X\ A. Therefore, A can be estimated as
A={xe X|O(x)20}, where O(x) is determined by solving the following problem:

min %Zz%a}-yiyjker (xz- X )—z o
j i

o -
1

s.t. Z(Ziy,- =0 (11)
i
0<e;<C, Viel*; ¢;20,Viel”

where ker(-,-) denotes the kernel function and the Gaussian kernel as follows is adopted in
this paper:

2
ker (x,x;) = exp[—wl (12)

20

with o being the positive Gaussian kernel width.

When {¢;} are computed out, some support vectors are chosen from {x;} and the optimal
hyperplane can be determined with these support vectors and their relevant weights.
Denote P, as the number of support vectors and X, as the support vectors set, the optimal

hyperplane is described as:

O(x)=> w; -ker(x;,x)+b (13)
i=1
PS
where x; € X, is the support vector and w; = aqy; satifying » w; =0 is the relevant weight.
There are many software packages of SVM available on intetnet. They can be downloaded
and used directly. To save space, it is not introduced in detail in this paper. For more details,

please refer to [10] and [11].
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3.3 Estimating the subset by employing SVM

From subsection 3.2, we know that, SVM find a separating hyperplane between {xi liel +}
and {xi liel _} .This hyperplane is used to separate X into A and X\ A. All of {x,;} and
their relevant {y;} compose a set, named the training points set. This subsection will show
how to achieve the training points set when estimating X } and how to determine X} when
the separating hyperplane is known.

Firstly, choose arbitrary points x;€ X, i=1,2,..,P (P is the number of training points);
then, assign y; to each x; by implementing the following procedure:

IF (I) the following optimization problem has feasible solution

IE?FX} (x;) = q(x;,u)+F(f (x;,u))

st. f(xu)e X}fl

. 50 _ 30
(When j=1, Xy =X;.)

(II) its minimum satisfies

THEN y, = +1
ELSE v, = -1
ENDIF.

By implementing this procedure for every x;, each y; is known. Input {x;} and {y;} into
SVM classifier, an optimal hyperplane O’(x)=0 will be obtained. Therefore, the estimated

set of X} can be achieved as )A(j]( ={xe X0/ (x)> 0} :

When }A(J/( is known, the training points for separating X}H from X can be computed by

the similar procedure. By inputting them into SVM classifier, a hyperplane O’** (x)=0 and

an estimated set of X}H, denoted by )A(}+l={xeX|Oj”(x)20} will be obtained.

Repeatedly, O/ (x 1, i=1,2,---,00 and X! can be be achieved by the similar technology.
P Y I f y gy

4. Estimating the terminal region

Section 3 showed how to achieve the subsets sequence by employing SVM. Theoretically,
the larger the iteration time j, the higher the precision of X } approaching to X, ... But, it
is impossible to keep computation until j — 4o . To avoid this problem, the iteration should
be ended when some conditions are satisfied.

When j=E, if it is satisfied that, for x;€ X, ;, i=1,2,---, P, _; , there exists

OF (%)= 0" (x,)| < £P, .y, (14)

P
)
i=1
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it can be deemed that )A(f is equal to )A(]E;_l in principle and )A(]C converges to }A(f; . In (14),
X, g1 is the support vectors setat j=E~-1, P, p ; is the number of support vectors and &
is a tunable threshold. The smaller & is, the higher the precision of }A(JL; approximating
t0 X oy is. Finally, )A(J‘E is used to serve as the terminal region.

Remark 9. Here, we used the information that, in SVM classifier, the hyperplanes are only
determined on the support vectors.

Now, the concrete algorithm of estimating the largest terminal region is displayed as follows.
Step 4. Step 1 Set the number of training points P used in SVM and the tunable threshold ¢ .

Step 5. Step 2 For j=1,2,---,% , use SVM to achieve the optimal hyperplane O’ (x)=0 and

the estimated set of X j/( , denoted by X j/( .

Substep 1. Choose arbitrary points x;€ X , i=1,2,...,P.
Substep 2. Assign y; to each x; by implementing the procedure in subsection 3.3.

Substep 3. Input {x;,y;} into the SVM. An optimal hyperplane o’ (x)=0 will be
obtained and Xj]( can be approximated by X } = {x e X|0’ (x)2 0} , where
A By
O (x) =D w; -ker(x;,x)+b;
i=1

with P, ; denoting the number of support vectors, x; being the support vector, w;
denoting its relevant weight and b; denoting the classifier threshold.
Step 6. Step 3 Check the iteration status. When j=E, if inequality (14) is satisfied, end

iteration and take }A(f as the largest terminal region.
Remark 10. It is obvious that, Xjf is achieved one by one. Namely, X } can only be achieved

when Xj]fl is known.

5. Simulation experiment

The model is a discrete-time realization of the continuous-time system used in [3, 6]:

o (k+1)] [1 TIx (k)] [Tu T(-g) 0  |x(k)
Lz(kn)HT J{xz(kJ*[m}”"‘){ 0 —4T<1—ﬂ>}{xz<k>}”“‘)

where y=05, T=0.1s, and the state constraint and control constraint are
X= {x Il < 4} » U={ul|[u] <2}, respectively.
The stage cost is q(x,u)=x"Qv+u’Ru where Q=05] and R=1. The terminal cost is

chosen as F(x)=x"Gx where G=[1107.356 857.231;857.231 1107.356] and X? is given

as the terminal region in [3] which is
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0 71165926 11.5926
Xy =qxe X|x x<07
11.5926 16.5926

To estimate each X } , 4000 training points are generated. Set £ =2.5, when j =22, there exists

Ps,Zl

2

i=1

0% (x;)-0% (x, )" <€l

where x; € X5, X, is the support vectors set and P, ,; is the number of support vectors
at j=21. Then, it is deemed that, }A(]zfz is equal to 5(}1 in principle and }A(}z can be taken as

the final estimation of X .., . Figure 1 shows the approximation process of X ...

In figure 1, the blue ellipsoid is the terminal region in [3], which serves as X;)c in the

estimation of X, .. in this paper. The regions surrounded by black solid lines are
{)?}}, j=1,2,---22 in which the smallest one is )2} , the largest one is }A(]%z and the regions
between them are {X J]c} ,j=2,3,---21 satisfying }A(};l c )A(} . The time cost of employing SVM
to estimate each )A(j/[ is about 44 minutes and the total time cost of computing the final

estimation of X .., , namely, 5{%2 is about 16 hours.

Fig. 1. The approximation process
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Set the prediction horizon as N =3, some points in the region of attraction (this example is
very exceptional, the region of attraction is coincident with the terminal region in rough.
Therefore, these points are selected from the terminal region) are selected and their closed-
loop trajectories are showed in Figure 2.

\ — stat trajectory |
initial state

-4 L &
-4 -3 -2 -1 0 1 2 3 4

Fig. 2. The closed-loop trajectories of states

In figure 2, the blue ellipsoid is the terminal region in [3] and the region encompassed by
black dash lines is the result in [6]. The region encompassed by black solid lines is the
terminal region in this paper. We can see, the terminal region in this paper contain the result
in [3], but not contain the result in [6] although it is much larger than that in [6]. The reason
is that, the terminal region in this paper is the largest one satisfying conditions (C1) and
(C2). However, (C1) and (C2) are just the sufficient conditions to guarantee the stability of
the controlled system, not the necessary conditions as showed in remark 6. The red solid
lines denote the closed-loop trajectories of the selected points. Note that, with the same
sampling interval and prediction horizon as those in this paper, these points are not in the
regions of attraction of MPC in [3] and [6]. But, they can be leaded to the orgin by using the
control law of MPC in this paper.

6. Conclusion

Given the terminal cost, a sequence of subsets of the maximal terminal region are extracted
from state space one by one by employing SVM classifier. When one of them is equal to its
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succesive one in principle, it is used to serve as the terminal region and it is a good
approximation to the maximal terminal region.
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1. Introduction

In process industry, there exist many systems which can be approximated by block-oriented
nonlinear models, including Hammerstein and Wiener models. Hammerstein model consists
of the cascade connection of a static (memoryless) nonlinear block followed by a dynamic
linear block while Wiener model the reverse. Moreover, these systems are usually subjected
to input constraints, which makes the control of block-oriented nonlinearities challenging.

In this chapter, a Multi-Channel Identification Algorithm (MCIA) for Hammerstein systems is
first proposed, in which the coefficient parameters are identified by least squares estimation
(LSE) together with singular value decomposition (SVD) technique. Compared with
traditional single-channel identification algorithms, the present method can enhance the
approximation accuracy remarkably, and provide consistent estimates even in the presence
of colored output noises under relatively weak assumptions on the persistent excitation (PE)
condition of the inputs.

Then, to facilitate the following controller design, the aforementioned MCIA is converted
into a Two Stage Single-Channel Identification Algorithm (TS-SCIA), which preserves most
of the advantages of MCIA. With this TS-SCIA as the inner model, a dual-mode Nonlinear
Model Predictive Control (NMPC) algorithm is developed. In detail, over a finite horizon,
an optimal input profile found by solving a open-loop optimal control problem drives the
nonlinear system state into the terminal invariant set, afterwards a linear output-feedback
controller steer the state to the origin asymptotically. In contrast to the traditional algorithms,
the present method has a maximal stable region, a better steady-state performance and a lower
computational complexity. Finally, a case study on a heat exchanger is presented to show the
efficiency of both the identification and the control algorithms.

On the other hand, for Wiener systems with input constraints, since most of the existing
control algorithms cannot guarantee to have sufficiently large regions of asymptotic stability,
we adopted a subspace method to separate the nonlinear and linear blocks in a constrained
multi-input/multi-output (MIMO) Wiener system and then developed a novel dual-mode

*H. T. Zhang acknowledges the support of the National Natural Science Foundation of China (NNSFC)
under Grant Nos. 91023034 and 51035002, and Program for New Century Excellent Talents in University
of China under Grant No. 2009343
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nonlinear model predictive control algorithm to maximize the region of the asymptotic
stability. Simulation results are presented to demonstrate the superiority of this new control
algorithm.

In sum, this chapter developed some new NMPC methods for block-oriented nonlinearities
with input constraints. Meanwhile, these approaches can effectively enlarge the closed-loop
stable area so as to extend the feasible working region and improve the reliability of the control
systems in real process industrial applications.

2. Model Predictive Control for Hammerstein systems with input constraints

2.1 Introduction

In industrial processes (1), most dynamical systems can be better represented by nonlinear
models, which are able to describe the systems over large operation ranges, rather than by
linear ones that are only able to approximate the systems around given operation points (23;
48). One of the most frequently studied classes of nonlinear models is the Hammerstein model
(17; 48), which consists of the cascade connection of a static (memoryless) nonlinear block
followed by a dynamic linear block. Under certain considerations such as fading memory
assumption (10) the Hammerstein approximation could be a good representation. Thus,
this model structure has been successfully applied to chemical processes (heat exchanger
(17), distillation (5; 17; 35)), biological processes (20; 30) signal processing (3; 55), and
communications (3; 25)). In recent years, identification and control of Hammerstein systems
has become one of the most needed and yet very difficult tasks in the field of the process
industry.

In MPC (Model Predictive Control) framework (20; 32), the input is calculated by on-line
minimization of a performance index based on model predictions. It is well known that the
control quality relies on the accuracy of the model. In recent years, extensive efforts were
devoted to modelling of Hammerstein nonlinearities (2; 17; 23; 26; 27; 31). For example,
Bai (2) studied SISO (Single Input/ Single Output) systems subject to external white noise.
Gomez and Baeyens (23) designed a non-iterative identification with guaranteed consistent
estimation even in the present of coloured output noise. Both of their works use only one
channel to identify the system, therefore, owing to the SVD (singular value decomposition)
nature of their methods, the identification errors usually can not be minimized. A basic reason
is that the error is determined by the second largest singular value (for SISO system) or the st
largest singular value (for MIMO system with inputs) of the estimated coefficients matrix.
For a SISO system, if the sampling set is not big enough or the PE (persistent excitation)
conditions are not fulfilled, the second largest singular value can not be neglected, making the
identification accuracy unsatisfactory or even unacceptable. On the other hand, the research
on the control of Hammerstein systems is still on the midway so far. Most of the existent
control algorithms have some of the following disadvantages

¢ Reliance on prior knowledge;

* Insulfficiently large closed-loop stable regions;

¢ Limited capacity of handling input constraints.

In detail, Haddad and Chellaboina (28) suggested a design that can guarantee global

asymptotic closed-loop stability for nonlinear passive systems by embedding a nonlinear
dynamic compensator with a suitable input nonlinearity, which requires the memoryless
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nonlinear block to be partially known or measurable without considering input constraints.
Patwardhan et al. (51) used a PLS (Partial Least Square) framework to decompose the
modelling problem into a series of univariate problems in the latent subspace while preserving
optimality of the input constraints. In this way, they can extend the SISO formulation into
a constrained MIMO scenario. In this approach, however, the computational complexity is
prohibitive, and the reliance on prior knowledge can not be eliminated. Knohl ef al. (40)
slightly alleviated this reliance by an ANN (Artificial Neural Network) inverse compensation,
which makes the control scheme more flexible, but its stable region is still small. Fruzzetti
et al. (18) and Zhu et al. (71) developed GPC (Generalized Predictive Control) and MPC
algorithms respectively by taking input constraints into account. These schemes still can
not ensure a large stable region in general, and require prior knowledge of the real plant
such as order, structure, partial coefficients, etc. Bolemen et al. (9) extended their own
work (8) which preserves the convex property of the optimization problem, but does not
consider input constraints. In order to enlarge the asymptotically stable region for constrained
nonlinear systems, Chen and Allgower (14) developed a quasi-infinite horizon Nonlinear
Model Predictive Control (NMPC) algorithms based on a dual-mode (or two-step) technique,
which has opened a new avenue in this fascinating field. Among the various following
works of Chen and Allgéwer’s work (14), there are three important investigations made by
Kouvartakis et al.  (41) Lin et al.  (44) and Ding et al.  (16). More precisely, Kouvartakis
et al.  (41) proposed a new approach that deployed a fixed state-feedback law with the
assistance of extra degrees of freedom through the use of perturbations, which led to a
significant reduction in computational cost. More generally, for linear systems with actuator
rate constraint, Lin ef al. (44) designed both state-feedback and output-feedback control laws
that achieve semi-global asymptotic stabilization based on the assumption of detectability
of the system. For input saturated Hammerstein systems, Ding et al.  (16) designed a
two-step MPC by solving nonlinear algebraic equation group and deconstraint. The stable
region is enlarged and its domain of attraction is designed applying semi-global stabilization
techniques. Unfortunately, this nice work is still based on the measurability of the state of the
linear block.

Based on the above analysis, two important tasks are formulated as follows:

o Task one: Develop a better identification algorithm to separate the nonlinear/linear blocks
of the Hammerstein system more effectively so that some mature linear control theories
can be used to facilitate the nonlinear control algorithm design.

» Task two: Develop a more efficient control algorithm for constrained Hammerstein systems.

Bearing these tasks in mind, we propose a NMPC algorithm based on a Two Stage
Single-Channel Identification Algorithm (TS-SCIA) (68). More precisely:

¢ A Multi-Channel Identification Algorithm (MCIA) is developed for Hammerstein systems
which eliminates requirement of prior knowledge about the plant and minimizes the
identification errors. The MCIA is then converted to a TS-SCIA thereby facilitating the
controller design. A sufficient condition for the convergence and approximation capability
is given for the new algorithm.

¢ A dual-mode NMPC algorithm is developed by taking the above mentioned Two Stage
Single-Channel Identification Model (TS-SCIM) as the internal model. The closed-loop
stable region is maximized by using ellipsoidal invariant set theory together with linear
matrix inequality (LMI) techniques.
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2.2 Model identification

The key problem on this issue is how to efficiently separate the coefficients of the linear
and nonlinear blocks, namely nonlinear/linear separation. A number of approaches are
previously proposed: these include the singular value decomposition (SVD) combined with
least square estimation (LSE) (23), iterative finite response (FIR) method (45), separable LSE
(63), Hunter-Korenberg iteration (35) , correlation analysis (4) and so on. Among them,
SVD-LSE approach is one of the most extensively studied and most widely applied methods.
In this approach, the system output y(t) is expanded as

y(t) = Gz )N (u(t)) +&(t)
= il cexe (27 Doy aigi(u(t) +&(1),

where u(t) € D C R", v(t) = N(u(t)) € R", y(t) € R™ and &(t) € R™ are the input,
intermediate variable, output and external noise vector at time ¢, respectively. External noise
¢(t) can be white or colored noise sequence induced by measurement or external disturbances,
and input signal u(t) can be random or stationary. G(z~!) and N(-) denote the linear and
nonlinear blocks expanded by suitable orthonormal and nonlinear bases x¢(z71) and gi(+),

respectively. The sequences {cj € IR’”X”}]Z:I:1 and {a; € R™"}_
linear and nonlinear blocks, respectively, and z~! is the one-step backward shifting operator,
ie. z7lu(t) = u(t — 1). The state x;(z~1) could be Jacobi series [13], spline functional series
(? ), orthonormal functional series (OFS, including Laguerre series (19; 60; 66; 67; 69), Kautz
series (19; 33) and so on) or some others.

Actually, in recent years, extensive efforts (23) were devoted to this kind of SVD-LSE
approaches. For example, Bai (2) studied SISO (Single Input/ Single Output) systems subject
to external white noise. Gémez and Baeyens (23) designed a non-iterative identification with
guaranteed consistent estimation even in the present of colored output noise. Both of their
works use merely one channel to identify the system, therefore, owing to the SVD nature of
their methods, the identification errors usually can not be minimized. A basic reason is that,
for the Hammerstein system (1), the error is determined by the (1 + 1)th largest singular
value the estimated coefficients matrix. If the sampling set is not big enough or the PE
(persistent excitation) conditions are not fulfilled, the (1 + 1)th largest singular value can not
be neglected, making the identification accuracy unsatisfactory or unacceptable, especially
for small numbers of truncation lengths of the nonlinear/linear basis series, i.e. ¥ and N (see
Eq. (1)). In brief, it is an urgent task to develop a better identification algorithm to separate
the nonlinear/linear blocks of the Hammerstein system more effectively.

In this section, we argue that the single-channel separation is a bottleneck to better modeling
accuracy, and adding more identification channels can effectively enhance the performance,
for they have the capability to compensate the residuals of the single-channel nonlinear/linear
separation.

Fig. 1(a) shows the implementary details on a single identification channel of the present
modeling method. First, system input u(t) is fed into parallel weighted nonlinear bases
to produce the intermediate variable v(t). According to Weierstrass Theorem (42) (every
continuous function defined on a finite region can be uniformly approximated as closely as
desired by a polynomial function), the bases are generally chosen as polynomial bases. Then
v(t) is injected into the linear OFS filter, through which the filter output sequence can be
yielded.

(1)

are the coefficients of the
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Fig. 1. (Color online) (a): Implementary details of each modeling channel; (b): Multi-channel
identification

Since {x¢(t)}4_; forms a complete orthonormal set in functional space £;(IR™) (33; 66-68),
each stable linear system can be approximately represented as h(t) = YN ; cxx(t) , where
{ck} ,I{\] 1 are the coefficients of the linear block, the Laguerre function @i (t) is given in (33; 66),
and the kth order filter output is calculated by xy (¢ fo or(T)v(t — T)dt . To get the OFS
filter output sequence, one should pre-calculate all the OFS according to the state equation
x(t+1) = Ax(t) + Bo(t), where A and B are pre-optimized matrices (33; 66). As shown in
Fig. 1, the first-order filters is the Laguerre series, in which

Go( z~ \/1— /1—z ), %)
( ) (z~ )(1—2119),

where p is the filter pole. The second-order OFS is the Kautz Series, in which Go(z~!) and
Gi1(z™!) are the second order OFS transfer functions. Analogically, Heuberger et al. (33)
introduced the higher-order OFS models. As the order increases, OFS model can handle
more complex dynamics. Finally, the model is obtained by synthesizing the OFS filter output
sequence and their corresponding coefficients according to y () = Z,I{\Izl cxx () which leads
to Eq. (2). Consequently, considering the S-point data set suffered by external noise sequence
{g(t)}tzl,m,s , Eq. (1) can be rewritten in a linear regressor form as

Ys=®L0+Ys, ()

with

Ys £ [y(1), -, y(S))',
Ys £ [5(1),-,E9)),

0 = [clal,- <. ,014p,+ ,CNAY, "t /CNar]T/
@5 £ [p(1),---,9(5)]",
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and

(1) £ [x1(z Mg (u(t), -+, xa(z gl (u(t), -+,

an(z gl (u(t), - an gl ()]
where the superscript 'T” means transpose. Note that in real applications, the orthonormal
basis x;(z71)gl (u(t)) (k = 1,---,N; i = 1,---,r) and the system output y(t) in Eq. (1)
are calculated according to the state-space equations in (62; 66; 67). As shown in Fig. 1(a),
kernel matrix ®g is obtained by carrying out nonlinear bases and OFS operations on the input
sequence, and 6 is the coefficient vector of ®g. Then, provided the indicated inverse exists, it

is well known that the LSE 6 of minimizing the prediction errors e; = Y5 — ®16 is calculated
by (46)

4)

02 (0s0L) dgYs. (5)

Define O, £ {aTc.T = ac’ witha 2 [ay,---,a;]T and ¢ & [clT,~~~ ,c{,}T, it

i }1§i§r; 1<j<N
can be seen that 6 is the block column matrix obtained by stacking the block columns of @,
on the top one by one. Now, the problem is how to separate the nonlinear/linear coefficient
parameter matrices a and c from the LSE Oy of O, . Tt is clear that feasible estimates @ and ¢

are the solutions of the optimization problem

(4,¢) = argmingc || @ — acT|[3. ©6)
This problem can be solved by the standard SVD (22) with the prerequisite ||a;]| = 1 (i =
1,---,r). However, bearing the spectral nature of SVD in mind, one can easily find that the
closest estimates of {4, c} are not a single pair {4, ¢} but a series of pairs {ﬁ<j>, eli) }7:1, which
solves the optimization problem

Ouc -1, a<j>(c<z‘>)TH2, 7)

(@<]>,@<J>);]:l = argmin,; . 2

From now on, the pair {ﬁ<f >,é<f>} is defined as the jth identification channel, with j and

7 denoting the sequence index and number of the identification channels, respectively.
Therefore, in order to separate the nonlinear/linear blocks more effectively, more channels
should be used to compensate the separation residuals of the single-channel method (23). To
explain it more clearly, we will give a lemma and a theorem as follows. Note that, for the
Hammerstein system (1), the multi-channel estimates al) e R™*1 and ¢l) € RNmx1 In
special, for SISO case, i.e. m = 1 and n = 1, the estimates ') and &) are all column vectors.

Lemma 1. Let rank(®gc) = -y, here O is the estimate of Oge, then the SVD of Oy is
Ouc = Uy, VY = XL, ojujv] (8)

such that the singular value matrix L., = diag {0']'} (j=1,---,min(r,N)) satisfies cq, > --- >
oy > 0and g = 0 (I > ), where yjand vj (j = 1,---,7) are pairwise orthogonal vectors. If

|al) ||, = 1, then ¥ 4y (1 < 5 < =), each identification channel can be calculated as below according
to the optimization problem (7)
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(@(i)/@(ﬁ) = (j,0v) (=1, 1) (9)
with approximation error ey given by

. N2
Ope — 27:1 ali) (C<]>)TH2 =¥, 10 (10)

617:

It can be seen from Lemma 1 ’that' after the SVD operation, O is decomposed into a
series of pairs (or channels) (a'/),¢(/). More precisely, as shown in Fig. 1(b), first the 1st
channel model is estimated using the basic identification algorithm (30) from input-output

data {u(t),y(t)}tszl. Afterwards, the 1st channel model error e1(t) = y(t) — y,<nl> is used to
identify the 2nd channel model. Analogously, ex(¢),- - - ,eﬂ,l(t) determine the 3rd, - - -, 7th
channel models, respectively. The approximation accuracy enhancement will be proven by
the following theorem.

Theorem 1. For the Hammerstein system (1), with the identification matrix calculated by Eq. (22),
if rank(@qc) = 7y , then, with the identification pairs (a'1),¢U0) obtained by Egs. (8) and (9) and the
identification error index defined by Eq. (10), one has

€1>€2>--'>€7:0.

In other words, the the identification error decreases along with the increasing 1.

Proof: This can be easily drawn from Lemma 1. n
In principle, one can select a suitable # according to the approximation error tolerance € and
Eq. (10). Even for the extreme case that & = 0, one can still set # = < to eliminate the
approximation error, thus such suitable 5 is always feasible. For simplicity, if v > 3, the
general parameter setting 77 = 2 or 3 works well enough.

According to the conclusions of Lemma 1 and Theorem 1, multi-channel model y,(t) =
2;7:1 GO (z=Y)N'Y) (u(t)) outperforms single-channel model vy, (t) = G(z )N (u(t)) in
modeling accuracy. We hereby design a Multi-Channel Identification Algorithm (MCIA)
based on Theorem 1 as follows. As shown in Fig. 1(b), the Multi-Channel Identification Model
(MCIM) is composed of 7 parallel channels, each of which consists of a static nonlinear block
described by a series of nonlinear basis {g1(-), - - - ,gr(-) }, followed by a dynamic linear block
represented by the discrete Laguerre model (33; 60; 67; 69) in the state-space form (62; 66; 67).
Without loss of generality, the nonlinears bases are chosen as polynomial function bases. Thus,
each channel of the MCIM, as shown in Fig. 1, is described by

A (E+1) = Ax0 () + B, a) gi(u(t)) (11)

yi = @@y (j=1,-- 1), (12)

where yf,? (t) and x{/)(t) denote the output and state vector of the jth channel, respectively.
Finally, the output of the MCIM can be synthesized by

v () = £ il (1) (13)
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Next, we will give a convergence theorem to support the MCIA.

Theorem 2. For a Hammerstein system (1) with ||a;||o =1 (i = 1,---,r), nominal output j(t) =
YN exx(z7Y) Yy aigi(u(t)) and allowable input signal set ID C R™ . If the regressor ¢(t) given
by Eq. (4) is PE in the sense that for an arbitrary positive integer t( there exist some integer Ny and
positive constants a1 and ay such that

0 <yl < LMol (1)g(t) < ag, (14)

then
):;7:1,j<f>(@<f>)T LN (15)
Ym —— (1) (16)

where the symbol ’ —2% 5 " denotes "converge with probability one as the number of the data points
S tends to infinity’, and the model output y, (t) is determined by Egs. (11), (12) and (13).

Proof: Since the linear block is stable, and g; (u(t)) (i = 1,- - - , r) isbounded (because u(t) € D
is bounded and g(-) are nonlinear basis functions), the model output y(t) is also bounded.
Taking Egs. (3) and (11) into consideration, one has that ||¢(¢)|» is bounded, i.e. 35, > 0,
such that [|¢(t)||2 < dr. On the other hand, V ¢ > 0, Je1, e, > 0 such that ¢ = ¢1 + €. Let
e3 = €1/ (0 max(r, N)) and e4 = €5 /0. Since the regressor ¢(t) is PE in the sense of Eq. (14),
one has that the estimate 6 is strongly consistent in the sense that § — @ with probability one as
S — oo (denoted § —=>— 9) (46), in other words, Ve, > 0, 3Ny > 1 such that 16— 0]13 < &4

with probability one for S > Ny. Moreover, the consistency of the estimate 0 holds even in the
presence of colored noise ¢ (23). The convergence of the estimate 6 implies that

@ac L ®ac (17)

Note that the consistency of the estimation § holds even in the presence of colored output
noise (23).

Using Lemma 1 and assuming rank(©yc) = 1, one gets from Theorem 1 that Veg > 0, 3y < vy
27:1 al) (eNT — Oy

2
such that ZZ “ (ijtjq)v]-T < &3, in other words, s < ez or

5 80697 = Oge. (18)
Thereby, substituting Eq. (18) into Eq. (17) yields Eq. (15). Furthermore, define

then VS > Nj, the following inequality holds with probability one
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(1)~ 902 = [T ()L, 00 ~04 0 —0)]

<o [ 890 6] + o1 |16 -6

Ul T_a |7 7] 2
< 6; max(r, N) Hzle Ojjgvj — Ouc|, +01 10 —6]5

= drmax(r,N)eg +req = ¢,

where the definition of matrix 2-norm is given in (23). Thus, the conclusion (16) holds. This
completes the proof.

|
Thus, it is drawn from Theorems 1 and 2 that the increase of the identification channel number
will help decrease the identification errors, which is the main theoretical contribution of this
section.

2.3 Controller design
A Hammerstein system consists of the cascade connection of a static (memoryless) nonlinear
block N (+) followed by a dynamic linear block with state-space expression (A, B, C) as below

x = Ax+ Bou,y = Cx,
v=N(u), (19)

with u(t) € [—i, i]. Naturally, a standard output feedback control law can be derived by (13)

v = K=&

u=N"1(v), (20)

where £ is the estimation of x by some state observer L, N'~1(-) is the inverse of A/(-), and the
closed-loop state matrix A 4 BK and observer matrix Ay C are designed Hurwitz. Now, the
problem addressed in this section becomes optimize such an output-feedback controller for the
Hammerstein system (19) such that the closed-loop stability region is maximized and hence
the settling time is substantially abbreviated.

The nonlinear block A (-) can be described as (68):

N
N(z(t) = ;aigi(Z(t)), (1)

where g;(-) : R — R are known nonlinear basis functions, and 4; are unknown matrix
coefficient parameters. Here, ;(-) can be chosen as polynomials, radial basis functions (RBF),
wavelets, etc. At the modeling stage, the sequence v(t;) (j = 1,---,N) is obtainable with
a given input sequence u(t;) (j = 1,---,N) and an arbitrary initial state x(0). Thereby,
according to Lease Square Estimation (LSE), the coefficient vector a := [ay,--- ,an]T can be
identified by

a=(G'G) G (22)
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with

g1(t1) -~ gn(h)

G= : /

g1(ts) -+ gn(ts)
v = [o(t1),---,v(ty)]T and s > N. Note that 4 is the estimation of a, which is an consistent
one even in the presence of colored external noise.
Now the intermediate variable control law v(t) in Eq. (19) can be designed based on the linear
block dynamics. Afterwards, one can calculate the control law u(t) according to the inverse of
v(t). Hence, for the Hammerstein system (19), suppose the following two assumptions hold:
A1 The nonlinear coefficient vector a can be accurate identified by the LSE (22), i.e., 4 = a;
A2 For |u(t)| < i, the inverse of N/ (+) exists such that

NNZH(o())) = 3(t) = (1+6(o(t))o(t),

where 6(v(t))) < o (¢ € Rt), and N; ! denotes the inverse of AV(-) calculated by some
suitable nonlinear inverse algorithm, such as Zorin method (21).

For conciseness, we denote §(v(k)) by §(-), and hence, after discretization, the controlled plant
is described as follows:

x(k+1) = Ax(k) 4+ Bo(k) = Ax(k) + B(1+6(-))v(k),
y(K) = Cx(k). 23)

Afterwards, a state observer L € RN is used to estimate x(k) as follows:

2(k+1) = A%(k) + B(1+5(-))v(k) + LCe(k), (24)
e(k+1) = Pe(k), (25)

where £ is the estimation of x, e(k) := x(k) — £(k) is the state estimation error, and the matrix
@ = A — LCis designed as Hurwitz. Then, an NMPC law is designed with an additional term
D(k + ilk) as follows:

o(k+ilk) = K& (k+ilk) + ED(k+ i[k),
u(klk) = N1 ((o(K[K))), (26)

where E := [1,0,---,01xp, %(k|k) := %(k), v(klk) := ov(k), and D(klk) := D(k) =
[d(k),---,d(k+ M —1)]T is defined as a perturbation signal vector representing extra degree
of freedom. Hence the role of D(k) is merely to ensure the feasibility of the control law (26),
and D(k + i|k) is designed such that

D(k+1k) = TD(k+i—1]k) i=1,--- , M),

where

7

T = {0 Iivi—1yx(m—1)

a
0 0 MxM
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M > 2 is the prediction horizon and 0 is compatible zero column vector. Then, substituting
Eq. (26) into Eq. (24) yields

2(k+ilk)) =T12(x + k —i|k)

+[(6(-)BR)T,0)T2(k +i—1/k)
+[(LO)T,0)Te(k+i—1]k), (i=1,---,M) 7)
Y BE
0T
BK is designed as Hurwitz. In order to stabilize the closed-loop system (27), we define two

ellipsoidal invariant sets (39) of the extended state estimations 2(k) and error e(k), respectively,
by

with 2(k +ilk) = [#T(k +ilk),D(k +i|k)T]T, T1 = [ } K = [K,E], where ¥ = A+

Sy == {227 (k)P,2(k) < 1}, (28)

and
Se := {e(k)|eT (k)Pee(k) <&}, (0 <& < 1), (29)

where P, and P, are both positive-definite symmetric matrices and the perturbation signal
vector D(k) (see Eq. (26)) is calculated by solving the following optimization problem

rg(ikr)l](k) = D'(k)D(k),

s.t. 2T (k)P2(k) < 1. (30)
2.4 Stability analysis
To guarantee the feasibility and stability of the control law (26), it is required to find the
suitable matrices P, and P, assuring the invariance of S, and S, (see Egs. (28) and (29)) by
the following lemma.

Lemma 2. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output feedback control law (26) and (30) and subject to the input constraints |u| < i, the ellipsoidal
sets Sy and S, are invariant in the sense of (28) and (29), respectively, and the control law (26) and
(30) is feasible provided that Assumptions A1, A2 and the following three Assumptions A3-Ab are all
fulfilled.

A3 The matrices ® and ¥ are both Hurwitz;

A4 There exist Ty > 1,0 < & < 1 such that

o'p,® <P, (31)
mCTLTEIP,E,LC < P, (32)

Tl PIT + 110> KT BTEI P,EL B,
< (1-2)Py, (33)

wheren; =1+ (1 —1)"L =1+ (m—1)"'and
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is the projection matrix such that E12(k) = #(k);
A5 There exist 4 > 0 and A € (0,#) such that

u(K)] < plo(k)| + A (34)
(local Lipschitz condition) and

—(@—A)?/u* K

_ <0.
KT —p,| = 0 (35)

Proof: We start the proof by a fact that (68), for VT > land 7 =1+ (t — 1)1,

(A1+ A2)"P(A + Ap)
<TATPA; + (1+ (t - 1)) AJ Ay. (36)

Thereby, one has V11, > 0and 171, =1+ (132 — 1)~1, such that

2T (k+ilk) P2 (k +i|k) < 7 (1% (k + i — 1[k)
+[6(-)(BR)T, 0] Tx(k+i—1]k))TP,
(TR (k +1 —1]k) + [6(-)(BR)T, 0] x (k + i — 1]k))
+m([(LO)T, 0] e(k +i — 1K) T P:
([LO)T, 01 Te(k +i —1]k))
< 1T (k+i— 1)k P12 (k+i—1]k))
+1pT (k+i—1|k)o?RTBTEIP,EK#(k 4 i — 1[k)
+mel (k+i—1k)CTLTEIP,LCe(k + i — 1|K).
Thereby, if Egs. (32) and (33) hold and 27 (k + i — 1|k)P.2(k +i — 1]k) < 1, then 2T (k +
i|k)Pz2(k +ilk) < 1,1i.e., S; is an invariant set (39).
Analogously, if Eq. (31) hold and eTk+i—1 kK)Pee(k+i—1]k) < ¢, then eT (k + ilk)Poe(k +
gously, if Eq
ilk) <e ie., S, isan invariant set.
On the other hand, |o(k)] = |K2(k)| = |KP;'2P}M2z(k)| < ||[RP;Y2| - ||PY%2(k)| <
||RP;1/2||. Taking Eq. (35) into consideration, one has

lo(k)| < (72— A1)/ p1, (37)

and substituting Eq. (37) into Eq. (34) yields |u(k)| < i, or u(k) is feasible. This completes the
proof. O
Let us explain the dual-mode NMPC algorithm determined by Lemma 2 as below. First, let us
give the standard output feedback control law as
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If the current (k) moves outside of Sy, then the controller enters the first mode, in which the
dimension of %(k) is extended from N to N + M by D(k) (see Eq. (27)). Then, £(k) will be
driven into Sy in no more than M steps, i.e., £(k + M) € Sy, which will also be proven later.
Once £(k) enters Sy, the controller is automatically switched to the second mode, in which the
initial control law (38) is feasible and can stabilize the system.
It has been verified by extensive experiments that assumptions A4 and A5 are not difficult
to fulfil, and most of the time-consuming calculations are done off-line. First, the stable
state-feedback gain K (see Eq. (26)) and observer gain L (see Eq. (24)) are pre-calculated by
MATLAB. Then, compute P, based on Eq. (29). Afterwards, pick # € (0,1) and A € (0, i)
satisfying the local Lipschitz condition (34). Finally, pick T » (generally in the range (1, 1.5)),
and calculate Py off-line by MATLAB according to assumptions A4 and A5.
The aforementioned controller design is for regulator problem, or making the system state to
settle down to zero. But it can be naturally extended to address the tracking problem with
reference signal r(t) = a # 0. More precisely, the controller (26) is converted to v(k) =
Rz(k) + ap with 1/p = lim,_,;(C(zI —I1)"!B), C := [C, 0]1 (N4 and B := (BT, o](TN+M)X1.
Moreover, if I — Pi is nonsingular, a coordinate transformation 2(k) — z, — 2(k) with z, =
(I — T1)~'Bap can be made to address the problem. Even if I — IT is singular, one can still
make some suitable coordinate transformation to obtain Eq. (27).
Next we will show that the dual-mode method can enlarge the closed-loop stable region. First,
rewrite P, by

P — (Px)NxN  Pyp

: PxDT (Pp)mxm |’

and hence the maximum ellipsoid invariant set of x(k) is given as
Sem = {#|2T(Px — P,pPp'PIp)2(k) < 1}. (40)
Bearing in mind that Py — PypPp, 1PXTD = (EIP;1Ey)~1, it can be obtained that
vol(Syy) o« det(EI P 1E,), (41)

where vol(-) and det(-) denote the volume and matrix determinant. It will be verified later
that the present dual-mode controller (26) can substantially enlarge the det(EIP; 'Ey) with
the assistance of the perturbation signal D (k) and hence the closed-loop stable region Sy is
enlarged. Based on the above mentioned analysis of the size of the invariant set S, s, we give
the closed-loop stability theorem as follows.

Theorem 3. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output-feedback control law (26) and (30) and subject to the input constraints |u| < i, the system is
closed-loop asymptotically stable provided that assumptions A1-A5 are fulfilled.

Proof: Based on assumptions A1-A5, one has that there exists D(k+ 1) such thatz(k+1) € S,
for arbitrary x(k) € Sy; then by invariant property, at next sampling time D (k + 1|k) = TD(k)
provides a feasible choice for D(k + 1) (only if D(k) = 0, J(k+1) = J(k), otherwise J(k +
1) < J(k)). Thus, the present NMPC law (26) and (30) generates a sequence of D(k + i|k) =
TD(k+i—1lk) (i = 1,---, M) which converges to zero in M steps and ensures the input
magnitudes constraints satisfaction. Certainly, it is obvious that TD(k) need not have the
optimal value of D(k + 1) at the current time, hence the cost J(k 4 1) can be reduced further
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still. Actually, the optimal D*(k + 1) is obtained by solving Eq. (30), thus J*(k +1)| < J(k +
11k) < J(k) (D(k) # 0). Therefore, as the sampling time k increases, the optimization index
function J (k) will decrease monotonously and D (k) will converge to zero in no more than M
steps. Given constraints satisfaction, the system state £(k) will enter the invariant set Sy in
no more than M steps. Afterwards, the initial control law will make the closed-loop system
asymptotically stable. This completes the proof. O

2.5 Case study

2.5.1 Modeling

Consider a widely-used heat exchange process in chemical engineering as shown in Fig. 2
(17), the stream condenses in the two-pass shell and tube heat exchanger, thereby raising the
temperature of process water. The relationship between the flow rate and the exit-temperature
of the process water displays a Hammerstein nonlinear behavior under a fixed rate of steam
flow. The condensed stream is drained through a stream trap which lets out only liquid. When
the flow rate of the process water is high, the exit-temperature of stream drops below the
condensation temperature at atmospheric pressure. Therefore, the steam becomes subcooled
liquid, which floods the exchanger, causing the heat transfer area to decrease. Therefore, the
heat transfer per unit mass of process water decreases. This is the main cause of the nonlinear
dynamics.

Steam valve

Steam —{ ; ‘-l
Process water valve

D’ Z] Heat
exchanger Process
‘ water

Steam Trap

| Drain
Y

Fig. 2. Heat exchange process

The mathematical Hammerstein model describing the evolution of the exit-temperature of the
process water VS the process water flow consists of the following equations (17):

o(t) = —31.549u(t) + 41.732u>(t)
—24.201u3(t) + 68.634u*(t),

0207z —0.1764q 2 0
~ 1-1.608z"1 4 0.6385 2

(42)

y(t) (5) +¢(8), (43)
where {(t) is a white external noise sequence with standard deviation 0.5. To simulate
the fluctuations of the water flow containing variance frequencies, the input is set as
periodical signal u(f) = 0.07 cos(0.015¢) + 0.455 sin(0.005¢) + 0.14 sin(0.01¢) . In the numerical
calculation, without loss of generality, the OFS is chosen as Laguerre series with truncation
length N = 8, while the nonlinear bases of the nonlinear block IN(-) are selected as
polynomials with » = 9. The sampling number S = 2000, and sampling period is 12s.
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Note that we use odd-numbered data of the S-point to identify the coefficients {a<j ) }r and

i Jim1

AN
{c]i] ) }kzl (j=1,---,1n), and use the even-numbered data to examine the modeling accuracy.
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Fig. 3. (Color online) (a): Modeling error of the traditional single-channel method; (b):
Modeling error of the present multi-channel method (triple channels)
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Fig. 4. Modeling error for p = 0.1

Denoted by e(t) is the modeling error. Since the filter pole p (see Eq. (2)) plays an important
role in the modeling accuracy, in Fig. 3(a) and (b), we exhibit the average modeling errors of
the traditional single-channel and the present multi-channel methods along with the increase
of Laguerre filter pole p. For each p, the error is obtained by averaging over 1000 independent
runs. Clearly, the method proposed here has remarkably smaller modeling error than that
of the traditional one. To provide more vivid contrast of these two methods, as shown in
Fig. 4, we fix the Laguerre filter pole p = 0.1 and then calculate the average modeling errors
of the single-channel (y = 1), double-channel (3 = 2), and triple-channel models (7 = 3)
averaged over 1000 independent runs for each case. This is a standard error index to evaluate
the modeling performances. The modeling error of the present method ( = 3) is reduced
by more than 10 times compaired with those of the traditional one (y = 1), which vividly
demonstrates the advantage of the present method.

Note that, in comparison with the traditional method, the modeling accuracy of the present
approach increased by 10 — 17 times with less than 20% increase of the computational time. So
a trade off between the modeling accuracy and the computational complexity must be made.
That is why here we set the optimal channel number as 7 = 3. The underlying reason for
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the obvious slow-down of the modeling accuracy enhancement rate after # = 4 is that the 4th
largest singular value oy is too small compared with the largest one o7 (see Eq. (8)). This fact
also supports the validity of the present method.

2.5.2 Control

The present dual-mode NMPC is performed in the Heat Exchanger System model (55?57)
with the results shown in Figures 7,8 (Regulator Problem, N = 2), Figures 9?11 (Regulator
Problem, N = 3) and Figure 12 (Tracking Problem,N = 3), respectively. The correspondence
parameter settings are presented in Table 1.
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Fig. 5. (Color online) Left panel: Control performance of regulator problem ; Right panel:
state trajectory L and its invariant set. Here, N = 2.
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Fig. 6. (Color online) Left panel: Control performance of regulator problem ; Right panel:
state trajectory L and its invariant set. Here, N = 3.

In these numerical examples, the initial state-feedback gain K and state observer gain I' are
optimized offline via DLQR and KALMAN functions of MATLAB6.5, respectively. The curves
of y(k), u(k), (k) and the first element of D(k), i.e. , d(1), are shown in Figure 7 (N=2) and
Figure 8 (N=3), respectively. To illustrate the superiority of the proposed dual-mode NMPC,
we present the curve of L(k), the invariant sets of and in Figure 8 (N = 2, M={2,8,10}) and
Figure 10 and 11 (N = 3, M = {0,5,10}). One can find that L(0), is outside the feasible initial
invariant set Sy, (referred to (48), see the red ellipse in Figure 10 and the left subfigure of Figure
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Fig. 7. (Color online) Invariant sets S, (left) and S;p;, M = 5 (middle), M = 3 (right). Here,
N =3.

[ I
50 : 5 :
45t- : — !
[ Tl
40 1 v
¥ ‘ I -10 ;
30 . ' |
205100 200 1300 400 "% 0100 200 1300 400
Sampling Piriods Sampling Périnds
- — 1 . —
L O ' : i7=1
0.1 : :
<0 S
ek
0.1 i 0.8 |
B M s e 0.7 :
0 100 200 (300 400 U0 100 200 300 400
170 270
Sampling Periods Sampling Periods

Fig. 8. (Color online) Control performances of Tracking problem.

11). Then the state extension with M = 10 is used to enlarge Sy to Sy (referred to (52),
see the black ellipse in Figure 8 and the right subfigure of Figure 11) containing L(0). After
eight (Figure 8) or six steps (Figure 10), L(k) enters S;. Afterwards, the initial control law
(47) can stabilize the system and leads the state approach the origin asymptotically. Lemma
2 and Theorem 3 are thus verified. Moreover, the numerical results of Figures 8 and 11 also
have verified the conclusion of the ellipsoid volume relation (54), i.e. the size of Sy j; increases
along with the enhancement of the prediction horizon M.

As to the tracking problem (see Figure 12), one should focus on the system state response
to the change of the set-point. In this case, L(k) moves outside Sy, thus D(k) is activated to
enlarge Sy to Sy and then to drive f(k) from Sy to Spps in no more than steps. After 60
sampling periods, the overshooting, modulating time and steady-state error are 2.2%, 15 and
0.3% respectively. Moreover, robustness to the time-delay variations is examined at the 270-th
sampling period, while the linear block of this plant is changed from (58) to

0.207z~1 — 0.1764z2
k+1)= k 44
Y1) = 1 081 + 0.6385.2° ) 44
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dual-mode NMPC can still yield satisfactory performances, thanks to the capability of the
Laguerre series in the inner model. The feasibility and superiority of the proposed control
algorithm are thus demonstrated by simulations on both regulator and tracking problems.
Still worth mentioning is that some other simulations also show that the size of increases as
decreases. In other words, more accurate identification and inverse solving algorithms would
help further enlarge the closed-loop stable region. Fortunately, the proposed TS-SCIA can do
this job quite well.

To further investigate the proposed dual-mode NMPC, a number of experiments were carried
out to yield statistical results. More precisely, {A, , T} are fixed to {0.70,0.35,1.12}, and N,
M and o are selected from the sets {2,3,4} , and {8,9,---,18}, {0.001,0.002, - - - ,0.005},
respectively. The set-point is the same as Figure 12. In this set-up, 165 experiments were
performed. The statistical results, such as expectations and optimal values for the settling
time, overshooting, steady-state error and computational time of 400 steps are shown in
Table 2. In addition, the corresponding optimal parameters are given. The statistical results
further illustrate the advantages of the proposed algorithm regarding transient performance,
steady-state performance and robustness to system uncertainties.

Remark 1. The increase of the Laguerre truncation length can help enhancing the modelling and
control accuracy at the cost of an increasing computational complexity. Therefore, a tradeoff must
be made between accuracy and computational complexity. Note that the general parameter setting
procedure is given in Remark 3.

Parameter|Regular problem(N = 2)|Regular problem (N = 3)|Tracking problem(N = 3)
L(0) [4.2,42]T [0.02, -2, —2]T [0.02, 2, —2]T
K [0.327,—0.570] [—0.328,—0.200,0.200] | [—0.328,0.200, —0.120]
r [0.187,0.416]T [0.217,0.132,0.276]T [0.217,0.132,0.276]T
i 0.19 0.19 1.0
o 0.001 0.001 10.001
U 0.05 0.02 0.35
T 1.05 1.12 1.12
(v 1.30 1.25 1.37
e 0.5 0.5 0.5
Table 1. Parameter settings
Control STVSP STVID |overshooting| steady-state | computational
indexes (steps) (steps) (%) error (%) |time of 400 step(s)
Optimal {N, M, o'} |{4,7,0.003}|{3,12,0.002} | {4,8,0.002} |{4,10,0.001}| {2,8,0.005}
Expectation value 16.7 12.4 +2.78 +041 21.062

Table 2. Statistical control performance of tracking problems, (Computation platform:
2.8G-CPU and 256M-RAML; STVSP, STVTD denote the settling times for the variations of
set-point and time delay, respectively.)

2.6 Section conclusion

In this section, a novel multi-channel identification algorithm has been proposed to solve the
modelling problem for constrained Hammerstein systems. Under some weak assumptions
on the persistent excitation of the input, the algorithm provides consistent estimates even
in the presence of colored output noise, and can eliminate any needs for prior knowledge
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about the system. Moreover, it can effectively reduce the identification errors as compared
to the traditional algorithms. To facilitate the controller design, the MCIA is converted to a
two-stage identification algorithm called TS-SCIA, which preserve almost all the advantages
of the former. In addition, to support these two algorithms, systematical analyses about their
convergence and approximation capability has been provided. Based on the TS-SCIA, a novel
dual-mode NMPC is developed for process control. This approach is capable of enlarging the
closed-loop stable region by providing extra degrees of design freedom. Finally, modelling
and control simulations have been performed on a benchmark Hammerstein system, i.e., a
heat exchanger model. The statistical results have demonstrated the feasibility and superiority
of the proposed identification and control algorithms for a large class of nonlinear dynamic
systems often encountered in industrial processes.

3. Model Predictive Control for Wiener systems with input constraints

3.1 Introduction

The Wiener model consists of a dynamic linear filter followed by a static nonlinear subsystem.
This model can approximate, with arbitrary accuracy, any nonlinear time-invariant systems
(10; 23) with fading memory, thus it appears in a wide range of applications. For example, in
wireless communications, the Wiener model has been shown to be appropriate for describing
nonlinear power amplifiers with memory effects (15; 47). In chemistry, regulation of the pH
value and identification of the distillation process have been dealt with by using the Wiener
model (7; 38; 58). In biology, the Wiener model has been extensively used to describe a number
of systems involving neural coding like the neural chain (47), semicircular canal primary
neurons (53) and neural spike train impulses (37). Moreover, applications of the Wiener model
in other complex systems such as chaotic systems have been explored (12). In fact, the control
of Wiener systems has become one of the most urgently needed and yet quite difficult tasks in
many relevant areas recently.

To address various control problems of Wiener systems, extensive efforts have been devoted
to developing suitable MPC (model predictive control) methods. Under the MPC framework,
the input is calculated by on-line minimization of the performance index based on model
predictions. MPC has been practiced in industry for more than three decades and has become
an industrial standard mainly due to its strong capability to deal with various constraints
(23). However, to design an effective MPC, an accurate data-driven model of Wiener systems
is required. A large volume of literature has been devoted to studying this issue; see (6; 24; 29;
64) for comprehensive reviews. More recently, some research interests have been focused on
extending the linear subspace identification method for this typical class of nonlinear systems
(23) (52) (59). Among them, Gémez’s approach (23) is one of the most efficient methods since
it has good prediction capabilities, and guarantees stability over a sufficiently wide range of
models with different orders. In addition, this subspace method delivers a Wiener model in
a format that can be directly used in a standard MPC strategy, which makes it very suitable
to act as the internal model of our proposed NMPC (Nonlinear MPC) method to be further
discussed below.

Nevertheless, due to its specific structure, the achievements on the control of the Wiener model
are still fairly limited so far. Most of the existent control algorithms have some, if not all, of
the following disadvantages:

e small asymptotically stable regions;
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e limited capacity in handling input constraints;

e reliance on the detectability of the intermediate output.

For instance, Nesic (49) designs an output feedback stabilization control law for Wiener
systems, but this work does not address input constraints; moreover, some rigorous
conditions such as O-state detectable are required to guarantee the global stability. Norquay
et al. (50) and Bolemen et al. (7) develop NMPC strategies with ARX/polynomial and
polytopic internal models, respectively, but neither considers stable region enlargement.
Gomez et al. (23) use a subspace internal model to develop an NMPC strategy mainly
accounting for unmeasurable disturbances; however, it merely inherits the stability properties
of a standard linear MPC with linear constraints and quadratic cost function. Motivated by
all the above-mentioned backgrounds and existing problems, the main task of this section
is to develop a new efficient control algorithm for constrained Wiener systems, which can
maximize the region of asymptotic stability and eliminate the reliance on the measurability of
the intermediate output.

To accomplish this task, Gémez’s modelling approach (23) is first used to separate the
nonlinear and linear blocks of the underlying system, and then a dual-mode mechanism (14) is
combined with our proposed NMPC approach to enlarge the stable region. More specifically,
over a finite horizon, an optimal input profile found by solving an open-loop optimal control
problem drives the nonlinear system state into the terminal invariant set (39); to that end,
a linear output-feedback controller steers the state to the origin asymptotically. The main
contribution of this section is the development of an algorithm that can effectively maximize
the asymptotic stability region of a constrained Wiener system, by using the dual-mode NMPC
technique, which can also eliminate the reliance on the detectability of the intermediate output
(70). As a byproduct, since the nonlinear/linear blocks are separated at first and the online
calculation is mainly done on the linear block, the computational complexity is remarkably
reduced compared with some traditional nonlinear empirical model-based NMPCs (7; 50).
Moreover, since the subspace identification method can directly yield the estimate of the
nonlinear block inverse, the complex inverse-solving method is avoided in the new NMPC
algorithm. Furthermore, some rigorous sufficient conditions are proposed here to guarantee
the feasibility and stability of the control system.

3.2 Problem description
Consider a discrete MIMO Wiener system with a linear time-invariant (LTI) block described

by

x(k+1) = Ax(k) + Bu(k), (45)
(k) = Cx(k), (46)

and a nonlinear block by
y(k) = f(n(k)), (47)

where f(-) is an invertible memoryless nonlinear function, u(k) € R?, y(k) € R™ are the input
and output, respectively, x(k) € R" is the state vector, and #(k) € R™ is the unmeasurable
intermediate output. This Wiener system is subject to an input constraint:

|ui\§ﬁi,i:1,---,p. (48)

Typically, there are two kinds of problems to consider:
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* Regulator problem: Design an output-feedback control law such that the response of the
initial conditions will die out at a desired rate;

* Tracking problem: Design an output-feedback control law to drive y(t) to a set-point (k) = a
asymptotically.

In general, for unconstrained systems with measurable #(k), to address these two problems,

one can respectively design a stable state observer,

2(k+1) = A2(k) + Bu(k) + L(5 (k) — C2(k)),

in combination with a stable state-feedback control law u(k) = K#£(k) or with a stable
state-feedback control law having offset (13) u(k) = K%(k) 4 a6, where 1/6 = lim,_,1(C(zI —
¥)~!B) and ¥ = A + BK. However, for constrained Wiener systems with unmeasurable
intermediate output 7 (), these basic control methods will be infeasible and the problems will
become much more complex. This section develops a novel algorithm that can handle such
challenging situations.

3.3 Control algorithm design

For the constrained Wiener system (45)—(48), in order to focus on the main idea of this section,
i.e. dual-mode predictive mechanism, it is assumed that the system state matrices (A, B)
can be estimated accurately while the identification error only appears in the output matrix
estimate C:

Assumption A1) the LTI matrices (A, B) can be precisely identified.

This identification can be implemented with the efficient subspace methods (23; 52; 59). In
general, subspace methods give estimates of the system matrices (A, B,C). The robustness
issue with estimate errors of (A, B) is beyond the scope of the current chapter, hence will not
be discussed.

First, use a stable observer L to estimate x(k) as follows:

£(k+1) = A%(k) + Bu(k) + L(7j(k) — Cx(k)), (49)

A R

where £ (k) is the state estimate, and 7j(k) £ f~1(y(k)) with f~1(-) denoting the inverse of f
calculated by Gémez’s subspace method (23). The state estimate error is defined as

e(k) = x(k) — (k). (50)

Since the identified inverse 7 (k) rather than #(k) is used to estimate the state x(k), the state
estimate error e(k) is caused by both the identification error of f~1(-) and the initial condition
mismatch. Therefore, the intermediate output estimate error Ce(k) can be separated into two
parts as follows:

= (Cx(k) = (k) + (7 (k) — C2(K)). (51)
partl part2
Clearly, part 1 equals ACx(k) + (k) — 7j(k) with AC = C — C. For a fixed nonlinear block

f, part 1 is yielded by the subspace method (23) based on state calculation, and hence the
proportion of part 1 to the whole estimate error Ce(k) is solely determined by the current state
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x(k). It can be assumed that part 1 of Eq. (51) satisfies the following equality:
Cx(k) —7j(k) = 6(x(k))Ce(k). (52)

with §(x(k)) = diag{d1(x(k)), - -+, dm(x(k)) }mxm. For conciseness, from now on é(x(k)) and
0;(x(k)) are denoted by 4(-) and é;(-), respectively.

Next, recall the input constraint (48), and extend £(k) to 2(k) £ [T (k), DT (k)]T with D(k) =
[d1(k), -, dn, (k)]T. Here, H, is defined as the prediction horizon, and D(k) represents the
auxiliary state to be computed. Then, an extended state-feedback control law is set as

u(k) = K£(k) + ED(k), (53)

or
ui(k) :leA(k)+FD(k), i=1,--- P, (54)

with K = [K{,--- , KJ]T,E = [FT,--- ,FT]Tand F = [1,0,-- -, 0]1 .

Note that the novelty here lies in D(k), and the reason will be demonstrated later. When the
current state x(k) is not in the asymptotic stability region of the constrained Wiener system
(45)—(48) governed by (49) and (53), the auxiliary state D (k) will be activated to drive x (k)
back into the asymptotic stability region in less than H), steps, and D (k) will vanish thereafter.
Now, substituting (52) and (53) into (49) yields

S(k+1) = 02(k) + [L(Im‘5('))é] e(k), (55)

0

where
Y BE

Q:{OM

},‘I’:A—l—BK,M:{ r

I, is the n-dimensional identity matrix, 0 and 0 denote compatible zero matrix and zero
column vector, respectively.
In order to stabilize the closed-loop system (55), define two ellipsoidal initial state invariant
sets of 2(k) and e(k) as follows:

sS4 {22Tps <1}, (56)

Se 2 {ele’Pe<?,0<e< 1}, (57)

where P and P, are both positive definite and symmetric matrices to be computed, and €is a
pre-defined constant. The auxiliary state D (k) (see Eq. (53)) can be calculated by solving the
following optimization problem:

minp J (k) = DT (k)D (k) (58)

subject to Eq. (56). The following lemma and theorem guarantee the existence of S and S,, and
the feasibility of the control law (53).

Lemma 3. For any constant matrices Ay, Ay with compatible dimensions, and for any y > 1, one has
(A1 + A)TP(Ay + Ap) < uATPA| +7ATPA,,

where T =1+ (4 — 1)~ and P is a positive definite matrix.
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Proof: For any p > 1, one has
(A1 + A2)TP(A1 + Ag) = pATPA
+(1+ (p = 1)) AJPAy — (= 1) (A1 = (p = 1)1 Ar)T
P(A1— (p—1)""A)
< uATPA; + (1+ (p—1)71)ATPA,. [ |

Theorem 4. For the constrained Wiener system (45)—(48) governed by the control law (49), (53) and
(68), if Assumption A1 and the following assumption A2 hold, then S and S, defined respectively by
(566) and (57) are invariant sets and the control law (53) satisfies (48).

Assumption A2) there exist ¢ > 0, yy > 1,42 > 1 and positive definite and symmetric matrices
P, P,, such that

6()LTP.LS(-) < *LTP,L (59)
(Ly — 8(-))LTEIPEL(Iy — 6(-)) < (1+0)?LTEIPE,L, (60)
QPO < (1-2%)P, (61)
SR T TR (©)
K;T _P —_— 7 7 7 7
7 (1+0)*CT"LTEIPELC < P, (63)
1 ®TP,® 4+ 12 CTLTPLE < P,, (64)

wherety =14+ (y —1)7Y, =1+ (up — 1)1, ® = A~ LC,K; = [K;, F|, (Here, Ey is a matrix
satisfying £ = EL2 and K; and F are defined in Eq. (54)).

Proof: For any 2(k) € S, it can be verified from (56) and (61) that

—_

>

12(k)QTPO2(K) < (1 -7 (k)P2(k) <1 - & (65)
Moreover, for any e(k) € S, from (57), (60) and (63), one has
el (k)CT (L, — 8(-))LTET PELL (I, — 6(-))Ce(k)

< r2(1 +0)%eT (k)CTLTEIPE,LCe(k) (66)
el (k)Pee(k) < &
It follows from Lemma 1 and (55) that
2T (k+1)P2(k+1) < upz" (k)QTPQ2(k)

. . (67)
+12e(k)TCT(1 - 6(-))LTETPELL(1 — 6(-))Ce(K).

Substituting (65) and (66) into (67) yields 2T (k + 1)P2T (k + 1) < 1, which implies that S is an
invariant set.
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On the other hand, for any e(k) € S,, (49) and (50) yield that e(k + 1) = (® + Lffi(-)C)e(k),
thus by Lemma 1, for any y; > 1, the following inequality holds:

el (k+1)Pee(k +1) = ((® + Lffi(-)C)e(k)) TP,
(@ + LEi(-)C)e(k)) < pre” (k)@ P
e (k) + e (k)CTE(-) LT P, Ls(-)CeT (k)
< T (k) (1 ®TP,® + 1 CT#6i(-) T LT P, LEfi(-)C)e k).

By taking (59) and (64) into account, one has e’ (k + 1)Pee(k + 1) < &2, i.e. S, is an invariant
set.
To satisfy the input constraint (48), rewrite the control law and get

|ui(k)| = [Kiz(k)| = |K;P~1/2. P22 (k)|
< |IRP12| - |[PY22(K)| -

Since ||PY/22(k)|| < 1 from (56) and ||K;P~1/2|| < @; from (62), it immediately follows that
Wl <85 =1 .

k
r(k?o”(L> Plant: a Wiener system HA]
C

+

Quadratic optimization|<—

Dual-mode predictive control mechanism

Fig. 9. Dual-mode predictive controller structure.

Remark 2. Both the internal matrices LTP,L and LTEIPE,L in (59) and (60) of Assumption A2
are positive definite and symmetric matrices. Hence these two inequalities provide a measure for the
upper bound of the identification error of the nonlinear block inverse f~1(-). Specifically, take the
single-input/single-output (SISO) case as an instance for discussion. Inequalities (59) and (60) of
Assumption A2 can be simplified to

o) <o, (68)

which is independent of P, P, and L. Since (A, B) is estimated precisely (see Assumption A1), the
subspace method yields sufficiently accurate local approximations of f~1(-) and C. Consequently, as
shown in (51), compared with the second part, the first part is much smaller, and it is thus a logical
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assumption that 5(-) is locally bounded as given in (68) for SISO systems, or (59) and (60) for MIMO
systems. As a consequence, the estimate error Ce(k) is mainly caused by part2, i.e. the initial condition
mismatch, and (59) and (60) can be easily satisfied in general. They will be further illustrated by a case
study later. Moreover, o is a parameter determining the stability performance of the new our approach.
Note that even if the subspace can not yield sufficiently accurate f~1(-) and C, i.e. o is not sufficiently
small, the present algorithm still works, but with shrinking invariant sets Sy, and S.

Remark 3. It is shown by a number of simulations that Assumption A2 is not difficult to fulfill.
A detailed procedure to obtain P and P, is given here: First, the stable observer gain L (see (49)) and
state-feedback gain K (see (53)) are pre-calculated by MATLAB, which is quite fast. Then, select iy > 1
(generally, it can be selected in the range (1,1.5)), and compute P by the LMI toolbox of MATLAB
according to (61), (62) and the pre-determined constant e. Note that even for some unfavorable yy,
one can still adjust the state-feedback gain K to quarantee the feasibility of P. Finally, select a suitable
w1 > 1 and calculate P, by the LMI toolbox according to (63), (64), the pre-determined constant o,
and the pre-calculated matrix P. Furthermore, the obtained parameters L, P and P, are substituted
into (59) and (60) to verify their feasibility according to 6(-), which is now available. If they can not be
fulfilled, one should increase o until it can be satisfied. Of course, for SISO systems, since (59) and (60)
has been simplified to (68), this condition can be directly verified, which is independent of L, P and P,.
As a consequence, the computation time is mainly taken by the above-mentioned two LMIs composed
of (61), (62) and (63), (64), respectively, whose computational complexities are both O(Nz). Moreover,
since L and K can be designed separately for the linear block, even for some unfavorable values of s,
one can still assure the feasibility of P, by adjusting the feasible state-feedback gain L or moderately
increasing o. Certainly, suitable selections of uy and yp (w1 € [1,1.5] and uy € [1,2] for example
according to our numerical simulations) will accelerate the searching of P and P,.

Based on Theorem 4 and Eq. (58), a block diagram depicting the control structure is illustrated
in Fig. 9.
Now, the main advantages of the present algorithm can be demonstrated. If H, = 0, i.e.
the system state dimension is not extended, then the control law (53) reduces to the standard
output-feedback control law

u(k) = Kz(k), (69)

and the invariant set S reduces to
S, 2 {fpeTane < 1}. (70)

Here, (69) is called the initial control law, which drives £(k) to the origin asymptotically
provided that the initial state estimate £(0) is inside Sy. However, Sy is the minimal case
of S with Hy = 0, so it is very likely that £(0) ¢ S, . Fortunately, it will shown later that the
extension of the system state by (53) can enlarge Sy effectively so as to include £(0) in general.
More precisely, if the current £(k) moves to outside Sy, then the controller enters the First
Mode, in which the optimal input profile (49), (53), found by solving the open-loop optimal
control problem (58), drives the nonlinear system state £ into the terminal invariant set Sy over
a finite horizon Hy, i.e. £(k + Hp) € Sy. To that end, the controller is automatically switched
to the Second Mode, in which the local linear output-feedback control law (69) steers the state
£(k) to the origin asymptotically. This approach is called the dual-mode NMPC method (14),
and H) is hereby called the prediction horizon.
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Remark 4. The present method focuses on the regulator problem. To address the tracking problem, as
shown in the top-left part of Fig. 9, Equation (53) should be converted into a state-feedback control law
with an offset, in the form of

u(k) = Kz(k) + ab,

where 1/0 = lim, ,1(C(zI - Q)7'B), C = [C,O]mX(HHP), B = [BT,O](THHP)XP, and the
set-point r(k) = a. Furthermore, if (I — Q) is nonsingular, then one can make a coordinate
transformation 2(k) — a — Z(k), with &« = (I — Q) ~'Ba#, so as to convert the tracking problem
to the regulator problem. Even if (I — Q) is singular, one can still use some suitable coordinate
transformation to convert it to the regulator problem. In turn, the terminal invariant set Sy has hereby
moves to a new place in the old state space spanned by £, and the center of Sy is thus shifted from the
origin to w. In this sense, these two control problems are equivalent, and hence the terminal set Sy
should be recalculated once a new set-point variation occurs.

Remark 5. In many industrial applications, the constraints on the changing rate of the input, i.e.
|Au;(k)| < ©; with Au;(k) = u;(k+1) —u;(k), i = 1,---,p. are very common. This kind of
constraints can also be handled by the present method. More precisely, taking into consideration of

(55), and letting Y = [L(l (;S())C} , one has

|Auj(k)| = Kj(z(k +1) = z(k)) = [K;(Q = )2(k)]
+|K;Ye(k)| = |K;(Qx— I)P~1/2P1/25(k)|
+|R;YP7 V2P 2¢ (k).

Since ||PY/22(k)|| < 1 from (56) and || P}/ ?e(k)|| < & from (57), one has
|Bui(k)| < [Ri(Q— P~V + | RYP, 2. (71)

Thus, one can first compute K, L and P according to Remark 3, and then substitute them into (71) to
obtain a new matrix inequality of P, as follows:

KYPWYTRT <1/2% - (0 — |Ki(Q — 1)P1/2|)?, (72)
or 2 o 1/211\2 1
—1/e=- (0; — ||K(Q —=1)P~ KY
(5; MZT ) I Ko 73)
e

In this way, the constraints on the changing rate of the input, i.e. |Au;(k)| < 7;, can be handled
by introducing (73) into Assumption A2.

3.4 Stability analysis

Theorem 4 , provides the initial state invariant set guaranteeing the existence of D(k) (see
(53)), and this section focuses on maximizing the invariant set, i.e. the asymptotic stability
region. Rewrite the matrix P as

(PX)HXH PxD
Plp  (Pp)H,xH,



Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints 189

and define an extended invariant set of £ as
Sy 2 {32|32T(Px — PypPyPIp)% < 1}. (74)

Moreover, denote the volume of the ellipsoidal invariant set Sy;; by vol(Sx) and let det(-)
be the determinant and “o” denotes “proportional to”. Accordingly, a new theorem is
established to show the quantitative correlation between the size of the invariant set of £ and
the matrix P.

Theorem 5. The following two conclusions hold:
1) If2(k) € S (see (56)), then (k) € Sxm.
2) vol(Sxm) o det(EIP~1Ey), here vol(-) denotes the size of a set.

Proof: Since Z € S, it follows from (56) that

2T (k)Py2(k

<1-2£T(k)P,pD(k) — DT (k)PpD(k). )
In addition, it can be easily verified that
—1pT % _ sT
—Py P pt(k) = argmaxp {1 — 22" (k) 76)

xPypD(k) — DT (k)PpD(K)}.

Thus, substituting (76) into (75) yields £T(k)(Px — PypPp IpT)2(k) < 1, which proves
Conclusion 1). Furthermore, using Py — PypPp, 1PXTD = (E; P~1E,)~! and (74), one can easily
verify Conclusion 2). [ |
It can be seen from Theorem 2 that the initial invariant set of £ is effectively enlarged from Sy
to Sym. Moreover, in order to maximize Sy,;, one may maximize det(E ; pP-1E x) by the method
detailed in (10), with calculation carried out using the MATLAB LMI toolbox. This maximized
Sxm guarantees the existence of D(k), or the feasibility of the present control law (53), with
the largest possible probability. Consequently, based on Theorems 4 and 5, the closed-loop
stability is guaranteed by the following theorem.

Theorem 6. For the constrained Wiener system (45)—(48), if the control law (49), (53) and (58) is
implemented along with stable state-feedback gain K and a stable state-observer L, and Assumptions
A1-A2 hold, then the closed-loop system is asymptotically stable.

Proof: If the current state estimate 2(k) € S, then it follows from Theorem 4 that there exists
D(k+1) such that 2(k + 1) € S. Additionally, from (55) it is obvious that D(k + 1) = MD(k)
is always a candidate for D(k + 1), since it satisfies J(k + 1) = DT(k+1)D(k+ 1) < J(k),
and one has J(k+ 1) = J(k) only if D(k) = 0. Indeed, it can be easily seen that the feasible
sequence D(k+1) (i =1,---,Hp) decreases to zero in Hy steps. Moreover, it can be seen that
D(k +1) is not always the optimal value D (k + 1) (or D*(k + 1)) calculated by (58). Thus, one
has J*(k+1) < J(k+1) < J(k) for D(k) # 0, and the control law with the optimal auxiliary
state D*(k + 1) will converge to the initial control law in no more than H, steps. Thereafter,
controller (69) will make the system asymptotically stable. n



190 Advanced Model Predictive Control

3.5 Case study
Consider a Wiener system described by (45)-(48) with

23 12
A‘[l.o 0 }
5

f(n) = nisin(y) —1°,

=

_ m , C=[,0,
=1.5.

N]

It can be easily verified that f(-) is a monotonically increasing function and is thus invertible.
First, Gomez’s subspace method (23) is used to identify the parameters of the linear block
(A, B,C) and the inverse of the nonlinear block f~1(7). In order to demonstrate the merits
of our proposed dual-mode NMPC algorithm, as shown in Fig. 10, we show a comparison to
a traditional NMPC based on the NAARX (Nonlinear Additive AutoRegressive models with
eXogeneous inputs) model (34), which is a special class of the well-known NARMAX models.
This model is defined as

s q
y(t) = ;hi(y(f —i))+ ;Jgj(u(f =) +¢(t) (77)
1= 7=

where {h;(-)} and {g;(-)} are scalar nonlinear functions, generally polynomials, and ¢(f) is
external white noise.

In this numerical example, p = m = 1, and the parameters of the present dual-mode NMPC are
selected as follows: the initial state-feedback gain K = [—2.3536, 1.1523] and the state observer
gain L = [1.0765,0.3678]T are optimized via DLQR and KALMAN functions of MATLAB 6.5,
respectively. Prediction horizon H, = 6, = 0.4, £(0) = [2.2,2.2]T, x(0) = [4.3,4.8]T, yy = 1.1,
i = 14 and ¢ = 0.1. The estimate C = [1.01,0]. The parameters of the above traditional
NMPC are: prediction horizon H, = 7, control horizon H, =7, s = 5 and q = 3 (see Eq. (77)).
In Fig. 10, the most interesting part is the system state response to the change of the set-point.
The trajectories of {y, 11}, 1, and d; (see (53)) are shown in the upper, middle and lower parts of
Fig. 10, respectively. In this case, after 200 sampling periods, the overshoot, settling time and
steady-state error of the present Dual-mode NMPC are 12.2%, 15 steps, and 0.3%, respectively.
The first two transient performance indexes are much smaller than the counterparts of the
traditional NMPC as shown by the read curves in Fig. 10. These merits root in the dual-mode
mechanism of our proposed NMPC, which can effectively enlarge the closed-loop stability
region thereby improving the transient performances.

To illustrate the superiority of the proposed method more vividly, we present the curves of
x(k) (star-line), £(k) (circle-line) and the invariant sets Sy (see Eq. (70)), Sxm (see Eq. (74)) in
Fig. 11. It should be noted that x and £ in these two figures were implemented with coordinate
transforms according to Remark 3. One can see that £(0) is outside the feasible initial invariant
set Sy (see the solid ellipse in Fig. 11), thus D(k) is activated to enlarge Sy to Sy (see the
dashed ellipse in Fig. 11 containing £(0)), and then to drive % (k) back to S in no more than
Hp steps. Thereafter, the initial control law (69) stabilizes the system and leads the state to
approach the origin asymptotically. Remarkably, for favorable parameters like H, = 6,& = 0.4
and ¢ = 0.1, as shown in Fig. 11, the attraction region Sy, is much larger than the counterpart
of the standard NMPC. Moreover, in Fig. 12 one can observe the dynamics of the state estimate
error e(k) (see (50) and the star-curve). One can observe that, when the trajectory of ¢(k) starts
from outside of S, (see (57) and the ellipse), it will move back into S, after no more than H),
steps and then converge to the origin asymptotically. Theorem 4 is thus verified.
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0 100 200 300
Sampling period

Fig. 10. Control performance comparison of the tracking problem. Solid curve: dual-mode
NMPC; dotted curve: traditional NMPC; dashed curve: intermediate output (upper
sub-figure) and input constraints (middle sub-figure); set-point: {—40,40}.

-4

Fig. 11. Trajectory and invariant set of system states.
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.— S (Traditional NMPC)

Fig. 12. (Color online) (a): Trajectory and invariant set of state estimate error; (b):
Comparison of the invariant sets with o = 0.2 orée = 0.7.

In addition, the size comparison of Sy, with different H, € {0,3,6} is presented in Fig. 11.
The numerical results have verified Theorem 5, i.e. the size of Sy, increases along with
the enhancement of det(EIP~1Ey), and the increase of H, helps enlarge the stable region.
However, this enhancement will also increase the computational complexity. Therefore, a
tradeoff must be made between stability enhancement and computational load. Moreover,
in order to compare the stability of the present algorithm and the traditional NMPC, their
attraction regions are shown together in Fig. 11. It can be observed that the attraction region
Sym of the present algorithm is much larger than that of the traditional NMPC with favorable
parameters.

Still worth mentioning is that some other simulations also show that the size of Sy, increases
as o decreases. In other words, more accurate identification algorithms would help further
enlarge the asymptotic stability region. Fortunately, Gomez’s method (23) is helpful in this
regard. Furthermore, to verify the feasibility of (68) in Assumption A2, the values of Ce(k)
and Cx(k) — 7j(k) are compared throughout the whole simulation process, and it is found that
| Cx(k) —7j(k)| < o|Ce(k)| always holds with o = 0.1. The feasibility of Theorem 4 is thus
verified.

Finally, it is remarked that the performance of the present algorithm highly depends on
the effectiveness of the subspace method and the state observer L, and hence the present
algorithm is not always better than NMPC. In other words, if ¢ or & can not be guaranteed
small enough, the performance of the proposed dual-mode algorithm becomes worse than
the traditional NMPC although the former is simpler and has a lower computational burden
thanks to its block-oriented internal model. For instance, if & = 0.7 or ¢ = 0.2, as shown
in Fig. 12(b) (all the other parameters are the same as those in Fig. 11), the invariant set Sy,
shrinks and becomes even smaller than that of the traditional NMPC.

3.6 Section conclusion

This section has developed an effective control method for MIMO Wiener systems with input
constraints. First, the nonlinear and linear blocks of the system are separated by a subspace
method. Then, a novel dual-mode NMPC algorithm is developed and used for the remaining
process control. This approach is capable of maximizing the asymptotic stability region by
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a dual-mode control mechanism, and eliminating the reliance on the measurability about
the intermediate output. Finally, control simulations have demonstrated the feasibility and
superiority of the proposed control algorithm for a large class of nonlinear dynamic systems.
It is believed that this novel approach has promising potential in handling many complex
systems often encountered in industrial control processes.
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1. Introduction

Model predictive control (MPC) is one of the most successful techniques to control
multi-variable constraint systems. The MPC uses a mathematical model to predict the future
effects of control inputs to system behaviors. The optimal control policy is obtained by
solving an optimization problem that minimizes/maximizes a performance objective subject
to inputs and outputs constraints over a future time horizon (Morari & Lee, 1999, Mayne
et al., 2000, Dua et al, 2008). The MPC control laws are open-loop optimal with respect to
the corresponding objective function. However, the conventional MPC may require intensive
online computation due to the repetitive solutions of an optimization problem. This limits
its applications to large and slowly varying systems. In addition, the MPC control strategy
is hard to validate, especially for safety critical system (Grancharova & Johansen, 2005,
Pistikopoulos, et al. 2001, Alessio & Bemporad 2009).

In 2002, Bemporad, Morari, Dua & Pistikopolous introduced the concept of explicit MPC
(eMPC). The eMPC reformulates the online optimization in a MPC into a mutli-parametric
linear/quadratic program (mpLP/mpQP). The optimal control action is calculated off-line
as a continuous piecewise-affine (PWA) function of the state and reference vectors (Saffer
et al, 2004, Bemporad et al. 2002a, 2002b). The eMPC has several advantages: i) The
online computational time can be reduced to the microsecond-millisecond range. It makes
the eMPC attractive for fast systems; ii) The MPC functionality is achieved in an easily
verifiable way. The eMPC control policies can be validated before real online operations;
iif) The eMPC solutions can be implemented with low-cost hardware (Johansen et al., 2007,
Wen & Ma, 2008a, 2008b). The eMPC is then promising to be used in embedded systems,
small/medium process systems, where the control systems should not be more expensive
than the process systems. The eMPC found successful applications in many areas, e.g.
AC-DC converters (Beccuti et al. 2009), autonomous vehicle steering, air separation unit
(Grancharova et al. 2004), active valve train, hybrid separation, air condition (Pistikopoulos,
et al. 2001), biomedical systems and drug delivery systems (Dua et al, 2004), scheduling (Ryu,
& Pistikopoulos, 2007), spacecraft attitude control (Hegrenas et al, 2000)and crude distillation
unit (Pannocchia et al, 2007).

The eMPC is essentially a strategy of trading time for space. A continuous PWA control map
is calculated offline, and stored in memory for online usage (Pannocchia et al, 2007). The
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efficiency of eMPC method depends critically on finding an efficient representation model
for eMPC controllers. However, it is not easy to develop a general model set to represent
continuous PWA functions. The PWA representations usually have two conflicting criteria:
description and evaluation complexities. The description complexity deals with the number
of parameters in the representation model, while the evaluation complexity specifies the time
for online calculation of function values.

When an eMPC controller is executed, one needs to solve a point-location problem with two
steps: i) identify which polyhedral region the measured state lies in; ii) compute the control
action using the corresponding affine control law. The simplest point-location solver is the
sequential search (SS) algorithm, which is implemented by substituting a given state variable
into the constraint inequalities of different regions. This method requires to store all the
polyhedral regions and affine functions individually. Due to the combinatorial nature, the
number of polyhedral regions in an eMPC control law can grow exponentially with the size
of the optimal control problem (Wen et al., 2005a). Hence, the online function evaluation is
computationally expensive when an eMPC control consists of a large number of regions or is
defined over a complicated domain partition (Wen et al., 2005b).

Many researchers developed alternative ways to represent the eMPC solutions with
appropriate data structures. In 2001, Borrelli, Baoti¢, Bemporad & Morari propose a search
algorithm based on the convexity of the piecewise affine value function. This convex value
function (CVF) algorithm reduces the storage space significantly. In some cases, this method
might be time consuming because it requires a kind of sequential search. A binary search
tree (BST) algorithm is proposed by Tondel, Johansen & Bemporad (2003) on the basis of the
geometric structure of the polyhedral partition. This method can deal with the fully general
PWA functions, including the discontinuous ones defined on overlapping regions or holes. In
this scheme, the auxiliary hyper-planes are introduced, which may subdivide existing regions.
This might lead to a worst case combinatorial number of subdivided regions. Then the
following search procedure has to consider an additional increase in the number of regions,
which may imply a prohibitive pre-processing time or online memory requirements. In 2007,
Christophersen, Kvasnica, Jones & Morari developed an efficient search tree algorithm by
utilizing the concept of bounding boxes and interval trees. This bounding box tree (BBT)
algorithm can deal with the PWA functions defined over a large number of polyhedral
regions. But the storage demand and online search time are still linear in the number of
polyhedral regions in the original PWA functions. In Geyer et al, 2008, an efficient approach
was developed to reduce the number of partitions in eMPC controllers by optimally merging
the polyhedral regions where the affine gain is the same. All these algorithms are successful in
dealing with the PWA functions defined over a large number of polyhedral regions. However,
their storage demands and /or online evaluation computation are dependent on the number of
polyhedral regions in the original PWA functions. These algorithms do not utilize the global
structure information in eMPC controllers. Then their efficiency may be reduced substantially
for some large-scale and complicated eMPC solutions.

The PWA approximation technique presents another efficient way to deal with the
computation and description complexities of eMPC solutions. In Johansen, Petersen &
Slupphaug (2002), an approach is proposed, which calculates the sub-optimal solutions by
predetermining a small number of sampling data when the active set or input is allowed to
change on the horizon. An alternative sub-optimal approach was developed in Bemporad &
Filippi (2003) where small slacks are introduced on the optimality conditions and the mp-QP
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is used for the relaxed problem. In 2003, an algorithm is suggested that can determine a
suboptimal explicit MPC control on a hypercubic partition (Johansen & Grancharova, 2003).
In this partition, the domain is divided into a set of hypercubes separated by orthogonal
hyperplanes. In 2006, Jones, Grieder & Rakovic interpret the PWA value function as
weighted power diagrams (extended Voronoi diagrams). By using the standard Voronoi
search methods, the online evaluation time is solved in logarithmic time (Jones, Grieder, &
Rakovic, 2006; Spjotvold, Rakovic, Tondel, & Johansen, 2006). Dynamic programming can
also be used to calculate the approximate explicit MPC laws (Bertsekas & Tsitsiklis, 1998;
Lincoln & Rantzer, 2002, 2006). The main idea of these approaches is to find the sub-optimal
solutions with known error bounds. The prescribed bounds can achieve a good trade-off
between the computation complexity and accuracy. These approximation algorithms are very
efficient regarding the storage and online calculation time. However, the approximate PWA
functions usually have different domain partitions from the original explicit MPC laws. This
deviation may hinder the controller performance and closed-loop stability.

The established representation and approximation algorithms have found many successful
applications in a variety of fields. However, they can only evaluate the control actions for
discrete measured states. None of them can provide the exact analytical expression of the
PWA control laws. An analytical expression will ease the process of closed-loop performance
analysis, online controller tuning and hardware implementations. The analytic expression
also provides the flexibility of tailoring the PWA controllers to some specific applications, e.g.
to develop different sub-optimal controllers in different zones (a union of polyhedral regions),
and to smooth the PWA controllers at region boundaries or vertices (Wen et al. 2009a).
In addition, the canonical PWA (CPWA) theory shows that the continuous PWA functions
often consist of many redundant parameters. A global and compact analytical expression can
significantly increase the computation and description complexity of eMPC solutions (Wen,
et al., 2005a). An ideal representation algorithm should describe and evaluate the simplified
MPC solutions after removing the redundant parameters.

In 1977 Chua & Kang proposed the first canonical representation for continuous PWA
functions. A canonical PWA (CPWA) function is the sum of an affine function and one or
more absolute values of affine functions. All continuous PWA functions of one variable can
be expressed in the canonical form. However, if the number of variables is greater than
one, only a subset of PWA functions have the CPWA representations (Chua & Deng, 1988).
In 1994, Lin, Xu & Unbehauen proposed a generalized canonical representation obtained
by nesting several CPWA functions. Such a representation is available for any continuous
PWA function provided that the nesting level is sufficiently high. The investigations (Lin
& Unbehauen, 1995; Li, et al. 2001, Julian et al., 1999) showed that for a continuous PWA
function, the nesting level does not exceed the number of its variables. However, the
nested absolute value functions often have implicit functional forms and are defined over
complicated boundary configurations. In 2005, Wen, Wang & Li proposed a basis function
CPWA (BPWA) representation theorem. It is shown that any continuous PWA function of n
variables can be expressed by a BPWA function, which is formulated as the sum of a suitable
number of the maximum/minimum of n+1 affine functions.

The class of lattice PWA functions is a different way to represent a continuous PWA function
(Tarela & Martinez, 1999, Chikkula, et al., 1998, Ovchinnikov, 2002, Necoara et al. 2008, Boom
& Schutter 2002, Wen et al, 2005¢c, Wen & Wang, 2005d). The lattice representation model
describes a PWA function in term of its local affine functions and the order of the values of all
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the affine functions in each region. From theoretical point of view, the lattice PWA function
has a universal representation capability for any continuous PWA function. According to the
BPWA representation theorem, any BPWA function can be equivalently transformed into a
lattice PWA function (Wen et al. 2005a, 2006). Then the well-developed methods to analyze
and control the class of CPWA functions can be extended to that of the lattice PWA functions.
From a practical point of view, it is of great significance that a lattice PWA function can be
easily constructed, provided that we know the local affine functions and their polyhedral
partition of the domain (Wen & Ma, 2007, Wen et al, 2009a, 2009b). Since these information
on affine functions and partitions is provided in the solutions of both mp-LP and mp-QP, the
lattice PWA function presents an ideal way to represent the eMPC solutions.

In this paper, we propose a general lattice representation for continuous eMPC solutions
obtained by the multi-parametric program. The main advantage of a lattice expression is
that it is a global and compact representation, which automatically removes the redundant
parameters in an eMPC solution. The lattice representation can save a significant amount
of online computation and storage when dealing with the eMPC solutions that have many
polyhedral regions with equal affine control laws. Three benchmark MPC problems are
illustrated to demonstrate that the proposed lattice eMPC control have a lower description
complexity, comparable evaluation and preprocessing complexities, when compared to the
traditional eMPC solutions without global description models.

The rest of this paper is organized as follows. Section II introduces the main features of PWA
functions and eMPC problems. The lattice PWA function and representation theorem are
presented in Section III. Section IV is the main part of this paper. It presents the complexity
reduction theorem of lattice eMPC solutions, the lattice representation algorithm and its
complexity analysis. Numerical simulation results are shown in Section V, and Section VI
provides the concluding remarks.

2. PWA functions and eMPC solutions

2.1 PWA function

Definition 1. In R", let QO = Uf‘ﬁlRi be a compact set, which is partitioned into M convex
polyhedrons called regions R;,i = 1,..., M. Then a nonlinear function p(x) : Q — R™ is defined as
a PWA function if

p(x) =Fx+gi, VYx€ER; (1)

with F; € RMx(+1) g, € ™. A PWA function is continuous if
Fix+gi = F]’X + 8 Vx € Bi,j (2)

where B;; = R; N R; is defined as boundaries and i,j € [1,--- , M]. Specially, when m = 1, p(x) is
called as a scalar PWA function, i.e.

p(x) = £(x|ag, Br) = lezx + B, Vx€EeR; 3)

with o € R", By € Rand 1 < k < M. For convenience of statement, we simply denote £(x|ay, By)
as L (x).
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In Definition 1, each region R; is a polyhedron defined by a set of inequality
R; = {x € ®"|H;x < K;} (4)

where H;, K; are matrices of proper sizes withi =1, - - - , M. Geometrically, a boundary Bi,j is
areal set of an (n — 1)-dimensional hyperplane.

2.2 Explicit MPC
Consider the linear time invariant system

{ x(t+1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

which fulfills the following constraints
Xmin < x(t) < Xmaxs Ymin < ]/(t) < Ymax, Umin < M(t) < Upax, Oty < 5”(t) < Sumax, (6)

at all time instants t > 0. In (5)-(6), x(t) € R" is state variable, u(t) € R™, y(t) € R™
are control input and system output, respectively. A, B,C and D are matrices of appropriate
dimensions, i.e. A € ™" B € ™M C € RMW>*" and D € R™*™. Itis assumed that (A, B)
is a controllable pair. du,,;, and du;qy are rate constraints. They restrict the variation of two
consecutive control inputs (6u(t) = u(t) — u(t — 1)) to be within of prescribed bounds. The
system is called as a single-input system when m = 1, and a multi-input system when m > 2.
Assume that a full measurement of the state x(t) is available at current time t. The MPC solves
the following standard semi-infinite horizon optimal control problem:

N-1
FEO)= M0 e WNEEEN) kgo Vi(x(t+ k1), u(t+k)  (7)
subject to
Xpin < X(t+k[t) < Xppax, k=1,---, Ny,
Ymin < y(t +k|t) < Yimax, k=1,--- /Nyr
Upmin S u(t+k|t) <umax, k=1,---,Ng,
Supin < ou(t+k|t) < dumar,k=1,--+, N,

x(t) = x(t|¢)
x(t+k+1Jt) = Ax(t +k|t) + Bu(t+k), k>0
y(t+k+1|t) = Cx(t+k|t) + Du(t +k), k>0
u(t+k) = Kx(t+k[t), Ny <k <Ny
at each time ¢, where x (¢ + k|t) denotes the the predicted state vector at time  + k. It is obtained
by applying the input sequence u(t),--- ,u(t +k — 1) to system (5). In (7), K is the feedback

gain, Ny, Ny, N; are the input, output and constraint horizons, respectively. Normally, we
have N, < Ny and N, < Ny, — 1.
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The stage cost function is defined as

Vi(x(t+ilt),u(t+1i)) = ||Qx(t+ k|t)|[, + ||Ru(t + k)|, ©)
Vn (x(t+ Ny[t)) = |[Px(t+ Ny[t)]], (10)
where || - || denoted a kind of norm and p € {1,2, +o0}, P,Q and R are weighting matrices

of proper sizes. Vy is the terminal penalty function. In this paper, it is assumed that
the parameters P, Q, R are chosen in such a way that problem (7) generates a feasible and
stabilizing control law when applied in a receding horizon fashion and J*(x) is a polyhedral
piecewise affine/quatratic Lyapunov function.

At each time ¢, the MPC control law u(¢) is the first item in the optimal solution u*(t), i.e.

u(t) = u(t) (1)

where u*(t) = {u*(t), - ,u*(t+ Nc — 1) }. Apply u(t) as input to problem (5) and repeat the
optimization (7) at time ¢ + 1 using the new state x(f + 1). This control strategy is also referred
to as moving or receding horizon.

By some algebraic manipulations, the MPC problem can be formulated as a parametric Linear
Program (pLP) for p € {1, +o0}

u*(x) = muinYTu (12)
s.t. Gu < W+ Ex
or a parametric quadratic Program (pQP) for p = 2
u*(x) = muinYTu + %uTHu (13)
s.t. Gu < W+ Ex

See (Bemporad et al. 2002) for details on the computation of the matrices G,W,E, H and Y
in (12) and (13). By solving the pLP/pQP, the optimal control input u*(x) is computed for
each feasible value of the state x. The features of MPC controllers and value functions are
summarized in the following lemma.

Lemma 1. Kvasnicactal, 2004 Copsider the multi-parametric programming of (12) and (13). The
solution u*(x) : R" — R™ is a continuous and piecewise affine

u*(x) =Fx+g;, Vx €R; (14)
where R;,i = 1,---, M is the polyhedral regions. The optimal cost J*(x(t)) is continuous, convex,
and piecewise quadratic (p = 2) or piecewise affine (p € {1, c0}).

3. Lattice representation of scalar eMPC solutions

3.1 Lattice PWA Function

Let® = [¢q,--- ,¢r] bean M x (n+ 1) matrixand ¥ = [hij] a M x M zero-one matrix. A
lattice piecewise-affine function P(x|®, ¥) may be formed as follows,
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— : . n
P(x|®,¥) = 1g}1gnM 12}2\4{61(@} , Vx e R". (15)
Pi=1

Note that P(x|®, ) is equal to one of £1(x), - - -, £p(x) for any x € R". P(x|®,¥) is indeed
a continuous PWA function whose local affine functions are just Kj(x),l < j < M. The

parameter vectors of these affine functions are exactly the row vectors of ®. Hence the matrix
@ is called a parameter matrix. The matrix ¥ is defined as a structure matrix, if its elements
are calculated as

(16)

with x € R;and 1 <4,j < M. Similarly, a dual structure matrix ¥ = [@ij}MXM is defined by

. {1 if 0l < 0(xlgy)
Pij =

17
0 else 17

withx € Rjand 1 <4,j < M.

Lemma 2. Wer et al, 2007 Given any n-dimensional continuous PWA function p(x), there must exist
a lattice PWA function P(x|®,¥) such that

p(x) = P(x|®,¥),Vx € R" (18)
where ®,Y are parameter and structure matrices, respectively.

It is shown in Lemma 2 that a continuous PWA function can be fully specified by a parameter
matrix ® and a structure matrix Y. This provides a systematic way to represent the eMPC
solutions. The lattice PWA function contains only the operators of min, max and vector
multiplication. It is an ideal model structure from the online calculation point of view.
Example 1: The realization of a lattice PWA function can be made more clear using a simple
example. Let p(x) be a 1-dimensional PWA function with 4 affine segments,

Zl(x) =1, Vx € Ry = [—2,—1]
bH(x) = —x, Vx € Ry = (—1,0]
px) = (19)
l3(x) = x, Vx € Ry = (0,1]
ly(x) = —x+2, Vx € R3 = (1,2]
where the plot of p(x) is depicted in Fig. 1. It is easy to see that

64(36) > fz(x) > Zl(x) > ég(x), Vx € Ry

64(36) > El(x) > éz(x) > ég(x), Vx € Ry (20)

64(96) > él(x) > 53()6) > éz(x), Vx € R

l3(x) > C1(x) > Ly(x) > lo(x), Vx € Ry
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AY
5 R 0 1T _ 2 x
R Ry R; Ry
Fig. 1. Plot of 1-dimensional PWA function p(x)
1010
o . 0110
Then the structure matrix is written as ¥ = 0110 It follows from (5) that the parameter
0101
01
matrix is ® = _1 8 . Finally, the lattice PWA function is formulated as
-12

p(x) = P(x|®,¥) = min{max{{y, {3}, max{¥s, {3}, max{ly, {3}, max{ly, {4} } (21)

It is obvious that the lattice PWA function in (21) can be further simplified. The simplification
algorithm will be discussed in the subsequent sections.

3.2 Lattice representation theorem of eMPC solutions

Lemma 3. Assume that R;, R; are two n-dimensional convex polytopes, where £;(x), {;(x) are their

local affine functions with i,j € {1,---,M}. Then the structure matrix ¥ = [p;j]"*M can be
calculated as follows:

if ¢ l; k .
1Pij_{1 if  li(o) > 4i(vg), 1 <k <K o

0 if li(op) <{i(op)ke{l,--, K}
where vy are the vertices of R; with 1 < k < K; and K; € Z is the number of vertices of R;.
Proof. Since R; is an n-dimensional polytope, it can be described by its vertices vy, - - -, vk,
K K
Ri={reR"x=) Mv,0<A <1, ) A =1} (23)
k=1 i=1

Then for any x € R;, we have

K

<Z Ak”k) = kz Aeli (o) (24)
-
K;

(Z Ak”k) = kz Arlj(vg) (25)
-1
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If ;(v) > £i(v), V1 < k < K, then £;(x) > ¢;(x) holds for all x € R;. It follows from (3) that
Pij=1.

Si;nilarly, if there existsany k € {1, -, K;} such that £;(vy) < ¢;(vy), then £;(x) and ¢;(x) will
intersect together with an (n — 1)-dimensional hyperplane as the common boundary. This
implies that ¢;; = 0.

Using the same procedure stated above, all the elements in the structure matrix ¥ can be
calculated, and this completes the proof of Lemma 3. O

Lemma 3 shows that the order of the affine function values in a convex polytope can be
specified by the order of the function values at the polytope vertices. This presents a
constructive way to realize the structure matrix of a given PWA function.

Theorem 1. Any continuous eMPC solution can be represented by a lattice PWA function.

Proof. According to Bemporad et al. 2002, an eMPC solution is presented in the form of
conventional PWA representation, which lists all the parameters of the affine functions and
regions in a table. Each region is a convex polytope defined by a set of inequalities. It follows
from Lemma 2 that an explicit solution to MPC can be realized by a structure matrix and
a parameter matrix. These two matrices specify a lattice PWA function. Then any eMPC
solution can be described by a lattice PWA function. This completes the proof of Theorem
1. O

4. Simplification of scalar lattice PWA representation

4.1 Super-region
Definition 2. Given a PWA function p(x) : Q — R™ with M regions, i.e. Q = UM R;. Let

l"l,:{]‘6{1’...’M}|g(l-x+‘5i:(xjx—‘r‘3j,vx€0} (26)

be a finite set with M components. Then the set T1 C () is defined as a super-region, if I1 = U{fi 1Rk
and k € T; withi € {1,--- ,M}.

A super-regions is defined as a union of polyhedral regions with same affine function. It can
be non-convex or even not connected. If a PWA function have many regions with the same
local functions, the number of super-regions is much less than that of regions.

The concept of super-region can be clarified by an 1-dimensional PWA function shown in Fig.
2. The PWA function p(x) is defined over a compact set ) = AE. The domain is partitioned
into 4 regions, ie. () = U?le,-. Each region R; is a convex polyhedron defined by two
inequalities, e.g. Ry = BC = {x € AF|x > xp,x < xc}, where xp, x¢ are the coordinates of
points B, C. In Q, there are 3 boundaries, e.g. B,C and D. Note that p(x) = [p(x), p2(x)]7,
where

pj(x) = ucz]-x +Bij Vx€R;

T
o .
with “i,jrﬁi,j eR,i=1,--- ,4,7=1,2. We can get F; = |:1XIT1‘| and g; = {gl’l } .
i2 i,2

It follows from the plot of p1(x) that al ;x + B11 = a] ;x + B41,Vx € AE. ThenTI; = Ry U
Ry = ABU DE is defined as a super-region. It is evident that I1; is not convex, because it
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p) A
: (111"'[311 /. Cl41+[341 .pl(x)
: , . , p(x)
A B C D E X

R, R, R; Ry
Fig. 2. Plot of a 1-dimensional vector PWA function p(x) = [p1(x), p2(x)]".

is composed of two disconnected line intersections. Similarly, I, = Ry U R3 = BD defines
another super-region of p,(x).

4.2 Row vector simplification lemma
Lemma 4. Assume that P(x|®,¥) : D C R" — R is a PWA function with M linear segments.
Let ¢;, ; be rows of the structure matrix. If the pointwise inequation ¢; — ¢; < 0 holds for any

i,je{1,---, M}, there exist a simplified structure matrix ¥ € RIM=DXM sych that
P(x|®,¥) = P(x|®,¥) 27)
where ¥ € RMM =gy, op]T and ¥ = [91,- -+, 9j-1, 911, om]".

Proof. Denote I; € RM as the index set of the local affine functions, whose values are smaller
than the i-th affine function in its active region, i.e.

I; = {k[lx(x) < £i(x),Vx € R;} (28)

with i,k € {1,---,M}. Since ¢; — ¢; < 0 holds for any pointwise inequality, we can get
I; C I;. Tt directly follows that {£,(x)} C {£4(x)} with p € I;,q € I;.
Therefore, it leads that

r;lgf{é p(x)} < r‘;lealf{fq(x)} (29)
This implies that
min { rggg{ﬁp(x)},gleaﬁ{fq(w}} = r}pgis{ﬁp(x)} (30)
Then we finally have
P(x|®,¥) = zr}énM{max{Ek } = 1I<111<r1]\/1{max{€k }} = P(x|®,¥) (31)
TiF]

Here we can see that the j-th row of structure matrix ¥ can be deleted without affecting the
function values of P(x|®,¥). This completes the proof of Lemma 4. O

Since Lemma 4 can be used recursively, a much simplified structure matrix is obtained by
deleting all the redundant rows. A single row in ¥ corresponds to a super region, which
is defined as an aggregation of several affine regions. Being a mergence of many convex
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polytopes, a super region can be concave or even disconnected. Then the number of super
regions can be much smaller than that of regions (Wen, 2006).

4.3 Column vector simplification lemma

Lemma 5. Assume that P(x|®,¥) : D C R" — R is a PWA function with M linear segments.
Denote ¥ = [wij]MXM and ¥ = [@ij]MXM as the primary and dual structure matrix. Then the
following results hold.

1. Given any i,j,k € {1,--- ,M}, ifk,j € I and ¢ = 1, then ;; = 0, where I; is the same as
defined in (13);

2. If ¢;; = O,V1 < j < M, then there exist a simplified structure matrix ¥ e RIM-DXM gpg
parameter matrix & € RM=DX(141) sych that

P(x|®,¥) = P(x|®,¥) (32)

where ® €  RMxD) o — e o )T, & e RIM-Dx(H) =
1, -1, Pjr1, s (PM]T, and ¥, ¥ are the same as defined in Lemma 4.

Proof. According to (17), if lﬁjk =1, we have
EJ(X) < ék(x),Vx S R] (33)
which implies that ¢;(x) is inactive in its own region, i.e.

max{/;(x), {x(x)} = lx(x), Vx € R; (34)

Note that k, j € I; and I; is the index set of /;(x). We can get

max{/y(x)} = max{{y(x)},Vx € D (35)
pel,‘ pEIi
p#i

This implies that ¢;; = 0.

In addition, if ¢;; = 0 holds for any 1 < j < M, then ¢;(x) will be totally covered by other
affine functions throughout the whole domain. Therefore, the j-th column of the structure
matrix and j-th row of the parameter matrix can be deleted. This means that P(x|®,¥) =
P(x|®, ¥). It should be noted that the matrix ¥ corresponds to a simpler lattice PWA function
than ¥ even without a deletion of row vectors. A lattice PWA function with less terms in max
operators is produced if some elements in the structure matrix are changed from one to zero.
This completes the proof of Lemma 5. O

The significance of Lemma 5 is that it can differentiate the inactive regions from the active
ones in a given PWA function. The inactive regions can then be removed from the analytic
expression because they do not contribute to the PWA function values. The active regions are
also referred to as the lattice regions, which define the number of columns in the structure
matrix ¥.

Lemma 5 presents an efficient and constructive method to reduce the complexity of a lattice
PWA function. Recalling that an eMPC controller u(x) € R of a single input system is a
continuous scalar PWA function, in which many polyhedral regions have same feedback
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gains. It implies that the number of super-regions is usually much smaller than that of
polyhedral regions. The complexity reduction algorithm of Lemma 5 can produce a very
compact representation of the scalar eMPC solutions.

Example 2: In order to clarify the simplification procedure, we consider the lattice PWA
function of (21) derived in Example 1.

Denoting ¥ = [p1 92 @3 ¢4]7, we can get ¢ — @3 = [0 0 0 0] < 0, where ” < ” is the
pointwise inequality. It follows from Lemma 4 that the third row vector ¢3 can be removed.
Then the structure matrix is simplified as

1010
¥=1[0110]. (36)
0101

Furthermore, by using (17), we can obtain the dual structure matrix

1101
1101
1011
1011

¥ = (37)

According to (36), we have I; = {k, j} withk = 4,j = 2 and i = 3. Using (37), we further have
lfijk = {ip4 = 1. Then it follows from Lemma 5 that the item of 13, can be put to zero. The final
structure matrix is written as

1010
¥=10110 (38)
0001
The corresponding lattice PWA function is
p(x) = min { max{/y, (3}, max{¢y, (3}, (s} (39)

4.4 Lattice PWA representation theorem

Theorem 2. Let P(x) : Q + R be a continuous scalar PWA function with M super-regions. There
must exist a positive integer M < M, a parameter matrix ® € RV (n+1) g structure matrix ¥ =
[lPij]MXM and a lattice PWA function

L(x|®,¥) = min ¢ max {{;(x)} (40)
1<i<M | 1<j<m
¥i=1
such that
P(x) = L(x|®,¥),Vx € O (41)

where ;; is a boolean variable, ® = [¢, - - - ks ¢ = [oc]-T, Bil, aj € R, B; € Rwith1 <i <
M,1<j<M.
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Theorem 2 shows that the class of lattice PWA functions provides a universal model set for
continuous scalar PWA functions. The complexity of a lattice PWA function is specified
by the number of super-regions instead of that of regions. Then the lattice PWA functions
may present a more compact representation than the PWA models without global analytical
descriptions.

The scalar lattice representation theorem can be generalized to describe a vector eMPC
solution u(x) : QO — R™. The main idea is to represent each component scalar eMPC feedback
law individually.

Theorem 3. Let u(x) = [uqy(x),- -+, um(x)]T be a continuous vector eMPC solution with x € Q.
There must exist m lattice PWA functions L(x|®;,¥;) such that

uj(x) = L(x|®;,¥;) VxeQ (42)
where ©;,'Y; are parameter and structure matricesandi =1, - ,m.

The vector lattice representation theorem is valid for continuous PWA functions. It is proved
in (Spjotvold et al, 2007, Bemporad et al. 2002) that an eMPC controller is continuous from
a strictly convex mpQP problem. The continuity property is further generalized to general
convex mpQP problems (Spjotvold et al, 2006). An eMPC problem with a linear cost function
may have discontinuous solutions because of the degeneracy of critical regions. It is proved
in (Bemporad et al, 2002) that there always exists a polyhedral partition even for degenerate
critical regions, such that the eMPC control is continuous. Recalling that the mpLP problems
are essentially special realizations of convex mpQP problems. It is proved constructively
in (Spjotvold et al, 2006) that a continuous eMPC solution can be found for LP-based MPC
problems by using a minimum norm method. Therefore, the set of continuous PWA functions
can cover a wide class of eMPC solutions by utilizing appropriate multi-parametric program
solvers.

The continuity of eMPC controllers can be easily verified by checking the function values
at the vertices of different regions. This function has been implicitly implemented in the
lattice PWA representation algorithm (Wen et al., 2009a). Therefore, the lattice representation
can automatically separate the continuous eMPC solutions from the discontinuous ones. In
addition, the discontinuity in eMPC controls are often caused by the overlapping of critical
regions (Bemporad et al, 2002). The mpt-toolbox (Kvasnica et al., 2004) has a function to detect
the existence of overlapping regions. It presents another efficient way to verify the continuity
of eMPC controls.

The vector lattice representation can be extended to discontinuous eMPC solutions. A
discontinuous eMPC solution is usually decomposed into a set of continuous PWA functions.
Recalling that each continuous PWA function has a vector lattice representation. Then the
discontinuous eMPC solutions can be represented by a set of lattice PWA functions and a
switch logic. The switch logic may be implemented as a binary search tree (Tondel et al.
2003) or bounding box search tree (Christophersen et al, 2007). Further research is under
investigation to generalize the lattice representation method to discontinuous PWA functions.
The lattice representation has a quadratic complexity for both online evaluation and memory
storage. When the eMPC solutions consist of a large number of super-regions, e.g. the eMPC
problems has a large input constraint set, the BST or BBT algorithms may have a lower online
computational complexity.
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4.5 Representation algorithm

In Kvasnica et al. 2004, a Multi-Parametric Toolbox (MPT) for computing optimal feedback
controllers of constrained linear and piecewise affine systems is developed. The toolbox offers
a broad spectrum of algorithms to calculate the eMPC solutions. The proposed lattice PWA
representation algorithm can be easily embedded into the MPT toolbox and provide a better
performance in term of online calculation and memory space requirements.

The main steps of the representation algorithm are summarized as follows.

1. Calculate the eMPC solution using the MPT toolbox. Record the local affine functions,
constrained inequalities and vertices of each region;

Calculate the values of each affine function at each vertex;
Calculate the structure matrix using Lemma 3;
Delete the redundant row vectors in structure matrix using Lemma 4;

Delete the redundant elements in structure and parameter matrices using Lemma 5;

S Gk »N

Get the lattice PWA expression of an eMPC solution.

—

t should be noted that the multi-parametric solver may return a PWA solution that is
discontinuous, even for problems where continuous PWA solution exists. Then the lattice
representation algorithm is feasible for the continuous PWA solutions obtained from the
multi-parametric solver.

4.6 Complexity analysis
Let u(x) = [u1(x),---,um(x)]T be a vector PWA function with M polydedral regions and
x € R". Denote M as the number of lattice regions in u;(x) and M, the number of super
regions with 1 < k < m.

4.6.1 Storage

The lattice representation requires the storage of a (n 4 1) x }}*; M, parameter matrix and
a Y | My x M structure matrix. The total memory needed is O((n + 1) L~ M) real
numbers and O( Yl MkMk) binary numbers. The structure matrix is usually very sparse.
The actual required memory space can be significantly smaller than the worst estimation
through the use of appropriate sparse storage techniques.

4.6.2 Online complexity

For a given state variable, the online evaluation of a lattice PWA control law consists of 3
steps. The first step is to calculate the function value of M affine functions. This requires
nMj multiplication and nM; sums. In the second step, we need to calculate the maximum
of My function values, where M is the number of affine functions with $ij = 1in the
structure matrix. Note that My < M. In the worse case, this step requires (My — 1) x M
by considering the My maximization terms. The last step is to calculate the minimum of
M real numbers. It needs My — 1 comparisons. Therefore, the total online complexity is
O( X, (2nM + (My — 1) My + (M — 1)). It follows from Wen et al. (2009a) that n < My and
My < My holds for any k € {1,--- ,m}. The online complexity can be roughly approximated
by O( L.y M2). It should be noted that the structure matrix is usually sparse. The estimate
of online calculation is very conservative in most cases. Then the average online calculation
complexity can be considerably lower than the worse case estimate.
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4.6.3 Preprocessing

The preprocessing phase for the lattice representation is composed of two steps. The first
step is to calculate the eMPC control law using multi-parameter program. The second one
is to represent the eMPC law with a lattice PWA function. It is very difficult to present a
close-form solution of the off-line complexity. However, it was observed in extensive trials
that the representation step takes significantly less time than the initial computation of an
eMPC controller. Therefore, the proposed lattice representation method can be applied to any
system for which an explicit controller is feasible.

5. Numerical examples

Two examples are illustrated in this section. All the simulations are run in Matlab 2007a on a
2.0 GHz Core 2 CPU with 1 GB RAM.
Example 3: Consider the double integrator

y(t) = Hu(t) (43)

S

Its equivalent discrete-time state-space representation

x(t+1) = Ll) H x(t) + [(1)] u(t)

y(h) =[5 5]x(t)

is obtained by setting

i) ~ T 200 (4)
(o) ~ YTV 45)

with T = 1s. The problem of regulate the system to the origin is formulated as an optimization
problem, which minimizes the following performance measure

11
01 xk-l—l

subject to the input constraints —1 < 1y < 1,k = 0,1. and the state constraints —10 < x; <

11
10,k = 1,2.. where N, = 2,N, = 2,Q = [01
is a continuous PWA function, whose surface plot is visualized in Fig. 3(a). According to
Bemporad et al. 2002, the eMPC solution is given in Table 1.

1

)3

k=0

+ 10.8uy| (46)

} ,R = 0.8. The solution of this problem
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Region # Region Controller
1.00 2.00 11.00
0.00 1.00 11.00
. =100 ~1.00 | | 1000 oo
0.80 —3.20 —2.40
1.00 1.00 10.00
~1.00 —3.00 —2.00
[ 080 3.20] [ —2.40]
—1.00 —2.00 11.00
) ~100 ~1.00 | . _ | 1000 100
1.00 1.00 10.00
0.00 —1.00 11.00
| 1.00 3.00 ] | —2.00 |
[ 053 2.13] [ 0.00]
3 0.67 067 | 000 033, 1.33]x
—~1.00 —1.00 10.00
| —0.33 —1.33 | | 1.00 |
[—0.80 —3.20 ] [ 0.00]
4 1.00 3.00 | x< | 0.00 0
~1.00 —1.00 10.00
[ —1.00 —1.00] [10.00 ]
5 050 0501 | 000 (050, 150]x
—0.80 —2.40 0.00
050 1.50 | | 1.00 |
0.80 3.20] [ 0.00 |
6 —~1.00 =3.00 | x < | 0.00 0
1.00 1.00 10.00
[ 1.00 1.00] [10.00 ]
—0.50 —0.50 0.00
7 080 240 | =] 0.00 (050, ~1.50]x
| —0.50 —1.50 | | 1.00 |
[—0.53 —2.13] [ 0.00]
o ~067 067 _ | 000 033, -130]
1.00 1.00 10.00
033 133 | 1.00 |

Table 1. Conventional Representation of the MPC Solution
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Using Lemma 3, we can get
101010117

11010100
10101011
10110101
10101011
10011110
10011110

10110101

By applying Lemma 4 and 5, we can further get a simplified structure matrix

10101
01000
00110
00011

e
Il

(48)

The corresponding parameter matrix is

0 0 -—100
0 0 100
d=1]-033-133 0 (49)
0o 0 0
—050 —1.50 0

Therefore, the analytical expression of the MPC control law is written as
u(x) = min {1, max{—1, —0.33x; — 1.33x2, —0.50x7 — 1.50x,}, (50)
max{0, —0.33x; — 1.33x, }, max{ (0, —0.50x; — 1.50x, } }

Here it is easy to see that the online MPC optimization is reduced to a lattice PWA function
evaluation problem. Same as Bemporad et al. (2002), we consider the starting point x(0) =
[10, —5]T. This point is substituted into (50), and the corresponding control action is u(x) =
1, which is obtained without any optimization calculations and table searching procedures.
The closed-loop response is shown in Fig. 3(b), which is exactly the same with the results
from online optimization in Bemporad et al. 2002. The required memory in the analytical
expression is to store a structure matrix ¥ € R#4*5 and a parameter matrix ® € R°*3. The
total memory is 35, which is much smaller than the memory space used in Table 1. The online
computation requires 7 comparison operations, 8 multiplications and 5 summations. It is
evident that the lattice PWA MPC control law performs better in term of online calculation
and memory requirements than the conventional eMPC solution.

Example 4: This example is to demonstrate the performance of lattice representation for eMPC
solutions from parametric quadratic program. The 2-norm is used in the stage cost function.
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State x(t)
T

I I I I I I
5 10 15 20 25 30 35 40

Input u(t)
é 1‘0 1‘5 Zb 2‘5 3‘0 3‘5 40
(a) Surface plot (b) Close loop response

Fig. 3. Lattice eMPC Solution

Consider the following state space representation:

2(t+1) = [0.7326 —0.0861] ) {0.0609

0.1722 0.9909 (10064} u(t) (51)
y(t) = [0 1.4142] x(t)

The constraints on input are —2 < u(#) < 2. The corresponding optimization problem for
regulating to the origin is written as follows:

1

T T 2

u,muﬁl Xy o)t P X + kZ [xt+k|tht+k|t + Ruj ]
, =

sh—2<u(t+k)<2, k=01 (52)

Xy = x(t)

01
0.01, N, = Ny = N. = 2. According to Bemporad et al. (2000), the eMPC solution is provided
in Table 2.
Using Lemma 3, we can get the following structure matrix.

where P € R2%2 is the solution of the Lyapunov equation P = ATPA+ Q,Q = [1 0] ,R =

10010117
0111010
0111010

¥=[0001111 (53)

0001111

1001011

11001011
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State x(t)
T

L L L L L L L
0 5 10 15 20 25 30 35 40

Input u(t)
T

-15F

-2

Fig. 4. Closed-loop response of the lattice PWA feedback law

By applying Lemma 4 and 5, we can further get the much simplified structure matrix by
deleting all the redundant rows and columns

01000
¥=100110 (54)
10101

According to the third column of Table 2, the corresponding parameter matrix is

—5.9220 —6.8883 0
0 0 2
d= 0 0 -2 (55)
—6.4159 —4.6953 0.6423
—6.4159 —4.6953 —0.6423

Finally, the analytical expression of the eMPC solution is written as

u(x) = min {2, max{—2, —6.4159x; — 4.6953x, + 0.6423}, (56)

max{—2, —5.9220x; — 6.8883x,, —6.4159x; — 4.6953x, — 0.6423} }

The closed-loop response of the states is depicted in Fig. 4, which is the same as the one
obtained from the online optimization in Bemporad et al. (2000). The required memory in
the analytical expression is to store a structure matrix ¥ € R3*° and a parameter matrix ® €
R>*3. Tt is evident that the lattice representation requires much smaller memory space than
Table 2. Therefore, the lattice PWA representation of an eMPC solution saves both memory
space and online calculation requirements.

Now we discuss the scalability of the lattice representation algorithm. Here this system is
solved using different prediction horizons. The simulation results are summarized in Table 3,
where N denotes the prediction horizon, Ty is the time in seconds to compute the original
PWA control, 17, is the computation time in seconds to build the lattice representation. Note
that both representation algorithms give the same lattice eMPC solutions and %;,;; < 17, hold
for all prediction horizons.
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No. Region Controller

59220 —6.8883 2.0000
59220 6.8883 2.0000

! 15379 6.8296 | © = | 2.0000 ~[5:9220,6.8883]x
| 1.5379 —6.8296 2.0000 |
[ 34155 4.6452 T 2.6341°

24 01044 01215 | x < | —0.0353 2.0000
01259 00922 00267
[ 0.0679 —0.0924 - 0.0524]

3 | 0.1259 0.0922}’“S 00519 2.0000
0.1259 —0.0922 [ —0.0519

> | 00679 00924 ¥ = | —0.0524 20000
" 64150 —4.69537 [ 13577

6 00275 01220 | x < | —0.0357 ;([)6'6112539'4'6953]’“
| 64159 46953 | | 2.6423 ] :
T 34155 464527 [ 2.6341]

78 01044 —0.1215 | x < | —0.0353 2.0000
| 01259 —0.0922 | | —0.0267 |

64159 469537 [ 135777

9 0.0275 —0.1220 | x < | —0.0357 :([)6'6‘212539'4'6953]’“

64159 —4.6953 26423 '

Table 2. Conventional Representation of the eMPC Solution

According to Table 3, the number of affine regions in the eMPC control law increased
considerably with the length of prediction horizons. However, all the eMPC laws can be
represented by a single lattice PWA function with 19 lattice regions and 12 super-regions.
For example, when N = 28, the original PWA controller consists of 894 polyhedral regions.
But there are only 19 unique affine functions. Therefore, the complexity of the lattice
representation is very robust to the length of prediction horizons.

Fig. 5(a) shows the domain partition of the eMPC control when N = 8. The corresponding
surface plot is visualized in Fig. 5(b). The lattice representation requires to store a 19 x 3
parameter matrix and a 12 x 19 structure matrix. The total memory needed is 285. This implies
a significant saving in the stora