
Advanced Model  
Predictive Control

Edited by Tao Zheng

Edited by Tao Zheng

Photo by Lev Levitan / iStock

Model Predictive Control (MPC) refers to a class of control algorithms in which a 
dynamic process model is used to predict and optimize process performance. From 
lower request of modeling accuracy and robustness to complicated process plants, 

MPC has been widely accepted in many practical fields. As the guide for researchers 
and engineers all over the world concerned with the latest developments of MPC, the 

purpose of “Advanced Model Predictive Control” is to show the readers the recent 
achievements in this area. The first part of this exciting book will help you comprehend 

the frontiers in theoretical research of MPC, such as Fast MPC, Nonlinear MPC, 
Distributed MPC, Multi-Dimensional MPC and Fuzzy-Neural MPC. In the second part, 

several excellent applications of MPC in modern industry are proposed and efficient 
commercial software for MPC is introduced. Because of its special industrial origin, we 

believe that MPC will remain energetic in the future.
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Preface 

Since  the  earliest  algorithm  of  Model  Predictive  Control  was  proposed  by  French 
engineer  Richalet  and  his  colleagues  in  1978,  the  explicit  background  of  industrial 
application  has  made  MPC  develop  rapidly.  Different  from  most  other  control 
algorithms, the research trajectory of MPC is originated from engineering application 
and  then expanded to  theoretical  field, while ordinary control algorithms often have 
applications after sufficient theoretical work. 

Nowadays,  MPC  is  not  just  the  name  of  one  or  some  specific  computer  control 
algorithms,  but  the  name  of  a  specific  controller  design  thought,  which  can  derive 
many  kinds  of MPC  controllers  for  almost  all  kinds  of  systems,  linear  or  nonlinear, 
continuous  or  discrete,  integrated  or  distributed.  However,  the  basic  characters  of 
MPC can be simply summarized as a model used for prediction, online optimization 
based on prediction and feedback compensation, while there is no special demand on 
the form of the system model, the computational tool for online optimization and the 
form of feedback compensation. 

The linear MPC theory is now comparatively mature, so its applications can be found 
in almost every domain in modern engineering. But robust MPC and nonlinear MPC 
(NMPC) are still problems for us. Though there are some constructive results because 
many  efforts  have been made on  them  in  these  years,  they will  remain  the  focus  of 
MPC research for a long period in the future. 

In  the  first  part  of  this  book,  to  present  recent  theoretical  developments  of  MPC, 
Chapter  1  to Chapter  3  introduce  three kinds  of  Fast Model Predictive Control,  and 
Chapter 4 presents Model Predictive Control for distributed systems. Model Predictive 
Control  for  nonlinear  systems,  multi‐variable  systems  and  other  special  model  are 
proposed in Chapters 5 through 10. 

To give  the  readers  successful  examples of MPC’s  recent applications,  in  the  second 
part  of  the  book,  Chapters  11  through  18  introduce  some  of  them,  from  sugar 
crystallization  process  to  paper‐making  system,  from  linear  system  to  nonlinear 
system.  They  can,  not  only  help  the  readers  understand  the  characteristics  of MPC 
more  clearly,  but  also  give  them  guidance  how  to  use  MPC  to  solve  practical 
problems. 



XII      Preface

Authors of this book truly want it to be helpful for researchers and students who are 
concerned  about  MPC,  and  further  discussions  on  the  contents  of  this  book  are 
warmly welcome. 

Finally, thanks to InTech and its officers for their efforts in the process of edition and 
publication,  and  thanks  to  all  the  people  who  have  made  contributes  to  this  book, 
including our dear family members. 

ZHENG Tao 
Hefei University of Technology,  

China 
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Fast Model Predictive Control and its Application
to Energy Management of Hybrid

Electric Vehicles

Sajjad Fekri and Francis Assadian
Automotive Mechatronics Centre, Department of Automotive Engineering

School of Engineering, Cranfield University
UK

1. Introduction

Modern day automotive engineers are required, among other objectives, to maximize fuel
economy and to sustain a reasonably responsive car (i.e. maintain driveability) while still
meeting increasingly stringent emission constraints mandated by the government. Towards
this end, Hybrid Electric Vehicles (HEVs) have been introduced which typically combine two
different sources of power, the traditional internal combustion engine (ICE) with one (or more)
electric motors, mainly for optimising fuel efficiency and reducing Carbon Dioxide (CO2) and
greenhouse gases (GHG) (Fuhs, 2008).
Compared to the vehicles with conventional ICE, hybrid propulsion systems are potentially
capable of improving fuel efficiency for a number of reasons: they are able to recover some
portion of vehicle kinetic energy during braking and use this energy for charging the battery
and hence, utilise the electric motor at a later point in time as required. Also, if the torque
request (demanded by driver) is below a threshold torque, the ICE can be switched off as well
as during vehicle stop for avoiding engine idling. These are in fact merely few representative
advantages of the hybrid vehicles compared to those of conventional vehicles. There are also
other benefits hybrid electric vehicles could offer in general, e.g. engine downsizing and
utilising the electric motor/motors to make up for the lost torque. It turns out that the internal
combustion engine of the hybrid electric vehicle can be potentially designed with a smaller
size and weight which results in higher fuel efficiency and lower emissions (Steinmaurer &
Del Re, 2005).
Hybrid electric vehicles have been received with great enthusiasm and attention in recent
years (Anderson & Anderson, 2009). On the other hand, complexity of hybrid powertrain
systems have been increased to meet end-user demands and to provide enhancements to fuel
efficiency as well as meeting new emission standards (Husain, 2003).
The concept of sharing the requested power between the internal combustion engine and
electric motor for traction during vehicle operation is referred to as "vehicle supervisory
control" or "vehicle energy management" (Hofman & Druten, 2004). The latter term, employed
throughout this chapter, is particularly referred to as a control allocation for delivering the
required wheel torque to maximize the average fuel economy and sustain the battery state of
charge (SoC) within a desired charging range (Fekri & Assadian, 2011).
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The vehicle energy management development is a challenging practical control problem and
a significant amount of research has been devoted to this field for full HEVs and Electric
Vehicles (EVs) in the last decade (Cundev, 2010). To tackle this challenging problem, there are
currently extensive academic and industrial research interests ongoing in the area of hybrid
electric vehicles as these vehicles are expected to make considerable contributions to the
environmentally conscious requirements in the production vehicle sector in the future – see
(Baumann et al., 2000) and other references therein.
In this regard, we shall analysis and extend the study done by (Sciarretta & Guzzella, 2007)
on the number of IEEE publications published between 1985 and 2010. Figure 1 depicts the
number of publications recorded at the IEEE database1 whose abstract contains at least one of
the strings "hybrid vehicle" or "hybrid vehicles".
From Figure 1, it is obvious that the number of publications in the area of hybrid electric
vehicles (HEVs) has been drastically increased during this period, from only 2 papers in
1985 to 552 papers in 2010. Recall that these are only publications of the IEEE database -
there are many other publications than those of the IEEE including books, articles, conference
papers, theses, filed patents, and technical reports which have not been taken into account in
this study. Besides, a linear regression analysis of the IEEE publications shown in Figure 1
indicates that research in the field of hybrid vehicles has been accelerated remarkably since
2003. One may also predict that the number of publications in this area could be increased up
to about 1000 articles in 2015, that is nearly twice as many as in 2010 - this is a clear evidence
to acknowledge that HEVs research and development is expected to make considerable
contributions to both academia and industry of production automotive sector in the future.
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Fig. 1. Hybrid vehicle research trend based on the number of publications of the IEEE over
the period 1985 to 2010.

Here are the facts and regulations which must be taken into consideration by automotive
engineers:

• Due to the ever increasing stringent regulations on fuel consumption and emissions,
there are tremendous mandates on Original Equipment Manufacturers (OEMs) to deliver
fuel-efficient less-polluting vehicles at lower costs. Hence, the impact of advanced controls
for the application of the hybrid vehicle powertrain controls has become extremely
important (Fekri & Assadian, 2011).

1 See http://ieeexplore.ieee.org for more information.
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• It is essential to meet end-user demands for increasingly complex new vehicles towards
improving vehicle performance and driveability (Cacciatori et al., 2006), while continuing
to reduce costs and meeting new emission standards.

• There is a continuous increase in the gap between the theoretical control advancement
and the control strategies being applied to the existing production vehicles. This
gap is resulting on significant missed opportunities in addressing some fundamental
functionalities, e.g. fuel economy, emissions, driveability, unification of control
architecture and integration of the Automotive Mechatronics units on-board vehicle. It
seems remarkably vital to address how to bridge this gap.

• Combined with ever-increasing computational power, fast online optimisation algorithms
are now more affordable to be developed, tested and implemented in the future production
vehicles.

There are a number of energy management methods proposed in the literature of hybrid
vehicles to minimize fuel consumption and to reduce CO2 emissions (Johnson et al., 2000).
Among these energy management strategies, a number of heuristics techniques, say e.g. using
rule-based or Fuzzy logic, have attempted to offer some improvements in the HEV energy
efficiency (Cikanek & Bailey, 2002; Schouten et al., 2002) where the optimisation objective is, in
a heuristic manner, a function of weighted fuel economy and driveability variables integrated
with a performance index, to obtain a desired closed-loop system response. However, such
heuristics based energy management approaches suffer from the fact that they guarantee
neither an optimal result in real vehicle operational conditions nor a robust performance
if system parameters deviate from their nominal operating points. Consequently, other
strategies have emerged that are based on optimisation techniques to search for sub-optimal
solutions. Most of these control techniques are based on programming concepts (such
as linear programming, quadratic programming and dynamic programming) and optimal
control concepts, to name but a few (Ramsbottom & Assadian, 2006; Ripaccioli et al., 2009;
Sciarretta & Guzzella, 2007). Loosely speaking, these techniques do not offer a feasible casual
solution, as the future driving cycle is assumed to be entirely known. Moreover, the required
burdensome calculations of these approaches put a high demand on computational resources
which prevent them to be implemented on-line in a straightforward manner. Nevertheless,
their results could be used as a benchmark for the performance of other strategies, or to derive
rules for rule-based strategies for heuristic based energy management of HEVs (Khayyam et
al., 2010).
Two new HEV energy management concepts have been recently introduced in the literature.
In the first approach, instead of considering one specific driving cycle for calculating
an optimal control law, a set of driving cycles is considered resulting in the stochastic
optimisation approach. A solution to this approach is calculated off-line and stored in
a state-dependent lookup table. Similar approach in this course employs Explicit Model
Predictive Control (Beccuti et al., 2007; Pena et al., 2006). In this design methodology, the entire
control law is computed offline, where the online controller will be implemented as a lookup
table, similar to the stochastic optimisation approach. The lookup table provides a quasi-static
control law which is directly applicable to the on-line vehicle implementation. While this
method has potential to perform well for systems with fewer states, inputs, constraints, and
"sufficiently short" time-horizons (Wang & Boyd, 2008), it cannot be utilised in a wide variety
of applications whose dynamics, cost function and/or constraints are time-varying due to e.g.

5
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parametric uncertainties and/or unmeasurable exogenous disturbances. In other words, any
lookup table based optimisation approach may end up with severe difficulties in covering
a real-world driving situation with a set of individual driving cycle. A recent approach has
endeavored to decouple the optimal solution from a driving cycle in a game-theoretic (GT)
framework (Dextreit et al., 2008). In this approach, the effect of the time-varying parameters
(namely drive cycle) is represented by the actions of the first player while the effect of the
operating strategy (energy management) is modeled by the actions of the second player.
The first player (drive cycle) wishes to maximize the performance index which reflects the
optimisation objectives, say e.g. to minimise emission constraints and fuel consumption,
while the second player aims to minimize this performance index. Solutions to these
approaches are calculated off-line and stored in a state-dependent lookup tables. These look
up tables provide a quasi-static control law which is directly suitable for on-line vehicle
implementation. Similar to previous methods, the main drawbacks of the game-theoretic
approach are the lack of robustness and due to quasi-static nature of this method, it cannot
address vehicle deriveability requirements.
If only the present state of the vehicle is considered, optimisation of the operating points of
the individual components can still be beneficial. Typically, the proposed methods define
an optimisation criterion to minimise the vehicle fuel consumption and exhaust emissions
(Kolmanovsky et al., 2002). A weighting factor can be included to prevent a drift in the
battery from its nominal energy level and to guarantee a charge sustaining solution. This
approach has been considered in the past, but it is still remained immensely difficult task to
select a weighting factor that is mathematically sound (Rousseau et al., 2008). An alternative
approach is to extend the objective function with a fuel equivalent term. This term includes the
corresponding fuel use for the energy exchange with the battery in the optimisation criterion
(Kessels, 2007).
Hybrid modeling tools have been recently developed to analyse and optimise a number of
classes of hybrid systems. Among many other modeling tools developed to represent the
hybrid systems, we shall refer to Mixed Logical Dynamical (MLD) (Bemporad & Morary,
1999), HYbrid Systems Description Language (HYSDEL) (Torrisi & Bemporad, 2004), and
Piecewise Affine (PWA) models (Ripaccioli et al., 2009; Sontag, 1981), to name but a few.
In addition, Hybrid Toolbox for MATLAB (Bemporad, 2004) is developed for modeling,
simulation, and verifying hybrid dynamical models and also for designing hybrid model
predictive controllers. Almost all of these hybrid tools, however, are only suitable for slow
applications and can not attack the challenging fast real-time optimisation problems, e.g., for
the use of practical hybrid electric vehicle energy management application.
Two fundamental drawbacks of aforementioned strategies are firstly their consideration of
driveability being an afterthought and secondly the driveability issue is considered in an
ad-hoc fashion as these approaches are not model-based dynamic. Applicable techniques
such as game-theoretic based optimisation method utilise quasi-static models which are not
sufficient to address driveability requirements (Dextreit et al., 2008).
Towards a feasible and tractable optimisation approach, there are a number of model-based
energy management methods such as Model Predictive Controls (MPC). A recently developed
package for the hybrid MPC design is referred to as Hybrid and Multi-Parametric Toolboxes
(Narciso et al., 2008) which is based on the traditional model predictive control optimisation
alternatives using generic optimisers. The main shortcoming of traditional model predictive
control methods is that they can only be used in applications with "sufficiently slow" dynamics
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(Wang & Boyd, 2008), and hence are not suitable for many practical applications including
HEV energy management problem. For this reason the standard MPC algorithms have been
retained away from modern production vehicles. In fact, a number of inherent hardware
constraints and limitations integrated with the vehicle electronic control unit (ECU), such
as processing speed and memory, have made on-line implementations of these traditional
predictive algorithms almost impossible. In a number of applications, MPC is currently
applied off-line to generate the required maps and then these maps are used on-line. However,
generation and utilisation of maps defeat the original purpose of designing a dynamic
compensator which maintains driveability. Therefore, there is a vital need of increased
processing speed, with an appropriate memory size, so that an online computation of "fast
MPC" control law could be implemented in real applications.
In this chapter, we shall describe a method for improving the speed of conventional model
predictive control design, using online optimisation. The method proposed would be a
complementary for offline methods, which provide a method for fast control computation
for the problem of energy management of hybrid electric vehicles. We aim to design and
develop a practical fast model predictive feedback controller (FMPC) to replace the current
energy management design approaches as well as to address vehicle driveability issues.
The proposed FMPC is derived based on the dynamic models of the plant and hence
driveability requirements are taken into consideration as part of the controller design. In
this development, we shall extend the previous studies carried out by Stephen Boyd and his
colleagues at Stanford University, USA, on fast model predictive control algorithms. In this
design, we are also able to address customising the robustness analysis in the presence of
parametric uncertainties due to, e.g., a change in the dynamics of the plant, or lack of proper
estimation of the vehicle load torque (plant disturbance).
In this chapter, we shall also follow and overview some of theoretical and practical aspects
of the fast online model predictive control in applying to the practical problem of hybrid
electric vehicle energy management along with representing some of simulation results. The
novelty of this work is indeed in the design and development of the fast robust model
predictive control concept with practical significance of addressing vehicle driveability and
automotive actuator control constraints. It is hoped that the results of this work could make
automotive engineers more enthusiastic and motivated to keep an eye on the development
of state-of-the-art Fast Robust Model Predictive Control (FMPC) and its potential to attack a
wide range of applications in the automotive control system designs.
In the remaining of this chapter, we will describe in detail the mathematical description,
objectives and constraints along with the optimisation procedure of the proposed fast model
predictive control. We shall also provide dynamical model of the hybrid electric vehicle
(parallel, with diesel engine) to which the FMPC will be applied. Simulation results of the
HEV energy management system will be demonstrated to highlight some of the concepts
proposed in this chapter which will offer significant improvements in fuel efficiency over the
base system.

2. Fast Model Predictive Control

The Model Predictive Control (MPC), referred also to as Receding Horizon Control (RHC),
and its different variants have been successfully implemented in a wide range of practical
applications in industry, economics, management and finance, to name a few (Camacho &
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Bordons, 2004; Maciejowski, 2002). A main advantage of MPC algorithms, which has made
these optimisation-based control system designs attractive to the industry, is their abilities to
handle the constraints directly in the design procedure (Kwon & Han, 2005). These constraints
may be imposed on any part of the system signals, such as states, outputs, inputs, and most
importantly actuator control signals which play a key role in the closed-loop system behaviour
(Tate & Boyd, 2001).
Although very efficient algorithms can currently be applied to some classes of practical
problems, the computational time required for solving the optimisation problem in real-time
is extremely high, in particularly for fast processes, such as energy management of hybrid
electric vehicles. One method to implement a fast MPC is to compute the solution of a
multiparametric quadratic or linear programming problem explicitly as a function of the
initial state which could turn into a relatively easy-to-implement piecewise affine controller
(Bemporad et al., 2002; Tondel et al., 2003). However, as the control action implemented
online is in the form of a lookup table, it could exponentially grow with the horizon, state
and input dimensions. This means that any form of explicit MPC could only be applied to
small problems with few state dimensions (Milman & Davidson, 2003). Furthermore, due to
there being off-line lookup table, explicit MPC cannot deal with applications whose dynamics,
cost function and/or constraints are time-varying (Wang & Boyd, 2008). A non-feasible
active set method was proposed in (Milman & Davidson, 2003) for solving the Quadratic
Programming (QP) optimisation problem of the MPC. However, to bear further explanation,
these studies have not addressed any comparison to the other earlier optimisation methods
using primal-dual interior point methods (Bartlett et al., 2000; Rao et al., 1998). Another
fast MPC strategy was introduced in (Wang & Boyd, 2010) which has tackled the problem
of solving a block tridiagonal system of linear equations by coding a particular structure of
the QPs arising in MPC applications (Vandenberghe & Boyd, 2004; Wright, 1997), and by
solving the problem approximately. Starting from a given initial state and input trajectory,
the fast MPC software package solves the optimization problem fast by exploiting its special
structure. Due to using an interior-point search direction calculated at each step, any problem
of any size (with any number of state dimension, input dimension, and horizon) could be
tackled at every operational time step which in return will require only a limited number of
steps. Therefore, the complexity of MPC is significantly reduced compared to the standard
MPC algorithms. While this algorithm could be scaled in any problem size in principle, a
drawback of this method is that it is a custom hand-coded algorithm, ie. the user should
transform their problem into the standard form (Wang & Boyd, 2010; 2008) which might be
very time-consuming. Moreover, one may require much optimisation expertise to generate a
custom solver code. To overcome this shortcoming, a very recent research (Mattingley & Boyd,
2010a;b; 2009) has studied a development of an optimisation software package, referred to as
CVXGEN, based on an earlier work by (Vandenberghe, 2010), which automates the conversion
process, allowing practitioners to apply easily many class of convex optimisation problem
conversions. CVXGEN is effectively a software tool which helps to specify one’s problem
in a higher level language, similar to other parser solvers such as SeDuMi or SDPT3 (Ling
et al., 2008). The drawback of CVXGEN is that it is limited to optimization problems with
up to around 4000 non-zero Karush-Kuhn-Tucker (KKT) matrix entries (Mattingley & Boyd,
2010b). In the next section, we will extend the work done by (Mattingley & Boyd, 2010b) and
propose a new fast KKT solving approach, which alleviates the aforementioned limitation to
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some extent. We will implement our method on a hybrid electric vehicle energy management
application in Section 4.

2.1 Quadratic Programming (QPs)
In convex QP problems, we typically minimize a convex quadratic objective function subject
to linear (equality and/or inequality) constraints. Let us assume a convex quadratic
generalisation of the standard form of the QP problem is

min (1/2)xT Qx + cTx

subject to Gx ≤ h,

Ax = b.

(1)

where x ∈ Rn is the variable of the QP problem and Q is a symmetric n × n positive
semidefinite matrix.
An interior-point method, in comparison to other methods such as primal barrier method, is
particularly appropriate for embedded optimization, since, with proper implementation and
tuning, it can reliably solve to high accuracy in 5-25 iterations, without even a "warm start"
(Wang & Boyd, 2010).
In order to obtain a cone quadratic program (QP) using the QP optimisation problem of
Equation (1), it is expedient for the analysis and implementation of interior-point methods
to include a slack variable s and solve the equivalent QP

min (1/2)xT Qx + cTx

subject to Gx + s = h,

Ax = b,

s ≥ 0.

(2)

where x ∈ Rn and s ∈ Rp are the variables of the cone QP problem.
The dual problem of Equation (3) can be simply derived by introducing an additional variable
ω: (Vandenberghe, 2010)

max − (1/2)ωTQω − hTz − bTy

subject to GTz + ATy + c + Qω = 0,

z ≥ 0.

(3)

where y ∈ Rm and z ∈ Rp are the Lagrange multiplier vectors for the equality and the
inequality constraints of (1), respectively.
The dual objective of (3) provides a lower bound on the primal objective, while the primal
objective of (1) gives an upper bound on the dual (Vandenberghe & Boyd, 2004). The vector
x∗ ∈ Rn is an optimal solution of Equation (1) if and only if there exist Lagrange multiplier
vectors z∗ ∈ Rp and y∗ ∈ Rm for which the following necessity KKT conditions hold for
(x, y, z) = (x∗, y∗, z∗); see (Potra & Wright, 2000) and other references therein for more details.
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F(x, y, z, s) =

⎡
⎢⎢⎣

Qx + ATy + GTz + c
Ax − b

Gx + s − h
ZSe

⎤
⎥⎥⎦ = 0,

(s, z) ≥ 0

(4)

where S = diag(s1, s2, . . . , sn), Z = diag(z1, z2, . . . , zn) and e is the unit column vector of size
n × 1.
The primal-dual algorithms are modifications of Newton’s method applied to the KKT
conditions F(x, y, z, s) = 0 for the nonlinear equation of Equation (4). Such modifications lead
to appealing global convergence properties and superior practical performance. However,
they might interfere with the best-known characteristic of the Newton’s method, that is "fast
asymptotic convergence" of Newton’s method. In any case, it is possible to design algorithms
which recover such an important property of fast convergence to some extent, while still
maintaining the benefits of the modified algorithm (Wright, 1997). Also, it is worthwhile to
emphasise that all primal-dual approaches typically generate the iterates (xk , yk, zk, sk) while
satisfying nonnegativity condition of Equation (4) strictly, i.e. sk > 0 and zk > 0. This
particular property is in fact the origin of the generic term "interior-point" (Wright, 1997)
which will be briefly discussed next.

2.2 Embedded QP convex optimisation
There are several numerical approaches to solve standard cone QP problems. One alternative
which seems suitable to the literature of fast model predictive control is the path-following
algorithm – see e.g. (Potra & Wright, 2000; Renegar & Overton, 2001) and other references
therein.
In the path-following method, the current iterates are denoted by (xk, yk, zk, sk) while the
algorithm is started at initial values (xk , yk, zk, sk) = (x0, y0, z0, s0) where (s0, z0) > 0. For
most problems, however, a strictly feasible starting point might be extremely difficult to find.
Although it is straightforward to find a strictly feasible starting point by reformulating the
problem – see (Vandenberghe, 2010, §5.3)), such reformulation may introduce distortions that
can potentially make the problem harder to solve due to an increased computational time to
generate real-time control law which is not desired for a wide range of practical applications,
e.g. the HEV energy management problem – see Section 4. In §2.4, we will describe one
tractable approach to obtain such feasible starting points.
Similar to many other iterative algorithms in nonlinear programming and optimisation
literature, the primal-dual interior-point methods are based on two fundamental concepts:
First, they contain a procedure for determining the iteration step and secondly they are
required to define a measure of the attraction of each point in the search space. The utilised
Newton’s method in fact forms a linearised model for F(x, y, z, s) around the current iteration
point and obtains the search direction (Δx, Δy, Δz, Δs) by solving the following set of linear
equations:

J(x, y, z, s)

⎡
⎢⎢⎣

Δx
Δy
Δz
Δk

⎤
⎥⎥⎦ = −F(x, y, z, s) (5)
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where J is the Jacobian of F at point (xk, yk, zk, sk).
Let us assume that the current point is strictly feasible. In this case, a Newton "full step" will
provide a direction at

⎡
⎢⎢⎣

Q AT GT 0
A 0 0 0
G 0 0 I
0 0 S Z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δxk
Δyk
Δzk
Δsk

⎤
⎥⎥⎦ = −F(xk, yk, zk, sk) (6)

and the next starting point for the algorithm will be

(xk+1, yk+1, zk+1, sk+1) = (xk + Δxk, yk + Δyk, zk + Δzk, sk + Δsk)

However, the pure Newton’s method, i.e. a full step along the above direction, could often
violate the condition (s, z) > 0 – see (Renegar & Overton, 2001). To resolve this shortcoming,
a line search along the Newton direction is in a way that the new iterate will be (Wright, 1997)

(xk, yk, zk, sk) + αk(Δxk, Δyk, Δzk, Δsk)

for some line search parameter α ∈ (0, 1]. If α is to be selected by user, one could only take a
small step (α � 1) along the direction of Equation (6) before violating the condition (s, z) > 0.
However, selecting such a small step is not desirable as this may not allow us to make much
progress towards a sound solution to a broad range of practical problems which usually are
in need of fast convenance by applying "sufficiently large" step sizes.
Following the works (Mattingley & Boyd, 2010b) and (Vandenberghe, 2010), we shall intend
to modify the basic Newton’s procedure by two scaling directions (i.e. affine scaling
and combined centering & correction scaling). Loosely speaking, by using these two
scaling directions, it is endeavoured to bias the search direction towards the interior of the
nonnegative orthant (s, z) > 0 so as to move further along the direction before one of
the components of (s, z) becomes negative. In addition, these scaling directions keep the
components of (s, z) from moving "too close" to the boundary of the nonnegative orthant
(s, z) > 0. Search directions computed from points that are close to the boundary tend to be
distorted from which an inferior progress could be made along those points – see (Wright,
1997) for more details. Here, we shall list the scaling directions as follows.

2.3 Scaling iterations
We follow the works by (Vandenberghe, 2010, §5.3) and (Mattingley & Boyd, 2010b) with
some modifications that reflect our notation and problem format. Starting at initial values
(x̂, ŷ, ẑ, ŝ) = (x0, y0, z0, s0) where s0 > 0, z0 > 0, we consider the scaling iterations as
summarised here.

• Step 1. Set k = 0.

• Step 2. Start the iteration loop at time step k.

• Step 3. Define the residuals for the three linear equations as:
⎡
⎣

rx
ry
rz

⎤
⎦ =

⎡
⎣

0
0
ŝ

⎤
⎦+

⎡
⎣

Q AT GT

A 0 0
G 0 0

⎤
⎦
⎡
⎣

x̂
ŷ
ẑ

⎤
⎦+

⎡
⎣

c
−b
−h

⎤
⎦
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F(x, y, z, s) =

⎡
⎢⎢⎣

Qx + ATy + GTz + c
Ax − b

Gx + s − h
ZSe

⎤
⎥⎥⎦ = 0,

(s, z) ≥ 0

(4)

where S = diag(s1, s2, . . . , sn), Z = diag(z1, z2, . . . , zn) and e is the unit column vector of size
n × 1.
The primal-dual algorithms are modifications of Newton’s method applied to the KKT
conditions F(x, y, z, s) = 0 for the nonlinear equation of Equation (4). Such modifications lead
to appealing global convergence properties and superior practical performance. However,
they might interfere with the best-known characteristic of the Newton’s method, that is "fast
asymptotic convergence" of Newton’s method. In any case, it is possible to design algorithms
which recover such an important property of fast convergence to some extent, while still
maintaining the benefits of the modified algorithm (Wright, 1997). Also, it is worthwhile to
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particular property is in fact the origin of the generic term "interior-point" (Wright, 1997)
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2.2 Embedded QP convex optimisation
There are several numerical approaches to solve standard cone QP problems. One alternative
which seems suitable to the literature of fast model predictive control is the path-following
algorithm – see e.g. (Potra & Wright, 2000; Renegar & Overton, 2001) and other references
therein.
In the path-following method, the current iterates are denoted by (xk, yk, zk, sk) while the
algorithm is started at initial values (xk , yk, zk, sk) = (x0, y0, z0, s0) where (s0, z0) > 0. For
most problems, however, a strictly feasible starting point might be extremely difficult to find.
Although it is straightforward to find a strictly feasible starting point by reformulating the
problem – see (Vandenberghe, 2010, §5.3)), such reformulation may introduce distortions that
can potentially make the problem harder to solve due to an increased computational time to
generate real-time control law which is not desired for a wide range of practical applications,
e.g. the HEV energy management problem – see Section 4. In §2.4, we will describe one
tractable approach to obtain such feasible starting points.
Similar to many other iterative algorithms in nonlinear programming and optimisation
literature, the primal-dual interior-point methods are based on two fundamental concepts:
First, they contain a procedure for determining the iteration step and secondly they are
required to define a measure of the attraction of each point in the search space. The utilised
Newton’s method in fact forms a linearised model for F(x, y, z, s) around the current iteration
point and obtains the search direction (Δx, Δy, Δz, Δs) by solving the following set of linear
equations:

J(x, y, z, s)

⎡
⎢⎢⎣

Δx
Δy
Δz
Δk

⎤
⎥⎥⎦ = −F(x, y, z, s) (5)
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where J is the Jacobian of F at point (xk, yk, zk, sk).
Let us assume that the current point is strictly feasible. In this case, a Newton "full step" will
provide a direction at

⎡
⎢⎢⎣

Q AT GT 0
A 0 0 0
G 0 0 I
0 0 S Z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δxk
Δyk
Δzk
Δsk

⎤
⎥⎥⎦ = −F(xk, yk, zk, sk) (6)

and the next starting point for the algorithm will be

(xk+1, yk+1, zk+1, sk+1) = (xk + Δxk, yk + Δyk, zk + Δzk, sk + Δsk)

However, the pure Newton’s method, i.e. a full step along the above direction, could often
violate the condition (s, z) > 0 – see (Renegar & Overton, 2001). To resolve this shortcoming,
a line search along the Newton direction is in a way that the new iterate will be (Wright, 1997)

(xk, yk, zk, sk) + αk(Δxk, Δyk, Δzk, Δsk)

for some line search parameter α ∈ (0, 1]. If α is to be selected by user, one could only take a
small step (α � 1) along the direction of Equation (6) before violating the condition (s, z) > 0.
However, selecting such a small step is not desirable as this may not allow us to make much
progress towards a sound solution to a broad range of practical problems which usually are
in need of fast convenance by applying "sufficiently large" step sizes.
Following the works (Mattingley & Boyd, 2010b) and (Vandenberghe, 2010), we shall intend
to modify the basic Newton’s procedure by two scaling directions (i.e. affine scaling
and combined centering & correction scaling). Loosely speaking, by using these two
scaling directions, it is endeavoured to bias the search direction towards the interior of the
nonnegative orthant (s, z) > 0 so as to move further along the direction before one of
the components of (s, z) becomes negative. In addition, these scaling directions keep the
components of (s, z) from moving "too close" to the boundary of the nonnegative orthant
(s, z) > 0. Search directions computed from points that are close to the boundary tend to be
distorted from which an inferior progress could be made along those points – see (Wright,
1997) for more details. Here, we shall list the scaling directions as follows.

2.3 Scaling iterations
We follow the works by (Vandenberghe, 2010, §5.3) and (Mattingley & Boyd, 2010b) with
some modifications that reflect our notation and problem format. Starting at initial values
(x̂, ŷ, ẑ, ŝ) = (x0, y0, z0, s0) where s0 > 0, z0 > 0, we consider the scaling iterations as
summarised here.

• Step 1. Set k = 0.

• Step 2. Start the iteration loop at time step k.

• Step 3. Define the residuals for the three linear equations as:
⎡
⎣

rx
ry
rz

⎤
⎦ =

⎡
⎣

0
0
ŝ

⎤
⎦+

⎡
⎣

Q AT GT

A 0 0
G 0 0

⎤
⎦
⎡
⎣

x̂
ŷ
ẑ

⎤
⎦+

⎡
⎣

c
−b
−h

⎤
⎦
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• Step 4. Compute the optimality conditions:
⎡
⎣

0
0
s

⎤
⎦ =

⎡
⎣

Q AT GT

−A 0 0
−G 0 0

⎤
⎦
⎡
⎣

x
y
z

⎤
⎦+

⎡
⎣

c
b
h

⎤
⎦ , (s, z) ≥ 0.

• Step 5. If the optimality conditions obtained at Step 4 satisfy �(x, y, z, s)− (x̂, ŷ, ẑ, ŝ)�∞ ≤ �,
for some small positive � > 0, go to Step 13.

• Step 6. Solve the following linear equations to generate the affine direction (Mattingley &
Boyd, 2010b):

⎡
⎢⎢⎣

Q AT GT 0
A 0 0 0
G 0 0 I
0 0 S Z

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δxa f f
k

Δya f f
k

Δza f f
k

Δsa f f
k

⎤
⎥⎥⎥⎥⎦
= −F(xk, yk, zk, sk) (7)

• Step 7. Compute the duality measure μ, step size α ∈ (0, 1], and centering parameter
σ ∈ [0, 1]

μ = 1
n

n
∑

i=1
sizi =

zTs
n

σ =

�
(s+αcΔsa f f )

T
(z+αcΔza f f )

sTz

�3

and
αc = sup{α ∈ [0, 1]|(s + αcΔsa f f , z + αcΔza f f ) ≥ 0}

• Step 8. Solve the following linear equations for the combined centering-correction
direction2: ⎡

⎢⎢⎣

Q AT GT 0
A 0 0 0
G 0 0 I
0 0 S Z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δxcc

Δycc

Δzcc

Δscc

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0

σμe − diag(Δsa f f )Δza f f

⎤
⎥⎥⎦

This system is well defined if and only if the Jacobian matrix within is nonsingular (Peng
et al., 2002, §6.3.1).

• Step 9. Combine the two affine and combined updates of the required direction as:

Δx = Δxa f f + Δxcc

Δy = Δya f f + Δycc

Δz = Δza f f + Δzcc

Δs = Δsa f f + Δscc

• Step 10. Find the appropriate step size to retain nonnegative orthant (s, z) > 0,

α = min{1, 0.99 sup(α ≥ 0|(s + αΔs, z + αΔz) ≥ 0)}

2 This is another variant of Mehrotra’s predictor-corrector algorithm (Mehrotra, 1992), a primal-dual
interior-point method, which yields more consistent performance on a wide variety of practical
problems.
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• Step 11. Update the primal and dual variables using:
⎡
⎢⎢⎣

x
y
z
s

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎣

x
y
z
s

⎤
⎥⎥⎦+ α

⎡
⎢⎢⎣

Δx
Δy
Δz
Δs

⎤
⎥⎥⎦

• Step 12. Set (x̂, ŷ, ẑ, ŝ) = (xk, yk, zk, sk) and k := k + 1; Go to Step 2.

• Step 13. Stop the iteration and return the obtained QP optimal solution (x, y, z, s).

The above iterations will modify the the search direction so that at any step the solutions
are moved closer to feasibility as well as to centrality. It is also emphasised that most of the
computational efforts required for a QP problem are due to solving the two matrix equalities
in steps 6 and 8. Among many limiting factors which may make the above algorithm
failed, floating-point division is perhaps the most critical problem of an online optimisation
algorithm to be considered (Wang & Boyd, 2008). In words, stability of an optimisation-based
control law (such as model predictive control) are significantly dependent on the risk of
algorithm failures, and therefore it is vital to develop robust algorithms for solving these linear
systems leading towards fast optimisation-based control designs, which is the focal point of
our work. We should also stress that robustness of any algorithm must be taken into account
at starring point. In particular, many practical problems are prone to make optimisation
procedures failed at the startup. For instance, (possibly large) disparity between the initial
states of the plant and the feedback controller might lead to large transient control signals
which consequently could violate feasibility assumptions of the control law – this in turn may
result into an unstable feedback loop. Therefore, the initialisation of the optimisation-based
control law is significantly important and must be taken into consideration in advance. The
warm start is also an alternative to resolve this shortcoming – see e.g. (Wang & Boyd, 2010).
Here, we shall discuss a promising initialisation method for the solution of the linear systems
which is integrated within the framework of our fast model predictive control algorithm.

2.4 Initialisation
We shall overview the initialisation procedure addressed in (Vandenberghe, 2010, §5.3) and
(Mattingley & Boyd, 2010b). If primal and dual starting points (x̂, ŷ, ẑ, ŝ) are not specified by
the user, they are chosen as follows:

• Solve the linear equations (see §2.5 for a detailed solution of this linear system.)
⎡
⎣

Q AT GT

A 0 0
G 0 −I

⎤
⎦
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣
−c
b
h

⎤
⎦ (8)

to obtain optimality conditions for the primal-dual pair problems of

min (1/2)xT Qx + cT x + (1/2)�s�2
2

subject to Gx + s = h

Ax = b

(9)
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• Step 4. Compute the optimality conditions:
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0
0
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⎤
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⎣
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−A 0 0
−G 0 0

⎤
⎦
⎡
⎣

x
y
z

⎤
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⎡
⎣

c
b
h

⎤
⎦ , (s, z) ≥ 0.
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for some small positive � > 0, go to Step 13.
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k
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= −F(xk, yk, zk, sk) (7)

• Step 7. Compute the duality measure μ, step size α ∈ (0, 1], and centering parameter
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μ = 1
n

n
∑

i=1
sizi =

zTs
n

σ =

�
(s+αcΔsa f f )

T
(z+αcΔza f f )

sTz

�3

and
αc = sup{α ∈ [0, 1]|(s + αcΔsa f f , z + αcΔza f f ) ≥ 0}

• Step 8. Solve the following linear equations for the combined centering-correction
direction2: ⎡

⎢⎢⎣

Q AT GT 0
A 0 0 0
G 0 0 I
0 0 S Z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δxcc

Δycc

Δzcc

Δscc

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0

σμe − diag(Δsa f f )Δza f f

⎤
⎥⎥⎦

This system is well defined if and only if the Jacobian matrix within is nonsingular (Peng
et al., 2002, §6.3.1).

• Step 9. Combine the two affine and combined updates of the required direction as:

Δx = Δxa f f + Δxcc

Δy = Δya f f + Δycc

Δz = Δza f f + Δzcc

Δs = Δsa f f + Δscc

• Step 10. Find the appropriate step size to retain nonnegative orthant (s, z) > 0,

α = min{1, 0.99 sup(α ≥ 0|(s + αΔs, z + αΔz) ≥ 0)}

2 This is another variant of Mehrotra’s predictor-corrector algorithm (Mehrotra, 1992), a primal-dual
interior-point method, which yields more consistent performance on a wide variety of practical
problems.
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• Step 11. Update the primal and dual variables using:
⎡
⎢⎢⎣

x
y
z
s

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎣

x
y
z
s

⎤
⎥⎥⎦+ α

⎡
⎢⎢⎣

Δx
Δy
Δz
Δs

⎤
⎥⎥⎦

• Step 12. Set (x̂, ŷ, ẑ, ŝ) = (xk, yk, zk, sk) and k := k + 1; Go to Step 2.

• Step 13. Stop the iteration and return the obtained QP optimal solution (x, y, z, s).

The above iterations will modify the the search direction so that at any step the solutions
are moved closer to feasibility as well as to centrality. It is also emphasised that most of the
computational efforts required for a QP problem are due to solving the two matrix equalities
in steps 6 and 8. Among many limiting factors which may make the above algorithm
failed, floating-point division is perhaps the most critical problem of an online optimisation
algorithm to be considered (Wang & Boyd, 2008). In words, stability of an optimisation-based
control law (such as model predictive control) are significantly dependent on the risk of
algorithm failures, and therefore it is vital to develop robust algorithms for solving these linear
systems leading towards fast optimisation-based control designs, which is the focal point of
our work. We should also stress that robustness of any algorithm must be taken into account
at starring point. In particular, many practical problems are prone to make optimisation
procedures failed at the startup. For instance, (possibly large) disparity between the initial
states of the plant and the feedback controller might lead to large transient control signals
which consequently could violate feasibility assumptions of the control law – this in turn may
result into an unstable feedback loop. Therefore, the initialisation of the optimisation-based
control law is significantly important and must be taken into consideration in advance. The
warm start is also an alternative to resolve this shortcoming – see e.g. (Wang & Boyd, 2010).
Here, we shall discuss a promising initialisation method for the solution of the linear systems
which is integrated within the framework of our fast model predictive control algorithm.

2.4 Initialisation
We shall overview the initialisation procedure addressed in (Vandenberghe, 2010, §5.3) and
(Mattingley & Boyd, 2010b). If primal and dual starting points (x̂, ŷ, ẑ, ŝ) are not specified by
the user, they are chosen as follows:

• Solve the linear equations (see §2.5 for a detailed solution of this linear system.)
⎡
⎣

Q AT GT

A 0 0
G 0 −I

⎤
⎦
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣
−c
b
h

⎤
⎦ (8)

to obtain optimality conditions for the primal-dual pair problems of

min (1/2)xT Qx + cT x + (1/2)�s�2
2

subject to Gx + s = h

Ax = b

(9)
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and

max − (1/2)ωTQω − hTz − bTy − (1/2)�z�2
2

subject to Qω + GTz + ATy + c = 0.
(10)

• From the above, x̂ = x, ŷ = y are found as the two initialisation points. The initial value of
ŝ is calculated from the residual h − Gx = −z, as

ŝ =
� −z αp < 0
−z + (1 + αp)e otherwise

where αp = inf{α| − z + αe ≥ 0}. Also, the initial value of ẑ is computed as

ẑ =

�
z αd < 0

z + (1 + αd)e otherwise

where αd = inf{α|z + αe ≥ 0}.

2.5 Fast KKT solution
As explained earlier, the most time-consuming parts of QP optimisation problem is due to
solving the linear KKT systems of the format

⎡
⎢⎢⎣

Q AT GT 0
A 0 0 0
G 0 0 I
0 0 S Z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
y
z
s

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rx
ry
rz
rs

⎤
⎥⎥⎦ (11)

In Ref. (Mattingley & Boyd, 2010b) a numerical method has been introduced, using the
permuted LDLT factorisation, to solve the KKT linear systems of Equation (11) in the
compact form of KX = R to find optimal variables of X. In the so-called "iterative
refinement approach", see (Mattingley & Boyd, 2010b, §5.3)), the original KKTs is regularised
by choosing a small � > 0 to ensure that such a factorisation exists and that it is numerically
stable. However, since the solution of the modified KKT system is an approximation to the
original KKT system, it could potentially affect both the affine and combined step sizes, as
well as the feasibility conditions and the rate of global convergence. In words, such an
approximation could introduce additional "hold-ups" to the QP problem at each time step
which is not desirable for the purpose of the fast real-time optimisation applications, such the
one considered in Section 4 as a case study.
In order to obtain "fast" and "reliable" solutions of Equation (11) at each iteration, it is
significantly important to avoid any sort of calculation of unstructured (possibly sparse)
matrix inverse, as well as to reduce the number of the KKT linear systems. Due to the
particular structure of the original exact KKT system given in Equation (11), however, we
shall employ a more reliable and stable interior-point solver of the convex QP optimisation
problem, even for the KKT systems with sparse matrices. To this end, we start by eliminating
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the variable s among the KKT linear systems. After some algebra, we will have
⎡
⎣

Q AT GT

A 0 0
G 0 −Z−1S

⎤
⎦
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

rx
ry

rz − Z−1rs

⎤
⎦ (12)

which reduces the number of original KKT systems solved per iteration by three. To calculate
s, we could use s = −Gx + rz.
The Cholesky factorisation method is the preferred KKT equation solver for linear and
quadratic programs. However, due to the particular structure of Z−1S, being a diagonal
matrix, there is no longer a need to carry out the Cholesky factorization of the diagonal matrix
of Z−1S given in Equation (12). In fact, Z−1S = WTW with diagonal matrix W = WT will
lead to Z−1S = W2. We can now obtain a reduced order of KKT system of Equation (12) with
only two equations as

�
Q + GTW−2G AT

A 0

� �
x
y

�
=

�
rx + GTW−2(rz − Z−1rs)

ry

�
(13)

From x and y, the solution z follows as Wz = W−T(Gx − rz + Z−1rs). Recall that matrices
S, Z and W are diagonal matrices, and hence calculation of inverses of W−T = W−1 =
diag(1/W(i, i)) and Z−1 = diag(1/Z(i, i)), i = 1, 2, . . . , n are straightforward and fast, even
for large sparse problems.
Using the Cholesky factorization Q + GTW−2G = LLT, the KKT solutions of Equation (13)
are computed as follows – see also (Vandenberghe, 2010).

• Case 1. If Q+GTW−2G is nonsingular, y and x are computed from the following equations,
respectively:

AL−TL−1 ATy = AL−TL−1 �rx + GTW−2(rz − Z−1rs)
�− ry

LLTx = rx + GTW−2(rz − Z−1rs)− ATy
(14)

• Case 2. If Q + GTW−2G is singular, the exact solutions of y and x are obtained respectively
as

AL−TL−1ATy = AL−TL−1 �rx + GTW−2(rz − Z−1rs) + ATry
�− ry

LLTx = rx + GTW−2(rz − Z−1rs) + AT(ry − y)
(15)

The above algorithm will provide the KKT linear systems to be solved reliably, and to
precise accuracy, in a limited number of iterations. This, along with previous optimisation
requirements addressed earlier, will help develop a fast reliable optimisation algorithm
leading towards fast model predictive control which is briefly discussed in the subsequent
section.

2.6 Tracking control problem using fast MPC
As we discussed earlier, standard MPC-based algorithms are great tools in the literature of
feedback control system designs, mainly due to their abilities in handling constraints, e.g.
actuator saturations, which are successfully taken into consideration in the design of an MPC.
However, to provide an appropriate input control signal, MPC and its standard variants
suffer from a major drawback due to having a desperate need of excessive computational
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and

max − (1/2)ωTQω − hTz − bTy − (1/2)�z�2
2

subject to Qω + GTz + ATy + c = 0.
(10)

• From the above, x̂ = x, ŷ = y are found as the two initialisation points. The initial value of
ŝ is calculated from the residual h − Gx = −z, as

ŝ =
� −z αp < 0
−z + (1 + αp)e otherwise

where αp = inf{α| − z + αe ≥ 0}. Also, the initial value of ẑ is computed as

ẑ =

�
z αd < 0

z + (1 + αd)e otherwise

where αd = inf{α|z + αe ≥ 0}.

2.5 Fast KKT solution
As explained earlier, the most time-consuming parts of QP optimisation problem is due to
solving the linear KKT systems of the format

⎡
⎢⎢⎣

Q AT GT 0
A 0 0 0
G 0 0 I
0 0 S Z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
y
z
s

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rx
ry
rz
rs

⎤
⎥⎥⎦ (11)

In Ref. (Mattingley & Boyd, 2010b) a numerical method has been introduced, using the
permuted LDLT factorisation, to solve the KKT linear systems of Equation (11) in the
compact form of KX = R to find optimal variables of X. In the so-called "iterative
refinement approach", see (Mattingley & Boyd, 2010b, §5.3)), the original KKTs is regularised
by choosing a small � > 0 to ensure that such a factorisation exists and that it is numerically
stable. However, since the solution of the modified KKT system is an approximation to the
original KKT system, it could potentially affect both the affine and combined step sizes, as
well as the feasibility conditions and the rate of global convergence. In words, such an
approximation could introduce additional "hold-ups" to the QP problem at each time step
which is not desirable for the purpose of the fast real-time optimisation applications, such the
one considered in Section 4 as a case study.
In order to obtain "fast" and "reliable" solutions of Equation (11) at each iteration, it is
significantly important to avoid any sort of calculation of unstructured (possibly sparse)
matrix inverse, as well as to reduce the number of the KKT linear systems. Due to the
particular structure of the original exact KKT system given in Equation (11), however, we
shall employ a more reliable and stable interior-point solver of the convex QP optimisation
problem, even for the KKT systems with sparse matrices. To this end, we start by eliminating

14 Advanced Model Predictive Control Fast Model Predictive Control and its Application to Energy Management of Hybrid Electric Vehicles 13
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s, we could use s = −Gx + rz.
The Cholesky factorisation method is the preferred KKT equation solver for linear and
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From x and y, the solution z follows as Wz = W−T(Gx − rz + Z−1rs). Recall that matrices
S, Z and W are diagonal matrices, and hence calculation of inverses of W−T = W−1 =
diag(1/W(i, i)) and Z−1 = diag(1/Z(i, i)), i = 1, 2, . . . , n are straightforward and fast, even
for large sparse problems.
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• Case 1. If Q+GTW−2G is nonsingular, y and x are computed from the following equations,
respectively:
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�− ry
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(14)
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The above algorithm will provide the KKT linear systems to be solved reliably, and to
precise accuracy, in a limited number of iterations. This, along with previous optimisation
requirements addressed earlier, will help develop a fast reliable optimisation algorithm
leading towards fast model predictive control which is briefly discussed in the subsequent
section.

2.6 Tracking control problem using fast MPC
As we discussed earlier, standard MPC-based algorithms are great tools in the literature of
feedback control system designs, mainly due to their abilities in handling constraints, e.g.
actuator saturations, which are successfully taken into consideration in the design of an MPC.
However, to provide an appropriate input control signal, MPC and its standard variants
suffer from a major drawback due to having a desperate need of excessive computational
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time for solving the online minimization problems, at each sampling interval, particularly in
the presence of large number of horizons, constraints, optimisation parameters or parametric
uncertainties. This shortcoming is an outstanding motivation to look for some sort of efficient
model predictive algorithms, to solve an integrated optimisation problems "sufficiently fast"
in real time.
Any MPC tracking reference problem subject to constraints, being also the focal point of this
section, results in the optimization of a quadratic programming (QP) problem as the objective
function is quadratic – see §2.1.
The reference tracking control for a discrete-time linear dynamical system is described as the
following quadratic optimisation problem:

min
N
∑

k=1
(yk − yre f

k )
T

Qy(yk − yre f
k ) + uT

k Quuk

subject to xk+1 = Axk + Buk + wk
yk = Cxk + vk
xmin ≤ xk ≤ xmax
umin ≤ uk ≤ umax
u̇min ≤ u̇k ≤ u̇max

(16)

where Qy and Qu are positive semidefinite weighting matrices for penalizing the tracking
error and control effort, respectively; A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and x0 ∈ Rn are the
discrete-time plant data, wk and vk are plant disturbance and measurement noise, respectively;

yre f
k is the reference signal to be tracked at the plant output; N is the horizon; The optimisation

variables are the system state xk(k = 1, 2, . . . , N) and input control signals uk(k = 0, 1, . . . , N −
1).
Recall that here we only consider the linear time-invariant (LTI) systems. Nonetheless, the
proposed method could be extended to the time-varying and/or nonlinear cases (Del Re et
al., 2010). Also, regarding the fact that most of the physical plants are continuous-time, we
shall consider a continuous-time linear dynamic system driven by stationary continuous-time
white noise. To simulate such a continuous-time dynamics on a digital computer (or
microprocessor) using an equivalent discrete-time dynamics, it is required to utilise equated
linear discrete-time system and its noise statistics, so that both systems have identical
statistical properties at the discrete time instants (Gelb, 1974, pp. 72-75). Moreover, any type of
continuous-time plant dynamics could be transformed, with an appropriate sampling time, to
the equivalent discrete-model in the format of the one shown in the subjective of Equation (16)
– see (Grewal & Andrews, 1993, pp. 88-91).
The output tracking control system design in Equation (16) could be transformed to the
standard quadratic programming problem illustrated in Equation (1). Therefore, we could
use the fast KKT solutions following the initialisation. In Section 4, the proposed optimisation
procedure of the fast model predictive control design approach will be implemented to the
case study of the HEV energy management.

3. Hybrid diesel electric vehicle model

In Section 1, we briefly discussed the history of hybrid electric vehicles which, in some
extent, could clarify the importance of our work carried out in the field of advanced energy
management for the HEV applications. In this section, we will investigate how to model a
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simplified hybrid electric vehicle to replace the sophisticated nonlinear dynamic of the diesel
internal combustion engine. We shall integrate this simplified HEV model, for the first time,
with recent advances on fast model predictive control architecture described in Section 2 based
on embedded convex optimisation.
Before describing the structure of our hybrid diesel electric vehicle, let us first overview a
generic HEV structure. A representative configuration of an advanced 4x4 parallel hybrid
electric vehicle configuration is shown in Figure 2.

Fig. 2. Schematic structure of a parallel 4x4 Hybrid Electric Vehicle (HEV). Low-level control
components such as high voltage electric battery, electric rear axle drive etc are excluded in
this high-level energy management configuration.

The hybrid electric vehicle structure shown in Figure 2 is equipped with a turbocharged diesel
engine and a crankshaft integrated motor/generator (CIMG) which is directly mounted on the
engine crankshaft. The CIMG is used for starting and assisting the engine in motoring-mode,
and also for generating electric energy via charging a high-voltage battery (not shown in
the figure). As our intention in this study is to investigate the "full-hybrid" mode, we shall
assume that the integrated ICE-CIMG clutch is fully engaged and hence our descriptive HEV
dynamical model (see §3.3) excludes a clutch dynamics as it is shown in Figure 2. Likewise,
the gearbox is shown in Figure 2 but no gear setting was considered in our simplified HEV
demonstration. This is due to the fact that our empirical diesel engine model is derived with
engine speed range of ω = [1200, 2000]rpm running at the first gear.
It is also worthwhile to emphasise that our design methodology on the development of the
HEV energy management is a high-level design strategy. For this reason, most of the common
low-level subsystems, integrated within the typical HEV dynamics, are not considered in
the HEV configuration as shown in Figure 2. These low-level subsystems include CIMG
low-level motor control, high voltage battery management, low level clutch control, low level
transmission control, and electrical distribution including DC-DC converter, to name just a
few. Furthermore, the dynamics of the engine model includes the average torque responses
of both diesel engine and CIMG over all four cylinders, which are the quantities of interest.
For designing a well balanced feedback control law, control engineers should possess a good
comprehension of the physics of the plant under investigation. One of the challenging
aspect of any model based engine control development is the derivation of a simplified yet
insightful model. For instance, the frequency range of the engine system, the nonlinearities
associated with the internal engine processes (i.e. combustion process, heat distribution,
air flow), the severe cross coupling, the inherent sampling nature of the four cycle internal
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time for solving the online minimization problems, at each sampling interval, particularly in
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3. Hybrid diesel electric vehicle model

In Section 1, we briefly discussed the history of hybrid electric vehicles which, in some
extent, could clarify the importance of our work carried out in the field of advanced energy
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electric vehicle configuration is shown in Figure 2.
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this high-level energy management configuration.

The hybrid electric vehicle structure shown in Figure 2 is equipped with a turbocharged diesel
engine and a crankshaft integrated motor/generator (CIMG) which is directly mounted on the
engine crankshaft. The CIMG is used for starting and assisting the engine in motoring-mode,
and also for generating electric energy via charging a high-voltage battery (not shown in
the figure). As our intention in this study is to investigate the "full-hybrid" mode, we shall
assume that the integrated ICE-CIMG clutch is fully engaged and hence our descriptive HEV
dynamical model (see §3.3) excludes a clutch dynamics as it is shown in Figure 2. Likewise,
the gearbox is shown in Figure 2 but no gear setting was considered in our simplified HEV
demonstration. This is due to the fact that our empirical diesel engine model is derived with
engine speed range of ω = [1200, 2000]rpm running at the first gear.
It is also worthwhile to emphasise that our design methodology on the development of the
HEV energy management is a high-level design strategy. For this reason, most of the common
low-level subsystems, integrated within the typical HEV dynamics, are not considered in
the HEV configuration as shown in Figure 2. These low-level subsystems include CIMG
low-level motor control, high voltage battery management, low level clutch control, low level
transmission control, and electrical distribution including DC-DC converter, to name just a
few. Furthermore, the dynamics of the engine model includes the average torque responses
of both diesel engine and CIMG over all four cylinders, which are the quantities of interest.
For designing a well balanced feedback control law, control engineers should possess a good
comprehension of the physics of the plant under investigation. One of the challenging
aspect of any model based engine control development is the derivation of a simplified yet
insightful model. For instance, the frequency range of the engine system, the nonlinearities
associated with the internal engine processes (i.e. combustion process, heat distribution,
air flow), the severe cross coupling, the inherent sampling nature of the four cycle internal
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combustion engine, and the limited output sensor dynamic capabilities all contribute to make
this modelling step a most arduous task (Lewis, 1980).
There are two main reasons to highlight the importance of simplified HEV dynamical models:
First, it is not usually possible to obtain a detailed diesel engine data (or model) from the
production vehicle manufacturer (Kaszynski & Sawodny, 2008). Secondly, obtaining a precise
mathematical model of a HEV powertrain is a very challenging task particularly due to
multi-energetic nature and switching dynamics of a powertrain.
For the above reasons, and for the ease of development of an advanced HEV energy
management system, it is essential to obtain a straightforward and realistic model of the
propulsion system to which an efficient control strategy, such as our proposed fast MPC
design methodology, could be applied. Generally speaking, this model shall be used for the
simulation of the overall vehicle motion (at longitudinal direction). Therefore, we do not
intend to utilise any detailed model of the internal engine processes, but rather a high-level
torque manager model that will generate control efforts based on a given set-point torque
commands. Recall that this torque management structure could be easily adopted to other
engine configurations in a straightforward manner.
As stated earlier, our developments towards a simplified hybrid model are based on a high
fidelity simulation model of the overall diesel hybrid electric vehicle. This HEV dynamical
model is modeled using two subsystems, a diesel internal combustion engine (ICE) and an
armature-controller DC electric motor. The mathematical modeling of these two subsystems
will be discussed in the remainder of this section.

3.1 Simplified diesel engine model
In this section, we shall present a simplified dynamical model of a turbo-charged diesel
engine. This simplified model is based upon the nonlinear diesel engine dynamics and the
fact that it must capture both the transient and steady-state dominant modes of the diesel
engine during operational conditions.
The engine indicated torque Tind is assumed to be mapped from the delayed fueling input
proportionally, and has limited bandwidth due to internal combustion dynamic effects,
arising e.g. due to combustion and turbo lag. In a mathematical representation, we will have

Tind(t) =
1

τ(ω)s + 1
Tdem

B (t − td(ω)) (17)

where τ is the speed-dependant time constant due to combustion lag, td is the
speed-dependant time-delay due to fueling course and Tdem

B is the mapped fueling input
representing the required ICE crankshaft (brake) torque.
Our simplified diesel engine model is empirically derived using a turbo-charged diesel
engine at speed range of ω = [1200, 2000]rpm with operational brake torque acting at
TB = [50, 100]NM. The speed-dependant fueling delay (td) and combustion lag (τ) are given
in Table 1.
Our diesel model also contains a speed-dependant torque loss TLoss arising due to friction
torque, ancillary torque and pumping loss. Such a total torque loss is typically a nonlinear
function of the engine speed. However, at the studied operating range of engine speed and
brake torque, namely ω = [1200, 2000]rpm and TB = [50, 100]NM, the total engine torque
loss is a linear function of ω modeled as TLoss = mω where m = 0.12 with ω’s dimension in
[rad/sec].
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ω TB td τ

1200 50 100 144
1200 100 140 142
1600 50 84 140
1600 100 96 137
2000 50 80 140
2000 100 72 134

Table 1. Experimental results of fueling delay, td [msecs], and combustion lag, τ [msecs], as
functions of diesel engine speed [rpm] and brake torque [NM]. These results are captured by
measuring the step response of the engine to a step change in the engine brake torque.

For the purpose of this study, we shall employ a 1-st order Pade approximation to model the
fueling time-delay by a rational 1st-order LTI model of

e−tds ∼= −s + 2/td
s + 2/td

(18)

The simplified diesel engine model can now be described as the following state-space
equations:

ẋ1 = − 2
td

x1 + Tdem
B

ẋ2 = 4
td

x1 − 1
τ x2 − Tdem

B
TLoss = mω

TB = 1
τ x2 − TLoss

(19)

where x1 and x2 are the states associated with the Pade approximation, and combustion lag
dynamics, respectively.
The diesel dynamic shown in Equation (19) will be used in the overall configuration of the
HEV dynamics.

3.2 Simplified CIMG Model
Assuming that the hybrid electric drivetrain includes an armature-controlled CIMG (DC
motor), the applied voltage va controls the motor torque (TM) as well as the angular velocity
ω of the shaft.
The mathematical dynamics of the CIMG could be represented as follows.

Ia =
1

Las + Ra
(vdem

a − vem f ) (20)

vem f = kbω

TM = km Ia

where km and kb are torque and back emf constants, vdem
a is control effort as of armature

voltage, vem f is the back emf voltage, Ia is armature current, La and Ra are inductance and
resistance of the armature, respectively.
Regarding the fact that the engine speed is synchronised with that of the CIMG in full-hybrid
mode, the rotational dynamics of the driveline (of joint crankshaft and motor) is given as
follows:

Jω̇ + bω = TB + TM − TL (21)
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where ω is the driveline speed, J is the effective combined moment of rotational inertia of both
engine crankshaft and motor rotor, b is the effective joint damping coefficient, and TL is the
vehicle load torque, which is representing the plant disturbance.
The armature-controlled CIMG model in Equation (20) along with the rotational dynamics of
Equations (20) and (21) could be integrated within the following state-space modelling:

ẋ3 = vdem
a − Ra

La
x3 − Kb

J x4

ẋ4 = 1
τ x2 +

Kb
La

x3 − b
J x4 − TLoss − TL

ω = 1
J x4

TM = Kb
La

x3

(22)

where x3 and x4 are the states associated with the armature circuit, and driveline rotational
dynamics, respectively.
A simplified but realistic simulation model with detailed component representations of diesel
engine and DC electric motor (CIMG) will be used as a basis for deriving the hybrid model as
discussed in the subsequent section.

3.3 Simplified hybrid diesel electric vehicle model
Based on the state-space representation of both the diesel ICE and electric CIMG, given in
Equation (19) and Equation (22), respectively, we can now build our simplified 4-state HEV
model to demonstrate our proposed approach.
A schematic representation of the simplified parallel hybrid diesel electric vehicle model is
shown in Figure 3.
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Fig. 3. Simplified model of the parallel Hybrid Diesel Electric Vehicle.

Recall that, as illustrated in Figure 2, the setpoint torque commands (indicated by Treq
B and

Treq
M ) are provided to the controller by a high-level static optimisation algorithm, not discussed

in this study – see (Dextreit et al., 2008) for more details. Also, in this figure the engine
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brake torque and the CIMG torque are estimated feedback signals. However, the details of
the estimation approach are not included here. For the sake of simplicity, in this work we
shall assume that both engine and CIMG output torques are available to measure.
In addition, due to there being in "full hybrid" mode, it is assumed that the ICE-CIMG clutch
is fully engaged and hence the clutch model is excluded from the main HEV dynamics - it
was previously shown in Figure 2. Also, the gear setting is disregarded at this simplified
model, as discussed earlier. Furthermore, the look-up mapping table of CIMG torque request
vs armature voltage request (vdem

a ) is not shown in this model for the sake of simplicity.
The overall state-space equations of the simplified HEV model is represented by

ẋ =

⎡
⎢⎢⎢⎣

− 2
td

0 0 0
4
td

− 1
τ 0 0

0 0 − Ra
La

− Kb
J

0 1
τ

Kb
La

−m+b
J

⎤
⎥⎥⎥⎦ x +

⎡
⎢⎢⎣

1 0
−1 0
0 1
0 0

⎤
⎥⎥⎦ u +

⎡
⎢⎢⎣

0
0
0
−1

⎤
⎥⎥⎦ TL

y =

�
0 1

τ 0 −m
J

0 0 Kb
La

0

�
x

(23)

where x ∈ R4 is the state of the system obtained from Equations (19) and (22), u =
[Tdem

B vdem
a ]T and y = [TB TM]T are control signals and HEV torque outputs, respectively.

The state-space equations of Equation (23) will be used in designing the proposed fast model
predictive control described in Section 2. Some representative simulation results of HEV
energy management case study will be shown in the next section to highlight some advances
of our proposed embedded predictive control system.

4. Simulation results

In this section, we shall present our proposed Fast MPC algorithm described in Section 2
for the application of the simplified HEV energy management system discussed in Section 3.
The problem addressed in the next subsection is to discuss required setpoint torque tracking
problem with appropriate optimisation objective leading towards applying our fast MPC
design to the HEV energy management problem as illustrated by some of our simulation
results.

4.1 HEV energy management optimisation objective and control strategy
For the HEV energy management application subject to the objective function and constraints,
HEV demanded torques are found at each time step by solving the optimisation problem of
Equation (16) with the following data:

xmin = [0, −56, −300, 0]T

xmax = [18, 56, 300, 360]T

umin = [0, −380]T (24)

umax = [400, 380]T

u̇max = −u̇min = [0.5, 4]T
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where ω is the driveline speed, J is the effective combined moment of rotational inertia of both
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vehicle load torque, which is representing the plant disturbance.
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where x3 and x4 are the states associated with the armature circuit, and driveline rotational
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engine and DC electric motor (CIMG) will be used as a basis for deriving the hybrid model as
discussed in the subsequent section.

3.3 Simplified hybrid diesel electric vehicle model
Based on the state-space representation of both the diesel ICE and electric CIMG, given in
Equation (19) and Equation (22), respectively, we can now build our simplified 4-state HEV
model to demonstrate our proposed approach.
A schematic representation of the simplified parallel hybrid diesel electric vehicle model is
shown in Figure 3.
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Fig. 3. Simplified model of the parallel Hybrid Diesel Electric Vehicle.

Recall that, as illustrated in Figure 2, the setpoint torque commands (indicated by Treq
B and

Treq
M ) are provided to the controller by a high-level static optimisation algorithm, not discussed

in this study – see (Dextreit et al., 2008) for more details. Also, in this figure the engine
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brake torque and the CIMG torque are estimated feedback signals. However, the details of
the estimation approach are not included here. For the sake of simplicity, in this work we
shall assume that both engine and CIMG output torques are available to measure.
In addition, due to there being in "full hybrid" mode, it is assumed that the ICE-CIMG clutch
is fully engaged and hence the clutch model is excluded from the main HEV dynamics - it
was previously shown in Figure 2. Also, the gear setting is disregarded at this simplified
model, as discussed earlier. Furthermore, the look-up mapping table of CIMG torque request
vs armature voltage request (vdem

a ) is not shown in this model for the sake of simplicity.
The overall state-space equations of the simplified HEV model is represented by
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(23)

where x ∈ R4 is the state of the system obtained from Equations (19) and (22), u =
[Tdem

B vdem
a ]T and y = [TB TM]T are control signals and HEV torque outputs, respectively.

The state-space equations of Equation (23) will be used in designing the proposed fast model
predictive control described in Section 2. Some representative simulation results of HEV
energy management case study will be shown in the next section to highlight some advances
of our proposed embedded predictive control system.

4. Simulation results

In this section, we shall present our proposed Fast MPC algorithm described in Section 2
for the application of the simplified HEV energy management system discussed in Section 3.
The problem addressed in the next subsection is to discuss required setpoint torque tracking
problem with appropriate optimisation objective leading towards applying our fast MPC
design to the HEV energy management problem as illustrated by some of our simulation
results.

4.1 HEV energy management optimisation objective and control strategy
For the HEV energy management application subject to the objective function and constraints,
HEV demanded torques are found at each time step by solving the optimisation problem of
Equation (16) with the following data:

xmin = [0, −56, −300, 0]T

xmax = [18, 56, 300, 360]T

umin = [0, −380]T (24)

umax = [400, 380]T

u̇max = −u̇min = [0.5, 4]T
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For our HEV setpoint tracking problem, based on Equation (16), yk = [TB TM]T is the HEV
torque outputs (ICE torque and CIMG torque, respectively), yreq

k = [Treq
B Treq

M ]T is the tracking
setpoint torques commands , wk ∈ R4 is the discretised vehicle load torque, uk = [Tdem

B vdem
a ]T

is the demanded HEV torques (control efforts) generated in real-time by the controller.
An equated LTI discrete-time system of the continuous-time state-space dynamics described
in Equation (23) is obtained using a sampling interval ts (see Table 2). The plant initial
condition x0 ∈ R4 is assumed zero in our simulations.
The parameters used in the proposed Fast MPC design together with other physical constants
of the simplified HEV model are provided in Table 2.

Parameter Value Unit

Sampling time (ts) 8 msecs
ICE fueling delay (td) 90 msecs
ICE combustion lag (τ) 140 msecs
Motor armature resistance (Ra) 1 Ohms
Motor armature inductance (La) 0.3 Henrys
Motor torque constant (km) 0.25 NM.Amp−1

Motor back emf constant (kb) 0.25 Volts.secs.rad−1

Effective hybrid rotational inertia (J) 0.6 kg.m2/s2

Effective hybrid rotational damping (b) 0.125 Nms
FMPC horizon (N) 20 -
Output penalising matrix (Qy) diag(400,200) -
Control penalising matrix (Qu) diag(0.01,0.01) -

Table 2. Physical constants and FMPC design parameters in regard to the HEV model case
study.

In the next subsection, the closed-loop behavior of the HEV energy management problem with
our FMPC controller placed in the feedback loop has been evaluated based on the high-fidelity
simplified model of the HEV described in Section 3.

4.2 Simulation results
Our simulations have been carried out in Simulink and implemented in discrete-time using a
zero-order hold with a sampling time of ts = 8 msecs – see Table 2.
We shall emphasis that optimization based model predictive control (MPC) techniques,
including the proposed fast MPC design methodology, require knowledge about future
horizon (driving conditions in this case study). These future driving conditions in our case
study include setpoint torque commands (requested by driver) and vehicle load torque. This
fact will make implementation of all sort of optimisation based predictive control algorithms
even more arduous to be applied in real time.
For the purpose of simulations, assuming that the future driving cycle (i.e. torque references
and vehicle load) are entirely known could be perhaps an acceptable assumption. In our
simulations, the future driving cycle is unknown whilst retaining constant for the whole
horizon of N samples. However, if the future driving cycle could be entirely known, the
performance of the proposed FMPC would be superior than those shown here.
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Figure 4 shows a typical simulation results for the period of 20 secs in tracking requested
setpoint HEV torques. During this simulation period, the system is in hybrid mode as both
ICE torque and CIMG torque are requested.
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Fig. 4. Simulation results of the HEV torque setpoints and outputs using the proposed FMPC
algorithm.

As shown in Figure 4, despite the fact that the HEV energy management is a coupled
Two-Input Two-Output (TITO) dynamical system, both the diesel ICE and the DC electric
motor have successfully tracked the requested torque setpoints. At times t = 5 secs and
t = 15 secs , the TITO controller is requested for an increased and decreased ICE torques,
respectively to which the fast MPC algorithm could precisely follow those commands, as
illustrated in Figure 4(a). Similarly, there was an increased request for the CIMG torque (from
20 NM to 40 NM) at time t = 10 secs, and the controller has successfully delivered this torque
request, as depicted in Figure 4(b).
This is noted that our torque manager structure, as stated earlier, assumes that setpoint torque
commands are provided by some sort of static optimisation algorithms. The designed FMPC
is then enquired to optimise control efforts so as to track the requested torque references.
Figure 5 shows the load torque transient used in our simulations (being modeled as a plant
disturbance), ICE torque loss and control efforts generated by the FMPC. We have assumed
that plant disturbance (vehicle load) is known and available to controller. In reality, this might
be an infeasible assumption where an estimation algorithm is required to estimate the vehicle
load torque wk over the prediction horizon. Also, as mentioned earlier, the estimation of future
driving conditions must be made online. Due to lack of space, however, we shall preclude
addressing a detailed discussion in this course.
Figure 5(c) shows that the FMPC fully satisfies the required optimisation constraints as of
Equation (24).
Figure 6 shows simulation results in regard to driveline speed and vehicle speed. It
is worthwhile to point out that as illustrated in Figure 6(a), by requesting large torque
commands, we have in fact violated our empirical HEV modeling assumption in that driveline
speed must be limited to ω = [1200, 2000]rpm. However, it can be seen that the FMPC can still
successfully control the HEV energy endamagement dynamics in real-time. The vehicle speed
shown in Figure 6(b) has been calculated using a dynamic model of the vehicle as a function
of the driveline speed which is not discussed here.
It is also important to mention that fueling delay and combustion lag are functions of engine
speed and brake torque – see Table 1. However, in designing our fast MPC algorithm we
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In the next subsection, the closed-loop behavior of the HEV energy management problem with
our FMPC controller placed in the feedback loop has been evaluated based on the high-fidelity
simplified model of the HEV described in Section 3.

4.2 Simulation results
Our simulations have been carried out in Simulink and implemented in discrete-time using a
zero-order hold with a sampling time of ts = 8 msecs – see Table 2.
We shall emphasis that optimization based model predictive control (MPC) techniques,
including the proposed fast MPC design methodology, require knowledge about future
horizon (driving conditions in this case study). These future driving conditions in our case
study include setpoint torque commands (requested by driver) and vehicle load torque. This
fact will make implementation of all sort of optimisation based predictive control algorithms
even more arduous to be applied in real time.
For the purpose of simulations, assuming that the future driving cycle (i.e. torque references
and vehicle load) are entirely known could be perhaps an acceptable assumption. In our
simulations, the future driving cycle is unknown whilst retaining constant for the whole
horizon of N samples. However, if the future driving cycle could be entirely known, the
performance of the proposed FMPC would be superior than those shown here.
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Figure 4 shows a typical simulation results for the period of 20 secs in tracking requested
setpoint HEV torques. During this simulation period, the system is in hybrid mode as both
ICE torque and CIMG torque are requested.
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Fig. 4. Simulation results of the HEV torque setpoints and outputs using the proposed FMPC
algorithm.

As shown in Figure 4, despite the fact that the HEV energy management is a coupled
Two-Input Two-Output (TITO) dynamical system, both the diesel ICE and the DC electric
motor have successfully tracked the requested torque setpoints. At times t = 5 secs and
t = 15 secs , the TITO controller is requested for an increased and decreased ICE torques,
respectively to which the fast MPC algorithm could precisely follow those commands, as
illustrated in Figure 4(a). Similarly, there was an increased request for the CIMG torque (from
20 NM to 40 NM) at time t = 10 secs, and the controller has successfully delivered this torque
request, as depicted in Figure 4(b).
This is noted that our torque manager structure, as stated earlier, assumes that setpoint torque
commands are provided by some sort of static optimisation algorithms. The designed FMPC
is then enquired to optimise control efforts so as to track the requested torque references.
Figure 5 shows the load torque transient used in our simulations (being modeled as a plant
disturbance), ICE torque loss and control efforts generated by the FMPC. We have assumed
that plant disturbance (vehicle load) is known and available to controller. In reality, this might
be an infeasible assumption where an estimation algorithm is required to estimate the vehicle
load torque wk over the prediction horizon. Also, as mentioned earlier, the estimation of future
driving conditions must be made online. Due to lack of space, however, we shall preclude
addressing a detailed discussion in this course.
Figure 5(c) shows that the FMPC fully satisfies the required optimisation constraints as of
Equation (24).
Figure 6 shows simulation results in regard to driveline speed and vehicle speed. It
is worthwhile to point out that as illustrated in Figure 6(a), by requesting large torque
commands, we have in fact violated our empirical HEV modeling assumption in that driveline
speed must be limited to ω = [1200, 2000]rpm. However, it can be seen that the FMPC can still
successfully control the HEV energy endamagement dynamics in real-time. The vehicle speed
shown in Figure 6(b) has been calculated using a dynamic model of the vehicle as a function
of the driveline speed which is not discussed here.
It is also important to mention that fueling delay and combustion lag are functions of engine
speed and brake torque – see Table 1. However, in designing our fast MPC algorithm we
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Fig. 5. Simulation results of vehicle load, Torque loss, and Control efforts.
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Fig. 6. Simulation results of parallel diesel HEV driveline speed and vehicle speed.

require to utilise an LTI model of the HEV energy management plant. Towards this end, we
use the numerical values of τ = 140 msecs and td = 90 msecs, in our design to capture worst
case of the ICE speed-dependant parameters. However, the simulation results are based on
the actual time-varying speed-dependant parameters of the ICE, namely τ and td.
Regarding the real-time simulations in Simulink (fixed-step) using our Matlab custom
S-function codes with a sampling time of ts, the simulation time required for a single run
of 20 secs was approximately 500 times faster than real-time running a Toshiba Portege
laptop with an Intel(R) Core(TM) i5 processor, at 2.4GHz under Windows 7 Pro platform.
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Without doubt, this shows a significant improvement on the computational capability of the
control action that could potentially permit any sort of fast MPC algorithms to be run using
inexpensive low-speed CPUs under possibly kilo Hertz control rates.

5. Conclusions

The aim of this chapter was to present a new Fast Model Predictive Control (FMPC) algorithm
with an application for the energy management of hybrid electric vehicles (HEVs). The
main goal of energy management in hybrid electric vehicles is to reduce the CO2 emissions
with enhanced fuel consumption for a hybrid powertrain control system. The applicability
of conventional MPC in the energy management setting, however, has shown a main
drawback of these algorithms where they currently cannot be implemented on-line due to
the burdensome real-time numerical optimisation, arising due to e.g. hardware constraints
and limitation of online calculations. The proposed FMPC design architecture could resolve
such shortcomings of the standard MPC algorithms. In fact, such a custom method, is able
to speed up the control action, by exploiting particular structure of the MPC problem, much
faster than that of the conventional MPC methods. Moreover, our proposed FMPC design
methodology does not explicitly utilise any knowledge in regard to the future driving cycle.
Simulation results illustrated that FMPC could be a very promising on-line control design
algorithm and could play a key role in a wide variety of challenging complex automotive
applications in the future.
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case of the ICE speed-dependant parameters. However, the simulation results are based on
the actual time-varying speed-dependant parameters of the ICE, namely τ and td.
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1. Introduction 
Model predictive control (MPC) refers to a class of computer control algorithms that utilize 
a process model to predict the future response of a plant. During the past twenty years, a 
great progress has been made in the industrial MPC field. Today, MPC has become the most 
widely implemented process control technology. One of the main reasons for its application 
in the industry is that it can take account of physical and operational constraints. In classical 
model predictive control (MPC), the control action at each time step is obtained by solving 
an online optimization problem. If it is possible, MPC algorithms based on linear models 
should be used because of low computational complexity [Maciejowski J,2002]. Since 
properties of many technological processes are nonlinear, different nonlinear MPC 
techniques have been developed [Qin, S. J et al, 2003]. The structure of the nonlinear model 
and the way it is used on-line affect the accuracy, the computational burden and the 
reliability of nonlinear MPC. Several different attempts to reduce computational complexity 
have been released during the last thirty years.  The simplest way to reduce on-line 
computation is to transform the NMPC problem into LMPC. The nonlinear system is 
transformed into a linear system using a feedback-linearizing law, the input constraints are 
mapped into constraints on the manipulated input of the transformed system and the 
obtained constrained linear system is controlled using LMPC [Kurtz M.J et al,1997]. An 
interesting strategy is presented in [Arahal M.R et al.,1998], when the linear model is used to 
predict future process behavior and the nonlinear model is used to compute the effect of the 
past input moves. The most straightforward technique used to implement fuzzy models 
[Fischer M et al.,1998] is based on a linearization method. The accuracy of the linear model 
can be improved by relinearizing the model equations several times over a sampling period 
or by linearizing the model along the computed trajectory [Mollov S.,et al.,2004].Another 
approach has been used by a number of researchers such as in [Brooms A et al., 2000], where 
the NMPC problem is reduced to an LMPC problem at each time step using a successive 
linearization. The structure of certain nonlinear empirical models allows the NMPC 
optimization problem to be solved more efficiently than is possible with other forms. Such 
an approach will be followed in [Abonyi, J et al,2000]. An algorithm for controller 
reconfiguration for non-linear systems based on a combination of a multiple model 
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estimator and a generalized predictive controller is presented in [Kanev, S et al., 2000], in 
which a set of models are constructed. Each corresponding to a different operating condition 
of the system and an interacting multiple model estimators is utilized to yield a 
reconstruction of the state of the non-linear system. For unconstrained control based on 
linear process models and a quadratic cost function, the control sequence can be analytically 
calculated. When linear constraints are taken into account, the solution can be found using 
quadratic programming techniques. With the introduction of a nonlinear model into MPC 
scheme, a nonlinear programming technique (NLP) has to be solved at each sampling time 
to compute the future manipulated variables in on-line optimization that is generally non-
convex which make their implementation difficult for real time control. During the past 
decade significant theoretical results as well as advances in the implementation strategies of 
NMPC have been obtained and NMPC has been successfully applied in practice to relatively 
slow plants, mainly in the process industry. However, the application of such techniques for 
fast nonlinear systems remains a widely opened problem due to the computation burden 
associated with solving an open loop optimal control problem. Most of the research has 
focused on computations carried out by one agent. In [Negenborn R et al., 2004], a survey 
how a distributed multi-agent MPC setting can reduce the computations of a single MPC 
agent. Moreover, researchers have investigated feedback linearization model predictive 
control (FLC-MPC) schemes for their ability to handle constraints on input and output 
[Soest Van W.R et al., 2005]. These approaches reduce the on-line computation by 
transforming the NLMPC problem into a LMPC and quadratic programming can be used to 
handle constraints. When sampling times become so short, the computation times for QP 
solution can no longer be neglected [Jaochim H et al., 2006]. In [Didier G ,2006], a distributed 
model predictive control is considered and the proposed strategy allows dramatic reduction 
of the computational requirement for solving large-scale nonlinear MPC problem due to 
computation parallelism. However, recent advancements in MPC allow for a faster online 
solution by shifting some of the computational burden off-line. We can notice that many 
optimization algorithm solutions for NMPC have been investigated lately; however, an 
analytical solution in NMPC approach is usually impossible to find. One possible way to 
address computational complexity is to decentralize the optimization tasks. Attention has 
been focused on multi-agent model predictive control approach [H.Ben Nasr et 
al.,2008a,b,c,d,e]. There are multiple agents in multi-agent model predictive control. Each 
uses a model of its sub-system to determine which action to take. Decentralized agent 
architecture and decentralized model decomposition are then chosen, in which there are 
numerous agents that do not have any interaction among one another. A methodology 
based multiagent has been investigated in the implementation of a given predictive control 
law for nonlinear systems. Such procedure relies on the decomposition of the overall system 
into subsystems and a multiple agents each uses a model of its sub-system to determine 
which action to take.  
In this chapter book, new NMPC scheme based MAMPC (Multiagent model predictive 
control) is implemented to reduce the computational effort. The performance of the proposed 
controllers is evaluated by applying to single input-single output (SISO) control of non linear 
system. Moreover, in general, the optimization problem is nonconvex and leads to many 
difficulties impacting on implementation of MPC. These difficulties are related to feasibility 
and optimality, computation and stability aspects. In order to avoid solving nonconvex 
optimization problem, MAMPC (Multiagent model predictive control) optimization 
procedure, a method for convex NMPC was also developed in this chapter book. Theoretical 
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analysis and simulation results demonstrate better performance of the MAMPC over a 
conventional NMPC based on sequential quadratic programming (SQP) in tracking the set 
point changes as well as stabilizing the operation in the presence of input disturbances. In this 
work, our main objective has been to illustrate the potential advantage of nonlinear predictive 
control based multiagent when applied to nonlinear systems. The suggested approach was to 
identify a new control algorithm that in essence is a bridge between linear and nonlinear 
control. This resulted in the development of the MAMPC approach. Through simulation-based 
comparisons, it is shown that a MAMPC control algorithm is capable of delivering 
significantly improved control performance in comparison to a conventional NMPC, so that 
the difficulty of minimizing the performance function for nonlinear predictive control is 
avoided, which is usually carried by the use of NLP solved at each sampling time that 
generally is non-convex. In this chapter book we describe algorithm that find the solution of a 
non-convex programming and also demonstrated that global nonlinear requirements can 
effectively be resolved by considering smaller regimes. The simulation example shows that the 
multi-agent compares favorably with respect to a numerical optimization routine. Moreover, 
the MAMPC reduces the online computational burden and hence has the potential to be 
applied to the system with faster time constants.  

2. Statement of the problem 
2.1 Process model 
A broad class of physical systems can be represented using the Volterra model. Particularly, 
it was shown that a truncated Volterra model could represent any non-linear system, time-
invariant with fading memory. This model is thus particularly attractive for non-linear 
systems modeling and identification purpose. One of the main advantages of the Volterra 
model is its linearity-in-parameters, i.e. the kernel coefficients. This property allows the 
extension of some results established for linear model identification to this model. In this 
work, we consider the control of a class of single-input single output non-linear system 
described by the following non-linear discrete-time parametric second-order Volterra model 
(Haber et al. 1999a,b): 

 0
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
y u un n n i

i i ij
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Where 0y  is a bias term, ( )y k is the output, ( )u k is the input, ,i ia b and ijb  are the parameters 
of the parametric Volterra model, un and yn are the number of lags on the input and the 
output, respectively. ( )kε Contains all terms up to second-order. One advantage of using the 
parametric Volterra model is that the one-ahead prediction problem can be formulated as a 
linear regression, which simplifies the identification of the parameters from input-output 
data. Therefore, the model given by  “Equation (1)” can be written as: 
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estimator and a generalized predictive controller is presented in [Kanev, S et al., 2000], in 
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Where 0y  is a bias term, ( )y k is the output, ( )u k is the input, ,i ia b and ijb  are the parameters 
of the parametric Volterra model, un and yn are the number of lags on the input and the 
output, respectively. ( )kε Contains all terms up to second-order. One advantage of using the 
parametric Volterra model is that the one-ahead prediction problem can be formulated as a 
linear regression, which simplifies the identification of the parameters from input-output 
data. Therefore, the model given by  “Equation (1)” can be written as: 

 ( ) ( ) ( ).Ty k k kθ φ ε= +  (2) 
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Where ( )kφ  and θ  are the regressor and the parameter vectors, respectively. The model 
“Equation (3)” is linear in parameters, and its regressors and parameters may be identified 
from input output information. Moreover, from identification point of view, parametric 
Volterra models are superior to Volterra series models in the sense that the number of 
parameters needed to approximate a process are generally much less with parametric 
Volterra models. This is due to the fact that Volterra models only include previous inputs, 
while the model (1) includes previous outputs as well as previous inputs.  

2.2 Optimization criteria 
The purpose of the control strategy is to compute future control moves which will minimize 
some performance function based on the desired output trajectory over a prediction 
horizon, subject to constraints on input and output signals [D.W. Clarke  et al.,1987]. The 
most common objective cost function, also used here, is: 
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Where 1N  is the minimum prediction horizon, 2N is the maximum prediction horizon, 
( / )y k j k

∧
+ is an optimum j-step ahead prediction of the system output on data up to time k, 

( )w k j+ is a sequence of future set points, 2uN N≤ is the control horizon, and 
1 1( ) ( , , )

u uj j N Nλ λ λ= =  are control-weighting factors usually assumed to be equal to each 
other used to penalize the control increments. [ ]( 1), 1, uu k j j NΔ + − ∈ , is a sequence of future 
control increments computed by the optimization problem at time k; ( 1) 0u k jΔ + − =  for 

uj N> . For the constraints , , ,low high low highu u u uΔ Δ , are respectively the lower limit, upper 
limit, lower derivative limit and higher derivative limit of the control input. Using the 
quadratic prediction equation of the model, the cost function becomes fourth degree 
equation in the control increments. Th objective finction never exeeds fourth order, 
regardless of the value of the prediction horizon. (Haber, 1999a, 1999b) 

2.3 Nonlinear Predictive Control 
Despite of the wide exposure of and the intensive research efforts attracted over the past few 
decades on Nonlinear model predictive control (NLMPC), this control strategy is still being 
perceived as an academic concept rather than a practicable control technique. However, 
nonlinear model predictive control is gaining popularity in the industrial community. The 
formulations for these controllers vary widely, and almost the only common principle is to 
retain nonlinearities in the process model [Matthew et al.,2002]. In nonlinear control, a 
receding horizon approach is typically used, which can be summarized in the following 
steps: 
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1. At time k, solve, on-line, an open-loop optimal control problem over some future 
interval, taking into account the current and future constraints.  

2. Apply the first step in the optimal control sequence. 
3. Receding strategy so that at each instant the horizon is displaced towards the future, 

which involves the application of the first control signal of the sequence calculated at 
each step.  

The process to control is assumed to be represented by a mono-variable second order 
parametric Volterra model. The model given by (1) can be expressed as: 
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Where are two polynomials of the backward shifting operator 1q−  given by : 
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1 1
2 1 2( , )B q q− −  represents the quadratic term of the Volterra model, this quantity is defined 

by: 
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The incremental predictive form of the parametric Volterra model can be expressed as a 
function of the current and future control increments : 
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The effect of selecting the parameters and the coefficient of the predictive control are not 
investigated here, for more detail see(Haber et al., 1999a) . Replacing the incremental output 
by his expression, the cost function (5) can be written as follows: 

      2 2
0 1 2 0 1 2( ) ( ) TTJ v w v u v u v w v u v u u uλ= − + + − + + +  (12) 

With constraints, the cost function can be minimized numerically by a one-dimensional 
search algorithm (dynamic algorithm programming). Without constraints the solution leads 
to a third-degree one-dimensional equation [F.J.Doyle et al.,1995]. 
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to a third-degree one-dimensional equation [F.J.Doyle et al.,1995]. 
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3. Multi-agent Model Predictive Control 
3.1 Control and design 
The main idea of the proposed concept model predictive control is to transform the 
nonlinear optimization procedure used in a standard way into sub-problems, in which the 
global task can be resolved. The objective of this approach is to regulate the nonlinear  
system output to the expected values and satisfying the above constraints. This can be done 
as follows. The global system can first be decomposed on sub-systems independent of one 
another, for each sub-system an MPC unit sub-system is made constituting the agent 
controller i. Based on an analytical solution, which corresponds to the solution of the local 
receding horizon sub-problems, a logic unit switching tries to find the best sequence of 
actions sent to the nonlinear system and gives the desired trajectory. Sequences of actions 
that bring the global system in a desired trajectory are made and avoid any violated 
constraints on actions. The multi-agent controller consists of synchronizing the output of the 
true system at every decision step k with the reference trajectory. In fact, at every decision 
step the right action is the one that will cause the agent to be the most successful. The 
parallel controller structure is based on the fact that a neural network can be used to learn 
from the feedback error controller non linear system. A neural network controller is also 
made on, in objective to take handle the results of the actions on the global system and 
monitor the closed-loop system. Figure 1, shows the architecture of the multi-agent 
controller. In the multi-agent context, the agents are the controllers and the non linear 
system is the environment. 
 

 
Fig. 1. Architecture of Multi-agent Controller 

The basic structure of the control strategy proposed is shown in figure 2. The control 
problem to solve should be decomposed into supposedly independent subproblems. Each 
subproblem is solved by designing a controller-agent. The controller-agent is realized by 
some control algorithm that is operational only under particular operating conditions of the 
plant being controlled. Moreover, the controller-agent’s action consist of the analytical 
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optimal control sequence elaborated in each sub-system after having learned the trajectory 
of the control to follow and by minimizing a local cost function.  The individual solutions or 
controller-agents are combined into one overall solution. This implies addressing the global 
problems by selecting an appropriate coordination mechanism.  The conceptual design 
consists of the following three stages: 
Structuring: The control problem to solve should be decomposed into supposedly 
independent subproblems. The global system can first be decomposed on sub-systems 
independent of one another. 
Solving individual subproblems: Each subproblem is solved by designing a controller-
agent. An MPC unit sub-system is made constituting the controller agent. A supervisor 
based on performance measure kJ  is used. By means of the output errors kε  for each 
agent’s action, the supervisor decides then what action should be applied to the plant 
during each sampling interval k . The performance measure is given by: 

 1 , 0k k kJ e λε ε λ−
−= − >  (13) 

Where, kε  is the error for the agent I defined by: 

 intk asetpo yε = −  (14) 

And ay  is the plant output after agent’s action. 
Combining individual solutions The individual solutions or controller-agents are combined 
into one overall solution. The parallel controller structure is based on the fact that a neural 
network can be used to learn from the feedback error controller nonlinear system.,  to take 
handle the results of the actions on the global system and monitor the closed-loop system.  
 

 
Fig. 2. Architecture of Multi-agent Controller 
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3.2 Control problem decomposition 
The extension of MPC for the use of nonlinear process models is one of the most interesting 
research topics. These algorithms generally lead to the use of computationally intensive 
nonlinear techniques that make application almost impossible. In order to avoid this 
problem, the proposed concept algorithm utilizes a linear model extracted from the 
nonlinear model. A decentralized model and decentralized goals are then considered. A 
decentralized problem model consists of multiple smaller, independent   subsystems in 
witch subsystem in an overall nonlinear system   have his own independent goals   and 
represented by a discrete model of the form:    

 ( 1) ( ) ( )
( ) ( )

l l l l l

l l l

x k A x k B u k
y k C x k

+ = +
 =
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Where xn
lx ∈ℜ is the local state space; yn

ly ∈ℜ  is the measurement output of each 
subsystem; un

lu ∈ℜ  is the local control input.  Therefore the overall nonlinear system can be 
seen as a collection of smaller subsystems that are completely independent from one another 
witch is referred as a decentralized model. The variable control of every agent sent to the 
nonlinear system consists of its agent's optimal input control given by minimizing local 
standard MPC cost function: 
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Where ,l lQ R  are suitable weighting matrixes. 
One of the advantages of the state-space representation is that it simplifies the prediction; 
the prediction for this model is given: 
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For local suitable matrix , ,l l lΨ Γ Θ  and lΛ , we can rewrite the local predictive model output 
for future time instants as:        
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The cost function (16) can be rewritten as: 

 ( ) ( ) ( ) ( ) ( )T T T
l l l l l l l l lJ k Q k u k G u k H u kε ε= − Δ + Δ Δ  (20) 

Where: 

 

( ) int( ) ( ) ( 1)

2 ( )
l l l l l l

T
l l l l

T
l l l l l

k Setpo k x k u k

G Q k

H Q R

ε
ε

= − Ψ − Γ − − Λ

= Θ

= Θ Θ +
    (21) 

Therefore the control law that minimizes the local cost function (16) is given by:  

 11( )
2l l lu k H G−Δ =  (22) 

In order to take into account constraints on the manipulated variables, a transformation 
method for each action is made. The control action based on (22) is transformed into new 
action with the following transformation [R. Fletcher, 1997]. 
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The optimum control law (22) for each agent does not guarantee the global optimum. 
Accordingly to that, nonlinear system requires coordination among the control agent’s 
action. The required coordination is done by a logic switch added to supervisory loop 
based neural networks which compute the global optimum control subject to 
constraints. 
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Where xn
lx ∈ℜ is the local state space; yn

ly ∈ℜ  is the measurement output of each 
subsystem; un

lu ∈ℜ  is the local control input.  Therefore the overall nonlinear system can be 
seen as a collection of smaller subsystems that are completely independent from one another 
witch is referred as a decentralized model. The variable control of every agent sent to the 
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Where ,l lQ R  are suitable weighting matrixes. 
One of the advantages of the state-space representation is that it simplifies the prediction; 
the prediction for this model is given: 
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For local suitable matrix , ,l l lΨ Γ Θ  and lΛ , we can rewrite the local predictive model output 
for future time instants as:        
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The cost function (16) can be rewritten as: 
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Therefore the control law that minimizes the local cost function (16) is given by:  
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In order to take into account constraints on the manipulated variables, a transformation 
method for each action is made. The control action based on (22) is transformed into new 
action with the following transformation [R. Fletcher, 1997]. 
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The optimum control law (22) for each agent does not guarantee the global optimum. 
Accordingly to that, nonlinear system requires coordination among the control agent’s 
action. The required coordination is done by a logic switch added to supervisory loop 
based neural networks which compute the global optimum control subject to 
constraints. 
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3.3 The supervisor loop 
A neural network is used with the proper control architecture by changing the results of 
switched input iu  of each agent’s action through a stable online NN weights which can 
guarantee the tracking performance of the overall closed-loop nonlinear system.  Moreover, 
the neural network should reduce the deleterious effect of constraints attached with the 
different actions [Wenzhi, G et al., 2006]. In this work the neural network is represented by 
feed-forward single-input single output. The neural network tries to optimize the control 
action uΔ .  
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The method of Levenberg Marquardt was designed for the optimization due to its 
properties of fast convergence and robustness. The main incentive of the choice of the 
algorithm of Levenberg Marquardt rests on the fast guarantee of the convergence toward a 
minimum. 

4. Simulation results 
The chosen example used in aim to valid the theory exposed above is given [B.Laroche   et 
al.,2000]. A continuous state space representation of this example is as follow: 
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The system model is implanted in the Matlab-simulink environment of which the goal is to 
get the input/output vector for the identification phase. Matlab®

 
discrete these equations by 

the 4th order Runge-Kutta method.  The vector characterizing the Volterra model that 
linking the output x3 with the input u  is given by: 

 

[ ] [ ]1

2

1 1.9897 .9997 , 0.0318 0.0096
0.0396 0.0656 0

0 0.0388 0
0 0 0

TA B

B

= − = − −

 
 =  
 
 

 (26) 

Moreover, the Chiu procedure is developed to divide the nonlinear system into independent 
subsystem [Chiu S.L, 1994].  The modeling of the dynamic system, led to the localization of 
two centers with respective values 1 20.0483, 0.5480c c= = . The classification parameters 
adopted for the algorithm are as follows   : 1 2.6; 1.25 ; .5; .1a b ar r r ε ε= = = = . The procedure 
of identification and modeling has been applied to the whole measures input/output come 
out of the global system, driving to the different following subsystem models: 
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The result of modelisation is reported in figure 3. These results showed the application Chiu 
algorithm for the classification which has a better quality of local approximation of the 
system.  
 

 
Fig. 3. Validation of the obtained model 

4.1 Set point tracking  
The proposed concept as seen in section 3 is used, to control the nonlinear system. The 
tuning parameters of the multi-agent consists of the parameters values of each agent given 
by: 1 2 1 21 ; 5 ; 1 ; 4;uN N N R R= = = = = . Assuming for the sake of simplicity but without 
loss of generality, the prediction and control horizons are the same for each agent. The 
tuning parameters for the NMPC are: 1 21 ; 5 ; 1 ; .001uN N N δ= = = = . The gradient of the 
control  minuΔ  and maxuΔ  are taken, respectively, equal to −0.2 and 0.1 and the control is 
limited between 0 and 1.  In this application example, the neural network was a feedforward 
network and it consisted of three hidden layer nodes with tangent sigmoid transfer 
functions and one output layer node with linear transfer function .In this section, we present 
a comparative study between the proposed method and the NMPC procedure. The results 
shown in Fig. 4 and Fig. 5 are obtained in the constrained case 
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Fig. 4. Evolution of the set point, the output and the control (NMPC): constrained case 

 

 
Fig. 5. Evolution of the set point, the output and the control (MAMPC): constrained case 
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It is clear from this figures that the new strategy of control leads to satisfactory results with 
respect to set-point changes. Indeed, the tracking error is reduced and with a smooth control 
action. It is shown that NMPC also gives consistently a good performance for the range 
examined. The two controllers are remarkably similar, which indicates that the MAMPC 
controller is close to optimal for this control problem. Moreover, the new controller meets all 
the required performance specifications within given input constraints and the results show 
a significant improvement in the system performance compared with the results obtained 
when only nonlinear programming model is used and the multi-agent compares favorably 
with respect to a numerical optimization routine as shown in Figure 6, the final control law 
to the nonlinear system obeying the specified constraints and with the proposed concept the 
constrained input and rate of change inputs cannot violate the specified range premise. 

4.2 Effect of load disruptions and noise 
In order to test the effect of load disruptions, we have added to the system output a constant 
equals to 0.02 from iteration 100 to iteration 125 and from iteration 200 to iteration 225. And in 
the case of noise, we have added to the output of the process an uncertain pseudo-noise of 
maximal amplitude equal to 0.025.  Figs. 6 and 7 present the evolutions of the set point, the 
outputs obtained, respectively, with the presence of load disruption and noise. Fig. 6 shows the 
evolutions of the set point, the outputs signals obtained with both NMPC and MAMPC control 
strategy.  It is clear from this figure that the presence of load disruptions, from iteration70 to 
iteration 90 and from iteration 120 to iteration 140, does not lead to a correct pursuit. Thus, the 
presence of load disruptions has more effect on NMPC control than the MAMPC strategy. Fig. 8 
shows the evolutions of the set point, the outputs obtained with NMPC and MAMPC strategy. 
According to the obtained results, we notice that the MAMPC controller is capable to deliver a 
less fluctuate output than that obtained with NMPC approach. 
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Fig. 6. Evolution of the set point, the output NMPC and MAMPC control in the case of load 
disruptions. 
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Fig. 6. Evolution of the set point, the output NMPC and MAMPC control in the case of load 
disruptions. 
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Fig. 7. Evolution of the set point, the outputs NMPC and MAMPC control in the case of the 
effect of the noise. 
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4.3 Convex optimization approach 
In order to avoid solving nonconvex optimization problem, MAMPC optimization 
procedure, a method for convex NMPC was also developed in this chapter book. The 
performance of the proposed controllers is evaluated by applying to the same process and 
the attention has been focused on multi-agent model predictive control approach as a 
possible way to resolve non-convex optimization tasks. We have shown in Figure 8, a new 
constraint where the control is limited between 0 and .5.  The nonlinear programming 
algorithm (NLP) cannot find a solution for the optimization problem. So because of the use 
of a nonlinear model, the NMPC calculation usually involves a non-convex nonlinear 
program, for which the numerical solution is very challenging. Therefore, finding a global 
optimum can be a difficult and computationally very demanding task, if possible at all. In 
other words, non-convexity makes the solution of the NLP uncertain. The proposed 
approach describe algorithm that find the solution of a non-convex programming. 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 8. Evolution of the set point, the outputs NMPC and MAMPC control: Restriction 
applicability of the NMPC 
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Fig. 7. Evolution of the set point, the outputs NMPC and MAMPC control in the case of the 
effect of the noise. 
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4.4 Computational time study 
The load computational time constitutes a gate in the scheme of the predictive control 
indeed (Leonidas  et al, 2005). The performances of the computational load established with 
the proposed concept are compared to a nonlinear programming In Figure 9 the time 
required to compute the control input at each time step k for the two approaches is plotted. 
We also reported in Table I, the mean and the maximum value of the implementation time 
required for the control law for the two cases. In Figure 10, the CPU time required to 
compute the control input at each time step k for the two approaches is plotted. It is very 
easy to see, from figure 9, 10 and table 1, that the NLMPC controller is too CPU time 
consuming and the computation for optimization in the new design procedure is simpler, 
faster and has good response curve and control performance because it uses a simple 
analytical solution to the minimization of the performance objective. On average, the NMPC 
method was about ten times slower than the novel approach and the control input in the 
MAMPC procedure require a twenty time smaller in the operating action. 
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Fig. 9. Computational time requirement 
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Fig. 10. CPU time comparison 

 
 
 
 

 Mean Max 

NMPC 0.0224 0.7190 

MAMPC 9.6875e-004 0.032 

 
 
 

Table 1. Comparison of operating time 
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4.5 Controller performance comparison 
Through simulation-based comparisons, it is shown that a MAMPC control system is 
capable of delivering significantly improved control performance in comparison to a 
conventional NMPC, so that the difficulty of minimizing the performance function for 
nonlinear predictive control is avoided, which is usually carried by the use of NLP solved at 
each sampling time that generally is non-convex. Moreover, the nonlinear controls based on 
MAMPC approach provide excellent performance, both in terms of disturbance rejection, 
noise suppression and set point tracking. The NMPC controller is also good for disturbance 
rejection and noise suppression, but the set point tracking is not succeeded. In order to make 
a comparison of the novel concept to the NLMPC controller, the performance of the 
controller was measured by the following performance indices in unconstrained and 
constrained cases given by [Abonyi J,2003]: 
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 (28) 

Where SSE denotes the sum of the square error, SSU the sum of the square of the control 
signal, SSΔU the sum of the square of the change of the control signal and N is the number 
of samples. The values are summarized in Table1, shows that the MAMPC achieving control 
performance improves more with the use of the NLMPC controller. Moreover the MAMPC 
produces the best tracking performance and the smallest energy consumption.  
 

 
Constrained case 

SSE SSU e-011 SSΔU e-013 

NMPC 0.0135 5.5415 16754 

MAMPC 0.0042 1.2464 3.8622 

Table 2. Control performance comparison 

5. Conclusions 
One of the main drawbacks of NMPC schemes is the enormous computational effort these 
controllers require. On the other hand, linear MPC methods can be implemented solving 
just Quadratic Programming (QP) or Linear Programming problems (LP).The main focus of 
this chapter is to develop a new control algorithm that in essence is a bridge between linear 
and nonlinear control. This resulted in the development of the MAMPC (Multiagent model 
predictive control) approach. The new NMPC scheme based MAMPC is implemented to 
reduce the computational effort. The control performance of MAMPC algorithm is 
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evaluated by illustrative comparison with general NMPC. All the results prove that 
MAMPC approach is a fairly promising algorithm by delivering significantly improved 
control. The performance of the proposed controllers is evaluated by applying to single 
input-single output control of non linear system. Theoretical analysis and simulation results 
demonstrate better performance of the MAMPC over a conventional NMPC based on 
sequential quadratic programming in tracking the setpoint changes as well as stabilizing the 
operation in the presence of input disturbances.  
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4.5 Controller performance comparison 
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Where SSE denotes the sum of the square error, SSU the sum of the square of the control 
signal, SSΔU the sum of the square of the change of the control signal and N is the number 
of samples. The values are summarized in Table1, shows that the MAMPC achieving control 
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1. Introduction 
Model predictive control (MPC) has made a significant impact on control engineering. It has 
been applied in almost all of industrial fields such as petrochemical, biotechnical, electrical 
and mechanical processes. MPC is one of the most applicable control algorithms which refer 
to a class of control algorithms in which a dynamic process model is used to predict and 
optimize process performance. Linear model predictive control (LMPC) has been 
successfully used for years in numerous advanced industrial applications. It is mainly 
because they can handle multivariable control problems with inequality constraints both on 
process inputs and outputs.  
Because properties of many processes are nonlinear and linear models are often inadequate 
to describe highly nonlinear processes and moderately nonlinear processes which have large 
operating regimes, different nonlinear model predictive control (NMPC) approaches have 
been developed and attracted increasing attention over the past decade [1-5]. 
On the other hand, since the incorporation of nonlinear dynamic model into the MPC 
formulation, a non-convex nonlinear optimal control problem (NOCP) with the initial state 
must be solved at each sampling instant. At the result only the first element of the control 
policy is usually applied to the process. Then the NOCP is solved again with a new initial 
value coming from the process. Due the demand of an on-line solution of the NOCP, the 
computation time is a bottleneck of its application to large-scale complex processes and 
NMPC has been applied almost only to slow systems. For fast systems where the sampling 
time is considerably small, the existing NMPC algorithms cannot be used. Therefore, solving 
such a nonlinear optimization problem efficiently and fast has attracted strong research 
interest in recent years [6-11]. 
To solve NOCP, the control sequence will be parameterized, while the state sequence can be 
handled with two approaches: sequential or simultaneous approach. In the sequential 
approach, the state vector is handled implicitly with the control vector and initial value 
vector. Thus the degree of freedom of the NLP problem is only composed of the control 
parameters. The direct single shooting method is an example of the sequential method. In 
the simultaneous approach, state trajectories are treated as optimization variable. Equality 
constraints are added to the NLP and the degree of freedom of the NLP problem is 
composed of both the control and state parameters. The most well-known simultaneous 
method is based on collocation on finite elements and multiple shooting.  
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vector. Thus the degree of freedom of the NLP problem is only composed of the control 
parameters. The direct single shooting method is an example of the sequential method. In 
the simultaneous approach, state trajectories are treated as optimization variable. Equality 
constraints are added to the NLP and the degree of freedom of the NLP problem is 
composed of both the control and state parameters. The most well-known simultaneous 
method is based on collocation on finite elements and multiple shooting.  
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Both single shooting method and multiple shooting based optimization approaches can then 
be solved by a nonlinear programming (NLP) solver. The conventional iterative 
optimization method，such as sequential quadratic programming (SQP) has been applied 
to NMPC. As a form of the gradient-based optimization method, SQP performs well in local 
search problems. But it cannot assure that the calculated control values are global optimal 
because of its relatively weak global search ability. Moreover, the performance of SQP 
greatly depends on the choice of some initialization values. Improper initial values will lead 
to local optima or even infeasible solutions. 
Genetic Algorithms (GAs) are a stochastic search technique that applies the concept of 
process of the biological evolution to find an optimal solution in a search space. The 
conceptual development of the technique is inspired by the ability of natural systems for 
adaptation. The increasing application of the algorithm has been proved to be efficient in 
solving complicated nonlinear optimization problems, because of their ability to search 
efficiently in complicated nonlinear constrained and non-convex optimization problem, 
which makes them more robust with respect to the complexity of the optimization problem 
compared to the more conventional optimization techniques. 
Compared with SQP, GAs can reduce the dimension of search space efficiently. Indeed, in 
SQP the state sequence is treated as additional optimization variables; as such, the number 
of decision variables is the sum of the lengths of both the state sequence and the control 
sequence. In contrast, in GAs, state equations can be included in the objective function, thus 
the number of decision variables is only the length of control sequence. Furthermore, the 
search range of the input variable constraints can be the search space of GA during 
optimization, which makes it easier to handle the input constraint problem than other 
descent-based methods. 
However, a few applications of GAs to nonlinear MPC [12][13] can partially be explained by 
the numerical complexity of the GAs, which make the suitable only for processes with slow 
dynamic. Moreover, the computational burden is much heavier and increases exponentially 
when the horizon length of NMPC increases. As a result, the implementation of NMPC 
tends to be difficult and even impossible.  
In this paper an improved NMPC algorithm based on GA is proposed to reduce the severe 
computational burden of conventional GA-based NMPC algorithms. A conventional NMPC 
algorithm seeks the exact global solution of nonlinear programming, which requires the 
global solution be implemented online at every sampling time. Unfortunately, finding the 
global solution of nonlinear programming is in general computationally impossible, not 
mention under the stringent real-time constraint. We propose to solve a suboptimal descent 
control sequence which satisfies the control, state and stability constraints in the paper. The 
solution does not need to minimize the objective function either globally or locally, but only 
needs to decrease the cost function in an effective manner. The suboptimal method has 
relatively less computational demands without deteriorating much to the control 
performance.  
The rest of the paper is organized as follows. Section 2 briefly reviews nonlinear model 
predictive control. Section 3 describes the basics of GAs, followed by a new GA-based 
computationally efficient NMPC algorithm. Section 4 analyses the stability property of 
our nonlinear model predictive control scheme for closed-loop systems. Section 5 
demonstrates examples of the proposed control approach applied to a coupled-tank 
system and CSTR. Finally we draw conclusions and give some directions for future 
research. 

 
Improved Nonlinear Model Predictive Control Based on Genetic Algorithm 

 

51 

2. Nonlinear model predictive control 
2.1 System 
Consider the following time-invariant, discrete-time system with integer k representing the 
current discrete time event: 

 ( 1) [ ( ), ( )]x k f x k u k   (1) 

In the above, ( ) nxx k X R  is the system state variables; ( ) nuu k U R   is the system input 
variables; the mapping : nx nu nxf R R R   is twice continuously differentiable 
and (0,0) 0f  . 

2.2 Objective function 
The objective function in the NMPC is a sum over all stage costs plus an additional final 
state penalty term [14], and has the form: 
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where x(k+j|k) and u(k+j|k) are predicted values at time k of x(k+j),u(k+j). P is the prediction 
horizon. In general, ( ) TF x x Qx  and ( , ) T Tl x u x Qx u Ru  . For simplicity, 0Q   defines a 
suitable terminal weighting matrix and Q≥0,R>0. 

2.3 General form of NMPC 
The general form of NMPC law corresponding to (1) and (2) is then defined by the solution 
at each sampling instant of the following problem: 
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 ( | ) Fx k P k X    (3d) 

where XF is a terminal stability constraint, and u(k)=[u(k|k) ,…,u(k+P-1|k)] is the control 
sequence to be optimized over. 
The following assumptions A1 - A4 are made: 
A1: XF  X, XF closed, 0 XF 

A2: the local controller F(x) U, x XF 

A3: f(x, F(x))  XF,  x XF 

A4: F(f(x, F(x)))-F(x)+l(x, F(x)) ≤ 0, x XF 

Based on the formulation in (3), model predictive control is generally carried out by solving 
online a finite horizon open-loop optimal control problem, subject to system dynamics and 
constraints involving states and controls. At the sampling time k, a NMPC algorithm 
attempts to calculate the control sequence u(k) by optimizing the performance index (3a) 
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where XF is a terminal stability constraint, and u(k)=[u(k|k) ,…,u(k+P-1|k)] is the control 
sequence to be optimized over. 
The following assumptions A1 - A4 are made: 
A1: XF  X, XF closed, 0 XF 

A2: the local controller F(x) U, x XF 
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Based on the formulation in (3), model predictive control is generally carried out by solving 
online a finite horizon open-loop optimal control problem, subject to system dynamics and 
constraints involving states and controls. At the sampling time k, a NMPC algorithm 
attempts to calculate the control sequence u(k) by optimizing the performance index (3a) 
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under constraints (3b) (3c) and terminal stability constraint (3d). The first input u(k|k) is 
then sent into the plant, and the entire calculation is repeated at the subsequent control 
interval k+1. 

3. NMPC algorithm based on genetic algorithm 
3.1 Handling constraints 
An important characteristic of process control problems is the presence of constraints on 
input and state variables. Input constraints arise due to actuator limitations such as 
saturation and rate-of-change restrictions. Such constraints take the form: 

 u min ≤ u(k) ≤u max                             (4a) 

 ∆u min ≤∆u(k) ≤∆umax                           (4b) 

State constraints usually are associated with operational limitations such as equipment 
specifications and safety considerations. System state constraints are defined as follows: 

 xmin ≤x (k) ≤xmax                             (4c) 

where ∆u(k)=[u(k|k)-uk-1 ,…, u(k +P-1|k)- u(k +P-2|k)], x(k)=[x(k+1|k),…,x(k+P|k)]. 
The constraints (4a) and (4b) can be written as an equivalent inequality: 
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3.2 Genetic algorithm 
GA is known to have more chances of finding a global optimal solution than descent-based 
nonlinear programming methods and the operation of the GA used in the paper is 
explained as follows. 

3.2.1 Coding 
Select the elements in the control sequence u(k) as decision variables. Each decision variable is 
coded in real value and nu*P decision variables construct the nu*P -dimensional search space. 

3.2.2 Initial population 
Generate initial control value in the constraint space described in (5). Calculate the 
corresponding state value sequence x(k) from (3b). If the individual (composing control 
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value and state value) satisfies the state constraints (4c) and terminal constraints (3d), select 
it into the initial population. Repeat the steps above until PopNum individuals are selected. 

3.2.3 Fitness value 
Set the fitness value of each individual as 1/(J+1). 

3.2.4 Genetic operators 
Use roulette method to select individuals into the crossover and mutation operator to 
produce the children. Punish the children which disobey the state constraints (4c) and 
terminal constraints (3d) with death penalty. Select the best PopNum individuals from the 
current parent and children as the next generation. 

3.2.5 Termination condition 
Repeat the above step under certain termination condition is satisfied, such as evolution 
time or convergence accuracy. 

3.3 Improved NMPC algorithm based on GA 
In recent years, the genetic algorithms have been successfully applied in a variety of fields 
where optimization in the presence of complicated objective functions and constraints. The 
reasons of widely used GAs are its global search ability and independence of initial value. In 
this paper GAs are adopted in NMPC applications to calculate the control sequence. If the 
computation time is adequate, GAs can obtain the global optimal solution. However, it 
needs to solve on line a non-convex optimization problem involving a total number of nu*P 
decision variables at each sampling time. To obtain adequate performance, the prediction 
horizon should be chosen to be reasonably large, which results in a large search space and 
an exponentially-growing computational demand. Consequently, when a control system 
requires fast sampling or a large prediction horizon for accurate performance, it becomes 
computationally infeasible to obtain the optimal control sequence via the conventional GA 
approach. There is thus a strong need for fast algorithms that reduce the computational 
demand of GA.  
The traditional MPC approach requires the global solution of a nonlinear optimization 
problem. This is in practice not achievable within finite computing time. An improved 
NMPC algorithm based on GA does not necessarily depend on a global or even local 
minimum. The optimizer provides a feasible decedent solution, instead of finding a global 
or local minimum.  The feasible solution decreases the cost function instead of minimizing 
the cost function. Judicious selection of the termination criterions of GA is the key factor in 
reducing the computation burden in the design of the suboptimal NMPC algorithm. To this 
end, the following two strategies at the (k+1)-th step are proposed.  
 The control sequence output at the k-th control interval in the genetic algorithm is 

always selected as one of the initial populations at the (k+1)-th control interval. 
Furthermore, some of the best individuals at the k-th control interval are also selected 
into the current initial population. Most of all, the elite-preservation strategy is 
adopted. Figure 1 shows one of the choices of the initial population per iteration. This 
strategy guarantees the quality of current population and the stability of the NMPC 
algorithm. 
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minimum. The optimizer provides a feasible decedent solution, instead of finding a global 
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Fig. 1. The choice of initial population per iteration 

 Stopping criterions of GA are the key factor of decreasing the computation burden. GA 
is used to compute the control sequence. The objective value J(k+1) at the (k+1)-th 
control interval is computed and compared with J(k) that stored at the k-th control 
interval. If J(k+1) is smaller than J(k), that at the k-th control interval, then the control 
sequence u(k+1) is retained as a good feasible solution, and its first element u(k+1|k+1) 
is sent to the plant. Otherwise, if there does not exist a feasible value for u(k+1) to yield 
J(k+1) < J(k), then the best u(k+1) is chosen to decrease the objective function the most.  

The traditional MPC approach requires the global solution of a nonlinear optimization 
problem. This is in practice not achievable within finite computing time. An improved 
NMPC algorithm based on GA does not necessarily depend on a global or even local 
minimum. The optimizer provides a feasible decedent solution, instead of finding a global 
or local minimum.  The feasible solution decreases the cost function instead of minimizing 
the cost function. Judicious selection of the termination criterions of GA is the key factor in 
reducing the computation burden in the design of the suboptimal NMPC algorithm. To this 
end, the following two strategies at the (k+1)-th step are proposed.  
With the above two strategies, the computational complexity of the control calculation is 
substantially reduced. Summarizing, our proposed improved NMPC algorithm performs 
the following iterative steps: 
Step 1. [Initialization]:  
choose parameters P, XF, Q, R, Q’ and model x(k+1) = f(x(k),u(k)); initialize the state and 
control variables at k = 0; compute and store J(0). 
Step 2. [modified Iteration]:  
 at the k-th control interval, determine the control sequence u(k) using GA satisfies 

constraints (3b) (3c), terminal stability constraint (3d) and J(k) < J(k-1). The first input 
u(k|k) is then sent into the plant. 

 store J(k) and set k = k+1; 
  if there does not exist a feasible value for u(k) to yield J(k) < J(k-1), then the best u(k) is 

chosen to decrease the objective function the most.  
Step 3. [Termination]  
The entire calculation is repeated at subsequent control interval k+1 and goes to Step 2.  
Though the proposed method does not seek a globally or locally optimal solution within 
each iteration step, it may cause little performance degradation to the original GA due to its 
iterative nature, which is known to be capable of improving suboptimal solution step by 
step until reaching near-optimal performance at the final stage. Besides its near-optimal 
performance, the proposed algorithm possesses salient feature; it guarantees overall system 
stability and, most of all, leads to considerable reduction in the online computation burden. 
Finding a control sequence that satisfies a set of constraints is significantly easier than 
solving a global optimization problem. Here it is possible to obtain the suboptimal control 
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sequence via GA for practical systems with very demanding computation load, that is, 
systems with a small sampling time or a large prediction horizon. 

4. Stability of nonlinear model predictive control system 
The closed-loop system controlled by the improved NMPC based on GA is proved to be 
stable. 
Theorem 1: For a system expressed in (1) and satisfying the assumption A1-A4, the closed-
loop system is stable under the improved NMPC framework. 
Proof: Suppose there are an admissible control sequence u(k) and a state sequence x(k) that 
satisfy the input, state and terminal stability constraints at the sampling time k. 
At the sampling time k, the performance index, which is related to u(k) and x(k), is described 
as  

 *( ) ( ;u( ),x( ))J k J k k k   (6) 

In the closed-loop system controlled by the improved NMPC, define the feasible input and 
state sequences for the successive state are x+=f(x, u(k|k)). 
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The resulting objective function of u(k+1) and x(k+1) at the (k+1)-th sampling time is  

 ( 1) ( 1;u( 1),x( 1))J k J k k k       (8) 

If the optimal solution is found, it follows that 
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From A4, the following inequality holds 

  * *( 1) ( ) ( , ( ))PJ k J k l x K x     (10) 

Or using the improved NMPC algorithm, it follows that 

 * * *( 1) ( ) ( 1) ( ) 0J k J k J k J k        (11) 

Thus the sequence *( )J k i over P time indices decreases. As such and given the fact that the 
cost function ( , )l x u  is lower-bounded by zero, it is evident that *( )J k i  converges. Taking 
the sum, we obtain 
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Also, because the sequence *( )J k i is decreasing, then as N  ,we have 
( ( ), ( )) 0l x k i u k i    and 0x  . Hence, the closed-loop system is stable. 
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5. Simulation and experiment results 
5.1 Simulation results to a continuous stirred tank reactor plant 
5.1.1 Model of continuous stirred tank reactor plant 
Consider the highly nonlinear model of a chemical plant (continuous stirred tank reactor-
CSTR). Assuming a constant liquid volume, the CSTR for an exothermic, irreversible 
reaction, A→B, is described by  
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where CA is the concentration of A in the reactor, T is the reactor temperature and Tc is the 
temperature of the coolant stream. The parameters are listed in the Table 1. 
 

Variables Meaning Value Unit 
q the inlet flow 100 l/min 
V the reactor liquid volume 100 l 

CAf the concentration of inlet flow 1 mol/l 
k0 reaction frequency factor 7.2*1010 min-1 

E/R  8750 K 
E activation energy   
R gas constant 8.3196*103 J/(mol K) 
Tf the temperature of inlet flow 350 K 
∆H the heat of reaction -5*104 J/mol 
ρ the density 1000 g/l 

CP the specific heat capacity of the fluid 0.239 J/(g K) 
UA  5*104 J/(min K) 
U the overall heat transfer coefficient   
A the heat transfer area   

Table 1. List of the model parameters 

5.1.2 Simulation results 
The paper present CSTR simulated examples to confirm the main ideas of the paper. The 
nominal conditions, CA = 0.5mol/l, T = 350K, Tc = 300K, correspond to an unstable operating 
point. The manipulated input and controlled output are the coolant temperature (Tc) and 
reactor temperature (T). And the following state and input constraints must be enforced: 
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The simulation platform is MATLAB and simulation time is 120 sampling time. The 
sampling time is Ts = 0.05s, mutation probability is Pc =0.1, population size is 100, maximum 
generation is 100, and the fitness value is 1/(J+1). 
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Fig. 2. Comparative simulation between the conventional NMPC algorithm and the 
suboptimal NMPC algorithm 

 
method settling time, min percent overshoot,% 

NMPC algorithm based on GA 0.75 1 
Suboptimal NMPC algorithm based on GA 2.5 0 

Table 2. Performance comparisons of simulation results 
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Fig. 3. The time consumptions of the two methods 
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5. Simulation and experiment results 
5.1 Simulation results to a continuous stirred tank reactor plant 
5.1.1 Model of continuous stirred tank reactor plant 
Consider the highly nonlinear model of a chemical plant (continuous stirred tank reactor-
CSTR). Assuming a constant liquid volume, the CSTR for an exothermic, irreversible 
reaction, A→B, is described by  
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where CA is the concentration of A in the reactor, T is the reactor temperature and Tc is the 
temperature of the coolant stream. The parameters are listed in the Table 1. 
 

Variables Meaning Value Unit 
q the inlet flow 100 l/min 
V the reactor liquid volume 100 l 

CAf the concentration of inlet flow 1 mol/l 
k0 reaction frequency factor 7.2*1010 min-1 

E/R  8750 K 
E activation energy   
R gas constant 8.3196*103 J/(mol K) 
Tf the temperature of inlet flow 350 K 
∆H the heat of reaction -5*104 J/mol 
ρ the density 1000 g/l 

CP the specific heat capacity of the fluid 0.239 J/(g K) 
UA  5*104 J/(min K) 
U the overall heat transfer coefficient   
A the heat transfer area   

Table 1. List of the model parameters 

5.1.2 Simulation results 
The paper present CSTR simulated examples to confirm the main ideas of the paper. The 
nominal conditions, CA = 0.5mol/l, T = 350K, Tc = 300K, correspond to an unstable operating 
point. The manipulated input and controlled output are the coolant temperature (Tc) and 
reactor temperature (T). And the following state and input constraints must be enforced: 
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The simulation platform is MATLAB and simulation time is 120 sampling time. The 
sampling time is Ts = 0.05s, mutation probability is Pc =0.1, population size is 100, maximum 
generation is 100, and the fitness value is 1/(J+1). 
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Fig. 2. Comparative simulation between the conventional NMPC algorithm and the 
suboptimal NMPC algorithm 
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For comparison, the same simulation setup is used to test both the conventional NMPC 
algorithm based GA and the suboptimal NMPC algorithm. The resulting control values are 
depicted in Fig 2. Table 2 compares the performance of the two algorithms using the metrics 
settling time and percent of overshoot. The conventional NMPC algorithm has a faster 
transient phase and a smaller percentage of overshoots.  
When the population sizes or the maximum generation is relatively large, the time 
consumption of the two methods is compared in Fig 3. 
From Fig 2 and Table 2, it is apparent that the control performance of the two methods is 
almost same. But from Fig 3, it is evident that the suboptimal NMPC algorithm based on GA 
has a considerably reduced demand on computational complexity. 

5.2 Simulation results to a coupled-tank system 
5.2.1 Model of coupled-tank system 
The apparatus [15], see Fig.4, consists of two tanks T1 and T2, a reservoir, a baffle valve V1 and 
an outlet valve V2. T1 has an inlet commanded through a variable pump based on PMW and 
T2 has an outlet that can be adjusted through a manually controlled valve only. The outlets 
communicate to a reservoir from which the pumps extract the water to deliver it to the tank. 
The two tanks are connected through the baffle valve, which again can only be adjusted 
manually. The objective of the control problem is to adjust the inlet flow so as to maintain 
the water level of the second tank close to a desired setpoint. 
The water levels h1 and h2, which are translated through the pressure transducer into a DC 
voltage ranging from 0V to 5V, are sent to PC port via A/D transition. The tank pump 
control, which is computed by the controller in PC with the information of the water level h1 
and h2, is a current level in the range 4mA to 20mA, where these correspond to the pump not 
operating at all, and full power respectively. 
 

 
Fig. 4. Coupled-tank apparatus 
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The dynamics of the system are modeled by the state-space model equations: 
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where the flows obey Bernoulli’s equation[16], i.e. 
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 is the symbol function of parameter z. 

The output equation for the system is  

 2y h                                       (18) 

The cross-section areas, i.e. A and S, are determined from the diameter of the tanks and 
pipes. The flow coefficients, μ1 and μ2, have experimentally (from steady-state 
measurements) been determined. Table 3 is the meanings and values of all the parameters in 
Eqn.15 
 

Signal Physics Meaning Value 
A Cross-section area of tank 6.3585×10-3m2 

S Cross-section area of pipe 6.3585×10-5m2 

g acceleration of gravity 9.806m/s2 

μ1 flow coefficient 1 0.3343 
μ2 flow coefficient 2 0.2751 

Table 3. Meanings and value of all the parameters 

Several constraints have to be considered. Limited pump capacity implies that values of  
inputQ  range from 0 to 50cm3/s. The limits for the two tank levels, h1 and h2, are from 0 to 

50cm. 

5.2.2 Simulation results 
The goal of the couple-tank system is to control the level of Tank 2 to setpoint. The initial 
levels of the two tanks, h1, h2, are 0cm. The objectives and limits of the tank system: Input 
constraint is 0≤u≤100%; State objectives are 0≤h1, h2≤0.5m, and the setpoint of Tank 2 is 0.1m. 
The simulation platform is MATLAB and simulation time is 80 sample time. In NMPC, 
select prediction horizon P=10, weighting parameters 8Q Q  , R=1, sample time Ts=5s, 
mutation probability Pc=0.1, population size is 200, maximum generation is 100, the fitness 
value is 1/(J+1). 
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For the purpose of comparison the same simulation is carried out with the conventional 
NMPC algorithm based GA and the fast NMPC algorithm. The result is shown in Fig 5. The 
performance indexes of the two algorithms are shown in Table 4.  
 
 
 
 

 
 

Fig. 5. Compared simulation results based on conventional NMPC and fast NMPC 
algorithm 

 
 
 

method Settling time, s percent overshoot, % 
NMPC algorithm based on GA 70 3 

Fast NMPC algorithm based on GA 100 7 
 

Table 4. Performance index of simulation results 

When the population sizes or the maximum generation is relatively larger, the time 
consumptions of the two method is shown in Fig 6. 
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From Fig 5 and Table 4, it is apparent that the control performance of the two methods is 
almost same. But from Fig 6, the computation demand reduces significant when the fast 
NMPC algorithm based on GA is brought into the system. 

5.2.3 Experiment results 
The objectives and limits of the system: Input constraint is 0≤u≤100%; State objectives are 
0≤h1,h2≤0.5m, and the setpoint of Tank 2 is 0.1m. Select prediction horizon P=10, weighting 
parameters 8Q Q  , R=1, sample time Ts=5s, mutation probability Pc=0.1, population size 
is 200, maximum generation is 100. 
The tank apparatus is controlled with the NMPC algorithm based on conventional GA, the 
experimental curve is shown in Fig 7 and performance index is shown in Table 5.  
 
 
 
 
 

 
 
 
 
 
 

Fig. 6. Time consumptions for two methods 
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Fig. 7. Experimental curve of NMPC based on GA 

 
 
 
 

Time, s 0-400 401-800 801-1200 
Setpoint, m 0.1 0.15 0.07 

Settling time, s 159 190 210 
Percent overshoot None None None 

 
 

Table 5. Performance index of experimental result with conventional NMPC 

The same experiment is carried out with fast NMPC algorithm based on GA. The result is 
shown in Fig 8 and performance index is shown in Table 5.  
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Fig. 8. Experimental curve of fast NMPC based on GA 

 
Time, s 0-400 401-800 801-1200 
Setpoint, m 0.1 0.15 0.07
Settling time, s 190 190 260
Percent overshoot None None None 

Table 6. Performance index of experimental result with fast NMPC 

6. Conclusions 
In this paper an improved NMPC algorithm based on GA has been proposed. The aim is to 
reduce the computational burden without much deterioration to the control performance. 
Compared with traditional NMPC controller, our approach has much lower computational 
burden, which makes it practical to operate in systems with a small sampling time or a large 
prediction horizon.  
The proposed approach has been tested in CSTR and a real-time tank system. Both 
computer simulations and experimental testing confirm that the suboptimal NMPC based 
on GA resulted in a controller with less computation time. 
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1. Introduction

Model predictive control (MPC) is widely recognized as a high performance, yet practical,
control technology. This model-based control strategy solves at each sample a discrete-time
optimal control problem over a finite horizon, producing a control input sequence. An
attractive attribute of MPC technology is its ability to systematically account for system
constraints. The theory of MPC for linear systems is well developed; all aspects such
as stability, robustness,feasibility and optimality have been extensively discussed in the
literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski,
2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the
availability of fast computational resources. These requirements limit the application base for
MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004),
manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are
becoming more widespread.
Two common paradigms for solving system-wide MPC calculations are centralised and
decentralised strategies. Centralised strategies may arise from the desire to operate the
system in an optimal fashion, whereas decentralised MPC control structures can result from
the incremental roll-out of the system development. An effective centralised MPC can be
difficult, if not impossible to implement in large-scale systems (Kumar & Daoutidis, 2002;
Lu, 2003). In decentralised strategies, the system-wide MPC problem is decomposed into
subproblems by taking advantage of the system structure, and then, these subproblems
are solved independently. In general, decentralised schemes approximate the interactions
between subsystems and treat inputs in other subsystems as external disturbances. This
assumption leads to a poor system performance (Sandell Jr et al., 1978; Šiljak, 1996). Therefore,
there is a need for a cross-functional integration between the decentralised controllers, in
which a coordination level performs steady-state target calculation for decentralised controller
(Aguilera & Marchetti, 1998; Aske et al., 2008; Cheng et al., 2007; 2008; Zhu & Henson, 2002).
Several distributed MPC formulations are available in the literature. A distributed MPC
framework was proposed by Dumbar and Murray (Dunbar & Murray, 2006) for the class
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Lu, 2003). In decentralised strategies, the system-wide MPC problem is decomposed into
subproblems by taking advantage of the system structure, and then, these subproblems
are solved independently. In general, decentralised schemes approximate the interactions
between subsystems and treat inputs in other subsystems as external disturbances. This
assumption leads to a poor system performance (Sandell Jr et al., 1978; Šiljak, 1996). Therefore,
there is a need for a cross-functional integration between the decentralised controllers, in
which a coordination level performs steady-state target calculation for decentralised controller
(Aguilera & Marchetti, 1998; Aske et al., 2008; Cheng et al., 2007; 2008; Zhu & Henson, 2002).
Several distributed MPC formulations are available in the literature. A distributed MPC
framework was proposed by Dumbar and Murray (Dunbar & Murray, 2006) for the class
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of systems that have independent subsystem dynamic but link through their cost functions
and constraints. Then, Dumbar (Dunbar, 2007) proposed an extension of this framework that
handles systems with weakly interacting dynamics. Stability is guaranteed through the use of
a consistency constraint that forces the predicted and assumed input trajectories to be close to
each other. The resulting performance is different from centralised implementations in most
of cases. Distributed MPC algorithms for unconstrained and LTI systems were proposed in
(Camponogara et al., 2002; Jia & Krogh, 2001; Vaccarini et al., 2009; Zhang & Li, 2007). In (Jia
& Krogh, 2001) and (Camponogara et al., 2002) the evolution of the states of each subsystem
is assumed to be only influenced by the states of interacting subsystems and local inputs,
while these restrictions were removed in (Jia & Krogh, 2002; Vaccarini et al., 2009; Zhang &
Li, 2007). This choice of modelling restricts the system where the algorithm can be applied,
because in many cases the evolution of states is also influenced by the inputs of interconnected
subsystems. More critically for these frameworks is the fact that subsystems-based MPCs only
know the cost functions and constraints of their subsystem. However, stability and optimality
as well as the effect of communication failures has not been established.
The distributed model predictive control problem from a game theory perspective for LTI
systems with general dynamical couplings, and the presence of convex coupled constraints
is addressed. The original centralised optimisation problem is transformed in a dynamic
game of a number of local optimisation problems, which are solved using the relevant
decision variables of each subsystem and exchanging information in order to coordinate
their decisions. The relevance of proposed distributed control scheme is to reduce the
computational burden and avoid the organizational obstacles associated with centralised
implementations, while retains its properties (stability, optimality, feasibility). In this context,
the type of coordination that can be achieved is determined by the connectivity and capacity of
the communication network as well as the information available of system’s cost function and
constraints. In this work we will assume that the connectivity of the communication network
is sufficient for the subsystems to obtain information of all variables that appear in their local
problems. We will show that when system’s cost function and constraints are known by all
distributed controllers, the solution of the iterative process converge to the centralised MPC
solution. This means that properties (stability, optimality, feasibility) of the solution obtained
using the distributed implementation are the same ones of the solution obtained using the
centralised implementation. Finally, the effects of communication failures on the system’s
properties (convergence, stability and performance) are studied. We will show the effect of
the system partition and communication on convergence and stability, and we will find a
upper bound of the system performance.

2. Distributed Model Predictive Control

2.1 Model Predictive Control
MPC is formulated as solving an on-line open loop optimal control problem in a receding
horizon style. Using the current state x(k), an input sequence U(k) is calculated to minimize
a performance index J (x(k), U(k)) while satisfying some specified constraints. The first
element of the sequence u(k, k) is taken as controller output, then the control and the
prediction horizons recede ahead by one step at next sampling time. The new measurements
are taken to compensate for unmeasured disturbances, which cause the system output to be
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different from its prediction. At instant k, the controller solves the optimisation problem

min
U(k)

J (x(k), U(k))

st. (1)

X(k + 1) =Γx(k) +HU(k)

U(k) ∈U
where Γ and H are the observability and Haenkel matrices of the system (Maciejowski, 2002)
and the states and input trajectories at time k are given by

X(k) = [x(k, k) · · · x(k + V, k)]T V > M,

U(k) = [u(k, k) · · · u(k + M, k)]T .

The integers V and M denote the prediction and control horizon. The variables x(k + i, k) and
u(k + i, k) are the predicted state and input at time k + i based on the information at time k
and system model

x(k + 1) = Ax(k) + Bu(k), (2)

where x(k) ∈ Rnx and u(k) ∈ U ⊆ Rnu . The set of global admissible controls U = {u ∈ Rnu

|Du ≤ d, d > 0} is assumed to be non-empty, compact and convex set containing the origin in
its interior.

Remark 1. The centralised model defined in (2) is more general than the so-called composite model
employed in (Venkat et al., 2008), which requires the states of subsystems to be decoupled and allows
only couplings in inputs. In this approach, the centralised model can represent both couplings in states
and inputs.

In the optimisation problem (1), the performance index J (x(k), U(k)) measures of the
difference between the predicted and the desired future behaviours. Generally, the quadratic
index

J (x(k), U(k)) =
V

∑
i=0

xT(k + i, k)Qix(k + i, k) +
M

∑
i=0

uT(k + i, k)Riu(k + i, k) (3)

is commonly employed in the literature. To guarantee the closed–loop stability, the weighting
matrices satisfy Qi = Q > 0, Ri = R > 0 ∀i ≤ M and Qi = Q̄ ∀i > M, where Q̄ is given by
ATQ̄A − Q̄ = −Q (Maciejowski, 2002). For this choice of the weighting matrices, the index
(3) is equivalent to a performance index with an infinite horizon.

J∞ (x(k), U(k)) =
∞

∑
i=0

xT(k + i, k)Qx(k + i, k) + uT(k + i, k)Ru(k + i, k).

In many formulations an extra constraint or extra control modes are included into (1) to ensure
the stability of the closed-loop system (Maciejowski, 2002; Rossiter, 2003).

2.2 Distributed MPC framework
Large-scale systems are generally composed of several interacting subsystems. The
interactions can either be: a) dynamic, in the sense that the states and inputs of each subsystem
influence the states of the ones to which it is connected, b) due to the fact that the subsystems
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is commonly employed in the literature. To guarantee the closed–loop stability, the weighting
matrices satisfy Qi = Q > 0, Ri = R > 0 ∀i ≤ M and Qi = Q̄ ∀i > M, where Q̄ is given by
ATQ̄A − Q̄ = −Q (Maciejowski, 2002). For this choice of the weighting matrices, the index
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J∞ (x(k), U(k)) =
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∑
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In many formulations an extra constraint or extra control modes are included into (1) to ensure
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Large-scale systems are generally composed of several interacting subsystems. The
interactions can either be: a) dynamic, in the sense that the states and inputs of each subsystem
influence the states of the ones to which it is connected, b) due to the fact that the subsystems
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share a common goal and constraint, or c) both. Systems of this type admit a decomposition
into m subsystems represented by

xl(k + 1) =
m

∑
p=1

Al pxp(k) + Bl j∈Np
uj∈Np

(k) l = 1, . . . , m (4)

where xl ∈ Rnxl ⊆ Rnx and ul ∈ Ul ⊆ Rnul ⊂ Rnu are the local state and input respectively.
The set of control inputs indices of subsystem l is denoted Nl , and the set I denotes all control
input indices such that u(k) = uj∈I(k).

Remark 2. This is a very general model class for describing dynamical coupling between subsystems
and includes as a special case the combination of decentralised models and interaction models in (Venkat
et al., 2008). The subsystems can share input variables such that

m

∑
l=1

nul ≥ nu. (5)

Each subsystem is assumed to have local convex independent and coupled constraints, which
involve only a small number of the others subsystems. The set of local admissible controls
Ul = {ul ∈ Rnul | Dlul ≤ dl , dl > 0} is also assumed to be non-empty, compact, convex set
containing the origin in their interior.
The proposed control framework is based on a set of m independent agents implementing a
small-scale optimizations for the subsystems, connected through a communication network
such that they can share the common resources and coordinate each other in order to
accomplish the control objectives.

Assumption 1. The local states of each subsystem xl(k) are accessible.

Assumption 2. The communication between the control agents is synchronous.

Assumption 3. Control agents communicates several times within a sampling time interval.

This set of assumption is not restrictive. In fact, if the local states are not accessible they
can be estimated from local outputs yl(k) and control inputs using a Kalman filter, therefore
Assumption 1 is reasonable. As well, Assumptions 2 and 3 are not so strong because in
process control the sampling time interval is longer with respect the computational and the
communication times.
Under these assumptions and the decomposition, the cost function (3) can be written as
follows

J (x(k), U(k), A) =
m

∑
l=1

αl Jl

(
x(k), Uj∈Nl

(k), Uj∈I−Nl
(k)

)
, (6)

where A = [αl ] , αl ≥ 0, ∑m
l=1 αl = 1, Uj(k) is the j-th system input trajectory. This

decomposition of the cost function and input variable leads to a decomposition (1) into m
coupled optimisation problems

min
Uj∈Nl

(k)
J (x(k), U(k), A)
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st.

X(k + 1) = Γx(k) +HU(k) (7)

Uj∈Nl
(k) ∈ Uj∈Nl

Uj∈I−Nl
(k) ∈ Uj∈I−Nl

where Uj∈I−Nl
denotes the assumed inputs of others agents. The goal of the decomposition is

to reduce the complexity of the optimisation problem (1) by ensuring that subproblems (7) are
smaller than the original problem (fewer decision variables and constraints), while they retain
the properties of the original problem. The price paid to simplify the optimisation problem (1)
is the needs of coordination between the subproblems (7) during their solution. In this way,
the optimisation problem (1) has been transformed into a dynamic game of m agents where each
one searches for their optimal decisions through a sequence of strategic games, in response to
decisions of other agents.

Definition 1. A dynamic game �m,U , Jl (x(k), Uq(k), A) ,D(q, k)� models the interaction of m
agents over iterations q and is composed of: i) m ∈ N agents; ii) a non empty set U that corresponds
to the available decisions Uq

l (k) for each agent; iii) an utility function Jl (x(k), Uq(k), A) : x(k) ×
Uq(k) → R+ for each agent; iv) an strategic game G(q, k) that models the interactions between agents
at iteration q and time k; v) a dynamic process of decision adjustment D(q, k) : (Uq(k),G(q, k), q) →
Uq+1(k).

At each stage of the dynamic game, the joint decision of all agents will determine the outcome
of the strategic game G(q, k) and each agent has some preference Uq

j∈Nl
(k) over the set of

possible outcomes U . Based on these outcomes and the adjustment process D(q, k), which
in this framework depends on the cost function Jl(· ) and constraints, the agents reconcile
their decisions. More formally, a strategic game is defined as follows (Osborne & Rubinstein,
1994)

Definition 2. A finite strategic game G(q, k) = �m,Ul , Jl (x(k), Uq(k), A)� models the interactions
between m agents and is composed of: i) a non empty finite set Ul ⊆ U that corresponds the set
of available decisions for each agent; ii) an utility function Jl (x(k), Uq(k), A) : x(k) × Uq(k) →
R Uq(k) ∈ U for each agent.

In general, one is interested in determining the choices that agents will make when faced with
a particular game, which is sometimes referred to as the solution of the game. We will adopt
the most common solution concept, known as Nash equilibrium (Nash, 1951): a set of choices
where no individual agent can improve his utility by unilaterally changing his choice. More
formally, we have:

Definition 3. A group of control decisions U(k) is said to be Nash optimal if

Jl

(
x(k), Uq

j∈Nl
(k), Uq−1

j∈I−Nl
(k)

)
≤ Jl

(
x(k), Uq−1

j∈Nl
(k), Uq−1

j∈I−Nl
(k)

)

where q > 0 is the number of iterations elapsed during the iterative process.

If Nash optimal solution is achieved, each subproblem does not change its decision Uq
j∈Nl

(k)
because it has achieved an equilibrium point of the coupling decision process; otherwise the
local performance index Jl will degrade. Each subsystem optimizes its objective function
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of available decisions for each agent; ii) an utility function Jl (x(k), Uq(k), A) : x(k) × Uq(k) →
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≤ Jl
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j∈Nl
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j∈I−Nl
(k)

)

where q > 0 is the number of iterations elapsed during the iterative process.

If Nash optimal solution is achieved, each subproblem does not change its decision Uq
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(k)
because it has achieved an equilibrium point of the coupling decision process; otherwise the
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using its own control decision Uq
j∈Nl

(k) assuming that other subsystems’ solutions Uq
j∈I−Nl

(k)
are known. Since the mutual communication and the information exchange are adequately
taken into account, each subsystem solves its local optimisation problem provided that the
other subsystems’ solutions are known. Then, each agent compares the new solution with
that obtained in the previous iteration and checks the stopping condition

∥∥∥Uq
j∈Nl

(k)− Uq−1
j∈Nl

(k)
∥∥∥

∞
≤ ε l l = 1, . . . , m. (8)

If the algorithm is convergent, condition (8) will be satisfied by all agents, and the whole
system will arrive to an equilibrium point. The subproblems m (7) can be solved using the
following iterative algorithm

Algorithm 1

Given Ql , Rl , 0 < qmax < ∞, ε l > 0 ∀l = 1, · · · , m

For each agent l l = 1, · · · , m
Step 1 Initialize agent l

1.a Measure the local state xl(k), q = 1,
ρl = φε l φ � 1

1.b U0(k) = [u(k, k − 1) · · · u(k + M, k − 1) 0 ]

Step 2 while ρl > ε l and q < qmax

2.a Solve problem (7) to obtain Ũq
j∈Nl

(k)

2.b for p = 1, · · · , m and p �= l
Communicate Ũq

j∈Nl
(k) to agent p

end
2.c Update the solution iterate q ∀j ∈ Nl

Uq
j (k) = ∑m

p=1 αpŨq
i∈Np∩j(k)

+
(

1 − ∑m
p=1 αp card ( j ∩Nl)

)
Uq−1

j (k)

2.d ρl =
∥∥∥Uq

j∈Nl
(k)− Uq−1

j∈Nl
(k)

∥∥∥
∞

q = q + 1
end

Step 3 Apply ul(k, k)

Step 4 k = k + 1 and goto Step 1

At each k, qmax represents a design limit on the number of iterates q and ε l represents the
stopping criteria of the iterative process. The user may choose to terminate Algorithm 1 prior
to these limits.

3. Properties of the framework

3.1 Performance
Given the distributed scheme proposed in the previous Section, three fundamental questions
naturally arise: a) the behavior of agent’s iterates during the negotiation process, b) the
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location and number of equilibrium points of the distributed problem and c) the feasibility
of the solutions. One of the key factors in these questions is the effect of the cost function and
constraints employed by the distributed problems. Therefore, in a first stage we will explore
the effect of the performance index in the number and position of the equilibrium points.
Firstly, the optimality conditions for the centralised problem (1) are derived in order to have
a benchmark measure of distributed control schemes performance. In order to make easy the
comparison, the performance index (3) is decomposed into m components related with the
subsystems, like in the distributed problems (7), as follows

J (x(k), U(k), Θ) =
m

∑
l=1

θl Jl (x(k), U(k)) , θl ≥ 0,
m

∑
l=1

θl = 1. (9)

This way writing the performance index corresponds to multiobjective characterization of the
optimisation problem (1). Applying the first–order optimality conditions we obtain

m

∑
l=1

θl
∂Jl (x(k), U(k))

∂Uj∈Np
(k)

+ λT Dj∈Np = 0 p = 1, . . . , m, (10a)

λT
(

Dj∈NpUj∈Np
(k)− b

)
= 0, (10b)

where Dj is the j–th column vector of D. The solution of this set of equations U∗(k) is the
optimal solution of the optimisation problem (1) and belongs to Pareto set, which is defined as
(Haimes & Chankong, 1983).

Definition 4. A solution U∗(k) ∈ U is said to be Pareto optimal of the optimisation problem (1) if
there exists no other feasible solution ∀U(k) ∈ U such that Jl (x(k), U(k)) ≤ Jl (x(k), U∗(k)) ∀l =
1, . . . , m.

In distributed control the agents coordinate their decisions, through a negotiation process.
Applying the first–order optimality conditions to decentralised cost (6) we obtain

m

∑
l=1

αl
∂Jl (x(k), U(k))

∂Uj∈Np
(k)

+ λT Dj∈Np = 0 p = 1, . . . , m, (11a)

λT
(

Dj∈NpUj∈Np
(k)− b

)
= 0. (11b)

By simple inspection of (10) and (11) we can see that these equations have the same structure,
they only differ on the weights. Therefore, the location of the distributed schemes equilibrium
will depend on the selection of αl l = 1, . . . , m. There are two options:

• If αl = 1, αp �=l = 0 the optimality condition (11) becomes

∂Jl (x(k), U(k))
∂Uj∈Nl

(k)
+ λTDj∈Nl = 0 l = 1, . . . , m, (12a)

λT
(

Dj∈Nl Uj∈Nl
(k)− b

)
= 0. (12b)

This condition only evaluates the effect of Uj∈Nl
, given Uj∈I−Nl

, in subsystem l
without taking into account its effects in the remaining agents (selfish behavior). This
configuration of the distributed problem leads to an incomplete and perfect information
game that can achieve Nash optimal solutions for a pure strategy (Cournot equilibrium)
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∥∥∥

∞
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∥∥∥
∞
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3. Properties of the framework
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∑
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By simple inspection of (10) and (11) we can see that these equations have the same structure,
they only differ on the weights. Therefore, the location of the distributed schemes equilibrium
will depend on the selection of αl l = 1, . . . , m. There are two options:
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This condition only evaluates the effect of Uj∈Nl
, given Uj∈I−Nl
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without taking into account its effects in the remaining agents (selfish behavior). This
configuration of the distributed problem leads to an incomplete and perfect information
game that can achieve Nash optimal solutions for a pure strategy (Cournot equilibrium)
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(Osborne & Rubinstein, 1994). By simple comparison of (10) and (12) we can conclude
that the solution of this equations lies outside of the Pareto set (Dubey & Rogawski,
1990; Neck & Dockner, 1987). The reason of Nash equilibrium inefficiency lies in the fact
that the information of each agent decision variable effects’ on the remaining agents is
neglected (αp �=l = 0 incomplete information game). Therefore, each agent minimizes their
performance index, accommodating the effects of other agents’ decisions, without taking
in account its effects on the rest of the system. Besides the lack of optimality, the number of
equilibrium points generated by the optimality condition (12) can grow with the number
of agents (Bade et al., 2007).

• If αl > 0 the optimality condition (11) becomes

m

∑
l=1

αl
∂Jl (x(k), U(k))

∂Uj∈Np
(k)

+ λTDj∈Np =0 p = 1, . . . , m (13a)

λT
(

Dj∈NpUj∈Np
(k)− b

)
=0. (13b)

This condition evaluates the effect of Uj∈Nl
, given Uj∈I−Nl

, in the entire system, taking in
account the effect of interactions between the subsystems (cooperative behavior), leading
to a complete and perfect information game. By simple comparison of (10) and (13) it is
easy to see that these two equations have a similar structure, therefore we can conclude
that their solutions lie in the Pareto set. The position of distributed MPC solutions will
depend on the values of αl . In the particular case of αl = θl l = 1, . . . , m the solution of
the centralised and distributed schemes are the same.

The value of weights αl l = 1, . . . , m depends on the information structure; that is the
information of the cost function and constraints available in each agent. If the cost function
and constraints of each agent are known by all the others, for example a retailer company,
αl can be chosen like the second distributed scheme (αl > 0 ∀l = 1, . . . , m). In this
case the centralised optimisation problem is distributed between m independent agents that
coordinate their solutions in order to solve the optimisation problem in a distributed way. For
this reason we call this control scheme distributed MPC. On the other case, when the local
cost function and constraints are only known by the agents, for example a power network
where several companies compete, the weights αl should be chosen like the first scheme
(αl = 1, αp �=l = 0 ∀l, p = 1, . . . , m). In this case the centralised optimisation problem is
decentralised into m independent agents that only coordinate the effects of their decisions to
minimize the effect of interactions. For this reason we call this control scheme coordinated
decentralised MPC.

Remark 3. The fact that agents individually achieve Nash optimality does not imply the global
optimality of the solution. This relationship will depend on the structure of agents’ cost function and
constraints, which depends on the value of weights αl , and the number of iterations allowed.

The structure of Uj∈Nl
determine the structure of constraints that can be handled by the

distributed schemes. If the subproblems share the input variables involved in the coupled
constraints (Nl ∩Np �=l �= ∅), the distributed MPC schemes can solve optimisation problems
with coupled constraints. On the other hand, when subproblems do not include the input
variables of coupled constraints (Nl ∩ Np �=l = ∅), the distributed MPC schemes can only
solves optimisation problems with independent constraints (Dunbar, 2007; Jia & Krogh, 2001;
Venkat et al., 2008). These facts become apparent from optimality conditions (12) and (13).
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3.2 Convergence
During the operation of the system, the subproblems (7) can compete or cooperate in the
solution of the global problem. The behavior of each agent will depend on the existence,
or not, of conflictive goals that can emerge from the characteristics of the interactions, the
control goals and constraints. The way how the system is decomposed is one of the factors
that defines the behavior of the distributed problem during the iterations, since it defines how
the interactions will be addressed by distributed schemes.
The global system can be partitioned according to either the physical system structure or
on the basis of an analysis of the mathematical model, or a combination of both. Heuristic
procedures for the partitioning the system based on input–output analysis (see (Goodwin
et al., 2005; Henten & Bontsema, 2009; Hovd & Skogestad, 1994)), an state–space analysis
based (see (Salgado & Conley, 2004; Wittenmark & Salgado, 2002) or on performance metric
for optimal partitioning of distributed and hierarchical control systems (see (Jamoom et al.,
2002; Motee & Sayyar-Rodsari, 2003)) have been proposed. In all these approaches the
objective is to simplify the control design by reducing the dynamic couplings, such that the
computational requirements are evenly distributed to avoid excessive communication load.
It is important to note that the partitioning of a state–space model can lead to overlapping
states both due to coupled dynamics in the actual continuous system and due to discrete-time
sampling, which can change the sparsity structure in the model.

Assumption 4. The model employed by the distributed MPC algorithms are partitioned following the
procedures described in (Motee & Sayyar-Rodsari, 2003).

To analysed the effect of the system decomposition on the distributed constrained scheme,
firstly we will analysed its effects on unconstrained problem. Solving the optimality condition
(11) for an unconstrained system leads to

Uq(k) = K0Uq−1(k) +K1x(k) ∀q > 0, (14)

which models the behavior of the distributed problem during the iterative process. Its stability
induces the convergence of the iterative process and it is given by

|λ (K0)| < 1. (15)

The gain K1 is the decentralised controller that computes the contribution of x(k) to U(k) and
has only non–zero elements on its main diagonal K1 = [Kll ] l = 1, . . . , m. On other hand,
K0 models the interaction between subsystems during the iterative process, determining its
stability, and has non zero elements on its off diagonal elements

K0 =

⎡
⎢⎢⎢⎣

0 K12 · · · K1m
K21 0 K2m

...
. . .

...
Km1 · · · Kmm−1 0

⎤
⎥⎥⎥⎦ . (16)

The structure of the components of K0 and K1 depends on the value of the weights αl :

• If the coordinated decentralised MPC is adopted (αl = 1, αp �=l = 0) the elements of K0 are
given by given by

Kl p = −KllHl p l, p = 1, . . . , m (17)
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decentralised into m independent agents that only coordinate the effects of their decisions to
minimize the effect of interactions. For this reason we call this control scheme coordinated
decentralised MPC.

Remark 3. The fact that agents individually achieve Nash optimality does not imply the global
optimality of the solution. This relationship will depend on the structure of agents’ cost function and
constraints, which depends on the value of weights αl , and the number of iterations allowed.

The structure of Uj∈Nl
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solves optimisation problems with independent constraints (Dunbar, 2007; Jia & Krogh, 2001;
Venkat et al., 2008). These facts become apparent from optimality conditions (12) and (13).

72 Advanced Model Predictive Control Distributed Model Predictive Control
Based on Dynamic Games 9

3.2 Convergence
During the operation of the system, the subproblems (7) can compete or cooperate in the
solution of the global problem. The behavior of each agent will depend on the existence,
or not, of conflictive goals that can emerge from the characteristics of the interactions, the
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73Distributed Model Predictive Control Based on Dynamic Games



10 Will-be-set-by-IN-TECH

where Kll =
(HT

llQllHll + Rll
)−1 HT

ll Qll. Therefore, the way in which the global
problem (1) was partitioned and how the controllers’ parameters were tuned defines the
convergence of the coordinated decentralised MPC. Under Assumption 2 the convergence of
the algorithm can be guaranteed for those systems that exhibit weak interactions.

• On the other hand, when the distributed MPC is adopted (αl > 0) the gain K0 is given by

Kl p = −KlpHl p l, p = 1, . . . , m (18)

where the controller gains are given by Klp =
(
HT

lpQlpHl p + Rlp

)−1 HT
lpQlp. Since the

distributed MPC is designed to guarantee the stability of the entire system, its convergence
is guaranteed independently of the way of partitioning the system.

Now, we will consider constrained systems. In this case, under Assumption 2, the
convergence for constrained systems can be analysed using Lyapunov arguments. The key
idea is to show the contractivity of the sequence of global cost functions J (x(k, Uq(k)), A)
generated by Algorithm 1 along the iterative process.

Lemma 1. Let’s assume that the system has been partitioned following a decentralised design procedure
and the distributed MPC problems (7) ∀l = 1, . . . , m are feasible, then the sequence of cost functions
J (x(k, Uq(k)), A) generated by Algorithm 1 during the iterative process is non increasing ∀q > 0 at
any time k.

Proof. See appendix 8.A.

3.3 Feasibility
Although in current literature it is typically assumed that an initial centralised feasible
solution exist and is available, in this Section we will provide a simple and implementable
way of constructing it in a distributed way assuming that the global initial state is available in
advanced.
An initial feasible solution input U0

j∈Nl
(k) at k = 0 can be computed locally by using an inner

approximation of the global feasible set U based on all the constraints appearing in (1) and
the global initial state x(0), which is assumed to be available. Consider an inner-hyperbox
approximation Ω of U , which then takes the form of a Cartesian product

Ω = Ω1 × · · · Ωm ⊂ U . (19)

This approximation essentially decomposes and decouples the constraints among subsystems
by performing constraint tightening. Each subsystem l will thus have to include Ωl in their
local problem setup. Since the Cartesian product of these local constraint sets are included
in the globally feasible set U , any combination of local solutions within Ωl will be globally
feasible as well. The local constraint sets that arise from this inner-hyperbox approximation
will be in general quite conservative, but at the same time will allow the construction of a
feasible solution locally to initialize Algorithm 1.
Calculation of the inner-hyperbox approximation can be performed a priori and the local
Ωl constraints distributed to each subsystem. A polynomial-time procedure to compute a
maximum volume inner box of could follow the procedure described in (Bemporad et al.,
2004). Obtaining the local component-wise constraints Ωl is then straightforward. For time
steps k > 0, we construct a feasible solution by performing Step 1 of Algorithm 1

U0
j∈Nl

(k) =
[

uj∈Nl
(k, k − 1) · · · uj∈Nl

(k + M, k − 1) 0
]
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The feasibility throughout the iterations is maintained because in step 2.a m feasible solutions
Ũq

j∈Nl
(k) are obtained. Then, in step 2.c, the new control profile Uq

j∈Nl
(k) is built as a convex

combination of these solutions. Since problem (7) is a convex constrained QP, any convex
combination of Uq

j∈Nl
(k) also satisfies the convex constraint set. Therefore Uq(k) is a feasible

solution of optimisation problem (7) for all l.

3.4 Stability
Showing nominal stability of the resulting closed-loop system follows standard arguments for
the most part (Mayne et al., 2000). The proof in this section is closely related to the stability
proof of the FC-MPC method in (Venkat et al., 2008) with the addition of Assumption 2. The
key idea is to show the contractivity of the sequence of global cost functions J generated by
Algorithm 1 along the system operation and the stability of the origin.

Theorem 1. Let us assume that the system has been partitioned following a decentralised design
procedure and the optimisation problem (7) solved using Algorithm 1 is feasible, then the origin is an
exponentially stable equilibrium point.

Proof. See appendix 8.B.

4. System behavior under communication failures

In the proposed framework agents coordinate their actions by exchanging information
through the communication network. Since the agents extensively use the communication
network some questions related to the system behavior arise if communications fail: Which
are the conditions for the convergence of the iterative process? How closed-loop stability is
affected? How does system performance change?
In a first stage, the failures in the communication system are modeled introducing three
matrices: i) the connection matrix C which represents the communication structure, ii) the
transmission failure matrix T which models the transmission failures and iii) reception failure
matrices R that models the reception failures in the system. The matrix C is defined as

C =
[
clp

]
, clp =

{
0 l = p,

1 or 0 l �= p, (20)

where clp = 1 indicates the connection between agents l and p, while clp = 0 shows no
connection between these agents. Then, the failures in the communication system can be
modeled combining the connection matrix with the others matrices that models the reception
(R ) and transmission (T ) failures, RCT , which are given by

R =
[
rlp

]
, rlp =

{
1 l = p,
0 l �= p, (21a)

T =
[
tlp

]
, tlp =

{
1 l = p,
0 l �= p.

(21b)

An element tll = 1 (rll = 1) corresponds to a perfect transmission (reception) of agent l, while
tll = 0 (rll = 0) corresponds to a transmission (reception) failure of agent l. A failure between
agents l and p is represented with the transition from 1 → 0 of the corresponding elements of
R and T .
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where Kll =
(HT
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2004). Obtaining the local component-wise constraints Ωl is then straightforward. For time
steps k > 0, we construct a feasible solution by performing Step 1 of Algorithm 1

U0
j∈Nl

(k) =
[

uj∈Nl
(k, k − 1) · · · uj∈Nl

(k + M, k − 1) 0
]
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The feasibility throughout the iterations is maintained because in step 2.a m feasible solutions
Ũq

j∈Nl
(k) are obtained. Then, in step 2.c, the new control profile Uq

j∈Nl
(k) is built as a convex

combination of these solutions. Since problem (7) is a convex constrained QP, any convex
combination of Uq

j∈Nl
(k) also satisfies the convex constraint set. Therefore Uq(k) is a feasible

solution of optimisation problem (7) for all l.

3.4 Stability
Showing nominal stability of the resulting closed-loop system follows standard arguments for
the most part (Mayne et al., 2000). The proof in this section is closely related to the stability
proof of the FC-MPC method in (Venkat et al., 2008) with the addition of Assumption 2. The
key idea is to show the contractivity of the sequence of global cost functions J generated by
Algorithm 1 along the system operation and the stability of the origin.

Theorem 1. Let us assume that the system has been partitioned following a decentralised design
procedure and the optimisation problem (7) solved using Algorithm 1 is feasible, then the origin is an
exponentially stable equilibrium point.

Proof. See appendix 8.B.

4. System behavior under communication failures

In the proposed framework agents coordinate their actions by exchanging information
through the communication network. Since the agents extensively use the communication
network some questions related to the system behavior arise if communications fail: Which
are the conditions for the convergence of the iterative process? How closed-loop stability is
affected? How does system performance change?
In a first stage, the failures in the communication system are modeled introducing three
matrices: i) the connection matrix C which represents the communication structure, ii) the
transmission failure matrix T which models the transmission failures and iii) reception failure
matrices R that models the reception failures in the system. The matrix C is defined as

C =
[
clp

]
, clp =

{
0 l = p,

1 or 0 l �= p, (20)

where clp = 1 indicates the connection between agents l and p, while clp = 0 shows no
connection between these agents. Then, the failures in the communication system can be
modeled combining the connection matrix with the others matrices that models the reception
(R ) and transmission (T ) failures, RCT , which are given by

R =
[
rlp

]
, rlp =

{
1 l = p,
0 l �= p, (21a)

T =
[
tlp

]
, tlp =

{
1 l = p,
0 l �= p.

(21b)

An element tll = 1 (rll = 1) corresponds to a perfect transmission (reception) of agent l, while
tll = 0 (rll = 0) corresponds to a transmission (reception) failure of agent l. A failure between
agents l and p is represented with the transition from 1 → 0 of the corresponding elements of
R and T .
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Following the same procedure like in Section 3.2, the solution for the distributed problem at
each iteration is

Uq(k) = K0RCT Uq−1(k) +K1RCT x(k) q ≥ 1

Its behavior is related with its stability, which is given by

�λ (K0RCT )�1 < 1 (22)

Under communication failure each agent cannot exchange information properly, which will
modify the iterative process driving it to another solution. In this case, the agent with
communication failure will become a decentralised controller that will receive information
about the decision of the others agents through the system. This will deteriorate the stability
margins and performance due to the presence of the interactions not accounted during the
iterative process, which will act like non measurable disturbances. In the extreme case
K0RCT = 0, the control structure will correspond to the fully decentralised control architecture,
and the stability will depend on the way that the system was partitioned. If the controllers
are designed following a decentralised design procedure (Wittenmark & Salgado, 2002), the
stability of the closed-loop system can be guaranteed.
Once the convergence of the iterates can be guaranteed, the next issue to be addressed is the
effect of the communication failures on the closed-loop stability. In order to establish their on
the closed-loop behavior, the control action

Ũ(k) = (I −K0RCT )−1 K1RCT Γx(k)

is replaced in the open-loop model of the system, leading to the closed-loop system

x(k + 1) =
(

A − BI (I −K0RCT )−1 K1RCT Γ
)

x(k).

Then, the stability of the closed–loop system under communication failures is determined by
∣∣∣λ

(
A − BI (I −K0RCT )−1 K1RCT Γ

)∣∣∣ < 1. (23)

Under the communication failure, each agent can not exchange information properly therefore
the stability of the closed–loop system will depend on the dynamic characteristics of the
interactions between subsystems. In the extreme case RCT = 0, the stability condition is
always satisfied corresponding to the full decentralised architecture. The interactions act like
non measurable disturbances for the controllers, reducing the stability margins and degrading
the system performance.

Theorem 2. Let us assume that the system has been partitioned in a way that the convergence
condition (15) is satisfied, its performance at time instant k under the local communication failure is

J̃(k) ≤
(

1 +
�W(k)�
λmin(F )

)
J∗ , (24)

where the performance degradation is bounded by

J̃(k)− J∗
J∗ ≤ �Wmax�

λmin(F )
(25)
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where λmin (F ) denotes the minimal eigenvalue of

F =
(
K−1

1 (I −K0)−H
)T

Q
(
K−1

1 (I −K0)−H
)
+ R,

Wmax = ST
max

(
HTQH+ R

)
Smax,

Smax = 2I −
[

I + (I −K0)
−1 (I +K0)

]−1
.

Proof. See appendix 8.C.

5. Simulations

In this Section, we will illustrate the applicability and limitations of the theoretical results
presented in this paper through two problems: i) a LTI MIMO system and ii) the operation of
a heat–exchanger network (HEN). In the first case we analyse and evaluate the ideas discussed
in previous sections through the control of a strongly coupled MIMO LTI system. In the
second problem we will evaluate the applicability and limitations of the proposed framework
to system with complex dynamic.

5.1 LTI System
To explore the ideas discussed in previous Sections, let’s consider the following MIMO linear
system [

y1(s)
y2(s)

]
=

[
1

10s+1
−1

7.5s+1
1.5

11s+1
1.5

8s+1

] [
u1(s)
u2(s)

]
(26)

This system shows a strong interaction with a non cooperative behavior between both
subsystem due to the difference in the sign of the gain. Besides, the interaction between
y1 and u2 is faster than the dynamic between y1 and u1. The models for the distributed
and coordinated decentralized MPC algorithms were obtained by dividing the system in two
agents

Agent 1 : y1(s) =
1

10s + 1
u1(s)− 1

7.5s + 1
u2(s), (27a)

Agent 2 : y2(s) =
1.5

11s + 1
u1(s) +

1.5
8s + 1

u2(s). (27b)

Agent 1 solves the optimization problem using u1 as decision variable, while agent 2 solves
its optimization problem using u2. The parameters of the predictive control algorithms are
M = 5, V = 20, Qi = I2×2, Ri = 2I2×2 i = 0, · · · , M − 1, and the stopping condition for the
decentralized and distributed MPC algorithms was fixed to ε1 = ε2 = 0.005 and qmax = 30.
Figure 1 shows the closed–loop responses for different MPC schemes. In this figure we can
see that the performance of centralized and distributed MPC are similar, while the performance
of the coordinated decentralized MPC is worst than the others control schemes. In general,
the response obtained by the coordinated decentralized MPC shows stronger interactions that
deteriorate the overall system performance. This phenomenon is due to the fact that the
coordinated decentralized MPC does not optimize the effect of the agents decision variable on
the performance of the other agent. Figure 1.b shows the resulting manipulated variables
where we can see the behavior of the three MPC schemes. Even though all algorithms achieve
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the response obtained by the coordinated decentralized MPC shows stronger interactions that
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(a) System output (b) Manipulated variables

Fig. 1. System responses to different MPC schemes (- - Centralized MPC, — Distributed MPC
and -.- Coordinated decentralized MPC).

Fig. 2. Behavior of the controllers’ cost functions during the iterative procedure (- -
Centralized MPC, — Distributed MPC and -.- Coordinated decentralized MPC).

the same steady–state conditions, the inputs / outputs trajectories followed by the coordinated
decentralized MPC are different from the centralized and distributed MPC.
Figure 2 shows the behavior of MPC controllers cost functions during the iterative procedure
for the first set point change. The first thing to see is the oscillatory behavior of the iterative
process of the coordinated decentralized MPC, in contrast with the monotonous behavior of
the distributed MPC. This behavior is due to the nature interactions and the characteristics
Balderud et al. (2008). The cost function of the distributed MPC converges to the solution
of the centralized MPC, which is globally optimal, in few iterations. If the iterative process
is stopped before (q < 4), the resulting solution will be suboptimal however it will lead
to a stable closed–loop system. The earlier the iterative process is stopped, the bigger the
difference to the centralized solution.
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5.2 Heat-exchanger network
The heat-exchanger network (HEN) system studied here is represented schematically in
Figure 3. It is a system with only three recovery exchangers (I1, I2 and I3) and three service
(S1, S2 and S3) units. Two hot process streams (h1 and h2) and two cold process streams (c1
and c2) take part of the heat exchange process. There are also three utility streams (s1, s2 and
s3) that can be used to help reaching the desired outlet temperatures.

Fig. 3. Schematic representation of the HEN system.

The main purpose of a HEN is to recover as much energy as necessary to achieve the system
requirements from high–temperature process streams (h1 and h2) and to transfer this energy
to cold–process streams (c1 and c2). The benefits are savings in fuels needed to produce utility
streams s1, s2 and s3. However, the HEN has to also provide the proper thermal conditioning
of some of the process streams involved in the heat transfer network. This means that a
control system must i) drive the exit process–stream temperatures (y1, y2, y3 and y4) to the
desired values in presence of external disturbances and input constraints while ii) minimizes
the amount of utility energy.
The usual manipulated variables of a HEN are the flow rates at bypasses around heat
exchangers (u1, u2 and u4) and the flow rates of utility streams in service units (u3, u5 and
u6), which are constrained

0 ≤ uj(k) ≤ 1.0 j = 1, . . . , 6.

A fraction 0 < uj < 1 of bypass j means a fraction uj of corresponding stream goes through
the bypass and a fraction 1 − uj goes through the exchangers, exchanging energy with other
streams. If uj = 0 the bypass is completely closed and the whole stream goes through the
exchangers, maximizing the energy recovery. On the other hand, a value of uj = 1 the bypass
is completely open and the whole stream goes through the bypass, minimizing the energy
recovery.
The HEN studied in this work has more control inputs than outlet temperatures to be
controlled and so, the set of input values satisfying the output targets is not unique. The
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possible operation points may result in different levels of heat integration and utilities
consumption. Under nominal conditions only one utility stream is required (s1 or s3) for the
operation of the HEN, the others are used to expand the operational region of the HEN.
The inclusion of the control system provides new ways to use the extra utility services (s2 and
s3) to achieve control objectives by introducing new interactions that allow the redirection of
the energy through the HEN by manipulating the flow rates. For example, any change in the
utility stream s3 (u6) has a direct effect on output temperature of c1 (y4), however the control
system will redirect this change (through the modification of u1) to the output temperature of
h1 (y1), h2 (y2), and c2 (y3). In this way, the HEN has energy recycles that induces feedback
interaction, whose strength depends on the operational conditions, and leads to a complex
dynamic: i) small energy recycles induce weak couplings among subsystems, whereas ii) large
energy recycles induce a time scale separation, with the dynamics of individual subsystems
evolving in a fast time scale with weak interactions, and the dynamics of the overall system
evolving in a slow time scale with strong interactions Kumar & Daoutidis (2002).
A complete definition of this problem can be found in Aguilera & Marchetti (1998). The
controllers were developed using the following linear model

Y = A(s) ∗ U,

where

A(s) =

⎡
⎢⎢⎢⎢⎣

20.6 e−61.3s

38.8s+1
19.9 e−28.9s

25.4s+1
17.3 e−4.8s

23.8s+1 0 0 0
4.6 e−50.4s

48.4s+1 0 0 79.1 31.4s+0.8
31.4s+1.0

20.1 e−4.1s

25.6s+1.0 0
16.9 e−24.7s

39.5s+1 −39.2 22.8s+0.8
22.8s+1.0 0 0 0 0

24.4 48.2s2+4.0s+0.05
48.2s2+3.9s+0.06 0 0 −8.4 e−18.8s

27.9s+1 0 16.3 e−3.5s

20.1s+1.0

⎤
⎥⎥⎥⎥⎦

and

U = [ u1 u2 u3 u4 u5 u6 ]
T ,

Y = [ y1 y2 y3 y4 ]T .

The first issue that we need to address in the development of the distributed controllers is
selection of the input and output variables associated to each agent. The decomposition was
carried after consideration of the multi-loop rules (Wittenmark & Salgado, 2002). The resulting
decomposition is given in Table 1: Agent 1 corresponds to the first and third rows of A(s),
while agents 2 and 3 correspond to the second and fourth rows of A(s) respectively. Agents 1
and 2 will mainly interact between them through the process stream c1.
For a HEN not only the dynamic performance of the control system is important but also the
cost associated with the resulting operating condition must be taken into account. Thus, the
performance index (3) is augmented by including an economic term JU , such that the global
cost is given by J + JU , defined as follows

JU = uT
SSRUuSS. (28)

where uSS = [u3(k + M, k) u5(k + M, k) u6(k + M, k)] for the centralized MPC. In the case of
the distributed and coordinated decentralized MPC, uSS is decomposed among the agents of the
control schemes (uSS = u3(k + M, k) for Agent 1, uSS = u5(k + M, k) for Agent 2 and uSS =
u6(k + M, k) for Agent 3). Finally, the tuning parameters of the MPC controllers are: ts =
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0.2 min; Vl = 50; Ml = 5; ε l = 0.01; qmax = 10 l = 1, 2, 3, the cost functions matrices are
given in Table 2.
MATLAB based simulation results are carried out to evaluate the proposed MPC algorithms
(coordinated decentralized and distributed MPC) through performance comparison with a
centralized and decentralized MPC. The MPC algorithms used the same routines during the
simulations, which were run in a computer with an Intel Quad-core Q9300 CPU under Linux
operating system. One of the processors was used to execute the HEN simulator, while the
others were used to execute the MPC controllers. Only one processor was used to run the
centralized MPC controller. In the case of the distributed algorithms, the controllers were
distributed among the other processors. These configurations were adopted in order to make
a fair comparison of the computational time employed for each controller.
We consider the responses obtained for disturbance rejection. A sequence of changes is
introduced into the system: after stabilizing at nominal conditions, the inlet temperature of h1
(Tin

h1
) changes from 90°C to 80°C; 10 min later the inlet temperature of h2 (Tin

h2
) goes from 130°C

to 140°C and after another 10 min the inlet temperature of c1 (Tin
c1

) changes from 30°C to 40°C.

Fig. 4. Controlled outputs of the HEN system using (—) distributed MPC and (-.-)
coordinated decentralized MPC.

Figures 4 and 5 show the dynamic responses of the HEN operating with a distributed MPC
and a coordinated decentralized MPC. The worse performance is observed during the first and
second load changes, most notably on y1 and y3. The reasons for this behavior can be found
by observing the manipulated variables. The first fact to be noted is that under nominal
steady-state conditions, u4 is completely closed and y2 is controlled by u5 (see Figures 5.b),
achieving the maximum energy recovery. Observe also that u6 is inactive since no heating
service is necessary at this point. After the first load change occurs, both control variables u2
and u3 fall rapidly (see Figures 5.a). Under this conditions, the system activates the heater
flow rate u6 (see Figures 5.b). The dynamic reaction of the heater to the cool disturbance is
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control schemes (uSS = u3(k + M, k) for Agent 1, uSS = u5(k + M, k) for Agent 2 and uSS =
u6(k + M, k) for Agent 3). Finally, the tuning parameters of the MPC controllers are: ts =
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0.2 min; Vl = 50; Ml = 5; ε l = 0.01; qmax = 10 l = 1, 2, 3, the cost functions matrices are
given in Table 2.
MATLAB based simulation results are carried out to evaluate the proposed MPC algorithms
(coordinated decentralized and distributed MPC) through performance comparison with a
centralized and decentralized MPC. The MPC algorithms used the same routines during the
simulations, which were run in a computer with an Intel Quad-core Q9300 CPU under Linux
operating system. One of the processors was used to execute the HEN simulator, while the
others were used to execute the MPC controllers. Only one processor was used to run the
centralized MPC controller. In the case of the distributed algorithms, the controllers were
distributed among the other processors. These configurations were adopted in order to make
a fair comparison of the computational time employed for each controller.
We consider the responses obtained for disturbance rejection. A sequence of changes is
introduced into the system: after stabilizing at nominal conditions, the inlet temperature of h1
(Tin

h1
) changes from 90°C to 80°C; 10 min later the inlet temperature of h2 (Tin

h2
) goes from 130°C

to 140°C and after another 10 min the inlet temperature of c1 (Tin
c1

) changes from 30°C to 40°C.

Fig. 4. Controlled outputs of the HEN system using (—) distributed MPC and (-.-)
coordinated decentralized MPC.

Figures 4 and 5 show the dynamic responses of the HEN operating with a distributed MPC
and a coordinated decentralized MPC. The worse performance is observed during the first and
second load changes, most notably on y1 and y3. The reasons for this behavior can be found
by observing the manipulated variables. The first fact to be noted is that under nominal
steady-state conditions, u4 is completely closed and y2 is controlled by u5 (see Figures 5.b),
achieving the maximum energy recovery. Observe also that u6 is inactive since no heating
service is necessary at this point. After the first load change occurs, both control variables u2
and u3 fall rapidly (see Figures 5.a). Under this conditions, the system activates the heater
flow rate u6 (see Figures 5.b). The dynamic reaction of the heater to the cool disturbance is
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also stimulated by u2, while u6 takes complete control of y1, achieving the maximum energy
recovery. After the initial effect is compensated, y3 is controlled through u2 –which never
saturates–, while u6 takes complete control of y1. Furthermore, Figure 5.b show that the cool
perturbation also affects y2, where u5 is effectively taken out of operation by u4. The ensuing
pair of load changes are heat perturbations featuring manipulated movements in the opposite
sense to those indicated above. Though the input change in h2 allows returning the control of
y1 from u6 to u3 (see Figures 5.a).

(a) u1(t), u2(t), u3(t) (b) u4(t), u5(t), u6(t)

Fig. 5. Manipulated inputs of the HEN system using (—) distributed MPC and (-.-)
coordinated decentralized MPC.

In these figures we can also see that the coordinated decentralized MPC fails to reject the first
and second disturbances on y1 and y3 (see Figures 4.a and c) because it is not able to properly
coordinate the use of utility service u6 to compensate the effects of active constraints on u2 and
u3. This happens because the coordinated decentralized MPC is only able to address the effect
of interactions between agents but it can not coordinate the use of utility streams s2 and s3 to
avoid the output-unreachability under input constraint problem. The origin of the problem lies
in the cost function employed by the coordinated decentralized MPC, which does not include
the effect of the local decision variables on the other agents. This fact leads to different
steady–state values in the manipulated variables to those ones obtained by the distributed MPC
along the simulation.
Figure 6 shows the steady–state value of the recovered energy and utility services used by the
system for the distributed MPC schemes. As mentioned earlier, the centralized and distributed
MPC algorithms have similar steady–state conditions. These solutions are Pareto optimal,
hence they achieve the best plant wide performance for the combined performance index.
On the other hand, the coordinated decentralized MPC exhibited a good performance in energy
terms, since it employs less service energy, however it is not able of achieving the control
objectives, because it is not able of properly coordinate the use of utility flows u5 and u6. As
it was pointed out in previous Sections, the fact that the agents achieve the Nash equilibrium
does not implies the optimality of the solution.
Figure 7 shows the CPU time employed for each MPC algorithm during the simulations. As
it was expected, the centralized MPC is the algorithm that used more intensively the CPU.
Its CPU time is always larger than the others along the simulation. This fact is originated
on the size of the optimization problem and the dynamic of the system, which forces the
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Fig. 6. Steady-state conditions achieved by the HEN system for different MPC schemes.

Fig. 7. CPU times for different MPC schemes.
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centralized MPC to permanently correct the manipulated variable along the simulation due to
the system interactions. On the other hand, the coordinated decentralized MPC used the CPU
less intensively than the others algorithms, because of the size of the optimization problem.
However, its CPU time remains almost constant during the entire simulation since it needs to
compensate the interactions that had not been taken into account during the computation.
In general, all algorithms show larger CPU times after the load changes because of the
recalculation of the control law. However, we have to point out that the value of these peak
are smaller than sampling time.

6. Conclusions

In this work a distributed model predictive control framework based on dynamic games is
presented. The MPC is implemented in distributed way with the inexpensive agents within
the network environment. These agents can cooperate and communicate each other to achieve
the objective of the whole system. Coupling effects among the agents are taken into account
in this scheme, which is superior to other traditional decentralized control methods. The
main advantage of this scheme is that the on-line optimization can be converted to that
of several small-scale systems, thus can significantly reduce the computational complexity
while keeping satisfactory performance. Furthermore, the design parameters for each agent
such as prediction horizon, control horizon, weighting matrix and sample time, etc. can
all be designed and tuned separately, which provides more flexibility for the analysis and
applications. The second part of this study is to investigate the convergence, stability,
feasibility and performance of the distributed control scheme. These will provide users better
understanding to the developed algorithm and sensible guidance in applications.
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8. Appendices

A. Proof of Lemma 1

Proof. From definition of the J(·) we have

J (x(k), Uq(k), A) = J
(

x(k),
[
Uq

j∈N1
(k) · · ·Uq

j∈Nm
(k)

]
, A

)
(29)

From definition of Uq
j∈Nl

.we have

J (x(k), Uq(k), A) =J
(

x(k),
[
αj∈N1Ũq
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By convexity of J(·) we have
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and from Algorithm 1 we know that
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j∈Nl

(k), Uq−1
j∈I−Nl

(k), A
)
≤ J

(
x(k), Uq−1(k), A

)
. (31)

Subtracting the cost functions at q − 1 and q we obtain

ΔJ
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≤ −ΔUq−1
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(k)T R ΔUq−1
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(k).

This shows that the sequence of cost
{

Jq
l (k)

}
is non-increasing and the cost is bounded below

by zero and thus has a non-negative limit. Therefore as q → ∞ the difference of cost ΔJq(k) →
0 such that the Jq(k) → J∗(k). Because R > 0, as ΔJq(k) → 0 the updates of the inputs
ΔUq−1(k) → 0 as q → ∞, and the solution of the optimisation problem Uq(k) converges to a
solution Ū(k). Depending on the cost function employed by the distributed controllers, Ū(k)
can converge to U∗(k) (see Section 3.1).

B. Proof of Theorem 1

Proof. First it is shown that the input and the true plant state converge to the origin, and then
it will be shown that the origin is an stable equilibrium point for the closed-loop system. The
combination of convergence and stability gives asymptotic stability.
Convergence. Convergence of the state and input to the origin can be established by showing
that the sequence of cost values is non-increasing.
Showing stability of the closed-loop system follows standard arguments for the most part
Mayne et al. (2000), Primbs & Nevistic (2000). In the following, we describe only the most
important part for brevity, which considers the nonincreasing property of the value function.
The proof in this section is closely related to the stability proof of the FC-MPC method in
Venkat et al. (2008).
Let q(k) and q(k+ 1) stand for iteration number of Algorithm 1 at time k and k+ 1 respectively.
Let J(k) = J (x(k), U(k), A) and J(k + 1) = J (x(k + 1), U(k + 1), A) denote the cost value
associated with the final combined solution at time k and k + 1. At time k + 1, let Jl(k +

1) = J
(

x(k + 1), Uq
j∈Nl

(k), Uq−1
j∈I−Nl

(k), A
)

denote the global cost associated with solution of
subsystem l at iterate q.
The global cost function J (x(k), U(k)) can be used as a Lyapunov function of the system, and
its non-increasing property can be shown following the chain

J (x(k + 1), U(k + 1), A) ≤ · · · ≤ J (x(k + 1), Uq(k + 1), A) ≤ · · ·
· · · ≤ J

(
x(k + 1), U1(k + 1), A

)
≤ J (x(k), U(k), A)− x(k)T Qx(k)− u(k)TRu(k)
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Ũq

j∈N1
(k) · · ·Uq−1

j∈Nm
(k)

]
· · ·

αj∈Nm

[
Uq−1

j∈N1
(k) · · · Ũq
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The inequality J (x(k + 1), Uq(k + 1), A) ≤ J
(

x(k + 1), Uq−1+(k + 1), A
)

is consequence of
Lemma 1. Using this inequality we can trace back to q = 1

J (x(k + 1), U(k + 1), A) ≤ · · · ≤ J (x(k + 1), Uq(k + 1), A) ≤ · · ·
· · · ≤ J

(
x(k + 1), U1(k + 1), A

)
.

At time step q = 1, we can recall the initial feasible solution U0(k + 1). At this iteration,
the distributed MPC optimizes the cost function with respect the local variables starting from
U0(k + 1), therefore ∀l = 1, . . . , m

J
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(k), U0
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∑
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x(k + i, kT Qx(k + i, k) + u(k + i, k)TRu(k + i, k)

≤ J (x(k), U(k), A)− x(k)T Qx(k)− u(k)TRu(k)

Due to the convexity of J and the convex combination up date (Step 2.c of Algorithm 1), we
obtain

J
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x(k), U1(k), A
)
≤

m

∑
l=1

αl J
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x(k + 1), U1
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(k), U0
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(32)

then,

J
(

x(k), U1(k), A
)
≤

m

∑
l=1

αl

[
J (x(k), U(k), A)− x(k)T Qx(k)− u(k)TRu(k)

]
,

≤ J (x(k), U(k), A)− x(k)T Qx(k)− u(k)T Ru(k).

Subtracting J∗(k) from J∗(k + 1)

J∗(k + 1)− J∗(k) ≤ −x(k)T Qx(k)− u(k)TRu(k) ∀k. (33)

This shows that the sequence of optimal cost values {J∗(k)} decreases along closed-loop
trajectories of the system. The cost is bounded below by zero and thus has a non–negative
limit. Therefore as k → ∞ the difference of optimal cost ΔJ∗(k + 1) → 0. Because Q and R
are positive definite, as ΔJ∗(k + 1) → 0 the states and the inputs must converge to the origin
x(k) → 0 and u(k) → 0 as k → ∞.
Stability. Using the QP form of (6), the feasible cost at time k = 0 can be written as follows
J(0) = x(0)T Q̄x(0), where Q̄ is the solution of the Lyapunov function for dynamic matrix
Q̄ = ATQA + Q.
From equation (33) it is clear that the sequence of optimal costs {J∗(k)} is non-increasing,
which implies J∗(k) ≤ J∗(0) ∀k > 0. From the definition of the cost function it follows that
xT(k)Qx(k) ≤ J∗(k) ∀k, which implies

xT(k)Qx(k) ≤ x(0)T Q̄x(0) ∀k.

Since Q and Q̄ are positive definite it follows that

�x(k)� ≤ γ �x(0)� ∀k > 0
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where

γ =

√
λmax(Q̄)

λmin(Q)
.

Thus, the closed-loop is stable. The combination of convergence and stability implies that the
origin is asymptotically stable equilibrium point of the closed-loop system.

C. Proof of Theorem 2

Proof. The optimal solution of the distributed control system with communications faults is
given by

Ũ(k) = (I −K0RCT )−1 K1RCT Γx(k). (34)

Using the matrix decomposition technique, it gives

(I −K0RCT )−1 = (I −K0)
−1

(
2I −

[
I + (I −K0)

−1

(I +K0 − 2K0RCT )]−1
)
+ (I −K0)

−1

In general (I −K0)
−1 and (I +K0 − 2K0RCT )−1 all exist, therefore the above equation

holds. Now, from (34) we have K1Γx(k) = (I −K0)U(k), then Ũ(k) can be written as a
function of the optimal solution U(k) as follows

Ũ(k) = (S + I)U(k)

where S = 2I −
[

I + (I −K0)
−1 (I +K0 − 2K0RCT )

]−1
.

The cost function of the system free of communication faults J∗ can be written as function of
U(k) as follows

J∗ =
∥∥∥K−1

1 (I −K0)U(k)−HU(k)
∥∥∥

2

Q
+ �U(k)�2

R = �U(k)�2
F (35)

where

F =
(
K−1

1 (I −K0)−H
)T

Q
(
K−1

1 (I −K0)−H
)
+ R.

In the case of the system with communication failures we have

J̃ ≤ J∗ + �U(k)�2
W (36)

where W = ST (HTQH+ R
) S . Finally, the effect of communication can be related with J∗

through

�U(k)�2
W ≤ �W�

λmin(F )
J∗ , (37)

where λmin denotes the minimal eigenvalue of F . From the above derivations, the relationship
between J̃ and J∗ is given by

J̃ ≤
(

1 +
�W�

λmin(F )

)
J∗ . (38)

and the degradation is
J̃ − J∗

J∗ ≤ �W�
λmin(F )

. (39)
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Due to the convexity of J and the convex combination up date (Step 2.c of Algorithm 1), we
obtain

J
(

x(k), U1(k), A
)
≤

m

∑
l=1

αl J
(

x(k + 1), U1
j∈Nl

(k), U0
j∈I−Nl

(k), A
)

(32)

then,

J
(

x(k), U1(k), A
)
≤

m

∑
l=1

αl

[
J (x(k), U(k), A)− x(k)T Qx(k)− u(k)TRu(k)

]
,

≤ J (x(k), U(k), A)− x(k)T Qx(k)− u(k)T Ru(k).

Subtracting J∗(k) from J∗(k + 1)

J∗(k + 1)− J∗(k) ≤ −x(k)T Qx(k)− u(k)TRu(k) ∀k. (33)

This shows that the sequence of optimal cost values {J∗(k)} decreases along closed-loop
trajectories of the system. The cost is bounded below by zero and thus has a non–negative
limit. Therefore as k → ∞ the difference of optimal cost ΔJ∗(k + 1) → 0. Because Q and R
are positive definite, as ΔJ∗(k + 1) → 0 the states and the inputs must converge to the origin
x(k) → 0 and u(k) → 0 as k → ∞.
Stability. Using the QP form of (6), the feasible cost at time k = 0 can be written as follows
J(0) = x(0)T Q̄x(0), where Q̄ is the solution of the Lyapunov function for dynamic matrix
Q̄ = ATQA + Q.
From equation (33) it is clear that the sequence of optimal costs {J∗(k)} is non-increasing,
which implies J∗(k) ≤ J∗(0) ∀k > 0. From the definition of the cost function it follows that
xT(k)Qx(k) ≤ J∗(k) ∀k, which implies

xT(k)Qx(k) ≤ x(0)T Q̄x(0) ∀k.

Since Q and Q̄ are positive definite it follows that

�x(k)� ≤ γ �x(0)� ∀k > 0
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where

γ =

√
λmax(Q̄)

λmin(Q)
.

Thus, the closed-loop is stable. The combination of convergence and stability implies that the
origin is asymptotically stable equilibrium point of the closed-loop system.

C. Proof of Theorem 2

Proof. The optimal solution of the distributed control system with communications faults is
given by

Ũ(k) = (I −K0RCT )−1 K1RCT Γx(k). (34)

Using the matrix decomposition technique, it gives

(I −K0RCT )−1 = (I −K0)
−1

(
2I −

[
I + (I −K0)

−1

(I +K0 − 2K0RCT )]−1
)
+ (I −K0)

−1

In general (I −K0)
−1 and (I +K0 − 2K0RCT )−1 all exist, therefore the above equation

holds. Now, from (34) we have K1Γx(k) = (I −K0)U(k), then Ũ(k) can be written as a
function of the optimal solution U(k) as follows

Ũ(k) = (S + I)U(k)

where S = 2I −
[

I + (I −K0)
−1 (I +K0 − 2K0RCT )

]−1
.

The cost function of the system free of communication faults J∗ can be written as function of
U(k) as follows

J∗ =
∥∥∥K−1

1 (I −K0)U(k)−HU(k)
∥∥∥

2

Q
+ �U(k)�2

R = �U(k)�2
F (35)

where

F =
(
K−1

1 (I −K0)−H
)T

Q
(
K−1

1 (I −K0)−H
)
+ R.

In the case of the system with communication failures we have

J̃ ≤ J∗ + �U(k)�2
W (36)

where W = ST (HTQH+ R
) S . Finally, the effect of communication can be related with J∗

through

�U(k)�2
W ≤ �W�

λmin(F )
J∗ , (37)

where λmin denotes the minimal eigenvalue of F . From the above derivations, the relationship
between J̃ and J∗ is given by

J̃ ≤
(

1 +
�W�

λmin(F )

)
J∗ . (38)

and the degradation is
J̃ − J∗

J∗ ≤ �W�
λmin(F )

. (39)
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Inspection of (36) shows that �W� depends on R and T . So in case of all communication
failures existed, �W� can arrive at the maximal value

Wmax =

(
2I −

[
I + (I −K0)

−1 (I +K0)
]−1

)T (
HTQH+ R

)

(
2I −

[
I + (I −K0)

−1 (I +K0)
]−1

)
,

and the upper bound of performance deviation is

J̃ − J∗
J∗ ≤ �Wmax�

λmin(F )
. (40)
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1. Introduction 
Model predictive control (MPC) refers to the class of computer control algorithms in which a 
dynamic process model is used to predict and optimize process performance. Since its lower 
request of modeling accuracy and robustness to complicated process plants, MPC for linear 
systems has been widely accepted in the process industry and many other fields. But for 
highly nonlinear processes, or for some moderately nonlinear processes with large operating 
regions, linear MPC is often inefficient. To solve these difficulties, nonlinear model 
predictive control (NMPC) attracted increasing attention over the past decade (Qin et al., 
2003, Cannon, 2004). Nowadays, the research on NMPC mainly focuses on its theoretical 
characters, such as stability, robustness and so on, while the computational method of 
NMPC is ignored in some extent. The fact mentioned above is one of the most serious 
reasons that obstruct the practical implementations of NMPC.  
Analyzing the computational problem of NMPC, the direct incorporation of a nonlinear 
process into the linear MPC formulation structure may result in a non-convex nonlinear 
programming problem, which needs to be solved under strict sampling time constraints and 
has been proved as an NP-hard problem (Zheng, 1997). In general, since there is no accurate 
analytical solution to most kinds of nonlinear programming problem, we usually have to 
use numerical methods such as Sequential Quadric Programming (SQP) (Ferreau et al., 2006) 
or Genetic Algorithm (GA) (Yuzgec et al., 2006). Moreover, the computational load of NMPC 
using numerical methods is also much heavier than that of linear MPC, and it would even 
increase exponentially when the predictive horizon length increases. All of these facts lead 
us to develop a novel NMPC with analytical solution and little computational load in this 
chapter. 
Since affine nonlinear system can represents a lot of practical plants in industry control, 
including the water-tank system that we used to carry out the simulations and experiments, 
it has been chosen for propose our novel NMPC algorithm. Follow the steps of research 
work, the chapter is arranged as follows:  
In Section 2, analytical one-step NMPC for affine nonlinear system will be introduced at first, 
then, after description of the control problem of a water-tank system, simulations will be 
carried out to verify the result of theoretical research. Error analysis and feedback 
compensation will be discussed with theoretical analysis, simulations and experiment at last. 
Then, in Section 3, by substituting reference trajectory for predicted state with stair-like 
control strategy, and using sequential one-step predictions instead of the multi-step 
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prediction, the analytical multi-step NMPC for affine nonlinear system will be proposed. 
Simulative and experimental control results will also indicate the efficiency of it. The 
feedback compensation mentioned in Section 2 is also used to guarantee the robustness to 
model mismatch.  
Conclusion and further research direction will be given at last in Section 4. 

2. One-step NMPC for affine system 
2.1 Description of NMPC for affine system 
Consider a time-invariant, discrete, affine nonlinear system with integer k representing the 
current discrete time event: 

 k+1 k k k kx =f(x )+g(x )×u +ξ   (1a) 

 s. t. n
kx X R     (1b) 

 m
ku U R    (1c) 

 n
kξ R   (1d) 

In the above, k k ku ,x ,ξ  are input, state and disturbance of the system respectively, 
n nf:R R , n n×mg:R R are corresponding nonlinear mapping functions with proper 

dimension.  
Assume k+j|kx̂ are predictive values of k+jx at time k, k k k-1Δu =u -u  and k+j|kˆΔu are the 
solutions of future increment of k+ju at time k, then the objective function kJ  can be written 
as follow: 

 
p-1

k k+p|k k+j|k k+j|k
j=0

ˆ ˆJ =F(x )+ G(x ,Δu )  (2) 

The function F (.) and G (. , .) represent the terminal state penalty and the stage cost 
respectively, where p is the predictive horizon.  
In general, kJ  usually has a quadratic form. Assume k+j|kw  is the reference value of k jx   at 

time k which is called reference trajectory (the form of k j|kw   will be introduced with detail 

in Section 2.2 and 3.1 for one-step NMPC and multi-step NMPC respectively), semi-positive 
definite matrix Q and positive definite matrix R are weighting matrices, (2) now can be 
written as : 

 
p p 12 2

k k j|k k j|k k j|kQ Rj 1 j 0
ˆJ x w u



  
 

       (3) 

Corresponding to (1) and (3), the NMPC for affine system at each sampling time now is 
formulated as the minimization of kJ , by choosing the increments sequence of future 
control input k|k k 1|k k p 1|k[ u u u ]     , under constraints (1b) and (1c).  
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By the way, for simplicity, In (3), part of kJ  is about the system state kx , if the output of the 
system  k ky Cx , which is a linear combination of the state (C is a linear matrix), we can 
rewrite (3) as follow to make an objective function kJ  about system output: 

 
p p 12 2

k k j|k k j|k k j|kQ Rj 1 j 0
ˆJ Cx w u



  
 

    
p p 12 2

k j|k k j|k k j|kQ Rj 1 j 0
ŷ w u



  
 

      (4) 

And sometimes, k j|ku   in kJ  could also be changed as k j|ku   to meet the need of practical 
control problems. 

2.2 One-step NMPC for affine system 
Except for some special model, such as Hammerstein model, analytic solution of multi-step 
NMPC could not be obtained for most nonlinear systems, including the NMPC for affine 
system mentioned above in Section 2.1. But if the analytic inverse of system function exists 
(could be either state-space model or input-state model), the one-step NMPC always has the 
analytic solution. So all the research in this chapter is not only suitable for affine nonlinear 
system, but also suitable for other nonlinear systems, that have analytic inverse system 
function. 
Consider system described by (1a-1d) again, the one-step prediction can be deduced directly 
as follow with only one unknown data k|k k|k k 1u u u     at time k: 

 1
k 1|k k k k|k k k k 1 k k|k k 1|k k k|kˆ ˆx f(x ) g(x ) u f(x ) g(x ) u g(x ) u x g(x ) u                (5) 

In (5), 1
k 1|kx̂  means the part which contains only known data ( kx and k-1u ) at time k, and 

k k|kg(x ) u  is the unknown part of predictive state k 1|kx̂  . 
If there is no model mismatch, the predictive error of (5) will be k 1|k k 1 k 1|k k 1ˆx x x ξ      . 

Especially, if k  is a stationary stochastic noise with zero mean and variance 2
kE[ ]   , it is 

easy known that k 1|kE[x ] 0  , and T 2
k 1|k k 1|k k 1|k k 1|kE[(x E[x ]) (x E[x ])] n           , in 

another word, both the mean and the variance of the predictive error have a minimum 
value, so the prediction is an optimal prediction here in (5).  
Then if the setpoint is spx , and to soften the future state curve, the expected state value at 
time k+1 is chosen as k 1|k k spw x (1 )x      , where [0,1)  is called soften factor, thus 
the objective function of one-step NMPC can be written as follow: 

 
2 2

k k 1|k k 1|k k|kQ R
ˆJ x w u      (6)  

To minimize kJ without constraints (1b) and (1c),  we just need to have k

k|k

J 0
u





 and 

2
k
2
k|k

J 0
u





,  then: 

 T 1 1
k|k k k k k 1|k k 1|kˆu (g(x ) Q g(x ) R) (g(x ) Q (x w ))

            (7) 
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prediction, the analytical multi-step NMPC for affine nonlinear system will be proposed. 
Simulative and experimental control results will also indicate the efficiency of it. The 
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Conclusion and further research direction will be given at last in Section 4. 
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 m
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 n
kξ R   (1d) 
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p-1

k k+p|k k+j|k k+j|k
j=0

ˆ ˆJ =F(x )+ G(x ,Δu )  (2) 
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p p 12 2

k k j|k k j|k k j|kQ Rj 1 j 0
ˆJ x w u



  
 

       (3) 

Corresponding to (1) and (3), the NMPC for affine system at each sampling time now is 
formulated as the minimization of kJ , by choosing the increments sequence of future 
control input k|k k 1|k k p 1|k[ u u u ]     , under constraints (1b) and (1c).  
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p p 12 2
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  
 

    
p p 12 2

k j|k k j|k k j|kQ Rj 1 j 0
ŷ w u



  
 

      (4) 
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Mark T
k kH g(x ) Q g(x ) R     and 1

k k 1|k k 1|kˆF g(x ) Q (w x )     , so the increment of 
instant future input is: 

 1
k|ku H F     (8) 

But in practical control problem, limitations on input and output always exist, so the result 
of (8) is usually not efficient. To satisfy the constraints, we can just put logical limitation on 
amplitudes of ku  and kx , or some classical methods such as Lagrange method could be 
used. For simplicity, we only discuss about the Lagrange method here in this chapter. 
First, suppose every constraint in (1b) and (1c) could be rewritten in the form as 

T
i k|k ia u b  , i 1,2, q  , then the matrix form of all constraints is: 

 k|kA u B    (9) 

In which, 
TT T T

1 2 qA a a ... a   
T

1 2 qB b b ... b    . 

Choose Lagrange function as T T
k i k i i k|k iL ( ) J (a u b )      , i 1,2, q  , let 

k|k i i
k|k

L H u F a 0
u


     


 and T
i k|k i

i

L a u b 0
   


, then: 

 1
k|k i iu H (F a )       (10a) 

 
T 1
i i

i T 1
i i

a H F b
a H a






     (10b) 

If i 0  in (10b), means that the corresponding constraint has no effect on k|ku , we can 
choose i 0  , but if i 0   in (10b), the corresponding constraint has effect on ku  indeed, 
so we must choose i i   , finally, the solution of one-step NMPC with constraints  could 
be: 

 1 T
k|ku H (F A )       (11) 

In which, 
T

1 2 q        

2.3 Control problem of the water-tank system 
Our plant of simulations and experiments in this chapter is a water-tank control system as 
that in Fig. 1. and Fig. 2. (We just used one water-tank of this three-tank system). Its affine 
nonlinear model is achieved by mechanism modeling (Chen et al., 2006), in which the 
variables are normalized, and the sample time is 1 second here:  

 k 1 k k kx x 0.2021 x 0.01923u      (12a) 

  s. t. kx [0%,100%]   (12b) 
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 ku [0%,100%]   (12c) 

In (12), kx  is the height of water in the tank, and ku  is the velocity of water flow into the 
tank, from pump P1 and valve V1, while valve V2 is always open. In the control problem of 
the water-tank, for convenience, we choose the system state as the output, that means  

k ky x , and the system functions are k k kf(x ) x 0.2021 x   and kg(x ) 0.01923 . 
 

 
Fig. 1. Photo of the water-tank system 
 

 
Fig. 2. Structure of the water-tank system 

To change the height of the water level, we can change the velocity of input flow, by 
adjusting control current of valve V1, and the normalized relation between the control 
current and the velocity ku  is shown in Fig. 3. 
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Fig. 3. The relation between control current and input ku  

2.4 One-step NMPC of the water-tank system and its feedback compensation 
Choose objective function 2 2

k k 1|k k 1|k k|kˆJ (x w ) 0.001 u     , spx 30% and soften 

factor 0.95  , to carry out all the simulations and the experiment in this section. (except for 
part of Table 1., where we choose 0.975  ) 
Suppose there is no model mismatch, the simulative control result of one-step NMPC for 
water-tank system is obtained as Fig. 4. and it is surely meet the control objective. 
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70%
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u

time(sec)  
Fig. 4. Simulation of one-step NMPC without model mismatch and feedback compensation 

To imitate the model mismatch, we change the simulative model of the plant from 

k 1 k k kx x 0.2021 x 0.01923u     to  k 1 k k kx x 110% 0.2021 x 90% 0.01923u      , but 

still use k 1 k k kx x 0.2021 x 0.01923u     to be the predictive model in one-step NMPC, 

the result in Fig. 5. now indicates that there is obvious steady-state error. 
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Fig. 5. Simulation of one-step NMPC with model mismatch but without feedback 
compensation 

Proposition 1: For affine nonlinear system k 1 k k kx f (x ) g (x ) u     , if the setpoint is spx , 
steady-state is su  and sx , and the predictive model is k 1 k k kx f(x ) g(x ) u    , without 
consideration of constraints, the steady-state error of one-step NMPC is 

s s s s s
s sp

(f (x ) f(x )) (g (x ) g(x )) ue x x
1

    
  

 
, in which   is the soften factor. 

Proof: If the system is at the steady-state, then we have k 1 k sx x x    and k 1 k su u u   . 
Since k 1 k su u u   , so ku 0  , from (8), we know matrix F=0, or equally 

1
k 1|k k 1|kˆ(w x ) 0   . 

Update the process of one-step NMPC at time k, we have: 

 k 1|k k sp s spw x (1 )x x (1 )x             (13) 

  1
k 1|k k k k 1 s s sx̂ f(x ) g(x ) u f(x ) g(x ) u         (14) 

(13)-(14), and notice that s s s sx f (x ) g (x ) u     for steady-state, we get: 

0 s sp s s s s s s s sp sx (1 )x f(x ) g(x ) u x f(x ) g(x ) u (1 )x (1 )x                   

s s s s s sp s(f (x ) f(x )) (g (x ) g(x )) u (1 ) (x x )            

So: 

 s s s s s
s sp

(f (x ) f(x )) (g (x ) g(x )) ue x x
1

    
  

 
  (15) 

Proof end. 
Because the soften factor [0,1) , thus 1 0   always holds, the necessary condition for 
e 0  is s s s s s(f (x ) f(x )) (g (x ) g(x )) u 0      . When there is model mismatch, there will be 
steady-state error, while this error is independent of weight matrix Q and dependent of the 
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Fig. 3. The relation between control current and input ku  
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1

    
  

 
  (15) 

Proof end. 
Because the soften factor [0,1) , thus 1 0   always holds, the necessary condition for 
e 0  is s s s s s(f (x ) f(x )) (g (x ) g(x )) u 0      . When there is model mismatch, there will be 
steady-state error, while this error is independent of weight matrix Q and dependent of the 
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soften factor  . For corresponding discussion on steady-state error of one-step NMPC with 
constraints, the only difference is (11) will take the place of (8) in the proof.  
Table 1. is the comparison on s spe x x   between simulation and theoretical analysis, and 
they have the same result. (simulative model k 1 k k kx x 110% 0.2021 x 90% 0.01923u      , 
predictive  model k 1 k k kx x 0.2021 x 0.01923u    ) 
 

  Q  s spe x x   
Simulation(%) 

s spe x x   
Value of (15)(%) 

0.975 
0 -8.3489 -8.3489 

0.001 -8.3489 -8.3489 
0.01 -8.3489 -8.3489 

0.95 
 

0 -4.5279 -4.5279 
0.001 -4.5279 -4.5279 
0.01 -4.5279 -4.5279 

Table 1. Comparison on s spe x x   between simulation and theoretical analysis 

From (15) we know, we cannot eliminate this steady-state error by adjusting  , so feedback 
compensation could be used here, mark the predictive error ke  at time k as follow: 

  1
k k k|k 1 k k|k 1 k 1 k 1ˆ ˆe x x x (x g(x ) u )           (16) 

In which, kx  is obtained by system feedback at time k, and k|k 1x̂   is the predictive value of 
kx  at time k-1. 

Then add ke  to the predictive value of k 1x   at time k directly, so (5) is rewritten as follow: 

 1
k 1|k k k k 1 k k|k k k 1|k k k|k kˆ ˆx f(x ) g(x ) u g(x ) u e x g(x ) u e               (17) 

Use this new predictive value to carry out one-step NMPC, the simulation result in Fig. 6. 
verify its robustness under model mismatch, since there is no steady-state error with this 
feedback compensation method. 
The direct feedback compensation method above is easy to understand and carry out, but it 
is very sensitive to noise. Fig. 7. is the simulative result of it when there is noise add to the 
system state, we can see that the input vibrates so violently, that is not only harmful to the 
actuator in practical control system, but also harmful to system performance, because the 
actuator usually cannot always follow the input signal of this kind. 
To develop the character of feedback compensation, simply, we can use the weighted 
average error ke  instead of single ke  in (17): 

 
s

1
k 1|k k 1|k k k|k i k 1 i

i 1
ˆ ˆx x g(x ) u h e   


      1

k 1|k k k|k kx̂ g(x ) u e     , 
s

i
i 1

h 1


  (18) 

Choose i 20 , ih 0.05 , the simulative result is shown in Fig. 8. Compared with Fig. 7. it 
has almost the same control performance, but the input is much more smooth now. Using 
the same method and parameters, experiment has been done on the water-tank system, the 
result in Fig. 9. also verifies the efficiency of the proposed one-step NMPC for affine systems 
with feedback compensation. 
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Fig. 9. Experiment of one-step NMPC with setpoint spx 30%  
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3. Efficient multi-step NMPC for affine system 
Since reference trajectory and stair-like control strategy will be used to establish efficient 
multi-step NMPC for affine system in this chapter, we will introduce them in Section 3.1 and 
3.2 at first, and then, the multi-step NMPC algorithm will be discussed with theoretical 
research, simulations and experiments. 

3.1 Reference trajectory for future state 
In process control, the state usually meets the objective in the form of setpoint along a softer 
trajectory, rather than reach the setpoint immediately in only one sample time. This may 
because of the limit on control input, but a softer change of state is often more beneficial to 
actuators, even the whole process in practice. This trajectory, usually called reference 
trajectory, often can be defined as a first order exponential curve: 

 k j|k k j 1|k spw w (1 )x , j 1,2, ,p 1          (19) 

In which, spx  still denotes the setpoint, [0,1) is the soften factor, and the initial value of 

the trajectory is k|k kw x .The value of   determines the speed of dynamic response and 
the curvature of the trajectory, the larger it is, the softer the curve is. Fig. 10. shows different 
trajectory with different  . Generally speaking, suitable   could be chosen based on the 
expected setting time in different practical cases. 
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Fig. 10. Reference trajectory with different soften factor   

3.2 Stair-like control strategy 
To lighten the computational load of nonlinear optimization, which is one of the biggest obstacles 
in NMPC’s application, stair-like control strategy is introduced here. Suppose the first unknown 
control input’s increment k k k 1u u u      , and the stair coefficient   is a positive real 
number, then the future control input’s increment can be decided by the following expression: 

 j j
k j k j 1 ku u u , j 1,2, ,p 1                   (20) 
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research, simulations and experiments. 
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trajectory, rather than reach the setpoint immediately in only one sample time. This may 
because of the limit on control input, but a softer change of state is often more beneficial to 
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the trajectory is k|k kw x .The value of   determines the speed of dynamic response and 
the curvature of the trajectory, the larger it is, the softer the curve is. Fig. 10. shows different 
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expected setting time in different practical cases. 
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Fig. 10. Reference trajectory with different soften factor   

3.2 Stair-like control strategy 
To lighten the computational load of nonlinear optimization, which is one of the biggest obstacles 
in NMPC’s application, stair-like control strategy is introduced here. Suppose the first unknown 
control input’s increment k k k 1u u u      , and the stair coefficient   is a positive real 
number, then the future control input’s increment can be decided by the following expression: 

 j j
k j k j 1 ku u u , j 1,2, ,p 1                   (20) 
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Instead of the full future sequence of control input’s increment: k k 1 k p 1[ u u u ]     , 
which has p independent variables. Using this strategy, in multi-step NMPC, it now need 
only compute ku .  The computational load now is independent of the length of predictive 
horizon, which is very convenient for us to choose long predictive horizon in NMPC to 
obtain a better control performance (Zheng et al., 2007). 
Since the dynamic optimization process will be repeated at every sample time, and only 
instant input k k-1 ku u u    will be carried out actually in NMPC, this strategy is efficient 
here. In the strategy, it supposes the future increase of control input will be in a same 
direction, which is the same as the experience in control practice of the human beings, and 
prevents the frequent oscillation of the input, which is very harmful to the actuators in real 
control plants. Fig. 11. shows the input sequences with different . 

3.3 Multi-step NMPC for affine system 
The one-step NMPC in Section 2 is simple and fast, but it also has one fatal disadvantage.  
Its predictive horizon is only one step, while long predictive horizon is usually needed for 
better performance in MPC algorithms. One-step prediction may lead overshooting or other 
bad influence on system’s behaviour. So we will try to establish a novel efficient multi-step 
NMPC based on proposed one-step NMPC in this section. 
In this multi-step NMPC algorithm, the first step prediction is the same as (5), then follows 
the prediction of k 1|kx̂   in (5), the one-step prediction of k j|kx̂ , j 2,3, ,p    could be 

obtained directly: 
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Fig. 11. Stair-like control strategy 

 
Efficient Nonlinear Model Predictive Control for Affine System 

 

103 

 k j|k k j 1|k k j 1|k k j 1|kˆ ˆ ˆx f(x ) g(x ) u           (21) 

Since k j 1|kx̂    already contains nonlinear function of former data, one may not obtain the 

analytic solution of (21) for prediction more than one step. Take the situation of j=2 for 
example: 

 k 2|k k 1|k k 1|k k 1|kˆ ˆ ˆx f(x ) g(x ) u      k k k|k k k k|k k 1|kf(f(x ) g(x ) u ) g(f(x ) g(x ) u ) u        (22) 

For most nonlinear f(.) and g(.), the embedding form above makes it impossible to get an 
analytic solution of k 1u   and further future input. So, using reference trajectory, we 
modified the one-step predictions when j 2  as follow: 

 k j|k k j 1|k k j 1|k k j 1x̂ f(w ) g(w ) u        
j 1

k j 1|k k j 1|k k 1 k i|k
i 0

f(w ) g(w ) (u u )


     


      (23) 

Using the stair-like control strategy, mark k|ku   , (23) can be transformed as: 

j 1
i

k j|k k j 1|k k j 1|k k 1
i 0

x̂ f(w ) g(w ) (u )


     


        

j 1
i

k j 1|k k j 1|k k 1 k j 1|k
i 0

f(w ) g(w ) u g(w )


      


        

 
j 1

1 i
k j|k k j 1|k

i 0
x̂ g(w )



  


       (24) 

Here, 1
k j|kx̂   contains only the known data at time k, while the other part is made up by the 

increment of future input, thus the unknown data are separated linearly by (24), so the 
analytic solution of   can be achieved. 
For j 1,2, ,p  , write the predictions in the form of matrix: 
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Instead of the full future sequence of control input’s increment: k k 1 k p 1[ u u u ]     , 
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obtained directly: 
 
 
 
 
 

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

time

u

beta=2
beta=1
beta=0.5
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Here, 1
k j|kx̂   contains only the known data at time k, while the other part is made up by the 

increment of future input, thus the unknown data are separated linearly by (24), so the 
analytic solution of   can be achieved. 
For j 1,2, ,p  , write the predictions in the form of matrix: 

    

k 1|k

k 2|k
k

k p|k

x̂
x̂

X̂

x̂







 
 
   
 
  



1
k 1|k
1
k 2|k1

k

1
k p|k

x̂

x̂
X

x̂







 
 
 

  
 
 
 



k 1|k

k 2|k
k

k p|k

w
w

W

w







 
 
   
 
  

   

k|k

k 1|k
k

p 1
k p 1|k

u
u

U

u




 

   
           
  

       

  

 

    

k|k k

k 1|k k 1|k
k

k p 1|k k p 1|k k p 1|k

g(w ) g(x ) 0 0
g(w ) g(w ) 0

S

g(w ) g(w ) g(w )

 

     

 
 
   
 
  




   


1

2 2

p p p

s 0 0
s s 0

s s s

 
 
   
 
  




   


 



  
Advanced Model Predictive Control 

 

104 

 

1

2
k k k

p 1
p

s
s (1 )

S U S

s (1 )

 
         
 

      





 (25) 
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the control solution of multi-step prediction is then obtained. Especially for single input 
problem, with objective function T T
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At last, the instant input k|k k 1u u     can be carried out actually. As mentioned in 
Section 2, and if the model mismatch can be seen as time-invariant in p sample time (usually 
satisfied in the case of steady state in practice), to maintain the robustness, ke  or ke  can be 
also added to every prediction as mentioned in (17) and (18): 

k 1|k k k k|k kx̂ f(x ) g(x ) u e      

 k j|k k j 1|k k j 1|k k j 1|k kx̂ f(w ) g(w ) u e , j 2,3, ,p             (27) 

Though there are approximate predictions in the novel NMPC which may take in some 
inaccuracy, the feedback compensation mentioned above and the new optimization process 
at every sample time will eliminate the error before its accumulation, to keep the efficiency 
of the algorithm. The constraints also could be handled by methods mentioned Section 2 or 
by other numerical optimizing algorithm, thus we would not discuss about it here again. 

3.4 Multi-step NMPC of the water-tank system 
Choose 0.975  , 0.5  , r 0.005 , spx 60%or30% and predictive horizon p 10  to carry 
out simulations. Still use the different plant model and predictive model as that of Fig. 5. and 
Fig. 6. to imitate the model mismatch, the result in Fig. 12. and Fig. 13. shows the efficiency and 
robustness of this efficient multi-objective NMPC. 
Choose 0.975  , 0.5  , r 0.005 , spx 60%  to carry out experiments. Comparing 
control result between one-step NMPC and multi-step NMPC in Fig. 14. and Fig. 15., we can 
see the obvious developments on both input and output of the water-tank system when 
longer predictive horizon is used. It also verifies the efficiency of proposed novel multi-step 
NMPC algorithm. At last, Fig. 16. is the satisfactory performance of the efficient multi-step 
NMPC under disturbance (we open an additional outlet valve of the tank for 20 seconds). 
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Fig. 14. Experiment of one-step NMPC with setpoint spx 60%  (Overshooting exists when 
setpoint is higher than Fig. 9.) 
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Fig. 15. Experiment of one-step NMPC with setpoint spx 60%  (p=10 and and No 
overshooting) 
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Fig. 16. Experiment of one-step NMPC under disturbance 

4. Conclusion and acknowledgement 
Using a series of approximate one-step predictions instead of  the traditional multi-step 
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1. Introduction 
Model predictive control (MPC) is a control method (or group of control methods) which 
make explicit use of a model of the process to obtain the control signal by minimizing an 
objective function. Control law is easy to implement and requires little computation, its 
derivation is more complex than that of the classical PID controllers. The main benefit of 
MPC is its constraint handling capacity: unlike most other control strategies, constraints on 
inputs and outputs can be incorporated into the MPC optimization (Camacho, E., 2004). 
Another benefit of MPC is its ability to anticipate to future events as soon as they enter the 
prediction horizon. The implementation supposes good knowledge of system for the 
purpose of model creation using the system identification. Modeling and identification as a 
methodology dates back to Galileo (1564-1642), who also is important as the founder of 
dynamics (Johanson, R., 1993). Identification has many aspects and phases. In our work we 
use the parametric identification of real system using the measured data from control centre. 
For the purpose of identification it is interesting to describe the sought process using input-
output relations. The general procedure for estimation of the process model consists of 
several steps: determination of the model structure, estimation of parameters and 
verification of the model. Finally we can convert the created models to any other usable 
form. This chapter gives an introduction to model predictive control, and recent 
development in design and implementation. The controlled object is an urban tunnel tube. 
The task is to design a control system of ventilation based on traffic parameters, i.e. to find 
relationship between traffic intensity, speed of traffic, atmospheric and concentration of 
pollutants inside the tunnel. Nowadays the control system is designed as tetra - positional 
PID controller using programmable logic controllers (PLC). More information about safety 
requirements for critical processes control is mentioned in the paper (Ždánsky, J., Rástočný, 
K. and Záhradník, J., 2008). The ventilation system should be optimized for chosen criteria. 
Using of MPC may lead to optimize the control way for chosen criteria. Even more we can 
predict the pollution in the tunnel tube according to appropriate model and measured 
values. This information is used in the MPC controller as measured disturbances. By 
introducing predictive control it will be made possible to greatly reduce electric power 
consumption while keeping the degree of pollution within the allowable limit. 
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2. Tunnel ventilation system 
Emissions from cars are determined not only by the way they are built but also by the way 
they are driven in various traffic situations. Various gases are emitted by combustion 
engine. They consist largely of oxides of nitrogen (NOx), carbon monoxide (CO), steam 
(H2O) and particles (opacity). Because of these dangerous gases, it is necessary to provide 
fresh air in longer tunnels. The fresh air which is used to lower the concentration of CO also 
serves to improve visibility. The purpose of ventilation is to reduce the noxious fumes in a 
tunnel to a bearable amount by introducing fresh air. Every tunnel has some degree of 
natural ventilation. But a mechanical ventilation system should have to be installed. In order 
to create air stream, jet fans are installed on the ceiling or side walls of the tunnel. The fans 
take in tunnel air and blow it out at higher speed along the axis of the tunnel. In the tunnel 
is mounted several fans with about hundred kW each. 
The design and industrial implementation of automatic control systems requires powerful 
and economic techniques together with efficient tools. In order to solve a control problem it 
is necessary to first describe somehow the dynamic behaviors of the system to be controlled. 
Traditionally this is done in terms of a mathematical model. Mathematical models are 
mathematical expressions of essential characteristics of an existing system that describe 
knowledge about the system in a usable form. 
Ventilation control system will base on model and sensors information about NOx, opacity, 
velocity, number of vehicles and CO measurements. According to the amounts of pollutants 
in exhaust gas, air flow driven by the vehicles and degree of pollution inside the tunnel, 
optimized operation commands will given to the jet fans. “Optimum” means that pollutant 
concentration is kept within the allowable limit (for CO, 75 ppm or less), and at the same 
time electric power consumption is minimized. Another criterion is also possible, for 
example: number of switching the jet fans. 

2.1 Tunnel description 
The ventilation system in urban tunnel Mrázovka in Prague represents one function unit 
designed as longitudinal ventilation with a central efferent shaft and protection system 
avoiding spread of harmful pollutants into the tunnel surround area. Ventilation is 
longitudinal facing in direction of traffic with air suction at the south opening of the eastern 
tube (ETT) and at the branch B, with air being transferred at the north opening to the 
western tunnel tube (WTT) (Pavelka, M. and Přibyl, P., 2006). The task is to design a control 
system of ventilation based on traffic parameters, i.e. to find relationship between traffic 
intensity, speed of traffic, atmospheric and concentration of pollutants inside the tunnel. To 
do that the eastern tunnel tube (ETT) has been chosen as a model example due to principle 
of mixing polluted air from ETT to WTT (measured concentrations of pollutants in the WTT 
are also influenced by traffic intensity in the ETT).  
To get the required description, the following data has been taken from the tunnel control 
centre: traffic intensity of trucks and cars, their speed, concentrations of CO (carbon 
monoxide), NOx (oxides of nitrogen), OP (opacity-visibility) from the ETT, atmospheric 
pressure etc.  These values are measured by sensors installed inside the tunnel (at five 
different places of the ETT). Traffic parameters are measured at three places, air flow at 
three places and concentrations of NOx and atmospheric pressure in the north portal. 
Traffic intensity is sensed by a camera system and the cars are then counted and sorted by 
categories in database system. More information about monitoring of the traffic can be 
found in (Pirník, R., Čapka, M. and Halgaš, J., 2010). About the security by transferring the 
data is discussed in (Holečko, P., Krbilová, I., 2006). 
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3. Mathematical models for MPC 
Mathematical models are mathematical expressions of essential characteristics of an existing 
or designed system that describe knowledge about the system in a usable form. Turbulence 
inside the tunnel, variety of traffic and atmospherics make the system behavior stochastic. 
To make the models we use the parametric identification. The MATLABs tools allowed a 
conversion between several types of models. The main tasks of system identification were 
the choice of model type and model order. For Single-input Multiple-output discrete time 
linear systems we can write the metrics equation for jet fan characteristics: 
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The “Jet Fan Model” is a model in the MPC format that characterizes effect of ventilator on 
CO concentration, NOx concentration and visibility (opacity). It is a system with 1 input (u) 
and 3 outputs (dilution of CO-Out1, NOx concentration-Out2 and opacity OP-Out3). One of 
the main advantages of predictive control is incorporation of limiting conditions directly to 
the control algorithm. The “Jet Fan Model” characteristics are shown in Fig. 2. 
The “Disturbance Model” is a model of the tunnel tube in state space representation:  

 ( ) ( ) ( ) ( ) ( )ttttt uBxAx ⋅+⋅=
′

 (2) 

( ) ( ) ( ) ( ) ( )ttttt uDxCy ⋅+⋅=  
This model is used to predict the pollutions inside the tunnel tube. These data enter to the 
measured disturbances input (MD) of MPC controller for the purpose of switching the jet 
fans before the limit will be exceeded. 
Created model was validated by several methods (Hrbček, J., 2009).  The purpose of model 
validation is to verify that identified model fulfills the modeling requirements according to 
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longitudinal facing in direction of traffic with air suction at the south opening of the eastern 
tube (ETT) and at the branch B, with air being transferred at the north opening to the 
western tunnel tube (WTT) (Pavelka, M. and Přibyl, P., 2006). The task is to design a control 
system of ventilation based on traffic parameters, i.e. to find relationship between traffic 
intensity, speed of traffic, atmospheric and concentration of pollutants inside the tunnel. To 
do that the eastern tunnel tube (ETT) has been chosen as a model example due to principle 
of mixing polluted air from ETT to WTT (measured concentrations of pollutants in the WTT 
are also influenced by traffic intensity in the ETT).  
To get the required description, the following data has been taken from the tunnel control 
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pressure etc.  These values are measured by sensors installed inside the tunnel (at five 
different places of the ETT). Traffic parameters are measured at three places, air flow at 
three places and concentrations of NOx and atmospheric pressure in the north portal. 
Traffic intensity is sensed by a camera system and the cars are then counted and sorted by 
categories in database system. More information about monitoring of the traffic can be 
found in (Pirník, R., Čapka, M. and Halgaš, J., 2010). About the security by transferring the 
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3. Mathematical models for MPC 
Mathematical models are mathematical expressions of essential characteristics of an existing 
or designed system that describe knowledge about the system in a usable form. Turbulence 
inside the tunnel, variety of traffic and atmospherics make the system behavior stochastic. 
To make the models we use the parametric identification. The MATLABs tools allowed a 
conversion between several types of models. The main tasks of system identification were 
the choice of model type and model order. For Single-input Multiple-output discrete time 
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The “Jet Fan Model” is a model in the MPC format that characterizes effect of ventilator on 
CO concentration, NOx concentration and visibility (opacity). It is a system with 1 input (u) 
and 3 outputs (dilution of CO-Out1, NOx concentration-Out2 and opacity OP-Out3). One of 
the main advantages of predictive control is incorporation of limiting conditions directly to 
the control algorithm. The “Jet Fan Model” characteristics are shown in Fig. 2. 
The “Disturbance Model” is a model of the tunnel tube in state space representation:  
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This model is used to predict the pollutions inside the tunnel tube. These data enter to the 
measured disturbances input (MD) of MPC controller for the purpose of switching the jet 
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Fig. 2. Jet fan characteristics 

 
Fig. 2. Model of the tunnel tube. Out 1 – Concentration of CO, Out 2  –OP-opacity inside the 
tunnel, Out 3 – Concentration of NOx 

subjective and objective criteria of good model approximation. In method “Model and 
parameter accuracy” we compare the model performance and behavior with real data. A 
deterministic simulation can be used, where real data are compared with the model 
response to the recorded input signal used in the identification. This test should ascertain 
whether the model response is comparable to real data in magnitude and response delay. 
 

 
Fig. 3. Model and parameter accuracy test for CO concentrations. Measured data is shown 
by black line and simulated data are shown by gray dashed line. 
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This method showed graphically accuracy between simulated values and measured values. 
Although the simulated and measured data not fit precisely, this result is sufficient for most 
stochastic system like pollution inside the road tunnel. 
An Akaike Final Prediction Error (FPE) for estimated model was also determinate. The 
average prediction error is expected to decrease as the number of estimated parameters 
increase. One reason for this behavior is that the prediction errors are computed for the data 
set that was used for parameter estimation. It is now relevant to ask what prediction 
performance can be expected when the estimated parameters are applied to another data 
set. This test shows the flexibility of the model structure. We are looking for minimum value 
of FPE coefficient. 

4. Model predictive control of ventilation system 
Under the term “Model Predictive Control” we understand a class of control methods that 
have certain characteristic features. MPC refers to a class of computer control algorithms 
that utilize an explicit process model to predict the future response of a plant. From this 
model the future behaviour of the system is predicted over a finite time interval, usually 
called prediction horizon, starting at the current time t. 

4.1 The basic idea of predictive control 
The receding horizon strategy is shown in Fig. 4. 
 

 
Fig. 4. The receding horizon strategy, the basic idea of predictive control. 

The future outputs for a determined horizon N, called the prediction horizon, are predicted 
at each instant t using the process model. These predicted outputs y(t + k|t) 1 for k = 1…N 
depend on the known values up to instant t (past inputs and outputs) and on the future 
control signals u(t+k|t), k = 0... N-1, which are those to be sent to the system and calculated. 
The set of future control signals is calculated by optimizing a determined criterion to keep 
the process as close as possible to the reference trajectory w(t + k) (which can be the setpoint 
itself or a close approximation of it). This criterion usually takes the form of a quadratic 
function of the errors between the predicted output signal and the predicted reference 
trajectory. The control effort is included in the objective function in most cases. An explicit 
solution can be obtained if the criterion is quadratic, the model is linear, and there are no 
constraints; otherwise an iterative optimization method has to be used. Some assumptions 
about the structure of the future control law are also made in some cases, such as that it will 
be constant from a given instant. 
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Although the simulated and measured data not fit precisely, this result is sufficient for most 
stochastic system like pollution inside the road tunnel. 
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average prediction error is expected to decrease as the number of estimated parameters 
increase. One reason for this behavior is that the prediction errors are computed for the data 
set that was used for parameter estimation. It is now relevant to ask what prediction 
performance can be expected when the estimated parameters are applied to another data 
set. This test shows the flexibility of the model structure. We are looking for minimum value 
of FPE coefficient. 
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The control signal u(t|t) is sent to the process whilst the next control signals calculated are 
rejected, because at the next sampling instant y(t+1) is already known and step 1 is repeated 
with this new value and all the sequences are brought up to date. Thus the u(t+1|t+1) is 
calculated ( which in principle will be different from the u(t+1|t) because of the new 
information available) using the receding horizon concept (Camacho, E. F., Bordons, C., 2004). 
The notation indicates the value of the variable at the instant t + k calculated at instant t. 

4.2 Application to real system 
Tunnel ventilation is expected to fulfil the following requirements at least (Godan, J. at 
all. 2001): 
• Concentration of emissions in the tunnel kept within the acceptable limits for the 

monitored harmful pollutants, in consideration of time spent by persons inside the tunnel; 
• Good visibility for through passage of vehicles under polluted air inside the tunnel; 
• Reduction of effects of smoke and heat on persons in the case of vehicle fire; 
• Regulation of dispersion of pollutants in the air caused by petrol fumes from vehicles 

into the surround environment of the tunnel. 
Model Predictive Control (MPC) comes from the late seventies when it became significantly 
developed (Camacho, E. F., Bordons, C., 2004) and several methods were defined. In this 
work we have applied the Dynamic Matrix Control (DMC) method which is one of the most 
spread approaches and creates the base of many commercially available MPC products. It is 
based on the model obtained from the real system:  
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where hi are FIR (Finite Impulse Response) coefficients of the model of the controlled 
system. Predicted values may be expressed: 
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We assume that the additive failure is constant during the prediction horizon: 

 ˆ ˆ ˆ( | ) ( | ) ( ) ( | )md n k n d n n y n y n n+ = = −  (5) 

Response can be decomposed to the component depending on future values of control and 
to the component determined by the system state in time n: 

 ˆ( | ) ( ) ( ),iy n k n h u n k i f n k+ = Δ + − + +  (6) 

where f(n+k) is that component which does not depend on future values of action quantity: 

 ( ) ( ) ( ) ( ).n k i if n k y n h h u n i++ = − − Δ −   (7) 
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Predicted values within the prediction horizon p (usually p>>N) can be arranged to the 
relation (8): 
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where the prediction horizon is k=1...p, with respect to m control actions. Regulation circuit 
is stable if the prediction horizon is long enough. The values may be arranged to the 
dynamic matrix G: 
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and expression used for prediction can be written in the matrix form: 

 ˆ ,y Gu f= +  (10) 

where ŷ is a vector of contributions of action quantity and f are free responses.  
The MATLAB’s Model Predictive Control Toolbox uses linear dynamic modeling tools. We 
can use transfer functions, State-space matrices, or its combination. We can also include 
delays, which are in the real system. The model of the plant is a linear time-invariant system 
described by the equations: 
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where x(k) is the nx -dimensional state vector of the plant, u(k) is the nu-dimensional vector 
of manipulated variables (MV), i.e., the command inputs, v(k) is the nv-dimensional vector of 
measured disturbances (MD), d(k) is the nd-dimensional vector of unmeasured disturbances 
(UD) entering the plant, ym (k) is the vector of measured outputs (MO), and yu(k) is the vector 
of unmeasured outputs (UO). The overall ny-dimensional output vector y(k) collects ym(k) 
and yu(k). In the above equations d(k) collects both state disturbances (Bd≠0) and output 
disturbances (Dd≠0). 
The unmeasured disturbance d(k) is modeled as the output of the linear time invariant 
system: 
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The system described by the above equations is driven by the random Gaussian noise nd(k), 
having zero mean and unit covariance matrix. For instance, a step-like unmeasured 
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Predicted values within the prediction horizon p (usually p>>N) can be arranged to the 
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where the prediction horizon is k=1...p, with respect to m control actions. Regulation circuit 
is stable if the prediction horizon is long enough. The values may be arranged to the 
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where x(k) is the nx -dimensional state vector of the plant, u(k) is the nu-dimensional vector 
of manipulated variables (MV), i.e., the command inputs, v(k) is the nv-dimensional vector of 
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disturbance is modeled as the output of an integrator. In many practical applications, the 
matrices A, B, C, D of the model representing the process to control are obtained by 
linearizing a nonlinear dynamical system, such as 
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at some nominal value x=x0, u=u0, v=v0, d=d0. In these equations x´ denotes either the time 
derivative (continuous time model) or the successor x(k+1) (discrete time model). 
The MPC control action at time k is obtained by solving the optimization problem: 
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where the subscript "( )j" denotes the j-th component of a vector, "(k+i|k)" denotes the value 
predicted for time k+i based on the information available at time k; r(k) is the current sample 
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with respect to the sequence of input increments { ( | ),..., ( 1 | )u k k u m k kΔ Δ − + } and to the slack 
variable ε, and by setting u(k)=u(k-1)+ Δu(k|k), where Δu(k|k) is the first element of the 
optimal sequence. Note that although only the measured output vector ym(k) is fed back to 
the MPC controller, r(k) is a reference for all the outputs. When the reference r is not known 
in advance, the current reference r(k) is used over the whole prediction horizon, namely 
r(k+i+1)=r(k) in Equation 14. 
In Model Predictive Control the exploitation of future references is referred to as anticipative 
action (or look-ahead or preview). A similar anticipative action can be performed with respect 
to measured disturbances v(k), namely v(k+i)=v(k) if the measured disturbance is not known in 
advance (e.g. is coming from a Simulink block) or v(k+i) is obtained from the workspace. In the 
prediction, d(k+i) is instead obtained by setting nd(k+i)=0. The wΔuij, wuij, wyij, are nonnegative 
weights for the corresponding variable. The smaller w, the less important is the behavior of the 
corresponding variable to the overall performance index. And uj,min, uj,max, Δuj,min, Δuj,max, yj,min, 
yj,max are lower/upper bounds on the corresponding variables. The constraints on u, Δu, and y 
are relaxed by introducing the slack variable ε≥ 0. The weight ρε on the slack variable ε 
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penalizes the violation of the constraints. The larger ρε with respect to input and output 
weights, the more the constraint violation is penalized. The Equal Concern for the Relaxation 
vectors Vumin,Vumax, VΔumin, VDumax, Vymin, Vymax have nonnegative entries which represent the 
concern for relaxing the corresponding constraint; the larger V, the softer the constraint. V=0 
means that the constraint is a hard one that cannot be violated (Bemporad A., Morari M., N. 
Lawrence Ricker., 2010).  

4.3 Constraints 
In many control applications the desired performance cannot be expressed solely as a 
trajectory following problem. Many practical requirements are more naturally expressed as 
constraints on process variables. There are three types of process constraints: Manipulated 
Variable Constraints: these are hard limits on inputs u(k) to take care of, for example, valve 
saturation constraints; Manipulated Variable Rate Constraints: these are hard limits on the 
size of the manipulated variable moves Δu(k) to directly influence the rate of change of the 
manipulated variables; Output Variable Constraints: hard or soft limits on the outputs of the 
system are imposed to, for example, avoid overshoots and undershoots (Maciejovski, 
J.M., 2002). We use the Output constraints and Manipulated Variable Constraints.  

5. Simulation in MATLAB 
Models of the tunnel and ventilator have been obtained through identification of real 
equipments. Higher traffic intensity causes increase of pollutant concentrations in the 
tunnel. This intensity is expressed as a vector containing really measured data. The 
MATLAB environment is used to simulate behavior of the system according to the Fig. 5. 
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Fig. 5. Improved MPC of multi-dimensional ventilation system 

It is a closed-loop control (regulation) of the system with limitations imposed to control 
quantity and outputs. It uses the internal model and solves optimization problem with the 
use of quadratic programming. We can choose the prediction horizon P and the control 
horizon M. The output constraints were set to 6, because this is the maximum input for three 
pairs of jet fans corresponding with real system. Weight matrix is selected as a diagonal 
matrix, with each element weighting the corresponding control signal. For instance, if the 
influence of particular control is to be reduced, then the corresponding diagonal element 
will be increased to reflect this intention. Weight tuning is the essential task to set the 
controller. In Fig. 7 we can see the results in comparison to Fig. 6. 
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disturbance is modeled as the output of an integrator. In many practical applications, the 
matrices A, B, C, D of the model representing the process to control are obtained by 
linearizing a nonlinear dynamical system, such as 
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Fig. 6. Simulated values of CO pollution inside the tunnel with (grey line) and without 
(black line) MPC controller and fan number (number of acting jet fans) 

5.1 Simulation results 
The presented simulation results are obtained for the following concentration limits: 6 
ppm for CO concentrations, 0.02 ppm for NOx concentrations and 0.05 ppm for 
visibility concentrations. These values are below really defined maximum limits. 
According to the curve of the output quantity (Fig. 6) it is apparent, that no emission 
value has extended the defined limit. However, the value of under-set maximum limit 
may be extended since one ventilator need not be able to dilute CO concentration 
sufficiently.  
The abbreviation ppm is a way of expressing very dilute concentrations of substances. Just 
as per cent means out of a hundred, so parts per million or ppm means out of a million. It 
describes the concentration of something in air. 
For this simulation we have six acting jet fans in this part of road tunnel. In the next 
simulations we have used a possibility to set weighing matrices (uwt) for tuning the 
controller. The control quantity u is adapted to the input of Jet Fan control unit. The black 
lines represent the concentrations of pollution without using the controller. They are 
named CO. The grey lines represent the concentrations of pollution with using the 
controller. They are named COr. Opacity and concentration of NOx is below the 
dangerous limits. The jet fans were switched on two times per day for chosen limits. We 
can see how affect the ventilation system to reduce the pollution. In this paper we pointed 
out only to concentration of CO, because this type of pollution is most dangerous for 
human organism.  
As it was mentioned in the previous section the weight tuning is also important part of 
controller creation. 
Well tuned controller leads to optimal control. After changing the weights, the jet fans were 
switched on only once per day, furthermore the next day all the fans were not switched on 
in the same conditions. 
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Fig. 7. Weight tuning. Simulated values of CO pollution inside the tunnel with (grey line) 
and without (black line) MPC controller and fan number (number of acting jet fans) 

Opacity and concentration of NOx is below the dangerous limits. The jet fans were switched 
on once per day for chosen limits. The concentrations of NOx and opacity (OP) are shown in 
Fig. 8. 
 

 
Fig. 8. Simulated values of NOx concentrations inside the tunnel tube (black line) and 
opacity (grey line)  

For this simulation the NOx concentrations and opacity was below defined maximum limits. 
When the jet fans are switched on these pollutions are also decreased. 

5.2 Implementation 
The biggest advantage of Automatic Code Generation affects those developers who already 
use MATLAB and Simulink for simulation and solutions design and to developers who 
used to tediously rework implemented structures in a language supported by Automation 
Studio in the past. In the procedures listed below the Automatic Code Generation tool 
provided by B&R represents an innovation with endless possibilities that help to 
productively reform the development of control systems. The basic principle is simple: The 
module created in Simulink is automatically translated using Real-Time Workshop and 
Real-Time Workshop Embedded Coder into the optimal language for the B&R target system 
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guaranteeing maximum performance of the generated source code. Seamless integration 
into an Automation Studio project makes the development process perfect (B&R 
Automation Studio Target for Simulink. 2011). Since the tunnel ventilation system use 
programmable logic controllers (PLC) it is suitable for real implementation. In our 
department we have appropriate equipment for this solution. 
 

 
Fig. 9. Workflow of the Automatic Code Generation 

The elimination of extensive reengineering in Automation Studio allows simple transfer of 
complex and sophisticated Simulink models to the PLC (Hardware-in-the-Loop). Closed-
loop controllers can also be easily tested and optimized on the target system without 
requiring the user to adjust large amounts of code and run the risk of creating coding errors 
(Rapid Prototyping). Rapid prototyping: Automatic Code Generation makes it possible to 
quickly and easily transform sophisticated Simulink based control systems into source code 
and integrate them into an Automation Studio project. Many potentially successful ideas 
have been immediately rejected due to the large amount of time required for conversion into 
executable machine code and the risk of developing a dead end solution. 
The “Rapid Prototyping” concept brings an end to this. Using Simulink and the Automatic 
Code Generation tool provided by B&R, any system, no matter how complex, can be 
intuitively built, compiled and tested in a short amount of time. This practically eliminates 
implementation errors as the Automatic Code Generation tool has been well-proven over 
several years in critical fields like aviation or automotive industry (B&R Automation Studio 
Target for Simulink. 2011). Nowadays the control algorithm is implemented and awaiting 
for connection to the real system. Fig. 11. shows the model in Simulink. 
We created the model in Simulink according to model for simulations. We replaced the 
simulated inputs by “B&R IN” blocks and simulated output by the “B&R OUT” block. The 
Real-time Workshop provides utilities to convert the SIMULINK embedded models in C 
code and then, with the compiler, compile the code into a real-time executable file. Although 
the underlying code is compiled into a real-time executable file via the C compiler, this 
conversion is performed automatically without much input from the user. The concept in 
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Fig. 10. shows that a simulation model can be used in the simulation testing of the predictive 
control system, and after completing the test, then with simple modification to the original 
Simulink programs, the same real-time predictive control system can be connected to the 
actual plant for controlling the plant. 
 
 
 
 

 
Fig. 10. The control system 

 
 
 

 
Fig. 11. The control system in Simulink 
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6. Conclusion 
The paper presents a methodology that has been used for design parametric models of the 
road tunnel system. We needs identification of system based on data obtained from the real 
ventilation system. Model from one week data has been created and verified in MATLAB 
environment. This part is the ground for best design of ventilation control system. Presented 
results point out that created model by identification method should be validate by several 
method. Model of a three-dimensional system has been created and simulated in MATLAB 
environment using the predictive controller. Presented results confirm higher effectiveness 
of predictive control approach. The weight tuning is important part of controller creation as 
the simulation results had proved. The predictive controller was successfully implemented 
to programmable logic controller.  
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6. Conclusion 
The paper presents a methodology that has been used for design parametric models of the 
road tunnel system. We needs identification of system based on data obtained from the real 
ventilation system. Model from one week data has been created and verified in MATLAB 
environment. This part is the ground for best design of ventilation control system. Presented 
results point out that created model by identification method should be validate by several 
method. Model of a three-dimensional system has been created and simulated in MATLAB 
environment using the predictive controller. Presented results confirm higher effectiveness 
of predictive control approach. The weight tuning is important part of controller creation as 
the simulation results had proved. The predictive controller was successfully implemented 
to programmable logic controller.  
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1. Introduction 
Predictive control is a model-based strategy used to calculate the optimal control action, by 
solving an optimization problem at each sampling interval, in order to maintain the output 
of the controlled plant close to the desired reference. Model predictive control (MPC) based 
on linear models is an advanced control technique with many applications in the process 
industry (Rossiter, 2003). The next natural step is to extend the MPC concept to work with 
nonlinear models. The use of controllers that take into account the nonlinearities of the plant 
implies an improvement in the performance of the plant by reducing the impact of the 
disturbances and improving the tracking capabilities of the control system. 
In this chapter, Nonlinear Model Predictive Control (NMPC) is studied as a more applicable 
approach for optimal control of multivariable processes. In general, a wide range of 
industrial processes are inherently nonlinear. For such nonlinear systems it is necessary to 
apply NMPC. Recently, several researchers have developed NMPC algorithms (Martinsen et 
al., 2004) that work with different types of nonlinear models. Some of these models use 
empirical data, such as artificial neural networks and fuzzy logic models. The model 
accuracy is very important in order to provide an efficient and adequate control action. 
Accurate nonlinear models based on soft computing (fuzzy and neural) techniques, are 
increasingly being used in model-based control (Mollov et al., 2004). 
On the other hand, the mathematical model type, which the modelling algorithm relies on, 
should be selected. State-space models are usually preferred to transfer functions, because 
the number of coefficients is substantially reduced, which simplifies the computation; 
systems instability can be handled; there is no truncation error. Multi-input multi-output 
(MIMO) systems are modelled easily (Camacho et al., 2004) and numerical conditioning is 
less important.  
A state-space representation of a Takagi-Sugeno type fuzzy-neural model (Ahmed et al., 
2010; Petrov et al., 2008) is proposed in the Section 2. This type of models ensures easier 
description and direct computation of the gradient control vector during the optimization 
procedure. Identification procedure of the proposed model relies on a training algorithm, 
which is well-known in the field of artificial neural networks. 
Obtaining an accurate model is the first stage of the of the NMPC predictive control 
strategy. The second stage involves the computation of a future control actions sequence. In 
order to obtain the control actions, a previously defined optimization problem has to be 
solved. Different types of objective and optimization algorithms (Fletcher, 2000) can be used 
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in the optimization procedure. Two different approaches for NMPC are proposed in Section 
3. They consider the unconstrained and constrained model predictive control problem. Both 
of the approaches use the proposed Takagi-Sugeno fuzzy-neural predictive model. 
The proposed techniques of fuzzy-neural MPC are studied in Section 4, by experimental 
simulations in Matlab® environment in order to control the levels in a multi tank system 
(Inteco, 2009). The case study is capable to show how the proposed NMPC algorithms 
handle multivariable processes control problem.  

2. Multivariable fuzzy-neural predictive model 
The Takagi-Sugeno fuzzy-neural models are powerful modelling tools for a wide class of 
nonlinear systems. Fuzzy reasoning is capable of handling uncertain and imprecise 
information while neural networks can learn from samples. Fuzzy-neural networks combine 
the advantages of both artificial intelligent techniques and incorporate them in adaptive 
features. Those futures, based on a real time learning algorithm are the main advantage of 
the fuzzy-neural models. 
The importance of the used in MPC strategy models and their adaptive characteristics is 
obvious. The accuracy of the model determines the accuracy of the control action. The 
proposed fuzzy-neural model is implemented in a classical NMPC scheme (Fig. 1) as a 
predictor (Camacho et al., 2004). 
 

 
Fig. 1. Basic structure of the proposed Fuzzy-Neural NMPC 

In this chapter a nonlinear discrete time state-space implementation is considered to 
represent the system dynamic: 
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where x(k) ∈ nℜ , u(k) ∈ mℜ and y(k) ∈ qℜ  are state, control and output variables of the 
system, respectively. The unknown nonlinear functions fx and fy can be approximated by 
Takagi-Sugeno type fuzzy rules in the next form: 
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where Rl  is the l-th rule of the rule base. Each rule is represented by an if-then conception. 
The antecedent part of the rules has the following form “zi(k) is Mli” where zi(k) is an i-th 
linguistic variable (i-th model input) and Mli is a membership function defined by a fuzzy set 
of the universe of discourse of the input zi. Note that the input regression vector z(k) ∈ pℜ in 
this chapter contains the system states and inputs z(k)=[x(k) u(k)]T. The consequent part of 
the rules is a mathematical function of the model inputs and states. A state-space 
implementation is used in the consequent part of Rl, where Al ∈ n n×ℜ , Bl ∈ n m×ℜ , Cl ∈ q n×ℜ  

and Dl ∈ q m×ℜ  are the state-space matrices of the model (Ahmed et al., 2009). 
The states in the next sampling time ˆ( 1)x k + and the system output ˆ( )y k can be obtained by 
taking the weighted sum of the activated fuzzy rules, using 
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On the other hand the state-space matrices A, B, C, and D for the global state-space plant 
model could be calculated as a weighted sum of the local matrices Al, Bl, Cl, and Dl from the 
activated fuzzy rules (2): 
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the l-th activated fuzzy rule and L is the number of the activated rules at the moment k.  
 

 
Fig. 2. Gaussian membership functions of the i-th input 

Fuzzy implication in the l-th rule (2) can be realized by means of a product composition 
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where μij specifies the membership degree (Fig. 2) upon the activated j-th fuzzy set of the 
corresponded i-th input signal and it is calculated according to the chosen here Gaussian 
membership function (6) for the l-th activated rule: 
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where zi is the current input value of the i-th model input, cGij is the centre (position) and σij is 
the standard deviation (wide) of the j-th membership function (j=1, 2, .., s) (Fig.2).  

2.1 Identification procedure for the fuzzy–neural model 
The proposed identification procedure determines the unknown parameters in the Takagi-
Sugeno fuzzy model, i.e. the parameters of membership functions, according to their shape 
and the parameters of the functions fx and fy in the consequent part of the rules (2). It is 
realised by a five-layer fuzzy-neural network (Fig. 3). Each of the layers performs typical 
fuzzy logic strategy operations: 
 

 
Fig. 3. The structure of the proposed fuzzy - neural model 

Layer 1. The first layer represents the model inputs through its own input nodes Z1, Z2, …, 
Zp. The network synaptic weights are set to one, so the model inputs are directly passed 
through the nodes to the next layer. Neurons here are represented by the elements of the 
regression vector z(k).  
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Layer 2. The fuzzification procedure of the input variables is performed in the second layer. 
The weights in this layer are the parameters of the chosen membership functions. Their 
number depends on the type and the number of the applied functions. All these parameters 
ij are adjustable and take part in the premise term of the Takagi-Sugeno type fuzzy rule 
base (2). In that section the membership functions for each model input variable are 
represented by Gaussian functions (Fig. 2). Hence, the adjustable parameters ij are the 
centres cGij and standard deviations σij of the Gaussian functions (6). The nodes in the second 
layer of the fuzzy-neural architecture represent the membership degrees μij(zi) of the 
activated membership functions for each model input zi(k) according to (6). The number of 
the neurons depends on the number of the model inputs p and the number of the 
membership functions s in corresponding fuzzy sets. It is calculated as p s× .  
Layer 3. The third layer of the network interprets the fuzzy rule base (2). Each neuron in the 
third layer has as many inputs as the input regression vector size p. They are the corresponding 
membership degrees for the activated membership functions calculated in the previous layer. 
Therefore, each node in the third layer represents a fuzzy rule Rl, defined by Takagi-Sugeno 
fuzzy model. The outputs of the neurons are the results of the applied fuzzy rule base.  
Layer 4. The fourth layer implements the fuzzy implication (5). Weights in this layer are set 
to one, in case the rule Rl  from the third layer is activated, otherwise weights are zeros. 
Layer 5. The last layer (one node layer) represents the defuzzyfication procedure and forms 
the output of the fuzzy-neural network (3). This layer also contains a set of adjustable 
parameters – βl. These are the parameters in the consequent part of Takagi-Sugeno fuzzy 
model (2).  The single node in this layer computes the overall model output signal as the 
summation of all signals coming from the previous layer. 
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where  ( ) ( )xl l lf A x k B u k= +  and ( ) ( )yl l lf C x k D u k= + . 

2.2 Learning algorithm of the fuzzy–neural model 
Two-step gradient learning procedure is used as a learning algorithm of the internal fuzzy-
neural model. It is based on minimization of an instant error function EFNN. At time k the 
function is obtained from the following equation 

 2( ) ( ) / 2FNNE k kε=  (8) 

where the error ε(k) is calculated as a difference between the controlled process output y(k) 
and the fuzzy-neural model output ŷ(k): 

 ˆ( ) ( ) ( )k y k y kε = −  (9) 

During step one of the procedure, the consequent parameters of Takagi-Sugeno fuzzy rules 
are calculated according to summary expression (10) (Petrov et al., 2002). 
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corresponded i-th input signal and it is calculated according to the chosen here Gaussian 
membership function (6) for the l-th activated rule: 
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where zi is the current input value of the i-th model input, cGij is the centre (position) and σij is 
the standard deviation (wide) of the j-th membership function (j=1, 2, .., s) (Fig.2).  

2.1 Identification procedure for the fuzzy–neural model 
The proposed identification procedure determines the unknown parameters in the Takagi-
Sugeno fuzzy model, i.e. the parameters of membership functions, according to their shape 
and the parameters of the functions fx and fy in the consequent part of the rules (2). It is 
realised by a five-layer fuzzy-neural network (Fig. 3). Each of the layers performs typical 
fuzzy logic strategy operations: 
 

 
Fig. 3. The structure of the proposed fuzzy - neural model 

Layer 1. The first layer represents the model inputs through its own input nodes Z1, Z2, …, 
Zp. The network synaptic weights are set to one, so the model inputs are directly passed 
through the nodes to the next layer. Neurons here are represented by the elements of the 
regression vector z(k).  
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Layer 2. The fuzzification procedure of the input variables is performed in the second layer. 
The weights in this layer are the parameters of the chosen membership functions. Their 
number depends on the type and the number of the applied functions. All these parameters 
ij are adjustable and take part in the premise term of the Takagi-Sugeno type fuzzy rule 
base (2). In that section the membership functions for each model input variable are 
represented by Gaussian functions (Fig. 2). Hence, the adjustable parameters ij are the 
centres cGij and standard deviations σij of the Gaussian functions (6). The nodes in the second 
layer of the fuzzy-neural architecture represent the membership degrees μij(zi) of the 
activated membership functions for each model input zi(k) according to (6). The number of 
the neurons depends on the number of the model inputs p and the number of the 
membership functions s in corresponding fuzzy sets. It is calculated as p s× .  
Layer 3. The third layer of the network interprets the fuzzy rule base (2). Each neuron in the 
third layer has as many inputs as the input regression vector size p. They are the corresponding 
membership degrees for the activated membership functions calculated in the previous layer. 
Therefore, each node in the third layer represents a fuzzy rule Rl, defined by Takagi-Sugeno 
fuzzy model. The outputs of the neurons are the results of the applied fuzzy rule base.  
Layer 4. The fourth layer implements the fuzzy implication (5). Weights in this layer are set 
to one, in case the rule Rl  from the third layer is activated, otherwise weights are zeros. 
Layer 5. The last layer (one node layer) represents the defuzzyfication procedure and forms 
the output of the fuzzy-neural network (3). This layer also contains a set of adjustable 
parameters – βl. These are the parameters in the consequent part of Takagi-Sugeno fuzzy 
model (2).  The single node in this layer computes the overall model output signal as the 
summation of all signals coming from the previous layer. 
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where  ( ) ( )xl l lf A x k B u k= +  and ( ) ( )yl l lf C x k D u k= + . 

2.2 Learning algorithm of the fuzzy–neural model 
Two-step gradient learning procedure is used as a learning algorithm of the internal fuzzy-
neural model. It is based on minimization of an instant error function EFNN. At time k the 
function is obtained from the following equation 

 2( ) ( ) / 2FNNE k kε=  (8) 

where the error ε(k) is calculated as a difference between the controlled process output y(k) 
and the fuzzy-neural model output ŷ(k): 

 ˆ( ) ( ) ( )k y k y kε = −  (9) 

During step one of the procedure, the consequent parameters of Takagi-Sugeno fuzzy rules 
are calculated according to summary expression (10) (Petrov et al., 2002). 
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where η is a learning rate and βl represents an adjustable coefficient aij, bij, cij, dij  (11) for the 
activated fuzzy rule Rl (2). The coefficients take part in the state matrix Al, control matrix Bl  
and output matrices Cl and Dl of the l-th activated rule (Ahmed et al., 2009). The matrices 

approximate the unknown nonlinear functions fx and fy according to defined fuzzy rule 
model (2). The matrix dimensions are specified by the system parameters – numbers of 
inputs m, outputs q and states n of the system. 
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In order to find a weight correction for the parameters in the last layer of the proposed 

fuzzy-neural network the derivative FNN

l

E
∂β

∂  of the instant error should be determined. 

Following the chain rule, the derivative is calculated considering the expressions (7) and (8) 
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After the calculation of the partial derivatives, the matrix elements for each matrix of the 
state-space equations corresponding to the l-th activated rule (2) are obtained according to 
the summary expression (12) (Petrov et al., 2002; Ahmed et al., 2010): 
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The proposed fuzzy-neural architecture allows the use of the previously calculated output 
error (8) in the next step of the parameters update procedure. The output error EFNN is 
propagated back directly to the second layer, where the second group of adjustable 
parameters are situated (Fig. 3). Depending on network architecture, the membership 
degrees calculated in the fourth and the second network layer are related as μyl → μij. 
Therefore, the learning rule for the second group adjustable parameters can be done in 
similar expression as (10):  
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where the derivative of the output error EFNN is calculated by the separate partial 
derivatives: 
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The adjustable premise parameters of the fuzzy-neural model are the centre cGij and the 
deviation σij of the Gaussian membership function (6). They are combined in the 
representative parameter ij, which corresponds to the i-th model input and its j-th activated 
fuzzy set. Following the expressions (14) and (15) the parameters are calculated as follows 
(Petrov et al., 2002; Ahmed et al., 2010): 
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The proposed identification procedure for the fuzzy-neural model could be summarized in 
the following steps (Table 1). 
 
Step 1. Initialize the membership functions – number, shape, parameters; 
Step 2. Assign initial values for the network inputs; 
Step 3. Start the algorithm at the current moment k; 
Step 4. Fuzzify the network inputs and calculate the membership degrees upon the 

activated fuzzy set of the membership functions according to (6); 
Step 5. Perform fuzzy implication according to (5); 
Step 6. Calculate the fuzzy-neural network output, which is represented by state-space 

description of the modelled system – (3) and (4); 
Step 7. Calculate the instant error according to (8) and (9); 
Step 8. Start training procedure for fuzzy-neural network; 
Step 9. Adjust the consequent parameters according to (13); 
Step 10. Adjust the premise parameters according to (16) and (17). 
Repeat the algorithm from Step 3 for each sampling time. 

Table 1. Fuzzy-neural model identification procedure 

3. Optimization algorithm of multivariable model predictive control strategy 
The model provided by the Takagi-Sugeno type fuzzy-neural network is used to formulate 
the objective function for the optimization algorithm and to calculate the future control 
actions. The second stage of the predictive control strategy includes an optimization 
procedure. It utilizes the obtained results during the first (modelling) stage predictive model 
of the system. Using the Takagi-Sugeno fuzzy-neural model (3), the optimization algorithm 
computes the future control actions at each sampling period, by minimizing the typical for 
MPC strategy (Generalized Predictive Control – GPC) cost function (Akesson, 2006): 
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where ŷ(k), r(k) and ∆u(k) are the predicted outputs, the reference trajectories, and the 
predicted control increments at time k, respectively. The length of the prediction horizon is 
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where η is a learning rate and βl represents an adjustable coefficient aij, bij, cij, dij  (11) for the 
activated fuzzy rule Rl (2). The coefficients take part in the state matrix Al, control matrix Bl  
and output matrices Cl and Dl of the l-th activated rule (Ahmed et al., 2009). The matrices 

approximate the unknown nonlinear functions fx and fy according to defined fuzzy rule 
model (2). The matrix dimensions are specified by the system parameters – numbers of 
inputs m, outputs q and states n of the system. 
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In order to find a weight correction for the parameters in the last layer of the proposed 

fuzzy-neural network the derivative FNN
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Following the chain rule, the derivative is calculated considering the expressions (7) and (8) 

 
5

5
ˆ

ˆ
FNN FNN

l l

yE E I
y I

∂∂ ∂ ∂
∂β ∂ ∂β∂

= ⋅ ⋅  (12) 

After the calculation of the partial derivatives, the matrix elements for each matrix of the 
state-space equations corresponding to the l-th activated rule (2) are obtained according to 
the summary expression (12) (Petrov et al., 2002; Ahmed et al., 2010): 
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The proposed fuzzy-neural architecture allows the use of the previously calculated output 
error (8) in the next step of the parameters update procedure. The output error EFNN is 
propagated back directly to the second layer, where the second group of adjustable 
parameters are situated (Fig. 3). Depending on network architecture, the membership 
degrees calculated in the fourth and the second network layer are related as μyl → μij. 
Therefore, the learning rule for the second group adjustable parameters can be done in 
similar expression as (10):  
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where the derivative of the output error EFNN is calculated by the separate partial 
derivatives: 
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The adjustable premise parameters of the fuzzy-neural model are the centre cGij and the 
deviation σij of the Gaussian membership function (6). They are combined in the 
representative parameter ij, which corresponds to the i-th model input and its j-th activated 
fuzzy set. Following the expressions (14) and (15) the parameters are calculated as follows 
(Petrov et al., 2002; Ahmed et al., 2010): 

 2

[ ( ) ( )]
( 1) ( ) ( ) ( )[ ( )]

( )
i Gij

Gij Gij yl yl
ij

z k c k
c k c k k k f y k

k
ηε μ

σ
−

+ = + −   (16) 

 
2

3

[ ( ) ( )]
( 1) ( ) ( ) ( )[ ( )]

( )
i Gij

ij ij yl yl
ij

z k c k
k k k k f y k

k
σ σ ηε μ

σ
−

+ = + −   (17) 

The proposed identification procedure for the fuzzy-neural model could be summarized in 
the following steps (Table 1). 
 
Step 1. Initialize the membership functions – number, shape, parameters; 
Step 2. Assign initial values for the network inputs; 
Step 3. Start the algorithm at the current moment k; 
Step 4. Fuzzify the network inputs and calculate the membership degrees upon the 

activated fuzzy set of the membership functions according to (6); 
Step 5. Perform fuzzy implication according to (5); 
Step 6. Calculate the fuzzy-neural network output, which is represented by state-space 

description of the modelled system – (3) and (4); 
Step 7. Calculate the instant error according to (8) and (9); 
Step 8. Start training procedure for fuzzy-neural network; 
Step 9. Adjust the consequent parameters according to (13); 
Step 10. Adjust the premise parameters according to (16) and (17). 
Repeat the algorithm from Step 3 for each sampling time. 

Table 1. Fuzzy-neural model identification procedure 

3. Optimization algorithm of multivariable model predictive control strategy 
The model provided by the Takagi-Sugeno type fuzzy-neural network is used to formulate 
the objective function for the optimization algorithm and to calculate the future control 
actions. The second stage of the predictive control strategy includes an optimization 
procedure. It utilizes the obtained results during the first (modelling) stage predictive model 
of the system. Using the Takagi-Sugeno fuzzy-neural model (3), the optimization algorithm 
computes the future control actions at each sampling period, by minimizing the typical for 
MPC strategy (Generalized Predictive Control – GPC) cost function (Akesson, 2006): 
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where ŷ(k), r(k) and ∆u(k) are the predicted outputs, the reference trajectories, and the 
predicted control increments at time k, respectively. The length of the prediction horizon is 
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Hp, and the first sample to be included in the horizon is Hw. The control horizon is given by 
Hu. Q ≥0 and R >0 are weighting matrices representing the relative importance of each 
controlled and manipulated variable and they are assumed to be constant over the Hp.  
The cost function (18) may be rewritten in a matrix form as follows 

 2 2( ) ( ) ( ) ( )Q RJ k Y k T k U k= − + Δ  (19)  

where Y(k), T(k), ∆U(k), Q and R are predicted output, system reference, control variable 
increment and weighting matrices, respectively, 
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The linear state-space model used for Takagi-Sugeno fuzzy rules (2) could be represented in 
the following form: 
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Based on the state-space matrices A, B, C and D (4), the future state variables are calculated 
sequentially using the set of future control parameters: 
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The predictions of the output ŷ  for j steps ahead could be calculated as follows 
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The recurrent equation for the output predictions ˆ( )py k j+ , where jp= 1, 2,..., Hp –1, is in the 
next form: 
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The prediction model defined in (21) can be generalized by the following matrix equality  
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where 

 2

1Hp

C
CA

CA

CA −

 
 
 
 Ψ =  
 
 
  


   

2

0

pH
i

i

D
CB D

CAB CB D

C A B D
−

=

 
 + 
 + +

Γ =  
 
 
 +
  


   2

0

2 1

0 0

0 0

0
u

p p u

H
i

i

H H H
i i

i i

D
CB D D

CAB CB D CB D

C A B D D

C A B D C A B D

−

=

− − −

= =

 
 + 
 + + +
 
 
 Θ =
 +
 
 
 
 

+ +  
 


 
 

 



  



 

All matrices, which take part in the equations above, are derived by the Takagi-Sugeno 
fuzzy-neural predictive model (4).  
It is also possible to define the vector  

 ( )  ( ) -  (  - 1) -  ( )E k T k u k U k= Γ ΘΔ  (23) 

This vector can be thought as a tracking error, in the sense that it is the difference between the 
future target trajectory and the free response of the system, namely the response that would 
occur over the prediction horizon if no input changes were made, i.e. ∆U(k)=0. Hence, the 
quantity of the so called free response F(k) is defined as follows 

 ( )  ( ) (  -  1)F k x k u k= Ψ + Γ  (24) 
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Hp, and the first sample to be included in the horizon is Hw. The control horizon is given by 
Hu. Q ≥0 and R >0 are weighting matrices representing the relative importance of each 
controlled and manipulated variable and they are assumed to be constant over the Hp.  
The cost function (18) may be rewritten in a matrix form as follows 

 2 2( ) ( ) ( ) ( )Q RJ k Y k T k U k= − + Δ  (19)  

where Y(k), T(k), ∆U(k), Q and R are predicted output, system reference, control variable 
increment and weighting matrices, respectively, 

ˆ( | ) ( | ) ( | )
( ) ,  ( ) ,  ( )

ˆ( - 1| ) ( - 1| ) ( - 1| )p p u

y k k r k k u k k
Y k T k U k

y k H k r k H k u k H k

    Δ 
     = = Δ =     
     + + Δ +    

    

(1) 0

0 ( )
p

Q
Q

Q H

 
 
 =
 
  

 
  


 

(1) 0

0 ( )u
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R

R H

 
 

=  
 
 

 
  


 

The linear state-space model used for Takagi-Sugeno fuzzy rules (2) could be represented in 
the following form: 

 
ˆ( 1) ( ) ( 1) ( )

ˆ ˆ( ) ( ) ( 1) ( )
x k Ax k Bu k B u k

y k Cx k Du k D u k
+ = + − + Δ

= + − + Δ
 (20) 

Based on the state-space matrices A, B, C and D (4), the future state variables are calculated 
sequentially using the set of future control parameters: 

2

3 2 2
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ˆ( 2) ( ) ( ) ( 1) ( ) ( ) ( 1)
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......................................................
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1 1 1

0 0 0
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...............................................................................
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The predictions of the output ŷ  for j steps ahead could be calculated as follows 
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.......................................................................................................
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1 1
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 
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The recurrent equation for the output predictions ˆ( )py k j+ , where jp= 1, 2,..., Hp –1, is in the 
next form: 

 .
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1
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110

0 0
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pu

j j
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i jj i
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C A B D u k i j H
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−

−
= =

− −−=
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      + = + + − +       + Δ + >    

 


 

.  (21) 

The prediction model defined in (21) can be generalized by the following matrix equality  

 ( )  ( )  (  - 1)  ( )Y k x k u k U k= Ψ + Γ + ΘΔ  (22) 

where 
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  
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 
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 
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

 

All matrices, which take part in the equations above, are derived by the Takagi-Sugeno 
fuzzy-neural predictive model (4).  
It is also possible to define the vector  

 ( )  ( ) -  (  - 1) -  ( )E k T k u k U k= Γ ΘΔ  (23) 

This vector can be thought as a tracking error, in the sense that it is the difference between the 
future target trajectory and the free response of the system, namely the response that would 
occur over the prediction horizon if no input changes were made, i.e. ∆U(k)=0. Hence, the 
quantity of the so called free response F(k) is defined as follows 

 ( )  ( ) (  -  1)F k x k u k= Ψ + Γ  (24) 
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3.1 Unconstrained model predictive control 
In this section, the study is focused on the optimization problem of the unconstrained 
nonlinear predictive control with the quadratic cost function (18). The section presents an 
approximate solution of the problem where the information given by the obtained fuzzy-
neural model is used to solve the problem. 
The unconstrained optimization problem can be formulated in a matrix form. First, the 
predictor can be constructed as follows 

 ( ) ( ) ( )Y k U k F k= ΘΔ +  (25) 

Second, the cost function (19) can be rewritten as 

 ( ) ( ) ( )T TJ U T Y Q T Y U R UΔ = − − + Δ Δ  (26) 

Hence, substituting the predictive model (25) into expression (26), the cost function of the 
model predictive optimization problem can be specified as follows: 

 ( ) ( ) 2( ) ( ) ( )T T T TJ U U Q R U F T Q U T F Q T FΔ = Δ Θ Θ+ Δ + − ΘΔ + − −  (27) 

The minimum of the function J(∆U) can be obtained by calculating the input sequence ΔU so 
that ∂J/∂ΔU = 0: 

 ( ) ( ) 2( ) ( ) ( ) 0T T T TJ U U Q R U F T Q U F T Q F T
U U

∂ ∂  Δ = Δ Θ Θ+ Δ + − ΘΔ + − − = ∂Δ ∂Δ
 (28) 

Then the optimal sequence ΔU* is  

 * 1( ) ( )T TU Q R Q T F−Δ = Θ Θ+ Θ −  (29) 

The input applied to the controlled plant at time k is computed according to the receding 
horizon principle, i.e. the first element from the control sequence Δu*(k) of the vector ΔU* is 
taken. Then, control signal is calculated from: 

 *( ) ( - 1) ( )u k u k u k= + Δ   (30) 

It is evident that the expression given by the matrix equation (29) is the same as expression 
obtained for the generalized predictive control. However, in the GPC formulation the 
components involved in the calculation of the formula (29) are obtained from a linear model. 
In the present case the components introduced in this expression are generated by the 
designed nonlinear fuzzy-neural model. A more rigorous formulation of (29) will be 
representation of the components as time-variant matrices, as they are shown in the 
expression (22). In this case the matrix Θ(k) and the vectors Ψ(k), T(k) are being reconstructed 
at each sampling time. The vector Ψ(k) is obtained by simulating the fuzzy model with the 
current input u(k); the matrix Θ(k) is also rebuilt using a method described below. 

 [ ]1*( ) ( ) ( ) ( ) ( ) ( )T TU k k Q k R k Q T k F k
−

 Δ = Θ Θ + Θ − 
 (31) 

The proposed method solves the problem of unconstrained MPC. A system of equations is 
solved at each sampling time k. The proposed approach decreases computational burden 
avoiding the necessity to inverse the gain matrix in (31) at each sampling time k.   
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Applying this method, minimization of the GPC criterion (18) is based on a calculation of 
the gradient vector of the criterion cost function J at the moment k subject to the predicted 
control actions: 

 ( ) ( ) ( )( ) , , ,
( ) ( 1) ( 1)u

TJ k J k J kJ k
u k u k u k H

 ∂ ∂ ∂∇ =  ∂Δ ∂Δ + ∂Δ + − 
  (32) 

Each element of this gradient vector (32) can be calculated using the following derivative 
matrix equation: 

 [ ] ( ) ( )2 ( ) ( ) 2 ( )
( ) ( ) ( )

( ) T TY k U kT k Y k Q U k R
U k U k U k
J k  ∂ ∂ ∂Δ= − + Δ ∂Δ ∂Δ ∂Δ 

  (33) 

From the above expression (33) it can be seen that it is necessary to obtain two groups of 

partial derivatives. The first one is  ( )
( )

Y k
U k

 ∂
 ∂Δ 

, and the second one is  ( )
( )

U k
U k

 ∂Δ
 ∂Δ 

. The first 

partial derivatives in (33) have the following matrix form: 
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( ) ˆ ˆ( 1) ( 1)

( ) ( 1)

w w

u

p w p w

u

y k H y k H
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 ∂ + ∂ +
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 ∂Δ
∂ + + − ∂ + + − 
 ∂ Δ ∂ Δ + − 



 



 (34) 

For computational simplicity assume that Hw=0 (18). Then each element of the matrix (34)  
is calculated by the expressed equations according to the Takagi-Sugeno rules consequents (2). 
For example the derivatives from first column of the matrix (34) have the following form: 

 
1

ˆ( ) ( )
( )

L

l yl
l

y k D k
u k

μ
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∂
=
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l l l yl
l

y k C B D k
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μ
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∂ +
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1

ˆ( 2) ( 2)
( )

L

l l l l l l yl
l

y k C A B C B D k
u k

μ
=

∂ +
= + + +

∂Δ    (37) 

…………………………………………….. 

 
2

1 0

ˆ( 1)
( 1)

( )

pHL
p j

l l l yl pl
l j

y k H
C A B D k H

u k
μ

−

= =

 ∂ + −
 = + + −
 ∂Δ  

   (38) 

The second group partial derivatives  in (33) has the following matrix form: 
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3.1 Unconstrained model predictive control 
In this section, the study is focused on the optimization problem of the unconstrained 
nonlinear predictive control with the quadratic cost function (18). The section presents an 
approximate solution of the problem where the information given by the obtained fuzzy-
neural model is used to solve the problem. 
The unconstrained optimization problem can be formulated in a matrix form. First, the 
predictor can be constructed as follows 

 ( ) ( ) ( )Y k U k F k= ΘΔ +  (25) 

Second, the cost function (19) can be rewritten as 

 ( ) ( ) ( )T TJ U T Y Q T Y U R UΔ = − − + Δ Δ  (26) 

Hence, substituting the predictive model (25) into expression (26), the cost function of the 
model predictive optimization problem can be specified as follows: 

 ( ) ( ) 2( ) ( ) ( )T T T TJ U U Q R U F T Q U T F Q T FΔ = Δ Θ Θ+ Δ + − ΘΔ + − −  (27) 

The minimum of the function J(∆U) can be obtained by calculating the input sequence ΔU so 
that ∂J/∂ΔU = 0: 

 ( ) ( ) 2( ) ( ) ( ) 0T T T TJ U U Q R U F T Q U F T Q F T
U U

∂ ∂  Δ = Δ Θ Θ+ Δ + − ΘΔ + − − = ∂Δ ∂Δ
 (28) 

Then the optimal sequence ΔU* is  

 * 1( ) ( )T TU Q R Q T F−Δ = Θ Θ+ Θ −  (29) 

The input applied to the controlled plant at time k is computed according to the receding 
horizon principle, i.e. the first element from the control sequence Δu*(k) of the vector ΔU* is 
taken. Then, control signal is calculated from: 

 *( ) ( - 1) ( )u k u k u k= + Δ   (30) 

It is evident that the expression given by the matrix equation (29) is the same as expression 
obtained for the generalized predictive control. However, in the GPC formulation the 
components involved in the calculation of the formula (29) are obtained from a linear model. 
In the present case the components introduced in this expression are generated by the 
designed nonlinear fuzzy-neural model. A more rigorous formulation of (29) will be 
representation of the components as time-variant matrices, as they are shown in the 
expression (22). In this case the matrix Θ(k) and the vectors Ψ(k), T(k) are being reconstructed 
at each sampling time. The vector Ψ(k) is obtained by simulating the fuzzy model with the 
current input u(k); the matrix Θ(k) is also rebuilt using a method described below. 

 [ ]1*( ) ( ) ( ) ( ) ( ) ( )T TU k k Q k R k Q T k F k
−

 Δ = Θ Θ + Θ − 
 (31) 

The proposed method solves the problem of unconstrained MPC. A system of equations is 
solved at each sampling time k. The proposed approach decreases computational burden 
avoiding the necessity to inverse the gain matrix in (31) at each sampling time k.   
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Applying this method, minimization of the GPC criterion (18) is based on a calculation of 
the gradient vector of the criterion cost function J at the moment k subject to the predicted 
control actions: 

 ( ) ( ) ( )( ) , , ,
( ) ( 1) ( 1)u

TJ k J k J kJ k
u k u k u k H

 ∂ ∂ ∂∇ =  ∂Δ ∂Δ + ∂Δ + − 
  (32) 

Each element of this gradient vector (32) can be calculated using the following derivative 
matrix equation: 

 [ ] ( ) ( )2 ( ) ( ) 2 ( )
( ) ( ) ( )

( ) T TY k U kT k Y k Q U k R
U k U k U k
J k  ∂ ∂ ∂Δ= − + Δ ∂Δ ∂Δ ∂Δ 

  (33) 

From the above expression (33) it can be seen that it is necessary to obtain two groups of 

partial derivatives. The first one is  ( )
( )

Y k
U k

 ∂
 ∂Δ 

, and the second one is  ( )
( )

U k
U k

 ∂Δ
 ∂Δ 

. The first 

partial derivatives in (33) have the following matrix form: 
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 ∂Δ
∂ + + − ∂ + + − 
 ∂ Δ ∂ Δ + − 



 



 (34) 

For computational simplicity assume that Hw=0 (18). Then each element of the matrix (34)  
is calculated by the expressed equations according to the Takagi-Sugeno rules consequents (2). 
For example the derivatives from first column of the matrix (34) have the following form: 
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=

∂ +
= + +

∂Δ   (36) 

  ( )
1

ˆ( 2) ( 2)
( )

L

l l l l l l yl
l

y k C A B C B D k
u k

μ
=

∂ +
= + + +

∂Δ    (37) 

…………………………………………….. 

 
2

1 0

ˆ( 1)
( 1)

( )

pHL
p j

l l l yl pl
l j

y k H
C A B D k H

u k
μ

−

= =

 ∂ + −
 = + + −
 ∂Δ  

   (38) 

The second group partial derivatives  in (33) has the following matrix form: 
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( ) ( )....
( ) ( 1)

( )
( )

( 1) ( 1)....
( ) ( 1)

u

u u

u

u k u k
u k u k H

U k
U k

u k H u k H
u k u k H

Δ

Δ

∂ Δ ∂ Δ 
 ∂ ∂ Δ + − 
 ∂ Δ

= 
∂Δ  

 ∂ Δ + − ∂ Δ + −
 

∂ ∂ Δ + −  

   (39) 

Since ( ) ( ) ( 1)u k u k u kΔ = − − , the matrix  (39) has the following form: 

 

1 0 0
1 1

( ) 1
( )

1 1
1 1 1

U k
U k

 
 − ∂Δ  −=

∂ Δ  
 
 − − 



  
 



 (40) 

Following this procedure it is possible to calculate the rest column elements of the matrix 
(34) which belongs to the next gradient vector elements (32). Finally, each element of the 
gradient-vector (32) could be obtained by the following system of equations: 

 

ˆ( )ˆ( 1)( ) ˆ ˆ2 ( 1) (1) ... 2 ( ) ( )
( 1) ( ) ( )

2 (1) ( ) 2 (2) ( 1) ... 2 ( ) ( 1) 0

p
p p

u u

y k Hy kJ k e k Q e k H Q H
u k u k u k

R u k R u k R H u k H

∂ +∂ +∂ = + + + + +
∂Δ + ∂Δ ∂Δ

+ Δ − Δ + + − Δ + − =

 

  
 (41) 

 

 

ˆ( )ˆ( 1)( ) ˆ ˆ2 ( 1) (1) ... 2 ( ) ( )
( 2) ( 1) ( 1)

2 (2) ( 1) 2 (3) ( 2) ... 2 ( ) ( 1) 0

p
p p

u u

y k Hy kJ k e k Q e k H Q H
u k u k u k

R u k R u k R H u k H

∂ +∂ +∂ = + + + + +
∂Δ + ∂Δ + ∂Δ +

+ Δ + − Δ + + − Δ + − =

 

  
 (42) 

ˆ( )ˆ( 1)( ) ˆ ˆ2 ( 1) (1) ... 2 ( ) ( )
( 2) ( 2) ( 2)

2 ( 1) ( 2) 2 ( ) ( 1) 0

p
p p

u u u

u u u u

y k Hy kJ k e k Q e k H Q H
u k H u k H u k H

R H u k H R H u k H

∂ +∂ +∂ = + + + + +
∂Δ + − ∂Δ + − ∂Δ + −

+ − Δ + − − Δ + − =

 

 
 (43) 

ˆ( )ˆ( 1)( ) ˆ ˆ2 ( 1) (1) ... 2 ( ) ( )
( 1) ( 1) ( 1)

2 ( ) ( 1) 0

p
p p

u u u

u u

y k Hy kJ k e k Q e k H Q H
u k H u k H u k H

R H u k H

∂ +∂ +∂ = + + + + +
∂Δ + − ∂Δ + − ∂Δ + −

+ Δ + − =

 


 (44) 

where  ˆ ˆ( ) ( ) ( ), 1,2, , Hpe k j r k j y k j j+ = + − + =   is the predicted system error. 

The obtained system of equations (41)-(44) can be solved very easily, starting from the last 
equation (44) and calculating the last control action u(k+Hu-1) first. Then, the procedure can 
continue with finding the previous control action u(k+Hu-2) from (43). The calculations 
continue until the whole number of the control actions over the horizon Hu is obtained. The 
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calculation order of the control actions is very important, since the calculations should 
contain only known quantities. After that, only the first control action u(k) (30) will be used 
at the moment k as an input to the controlled process. The software implementation of the 
proposed algorithm is realized easily according to the following equations: 

1 ˆ( )ˆ( 1)ˆ ˆ( 1) ( ) ( 1) (1) ( ) ( )
( 1) ( 1)

p
u u p p

u u

y ky k
u k H R H e k Q e k Q

u k H u k H

H
H H− ∂ +∂ +

Δ + − = + + + +
∂Δ + − ∂Δ + −

 
 
 

    (45) 
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The proposed unconstrained predictive control algorithm could be summarized in the 
following steps (Table 2). 
 
Step 1. Initial identification of the Takagi-Sugeno fuzzy-neural predictive model; 
Step 2. Start the algorithm at the sample k with the initial parameters; 
Step 3. Calculate the predicted model output ŷ(k+j) using the tuned fuzzy-neural model (2); 
Step 4. Calculate the derivatives for the matrix (34) according to the equations (35)-(38); 
Step 5. Calculate predicted control actions according to (45)-(48) and update the sequence; 
Step 6. Apply the first optimal control action u(k); 
Step 7. Modify the model parameters into the rule (3) and update them for the next step 3 

for the next sample k 

Table 2. Basic fuzzy-neural model unconstrained predictive control algorithm 

3.2 Constrained model predictive control 
The constrained nonlinear predictive control problem can be described as a problem of 
finding the “optimal” input sequence to move a dynamic system to a desired state, taking 
into account the constraints on the inputs and the outputs of the control systems. This 
section reveals the formulation of the constrained control problem for MPC uses. 
Essentially, the problem becomes a quadratic programming problem with linear inequality 
constraints (LICQP). It follows by the nature of the operational constraints, which are 
usually described by linear inequalities of the control and plant variables.  
The problem of nonlinear constrained predictive control is formulated as a nonlinear 
quadratic optimization problem. By means of local linearization (20) the problem can be 
solved using QP. That way the solution to the linear constrained predictive control problem 
is obtained. At each sampling time the LICQP is solved with new parameters, which are 
obtained by the Takagi-Sugeno fuzzy-neural model. An active set method is used for 
solving the constructed quadratic programming problem.  
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Since ( ) ( ) ( 1)u k u k u kΔ = − − , the matrix  (39) has the following form: 
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Following this procedure it is possible to calculate the rest column elements of the matrix 
(34) which belongs to the next gradient vector elements (32). Finally, each element of the 
gradient-vector (32) could be obtained by the following system of equations: 
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where  ˆ ˆ( ) ( ) ( ), 1,2, , Hpe k j r k j y k j j+ = + − + =   is the predicted system error. 

The obtained system of equations (41)-(44) can be solved very easily, starting from the last 
equation (44) and calculating the last control action u(k+Hu-1) first. Then, the procedure can 
continue with finding the previous control action u(k+Hu-2) from (43). The calculations 
continue until the whole number of the control actions over the horizon Hu is obtained. The 
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calculation order of the control actions is very important, since the calculations should 
contain only known quantities. After that, only the first control action u(k) (30) will be used 
at the moment k as an input to the controlled process. The software implementation of the 
proposed algorithm is realized easily according to the following equations: 
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The proposed unconstrained predictive control algorithm could be summarized in the 
following steps (Table 2). 
 
Step 1. Initial identification of the Takagi-Sugeno fuzzy-neural predictive model; 
Step 2. Start the algorithm at the sample k with the initial parameters; 
Step 3. Calculate the predicted model output ŷ(k+j) using the tuned fuzzy-neural model (2); 
Step 4. Calculate the derivatives for the matrix (34) according to the equations (35)-(38); 
Step 5. Calculate predicted control actions according to (45)-(48) and update the sequence; 
Step 6. Apply the first optimal control action u(k); 
Step 7. Modify the model parameters into the rule (3) and update them for the next step 3 

for the next sample k 

Table 2. Basic fuzzy-neural model unconstrained predictive control algorithm 

3.2 Constrained model predictive control 
The constrained nonlinear predictive control problem can be described as a problem of 
finding the “optimal” input sequence to move a dynamic system to a desired state, taking 
into account the constraints on the inputs and the outputs of the control systems. This 
section reveals the formulation of the constrained control problem for MPC uses. 
Essentially, the problem becomes a quadratic programming problem with linear inequality 
constraints (LICQP). It follows by the nature of the operational constraints, which are 
usually described by linear inequalities of the control and plant variables.  
The problem of nonlinear constrained predictive control is formulated as a nonlinear 
quadratic optimization problem. By means of local linearization (20) the problem can be 
solved using QP. That way the solution to the linear constrained predictive control problem 
is obtained. At each sampling time the LICQP is solved with new parameters, which are 
obtained by the Takagi-Sugeno fuzzy-neural model. An active set method is used for 
solving the constructed quadratic programming problem.  
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3.2.1 Constraint types in model predictive control 
The operational constraints may be classified in three major types according to the type of 
the system variables, which they are imposed on. The first two types of constraints deal with 
the control variable incremental variation ∆u(k) and control variable u(k). The third type is 
concerned with output y(k) or state variable x(k) constraints.  
Related to the origin model predictive control problem, the constraints are expressed in a set 
of linear equations. All types of constraints are taken into consideration for each moving 
horizon window.  
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Therefore, for multi-input case the number of the constraints for the change of the control 
variable ∆u(k) is m×Nu. Similarly, the number of the constraints for the control variable 
amplitude is also m×Nu and for the output constraints it is q×Np.   

3.2.2 Quadratic programming in use of constrained MPC 
Since the cost function J(k) (19) is quadratic and the constraints are linear inequalities, the 
problem of finding an optimal predictive control becomes one of finding an optimal solution 
to a standard quadratic programming problem with linear inequality constraints 
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where H and f are the Hessian and the gradient of the Lagrange function, x is the decision 
variable. Constraints on the QP problem (50) are specified by Ax ≤ b according to (49). 
The Lagrange function is defined as follows 
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= + = … , (51) 

where λi are the Lagrange multipliers, ai are the constraints on the decision variable x, N is 
the number of the constraints considered in the optimization problem.  
Several algorithms for constrained optimization are described in (Fletcher, 2000). In this 
chapter a primal active set method is used. The idea of active set method is to define a set S 
of constraints at each step of algorithm. The constraints in this active set are regarded as 
equalities whilst the rest are temporarily disregarded and the method adjusts the set in 
order to identify the correct active constraints on the solution to (52)   

 

1min ( )
2

  

T T

i i

i i

J x x Hx f x

subject to a x b
a x b

= +

=
≤

 (52) 

 

At iteration k a feasible point x(k) is known which satisfies the active constraints as 
equalities. Each iteration attempts to locate a solution to an equality problem (EP) in which 
only the active constraints occur. This is most conveniently performed by shifting the origin 
to x(k) and looking for a correction δ(k) which solves 
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where f(k)  is defined by f(k) =f + Hx(k) and is ( )( )J x k∇  for the function defined by (52). If 
δ(k)  is feasible with regard to the constraints not included in S, then the feasible point in 
next iteration is taken as x(k+ 1) = x(k) + δ(k). If not, a line search is made in the direction of 
δ(k) to find the best feasible point. A constraint is active if the Lagrange multipliers λi ≥ 0, i.e. 
it is at the boundary of the feasible region defined by the constraints. On the other hand, if 
there exist λi < 0, the constraint is not active. In this case the constraint is relaxed from the 
active constraints set S and the algorithm continues as before by solving the resulting 
equality constraint problem (53). If there is more than one constraint with corresponding 
λi < 0, then the min ( )ii S

kλ
∈

is selected (Fletcher, 2000).  

The QP, described in that way, is used to provide numerical solutions in constrained MPC 
problem.  
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Therefore, for multi-input case the number of the constraints for the change of the control 
variable ∆u(k) is m×Nu. Similarly, the number of the constraints for the control variable 
amplitude is also m×Nu and for the output constraints it is q×Np.   

3.2.2 Quadratic programming in use of constrained MPC 
Since the cost function J(k) (19) is quadratic and the constraints are linear inequalities, the 
problem of finding an optimal predictive control becomes one of finding an optimal solution 
to a standard quadratic programming problem with linear inequality constraints 
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where f(k)  is defined by f(k) =f + Hx(k) and is ( )( )J x k∇  for the function defined by (52). If 
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it is at the boundary of the feasible region defined by the constraints. On the other hand, if 
there exist λi < 0, the constraint is not active. In this case the constraint is relaxed from the 
active constraints set S and the algorithm continues as before by solving the resulting 
equality constraint problem (53). If there is more than one constraint with corresponding 
λi < 0, then the min ( )ii S
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is selected (Fletcher, 2000).  

The QP, described in that way, is used to provide numerical solutions in constrained MPC 
problem.  
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3.2.3 Design the constrained model predictive problem 
The fuzzy-neural identification procedure from the Section 2 provides the state-space matrices, 
which are needed to construct the constrained model predictive control optimization problem.  
Similarly to the unconstrained model predictive control approach, the cost function (18) can 
be specified by the prediction expressions (22) and (23). 

[ ] [ ]
[ ] [ ]

T T

T T

T T T T T

J(k) = Ψx(k) + Γu(k -1) + ΘΔU(k)-T(k) Q Ψx(k) + Γu(k -1) + ΘΔU(k)-T(k) +ΔU (k)RΔU(k)=

       = ΘΔU(k)-E(k) Q ΘΔU(k)-E(k) +ΔU (k)RΔU(k)=

       = ΔU (k) Θ QΘ+R ΔU(k) + E (k)QE(k) - 2ΔU (k)Θ QE(k) 
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Assuming that 

   TH Q R= Θ Θ +  and  2 ( ),TQE kΦ = Θ  (54) 

the cost function for the model predictive optimization problem can be specified as follow 

 ( )  ( )  ( ) - ( ) ( ) ( )T T TJ k U k U k U k E k QE k= Δ Η Δ Δ Φ +  (55) 

The problem of minimizing the cost function (55) is a quadratic programming problem. If 
the Hessian matrix H is positive definite, the problem is convex (Fletcher, 2000). Then the 
solution is given by the closed form 
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The constraints (49) on the cost function may be rewritten in terms of ∆U(k). 

 
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

min max

min max

min max

    ( - 1)      
       

  ( )  (  - 1)  ( )     

u uU k I u k I U k U k
U k U k U k

Y k x k u k U k Y k

Δ≤ + Δ ≤

Δ ≤ Δ ≤ Δ

≤ Ψ + Γ + ΘΔ ≤

 (57) 

 

where Im m m×∈ℜ  is an identity matrix, 
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All types of constraints are combined in one expression as follows 
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where I u umN mN×∈ℜ  is an identity matrix. 
Finally, following the definition of the LIQP (50), the model predictive control in presence of 
constraints is proposed as finding the parameter vector ∆U that minimizes (55) subject to the 
inequality constraints (58).  

 min  ( )   -   
  

T T TJ k U H U U E QE
subject to U ω

= Δ Δ Δ Φ +
ΩΔ ≤

 (59) 

In (59) the constraints expression (58) has been denoted by Ω∆U ≤ ω, where Ω is a matrix 
with number of rows equal to the dimension of ω and number of columns equal to the 
dimension of  ∆U. In case that the constraints are fully imposed, the dimension of ω is equal 
to 4×m×Nu + 2×q×Np,  where m  is the number of system inputs and q  is the number of 
outputs. In general, the total number of constraints is greater than the dimension of the ∆U. 
The dimension of ω represents the number of constraints.  
The proposed model predictive control algorithm can be summarized in the following steps 
(Table 3).  
 
At each sampling time: 
Step 1. Read the current states, inputs and outputs of the system;  
Step 2. Start identification of the fuzzy-neural predictive model following Algorithm 1; 
Step 3. With A(k), B(k), C(k), D(k) from Step 2 calculate the predicted output Y(k) according 

to (17); 
Step 4. Obtain the prediction error E(k) according to (23); 
Step 5. Construct the cost function (55) and the constraints (58) of the QP problem; 
Step 6. Solve the QP problem according to (59); 
Step 7. Apply only the first control action u(k). 

Table 3.  State-space implementation of fuzzy-neural model predictive control strategy 

At each sampling time, LIQP (59) is solved with new parameters. The Hessian and the 
Lagrangian are constructed by the state-space matrices A(k), B(k), C(k) and D(k) (4) obtained 
during the identification procedure (Table 1). The problem of nonlinear constrained 
predictive control is formulated as a nonlinear quadratic optimization problem. By means of 
local linearization a relaxation can be obtained and the problem can be solved using 
quadratic programming. This is the solution of the linear constrained predictive control 
problem (Espinosa et al., 2005). 

4. Fuzzy-neural model predictive control of a multi tank system. Case study 
The case study is implemented in MATLAB/Simulink® environment with Inteco® Multi 
tank system. The Inteco® Multi tank System (Fig. 4) comprises from three separate tanks 
fitted with drain valves (Inteco, 2009). The additional tank mounted in the base of the set-up 
acts as a water reservoir for the system. The top (first) tank has a constant cross section, 
while others are conical or spherical, so they are with variable cross sections. This causes the 
main nonlinearities in the system. A variable speed pump is used to fill the upper tank. The 
liquid outflows the tanks by the gravity. The tank valves act as flow resistors C1, C2, C3. The 
area ratio of the valves is controlled and can be used to vary the outflow characteristic. Each 
tank is equipped with a level sensor PS1, PS2, PS3 based on hydraulic pressure measurement. 
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3.2.3 Design the constrained model predictive problem 
The fuzzy-neural identification procedure from the Section 2 provides the state-space matrices, 
which are needed to construct the constrained model predictive control optimization problem.  
Similarly to the unconstrained model predictive control approach, the cost function (18) can 
be specified by the prediction expressions (22) and (23). 
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The problem of minimizing the cost function (55) is a quadratic programming problem. If 
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where I u umN mN×∈ℜ  is an identity matrix. 
Finally, following the definition of the LIQP (50), the model predictive control in presence of 
constraints is proposed as finding the parameter vector ∆U that minimizes (55) subject to the 
inequality constraints (58).  
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In (59) the constraints expression (58) has been denoted by Ω∆U ≤ ω, where Ω is a matrix 
with number of rows equal to the dimension of ω and number of columns equal to the 
dimension of  ∆U. In case that the constraints are fully imposed, the dimension of ω is equal 
to 4×m×Nu + 2×q×Np,  where m  is the number of system inputs and q  is the number of 
outputs. In general, the total number of constraints is greater than the dimension of the ∆U. 
The dimension of ω represents the number of constraints.  
The proposed model predictive control algorithm can be summarized in the following steps 
(Table 3).  
 
At each sampling time: 
Step 1. Read the current states, inputs and outputs of the system;  
Step 2. Start identification of the fuzzy-neural predictive model following Algorithm 1; 
Step 3. With A(k), B(k), C(k), D(k) from Step 2 calculate the predicted output Y(k) according 

to (17); 
Step 4. Obtain the prediction error E(k) according to (23); 
Step 5. Construct the cost function (55) and the constraints (58) of the QP problem; 
Step 6. Solve the QP problem according to (59); 
Step 7. Apply only the first control action u(k). 

Table 3.  State-space implementation of fuzzy-neural model predictive control strategy 

At each sampling time, LIQP (59) is solved with new parameters. The Hessian and the 
Lagrangian are constructed by the state-space matrices A(k), B(k), C(k) and D(k) (4) obtained 
during the identification procedure (Table 1). The problem of nonlinear constrained 
predictive control is formulated as a nonlinear quadratic optimization problem. By means of 
local linearization a relaxation can be obtained and the problem can be solved using 
quadratic programming. This is the solution of the linear constrained predictive control 
problem (Espinosa et al., 2005). 

4. Fuzzy-neural model predictive control of a multi tank system. Case study 
The case study is implemented in MATLAB/Simulink® environment with Inteco® Multi 
tank system. The Inteco® Multi tank System (Fig. 4) comprises from three separate tanks 
fitted with drain valves (Inteco, 2009). The additional tank mounted in the base of the set-up 
acts as a water reservoir for the system. The top (first) tank has a constant cross section, 
while others are conical or spherical, so they are with variable cross sections. This causes the 
main nonlinearities in the system. A variable speed pump is used to fill the upper tank. The 
liquid outflows the tanks by the gravity. The tank valves act as flow resistors C1, C2, C3. The 
area ratio of the valves is controlled and can be used to vary the outflow characteristic. Each 
tank is equipped with a level sensor PS1, PS2, PS3 based on hydraulic pressure measurement. 
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Fig. 4. Controlled laboratory multi tank system 

The linearized dynamical model of the triple tank system could be described by the linear 
state-space equations (2) where the matrices A, B, C and D are as follow (Petrov et al., 2009): 
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The parameters 1, 2 and 3 are flow coefficients for each tank of the model. The described 
linearized state-space model is used as an initial model for the training process of the fuzzy-
neural model during the experiments.  

4.1 Description of the multi tank system as a multivariable controlled process 
Liquid levels Н1, Н2, Н3 in the tanks are the state variables of the system (Fig. 4). The Inteco 
Multi Tank system has four controlled inputs: liquid inflow q and valves settings C1, C2, C3. 
Therefore, several models of the tanks system can be analyzed (Fig. 5), classified as pump-
controlled system, valve-controlled system and pump/valve controlled system (Inteco, 2009). 
 

 
Fig. 5. Model of the Multi Tank system as a pump and valve-controlled system 

In this case study a multi-input multi-output (MIMO) configuration of the Inteco Multi Tank 
system is used (Fig. 5). This corresponds to the linearized state-space model (60). Several 
issues have been recognized as causes of additional nonlinearities in plant dynamics: 
• nonlinearities (smooth and nonsmooth) caused by shapes of tanks; 
• saturation-type nonlinearities, introduced by maximum or minimum level allowed in 

tanks; 
• nonlinearities introduced by valve geometry and flow dynamics; 
• nonlinearities introduced by pump and valves input/output characteristic curve. 
The simulation results have been obtained with random generated set points and following 
initial conditions (Table 4): 
 

Model predictive 
controller parameters 

Prediction horizon Hp=10
First included sample of the prediction horizon Hw=1 
Control horizon Hu=3 

Inteco Multi tank 
system parameters 

Flow coefficients for each tank
1=0.29; 2=0.2256; 3=0.2487

Operational constraints 
on the system 

Constraints on valve cross section ratio 0 ≤ Ci ≤ 2e-04, i=1,2,3 
Constraint on liquid inflow 0 ≤ q ≤ 1e-04 m3/s 
Constraints on liquid level in each tank 0 ≤ Hi ≤ 0.35 m, i=1,2,3 

Simulation parameters Time of simulation 600 s
Sample time Ts=1 s

Table 4. Simulation parameters for unconstrained and constrained fuzzy-neural MPC 
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neural model during the experiments.  
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Therefore, several models of the tanks system can be analyzed (Fig. 5), classified as pump-
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The simulation results have been obtained with random generated set points and following 
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Model predictive 
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Inteco Multi tank 
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Flow coefficients for each tank
1=0.29; 2=0.2256; 3=0.2487
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on the system 

Constraints on valve cross section ratio 0 ≤ Ci ≤ 2e-04, i=1,2,3 
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Table 4. Simulation parameters for unconstrained and constrained fuzzy-neural MPC 
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Figures below show typical results for level control problem. The reference value for each 
tank is changed consequently in different time. The proposed fuzzy-neural identification 
procedure ensures the matrices for the optimization problem of model predictive control at 
each sampling time Ts. The plant modelling process during the unconstrained and 
constrained MPC experiments are shown in Fig. 6 and Fig. 9, respectively.   

4.2 Experimental results with unconstrained model predictive control 
The proposed unconstrained model predictive control algorithm (Table 2) with the Takagi-
Sugeno fuzzy-neural model as a predictor has been applied to the level control problem. The 
experiments have been implemented with the parameters in Table 4. The weighting 
matrices are specified as follow: 0.01 * (1,  1,  1)Q diag= and 10 4 * (1,  1,  1,  1)R e diag= . Note 

that the weighting matrix R  is constant over all prediction horizon, which allows to avoid 
matrix inversion at each sampling time with one calculation of 1R−  at time k=0. 
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Fig. 6. Fuzzy-neural model identification procedure of the multi tank system – 
unconstrained NMPC 

The next two figures - Fig. 7 and Fig. 8, show typical results regarding level control, where 
the references for H1, H2 and H3 are changed consequently in different time. The change of 
every level reference behaves as a system disturbance for the other system outputs (levels). 
It is evident that the applied model predictive controller is capable to compensate these 
disturbances.  
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Fig. 7. Transient responses of multi tank system outputs – unconstrained NMPC 
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Figures below show typical results for level control problem. The reference value for each 
tank is changed consequently in different time. The proposed fuzzy-neural identification 
procedure ensures the matrices for the optimization problem of model predictive control at 
each sampling time Ts. The plant modelling process during the unconstrained and 
constrained MPC experiments are shown in Fig. 6 and Fig. 9, respectively.   

4.2 Experimental results with unconstrained model predictive control 
The proposed unconstrained model predictive control algorithm (Table 2) with the Takagi-
Sugeno fuzzy-neural model as a predictor has been applied to the level control problem. The 
experiments have been implemented with the parameters in Table 4. The weighting 
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that the weighting matrix R  is constant over all prediction horizon, which allows to avoid 
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Fig. 6. Fuzzy-neural model identification procedure of the multi tank system – 
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every level reference behaves as a system disturbance for the other system outputs (levels). 
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Fig. 7. Transient responses of multi tank system outputs – unconstrained NMPC 
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4.3 Experimental results with fuzzy-neural constrained predictive control 
The experiments with the proposed constrained model predictive control algorithm (Table 
3) have been made with level references close to the system outputs constraints. The 
weighting matrices in GPC cost function (19) are specified as (1,  1,  1)Q diag= and 

15 4 * (1,  1,  1,  1)R e diag= . System identification during the experiment is shown on Fig. 9. 
The proposed identification procedure uses the linearized model (60) of the Multi tank 
system as an initial condition.  
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Fig. 9. Fuzzy-neural model identification procedure of the multi tank system –  
constrained NMPC 

The proposed constrained fuzzy-neural model predictive control algorithm provides an 
adequate system response as it can be seen on Fig. 10 and Fig. 11. The references are achieved  
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Fig. 10. Transient responses of the multi tank system outputs – constrained NMPC 
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4.3 Experimental results with fuzzy-neural constrained predictive control 
The experiments with the proposed constrained model predictive control algorithm (Table 
3) have been made with level references close to the system outputs constraints. The 
weighting matrices in GPC cost function (19) are specified as (1,  1,  1)Q diag= and 

15 4 * (1,  1,  1,  1)R e diag= . System identification during the experiment is shown on Fig. 9. 
The proposed identification procedure uses the linearized model (60) of the Multi tank 
system as an initial condition.  
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Fig. 9. Fuzzy-neural model identification procedure of the multi tank system –  
constrained NMPC 

The proposed constrained fuzzy-neural model predictive control algorithm provides an 
adequate system response as it can be seen on Fig. 10 and Fig. 11. The references are achieved  
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Fig. 10. Transient responses of the multi tank system outputs – constrained NMPC 
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without violating the operational constraints specified in Table 4. Similarly to the 
unconstrained case, the Takagi-Sugeno type fuzzy-neural model provides the state-space 
matrices A, B and C (the system is strictly proper, i.e. D=0) for the optimization procedure of 
the model predictive control approach. Therefore, the LIQP problem is constructed with 
“fresh” parameters at each sampling time and improves the adaptive features of the applied 
model predictive controller. It can be seen on the next figures that the disturbances, which 
are consequences of a sudden change of the level references, are compensated in short time 
without violating the proper system work.   

5. Conclusions 
This chapter has presented an effective approach to fuzzy model-based control. The 
effective modelling and identification techniques, based on fuzzy structures, combined with 
model predictive control strategy result in effective control for nonlinear MIMO plants. The 
goal was to design a new control strategy - simple in realization for designer and simple in 
implementation for the end user of the control systems. 
The idea of using fuzzy-neural models for nonlinear system identification is not new, 
although more applications are necessary to demonstrate its capabilities in nonlinear 
identification and prediction. By implementing this idea to state-space representation of 
control systems, it is possible to achieve a powerful model of nonlinear plants or processes. 
Such models can be embedded into a predictive control scheme. State-space model of the 
system allows constructing the optimization problem, as a quadratic programming problem. 
It is important to note that the model predictive control approach has one major advantage – 
the ability to solve the control problem taking into consideration the operational constraints 
on the system. 
This chapter includes two simple control algorithms with their respective derivations. They 
represent control strategies, based on the estimated fuzzy-neural predictive model. The two- 
stage learning gradient procedure is the main advantage of the proposed identification 
procedure. It is capable to model nonlinearities in real-time and provides an accurate model 
for MPC optimization procedure at each sampling time. 
The proposed consequent solution for unconstrained MPC problem is the main contribution 
for the predictive optimization task. On the other hand, extraction of a “local” linear model, 
obtained from the inference process of a Takagi–Sugeno fuzzy model allows treating the 
nonlinear optimization problem in presence of constraints as an LIQP.  
The model predictive control scheme is employed to reduce structural response of the 
laboratory system - multi tank system. The inherent instability of the system makes it 
difficult for modelling and control. Model predictive control is successfully applied to the 
studied multi tank system, which represents a multivariable controlled process.  Adaptation 
of the applied fuzzy-neural internal model is the most common way of dealing with plant’s 
nonlinearities. The results show that the controlled levels have a good performance, 
following closely the references and compensating the disturbances.  
The contribution of the proposed approach using Takagi–Sugeno fuzzy model is the 
capacity to exploit the information given directly by the Takagi–Sugeno fuzzy model. This 
approach is very attractive for systems from high order, as no simulation is needed to obtain 
the parameters for solving the optimization task. The model’s state-space matrices can be 
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generated directly from the inference of the fuzzy system. The use of this approach is very 
attractive to the industry for practical reasons related with the capacity of this model 
structure to combine local models identified in experiments around the different operating 
points. 
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1. Introduction 
Due to the ability to handle control and state constraints, MPC has become quite popular 
recently. In order to guarantee the stability of MPC, a terminal constraint and a terminal cost 
are added to the on-line optimization problem such that the terminal region is a positively 
invariant set for the system and the terminal cost is an associated Lyapunov function [1, 9].  
As we know, the domain of attraction of MPC can be enlarged by increasing the prediction 
horizon, but it is at the expense of a greater computational burden. In [2], a prediction 
horizon larger than the control horizon was considered and the domain of attraction was 
enlarged. On the other hand, the domain of attraction can be enlarged by enlarging the 
terminal region. In [3], an ellipsoidal set included in the stabilizable region of using linear 
feedback controller served as the terminal region. In [4], a polytopic set was adopted. In [5], 
a saturated local control law was used to enlarge the terminal region. In [6], SVM was 
employed to estimate the stabilizable region of using linear feedback controller and the 
estimated stabilizable region was used as the terminal region. The method in [6] enlarged 
the terminal region dramatically. In [7], it was proved that, for the MPC without terminal 
constraint, the terminal region can be enlarged by weighting the terminal cost. In [8], the 
enlargement of the domain of attraction was obtained by employing a contractive terminal 
constraint. In [9], the domain of attraction was enlarged by the inclusion of an appropriate 
set of slacked terminal constraints into the control problem. 
In this paper, the domain of attraction is enlarged by enlarging the terminal region. A novel 
method is proposed to achive a large terminal region. First, the sufficient conditions to 
guarantee the stability of MPC are presented and the maximal terminal region satisfying these 
conditions is defined. Then, given the terminal cost and an initial subset of the maximal 
terminal region, a subsets sequence is obtained by using one-step set expansion iteratively. It is 
proved that, when the iteration time goes to infinity, this subsets sequence will converge to the 
maximal terminal region. Finally, the subsets in this sequence are separated from the state 
space one by one by exploiting SVM classifier (see [10,11] for details of SVM).  

2. Model predictive control 
Consider the discrete-time system as follows 
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respectively. 1
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( ),f =0 0 0  is known. The system is subject to constraints on both state and control action. 
They are given by kx X∈ ， ku U∈ ，where X  is a closed and bounded set, U  is a compact 
set. Both of them contain the origin.  
The on-line optimization problem of MPC at the sample time k , denoted by ( )N kP x , is 
stated as 
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where ( )0, k kx x x=  is the state at the sample time k , ( ),q x u  denotes the stage cost and it is 
positive definite, N is the prediction horizon, fX  denotes the terminal region and it is 

closed and satisfies fX X∈ ⊆0 , ( )F ⋅  satisfying ( ) 0F =0  is the terminal cost and it is 

continuous and positive definite. 
Consider an assumption as follows. 
Assumption 1. For the terminal region and the terminal cost, the following two conditions 
are satisfied [1]: 
(C1) ( )F ⋅  is a Lyapunov function. For any fx X∈ , there exists  

( ) ( ) ( )( ){ }min , ,
u U

F x q x u F f x u
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(C2) fX  is a positively invariant set. For any fx X∈ , by using the optimal control resulting 
from the minimization problem showed in (C1), denoted by optu  , we have ( ), opt ff x u X∈ . 
Let ( )*

N kJ x  be the minimum of ( )N kP x  and ( ) ( ) ( ){ }0, , , 1,k k kx u x u N x= ⋅ ⋅ ⋅ −* * *
N N Nu  be the 

optimal control trajectory. The control strategy of MPC is that, at the sample time k , 
( )0, ku x*

N  is inputted into the real system and at the sample time 1k + , the control inputted 
into the system is not ( )1, ku x*

N  but the first element of the optimal control trajectory 
resulting from the similar on-line optimization problem. At the sample time 1k + , the state 
is ( )( )1 , 0,k k kx f x u x+ = *

N  and the on-line optimization problem, denoted by ( )1N kP x + , is 
same as (2) except that kx  is replaced by 1kx + . Similarly, let ( )*

1N kJ x +  be the minimum of 
( )1N kP x +  and ( ) ( ) ( ){ }1 1 10, , , 1,k k kx u x u N x+ + += ⋅ ⋅ ⋅ −* * *

N N Nu  be the optimal control trajectory. 
The control inputted into the system at the sample time 1k +  is ( )10, ku x +

*
N . So, the control 

law of MPC can be stated as ( )*( ) 0, , 0,1,2, ,k N kx u x k= = ⋅ ⋅ ⋅ ∞RHu . 
The closed-loop stability of the controlled system is showed in lemma 1. 
Lemma 1. For any 0x X∈ , if 0x  satisfies ( )*

0,N fx N x X∈  and assumption 1 is satisfied, it is 
guaranteed that, 0x  will be steered to 0  by using the control law of MPC.  
The proof can be found in [1]. 
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Proof. The proof of lemma 1 is composed of two parts: the existence of feasible solution; the 
monotonicity of ( )*
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Since ( ) ( )( )*
1 1 1,N NJ x J x x≤ u , it follows that, ( ) ( )* *

1 0 0N NJ x J x− ≤ .  
Endproof.  

3. Using subsets sequence to approach the maximal terminal region 
Using SVM classifier to estimate the terminal region is not a new technology. In [6], a large 
terminal region was achieved by using SVM classifier. However, the method in [6] is 
somewhat conservative. The reason is that, the obtained terminal region actually is the 
stabilizable region of using a predetermined linear feedback controller.  
In this section, a novel method of computing a terminal region is proposed. Given the 
terminal cost and a subset of the maximal terminal region, a subsets sequence is constructed 
by using one-step set expansion iteratively and SVM is employed to estimate each subset in 
this sequence. When some conditions are satisfied, the iteration ends and the last subset is 
adopted to serve as the terminal region.  

3.1 The construction of subsets sequence 
Consider an assumption as follows. 
Assumption 2. A terminal cost is known. 
If the stage cost is a quadratic function as ( ), T Tq x u x Qx u Ru= +  in which Q , R  are 
positive definite, a method of computing a terminal cost for continuous-time system can be 
found in [3]. In this paper, the method in [3] is extended to discrete-time system. Consider 
the linearization of the system (1) at the origin 

1k d k d kx A x B u+ = +  

with ( )( )/ 0,0dA f x= ∂ ∂  and ( )( )/ 0,0dB f u= ∂ ∂ . 
A terminal cost can be obtained through the following procedure: 
Step 1. Solving the Riccati equation to get 0G , 



  
Advanced Model Predictive Control 

 

152 

 ( )1 ,k k kx f x u+ =   (1) 

where n
kx R∈ ， m

ku R∈  are the state and the input of the system at the sampling time k  
respectively. 1

n
kx R+ ∈  is the successor state and the mapping : n m nf R R+   satisfying 

( ),f =0 0 0  is known. The system is subject to constraints on both state and control action. 
They are given by kx X∈ ， ku U∈ ，where X  is a closed and bounded set, U  is a compact 
set. Both of them contain the origin.  
The on-line optimization problem of MPC at the sample time k , denoted by ( )N kP x , is 
stated as 

 

( )
( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )

1

, 0
min , , , , ,

. . 1, , , ,

1, , , , ,

k

N

N k k k ku i x U i

k k k

k k k f

J x q x i x u i x F x N x

s t x i x f x i x u i x

x i x X u i x U x N x X

−

∈ =
= +

+ =

+ ∈ ∈ ∈

u

 (2) 

where ( )0, k kx x x=  is the state at the sample time k , ( ),q x u  denotes the stage cost and it is 
positive definite, N is the prediction horizon, fX  denotes the terminal region and it is 

closed and satisfies fX X∈ ⊆0 , ( )F ⋅  satisfying ( ) 0F =0  is the terminal cost and it is 

continuous and positive definite. 
Consider an assumption as follows. 
Assumption 1. For the terminal region and the terminal cost, the following two conditions 
are satisfied [1]: 
(C1) ( )F ⋅  is a Lyapunov function. For any fx X∈ , there exists  

( ) ( ) ( )( ){ }min , ,
u U

F x q x u F f x u
∈

≥ + . 

(C2) fX  is a positively invariant set. For any fx X∈ , by using the optimal control resulting 
from the minimization problem showed in (C1), denoted by optu  , we have ( ), opt ff x u X∈ . 
Let ( )*

N kJ x  be the minimum of ( )N kP x  and ( ) ( ) ( ){ }0, , , 1,k k kx u x u N x= ⋅ ⋅ ⋅ −* * *
N N Nu  be the 

optimal control trajectory. The control strategy of MPC is that, at the sample time k , 
( )0, ku x*

N  is inputted into the real system and at the sample time 1k + , the control inputted 
into the system is not ( )1, ku x*

N  but the first element of the optimal control trajectory 
resulting from the similar on-line optimization problem. At the sample time 1k + , the state 
is ( )( )1 , 0,k k kx f x u x+ = *

N  and the on-line optimization problem, denoted by ( )1N kP x + , is 
same as (2) except that kx  is replaced by 1kx + . Similarly, let ( )*

1N kJ x +  be the minimum of 
( )1N kP x +  and ( ) ( ) ( ){ }1 1 10, , , 1,k k kx u x u N x+ + += ⋅ ⋅ ⋅ −* * *

N N Nu  be the optimal control trajectory. 
The control inputted into the system at the sample time 1k +  is ( )10, ku x +

*
N . So, the control 

law of MPC can be stated as ( )*( ) 0, , 0,1,2, ,k N kx u x k= = ⋅ ⋅ ⋅ ∞RHu . 
The closed-loop stability of the controlled system is showed in lemma 1. 
Lemma 1. For any 0x X∈ , if 0x  satisfies ( )*

0,N fx N x X∈  and assumption 1 is satisfied, it is 
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Proof. The proof of lemma 1 is composed of two parts: the existence of feasible solution; the 
monotonicity of ( )*

NJ ⋅ .  
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*
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0 0 0 0

0 0 0

0 0
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0, , 0,

0

N N

opt opt

J x x J x

q x N x u x N x F f x N x u x N x

q x x u x F x N x

q x x u x

−

= +

− −

≤ −

≤

* * * *

* * *

* *

u

 

Since ( ) ( )( )*
1 1 1,N NJ x J x x≤ u , it follows that, ( ) ( )* *

1 0 0N NJ x J x− ≤ .  
Endproof.  

3. Using subsets sequence to approach the maximal terminal region 
Using SVM classifier to estimate the terminal region is not a new technology. In [6], a large 
terminal region was achieved by using SVM classifier. However, the method in [6] is 
somewhat conservative. The reason is that, the obtained terminal region actually is the 
stabilizable region of using a predetermined linear feedback controller.  
In this section, a novel method of computing a terminal region is proposed. Given the 
terminal cost and a subset of the maximal terminal region, a subsets sequence is constructed 
by using one-step set expansion iteratively and SVM is employed to estimate each subset in 
this sequence. When some conditions are satisfied, the iteration ends and the last subset is 
adopted to serve as the terminal region.  

3.1 The construction of subsets sequence 
Consider an assumption as follows. 
Assumption 2. A terminal cost is known. 
If the stage cost is a quadratic function as ( ), T Tq x u x Qx u Ru= +  in which Q , R  are 
positive definite, a method of computing a terminal cost for continuous-time system can be 
found in [3]. In this paper, the method in [3] is extended to discrete-time system. Consider 
the linearization of the system (1) at the origin 

1k d k d kx A x B u+ = +  

with ( )( )/ 0,0dA f x= ∂ ∂  and ( )( )/ 0,0dB f u= ∂ ∂ . 
A terminal cost can be obtained through the following procedure: 
Step 1. Solving the Riccati equation to get 0G , 
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( )( ) ( )1
0 0 0 0 0

T T T T
d d d d d d d dG A G A A G B B G B R B G A Q

−
= − + +  

Step 2. Getting a locally stabilizing linear state feedback gain K , 

( ) ( )1
0 0

T T
d d d dK B G B R B G A

−
= − +  

Step 3. Computing KG  by solving the following Riccati equation, 

( ) ( )T
K K K K KA G A G Qα α − = −  

where K d dA A B K= + , T
KQ Q K RK= + , and [1, )α ∈ +∞  is an adjustable parameter 

satisfying ( )max 1KAα λ < . Then, ( ) T
KF x x G x=  can serve as a terminal cost. 

Given ( )F ⋅  and from conditions (C1,C2), the terminal region fX  can be defined as   

 ( ) ( ){ }*: |
ff XX x X F x F x= ∈ ≥  (3) 

where ( )*
fXF x  is the minimum of the following optimization problem 

 
( ) ( ) ( )( )

( )
min , ,

. . ,
fXu U

f

F x q x u F f x u

s t f x u X
∈

= +

∈
  (4) 

Remark 1. The construction of fX  has two meanings: (I) the optimization problem (4) has 
feasible solution, that is to say, u U∃ ∈ , s.t. ( ), ff x u X∈ ; (II) the minimum of the 
optimization problem satisfies that ( ) ( )*

fXF x F x≤ . 
Remark 2. From the definition of fX , it is obvious that, the terminal region is essentially a 
positively invariant set of using the optimal control resulting from the optimization problem 
(4) when ( )F ⋅  is given. 
Remark 3. In [3,4,6], the linear feedback control is attached to the construction of fX  and 

fX  is the stabilizable region of using the linear feedback controller. In [5], a saturated local 

control law was used. But, in this paper, there is no explicit control attached to the definition 
of fX . So, the requirement on fX  is lower than that in [3-6] while guaranting the stability 

of the controlled system.  
From the definition of fX , it can not be determined whether a state point belongs to fX . 

The difficulty lies in that, the fX  itself acts as the constraint in the optimization problem (4). 

To avoid this problem, the method of using one-step set expansion iteratively is adopted. 
Define ,maxfX  as the largest terminal region and consider an assumption. 

Assumption 2. A subset of ,maxfX , denoted by 0
fX  and containing the origin, is known.  

Assumption 3. 0
fX  is a positively invariant set, that is to say, for any 0

fx X∈ , u U∃ ∈ , s.t. 

( ) ( ) ( )( ), ,F x q x u F f x u≥ +  and ( ) 0, ff x u X∈ .  

Given 0
fX , another subset of ,maxfX , denoted by 1

fX , can be constructed as  
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 ( ) ( ){ }0
1 *: |

f
f XX x X F x F x= ∈ ≥  (5) 

where ( )0
*

fXF x  is the minimum of  

 
( ) ( ) ( )( )

( )

0

0

min , ,

. . ,
fXu U

f

F x q x u F f x u

s t f x u X
∈

= +

∈
 (6) 

As mentioned in remark 1, the construction of 1
fX  contains two meanings: (I) for any 

1
fx X∈ , u U∃ ∈ , s.t. ( ) 0, ff x u X∈ ; (II) the minimum of (6) satisfies ( ) ( )0

*
fXF x F x≤ . The 

constructions of j
fX  in sequel have the similar meanings.  

Lemma 2. If assumption 3 is satisfied, there is 0 1
f fX X⊆ . 

Proof. If assumption 3 is satisfied, it is obvious that, for any 0
fx X∈ , u U∃ ∈ , s.t. 

( ) ( ) ( )( ), ,F x q x u F f x u≥ +  and ( ) 0, ff x u X∈ . It follows that, ( ) ( )0
*

fXF x F x≥ . From the 
construction of 1

fX , we can know 1
fx X∈ , namely, 0 1

f fX X⊆ . 
Endproof. 
Remark 4. From the construction of 1

fX , it is obvious that, if assumption 3 is satisfied, 1
fX  is 

a positively invariant set. We know that, for any 1
fx X∈ , u U∃ ∈ , s.t. 

( ) ( ) ( )( ), ,F x q x u F f x u≥ +  and ( ) 0, ff x u X∈ . Because of 0 1
f fX X⊆  as showed in lemma 2, we 

have ( ) 1, ff x u X∈ . 
Similarly, by replacing 0

fX  with 1
fX  in the constraint of (6), another subset, denoted by 2

fX , 

can be obtained as follows 

 ( ) ( ){ }1
2 *: |

f
f XX x X F x F x= ∈ ≥  (7) 

where ( )1
*

fXF x  is the minimum of 

 
( ) ( ) ( )( )

( )

1

1

min , ,

. . ,
fXu U

f

F x q x u F f x u

s t f x u X
∈

= +

∈
  (8) 

Repeatedly, j
fX , 3,4, ,j = ⋅ ⋅ ⋅ ∞  can be constructed as 

 ( ) ( ){ }1
*: | j

f

j
f XX x X F x F x−= ∈ ≥   (9) 

where ( )1
*

j
fXF x−  is the minimum of 

 
( ) ( ) ( )( )

( )

1

1

min , ,

. . ,

j
fXu U

j
f

F x q x u F f x u

s t f x u X

−
∈

−

= +

∈
 (10) 
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( )

1

1
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. . ,
fXu U

f
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∈

= +

∈
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Repeatedly, j
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f
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*
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( ) ( ) ( )( )

( )

1

1
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. . ,

j
fXu U

j
f

F x q x u F f x u

s t f x u X

−
∈

−

= +

∈
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This method of constructing j
fX  given 1j

fX −  is defined as one-step set expansion in this 

paper. By employing it iteratively, a subsets sequence of largest terminal region, denoted by 

{ }j
fX , 1,2, ,j = ⋅ ⋅ ⋅ ∞ , can be achived.  

Remark 5. Similar with lemma 2 and remark 4, any subset in this sequence is positively 
invariant and any two neighbouring subsets satisfy 1j j

f fX X− ⊆ . 

As j  increases, { }j
fX  will converge to a set, denoted by fX+∞ . Theorem 1 will show that, 

fX+∞  is equal to the largest terminal region. 
Theorem 1. If assumption 2 and assumption 3 are satisfied, for j

fX  constructed in (9) and (10), 
when j  goes to infinity, { }j

fX  will converge to ,maxfX .  
Proof. This theorem is proved by contradiction. 
(A) Assume that, there exists a set which is denoted by spoX  satisfying ,maxspo fX X⊂  and 

j
spofX X→  when j → +∞ . From remark 5, we can know 0

f spoX X⊆ . It is obvious that 
spoX∈0  because of 0

fX∈0  as showed in assumption 2. It follows that, ,max \f spoX X∉0  and 
for any ,max \f spox X X∈ , we have ( ) 0F x >  since ( )F ⋅  is positive definite. Define ξ  as the 
infimum of ( ){ },max| \f spoF x x X X∈ , it is satisfied that, 0ξ > . 
From the construction of j

fX , we know that, for any 0 ,max \f spox X X∈ , there exists no such 
a u U∈  satisfying ( ) ( ) ( )( )0 0 0, ,F x q x u F f x u≥ +  and ( )0 , spof x u X∈  because of 

,maxspo fX X⊂ . However, from (C1) and (C2), we know that, ( )0u x U∃ ∈ , s.t. 
( ) ( )( ) ( )0 0 0 1,F x q x u x F x≥ +  and 1 ,maxfx X∈ , where ( )( )1 0 0,x f x u x= . It is obvious that, 
1 spox X∉ . So we have, 1 ,max \f spox X X∈ . Similarly, we can know, ( )1u x U∃ ∈ , s.t. 
( ) ( )( ) ( )1 1 1 2,F x q x u x F x≥ +  and 2 ,max \f spox X X∈ , where ( )( )2 1 1,x f x u x= , since 
1 ,max \f spox X X∈ . 

Repeatly, for ,max \i f spox X X∈ , ( )iu x U∃ ∈ , s.t. ( ) ( )( ) ( )1,i i i iF x q x u x F x +≥ +  and 
1 ,max \i f spox X X+ ∈ , where ( )( )1 ,i i ix f x u x+ = , 2, ,i = ⋅ ⋅ ⋅ ∞ . It is clear that, ( ) 0iF x →  when 

i → ∞ . We know that, for the infimum of ( ){ },max| \f spoF x x X X∈ , defined as ξ ,  there is a 
positive real number δ  satisfing 0 δ ξ< < . Since ( ) 0iF x →  when i → ∞ , 0Nδ∃ > , s.t. for 
any i Nδ≥ , we have ( )iF x δ< . Obviously, this is contradicted with that ξ  is the infimum 
of ( ){ },max| \f spoF x x X X∈ . 
(B) Similarly, assume that, there exists a spoX  satisfying ,maxspo fX X⊃  and j

spofX X→  when 
j → +∞ . For any spox X∈ , we have that ( ) ( ) ( )( ){ }min , ,

u U
F x q x u F f x u

∈
≥ +  and ( ), spof x u X∈ . 

Obviously, this is contradicted with that ,maxfX  is the largest one satisfying (C1) and (C2). 
Endproof. 
Remark 6. In this paper, the largest terminal region means the positively invariant set satisfying 
conditions (C1) and (C2). But, (C1) and (C2) are sufficient conditions to guarantee the stability of 
the controlled system, not the necessary conditions. There may be a set larger than ,maxfX  and 
the stability of the controlled system can be guaranteed by using this set as the terminal region.  
Remark 7. In the calculation of ,maxfX , it is impossible to keep iteration computation until 
j → +∞ . When the iteration time goes to j E=  ( E  is a positive integer), if E

fX  is equal to 
1E

fX −  in principle, it can be deemed that { }j
fX  converges to E

fX  in rough. Hence, E
fX  can be 

taken as the terminal region and it is a good approximation to ,maxfX .  
Remark 8. If the iteration time does not go to infinity, the obtained set may be just a large 
positively invariant subset of ,maxfX . This has no effect on the stability of the controlled 
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system. The only negative influence is that its corresponding domain of attraction is smaller 
than that corresponding to ,maxfX .  
Untill now, it seems that we can choose any j

fX  in the subsets sequence as the terminal 
region. This is infeasible. Since j

fX  is not described in explicit expression, it can not serve as 
the terminal constraint in the optimization problem (2) directly. Then, an estimated one 
described in explicit expression is needed. Due to the strong optimizing ability of SVM, 
SVM is exploited to separate each j

fX  from the state space. 

3.2 Support vector machine 
SVM is the youngest part in the statistical learning theory. It is an effective approach for 
pattern recognition. In SVM approach, the main aim is to obtain a function, which 
determines the decision boundary or hyperplane. This hyperplane optimally separates two 
classes of input data points.  
Take the example of separating X  into A  and \X A . For each ix A∈ , an additional 
variable 1iy = +  is introduced. Similarly, for each \ix X A∈ , 1iy = −  is introduced. Define 

{ }: : 1iI i y+ = = +  and { }: : 1iI i y− = = − , SVM will find a separating hyperplane, denoted by 
( ) ( ): 0iO x w x bφ= ⋅ + = , between A  and \X A . Therefore, A  can be estimated as 

( ){ }ˆ | 0A x X O x= ∈ ≥ , where ( )O x  is determined by solving the following problem: 

 

( )1min     , -
2

s.t.      0

          0 , ; 0,

i j i j i j i
i j i

i i
i

i i

y y ker x x

y

C i I i I

α
α α α

α

α α+ −

=

≤ ≤ ∀ ∈ ≥ ∀ ∈

 

   (11) 

where ( ),ker ⋅ ⋅  denotes the kernel function and the Gaussian kernel as follows is adopted in 
this paper:   

 ( )
2

2, exp
2

i
i

x x
ker x x

σ

 −
 = −
 
 

  (12) 

with σ  being the positive Gaussian kernel width. 
When { }iα  are computed out, some support vectors are chosen from { }ix  and the optimal 
hyperplane can be determined with these support vectors and their relevant weights. 
Denote sP  as the number of support vectors and sX  as the support vectors set, the optimal 
hyperplane is described as:  

 ( ) ( )
1

,
sP

i i
i

O x w ker x x b
=

= ⋅ +   (13) 

where i sx X∈  is the support vector and i i iw yα=  satifying 
1

0
sP

i
i

w
=

=  is the relevant weight. 
There are many software packages of SVM available on internet. They can be downloaded 
and used directly. To save space, it is not introduced in detail in this paper. For more details, 
please refer to [10] and [11]. 
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spofX X→  when 
j → +∞ . For any spox X∈ , we have that ( ) ( ) ( )( ){ }min , ,

u U
F x q x u F f x u

∈
≥ +  and ( ), spof x u X∈ . 

Obviously, this is contradicted with that ,maxfX  is the largest one satisfying (C1) and (C2). 
Endproof. 
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1E
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taken as the terminal region and it is a good approximation to ,maxfX .  
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system. The only negative influence is that its corresponding domain of attraction is smaller 
than that corresponding to ,maxfX .  
Untill now, it seems that we can choose any j

fX  in the subsets sequence as the terminal 
region. This is infeasible. Since j

fX  is not described in explicit expression, it can not serve as 
the terminal constraint in the optimization problem (2) directly. Then, an estimated one 
described in explicit expression is needed. Due to the strong optimizing ability of SVM, 
SVM is exploited to separate each j

fX  from the state space. 

3.2 Support vector machine 
SVM is the youngest part in the statistical learning theory. It is an effective approach for 
pattern recognition. In SVM approach, the main aim is to obtain a function, which 
determines the decision boundary or hyperplane. This hyperplane optimally separates two 
classes of input data points.  
Take the example of separating X  into A  and \X A . For each ix A∈ , an additional 
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( ) ( ): 0iO x w x bφ= ⋅ + = , between A  and \X A . Therefore, A  can be estimated as 

( ){ }ˆ | 0A x X O x= ∈ ≥ , where ( )O x  is determined by solving the following problem: 
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where ( ),ker ⋅ ⋅  denotes the kernel function and the Gaussian kernel as follows is adopted in 
this paper:   
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with σ  being the positive Gaussian kernel width. 
When { }iα  are computed out, some support vectors are chosen from { }ix  and the optimal 
hyperplane can be determined with these support vectors and their relevant weights. 
Denote sP  as the number of support vectors and sX  as the support vectors set, the optimal 
hyperplane is described as:  

 ( ) ( )
1

,
sP

i i
i

O x w ker x x b
=

= ⋅ +   (13) 

where i sx X∈  is the support vector and i i iw yα=  satifying 
1

0
sP

i
i

w
=

=  is the relevant weight. 
There are many software packages of SVM available on internet. They can be downloaded 
and used directly. To save space, it is not introduced in detail in this paper. For more details, 
please refer to [10] and [11]. 
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3.3 Estimating the subset by employing SVM 
From subsection 3.2, we know that, SVM find a separating hyperplane between { }|ix i I+∈  
and { }|ix i I−∈ .This hyperplane is used to separate X  into A  and \X A . All of { }ix  and 
their relevant { }iy  compose a set, named the training points set. This subsection will show 
how to achieve the training points set when estimating j

fX  and how to determine j
fX  when 

the separating hyperplane is known. 
Firstly, choose arbitrary points ix X∈ , 1,2,...,i P= ( P  is the number of training points); 
then, assign iy  to each ix  by implementing the following procedure:  
IF  (I) the following optimization problem has feasible solution 

( ) ( ) ( )( )
( ) 1

min , ,

ˆ. . ,

j
f

i i iXu U
j

i f

F x q x u F f x u

s t f x u X
∈

−

= +

∈
. 

(When 1j = , 0 0ˆ
f fX X= .) 

(II) its minimum satisfies  

( ) ( )*
j
f

i iXF x F x≥ . 

THEN 1iy = +  
ELSE 1iy = −  
ENDIF. 
By implementing this procedure for every ix , each iy  is known. Input { }ix  and { }iy  into 

SVM classifier, an optimal hyperplane ( ) 0jO x =  will be obtained. Therefore, the estimated 

set of j
fX  can be achieved as ( ){ }ˆ | 0j j

fX x X O x= ∈ ≥ . 

When ˆ j
fX  is known, the training points for separating 1j

fX +  from X can be computed by 

the similar procedure. By inputting them into SVM classifier, a hyperplane ( )1 0jO x+ =  and 

an estimated set of 1j
fX + , denoted by ( ){ }1 1ˆ | 0j j

fX x X O x+ += ∈ ≥  will be obtained. 

Repeatedly, ( ){ } , 1,2, ,jO x j = ⋅ ⋅ ⋅ ∞  and { }ˆ j
fX  can be be achieved by the similar technology. 

4. Estimating the terminal region 

Section 3 showed how to achieve the subsets sequence by employing SVM. Theoretically, 
the larger the iteration time j , the higher the precision of ˆ j

fX  approaching to ,maxfX . But, it 
is impossible to keep computation until j → +∞ . To avoid this problem, the iteration should 
be ended when some conditions are satisfied.  
When j E= , if it is satisfied that, for , 1i s Ex X −∈ , , 11,2, , s Ei P −= ⋅ ⋅ ⋅ , there exists 
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, 1

1
, 1

1
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E E

i i s E
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−
−

=
− ≤ , (14) 
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it can be deemed that ˆ E
fX  is equal to 1ˆ E

fX −  in principle and ˆ j
fX  converges to ˆ E

fX . In (14), 

s, 1EX −  is the support vectors set at 1j E= − , , 1s EP −  is the number of support vectors and ε  

is a tunable threshold. The smaller ε  is, the higher the precision of ˆ E
fX  approximating 

to ,maxfX  is. Finally, ˆ E
fX  is used to serve as the terminal region.  

Remark 9. Here, we used the information that, in SVM classifier, the hyperplanes are only 
determined on the support vectors. 
Now, the concrete algorithm of estimating the largest terminal region is displayed as follows. 
Step 4. Step 1 Set the number of training points P  used in SVM and the tunable threshold ε . 
Step 5. Step 2 For 1,2, ,j = ⋅ ⋅ ⋅ ∞ , use SVM to achieve the optimal hyperplane ( ) 0jO x =  and 

the estimated set of j
fX , denoted by ˆ j

fX .  

Substep 1.  Choose arbitrary points ix X∈  , 1,2,...,i P= .  
Substep 2.  Assign iy  to each ix  by implementing the procedure in subsection 3.3. 

Substep 3.  Input { },i ix y  into the SVM. An optimal hyperplane ( ) 0jO x =  will be 

obtained and j
fX  can be approximated by ( ){ }ˆ | 0j j

fX x X O x= ∈ ≥ , where 

( ) ( )
,

1
,

s jP
j

i i j
i

O x w ker x x b
=

= ⋅ +  

with ,s jP  denoting the number of support vectors, ix  being the support vector, iw  
denoting its relevant weight and jb  denoting the classifier threshold. 
Step 6. Step 3 Check the iteration status. When j E= , if inequality (14) is satisfied, end 

iteration and take ˆ E
fX  as the largest terminal region.  

Remark 10. It is obvious that, ˆ j
fX  is achieved one by one. Namely, ˆ j

fX  can only be achieved 

when 1ˆ j
fX −  is known.  

5. Simulation experiment 
The model is a discrete-time realization of the continuous-time system used in [3, 6]:  

( )
( )

( )
( ) ( ) ( )
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( ) ( )1 1 1

2 2 2

11 1 0
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T Tx k x k T x k

u k u k
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       + −   
= + +          + − −          

 

where 0.5μ = , 0.1T s= , and the state constraint and control constraint are 

{ }1| 4X x x= ≤ ， { }| 2U u u= ≤ , respectively.  

The stage cost is ( ), T Tq x u x Qx u Ru= +  where 0.5Q I=  and 1R = . The terminal cost is 

chosen as ( ) TF x x Gx=  where [1107.356   857.231; 857.231     1107.356]G =  and 0
fX  is given 

as the terminal region in [3] which is 
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To estimate each j
fX , 4000 training points are generated. Set 2.5ε = , when 22j = , there exists 

( ) ( )
,21

22 21
,21

1

sP

i i s
i

O x O x Pε
=

− ≤ , 

where s,21ix X∈ , s,21X  is the support vectors set and ,21sP  is the number of support vectors 

at 21j = . Then, it is deemed that, 22ˆ
fX  is equal to 21ˆ

fX  in principle and 22ˆ
fX  can be taken as 

the final estimation of ,maxfX . Figure 1 shows the approximation process of ,maxfX .  

In figure 1, the blue ellipsoid is the terminal region in [3], which serves as 0
fX  in the 

estimation of ,maxfX  in this paper. The regions surrounded by black solid lines are 

{ }ˆ , 1,2, 22j
fX j = ⋅ ⋅ ⋅  in which the smallest one is 1ˆ

fX , the largest one is 22ˆ
fX  and the regions 

between them are { }ˆ , 2,3, 21j
fX j = ⋅ ⋅ ⋅  satisfying 1ˆ ˆj j

f fX X− ⊆ . The time cost of employing SVM 

to estimate each ˆ j
fX  is about 44 minutes and the total time cost of computing the final 

estimation of ,maxfX , namely, 22ˆ
fX  is about 16 hours. 
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Set the prediction horizon as 3N = , some points in the region of attraction (this example is 
very exceptional, the region of attraction is coincident with the terminal region in rough. 
Therefore, these points are selected from the terminal region) are selected and their closed-
loop trajectories are showed in Figure 2. 
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Fig. 2. The closed-loop trajectories of states 

In figure 2, the blue ellipsoid is the terminal region in [3] and the region encompassed by 
black dash lines is the result in [6]. The region encompassed by black solid lines is the 
terminal region in this paper. We can see, the terminal region in this paper contain the result 
in [3], but not contain the result in [6] although it is much larger than that in [6]. The reason 
is that, the terminal region in this paper is the largest one satisfying conditions (C1) and 
(C2). However, (C1) and (C2) are just the sufficient conditions to guarantee the stability of 
the controlled system, not the necessary conditions as showed in remark 6. The red solid 
lines denote the closed-loop trajectories of the selected points. Note that, with the same 
sampling interval and prediction horizon as those in this paper, these points are not in the 
regions of attraction of MPC in [3] and [6]. But, they can be leaded to the orgin by using the 
control law of MPC in this paper. 

6. Conclusion 
Given the terminal cost, a sequence of subsets of the maximal terminal region are extracted 
from state space one by one by employing SVM classifier. When one of them is equal to its 
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6. Conclusion 
Given the terminal cost, a sequence of subsets of the maximal terminal region are extracted 
from state space one by one by employing SVM classifier. When one of them is equal to its 
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succesive one in principle, it is used to serve as the terminal region and it is a good 
approximation to the maximal terminal region.  
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1. Introduction

In process industry, there exist many systems which can be approximated by block-oriented
nonlinear models, including Hammerstein and Wiener models. Hammerstein model consists
of the cascade connection of a static (memoryless) nonlinear block followed by a dynamic
linear block while Wiener model the reverse. Moreover, these systems are usually subjected
to input constraints, which makes the control of block-oriented nonlinearities challenging.
In this chapter, a Multi-Channel Identification Algorithm (MCIA) for Hammerstein systems is
first proposed, in which the coefficient parameters are identified by least squares estimation
(LSE) together with singular value decomposition (SVD) technique. Compared with
traditional single-channel identification algorithms, the present method can enhance the
approximation accuracy remarkably, and provide consistent estimates even in the presence
of colored output noises under relatively weak assumptions on the persistent excitation (PE)
condition of the inputs.
Then, to facilitate the following controller design, the aforementioned MCIA is converted
into a Two Stage Single-Channel Identification Algorithm (TS-SCIA), which preserves most
of the advantages of MCIA. With this TS-SCIA as the inner model, a dual-mode Nonlinear
Model Predictive Control (NMPC) algorithm is developed. In detail, over a finite horizon,
an optimal input profile found by solving a open-loop optimal control problem drives the
nonlinear system state into the terminal invariant set, afterwards a linear output-feedback
controller steer the state to the origin asymptotically. In contrast to the traditional algorithms,
the present method has a maximal stable region, a better steady-state performance and a lower
computational complexity. Finally, a case study on a heat exchanger is presented to show the
efficiency of both the identification and the control algorithms.
On the other hand, for Wiener systems with input constraints, since most of the existing
control algorithms cannot guarantee to have sufficiently large regions of asymptotic stability,
we adopted a subspace method to separate the nonlinear and linear blocks in a constrained
multi-input/multi-output (MIMO) Wiener system and then developed a novel dual-mode
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In this chapter, a Multi-Channel Identification Algorithm (MCIA) for Hammerstein systems is
first proposed, in which the coefficient parameters are identified by least squares estimation
(LSE) together with singular value decomposition (SVD) technique. Compared with
traditional single-channel identification algorithms, the present method can enhance the
approximation accuracy remarkably, and provide consistent estimates even in the presence
of colored output noises under relatively weak assumptions on the persistent excitation (PE)
condition of the inputs.
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of the advantages of MCIA. With this TS-SCIA as the inner model, a dual-mode Nonlinear
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nonlinear system state into the terminal invariant set, afterwards a linear output-feedback
controller steer the state to the origin asymptotically. In contrast to the traditional algorithms,
the present method has a maximal stable region, a better steady-state performance and a lower
computational complexity. Finally, a case study on a heat exchanger is presented to show the
efficiency of both the identification and the control algorithms.
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nonlinear model predictive control algorithm to maximize the region of the asymptotic
stability. Simulation results are presented to demonstrate the superiority of this new control
algorithm.
In sum, this chapter developed some new NMPC methods for block-oriented nonlinearities
with input constraints. Meanwhile, these approaches can effectively enlarge the closed-loop
stable area so as to extend the feasible working region and improve the reliability of the control
systems in real process industrial applications.

2. Model Predictive Control for Hammerstein systems with input constraints

2.1 Introduction
In industrial processes (1), most dynamical systems can be better represented by nonlinear
models, which are able to describe the systems over large operation ranges, rather than by
linear ones that are only able to approximate the systems around given operation points (23;
48). One of the most frequently studied classes of nonlinear models is the Hammerstein model
(17; 48), which consists of the cascade connection of a static (memoryless) nonlinear block
followed by a dynamic linear block. Under certain considerations such as fading memory
assumption (10) the Hammerstein approximation could be a good representation. Thus,
this model structure has been successfully applied to chemical processes (heat exchanger
(17), distillation (5; 17; 35)), biological processes (20; 30) signal processing (3; 55), and
communications (3; 25)). In recent years, identification and control of Hammerstein systems
has become one of the most needed and yet very difficult tasks in the field of the process
industry.
In MPC (Model Predictive Control) framework (20; 32), the input is calculated by on-line
minimization of a performance index based on model predictions. It is well known that the
control quality relies on the accuracy of the model. In recent years, extensive efforts were
devoted to modelling of Hammerstein nonlinearities (2; 17; 23; 26; 27; 31). For example,
Bai (2) studied SISO (Single Input/ Single Output) systems subject to external white noise.
Gómez and Baeyens (23) designed a non-iterative identification with guaranteed consistent
estimation even in the present of coloured output noise. Both of their works use only one
channel to identify the system, therefore, owing to the SVD (singular value decomposition)
nature of their methods, the identification errors usually can not be minimized. A basic reason
is that the error is determined by the second largest singular value (for SISO system) or the st
largest singular value (for MIMO system with inputs) of the estimated coefficients matrix.
For a SISO system, if the sampling set is not big enough or the PE (persistent excitation)
conditions are not fulfilled, the second largest singular value can not be neglected, making the
identification accuracy unsatisfactory or even unacceptable. On the other hand, the research
on the control of Hammerstein systems is still on the midway so far. Most of the existent
control algorithms have some of the following disadvantages

• Reliance on prior knowledge;

• Insufficiently large closed-loop stable regions;

• Limited capacity of handling input constraints.

In detail, Haddad and Chellaboina (28) suggested a design that can guarantee global
asymptotic closed-loop stability for nonlinear passive systems by embedding a nonlinear
dynamic compensator with a suitable input nonlinearity, which requires the memoryless
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nonlinear block to be partially known or measurable without considering input constraints.
Patwardhan et al. (51) used a PLS (Partial Least Square) framework to decompose the
modelling problem into a series of univariate problems in the latent subspace while preserving
optimality of the input constraints. In this way, they can extend the SISO formulation into
a constrained MIMO scenario. In this approach, however, the computational complexity is
prohibitive, and the reliance on prior knowledge can not be eliminated. Knohl et al. (40)
slightly alleviated this reliance by an ANN (Artificial Neural Network) inverse compensation,
which makes the control scheme more flexible, but its stable region is still small. Fruzzetti
et al. (18) and Zhu et al. (71) developed GPC (Generalized Predictive Control) and MPC
algorithms respectively by taking input constraints into account. These schemes still can
not ensure a large stable region in general, and require prior knowledge of the real plant
such as order, structure, partial coefficients, etc. Bolemen et al. (9) extended their own
work (8) which preserves the convex property of the optimization problem, but does not
consider input constraints. In order to enlarge the asymptotically stable region for constrained
nonlinear systems, Chen and Allgöwer (14) developed a quasi-infinite horizon Nonlinear
Model Predictive Control (NMPC) algorithms based on a dual-mode (or two-step) technique,
which has opened a new avenue in this fascinating field. Among the various following
works of Chen and Allgöwer’s work (14), there are three important investigations made by
Kouvartakis et al. (41) Lin et al. (44) and Ding et al. (16). More precisely, Kouvartakis
et al. (41) proposed a new approach that deployed a fixed state-feedback law with the
assistance of extra degrees of freedom through the use of perturbations, which led to a
significant reduction in computational cost. More generally, for linear systems with actuator
rate constraint, Lin et al. (44) designed both state-feedback and output-feedback control laws
that achieve semi-global asymptotic stabilization based on the assumption of detectability
of the system. For input saturated Hammerstein systems, Ding et al. (16) designed a
two-step MPC by solving nonlinear algebraic equation group and deconstraint. The stable
region is enlarged and its domain of attraction is designed applying semi-global stabilization
techniques. Unfortunately, this nice work is still based on the measurability of the state of the
linear block.
Based on the above analysis, two important tasks are formulated as follows:

• Task one: Develop a better identification algorithm to separate the nonlinear/linear blocks
of the Hammerstein system more effectively so that some mature linear control theories
can be used to facilitate the nonlinear control algorithm design.

• Task two: Develop a more efficient control algorithm for constrained Hammerstein systems.

Bearing these tasks in mind, we propose a NMPC algorithm based on a Two Stage
Single-Channel Identification Algorithm (TS-SCIA) (68). More precisely:

• A Multi-Channel Identification Algorithm (MCIA) is developed for Hammerstein systems
which eliminates requirement of prior knowledge about the plant and minimizes the
identification errors. The MCIA is then converted to a TS-SCIA thereby facilitating the
controller design. A sufficient condition for the convergence and approximation capability
is given for the new algorithm.

• A dual-mode NMPC algorithm is developed by taking the above mentioned Two Stage
Single-Channel Identification Model (TS-SCIM) as the internal model. The closed-loop
stable region is maximized by using ellipsoidal invariant set theory together with linear
matrix inequality (LMI) techniques.

165Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints



2 Nonlinear Model Predictive Control

nonlinear model predictive control algorithm to maximize the region of the asymptotic
stability. Simulation results are presented to demonstrate the superiority of this new control
algorithm.
In sum, this chapter developed some new NMPC methods for block-oriented nonlinearities
with input constraints. Meanwhile, these approaches can effectively enlarge the closed-loop
stable area so as to extend the feasible working region and improve the reliability of the control
systems in real process industrial applications.

2. Model Predictive Control for Hammerstein systems with input constraints

2.1 Introduction
In industrial processes (1), most dynamical systems can be better represented by nonlinear
models, which are able to describe the systems over large operation ranges, rather than by
linear ones that are only able to approximate the systems around given operation points (23;
48). One of the most frequently studied classes of nonlinear models is the Hammerstein model
(17; 48), which consists of the cascade connection of a static (memoryless) nonlinear block
followed by a dynamic linear block. Under certain considerations such as fading memory
assumption (10) the Hammerstein approximation could be a good representation. Thus,
this model structure has been successfully applied to chemical processes (heat exchanger
(17), distillation (5; 17; 35)), biological processes (20; 30) signal processing (3; 55), and
communications (3; 25)). In recent years, identification and control of Hammerstein systems
has become one of the most needed and yet very difficult tasks in the field of the process
industry.
In MPC (Model Predictive Control) framework (20; 32), the input is calculated by on-line
minimization of a performance index based on model predictions. It is well known that the
control quality relies on the accuracy of the model. In recent years, extensive efforts were
devoted to modelling of Hammerstein nonlinearities (2; 17; 23; 26; 27; 31). For example,
Bai (2) studied SISO (Single Input/ Single Output) systems subject to external white noise.
Gómez and Baeyens (23) designed a non-iterative identification with guaranteed consistent
estimation even in the present of coloured output noise. Both of their works use only one
channel to identify the system, therefore, owing to the SVD (singular value decomposition)
nature of their methods, the identification errors usually can not be minimized. A basic reason
is that the error is determined by the second largest singular value (for SISO system) or the st
largest singular value (for MIMO system with inputs) of the estimated coefficients matrix.
For a SISO system, if the sampling set is not big enough or the PE (persistent excitation)
conditions are not fulfilled, the second largest singular value can not be neglected, making the
identification accuracy unsatisfactory or even unacceptable. On the other hand, the research
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region is enlarged and its domain of attraction is designed applying semi-global stabilization
techniques. Unfortunately, this nice work is still based on the measurability of the state of the
linear block.
Based on the above analysis, two important tasks are formulated as follows:

• Task one: Develop a better identification algorithm to separate the nonlinear/linear blocks
of the Hammerstein system more effectively so that some mature linear control theories
can be used to facilitate the nonlinear control algorithm design.

• Task two: Develop a more efficient control algorithm for constrained Hammerstein systems.

Bearing these tasks in mind, we propose a NMPC algorithm based on a Two Stage
Single-Channel Identification Algorithm (TS-SCIA) (68). More precisely:

• A Multi-Channel Identification Algorithm (MCIA) is developed for Hammerstein systems
which eliminates requirement of prior knowledge about the plant and minimizes the
identification errors. The MCIA is then converted to a TS-SCIA thereby facilitating the
controller design. A sufficient condition for the convergence and approximation capability
is given for the new algorithm.

• A dual-mode NMPC algorithm is developed by taking the above mentioned Two Stage
Single-Channel Identification Model (TS-SCIM) as the internal model. The closed-loop
stable region is maximized by using ellipsoidal invariant set theory together with linear
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2.2 Model identification
The key problem on this issue is how to efficiently separate the coefficients of the linear
and nonlinear blocks, namely nonlinear/linear separation. A number of approaches are
previously proposed: these include the singular value decomposition (SVD) combined with
least square estimation (LSE) (23), iterative finite response (FIR) method (45), separable LSE
(63), Hunter-Korenberg iteration (35) , correlation analysis (4) and so on. Among them,
SVD-LSE approach is one of the most extensively studied and most widely applied methods.
In this approach, the system output y(t) is expanded as

y(t) = G(z−1)N (u(t)) + ξ(t)
= ∑N

k=1 ckxk(z−1) ∑r
i=1 aigi(u(t)) + ξ(t),

(1)

where u(t) ∈ D ⊂ Rn, v(t) = N (u(t)) ∈ Rn, y(t) ∈ Rm and ξ(t) ∈ Rm are the input,
intermediate variable, output and external noise vector at time t, respectively. External noise
ξ(t) can be white or colored noise sequence induced by measurement or external disturbances,
and input signal u(t) can be random or stationary. G(z−1) and N (·) denote the linear and
nonlinear blocks expanded by suitable orthonormal and nonlinear bases xk(z−1) and gi(·),
respectively. The sequences

{
ck ∈ Rm×n}N

k=1 and
{

ai ∈ Rn×n}r
i=1 are the coefficients of the

linear and nonlinear blocks, respectively, and z−1 is the one-step backward shifting operator,
i.e. z−1u(t) = u(t − 1). The state xk(z−1) could be Jacobi series [13], spline functional series
(? ), orthonormal functional series (OFS, including Laguerre series (19; 60; 66; 67; 69), Kautz
series (19; 33) and so on) or some others.
Actually, in recent years, extensive efforts (23) were devoted to this kind of SVD-LSE
approaches. For example, Bai (2) studied SISO (Single Input/ Single Output) systems subject
to external white noise. Gómez and Baeyens (23) designed a non-iterative identification with
guaranteed consistent estimation even in the present of colored output noise. Both of their
works use merely one channel to identify the system, therefore, owing to the SVD nature of
their methods, the identification errors usually can not be minimized. A basic reason is that,
for the Hammerstein system (1), the error is determined by the (n + 1)th largest singular
value the estimated coefficients matrix. If the sampling set is not big enough or the PE
(persistent excitation) conditions are not fulfilled, the (n + 1)th largest singular value can not
be neglected, making the identification accuracy unsatisfactory or unacceptable, especially
for small numbers of truncation lengths of the nonlinear/linear basis series, i.e. r and N (see
Eq. (1)). In brief, it is an urgent task to develop a better identification algorithm to separate
the nonlinear/linear blocks of the Hammerstein system more effectively.
In this section, we argue that the single-channel separation is a bottleneck to better modeling
accuracy, and adding more identification channels can effectively enhance the performance,
for they have the capability to compensate the residuals of the single-channel nonlinear/linear
separation.
Fig. 1(a) shows the implementary details on a single identification channel of the present
modeling method. First, system input u(t) is fed into parallel weighted nonlinear bases
to produce the intermediate variable v(t). According to Weierstrass Theorem (42) (every
continuous function defined on a finite region can be uniformly approximated as closely as
desired by a polynomial function), the bases are generally chosen as polynomial bases. Then
v(t) is injected into the linear OFS filter, through which the filter output sequence can be
yielded.
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Fig. 1. (Color online) (a): Implementary details of each modeling channel; (b): Multi-channel
identification

Since {xk(t)}∞
k=1 forms a complete orthonormal set in functional space L2(R

+) (33; 66–68),
each stable linear system can be approximately represented as h(t) = ∑N

k=1 ck ϕk(t) , where
{ck}N

k=1 are the coefficients of the linear block, the Laguerre function ϕk(t) is given in (33; 66),
and the kth order filter output is calculated by xk(t) =

∫ ∞
0 ϕk(τ)v(t − τ)dτ . To get the OFS

filter output sequence, one should pre-calculate all the OFS according to the state equation
x(t + 1) = Ax(t) + Bv(t), where A and B are pre-optimized matrices (33; 66). As shown in
Fig. 1, the first-order filters is the Laguerre series, in which

G0(z−1) = z−1
√

1 − p2/(1 − z−1 p),
G1(z−1) = (z−1 − p)/(1 − z−1 p),

(2)

where p is the filter pole. The second-order OFS is the Kautz Series, in which G0(z−1) and
G1(z−1) are the second order OFS transfer functions. Analogically, Heuberger et al. (33)
introduced the higher-order OFS models. As the order increases, OFS model can handle
more complex dynamics. Finally, the model is obtained by synthesizing the OFS filter output
sequence and their corresponding coefficients according to ym(t) = ∑N

k=1 ckxk(t) which leads
to Eq. (2). Consequently, considering the S-point data set suffered by external noise sequence
{ξ(t)}t=1,··· ,S , Eq. (1) can be rewritten in a linear regressor form as

YS = ΦT
S θ + ΥS, (3)

with

YS � [y(1), · · · , y(S)]T ,

ΥS � [ξ(1), · · · , ξ(S)]T ,

θ � [c1a1, · · · , c1ar, · · · , cN a1, · · · , cN ar ]
T ,

ΦS � [φ(1), · · · , φ(S)]T ,
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θ � [c1a1, · · · , c1ar, · · · , cN a1, · · · , cN ar ]
T ,

ΦS � [φ(1), · · · , φ(S)]T ,
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and
φ(t) �

[
x1(z−1)gT

1 (u(t)), · · · , x1(z−1)gT
r (u(t)), · · · ,

xN(z−1)gT
1 (u(t)), · · · , xN(z−1)gT

r (u(t))
]T

,
(4)

where the superscript ’T’ means transpose. Note that in real applications, the orthonormal
basis xk(z−1)gT

i (u(t)) (k = 1, · · · , N; i = 1, · · · , r) and the system output y(t) in Eq. (1)
are calculated according to the state-space equations in (62; 66; 67). As shown in Fig. 1(a),
kernel matrix ΦS is obtained by carrying out nonlinear bases and OFS operations on the input
sequence, and θ is the coefficient vector of ΦS. Then, provided the indicated inverse exists, it
is well known that the LSE θ̂ of minimizing the prediction errors εs = YS − ΦT

S θ is calculated
by (46)

θ̂ � (ΦSΦT
S )

−1ΦSYS. (5)

Define Θac �
{

aT
i cT

j

}
1≤i≤r; 1≤j≤N

= acT with a � [a1, · · · , ar ]
T and c � [cT

1 , · · · , cT
N ]T, it

can be seen that θ is the block column matrix obtained by stacking the block columns of Θac
on the top one by one. Now, the problem is how to separate the nonlinear/linear coefficient
parameter matrices a and c from the LSE Θ̂ac of Θac . It is clear that feasible estimates â and ĉ
are the solutions of the optimization problem

(â, ĉ) = arg mina,c
∥∥Θ̂ac − acT

∥∥2
2 . (6)

This problem can be solved by the standard SVD (22) with the prerequisite �ai�2 = 1 (i =
1, · · · , r). However, bearing the spectral nature of SVD in mind, one can easily find that the

closest estimates of {a, c} are not a single pair {â, ĉ} but a series of pairs
{

â�j�, ĉ�j�
}η

j=1
, which

solves the optimization problem

(â�j�, ĉ�j�)η
j=1 = arg mina�j�,c�j�

∥∥∥Θ̂ac − ∑
η
j=1 a�j�(c�j�)T

∥∥∥2

2
. (7)

From now on, the pair
{

â�j�, ĉ�j�
}

is defined as the jth identification channel, with j and
η denoting the sequence index and number of the identification channels, respectively.
Therefore, in order to separate the nonlinear/linear blocks more effectively, more channels
should be used to compensate the separation residuals of the single-channel method (23). To
explain it more clearly, we will give a lemma and a theorem as follows. Note that, for the
Hammerstein system (1), the multi-channel estimates â�j� ∈ Rrn×n and ĉ�j� ∈ RNm×n. In
special, for SISO case, i.e. m = 1 and n = 1, the estimates â�j� and ĉ�j� are all column vectors.

Lemma 1. Let rank(Θac) = γ, here Θ̂ac is the estimate of Θac, then the SVD of Θac is

Θ̂ac = UγΣγVT
γ = ∑γ

j=1 σjμjυ
T
j (8)

such that the singular value matrix Σγ = diag
{

σj

}
(j = 1, · · · , min(r, N)) satisfies σ1 ≥ · · · ≥

σγ > 0 and σl = 0 (l > γ), where μj and υj (j = 1, · · · , γ) are pairwise orthogonal vectors. If

�a�j��2 = 1, then ∀ η (1 ≤ η ≤ γ), each identification channel can be calculated as below according
to the optimization problem (7)
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(â�j�, ĉ�j�) = (μj, σjυj) (j = 1, · · · , η) (9)

with approximation error eη given by

eη =
∥∥∥Θ̂ac − ∑

η
j=1 a�j�(c�j�)T

∥∥∥2

2
= ∑γ

j=η+1 σ2
j . (10)

It can be seen from Lemma 1 that after the SVD operation, Θ̂ac is decomposed into a
series of pairs (or channels) (â�j�, ĉ�j�). More precisely, as shown in Fig. 1(b), first the 1st
channel model is estimated using the basic identification algorithm (30) from input-output

data {u(t), y(t)}S
t=1. Afterwards, the 1st channel model error e1(t) = y(t) − y�1�m is used to

identify the 2nd channel model. Analogously, e2(t), · · · , eη−1(t) determine the 3rd, · · · , ηth
channel models, respectively. The approximation accuracy enhancement will be proven by
the following theorem.

Theorem 1. For the Hammerstein system (1), with the identification matrix calculated by Eq. (22),
if rank(Θ̂ac) = γ , then, with the identification pairs (â�j�, ĉ�j�) obtained by Eqs. (8) and (9) and the
identification error index defined by Eq. (10), one has

e1 > e2 > · · · > eγ = 0.

In other words, the the identification error decreases along with the increasing η.

Proof: This can be easily drawn from Lemma 1. �
In principle, one can select a suitable η according to the approximation error tolerance ē and
Eq. (10). Even for the extreme case that ē = 0, one can still set η = γ to eliminate the
approximation error, thus such suitable η is always feasible. For simplicity, if γ ≥ 3 , the
general parameter setting η = 2 or 3 works well enough.
According to the conclusions of Lemma 1 and Theorem 1, multi-channel model ym(t) =

∑
η
j=1 Ĝ�j�(z−1)N̂ �j�(u(t)) outperforms single-channel model ym(t) = Ĝ(z−1)N̂ (u(t)) in

modeling accuracy. We hereby design a Multi-Channel Identification Algorithm (MCIA)
based on Theorem 1 as follows. As shown in Fig. 1(b), the Multi-Channel Identification Model
(MCIM) is composed of η parallel channels, each of which consists of a static nonlinear block
described by a series of nonlinear basis {g1(·), · · · , gr(·)}, followed by a dynamic linear block
represented by the discrete Laguerre model (33; 60; 67; 69) in the state-space form (62; 66; 67).
Without loss of generality, the nonlinears bases are chosen as polynomial function bases. Thus,
each channel of the MCIM, as shown in Fig. 1, is described by

x�j�(t + 1) = Ax�j�(t) + B ∑r
i=1 â�j�

i gi(u(t)) (11)

y�j�
m = (ĉ�j�)Tx�j�(t) (j = 1, · · · , η), (12)

where y�j�
m (t) and x�j�(t) denote the output and state vector of the jth channel, respectively.

Finally, the output of the MCIM can be synthesized by

ym(t) = ∑
η
j=1 y�j�

m (t) (13)
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η denoting the sequence index and number of the identification channels, respectively.
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should be used to compensate the separation residuals of the single-channel method (23). To
explain it more clearly, we will give a lemma and a theorem as follows. Note that, for the
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based on Theorem 1 as follows. As shown in Fig. 1(b), the Multi-Channel Identification Model
(MCIM) is composed of η parallel channels, each of which consists of a static nonlinear block
described by a series of nonlinear basis {g1(·), · · · , gr(·)}, followed by a dynamic linear block
represented by the discrete Laguerre model (33; 60; 67; 69) in the state-space form (62; 66; 67).
Without loss of generality, the nonlinears bases are chosen as polynomial function bases. Thus,
each channel of the MCIM, as shown in Fig. 1, is described by
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Next, we will give a convergence theorem to support the MCIA.

Theorem 2. For a Hammerstein system (1) with �ai�2 = 1 (i = 1, · · · , r), nominal output ȳ(t) =
∑N

k=1 ckxk(z−1) ∑r
i=1 aigi(u(t)) and allowable input signal set D ⊂ Rn . If the regressor φ(t) given

by Eq. (4) is PE in the sense that for an arbitrary positive integer t0 there exist some integer N1 and
positive constants α1 and α2 such that

0 < α1 I ≤ ∑t0+N1
t=t0

φT(t)φ(t) ≤ α2, (14)

then

∑
η
j=1 â�j�(ĉ�j�)T a.s.−−−−→ Θac (15)

ym
a.s.−−−−→ ȳ(t) (16)

where the symbol ’
a.s.−−−−→ ’ denotes ’converge with probability one as the number of the data points

S tends to infinity’, and the model output ym(t) is determined by Eqs. (11), (12) and (13).

Proof: Since the linear block is stable, and gi(u(t)) (i = 1, · · · , r) is bounded (because u(t) ∈ D

is bounded and g(·) are nonlinear basis functions), the model output ym(t) is also bounded.
Taking Eqs. (3) and (11) into consideration, one has that �φ(t)�2 is bounded, i.e. ∃δL > 0,
such that �φ(t)�2 ≤ δL . On the other hand, ∀ ε > 0, ∃ε1, ε2 > 0 such that ε = ε1 + ε2. Let
ε3 = ε1/(δL max(r, N)) and ε4 = ε2/δL. Since the regressor φ(t) is PE in the sense of Eq. (14),
one has that the estimate θ is strongly consistent in the sense that θ → θ̂ with probability one as
S → ∞ (denoted θ̂

a.s.−−−−→ θ) (46), in other words, ∀ε4 > 0, ∃N0 > 1 such that �θ̂ − θ�2
2 ≤ ε4

with probability one for S > N0. Moreover, the consistency of the estimate θ̂ holds even in the
presence of colored noise ξ (23). The convergence of the estimate θ̂ implies that

Θ̂ac
a.s.−−−−→ Θac (17)

Note that the consistency of the estimation θ̂ holds even in the presence of colored output
noise (23).
Using Lemma 1 and assuming rank(Θ̂ac) = γ, one gets from Theorem 1 that ∀ε3 > 0, ∃η ≤ γ

such that ∑γ
η+1 σjμj ϕνT

j ≤ ε3, in other words,
∥∥∥∑

η
j=1 â�j�(ĉ�j�)T − Θ̂ac

∥∥∥
2

2
≤ ε3 or

∑
η
j=1 â�j�(ĉ�j�)T → Θ̂ac. (18)

Thereby, substituting Eq. (18) into Eq. (17) yields Eq. (15). Furthermore, define

θ̂�j� � [ĉ�j�
1 â�j�

1 , · · · , ĉ�j�
1 â�j�

r , ĉ�j�
2 â�j�

1 ,

· · · , ĉ�j�
2 â�j�

r , · · · , ĉ�j�
N â�j�

1 , · · · , ĉ�j�
N â�j�

r ]T,

then ∀S > N0, the following inequality holds with probability one
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[ym(t)− ȳ(t)]2 =
[
φT(t)(∑

η
j=1 θ̂�j� − θ̂ + θ̂ − θ)

]2

≤ δL

∥∥∥∑
η
j=1 θ̂�j� − θ̂

∥∥∥2

2
+ δL

∥∥θ̄ − θ
∥∥2

2

≤ δL max(r, N)
∥∥∥∑

η
j=1 σjμj ϕνT

j − Θ̂ac

∥∥∥2

2
+ δL

∥∥θ̄ − θ
∥∥2

2

= δL max(r, N)ε3 + δLε4 = ε,

where the definition of matrix 2-norm is given in (23). Thus, the conclusion (16) holds. This
completes the proof.

�
Thus, it is drawn from Theorems 1 and 2 that the increase of the identification channel number
will help decrease the identification errors, which is the main theoretical contribution of this
section.

2.3 Controller design
A Hammerstein system consists of the cascade connection of a static (memoryless) nonlinear
block N (·) followed by a dynamic linear block with state-space expression (A, B, C) as below

ẋ = Ax + Bv, y = Cx,

v = N (u), (19)

with u(t) ∈ [−ū, ū]. Naturally, a standard output feedback control law can be derived by (13)

v = Kx̂

u = N−1(v), (20)

where x̂ is the estimation of x by some state observer L, N−1(·) is the inverse of N (·), and the
closed-loop state matrix A + BK and observer matrix ALC are designed Hurwitz. Now, the
problem addressed in this section becomes optimize such an output-feedback controller for the
Hammerstein system (19) such that the closed-loop stability region is maximized and hence
the settling time is substantially abbreviated.
The nonlinear block N (·) can be described as (68):

N (z(t)) =
N

∑
r=1

aigi(z(t)), (21)

where gi(·) : R → R are known nonlinear basis functions, and ai are unknown matrix
coefficient parameters. Here, gi(·) can be chosen as polynomials, radial basis functions (RBF),
wavelets, etc. At the modeling stage, the sequence v(tj) (j = 1, · · · , N) is obtainable with
a given input sequence u(tj) (j = 1, · · · , N) and an arbitrary initial state x(0). Thereby,
according to Lease Square Estimation (LSE), the coefficient vector a := [a1, · · · , aN ]T can be
identified by

â = (GTG)−1GTv (22)
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Next, we will give a convergence theorem to support the MCIA.
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closed-loop state matrix A + BK and observer matrix ALC are designed Hurwitz. Now, the
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with

G =

⎡
⎢⎣

g1(t1) · · · gN(t1)
...

g1(ts) · · · gN(ts)

⎤
⎥⎦ ,

v = [v(t1), · · · , v(tN)]T and s ≥ N. Note that â is the estimation of a, which is an consistent
one even in the presence of colored external noise.
Now the intermediate variable control law v(t) in Eq. (19) can be designed based on the linear
block dynamics. Afterwards, one can calculate the control law u(t) according to the inverse of
v(t). Hence, for the Hammerstein system (19), suppose the following two assumptions hold:
A1 The nonlinear coefficient vector a can be accurate identified by the LSE (22), i.e., â = a;
A2 For |u(t)| ≤ ū, the inverse of N (·) exists such that

N (N−1
z (v(t))) := ṽ(t) = (1 + δ(v(t)))v(t),

where δ(v(t))) < σ (σ ∈ R+), and N−1
z denotes the inverse of N (·) calculated by some

suitable nonlinear inverse algorithm, such as Zorin method (21).
For conciseness, we denote δ(v(k)) by δ(·), and hence, after discretization, the controlled plant
is described as follows:

x(k + 1) = Ax(k) + Bṽ(k) = Ax(k) + B(1 + δ(·))v(k),
y(k) = Cx(k). (23)

Afterwards, a state observer L ∈ RN is used to estimate x(k) as follows:

x̂(k + 1) = Ax̂(k) + B(1 + δ(·))v(k) + LCe(k), (24)

e(k + 1) = Φe(k), (25)

where x̂ is the estimation of x, e(k) := x(k)− x̂(k) is the state estimation error, and the matrix
Φ = A− LC is designed as Hurwitz. Then, an NMPC law is designed with an additional term
D(k + i|k) as follows:

v(k + i|k) = Kx̂(k + i|k) + ED(k + i|k),
u(k|k) = N−1

z ((v(k|k))), (26)

where E := [1, 0, · · · , 0]1×M, x̂(k|k) := x̂(k), v(k|k) := v(k), and D(k|k) := D(k) =
[d(k), · · · , d(k + M − 1)]T is defined as a perturbation signal vector representing extra degree
of freedom. Hence the role of D(k) is merely to ensure the feasibility of the control law (26),
and D(k + i|k) is designed such that

D(k + 1|k) = TD(k + i − 1|k) (i = 1, · · · , M),

where

T =

�
0 I(M−1)×(M−1)
0 0T

�

M×M
,
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M ≥ 2 is the prediction horizon and 0 is compatible zero column vector. Then, substituting
Eq. (26) into Eq. (24) yields

ẑ(k + i|k)) = Πẑ(x + k − i|k)
+[(δ(·)BK̄)T, 0]Tẑ(k + i − 1/k)

+[(LC)T, 0]Te(k + i − 1|k), (i = 1, · · · , M) (27)

with ẑ(k + i|k) = [x̂T(k + i|k), D(k + i|k)T]T, Π =

�
Ψ BE
0 T

�
, K̄ = [K, E], where Ψ = A +

BK is designed as Hurwitz. In order to stabilize the closed-loop system (27), we define two
ellipsoidal invariant sets (39) of the extended state estimations ẑ(k) and error e(k), respectively,
by

Sx := {ẑ|ẑT(k)Pzẑ(k) ≤ 1}, (28)

and
Se := {e(k)|eT(k)Pee(k) ≤ ē}, (0 < ē ≤ 1), (29)

where Pz and Pe are both positive-definite symmetric matrices and the perturbation signal
vector D(k) (see Eq. (26)) is calculated by solving the following optimization problem

min
D(k)

J(k) = DT(k)D(k),

s.t. ẑT(k)Pzẑ(k) ≤ 1. (30)

2.4 Stability analysis
To guarantee the feasibility and stability of the control law (26), it is required to find the
suitable matrices Pz and Pe assuring the invariance of Sz and Se (see Eqs. (28) and (29)) by
the following lemma.

Lemma 2. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output feedback control law (26) and (30) and subject to the input constraints |u| ≤ ū, the ellipsoidal
sets Sz and Se are invariant in the sense of (28) and (29), respectively, and the control law (26) and
(30) is feasible provided that Assumptions A1, A2 and the following three Assumptions A3–A5 are all
fulfilled.
A3 The matrices Φ and Ψ are both Hurwitz;
A4 There exist τ1,2 > 1, 0 < ē < 1 such that

ΦTPzΦ ≤ Pe, (31)

η1CTLTET
x PzExLC ≤ Pe, (32)

τ1τ2ΠTPzΠ + τ1η2σ2K̄TBTET
x PzExBK̄,

≤ (1 − ē2)Px, (33)

where η1 = 1 + (τ1 − 1)−1, η2 = 1 + (τ2 − 1)−1 and

ET
x =

⎡
⎢⎣

1 0 · · · · · · 0
...

. . . 0 · · · ...
0 0 1 · · · 0

⎤
⎥⎦

N×(N+M)
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with
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⎢⎣
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one even in the presence of colored external noise.
Now the intermediate variable control law v(t) in Eq. (19) can be designed based on the linear
block dynamics. Afterwards, one can calculate the control law u(t) according to the inverse of
v(t). Hence, for the Hammerstein system (19), suppose the following two assumptions hold:
A1 The nonlinear coefficient vector a can be accurate identified by the LSE (22), i.e., â = a;
A2 For |u(t)| ≤ ū, the inverse of N (·) exists such that

N (N−1
z (v(t))) := ṽ(t) = (1 + δ(v(t)))v(t),

where δ(v(t))) < σ (σ ∈ R+), and N−1
z denotes the inverse of N (·) calculated by some

suitable nonlinear inverse algorithm, such as Zorin method (21).
For conciseness, we denote δ(v(k)) by δ(·), and hence, after discretization, the controlled plant
is described as follows:

x(k + 1) = Ax(k) + Bṽ(k) = Ax(k) + B(1 + δ(·))v(k),
y(k) = Cx(k). (23)

Afterwards, a state observer L ∈ RN is used to estimate x(k) as follows:

x̂(k + 1) = Ax̂(k) + B(1 + δ(·))v(k) + LCe(k), (24)

e(k + 1) = Φe(k), (25)

where x̂ is the estimation of x, e(k) := x(k)− x̂(k) is the state estimation error, and the matrix
Φ = A− LC is designed as Hurwitz. Then, an NMPC law is designed with an additional term
D(k + i|k) as follows:

v(k + i|k) = Kx̂(k + i|k) + ED(k + i|k),
u(k|k) = N−1

z ((v(k|k))), (26)

where E := [1, 0, · · · , 0]1×M, x̂(k|k) := x̂(k), v(k|k) := v(k), and D(k|k) := D(k) =
[d(k), · · · , d(k + M − 1)]T is defined as a perturbation signal vector representing extra degree
of freedom. Hence the role of D(k) is merely to ensure the feasibility of the control law (26),
and D(k + i|k) is designed such that

D(k + 1|k) = TD(k + i − 1|k) (i = 1, · · · , M),

where

T =
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M ≥ 2 is the prediction horizon and 0 is compatible zero column vector. Then, substituting
Eq. (26) into Eq. (24) yields

ẑ(k + i|k)) = Πẑ(x + k − i|k)
+[(δ(·)BK̄)T, 0]Tẑ(k + i − 1/k)

+[(LC)T, 0]Te(k + i − 1|k), (i = 1, · · · , M) (27)

with ẑ(k + i|k) = [x̂T(k + i|k), D(k + i|k)T]T, Π =

�
Ψ BE
0 T

�
, K̄ = [K, E], where Ψ = A +

BK is designed as Hurwitz. In order to stabilize the closed-loop system (27), we define two
ellipsoidal invariant sets (39) of the extended state estimations ẑ(k) and error e(k), respectively,
by

Sx := {ẑ|ẑT(k)Pzẑ(k) ≤ 1}, (28)

and
Se := {e(k)|eT(k)Pee(k) ≤ ē}, (0 < ē ≤ 1), (29)

where Pz and Pe are both positive-definite symmetric matrices and the perturbation signal
vector D(k) (see Eq. (26)) is calculated by solving the following optimization problem

min
D(k)

J(k) = DT(k)D(k),

s.t. ẑT(k)Pzẑ(k) ≤ 1. (30)

2.4 Stability analysis
To guarantee the feasibility and stability of the control law (26), it is required to find the
suitable matrices Pz and Pe assuring the invariance of Sz and Se (see Eqs. (28) and (29)) by
the following lemma.

Lemma 2. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output feedback control law (26) and (30) and subject to the input constraints |u| ≤ ū, the ellipsoidal
sets Sz and Se are invariant in the sense of (28) and (29), respectively, and the control law (26) and
(30) is feasible provided that Assumptions A1, A2 and the following three Assumptions A3–A5 are all
fulfilled.
A3 The matrices Φ and Ψ are both Hurwitz;
A4 There exist τ1,2 > 1, 0 < ē < 1 such that

ΦTPzΦ ≤ Pe, (31)

η1CTLTET
x PzExLC ≤ Pe, (32)

τ1τ2ΠTPzΠ + τ1η2σ2K̄TBTET
x PzExBK̄,

≤ (1 − ē2)Px, (33)

where η1 = 1 + (τ1 − 1)−1, η2 = 1 + (τ2 − 1)−1 and

ET
x =

⎡
⎢⎣

1 0 · · · · · · 0
...

. . . 0 · · · ...
0 0 1 · · · 0

⎤
⎥⎦

N×(N+M)
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is the projection matrix such that ET
x ẑ(k) = x̂(k);

A5 There exist μ > 0 and λ ∈ (0, ū) such that

|u(k)| ≤ μ|v(k)|+ λ (34)

(local Lipschitz condition) and
[−(ū − λ)2/μ2 K̄

K̄T −Pz

]
≤ 0. (35)

Proof: We start the proof by a fact that (68), for ∀τ > 1 and η = 1 + (τ − 1)−1,

(A1 + A2)
TP(A1 + A2)

≤ τAT
1 PA1 + (1 + (τ − 1)−1)AT

2 A2. (36)

Thereby, one has ∀τ1,2 > 0 and η1,2 = 1 + (τ1,2 − 1)−1, such that

ẑT(k + i|k)Pzẑ(k + i|k) ≤ τ1(Πx̂(k + i − 1|k)
+[δ(·)(BK̄)T, 0]T ˆx(k + i − 1|k))TPz

·(Πx̂(k + i − 1|k) + [δ(·)(BK̄)T , 0]T ˆx(k + i − 1|k))
+η1([(LC)T, 0]Te(k + i − 1|k))TPz

·([(LC)T, 0]Te(k + i − 1|k))
≤ τ1τ2ẑT(k + i − 1|k)ΠT PzΠx̂(k + i − 1|k))

+τ1η2 x̂T(k + i − 1|k)σ2K̄TBTET
x PzExK̄x̂(k + i − 1|k)

+η1eT(k + i − 1|k)CT LTET
x PzLCe(k + i − 1|k).

Thereby, if Eqs. (32) and (33) hold and ẑT(k + i − 1|k)Pzẑ(k + i − 1|k) ≤ 1, then ẑT(k +
i|k)Pzẑ(k + i|k) ≤ 1, i.e., Sz is an invariant set (39).
Analogously, if Eq. (31) hold and eT(k + i − 1|k)Pee(k + i − 1|k) ≤ ē, then eT(k + i|k)Pee(k +
i|k) ≤ ē, i.e., Se is an invariant set.
On the other hand, |v(k)| = |K̄ẑ(k)| = |K̄P−1/2

z P1/2
z z̄(k)| ≤ �K̄P−1/2

z � · �P1/2
z z̄(k)� ≤

�K̄P−1/2
z �. Taking Eq. (35) into consideration, one has

|v(k)| ≤ (ū − λ1)/μ1, (37)

and substituting Eq. (37) into Eq. (34) yields |u(k)| ≤ ū, or u(k) is feasible. This completes the
proof. �
Let us explain the dual-mode NMPC algorithm determined by Lemma 2 as below. First, let us
give the standard output feedback control law as

v(k) = Kx̂(k)

u(k) = N−1
z (v(k)), (38)

and then the invariant set shrinks to

Sx := Sz(M = 0) = {x̂(k)|x̂T(k)Pxx̂(k) ≤ 1}. (39)
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If the current x̂(k) moves outside of Sx, then the controller enters the first mode, in which the
dimension of x̂(k) is extended from N to N + M by D(k) (see Eq. (27)). Then, x̂(k) will be
driven into Sx in no more than M steps, i.e., x̂(k + M) ∈ Sx, which will also be proven later.
Once x̂(k) enters Sx, the controller is automatically switched to the second mode, in which the
initial control law (38) is feasible and can stabilize the system.
It has been verified by extensive experiments that assumptions A4 and A5 are not difficult
to fulfil, and most of the time-consuming calculations are done off-line. First, the stable
state-feedback gain K (see Eq. (26)) and observer gain L (see Eq. (24)) are pre-calculated by
MATLAB. Then, compute Pe based on Eq. (29). Afterwards, pick μ ∈ (0, 1) and λ ∈ (0, ū)
satisfying the local Lipschitz condition (34). Finally, pick τ1,2 (generally in the range (1, 1.5)),
and calculate Px off-line by MATLAB according to assumptions A4 and A5.
The aforementioned controller design is for regulator problem, or making the system state to
settle down to zero. But it can be naturally extended to address the tracking problem with
reference signal r(t) = a �= 0. More precisely, the controller (26) is converted to v(k) =
K̄ẑ(k) + aρ with 1/ρ = limz→1(C̃(zI − Π)−1B̃), C̃ := [C, 0]1×(N+M) and B̃ := [BT, 0]T

(N+M)×1.
Moreover, if I − Pi is nonsingular, a coordinate transformation ẑ(k) − zc → ẑ(k) with zc =
(I − Π)−1B̃aρ can be made to address the problem. Even if I − Π is singular, one can still
make some suitable coordinate transformation to obtain Eq. (27).
Next we will show that the dual-mode method can enlarge the closed-loop stable region. First,
rewrite Pz by

Pz =

[
(Px)N×N PxD

PxDT (PD)M×M

]
,

and hence the maximum ellipsoid invariant set of x(k) is given as

SxM := {x̂|x̂T(Px − PxDP−1
D PT

xD)x̂(k) ≤ 1}. (40)

Bearing in mind that Px − PxDP−1
D PT

xD = (ET
x P−1

z Ex)−1, it can be obtained that

vol(SxM) ∝ det(ET
x P−1

z Ex), (41)

where vol(·) and det(·) denote the volume and matrix determinant. It will be verified later
that the present dual-mode controller (26) can substantially enlarge the det(ET

x P−1
z Ex) with

the assistance of the perturbation signal D(k) and hence the closed-loop stable region SxM is
enlarged. Based on the above mentioned analysis of the size of the invariant set SxM, we give
the closed-loop stability theorem as follows.

Theorem 3. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output-feedback control law (26) and (30) and subject to the input constraints |u| ≤ ū, the system is
closed-loop asymptotically stable provided that assumptions A1–A5 are fulfilled.

Proof: Based on assumptions A1–A5, one has that there exists D(k+ 1) such that z(k+ 1) ∈ Sz
for arbitrary x(k) ∈ Sx; then by invariant property, at next sampling time D(k + 1|k) = TD(k)
provides a feasible choice for D(k + 1) (only if D(k) = 0, J(k + 1) = J(k), otherwise J(k +
1) < J(k)). Thus, the present NMPC law (26) and (30) generates a sequence of D(k + i|k) =
TD(k + i − 1|k) (i = 1, · · · , M) which converges to zero in M steps and ensures the input
magnitudes constraints satisfaction. Certainly, it is obvious that TD(k) need not have the
optimal value of D(k + 1) at the current time, hence the cost J(k + 1) can be reduced further
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is the projection matrix such that ET
x ẑ(k) = x̂(k);

A5 There exist μ > 0 and λ ∈ (0, ū) such that

|u(k)| ≤ μ|v(k)|+ λ (34)

(local Lipschitz condition) and
[−(ū − λ)2/μ2 K̄

K̄T −Pz

]
≤ 0. (35)

Proof: We start the proof by a fact that (68), for ∀τ > 1 and η = 1 + (τ − 1)−1,

(A1 + A2)
TP(A1 + A2)

≤ τAT
1 PA1 + (1 + (τ − 1)−1)AT

2 A2. (36)

Thereby, one has ∀τ1,2 > 0 and η1,2 = 1 + (τ1,2 − 1)−1, such that
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+τ1η2 x̂T(k + i − 1|k)σ2K̄TBTET
x PzExK̄x̂(k + i − 1|k)

+η1eT(k + i − 1|k)CT LTET
x PzLCe(k + i − 1|k).

Thereby, if Eqs. (32) and (33) hold and ẑT(k + i − 1|k)Pzẑ(k + i − 1|k) ≤ 1, then ẑT(k +
i|k)Pzẑ(k + i|k) ≤ 1, i.e., Sz is an invariant set (39).
Analogously, if Eq. (31) hold and eT(k + i − 1|k)Pee(k + i − 1|k) ≤ ē, then eT(k + i|k)Pee(k +
i|k) ≤ ē, i.e., Se is an invariant set.
On the other hand, |v(k)| = |K̄ẑ(k)| = |K̄P−1/2

z P1/2
z z̄(k)| ≤ �K̄P−1/2

z � · �P1/2
z z̄(k)� ≤

�K̄P−1/2
z �. Taking Eq. (35) into consideration, one has

|v(k)| ≤ (ū − λ1)/μ1, (37)

and substituting Eq. (37) into Eq. (34) yields |u(k)| ≤ ū, or u(k) is feasible. This completes the
proof. �
Let us explain the dual-mode NMPC algorithm determined by Lemma 2 as below. First, let us
give the standard output feedback control law as

v(k) = Kx̂(k)

u(k) = N−1
z (v(k)), (38)

and then the invariant set shrinks to

Sx := Sz(M = 0) = {x̂(k)|x̂T(k)Pxx̂(k) ≤ 1}. (39)
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If the current x̂(k) moves outside of Sx, then the controller enters the first mode, in which the
dimension of x̂(k) is extended from N to N + M by D(k) (see Eq. (27)). Then, x̂(k) will be
driven into Sx in no more than M steps, i.e., x̂(k + M) ∈ Sx, which will also be proven later.
Once x̂(k) enters Sx, the controller is automatically switched to the second mode, in which the
initial control law (38) is feasible and can stabilize the system.
It has been verified by extensive experiments that assumptions A4 and A5 are not difficult
to fulfil, and most of the time-consuming calculations are done off-line. First, the stable
state-feedback gain K (see Eq. (26)) and observer gain L (see Eq. (24)) are pre-calculated by
MATLAB. Then, compute Pe based on Eq. (29). Afterwards, pick μ ∈ (0, 1) and λ ∈ (0, ū)
satisfying the local Lipschitz condition (34). Finally, pick τ1,2 (generally in the range (1, 1.5)),
and calculate Px off-line by MATLAB according to assumptions A4 and A5.
The aforementioned controller design is for regulator problem, or making the system state to
settle down to zero. But it can be naturally extended to address the tracking problem with
reference signal r(t) = a �= 0. More precisely, the controller (26) is converted to v(k) =
K̄ẑ(k) + aρ with 1/ρ = limz→1(C̃(zI − Π)−1B̃), C̃ := [C, 0]1×(N+M) and B̃ := [BT, 0]T

(N+M)×1.
Moreover, if I − Pi is nonsingular, a coordinate transformation ẑ(k) − zc → ẑ(k) with zc =
(I − Π)−1B̃aρ can be made to address the problem. Even if I − Π is singular, one can still
make some suitable coordinate transformation to obtain Eq. (27).
Next we will show that the dual-mode method can enlarge the closed-loop stable region. First,
rewrite Pz by

Pz =

[
(Px)N×N PxD

PxDT (PD)M×M

]
,

and hence the maximum ellipsoid invariant set of x(k) is given as

SxM := {x̂|x̂T(Px − PxDP−1
D PT

xD)x̂(k) ≤ 1}. (40)

Bearing in mind that Px − PxDP−1
D PT

xD = (ET
x P−1

z Ex)−1, it can be obtained that

vol(SxM) ∝ det(ET
x P−1

z Ex), (41)

where vol(·) and det(·) denote the volume and matrix determinant. It will be verified later
that the present dual-mode controller (26) can substantially enlarge the det(ET

x P−1
z Ex) with

the assistance of the perturbation signal D(k) and hence the closed-loop stable region SxM is
enlarged. Based on the above mentioned analysis of the size of the invariant set SxM, we give
the closed-loop stability theorem as follows.

Theorem 3. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output-feedback control law (26) and (30) and subject to the input constraints |u| ≤ ū, the system is
closed-loop asymptotically stable provided that assumptions A1–A5 are fulfilled.

Proof: Based on assumptions A1–A5, one has that there exists D(k+ 1) such that z(k+ 1) ∈ Sz
for arbitrary x(k) ∈ Sx; then by invariant property, at next sampling time D(k + 1|k) = TD(k)
provides a feasible choice for D(k + 1) (only if D(k) = 0, J(k + 1) = J(k), otherwise J(k +
1) < J(k)). Thus, the present NMPC law (26) and (30) generates a sequence of D(k + i|k) =
TD(k + i − 1|k) (i = 1, · · · , M) which converges to zero in M steps and ensures the input
magnitudes constraints satisfaction. Certainly, it is obvious that TD(k) need not have the
optimal value of D(k + 1) at the current time, hence the cost J(k + 1) can be reduced further
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still. Actually, the optimal D∗(k + 1) is obtained by solving Eq. (30), thus J∗(k + 1)| ≤ J(k +
1|k) < J(k) (D(k) �= 0). Therefore, as the sampling time k increases, the optimization index
function J(k) will decrease monotonously and D(k) will converge to zero in no more than M
steps. Given constraints satisfaction, the system state x̂(k) will enter the invariant set Sx in
no more than M steps. Afterwards, the initial control law will make the closed-loop system
asymptotically stable. This completes the proof. �

2.5 Case study
2.5.1 Modeling
Consider a widely-used heat exchange process in chemical engineering as shown in Fig. 2
(17), the stream condenses in the two-pass shell and tube heat exchanger, thereby raising the
temperature of process water. The relationship between the flow rate and the exit-temperature
of the process water displays a Hammerstein nonlinear behavior under a fixed rate of steam
flow. The condensed stream is drained through a stream trap which lets out only liquid. When
the flow rate of the process water is high, the exit-temperature of stream drops below the
condensation temperature at atmospheric pressure. Therefore, the steam becomes subcooled
liquid, which floods the exchanger, causing the heat transfer area to decrease. Therefore, the
heat transfer per unit mass of process water decreases. This is the main cause of the nonlinear
dynamics.

Fig. 2. Heat exchange process

The mathematical Hammerstein model describing the evolution of the exit-temperature of the
process water VS the process water flow consists of the following equations (17):

v(t) = −31.549u(t) + 41.732u2(t)
−24.201u3(t) + 68.634u4(t),

(42)

y(t) =
0.207z−1 − 0.1764q−2

1 − 1.608z−1 + 0.6385q−2 v(t) + ξ(t), (43)

where ξ(t) is a white external noise sequence with standard deviation 0.5. To simulate
the fluctuations of the water flow containing variance frequencies, the input is set as
periodical signal u(t) = 0.07 cos(0.015t) + 0.455 sin(0.005t) + 0.14 sin(0.01t) . In the numerical
calculation, without loss of generality, the OFS is chosen as Laguerre series with truncation
length N = 8, while the nonlinear bases of the nonlinear block N(·) are selected as
polynomials with r = 9. The sampling number S = 2000, and sampling period is 12s.
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Fig. 4. Modeling error for p = 0.1

Denoted by e(t) is the modeling error. Since the filter pole p (see Eq. (2)) plays an important
role in the modeling accuracy, in Fig. 3(a) and (b), we exhibit the average modeling errors of
the traditional single-channel and the present multi-channel methods along with the increase
of Laguerre filter pole p. For each p, the error is obtained by averaging over 1000 independent
runs. Clearly, the method proposed here has remarkably smaller modeling error than that
of the traditional one. To provide more vivid contrast of these two methods, as shown in
Fig. 4, we fix the Laguerre filter pole p = 0.1 and then calculate the average modeling errors
of the single-channel (η = 1), double-channel (η = 2), and triple-channel models (η = 3)
averaged over 1000 independent runs for each case. This is a standard error index to evaluate
the modeling performances. The modeling error of the present method (η = 3) is reduced
by more than 10 times compaired with those of the traditional one (η = 1), which vividly
demonstrates the advantage of the present method.
Note that, in comparison with the traditional method, the modeling accuracy of the present
approach increased by 10− 17 times with less than 20% increase of the computational time. So
a trade off between the modeling accuracy and the computational complexity must be made.
That is why here we set the optimal channel number as η = 3. The underlying reason for
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the obvious slow-down of the modeling accuracy enhancement rate after η = 4 is that the 4th
largest singular value σ4 is too small compared with the largest one σ1 (see Eq. (8)). This fact
also supports the validity of the present method.

2.5.2 Control
The present dual-mode NMPC is performed in the Heat Exchanger System model (55?57)
with the results shown in Figures 7,8 (Regulator Problem, N = 2), Figures 9?11 (Regulator
Problem, N = 3) and Figure 12 (Tracking Problem,N = 3), respectively. The correspondence
parameter settings are presented in Table 1.

Fig. 5. (Color online) Left panel: Control performance of regulator problem ; Right panel:
state trajectory L and its invariant set. Here, N = 2.

Fig. 6. (Color online) Left panel: Control performance of regulator problem ; Right panel:
state trajectory L and its invariant set. Here, N = 3.

In these numerical examples, the initial state-feedback gain K and state observer gain Γ are
optimized offline via DLQR and KALMAN functions of MATLAB6.5, respectively. The curves
of y(k), u(k), v̄(k) and the first element of D(k), i.e. , d(1), are shown in Figure 7 (N=2) and
Figure 8 (N=3), respectively. To illustrate the superiority of the proposed dual-mode NMPC,
we present the curve of L̂(k), the invariant sets of and in Figure 8 (N = 2, M={2, 8, 10}) and
Figure 10 and 11 (N = 3, M = {0, 5, 10}). One can find that L̂(0), is outside the feasible initial
invariant set SL(referred to (48), see the red ellipse in Figure 10 and the left subfigure of Figure
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Fig. 7. (Color online) Invariant sets SL (left) and SLM, M = 5 (middle), M = 3 (right). Here,
N = 3.

Fig. 8. (Color online) Control performances of Tracking problem.

11). Then the state extension with M = 10 is used to enlarge SL to SLM (referred to (52),
see the black ellipse in Figure 8 and the right subfigure of Figure 11) containing L̂(0). After
eight (Figure 8) or six steps (Figure 10), L̂(k) enters SL. Afterwards, the initial control law
(47) can stabilize the system and leads the state approach the origin asymptotically. Lemma
2 and Theorem 3 are thus verified. Moreover, the numerical results of Figures 8 and 11 also
have verified the conclusion of the ellipsoid volume relation (54), i.e. the size of SLM increases
along with the enhancement of the prediction horizon M.
As to the tracking problem (see Figure 12), one should focus on the system state response
to the change of the set-point. In this case, L̂(k) moves outside SL, thus D(k) is activated to
enlarge SL to SLM and then to drive L̂(k) from SL to SLM in no more than steps. After 60
sampling periods, the overshooting, modulating time and steady-state error are 2.2%, 15 and
0.3% respectively. Moreover, robustness to the time-delay variations is examined at the 270-th
sampling period, while the linear block of this plant is changed from (58) to

y(k + 1) =
0.207z−1 − 0.1764z−2

1 − 1.608z−1 + 0.6385z−2 v(k) (44)
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dual-mode NMPC can still yield satisfactory performances, thanks to the capability of the
Laguerre series in the inner model. The feasibility and superiority of the proposed control
algorithm are thus demonstrated by simulations on both regulator and tracking problems.
Still worth mentioning is that some other simulations also show that the size of increases as
decreases. In other words, more accurate identification and inverse solving algorithms would
help further enlarge the closed-loop stable region. Fortunately, the proposed TS-SCIA can do
this job quite well.
To further investigate the proposed dual-mode NMPC, a number of experiments were carried
out to yield statistical results. More precisely, {λ, μ, τ} are fixed to {0.70, 0.35, 1.12}, and N,
M and σ are selected from the sets {2, 3, 4} , and {8, 9, · · · , 18}, {0.001, 0.002, · · · , 0.005},
respectively. The set-point is the same as Figure 12. In this set-up, 165 experiments were
performed. The statistical results, such as expectations and optimal values for the settling
time, overshooting, steady-state error and computational time of 400 steps are shown in
Table 2. In addition, the corresponding optimal parameters are given. The statistical results
further illustrate the advantages of the proposed algorithm regarding transient performance,
steady-state performance and robustness to system uncertainties.

Remark 1. The increase of the Laguerre truncation length can help enhancing the modelling and
control accuracy at the cost of an increasing computational complexity. Therefore, a tradeoff must
be made between accuracy and computational complexity. Note that the general parameter setting
procedure is given in Remark 3.

Parameter Regular problem(N = 2) Regular problem (N = 3) Tracking problem(N = 3)
L̂(0) [4.2, 4.2]T [0.02,−2,−2]T [0.02,−2,−2]T

K [0.327,−0.570] [−0.328,−0.200, 0.200] [−0.328, 0.200,−0.120]
Γ [0.187, 0.416]T [0.217, 0.132, 0.276]T [0.217, 0.132, 0.276]T

ū 0.19 0.19 1.0
σ 0.001 0.001 10.001
μ 0.05 0.02 0.35
τ1 1.05 1.12 1.12
τ2 1.30 1.25 1.37
ē 0.5 0.5 0.5

Table 1. Parameter settings

Control STVSP STVTD overshooting steady-state computational
indexes (steps) (steps) (%) error (%) time of 400 step(s)

Optimal {N, M, σ} {4, 7, 0.003} {3, 12, 0.002} {4, 8, 0.002} {4, 10, 0.001} {2, 8, 0.005}
Expectation value 16.7 12.4 ±2.78 ±0.41 21.062

Table 2. Statistical control performance of tracking problems, (Computation platform:
2.8G-CPU and 256M-RAML; STVSP, STVTD denote the settling times for the variations of
set-point and time delay, respectively.)

2.6 Section conclusion
In this section, a novel multi-channel identification algorithm has been proposed to solve the
modelling problem for constrained Hammerstein systems. Under some weak assumptions
on the persistent excitation of the input, the algorithm provides consistent estimates even
in the presence of colored output noise, and can eliminate any needs for prior knowledge
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about the system. Moreover, it can effectively reduce the identification errors as compared
to the traditional algorithms. To facilitate the controller design, the MCIA is converted to a
two-stage identification algorithm called TS-SCIA, which preserve almost all the advantages
of the former. In addition, to support these two algorithms, systematical analyses about their
convergence and approximation capability has been provided. Based on the TS-SCIA, a novel
dual-mode NMPC is developed for process control. This approach is capable of enlarging the
closed-loop stable region by providing extra degrees of design freedom. Finally, modelling
and control simulations have been performed on a benchmark Hammerstein system, i.e., a
heat exchanger model. The statistical results have demonstrated the feasibility and superiority
of the proposed identification and control algorithms for a large class of nonlinear dynamic
systems often encountered in industrial processes.

3. Model Predictive Control for Wiener systems with input constraints

3.1 Introduction
The Wiener model consists of a dynamic linear filter followed by a static nonlinear subsystem.
This model can approximate, with arbitrary accuracy, any nonlinear time-invariant systems
(10; 23) with fading memory, thus it appears in a wide range of applications. For example, in
wireless communications, the Wiener model has been shown to be appropriate for describing
nonlinear power amplifiers with memory effects (15; 47). In chemistry, regulation of the pH
value and identification of the distillation process have been dealt with by using the Wiener
model (7; 38; 58). In biology, the Wiener model has been extensively used to describe a number
of systems involving neural coding like the neural chain (47), semicircular canal primary
neurons (53) and neural spike train impulses (37). Moreover, applications of the Wiener model
in other complex systems such as chaotic systems have been explored (12). In fact, the control
of Wiener systems has become one of the most urgently needed and yet quite difficult tasks in
many relevant areas recently.
To address various control problems of Wiener systems, extensive efforts have been devoted
to developing suitable MPC (model predictive control) methods. Under the MPC framework,
the input is calculated by on-line minimization of the performance index based on model
predictions. MPC has been practiced in industry for more than three decades and has become
an industrial standard mainly due to its strong capability to deal with various constraints
(23). However, to design an effective MPC, an accurate data-driven model of Wiener systems
is required. A large volume of literature has been devoted to studying this issue; see (6; 24; 29;
64) for comprehensive reviews. More recently, some research interests have been focused on
extending the linear subspace identification method for this typical class of nonlinear systems
(23) (52) (59). Among them, Gómez’s approach (23) is one of the most efficient methods since
it has good prediction capabilities, and guarantees stability over a sufficiently wide range of
models with different orders. In addition, this subspace method delivers a Wiener model in
a format that can be directly used in a standard MPC strategy, which makes it very suitable
to act as the internal model of our proposed NMPC (Nonlinear MPC) method to be further
discussed below.
Nevertheless, due to its specific structure, the achievements on the control of the Wiener model
are still fairly limited so far. Most of the existent control algorithms have some, if not all, of
the following disadvantages:
• small asymptotically stable regions;
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it has good prediction capabilities, and guarantees stability over a sufficiently wide range of
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• limited capacity in handling input constraints;
• reliance on the detectability of the intermediate output.
For instance, Nesic (49) designs an output feedback stabilization control law for Wiener
systems, but this work does not address input constraints; moreover, some rigorous
conditions such as 0-state detectable are required to guarantee the global stability. Norquay
et al. (50) and Bolemen et al. (7) develop NMPC strategies with ARX/polynomial and
polytopic internal models, respectively, but neither considers stable region enlargement.
Gómez et al. (23) use a subspace internal model to develop an NMPC strategy mainly
accounting for unmeasurable disturbances; however, it merely inherits the stability properties
of a standard linear MPC with linear constraints and quadratic cost function. Motivated by
all the above-mentioned backgrounds and existing problems, the main task of this section
is to develop a new efficient control algorithm for constrained Wiener systems, which can
maximize the region of asymptotic stability and eliminate the reliance on the measurability of
the intermediate output.
To accomplish this task, Gómez’s modelling approach (23) is first used to separate the
nonlinear and linear blocks of the underlying system, and then a dual-mode mechanism (14) is
combined with our proposed NMPC approach to enlarge the stable region. More specifically,
over a finite horizon, an optimal input profile found by solving an open-loop optimal control
problem drives the nonlinear system state into the terminal invariant set (39); to that end,
a linear output-feedback controller steers the state to the origin asymptotically. The main
contribution of this section is the development of an algorithm that can effectively maximize
the asymptotic stability region of a constrained Wiener system, by using the dual-mode NMPC
technique, which can also eliminate the reliance on the detectability of the intermediate output
(70). As a byproduct, since the nonlinear/linear blocks are separated at first and the online
calculation is mainly done on the linear block, the computational complexity is remarkably
reduced compared with some traditional nonlinear empirical model-based NMPCs (7; 50).
Moreover, since the subspace identification method can directly yield the estimate of the
nonlinear block inverse, the complex inverse-solving method is avoided in the new NMPC
algorithm. Furthermore, some rigorous sufficient conditions are proposed here to guarantee
the feasibility and stability of the control system.

3.2 Problem description
Consider a discrete MIMO Wiener system with a linear time-invariant (LTI) block described
by

x(k + 1) = Ax(k) + Bu(k), (45)

η(k) = Cx(k), (46)

and a nonlinear block by
y(k) = f (η(k)), (47)

where f (·) is an invertible memoryless nonlinear function, u(k) ∈ Rp, y(k) ∈ Rm are the input
and output, respectively, x(k) ∈ Rn is the state vector, and η(k) ∈ Rm is the unmeasurable
intermediate output. This Wiener system is subject to an input constraint:

|ui| ≤ ūi, i = 1, · · · , p. (48)

Typically, there are two kinds of problems to consider:
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• Regulator problem: Design an output-feedback control law such that the response of the
initial conditions will die out at a desired rate;

• Tracking problem: Design an output-feedback control law to drive y(t) to a set-point r(k) = a
asymptotically.

In general, for unconstrained systems with measurable η(k), to address these two problems,
one can respectively design a stable state observer,

x̂(k + 1) = Ax̂(k) + Bu(k) + L(η(k)− Cx̂(k)),

in combination with a stable state-feedback control law u(k) = Kx̂(k) or with a stable
state-feedback control law having offset (13) u(k) = Kx̂(k) + aθ, where 1/θ = limz→1(C(zI −
Ψ)−1B) and Ψ = A + BK. However, for constrained Wiener systems with unmeasurable
intermediate output η(t), these basic control methods will be infeasible and the problems will
become much more complex. This section develops a novel algorithm that can handle such
challenging situations.

3.3 Control algorithm design
For the constrained Wiener system (45)–(48), in order to focus on the main idea of this section,
i.e. dual-mode predictive mechanism, it is assumed that the system state matrices (A, B)
can be estimated accurately while the identification error only appears in the output matrix
estimate Ĉ:
Assumption A1) the LTI matrices (A, B) can be precisely identified.
This identification can be implemented with the efficient subspace methods (23; 52; 59). In
general, subspace methods give estimates of the system matrices (A, B, C). The robustness
issue with estimate errors of (A, B) is beyond the scope of the current chapter, hence will not
be discussed.
First, use a stable observer L to estimate x(k) as follows:

x̂(k + 1) = Ax̂(k) + Bu(k) + L(η̃(k)− Ĉx̂(k)), (49)

where x̂(k) is the state estimate, and η̃(k) � f̂−1(y(k)) with f̂−1(·) denoting the inverse of f
calculated by Gómez’s subspace method (23). The state estimate error is defined as

e(k) � x(k)− x̂(k). (50)

Since the identified inverse η̃(k) rather than η(k) is used to estimate the state x(k), the state
estimate error e(k) is caused by both the identification error of f −1(·) and the initial condition
mismatch. Therefore, the intermediate output estimate error Ĉe(k) can be separated into two
parts as follows:

Ĉe(k) = Ĉx(k)− Ĉx̂(k)
= (Ĉx(k)− η̃(k))︸ ︷︷ ︸

part1

+ (η̃(k)− Ĉx̂(k))︸ ︷︷ ︸
part2

. (51)

Clearly, part 1 equals ΔCx(k) + η(k) − η̃(k) with ΔC = Ĉ − C. For a fixed nonlinear block
f , part 1 is yielded by the subspace method (23) based on state calculation, and hence the
proportion of part 1 to the whole estimate error Ĉe(k) is solely determined by the current state
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• limited capacity in handling input constraints;
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and output, respectively, x(k) ∈ Rn is the state vector, and η(k) ∈ Rm is the unmeasurable
intermediate output. This Wiener system is subject to an input constraint:
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x(k). It can be assumed that part 1 of Eq. (51) satisfies the following equality:

Ĉx(k)− η̃(k) = δ(x(k))Ĉe(k). (52)

with δ(x(k)) = diag{δ1(x(k)), · · · , δm(x(k))}m×m. For conciseness, from now on δ(x(k)) and
δi(x(k)) are denoted by δ(·) and δi(·), respectively.
Next, recall the input constraint (48), and extend x̂(k) to ẑ(k) � [x̂T(k), DT(k)]T with D(k) �
[d1(k), · · · , dHp (k)]

T . Here, Hp is defined as the prediction horizon, and D(k) represents the
auxiliary state to be computed. Then, an extended state-feedback control law is set as

u(k) = Kx̂(k) + ED(k), (53)

or
ui(k) = Kix̂(k) + FD(k), i = 1, · · · , p, (54)

with K = [KT
1 , · · · , KT

p ]
T, E = [FT, · · · , FT]T and F = [1, 0, · · · , 0]1×Hp .

Note that the novelty here lies in D(k), and the reason will be demonstrated later. When the
current state x(k) is not in the asymptotic stability region of the constrained Wiener system
(45)–(48) governed by (49) and (53), the auxiliary state D(k) will be activated to drive x(k)
back into the asymptotic stability region in less than Hp steps, and D(k) will vanish thereafter.
Now, substituting (52) and (53) into (49) yields

ẑ(k + 1) = Ωẑ(k) +
[

L(Im − δ(·))Ĉ
0

]
e(k), (55)

where

Ω =

[
Ψ BE
0 M

]
, Ψ = A + BK, M =

[
0 IHp−1

0 0T

]

Hp×Hp

,

In is the n-dimensional identity matrix, 0 and 0 denote compatible zero matrix and zero
column vector, respectively.
In order to stabilize the closed-loop system (55), define two ellipsoidal initial state invariant
sets of ẑ(k) and e(k) as follows:

S � {ẑ|ẑTPẑ ≤ 1}, (56)

Se � {e|eTPee ≤ ē2, 0 ≤ ē ≤ 1}, (57)

where P and Pe are both positive definite and symmetric matrices to be computed, and ē is a
pre-defined constant. The auxiliary state D(k) (see Eq. (53)) can be calculated by solving the
following optimization problem:

minD(k) J(k) � DT(k)D(k) (58)

subject to Eq. (56). The following lemma and theorem guarantee the existence of S and Se, and
the feasibility of the control law (53).

Lemma 3. For any constant matrices A1, A2 with compatible dimensions, and for any μ > 1, one has

(A1 + A2)
TP(A1 + A2) ≤ μAT

1 PA1 + τAT
2 PA2,

where τ = 1 + (μ − 1)−1 and P is a positive definite matrix.
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Proof : For any μ > 1, one has

(A1 + A2)
TP(A1 + A2) = μAT

1 PA1

+(1 + (μ − 1)−1)AT
2 PA2 − (μ − 1)(A1 − (μ − 1)−1 A2)

T

·P(A1 − (μ − 1)−1 A2)

≤ μAT
1 PA1 + (1 + (μ − 1)−1)AT

2 PA2. �

Theorem 4. For the constrained Wiener system (45)–(48) governed by the control law (49), (53) and
(58), if Assumption A1 and the following assumption A2 hold, then S and Se defined respectively by
(56) and (57) are invariant sets and the control law (53) satisfies (48).
Assumption A2) there exist σ > 0, μ1 > 1, μ2 > 1 and positive definite and symmetric matrices
P, Pe, such that

δ(·)LTPeLδ(·) ≤ σ2LTPeL (59)

(Im − δ(·))LTET
x PExL(Im − δ(·)) ≤ (1 + σ)2LTET

x PExL, (60)

μ2ΩTPΩ ≤ (1 − ē2)P, (61)
[
−ū2

i Ki

KT
i −P

]
≤ 0, i = 1, · · · , p, (62)

τ2(1 + σ)2ĈTLTET
x PExLĈ ≤ Pe, (63)

μ1ΦTPeΦ + τ1σ2ĈTLTPeLĈ ≤ Pe, (64)

where τ1 = 1 + (μ1 − 1)−1, τ2 = 1+ (μ2 − 1)−1, Φ = A − LĈ, K̄i � [Ki, F], (Here, Ex is a matrix
satisfying x̂ = ET

x ẑ and Ki and F are defined in Eq. (54)).

Proof : For any ẑ(k) ∈ S, it can be verified from (56) and (61) that

μ2ẑ(k)ΩTPΩẑ(k) ≤ (1 − ē2)ẑT(k)Pẑ(k) ≤ 1 − ē2. (65)

Moreover, for any e(k) ∈ Se, from (57), (60) and (63), one has

τ2eT(k)ĈT(Im − δ(·))LTET
x PExL(Im − δ(·))Ĉe(k)

≤ τ2(1 + σ)2eT(k)ĈT LTET
x PExLĈe(k)

≤ eT(k)Pee(k) ≤ ē2.

(66)

It follows from Lemma 1 and (55) that

ẑT(k + 1)Pẑ(k + 1) ≤ μ2ẑT(k)ΩTPΩẑ(k)

+τ2e(k)TĈT(1 − δ(·))LTET
x PExL(1 − δ(·))Ĉe(k).

(67)

Substituting (65) and (66) into (67) yields ẑT(k + 1)PẑT(k + 1) ≤ 1, which implies that S is an
invariant set.
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where P and Pe are both positive definite and symmetric matrices to be computed, and ē is a
pre-defined constant. The auxiliary state D(k) (see Eq. (53)) can be calculated by solving the
following optimization problem:

minD(k) J(k) � DT(k)D(k) (58)

subject to Eq. (56). The following lemma and theorem guarantee the existence of S and Se, and
the feasibility of the control law (53).
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1 PA1 + τAT
2 PA2,

where τ = 1 + (μ − 1)−1 and P is a positive definite matrix.

184 Advanced Model Predictive Control Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints 23

Proof : For any μ > 1, one has

(A1 + A2)
TP(A1 + A2) = μAT

1 PA1

+(1 + (μ − 1)−1)AT
2 PA2 − (μ − 1)(A1 − (μ − 1)−1 A2)

T

·P(A1 − (μ − 1)−1 A2)

≤ μAT
1 PA1 + (1 + (μ − 1)−1)AT

2 PA2. �

Theorem 4. For the constrained Wiener system (45)–(48) governed by the control law (49), (53) and
(58), if Assumption A1 and the following assumption A2 hold, then S and Se defined respectively by
(56) and (57) are invariant sets and the control law (53) satisfies (48).
Assumption A2) there exist σ > 0, μ1 > 1, μ2 > 1 and positive definite and symmetric matrices
P, Pe, such that

δ(·)LTPeLδ(·) ≤ σ2LTPeL (59)

(Im − δ(·))LTET
x PExL(Im − δ(·)) ≤ (1 + σ)2LTET

x PExL, (60)

μ2ΩTPΩ ≤ (1 − ē2)P, (61)
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On the other hand, for any e(k) ∈ Se, (49) and (50) yield that e(k + 1) = (Φ + Lffi(·)Ĉ)e(k),
thus by Lemma 1, for any μ1 > 1, the following inequality holds:

eT(k + 1)Pee(k + 1) = ((Φ + Lffi(·)Ĉ)e(k))TPe
·((Φ + Lffi(·)Ĉ)e(k)) ≤ μ1eT(k)ΦTPe

·Φe(k) + τ1eT(k)ĈTffi(·)T LTPeLδ(·)ĈeT(k)
≤ eT(k)(μ1ΦTPeΦ + τ1ĈTffi(·)T LTPeLffi(·)Ĉ)e(k).

By taking (59) and (64) into account, one has eT(k + 1)Pee(k + 1) ≤ ē2, i.e. Se is an invariant
set.
To satisfy the input constraint (48), rewrite the control law and get

|ui(k)| = |K̄iẑ(k)| = |K̄iP−1/2 · P1/2ẑ(k)|
≤ �K̄iP−1/2� · �P1/2ẑ(k)�.

Since �P1/2ẑ(k)� ≤ 1 from (56) and �K̄iP−1/2� ≤ ūi from (62), it immediately follows that
|ui(k)| ≤ ūi, i = 1, · · · , p. �

Fig. 9. Dual-mode predictive controller structure.

Remark 2. Both the internal matrices LTPeL and LTET
x PExL in (59) and (60) of Assumption A2

are positive definite and symmetric matrices. Hence these two inequalities provide a measure for the
upper bound of the identification error of the nonlinear block inverse f−1(·). Specifically, take the
single-input/single-output (SISO) case as an instance for discussion. Inequalities (59) and (60) of
Assumption A2 can be simplified to

|δ(·)| ≤ σ, (68)

which is independent of P, Pe and L. Since (A, B) is estimated precisely (see Assumption A1), the
subspace method yields sufficiently accurate local approximations of f−1(·) and C. Consequently, as
shown in (51), compared with the second part, the first part is much smaller, and it is thus a logical
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assumption that δ(·) is locally bounded as given in (68) for SISO systems, or (59) and (60) for MIMO
systems. As a consequence, the estimate error Ĉe(k) is mainly caused by part2, i.e. the initial condition
mismatch, and (59) and (60) can be easily satisfied in general. They will be further illustrated by a case
study later. Moreover, σ is a parameter determining the stability performance of the new our approach.
Note that even if the subspace can not yield sufficiently accurate f−1(·) and C, i.e. σ is not sufficiently
small, the present algorithm still works, but with shrinking invariant sets Sxm and Se.

Remark 3. It is shown by a number of simulations that Assumption A2 is not difficult to fulfill.
A detailed procedure to obtain P and Pe is given here: First, the stable observer gain L (see (49)) and
state-feedback gain K (see (53)) are pre-calculated by MATLAB, which is quite fast. Then, select μ2 > 1
(generally, it can be selected in the range (1, 1.5)), and compute P by the LMI toolbox of MATLAB
according to (61), (62) and the pre-determined constant ē. Note that even for some unfavorable μ2,
one can still adjust the state-feedback gain K to guarantee the feasibility of P. Finally, select a suitable
μ1 > 1 and calculate Pe by the LMI toolbox according to (63), (64), the pre-determined constant σ,
and the pre-calculated matrix P. Furthermore, the obtained parameters L, P and Pe are substituted
into (59) and (60) to verify their feasibility according to δ(·), which is now available. If they can not be
fulfilled, one should increase σ until it can be satisfied. Of course, for SISO systems, since (59) and (60)
has been simplified to (68), this condition can be directly verified, which is independent of L, P and Pe.
As a consequence, the computation time is mainly taken by the above-mentioned two LMIs composed
of (61), (62) and (63), (64), respectively, whose computational complexities are both O(N2). Moreover,
since L and K can be designed separately for the linear block, even for some unfavorable values of μ2,
one can still assure the feasibility of Pe by adjusting the feasible state-feedback gain L or moderately
increasing σ. Certainly, suitable selections of μ1 and μ2 (μ1 ∈ [1, 1.5] and μ1 ∈ [1, 2] for example
according to our numerical simulations) will accelerate the searching of P and Pe.

Based on Theorem 4 and Eq. (58), a block diagram depicting the control structure is illustrated
in Fig. 9.
Now, the main advantages of the present algorithm can be demonstrated. If Hp = 0, i.e.
the system state dimension is not extended, then the control law (53) reduces to the standard
output-feedback control law

u(k) = Kx̂(k), (69)

and the invariant set S reduces to

Sx �
{

x̂|x̂TPxx̂ ≤ 1
}

. (70)

Here, (69) is called the initial control law, which drives x̂(k) to the origin asymptotically
provided that the initial state estimate x̂(0) is inside Sx. However, Sx is the minimal case
of S with Hp = 0, so it is very likely that x̂(0) /∈ Sx . Fortunately, it will shown later that the
extension of the system state by (53) can enlarge Sx effectively so as to include x̂(0) in general.
More precisely, if the current x̂(k) moves to outside Sx, then the controller enters the First
Mode, in which the optimal input profile (49), (53), found by solving the open-loop optimal
control problem (58), drives the nonlinear system state x̂ into the terminal invariant set Sx over
a finite horizon Hp, i.e. x̂(k + Hp) ∈ Sx. To that end, the controller is automatically switched
to the Second Mode, in which the local linear output-feedback control law (69) steers the state
x̂(k) to the origin asymptotically. This approach is called the dual-mode NMPC method (14),
and Hp is hereby called the prediction horizon.
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On the other hand, for any e(k) ∈ Se, (49) and (50) yield that e(k + 1) = (Φ + Lffi(·)Ĉ)e(k),
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·((Φ + Lffi(·)Ĉ)e(k)) ≤ μ1eT(k)ΦTPe
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assumption that δ(·) is locally bounded as given in (68) for SISO systems, or (59) and (60) for MIMO
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}

. (70)

Here, (69) is called the initial control law, which drives x̂(k) to the origin asymptotically
provided that the initial state estimate x̂(0) is inside Sx. However, Sx is the minimal case
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Remark 4. The present method focuses on the regulator problem. To address the tracking problem, as
shown in the top-left part of Fig. 9, Equation (53) should be converted into a state-feedback control law
with an offset, in the form of

u(k) = K̄ẑ(k) + aθ,

where 1/θ = limz→1(C̄(zI − Ω)−1B̄), C̄ = [Ĉ, 0]m×(n+Hp), B̄ = [BT, 0]T
(n+Hp)×p, and the

set-point r(k) = a. Furthermore, if (I − Ω) is nonsingular, then one can make a coordinate
transformation ẑ(k) − α −→ ˜̂z(k), with α = (I − Ω)−1Baθ, so as to convert the tracking problem
to the regulator problem. Even if (I − Ω) is singular, one can still use some suitable coordinate
transformation to convert it to the regulator problem. In turn, the terminal invariant set Sx has hereby
moves to a new place in the old state space spanned by x̂, and the center of Sx is thus shifted from the
origin to α. In this sense, these two control problems are equivalent, and hence the terminal set Sx
should be recalculated once a new set-point variation occurs.

Remark 5. In many industrial applications, the constraints on the changing rate of the input, i.e.
|Δui(k)| ≤ ῡi with Δui(k) � ui(k + 1) − ui(k), i = 1, · · · , p. are very common. This kind of
constraints can also be handled by the present method. More precisely, taking into consideration of

(55), and letting Υ �
[

L(1 − δ(·))Ĉ
0

]
, one has

|Δui(k)| = K̄i(z(k + 1)− z(k)) = |K̄i(Ω − I)ẑ(k)|
+|K̄iΥe(k)| = |K̄i(Ω − I)P−1/2P1/2ẑ(k)|
+|K̄iΥP−1/2

e P1/2
e e(k)|.

Since �P1/2ẑ(k)� ≤ 1 from (56) and �P1/2
e e(k)� ≤ ē from (57), one has

|Δui(k)| ≤ �K̄i(Ω − I)P−1/2�+ ē�K̄iΥP−1/2
e �. (71)

Thus, one can first compute K, L and P according to Remark 3, and then substitute them into (71) to
obtain a new matrix inequality of Pe as follows:

K̄iΥP−1
e ΥTK̄T

i ≤ 1/ē2 · (ῡi − �K̄i(Ω − I)P−1/2�)2, (72)

or [−1/ē2 · (ῡi − �K̄(Ω − I)P−1/2�)2 K̄Υ
ΥTK̄T −Pe

]
≤ 0. (73)

In this way, the constraints on the changing rate of the input, i.e. |Δui(k)| ≤ ῡi, can be handled
by introducing (73) into Assumption A2.

3.4 Stability analysis
Theorem 4 , provides the initial state invariant set guaranteeing the existence of D(k) (see
(53)), and this section focuses on maximizing the invariant set, i.e. the asymptotic stability
region. Rewrite the matrix P as

[
(Px)n×n PxD

PT
xD (PD)Hp×Hp

]

188 Advanced Model Predictive Control Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints 27

and define an extended invariant set of x̂ as

Sxm �
{

x̂|x̂T(Px − PxDP−1
D PT

xD)x̂ ≤ 1
}

. (74)

Moreover, denote the volume of the ellipsoidal invariant set Sxm by vol(Sxm) and let det(·)
be the determinant and “∝” denotes “proportional to”. Accordingly, a new theorem is
established to show the quantitative correlation between the size of the invariant set of x̂ and
the matrix P.

Theorem 5. The following two conclusions hold:
1) If ẑ(k) ∈ S (see (56)), then x̂(k) ∈ Sxm.
2) vol(Sxm) ∝ det(ET

x P−1Ex), here vol(·) denotes the size of a set.

Proof : Since ẑ ∈ S, it follows from (56) that

x̂T(k)Pxx̂(k)
≤ 1 − 2x̂T(k)PxDD(k)− DT(k)PDD(k).

(75)

In addition, it can be easily verified that

−P−1
D PT

xDx̂(k) = arg maxD(k){1 − 2x̂T(k)
×PxDD(k)− DT(k)PDD(k)}.

(76)

Thus, substituting (76) into (75) yields x̂T(k)(Px − PxDP−1
D PT

xD)x̂(k) ≤ 1, which proves
Conclusion 1). Furthermore, using Px − PxDP−1

D PT
xD = (ET

x P−1Ex)−1 and (74), one can easily
verify Conclusion 2). �
It can be seen from Theorem 2 that the initial invariant set of x̂ is effectively enlarged from Sx
to Sxm. Moreover, in order to maximize Sxm, one may maximize det(ET

x P−1Ex) by the method
detailed in (10), with calculation carried out using the MATLAB LMI toolbox. This maximized
Sxm guarantees the existence of D(k), or the feasibility of the present control law (53), with
the largest possible probability. Consequently, based on Theorems 4 and 5, the closed-loop
stability is guaranteed by the following theorem.

Theorem 6. For the constrained Wiener system (45)–(48), if the control law (49), (53) and (58) is
implemented along with stable state-feedback gain K and a stable state-observer L, and Assumptions
A1–A2 hold, then the closed-loop system is asymptotically stable.

Proof : If the current state estimate ẑ(k) ∈ S, then it follows from Theorem 4 that there exists
D(k + 1) such that ẑ(k + 1) ∈ S. Additionally, from (55) it is obvious that D̄(k + 1) � MD(k)
is always a candidate for D(k + 1), since it satisfies J̄(k + 1) = D̄T(k + 1)D̄(k + 1) ≤ J(k),
and one has J̄(k + 1) = J(k) only if D(k) = 0. Indeed, it can be easily seen that the feasible
sequence D̄(k + i) (i = 1, · · · , Hp) decreases to zero in Hp steps. Moreover, it can be seen that
D̄(k + 1) is not always the optimal value D(k + 1) (or D∗(k + 1)) calculated by (58). Thus, one
has J∗(k + 1) ≤ J̄(k + 1) < J(k) for D(k) �= 0, and the control law with the optimal auxiliary
state D∗(k + 1) will converge to the initial control law in no more than Hp steps. Thereafter,
controller (69) will make the system asymptotically stable. �
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3.5 Case study
Consider a Wiener system described by (45)–(48) with

A =

[
2.3 −1.2
1.0 0

]
, B =

[
1
0

]
, C = [1, 0],

f (η) = η4sin(η)− η5, ū = 1.5.

It can be easily verified that f (·) is a monotonically increasing function and is thus invertible.
First, Gómez’s subspace method (23) is used to identify the parameters of the linear block
(A, B, C) and the inverse of the nonlinear block f−1(η). In order to demonstrate the merits
of our proposed dual-mode NMPC algorithm, as shown in Fig. 10, we show a comparison to
a traditional NMPC based on the NAARX (Nonlinear Additive AutoRegressive models with
eXogeneous inputs) model (34), which is a special class of the well-known NARMAX models.
This model is defined as

y(t) =
s

∑
i=1

hi(y(t − i)) +
q

∑
j=0

gj(u(t − j)) + ξ(t) (77)

where {hi(·)} and {gi(·)} are scalar nonlinear functions, generally polynomials, and ξ(t) is
external white noise.
In this numerical example, p = m = 1, and the parameters of the present dual-mode NMPC are
selected as follows: the initial state-feedback gain K = [−2.3536, 1.1523] and the state observer
gain L = [1.0765, 0.3678]T are optimized via DLQR and KALMAN functions of MATLAB 6.5,
respectively. Prediction horizon Hp = 6, ē = 0.4, x̄(0) = [2.2, 2.2]T, x(0) = [4.3, 4.8]T, μ1 = 1.1,
μ2 = 1.4 and σ = 0.1. The estimate Ĉ = [1.01, 0]. The parameters of the above traditional
NMPC are: prediction horizon Hp = 7, control horizon Hu = 7, s = 5 and q = 3 (see Eq. (77)).
In Fig. 10, the most interesting part is the system state response to the change of the set-point.
The trajectories of {y, η}, u, and d1 (see (53)) are shown in the upper, middle and lower parts of
Fig. 10, respectively. In this case, after 200 sampling periods, the overshoot, settling time and
steady-state error of the present Dual-mode NMPC are 12.2%, 15 steps, and 0.3%, respectively.
The first two transient performance indexes are much smaller than the counterparts of the
traditional NMPC as shown by the read curves in Fig. 10. These merits root in the dual-mode
mechanism of our proposed NMPC, which can effectively enlarge the closed-loop stability
region thereby improving the transient performances.
To illustrate the superiority of the proposed method more vividly, we present the curves of
x(k) (star-line), x̂(k) (circle-line) and the invariant sets Sx (see Eq. (70)), Sxm (see Eq. (74)) in
Fig. 11. It should be noted that x and x̂ in these two figures were implemented with coordinate
transforms according to Remark 3. One can see that x̂(0) is outside the feasible initial invariant
set Sx (see the solid ellipse in Fig. 11), thus D(k) is activated to enlarge Sx to Sxm (see the
dashed ellipse in Fig. 11 containing x̂(0)), and then to drive x̂(k) back to Sx in no more than
Hp steps. Thereafter, the initial control law (69) stabilizes the system and leads the state to
approach the origin asymptotically. Remarkably, for favorable parameters like Hp = 6, ē = 0.4
and σ = 0.1, as shown in Fig. 11, the attraction region Sxm is much larger than the counterpart
of the standard NMPC. Moreover, in Fig. 12 one can observe the dynamics of the state estimate
error e(k) (see (50) and the star-curve). One can observe that, when the trajectory of e(k) starts
from outside of Se (see (57) and the ellipse), it will move back into Se after no more than Hp
steps and then converge to the origin asymptotically. Theorem 4 is thus verified.
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Fig. 10. Control performance comparison of the tracking problem. Solid curve: dual-mode
NMPC; dotted curve: traditional NMPC; dashed curve: intermediate output (upper
sub-figure) and input constraints (middle sub-figure); set-point: {−40, 40}.

Fig. 11. Trajectory and invariant set of system states.
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(a) (b)

Fig. 12. (Color online) (a): Trajectory and invariant set of state estimate error; (b):
Comparison of the invariant sets with σ = 0.2 or ē = 0.7.

In addition, the size comparison of Sxm with different Hp ∈ {0, 3, 6} is presented in Fig. 11.
The numerical results have verified Theorem 5, i.e. the size of Sxm increases along with
the enhancement of det(ET

x P−1Ex), and the increase of Hp helps enlarge the stable region.
However, this enhancement will also increase the computational complexity. Therefore, a
tradeoff must be made between stability enhancement and computational load. Moreover,
in order to compare the stability of the present algorithm and the traditional NMPC, their
attraction regions are shown together in Fig. 11. It can be observed that the attraction region
Sxm of the present algorithm is much larger than that of the traditional NMPC with favorable
parameters.
Still worth mentioning is that some other simulations also show that the size of Sxm increases
as σ decreases. In other words, more accurate identification algorithms would help further
enlarge the asymptotic stability region. Fortunately, Gómez’s method (23) is helpful in this
regard. Furthermore, to verify the feasibility of (68) in Assumption A2, the values of Ĉe(k)
and Ĉx(k)− η̃(k) are compared throughout the whole simulation process, and it is found that
| Ĉx(k) − η̃(k)| ≤ σ|Ĉe(k)| always holds with σ = 0.1. The feasibility of Theorem 4 is thus
verified.
Finally, it is remarked that the performance of the present algorithm highly depends on
the effectiveness of the subspace method and the state observer L, and hence the present
algorithm is not always better than NMPC. In other words, if σ or ē can not be guaranteed
small enough, the performance of the proposed dual-mode algorithm becomes worse than
the traditional NMPC although the former is simpler and has a lower computational burden
thanks to its block-oriented internal model. For instance, if ē = 0.7 or σ = 0.2, as shown
in Fig. 12(b) (all the other parameters are the same as those in Fig. 11), the invariant set Sxm
shrinks and becomes even smaller than that of the traditional NMPC.

3.6 Section conclusion
This section has developed an effective control method for MIMO Wiener systems with input
constraints. First, the nonlinear and linear blocks of the system are separated by a subspace
method. Then, a novel dual-mode NMPC algorithm is developed and used for the remaining
process control. This approach is capable of maximizing the asymptotic stability region by
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a dual-mode control mechanism, and eliminating the reliance on the measurability about
the intermediate output. Finally, control simulations have demonstrated the feasibility and
superiority of the proposed control algorithm for a large class of nonlinear dynamic systems.
It is believed that this novel approach has promising potential in handling many complex
systems often encountered in industrial control processes.
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Fig. 12. (Color online) (a): Trajectory and invariant set of state estimate error; (b):
Comparison of the invariant sets with σ = 0.2 or ē = 0.7.
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1. Introduction

Model predictive control (MPC) is one of the most successful techniques to control
multi-variable constraint systems. The MPC uses a mathematical model to predict the future
effects of control inputs to system behaviors. The optimal control policy is obtained by
solving an optimization problem that minimizes/maximizes a performance objective subject
to inputs and outputs constraints over a future time horizon (Morari & Lee, 1999, Mayne
et al., 2000, Dua et al, 2008). The MPC control laws are open-loop optimal with respect to
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efficiency of eMPC method depends critically on finding an efficient representation model
for eMPC controllers. However, it is not easy to develop a general model set to represent
continuous PWA functions. The PWA representations usually have two conflicting criteria:
description and evaluation complexities. The description complexity deals with the number
of parameters in the representation model, while the evaluation complexity specifies the time
for online calculation of function values.
When an eMPC controller is executed, one needs to solve a point-location problem with two
steps: i) identify which polyhedral region the measured state lies in; ii) compute the control
action using the corresponding affine control law. The simplest point-location solver is the
sequential search (SS) algorithm, which is implemented by substituting a given state variable
into the constraint inequalities of different regions. This method requires to store all the
polyhedral regions and affine functions individually. Due to the combinatorial nature, the
number of polyhedral regions in an eMPC control law can grow exponentially with the size
of the optimal control problem (Wen et al., 2005a). Hence, the online function evaluation is
computationally expensive when an eMPC control consists of a large number of regions or is
defined over a complicated domain partition (Wen et al., 2005b).
Many researchers developed alternative ways to represent the eMPC solutions with
appropriate data structures. In 2001, Borrelli, Baotić, Bemporad & Morari propose a search
algorithm based on the convexity of the piecewise affine value function. This convex value
function (CVF) algorithm reduces the storage space significantly. In some cases, this method
might be time consuming because it requires a kind of sequential search. A binary search
tree (BST) algorithm is proposed by Tondel, Johansen & Bemporad (2003) on the basis of the
geometric structure of the polyhedral partition. This method can deal with the fully general
PWA functions, including the discontinuous ones defined on overlapping regions or holes. In
this scheme, the auxiliary hyper-planes are introduced, which may subdivide existing regions.
This might lead to a worst case combinatorial number of subdivided regions. Then the
following search procedure has to consider an additional increase in the number of regions,
which may imply a prohibitive pre-processing time or online memory requirements. In 2007,
Christophersen, Kvasnica, Jones & Morari developed an efficient search tree algorithm by
utilizing the concept of bounding boxes and interval trees. This bounding box tree (BBT)
algorithm can deal with the PWA functions defined over a large number of polyhedral
regions. But the storage demand and online search time are still linear in the number of
polyhedral regions in the original PWA functions. In Geyer et al, 2008, an efficient approach
was developed to reduce the number of partitions in eMPC controllers by optimally merging
the polyhedral regions where the affine gain is the same. All these algorithms are successful in
dealing with the PWA functions defined over a large number of polyhedral regions. However,
their storage demands and/or online evaluation computation are dependent on the number of
polyhedral regions in the original PWA functions. These algorithms do not utilize the global
structure information in eMPC controllers. Then their efficiency may be reduced substantially
for some large-scale and complicated eMPC solutions.
The PWA approximation technique presents another efficient way to deal with the
computation and description complexities of eMPC solutions. In Johansen, Petersen &
Slupphaug (2002), an approach is proposed, which calculates the sub-optimal solutions by
predetermining a small number of sampling data when the active set or input is allowed to
change on the horizon. An alternative sub-optimal approach was developed in Bemporad &
Filippi (2003) where small slacks are introduced on the optimality conditions and the mp-QP
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is used for the relaxed problem. In 2003, an algorithm is suggested that can determine a
suboptimal explicit MPC control on a hypercubic partition (Johansen & Grancharova, 2003).
In this partition, the domain is divided into a set of hypercubes separated by orthogonal
hyperplanes. In 2006, Jones, Grieder & Rakovic interpret the PWA value function as
weighted power diagrams (extended Voronoi diagrams). By using the standard Voronoi
search methods, the online evaluation time is solved in logarithmic time (Jones, Grieder, &
Rakovic, 2006; Spjotvold, Rakovic, Tondel, & Johansen, 2006). Dynamic programming can
also be used to calculate the approximate explicit MPC laws (Bertsekas & Tsitsiklis, 1998;
Lincoln & Rantzer, 2002, 2006). The main idea of these approaches is to find the sub-optimal
solutions with known error bounds. The prescribed bounds can achieve a good trade-off
between the computation complexity and accuracy. These approximation algorithms are very
efficient regarding the storage and online calculation time. However, the approximate PWA
functions usually have different domain partitions from the original explicit MPC laws. This
deviation may hinder the controller performance and closed-loop stability.
The established representation and approximation algorithms have found many successful
applications in a variety of fields. However, they can only evaluate the control actions for
discrete measured states. None of them can provide the exact analytical expression of the
PWA control laws. An analytical expression will ease the process of closed-loop performance
analysis, online controller tuning and hardware implementations. The analytic expression
also provides the flexibility of tailoring the PWA controllers to some specific applications, e.g.
to develop different sub-optimal controllers in different zones (a union of polyhedral regions),
and to smooth the PWA controllers at region boundaries or vertices (Wen et al. 2009a).
In addition, the canonical PWA (CPWA) theory shows that the continuous PWA functions
often consist of many redundant parameters. A global and compact analytical expression can
significantly increase the computation and description complexity of eMPC solutions (Wen,
et al., 2005a). An ideal representation algorithm should describe and evaluate the simplified
MPC solutions after removing the redundant parameters.
In 1977 Chua & Kang proposed the first canonical representation for continuous PWA
functions. A canonical PWA (CPWA) function is the sum of an affine function and one or
more absolute values of affine functions. All continuous PWA functions of one variable can
be expressed in the canonical form. However, if the number of variables is greater than
one, only a subset of PWA functions have the CPWA representations (Chua & Deng, 1988).
In 1994, Lin, Xu & Unbehauen proposed a generalized canonical representation obtained
by nesting several CPWA functions. Such a representation is available for any continuous
PWA function provided that the nesting level is sufficiently high. The investigations (Lin
& Unbehauen, 1995; Li, et al. 2001, Julian et al., 1999) showed that for a continuous PWA
function, the nesting level does not exceed the number of its variables. However, the
nested absolute value functions often have implicit functional forms and are defined over
complicated boundary configurations. In 2005, Wen, Wang & Li proposed a basis function
CPWA (BPWA) representation theorem. It is shown that any continuous PWA function of n
variables can be expressed by a BPWA function, which is formulated as the sum of a suitable
number of the maximum/minimum of n+1 affine functions.
The class of lattice PWA functions is a different way to represent a continuous PWA function
(Tarela & Martínez, 1999, Chikkula, et al., 1998, Ovchinnikov, 2002, Necoara et al. 2008, Boom
& Schutter 2002, Wen et al, 2005c, Wen & Wang, 2005d). The lattice representation model
describes a PWA function in term of its local affine functions and the order of the values of all
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the affine functions in each region. From theoretical point of view, the lattice PWA function
has a universal representation capability for any continuous PWA function. According to the
BPWA representation theorem, any BPWA function can be equivalently transformed into a
lattice PWA function (Wen et al. 2005a, 2006). Then the well-developed methods to analyze
and control the class of CPWA functions can be extended to that of the lattice PWA functions.
From a practical point of view, it is of great significance that a lattice PWA function can be
easily constructed, provided that we know the local affine functions and their polyhedral
partition of the domain (Wen & Ma, 2007, Wen et al, 2009a, 2009b). Since these information
on affine functions and partitions is provided in the solutions of both mp-LP and mp-QP, the
lattice PWA function presents an ideal way to represent the eMPC solutions.
In this paper, we propose a general lattice representation for continuous eMPC solutions
obtained by the multi-parametric program. The main advantage of a lattice expression is
that it is a global and compact representation, which automatically removes the redundant
parameters in an eMPC solution. The lattice representation can save a significant amount
of online computation and storage when dealing with the eMPC solutions that have many
polyhedral regions with equal affine control laws. Three benchmark MPC problems are
illustrated to demonstrate that the proposed lattice eMPC control have a lower description
complexity, comparable evaluation and preprocessing complexities, when compared to the
traditional eMPC solutions without global description models.
The rest of this paper is organized as follows. Section II introduces the main features of PWA
functions and eMPC problems. The lattice PWA function and representation theorem are
presented in Section III. Section IV is the main part of this paper. It presents the complexity
reduction theorem of lattice eMPC solutions, the lattice representation algorithm and its
complexity analysis. Numerical simulation results are shown in Section V, and Section VI
provides the concluding remarks.

2. PWA functions and eMPC solutions

2.1 PWA function
Definition 1. In �n, let Ω = ∪M

i=1Ri be a compact set, which is partitioned into M convex
polyhedrons called regions Ri, i = 1, . . . , M. Then a nonlinear function p(x) : Ω �→ �m is defined as
a PWA function if

p(x) = Fix + gi, ∀x ∈ Ri (1)

with Fi ∈ �m×(n+1), βi ∈ �m. A PWA function is continuous if

Fix + gi = Fjx + gj, ∀x ∈ Bi,j (2)

where Bi,j = Ri ∩ Rj is defined as boundaries and i, j ∈ [1, · · · , M]. Specially, when m = 1, p(x) is
called as a scalar PWA function, i.e.

p(x) = �(x|αk, βk) = αT
k x + βk , ∀x ∈ Ri (3)

with αk ∈ �n, βk ∈ � and 1 ≤ k ≤ M. For convenience of statement, we simply denote �(x|αk, βk)
as �k(x).
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In Definition 1, each region Ri is a polyhedron defined by a set of inequality

Ri = {x ∈ �n|Hix ≤ Ki} (4)

where Hi, Ki are matrices of proper sizes with i = 1, · · · , M. Geometrically, a boundary Bi,j is
a real set of an (n − 1)-dimensional hyperplane.

2.2 Explicit MPC
Consider the linear time invariant system

�
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5)

which fulfills the following constraints

xmin ≤ x(t) ≤ xmax, ymin ≤ y(t) ≤ ymax, umin ≤ u(t) ≤ umax, δumin ≤ δu(t) ≤ δumax, (6)

at all time instants t ≥ 0. In (5)-(6), x(t) ∈ �n is state variable, u(t) ∈ �m, y(t) ∈ �ny

are control input and system output, respectively. A, B, C and D are matrices of appropriate
dimensions, i.e. A ∈ �n×n, B ∈ �n×m, C ∈ �ny×n and D ∈ �ny×m. It is assumed that (A, B)
is a controllable pair. δumin and δumax are rate constraints. They restrict the variation of two
consecutive control inputs (δu(t) = u(t)− u(t − 1)) to be within of prescribed bounds. The
system is called as a single-input system when m = 1, and a multi-input system when m ≥ 2.
Assume that a full measurement of the state x(t) is available at current time t. The MPC solves
the following standard semi-infinite horizon optimal control problem:

J∗(x(t)) = min
U={u(t)T,··· ,u(t+N−1)T}T

VN(x(t + N)) +
N−1

∑
k=0

Vk
�

x(t + k|t), u(t + k)
�

(7)

subject to ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xmin ≤ x(t + k|t) ≤ xmax, k = 1, · · · , Ny,

ymin ≤ y(t + k|t) ≤ ymax, k = 1, · · · , Ny,

umin ≤ u(t + k|t) ≤ umax, k = 1, · · · , Nc,

δumin ≤ δu(t + k|t) ≤ δumax, k = 1, · · · , Nc,

x(t) = x(t|t)
x(t + k + 1|t) = Ax(t + k|t) + Bu(t + k), k ≥ 0

y(t + k + 1|t) = Cx(t + k|t) + Du(t + k), k ≥ 0

u(t + k) = Kx(t + k|t), Nu ≤ k < Ny

(8)

at each time t, where x(t+ k|t)denotes the the predicted state vector at time t+ k. It is obtained
by applying the input sequence u(t), · · · , u(t + k − 1) to system (5). In (7), K is the feedback
gain, Nu, Ny, Nc are the input, output and constraint horizons, respectively. Normally, we
have Nu ≤ Ny and Nc ≤ Ny − 1.
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2. PWA functions and eMPC solutions
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i=1Ri be a compact set, which is partitioned into M convex
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with αk ∈ �n, βk ∈ � and 1 ≤ k ≤ M. For convenience of statement, we simply denote �(x|αk, βk)
as �k(x).
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In Definition 1, each region Ri is a polyhedron defined by a set of inequality

Ri = {x ∈ �n|Hix ≤ Ki} (4)

where Hi, Ki are matrices of proper sizes with i = 1, · · · , M. Geometrically, a boundary Bi,j is
a real set of an (n − 1)-dimensional hyperplane.
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�
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5)
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are control input and system output, respectively. A, B, C and D are matrices of appropriate
dimensions, i.e. A ∈ �n×n, B ∈ �n×m, C ∈ �ny×n and D ∈ �ny×m. It is assumed that (A, B)
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J∗(x(t)) = min
U={u(t)T,··· ,u(t+N−1)T}T

VN(x(t + N)) +
N−1

∑
k=0

Vk
�

x(t + k|t), u(t + k)
�

(7)

subject to ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xmin ≤ x(t + k|t) ≤ xmax, k = 1, · · · , Ny,

ymin ≤ y(t + k|t) ≤ ymax, k = 1, · · · , Ny,

umin ≤ u(t + k|t) ≤ umax, k = 1, · · · , Nc,
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u(t + k) = Kx(t + k|t), Nu ≤ k < Ny

(8)

at each time t, where x(t+ k|t)denotes the the predicted state vector at time t+ k. It is obtained
by applying the input sequence u(t), · · · , u(t + k − 1) to system (5). In (7), K is the feedback
gain, Nu, Ny, Nc are the input, output and constraint horizons, respectively. Normally, we
have Nu ≤ Ny and Nc ≤ Ny − 1.
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The stage cost function is defined as

Vi
(

x(t + i|t), u(t + i)
)
= ||Qx(t + k|t)||p + ||Ru(t + k)||p (9)

VN
(
x(t + Ny|t)

)
= ||Px(t + Ny|t)||p (10)

where || · || denoted a kind of norm and p ∈ {1, 2,+∞}, P, Q and R are weighting matrices
of proper sizes. VN is the terminal penalty function. In this paper, it is assumed that
the parameters P, Q, R are chosen in such a way that problem (7) generates a feasible and
stabilizing control law when applied in a receding horizon fashion and J∗(x) is a polyhedral
piecewise affine/quatratic Lyapunov function.
At each time t, the MPC control law u(t) is the first item in the optimal solution u∗(t), i.e.

u(t) = u∗(t) (11)

where u∗(t) = {u∗(t), · · · , u∗(t + Nc − 1)}. Apply u(t) as input to problem (5) and repeat the
optimization (7) at time t+ 1 using the new state x(t+ 1). This control strategy is also referred
to as moving or receding horizon.
By some algebraic manipulations, the MPC problem can be formulated as a parametric Linear
Program (pLP) for p ∈ {1,+∞}

u∗(x) = min
u

ΥTu (12)

s.t. Gu ≤ W + Ex

or a parametric quadratic Program (pQP) for p = 2

u∗(x) = min
u

ΥTu +
1
2

uT Hu (13)

s.t. Gu ≤ W + Ex

See (Bemporad et al. 2002) for details on the computation of the matrices G, W, E, H and Υ
in (12) and (13). By solving the pLP/pQP, the optimal control input u∗(x) is computed for
each feasible value of the state x. The features of MPC controllers and value functions are
summarized in the following lemma.

Lemma 1. Kvasnica et al., 2004 Consider the multi-parametric programming of (12) and (13). The
solution u∗(x) : �n �→ �m is a continuous and piecewise affine

u∗(x) = Fix + gi, ∀x ∈ Ri (14)

where Ri, i = 1, · · · , M is the polyhedral regions. The optimal cost J∗(x(t)) is continuous, convex,
and piecewise quadratic (p = 2) or piecewise affine (p ∈ {1, ∞}).

3. Lattice representation of scalar eMPC solutions

3.1 Lattice PWA Function
Let Φ = [φ1, · · · , φM]T be an M × (n + 1) matrix and Ψ = [ψij] a M × M zero-one matrix. A
lattice piecewise-affine function P(x|Φ, Ψ) may be formed as follows,
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P(x|Φ, Ψ) = min
1≤i≤M

⎧⎪⎨
⎪⎩

max
1≤j≤M

ψij=1

{�j(x)}

⎫⎪⎬
⎪⎭

, ∀x ∈ �n. (15)

Note that P(x|Φ, Ψ) is equal to one of �1(x), · · · , �M(x) for any x ∈ �n. P(x|Φ, Ψ) is indeed
a continuous PWA function whose local affine functions are just �j(x), 1 ≤ j ≤ M. The
parameter vectors of these affine functions are exactly the row vectors of Φ. Hence the matrix
Φ is called a parameter matrix. The matrix Ψ is defined as a structure matrix, if its elements
are calculated as

ψij =

�
1 i f �i(x) ≥ �j(x)

0 else
(16)

with x ∈ Ri and 1 ≤ i, j ≤ M. Similarly, a dual structure matrix Ψ̂ = [ψ̂ij]
M×M is defined by

ψ̂ij =

�
1 i f �(x|φi) ≤ �(x|φj)

0 else
(17)

with x ∈ Ri and 1 ≤ i, j ≤ M.

Lemma 2. Wen et al., 2007 Given any n-dimensional continuous PWA function p(x), there must exist
a lattice PWA function P(x|Φ, Ψ) such that

p(x) = P(x|Φ, Ψ), ∀x ∈ �n (18)

where Φ, Ψ are parameter and structure matrices, respectively.

It is shown in Lemma 2 that a continuous PWA function can be fully specified by a parameter
matrix Φ and a structure matrix Ψ. This provides a systematic way to represent the eMPC
solutions. The lattice PWA function contains only the operators of min, max and vector
multiplication. It is an ideal model structure from the online calculation point of view.
Example 1: The realization of a lattice PWA function can be made more clear using a simple
example. Let p(x) be a 1-dimensional PWA function with 4 affine segments,

p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1(x) = 1, ∀x ∈ R1 = [−2,−1]

�2(x) = −x, ∀x ∈ R1 = (−1, 0]

�3(x) = x, ∀x ∈ R2 = (0, 1]

�4(x) = −x + 2, ∀x ∈ R3 = (1, 2]

(19)

where the plot of p(x) is depicted in Fig. 1. It is easy to see that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�4(x) > �2(x) > �1(x) > �3(x), ∀x ∈ R1

�4(x) > �1(x) > �2(x) > �3(x), ∀x ∈ R2

�4(x) > �1(x) > �3(x) > �2(x), ∀x ∈ R3

�3(x) > �1(x) > �4(x) > �2(x), ∀x ∈ R4

(20)
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Fig. 1. Plot of 1-dimensional PWA function p(x)

Then the structure matrix is written as Ψ =

⎡
⎢⎢⎣

1 0 1 0
0 1 1 0
0 1 1 0
0 1 0 1

⎤
⎥⎥⎦. It follows from (5) that the parameter

matrix is Φ =

⎡
⎢⎢⎣

0 1
−1 0

1 0
−1 2

⎤
⎥⎥⎦. Finally, the lattice PWA function is formulated as

p(x) = P(x|Φ, Ψ) = min{max{�1, �3}, max{�2, �3}, max{�2, �3}, max{�2, �4}} (21)

It is obvious that the lattice PWA function in (21) can be further simplified. The simplification
algorithm will be discussed in the subsequent sections.

3.2 Lattice representation theorem of eMPC solutions
Lemma 3. Assume that Ri, Rj are two n-dimensional convex polytopes, where �i(x), �j(x) are their
local affine functions with i, j ∈ {1, · · · , M}. Then the structure matrix Ψ = [ψij]

M×M can be
calculated as follows:

ψij =

�
1 i f �i(vk) ≥ �j(vk), 1 ≤ k ≤ Ki

0 i f �i(vk) < �j(vk), k ∈ {1, · · · , Ki}
(22)

where vk are the vertices of Ri with 1 ≤ k ≤ Ki and Ki ∈ Z+ is the number of vertices of Ri.

Proof. Since Ri is an n-dimensional polytope, it can be described by its vertices v1, · · · , vKi

Ri = {x ∈ �n|x =
Ki

∑
k=1

λkvk, 0 ≤ λk ≤ 1,
Ki

∑
i=1

λk = 1} (23)

Then for any x ∈ Ri, we have

�i(x) = �i

�
Ki

∑
k=1

λkvk

�
=

Ki

∑
k=1

λk�i(vk) (24)

�j(x) = �j

�
Ki

∑
k=1

λkvk

�
=

Ki

∑
k=1

λk�j(vk) (25)
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If �i(vk) ≥ �j(vk), ∀1 ≤ k ≤ Ki, then �i(x) ≥ �j(x) holds for all x ∈ Ri. It follows from (3) that
ψij = 1.
Similarly, if there exists any k ∈ {1, · · · , Ki} such that �i(vk) < �j(vk), then �i(x) and �j(x) will
intersect together with an (n − 1)-dimensional hyperplane as the common boundary. This
implies that ψij = 0.
Using the same procedure stated above, all the elements in the structure matrix Ψ can be
calculated, and this completes the proof of Lemma 3.

Lemma 3 shows that the order of the affine function values in a convex polytope can be
specified by the order of the function values at the polytope vertices. This presents a
constructive way to realize the structure matrix of a given PWA function.

Theorem 1. Any continuous eMPC solution can be represented by a lattice PWA function.

Proof. According to Bemporad et al. 2002, an eMPC solution is presented in the form of
conventional PWA representation, which lists all the parameters of the affine functions and
regions in a table. Each region is a convex polytope defined by a set of inequalities. It follows
from Lemma 2 that an explicit solution to MPC can be realized by a structure matrix and
a parameter matrix. These two matrices specify a lattice PWA function. Then any eMPC
solution can be described by a lattice PWA function. This completes the proof of Theorem
1.

4. Simplification of scalar lattice PWA representation

4.1 Super-region
Definition 2. Given a PWA function p(x) : Ω �→ �m with M regions, i.e. Ω = ∪M

i=1Ri. Let

Γi =
{

j ∈ {1, · · · , M}|αix + βi = αjx + βj, ∀x ∈ Ω
}

(26)

be a finite set with M̃ components. Then the set Π ⊆ Ω is defined as a super-region, if Π = ∪M̃
k=1Rk

and k ∈ Γi with i ∈ {1, · · · , M}.

A super-regions is defined as a union of polyhedral regions with same affine function. It can
be non-convex or even not connected. If a PWA function have many regions with the same
local functions, the number of super-regions is much less than that of regions.
The concept of super-region can be clarified by an 1-dimensional PWA function shown in Fig.
2. The PWA function p(x) is defined over a compact set Ω = AE. The domain is partitioned
into 4 regions, i.e. Ω = ∪4

i=1Ri. Each region Ri is a convex polyhedron defined by two
inequalities, e.g. R2 = BC = {x ∈ AF|x ≥ xB, x ≤ xC}, where xB, xC are the coordinates of
points B, C. In Ω, there are 3 boundaries, e.g. B, C and D. Note that p(x) = [p1(x), p2(x)]T,
where

pj(x) = αT
i,jx + βi,j ∀x ∈ Ri

with αi,j, βi,j ∈ �, i = 1, · · · , 4, j = 1, 2. We can get Fi =

[
αT

i,1
αT

i,2

]
and gi =

[
βi,1
βi,2

]
.

It follows from the plot of p1(x) that αT
1,1x + β1,1 = αT

4,1x + β4,1, ∀x ∈ AE. Then Π1 = R1 ∪
R2 = AB ∪ DE is defined as a super-region. It is evident that Π1 is not convex, because it
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into 4 regions, i.e. Ω = ∪4

i=1Ri. Each region Ri is a convex polyhedron defined by two
inequalities, e.g. R2 = BC = {x ∈ AF|x ≥ xB, x ≤ xC}, where xB, xC are the coordinates of
points B, C. In Ω, there are 3 boundaries, e.g. B, C and D. Note that p(x) = [p1(x), p2(x)]T,
where

pj(x) = αT
i,jx + βi,j ∀x ∈ Ri

with αi,j, βi,j ∈ �, i = 1, · · · , 4, j = 1, 2. We can get Fi =

[
αT

i,1
αT

i,2

]
and gi =

[
βi,1
βi,2

]
.

It follows from the plot of p1(x) that αT
1,1x + β1,1 = αT

4,1x + β4,1, ∀x ∈ AE. Then Π1 = R1 ∪
R2 = AB ∪ DE is defined as a super-region. It is evident that Π1 is not convex, because it
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Fig. 2. Plot of a 1-dimensional vector PWA function p(x) = [p1(x), p2(x)]T.

is composed of two disconnected line intersections. Similarly, Π2 = R2 ∪ R3 = BD defines
another super-region of p2(x).

4.2 Row vector simplification lemma
Lemma 4. Assume that P(x|Φ, Ψ) : D ⊂ �n �→ � is a PWA function with M linear segments.
Let ϕi, ϕj be rows of the structure matrix. If the pointwise inequation ϕi − ϕj ≤ 0 holds for any

i, j ∈ {1, · · · , M}, there exist a simplified structure matrix Ψ̃ ∈ �(M−1)×M, such that

P(x|Φ, Ψ) = P(x|Φ, Ψ̃) (27)

where Ψ ∈ �M×M = [ϕ1, · · · , ϕM]T and Ψ̃ = [ϕ1, · · · , ϕj−1, ϕj+1, · · · , ϕM]T.

Proof. Denote Ii ∈ �M as the index set of the local affine functions, whose values are smaller
than the i-th affine function in its active region, i.e.

Ii = {k|�k(x) ≤ �i(x), ∀x ∈ Ri} (28)

with i, k ∈ {1, · · · , M}. Since ϕi − ϕj ≤ 0 holds for any pointwise inequality, we can get
Ii ⊆ Ij. It directly follows that {�p(x)} ⊆ {�q(x)} with p ∈ Ii, q ∈ Ij.
Therefore, it leads that

max
p∈Ii

{�p(x)} ≤ max
q∈Ij

{�q(x)} (29)

This implies that
min

{
max
p∈Ii

{�p(x)}, max
q∈Ij

{�q(x)}
}
= max

p∈Ii

{�p(x)} (30)

Then we finally have

P(x|Φ, Ψ) = min
1≤i≤M

{
max
k∈Ii

{�k(x)}
}
= min

1≤i≤M
i �=j

{
max
k∈Ii

{�k(x)}
}
= P(x|Φ, Ψ̃) (31)

Here we can see that the j-th row of structure matrix Ψ can be deleted without affecting the
function values of P(x|Φ, Ψ). This completes the proof of Lemma 4.

Since Lemma 4 can be used recursively, a much simplified structure matrix is obtained by
deleting all the redundant rows. A single row in Ψ̃ corresponds to a super region, which
is defined as an aggregation of several affine regions. Being a mergence of many convex
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polytopes, a super region can be concave or even disconnected. Then the number of super
regions can be much smaller than that of regions (Wen, 2006).

4.3 Column vector simplification lemma
Lemma 5. Assume that P(x|Φ, Ψ) : D ⊂ �n �→ � is a PWA function with M linear segments.
Denote Ψ = [ψij]

M×M and Ψ̂ = [ψ̂ij]
M×M as the primary and dual structure matrix. Then the

following results hold.

1. Given any i, j, k ∈ {1, · · · , M}, if k, j ∈ Ii and ψ̂jk = 1, then ψij = 0, where Ii is the same as
defined in (13);

2. If ψij = 0, ∀1 ≤ j ≤ M, then there exist a simplified structure matrix Ψ̃ ∈ �(M−1)×M and

parameter matrix Φ̃ ∈ �(M−1)×(n+1), such that

P(x|Φ, Ψ) = P(x|Φ̃, Ψ̃) (32)

where Φ ∈ �M×(n+1) = [φ1, · · · , φM]T, Φ̃ ∈ �(M−1)×(n+1) =
[φ1, · · · , φj−1, φj+1, · · · , φM]T, and Ψ, Ψ̃ are the same as defined in Lemma 4.

Proof. According to (17), if ψ̂jk = 1, we have

�j(x) ≤ �k(x), ∀x ∈ Rj (33)

which implies that �j(x) is inactive in its own region, i.e.

max{�j(x), �k(x)} = �k(x), ∀x ∈ Rj (34)

Note that k, j ∈ Ii and Ii is the index set of �i(x). We can get

max
p∈Ii

{�p(x)} = max
p∈Ii
p �=j

{�p(x)}, ∀x ∈ D (35)

This implies that ψij = 0.
In addition, if ψij = 0 holds for any 1 ≤ j ≤ M, then �j(x) will be totally covered by other
affine functions throughout the whole domain. Therefore, the j-th column of the structure
matrix and j-th row of the parameter matrix can be deleted. This means that P(x|Φ, Ψ) =
P(x|Φ̃, Ψ̃). It should be noted that the matrix Ψ̃ corresponds to a simpler lattice PWA function
than Ψ even without a deletion of row vectors. A lattice PWA function with less terms in max
operators is produced if some elements in the structure matrix are changed from one to zero.
This completes the proof of Lemma 5.

The significance of Lemma 5 is that it can differentiate the inactive regions from the active
ones in a given PWA function. The inactive regions can then be removed from the analytic
expression because they do not contribute to the PWA function values. The active regions are
also referred to as the lattice regions, which define the number of columns in the structure
matrix Ψ̃.
Lemma 5 presents an efficient and constructive method to reduce the complexity of a lattice
PWA function. Recalling that an eMPC controller u(x) ∈ � of a single input system is a
continuous scalar PWA function, in which many polyhedral regions have same feedback
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is composed of two disconnected line intersections. Similarly, Π2 = R2 ∪ R3 = BD defines
another super-region of p2(x).

4.2 Row vector simplification lemma
Lemma 4. Assume that P(x|Φ, Ψ) : D ⊂ �n �→ � is a PWA function with M linear segments.
Let ϕi, ϕj be rows of the structure matrix. If the pointwise inequation ϕi − ϕj ≤ 0 holds for any

i, j ∈ {1, · · · , M}, there exist a simplified structure matrix Ψ̃ ∈ �(M−1)×M, such that

P(x|Φ, Ψ) = P(x|Φ, Ψ̃) (27)

where Ψ ∈ �M×M = [ϕ1, · · · , ϕM]T and Ψ̃ = [ϕ1, · · · , ϕj−1, ϕj+1, · · · , ϕM]T.

Proof. Denote Ii ∈ �M as the index set of the local affine functions, whose values are smaller
than the i-th affine function in its active region, i.e.

Ii = {k|�k(x) ≤ �i(x), ∀x ∈ Ri} (28)

with i, k ∈ {1, · · · , M}. Since ϕi − ϕj ≤ 0 holds for any pointwise inequality, we can get
Ii ⊆ Ij. It directly follows that {�p(x)} ⊆ {�q(x)} with p ∈ Ii, q ∈ Ij.
Therefore, it leads that

max
p∈Ii
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This implies that
min
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Then we finally have
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}
= min

1≤i≤M
i �=j

{
max
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}
= P(x|Φ, Ψ̃) (31)

Here we can see that the j-th row of structure matrix Ψ can be deleted without affecting the
function values of P(x|Φ, Ψ). This completes the proof of Lemma 4.

Since Lemma 4 can be used recursively, a much simplified structure matrix is obtained by
deleting all the redundant rows. A single row in Ψ̃ corresponds to a super region, which
is defined as an aggregation of several affine regions. Being a mergence of many convex
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polytopes, a super region can be concave or even disconnected. Then the number of super
regions can be much smaller than that of regions (Wen, 2006).

4.3 Column vector simplification lemma
Lemma 5. Assume that P(x|Φ, Ψ) : D ⊂ �n �→ � is a PWA function with M linear segments.
Denote Ψ = [ψij]

M×M and Ψ̂ = [ψ̂ij]
M×M as the primary and dual structure matrix. Then the

following results hold.

1. Given any i, j, k ∈ {1, · · · , M}, if k, j ∈ Ii and ψ̂jk = 1, then ψij = 0, where Ii is the same as
defined in (13);

2. If ψij = 0, ∀1 ≤ j ≤ M, then there exist a simplified structure matrix Ψ̃ ∈ �(M−1)×M and

parameter matrix Φ̃ ∈ �(M−1)×(n+1), such that

P(x|Φ, Ψ) = P(x|Φ̃, Ψ̃) (32)

where Φ ∈ �M×(n+1) = [φ1, · · · , φM]T, Φ̃ ∈ �(M−1)×(n+1) =
[φ1, · · · , φj−1, φj+1, · · · , φM]T, and Ψ, Ψ̃ are the same as defined in Lemma 4.

Proof. According to (17), if ψ̂jk = 1, we have

�j(x) ≤ �k(x), ∀x ∈ Rj (33)

which implies that �j(x) is inactive in its own region, i.e.

max{�j(x), �k(x)} = �k(x), ∀x ∈ Rj (34)

Note that k, j ∈ Ii and Ii is the index set of �i(x). We can get

max
p∈Ii

{�p(x)} = max
p∈Ii
p �=j

{�p(x)}, ∀x ∈ D (35)

This implies that ψij = 0.
In addition, if ψij = 0 holds for any 1 ≤ j ≤ M, then �j(x) will be totally covered by other
affine functions throughout the whole domain. Therefore, the j-th column of the structure
matrix and j-th row of the parameter matrix can be deleted. This means that P(x|Φ, Ψ) =
P(x|Φ̃, Ψ̃). It should be noted that the matrix Ψ̃ corresponds to a simpler lattice PWA function
than Ψ even without a deletion of row vectors. A lattice PWA function with less terms in max
operators is produced if some elements in the structure matrix are changed from one to zero.
This completes the proof of Lemma 5.

The significance of Lemma 5 is that it can differentiate the inactive regions from the active
ones in a given PWA function. The inactive regions can then be removed from the analytic
expression because they do not contribute to the PWA function values. The active regions are
also referred to as the lattice regions, which define the number of columns in the structure
matrix Ψ̃.
Lemma 5 presents an efficient and constructive method to reduce the complexity of a lattice
PWA function. Recalling that an eMPC controller u(x) ∈ � of a single input system is a
continuous scalar PWA function, in which many polyhedral regions have same feedback
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gains. It implies that the number of super-regions is usually much smaller than that of
polyhedral regions. The complexity reduction algorithm of Lemma 5 can produce a very
compact representation of the scalar eMPC solutions.

Example 2: In order to clarify the simplification procedure, we consider the lattice PWA
function of (21) derived in Example 1.
Denoting Ψ = [ϕ1 ϕ2 ϕ3 ϕ4]

T, we can get ϕ2 − ϕ3 = [0 0 0 0] ≤ 0, where ” ≤ ” is the
pointwise inequality. It follows from Lemma 4 that the third row vector ϕ3 can be removed.
Then the structure matrix is simplified as

Ψ =

⎡
⎣

1 0 1 0
0 1 1 0
0 1 0 1

⎤
⎦ . (36)

Furthermore, by using (17), we can obtain the dual structure matrix

Ψ̂ =

⎡
⎢⎢⎣

1 1 0 1
1 1 0 1
1 0 1 1
1 0 1 1

⎤
⎥⎥⎦ . (37)

According to (36), we have Ii = {k, j} with k = 4, j = 2 and i = 3. Using (37), we further have
ψ̂jk = ψ̂24 = 1. Then it follows from Lemma 5 that the item of ψ32 can be put to zero. The final
structure matrix is written as

Ψ̃ =

⎡
⎣

1 0 1 0
0 1 1 0
0 0 0 1

⎤
⎦ (38)

The corresponding lattice PWA function is

p(x) = min
�

max{�1, �3}, max{�2, �3}, �4
�

(39)

4.4 Lattice PWA representation theorem
Theorem 2. Let P(x) : Ω �→ � be a continuous scalar PWA function with M̂ super-regions. There
must exist a positive integer M̄ ≤ M̂, a parameter matrix Φ ∈ �M̂×(n+1), a structure matrix Ψ =

[ψij]
M̄×M̂ and a lattice PWA function

L(x|Φ, Ψ) = min
1≤i≤M̄

⎧
⎪⎪⎨
⎪⎪⎩

max
1≤j≤M̂

ψij=1

�
�j(x)

�
⎫
⎪⎪⎬
⎪⎪⎭

(40)

such that
P(x) = L(x|Φ, Ψ), ∀x ∈ Ω (41)

where ψij is a boolean variable, Φ = [φ1, · · · , φM̂]T, φj = [αT
j , βj ], αj ∈ �n, βj ∈ � with 1 ≤ i ≤

M̄, 1 ≤ j ≤ M̂.
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Theorem 2 shows that the class of lattice PWA functions provides a universal model set for
continuous scalar PWA functions. The complexity of a lattice PWA function is specified
by the number of super-regions instead of that of regions. Then the lattice PWA functions
may present a more compact representation than the PWA models without global analytical
descriptions.
The scalar lattice representation theorem can be generalized to describe a vector eMPC
solution u(x) : Ω �→ �m. The main idea is to represent each component scalar eMPC feedback
law individually.

Theorem 3. Let u(x) = [u1(x), · · · , um(x)]T be a continuous vector eMPC solution with x ∈ Ω.
There must exist m lattice PWA functions L(x|Φi, Ψi) such that

ui(x) = L(x|Φi, Ψi) ∀x ∈ Ω (42)

where Φi, Ψi are parameter and structure matrices and i = 1, · · · , m.

The vector lattice representation theorem is valid for continuous PWA functions. It is proved
in (Spjotvold et al, 2007, Bemporad et al. 2002) that an eMPC controller is continuous from
a strictly convex mpQP problem. The continuity property is further generalized to general
convex mpQP problems (Spjotvold et al, 2006). An eMPC problem with a linear cost function
may have discontinuous solutions because of the degeneracy of critical regions. It is proved
in (Bemporad et al, 2002) that there always exists a polyhedral partition even for degenerate
critical regions, such that the eMPC control is continuous. Recalling that the mpLP problems
are essentially special realizations of convex mpQP problems. It is proved constructively
in (Spjotvold et al, 2006) that a continuous eMPC solution can be found for LP-based MPC
problems by using a minimum norm method. Therefore, the set of continuous PWA functions
can cover a wide class of eMPC solutions by utilizing appropriate multi-parametric program
solvers.
The continuity of eMPC controllers can be easily verified by checking the function values
at the vertices of different regions. This function has been implicitly implemented in the
lattice PWA representation algorithm (Wen et al., 2009a). Therefore, the lattice representation
can automatically separate the continuous eMPC solutions from the discontinuous ones. In
addition, the discontinuity in eMPC controls are often caused by the overlapping of critical
regions (Bemporad et al, 2002). The mpt-toolbox (Kvasnica et al., 2004) has a function to detect
the existence of overlapping regions. It presents another efficient way to verify the continuity
of eMPC controls.
The vector lattice representation can be extended to discontinuous eMPC solutions. A
discontinuous eMPC solution is usually decomposed into a set of continuous PWA functions.
Recalling that each continuous PWA function has a vector lattice representation. Then the
discontinuous eMPC solutions can be represented by a set of lattice PWA functions and a
switch logic. The switch logic may be implemented as a binary search tree (Tondel et al.
2003) or bounding box search tree (Christophersen et al, 2007). Further research is under
investigation to generalize the lattice representation method to discontinuous PWA functions.
The lattice representation has a quadratic complexity for both online evaluation and memory
storage. When the eMPC solutions consist of a large number of super-regions, e.g. the eMPC
problems has a large input constraint set, the BST or BBT algorithms may have a lower online
computational complexity.
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gains. It implies that the number of super-regions is usually much smaller than that of
polyhedral regions. The complexity reduction algorithm of Lemma 5 can produce a very
compact representation of the scalar eMPC solutions.
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function of (21) derived in Example 1.
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The corresponding lattice PWA function is
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may present a more compact representation than the PWA models without global analytical
descriptions.
The scalar lattice representation theorem can be generalized to describe a vector eMPC
solution u(x) : Ω �→ �m. The main idea is to represent each component scalar eMPC feedback
law individually.

Theorem 3. Let u(x) = [u1(x), · · · , um(x)]T be a continuous vector eMPC solution with x ∈ Ω.
There must exist m lattice PWA functions L(x|Φi, Ψi) such that

ui(x) = L(x|Φi, Ψi) ∀x ∈ Ω (42)

where Φi, Ψi are parameter and structure matrices and i = 1, · · · , m.

The vector lattice representation theorem is valid for continuous PWA functions. It is proved
in (Spjotvold et al, 2007, Bemporad et al. 2002) that an eMPC controller is continuous from
a strictly convex mpQP problem. The continuity property is further generalized to general
convex mpQP problems (Spjotvold et al, 2006). An eMPC problem with a linear cost function
may have discontinuous solutions because of the degeneracy of critical regions. It is proved
in (Bemporad et al, 2002) that there always exists a polyhedral partition even for degenerate
critical regions, such that the eMPC control is continuous. Recalling that the mpLP problems
are essentially special realizations of convex mpQP problems. It is proved constructively
in (Spjotvold et al, 2006) that a continuous eMPC solution can be found for LP-based MPC
problems by using a minimum norm method. Therefore, the set of continuous PWA functions
can cover a wide class of eMPC solutions by utilizing appropriate multi-parametric program
solvers.
The continuity of eMPC controllers can be easily verified by checking the function values
at the vertices of different regions. This function has been implicitly implemented in the
lattice PWA representation algorithm (Wen et al., 2009a). Therefore, the lattice representation
can automatically separate the continuous eMPC solutions from the discontinuous ones. In
addition, the discontinuity in eMPC controls are often caused by the overlapping of critical
regions (Bemporad et al, 2002). The mpt-toolbox (Kvasnica et al., 2004) has a function to detect
the existence of overlapping regions. It presents another efficient way to verify the continuity
of eMPC controls.
The vector lattice representation can be extended to discontinuous eMPC solutions. A
discontinuous eMPC solution is usually decomposed into a set of continuous PWA functions.
Recalling that each continuous PWA function has a vector lattice representation. Then the
discontinuous eMPC solutions can be represented by a set of lattice PWA functions and a
switch logic. The switch logic may be implemented as a binary search tree (Tondel et al.
2003) or bounding box search tree (Christophersen et al, 2007). Further research is under
investigation to generalize the lattice representation method to discontinuous PWA functions.
The lattice representation has a quadratic complexity for both online evaluation and memory
storage. When the eMPC solutions consist of a large number of super-regions, e.g. the eMPC
problems has a large input constraint set, the BST or BBT algorithms may have a lower online
computational complexity.

209A General Lattice Representation for Explicit Model Predictive Control



14 Will-be-set-by-IN-TECH

4.5 Representation algorithm
In Kvasnica et al. 2004, a Multi-Parametric Toolbox (MPT) for computing optimal feedback
controllers of constrained linear and piecewise affine systems is developed. The toolbox offers
a broad spectrum of algorithms to calculate the eMPC solutions. The proposed lattice PWA
representation algorithm can be easily embedded into the MPT toolbox and provide a better
performance in term of online calculation and memory space requirements.
The main steps of the representation algorithm are summarized as follows.

1. Calculate the eMPC solution using the MPT toolbox. Record the local affine functions,
constrained inequalities and vertices of each region;

2. Calculate the values of each affine function at each vertex;

3. Calculate the structure matrix using Lemma 3;

4. Delete the redundant row vectors in structure matrix using Lemma 4;

5. Delete the redundant elements in structure and parameter matrices using Lemma 5;

6. Get the lattice PWA expression of an eMPC solution.

It should be noted that the multi-parametric solver may return a PWA solution that is
discontinuous, even for problems where continuous PWA solution exists. Then the lattice
representation algorithm is feasible for the continuous PWA solutions obtained from the
multi-parametric solver.

4.6 Complexity analysis
Let u(x) = [u1(x), · · · , um(x)]T be a vector PWA function with M polydedral regions and
x ∈ �n. Denote M̃k as the number of lattice regions in uk(x) and M̂k the number of super
regions with 1 ≤ k ≤ m.

4.6.1 Storage
The lattice representation requires the storage of a (n + 1) × ∑m

k=1 M̃k parameter matrix and
a ∑m

k=1 M̂k × M̃k structure matrix. The total memory needed is O
(
(n + 1)∑m

k=1 M̃k
)

real
numbers and O

(
∑m

k=1 M̂k M̃k
)

binary numbers. The structure matrix is usually very sparse.
The actual required memory space can be significantly smaller than the worst estimation
through the use of appropriate sparse storage techniques.

4.6.2 Online complexity
For a given state variable, the online evaluation of a lattice PWA control law consists of 3
steps. The first step is to calculate the function value of M̃k affine functions. This requires
nM̃k multiplication and nM̃k sums. In the second step, we need to calculate the maximum
of M̄k function values, where M̄k is the number of affine functions with ψij = 1 in the
structure matrix. Note that M̄k ≤ M̃k. In the worse case, this step requires (M̃k − 1) × M̃k
by considering the M̃k maximization terms. The last step is to calculate the minimum of
M̂k real numbers. It needs M̂k − 1 comparisons. Therefore, the total online complexity is
O
(

∑m
k=1(2nM̃ + (M̃k − 1)M̃k + (M̂k − 1)

)
. It follows from Wen et al. (2009a) that n � M̃k and

M̂k < M̃k holds for any k ∈ {1, · · · , m}. The online complexity can be roughly approximated
by O

(
∑m

k=1 M̃2
k

)
. It should be noted that the structure matrix is usually sparse. The estimate

of online calculation is very conservative in most cases. Then the average online calculation
complexity can be considerably lower than the worse case estimate.
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4.6.3 Preprocessing
The preprocessing phase for the lattice representation is composed of two steps. The first
step is to calculate the eMPC control law using multi-parameter program. The second one
is to represent the eMPC law with a lattice PWA function. It is very difficult to present a
close-form solution of the off-line complexity. However, it was observed in extensive trials
that the representation step takes significantly less time than the initial computation of an
eMPC controller. Therefore, the proposed lattice representation method can be applied to any
system for which an explicit controller is feasible.

5. Numerical examples

Two examples are illustrated in this section. All the simulations are run in Matlab 2007a on a
2.0 GHz Core 2 CPU with 1 GB RAM.
Example 3: Consider the double integrator

y(t) =
1
s2 u(t) (43)

Its equivalent discrete-time state-space representation
⎧⎪⎨
⎪⎩

x(t + 1) =
�

1 1
0 1

�
x(t) +

�
0
1

�
u(t)

y(t) =
� 1

2
1
2

�
x(t)

is obtained by setting

ÿ(t) ≈ ẏ(t + T)− ẏ(t)
T

(44)

ẏ(t) ≈ y(t + T)− y(t)
T

(45)

with T = 1 s. The problem of regulate the system to the origin is formulated as an optimization
problem, which minimizes the following performance measure

1

∑
k=0

����
����
�

1 1
0 1

�
xk+1

����
����
∞
+ |0.8uk| (46)

subject to the input constraints −1 ≤ uk ≤ 1, k = 0, 1. and the state constraints −10 ≤ xk ≤
10, k = 1, 2.. where Ny = 2, Nu = 2, Q =

�
1 1
0 1

�
, R = 0.8. The solution of this problem

is a continuous PWA function, whose surface plot is visualized in Fig. 3(a). According to
Bemporad et al. 2002, the eMPC solution is given in Table 1.
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4.5 Representation algorithm
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k=1 M̃k
)

real
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(
∑m

k=1 M̂k M̃k
)
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. It follows from Wen et al. (2009a) that n � M̃k and

M̂k < M̃k holds for any k ∈ {1, · · · , m}. The online complexity can be roughly approximated
by O

(
∑m

k=1 M̃2
k

)
. It should be noted that the structure matrix is usually sparse. The estimate

of online calculation is very conservative in most cases. Then the average online calculation
complexity can be considerably lower than the worse case estimate.
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Region # Region Controller

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 2.00
0.00 1.00

−1.00 −1.00
0.80 −3.20
1.00 1.00

−1.00 −3.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.00
11.00
10.00
−2.40
10.00
−2.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

-1.00

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.80 3.20
−1.00 −2.00
−1.00 −1.00

1.00 1.00
0.00 −1.00
1.00 3.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.40
11.00
10.00
10.00
11.00
−2.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1.00

3

⎡
⎢⎢⎢⎣

0.53 2.13
0.67 0.67

−1.00 −1.00
−0.33 −1.33

⎤
⎥⎥⎥⎦ x ≤

⎡
⎢⎢⎢⎣

0.00
0.00

10.00
1.00

⎤
⎥⎥⎥⎦ [−0.33,−1.33]x

4

⎡
⎢⎣
−0.80 −3.20

1.00 3.00
−1.00 −1.00

⎤
⎥⎦ x ≤

⎡
⎢⎣

0.00
0.00

10.00

⎤
⎥⎦ 0

5

⎡
⎢⎢⎢⎣

−1.00 −1.00
0.50 0.50

−0.80 −2.40
0.50 1.50

⎤
⎥⎥⎥⎦ x ≤

⎡
⎢⎢⎢⎣

10.00
0.00
0.00
1.00

⎤
⎥⎥⎥⎦ [−0.50,−1.50]x

6

⎡
⎢⎣

0.80 3.20
−1.00 −3.00

1.00 1.00

⎤
⎥⎦ x ≤

⎡
⎢⎣

0.00
0.00

10.00

⎤
⎥⎦ 0

7

⎡
⎢⎢⎢⎣

1.00 1.00
−0.50 −0.50

0.80 2.40
−0.50 −1.50

⎤
⎥⎥⎥⎦ x ≤

⎡
⎢⎢⎢⎣

10.00
0.00
0.00
1.00

⎤
⎥⎥⎥⎦ [−0.50,−1.50]x

8

⎡
⎢⎢⎢⎣

−0.53 −2.13
−0.67 −0.67

1.00 1.00
0.33 1.33

⎤
⎥⎥⎥⎦ x ≤

⎡
⎢⎢⎢⎣

0.00
0.00

10.00
1.00

⎤
⎥⎥⎥⎦ [−0.33,−1.33]x

Table 1. Conventional Representation of the MPC Solution
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Using Lemma 3, we can get

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 1

1 1 0 1 0 1 0 0

1 0 1 0 1 0 1 1

1 0 1 1 0 1 0 1

1 0 1 0 1 0 1 1

1 0 0 1 1 1 1 0

1 0 0 1 1 1 1 0

1 0 1 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

By applying Lemma 4 and 5, we can further get a simplified structure matrix

Ψ̃ =

⎡
⎢⎢⎢⎢⎣

1 0 1 0 1

0 1 0 0 0

0 0 1 1 0

0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

(48)

The corresponding parameter matrix is

Φ̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1.00

0 0 1.00

−0.33 −1.33 0

0 0 0

−0.50 −1.50 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(49)

Therefore, the analytical expression of the MPC control law is written as

u(x) = min
�

1, max{−1,−0.33x1 − 1.33x2,−0.50x1 − 1.50x2}, (50)

max{0,−0.33x1 − 1.33x2}, max{(0,−0.50x1 − 1.50x2}
�

Here it is easy to see that the online MPC optimization is reduced to a lattice PWA function
evaluation problem. Same as Bemporad et al. (2002), we consider the starting point x(0) =
[10,−5]T. This point is substituted into (50), and the corresponding control action is u(x) =
1, which is obtained without any optimization calculations and table searching procedures.
The closed-loop response is shown in Fig. 3(b), which is exactly the same with the results
from online optimization in Bemporad et al. 2002. The required memory in the analytical
expression is to store a structure matrix Ψ̃ ∈ �4×5 and a parameter matrix Φ̃ ∈ �5×3. The
total memory is 35, which is much smaller than the memory space used in Table 1. The online
computation requires 7 comparison operations, 8 multiplications and 5 summations. It is
evident that the lattice PWA MPC control law performs better in term of online calculation
and memory requirements than the conventional eMPC solution.
Example 4: This example is to demonstrate the performance of lattice representation for eMPC
solutions from parametric quadratic program. The 2-norm is used in the stage cost function.
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max{0,−0.33x1 − 1.33x2}, max{(0,−0.50x1 − 1.50x2}
�

Here it is easy to see that the online MPC optimization is reduced to a lattice PWA function
evaluation problem. Same as Bemporad et al. (2002), we consider the starting point x(0) =
[10,−5]T. This point is substituted into (50), and the corresponding control action is u(x) =
1, which is obtained without any optimization calculations and table searching procedures.
The closed-loop response is shown in Fig. 3(b), which is exactly the same with the results
from online optimization in Bemporad et al. 2002. The required memory in the analytical
expression is to store a structure matrix Ψ̃ ∈ �4×5 and a parameter matrix Φ̃ ∈ �5×3. The
total memory is 35, which is much smaller than the memory space used in Table 1. The online
computation requires 7 comparison operations, 8 multiplications and 5 summations. It is
evident that the lattice PWA MPC control law performs better in term of online calculation
and memory requirements than the conventional eMPC solution.
Example 4: This example is to demonstrate the performance of lattice representation for eMPC
solutions from parametric quadratic program. The 2-norm is used in the stage cost function.
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Fig. 3. Lattice eMPC Solution

Consider the following state space representation:
⎧⎪⎨
⎪⎩

x(t + 1) =
�

0.7326 −0.0861
0.1722 0.9909

�
x(t) +

�
0.0609
0.0064

�
u(t)

y(t) =
�

0 1.4142
�

x(t)

(51)

The constraints on input are −2 ≤ u(t) ≤ 2. The corresponding optimization problem for
regulating to the origin is written as follows:

min
ut,ut+1

xT
t+2|tPxt+2|t +

1

∑
k=0

�
xT

t+k|tQxt+k|t + Ru2
t+k

�

s.t.− 2 ≤ u(t + k) ≤ 2, k = 0, 1 (52)

xt|t = x(t)

where P ∈ �2×2 is the solution of the Lyapunov equation P = ATPA + Q, Q =

�
1 0
0 1

�
, R =

0.01, Nu = Ny = Nc = 2. According to Bemporad et al. (2000), the eMPC solution is provided
in Table 2.
Using Lemma 3, we can get the following structure matrix.

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 1 1
0 1 1 1 0 1 0
0 1 1 1 0 1 0
0 0 0 1 1 1 1
0 0 0 1 1 1 1
1 0 0 1 0 1 1
1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)
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Fig. 4. Closed-loop response of the lattice PWA feedback law

By applying Lemma 4 and 5, we can further get the much simplified structure matrix by
deleting all the redundant rows and columns

Ψ̃ =

⎡
⎣

0 1 0 0 0
0 0 1 1 0
1 0 1 0 1

⎤
⎦ (54)

According to the third column of Table 2, the corresponding parameter matrix is

Φ̃ =

⎡
⎢⎢⎢⎢⎣

−5.9220 −6.8883 0
0 0 2
0 0 −2

−6.4159 −4.6953 0.6423
−6.4159 −4.6953 −0.6423

⎤
⎥⎥⎥⎥⎦

(55)

Finally, the analytical expression of the eMPC solution is written as

u(x) = min
�

2, max{−2,−6.4159x1 − 4.6953x2 + 0.6423}, (56)

max{−2,−5.9220x1 − 6.8883x2,−6.4159x1 − 4.6953x2 − 0.6423}�

The closed-loop response of the states is depicted in Fig. 4, which is the same as the one
obtained from the online optimization in Bemporad et al. (2000). The required memory in
the analytical expression is to store a structure matrix Ψ̃ ∈ �3×5 and a parameter matrix Φ̃ ∈
�5×3. It is evident that the lattice representation requires much smaller memory space than
Table 2. Therefore, the lattice PWA representation of an eMPC solution saves both memory
space and online calculation requirements.
Now we discuss the scalability of the lattice representation algorithm. Here this system is
solved using different prediction horizons. The simulation results are summarized in Table 3,
where N denotes the prediction horizon, τmpt is the time in seconds to compute the original
PWA control, τlat is the computation time in seconds to build the lattice representation. Note
that both representation algorithms give the same lattice eMPC solutions and τ̂lat < τlat hold
for all prediction horizons.
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xt|t = x(t)

where P ∈ �2×2 is the solution of the Lyapunov equation P = ATPA + Q, Q =

�
1 0
0 1

�
, R =

0.01, Nu = Ny = Nc = 2. According to Bemporad et al. (2000), the eMPC solution is provided
in Table 2.
Using Lemma 3, we can get the following structure matrix.

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 1 1
0 1 1 1 0 1 0
0 1 1 1 0 1 0
0 0 0 1 1 1 1
0 0 0 1 1 1 1
1 0 0 1 0 1 1
1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)
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Fig. 4. Closed-loop response of the lattice PWA feedback law

By applying Lemma 4 and 5, we can further get the much simplified structure matrix by
deleting all the redundant rows and columns

Ψ̃ =

⎡
⎣

0 1 0 0 0
0 0 1 1 0
1 0 1 0 1

⎤
⎦ (54)

According to the third column of Table 2, the corresponding parameter matrix is

Φ̃ =

⎡
⎢⎢⎢⎢⎣

−5.9220 −6.8883 0
0 0 2
0 0 −2

−6.4159 −4.6953 0.6423
−6.4159 −4.6953 −0.6423

⎤
⎥⎥⎥⎥⎦

(55)

Finally, the analytical expression of the eMPC solution is written as

u(x) = min
�

2, max{−2,−6.4159x1 − 4.6953x2 + 0.6423}, (56)

max{−2,−5.9220x1 − 6.8883x2,−6.4159x1 − 4.6953x2 − 0.6423}�

The closed-loop response of the states is depicted in Fig. 4, which is the same as the one
obtained from the online optimization in Bemporad et al. (2000). The required memory in
the analytical expression is to store a structure matrix Ψ̃ ∈ �3×5 and a parameter matrix Φ̃ ∈
�5×3. It is evident that the lattice representation requires much smaller memory space than
Table 2. Therefore, the lattice PWA representation of an eMPC solution saves both memory
space and online calculation requirements.
Now we discuss the scalability of the lattice representation algorithm. Here this system is
solved using different prediction horizons. The simulation results are summarized in Table 3,
where N denotes the prediction horizon, τmpt is the time in seconds to compute the original
PWA control, τlat is the computation time in seconds to build the lattice representation. Note
that both representation algorithms give the same lattice eMPC solutions and τ̂lat < τlat hold
for all prediction horizons.
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No. Region Controller

1

⎡
⎢⎢⎣
−5.9220 −6.8883

5.9229 6.8883
−1.5379 6.8296

1.5379 −6.8296

⎤
⎥⎥⎦ x ≤

⎡
⎢⎢⎣

2.0000
2.0000
2.0000
2.0000

⎤
⎥⎥⎦ −[5.9220, 6.8883]x

2,4

⎡
⎣
−3.4155 4.6452

0.1044 0.1215
0.1259 0.0922

⎤
⎦ x ≤

⎡
⎣

2.6341
−0.0353
−0.0267

⎤
⎦ 2.0000

3
�

0.0679 −0.0924
0.1259 0.0922

�
x ≤

�−0.0524
−0.0519

�
2.0000

5
�−0.1259 −0.0922
−0.0679 0.0924

�
x ≤

�−0.0519
−0.0524

�
-2.0000

6

⎡
⎣
−6.4159 −4.6953
−0.0275 0.1220

6.4159 4.6953

⎤
⎦ x ≤

⎡
⎣

1.3577
−0.0357

2.6423

⎤
⎦ −[6.4159, 4.6953]x

+0.6423

7,8

⎡
⎣

3.4155 −4.6452
−0.1044 −0.1215
−0.1259 −0.0922

⎤
⎦ x ≤

⎡
⎣

2.6341
−0.0353
−0.0267

⎤
⎦ -2.0000

9

⎡
⎣

6.4159 4.6953
0.0275 −0.1220

−6.4159 −4.6953

⎤
⎦ x ≤

⎡
⎣

1.3577
−0.0357

2.6423

⎤
⎦ −[6.4159, 4.6953]x

−0.6423

Table 2. Conventional Representation of the eMPC Solution

According to Table 3, the number of affine regions in the eMPC control law increased
considerably with the length of prediction horizons. However, all the eMPC laws can be
represented by a single lattice PWA function with 19 lattice regions and 12 super-regions.
For example, when N = 28, the original PWA controller consists of 894 polyhedral regions.
But there are only 19 unique affine functions. Therefore, the complexity of the lattice
representation is very robust to the length of prediction horizons.

Fig. 5(a) shows the domain partition of the eMPC control when N = 8. The corresponding
surface plot is visualized in Fig. 5(b). The lattice representation requires to store a 19 × 3
parameter matrix and a 12× 19 structure matrix. The total memory needed is 285. This implies
a significant saving in the storage by considering that there are 894 affine functions in the
original PWA controller. In the worst case, the online-calculation complexity is O(234). This
means a high computation efficiency because the complexity of the competing methods in
Table 3 are all specified by the original MPC solution with 894 polyhedral regions.
In this example, the off-line computation is mainly determined by the calculation of the
original PWA controllers. For the complex cases with long prediction horizons, the time
for building the lattice presentation is one order magnitude less than that for calculating the
initial controllers. This makes negligible the additional off-line computation cost for a lattice
representation when N ≥ 20.
Note that the more complicated eMPC laws generally have more polyhedral regions with
equal affine control laws. For an instance, when N = 28, 875 regions can be merged into
one of 19 regions. By comparison, the number of such regions is only 409 when N = 12.
Therefore, better performance can be anticipated from the lattice representation regarding the
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Fig. 5. eMPC solution when N = 8

storage, on-line calculation and off-line preprocessing cost when dealing with the complex
MPC solutions with large number of polyhedral regions.

N M M̃ M̂ τmpt τlat
8 254 19 12 11.73 2.06

12 428 19 12 31.19 5.46
16 697 19 12 80.59 15.77
20 863 19 12 174.66 26.23
24 892 19 12 296.05 28.25
28 894 19 12 429.55 28.39

Table 3. Performance of lattice representation for an eMPC solution with different prediction
horizons

Example 5: Consider the following linear system with three states and two inputs
(Christophersen et al, 2007)

x(t + 1) =

⎡
⎣

0.7 −0.1 0
0.2 −0.5 0.1
0 0.1 0.1

⎤
⎦ x(t) +

⎡
⎣

0.1 0
0.1 1
0.1 0

⎤
⎦ u(t). (57)

The system is subject to input constraints −1 ≤ ui(t) ≤ 1 with i = 1, 2, and state constraints
−20 ≤ xi(t) ≤ 20 with i = 1, 2, 3. The constrained finite time optimal control problem is

solved with p = 1, Ny = 8, Q =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦, R =

�
0.1 0
0 0.1

�
and P =

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦. The MPT

toolbox is used to generate the eMPC control law u(x) = [u1(x), u2(x)]T with 813.4 seconds.
The vector eMPC control is defined over 2497 regions.
Two scalar lattice PWA functions are used to describe u(x), which requires 2 structure matrices
Ψ1 ∈ �18×21, Ψ2 ∈ �3×5 and two parameter matrices Φ1 ∈ �21×4, Φ1 ∈ �5×4. The total
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Table 2. Conventional Representation of the eMPC Solution

According to Table 3, the number of affine regions in the eMPC control law increased
considerably with the length of prediction horizons. However, all the eMPC laws can be
represented by a single lattice PWA function with 19 lattice regions and 12 super-regions.
For example, when N = 28, the original PWA controller consists of 894 polyhedral regions.
But there are only 19 unique affine functions. Therefore, the complexity of the lattice
representation is very robust to the length of prediction horizons.

Fig. 5(a) shows the domain partition of the eMPC control when N = 8. The corresponding
surface plot is visualized in Fig. 5(b). The lattice representation requires to store a 19 × 3
parameter matrix and a 12× 19 structure matrix. The total memory needed is 285. This implies
a significant saving in the storage by considering that there are 894 affine functions in the
original PWA controller. In the worst case, the online-calculation complexity is O(234). This
means a high computation efficiency because the complexity of the competing methods in
Table 3 are all specified by the original MPC solution with 894 polyhedral regions.
In this example, the off-line computation is mainly determined by the calculation of the
original PWA controllers. For the complex cases with long prediction horizons, the time
for building the lattice presentation is one order magnitude less than that for calculating the
initial controllers. This makes negligible the additional off-line computation cost for a lattice
representation when N ≥ 20.
Note that the more complicated eMPC laws generally have more polyhedral regions with
equal affine control laws. For an instance, when N = 28, 875 regions can be merged into
one of 19 regions. By comparison, the number of such regions is only 409 when N = 12.
Therefore, better performance can be anticipated from the lattice representation regarding the
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storage, on-line calculation and off-line preprocessing cost when dealing with the complex
MPC solutions with large number of polyhedral regions.

N M M̃ M̂ τmpt τlat
8 254 19 12 11.73 2.06

12 428 19 12 31.19 5.46
16 697 19 12 80.59 15.77
20 863 19 12 174.66 26.23
24 892 19 12 296.05 28.25
28 894 19 12 429.55 28.39

Table 3. Performance of lattice representation for an eMPC solution with different prediction
horizons

Example 5: Consider the following linear system with three states and two inputs
(Christophersen et al, 2007)

x(t + 1) =

⎡
⎣

0.7 −0.1 0
0.2 −0.5 0.1
0 0.1 0.1

⎤
⎦ x(t) +

⎡
⎣

0.1 0
0.1 1
0.1 0

⎤
⎦ u(t). (57)

The system is subject to input constraints −1 ≤ ui(t) ≤ 1 with i = 1, 2, and state constraints
−20 ≤ xi(t) ≤ 20 with i = 1, 2, 3. The constrained finite time optimal control problem is

solved with p = 1, Ny = 8, Q =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦, R =

�
0.1 0
0 0.1

�
and P =

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦. The MPT

toolbox is used to generate the eMPC control law u(x) = [u1(x), u2(x)]T with 813.4 seconds.
The vector eMPC control is defined over 2497 regions.
Two scalar lattice PWA functions are used to describe u(x), which requires 2 structure matrices
Ψ1 ∈ �18×21, Ψ2 ∈ �3×5 and two parameter matrices Φ1 ∈ �21×4, Φ1 ∈ �5×4. The total
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memory required is 497 in the worst case. In addition, the online computational complexity
is calculated as 616. The average evaluation time of the lattice eMPC is 3.01 × 10−4 seconds
by randomly sampling 20, 000 states in the feasible region. In the preprocessing stage, it takes
11.4 seconds to build the lattice PWA function.
Table 4 lists the comparison results of SS algorithm, CVF algorithm (Christophersen et al,
2007), BST algorithm (Tondel et al. 2003), BBT algorithm (Christophersen et al, 2007) and the
proposed lattice representation (LR) algorithm. The LR algorithm has the lowest description
complexity. It saves more than 90% memory storage compared with the most efficient
competing algorithm. The BST algorithm has the lowest online computational complexity.
But it requires more than 5 millions linear programs to construct the binary search tree.
The pre-processing time is 3504.2 seconds, which is much longer than the time for building
the eMPC control. The SS, BBT and BST algorithms require shorter pre-processing time
than the LR algorithm. However, the former algorithms have much higher evaluation and
description complexities than the latter. In summary, the LR algorithm offers a significant
reduction in memory storage. Therefore, the LR method has a better overall performance
than other competing methods by considering description, online and off-line computational
complexities.
In order to test the scalability of the LR algorithm, we solve system (57) with different
horizons. The simulation results are summarized in Table 5, where N, M, τmpt, τ̂lat are defined
as above in Example 4. According to Table 5, the number of affine regions in the eMPC
control law increased considerably with horizon N. However, the complexity of the vector
lattice representation is very robust to the prediction horizons. The description and evaluation
complexities of lattice representation keep constant, although the number of regions increase
from 1600 (N = 12) to 3189 (N = 20) in the original eMPC controls. In all cases, the
preprocessing time for building the lattice representations is negligible compared with the
time for the eMPC solutions using MPT toolbox. Therefore, the LR algorithm is promising for
large-scale eMPC problems with long prediction horizons.

φ ψ τ

SS Algorithm 81661 106295 0
CVF Algorithm 9988 14982 0
BST Algorithm 21368 110 3504.2
BBT Algorithm 30104 923 10.0
LR Algorithm 497 616 11.4

Table 4. Comparison of Description, Evaluation and Preprocessing Complexities

N M M̄u1 M̂u1 M̄u2 M̂u2 τmpt τlat
4 1510 14 17 3 5 86.0 6.0
8 2497 18 21 3 5 813.4 11.4

12 2600 18 21 3 5 1658.3 12.0
16 3189 18 21 3 5 3385.6 14.7
20 3189 18 21 3 5 5589.8 14.7

Table 5. Performance of LR Algorithm for eMPC Solutions with Different Horizons
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6. Conclusions

This paper proposes a general lattice PWA representation theorem for continuous eMPC
solutions. A constructive proof is developed to show that the global structure information
of an eMPC controller can be fully represented by a set of scalar lattice PWA functions. A
lattice PWA function is a global and compact representation of an eMPC solution, because
the redundant parameters are automatically removed by utilizing the continuity of eMPC
controllers. A lattice representation has an explicit analytical expression. This facilitates the
implementation of lattice eMPC solutions using low-cost hardware.
A complexity reduction algorithm is proposed to develop a computationally efficient
lattice representation of eMPC controllers obtained from multi-parametric program. The
description and evaluation complexities of a lattice eMPC controller depend on the number
of super-regions instead of the number of polyhedral regions. Therefore, the lattice
representation of eMPC solutions can reduce computation and memory requirements
significantly, when the original MPC solutions have many polyhedral regions with equal
affine control laws.
The class of lattice PWA functions provides a compact and explicit model structure for
continuous eMPC solutions. The global structure information in an eMPC control is utilized
to reduce the complexity of its lattice representation. The lattice eMPC controllers present
the first step to use a global PWA representation model to describe generic eMPC solutions.
Further investigation is needed to generalize the lattice representation into the discontinuous
eMPC solutions.
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1. Introduction 
The industrial processes are governed generally by general principles of the physics and 
chemistry. With the aid of data acquisition systems supported in microprocessor it is 
possible to obtain real data of the industrial process, that it characterizes in detail his 
dynamics and input-output dependency. Several methods of identification allow, from these 
data, to obtain linear and nonlinear models of these processes (Rossiter, 2003; Morari, 1994); 
which are the base to predict the process behaviour within all the family of the model based 
predictive controllers (MPC).  
Diverse algorithms MPC have demonstrated its effectiveness in those control loops 
characterized by strong nonlinearities, difficult dynamic, inverse answers and great delay; 
that they are generally those of greater influence in the final product quality and the process 
efficiency (Allgöwer et al., 2004; Qin & Badgwell 2003). 
One of the most important steps in the implementation of a MPC is just the obtaining of the 
model that can predict with reliability the future behaviour of the controlled variable, like 
answer to a predefined optimized control action (Rawlings 2000). This work applies two 
kind of MPC: (i) Classical Model-Based Predictive Control and (ii) Neural Network Model 
Predictive Control (NNMPC).  
The classical MPC strategy uses a discrete model obtained from general phenomenological 
model of the feed-batch crystallization process, consisting of mass, energy and population 
balance. The NNMPC strategy uses to obtain a neural network, the training algorithms 
proposed in the Neural Network Toolbox of MatLab (version 7.04) (Bemporad et al., 2005). 
In this particular case it is analyzed a fed-batch sugar crystallization process, in this process 
there is abundant information, detailed mathematical models and real industrial data. 
(Chorão, 1995; Feyo de Azevedo & Gonçalves 1988; Georgieva et al., 2003). This fact 
motivated the use of the neural networks to model the process and to propose a neural 
network MPC (NNMPC) that considers the process like a gray box, of which has input-
output information and the historical experience of he process behaviour. 

2. Batch sugar crystallization process 
2.1 General description 
The operation of crystallization is applied in the sugar industry to obtain the sucrose 
dissolved in the extracted juice of the sugar cane or the sugar beet basically.  
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Typical industrial fed-batch evaporative sugar crystallization is performed in a vacuum pan 
crystallizer. The reactor has a cylindrical form with volume that can vary between 20-60 m3. 
The feed system is usually equipped with an extra water input to dilute the sugar solution if 
necessary. The heat transfer system is a calandria type, to permit the heat interchange 
between steam and suspension. The vacuum pressure in the pan is generated by the contact 
barometric condenser and the pan is equipped with a mechanical agitator to keep the 
suspension homogeneous. The operation is conducted in a fed-batch mode with an average 
duration of a cycle about 90 minutes.  
Sugar crystallization occurs through the mechanisms of nucleation, growth and 
agglomeration. In the course of production, the crystallization phenomenon is driven by two 
mechanisms (Jancic & Grootscholten, 1984): i) mass transfer from dissolved sucrose to 
crystal surface and ii) heat transfer in the calandria. Shortly before the grain setting and 
continuing during the beginning of the crystallization phase, the available crystalline surface 
to deposit the molecule of sucrose is much smaller than the mass of dissolved sucrose. 
During this period the evaporation rate is high, the crystal area/mass of crystallized sucrose 
rate is very low, therefore the process is driven by the mass transfer. The supersaturation 
tends to increase and if not controlled, it often achieves the undesirable zone of secondary 
crystal nucleation. Later on, when the total crystal area and the crystallization capacity 
increases, the crystal area/mass of crystallized sucrose rate gets high and the process is 
driven by the heat transfer. 
The process objectives are to maximize the speed of crystal growth, keeping high the 
produced sugar quality and minimizing the costs and losses. These objectives must be 
fulfilled without occurrence of secondary nucleation or agglomeration.  The sugar quality is 
evaluated by the particle size distribution (PSD) at the end of the process which is quantified 
by two parameters - the final average (in mass) particle size (MA) and the final coefficient of 
particle variation (CV). The main challenge of the sugar production is the large batch to 
batch variation of the final PSD. This lack of process repeatability is caused mainly by 
improper control policy and results in product recycling and loss increase. The sugar 
production is heuristically operated, and while the traditionally applied PI(D) controllers 
are still the preferred solutions they usually lead to energy and material loss that can easily 
be reduced if an optimized operation policy is implemented. These problems constitute the 
main motivation for the operation strategy formulated in the next section. 

2.2 Crystallization model 
The general phenomenological model of the fed-batch crystallization process consists of 
mass, energy and population balances, including the relevant kinetic rates for nucleation, 
linear growth and agglomeration (Simoglou et al., 2005). While the mass and energy 
balances are common expressions in many chemical process models, the population balance 
is related with the crystallization phenomenon, which is still an open modelling problem. 
The Appendix A shows a detailed phenomenological model for crystallization process.  

2.3 Problem formulation 
The final values of the crystal size distribution function (CSD) parameters: mass averaged 
crystal size (MA) and coefficient of variation (CV) are the best indicators of the quality and 
efficiency of the crystallization process. The direct measurement and control of these 
parameters are very difficult to make actually, in fact there are no references of its industrial 
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implementation. The most used solution in the sugar industry consists of establishing a 
strategy that manipulate other variables; which allows to arrive at the end of the process 
with acceptable values in the CSD parameters.  
The batch operation imposes to the process frequent operational changes that depend of: the 
quality of the raw material, disturbances in the work conditions and market demand 
changes. The previous problem, the nonlinearities and the restrictions imposed to the 
process motivated the use a nonlinear MPC (NMPC).  
When a NMPC algorithm is applied, the first challenge consists of obtaining the model to 
use, which must be viable and trustworthy. Although the sugar crystallization process has 
been studied in depth and efficient mathematical models exist to represent it, these must be 
validated and be fit before its application in a NMPC algorithm, which will cause frequent 
updates if the process is batch.  
Like an alternative, in this work it is tried to demonstrate the efficiency that has the use of 
the neuronal networks in a NMPC, where the neural networks could be trained from 
industrial data with the input-output answer of the process. 

3. Problem solution 
Sugar production is characterized by strongly non-linear and non-stationary dynamics and 
goes naturally through a sequence of relatively independent stages: charging, concentration, 
seeding, setting the grain, crystallization (the main phase), tightening and discharge 
(Georgieva et al., 2003). Therefore the operation strategy is formulated as a cascade of 
individual control loops for each of the stages (Fig. 1). The feedback control policy is based 
on measurements of the flowrate, the temperature, the pressure, the stirrer power and the 
supersaturation (by a refractometer).  Measurements of these variables are usually available 
for a conventional crystallizer. 

3.1 Operation strategy 
Sugar production is still a very heuristically operated process, with classical proportional 
integral and eventually derivative (PID) controllers being the most typical solution. The 
different phases of the sugar production are comparatively independent and moved by 
distinct driving forces, thus a single controller can hardly be effective for the complete 
process. Instead, individual controllers for each stage where it seems appropriate, was the 
adopted framework (Fig. 1).  See Table 1 for more details on the formulated operation 
strategy. 
In the present study, the control actions are performed by manipulating the valves of the 
liquor/syrup feed flowrates (Ff) and the steam flowrate (Fs),  while the volume of massecuite 
(Vm), the supersaturation (S) and the current of the agitator (IA) are the controlled variables. 
This choice is completely inspired by the industrial practice in several refineries.  
Charging (stage 1): During the first stage the crystallizer is fed with liquor until it covers 
approximately 40 % of the vessel height. The process starts with vacuum pressure of around 
1 bar (equal to the atmospheric pressure) and reduces it up to 0.23 bar. When the vacuum 
pressure reaches 0.5 bar, the feed valve is completely open such that the feed flowrate is 
kept at its maximum value. When the liquor covers 40 % of the vessel height, the feed valve 
is closed and the vacuum pressure needs some time to stabilize around the value of 0.23 bar 
before the concentration stage starts. 
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Typical industrial fed-batch evaporative sugar crystallization is performed in a vacuum pan 
crystallizer. The reactor has a cylindrical form with volume that can vary between 20-60 m3. 
The feed system is usually equipped with an extra water input to dilute the sugar solution if 
necessary. The heat transfer system is a calandria type, to permit the heat interchange 
between steam and suspension. The vacuum pressure in the pan is generated by the contact 
barometric condenser and the pan is equipped with a mechanical agitator to keep the 
suspension homogeneous. The operation is conducted in a fed-batch mode with an average 
duration of a cycle about 90 minutes.  
Sugar crystallization occurs through the mechanisms of nucleation, growth and 
agglomeration. In the course of production, the crystallization phenomenon is driven by two 
mechanisms (Jancic & Grootscholten, 1984): i) mass transfer from dissolved sucrose to 
crystal surface and ii) heat transfer in the calandria. Shortly before the grain setting and 
continuing during the beginning of the crystallization phase, the available crystalline surface 
to deposit the molecule of sucrose is much smaller than the mass of dissolved sucrose. 
During this period the evaporation rate is high, the crystal area/mass of crystallized sucrose 
rate is very low, therefore the process is driven by the mass transfer. The supersaturation 
tends to increase and if not controlled, it often achieves the undesirable zone of secondary 
crystal nucleation. Later on, when the total crystal area and the crystallization capacity 
increases, the crystal area/mass of crystallized sucrose rate gets high and the process is 
driven by the heat transfer. 
The process objectives are to maximize the speed of crystal growth, keeping high the 
produced sugar quality and minimizing the costs and losses. These objectives must be 
fulfilled without occurrence of secondary nucleation or agglomeration.  The sugar quality is 
evaluated by the particle size distribution (PSD) at the end of the process which is quantified 
by two parameters - the final average (in mass) particle size (MA) and the final coefficient of 
particle variation (CV). The main challenge of the sugar production is the large batch to 
batch variation of the final PSD. This lack of process repeatability is caused mainly by 
improper control policy and results in product recycling and loss increase. The sugar 
production is heuristically operated, and while the traditionally applied PI(D) controllers 
are still the preferred solutions they usually lead to energy and material loss that can easily 
be reduced if an optimized operation policy is implemented. These problems constitute the 
main motivation for the operation strategy formulated in the next section. 

2.2 Crystallization model 
The general phenomenological model of the fed-batch crystallization process consists of 
mass, energy and population balances, including the relevant kinetic rates for nucleation, 
linear growth and agglomeration (Simoglou et al., 2005). While the mass and energy 
balances are common expressions in many chemical process models, the population balance 
is related with the crystallization phenomenon, which is still an open modelling problem. 
The Appendix A shows a detailed phenomenological model for crystallization process.  

2.3 Problem formulation 
The final values of the crystal size distribution function (CSD) parameters: mass averaged 
crystal size (MA) and coefficient of variation (CV) are the best indicators of the quality and 
efficiency of the crystallization process. The direct measurement and control of these 
parameters are very difficult to make actually, in fact there are no references of its industrial 
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implementation. The most used solution in the sugar industry consists of establishing a 
strategy that manipulate other variables; which allows to arrive at the end of the process 
with acceptable values in the CSD parameters.  
The batch operation imposes to the process frequent operational changes that depend of: the 
quality of the raw material, disturbances in the work conditions and market demand 
changes. The previous problem, the nonlinearities and the restrictions imposed to the 
process motivated the use a nonlinear MPC (NMPC).  
When a NMPC algorithm is applied, the first challenge consists of obtaining the model to 
use, which must be viable and trustworthy. Although the sugar crystallization process has 
been studied in depth and efficient mathematical models exist to represent it, these must be 
validated and be fit before its application in a NMPC algorithm, which will cause frequent 
updates if the process is batch.  
Like an alternative, in this work it is tried to demonstrate the efficiency that has the use of 
the neuronal networks in a NMPC, where the neural networks could be trained from 
industrial data with the input-output answer of the process. 

3. Problem solution 
Sugar production is characterized by strongly non-linear and non-stationary dynamics and 
goes naturally through a sequence of relatively independent stages: charging, concentration, 
seeding, setting the grain, crystallization (the main phase), tightening and discharge 
(Georgieva et al., 2003). Therefore the operation strategy is formulated as a cascade of 
individual control loops for each of the stages (Fig. 1). The feedback control policy is based 
on measurements of the flowrate, the temperature, the pressure, the stirrer power and the 
supersaturation (by a refractometer).  Measurements of these variables are usually available 
for a conventional crystallizer. 

3.1 Operation strategy 
Sugar production is still a very heuristically operated process, with classical proportional 
integral and eventually derivative (PID) controllers being the most typical solution. The 
different phases of the sugar production are comparatively independent and moved by 
distinct driving forces, thus a single controller can hardly be effective for the complete 
process. Instead, individual controllers for each stage where it seems appropriate, was the 
adopted framework (Fig. 1).  See Table 1 for more details on the formulated operation 
strategy. 
In the present study, the control actions are performed by manipulating the valves of the 
liquor/syrup feed flowrates (Ff) and the steam flowrate (Fs),  while the volume of massecuite 
(Vm), the supersaturation (S) and the current of the agitator (IA) are the controlled variables. 
This choice is completely inspired by the industrial practice in several refineries.  
Charging (stage 1): During the first stage the crystallizer is fed with liquor until it covers 
approximately 40 % of the vessel height. The process starts with vacuum pressure of around 
1 bar (equal to the atmospheric pressure) and reduces it up to 0.23 bar. When the vacuum 
pressure reaches 0.5 bar, the feed valve is completely open such that the feed flowrate is 
kept at its maximum value. When the liquor covers 40 % of the vessel height, the feed valve 
is closed and the vacuum pressure needs some time to stabilize around the value of 0.23 bar 
before the concentration stage starts. 
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Fig. 1. Cascade MPC control - strategy 

Concentration (stage 2): Once the vacuum pressure stabilizes, the stirrer is switched on and 
the concentration begins. In order to guarantee unperturbed operation of the barometric 
condenser and the steam production boiler, the steam flowrate must increase slowly (from 0 
to 2 kg/s, in two minutes approximately). The concentration of the dissolved sucrose by 
evaporation under vacuum results in volume reduction. However, for technological reasons, 
the minimum suspension level of the pan must be above the calandria. Therefore a feed 
flowrate action is required to control the level (the volume) of the pan and this constitutes 
the first control loop. In this stage, the supersaturation increases rapidly (at about a rate of 
0.025 per min.). When it reaches a value of 1.06, the feeding is stopped and the steam 
flowrate is reduced slowly to 1.4 kg/s, with the same speed as it was increased. The 
concentration stage is over when the supersaturation reaches the value of 1.11.  
Seeding (stage 3): At this moment seed crystals are introduced into the pan to provoke 
crystallization. This stage is rather unstable and to prevent seed crystals from dissolution in 
the liquor, the feed valve must be closed and the steam flowrate kept at its minimum for a 
short period (about 2 min.). Keeping these conditions unchanged contributes to the 
formation of the grain and is also important for the final crystal size distribution. The 
supersaturation continues naturally to increase but usually no control action is required.  
Crystallization with liquor (stage 4): During this stage the supersaturation is first 
controlled by a proper feeding to be around a set point of 1.15. This constitutes the second 
control loop.  At the beginning of this stage, the mass transfer is the driving crystallization 
force, the crystallization rate increases and the controller usually reduces the feed flowrate 
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Stage Action Control 

Charge 

The steam valve is closed and the stirrer is off.  
The vacuum pressure changes from 1 to 0.23 bar. 
The vacuum pressure reaches 0.5 bar, feeding 
starts with max rate. 
Liquor covers 40 % of the vessel height. 

No control 
The feed valve is 
completely open 

Concentration 

The vacuum pressure stabilizes around 0.23 bar. 
The stirrer is on. 
The volume is kept constant.  
The steam flowrate increases to 2 kg/s  
The supersaturation reaches 1.06, the feeding is 
closed, the steam flowrate is reduced to 1.4 kg/s 

Control loop 1  
Controlled 
variable: Volume; 
Manipulated 
variable: liquor 
feed flowrate   

Seeding and 
setting the 
grain 

The supersaturation reaches 1.11. 
Seed crystals are introduced. 
The steam flowrate is kept at the minimum for 
two minutes. 

No control  
The feed valve is 
closed 

Crystallization 
with liquor 
(phase 1) 

The steam flowrate is kept around 1.4 kg/s.  
The supersaturation is controlled at the set point 
1.15. 

Control loop 2 
Controlled 
variable: 
supersaturation 
Manipulated 
variable: liquor 
feed flowrate 

Crystallization 
with liquor  
(phase 2) 

The volume of crystallizer reaches ≈ 22 m3. 
The feed valve is closed. 
The supersaturation is controlled at the set point 
1.15. 
The stirrer power reaches 20.5 A. 

Control loop 3 
Controlled 
variable: 
supersaturation 
Manipulated 
variable: steam 
flowrate 

Crystallization 
with syrup 

The steam flowrate is kept around the maximum 
of 2.75 kg/s. (hard constraint).  
The volume fraction of crystals is kept at the set 
point 0.45.   
The volume reaches its maximum value (30 m3)  
The feed valve is close. 

Control loop 4 
Controlled 
variable: volume 
fraction of crystals. 
Manipulated 
variable: syrup 
feed flowrate 

Tightening 

The stirrer power reaches the maximum value of 
50 A (hard constraint). 
The steam valve is closed.  
The stirrer and the barometric condenser are 
stopped. 

No control  

Table 1. Summary of the sugar crystallization operation strategy. 
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short period (about 2 min.). Keeping these conditions unchanged contributes to the 
formation of the grain and is also important for the final crystal size distribution. The 
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controlled by a proper feeding to be around a set point of 1.15. This constitutes the second 
control loop.  At the beginning of this stage, the mass transfer is the driving crystallization 
force, the crystallization rate increases and the controller usually reduces the feed flowrate 
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Stage Action Control 
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The vacuum pressure changes from 1 to 0.23 bar. 
The vacuum pressure reaches 0.5 bar, feeding 
starts with max rate. 
Liquor covers 40 % of the vessel height. 
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The feed valve is 
completely open 

Concentration 

The vacuum pressure stabilizes around 0.23 bar. 
The stirrer is on. 
The volume is kept constant.  
The steam flowrate increases to 2 kg/s  
The supersaturation reaches 1.06, the feeding is 
closed, the steam flowrate is reduced to 1.4 kg/s 

Control loop 1  
Controlled 
variable: Volume; 
Manipulated 
variable: liquor 
feed flowrate   

Seeding and 
setting the 
grain 

The supersaturation reaches 1.11. 
Seed crystals are introduced. 
The steam flowrate is kept at the minimum for 
two minutes. 

No control  
The feed valve is 
closed 

Crystallization 
with liquor 
(phase 1) 

The steam flowrate is kept around 1.4 kg/s.  
The supersaturation is controlled at the set point 
1.15. 

Control loop 2 
Controlled 
variable: 
supersaturation 
Manipulated 
variable: liquor 
feed flowrate 

Crystallization 
with liquor  
(phase 2) 

The volume of crystallizer reaches ≈ 22 m3. 
The feed valve is closed. 
The supersaturation is controlled at the set point 
1.15. 
The stirrer power reaches 20.5 A. 

Control loop 3 
Controlled 
variable: 
supersaturation 
Manipulated 
variable: steam 
flowrate 

Crystallization 
with syrup 

The steam flowrate is kept around the maximum 
of 2.75 kg/s. (hard constraint).  
The volume fraction of crystals is kept at the set 
point 0.45.   
The volume reaches its maximum value (30 m3)  
The feed valve is close. 

Control loop 4 
Controlled 
variable: volume 
fraction of crystals. 
Manipulated 
variable: syrup 
feed flowrate 

Tightening 

The stirrer power reaches the maximum value of 
50 A (hard constraint). 
The steam valve is closed.  
The stirrer and the barometric condenser are 
stopped. 

No control  

Table 1. Summary of the sugar crystallization operation strategy. 
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to maintain the reference value of the supersaturation. When all liquor quantity is 
introduced, the feeding is stopped and the supersaturation is now kept at the same set point 
of 1.15 by the steam flowrate as the manipulated variable. This constitutes the third  control 
loop. The heat transfer is now the driving crystallization force. A typical problem of this 
control loop is that at the end of this stage the steam flowrate achieves its maximum value of 
2.75 kg/s but it is not sufficient to keep the supersaturation at the same reference value 
therefore a reduction of the set point is required. The stage is over when the stirrer power 
reaches the value 20.5 A. 
Crystallization with syrup (stage 5): A stirrer power of 20.5A corresponds to a volume 
fraction of crystals equal to 0.4. At this moment the feed valve is reopened, but now a juice 
with less purity (termed syrup) is introduced into the pan until the maximum volume (30 
m3) is reached. The control objective is to maintain the volume fraction of crystals around the 
set point of 0.45 by a proper syrup feeding. This constitutes the fourth control loop.    
Tightening (stage 6): Once the pan is full the feeding is closed. The tightening stage consists 
principally in waiting until the suspension reaches the reference consistency, which 
corresponds to a volume fraction of crystals equal to 0.5. The supersaturation is not a 
controlled variable at this stage because due to the current conditions in the crystallizer, the 
crystallization rate is high and it prevents the supersaturation of going out of the metastable 
zone.  The stage is over when the stirrer power reaches the maximum value of 50 A. The 
steam valve is closed, the water pump of the barometric condenser and the stirrer are turned 
off. Now the suspension is ready to be unloaded and centrifuged. 

4. Model based predictive control 
The term model-based predictive control (MPC) does not refer to a particular control method, 
instead it corresponds to a general control approach (Rossiter, 2003). The MPC concept, 
introduced in late seventies, nowadays has evolved to a mature level and became an attractive 
control strategy implemented in a variety of process industries (Camacho & Bordons, 2004). 
The main difference between the MPC configurations is the model used to predict the future 
behavior of the process or the implemented optimization procedure. First the MPC based on 
linear models gained popularity (Morari, 1994) as an industrial alternative to the classical 
proportional-integral-derivative (PID) control and later on nonlinear cases as reactive 
distillation columns (Balasubramhanya & Doyle, 2000) and polymerization reactors (Seki et al., 
2001) were reported as successfully MPC controlled processes. 

4.1 Classical model based predictive control 
The main difference between MPC configurations is the model used to predict the future 
behaviour of the process and the optimization procedure. Nonlinear model predictive 
control (NMPC) is an optimisation-based multivariable constrained control technique that 
uses a nonlinear dynamic model for the prediction of the process outputs (Qin & Badgwell, 
2003). At each sampling time k the model predicts future process responses to potential 
control signals over the prediction horizon (Hp). The predictions are supplied to an 
optimization procedure, to determine the values of the control action over a specified 
control horizon (Hc) that minimizes the following performance index: 
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Subject to the following constrains 

 min maxcu u u≤ ≤  (2) 

 min maxu u uΔ ≤ Δ ≤ Δ  (3) 

 min maxpy y y≤ ≤  (4) 

Where minu and maxu  are the limits of the control inputs, minuΔ and maxuΔ  are the 
minimum and the maximum values of the rate-of-change of the inputs and miny and maxy  
are the minimum and maximum values of the process outputs.  
Hp is the number of time steps over which the prediction errors are minimized and the 
control horizon Hc is the number of time steps over which the control increments are 
minimized, ry is the desired response (the reference) and ŷ  is the predicted process output 
(Diehl et al., 2002). ( ), ( 1), ( )c c c cu k u k u H+ are tentative future values of the control input, 
which are parameterized as peace wise constant. The length of the prediction horizon is 
crucial for achieving tracking and stability. For small values of Hp the tracking deteriorates 
but for high Hp values the bang-bang behavior of the process input may be a real problem. 
The MPC controller requires a significant amount of on-line computation, since the 
optimization (1) is performed at each sample time to compute the optimal control input. At 
each step only the first control action is implemented to the process, the prediction horizon 
is shifted or shrunk by usually one sampling time into the future, and the previous steps are 
repeated (Rossiter, 2003). 1λ  and 2λ are the output and the input  weights respectively, 
which determine the contribution of each of the components of the performance index (1).  

4.2 Neural network model predictive control 
The need for neural networks arises when dealing with non-linear systems for which the 
linear controllers and models do not satisfy. Two main achievements contributed to the 
increasing popularity of the NNs: (i) The proof of their universal approximation properties 
and the development of suitable algorithms for NN training as the backpropagation and (ii) 
The adaptation of the Levenberg-Marquard algorithm for NN optimization.   
The most used NN structures are Feedforward networks (FFNN) and Recurrent (RNN) 
ones. The RNNs offer a better suited tool for nonlinear system modelling and is 
implemented in this work (Fig.2). The Levenberg-Marquard (LM) algorithm was preferred 
as the training method due to its advantages in terms of execution time and robustness. 
Since the LM algorithm requires a lot of memory, a powerful (in terms of memory) 
computer is the main condition for successful training. In order to solve the problem of 
several local minima, that is typical for all derivative based optimization algorithms 
(including the LM method), we have repeated several time the optimization specifying 
different starting points. 
The individual stages of the crystallization process are approximated by different RNNs of 
the type shown in Fig. 2. Tangent sigmoid hyperbolic activation functions are the hidden 
computational nodes (Layer 1) and a linear function is located at the output (Layer 2). Each 
NN has two vector inputs (r and p) formed by past values of the process input and the NN 
output respectively. The architecture of the NN models trained to represent different 
process stages is summarized as follows: 
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to maintain the reference value of the supersaturation. When all liquor quantity is 
introduced, the feeding is stopped and the supersaturation is now kept at the same set point 
of 1.15 by the steam flowrate as the manipulated variable. This constitutes the third  control 
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Subject to the following constrains 

 min maxcu u u≤ ≤  (2) 

 min maxu u uΔ ≤ Δ ≤ Δ  (3) 

 min maxpy y y≤ ≤  (4) 

Where minu and maxu  are the limits of the control inputs, minuΔ and maxuΔ  are the 
minimum and the maximum values of the rate-of-change of the inputs and miny and maxy  
are the minimum and maximum values of the process outputs.  
Hp is the number of time steps over which the prediction errors are minimized and the 
control horizon Hc is the number of time steps over which the control increments are 
minimized, ry is the desired response (the reference) and ŷ  is the predicted process output 
(Diehl et al., 2002). ( ), ( 1), ( )c c c cu k u k u H+ are tentative future values of the control input, 
which are parameterized as peace wise constant. The length of the prediction horizon is 
crucial for achieving tracking and stability. For small values of Hp the tracking deteriorates 
but for high Hp values the bang-bang behavior of the process input may be a real problem. 
The MPC controller requires a significant amount of on-line computation, since the 
optimization (1) is performed at each sample time to compute the optimal control input. At 
each step only the first control action is implemented to the process, the prediction horizon 
is shifted or shrunk by usually one sampling time into the future, and the previous steps are 
repeated (Rossiter, 2003). 1λ  and 2λ are the output and the input  weights respectively, 
which determine the contribution of each of the components of the performance index (1).  

4.2 Neural network model predictive control 
The need for neural networks arises when dealing with non-linear systems for which the 
linear controllers and models do not satisfy. Two main achievements contributed to the 
increasing popularity of the NNs: (i) The proof of their universal approximation properties 
and the development of suitable algorithms for NN training as the backpropagation and (ii) 
The adaptation of the Levenberg-Marquard algorithm for NN optimization.   
The most used NN structures are Feedforward networks (FFNN) and Recurrent (RNN) 
ones. The RNNs offer a better suited tool for nonlinear system modelling and is 
implemented in this work (Fig.2). The Levenberg-Marquard (LM) algorithm was preferred 
as the training method due to its advantages in terms of execution time and robustness. 
Since the LM algorithm requires a lot of memory, a powerful (in terms of memory) 
computer is the main condition for successful training. In order to solve the problem of 
several local minima, that is typical for all derivative based optimization algorithms 
(including the LM method), we have repeated several time the optimization specifying 
different starting points. 
The individual stages of the crystallization process are approximated by different RNNs of 
the type shown in Fig. 2. Tangent sigmoid hyperbolic activation functions are the hidden 
computational nodes (Layer 1) and a linear function is located at the output (Layer 2). Each 
NN has two vector inputs (r and p) formed by past values of the process input and the NN 
output respectively. The architecture of the NN models trained to represent different 
process stages is summarized as follows: 
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Fig. 2. Neural network architecture 
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Where 2
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mW R ×∈ , 2
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mW R ×∈ , 1
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mw R ×∈ , 1
1

mb R ×∈ , 2b R∈ are the network weights (in 
matrix form) to be adjusted during the NN training, m is the number of nodes in the hidden 
layer.  
Since the objective is to study the influence of the NNs on the controller performance, a 
number of NN models is considered based on different training data sheets. 
• Case 1 (Generated data): Randomly generated bounded inputs ( iu ) are introduced to a 

simulator of a general evaporative sugar crystallization process introduced in  
Georgieva et al., 2003. It is a system of nonlinear differential equations for the mass and 
energy balances with the operation parameters computed based on empirical relations 
(for no stationary parameters) or keeping constant values (for stationary parameters). 
The simulator responses are recorded ( iy ) and the respective mean values are 
computed ( i,meanu , i,meany ). Then the NN is trained supplying as inputs i i,meanu u−  and 
as target outputs i i,meany y− . 

• Case 2: Industrial data: The NN is trained with real industrial data.  In order to extract 
the underlying nonlinear process dynamics a prepossessing of the initial industrial data 
was performed. From the complete time series corresponding to the input signal of one 
stage only the portion that really excites the process output of the same stage is 
extracted. Hence, long periods of constant (steady-state) behavior are discarded. Since, 
the steady-state periods for normal operation are usually preceded by transient 
intervals, the data base constructed consists (in average) of 60-70% of transient period 
data. A number of sub cases are considered.  
• Case 2.1: Industrial data of two batches is used for NN training.  
• Case 2.2: Industrial data of four batches is used for NN training.  
• Case 2.3: Industrial data of six batches is used for NN training.  
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Fig. 3. Case1: NN data generation 

4.3 Selection of MPC parameters: Hp, Hc, λ2 
The choice of pH  is related with the sampling period ( tΔ ) of the digital control 
implementation, which in its turn is a function of the settling time ts (the time before 
entering into the 5% around the set-point) of the closed loop system. As a rule of thumb, it is 
suggested tΔ  to be chosen at least 10 times smaller than ts, (Soeterboek, 1992). Hence, the 
prediction horizon can be chosen as pH = round-to-integer(ts/ tΔ ). It is well known that the 
smaller the sampling time, the better can a reference trajectory be tracked or a disturbance 
rejected. However, choosing a small sampling time yields a large prediction horizon. In 
order to compute the optimal control input, the optimization (1) is performed at each 
sampling time, therefore MPC controller requires a significant amount of on-line 
computation. This can cause problems related with large amount of computer memory 
required and additional numerical problems due to the large prediction horizon. The 
introduction of the ET MPC as in (7) serves as a compromise between these conflicting 
issues and reduces significantly the computational efforts.  
Parameters 1λ  and 2λ  determine the contribution (the weight) of each term of the 
performance index, the output error (e) and the control increments ( uΔ ). In this work the 
parameter 1λ  is set to the normalized value of 1, while the choice of 2λ  is based on the 
following empirical expression: 
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where P defines the desired contribution  of the second term in (1) (0% ≤ P ≤100%) and 

 ( ) ( )( )2 2
max max minmax ,e ref y ref y= − −  (10) 

The intuition behind (9-10) is to make the two terms of (1) compatible when they are not 
normalized and to overcome the problem of different numerical ranges for the two terms. 
Table 2 summarize the set of MPC parameters used in the four control loops define in the 
section 3. 
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Fig. 2. Neural network architecture 
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Control 
loop (CL) 

ts (s) 
settling

time 

tΔ (s) 
sampling

period 

Hp 
prediction

horizon 

Hc  
control
horizon

2λ  
weight

Controlled 
variable Set-point 

CL1 40 4 10 2 1000 Volume 12.15 
CL2 40 4 10 2 0.1 Supersaturation 1.15 
CL3 60 4 15 2 0.01 Supersaturation 1.15 

CL4 80 4 20 2 10000 Fraction 
of crystals 0.43 

Table 2. MPC design parameters for the control loops define in Table 1 

5. PID controllers 
The PID parameters were tuned, where pk , iτ , dτ  are related with the general PID 

terminology as follows (Aström & Hägglund, 1995): 

 ( )
0

( ) ( ) ( ) ( ) ( 1)
k

d
p

i i

tu t k K e t k e t i e t k e t k
t

τ
τ =

 Δ+ = + + ⋅ + + ⋅ + − + − Δ 
   (11) 

Since the process is nonlinear, classical (linear) tuning procedures were substituted by a 
numerical optimization of the integral (or sum in the discrete version) of the absolute error 
(IAE): 

 
1

( ) ( )
N

p
k

IAE ref t k y t k
=

= + − +  (12) 

Equation (12) was minimized in a closed loop framework between the discrete process 
model and the PID controller. For each parameter an interval of possible values was defined 
based on empirical knowledge and the process operator expertise. A number of gradient 
(Newton-like) optimization methods were employed to compute the final values of each 
controllers summarized in Table 1. All methods concluded that the derivative part of the 
controller is not necessary. Hence, PI controllers were analyzed in the next tests.  
 

 Control loop 1 Control loop 2 Control loop 3 Control loop 4 
pk  0.05 -0.5 20 -0.01 

iτ  30 40 10 70 

dτ  0 0 0 0 

Table 3. Optimized PID parameters for the control loops define in Table 1 

6. Discussion of results 
The operation strategy, summarized in Table 1 and implemented by a sequence of Classical- 
MPC, NNMPC or PI controllers is comparatively tested in Matlab environment. The output 
predictions are provided either by a simplified discrete model (with the main operation 
parameters kept constant) or by a trained ANN model (5-8). A process simulator was 
developed based on a detailed phenomenological model (Georgieva et al., 2003). Realistic 
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disturbances and noise are introduced substituting the analytical expressions for the 
vacuum pressure, brix and temperature of the feed flow, pressure and temperature of the 
steam with original industrial data (without any preprocessing(Scenario-2)).  The test is 
implemented for two different scenarios of work.  
• Scenario - 1: The simulation uses, like process, the set of equations differentials  

proposed in (Georgieva et al. 2003) with empirical operation parameters.   
• Scenario - 2: The simulation uses, like process, the set of equations differentials  

proposed in (Georgieva et al. 2003), but are used like operation parameter e real 
industrial data batch not used in neural network training. 

Time trajectories of the controlled and the manipulated variables for the control loop 1, 2 
and 4 of one batch (Batch 1) are depicted in Figs. 4-6. The three controllers guarantee good 
set point tracking.  However, the quality of the produced sugar is evaluated only at the 
process end by the crystal size distribution (CSD) parameters, namely AM and CV. The 
results are summarized in Table 4 and both classical and NNPMC outperform the PI. Our 
general conclusion is that the main benefits of the MPC strategy are with respect to the batch 
end point performance.  
 
 
 
 
 
 

 
 
 

Fig. 4. Controlled (Volume of massecuite) and control variables (Ff- feed flowrate) over time 
for the 1st control loop. 
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Fig. 4. Controlled (Volume of massecuite) and control variables (Ff- feed flowrate) over time 
for the 1st control loop. 
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Fig. 5. Controlled (Supersaturation) and control variables (Ff- feed flowrate) over time for 
the 2nd control loop. 
 

 
Fig. 6. Controlled (Volume fraction of crystals) and control variables (Ff- feed flowrate) over 
time for the 4th control loop. 
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Performance  measures Classical MPC NN-MPC PI 
AM (mm)  (reference 0.56) 0.586 0.584 0.590

CV (%) 32.17 31.13 32.96

Table 4-1. Batch end point performance measures  (Batch - 1) 

 

Performance  measures Classical 
MPC 

NN-
MPC PI 

AM (mm)  (reference 0.56) 0.615 0.609 0.613 
CV (%) 29.39 30.28 31.14 

Table 4-2. Batch end point performance measures  (Batch - 2) 

 

Performance  measures Classical 
MPC 

NN-
MPC PI 

AM (mm)  (reference 0.56) 0.636 0.631 0.639 
CV (%) 28.74 29.42 29.23 

Table 4-3. Batch end point performance measures  (Batch - 3) 

7. Conclusion 
With the results obtained in this work it has been demonstrated that algorithm NNMPC is a 
viable solution to control nonlinear complexes processes, still in the case that only exists 
input-output information of the process.  
An aspect very important to obtain successful results with NNMPC is the representative 
quality of the available data, which was demonstrated with the results obtained in the third 
control loop analyzed.  
The weighting factor 2λ   has a crucial paper in the good NNMPC performance. A constrain 
very hard can impose that the control signal can not follow the dynamics of the process, but a 
very soft constrain can cause instability in the control signal, when the model is not precise. 
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consists of mass, energy and population balances, including the relevant kinetic rates for 
nucleation, linear growth and agglomeration [Ilchmann, et al., 1994]. While the mass and 
energy balances are common expressions in many chemical process models, the population 
balance is related with the crystallization phenomenon, which is still an open modeling 
problem.  
Mass balance 
The mass of all participating solid and dissolved substances are included in a set of 
conservation mass balance equations:  

 1 1 0 0( ( ), ( ), ( )), , (0)fM f M t F t S t t t t M M= ≤ ≤ =  (A-1) 

where ( ) qM t ∈ℜ  and ( ) mF t ∈ℜ  are the mass and the flow rate vectors, with q and m 
dimensions respectively, and ft is the final batch time. 1

1( ) rS t ∈ℜ  is the vector of physical 
time dependent parameters as density, viscosity, purity, etc. For the process in hand, the 
detailed form of the macro-model (A1) is as follows  

 sol a i wM M M M= + +   (A-2) 

 m sol cM M M= +   (A-3) 

 1
dMw F ρ B F ρ Jf f f w w vapdt

 = − + − 
 

  (A-4) 

 ( )1i
f f f f

dM F B Pur
dt

ρ= ⋅ ⋅ ⋅ −   (A-5) 

 a
f f f f cris

dM F B Pur J
dt

ρ= ⋅ ⋅ ⋅ −   (A-6) 

 c
cris

dM J
dt

=   (A-7) 

 c sol
m

sol

M MV
ρ
+=   (A-8) 

 ( )( )vap vap m w vac
vap

W QJ K T T BPE
λ

+= + ⋅ − −    (A-9) 

Energy balance 
The general energy balance model is 

 m
cris f vap

dT aJ bF cJ d
dt

= + + +   (A-10) 
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where parameters a, b, c and d incorporate the enthalpy terms and specific heat capacities 
derived as time dependent functions of physical and thermodynamic properties as 
follows 

 

1(1 ) sol sol sol
sol c sol

sol sol sol

sol sol c c

dH Pur dHH H B
dB B dPura

M Cp M Cp

−− + − + ⋅
=

⋅ + ⋅  (A-11) 

 

( )
( ) f f solsol sol

f f sol f sol
sol sol sol

sol sol c c

B Pur PurdH dHH H B B
dB B dPur

b
M Cp M Cp

ρ
 −
 − + − + ⋅
 
 =

⋅ + ⋅  (A-12) 
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dHW Q F H H B
dBd
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 229.7 4.6 0.075sol
m sol m m

sol

dH T Pur T T
dB

= − + +   (A-15) 

 4.61sol
sol m

sol

dH Bx T
dPur

=   (A-16) 

Population balance 
Mathematical representation of the crystallization rate can be achieved through basic mass 
transfer considerations or by writing a population balance represented by its moment 
equations. Employing a population balance is generally preferred since it allows to take into 
account initial experimental distributions and, most significantly, to consider complex 
mechanisms such as those of size dispersion and/or particle agglomeration/aggregation. 
The basic moments of the number-volume distribution function are 

 20
0 0

1 '
2

d B
dt
μ β μ= − ⋅ ⋅
     (A-17) 

 1
0v

d G
dt
μ μ= ⋅
    (A3-18) 

 22
1 12 'v

d G
dt
μ μ β μ= ⋅ ⋅ + ⋅
     (A3-19) 
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2 23 3 'v

d G
dt
μ μ β μ= ⋅ ⋅ + ⋅ ⋅
     (A3-20) 
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dJ
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μρ= ⋅
 ,  (A3-21) 

 

where 0B , G and 'β  are the kinetic variables nucleation rate, linear growth rate and the 
agglomeration kernel, respectively with the following mathematical descriptions  
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The crystallization quality is evaluated by the particle size distribution (PSD) at the end of 
the process which is quantified by two parameters - the final average (in mass) particle size 
(AM) and the final coefficient of particle variation (CV) with the following definitions: 
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In (A-29, A-30), jη represent moments of mass-size distribution functions, that are related to 
the moments of the number-volume distribution functions ( jμ  by the following 
relationships: 
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Correlations for physical properties 
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For more detailed presentation of the process model, refer to [Georgieva et al., 2003]. 
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China 

1. Introduction 

Unmanned helicopters are increasingly popular platforms for unmanned aerial vehicles 
(UAVs). With the abilities such as hovering, taking off and landing vertically, unmanned 
helicopters extend the potential applications of UAVs. However, due to the complex 
mechanism and complicated aero-flow during flight, it is almost impossible to accurately 
model the dynamics of an unmanned helicopter in full flight envelope, and the significant 
model uncertainties associated with a nominal model may degrade the performance and 
even stability of an onboard controller. 
Due to the difficulty in obtaining a high fidelity full envelope model, the multi-mode 
modeling technique has been proposed for rotor aircrafts, such as tilt-rotor aircraft XV-15 
[1], helicopter BO-105 [2], UH-60 [3], R-50 [4] and X-Cell [5]. The mode-dependent model, 
which is identified and simplified according to a specific flight mode, such as hovering, 
cruising, taking off and landing, can be used for control design for the corresponding flight 
mode. However, the mode-dependent control suffers from at least two problems: one is the 
difficulty in accommodating the mode transition dynamics, and the other is the 
compensation of the ‘model drift’ due to flight dynamics change within one particular 
mode. Up to now, for the purpose of practical implementation, the mode transition problem 
can be partially dealt with by limiting the mode switching conditions [6], e.g., mode change 
is made through hovering mode. 
Robust and adaptive control techniques [7-8], on the other hand, have been used to deal 
with the ‘model-shift’ within a flight mode. However, such control schemes normally need 
to know the boundary of internal and external uncertainties and relative noise distribution, 
which are difficult to identify accurately for a helicopter in full flight envelope. Although 
online identification technology can be used to obtain the real-time dynamics and 
disturbance, it is a large burden for the flight computer to reconstruct the robust controllers 
and reach the requested control period (>50Hz) for sampling and actuating due to the 
complex calculation of the robust/adaptive optimization process [9-10] and the strict weight 
limits of micro flight computers.  
Besides the model uncertainties, another critical problem that limits the control performance of 
a helicopter is the time delay between the actuator command and the generation of relative 
aerodynamic force/torque [11], which will be called aerodynamics-delay/time-delay in the 
following sections. Normally, this time delay may cause reduced feedback gain of a model-
based controller and result in poor robustness [12-13], i.e., sensitive to disturbances. 
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In recent years, the encouraging achievement in sequential estimation makes it an important 
direction for online modeling and model-reference control [14]. Among stochastic 
estimations, the most popular one is the Kalman-type filters (KFs) [15, 16, and 17]. Although 
widely used, the KFs suffer from sensitivity to bias and divergence in the estimates, relying 
on assumptions on statistic distribution such as white noise and known mean or covariance 
for optimal estimation. In many cases, it is more practical to assume that the noises or 
uncertainties are unknown but bounded (UBB). In view of this, the set-membership filter 
(SMF), which computes a compact feasible set in which the true state or parameter lies only 
under the UBB noise assumption, provides an attractive alternative [18-19]. 
On the control issue, model predictive control (MPC) can compensate for the aerodynamics 
delay and does not require a high accuracy reference nonlinear model [20]. Among these 
methods, linear generalized predictive control (GPC) has become one of the most popular 
MPC methods in industry and academia. However, the normal GPC is sensitive to process 
noise and model errors [21], which are unknown but bounded for helicopters when sudden 
‘mode change’ happen and model-drift in full flight envelope. This makes the prediction 
biased, and results in the non-optimal process of controller solving. 
In this paper, for realizing the coupling control of unmanned helicopters in full flight 
envelope, an active modeling based controller is developed based on a modified generalized 
predictive control and adaptive set-membership filter estimation (ASMF). The time varying 
model error and its boundary are estimated by the adaptive set-member filter, which is first 
proposed in [19]. Incremental prediction process and dimension reduction method is 
embedded into traditional GPC, which can decreases the computation burden and maintain 
prediction unbiased when ‘mode change’ happens. Based on this active estimation and the 
modified GPC controller, a novel optimal strategy for on-line compensation of model error 
is developed. Thus, aggressive flight can be achieved only based on the hovering model 
with time-delay terms. Using the identified hovering dynamics model as nominal model for 
controller, flight experiments have been conducted to test the performance of the proposed 
controller in full flight envelope on our UAV platform, and experimental results have 
demonstrated the effectiveness of the proposed method. 

2. Active model based control scheme and reference model of a helicopter 
Fig. 1 illustrates the active model based control scheme. The error between the reference 
model and the actual dynamics of the controlled plant is estimated by an on-line modeling 
strategy. The control, which is designed according to the reference model, should be able to 
compensate the estimated model error and it in real time. In the followings of this paper, we 
use the ASMF as the active modeling algorithm and the modified GPC as the control. 
For normal missions of an unmanned helicopter, the flight modes include hovering (velocity 
under 5m/s), cruising (velocity above 5m/s), taking off and landing (distance to the ground 
is below 3m while significant ground effect exists) and the transitions among these modes. 
A reference model is typically obtained by linearizing the nonlinear dynamics of a 
helicopter at one flying mode. The model errors from linearization, external disturbance, 
simplification, and un-modeled dynamics can be considered as additional process noise [22]. 
Thus, a linearized state-space model for helicopter dynamics in full flight envelope can be 
formulated as  
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contain parameters that can be identified in different flight modes, and we use them to 
describe the parameters in hovering mode. 4U R  is the control input vector. 13 8C R  is 
the output matrix, k R is the time-delay for the driving system. The detail of building the 
nominal model and physical meaning of parameters is explanted in Appendix A. 
To describe the dynamics change, in equation (1), here, we introduce 13( , , )t t tf X X W R  to 

represent the time varying model error in full flight envelope, and 13
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The following two sections, based on model (1) will describe the way to estimate 

( , , )t t tf X X W  and to compensate for model errors from process noise, parameters change, 
control delay and flight mode change in real applications.  

3. ASMF based active model error estimation 
As illustrated in Fig.1, adopting the active modeling process to get the model error f and 
system state X is the basis for elimination of the model error. Controller can only work based 
on nominal model and feedback of state and model error from active modeling process. In 
this section, the active modeling process is built based on an adaptive set-membership filter 
(ASMF) [19] since the UBB process noise. 
First, we must obtain the reference equation for estimation. Compared with the sampling 
frequency (often >50Hz for flight control) of the control system, the model error ( , , )f X X W  
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A reference model is typically obtained by linearizing the nonlinear dynamics of a 
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where tf is the sampling value of ( , , )f X X W at sampling time t, and th is the assumed 
unknown but bounded (UBB) process noise. 
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and tf  is a 13 1 vector for model errors. Here, t is the sampling time, m mI   is the m×m unit 
matrix and 0m n  is the m×n zero matrix. { , , }d d dA B C is the discrete expression of system 

0 0{ , , }A B C . Here, time-delay k is ignored during the estimate process, and the compensation 
method will be discussed in the next part on modified GPC. 
The model error i.e., f in Eq. (1), comes from the linearization while neglecting the coupling 
dynamics and uncertainties, and also the 0A  and 0B  because they are identified with 
respect to a specific flight mode, here hovering mode is selected as nominal flight mode 
since easy identification. Therefore, both the model error and the process noise aW  are 
vehicle dynamics and flight states dependent, and do the following assumption  

Assumption: 

aW does not necessarily have a normal distribution. 
 

Thus, the Kalman type filter cannot be applied, and adaptive set-membership filter, which is 
developed for UUB process noise and can get the uncertain boundaries of the states, is 
considered to estimate the states and model errors here. 
In this section we only present the result of ASMF and please refer to [19] for the details 
about ASMF. With respect to Eq. (2), we can build the adaptive set-membership filter as Eq. 
(3), where aQ  and aR  are the initial elliptical boundary of process and measurement noise 
respectively, mr is the maximum eigenvalue of R, mp  is the maximum eigenvalue of 

| 1
a aT
d t t dC P C , Tr() is the trace of a matrix, t  and t  are the adaptive parameters of the filter. 

We can also obtain the boundary of the ith element ˆ a
iX of extended state |
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t tX as 
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i ii i iiX P X P  , where iiP  is the i-th diagonal element of matrix P. 
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4. Modified GPC for unmanned helicopters 
To eliminate the negative influence of model errors and control delay in flight, besides the 
active estimation algorithm like ASMF that does not require a normal distribution 
assumption, an effective control algorithm has to be designed according to the reference 
model of Eq. (1) while adopting the on-line estimation of f as compensation.  
We describe the normal GPC in Section 4.1, and then, the modified scheme is proposed in 
Section 4.2 & 4.3 to eliminate the negative influence of model errors in real applications. 

4.1 Preliminary work for generalized predictive control 
Generally, for a linear system with actuator time delay like,  
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 (4) 

where 1n
tX R  is the system state vector at sampling time t, 1l

ty R  is the output vector, 
1m

tu R  is the control input vector, k is the actuators’ time-delay and tW  is process noise; 
traditional Generalized Predictive Control (GPC) [23] can be designed as:  

Step I: Make prediction 
Firstly, for the case that predictive step i is less than time-delay k (i.e., the time instant that 
system behavior cannot be regulated through current and future control action), prediction 
can be denoted as following equation, 
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To eliminate the negative influence of model errors and control delay in flight, besides the 
active estimation algorithm like ASMF that does not require a normal distribution 
assumption, an effective control algorithm has to be designed according to the reference 
model of Eq. (1) while adopting the on-line estimation of f as compensation.  
We describe the normal GPC in Section 4.1, and then, the modified scheme is proposed in 
Section 4.2 & 4.3 to eliminate the negative influence of model errors in real applications. 

4.1 Preliminary work for generalized predictive control 
Generally, for a linear system with actuator time delay like,  
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where 1n
tX R  is the system state vector at sampling time t, 1l

ty R  is the output vector, 
1m

tu R  is the control input vector, k is the actuators’ time-delay and tW  is process noise; 
traditional Generalized Predictive Control (GPC) [23] can be designed as:  

Step I: Make prediction 
Firstly, for the case that predictive step i is less than time-delay k (i.e., the time instant that 
system behavior cannot be regulated through current and future control action), prediction 
can be denoted as following equation, 
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where ˆ |t iX t  is the prediction state at time t+i, the superscript 1 denotes that the part of 
predicted variable that is independent of the current and future’s control actions.  
Secondly, for the case that prediction step i is larger than the time delay k,  
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where p is the prediction range; similarly, 1
1|

ˆ
t k i tX     denotes the sub-variable of 

1|
ˆ

t k i tX    that is independent of the current and future’s control actions.  

Step II: Receding horizon optimization 
After making prediction, the control vector can be obtained by minimize the following cost 
function: 

 ( ) ( )x v T x v T
t t t t t tJ R X R X U U     (7) 

And the optimal control inputs can be denoted as, 

 * 1 1
0 0 0( ) ( )T T x

t t tU G G G R X     (8) 

where 0G is the predictive matrix, v
tX is the predictive state vector, 1

tX is the known vector 

inside v
tX ,  is the weight of control input, and x

tR is the reference of system states. The 
detailed definition of these matrixes can be referenced in [23]. 

Step III: Control implementation 

The first element of vector *
tU is used as the control to the real plant. After that, go back to 

step I at the next time instant. 
However, with application to the unmanned helicopters, this kind of GPC algorithm has the 
following three disadvantages, which will be solved in the next two sections: 
1. It cannot reject the influence of working mode changes, i.e., if  

 0 0 0
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U u u x u


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  
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 (9) 

where 0 0( , )x u is the current operation point, which cannot be ensured on-line, 0 0( , )x u is 
the valid range for model linearization and tx is the absolute state at time t, tu is the 
absolute control input at time t. The biased prediction, due to the changing operation 
point 0 0( , )x u , will bring steady errors for velocity tracking.  
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2. Normal GPC is sensitive to mismatch of the nominal model, which means slow change 
in parameters ( , )d dA B may result in prediction error and unstable control. 

3. The transient model errors of the nominal model from external disturbance, estimated 
by ASMF, cannot be eliminated. And this will also result in the non-minimum variance 
and the instability of the closed control loop. 

4.2 Stationary increment predictive control  
To reject the influence of working mode change and sensitivity to nominal parameters 
change in real application, i.e. the problem 1) and 2) in Section 4.1, we assume that the 
process noise tW ’s increment in Eq. (4) is a stationary random process, which means 

 0
1t t t tW W W W     (10) 

is normal distribution. Where 11 q    is the difference operator; 1q  is one-step delay 
factor. Thus, Eq. (4) can be rewritten as follows,  
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if behavior prediction is made based on Eq. (11), only the absolute state tx and control input 

tu , which can be measured or estimated directly from sensors, are used and the current 
operation point 0 0( , )x u  disappears in prediction. Thus, the problem of biased prediction 
due to changing of working point, i.e., problem 1), can be solved.  
Otherwise, according to the process of traditional GPC, the set-point x

tR  must be obtained 
for every prediction step, and this is often set as current reference states. However, for 
helicopter system, only measurable outputs are cared, such as position, velocity and etc; and 
the internal states, such as rotor’s pitch angle and yaw gyro’s feedback and so on, are 
coupled with the measurable states/outputs, and cannot be set independently. Others, this 
reference input often comes from position track planning, which changes quickly for flight 
and often cause a step-like signal for tracking. To avoid the step signal reference tracking, 
which is dangerous for unmanned helicopter system, we use a low pass filter to calculate 
the set-point inputs of the output in the future i-th step, i=1, …, p.  
Let 1l

tSP R   be the set-point input at time t, then we have 

1( ) ,1t k i t t k i tr SP r SP i p          (12) 

where  is the cut-off frequency of the filter, the initial value |ˆt k t k tr y  , t k ir    is the i-th 
set-point input, and |ˆt k ty  is the estimate of output at time t+k.  
Thus, the set-point problem is solved and the output prediction can be implanted based on 
increment model (11) as follows: 
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where ˆ |t iX t  is the prediction state at time t+i, the superscript 1 denotes that the part of 
predicted variable that is independent of the current and future’s control actions.  
Secondly, for the case that prediction step i is larger than the time delay k,  
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where p is the prediction range; similarly, 1
1|

ˆ
t k i tX     denotes the sub-variable of 

1|
ˆ

t k i tX    that is independent of the current and future’s control actions.  

Step II: Receding horizon optimization 
After making prediction, the control vector can be obtained by minimize the following cost 
function: 

 ( ) ( )x v T x v T
t t t t t tJ R X R X U U     (7) 

And the optimal control inputs can be denoted as, 

 * 1 1
0 0 0( ) ( )T T x

t t tU G G G R X     (8) 

where 0G is the predictive matrix, v
tX is the predictive state vector, 1

tX is the known vector 

inside v
tX ,  is the weight of control input, and x

tR is the reference of system states. The 
detailed definition of these matrixes can be referenced in [23]. 

Step III: Control implementation 

The first element of vector *
tU is used as the control to the real plant. After that, go back to 

step I at the next time instant. 
However, with application to the unmanned helicopters, this kind of GPC algorithm has the 
following three disadvantages, which will be solved in the next two sections: 
1. It cannot reject the influence of working mode changes, i.e., if  

 0 0 0

0 0 0

( , )
( , )

t t

t t

X x x x u
U u u x u




  
  

 (9) 

where 0 0( , )x u is the current operation point, which cannot be ensured on-line, 0 0( , )x u is 
the valid range for model linearization and tx is the absolute state at time t, tu is the 
absolute control input at time t. The biased prediction, due to the changing operation 
point 0 0( , )x u , will bring steady errors for velocity tracking.  
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2. Normal GPC is sensitive to mismatch of the nominal model, which means slow change 
in parameters ( , )d dA B may result in prediction error and unstable control. 

3. The transient model errors of the nominal model from external disturbance, estimated 
by ASMF, cannot be eliminated. And this will also result in the non-minimum variance 
and the instability of the closed control loop. 

4.2 Stationary increment predictive control  
To reject the influence of working mode change and sensitivity to nominal parameters 
change in real application, i.e. the problem 1) and 2) in Section 4.1, we assume that the 
process noise tW ’s increment in Eq. (4) is a stationary random process, which means 

 0
1t t t tW W W W     (10) 

is normal distribution. Where 11 q    is the difference operator; 1q  is one-step delay 
factor. Thus, Eq. (4) can be rewritten as follows,  

 0
1t d t d t k tX A X B u W        (11) 

Consider 

0 1 0
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t t t t
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X x x x x x
U u u u u u




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if behavior prediction is made based on Eq. (11), only the absolute state tx and control input 

tu , which can be measured or estimated directly from sensors, are used and the current 
operation point 0 0( , )x u  disappears in prediction. Thus, the problem of biased prediction 
due to changing of working point, i.e., problem 1), can be solved.  
Otherwise, according to the process of traditional GPC, the set-point x

tR  must be obtained 
for every prediction step, and this is often set as current reference states. However, for 
helicopter system, only measurable outputs are cared, such as position, velocity and etc; and 
the internal states, such as rotor’s pitch angle and yaw gyro’s feedback and so on, are 
coupled with the measurable states/outputs, and cannot be set independently. Others, this 
reference input often comes from position track planning, which changes quickly for flight 
and often cause a step-like signal for tracking. To avoid the step signal reference tracking, 
which is dangerous for unmanned helicopter system, we use a low pass filter to calculate 
the set-point inputs of the output in the future i-th step, i=1, …, p.  
Let 1l

tSP R   be the set-point input at time t, then we have 

1( ) ,1t k i t t k i tr SP r SP i p          (12) 

where  is the cut-off frequency of the filter, the initial value |ˆt k t k tr y  , t k ir    is the i-th 
set-point input, and |ˆt k ty  is the estimate of output at time t+k.  
Thus, the set-point problem is solved and the output prediction can be implanted based on 
increment model (11) as follows: 
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When the prediction step i is less than time-delay k, 

 1
| 1| 1| 1 |

ˆ ˆ ˆ ˆ
t i t t i t d t i t d t i k t i tX X A X B u X               (13) 

When the prediction step is larger than time-delay k, let 
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 (14) 

 

Hence, the above problem 1), which comes from working mode change, is solved because 
0x  disappears in predictive equation (14). 

We can obtain the following prediction matrix for the output, which is often cared in 
helicopter tracking problem, from Eq. (12) and (13): 
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where 1
tY  is the known part of p steps’ prediction, which cannot be influenced by current 

control input, and matrix G has the following form: 

 
1 2
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... 0

... ... ... ...

...

d d

d d d d d d d
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d d d d d d d d
i i
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  
 
 
 
 
 

 

 (16) 

 

Compared with the normal GPC, the prediction of SIPC has better characteristics that can be 
described by the following theorem, which solves the above problem 2) in Section IV.A. 
Theorem: for nominal model (11), when the nominal model parameters ( , )d dA B change 
into ( , )dr drA B . 
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1. , 0M N R   , let the matrix norms satisfy 

,d dA M B M   

,dr drA N B N   

2. Define 
max{ }R   is the operator for the maximum of eigenvalue of matrix ●. 

Thus, if 

max

max

{ } 0
{ } 0

dr

d

R A
R A




 

Then, the state prediction obtained by Eqs. (13-14) maintains unbiased, and the characteristic is 
also guaranteed in traditional GPC conditions, i.e. Eq. (4), where tW is normal distribution. 
Proof:  See Appendix B. 
In Eq. (14), U , including p control inputs, need to be optimized, while only the first one is 
used for control. This will occupy a great deal of computation resource and result in very 
low computational efficiency, especially with respect to the fast applications.  
In order to reduce the computational burden of Eq. (14), we propose here a ‘step plan’ 
technique,  

 1t i t iu u      (17) 

where   is an m m  diagonal matrix presenting the length of one step, which will be a 
parameter to be selected. Then, we can simplify Eq. (14) by only calculating the unknown 
control, which has smaller dimensions. 

  11

1
2

ˆ ...
Tp

t t m m t

t t

Y Y G I u

Y G u

  
  

  
 (18) 

where m mI   is an m m  unit matrix.  Thus, the number of the unknown control input vector 
(from current time t to the future time t+p-1) is reduced from p to 1, and the dimension of 
predictive matrix is changed from pl pm to pl m . This reduction brings low computer 
memory consuming and simplifies the receding horizon optimization in the following 
calculation. 
To complete the horizon optimization and obtain the control input, the cost function of the 
stationary increment predictive control is designed as:  

 ˆ ˆ( ) ( )T T
t t t t t tJ R Y W R Y u u       (19) 

where  1 2 ...
TT T T

t t k t k t k pR r r r      , lp lpW R   is the weight matrix for tracking error, 

and m mR  is the weight matrix of the control increment.  
In order to minimize the cost function of Eq. (19), we can calculate the control vector as 
follows: 
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When the prediction step i is less than time-delay k, 
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Hence, the above problem 1), which comes from working mode change, is solved because 
0x  disappears in predictive equation (14). 

We can obtain the following prediction matrix for the output, which is often cared in 
helicopter tracking problem, from Eq. (12) and (13): 
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where 1
tY  is the known part of p steps’ prediction, which cannot be influenced by current 

control input, and matrix G has the following form: 
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Compared with the normal GPC, the prediction of SIPC has better characteristics that can be 
described by the following theorem, which solves the above problem 2) in Section IV.A. 
Theorem: for nominal model (11), when the nominal model parameters ( , )d dA B change 
into ( , )dr drA B . 
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1. , 0M N R   , let the matrix norms satisfy 
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2. Define 
max{ }R   is the operator for the maximum of eigenvalue of matrix ●. 

Thus, if 
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Then, the state prediction obtained by Eqs. (13-14) maintains unbiased, and the characteristic is 
also guaranteed in traditional GPC conditions, i.e. Eq. (4), where tW is normal distribution. 
Proof:  See Appendix B. 
In Eq. (14), U , including p control inputs, need to be optimized, while only the first one is 
used for control. This will occupy a great deal of computation resource and result in very 
low computational efficiency, especially with respect to the fast applications.  
In order to reduce the computational burden of Eq. (14), we propose here a ‘step plan’ 
technique,  

 1t i t iu u      (17) 

where   is an m m  diagonal matrix presenting the length of one step, which will be a 
parameter to be selected. Then, we can simplify Eq. (14) by only calculating the unknown 
control, which has smaller dimensions. 
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where m mI   is an m m  unit matrix.  Thus, the number of the unknown control input vector 
(from current time t to the future time t+p-1) is reduced from p to 1, and the dimension of 
predictive matrix is changed from pl pm to pl m . This reduction brings low computer 
memory consuming and simplifies the receding horizon optimization in the following 
calculation. 
To complete the horizon optimization and obtain the control input, the cost function of the 
stationary increment predictive control is designed as:  

 ˆ ˆ( ) ( )T T
t t t t t tJ R Y W R Y u u       (19) 

where  1 2 ...
TT T T

t t k t k t k pR r r r      , lp lpW R   is the weight matrix for tracking error, 

and m mR  is the weight matrix of the control increment.  
In order to minimize the cost function of Eq. (19), we can calculate the control vector as 
follows: 
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1
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T T
t t t

f t t

u G WG G W R Y

K R Y
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 
 (20) 

where 1
2 2 2( )T T

fK G WG G W    can be completed offline. 
Consequently, the proposed stationary increment predictive controller (SIPC) can be 
designed as followings.  
Step I: Make increment prediction 
Based on the current and history measure value, use Eqs. (13-15) to obtain the prediction for 
future output ˆ

tY and initial plan point 

|ˆt k t k tr y   

Step II: Plan for the set-point input 
Use Eq. (12) to plan the future set-points, and obtain  

 1 2 ...
TT T T

t t k t k t k pR r r r       

Step III: Receding horizon optimization 

Calculate the control increment tu , based on Eq. (20). 

Step IV: Control implementation 

Current control input 1t t tu u u   , which is used as the control to the real plant. After that, 
go back to step I at the next time instant. 
Thus, for real implementation, only the prediction of Eq. (13-15), the intenerating of Eq. (12), 
and the control law (20) need to be calculated online, thus the real time computation load, 
and steady tracking error are both reduced greatly compared with GPC, and the real test in 
section V has shown its feasibility.  
The model error, problem 3), will be compensated by an online optimal strategy, which will 
be described later. 

4.3 Optimal strategy for model error compensation 
In order to compensate the model error in Eq. (1), the control vector has to match the 
following equation, which can be directly obtained from Eq. (1): 

 0
d t f t d tB U B f B U   (21) 

where 0
tU  is the control vector need to be calculated by the predictive controller in section 

4.2, designed based on the original model (1) without the model error f. 
The control input at sampling time t cannot be solved directly from Eq. (21), because: 
1. Eq. (21) is difficult to be implemented because the dimension of tU  is less than that 

of tf . Thus, only the approximate solution can be obtained with respect to (21); 
2. tf  is actually an uncertainty set, an static optimal problem must be considered. 
Thus, we introduce the following cost function with quadratic form to solve the above 
problem 1). 
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where H is a weight matrix, which can be selected. 
On the other hand, tf is obtained from the ASMF algorithm introduced in section III, thus 
its convergence is very important for the validity of the whole controller. Actually, the 
convergence of ASMF algorithm is also influenced by the control action tU . This is because 
the stability of the ASMF can be represented by the filter parameter t , while t  in Eq. (3) 
can be rewritten as follows, 
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In [19], it has been shown the stability of the ASMF can be represented by the filter 
parameter t , i.e., the ASMF is stable when 0t  .  
Firstly, define 
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Thus, from Eq. (23), in order to maintain 1 0t   , the maximum value of 1( , )t t tJ U Y
  with 

respect to |
ˆ a

t tX  should be less than or equal to 1, i.e.,  
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In general, larger t  often means more rapid convergence of ASMF algorithm. That is, we 

should select an Ut to make *
1( , )t t tJ U Y

  small as far as possible, that is, 

 * *
1 1( ) min ( , )

t
t t t t tU

J Y J U Y 
   (26) 

We introduce the following cost function ( )t tJ U  with consideration of both (22) and (25) at 
the same time:  
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where 1
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go back to step I at the next time instant. 
Thus, for real implementation, only the prediction of Eq. (13-15), the intenerating of Eq. (12), 
and the control law (20) need to be calculated online, thus the real time computation load, 
and steady tracking error are both reduced greatly compared with GPC, and the real test in 
section V has shown its feasibility.  
The model error, problem 3), will be compensated by an online optimal strategy, which will 
be described later. 

4.3 Optimal strategy for model error compensation 
In order to compensate the model error in Eq. (1), the control vector has to match the 
following equation, which can be directly obtained from Eq. (1): 

 0
d t f t d tB U B f B U   (21) 

where 0
tU  is the control vector need to be calculated by the predictive controller in section 

4.2, designed based on the original model (1) without the model error f. 
The control input at sampling time t cannot be solved directly from Eq. (21), because: 
1. Eq. (21) is difficult to be implemented because the dimension of tU  is less than that 

of tf . Thus, only the approximate solution can be obtained with respect to (21); 
2. tf  is actually an uncertainty set, an static optimal problem must be considered. 
Thus, we introduce the following cost function with quadratic form to solve the above 
problem 1). 
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where H is a weight matrix, which can be selected. 
On the other hand, tf is obtained from the ASMF algorithm introduced in section III, thus 
its convergence is very important for the validity of the whole controller. Actually, the 
convergence of ASMF algorithm is also influenced by the control action tU . This is because 
the stability of the ASMF can be represented by the filter parameter t , while t  in Eq. (3) 
can be rewritten as follows, 
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In [19], it has been shown the stability of the ASMF can be represented by the filter 
parameter t , i.e., the ASMF is stable when 0t  .  
Firstly, define 
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Thus, from Eq. (23), in order to maintain 1 0t   , the maximum value of 1( , )t t tJ U Y
  with 

respect to |
ˆ a

t tX  should be less than or equal to 1, i.e.,  
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In general, larger t  often means more rapid convergence of ASMF algorithm. That is, we 

should select an Ut to make *
1( , )t t tJ U Y

  small as far as possible, that is, 

 * *
1 1( ) min ( , )

t
t t t t tU

J Y J U Y 
   (26) 

We introduce the following cost function ( )t tJ U  with consideration of both (22) and (25) at 
the same time:  

 

*

*
1

( )

( ) ( ) ( , )

arg min
t

t t t
U

t t t t t t t

U J U

J U J U J U Y 




 (27) 



  
Advanced Model Predictive Control 

 

256 

where 1 t R     are the positive definite weight matrix. To minimize ( )t tJ U , 

considering ( ) 0t tJ U  , the control can be obtained at ( ) 0t t
t

J U
U

  , i.e., 

 ( ) 2( )t t
t

t

J U MU NU
    (28) 

where  

1T aT aT a a
d d d d t d dM B HB B C W C B    

0 1
1( )T aT aT

d f t d t d d t tN B H B f B U B C W Y 
    

Here H can be selected as T
t d dH C C . Thus, we can obtain the optimal control that 

minimizes ( )t tJ U  as: 
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
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
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 (29) 

For the unknown measurement at time t+1 in Eq. (24), we consider that the control system is 
stable, so, 1 ( )t tY Y  . Here, ( )tY  is the elliptical domain of tY . Because 1( , )t t tJ U Y

  in Eq. 
(25) is positive definite, its maximum value point must be on the boundary, which can be 
estimated by the ASMF. Thus, we first define array i

tS to include the estimate of the i-th 
element’s two boundary endpoints as 

 1
{ , 1,...,13}

ˆ |{ ( 1) ( { } )}
l ll

i i i h
t t t d ij p l

S Y Y Max C Col j
  

 
  

 
  (30) 

where i
tY  is the i-th element in the vector tY , 1

ˆ i
tY  is the corresponding output 1tY  ’s 

endpoints estimation. For set i
tS , {1,2,...,8}i  and h is 0 or 1 for every i, i  is the operator 

for absolute value of the i-th element in vector  , and the function { }Col j  is defined as 
follows: 

  1 13{ } ... TCol j j j  (31) 

Then, we define a set tS to describe all possible endpoint vector of the 1tY   as 

   1

1 13ˆ | ...
t

EP
t t tS Y S S


  (32) 

where 1
ˆ EP
tY  is the possible endpoint (EP) for output 1tY  at next sampling time t+1. 

Thus, the proposed active modeling based predictive controller can be implemented by 
using the following steps:  
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Step I: Make increment prediction 

Based on the current estimated state |
ˆ a

t tX , use the stationary increment predictive controller, 

as in section 4.2, to obtain the nominal control input 0
tU ; 

Step II: Model error estimation and elimination 

Based on 0
tU , compute the optimal control input *

tU : 
Estimate the values and boundaries of state tX  and model error tf , using ASMF in (3); 

Calculate the corresponding 1
ˆ( )EP

t tU Y   for every 1
ˆ EP
tY   in set tS  by Eq. (29); 

For every 1
ˆ( )EP

t tU Y  in step 1), use Eq. (24) to obtain the maximum of function 

1 1
ˆ ˆ( ( ), )EP EP

t t t tJ U Y Y
  , and get the *

1
ˆ EP
tY  to let  

 
1

*
1 1 1

ˆ
ˆ ˆ ˆarg { ( ), }
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t t

EP EP EP
t t t t t

Y S
Y Max J U Y Y



  


 ; 

The corresponding *
1

ˆ( )EP
t tU Y   is the optimal control *

tU  at time t, i.e. * *
1

ˆ( )EP
t t tU U Y  . 

Step III: Receding horizon strategy  
Go back to step I at the next time instant.  

5. Flight test 
5.1 Flight test platform 
All flight tests are conducted on the Servoheli-40 setup, which was developed in the State 
Key Laboratory, SIACAS. It is equipped with a 3-axis gyro, a 3-axis accelerometer, a 
compass and a GPS. The sensory data can be sampled and stored into an SD card through 
an onboard DSP. Tab.1 shows the physical characteristics of SERVOHELI-40 small-size 
helicopter. More details of this experimental platform can be found in [24]. 
 

 
Fig. 2. SERVOHELI-40 small-size helicopter platform 
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where 1 t R     are the positive definite weight matrix. To minimize ( )t tJ U , 

considering ( ) 0t tJ U  , the control can be obtained at ( ) 0t t
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where i
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tY  is the corresponding output 1tY  ’s 
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tS , {1,2,...,8}i  and h is 0 or 1 for every i, i  is the operator 

for absolute value of the i-th element in vector  , and the function { }Col j  is defined as 
follows: 
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where 1
ˆ EP
tY  is the possible endpoint (EP) for output 1tY  at next sampling time t+1. 

Thus, the proposed active modeling based predictive controller can be implemented by 
using the following steps:  
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Step III: Receding horizon strategy  
Go back to step I at the next time instant.  

5. Flight test 
5.1 Flight test platform 
All flight tests are conducted on the Servoheli-40 setup, which was developed in the State 
Key Laboratory, SIACAS. It is equipped with a 3-axis gyro, a 3-axis accelerometer, a 
compass and a GPS. The sensory data can be sampled and stored into an SD card through 
an onboard DSP. Tab.1 shows the physical characteristics of SERVOHELI-40 small-size 
helicopter. More details of this experimental platform can be found in [24]. 
 

 
Fig. 2. SERVOHELI-40 small-size helicopter platform 
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Length 2.12m 
Height 0.73m 
Main rotor 
diameter 2.15m 

Stabilizer bar 
diameter 0.75m 

Rotor speed 1450rpm 
Dry weight 20kg 

Engine 2-stroke, air 
cooled 

Flight time 45 min 

Table 1. Physical characteristics of SERVOHELI-40 small-size helicopter 

5.2 Experiment for the verification of model error estimate when mode-change 
We use the identified hovering parameters, through frequency estimate [25], as the nominal 
model for hovering dynamics of the ServoHeli-40 platform. The model accuracy is verified 
in hovering mode (speed less than 3m/s) and cruising mode (speed more than 5m/s), the 
results for lateral velocity are shown in Fig.3a. 
Fig. 3 further shows the model difference due to mode change, where the red lines are the 
results calculated by the identified model with the inputs of hovering and cruising 
actuations, respectively, and blue lines are the measurements of the onboard sensors. 
Comparison shows that the hovering model outputs match the hovering state closely, but 
clear differences occur while being compared to the cruising state, even though the cruising 
actuations are used as the model inputs. This is the model error when flight mode is 
changed. 
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Fig. 3. Model difference due to mode change: (a) hovering conditions; (b) cruising conditions 
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To verify the accuracy of the estimate of the model error, described in Fig.3, the following 
experiment is designed: 
1. Actuate the longitudinal control loop to keep the speed more than 5 meter per second; 
2. Get the lateral model error value and boundaries through ASMF, and add them to the 

hovering model we built above; 
3. Compare the model output before and after compensation for model error. 
This process of experiment can be described by Fig.4, and the results are shown in Fig.5. 
Fig.5a shows that model output (red line) cannot describe the cruising dynamics due to the 
model error when ‘mode-change’, similar with Fig.3b; however, after compensation, shown 
in Fig.5b, the model output (red line) is very close with real cruising dynamics (blue line), 
and the uncertain boundaries can include the changing lateral speed, which mean that the 
proposed estimation method can obtain the model error and range accurately by ASMF 
when mode-change. 
 

 
Fig. 4. The experiment process for model-error estimate 
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Fig. 5. Model output before/after compensation: (a) before compensation; (b) after 
compensation 
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5.3 Flight experiment for the comparison of GPC SIPC and AMSIPC when sudden 
mode-change 
In Section 5.2, the model-error occurrence and the accuracy of the proposed method for 
estimation are verified. So, the next is the performance of the proposed controller in real 
flight. In this section, the performance of the modified GPC (Generalized Predictive Control, 
designed in Section 4.1), SIPC (Stationary Increment Predictive Control, designed in Section 
4.2) and AMSIPC (Active Modeling Based Stationary Increment Predictive Control, 
designed in Section 4.3), are tested in sudden mode-change, and are compared with each 
other on the ServoHeli-40 test-bed. To complete this mission, the following experimental 
process is designed: 
1. Using large and step-like reference velocity, red line in Fig.6-8, input it to longitudinal 

loop, lateral loop and vertical loop; 
2. Based on the same inputted reference velocity, using the 3 types of control method, 

GPC, SIPC and AMSIPC to actuate the helicopter to change flight mode quickly; 
3. Record the data of position, velocity and reference speed for the 3 control loops, and 

obtain reference position by integrating the reference speed; 
4. Compare errors of velocity and position tracking of GPC, SIPC and AMSIPC, 

executively, in this sudden mode-change flight. 
GPC, SIPC and AMSIPC are all tested in the same flight conditions, and the comparison 
results are shown in Figs. 6-8. We use the identified parameters in Section 5.2 to build the 
nominal model, based on the model structure in Appendix A, and parameters’ selection in 
Appendix C for controllers 
It can be seen that, when the helicopter increases its longitudinal velocity and changes flight 
mode from hovering to cruising, GPC (brown line) has a steady velocity error and increasing 
position error because of the model errors. SIPC (blue line) has a smaller velocity error because 
it uses increment model to reject the influence of the changing operation point and dynamics’ 
slow change during the flight. The prediction is unbiased and obtains better tracking 
performance, which is verified by Theorem. However, the increment model may enlarge the 
model errors due to the uncertain parameters and sensor/process noises, resulting in the 
oscillations in the constant velocity period (clearly seen in Fig.6&7) because the error of its 
prediction is only unbiased, but not minimum variance. While for AMSIPC (green line), 
because the model error, which makes the predictive process non-minimum variance, has 
 

  
Fig. 6. Longitudinal tracking results: (a) velocity; (b) position error (<50s hovering, >50s 
cruising) 
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Fig. 7. Lateral tracking results: (a) velocity; (b) position error (25s~80s cruising, others 
hovering) 

  
Fig. 8. Vertical tracking results: (a) velocity; (b) position error (<5s hovering; >5s cruising) 

been online estimated by the ASMF and compensated by the strategy in section 4.3, the 
proposed AMSIPC successfully reduces velocity oscillations and tracking errors together. 

6. Conclusion 
An active model based predictive control scheme was proposed in this paper to compensate 
model error due to flight mode change and model uncertainties, and realize full flight 
envelope control without multi-mode models and mode-dependent controls.  
The ASMF was adopted as an active modeling technique to online estimate the error 
between reference model and real dynamics. Experimental results have demonstrated that 
the ASMF successfully estimated the model error even though it is both helicopter dynamics 
and flight-state dependent.In order to overcome the aerodynamics time-delay, also with the 
active estimation for optimal compensation, an active modeling based stationary increment 
predictive controller was designed and analyzed.  
The proposed control scheme was implemented on our developed ServoHeli-40 unmanned 
helicopter. Experimental results have demonstrated clear improvements over the normal 
GPC without active modeling enhancement when sudden mode-change happens.  
It should be noted that, at present, we have only tested the control scheme with respect to 
the flight mode change from hovering to cruising, and vice versa. Further mode change 
conditions will be flight-tested in near future. 
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GPC, SIPC and AMSIPC are all tested in the same flight conditions, and the comparison 
results are shown in Figs. 6-8. We use the identified parameters in Section 5.2 to build the 
nominal model, based on the model structure in Appendix A, and parameters’ selection in 
Appendix C for controllers 
It can be seen that, when the helicopter increases its longitudinal velocity and changes flight 
mode from hovering to cruising, GPC (brown line) has a steady velocity error and increasing 
position error because of the model errors. SIPC (blue line) has a smaller velocity error because 
it uses increment model to reject the influence of the changing operation point and dynamics’ 
slow change during the flight. The prediction is unbiased and obtains better tracking 
performance, which is verified by Theorem. However, the increment model may enlarge the 
model errors due to the uncertain parameters and sensor/process noises, resulting in the 
oscillations in the constant velocity period (clearly seen in Fig.6&7) because the error of its 
prediction is only unbiased, but not minimum variance. While for AMSIPC (green line), 
because the model error, which makes the predictive process non-minimum variance, has 
 

  
Fig. 6. Longitudinal tracking results: (a) velocity; (b) position error (<50s hovering, >50s 
cruising) 
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Fig. 7. Lateral tracking results: (a) velocity; (b) position error (25s~80s cruising, others 
hovering) 

  
Fig. 8. Vertical tracking results: (a) velocity; (b) position error (<5s hovering; >5s cruising) 

been online estimated by the ASMF and compensated by the strategy in section 4.3, the 
proposed AMSIPC successfully reduces velocity oscillations and tracking errors together. 

6. Conclusion 
An active model based predictive control scheme was proposed in this paper to compensate 
model error due to flight mode change and model uncertainties, and realize full flight 
envelope control without multi-mode models and mode-dependent controls.  
The ASMF was adopted as an active modeling technique to online estimate the error 
between reference model and real dynamics. Experimental results have demonstrated that 
the ASMF successfully estimated the model error even though it is both helicopter dynamics 
and flight-state dependent.In order to overcome the aerodynamics time-delay, also with the 
active estimation for optimal compensation, an active modeling based stationary increment 
predictive controller was designed and analyzed.  
The proposed control scheme was implemented on our developed ServoHeli-40 unmanned 
helicopter. Experimental results have demonstrated clear improvements over the normal 
GPC without active modeling enhancement when sudden mode-change happens.  
It should be noted that, at present, we have only tested the control scheme with respect to 
the flight mode change from hovering to cruising, and vice versa. Further mode change 
conditions will be flight-tested in near future. 
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7. Appendix 
A. Helicopter dynamics 
A helicopter in flight is free to simultaneously rotate and translate in six degrees of freedom. 
Fig. A-1 shows the helicopter variables in a body-fixed frame with origin at the vehicle’s 
center of gravity. 
 

 
Fig. A-1. Helicopter with its body-fixed reference frame 

Ref.[18] developed a semi-decoupled model for small-size helicopter, i.e.,  
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where δu, δv, δw are longitudinal, lateral and vertical velocity, δp, δq, δr are roll, pitch and 
yaw angle rates, δφ and δθ are the angles of roll and pitch, respectively, a and b are the first 
harmonic flapping angle of main rotor, c and d are the first harmonic flapping angle of 
stabilizer bar, fbr  is the feedback control value of the angular rate gyro, lat  is the lateral 
control input, lon  is the longitudinal control input, ped  is the yawing control input, and 

col  is the vertical control input. All the symbols except gravity acceleration g in lonA , latA , 
yaw heaveA  , lonB , latB  and yaw heaveB   are unknown parameters to be identified. Thus, all of the 

states and control inputs in (A-1), (A-2) and (A-3) are physically meaningful and defined in 
body-axis. 

B. Proof for the predictive theorem 
Proof: 
Assume the real dynamics is described as: 

 1t dr t dr t k tX A X B U W      (B-1) 

which is different from the reference model of Eq. (11). In Eq. (B-1), tX is system state, drA is 
the system matrix, drB is the control matrix, tU is control input, tW is process noise. The 
one-step prediction, according to Eq. (B-1), can be obtained by Eq. (13-14),  

 
| 1

1 1 1

ˆ
t t t d t d t k

dr t dr t k t

d t d t k

X X A X B U
A X B U W

A X B U

 

   



    

  
   

  (B-2) 

And  

 

 1 1|

1 1 1

ˆ

{
( )}
{( ) ( ) }

t t t

dr t dr t k t

dr t dr t k t d t d t k

dr d t dr d t k t

E X X

E A X B U W
A X B U W A X B U

E A A X B B U W

 



    





  
      

       

 (B-3) 

According to condition 1) and 2), prediction is bounded, then, 
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and, when the system of Eq. (B-1) works around a working point in steady state, the mean 
value of control inputs and states should be constant, so we can obtain: 
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7. Appendix 
A. Helicopter dynamics 
A helicopter in flight is free to simultaneously rotate and translate in six degrees of freedom. 
Fig. A-1 shows the helicopter variables in a body-fixed frame with origin at the vehicle’s 
center of gravity. 
 

 
Fig. A-1. Helicopter with its body-fixed reference frame 
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where δu, δv, δw are longitudinal, lateral and vertical velocity, δp, δq, δr are roll, pitch and 
yaw angle rates, δφ and δθ are the angles of roll and pitch, respectively, a and b are the first 
harmonic flapping angle of main rotor, c and d are the first harmonic flapping angle of 
stabilizer bar, fbr  is the feedback control value of the angular rate gyro, lat  is the lateral 
control input, lon  is the longitudinal control input, ped  is the yawing control input, and 

col  is the vertical control input. All the symbols except gravity acceleration g in lonA , latA , 
yaw heaveA  , lonB , latB  and yaw heaveB   are unknown parameters to be identified. Thus, all of the 

states and control inputs in (A-1), (A-2) and (A-3) are physically meaningful and defined in 
body-axis. 

B. Proof for the predictive theorem 
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Assume the real dynamics is described as: 
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one-step prediction, according to Eq. (B-1), can be obtained by Eq. (13-14),  
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Eq. (B-4) indicates that the one step prediction of Eq. (B-2) is unbiased.  
Assuming that prediction at time i-1 is unbiased, i.e..  
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Therefore, the prediction at time i is also unbiased. 

C. Parameters’ selection for estimate and control in flight experiment 
1. For Modeling 
The identification results for hovering dynamics are listed in Tab.D-1. 
 

Longitudinal Loop Lateral       Loop Vertical    Loop 
Para. Val. Para. Val. Para. Val. 
Xu 0.2446 Yv -0.0577 Zw 1.666 
Xa -4.962 Yb 9.812 Zr -3.784 
Xlat -0.0686 Ylat -1.823 Zped 2.304 
Xlon 0.0896 Ylon 2.191 Zcol -11.11 
Mu -1.258 Lv 15.84 Yaw Loop 
Ma 46.06 Lb 126.6 Para. Val. 
Mlat -0.6269 Llat -4.875 Nw -0.027 
Mlon 3.394 Llon 28.64 Nr -1.087 
Ac 0.1628 Bd -1.654 Nrfb -1.845 
Alat -0.0178 Blat 0.04732 Nped 1.845 
Alon -0.2585 Blon -9.288 Ncol -0.972 
Clat 2.238 Dlat -0.7798 Kr -0.040 
Clon -4.144 Dlon -5.726 Krfb -2.174 
tf 0.5026 ts 0.5054   

Table D-1. The parameters of hovering model  
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2. For ASMF 

13 13 13 13

13 13 13 13
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0 0.1
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I
 

 

 
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, 8 80.01R I   

where m mI   is the m×m unit matrix and 0m n  is the m×n zero matrix. 
3. For GPC 

10p  , 40 402.32I  , 10k   

4. For SIPC 

10p  , 4 42.32I  , 8 80.99I   

80 80W I  , 10k  , 4 40.8I   

5. For AMSIPC 

10p  , 4 42.32I  , 8 80.99I   

80 80W I  , 10k  , 4 40.8I  , 13 13H I   
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Eq. (B-4) indicates that the one step prediction of Eq. (B-2) is unbiased.  
Assuming that prediction at time i-1 is unbiased, i.e..  
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Therefore, the prediction at time i is also unbiased. 

C. Parameters’ selection for estimate and control in flight experiment 
1. For Modeling 
The identification results for hovering dynamics are listed in Tab.D-1. 
 

Longitudinal Loop Lateral       Loop Vertical    Loop 
Para. Val. Para. Val. Para. Val. 
Xu 0.2446 Yv -0.0577 Zw 1.666 
Xa -4.962 Yb 9.812 Zr -3.784 
Xlat -0.0686 Ylat -1.823 Zped 2.304 
Xlon 0.0896 Ylon 2.191 Zcol -11.11 
Mu -1.258 Lv 15.84 Yaw Loop 
Ma 46.06 Lb 126.6 Para. Val. 
Mlat -0.6269 Llat -4.875 Nw -0.027 
Mlon 3.394 Llon 28.64 Nr -1.087 
Ac 0.1628 Bd -1.654 Nrfb -1.845 
Alat -0.0178 Blat 0.04732 Nped 1.845 
Alon -0.2585 Blon -9.288 Ncol -0.972 
Clat 2.238 Dlat -0.7798 Kr -0.040 
Clon -4.144 Dlon -5.726 Krfb -2.174 
tf 0.5026 ts 0.5054   

Table D-1. The parameters of hovering model  
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2. For ASMF 
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where m mI   is the m×m unit matrix and 0m n  is the m×n zero matrix. 
3. For GPC 

10p  , 40 402.32I  , 10k   

4. For SIPC 

10p  , 4 42.32I  , 8 80.99I   

80 80W I  , 10k  , 4 40.8I   

5. For AMSIPC 

10p  , 4 42.32I  , 8 80.99I   

80 80W I  , 10k  , 4 40.8I  , 13 13H I   

8. References 
Tischler M.B., “Frequency-domain Identification of XV-15 Tilt-rotor Aircraft Dynamics in 

Hovering Flight,” Journal of the American Helicopter Society, Vol. 30 (2), pp.38-48, 
1985. 

Tischler M. B. and Cauffman M. G., “Frequency-Response Method for Rotorcraft System 
Identification: Flight Application to BO-I05 Coupled Rotor/Fuselage Dynamics,” 
Journal of the American Helicopter Society, Vol. 37 (3), pp.3-17, 1992. 

Fletcher J. W., “Identification of UH-60 Stability Derivative Models in Hover from Flight 
Test Data,” Journal of the American Helicopter Society, Vol. 40 (1), pp.8-20, 1995. 

Mettler B., Tischler M. B. and Kanade T., “System Identification of Small-Size Unmanned 
Helicopter Dynamics,” American Helicopter Society 55th Annual Forum 
Proceedings, Vol. 2, pp.1706-1717, Montreal, Quebec, Canada, May 25-27, 1999. 

Gavrilets V., Metlter B. and Feron E., “Nonlinear Model for a Small-scale Acrobatic 
Helicopter,” Proceedings of the American Institute of Aeronautics Guidance, 
Navigation, and Control Conference, pp.8, Montreal, Quebec, Canada, August 6-9, 
2001. 

Massimiliano M. and Valerio S., “A Full Envelope Small Commercial Aircraft Flight Control 
Design Using Multivariable Proportional-Integral Control,” IEEE Transactions on 
Control Systems Technology, Vol. 16 (1), pp.169-176, January, 2008. 

Voorsluijs M. and Mulder A., "Parameter-dependent robust control for a rotorcraft UAV," 
AIAA Guidance, Navigation, and Control Conference and Exhibit, pp.1-11, San 
Francisco, California, USA, August 15-18, 2005. 

Bijnens B., Chu Q.P. and Voorsluijs M., "Adaptive feedback linearization flight control for a 
helicopter UAV," AIAA Guidance, Navigation, and Control Conference and 
Exhibit, pp.1-10, San Francisco, California, USA, August 15-18, 2005. 

Kahveci N.E., Ioannou P.A., Mirmirani M.D., “Adaptive LQ Control With Anti-Windup 
Augmentation to Optimize UAV Performance in Autonomous Soaring 



  
Advanced Model Predictive Control 

 

266 

Applications,” IEEE Transactions on  Control Systems Technology, Vol. 16(4): 
pp.691 – 707, 2008 

MacKunis W., Wilcox Z.D., Kaiser M.K., Dixon W.E., “Global Adaptive Output Feedback 
Tracking Control of an Unmanned Aerial Vehicle,” IEEE Transactions on Control 
Systems Technology, Vol. 18(6): pp.1390-1397, 2010. 

Cummings M.L., Mitchell P.J., “Predicting Controller Capacity in Supervisory Control of 
Multiple UAVs Systems,” IEEE Transactions on Man and Cybernetics, Part A: 
Systems and Humans, Vol. 38(2): pp.451-460, 2008. 

Jiang X., Han Q.L., “On guaranteed cost fuzzy control for nonlinear systems with interval 
time-varying delay,” Control Theory & Applications, IET, Vol. 1(6): pp.1700-1710, 
2007. 

Natori K., Oboe R., Ohnishi, K., “Stability Analysis and Practical Design Procedure of Time 
Delayed Control Systems With Communication Disturbance Observer,” IEEE 
Transactions on Industrial Informatics, Vol. 4(3): pp.185-197, 2008. 

Haykin S. and De Freitas N., “Special Issue on Sequential State Estimation,” Proceedings of 
the IEEE, Vol. 92(3), pp.423-574, 2004. 

Lerro D. and Bar-Shalom Y. K., ” Tracking with Debiased Consistent Converted 
Measurements vs. EKF,” IEEE Transactions on Aerosp. Electron.System, AES-29, 
pp.1015-1022, 1993． 

Julier S. and Uhlmann J., “Unscented filtering and nonlinear estimation,” Proceedings of the 
IEEE, Vol. 92(3), pp. 401-422, 2004. 

Song Q., Jiang Z., and Han J. D., “UKF-Based Active Model and Adaptive Inverse Dynamics 
Control for Mobile Robot,” IEEE International Conference on Robotics and 
Automation, 2007. 

Shamma J. S. and Tu K. Y., “Approximate set-valued observers for nonlinear systems,” IEEE 
Transactions on Automatic Control, Vol. 42(5), pp.648–658, 1997. 

Zhou B., Han J.D. and Liu G., “A UD factorization-based nonlinear adaptive set-
membership filter for ellipsoidal estimation,” International Journal of Robust and 
Nonlinear Control, Vol 18 (16), pp.1513-1531, November 10, 2007.  

Scholte E., Campbell M.E., “Robust Nonlinear Model Predictive Control With Partial State 
Information,” Control Systems Technology, IEEE Transactions on, Vol. 16(4): 
pp.636-651, 2008. 

Ding B. C., Xi Y. G., “A Synthesis Approach of On-line Constrained Robust Model 
Predictive Control.”  Automatica. Vol. 40(1): pp. 163-167, 2004. 

Crassidis J. L., “Robust Control of Nonlinear Systems Using Model-Error Control 
Synthesis,” Journal of guidance, control and dynamics, Vol. 22 (4), pp.595-601, 1999. 

Gregor K. and Igor S., “Tracking-error Model-based Predictive Control for Mobile Robots in 
real time.” Robotics and Autonomous Systems. Vol. 55, No. 7, pp. 460 - 469, 2007. 

Qi J.T., Song D.L., Dai. L., Han J.D., “The ServoHeli-20 Rotorcraft UAV Project,” 
International Conference on Mechatronics and Machine Vision in Practice, 
Auckland, New Zealand, pp.92-96, 2008. 

Song D.L., Qi J.T., Dai. L., Han J.D. and Liu G., “Modeling a Small-size Unmanned 
Helicopter Using Optimal Estimation in The Frequency Domain,” International 
Conference on Mechatronics and Machine Vision in Practice, Auckland, New 
Zealand, December 2-4, pp.97-102, 2008. 

Song D.L., Qi J.T. and Han J.D., “Model Identification and Active Modeling Control for 
Small-Size Unmanned Helicopters: Theory and Experiment,” AIAA Guidance 
Navigation and Control, Toronto, Canada, AIAA-2010-7858, 2010. 

13 

Nonlinear Autoregressive with Exogenous 
Inputs Based Model Predictive Control for Batch 

Citronellyl Laurate Esterification Reactor 
Siti Asyura Zulkeflee, Suhairi Abdul Sata and Norashid Aziz 

School of Chemical Engineering, Engineering Campus,  
Universiti Sains Malaysia, Seri Ampangan, 

14300 Nibong Tebal, Seberang Perai Selatan, Penang,  
Malaysia 

1. Introduction 
Esterification is a widely employed reaction in organic process industry. Organic esters are 
most frequently used as plasticizers, solvents, perfumery, as flavor chemicals and also as 
precursors in pharmaceutical products. One of the important ester is Citronellyl laurate, a 
versatile component in flavors and fragrances, which are widely used in the food, beverage, 
cosmetic and pharmaceutical industries. In industry, the most common ester productions are 
carried out in batch reactors because this type of reactor is quite flexible and can be adapted to 
accommodate small production volumes (Barbosa-Póvoa, 2007). The mode of operation for a 
batch esterification reactor is similar to other batch reactor processes where there is no inflow 
or outflow of reactants or products while the reaction is being carried out. In the batch 
esterification system, there are various parameters affecting the ester rate of reaction such as 
different catalysts, solvents, speed of agitation, catalyst loading, temperature, mole ratio, 
molecular sieve and water activity (Yadav and Lathi, 2005). Control of this reactor is very 
important in achieving high yields, rates and to reduce side products. Due to its simple 
structure and easy implementation, 95% of control loops in chemical industries are still using 
linear controllers such as the conventional Proportional, Integral & Derivative (PID) 
controllers. However, linear controllers yield satisfactory performance only if the process is 
operated close to a nominal steady-state or if the process is fairly linear (Liu & Macchietto, 
1995). Conversely, batch processes are characterized by limited reaction duration and by non-
stationary operating conditions, then nonlinearities may have an important impact on the 
control problem (Hua et al., 2004). Moreover, the control system must cope with the process 
variables, as well as facing changing operation conditions, in the presence of unmeasured 
disturbances. Due to these difficulties, studies of advanced control strategy have received great 
interests during the past decade. Among the advanced control strategies available, the Model 
Predictive Control (MPC) has proved to be a good control for batch reactor processes (Foss et 
al., 1995; Dowd et al., 2001; Costa et al., 2002; Bouhenchir et al., 2006). MPC has influenced 
process control practices since late 1970s. Eaton and Rawlings (1992) defined MPC as a control 
scheme in which the control algorithm optimizes the manipulated variable profile over a finite 
future time horizon in order to maximize an objective function subjected to plant models and 
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1995). Conversely, batch processes are characterized by limited reaction duration and by non-
stationary operating conditions, then nonlinearities may have an important impact on the 
control problem (Hua et al., 2004). Moreover, the control system must cope with the process 
variables, as well as facing changing operation conditions, in the presence of unmeasured 
disturbances. Due to these difficulties, studies of advanced control strategy have received great 
interests during the past decade. Among the advanced control strategies available, the Model 
Predictive Control (MPC) has proved to be a good control for batch reactor processes (Foss et 
al., 1995; Dowd et al., 2001; Costa et al., 2002; Bouhenchir et al., 2006). MPC has influenced 
process control practices since late 1970s. Eaton and Rawlings (1992) defined MPC as a control 
scheme in which the control algorithm optimizes the manipulated variable profile over a finite 
future time horizon in order to maximize an objective function subjected to plant models and 
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constraints. Due to these features, these model based control algorithms can be extended to 
include multivariable systems and can be formulated to handle process constraints explicitly. 
Most of the improvements on MPC algorithms are based on the developmental reconstruction 
of the MPC basic elements which include prediction model, objective function and 
optimization algorithm. There are several comprehensive technical surveys of theories and 
future exploration direction of MPC by Henson, 1998, Morari & Lee, 1999, Mayne et al., 2000 
and Bequette, 2007. Early development of this kind of control strategy, the Linear Model 
Predictive Control (LMPC) techniques such as Dynamic Matrix Control (DMC) (Gattu and 
Zafiriou, 1992) have been successfully implemented on a large number of processes. One 
limitation to the LMPC methods is that they are based on linear system theory and may not 
perform well on highly nonlinear system. Because of this, a Nonlinear Model Predictive 
Control (NMPC) which is an extension of the LMPC is very much needed.  
NMPC is conceptually similar to its linear counterpart, except that nonlinear dynamic 
models are used for process prediction and optimization. Even though NMPC has been 
successfully implemented in a number of applications (Braun et al., 2002; M’sahli et al., 2002; 
Ozkan et al., 2006; Nagy et al., 2007; Shafiee et al., 2008; Deshpande et al., 2009), there is no 
common or standard controller for all processes. In other words, NMPC is a unique 
controller which is meant only for the particular process under consideration. Among the 
major issues in NMPC development are firstly, the development of a suitable model that can 
represent the real process and secondly, the choice of the best optimization technique. 
Recently a number of modeling techniques have gained prominence. In most systems, linear 
models such as partial least squares (PLS), Auto Regressive with Exogenous inputs (ARX) 
and Auto Regressive Moving Average with Exogenous inputs (ARMAX) only perform well 
over a small region of operations. For these reasons, a lot of attention has been directed at 
identifying nonlinear models such as neural networks, Volterra, Hammerstein, Wiener and 
NARX model. Among of these models, the NARX model can be considered as an 
outstanding choice to represent the batch esterification process since it is easier to check the 
model parameters using the rank of information matrix, covariance matrices or evaluating 
the model prediction error using a given final prediction error criterion. The NARX model 
provides a powerful representation for time series analysis, modeling and prediction due to 
its strength in accommodating the dynamic, complex and nonlinear nature of real time 
series applications (Harris & Yu, 2007; Mu et al., 2005). Therefore, in this work, a NARX 
model has been developed and embedded in the NMPC with suitable and efficient 
optimization algorithm and thus currently, this model is known as NARX-MPC. 
Citronellyl laurate is synthesized from DL-citronellol and Lauric acid using immobilized 
Candida Rugosa lipase (Serri et. al., 2006). This process has been chosen mainly because it is a 
very common and important process in the industry but it has yet to embrace the advanced 
control system such as the MPC in their plant operation. According to Petersson et al. (2005), 
temperature has a strong influence on the enzymatic esterification process. The temperature 
should preferably be above the melting points of the substrates and the product, but not too 
high, as the enzyme’s activity and stability decreases at elevated temperatures. Therefore, 
temperature control is important in the esterification process in order to achieve maximum 
ester production. In this work, the reactor’s temperature is controlled by manipulating the 
flowrate of cooling water into the reactor jacket. The performances of the NARX-MPC were 
evaluated based on its set-point tracking, set-point change and load change. Furthermore, 
the robustness of the NARX-MPC is studied by using four tests i.e. increasing heat transfer 
coefficient, increasing heat of reaction, decreasing inhibition activation energy and a 
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simultaneous change of all the mentioned parameters. Finally, the performance of NARX-
MPC is compared with a PID controller that is tuned using internal model control technique 
(IMC-PID). 

2. Batch esterification reactor 
The synthesis of Citronellyl laurate involved an exothermic process where Citronellol 
reacted with Lauric acid to produce Citronellyl Laurate and water. 
  

 
Fig. 1. Schematic represent esterification of Citronellyl laurate 

The esterification process took place in a batch reactor where the immobilized lipase catalyst 
was mixed freely in the reactor. A layout of the batch esterification reactor with associated 
heating and cooling configurations is shown in Fig.2.  
 

 
Fig. 2. Schematic diagram of the batch esterification reactor. 

Typical operating conditions were 310K and 1 bar. The reactor temperature was controlled 
by manipulating the water flowrate within the jacket. The reactor’s temperature should not 
exceed the maximal temperature of 320K, due to the temperature sensitivity of the catalysts 
(Yadav & Lathi, 2004; Serri et. al., 2006; Zulkeflee & Aziz, 2007). The reactor’s temperature 
control can be achieved by treating the limitation of the jacket’s flowrate, Fj, which can be 
viewed as a state of the process and as the constraint control problem. The control strategy 
proposed in this paper was designed to meet the specifications of the laboratory scale batch 
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constraints. Due to these features, these model based control algorithms can be extended to 
include multivariable systems and can be formulated to handle process constraints explicitly. 
Most of the improvements on MPC algorithms are based on the developmental reconstruction 
of the MPC basic elements which include prediction model, objective function and 
optimization algorithm. There are several comprehensive technical surveys of theories and 
future exploration direction of MPC by Henson, 1998, Morari & Lee, 1999, Mayne et al., 2000 
and Bequette, 2007. Early development of this kind of control strategy, the Linear Model 
Predictive Control (LMPC) techniques such as Dynamic Matrix Control (DMC) (Gattu and 
Zafiriou, 1992) have been successfully implemented on a large number of processes. One 
limitation to the LMPC methods is that they are based on linear system theory and may not 
perform well on highly nonlinear system. Because of this, a Nonlinear Model Predictive 
Control (NMPC) which is an extension of the LMPC is very much needed.  
NMPC is conceptually similar to its linear counterpart, except that nonlinear dynamic 
models are used for process prediction and optimization. Even though NMPC has been 
successfully implemented in a number of applications (Braun et al., 2002; M’sahli et al., 2002; 
Ozkan et al., 2006; Nagy et al., 2007; Shafiee et al., 2008; Deshpande et al., 2009), there is no 
common or standard controller for all processes. In other words, NMPC is a unique 
controller which is meant only for the particular process under consideration. Among the 
major issues in NMPC development are firstly, the development of a suitable model that can 
represent the real process and secondly, the choice of the best optimization technique. 
Recently a number of modeling techniques have gained prominence. In most systems, linear 
models such as partial least squares (PLS), Auto Regressive with Exogenous inputs (ARX) 
and Auto Regressive Moving Average with Exogenous inputs (ARMAX) only perform well 
over a small region of operations. For these reasons, a lot of attention has been directed at 
identifying nonlinear models such as neural networks, Volterra, Hammerstein, Wiener and 
NARX model. Among of these models, the NARX model can be considered as an 
outstanding choice to represent the batch esterification process since it is easier to check the 
model parameters using the rank of information matrix, covariance matrices or evaluating 
the model prediction error using a given final prediction error criterion. The NARX model 
provides a powerful representation for time series analysis, modeling and prediction due to 
its strength in accommodating the dynamic, complex and nonlinear nature of real time 
series applications (Harris & Yu, 2007; Mu et al., 2005). Therefore, in this work, a NARX 
model has been developed and embedded in the NMPC with suitable and efficient 
optimization algorithm and thus currently, this model is known as NARX-MPC. 
Citronellyl laurate is synthesized from DL-citronellol and Lauric acid using immobilized 
Candida Rugosa lipase (Serri et. al., 2006). This process has been chosen mainly because it is a 
very common and important process in the industry but it has yet to embrace the advanced 
control system such as the MPC in their plant operation. According to Petersson et al. (2005), 
temperature has a strong influence on the enzymatic esterification process. The temperature 
should preferably be above the melting points of the substrates and the product, but not too 
high, as the enzyme’s activity and stability decreases at elevated temperatures. Therefore, 
temperature control is important in the esterification process in order to achieve maximum 
ester production. In this work, the reactor’s temperature is controlled by manipulating the 
flowrate of cooling water into the reactor jacket. The performances of the NARX-MPC were 
evaluated based on its set-point tracking, set-point change and load change. Furthermore, 
the robustness of the NARX-MPC is studied by using four tests i.e. increasing heat transfer 
coefficient, increasing heat of reaction, decreasing inhibition activation energy and a 
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simultaneous change of all the mentioned parameters. Finally, the performance of NARX-
MPC is compared with a PID controller that is tuned using internal model control technique 
(IMC-PID). 

2. Batch esterification reactor 
The synthesis of Citronellyl laurate involved an exothermic process where Citronellol 
reacted with Lauric acid to produce Citronellyl Laurate and water. 
  

 
Fig. 1. Schematic represent esterification of Citronellyl laurate 

The esterification process took place in a batch reactor where the immobilized lipase catalyst 
was mixed freely in the reactor. A layout of the batch esterification reactor with associated 
heating and cooling configurations is shown in Fig.2.  
 

 
Fig. 2. Schematic diagram of the batch esterification reactor. 
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reactor at the Control Laboratory of School of Chemical Engineering, University Sains 
Malaysia, which has a maximum of 0.2 L/min limitation on the jacket’s flowrate. Therefore, 
the constraint of the jacket’s flowrate will be denoted as Fjmax = 0.2 L/min. 
The fundamental equations of the mass and energy balances of the process are needed to 
generate data for empirical model identification. The equations are valid for all � � [0,∞]. 
The reaction rate and kinetics are given by (Yadav & Lathi, 2004; Serri et. al., 2006; Zulkeflee 
& Aziz, 2007): 

 ����
�� = [���]����
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where ���, ���, ��� and �� are concentrations (mol/L) of Lauric acid, Citronellol, Citronellyl 
laurate and water respectively; rmax (mol l-1 min-1 g-1 of enzyme) is the maximum rate of 
reaction,  KAc (mol l-1 g-1 of enzyme), KAl (mol l-1 g-1 of enzyme) and  Ki (mol l-1 g-1 of enzyme) 
are the Michealis constant for Lauric acid, Citronellol and inhibition respectively; ��, ���� 
and ��� are the pre-exponential factors (L mol/s) for inhibition, Lauric acid and Citronellol 
respectively; ��, ���� and ��� are the activation energy (J mol/K) for inhibition, acid lauric 
and Citronellol respectively; R is the gas constant (J/mol K). 
The reactor can be described by the following thermal balances (Aziz et al., 2000): 

 ���
�� = ��������� + ��

[�(�����������������������������)]  (8) 

 ���
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(������������������� )
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where Tr (K) , Tj (K) and Tjin is reactor, jacket and inlet jacket temperature respectively; ����� 
(kJ/mol) is heat of reaction; V(l) and Vj(l) is the volume of the reactor and jacket 
respectively;�����, ����, ���� and ��� are specific heats (J/mol K) of Lauric acid, Citronellol, 
Citronellyl laurate and water respectively; �� is the water density (g/L) in the jacket;��� is 
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the flowrate of the jacket (L/min); ��  (kW) is the heat transfer through the jacket wall; A and 
U are the heat exchange area (m2) and the heat exchange coefficient (W/m2/K)  respectively.  
Eq. 1 - Eq. 10 were simulated using a 4th/5th order of the Runge Kutta method in MATLAB® 
environment. The model of the batch esterification process was derived under the 
assumption that the process is perfectly mixed where the concentrations of ���], ���], ���], 
��] and temperature of the fluid in the tank is uniform. Table 1 shows all the value of the 
parameters for the batch esterification process under consideration. The validations of 
corresponding dynamic models have been reported in Zulkeflee & Aziz (2007). 
 

Parameters Units Values Parameters Units Values 

AAc 

AAl 

Ai 

EAc 

EAl 

Ei 

Tji 
CpAc 

CpAl 

CpEs 

L mol/s 
L mol/s 
L mol/s 
J mol/K 
J mol/K 
J mol/K 
K 
J/mol K 
J/mol K 
J/mol K 

18.20871 
24.04675 
0.319947 
-105.405 
-66.093 
-249.944 
294 
420.53 
235.27 
617.79 

Cpw 

V 
Vj 

��  
ΔHrxn 

α 
β 
U 
A 
R 

J/mol K 
L 

L 
J/m3 

kJ 
- 
- 
J/s m2 K 
m2 
J/mol K 

75.40  
1.5 
0.8 
11.648 
16.73 
1 
1 
2.857 
0.077 
8.314 

Table 1. Operating Conditions and Calculated Parameters 

3. NARX model 
The Nonlinear Autoregressive with Exogenous inputs (NARX) model is characterized by 
the non-linear relations between the past inputs, past outputs and the predicted process 
output and can be delineated by the high order difference equation, as follows: 
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reactor at the Control Laboratory of School of Chemical Engineering, University Sains 
Malaysia, which has a maximum of 0.2 L/min limitation on the jacket’s flowrate. Therefore, 
the constraint of the jacket’s flowrate will be denoted as Fjmax = 0.2 L/min. 
The fundamental equations of the mass and energy balances of the process are needed to 
generate data for empirical model identification. The equations are valid for all � � [0,∞]. 
The reaction rate and kinetics are given by (Yadav & Lathi, 2004; Serri et. al., 2006; Zulkeflee 
& Aziz, 2007): 
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where ���, ���, ��� and �� are concentrations (mol/L) of Lauric acid, Citronellol, Citronellyl 
laurate and water respectively; rmax (mol l-1 min-1 g-1 of enzyme) is the maximum rate of 
reaction,  KAc (mol l-1 g-1 of enzyme), KAl (mol l-1 g-1 of enzyme) and  Ki (mol l-1 g-1 of enzyme) 
are the Michealis constant for Lauric acid, Citronellol and inhibition respectively; ��, ���� 
and ��� are the pre-exponential factors (L mol/s) for inhibition, Lauric acid and Citronellol 
respectively; ��, ���� and ��� are the activation energy (J mol/K) for inhibition, acid lauric 
and Citronellol respectively; R is the gas constant (J/mol K). 
The reactor can be described by the following thermal balances (Aziz et al., 2000): 
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where Tr (K) , Tj (K) and Tjin is reactor, jacket and inlet jacket temperature respectively; ����� 
(kJ/mol) is heat of reaction; V(l) and Vj(l) is the volume of the reactor and jacket 
respectively;�����, ����, ���� and ��� are specific heats (J/mol K) of Lauric acid, Citronellol, 
Citronellyl laurate and water respectively; �� is the water density (g/L) in the jacket;��� is 
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the flowrate of the jacket (L/min); ��  (kW) is the heat transfer through the jacket wall; A and 
U are the heat exchange area (m2) and the heat exchange coefficient (W/m2/K)  respectively.  
Eq. 1 - Eq. 10 were simulated using a 4th/5th order of the Runge Kutta method in MATLAB® 
environment. The model of the batch esterification process was derived under the 
assumption that the process is perfectly mixed where the concentrations of ���], ���], ���], 
��] and temperature of the fluid in the tank is uniform. Table 1 shows all the value of the 
parameters for the batch esterification process under consideration. The validations of 
corresponding dynamic models have been reported in Zulkeflee & Aziz (2007). 
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3. NARX model 
The Nonlinear Autoregressive with Exogenous inputs (NARX) model is characterized by 
the non-linear relations between the past inputs, past outputs and the predicted process 
output and can be delineated by the high order difference equation, as follows: 
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where �(�) and �(�) represents the input and output of the model at time � in which the 
current output �(�) ∈ ℜ depends entirely on the current input �(�) ∈ ℜ. Here ��and �� are 
the input and output orders of the dynamical model which are  �� ≥ 0, �� ≥ 1. The function 
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input vector with a known dimension � � �� � ��. Since the function � is unknown, it is 
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where �(�) and �(�, �) are the coefficients of linear and nonlinear for originating exogenous 
terms; �(�)�����(�, �) are the coefficients of the linear and nonlinear autoregressive  
terms; �(�, �) are the coefficients of the nonlinear cross terms. Eq. 12 can be written in matrix 
form: 

 �
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⋮

�(� � ��)
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and can be simplified as: 
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The procedures for a NARX model identification is shown in Fig. 3. This model 
identification process includes: 
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where �(�) and �(�, �) are the coefficients of linear and nonlinear for originating exogenous 
terms; �(�)�����(�, �) are the coefficients of the linear and nonlinear autoregressive  
terms; �(�, �) are the coefficients of the nonlinear cross terms. Eq. 12 can be written in matrix 
form: 
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and can be simplified as: 
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• Identification pre-testing: This study is very important in order to choose the important 
controlled, manipulated and disturbance variables. A preliminary study of the response 
plots can also gives an idea of the response time and the process gain. 

• Selection of input signal: The study of input range has to be done, to calculate the 
maximal possible values of all the input signals so that both inputs and outputs will be 
within the desired operating conditions range. The selection of input signal would 
allow the incorporation of additional objectives and constraints, i.e. minimum or 
maximum input event separations which are desirable for the input signals and the 
resulting process behavior. 

• Selection of model order: The important step in estimating NARX models is to choose 
the model order. The model performance was evaluated by the Means Squared Error 
(MSE) and Sum Squared Error (SSE). 

• Model validation: Finally, the model was validated with two sets of validation data 
which were unseen independent data sets that are not used in NARX model parameter 
estimation. 

The details of the identification of NARX model for the batch esterification can be found at 
Zulkeflee & Aziz (2008). 

4. MPC algorithm 
The conceptual structure of MPC is depicted in Fig. 4. The conception of MPC is to obtain the 
current control action by solving, at each sampling instant, a nite horizon open-loop optimal 
control problem, using the current state of the plant as the initial state. The desired objective 
function is minimized within the optimization method and related to an error function based 
on the differences between the desired and actual output responses. The first optimal input 
was actually applied to the plant at time t and the remaining optimal inputs were discarded. 
Meanwhile, at time t+1, a new measurement of optimal control problem was resolved and the 
receding horizon mechanism provided the controller with the desired feedback mechanism 
(Morari & Lee, 1999; Qin & Badgwell, 2003; Allgower, Findeisen & Nagy, 2004).  
 
 
 

 
 
 

Fig. 4. Basic structure of Model Predictive Control 

A formulation of the MPC on-line optimization can be as follows: 
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 min�[�|�]���[���|�]��� ∑ ��(�[� + �|�] � ���)� + ∑ ����[� + �|�]���������  (31) 
 

Where P and M is the length of the process output prediction and manipulated process 
input horizons respectively with P ≤ M. �[� + �|�]������ is the set of future process input 
values. The vector ��  is the weight vector . 
The above on-line optimization problem could also include certain constraints. There can be 
bounds on the input and output variables:   
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It is clear that the above problem formulation necessitates the prediction of future outputs 
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Substitution of Eq. 35  and Eq. 36 into Eq 31 yields: 
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• Identification pre-testing: This study is very important in order to choose the important 
controlled, manipulated and disturbance variables. A preliminary study of the response 
plots can also gives an idea of the response time and the process gain. 

• Selection of input signal: The study of input range has to be done, to calculate the 
maximal possible values of all the input signals so that both inputs and outputs will be 
within the desired operating conditions range. The selection of input signal would 
allow the incorporation of additional objectives and constraints, i.e. minimum or 
maximum input event separations which are desirable for the input signals and the 
resulting process behavior. 

• Selection of model order: The important step in estimating NARX models is to choose 
the model order. The model performance was evaluated by the Means Squared Error 
(MSE) and Sum Squared Error (SSE). 

• Model validation: Finally, the model was validated with two sets of validation data 
which were unseen independent data sets that are not used in NARX model parameter 
estimation. 

The details of the identification of NARX model for the batch esterification can be found at 
Zulkeflee & Aziz (2008). 

4. MPC algorithm 
The conceptual structure of MPC is depicted in Fig. 4. The conception of MPC is to obtain the 
current control action by solving, at each sampling instant, a nite horizon open-loop optimal 
control problem, using the current state of the plant as the initial state. The desired objective 
function is minimized within the optimization method and related to an error function based 
on the differences between the desired and actual output responses. The first optimal input 
was actually applied to the plant at time t and the remaining optimal inputs were discarded. 
Meanwhile, at time t+1, a new measurement of optimal control problem was resolved and the 
receding horizon mechanism provided the controller with the desired feedback mechanism 
(Morari & Lee, 1999; Qin & Badgwell, 2003; Allgower, Findeisen & Nagy, 2004).  
 
 
 

 
 
 

Fig. 4. Basic structure of Model Predictive Control 

A formulation of the MPC on-line optimization can be as follows: 
 

 min�[�|�]���[���|�]��� �(�(�)� �(�))  (30) 

OPTIMIZER PLANT Output 
setpoint 

ysp(t) 
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 min�[�|�]���[���|�]��� ∑ ��(�[� + �|�] � ���)� + ∑ ����[� + �|�]���������  (31) 
 

Where P and M is the length of the process output prediction and manipulated process 
input horizons respectively with P ≤ M. �[� + �|�]������ is the set of future process input 
values. The vector ��  is the weight vector . 
The above on-line optimization problem could also include certain constraints. There can be 
bounds on the input and output variables:   
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It is clear that the above problem formulation necessitates the prediction of future outputs 
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The prediction of future outputs: 
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Substitution of Eq. 35  and Eq. 36 into Eq 31 yields: 
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Where  
 

 ���(�) � [���(� � �)����(� � �)� � ���(� � �)]�      (38) 
 

 ��(�) � [��[�|�]���[� � �|�]����[� � � � �|�]]�    (39) 

 
The above optimization problem is a nonlinear programming (NLP) which can be solved at 
each time t. Even though the input trajectory was calculated until M-1 sampling times into 
the future, only the first computed move was implemented for one sampling interval and 
the above optimization was repeated at the next sampling time. The structure of the 
proposed NARX-MPC is shown in Fig. 5.  
In this work, the optimization problem was solved using constrained nonlinear optimization 
programming (fmincon) function in the MATLAB. A lower flowrate limit of 0 L/min and an 
upper limit of 0.2 L/min and a lower temperature limit of 300K and upper limit of 320K 
were chosen for the input and output variables respectively. In order to evaluate the 
performance of NARX-MPC controller, the NARX-MPC has been used to track the 
temperature set-point at 310K. For the set-point change, a step change from 310K to 315K 
was introduced to the process at t=25 min. For load change, a disturbance was implemented 
with a step change (+10%) for the jacket temperature from 294K to 309K.  Finally, the 
performance of NARX-MPC is compared with the performance of PID controller. The 
parameters of PID controller have been estimated using the internal model based controller. 
The details of the implementation of IMC-PID controller can be found in Zulkeflee & Aziz 
(2009). 
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Fig. 5. The structure of the NARX-MPC 

5. Results 
5.1 NARX model identification 
The input and output data for the identification of a NARX model have been generated from 
the validated first principle model. The input and output data used for nonlinear 
identification are shown in Fig. 6. The minimum-maximum  range  input  (0 to 0.2 L/min) 
under  the  amplitude  constraint  was selected  in order  to  achieve  the most  accurate  
parameter to determine the ratio of the output parameter. For training data, the inputs 
signal for jacket flowrate was chosen as multilevel signal. Different orders of NARX models 
which was a mapping of past inputs (nu) and output (ny) terms to future outputs were tested 
and the best one was selected according to the MSE and SSE criterion. Results have been 
summarized in Table 2. From the results, the MSE and SSE value decreased by increasing 
the model order until the NARX model with nu =1 and ny= 2. Therefore, the NARX model 
with nu =1 and ny= 2 was selected as the optimum model with MSE and SSE equal to 0.0025 
and 0.7152 respectively. The respective graphical error of identification for training and 
validation of estimated NARX model is depicted in Fig. 7.  

5.2 NARX-MPC 
The identified NARX model of the process has been implemented in the MPC algorithm. 
Agachi et al., (2007) proposed some criteria to select the significant tuning parameters 
(prediction horizon, P; control horizon, M; penalty weight matrices wk and rk) for the MPC 
controller. In many cases, the prediction (P) and control horizons (M) are introduced as P>M>1 
due to the fact that it allows consequent control over the variables for the next future cycles. 
The value of weighting (wk and rk) of the controlled variables must be large enough to 
minimize the constraint violations in objective function. Tuning parameters and SSE values of 
the NARX-MPC controller are shown in Table 3. Based on these results, the effect of changing 
the control horizon, M for M: 2, 3, 4 and 5 indicated that M=2 gave the smallest error of output 
response with SSE value=424.04. From the influence of prediction horizon, P results, the SSE 
value was found to decrease by increasing the number of prediction horizon until P=11 with 
the smallest SSE value = 404.94. SSE values shown in Table 3 demonstrate that adjusting the 
elements of the wk and rk weighting matrix can improve the control performance. The value of 
wk= 0.1 and rk = 1 had resulted in the smallest error with SSE=386.45. Therefore, the best tuning 
parameters for the NARX-MPC controller were P=11; M=2; wk = 0.1 and rk= 1.  
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The above optimization problem is a nonlinear programming (NLP) which can be solved at 
each time t. Even though the input trajectory was calculated until M-1 sampling times into 
the future, only the first computed move was implemented for one sampling interval and 
the above optimization was repeated at the next sampling time. The structure of the 
proposed NARX-MPC is shown in Fig. 5.  
In this work, the optimization problem was solved using constrained nonlinear optimization 
programming (fmincon) function in the MATLAB. A lower flowrate limit of 0 L/min and an 
upper limit of 0.2 L/min and a lower temperature limit of 300K and upper limit of 320K 
were chosen for the input and output variables respectively. In order to evaluate the 
performance of NARX-MPC controller, the NARX-MPC has been used to track the 
temperature set-point at 310K. For the set-point change, a step change from 310K to 315K 
was introduced to the process at t=25 min. For load change, a disturbance was implemented 
with a step change (+10%) for the jacket temperature from 294K to 309K.  Finally, the 
performance of NARX-MPC is compared with the performance of PID controller. The 
parameters of PID controller have been estimated using the internal model based controller. 
The details of the implementation of IMC-PID controller can be found in Zulkeflee & Aziz 
(2009). 
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Fig. 6. Input output data for NARX model identification 
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Table 2. MSE and SSE values of NARX model for different number of nu and ny 
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Fig. 7. Graphical error of identification for the training and validation of estimated NARX 
model 
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The responses obtained from the NARX-MPC and the IMC-PID controllers with parameter 
tuning, Kc=8.3; TI=10.2; TD=2.55 (Zulkeflee & Aziz, 2009) during the set-point tracking are 
shown in Fig. 8. The results show that the NARX-MPC controller had driven the process 
output to the desired set-point with a fast response time (10 minutes) and no overshoot or 
oscillatory response with SSE value = 386.45. In comparison, the output response for the 
unconstrained IMC-PID controller only reached the set-point after 25 minutes and had 
shown smooth and no overshoot response with SSE value = 402.24. However, in terms of 
input variable, the output response for the IMC-PID controller has shown large deviations 
as compared to the NARX-MPC. Normally, actuator saturation is among the most conventional 
and notable problem in control system designs and the IMC-PID controller did not take this into 
consideration. Concerning to this matter, an alternative to set a constraint value for the IMC-
PID manipulated variable has been developed. As a result, the new IMC-PID control 
variable with constraint had resulted in higher overshoot with a settling time of about 18 
minutes with SSE=457.12.  
 

 
Fig. 8. Control response of NARX-MPC and IMC-PID controllers for set-point tracking with 
their respective manipulated variable action. 
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With respect to the conversion of ester, the implementation of the NARX-MPC controller led 
to a higher conversion of Citronellyl laurate (95% conversion) as compared to the IMC-PID, 
with 90% at time=150min (see Fig. 9). Hence, it has been proven that the NARX-MPC is far 
better than the IMC-PID control scheme. 
 
 
 
 
 

 
 
 
 

Fig. 9. Profile of ester conversion for NARX-MPC, IMC-PID-Unconstraint and IMC-PIC 
controllers. 

With a view to set-point changing (see Fig. 10), the responses of the NARX-MPC and IMC-
PID for set-point change have been varied from 310K to 315K at t=25min. The NARX-MPC 
was found to drive the output response faster than the IMC-PID controller with settling 
time, t= 45min and had shown no overshoot response with SSE value = 352.17. On the other 
hand, the limitation of input constraints for IMC-PID was evidenced in the poor output 
response with some overshoot and longer settling time, t= 60min (SSE=391.78). These results 
showed that NARX-MPC response controller had managed to cope with the set-point 
change better than the IMC-PID controllers. 
Fig. 11 shows the NARX-MPC and the IMC-PID responses for 10% load change (jacket 
temperature) from the nominal value at t=25min. The NARX-MPC was found to drive the 
output response faster than the IMC-PID controller. As can be seen in the lower axes of Fig 
9, the input variable response for the IMC-PID had varied extremely as compared to the 
input variable from NARX-MPC. From the results, it was concluded that the NARX-MPC 
controller with SSE=10.80 was able to reject the effect of disturbance better than the IMC-
PID with SSE=32.94.  
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The responses obtained from the NARX-MPC and the IMC-PID controllers with parameter 
tuning, Kc=8.3; TI=10.2; TD=2.55 (Zulkeflee & Aziz, 2009) during the set-point tracking are 
shown in Fig. 8. The results show that the NARX-MPC controller had driven the process 
output to the desired set-point with a fast response time (10 minutes) and no overshoot or 
oscillatory response with SSE value = 386.45. In comparison, the output response for the 
unconstrained IMC-PID controller only reached the set-point after 25 minutes and had 
shown smooth and no overshoot response with SSE value = 402.24. However, in terms of 
input variable, the output response for the IMC-PID controller has shown large deviations 
as compared to the NARX-MPC. Normally, actuator saturation is among the most conventional 
and notable problem in control system designs and the IMC-PID controller did not take this into 
consideration. Concerning to this matter, an alternative to set a constraint value for the IMC-
PID manipulated variable has been developed. As a result, the new IMC-PID control 
variable with constraint had resulted in higher overshoot with a settling time of about 18 
minutes with SSE=457.12.  
 

 
Fig. 8. Control response of NARX-MPC and IMC-PID controllers for set-point tracking with 
their respective manipulated variable action. 
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With respect to the conversion of ester, the implementation of the NARX-MPC controller led 
to a higher conversion of Citronellyl laurate (95% conversion) as compared to the IMC-PID, 
with 90% at time=150min (see Fig. 9). Hence, it has been proven that the NARX-MPC is far 
better than the IMC-PID control scheme. 
 
 
 
 
 

 
 
 
 

Fig. 9. Profile of ester conversion for NARX-MPC, IMC-PID-Unconstraint and IMC-PIC 
controllers. 
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Fig. 10. Control response of NARX-MPC and IMC-PID controllers for set-point changing 
with their respective manipulated variable action. 
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an actual reactive batch reactor process which would involve more than one input 
variable changes at one time. 
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Fig. 11. Control response of NARX-MPC and IMC-PID controllers for load change with their 
respective manipulated variable action. 
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manipulated variable, maintaining its good performance. The SSE values for the entire 
robustness test are summarized in Table 4. These SSE values shows that both controllers 
manage to compensate with the robustness. However, the error values indicated that the 
NARX-MPC still gives better performance compared to the both IMC-PID controllers. 
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Fig. 12. Control response of NARX-MPC and IMC-PID controllers for robustness Test 1 with 
their respective manipulated variable action. 
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Fig. 13. Control response of NARX-MPC and IMC-PID controllers for robustness Test 2 with 
their respective manipulated variable action. 
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Fig. 13. Control response of NARX-MPC and IMC-PID controllers for robustness Test 2 with 
their respective manipulated variable action. 
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Fig. 14. Control response of NARX-MPC and IMC-PID controllers for robustness Test 3 with 
their respective manipulated variable action. 
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Fig. 15. Control response of NARX-MPC and IMC-PID controllers for robustness Test 4 with 
their respective manipulated variable action. 
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Fig. 14. Control response of NARX-MPC and IMC-PID controllers for robustness Test 3 with 
their respective manipulated variable action. 
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Fig. 15. Control response of NARX-MPC and IMC-PID controllers for robustness Test 4 with 
their respective manipulated variable action. 
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6. Conclusion 
In this work, the NARX-MPC controller for the Batch Citronellyl Laurate Esterification 
Reactor has been developed. The validated first principle model was used as a process 
model to generate data required for NARX model identification. The NARX model with nu 
=1 and ny= 2 was chosen since it gave the best performance with MSE and SSE equal to 
0.0025 and 0.7152 respectively. Finally, the performances of the NARX-MPC controller were 
evaluated for set-point tracking, set-point change, load change and robustness test. For all 
cases, the developed controller strategy (NARX-MPC) has been proven to perform well in 
controlling the temperature of the batch esterification reactor, as compared to the IMC-PID 
controllers. 
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1. Introduction  
Model predictive control, MPC, has many interesting features for its application to mobile 
robot control. It is a more effective advanced control technique, as compared to the standard 
PID control, and has made a significant impact on industrial process control (Maciejowski, 
2002). MPC usually contains the following three ideas: 
• The model of the process is used to predict the future outputs along a horizon time. 
• An index of performance is optimized by a control sequence computation. 
• It is used a receding horizon idea, so at each instant of time the horizon is moved 

towards the future. It involves the application of the first control signal of the sequence 
computed at each step. 

The majority of the research developed using MPC techniques and their application to 
WMR (wheeled mobile robots) is based on the fact that the reference trajectory is known 
beforehand (Klancar & Skrjanc, 2007). The use of mobile robot kinematics to predict future 
system outputs has been proposed in most of the different research developed (Kühne et al., 
2005; Gupta et al., 2005). The use of kinematics have to include velocity and acceleration 
constraints to prevent WMR of unfeasible trajectory-tracking objectives. MPC applicability 
to vehicle guidance has been mainly addressed at path-tracking using different on-field 
fixed trajectories and using kinematics models. However, when dynamic environments or 
obstacle avoidance policies are considered, the navigation path planning must be 
constrained to the robot neighborhood where reactive behaviors are expected (Fox et al., 
1997; Ögren & Leonard, 2005). Due to the unknown environment uncertainties, short 
prediction horizons have been proposed (Pacheco et al., 2008). In this context, the use of 
dynamic input-output models is proposed as a way to include the dynamic constraints 
within the system model for controller design. In order to do this, a set of dynamic models 
obtained from experimental robot system identification are used for predicting the horizon 
of available coordinates. Knowledge of different models can provide information about the 
dynamics of the robot, and consequently about the reactive parameters, as well as the safe 
stop distances. This work extends the use of on-line MPC as a suitable local path-tracking 
methodology by using a set of linear time-varying descriptions of the system dynamics 
when short prediction horizons are used. In the approach presented, the trajectory is 
dynamically updated by giving a straight line to be tracked. In this way, the control law 
considers the local point to be achieved and the WMR coordinates. The cost function is 
formulated with parameters that involve the capacity of turning and going straight. In the 
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case considered, the Euclidean distance between the robot and the desired trajectory can be 
used as a potential function. Such functions are CLF (control Lyapunov function), and 
consequently asymptotic stability with respect to the desired trajectory can be achieved. On-
line MPC is tested by using the available WMR. A set of trajectories is used for analyzing the 
path-tracking performance. In this context, the different parameter weights of the cost 
function are studied. The experiments are developed by considering five different kinds of 
trajectories. Therefore, straight, wide left turning, less left turning, wide right turning, and 
less right turning are tested. Experiments are conducted by using factorial design with two 
levels of quantitative factors (Box et al., 2005). Studies are used as a way of inferring the 
weight of the different parameters used in the cost function. Factor tuning is achieved by 
considering aspects, such as the time taken, or trajectory deviation, within different local 
trajectories. Factor tuning depicts that flexible cost function as an event of the path to be 
followed, can improve control performance when compared with fixed cost functions. It is 
proposed to use local artificial potential attraction field coordinates as a way to attract WMR 
towards a local desired goal. Experiments are conducted by using a monocular perception 
system and local MPC path-tracking. On-line MPC is reported as a suitable navigation 
strategy for dynamics environments.  
This chapter is organized as follows: Section 1 gives a brief presentation about the aim of the 
present work. In the Section 2, the WMR dynamic models are presented. This section also 
describes the MPC formulation, algorithms and simulated results for achieving local path-
tracking. Section 3 presents the MPC implemented strategies and the experimental results 
developed in order to adjust the cost function parameters. The use of visual data is 
presented as a horizon where trajectories can be planned by using MPC strategies. In this 
context local MPC is tested as a suitable navigation strategy. Finally, in Section 4 some 
conclusions are made. 

2. The control system identification and the MPC formulation 
This section introduces the necessary previous background used for obtaining the control 
laws that are tested in this work as a suitable methodology for performing local navigation. 
The WMR PRIM, available in our lab, has been used in order to test and orient the research 
(Pacheco et al., 2009). Fig. 1 shows the robot PRIM and sensorial and system blocs used in  
 

 
Fig. 1. (a) The robot PRIM used in this work; (b) The sensorial and electronic system blocs 
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the research work. The mobile robot consists of a differential driven one, with two 
independent wheels of 16cm diameters actuated by two DC motors. A third spherical omni-
directional wheel is used to guarantee the system stability.  Next subsection deals with the 
problem of modeling the dynamics of the WMR system. Furthermore, dynamic MPC 
techniques for local trajectory tracking and some simulated results are introduced in the 
remaining subsections. A detailed explanation of the methods introduced in this section can 
be found in (Pacheco et al., 2008).  

2.1 Experimental model and system identification 
The model is obtained through the approach of a set of lineal transfer functions that include 
the nonlinearities of the whole system. The parametric identification process is based on black 
box models (Norton, 1986; Ljung, 1989). The nonholonomic system dealt with in this work is 
considered initially to be a MIMO (multiple input multiple output) system, as shown in Fig. 2, 
due to the dynamic influence between two DC motors. This MIMO system is composed of a 
set of SISO (single input single output) subsystems with coupled connection. 
 

 
Fig. 2. The MIMO system structure 

The parameter estimation is done by using a PRBS (Pseudo Random Binary Signal) such as 
excitation input signal. It guarantees the correct excitation of all dynamic sensible modes of 
the system along the whole spectral range and thus results in an accurate precision of 
parameter estimation. The experiments to be realized consist in exciting the two DC motors 
in different (low, medium and high) ranges of speed. The ARX (auto-regressive with 
external input) structure has been used to identify the parameters of the system. The 
problem consists in finding a model that minimizes the error between the real and estimated 
data. By expressing the ARX equation as a lineal regression, the estimated output can be 
written as: 

 ŷ θϕ=  (1) 

with ŷ  being the estimated output vector, θ the vector of estimated parameters and φ the 
vector of measured input and output variables. By using the coupled system structure, the 
transfer function of the robot can be expressed as follows:  

 R RR LR R

L RL LL L

Y G G U
Y G G U
    

=    
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where YR and YL represent the speeds of right and left wheels, and UR and UL the 
corresponding speed commands, respectively. In order to know the dynamics of robot system, 
the matrix of transfer function should be identified. In this way, speed responses to PBRS input 
signals are analyzed. The filtered data, which represent the average value of five different 
experiments with the same input signal, are used for identification. The system is identified by 
using the identification toolbox “ident” of Matlab for the second order models. Table 1 shows 
the continuous transfer functions obtained for the three different lineal speed models. 
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Table 1. The second order WMR models 

The coupling effects should be studied as a way of obtaining a reduced-order dynamic 
model. It can be seen from Table 1 that the dynamics of two DC motors are different and the 
steady gains of coupling terms are relatively small (less than 20% of the gains of main 
diagonal terms). Thus, it is reasonable to neglect the coupling dynamics so as to obtain a 
simplified model. In order to verify the above facts from real results, a set of experiments 
have been done by sending a zero speed command to one motor and different non-zero 
speed commands to the other motor. The experimental result confirms that the coupled 
dynamics can be neglected. The existence of different gains in steady state is also verified 
experimentally. Finally, the order reduction of the system model is carried out through the 
analysis of pole positions by using the root locus method. It reveals the existence of a 
dominant pole and consequently the model order can be reduced from second order to first 
order. Table 2 shows the first order transfer functions obtained. Afterwards, the system 
models are validated through the experimental data by using the PBRS input signal. 
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Table 2. The reduced WMR model 
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2.2 Dynamic MPC techniques for local trajectory tracking 
The minimization of path tracking error is considered to be a challenging subject in mobile 
robotics. In this subsection the LMPC (local model predictive control) techniques based on 
the dynamics models obtained in the previous subsection are presented. The use of dynamic 
models avoids the use of velocity and acceleration constraints used in other MPC research 
based on kinematic models. Moreover, contractive constraints are proposed as a way of 
guaranteeing convergence towards the desired coordinates. In addition, real-time 
implementations are easily implemented due to the fact that short prediction horizons are 
used.  By using LMPC, the idea of a receding horizon can deal with local on-robot sensor 
information. The LMPC and contractive constraint formulations as well as the algorithms 
and simulations implemented are introduced in the next subsections. 

2.2.1 The LMPC formulation 
The main objective of highly precise motion tracking consists in minimizing the error 
between the robot and the desired path. Global path-planning becomes unfeasible since the 
sensorial system of some robots is just local. In this way, LMPC is proposed in order to use 
the available local perception data in the navigation strategies. Concretely, LMPC is based 
on minimizing a cost function related to the objectives for generating the optimal WMR 
inputs. Define the cost function as follows: 
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 (3) 

The first term of (3) refers to the attainment of the local desired coordinates, Xld=(xd,yd), 
where (xd, yd) denote the desired Cartesian coordinates. X(k+n/k) represents the terminal 
value of the predicted output after the horizon of prediction n. The second one can be 
considered as an orientation term and is related to the distance between the predicted robot 
positions and the trajectory segment given by a straight line between the initial robot 
Cartesian coordinates Xl0=(xl0, yl0) from where the last perception was done and the desired 
local position, Xld, to be achieved within the perceived field of view. This line orientation is 
denoted by θld and denotes the desired orientation towards the local objective. X(k+i/k) and 
θ(k+i/k) (i=1,…n-1) represents the predicted Cartesian and orientation values within the 
prediction horizon. The third term is the predicted orientation error. The last one is related 
to the power signals assigned to each DC motor and are denoted as U. The parameters P, Q, 
R and S are weighting parameters that express the importance of each term. The control 
horizon is designed by the parameter m. The system constraints are also considered:  
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where YR and YL represent the speeds of right and left wheels, and UR and UL the 
corresponding speed commands, respectively. In order to know the dynamics of robot system, 
the matrix of transfer function should be identified. In this way, speed responses to PBRS input 
signals are analyzed. The filtered data, which represent the average value of five different 
experiments with the same input signal, are used for identification. The system is identified by 
using the identification toolbox “ident” of Matlab for the second order models. Table 1 shows 
the continuous transfer functions obtained for the three different lineal speed models. 
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Table 1. The second order WMR models 

The coupling effects should be studied as a way of obtaining a reduced-order dynamic 
model. It can be seen from Table 1 that the dynamics of two DC motors are different and the 
steady gains of coupling terms are relatively small (less than 20% of the gains of main 
diagonal terms). Thus, it is reasonable to neglect the coupling dynamics so as to obtain a 
simplified model. In order to verify the above facts from real results, a set of experiments 
have been done by sending a zero speed command to one motor and different non-zero 
speed commands to the other motor. The experimental result confirms that the coupled 
dynamics can be neglected. The existence of different gains in steady state is also verified 
experimentally. Finally, the order reduction of the system model is carried out through the 
analysis of pole positions by using the root locus method. It reveals the existence of a 
dominant pole and consequently the model order can be reduced from second order to first 
order. Table 2 shows the first order transfer functions obtained. Afterwards, the system 
models are validated through the experimental data by using the PBRS input signal. 
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Table 2. The reduced WMR model 
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2.2 Dynamic MPC techniques for local trajectory tracking 
The minimization of path tracking error is considered to be a challenging subject in mobile 
robotics. In this subsection the LMPC (local model predictive control) techniques based on 
the dynamics models obtained in the previous subsection are presented. The use of dynamic 
models avoids the use of velocity and acceleration constraints used in other MPC research 
based on kinematic models. Moreover, contractive constraints are proposed as a way of 
guaranteeing convergence towards the desired coordinates. In addition, real-time 
implementations are easily implemented due to the fact that short prediction horizons are 
used.  By using LMPC, the idea of a receding horizon can deal with local on-robot sensor 
information. The LMPC and contractive constraint formulations as well as the algorithms 
and simulations implemented are introduced in the next subsections. 
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sensorial system of some robots is just local. In this way, LMPC is proposed in order to use 
the available local perception data in the navigation strategies. Concretely, LMPC is based 
on minimizing a cost function related to the objectives for generating the optimal WMR 
inputs. Define the cost function as follows: 
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The first term of (3) refers to the attainment of the local desired coordinates, Xld=(xd,yd), 
where (xd, yd) denote the desired Cartesian coordinates. X(k+n/k) represents the terminal 
value of the predicted output after the horizon of prediction n. The second one can be 
considered as an orientation term and is related to the distance between the predicted robot 
positions and the trajectory segment given by a straight line between the initial robot 
Cartesian coordinates Xl0=(xl0, yl0) from where the last perception was done and the desired 
local position, Xld, to be achieved within the perceived field of view. This line orientation is 
denoted by θld and denotes the desired orientation towards the local objective. X(k+i/k) and 
θ(k+i/k) (i=1,…n-1) represents the predicted Cartesian and orientation values within the 
prediction horizon. The third term is the predicted orientation error. The last one is related 
to the power signals assigned to each DC motor and are denoted as U. The parameters P, Q, 
R and S are weighting parameters that express the importance of each term. The control 
horizon is designed by the parameter m. The system constraints are also considered:  

 

( ) ](
( ) ( )

( ) ( )

0 1                              0,1

/   

or  /
ld ld

ld ld

G U k G

X K n k X X k X

k n k k

α

α

θ θ α θ θ

 < ≤ ∈
  + − ≤ − 
 

+ − ≤ −  

 (4) 



  
Advanced Model Predictive Control 

 

296 

where X(k) and θ(k) denote the current WMR coordinates and orientation, X(k+n/k) and 
θ(k+n/k) denote the final predicted coordinates and orientation, respectively. The limitation 
of the input signal is taken into account in the first constraint, where G0 and G1 respectively 
denote the dead zone and saturation of the DC motors. The second and third terms are 
contractive constraints (Wang, 2007), which result in the convergence of coordinates or 
orientation to the objective, and should be accomplished at each control step.  

2.2.2 The algorithms and simulated results 
By using the basic ideas introduced in the previous subsection, the LMPC algorithms have 
the following steps: 
1. Read the current position 
2. Minimize the cost function and to obtain a series of optimal input signals 
3. Choose the first obtained input signal as the command signal. 
4. Go back to the step 1 in the next sampling period. 
The minimization of the cost function is a nonlinear problem in which the following 
equation should be verified: 

 ( ) ( ) ( )    f x y f x f yα β α β+ ≤ +  (5) 

The use of interior point methods can solve the above problem (Nesterov et al., 1994; Boyd 
& Vandenberghe, 2004). Gradient descent method and complete input search can be used 
for obtaining the optimal input. In order to reduce the set of possibilities, when optimal 
solution is searched for, some constraints over the DC motor inputs are taken into account: 
• The signal increment is kept fixed within the prediction horizon. 
• The input signals remain constant during the remaining interval of time.  
The above considerations will result in the reduction of the computation time and the 
smooth behavior of the robot during the prediction horizon (Maciejowski, 2002). Thus, the 
set of available input is reduced to one value, as it is shown in Fig. 3.  
 

 
Fig. 3. LMPC strategy with fixed increment of the input during the control horizon and 
constant value for the remaining time 

Both search methods perform accurate path-tracking. Optimal input search has better time 
performance and subinterval gradient descent method does not usually give the optimal 
solution. Due to these facts obtained from simulations, complete input search is selected for 
the on-robot experiences presented in the next section.  
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The evaluation of the LMPC performance is made by using different parametric values in the 
proposed cost function (3). In this way, when only the desired coordinates are considered, 
(P=1, Q=0, R=0, S=0), the trajectory-tracking is done with the inputs that can minimize the cost 
function by shifting the robot position to the left. The reason can be found in Table 2, where 
the right motor has more gain than the left one for high speeds. This problem can be solved, 
(P=1, Q=1, R=0, S=0) or (P=1, Q=0, R=1, S=0) by considering either the straight-line trajectory 
from the point where the last perception was done to the final desired point belonging to the 
local field of perception or the predicted orientations. Simulated results by testing both 
strategies provide similar satisfactory results. Thus, the straight line path or orientation should 
be considered in the LMPC cost function. Fig. 4 shows a simulated result of LMPC for WMR 
by using the orientation error, the trajectory distance and the final desired point for the cost 
function optimization (P=1, Q=1, R=1, S=0). Obtained results show the need of R parameter 
when meaningful orientation errors are produced. 
The prediction horizon magnitude is also analyzed. The possible coordinates available for 
prediction when the horizon is larger (n=10, m=5), depict a less dense possibility of coordinates 
when compared with shorter horizons of prediction. Short prediction horizon strategy is more 
time effective and performs path-tracking with better accuracy. For these reasons, a short 
horizon strategy (n=5, m=3) is proposed for implementing experimental results. 
 

 
Fig. 4. Trajectory tracking simulated result by using the orientation error, trajectory distance 
and the final desired point for the optimization. 

The sampling time for each LMPC step was set to 100ms. Simulation time performance of 
complete input search and gradient descent methods is computed. For short prediction 
horizon (n=5, m=3), the simulation processing time is less than 3ms for the complete input 
search strategy and less than 1ms for the gradient descent method when algorithms are 
running in a standard 2.7 GHz PC. Real on-robot algorithm time performance is also 
compared for different prediction horizons by using the embedded 700 Mhz PC and 
additional hardware system. Table 3 shows the LMPC processing time for different horizons 
of prediction when complete optimal values search or the gradient descent method are used. 
Surprisingly, when the horizon is increased the computing time is decreased. It is due to the 
fact that the control horizon is also incremented, and consequently less range of signal 
increments are possible because the signal increment is kept fixed within the control 
horizon. Thus, the maximum input value possibilities decrease with larger horizons. Hence 
for n=5 there are 1764 possibilities (42x42), and for n=10 there are 625 (25x25).  
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The evaluation of the LMPC performance is made by using different parametric values in the 
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function optimization (P=1, Q=1, R=1, S=0). Obtained results show the need of R parameter 
when meaningful orientation errors are produced. 
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Horizon of prediction
(n) 

Complete 
search method

Gradient 
descent method

n=5 45ms 16ms 
n=8 34ms 10ms 
n=10 25ms 7ms 

Table 3. LMPC processing times 

3. Tuning the control law parameters by using path-tracking experimental 
results 
In this section, path-tracking problem and the cost function parameter weights are analyzed, 
within a constrained field of perception provided by the on-robot sensor system. The main 
objective is to obtain further control law analysis by experimenting different kind of 
trajectories. The importance of the cost function parameter weights is analyzed by 
developing the factorial design of experiments for a representative set of local trajectories. 
Statistical results are compared and control law performance is analyzed as a function of the 
path to be followed. Experimental LMPC results are conducted by considering a constrained 
horizon of perception provided by a monocular camera where artificial potential fields are 
used in order to obtain the desired coordinates within the field of view of the robot. 

3.1 The local field of perception 
In order to test the LMPC by using constrained local perception, the field of view obtained 
by a monocular camera has been used.  Ground available scene coordinates appear as an 
image, in which the camera setup and pose knowledge are used, and projective perspective 
is assumed to make each pixel coordinate correspond to a 3D scene coordinate (Horn, 1998). 
Fig. 5 shows a local map provided by the camera, which corresponds to a field of view with 
a horizontal angle of 48º, a vertical angle of 37º, H set to 109cm and a tilt angle of 32º.  
 

 
Fig. 5. Available local map coordinates (in green), the necessary coordinates free of obstacles 
and the necessary wide-path (in red).  
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It is pointed out that the available floor coordinates are reduced due to the WP (wide-path) 
of the robot (Schilling, 1990). It should also be noted that for each column position 
corresponding to scene coordinates Yj, there are R row coordinates Xi. Once perception is 
introduced, the problem is formulated as finding the optimal cell that brings the WMR close 
to the desired coordinates (Xd, Yd) by searching for the closest local desired coordinates (Xld, 
Yld) within the available local coordinates (Xi, Yj). In this sense, perception is considered to 
be a local receding horizon on which the trajectory is planned. The local desired cell is 
obtained by minimizing a cost function J that should act as a potential field corridor. Thus, 
the cost function is minimized by attracting the robot to the desired objective through the 
free available local cell coordinates. It is noted that from local perception analysis and 
attraction potential fields a local on field path can be obtained. The subsequent subsections 
infer control law parameter analysis by considering a set of path possibilities obtained 
within the perception field mentioned in this section. 

3.2 The path-tracking experimental approach by using LMPC methods 
The path tracking performance is improved by the adequate choice of a cost function that is 
derived from (3) and consists of a quadratic expression containing some of the following 
four parameters to be minimized: 
• The squared Euclidean approaching point distance (APD) between the local desired 

coordinates, provided by the on-robot perception system, and the actual robot position. 
It corresponds with the parameter “P” of the LMPC cost function given by (3). 

• The squared trajectory deviation distance (TDD) between the actual robot coordinate and 
a straight line that goes from the robot coordinates, when the local frame perception 
was acquired, and the local desired coordinates belonging to the referred frame of 
perception. It corresponds with the parameter “Q” of the cost function shown by (3).  

• The third parameter consists of the squared orientation deviation (OD); it is expressed by 
the difference between the robot desired and real orientations. It corresponds with the 
parameter “R” of the LMPC cost function depicted by (3). 

• The last parameter refers to changes allowed to the input signal. It corresponds with the 
parameter “S” of the LMPC cost function given by (3). 

One consideration that should be taken into account is the different distance magnitudes. In 
general, the approaching distance could be more than one meter. However, the magnitude 
of the deviation distance is normally in the order of cm, which becomes effective only when 
the robot is approaching the final desired point. Hence, when reducing the deviation 
distance further to less than 1cm is attempted, an increase, in the weight value for the 
deviation distance in the cost function, is proposed.  
The subsequent subsections use statistical knowledge for inferring APD (P) and TDD (Q) or 
APD (P) and OD (R) factor performances as a function of the kind of paths to be tracked. 
Other cost function parameters are assumed to be equal to zero.      

3.3 Experimental tuning of APD and TDD factors 
This subsection presents the results achieved by using factorial design in order to study the 
LMPC cost function tuning when APD and TDD factors are used. Path-tracking 
performance is analyzed by the mean of the different factor weights. The experiments are 
developed by considering five different kinds of trajectories within the reduced field of view 
as shown in Fig. 5. Therefore, straight, wide left turning, less left turning, wide right turning 
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It is pointed out that the available floor coordinates are reduced due to the WP (wide-path) 
of the robot (Schilling, 1990). It should also be noted that for each column position 
corresponding to scene coordinates Yj, there are R row coordinates Xi. Once perception is 
introduced, the problem is formulated as finding the optimal cell that brings the WMR close 
to the desired coordinates (Xd, Yd) by searching for the closest local desired coordinates (Xld, 
Yld) within the available local coordinates (Xi, Yj). In this sense, perception is considered to 
be a local receding horizon on which the trajectory is planned. The local desired cell is 
obtained by minimizing a cost function J that should act as a potential field corridor. Thus, 
the cost function is minimized by attracting the robot to the desired objective through the 
free available local cell coordinates. It is noted that from local perception analysis and 
attraction potential fields a local on field path can be obtained. The subsequent subsections 
infer control law parameter analysis by considering a set of path possibilities obtained 
within the perception field mentioned in this section. 

3.2 The path-tracking experimental approach by using LMPC methods 
The path tracking performance is improved by the adequate choice of a cost function that is 
derived from (3) and consists of a quadratic expression containing some of the following 
four parameters to be minimized: 
• The squared Euclidean approaching point distance (APD) between the local desired 

coordinates, provided by the on-robot perception system, and the actual robot position. 
It corresponds with the parameter “P” of the LMPC cost function given by (3). 

• The squared trajectory deviation distance (TDD) between the actual robot coordinate and 
a straight line that goes from the robot coordinates, when the local frame perception 
was acquired, and the local desired coordinates belonging to the referred frame of 
perception. It corresponds with the parameter “Q” of the cost function shown by (3).  

• The third parameter consists of the squared orientation deviation (OD); it is expressed by 
the difference between the robot desired and real orientations. It corresponds with the 
parameter “R” of the LMPC cost function depicted by (3). 

• The last parameter refers to changes allowed to the input signal. It corresponds with the 
parameter “S” of the LMPC cost function given by (3). 

One consideration that should be taken into account is the different distance magnitudes. In 
general, the approaching distance could be more than one meter. However, the magnitude 
of the deviation distance is normally in the order of cm, which becomes effective only when 
the robot is approaching the final desired point. Hence, when reducing the deviation 
distance further to less than 1cm is attempted, an increase, in the weight value for the 
deviation distance in the cost function, is proposed.  
The subsequent subsections use statistical knowledge for inferring APD (P) and TDD (Q) or 
APD (P) and OD (R) factor performances as a function of the kind of paths to be tracked. 
Other cost function parameters are assumed to be equal to zero.      

3.3 Experimental tuning of APD and TDD factors 
This subsection presents the results achieved by using factorial design in order to study the 
LMPC cost function tuning when APD and TDD factors are used. Path-tracking 
performance is analyzed by the mean of the different factor weights. The experiments are 
developed by considering five different kinds of trajectories within the reduced field of view 
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and less right turning trajectories are tested. Experiments are conducted by using factorial 
design with two levels of quantitative factors (Box et al, 2005). Referred to the cost function, 
let us assume that high value (H) is equal to “1” and low value (L) is equal to “0.5”. For each 
combination of factors three different runs are experimented. The averaged value of the 
three runs allows statistical analysis for each factor combination. From these standard 
deviations, the importance of the factor effects can be determined by using a rough rule that 
considers the effects when the value differences are similar or greater than 2 or 3 times their 
standard deviations. In this context, the main effects and lateral effects, related to APD and 
TDD, are analyzed. Fig. 6 shows the four factor combinations (APD, TDD) obtained by both 
factors with two level values.  
 

 
Fig. 6. The different factor combinations and the influence directions, in which the 
performances should be analyzed. 

The combinations used for detecting lateral and main effect combinations are highlighted by 
blue arrows. Thus, the main effect of APD factor, MEAPD, can be computed by the following 
expression:   
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Path-tracking statistical performances to be analyzed in this research are represented by Y. 
The subscripts depict the different factor combinations. The main effect for TDD factor, 
METDD, is computed by: 
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The lateral effects are computed by using the following expression: 

 _ 3 0APD TDDLE Y Y= −   (8) 

The detailed measured statistics with parameters such as time (T), trajectory error (TE), and 
averaged speeds (AS) are presented in (Pacheco & Luo, 2011). The results were tested for 
straight trajectories, wide and less left turnings, and wide and less right turnings. The main 
and lateral effects are represented in Table 4.  
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The performance is analyzed for the different trajectories:  
• The factorial analysis for straight line trajectories, (σT = 0.16s, σTE = 0.13cm, σAS = 

2.15cm/s), depicts a main time APD effect of -0.45s, and an important lateral effect of -
0.6s and -0.32cm. Speed lateral effect of only 1.9cm/s is not considered as meaningful. 
Considering lateral effects that improve time and accuracy, high values (APD, TDD) are 
proposed for both factors.  

• The analysis for wide left turning trajectories, (σT = 0.26s, σTE = 0.09cm, σAS = 0.54cm/s) 
show negative APD main effect of 0.53s, and 0.15cm. However, the TDD factor tends to 
decrease the time and trajectory deviation.  The 0.3cm/s speed TDD main factor is 
irrelevant. In this case, low value for APD factor and high value for the TDD factor is 
proposed.  

• The factor analysis for less left turning, (σT = 0.29s, σTE = 0.36cm, σAS = 0.84cm/s), 
depicts a considerable lateral effect of -0.46s and -0.31cm. Speed -0.2cm/s lateral effect is 
not important. In this sense high values are proposed for APD and TDD factors.  

• The analysis for wide right turning, (σT = 0.18s, σTE = 0.15cm, σAS = 1.04cm/s) does not 
provide relevant clues, but small time improvement seems to appear when TDD factor 
is set to a low value. Low values are proposed for APD and TDD factors. 

• Finally, the factorial analysis for less right turning trajectories, (σT = 0.12s, σTE = 0.18cm, 
σAS = 1.94cm/s), depicts APD and lateral effects that increase the trajectory time with 
0.32s and 0.44s. Main or lateral effects related to the speed have not been detected.  Low 
values are proposed for APD and TDD factors. 

 
Straight line trajectory 

Parameter 
Performance 

Main Effect
TDD factor 

Main Effect
APD factor 

Lateral Effect 
TDD & APD factors 

Time -0.05s -0.45s -0.6s 
Trajectory accuracy -0.18cm -0.14cm -0.32cm 
Averaged speed 1.25cm/s 0.6cm/s 1.9cm/s 

Wide left turn trajectory 
Time -0.34s 0.53s 0.16s 
Trajectory accuracy -0.17cm 0.15cm -0.01cm 
Averaged speed 0.3cm/s 0.4cm/s 0.7cm/s 

Slight left turn trajectory 
Time -0.24s 0.02s -0.46s 
Trajectory accuracy -0.14cm -0.17cm -0.31cm 
Averaged speed 0.8cm/s -1cm/s -0.2cm/s 

Wide right turn trajectory 
Time 0.27s -0.10s 0.17s 
Trajectory accuracy -0.22cm 0.1cm -0.12cm 
Averaged speed 0.7cm/s 0.2cm/s 0.9cm/s 

Slight right turn trajectory 
Time 0.12s 0.32s 0.44s 
Trajectory accuracy -0.18cm -0.06cm -0.25cm 
Averaged speed -1.3cm/s 2.8cm/s 1.5cm/s 

Table 4. Main and lateral effects 
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and less right turning trajectories are tested. Experiments are conducted by using factorial 
design with two levels of quantitative factors (Box et al, 2005). Referred to the cost function, 
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considers the effects when the value differences are similar or greater than 2 or 3 times their 
standard deviations. In this context, the main effects and lateral effects, related to APD and 
TDD, are analyzed. Fig. 6 shows the four factor combinations (APD, TDD) obtained by both 
factors with two level values.  
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3.4 Experimental performance by using fixed or flexible APD & TDD factors 
Once factorial analysis is carried out, this subsection compares path-tracking performance 
by using different control strategies. The experiments developed consist in analyzing the 
performance when a fixed factor cost function or a flexible factor cost function is used. The 
trajectories to be analyzed are formed by straight lines, less right or left turnings, and wide 
right or left turnings. The fixed factor cost function maintains the high values for APD and 
TDD factors, while the flexible factor cost function is tested as function of the path to be 
tracked.  
Different experiments are done; see (Pacheco & Luo, 2011). As instance one experiment 
consists in tracking a trajectory that is composed of four points ((0, 0), (-25, 40), (-25, 120), (0, 
160)) given as (x, y) coordinates in cm. It consists of wide left turning, straight line and wide 
right turning trajectories. The results obtained by using fixed and flexible factor cost 
function are depicted in Table 5. Three runs are obtained for each control strategy and 
consequently path-tracking performance analysis can be done. 
Results show that flexible factor strategy improves an 8% the total time performance of the 
fixed factor strategy. The turning trajectories are done near 50% of the path performed. 
Remaining path consists of a straight line trajectory that is performed with same cost  
 

 
Fig. 7. (a) Trajectory-tracking experimental results by using flexible or fixed cost function. (b) 
WMR orientation experimental results by using flexible or fixed cost function. (c) Left wheel 
speed results by using flexible or fixed cost function. (d) Right wheel speed results by using 
flexible or fixed cost function. 
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function values for fixed and flexible control laws. It is during the turning actions, where the 
two control laws have differences, when time improvement is nearly 16%.  Fig. 7 shows an 
example of some results achieved. Path-tracking coordinates, angular position, and speed 
for the fixed and flexible cost function strategies are shown. 
It can be seen that flexible cost function, when wide left turning is performed approximately 
during the first three seconds, produces less maximum speed values when compared with 
fixed one. However, a major number of local maximum and minimum are obtained. It 
results in less trajectory deviation when straight line trajectory is commanded. In general 
flexible cost function produces less trajectory error with less orientation changes and 
improves time performance. 
 

 Trajectory points: (0,0), (-25,40), (-25,120), (0,160) ((x,y) in cm) 

 
Time 

(s) 
Trajectory error 

(cm) 
Averaged Speed 

(cm/s) 

Experiment Fixed 
Law 

Flexible 
Law 

Fixed 
Law 

Flexible 
Law 

Fixed 
Law 

Flexible 
Law 

Run 1 10,5 10,3 3,243 3,653 18,209 16,140 
Run 2 10,9 9,8 3,194 2,838 16,770 16,632 
Mean 10,70 10,05 3,219 3,245 17,489 16,386 
Variance 0,0800 0,1250 0,0012 0,3322 1,0354 0,1210 
Standart 
deviation 0,2828 0,3536 0,0346 0,5764 1,0175 0,3479 

Table 5. Results obtained by using fixed or flexible cost function 

Developed experiences with our WMR platform show that flexible LMPC cost function 
related with the path to be tracked can improve the control system performance. 

3.5 Experimental tuning using APD and OD factors 
In a similar way APD and OD factors can be used. This subsection compares path-tracking 
performance by using different control strategies. The experiments developed consist in 
analyzing the performance when a fixed factor cost function or a flexible factor cost function 
is used. The trajectories to be analyzed are formed by straight lines, less right or left 
turnings, and wide right or left turnings. The fixed factor cost function maintains the high 
values for APD and OD factors, while the flexible factor cost function is tested as function of 
the path to be tracked. The experiments developed show the measured performance 
statistics, time, trajectory accuracy, and averaged speeds, for straight trajectories, wide and 
less left turnings, and wide and less right turnings. The standard deviation obtained as well 
as the main and lateral effects are represented in Table 6. The time, trajectory error and 
averaged speed standard deviations are respectively denoted by σT, σTE, and σAS. Table 6 
represents the experimental statistic results obtained for the set of proposed trajectories. The 
standard deviations computed for each kind of trajectory by testing the different factor 
weights under different runs are also depicted. 
The main and lateral effects were calculated by using (6), (7), (8), and the mean values 
obtained for the different factor combinations. Therefore, in Table 6 are highlighted the 
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function values for fixed and flexible control laws. It is during the turning actions, where the 
two control laws have differences, when time improvement is nearly 16%.  Fig. 7 shows an 
example of some results achieved. Path-tracking coordinates, angular position, and speed 
for the fixed and flexible cost function strategies are shown. 
It can be seen that flexible cost function, when wide left turning is performed approximately 
during the first three seconds, produces less maximum speed values when compared with 
fixed one. However, a major number of local maximum and minimum are obtained. It 
results in less trajectory deviation when straight line trajectory is commanded. In general 
flexible cost function produces less trajectory error with less orientation changes and 
improves time performance. 
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significant results achieved using experimental factorial analysis. The inferred results 
obtained can be tested using different trajectories. 
 

Straight trajectory 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.06s 0,02 -0,13 -0,10 
Trajectory error (cm)  σTE = 0.69cm -0,24 1,34 1,10 
Speed (cm/s)        σAS = 0.88cm/s 0,87 0,70 1,57 

Wide left turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.06s -0,10 0,20 0,10 
Trajectory error (cm)  σTE = 0.18cm 0,36 0,38 0,02 
Speed (cm/s)        σAS = 0.59cm/s 0,36 -0,87 -0,52 
Less left turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.09s  -0,12 0,07 -0,05 
Trajectory error (cm)   σTE = 0.11cm 0,58 1,08 0,50 
Speed (cm/s)             σAS = 0.92cm/s 0,60 -0,13 0,47 

Wide right turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.11s 0,10 0,35 0,45 
Trajectory error (cm)  σTE = 0.08cm 0,44 0,45 0,01 
Speed (cm/s)             σAS = 0.67cm/s -0,58 -1,67 -2,25 

Less right turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.26s -0,07 0,07 0,00 
Trajectory error (cm)  σTE = 0.20cm 1,38 0,65 -0,73 
Speed (cm/s)            σAS = 0.13cm/s -0,33 -0,14 -0,48 

Table 6. Main and lateral effects 

The experiments developed consist in analyzing the time performance when a fixed factor 
cost function or a flexible factor cost function is used. The trajectories to be analyzed are 
formed by straight lines, less right or left turnings, and wide right or left turnings. The fixed 
factor cost function maintains the high values for APD and OD factors, while the flexible 
factor cost function is tested as function of the trajectory to be tracked. The experiments 
presented consist in tracking a trajectory that is composed of three points ((0, 0), (-25, 40), (-
25, 120)) given as (x, y) coordinates in cm. The results obtained by using fixed and flexible 
factor cost function are depicted in Table 7. 
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Trajectory (x,y) in cm: (0,0), (-25,40), (-25,120) 

Features Time (s) Error (cm) Aver. speed 
(cm/s) 

Experiment Fixed Flexible Fixed Flexible Fixed Flexible
Run 1 7,2 7,0 3,8 3,0 19,4 17,5
Run 2 7,4 6,6 2,2 3,5 16,5 20,1
Mean 7,3 6,8 3,0 3,2 18,0 18,8
Variance 0,02 0,1 1,3 0,1 4,2 3,4
Stand. dev. 0,14 0,3 1,1 0,3 2,0 1,9

Table 7. Experimental performances 

Two runs are obtained for each strategy and consequently time performance analysis can be 
done. The averaged standard deviation between the two cost function systems is of 0.22s, 
and the difference of means are 0.5s. Thus, flexible factor strategy improves a 6.85% the time 
performance of the fixed factor strategy. However, left turning is done only a 33% of the 
trajectory. Thus, time improvement during the left turning is of near 20%. Fig. 8 shows an 
example of some results achieved. Path-tracking coordinates, angular position, and speed 
for the fixed and flexible cost function strategies are shown. Trajectory error and averaged 
speed statistical results are not significant, due to the fact that the differences of means 
between fixed and flexible laws are less than two times the standard deviations. 

4. Conclusion 
This research can be used on dynamic environments in the neighborhood of the robot. On-
line LMPC is a suitable solution for low level path-tracking. LMPC is more time expensive 
when compared with traditional PID controllers. However, instead of PID speed control 
approaches, LMPC is based on a horizon of available coordinates within short prediction 
horizons that act as a reactive horizon. Therefore, path planning and convergence to 
coordinates can be more easily implemented by using LMPC methods. In this way, 
contractive constraints are used for guaranteeing the convergence towards the desired 
coordinates. The use of different dynamic models avoids the need of kinematical constraints 
that are inherent to other MPC techniques applied to WMR. In this context the control law is 
based on the consideration of two factors that consist of going straight or turning. Therefore, 
orientation deviation or trajectory deviation distance can be used as turning factors. The 
methodology used for performing the experiments is shown. From on-robot depicted 
experiences, the use of flexible cost functions with relationships to the path to be tracked can 
be considered as an important result. Thus, control system performance can be improved by 
considering different factor weights as a function of path to be followed. 
The necessary horizon of perception is constrained to just few seconds of trajectory 
planning. The short horizons allow real time implementations and accuracy trajectory 
tracking. The experimental LMPC processing time was 45ms, (m=3, n=5), running in the 
WMR embedded PC of 700MHz. The algorithms simplicity is another relevant result 
obtained. The factorial design, with two levels of quantitative factors, is presented as an easy 
way to infer experimental statistical data that allow testing feature performances as function 
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significant results achieved using experimental factorial analysis. The inferred results 
obtained can be tested using different trajectories. 
 

Straight trajectory 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.06s 0,02 -0,13 -0,10 
Trajectory error (cm)  σTE = 0.69cm -0,24 1,34 1,10 
Speed (cm/s)        σAS = 0.88cm/s 0,87 0,70 1,57 

Wide left turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.06s -0,10 0,20 0,10 
Trajectory error (cm)  σTE = 0.18cm 0,36 0,38 0,02 
Speed (cm/s)        σAS = 0.59cm/s 0,36 -0,87 -0,52 
Less left turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.09s  -0,12 0,07 -0,05 
Trajectory error (cm)   σTE = 0.11cm 0,58 1,08 0,50 
Speed (cm/s)             σAS = 0.92cm/s 0,60 -0,13 0,47 

Wide right turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.11s 0,10 0,35 0,45 
Trajectory error (cm)  σTE = 0.08cm 0,44 0,45 0,01 
Speed (cm/s)             σAS = 0.67cm/s -0,58 -1,67 -2,25 

Less right turning 
Parameters OD APD APD & OD 
Time (s)                  σT = 0.26s -0,07 0,07 0,00 
Trajectory error (cm)  σTE = 0.20cm 1,38 0,65 -0,73 
Speed (cm/s)            σAS = 0.13cm/s -0,33 -0,14 -0,48 

Table 6. Main and lateral effects 

The experiments developed consist in analyzing the time performance when a fixed factor 
cost function or a flexible factor cost function is used. The trajectories to be analyzed are 
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factor cost function is tested as function of the trajectory to be tracked. The experiments 
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Trajectory (x,y) in cm: (0,0), (-25,40), (-25,120) 
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Two runs are obtained for each strategy and consequently time performance analysis can be 
done. The averaged standard deviation between the two cost function systems is of 0.22s, 
and the difference of means are 0.5s. Thus, flexible factor strategy improves a 6.85% the time 
performance of the fixed factor strategy. However, left turning is done only a 33% of the 
trajectory. Thus, time improvement during the left turning is of near 20%. Fig. 8 shows an 
example of some results achieved. Path-tracking coordinates, angular position, and speed 
for the fixed and flexible cost function strategies are shown. Trajectory error and averaged 
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experiences, the use of flexible cost functions with relationships to the path to be tracked can 
be considered as an important result. Thus, control system performance can be improved by 
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The necessary horizon of perception is constrained to just few seconds of trajectory 
planning. The short horizons allow real time implementations and accuracy trajectory 
tracking. The experimental LMPC processing time was 45ms, (m=3, n=5), running in the 
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Fig. 8. (a) Trajectory-tracking experimental results by using flexible or fixed cost function. (b) 
WMR orientation experimental results by using flexible or fixed cost function. (c) Left wheel 
speed results by using flexible or fixed cost function. (d) Right wheel speed results by using 
flexible or fixed cost function. 

of the different factor combinations. Further studies on LMPC should be done in order to 
analyze its relative performance with respect to other control laws or to test the cost function 
performance when other factors are used. The influence of the motor dead zones is also an 
interesting aspect that should make further efforts to deal with it. 
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1. Introduction 
Papermaking is a large-scale two-dimensional process. It has to be monitored and controlled 
continuously in order to ensure that the qualities of paper products stay within their 
specifications. There are two types of control problems involved in papermaking processes: 
machine directional (MD) control and cross directional (CD) control. Machine direction 
refers to the direction in which paper sheet travels and cross direction refers to the direction 
perpendicular to machine direction. The objectives of MD control and CD control are to 
minimize the variation of the sheet quality measurements in machine direction and cross 
direction, respectively. This chapter considers the design and applications of model 
predictive control (MPC) for papermaking MD and CD processes.  
MPC, also known as moving horizon control (MHC), originated in the late seventies and has 
developed considerably in the past two decades (Bemporad and Morari 2004; Froisy 1994; 
Garcia et al. 1998; Morari & Lee 1999; Rawlings 1999; Chu 2006). It can explicitly incorporate 
the process’ physical constraints in the controller design and formulate the controller design 
problem into an optimization problem. MPC has become the most widely accepted advanced 
control scheme in industries. There are over 3000 commercial MPC implementations in 
different areas, including petro-chemicals, food processing, automotives, aerospace, and pulp 
and paper (Qin and Badgwell 2000; Qin and Badgwell 2003).  
Honeywell introduced MPC for MD controls in 1994; this is likely the first time MPC 
technology was applied to MD controls (Backström and Baker, 2008). Increasingly, paper 
producers are adopting MPC as a standard approach for advanced MD controls. 
MD control of paper machines requires regulation of a number of quality variables, such as 
paper dry weight, moisture, ash content, caliper, etc. All of these variables may be coupled 
to the process manipulated variables (MV’s), including thick stock flow, steam section 
pressures, filler flow, machine speed, and disturbance variables (DV’s) such as slice lip 
adjustments, thick stock consistency, broke recycle, and others. Paper machine MD control 
is truly a multivariable control problem. 
In addition to regulation of the quality variables during normal operation, a modern 
advanced control system for a paper machine may be expected to provide dynamic 
economic optimization on the machine to reduce energy costs and eliminate waste of raw 
materials. For machines that produce more than one grade of paper, it is desired to have an 
automatic grade change feature that will create and track controlled variable (CV) and MV 
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trajectories to quickly and safely transfer production from one grade to the next. Basic MD-
MPC, economic optimization, and automatic grade change are discussed in this chapter. 
MPC for CD control was introduced by Honeywell in 2001 (Backström et al. 2001). Today, 
MPC has become the trend of advanced CD control applications. Some successful MPC 
applications for CD control have been reported in (Backström et al. 2001, Backström et al. 
2002; Chu 2010a; Gheorghe 2009). 
In papermaking processes, it is desired to control the CD profile of quality variables such as 
dry weight, moisture, thickness, etc. These properties are measured by scanning sensors that 
traverse back and forth across the paper sheet, taking as many as 2000 or more samples per 
sheet property across the machine. There may be several scanners installed at different 
points along the paper machine and so there may be multiple CD profiles for each quality 
variable. 
The CD profiles are controlled using a number of CD actuator arrays. These arrays span the 
paper machine width and may contain up to 300 individual actuators. Common CD 
actuators arrays allow for local adjustment, across the machine, of: slice lip opening, 
headbox dilution, rewet water sprays, and induction heating of the rolls. As with the CD 
measurements, there may be multiple CD actuator arrays of each type available for control. 
By changing the setpoints of the individual CD actuators within an array, one can adjust the 
local profile of the CD measurements.  
The CD process is a multiple-input-multiple-output (MIMO) system. It shows strong input 
and output off-diagonal coupling properties. One CD actuator array can have impact on 
multiple downstream CD measurement profiles. Conversely, one CD measurement profile can 
be affected by multiple upstream CD actuator arrays. Therefore, the CD control problem 
consists of attempting to minimize the variation of multiple CD measurement profiles by 
simultaneously optimizing the setpoints of all individual CD actuators (Duncan 1989). 
MPC is a natural choice for paper machine CD control because it can systematically handle 
the coupling between multiple actuator and multiple measurement arrays, and also 
incorporate actuator physical constraints into the controller design. However, different from 
standard MPC problems, the most challenging part of the cross directional MPC (CD-MPC) 
is the size of the problem. The CD-MPC problem can involve up to 600 MVs, 6000 CVs, and 
3000 hard constraints. Also, the new setpoints of MVs are required as often as every 10 to 20 
seconds. This chapter discusses the details of the design for an efficient large-scale CD-MPC 
controller. 
This chapter has 5 sections. Section 2 provides an overview of the papermaking process 
highlighting both the MD and CD aspects. Section 3 focuses on modelling, control and 
optimization for MD processes. Section 4 focuses on modelling, control and optimization for 
CD processes. Both Sections 3 and 4 give industrial examples of MPC applications. Finally, 
Section 5 draws conclusions and provides some perspective on the future of MD-MPC and 
CD-MPC.  

2. Overview of papermaking processes 
A flat sheet of paper is a network consisting of cellulose fibres bound to one another. A 
paper machine transforms a slurry of water and wood cellulose fibres into this type of 
network. The whole papermaking process can be regarded as a water-removal system: the 
consistency of fibre solutions, called stock by papermakers, increases from around 1% at the 
beginning of a paper machine (the headbox) to around 95% at the end (the reel). 

 
Model Predictive Control and Optimization for Papermaking Processes 311 

2.1 Brief description of papermaking processes 
In general a paper machine can be divided into four sections: forming section, press section, 
drying section, and calendering section. In the forming section, the stock flow enters the 
headbox to be distributed evenly across a continuously running fabric felt called the wire. 
The newly formed sheet is carried by the wire along the Fourdrinier table, which has a set of 
drainage elements that promote water removal by various gravity and suction mechanisms. 
These elements include suction boxes, couch rolls, foils, etc. The solid consistency of the 
paper web can reach 20% by the time the web leaves the forming section and enters the 
press section. Figure 1 illustrates the configuration of a Fourdrinier-type paper machine.   
 

 
Fig. 1. The configuration of a Fourdrinier-type paper machine 

The press section may be considered as an extension of the water-removal process that was 
started on the wire in the forming section. Typically, it consists of 1 – 3 rolling press nips. 
When the paper web passes through these nips, the pressing roll squeezes water out and 
consolidates the web formation at the same time. In the press section, both the surface 
smoothness and the web strength are improved. As higher web strength is achieved in the 
press section, better runability will be observed in the drying section. A paper machine is 
typically operated at a very high speed. The fastest machine speed may be as high as 2,200 
meters per minute.  
The drying section includes multiple drying cylinders which are heated by high temperature 
and high pressure steam. The heat is transferred from steam onto the paper surface through 
these rotating steel cylinders. The heat flow increases the paper surface temperature to the 
point where water starts evaporating and escaping from the paper web. The drying section is 
the most energy consuming part of paper manufacturing. Before the paper enters the drying 
section, the solid consistency is around 50%. After the drying section, the consistency can reach 
95%, which corresponds to a finished product moisture specification.  
The last section of the paper machine is called the calendering section. Calendering is a 
terminology referring to pressing with a roll. The surface and the interior properties of the 
paper web are modified when it passes through one or more calendering nips. Typically the 
calendering nip consists of one or multiple soft/hard or hard/hard roll pairs. The hard roll 
presses the paper web against the other roll, and deforms the paper web plastically. By this 
means, the calender roll surface is replicated onto the paper web. Depending on the type of 
paper being produced, the primary objective of calendering may be to produce a smooth 
paper surface (for printing), or to improve the uniformity of CD properties, such as paper 
caliper (thickness).  
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More details of paper machine design and operation are given in (Smook 2002; Gavelin 
1998). 

2.2 Paper quality measurement 
A paper machine can have one or more measurement scanners. The quality measurement 
sensors are mounted on the scanner head which travels back and forth across the paper web 
to provide online quality measurements. The most common paper machine quality 
measurements include dry weight, moisture, and caliper. Dry weight indicates the solid 
weight per unit area of a sheet of paper. For different types of products, the value of dry 
weight can vary from 10 grams per square meter (gsm), in the case of paper tissue, to 400 
gsm, in the case of heavy paper board. Moisture content is another critical quality property 
of the finished paper product. It indicates the mass percentage of water contained in a sheet 
of paper. Moisture content is a key factor determining the strength of the finished product. 
Typical moisture targets range from 5% to 9%. Caliper is the measure of the thickness of a 
sheet of paper. It is a key factor determining the gloss and printability of the finished 
product. The caliper targets are in the range from 70	μm to 300 μm depending on the 
production grade. In general the online measurements for dry weight, moisture and caliper 
are available and used for both the MD and CD feedback controller designs. 
As the scanners travel across a moving sheet, the real data collected actually comes from a 
zig-zag trajectory (See Figure 2). These data contain both CD and MD variation. A reliable 
MD/CD separation scheme is the prerequisite for MD and CD control designs. Since the 
MD/CD separation is a separate topic, the rest of this chapter assumes that the pure 
MD/CD measurements have been obtained prior to the MD/CD controller development. 
The scanner measurements are denoted by x(i, t),  i = 1,⋯ , n indexes the n measurements 
taken across the sheet each scan (CD measurement index), and t is the time stamp of each 
scan (MD measurement index). x���� is the MD measurement given by 

 x�(t)= 1
n
∑ x(i, t)n

i=1 . (1) 

 

 
Fig. 2. The zig-zag scanner trajectories 
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2.3 Brief description of MD control 
The objective of MD control is to minimize the variation of the sheet quality measurements 
in machine direction. 
A number of actuators are available for control of the MD variables. Stock flow to the headbox 
is regulated by the stock flow valve or variable speed pump. As stock flow increases, the 
amount of fibre flowing into the forming section increases and dry weight and caliper increase. 
At the same time, there is also more water coming through the machine and moisture will 
increase. So, changes in the stock flow affect dry weight, moisture and caliper. The steam 
pressure in the cylinders of the drying section may be adjusted. As the steam pressure in the 
cylinders increases, so does the temperature in the cylinders, and more heat is transferred to 
the paper. In this way, steam pressure affects moisture. Typically, the dryer cylinders are 
divided into groups, and the steam pressure for each of these dryer sections may be adjusted 
independently. Machine speed affects dry weight and caliper, as increasing the machine speed 
stretches the paper web thinner, giving it less mass per unit area. Machine speed also affects 
moisture as both the drying properties of the paper and the residence time in the dryer change. 
Clearly, paper machine MD control is a multivariable control problem. 

2.4 Brief description of CD control 
The objective of CD control is to achieve uniform paper qualities in the cross direction, i.e., 
to minimize the variation of CD profiles. The CD variation, can be formulated as two times 
of the standard deviation of the CD profile, 

 2σCD(t)=2* � 1
n-1
∑ (x(i, t)-x�(t))

2n
i=1 �

1
2  (2) 

Often the term ‘CD spread’ is used interchangeably with 2σCD.  
CD actuators are used to regulate CD profiles and improve the uniformity of paper quality 
properties in the cross direction i.e., reduce the value of 2σCD.  
The most common dry weight CD actuators are both located at the headbox. The headbox 
slice opening is a full-width orifice or nozzle that can be adjusted at points across the width 
of the paper machine. This allows for differences in the local stock flow onto the wire across 
the machine. The consistency profiler changes the consistency of local stock flow by injecting 
dilution water and altering the local concentration of pulp fibre across the headbox. 
Headbox slice and consistency profiler are primarily designed for dry weight control, but 
they have the effects on both moisture and caliper profiles. Figure 1 indicates the location of 
headbox dry weight actuators.  
The most common moisture actuators are the steam box and water spray. The steam box 
applies high temperature steam to the surface of the moving paper web. As the latent heat in 
the steam is released and heats up the paper web, it lowers the web viscosity and eases 
dewatering in the press section. The water spray regulates the moisture profiles according to 
a different mechanism. It deploys a fine water spray to the paper surface through a set of 
nozzles across the machine width to re-moisturize the paper web. Similar to the dry weight 
actuators, moisture actuators are designed for moisture profile regulation but they may have 
effects on the caliper profile. The steam box is typically installed in the press section and the 
water spray is located in the drying section. Figure 1 indicates the physical locations of 
moisture actuators.  
The most common caliper actuators are hot air showers and induction heaters. Both types of 
actuators provide surface heating for calendering rolls. The hot shower uses the high 
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More details of paper machine design and operation are given in (Smook 2002; Gavelin 
1998). 
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 x�(t)= 1
n
∑ x(i, t)n

i=1 . (1) 

 

 
Fig. 2. The zig-zag scanner trajectories 
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2.3 Brief description of MD control 
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 2σCD(t)=2* � 1
n-1
∑ (x(i, t)-x�(t))

2n
i=1 �

1
2  (2) 

Often the term ‘CD spread’ is used interchangeably with 2σCD.  
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actuators, moisture actuators are designed for moisture profile regulation but they may have 
effects on the caliper profile. The steam box is typically installed in the press section and the 
water spray is located in the drying section. Figure 1 indicates the physical locations of 
moisture actuators.  
The most common caliper actuators are hot air showers and induction heaters. Both types of 
actuators provide surface heating for calendering rolls. The hot shower uses the high 
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temperature steam or air; the induction heater uses the high frequency alternating current. 
By heating up the calender roll, caliper actuators alter the local diameter of the calender roll 
and subsequently increase the local pressure applied to the paper web. The physical location 
of the caliper actuators can be also found in Figure 1.  

3. Modelling, control and optimization of papermaking MD processes 
Control of the MD process is typically a regulation problem where the paper quality 
variables need to be held within specified quality limits. At the same time, the constant 
pressure to increase operational efficiency demands that the paper production uses the least 
amount of raw materials and energy required to meet quality goals.  
When multiple grades of paper are produced on a single paper machine, control must also 
be able to provide quick transitions of the quality variables along smooth trajectories. When 
the differences between the paper grades are large, it may be necessary to enhance the 
control algorithm to account for process nonlinearities that become apparent over a larger 
span of operating points. 

3.1 Modeling of papermaking MD processes 
In this section, modelling of the MD process for MPC controller design is discussed. The 
additional modelling required for paper grade change control is discussed in section 3.4.  
For effective MPC control of paper MD quality variables, it is necessary to build a matrix of 
linear models relating the process MV’s to the quality variables (the CV’s). A basic paper 
machine model matrix most often includes stock flow, steam pressure of multiple dryer 
sections, and machine speed as MVs, and paper weight (basis weight or dry weight), and 
moisture as CV’s. Many other MV’s and CV’s can be included in the model matrix 
depending on the complexity of the paper machine and the paper quality requirements. An 
example model matrix is given in Figure 3. 
 

 
Fig. 3. A basic model matrix for CD-MPC. The models are step responses. 
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The process models used for MPC control are often developed in transfer function form, 
such as: 

 y(s)	=g(s)u(s)+d(s)  (3) 

and 

 y(s)=�
y�(s)
⋮

y��(s)
� �			g(s) = �

g��(s) … g���(s)
⋮ ⋱ ⋮

g���(s) … g����(s)
��  u(s)=�

u�(s)
⋮

u��(s)
�, (4) 

where y(s) ∈ ℂ�� is the Laplace transformation of the N�	 MD quality measurements (such as 
dry weight, moisture, caliper, etc). u(s) ∈ ℂ�� is the Laplace transformation of the actuator 
setpoints (such as thick stock flow, dryer section steam pressure(s), filler flows, machine 
speed, etc). d(s)	∈ ℂ�� is the Laplace transformation of the augmented process disturbance 
array.  g��(s) ∈ ℂ (i	 = 1…N�	and	j	 = 1…N�) are the transfer functions from the jth actuator u� 
to the ith MD quality measurement 	y�.  

3.1.1 Model identification 
Typically the MD process models that are used as the basis for the MD-MPC controller are 
identified from data obtained during simple process experiments. A series of step changes 
is made for each MV. There is a delay after each step long enough so that the full 
responses of all of CV’s can be observed. That is, the CV responses reach steady state 
before the next step change in the MV is made. These types of process experiments are 
known as bump tests. 
Once a set of identification data has been obtained, various techniques may be used to 
generate a process model from this data. In the simplest case, plots of the bump tests are 
reviewed to graphically estimate a process gain, ���, dead time, ���� , and time constant, ���� , 
yielding the process model: 

 ��(�) = ����
������

�������
��(�)  (5) 

More complex methods involve use of regression and search techniques to find both the 
optimum model parameters, and the optimum model structure (transfer function numerator 
and denominator orders). These techniques typically use minimization of squared model 
prediction errors as the objective: 

 � = ∑ ����(�) � ��(�)������  (6) 

Where ���(�) and ��(�) are respectively the predicted and actual values of the ith CV at time 
k. (Ljung 1998) is the classic reference on system identification, and there are commercial 
software packages available that automate much of the system identification work. 

3.2 MD-MPC design 
Once all of the bump test, and system identification activities have been performed, the 
complete process model (3) is used directly in the model predictive controller. MPC solves 
an optimization problem at each control execution. One robust MPC problem formulation is: 
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3.2 MD-MPC design 
Once all of the bump test, and system identification activities have been performed, the 
complete process model (3) is used directly in the model predictive controller. MPC solves 
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 min��,��
�
� ‖W(y� − SΔu)‖��, (7) 

Subject to: 

�� ≤ �� ≤ �� 

�� ≤ u ≤ u� 

∆�� ≤ ∆u ≤ ∆u� 

The values of �� are the CV targets and SΔU are the predicted future values of the CV’s. S is 
the prediction matrix, containing all the information from the process model (3). W is a 
weighting matrix, and ‖∙‖�� is the two-norm squared operator. ���and �� are the low and high 
CV quality limits, �� and u� are the low and high MV limits, and ∆�� and ∆u� are the low 
and high limits for MV moves. As discussed in the section below, this problem formulation, 
combined with techniques employed in its solution implicitly provide robustness 
characteristics in the controller design.  
The technical details of the solution of the problem (7) are given in (Ward 1996); however, 
some notable aspects of the solution methodology and beneficial characteristics of the 
solution are given in the section below. 

3.2.1 Model scaling and controller robustness 
Robust numerical solution of the optimization problem (7) depends on condition number of 
the system gain matrix, G. Prior to performing the controller design, the gain matrix 
condition number is minimized by solving the problem: 

 min��,��{κ(D�gD�)}, (8) 

Where κ is condition number, and Dr and Dc are diagonal transformation matrices. The 
scaled system gain matrix gs is then: 

 g� = D�gD�, (9) 

g� is then used for all MPC computations. 
It should be noted that the objective (7) does not explicitly penalize the MV moves Δu as a 
method to promote controller robustness. Instead, controller robustness is provided by the 
CV range formulation and singular value thresholding.  
First, the CV range formulation refers to the inequalities given in the problem formulation 
(7). Under this formulation, if a CV is predicted to be within it range in the future, no MV 
action is taken. Since MV moves are not made unless absolutely necessary, this is a very 
robust policy. 
Second, the solution of the problem involves an active set method that allows the 
constrained optimization problem to be converted into an unconstrained problem. A URV 
orthogonal decomposition (see Ward 1996) of the matrix characterizing the unconstrained 
problem is then employed to solve the unconstrained problem. Prior to the decomposition, 
singular values of the problem matrix that are less than a certain threshold are dropped, 
reducing the dimension of the problem, and ensuring that the controller does not attempt to 
control weakly controllable directions of the process. 
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3.3 Economic optimization 
Energy consumption is a big concern for papermakers. Increasing profits by minimizing 
operating costs without sacrificing paper quality and runability is always a goal for them. In 
theory, if the number of MVs of a process is greater than the number of CVs plus the 
number of active constraints, the process has degrees of freedom allowing for steady-state 
optimization. Product value optimization can be systematically integrated with the MD-
MPC control. One can then take the feed, product, and utility costs into account with the 
MD controller design.  
For the economic optimization of a process, the following objective is to be minimized: 

 � � ∑ ����(�� � ���)� + ������� + ∑ ������� � ����� + �������  (10) 

Here ��� and ��� are the desired steady state values of the process CV’s and MV’s, ���  and 
��� are the costs of quadratic deviation from the desired values, and ���  and ��� are the 
linear costs of the CV’s and MV’s. This objective is useful for paper machines, for example, 
by placing costs on the different energy sources used in drying. 
The economic objective is combined with the MPC control problem objective to give an 
augmented problem formulation. The augmented problem is then solved using the same 
solution method as described above. 
Economic optimization is a lower priority for paper machines than quality control. If the 
paper does not meet quality specifications, it cannot be sold, and any savings made from 
economic optimization are more than lost. Therefore, economic optimization only occurs 
when there are extra degrees of freedom for the controller. Economic optimization is not 
attempted unless all of the CV’s are predicted to remain within their quality specifications 
over the whole of the controller’s prediction horizon.  

3.3.1 Mill implementation results  
MPC including an economic optimization layer was implemented for a tissue machine. A 
diagram of the tissue machine is given in Figure 4. As can be seen in the diagram, tissue dry 
weight and moisture are measured at the reel; moisture is measured between the second 
through-air dryer (TAD2) and the Yankee dryer, and TAD1 exhaust pressure must also be 
monitored and controlled. These four variables are the CV’s in this example. A large number 
of MV’s are available to control this machine. Stock flow, TAD1 supply temperature, TAD1 
dry end differential pressure, TAD1 gap pressure, TAD2 exhaust temperature, TAD2 dry 
end differential pressure, TAD2 gap pressure, Yankee hood temperature, and Yankee 
supply fan speed are all used as MV’s in the MPC. Machine speed and tickler refiner were 
added as DV’s. The MPC model matrix is shown in Figure 5. 
 

 
Table 1. Tissue machine MV’s with linear objective coefficients  

MV Energy Fuel Units
Linear Obj Coef
Cost /  eng unit

TAD1 Supply Temp Gas deg F 0.680
TAD1 DE DP Electricity inch H2O 47.267

TAD1 Gap Pres Electricity inch H2O -0.030
TAD2 Exh Temp Gas deg F 5.858

TAD2 DE DP Electricity inch H2O 40.249
TAD2 Gap Pres Electricity inch H2O -16.415
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A large number of the MV’s in this control problem have an impact on the paper moisture, 
both after TAD2, and at the reel; however each MV uses a different energy source and has 
different drying efficiency. Overall, since there are more MV’s than CV’s, and significant 
cost differences between the MV’s, there is an opportunity for economic optimization in this 
system. Table 1 shows the energy sources and different energy cost efficiencies (Linear Obj 
Coeff Cost/eng unit) associated with each MV. Economic optimization can be accomplished 
by including these variables in the linear part of the economic objective function given by 
(10). 
 

 
Fig. 4. Diagram of a tissue machine with CV’s, MV’s, and DV’s for MPC. 

Once the economic cost function was added to the MPC, a plant trial was made. Figures 6-10 
show the results of this trial. In Figure 7 it can be seen that prior to turning on the economic 
optimizer (the period from 8:30 to 9:30) there was a relative cost of energy of 100. The 
optimizer was turned on at 9:30. Initially there were some wind-up problems in the plant 
DCS which were preventing the MPC from optimizing. Once these were cleared, at 10:44, 
the controller drove the process to the low cost operating point (from 10:44 to 12:30). The 
relative cost of energy at this operating point was 98.8. In order to better interpret these 
results, it is necessary to rank the costs of each MV on the common basis of Cost/% Moi. 
This is accomplished by dividing the linear objective coefficients given in Table 1 by their 
respective process gains. These are shown in Table 2, along with the MV high and low 
limits, and the optimization behaviour. Looking again at the Figures 8 and 9, it can be seen 
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that the highest costing MV’s are driven to their minimum operating points, and the lowest 
costing MV’s are driven to their maximum operating points. The TAD1 dry end differential 
pressure is left as the MV that is within limits and actively controlling the paper moistures. 
Figure 10 shows that throughout this trial, the MV’s are optimized without causing any 
disturbance to the CV’s. 
 
 

 
 

Fig. 5. The MPC model matrix for the tissue machine control and optimization example  

 
 

 
 

Fig. 6. Natural gas costs and electricity costs during the trial  
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relative cost of energy at this operating point was 98.8. In order to better interpret these 
results, it is necessary to rank the costs of each MV on the common basis of Cost/% Moi. 
This is accomplished by dividing the linear objective coefficients given in Table 1 by their 
respective process gains. These are shown in Table 2, along with the MV high and low 
limits, and the optimization behaviour. Looking again at the Figures 8 and 9, it can be seen 
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that the highest costing MV’s are driven to their minimum operating points, and the lowest 
costing MV’s are driven to their maximum operating points. The TAD1 dry end differential 
pressure is left as the MV that is within limits and actively controlling the paper moistures. 
Figure 10 shows that throughout this trial, the MV’s are optimized without causing any 
disturbance to the CV’s. 
 
 

 
 

Fig. 5. The MPC model matrix for the tissue machine control and optimization example  

 
 

 
 

Fig. 6. Natural gas costs and electricity costs during the trial  
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Fig. 7. Total costs during the trial  

 
 
 
 
 
 

 
 
 
Table 2. The MV cost rankings.  

MV eng unit Low Limit High Limit

Linear Obj 
Coef 

(Cost/eng unit)

Process
Gain 

(%Moi/eng unit)

Cost
(Cost / % 

Moi) Rank
Optimization

Behavior
TAD1 Supply Temp deg F 300.0 450.0 0.68 -0.12 5.48 4 450 (max)
TAD1 DE DP inch H2O 1.0 3.9 47.30 -5.12 9.24 3 controlling Moi
TAD1 Gap Prs inch H2O 0.4 1.5 -0.03 1.95 0.02 6 0.4 (max)
TAD2 Exh Temp deg F 175.0 250.0 5.86 -0.45 13.02 1 175 (min)
TAD2 DE DP inch H2O 1.0 3.5 40.26 -3.14 12.82 2 1 (min)
TAD2 Gap Prs inch H2O 0.2 1.5 -16.40 4.25 3.86 5 0.2 (max)
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Fig. 8. Manipulated variables during the trial  
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Fig. 10. Controlled variables during the trial  

3.4 Grade change strategies 
Grade change is a terminology in MD control. It refers to the process of transitioning a paper 
machine from producing one grade of paper product to another. One can achieve a grade 
change by gradually ramping up a set of MVs to drive the setpoints of CVs from one 
operating point to another. During a grade change, the paper product is often off-
specification and not sellable. It is important to develop an automatic control scheme to 
coordinate the MV trajectories and minimize the grade change transition times and the off-
spec product. An offline model predictive controller can be designed to produce CV and 
MV trajectories to meet these grade change criteria. MPC is well-suited to this problem 
because it explicitly considers MV and CV trajectories over a finite horizon. By coordinating 
the offline grade change controller (linear or nonlinear) and an online MD-MPC, one can 
derive a fast grade change that minimizes off-spec production. This section discusses the 
design of MPC controllers for linear and nonlinear grade changes. 
Figure 11 gives a block diagram of the grade change controller incorporated into an MD 
control system. The grade change controller calculates the MV and CV trajectories to meet 
the grade change criteria. This occurs as a separate MPC calculation performed offline so 
that grade change specific process models can be used, and so that the MPC weightings can 
be adjusted until the MV and CV trajectories meet the design criteria. The MV trajectories 
are sent to the regulatory loop as a series of MV setpoint changes. The CV trajectories are 
sent as setpoint changes to the MD controller. If the grade change is performed with the MD 
controller in closed-loop, additional corrections to the MV setpoints are made to eliminate 
any deviation of the CV from its target trajectory. 
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Fig. 11. Block diagram of MD-MPC control enhanced with grade change capability  

The MV and CV trajectories are generated in a two step procedure. First there is a target 
calculation step that generates the MV setpoints required to bring the CV’s to their target 
values for the new grade. Once the MV setpoints are generated, then there is a trajectory 
generation step where the MV and CV trajectories are designed to meet the specifications of 
the grade change. 
The MV targets are generated from solving a set of nonlinear equations: 
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  (11) 

Here ydw/ymoi represents the CV target for the new grade. The functions f(∙) are the 
models of dry weight and moisture. The process MV’s are denoted ui and model constants 
are denoted Ci. The superscripts indicate the same paper properties measured by different 
scanners. Since the number of MV’s and the number of CV’s is not necessarily equal, these 
equations may have one, multiple or no solutions. To allow for all of these cases, the 
problem is recast as: 

 min��F(u�, u�, … ), (12) 

Subject to: 

G(u�, u�, … ) ≤ 0, 
H(u�, u�, … ) = 0, 
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Fig. 11. Block diagram of MD-MPC control enhanced with grade change capability  
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models of dry weight and moisture. The process MV’s are denoted ui and model constants 
are denoted Ci. The superscripts indicate the same paper properties measured by different 
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Where F(∙) is a quadratic objective function formulated to find the minimum travel solution. 
H(∙) represents the equality constraints given above, and G(∙) represents the physical 
limitations of the CVs and MVs (high, low, and rate of change limits).   
Once the MV targets have been generated, the MV and CV trajectories are then designed. 
Figure 12 gives a schematic representation of the trajectory generation algorithm. The 
process models are linearized (if necessary) and then scaled and normalized for 
application in an MPC controller. Process constraints such as the MV and CV targets, and 
the MV high and low limits are also given to the MPC controller. Internal controller 
tuning parameters are then used to adjust the MV and CV trajectories to meet the grade 
change requirements.  
 

 
Fig. 12. Diagram of MPC-based grade change trajectory generation.  

3.4.1 Linear grade change 
In a linear grade change, the MD process models that are used in the MD-MPC controller 
are also used as the models for determining the MD targets, and for designing the MD grade 
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3.4.2 Nonlinear grade change 
In a nonlinear grade change, a first principles model may be used for the target and 
trajectory generation. For example, a simple dry weight model is: 
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� , (13) 
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Where m��� is the paper dry weight, q����� is the thick stock flow, and v is machine speed. K 
is the expression of a number of process constants and values including fibre retention, 
consistency, and fibre density. (Chu et al. 2008) gives a more detailed treatment of this dry 
weight model.  
(Persson 1998, Slätteke 2006, and Wilhelmsson 1995) are examples of first principles 
moisture models that may be used. 

3.4.3 Mill implementation results 
In this section, some results of MPC-based grade changes for a fine paper machine are given. 
The grade change is from a paper with a dry weight of 53 lb/3000ft2 (86 g/m2) to a paper 
with a dry weight of 44 lb/3000ft2 (72 g/m2). Both paper grades have the same reel moisture 
setpoint of 4.8%. For the grade change, stock flow, 6th section steam pressure, and machine 
speed are manipulated. 
Figures 13 and 14 show a grade change performed on the paper machine using linear 
process models, and keeping the regular MPC in closed-loop during the grade change. The 
grade change was completed in 10 minutes, which is a significant improvement over the 22 
minutes required by the grade change package of the plant’s previous control system. In 
Figure 13, the CV trajectories are shown. Here it can be seen that although there is initially a 
small gap between the actual dry weight and the planned trajectory, the regular MPC takes 
action with the thick stock valve (as shown in Figure 14) to quickly bring dry weight back on 
target. The deviation in the reel moisture is more obvious. This might be expected as the 
moisture dynamics of the paper machine display more nonlinear behaviour for this range of 
operations. The steam trajectory in Figure 14 is ramping up at its maximum rate and yet the 
paper still becomes too wet during the initial part of the grade change. This indicates that 
the grade change package is aggressively pushing the system to achieve short grade change 
times. 
 

 
Fig. 13. CV trajectories under closed-loop GC with linear models 
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Where m��� is the paper dry weight, q����� is the thick stock flow, and v is machine speed. K 
is the expression of a number of process constants and values including fibre retention, 
consistency, and fibre density. (Chu et al. 2008) gives a more detailed treatment of this dry 
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target. The deviation in the reel moisture is more obvious. This might be expected as the 
moisture dynamics of the paper machine display more nonlinear behaviour for this range of 
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paper still becomes too wet during the initial part of the grade change. This indicates that 
the grade change package is aggressively pushing the system to achieve short grade change 
times. 
 

 
Fig. 13. CV trajectories under closed-loop GC with linear models 
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Fig. 14. MV trajectories under closed-loop GC with linear models 

Figures 15 and 16 show a grade change performed on a high fidelity simulation of the fine 
paper machine. This grade change uses a nonlinear process model, and the regular MPC is 
kept in closed-loop during the grade change. Here it can be seen that the duration of the 
grade change is reduced to 8 minutes. Part of the improvement comes from using stock flow 
setpoint instead of stock valve position, allowing improved dry weight control. Another 
improvement is that the planned trajectories allow for some deviation in the reel moisture 
that cannot be eliminated. Both dry weight and reel moisture follow their trajectories more 
closely. At the end of the grade change, the nonlinear grade change package is able to 
anticipate the need to reduce steam preventing the sheet from becoming dry.  
 

 
Fig. 15. CV trajectories under closed-loop GC with nonlinear models 
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Fig. 16. MV trajectories under closed-loop GC with nonlinear models 

4. Modelling, control and optimization of papermaking CD processes 
To produce quality paper it is not enough that the average value of paper weight, moisture, 
caliper, etc across the width of the sheet remains on target. Paper properties must be 
uniform across the sheet. This is the purpose of CD control.  

4.1 Modelling of papermaking CD processes 
The papermaking CD process is a large scaled two-dimensional process. It involves multiple 
actuator arrays and multiple quality measurement arrays. The process shows very strong 
input-output off-diagonal coupling properties. An accurate CD model is the prerequisite for 
an effective CD-MPC controller. We begin by discussing a model structure for the CD 
process and the details of the model identification.  

4.1.1 A two-dimensional linear system 
The CD process can be modelled as a linear multiple actuator arrays and multiple 
measurement arrays system,  

  Y(s)	=G(s)U(s)+D(s),  (14) 

and 

 Y(s)=�
y�(s)
⋮

y��(s)
� �			G(s) = �

G��(s) … G���(s)
⋮ ⋱ ⋮

G���(s) … G����(s)
��  U(s)=�

u�(s)
⋮

u��(s)
�, (15) 
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Fig. 14. MV trajectories under closed-loop GC with linear models 
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where Y(s) ∈ ℂ(����) is the Laplace transformation of the augmented CD measurement 
array. The element y�(s) ∈ ℂ�	(i	 = 1,… , N�) is the Laplace transformation of the ith 
individual CD measurement profile, such as dry weight, moisture, or caliper. N�	is the total 
number of the quality measurements, and m is the number of elements of individual 
measurement arrays. U(s) ∈ ℂ(∑ ����

��� ) is the Laplace transformation of the augmented 
actuator setpoint array. The element u�(s) ∈ ℂ��	(j	 = 1…N�) is the Laplace transformation of 
the jth individual CD actuator setpoint profile, such as the headbox slice, water spray, steam 
box, or induction heater. N�	is the total number of actuator beams available as MV’s, and n� 
is the number of individual zones of the jth actuator beam. In general a CD system has the 
same number of elements for all CD measurement profiles, but different numbers of 
actuator beam setpoints. D(s)	∈ ℂ(����) is the Laplace transformation of the augmented 
process disturbance array. It represents process output disturbances.   
G��(s) ∈ ℂ���� (i	 = 1…N�	and	j	 = 1…N�) in (15) is the transfer matrix of the sub-system 
from the jth actuator beam u� to the ith CD quality measurement 	y�. The model of this sub-
system can be represented by a spatial static matrix P�� ∈ ℝ���� with a temporal dynamic 
transfer function	h��(s). In practice, 	h��(s) is simplified as a first-order plus dead time 
system. Therefore, G��(s) is given by 

 G��(s) = P��h��(s) = P�� �
����� e

����  (16) 

where T� is the time constant and T� is the time delay. The static spatial matrix P�� is a matrix 
with n� columns, i.e., P�� = [p� p� ⋯ p��] and its kth column p� represents the spatial 
response of the kth individual actuator zone of the jth actuator beam. As proposed in 
(Gorinevsky & Gheorghe 2003), p�	can be formulated by, 

 

2 2
k k

2 2
α((x x ) βω) α((x x ) βω)

k ω ω
k k

g π πp {e cos( ((x x ) βω))  e cos( ((x x ) βω))}
2 ω ω

− − − +
− −

= − − + − +   (17) 

where x is the coordinate of CD measurements (CD bins), g is the process gain, ω is the 
response width, α is the attenuation and β is divergence. x� is the CD alignment that 
indicates the spatial relationship between the centre of the kth individual CD actuator and 
the center of the corresponding measurement responses. A fuzzy function may be used to 
model the CD alignment. Refer to (Gorinevsky & Gheorghe 2003) for the technical details.  
Figure 17 illustrates the structure of the spatial response matrix P��. The colour map on the 
left shows the band-diagonal property of	P��; and the plot in the right shows the spatial 
response of the individual spatial actuator p�. It can be seen that each individual actuator 
affects not only its own spatial zone area, but also adjacent zone areas. 

4.1.2 Model identification 
Model identification of the papermaking CD process is the procedure to determine the 
values of the parameters in (16, 17), i.e., the dynamic model parameters	θ� = {T�, T�}, the 
spatial model parametersθ�� = 	 {g, ω, α, β}, and the alignment x�. An iterative identification 
algorithm has been proposed in (Gorinevsky & Gheorghe 2003). As with MD model 
identification, this algorithm is an open-loop model identification approach. Identification 
experiment data are first collected by performing open-loop bump tests.  
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Fig. 17. The illustration to spatial response matrix P��. 
Figure 18 illustrates the logic flow of this algorithm. This nontrivial system identification 
approach first estimates the overall dynamic response and spatial response, and 
subsequently identifies the dynamic model parameter θ� and the spatial model 
parameter	θ��. h� in Figure 18 is the estimated finite impulse response (FIR) of the dynamic 
model h(s) in (16). p� in Figure 18 is the estimated steady state measurement profile, i.e., 
overall spatial response. For easier notation, we omit the indexes i and j here. The key 
concept of the algorithm is to optimize the model parameters iteratively. Refer to 
(Gorinevsky & Gheorghe 2003) for technical details of this algorithm, and (Gorinevsky & 
Heaven, 2001) for the theoretical proof of the algorithm convergence.  
 

 
Fig. 18. The schematic of the iterative CD system identification algorithm 

The algorithm described above has been implemented in a software package, named 
IntelliMapTM, which has been widely used in pulp and paper industries. The tool executes 
the open-loop bump tests automatically and, at the end of the experiments, provides a 
continuous-time transfer matrix model (defined in (14)). For convenience, the MPC 
controller design discussed in the next section will use the state space model representation. 
Conversion of the continuous-time transfer matrix model into the discrete-time state space 
model is trivial (Chen 1999) and is omitted here.  
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where Y(s) ∈ ℂ(����) is the Laplace transformation of the augmented CD measurement 
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actuator setpoint array. The element u�(s) ∈ ℂ��	(j	 = 1…N�) is the Laplace transformation of 
the jth individual CD actuator setpoint profile, such as the headbox slice, water spray, steam 
box, or induction heater. N�	is the total number of actuator beams available as MV’s, and n� 
is the number of individual zones of the jth actuator beam. In general a CD system has the 
same number of elements for all CD measurement profiles, but different numbers of 
actuator beam setpoints. D(s)	∈ ℂ(����) is the Laplace transformation of the augmented 
process disturbance array. It represents process output disturbances.   
G��(s) ∈ ℂ���� (i	 = 1…N�	and	j	 = 1…N�) in (15) is the transfer matrix of the sub-system 
from the jth actuator beam u� to the ith CD quality measurement 	y�. The model of this sub-
system can be represented by a spatial static matrix P�� ∈ ℝ���� with a temporal dynamic 
transfer function	h��(s). In practice, 	h��(s) is simplified as a first-order plus dead time 
system. Therefore, G��(s) is given by 

 G��(s) = P��h��(s) = P�� �
����� e

����  (16) 

where T� is the time constant and T� is the time delay. The static spatial matrix P�� is a matrix 
with n� columns, i.e., P�� = [p� p� ⋯ p��] and its kth column p� represents the spatial 
response of the kth individual actuator zone of the jth actuator beam. As proposed in 
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The algorithm described above has been implemented in a software package, named 
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4.2 CD-MPC design 
In this section, a state space realization of (14) is used for the MPC controller development, 

 X(k + 1)	 = 	AX(k) + BΔU(k)
Y(k) = 	CX(k) + D(k) . (18) 

X(k) ∈ ℝ(������), Y(k) ∈ ℝ(����), ΔU(k) ∈ ℝ(∑ ����
��� ),		andD(k) ∈ ℝ(����)	are the augmented 

state, output, actuator move, and output disturbance arrays of the papermaking CD process 
with multiple CD actuator beams and multiple quality measurement arrays. {A, B, C} are the 
model matrices with compatible dimensions. Assume (A, B) is controllable and (A, C) is 
observable. In this section, the objective function of CD-MPC is developed first. Then the CD 
actuator constraints are incorporated in the objective function. Finally a fast QP solver is 
presented for solving the large scale constrained CD-MPC optimization problem. How to 
tune a CD-MPC controller is also covered in this section 

4.2.1 Objective function of CD-MPC  
The first step of MPC development is performing the system output prediction over a 
certain length of prediction horizon. From the state space model defined in (18), we can 
predict the future states, 

 �(k) = 	��X(k) + ��Δ�(k), (19) 

where �(k) ∈ ℝ(���������) is the state prediction, Δ�(k) ∈ ℝ(��� ∑ ����
��� ) is the augmented 

actuator moves. �� and �� are the state and input prediction matrices with the compatible 
dimensions. H�	and H� are the output and input prediction horizons, respectively.  
The explicit expressions of the parameters in (19) are 
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  (20) 

The initial state X��(k|k − 1) at instant k can be estimated from the previous state estimation 
X�(k − 1) and the previous actuator move		ΔU(k − 1), i.e.,  

 X��(k|k − 1)	 = AX�(k − 1) + BΔU(k − 1). (21) 

The measurement information at instant k can be used to improve the estimation, 

 X�(k)	 = X��(k|k − 1) + L(Y(k) 	− 	CX��(k|k − 1)), (22) 

where L∈ ℝ(������)�(����) is the state observer matrix.  
Replace the state X(k) by its estimation X�(k), and perform the output prediction �(k), 
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 �(k) = 	����X�(k) + ����Δ�(k), (23) 

where �� ∈ ℝ(�������)×(���������) is the output prediction matrix, given by  

 �� = diag(C,⋯C) = �
C 0 ⋯ 0
0 C ⋮ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ C

� .		����, �(k) = �
Y(k + 1|k)
Y(k + 2|k)

⋮
Y(k + H�|k)

�. (24) 

From the expression in (24), one can define the objective function of a CD-MPC problem, 

 min��(�)||�(k) − ����||��� + ||Δ�(k)||��� + ||�(k) − ����||��� + ||ℱ��(k)||��� . (25) 

���� 	= 	 [Y���� , Y���� ,⋯ , Y���� ]� defines the measurement targets over the prediction horizon H�. 
Similarly, ���� = [U���� , U���� ,⋯ , U���� ]� defines the input actuator setpoint targets over the 
control horizon H�. (��, 	��, 	��, 	��)	are the diagonal weighting matrices. �� defines the 
relative importance of the individual quality measurements. 	��	defines the relative 
aggressiveness of the individual CD actuators. 	��	defines the relative deviation from the 
targets of the individual CD actuators. 	��	defines the relative picketing penalty of the 
individual CD actuators. The matrix ℱ� 	= 	diag(F�,⋯ , F�) is the augmented actuator 
bending matrix. The detailed definition of F� will be covered in Section 4.2.2. || ∙ ||ℛ�

�  is the 
square of weighted 2-norm, i.e., || ∙ ||ℛ�

� = (∙)�ℛ�(∙). In general, (��, 	��, 	��, 	��)	are used as the 
tuning parameters for CD-MPC. 
�(k) is the future input prediction. It can be expressed by  
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where I ∈ ℝ(∑ ����
��� )×(∑ ��)��

���  is the identity matrix. Inserting (26) into (25) and replacing �(k) 
by Δ�(k), the QP problem can be recast into 

 min��(�) �� Δ��(k)ΦΔ�(k) + φ�Δ�(k), (27) 

where Φ is the Hessian matrix and φ is the gradient matrix. Both can be derived from the 
prediction matrices (��,��,��) and weighting matrices (��, ��, ��, ��).	 Refer to (Fan 2003) 
for the detailed expressions of Φ and φ. 
By solving the QP problem in (27), one can derive the predicted optimal array Δ�(k). Only 
the first component of Δ�(k), i.e., ΔU(k), is sent to the real process and the rest are rejected. 
By repetition of this procedure, the optimal MV moves at any instant are derived for 
unconstrained CD-MPC problems.  

4.2.2 Constraints 
In Section 4.2.1 the CD-MPC controller is formulated as an unconstrained QP problem. In 
practice the new actuator setpoints given by the CD-MPC controller in (27) should always 
respect the actuator’s physical limits. In other words, the hard constraints on Δ�(k) should 
be added into the problem in (27).  
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4.2.1 Objective function of CD-MPC  
The first step of MPC development is performing the system output prediction over a 
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The initial state X��(k|k − 1) at instant k can be estimated from the previous state estimation 
X�(k − 1) and the previous actuator move		ΔU(k − 1), i.e.,  

 X��(k|k − 1)	 = AX�(k − 1) + BΔU(k − 1). (21) 

The measurement information at instant k can be used to improve the estimation, 

 X�(k)	 = X��(k|k − 1) + L(Y(k) 	− 	CX��(k|k − 1)), (22) 

where L∈ ℝ(������)�(����) is the state observer matrix.  
Replace the state X(k) by its estimation X�(k), and perform the output prediction �(k), 
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relative importance of the individual quality measurements. 	��	defines the relative 
aggressiveness of the individual CD actuators. 	��	defines the relative deviation from the 
targets of the individual CD actuators. 	��	defines the relative picketing penalty of the 
individual CD actuators. The matrix ℱ� 	= 	diag(F�,⋯ , F�) is the augmented actuator 
bending matrix. The detailed definition of F� will be covered in Section 4.2.2. || ∙ ||ℛ�
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where I ∈ ℝ(∑ ����
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���  is the identity matrix. Inserting (26) into (25) and replacing �(k) 
by Δ�(k), the QP problem can be recast into 

 min��(�) �� Δ��(k)ΦΔ�(k) + φ�Δ�(k), (27) 

where Φ is the Hessian matrix and φ is the gradient matrix. Both can be derived from the 
prediction matrices (��,��,��) and weighting matrices (��, ��, ��, ��).	 Refer to (Fan 2003) 
for the detailed expressions of Φ and φ. 
By solving the QP problem in (27), one can derive the predicted optimal array Δ�(k). Only 
the first component of Δ�(k), i.e., ΔU(k), is sent to the real process and the rest are rejected. 
By repetition of this procedure, the optimal MV moves at any instant are derived for 
unconstrained CD-MPC problems.  

4.2.2 Constraints 
In Section 4.2.1 the CD-MPC controller is formulated as an unconstrained QP problem. In 
practice the new actuator setpoints given by the CD-MPC controller in (27) should always 
respect the actuator’s physical limits. In other words, the hard constraints on Δ�(k) should 
be added into the problem in (27).  
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The CD actuator constraints include: 
• First and second order bend limits; 
• Average actuator setpoint maintenance; 
• Maximum actuator setpoints; 
• Minimum actuator setpoints; and  
• Maximum change of actuator setpoints between consecutive CD-MPC iterations.  

Of these five types of actuator constraints, most of them are very common for the typical MPC 
controllers, except for the bend limits which are special for papermaking CD processes. The 
first and second bend limits define the allowable first and second order difference between the 
adjacent actuator setpoints of the actuator beam. It typically applies to slice lips and induction 
heaters to prevent the actuator beams from being overly bent or locally over-heated. The 
bending matrix of the jth actuator beam, ��,� (j	 = 1,⋯ , N�)	can be defined by  
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where δ�,� and δ�,� are the first order and the second order bend limit of the jth actuator beam 
u�. γ� and	��,� define the bend limit vector and the bend limit matrix of the jth actuator u�, 
respectively. The bend limit matrix ��,� is not only part of the constraints, but also the 
objective function in (27). In (27),	ℱ� 	= 	diag(F�,⋯ , F�)and F� 	= 	diag(F�,�,⋯ , F�,��).  
The individual bend limit constraint on the jth actuator beam u� in (28) can be extended to 
the overall bend limit matrix F� for the augmented actuator setpoint array U, i.e.,  

 � F�−F�� U ≤ �γ�γ�� (29) 

where γ� is the overall bend limit vector, and γ� = [γ�,�� ,⋯ γ�,��
� ]�.   

Similar to the bend limits, other types of actuator physical constraints can be formulated as 
the matrix inequalities,   
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where the subscripts “max”, “min”, “avg”, and “∆U" stand for the maximum, minimum, 
average limit, and maximum setpoint changes between two consecutive CD-MPC iterations 
of the augmented actuator setpoint array, U. It is straightforward to derive the expressions 
of F���, F���, F���, F∆�. Therefore the detailed discussion is omitted.  
From (29) and (30), one can see that the constraints on the augmented actuator setpoint 
array U can be represented by a linear matrix inequality, i.e., 

 FU ≤ γ, (31) 

 
Model Predictive Control and Optimization for Papermaking Processes 333 

where F and γ are constant coefficients used to combine the inequalities in  (29) and (30) 
together. 
(26) is inserted into (31). The constraint in (31) is then added to the objective function in (27). 
Finally the CD-MPC controller is formulated as a constrained QP problem, 

 subject	to,
min��(�) �� ���(�)���(�) � ����(�)

ℱ(���(� � �) � ����(�)) � Γ
, (32) 

where ℱ = diag(F, F,⋯ , F) and Γ = diag(γ, γ,⋯ , γ). By solving the QP problem in (32), the 
optimal actuator move at instant k can be achieved. 

4.2.3 CD-MPC tuning 
Figure 19 illustrates the implementation of the CD-MPC controller. First, the process model 
is identified offline from input/output process data. Then the CD-MPC tuning algorithm is 
executed to generate optimal tuning parameters. Subsequently these tuning parameters are 
deployed to the CD-MPC controller. The controller generates the optimal actuator setpoints 
continuously based on the feedback measurements.  
 

 
Fig. 19. The implementation of the CD-MPC controller  

The objective for CD-MPC tuning algorithm in Figure 19 is to determine the values 
of	��, 	��, 	��, and	�� in (25). It has been proven that	��	defines the relative importance of 
quality measurements,		�� defines the dynamic characteristics of the closed-loop CD-MPC 
system, and	��	and	��	define the spatial frequency characteristics of the closed-loop CD-
MPC system.	��	is for the high spatial frequency behaviours and 	��	is for the low spatial 
frequencies (Fan 2004).  
Strictly speaking, the CD-MPC tuning problem requires analyzing the robust stability of a 
closed-loop control system with nonlinear optimization. An analytic solution to the QP 
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where δ�,� and δ�,� are the first order and the second order bend limit of the jth actuator beam 
u�. γ� and	��,� define the bend limit vector and the bend limit matrix of the jth actuator u�, 
respectively. The bend limit matrix ��,� is not only part of the constraints, but also the 
objective function in (27). In (27),	ℱ� 	= 	diag(F�,⋯ , F�)and F� 	= 	diag(F�,�,⋯ , F�,��).  
The individual bend limit constraint on the jth actuator beam u� in (28) can be extended to 
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where the subscripts “max”, “min”, “avg”, and “∆U" stand for the maximum, minimum, 
average limit, and maximum setpoint changes between two consecutive CD-MPC iterations 
of the augmented actuator setpoint array, U. It is straightforward to derive the expressions 
of F���, F���, F���, F∆�. Therefore the detailed discussion is omitted.  
From (29) and (30), one can see that the constraints on the augmented actuator setpoint 
array U can be represented by a linear matrix inequality, i.e., 

 FU ≤ γ, (31) 
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where F and γ are constant coefficients used to combine the inequalities in  (29) and (30) 
together. 
(26) is inserted into (31). The constraint in (31) is then added to the objective function in (27). 
Finally the CD-MPC controller is formulated as a constrained QP problem, 

 subject	to,
min��(�) �� ���(�)���(�) � ����(�)

ℱ(���(� � �) � ����(�)) � Γ
, (32) 

where ℱ = diag(F, F,⋯ , F) and Γ = diag(γ, γ,⋯ , γ). By solving the QP problem in (32), the 
optimal actuator move at instant k can be achieved. 

4.2.3 CD-MPC tuning 
Figure 19 illustrates the implementation of the CD-MPC controller. First, the process model 
is identified offline from input/output process data. Then the CD-MPC tuning algorithm is 
executed to generate optimal tuning parameters. Subsequently these tuning parameters are 
deployed to the CD-MPC controller. The controller generates the optimal actuator setpoints 
continuously based on the feedback measurements.  
 

 
Fig. 19. The implementation of the CD-MPC controller  

The objective for CD-MPC tuning algorithm in Figure 19 is to determine the values 
of	��, 	��, 	��, and	�� in (25). It has been proven that	��	defines the relative importance of 
quality measurements,		�� defines the dynamic characteristics of the closed-loop CD-MPC 
system, and	��	and	��	define the spatial frequency characteristics of the closed-loop CD-
MPC system.	��	is for the high spatial frequency behaviours and 	��	is for the low spatial 
frequencies (Fan 2004).  
Strictly speaking, the CD-MPC tuning problem requires analyzing the robust stability of a 
closed-loop control system with nonlinear optimization. An analytic solution to the QP 
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problem in (32) is the prerequisite for the CD-MPC tuning algorithm. However, in practice it 
is very challenging; almost impossible to derive the explicit solution to (32) due to the large 
size of CD-MPC problems. A novel two-dimensional loop shaping approach is proposed in 
(Fan 2004) to overcome limitations for large scaled MPC systems. The algorithm consists of 
four steps: 
Step 1. Ignore the inequality constraint in (32) such that the closed-loop system given by 

(27) is linear. 
Step 2. Compute the closed-loop transfer function of the unconstrained CD-MPC system 

given by (27). 
Step 3. By performing two-dimensional loop shaping, optimize the weighting matrices to 

get the best trade off between the performance and robustness of the unconstrained 
CD-MPC system. 

Step 4. Finally, re-introduce the constraint in (32) for implementation.  
Figure 20 shows the closed-loop diagram of the unconstrained CD-MPC system with 
unstructured model uncertainties. The derivation of the pre-filtering matrix K� and feedback 
controller K is standard and can be found in (Fan 2003).  
 

 
Fig. 20. Closed-loop diagram of unconstrained CD-MPC system with unstructured model 
uncertainties 

From the small gain theory (Khalil 2001), the linear closed-loop system in Figure 20 is 
robustly stable if the closed-loop in (32) is nominally stable and,  

 ||G��(z) �� (z)||� � � � ��(G��(e��)) � �
��(��(���)) , ∀ω. (33) 

Here G��(z) is the control sensitivity function which defines the linear transfer function from 
the output disturbance D(k) to the actuator setpoint U(k),  

 G��(z) = K(z)[I − G(z)K(z)]��. (34) 

The sensitivity function of the system in Figure 20 defines the linear transfer function from 
the output disturbance D(k) to the output Y(k), 

G��(z) = [I − G(z)K(z)]��. 

By properly choosing the weighting matrices �� to���, both the control sensitivity function 
G��(z) and the sensitivity function G��(z) can be guaranteed stable, and also the small gain 
condition in (33) can be satisfied. The two-dimensional loop shaping approach uses G��(z) 
and G��(z) to analyze the behaviour of the closed-loop system in Figure 20.  
It has been shown that both G��(z) and G��(z) can be approximated as rectangular circulant 
matrices. One important property of circulant matrixes is that the circulant matrix can be 

 
Model Predictive Control and Optimization for Papermaking Processes 335 

block-diagonalized by left- and right-multiplying Fourier matrices. Fourier matrices 
multiplication is equivalent to performing the standard discrete Fourier transformation. 
Therefore, the two-dimensional frequency representation of G��(z) and G��(z) can be 
obtained by, 

 g���(ν, e��) = F�G��(e��)F�� , and		g���(ν, e��) = F�G��(e��)F�� , (35) 

where ν represents the spatial frequency. F� and F� are m-points and n-points Fourier 
matrices, respectively. The detailed definitions of Fourier matrices can be found in (Fan 
2004). The two-dimensional frequent representation g���(ν, e��) and g���(ν, e��) are block 
diagonal matrices. The singular values of g���(ν, e��) and g���(ν, e��) are directly linked to 
the spatial frequencies.  
Instead of tune g���(ν, e��) and g���(ν, e��) in full ν	and	ω frequency ranges, two dimensional 
loop shaping approach decouples the spatial tuning and dynamic tuning by firstly tuning 
the controller at zero spatial frequency, i.e., setting ν = 0, and then tuning the controller at 
zero dynamic frequency, i.e., setting ω = 0. The theoretical proof of this strategy can be 
founded in (Fan 2004).  
From spatial tuning, the value of the weighting matrices		��	and	�� can be determined, and 
from the dynamic tuning, the value of 	�� are determined. 	��, as mentioned above, defines 
the relative importance of quality measurements and its value is defined by a CD-MPC user.  
In practice, the process gain matrix P�� in (16) is ill-conditioned. Similar to MD-MPC tuning, 
the scaling matrices have to be applied before tuning the controller. A scaling approach 
discussed in (Lu 1996) is used by CD-MPC to reduce the condition number of the gain 
matrices.   

4.2.4 Fast QP solver 
The technical challenge of the CD-MPC optimization is how to solve the problem in (32) 
efficiently and accurately. The typical scanning rate of the paper machine is 10 - 30 seconds.  
Also considering the time cost of software implementation and data acquisition, the 
computation time of the problem in (32) is typically limited to 5 to 10 seconds.  
Different optimization techniques have been developed to solve QP problems efficiently, 
such as the active set method, interior point method, QR factorization, etc. This section 
presents a fast QP solver, called QPSchur, which is specifically designed to solve a large 
scaled CD-MPC problem. QPSchur is a dual space algorithm, where an unconstrained 
optimal solution is found first and violated constraints are added until the solution is 
feasible (Bartlett 2002).  
Let’s consider the Lagrangian of the constrained QP in (32) 

 �(��, λ) = �
� ���(k)Φ��(k) � ϕ���(k) � λ�(ξ���(k) − �), (36) 

where ξ= ���	ℱ� and � = � − ℱ��U(k − 1). In (36), ��(k) is called the primary variable and 
λ ≤ 0 is called as the dual variable (also known as the Lagrangian variable).  
At the starting point, QPSchur ignores all the constraints in (32) and solves unconstrained 
QP problem. This is equivalent to set the dual variable λ = 0. By this means, the initial 
optimal solution ��∗(k) is determined,  

 ��∗(k) 	= −Φ��ϕ. (37) 
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block-diagonalized by left- and right-multiplying Fourier matrices. Fourier matrices 
multiplication is equivalent to performing the standard discrete Fourier transformation. 
Therefore, the two-dimensional frequency representation of G��(z) and G��(z) can be 
obtained by, 
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where ν represents the spatial frequency. F� and F� are m-points and n-points Fourier 
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2004). The two-dimensional frequent representation g���(ν, e��) and g���(ν, e��) are block 
diagonal matrices. The singular values of g���(ν, e��) and g���(ν, e��) are directly linked to 
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Instead of tune g���(ν, e��) and g���(ν, e��) in full ν	and	ω frequency ranges, two dimensional 
loop shaping approach decouples the spatial tuning and dynamic tuning by firstly tuning 
the controller at zero spatial frequency, i.e., setting ν = 0, and then tuning the controller at 
zero dynamic frequency, i.e., setting ω = 0. The theoretical proof of this strategy can be 
founded in (Fan 2004).  
From spatial tuning, the value of the weighting matrices		��	and	�� can be determined, and 
from the dynamic tuning, the value of 	�� are determined. 	��, as mentioned above, defines 
the relative importance of quality measurements and its value is defined by a CD-MPC user.  
In practice, the process gain matrix P�� in (16) is ill-conditioned. Similar to MD-MPC tuning, 
the scaling matrices have to be applied before tuning the controller. A scaling approach 
discussed in (Lu 1996) is used by CD-MPC to reduce the condition number of the gain 
matrices.   

4.2.4 Fast QP solver 
The technical challenge of the CD-MPC optimization is how to solve the problem in (32) 
efficiently and accurately. The typical scanning rate of the paper machine is 10 - 30 seconds.  
Also considering the time cost of software implementation and data acquisition, the 
computation time of the problem in (32) is typically limited to 5 to 10 seconds.  
Different optimization techniques have been developed to solve QP problems efficiently, 
such as the active set method, interior point method, QR factorization, etc. This section 
presents a fast QP solver, called QPSchur, which is specifically designed to solve a large 
scaled CD-MPC problem. QPSchur is a dual space algorithm, where an unconstrained 
optimal solution is found first and violated constraints are added until the solution is 
feasible (Bartlett 2002).  
Let’s consider the Lagrangian of the constrained QP in (32) 

 �(��, λ) = �
� ���(k)Φ��(k) � ϕ���(k) � λ�(ξ���(k) − �), (36) 

where ξ= ���	ℱ� and � = � − ℱ��U(k − 1). In (36), ��(k) is called the primary variable and 
λ ≤ 0 is called as the dual variable (also known as the Lagrangian variable).  
At the starting point, QPSchur ignores all the constraints in (32) and solves unconstrained 
QP problem. This is equivalent to set the dual variable λ = 0. By this means, the initial 
optimal solution ��∗(k) is determined,  

 ��∗(k) 	= −Φ��ϕ. (37) 
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If Δ�∗(k) satisfies all the inequality constraints, i.e., ξ�Δ�∗(k) ≤ ψ, then Δ�∗(k) is the 
optimal solution, i.e. Δ��(k) = 	Δ�∗(k). The first elements of ΔU�(k) are sent to the real 
process, and the CD-MPC optimization stops the search iteration.  
If Δ�∗(k) violates one or more of the inequality constraints in (32), all the violation 
inequalities are noted, such that  

 ξ���� Δ�∗(k) ≥ ψ���, (38) 

where (ξ���� , ψ���) is the violating subset of the inequality constraints in (32), and called the 
active set matrix and the active set vector, respectively. The Lagrangian in (36) is redefined 
by using (ξ���� , ψ���). The Karush-Kuhn-Tucker (KKT) condition of the updated Lagrangian 
is,  

 � Φ ξ���
ξ���� Ξ � �Δ�(k)λ��� � = � −ϕψ���

�, (39) 

Here Ξ = 0 for the first searching iteration. Since Φ is non-singular (refer to Fan 2003), the 
problem in (39) can be solved by using Gaussian elimination. The Schur complement of the 
block Ξ is given by 

 	� = Ξ −	ξ���� Φ��ξ���. (40) 

The Schur complement theorem guarantees that � is non-singular if the Hessian matrix Φ is 
non-singular. From �, (39) can be solved by 

 

λ��� = ���(ψ��� + ξ���� Φ��ϕ)
= ���(ψ��� + ξ���� Δ�∗(k))

Δ�(k) = 	Φ��(−ϕ − ξ���λ���)
 . (41) 

The inequality constraints in (32) are re-evaluated, and the new active constraints (violated 
constraints) and the positive dual variables inequalities are added into the subset pair (ξ���� , 
ψ���). The KKT condition of (39) is updated to derive  

 � Φ ξ����
ξ����� Ξ� � �Δ�(k)λ���� � = � −ϕψ�����, (42) 

where  

 ξ���� = [ξ���, ξ���], 	Ξ� = � Ξ ρ
ρ� χ� , λ���� = �λ���λ���� , ���	ψ

���� = �ψ���
ψ���

�. (43) 

In the same fashion, the Schur complement of the block Ξ� can be represented by, 

 

	�� = Ξ� −	ξ����� Φ��ξ����
= � Ξ ρ

ρ� χ� − �ξ���
�

ξ���� �Φ��[ξ���, ξ���]

= � � ρ − ξ���� Φ��ξ���
ρ� − ξ���Φ��ξ���� χ − ξ���� Φ��ξ���

�
 . (44) 
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From (44), the new Schur complement �� can be easily derived from �. The Schur 
complement update requires only multiplication with Φ�� that is calculated in the initial 
search step and stored for reuse. This feature makes the SchurQP much faster than a 
standard QP solver. Removing the non-active constraints (zero dual variables) of each 
search step is achieved easily: the columns of the Schur complement �� corresponding to the 
non-active constraints is removed before pursuing the next search iteration.    
At the current search iteration, if all the inequality constraints in (32) and the sign of dual 
variables are satisfied, the solution to (42) will be the final optimal solution of the CD-MPC 
controller, i.e., 

 
	λ���� = ����(ψ���� + ξ����� Δ�∗(k))

Δ��(k) = 	Φ��(−ϕ − ξ����λ����)
  (45) 

ΔU�(k) (the first component of the optimal solution Δ��(k)) is sent to the real process, and a 
new constrained QP problem is formed at the end of the next scan.   

4.3 Mill implementation results 
CD-MPC has been implemented in Honeywell’s quality control system (QCS) and widely 
deployed on different types of paper mills including fine paper, newsprint, liner board, and 
tissue, etc. In this chapter, a CD-MPC application for a fine paper machine will be used as an 
example to demonstrate the effectiveness of the CD-MPC controller.  

4.3.1 Paper machine configuration 
The paper machine discussed here is a fine paper machine, equipped with three CD actuator 
beams and two measurement scanner frames. The CD actuators include headbox slice lip (63 
zones), infrared dryer (40 zones), and induction heater (79 zones). The two scanner frames 
hold the paper quality gauges for dry weight, moisture, and caliper. Each measurement 
profile includes 250 measurement points with the measurement interval equal to 25.4 mm 
(CD bin width). The production range of this machine is from 26 gsm (gram per square 
meter) to 85 gsm. The machine speed varies from 2650 feet per minute (13.5 meter/second) 
to 3100 feet per minute (15.7 meter/second). The scanning rates of the two scanners are 32 
and 34 seconds, respectively. In order to capture the nonlinearity of the process, three model 
groups are setup to represent the products of light weight paper, medium weight paper, 
and heavy weight paper, respectively. All three CD actuator beams and three quality 
measurement profiles are included into the CD-MPC controller. In this section, the medium 
weight scenario is used to illustrate the control performance of the CD-MPC controller.  

4.3.2 Multiple actuator beams and multiple quality measurements model 
Figure 21 shows the two-dimensional process models from the slice lip actuators (Autoslice) 
to the measurements of dry weight, moisture and caliper profiles. The system identification 
algorithm discussed in Section 4.1.2 is used to derive these models. The plots on the left are 
the spatial responses, and the plots on the right are the dynamic responses. The purple 
profiles are the average of the real process data, and the white profiles are the estimated 
profiles based on identified process model. It can be seen from comparison to the model for 
Autoslice to caliper that the models for Autoslice to dry weight and to moisture have high 
model fit. In general, the bump test with a larger bump magnitude and longer bump 
duration will lead to a more accurate process model (better model fit). However, the open-
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loop bump tests degrade the quality of the finished product and excessive bump tests are 
always prevented. The criterion of the CD model identification is to provide a process model 
accurate enough for a CD-MPC controller.  
From the model identification results in Figure 21, we can see the strong input-output 
coupling properties of papermaking CD processes. The response width from slice lip to dry 
weight equals to 226.8mm. This is equivalent to 2.3 times the zone width of the slice lip CD 
actuator. Therefore, each individual zone of the slice lip affects not only its own spatial zone 
but also adjacent zones. As we discussed above, a CD-MPC process has two-fold process 
couplings: one is the coupling between different actuator beams; and the other is the 
coupling between the different zones of the same actuator beams. Considering these strong 
coupling characteristics, MPC strategy is a good candidate for CD control design.   
  

 
Fig. 21. The multiple CD actuator beams and quality measurement model display  

4.3.3 Control performance of the CD-MPC controller 
Table 3 summarizes the performance comparison between the CD-MPC controller and the 
traditional single-input-single-output (SISO) CD controller (a Dahlin controller). Although 
traditional CD control is still quite common in paper mills, CD-MPC is becoming more and 
more popular. The significant performance improvement can be observed after switching 
CD control into multivariable CD-MPC.  
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Paper Properties Traditional CD
Control 2σ

Multivariable CD-MPC 
Control 2σ Improvement (%) 

Dry Weight (gsm) 0.40 0.24 40% 
Moisture (%) 0.31 0.19 39% 
Caliper (mil) 0.032 0.025 22% 

Table 3. Traditional CD versus CD-MPC 

Figures 22–24 provide a visual performance comparison for the different quality 
measurements in both spatial domain and spatial frequency domain. It can be seen that the 
peak-to-peak values (the proxy of	2σ�� indexes) are smaller when using the CD-MPC 
controller. Also the controllable disturbances (the disturbances with the spatial frequency 
less than Xc) are effectively rejected by the CD-MPC controller. Here X3db represents the 
spatial frequency where the spatial process power drops to 50% of the maximum spatial 
power over the full spatial frequency band, Xc represents the frequency where the spatial 
power drops to 4% of the maximum power, and 1/2Xa represents the Nyquist frequency. 
 

 
Fig. 22. Performance comparison of dry weight profiles  
 

 
Fig. 23. Performance comparison of moisture profiles  
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Fig. 24. Performance comparison of caliper profiles  

5. Conclusion and perspective 
We have seen that MPC has a number of applications in paper machine control. MPC 
performs basic MD control, and allows for enhanced MD-MPC control that incorporates 
economic optimization, and orchestrates transitions between paper grades. MPC can also be 
used for CD controls, using a carefully chosen solution technique to handle the large scale 
nature of the problem within the required time scale.  
While MD-MPC provides robust and responsive control, and also easily scales to demanding 
paper machine applications with larger numbers of CV’s and MV’s. The MD-MPC formulation 
may also be augmented with an economic objective function so that paper machine 
operational efficiency can be optimized (maximum production, minimum energy costs, 
maximizing filler to fibre ratio etc.) while all quality variables continue to be regulated.  
In the future as new online sensors, such as the extensional stiffness sensor, gain acceptance 
additional quality variables can be adding to MD-MPC. In the case of extensional stiffness, 
this online strength measurement could allow economic optimization to minimize fibre use 
while maintaining paper strength.  
The papermaking CD process is a large scaled two-dimensional system. It shows strong 
input-output coupling properties. MPC is a standard technique in controlling multivariable 
systems, and has become a standard advanced control strategy in papermaking systems. 
However, there are several barriers for the acceptance of CD-MPC by mill personnel: one is 
the novel multivariable control concept and the other is the non-trivial tuning technique. 
Commercial offline tools, such as IntelliMap, facilitate the acceptance of CD-MPC by 
providing automatic model identification and easy-to-use offline CD-MPC tuning. Such 
packages enable the CD-MPC users to review the predicted CD steady states before they 
update their CD control to CD-MPC (Fan et al. 2005). CD-MPC has been successfully 
deployed in over 70 paper mills and applied to practically all types of existing CD processes 
from fine paper, to board, to newsprints, to tissues, etc. Without doubt, CD-MPC will have a 
significant impact in papermaking CD control applications over the next decade. 
CD-MPC offers the significant capability to include multiple CD actuator arrays and 
multiple CD measurement arrays into one single CD controller. The next generation CD-
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MPC applications are most likely to include non-standard CD measurement, such as fibre 
orientation, gloss, web formation, and web porosity into the existing CD-MPC framework. 
A successful CD-MPC application for fibre orientation control has been reported in (Chu et 
al. 2010a). However there still exist technical challenges of controlling non-standard paper 
properties by using CD-MPC; for example, the derivation of accurate parametric models 
and the effectiveness of CD-MPC tuners for non-standard CD measurements.  
In the current CD-MPC framework, system identification and controller design are clearly 
separated. The efforts towards integrating system identification and controller design may 
bring significant benefits to CD control. Online CD model identification has drawn 
extensive attention in both academia and industries. A closed-loop CD alignment 
identification algorithm is presented in (Chu et al. 2010b). Closed loop identification of the 
entire CD model remains an open problem.   
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1. Introduction

Disturbance suppression is one of the very important objectives for controller design. Thus,
many papers on this topic have been reported, e.g. (Xie & de Souza, 1992; Xie et al., 1992).
This kind of problem can be described as an H∞ controller design problem using a fictitious
performance block (Zhou et al., 1996). Therefore, disturbance suppression controllers can be
easily designed by applying the standard H∞ controller design method (Fujita et al., 1993).
Disturbance suppression is also important in aircraft motions (Military Specification: Flight
Control Systems - Design, Installation and Test of Piloted Aircraft, General Specification For, 1975),
and the design problem of flight controllers which suppress aircraft motions driven by wind
gust, i.e. Gust Alleviation (GA) flight controller design problem (in short GA problem),
has been addressed (Botez et al., 2001; Hess, 1971; 1972). In those papers, only the state
information related to aircraft motions (such as, pitch angle, airspeed, etc.) is exploited for
the control of aircraft motions. However, if turbulence information is obtained a priori and
can also be exploited for the control, it is inferred that GA performance will be improved.
This idea has already been adopted by several researchers (Abdelmoula, 1999; Phillips, 1971;
Rynaski, 1979a;b; Santo & Paim, 2008).
Roughly speaking, GA problem is to design flight controllers which suppress the vertical
acceleration driven by turbulence. In the 1970s, turbulence was measured at the nose of
aircraft (Phillips, 1971); however, the lead time from the measurement of turbulence to
its acting on aircraft motions becomes very short as aircraft speed increases. Thus, the
turbulence data which were measured at the nose of aircraft could not be effectively used.
On this issue, as electronic and optic technologies have advanced in the last two decades,
nowadays, turbulence can be measured several seconds ahead using LIght Detection And
Ranging (LIDAR) system (Ando et al., 2008; Inokuchi et al., 2009; Jenaro et al., 2007; Schmitt
et al., 2007). This consequently means that GA control exploiting turbulence data which are
measured a priori now becomes more practical than before. Thus, this paper addresses the
design problem of such GA flight controllers.
If disturbance data are supposed to be given a priori and the current state of plant is also
available, then controllers using Model Predictive Control (MPC) scheme work well, as
illustrated for active suspension control for automobiles (Mehra et al., 1997; Tomizuka, 1976).
However, in those papers, it is supposed that the plant dynamics are exactly modeled; that is,
robustness of controllers against the plant uncertainties (such as, modeling errors, neglected
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robustness of controllers against the plant uncertainties (such as, modeling errors, neglected

16



2 Will-be-set-by-IN-TECH

nonlinearities, etc.) is not considered. From a practical standpoint, it is very difficult to
obtain the exact plant model. If controllers are designed without the consideration of plant
uncertainties then the controlled system might achieve very poor control performance, or
even worse the controlled system might be unstable. Thus, it is very important to ensure the
robustness of controllers against plant uncertainties.
There have been a lot of papers which propose the design methods of MPC ensuring
robustness against plant uncertainties, e.g. (Badgwell, 1997; Bemporad & Morari, 1999;
Kothare et al., 1996; Kwon & Han, 2005; Löfberg, 2003; Takaba, 2000). Generally speaking,
MPC design for uncertain plant leads to a design problem with infinitely many conditions.
However, it is intrinsically very hard to solve this kind of problems. In the above
papers, the difficulty of solving infinitely many conditions is successfully circumvented
by introducing some conservatism. For example, the controllers are designed by solving
Linear Matrix Inequalities (LMIs) associated with H∞ performance or H2 performance using
common Lyapunov functions (Kothare et al., 1996; Takaba, 2000), or invariant ellipsoids being
encompassed by the original invariant sets are used to ensure robust performance (Löfberg,
2003). Common Lyapunov functions as well as invariant ellipsoids generally introduce
conservatism, which should be reduced.
The plant model for real systems usually includes various types of uncertainties,
e.g. parametric uncertainties, neglected nonlinearities, uncertain dead time, etc. If the
operating range of aircraft is relatively small and the nominal aircraft motion model is well
known, then the uncertainty to be considered most is the unmodeled dynamics, which usually
lie in high frequency range. One of the effective representations of this kind of uncertainties
is bounded uncertain delays at the control input channels (Miyazawa, 1995; Ohno et al., 1999;
Sato & Satoh, 2008), in which the effectiveness of this model is demonstrated with applications
to real aircraft. Since the delay at the control input generally augments phase lag in the high
frequency range, the controller designed using this type of uncertainty would have sufficiently
large stability margin in the high frequency range. Therefore, this paper supposes that plant
uncertainties are expressed as bounded time-invariant uncertain delays at the control input
channels.
In this paper, turbulence is supposed to be measured a priori. The measured data always
have measurement errors, such as, calibration error, position error, etc. Therefore, when
exploiting the measured turbulence data for controller design, the measurement errors should
be considered.
Considering these backgrounds, this paper addresses the following controller design
problem: GA flight controllers exploiting a priori measured turbulence data including some
measurement errors for aircraft motions with bounded time-invariant uncertain delays at the
control input. We show that this problem is reduced to a robust MPC with finitely many
conditions with neither conservatism nor approximations being introduced. The proposed
MPC is formulated in terms of a Second-Order Cone Programming (SOCP) problem (Boyd &
Vandenberghe, 2004), which is easily solved by using some of the generally available software,
e.g. (Sturm, 1999).
Hereafter, 0n , 0n,m, 0 and In respectively denote an n × n dimensional zero matrix, an n × m
dimensional zero matrix, an appropriately dimensioned zero matrix and an n× n dimensional
identity matrix, 1n denotes an n-dimensional vector with all elements being unities, Z , Rn

and Rn×m respectively denote the set of integers, the set of n-dimensional real vectors and
the set of n × m dimensional real matrices, ⊗ denotes Kronecker product, and �p� denotes
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min {n ∈ Z|p ≤ n}. For n-dimensional vectors p = [p1 · · · pn]
T and r = [r1 · · · rn ]

T, p ≤ r
denotes that pi ≤ ri holds for all i, that is, the inequality holds element-wise.

2. Preliminaries

In this section, the supposed aircraft motion model with uncertain delays at the control input
is first defined and a family of models representing the aircraft motions is derived, then a
priori measured turbulence data with some measurement errors are defined, and finally the
addressed problem is given.

2.1 Uncertain plant system
Let us define the nominal continuous-time linearized aircraft motion model including actuator
dynamics as Pc.

Pc :
{

ẋ(t) = Acx(t) + B1c w(t) + B2c u(t)
z(t) = Ccx(t) + D1c w(t) + D2c u(t)

, (1)

where x(t) ∈ Rn, w(t) ∈ Rnw , u(t) ∈ Rnu , and z(t) ∈ Rnz respectively denote the state which
includes the variables related to the aircraft motions (e.g. velocity, pitch angle, etc.) and the
variables related to the control actuators, the turbulence input, the control input (e.g. elevator
command), and the performance output which characterizes the motion to be suppressed
(e.g. vertical acceleration). All states are supposed to be measurable and available.
The uncertainties of the plant are supposed to be represented as delays with bounded
time-invariant uncertain delay time at the control input. Thus, the control input u(t) is given
as

u(t) = v(t − Td), (2)

where v(t) ∈ Rnu denotes the control input command created by the onboard flight computer
and Td [s] denotes the uncertain delay time which is assumed to lie in the interval between
Tdmin

and Tdmax
.

Td ∈ [
Tdmin

, Tdmax

]
(3)

Considering the delay due to the calculation of the control input command with the onboard
computer, the minimum delay time Tdmin

is assumed to be larger than or equal to the sampling
period of the onboard computer which is given as Ts [s].

Ts ≤ Tdmin (4)

Similarly to usual MPC in the literature (Bemporad & Morari, 1999; Kothare et al., 1996;
Löfberg, 2003), the discretized plant of Pc is considered for controller design. Suppose that
the discretized plant of Pc is given as Pd using a zero-order hold which is a common method
for the discretization.

Pd :
{

xk+1 = Axk + B1wk + B2uk
zk = Cxk + D1wk + D2uk

, (5)

where xk ∈ Rn, wk ∈ Rnw , uk ∈ Rnu , and zk ∈ Rnz respectively denote the state, the
turbulence, the control input, and the performance output of Pd at step k. The sampling period
for the discretization is assumed to be the same as that of the onboard computer Ts [s]. As all
states of Pc are supposed to be measurable and available, all states of Pd are also supposed to
be measurable and available.
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uncertainties are expressed as bounded time-invariant uncertain delays at the control input
channels.
In this paper, turbulence is supposed to be measured a priori. The measured data always
have measurement errors, such as, calibration error, position error, etc. Therefore, when
exploiting the measured turbulence data for controller design, the measurement errors should
be considered.
Considering these backgrounds, this paper addresses the following controller design
problem: GA flight controllers exploiting a priori measured turbulence data including some
measurement errors for aircraft motions with bounded time-invariant uncertain delays at the
control input. We show that this problem is reduced to a robust MPC with finitely many
conditions with neither conservatism nor approximations being introduced. The proposed
MPC is formulated in terms of a Second-Order Cone Programming (SOCP) problem (Boyd &
Vandenberghe, 2004), which is easily solved by using some of the generally available software,
e.g. (Sturm, 1999).
Hereafter, 0n , 0n,m, 0 and In respectively denote an n × n dimensional zero matrix, an n × m
dimensional zero matrix, an appropriately dimensioned zero matrix and an n× n dimensional
identity matrix, 1n denotes an n-dimensional vector with all elements being unities, Z , Rn

and Rn×m respectively denote the set of integers, the set of n-dimensional real vectors and
the set of n × m dimensional real matrices, ⊗ denotes Kronecker product, and �p� denotes
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min {n ∈ Z|p ≤ n}. For n-dimensional vectors p = [p1 · · · pn]
T and r = [r1 · · · rn ]

T, p ≤ r
denotes that pi ≤ ri holds for all i, that is, the inequality holds element-wise.

2. Preliminaries

In this section, the supposed aircraft motion model with uncertain delays at the control input
is first defined and a family of models representing the aircraft motions is derived, then a
priori measured turbulence data with some measurement errors are defined, and finally the
addressed problem is given.

2.1 Uncertain plant system
Let us define the nominal continuous-time linearized aircraft motion model including actuator
dynamics as Pc.

Pc :
{

ẋ(t) = Acx(t) + B1c w(t) + B2c u(t)
z(t) = Ccx(t) + D1c w(t) + D2c u(t)

, (1)

where x(t) ∈ Rn, w(t) ∈ Rnw , u(t) ∈ Rnu , and z(t) ∈ Rnz respectively denote the state which
includes the variables related to the aircraft motions (e.g. velocity, pitch angle, etc.) and the
variables related to the control actuators, the turbulence input, the control input (e.g. elevator
command), and the performance output which characterizes the motion to be suppressed
(e.g. vertical acceleration). All states are supposed to be measurable and available.
The uncertainties of the plant are supposed to be represented as delays with bounded
time-invariant uncertain delay time at the control input. Thus, the control input u(t) is given
as

u(t) = v(t − Td), (2)

where v(t) ∈ Rnu denotes the control input command created by the onboard flight computer
and Td [s] denotes the uncertain delay time which is assumed to lie in the interval between
Tdmin

and Tdmax
.

Td ∈ [
Tdmin

, Tdmax

]
(3)

Considering the delay due to the calculation of the control input command with the onboard
computer, the minimum delay time Tdmin

is assumed to be larger than or equal to the sampling
period of the onboard computer which is given as Ts [s].

Ts ≤ Tdmin (4)

Similarly to usual MPC in the literature (Bemporad & Morari, 1999; Kothare et al., 1996;
Löfberg, 2003), the discretized plant of Pc is considered for controller design. Suppose that
the discretized plant of Pc is given as Pd using a zero-order hold which is a common method
for the discretization.

Pd :
{

xk+1 = Axk + B1wk + B2uk
zk = Cxk + D1wk + D2uk

, (5)

where xk ∈ Rn, wk ∈ Rnw , uk ∈ Rnu , and zk ∈ Rnz respectively denote the state, the
turbulence, the control input, and the performance output of Pd at step k. The sampling period
for the discretization is assumed to be the same as that of the onboard computer Ts [s]. As all
states of Pc are supposed to be measurable and available, all states of Pd are also supposed to
be measurable and available.
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Fig. 1. Effect of uncertain delay

Remark 1. In equation (5), the turbulence wk is supposed be constant during the sampling period
Ts. Strictly speaking, this does not hold true. However, if the sampling period is sufficiently small
compared to the period corresponding to the typical frequency of turbulence then the turbulence can be
regarded as constant during the sampling period.

Similarly, the delay system (2) must be discretized. As the control input is applied not
continuously but discretely, the delay effect of the control input command to the actual control
input appears only at the sampling steps. That is, in a sharp contrast to a continuous-time case,
in a discrete-time case, the whole elements of delay step set Td, which is defined as (6), are only
to be considered as the uncertain delay Td lying in the interval

[
Tdmin , Tdmax

]
.

Td =
{

d, d + 1, · · · , d
}

, (6)

where d and d are respectively defined as
⌈

Tdmin
Ts

⌉
and

⌈
Tdmax

Ts

⌉
(see Fig. 1). The number of

the elements in set Td is denoted by d̂(= d − d + 1). Thus, the delay steps belonging to set
Td are only to be considered in the discrete-time systems, while all possible delays lying in[
Tdmin

, Tdmax

]
must be considered in the continuous-time systems. Then, the control input uk

is given as one of the elements of the following set:
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�
vk−d, vk−d−1, · · · , vk−d

�
, (7)

where vm denotes the control input command of Pd created at step m; however, the real input
uk which is applied to Pd is unknown.
Now, the control input command vk is factorized into the previous control input command
vk−1 and the deviation between these commands to consider the rate limit of the control input
command, i.e.

vk = vk−1 + Δvk, (8)

where the previous control input command at step 0, v−1, is set 0.
Under these preliminaries, the supposed plant Pu, which is composed of Pd and the uncertain
delays at the control input, is described as follows.

Pu ∈
�

Pd
u , Pd+1

u , · · · , Pd
u

�
, (9)

where Pi
u (i = d, d + 1, · · · , d) is defined as

Pi
u :

�
x̂i

k+1 = Âix̂i
k + B̂i

1wk + B̂i
2Δvk

zi
k = Ĉix̂i

k + D̂i
1wk + D̂i

2Δvk
, (10)

where x̂i
k denotes the augmented state of i-th plant model at step k and is defined as

x̂i
k :=

�
xi

k
T

vT
k−d

· · · vT
k−1

�T
with xi

k which denotes the state of i-th plant model at step k.

The matrices Âi, etc. are defined in (11).
�

Âi B̂i
1 B̂i

2
Ĉi D̂i

1 D̂i
2

�

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

A 0n,nu(d−1) B2 B1 0n,nu

0nu(d−1),n 0nu(d−1),nu(d−1) 0nu(d−1),nu
0nu(d−1),nw

0nu(d−1),nu

0nu,n 0nu ,nu(d−1) 0nu ,nu 0nu,nw Inu

C 0nz ,nu(d−1) 0nz,nu D1 D2

⎤
⎥⎥⎥⎦ (i = 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A 0n,nu(d−i) B2 0n,nu(i−1)

0nu(d−1),n 0nu(d−1),nu(d−i) 0nu(d−1),nu

�
0nu(d−i),nu(i−1)

Inu(i−1)

�

0nu,n 0nu ,nu(d−i) 0nu,nu

�
0nu ,nu(i−2) Inu

�

C 0nz ,nu(d−i) 0nz ,nu

�
0nz ,nu(i−2) D2

�

B1 0n,nu

0nu(d−1),nw
0nu(d−1),nu

0nu,nw Inu

D1 D2

⎤
⎥⎥⎦ (i �= 1)

(11)

Remark 2. Although the uncertainty model using the delay (2) with bounded time-invariant uncertain
delay (3) generally introduces some approximations from the real uncertainties of aircraft motions,
the derivation of a family of plant models (9) from the supposed uncertainties, i.e. the delay (2),
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Remark 1. In equation (5), the turbulence wk is supposed be constant during the sampling period
Ts. Strictly speaking, this does not hold true. However, if the sampling period is sufficiently small
compared to the period corresponding to the typical frequency of turbulence then the turbulence can be
regarded as constant during the sampling period.

Similarly, the delay system (2) must be discretized. As the control input is applied not
continuously but discretely, the delay effect of the control input command to the actual control
input appears only at the sampling steps. That is, in a sharp contrast to a continuous-time case,
in a discrete-time case, the whole elements of delay step set Td, which is defined as (6), are only
to be considered as the uncertain delay Td lying in the interval

[
Tdmin , Tdmax

]
.

Td =
{

d, d + 1, · · · , d
}

, (6)

where d and d are respectively defined as
⌈

Tdmin
Ts

⌉
and

⌈
Tdmax

Ts

⌉
(see Fig. 1). The number of

the elements in set Td is denoted by d̂(= d − d + 1). Thus, the delay steps belonging to set
Td are only to be considered in the discrete-time systems, while all possible delays lying in[
Tdmin

, Tdmax

]
must be considered in the continuous-time systems. Then, the control input uk

is given as one of the elements of the following set:
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�
vk−d, vk−d−1, · · · , vk−d

�
, (7)

where vm denotes the control input command of Pd created at step m; however, the real input
uk which is applied to Pd is unknown.
Now, the control input command vk is factorized into the previous control input command
vk−1 and the deviation between these commands to consider the rate limit of the control input
command, i.e.

vk = vk−1 + Δvk, (8)

where the previous control input command at step 0, v−1, is set 0.
Under these preliminaries, the supposed plant Pu, which is composed of Pd and the uncertain
delays at the control input, is described as follows.

Pu ∈
�

Pd
u , Pd+1

u , · · · , Pd
u

�
, (9)

where Pi
u (i = d, d + 1, · · · , d) is defined as

Pi
u :

�
x̂i

k+1 = Âix̂i
k + B̂i

1wk + B̂i
2Δvk

zi
k = Ĉix̂i

k + D̂i
1wk + D̂i

2Δvk
, (10)

where x̂i
k denotes the augmented state of i-th plant model at step k and is defined as

x̂i
k :=

�
xi

k
T

vT
k−d

· · · vT
k−1

�T
with xi

k which denotes the state of i-th plant model at step k.

The matrices Âi, etc. are defined in (11).
�

Âi B̂i
1 B̂i

2
Ĉi D̂i

1 D̂i
2

�

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

A 0n,nu(d−1) B2 B1 0n,nu

0nu(d−1),n 0nu(d−1),nu(d−1) 0nu(d−1),nu
0nu(d−1),nw

0nu(d−1),nu

0nu,n 0nu ,nu(d−1) 0nu ,nu 0nu,nw Inu

C 0nz ,nu(d−1) 0nz,nu D1 D2

⎤
⎥⎥⎥⎦ (i = 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A 0n,nu(d−i) B2 0n,nu(i−1)

0nu(d−1),n 0nu(d−1),nu(d−i) 0nu(d−1),nu

�
0nu(d−i),nu(i−1)

Inu(i−1)

�

0nu,n 0nu ,nu(d−i) 0nu,nu

�
0nu ,nu(i−2) Inu

�

C 0nz ,nu(d−i) 0nz ,nu

�
0nz ,nu(i−2) D2

�

B1 0n,nu

0nu(d−1),nw
0nu(d−1),nu

0nu,nw Inu

D1 D2

⎤
⎥⎥⎦ (i �= 1)

(11)

Remark 2. Although the uncertainty model using the delay (2) with bounded time-invariant uncertain
delay (3) generally introduces some approximations from the real uncertainties of aircraft motions,
the derivation of a family of plant models (9) from the supposed uncertainties, i.e. the delay (2),

347Gust Alleviation Control Using Robust MPC



6 Will-be-set-by-IN-TECH

introduces neither assumptions nor approximations. Thus, the formulation above introduces no further
conservatism from the supposed uncertain plant model.

Remark 3. It is stressed that matrices Âi, etc. in (11) have no uncertainties.

As the current state xk of Pd is supposed to be available, and previously created control input
commands, vk−d, · · · , vk−1, can be memorized in the onboard computer which produces
the control input command, the augmented state of i-th plant model, x̂i

k, is supposed to be
available and given as x̂k. Then, the following holds.

x̂k = x̂d
k = x̂d+1

k = · · · = x̂d
k (12)

Hereafter, the plant model for designing controllers for Pc with u(t) being given as (2) is Pu.

2.2 Uncertain turbulence data
Using some system, such as, LIDAR system, it is supposed that turbulence w is measured
before the turbulence affects the aircraft motions. Generally speaking, the measured data
have measurement errors even if the calibration was conducted before its use. Thus, it is
supposed that the j step ahead real turbulence at step k, which is denoted by wk+j, satisfies
the following relation with the j step ahead turbulence that is measured at step k, which is
denoted by wk+j|k.

w̃ :=

⎡
⎢⎢⎢⎣

wk
wk+1

...
wk+N−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

wk|k
wk+1|k

...
wk+N−1|k

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

X0
X1
...

XN−1

⎤
⎥⎥⎥⎦ Δw, (13)

where N, which is given as a constant positive integer, denotes the maximum step number
for measuring turbulence a priori, Xj ∈ Rnw×nw (j = 0, 1, · · · , N − 1) denote the constant
given matrices which define the measurement errors in the measured turbulence data with
uncertain constant vector Δw ∈ Rnw satisfying (14) (see Fig. 2, which is at the top of the next
page).

− 1nw ≤ Δw ≤ 1nw (14)

Let us define set Ω as the existence region of w̃.

Ω =
�

w̃ ∈ Rnw N : w̃ given as (13) with Δw satisfying (14)
�

(15)

Remark 4. Note that matrices Xj might be different for each j; that is, it is possible that X0 �= X1 �=
· · · · · · �= XN−1 holds. Furthermore, note that matrices Xj might be different for each step k; that is,
matrices X0, · · · , XN−1 at step k might be different from the corresponding matrices X0, · · · , XN−1
at step k − 1. This corresponds to time-varying measurement error case.

Remark 5. Note that w̃ is affine with respect to the each element of Δw.

Hereafter, it is supposed that at each step the real turbulence data wk+j are not available
a priori, but instead, the measured data wk+j|k which satisfy (13) with measurement errors
defined as XjΔw are available.
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wk+j|k
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2X0

2X1

2X2

2X3

Fig. 2. Measurement error at step k in case for nw = 1 and Xj(∈ R) > 0

2.3 Problem definition
Using the uncertain plant model Pu given as (9) using (10) and the a priori measured turbulence
data wk+j|k satisfying (13), the addressed problem, i.e. GA problem exploiting the a priori
measured turbulence data, is defined below.
Considering that the turbulence are measured for N steps ahead, the horizon step number in
MPC, which denotes the step number during which control performance is to be optimized, is
also set N. For i-th plant model Pi

u, the performance index for turbulence suppression, i.e. GA
performance, is defined as

Ji(x̂
i, Δv, zi) =

N−1

∑
j=0

(
(x̂i

k+j+1|k)
T Qx̂i

k+j+1|k + ΔvT
k+j|kRΔvk+j|k + (zi

k+j|k)
TSzi

k+j|k
)

, (16)

where matrices Q and S are appropriately defined positive semidefinite matrices, matrix R is
an appropriately defined positive definite matrix, x̂i

k+j|k denotes the i-th plant’s augmented
state at step k + j predicted at step k, Δvk+j|k denotes the control input command deviation at
step k + j created at step k, and zi

k+j|k denotes the performance output at step k + j predicted
at step k.
There usually exist preferable or prohibitive regions for the state, the performance output, and
the control input command deviation. For the consideration of these regions, constraints for
the augmented state x̂i, the control input command deviation Δv and the performance output
zi are introduced. That is, they should satisfy the following constraints.

γmin ≤ x̂i
k+j+1|k ≤ γmax, j = 0, · · · , N − 1, (17)

δmin ≤ Δvk+j|k ≤ δmax, j = 0, · · · , N − 1, (18)

ξmin ≤ zi
k+j|k ≤ ξmax, j = 0, · · · , N − 1, (19)

where γmin, γmax ∈ Rn+nud, δmin, δmax ∈ Rnu and ξmin, ξmax ∈ Rnz are given constant
vectors.
If the worst performance of Ji(x̂i, Δv, zi) (i = d, · · · , d) is minimized then all the other
performance of Ji(x̂i, Δv, zi) is no more than the worst; that is, all the possible plant models Pi

u
have no more worse performance than the worst. Considering this, the design objective is to
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introduces neither assumptions nor approximations. Thus, the formulation above introduces no further
conservatism from the supposed uncertain plant model.

Remark 3. It is stressed that matrices Âi, etc. in (11) have no uncertainties.

As the current state xk of Pd is supposed to be available, and previously created control input
commands, vk−d, · · · , vk−1, can be memorized in the onboard computer which produces
the control input command, the augmented state of i-th plant model, x̂i

k, is supposed to be
available and given as x̂k. Then, the following holds.

x̂k = x̂d
k = x̂d+1

k = · · · = x̂d
k (12)

Hereafter, the plant model for designing controllers for Pc with u(t) being given as (2) is Pu.

2.2 Uncertain turbulence data
Using some system, such as, LIDAR system, it is supposed that turbulence w is measured
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⎡
⎢⎢⎢⎣

wk
wk+1

...
wk+N−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

wk|k
wk+1|k

...
wk+N−1|k

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

X0
X1
...

XN−1

⎤
⎥⎥⎥⎦ Δw, (13)
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− 1nw ≤ Δw ≤ 1nw (14)

Let us define set Ω as the existence region of w̃.

Ω =
�

w̃ ∈ Rnw N : w̃ given as (13) with Δw satisfying (14)
�

(15)
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at step k − 1. This corresponds to time-varying measurement error case.
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Hereafter, it is supposed that at each step the real turbulence data wk+j are not available
a priori, but instead, the measured data wk+j|k which satisfy (13) with measurement errors
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348 Advanced Model Predictive Control Gust Alleviation Control Using Robust MPC 7

k step numberk+1 k+2 k+3

wk+j|k

wk+j

2X0

2X1

2X2

2X3

Fig. 2. Measurement error at step k in case for nw = 1 and Xj(∈ R) > 0

2.3 Problem definition
Using the uncertain plant model Pu given as (9) using (10) and the a priori measured turbulence
data wk+j|k satisfying (13), the addressed problem, i.e. GA problem exploiting the a priori
measured turbulence data, is defined below.
Considering that the turbulence are measured for N steps ahead, the horizon step number in
MPC, which denotes the step number during which control performance is to be optimized, is
also set N. For i-th plant model Pi

u, the performance index for turbulence suppression, i.e. GA
performance, is defined as

Ji(x̂
i, Δv, zi) =

N−1

∑
j=0

(
(x̂i

k+j+1|k)
T Qx̂i

k+j+1|k + ΔvT
k+j|kRΔvk+j|k + (zi

k+j|k)
TSzi

k+j|k
)

, (16)

where matrices Q and S are appropriately defined positive semidefinite matrices, matrix R is
an appropriately defined positive definite matrix, x̂i

k+j|k denotes the i-th plant’s augmented
state at step k + j predicted at step k, Δvk+j|k denotes the control input command deviation at
step k + j created at step k, and zi

k+j|k denotes the performance output at step k + j predicted
at step k.
There usually exist preferable or prohibitive regions for the state, the performance output, and
the control input command deviation. For the consideration of these regions, constraints for
the augmented state x̂i, the control input command deviation Δv and the performance output
zi are introduced. That is, they should satisfy the following constraints.

γmin ≤ x̂i
k+j+1|k ≤ γmax, j = 0, · · · , N − 1, (17)

δmin ≤ Δvk+j|k ≤ δmax, j = 0, · · · , N − 1, (18)

ξmin ≤ zi
k+j|k ≤ ξmax, j = 0, · · · , N − 1, (19)

where γmin, γmax ∈ Rn+nud, δmin, δmax ∈ Rnu and ξmin, ξmax ∈ Rnz are given constant
vectors.
If the worst performance of Ji(x̂i, Δv, zi) (i = d, · · · , d) is minimized then all the other
performance of Ji(x̂i, Δv, zi) is no more than the worst; that is, all the possible plant models Pi

u
have no more worse performance than the worst. Considering this, the design objective is to
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obtain Δvk+j|k which minimizes the maximum of Ji(x̂i, Δv, zi). Thus, the addressed problem
is defined as follows.

Problem 1. Suppose that uncertain aircraft motion model is given as Pu defined as in (9) using Pi
u

in (10), that the current augmented state x̂k is available, and that j (j = 0, · · · , N − 1) step ahead
turbulence at step k is measured as wk+j|k which satisfies (13) for the real turbulence wk+j.
Under these assumptions, find Δvk+j|k (j = 0, · · · , N − 1) which minimize

max
w̃∈Ω

max
i∈{d,··· ,d}

Ji(x̂
i, Δv, zi) under the constraints (17), (18) and (19).

If Problem 1 is solved online, then the control input command v at step k, vk, is calculated
as vk−1 + Δvk|k using the previous control input command vk−1. The control strategy of this
paper is to obtain the optimal control input command by solving an optimization problem
online using a family of plant models. That is, the proposed control strategy is MPC.
It is easily confirmed that solving Problem 1 is equivalent to solving the following problem.

Problem 2. Find Δvk+j|k (j = 0, · · · , N − 1) which minimize the following performance index.

max
w̃∈Ω

max
i∈{d,··· ,d}

Ji(x̂
i, Δv, zi) subject to (17), (18), (19), (10) with (12) and (13)

Remark 6. Note that Problem 2 seeks the common control input command deviation for all i and for all
possible w̃ ∈ Ω. Therefore, solving Problem 2 produces control input command deviation Δvk|k which
is robust against the uncertain delays at the control input satisfying (3) and all possible turbulence
w̃ ∈ Ω.

In the next section, the proposed method to solve Problem 2 is shown.

3. Proposed method

In this section, the proposed method to solve Problem 2 is shown. For simplicity, let us
first consider the case in which the measured turbulence data have no measurement errors,
i.e. wk+j = wk+j|k, next consider the case in which the measured turbulence data have the
measurement errors.

3.1 No measurement error case
Let all Xj in (13) be set as 0. Then, wk+j is given as wk+j|k. That is, the following holds.

w̃ =
[
wT

k|k · · · wT
k+N−1|k

]T

Define the following vectors.

ṽ =
[

ΔvT
k|k · · · ΔvT

k+N−1|k
]T

x̃i =
[
(x̂i

k+1|k)
T · · · (x̂i

k+N|k)
T
]T

, i = d, · · · , d

z̃i =
[
(zi

k|k)
T · · · (zi

k+N−1|k)
T
]T

, i = d, · · · , d
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Then, the state equation and the performance output equation of Pi
u are respectively given as

follows:

x̃i =
�

IN ⊗ Âi 0(n+nud)N,n+nud

� � x̂i
k|k
x̃i

�
+

�
IN ⊗ B̂i

1

�
w̃ +

�
IN ⊗ B̂i

2

�
ṽ, (20)

z̃i =
�

IN ⊗ Ĉi 0nz N,n+nud

� � x̂i
k|k
x̃i

�
+

�
IN ⊗ D̂i

1

�
w̃ +

�
IN ⊗ D̂i

2

�
ṽ. (21)

Define the following matrices and vectors:

Q̃ := IN ⊗ Q, R̃ := IN ⊗ R, S̃ := IN ⊗ S,

γ̃min := 1N ⊗ γmin, γ̃max := 1N ⊗ γmax,
δ̃min := 1N ⊗ δmin, δ̃max := 1N ⊗ δmax,
ξ̃min := 1N ⊗ ξmin, ξ̃max := 1N ⊗ ξmax.

Using these definitions, the following proposition, which is equivalent to Problem 2, is directly
obtained.

Proposition 1. Find ṽ which minimizes q subject to (22), (23), and (24).

q ≥
⎡
⎣

x̃i

ṽ
z̃i

⎤
⎦

T ⎡
⎣

Q̃ 0 0
0 R̃ 0
0 0 S̃

⎤
⎦
⎡
⎣

x̃i

ṽ
z̃i

⎤
⎦ , i = d, · · · , d (22)

�
γ̃min
ξ̃min

�
≤

�
x̃i

z̃i

�
≤

�
γ̃max
ξ̃max

�
, i = d, · · · , d (23)

δ̃min ≤ ṽ ≤ δ̃max (24)

As Proposition 1 is an SOCP problem (Boyd & Vandenberghe, 2004), its global optimum is
easily solved by using some software, e.g. (Sturm, 1999).
Thus, if measured turbulence data have no measurement errors then the addressed problem,
i.e. Problem 1, is solved by virtue of Proposition 1 without introducing any conservatism (see
Remark 2).

Remark 7. If Proposition 1 is solved, then the state is bounded by γmin and γmax; that is, the
boundedness of the state is assured.

3.2 Measurement error case
Let us suppose that the real turbulence wk+j cannot be measured and the measured turbulence
wk+j|k satisfies (13).
First conduct full rank decompositions for matrices Q̃, R̃, and S̃

Q̃ = Q̂Q̂T, R̃ = R̂R̂T, S̃ = ŜŜT.
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u are respectively given as

follows:
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�
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�
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�
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�
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⎣
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ṽ
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⎦

T ⎡
⎣

Q̃ 0 0
0 R̃ 0
0 0 S̃

⎤
⎦
⎡
⎣

x̃i

ṽ
z̃i

⎤
⎦ , i = d, · · · , d (22)

�
γ̃min
ξ̃min

�
≤

�
x̃i

z̃i

�
≤

�
γ̃max
ξ̃max

�
, i = d, · · · , d (23)

δ̃min ≤ ṽ ≤ δ̃max (24)

As Proposition 1 is an SOCP problem (Boyd & Vandenberghe, 2004), its global optimum is
easily solved by using some software, e.g. (Sturm, 1999).
Thus, if measured turbulence data have no measurement errors then the addressed problem,
i.e. Problem 1, is solved by virtue of Proposition 1 without introducing any conservatism (see
Remark 2).

Remark 7. If Proposition 1 is solved, then the state is bounded by γmin and γmax; that is, the
boundedness of the state is assured.

3.2 Measurement error case
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Then, inequality (22) is equivalently transformed to the following inequality by applying the
Schur complement (Boyd & Vandenberghe, 2004).

⎡
⎢⎢⎣

q (x̃i)T Q̂ ṽT R̂ (z̃i)TŜ
Q̂Tx̃i I 0 0
R̂T ṽ 0 I 0
ŜTz̃i 0 0 I

⎤
⎥⎥⎦ ≥ 0 (25)

If some of matrices Q̃, R̃, S̃ are set zero matrices, then the corresponding rows and columns in
(25) are ignored.
The state x̂i

k+N|k and the performance output zi
k+N−1|k are respectively described as in (26)

and (27).

x̂i
k+N|k = (Âi)N x̂i

k|k +
�
(Âi)N−1B̂i

1 · · · Âi B̂i
1 B̂i

1

�
w̃ +

�
(Âi)N−1B̂i

2 · · · ÂiB̂i
2 B̂i

2

�
ṽ (26)

zi
k+N−1|k = Ĉi(Âi)N−1x̂i

k|k +
�
Ĉi(Âi)N−2B̂i

1 · · · ĈiB̂i
1 D̂i

1

�
w̃ +

�
Ĉi(Âi)N−2B̂i

2 · · · ĈiB̂i
2 D̂i

2

�
ṽ

(27)
Note that both x̂i

k+N|k and zi
k+N−1|k are affine with respect to each element of Δw, because

w̃ is affine with respect to each element of Δw. Similarly, x̂i
k+m|k (m = 1, · · · , N − 1) and

zi
k+m|k (m = 0, · · · , N − 2) are also affine with respect to each element of Δw. Considering

these and that (25) is affine with respect to x̃i and z̃i, checking whether or not (25) holds for all
possible Δw is equivalent to checking the feasibility at all vertices of Δw.
Now let Φ be defined as the set composed of all the vertices of Δw; that is,

Φ =
�

p = [p1 · · · pnw ]
T ∈ Rnw : pi = ±1, i = 1, · · · , nw

�
. (28)

The number of the elements belonging to Φ is 2nw .
Under these preliminaries, the following proposition, which is equivalent to solving
Problem 2, is directly obtained.

Proposition 2. Find ṽ which minimizes q subject to (22), (23) and (24) for all Δw ∈ Φ.

Similarly to Proposition 1, as Proposition 2 is also an SOCP problem, its global optimum is
easily obtained with the aid of some software, e.g. (Sturm, 1999).
Thus, if the measured turbulence data have measurement errors expressed as XjΔw and satisfy
(13) for the real turbulence, then the addressed problem, i.e. Problem 1, is solved by virtue of
Proposition 2 without introducing any conservatism (see Remarks 2 and 5).
Similarly to Remark 7 for Problem 1, if Problem 2 is solved, then the state is bounded by γmin
and γmax.

Remark 8. The increases of the numbers N, nw and i lead to a huge numerical complexity for solving
Proposition 2. Thus, obtaining the delay time bounds precisely is very important to reduce i. On the
other hand, in general, nw cannot be reduced, because this number represents the number of channels of
turbulence input. The remaining number N has a great impact on controller performance, which will
be shown in the next section with numerical simulation results.
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4. Numerical example

Several numerical examples are shown to demonstrate that the proposed method works well
for GA problem under the condition that there exist bounded uncertain delays at the control
input and the measurement errors in a priori measured turbulence data.

4.1 Small aircraft example
Let us first consider the linearized longitudinal aircraft motions of JAXA’s research aircraft
MuPAL-α (Sato & Satoh, 2008) at an altitude of 1524 [m] and a true air speed of 66.5 [m/s].
This aircraft is based on Dornier Do-228, which is a twin turbo-prop commuter aircraft.

4.1.1 Simulation setting
It is supposed that only the elevator is used for aircraft motion control. The transfer function
of its actuator dynamics is modeled as 1/(0.1s + 1). Then, the continuous-time system
representing the linearized longitudinal motions with the modeled actuator dynamics is given
as (1), where the state is [ui wi q θ δe]

T, the turbulence is wg, the control input is δec , and the
performance output is Δaz. Here, ui [m/s], wi [m/s], q [rad/s], θ [rad], δe [rad], wg [m/s],
δec [rad/s] and Δaz [m/s2] respectively denote inertial forward-backward velocity in body
axes, inertial vertical velocity in body axes, pitch rate, pitch angle, elevator deflection, vertical
turbulence in inertial axes, elevator command, and vertical acceleration deviation in inertial
axes.
After the discretization of (1) with sampling period Ts [s] being set as 0.1, the discrete-time
system (5) is given as (29).

�
A B1 B2
C D1 D2

�

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.99799 0.018181 −0.54564 −0.97647 0.11430
−0.014894 0.87690 5.5175 −0.076329 −1.1947

7.7845 × 10−4 −5.9106 × 10−3 0.80765 5.0506 × 10−4 −0.23770
3.9313 × 10−5 −3.1213 × 10−4 0.090399 1.0000 −0.014529

0 0 0 0 0.36788
−0.18089 −1.1043 −1.6792 5.8933 × 10−3 −4.9603
0.018289 0.048318
−0.12116 −0.50903

−5.9576 × 10−3 −0.14529
−3.1444 × 10−4 −5.3277 × 10−3

0 0.63212
−1.0825 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

The bounded time-invariant uncertain delay Td [s] for elevator command is supposed to be in
the interval [0.1, 0.4]. As the delay time is set as [0.1, 0.4] and the sampling period Ts is 0.1,
d and d are respectively given as 1 and 4. Next the state-space matrices of Pi

u (i = 1, · · · , 4)
are calculated. (The state-space matrices are omitted for space problem.) The augmented state

x̂i
k is given as

�
ui wi q θ δe δec(−4) δec(−3) δec(−2) δec(−1)

�T
, where δec(−l) denotes the elevator

command created at l step before. The objective is to obtain the elevator input command,
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T, the turbulence is wg, the control input is δec , and the
performance output is Δaz. Here, ui [m/s], wi [m/s], q [rad/s], θ [rad], δe [rad], wg [m/s],
δec [rad/s] and Δaz [m/s2] respectively denote inertial forward-backward velocity in body
axes, inertial vertical velocity in body axes, pitch rate, pitch angle, elevator deflection, vertical
turbulence in inertial axes, elevator command, and vertical acceleration deviation in inertial
axes.
After the discretization of (1) with sampling period Ts [s] being set as 0.1, the discrete-time
system (5) is given as (29).

�
A B1 B2
C D1 D2

�

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.99799 0.018181 −0.54564 −0.97647 0.11430
−0.014894 0.87690 5.5175 −0.076329 −1.1947

7.7845 × 10−4 −5.9106 × 10−3 0.80765 5.0506 × 10−4 −0.23770
3.9313 × 10−5 −3.1213 × 10−4 0.090399 1.0000 −0.014529

0 0 0 0 0.36788
−0.18089 −1.1043 −1.6792 5.8933 × 10−3 −4.9603
0.018289 0.048318
−0.12116 −0.50903

−5.9576 × 10−3 −0.14529
−3.1444 × 10−4 −5.3277 × 10−3

0 0.63212
−1.0825 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

The bounded time-invariant uncertain delay Td [s] for elevator command is supposed to be in
the interval [0.1, 0.4]. As the delay time is set as [0.1, 0.4] and the sampling period Ts is 0.1,
d and d are respectively given as 1 and 4. Next the state-space matrices of Pi

u (i = 1, · · · , 4)
are calculated. (The state-space matrices are omitted for space problem.) The augmented state

x̂i
k is given as

�
ui wi q θ δe δec(−4) δec(−3) δec(−2) δec(−1)

�T
, where δec(−l) denotes the elevator

command created at l step before. The objective is to obtain the elevator input command,

353Gust Alleviation Control Using Robust MPC



12 Will-be-set-by-IN-TECH

δec(0), which minimizes the effect of vertical turbulence to vertical acceleration for all possible
delays.
The constraints for the augmented state x̂i

k and the control input command deviation are given
as follows:

γmax =
[
10 10 10π

180
10π
180

5π
180 × 15

]T
, γmin = −γmax,

δmax = π
180 , δmin = −δmax.

This means that the rate limit of elevator command is set as ±10 [deg/s]. The constraints for
performance output ξmin and ξmax are respectively set as −∞ and ∞; that is, performance
output has no constraints.
Matrices Q and S in (16) are set as Q = 09 and S = 1 respectively. Matrix R will be set later.
The turbulence wg is supposed to be given as

wg(t) = sin(ωt), (30)

where t denotes the simulation time starting from 0, and ω, which will be set later, denotes
the frequency of the turbulence.

4.1.2 Simulation results without measurement errors in turbulence data
Let us first show the results of simulations in which turbulence is supposed to be exactly
measured.
Numerical simulations using continuous-time system (1) composed of MuPAL-α’s linearized
longitudinal motions and the first-order elevator actuator model, and the proposed MPC in
which Proposition 1 is solved on line are carried out for 20 [s]. In the simulations, various
constant delay steps at the control input t̂d, various constant turbulence frequencies ω [rad/s],
various constant weighting matrices R, and various constant receding horizon step numbers
N are used from the following sets:

t̂d ∈ {1, 2, 3, 4} ,
ω ∈ {0.1, 0.5, 1.0, 5.0, 7.0, 8.0, 10.0} ,
R ∈ {

10−1, 100, 101, 102, 103, 104} ,
N ∈ {10, 20, 30, 40, 50} .

(31)

For comparison, the following scenarios are simultaneously carried out.

Scenario A: MPC in which Proposition 1 is solved online is applied,

Scenario B: no control is applied,

Scenario C: MPC in which Proposition 1 is solved online but with the measured turbulence
data being set as zeros, i.e. MPC without prior turbulence data, is applied.

Fig. 3 shows the performance comparison for scenarios A, B and C. In this figure, JA, JB and JC
denote the following performance indices for the corresponding scenarios, which are obtained
from the simulations:

max
t̂d∈{1, 2, 3, 4}

∫ 20

0
|Δaz|2dt. (32)
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For comparison, mesh planes at JA/JB = 1 and JA/JC = 1 are drawn. JA/JB < 1 means that
gust alleviation is effectively achieved by the proposed method, and JA/JC < 1 means that
the a priori measured turbulence data are useful for the improvement of GA performance.
The following are concluded from Fig. 3.

• It is very difficult for MuPAL-α to suppress high frequency turbulence effect, such as, over
8 [rad/s].

• MuPAL-α has no need to measure turbulence a priori for more than 20 steps. In other
words, it is sufficient for MuPAL-α to measure turbulence for 20 steps ahead.

• Using an appropriately chosen R (e.g. R = 102), the proposed GA flight controller in which
Proposition 1 is solved online improves GA performance for low and middle frequency
turbulence, such as, below 5 [rad/s].

The first item is reasonable because aircraft motion model has a direct term from the vertical
turbulence to the vertical acceleration and it is supposed that there exists uncertain delay at
its control input. The second item is interesting, because there is a limit for the improvement
of GA performance even when a priori measured turbulence data are available.
For reference, several time histories with R = 102 and N = 20 are shown in Fig. 4. For space
problem, only actual elevator deflection command (δec ) and its created command by flight
computer (δec(0)), and performance output are shown. δec and δec(0) almost overlap in some
cases. These figures illustrate the usefulness of the a priori measured turbulence data.

4.1.3 Simulation results with measurement errors in turbulence data
Let us next show the results of simulations in which measured turbulence data have
measurement errors.
Numerical simulations using continuous-time system (1) composed of MuPAL-α’s linearized
longitudinal motions and the first-order elevator actuator model, and the proposed MPC in
which Proposition 2 is solved on line are carried out for 20 [s]. In the simulations, various
constant delay steps at the control input t̂d, various constant turbulence frequencies ω [rad/s],
various constant weighting matrices R, and various constant receding horizon step numbers
N are used from the following sets:

t̂d ∈ {1, 2, 3, 4} ,
ω ∈ {0.1, 0.5, 1.0, 3.0, 4.0, 5.0, 6.0, 7.0} ,
R ∈ {

101, 102, 103, 104, 105} ,
N ∈ {10, 12, 14, 16, 18, 20, 22, 24} .

(33)

Matrices Xj in the measurement error are set as

Xj = 0.2 + 0.1 × (66.5/100 × Ts) j. (34)

This means that the measurement error for wg is composed of a constant bias error
0.2 [m/s] and a measurement error which is proportional to distance, the latter has 0.1 [m/s]
measurement error at 100 [m] ahead.
Three possibilities are considered in the simulations; that is, (i) the real turbulence is the same
as the measured turbulence, i.e. wk+j = wk+j|k, (ii) the real turbulence is the upper bound of
the supposed turbulence, i.e. wk+j = wk+j|k + Xj using (34), and (iii) the real turbulence is the
lower bound of the supposed turbulence, i.e. wk+j = wk+j|k − Xj using (34).
For comparison, the following scenarios are simultaneously carried out.
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δec(0), which minimizes the effect of vertical turbulence to vertical acceleration for all possible
delays.
The constraints for the augmented state x̂i

k and the control input command deviation are given
as follows:

γmax =
[
10 10 10π

180
10π
180

5π
180 × 15

]T
, γmin = −γmax,

δmax = π
180 , δmin = −δmax.

This means that the rate limit of elevator command is set as ±10 [deg/s]. The constraints for
performance output ξmin and ξmax are respectively set as −∞ and ∞; that is, performance
output has no constraints.
Matrices Q and S in (16) are set as Q = 09 and S = 1 respectively. Matrix R will be set later.
The turbulence wg is supposed to be given as

wg(t) = sin(ωt), (30)

where t denotes the simulation time starting from 0, and ω, which will be set later, denotes
the frequency of the turbulence.

4.1.2 Simulation results without measurement errors in turbulence data
Let us first show the results of simulations in which turbulence is supposed to be exactly
measured.
Numerical simulations using continuous-time system (1) composed of MuPAL-α’s linearized
longitudinal motions and the first-order elevator actuator model, and the proposed MPC in
which Proposition 1 is solved on line are carried out for 20 [s]. In the simulations, various
constant delay steps at the control input t̂d, various constant turbulence frequencies ω [rad/s],
various constant weighting matrices R, and various constant receding horizon step numbers
N are used from the following sets:

t̂d ∈ {1, 2, 3, 4} ,
ω ∈ {0.1, 0.5, 1.0, 5.0, 7.0, 8.0, 10.0} ,
R ∈ {

10−1, 100, 101, 102, 103, 104} ,
N ∈ {10, 20, 30, 40, 50} .

(31)

For comparison, the following scenarios are simultaneously carried out.

Scenario A: MPC in which Proposition 1 is solved online is applied,

Scenario B: no control is applied,

Scenario C: MPC in which Proposition 1 is solved online but with the measured turbulence
data being set as zeros, i.e. MPC without prior turbulence data, is applied.

Fig. 3 shows the performance comparison for scenarios A, B and C. In this figure, JA, JB and JC
denote the following performance indices for the corresponding scenarios, which are obtained
from the simulations:

max
t̂d∈{1, 2, 3, 4}

∫ 20

0
|Δaz|2dt. (32)
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For comparison, mesh planes at JA/JB = 1 and JA/JC = 1 are drawn. JA/JB < 1 means that
gust alleviation is effectively achieved by the proposed method, and JA/JC < 1 means that
the a priori measured turbulence data are useful for the improvement of GA performance.
The following are concluded from Fig. 3.

• It is very difficult for MuPAL-α to suppress high frequency turbulence effect, such as, over
8 [rad/s].

• MuPAL-α has no need to measure turbulence a priori for more than 20 steps. In other
words, it is sufficient for MuPAL-α to measure turbulence for 20 steps ahead.

• Using an appropriately chosen R (e.g. R = 102), the proposed GA flight controller in which
Proposition 1 is solved online improves GA performance for low and middle frequency
turbulence, such as, below 5 [rad/s].

The first item is reasonable because aircraft motion model has a direct term from the vertical
turbulence to the vertical acceleration and it is supposed that there exists uncertain delay at
its control input. The second item is interesting, because there is a limit for the improvement
of GA performance even when a priori measured turbulence data are available.
For reference, several time histories with R = 102 and N = 20 are shown in Fig. 4. For space
problem, only actual elevator deflection command (δec ) and its created command by flight
computer (δec(0)), and performance output are shown. δec and δec(0) almost overlap in some
cases. These figures illustrate the usefulness of the a priori measured turbulence data.

4.1.3 Simulation results with measurement errors in turbulence data
Let us next show the results of simulations in which measured turbulence data have
measurement errors.
Numerical simulations using continuous-time system (1) composed of MuPAL-α’s linearized
longitudinal motions and the first-order elevator actuator model, and the proposed MPC in
which Proposition 2 is solved on line are carried out for 20 [s]. In the simulations, various
constant delay steps at the control input t̂d, various constant turbulence frequencies ω [rad/s],
various constant weighting matrices R, and various constant receding horizon step numbers
N are used from the following sets:

t̂d ∈ {1, 2, 3, 4} ,
ω ∈ {0.1, 0.5, 1.0, 3.0, 4.0, 5.0, 6.0, 7.0} ,
R ∈ {

101, 102, 103, 104, 105} ,
N ∈ {10, 12, 14, 16, 18, 20, 22, 24} .

(33)

Matrices Xj in the measurement error are set as

Xj = 0.2 + 0.1 × (66.5/100 × Ts) j. (34)

This means that the measurement error for wg is composed of a constant bias error
0.2 [m/s] and a measurement error which is proportional to distance, the latter has 0.1 [m/s]
measurement error at 100 [m] ahead.
Three possibilities are considered in the simulations; that is, (i) the real turbulence is the same
as the measured turbulence, i.e. wk+j = wk+j|k, (ii) the real turbulence is the upper bound of
the supposed turbulence, i.e. wk+j = wk+j|k + Xj using (34), and (iii) the real turbulence is the
lower bound of the supposed turbulence, i.e. wk+j = wk+j|k − Xj using (34).
For comparison, the following scenarios are simultaneously carried out.
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Fig. 3. GA performance comparison for MuPAL-α under no measurement errors in
turbulence data
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Fig. 4. Time histories under no measurement errors in turbulence data with R = 102 and
N = 20 (δec is shown as dotted lines and δec(0) is shown as solid lines)
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Scenario A: MPC in which Proposition 2 is solved online is applied,

Scenario B: no control is applied,

Scenario C: MPC in which Proposition 2 is solved online but with the measured turbulence
data being set as zeros, i.e. MPC without prior turbulence data, is applied.

Fig. 5 shows the performance comparison for scenarios A, B and C. In this figure, JA, JB and JC
denote the following performance indices for the corresponding scenarios, which are obtained
from the simulations:

max
wk+j={wk+j|k, wk+j|k±Xj}

max
t̂d∈{1, 2, 3, 4}

∫ 20

0
|Δaz|2dt. (35)

For comparison, mesh planes at JA/JB = 1 and JA/JC = 1 are drawn.
The following are concluded from Fig. 5.

• For turbulence, whose frequencies are no more than 0.5 [rad/s], GA performance using the
proposed method is larger than the uncontrolled case.

• For turbulence, whose frequencies are more than 6 [rad/s], vertical acceleration is hardly
reduced even if prior turbulence data are obtained.

• It is sufficient for MuPAL-α to measure turbulence for 20 steps ahead.

• Using an appropriately chosen R (e.g. R = 103), the proposed GA flight controller in which
Proposition 2 is solved online improves GA performance for middle frequency turbulence,
such as, 1 ∼ 5 [rad/s].

The first item does not hold true for no measurement error case (see also Fig. 3). Thus, GA
performance deterioration for low frequency turbulence is caused by the measurement errors
in the measured turbulence data. The second item is reasonable for considering that it is
difficult to suppress turbulence effect on aircraft motions caused by high frequency turbulence
even when the turbulence is exactly measured (see also Fig. 3). The fourth item illustrates
that the a priori measured turbulence data improve GA performance even when there exist
measurement errors in the measured turbulence data.
For reference, several time histories with R = 103, N = 18 and t̂d = 4 are shown in Fig. 6.
For space problem, only actual elevator deflection command (δec) and its created command
by flight computer (δec(0)), and performance output are shown. These figures illustrate the
usefulness of the a priori measured turbulence data for middle frequency turbulence (e.g.
1.0 and 5.0 [rad/s]). However, as the top figure in Fig. 6 indicates, measurement errors in
turbulence data deteriorate GA performance; that is, if the real turbulence is smaller than the
measured one, i.e. the case for wk+j = wk+j|k − Xj, then the proposed MPC produces surplus
elevator deflections and this causes extra downward accelerations. The converse, i.e. the case
for wk+j = wk+j|k + Xj, also holds true. Thus, it is very important for achieving good GA
performance to measure turbulence exactly.
To evaluate the impact of the rate limit for elevator command on GA performance, the same
simulations but with only δmax and δmin being doubled, i.e. δmax = 2 π

180 and δmin = −2 π
180 ,

are carried out. The results for (35) are shown in Fig. 7.
Comparison between Figs. 5 and 7 concludes the following.
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Scenario A: MPC in which Proposition 2 is solved online is applied,

Scenario B: no control is applied,

Scenario C: MPC in which Proposition 2 is solved online but with the measured turbulence
data being set as zeros, i.e. MPC without prior turbulence data, is applied.

Fig. 5 shows the performance comparison for scenarios A, B and C. In this figure, JA, JB and JC
denote the following performance indices for the corresponding scenarios, which are obtained
from the simulations:

max
wk+j={wk+j|k, wk+j|k±Xj}

max
t̂d∈{1, 2, 3, 4}

∫ 20

0
|Δaz|2dt. (35)

For comparison, mesh planes at JA/JB = 1 and JA/JC = 1 are drawn.
The following are concluded from Fig. 5.

• For turbulence, whose frequencies are no more than 0.5 [rad/s], GA performance using the
proposed method is larger than the uncontrolled case.

• For turbulence, whose frequencies are more than 6 [rad/s], vertical acceleration is hardly
reduced even if prior turbulence data are obtained.

• It is sufficient for MuPAL-α to measure turbulence for 20 steps ahead.

• Using an appropriately chosen R (e.g. R = 103), the proposed GA flight controller in which
Proposition 2 is solved online improves GA performance for middle frequency turbulence,
such as, 1 ∼ 5 [rad/s].

The first item does not hold true for no measurement error case (see also Fig. 3). Thus, GA
performance deterioration for low frequency turbulence is caused by the measurement errors
in the measured turbulence data. The second item is reasonable for considering that it is
difficult to suppress turbulence effect on aircraft motions caused by high frequency turbulence
even when the turbulence is exactly measured (see also Fig. 3). The fourth item illustrates
that the a priori measured turbulence data improve GA performance even when there exist
measurement errors in the measured turbulence data.
For reference, several time histories with R = 103, N = 18 and t̂d = 4 are shown in Fig. 6.
For space problem, only actual elevator deflection command (δec) and its created command
by flight computer (δec(0)), and performance output are shown. These figures illustrate the
usefulness of the a priori measured turbulence data for middle frequency turbulence (e.g.
1.0 and 5.0 [rad/s]). However, as the top figure in Fig. 6 indicates, measurement errors in
turbulence data deteriorate GA performance; that is, if the real turbulence is smaller than the
measured one, i.e. the case for wk+j = wk+j|k − Xj, then the proposed MPC produces surplus
elevator deflections and this causes extra downward accelerations. The converse, i.e. the case
for wk+j = wk+j|k + Xj, also holds true. Thus, it is very important for achieving good GA
performance to measure turbulence exactly.
To evaluate the impact of the rate limit for elevator command on GA performance, the same
simulations but with only δmax and δmin being doubled, i.e. δmax = 2 π

180 and δmin = −2 π
180 ,

are carried out. The results for (35) are shown in Fig. 7.
Comparison between Figs. 5 and 7 concludes the following.
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20 Will-be-set-by-IN-TECH

ω [rad/s] R N PT7400 P650

0.1
101 10 0.30 − 0.52(0.38) 0.88 − 1.45(1.18)

24 0.47 − 1.36(0.74) 1.78 − 3.94(2.52)

105 10 0.27 − 0.49(0.34) 0.84 − 1.25(1.03)
24 0.40 − 1.00(0.59) 1.14 − 2.78(2.01)

1.0
101 10 0.29 − 0.53(0.37) 0.97 − 1.48(1.18)

24 0.45 − 3.62(0.76) 1.64 − 3.94(2.52)

105 10 0.26 − 0.43(0.32) 0.80 − 1.44(0.99)
24 0.39 − 1.02(0.59) 1.36 − 2.64(1.98)

6.0
101 10 0.30 − 0.53(0.38) 0.77 − 1.41(1.17)

24 0.51 − 0.96(0.69) 2.08 − 2.88(2.38)

105 10 0.26 − 0.51(0.34) 0.81 − 1.28(1.00)
24 0.43 − 0.82(0.58) 1.77 − 2.50(2.04)

Table 1. CPU time [s] (max−min (average))

• The rate limit for elevator command does not have so large impact on GA performance
except for the cases using small R.

This fact is reasonable because it is difficult to suppress high frequency turbulence effect even
when there are no measurement errors in the turbulence data (see Fig. 3), and if R is set
relatively large, e.g. R = 103, then MuPAL-α has no need to use high rate elevator commands
for suppressing middle frequency turbulence effect, such as, 1.0 [rad/s] (see Fig. 6). However,
if R is set small then the proposed GA flight controller allows high rate elevator commands,
which lead to severe oscillatory accelerations. Thus, GA performance deteriorates.
Finally, CPU time to solve Proposition 2 is shown in Table 1. The simulation setting is the
same as for obtaining the results in Fig. 5. The simulations are conducted with Matlab® using
SeDuMi (Sturm, 1999) along with a parser YALMIP (Löfberg, 2004) with a PC (Dell Precision
T7400, Xeon®3.4 GHz, 32 GB RAM; PT7400) and a PC (Dell Precision 650, Xeon®3.2 GHz,
2 GB RAM; P650). Although CPU time with PT7400 is just about 30 % of P650, at the present
moment, solving Proposition 2 online is impossible with these PCs even when N is set as 10.
Thus, the reduction of numerical complexity for solving Proposition 2 is to be investigated.

4.2 Large aircraft example
Let us next consider the linearized longitudinal aircraft motions of large aircraft Boeing 747
(B747) (Heffley & Jewell, 1972) at an altitude of 12192 [m] and a true air speed of 236 [m/s].

4.2.1 Simulation setting
Similarly to MuPAL-α, it is supposed that only the elevator is used for aircraft motion control.
The transfer function of its actuator dynamics is also supposed to be modeled as 1/(0.1s + 1).
Then, the continuous-time system representing the linearized longitudinal motions with the
modeled actuator dynamics is given as (1), where the state, the turbulence, the control input,
and the performance output are the same as MuPAL-α.
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After the discretization of (1) with sampling period Ts [s] being set as 0.1 using a zero-order
hold, the discrete-time system (5) is given as (36).

�
A B1 B2
C D1 D2

�

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.99965 4.1350 × 10−3 −1.8544 −0.97754 0.10639
−5.6762 × 10−3 0.96481 22.643 −0.074565 −1.3157
6.5386 × 10−5 −3.1960 × 10−4 0.95423 1.0244 × 10−5 −0.071212
3.2771 × 10−6 −1.6194 × 10−5 0.097759 1.0000 −4.1894 × 10−3

0 0 0 0 0.36788
−0.065004 −0.32122 −5.3617 × 10−3 −5.2561 × 10−3 −5.5100

4.1498 × 10−3 0.044513
−0.034623 −0.55260

−3.2381 × 10−4 −0.041894
−1.6405 × 10−5 −1.5116 × 10−3

0 0.63212
−0.31497 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)
The delay Td for elevator command, the constraints for the augmented state, the control input
command deviation and the performance output, matrices Q and S in (16), the turbulence,
and the measurement errors are all set the same as for MuPAL-α.

4.2.2 Simulation results
The same numerical simulations in section 4.1.3 but the aircraft motion model being replaced
by the B747 model are carried out for the following parameter setting.

t̂d ∈ {1, 2, 3, 4} ,
ω ∈ {0.1, 0.5, 1.0, 3.0, 4.0, 5.0, 6.0} ,
R ∈ �

10−1, 100, 101, 102, 103, 104, 105, 106, 107� ,
N ∈ {10, 12, 14, 16, 18, 20, 22, 24} .

(37)

Fig. 8 shows the performance comparison for scenarios A, B and C. In this figure, JA, JB and
JC are similarly calculated as in Fig. 5.
The following are concluded from Fig. 8.

• For turbulence, whose frequencies are no more than 0.1 [rad/s], GA performance using the
proposed method is larger than the uncontrolled case.

• For turbulence, whose frequencies are more than 5 [rad/s], vertical acceleration is hardly
reduced even if prior turbulence data are obtained.

• It is sufficient for B747 to measure turbulence for 20 steps ahead.

• Using an appropriately chosen R (e.g. R = 103), the proposed GA flight controller in which
Proposition 2 is solved online improves GA performance for middle frequency turbulence,
such as, 0.5 ∼ 4 [rad/s].

Differently from MuPAL-α, low frequency turbulence effect to B747, e.g. 0.5 [rad/s], can
be reduced by the proposed GA controller; however, middle frequency turbulence effect,
e.g. 5 [rad/s], cannot be reduced. The third item is interesting in a sense that the step number
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ω [rad/s] R N PT7400 P650

0.1
101 10 0.30 − 0.52(0.38) 0.88 − 1.45(1.18)

24 0.47 − 1.36(0.74) 1.78 − 3.94(2.52)
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Table 1. CPU time [s] (max−min (average))

• The rate limit for elevator command does not have so large impact on GA performance
except for the cases using small R.

This fact is reasonable because it is difficult to suppress high frequency turbulence effect even
when there are no measurement errors in the turbulence data (see Fig. 3), and if R is set
relatively large, e.g. R = 103, then MuPAL-α has no need to use high rate elevator commands
for suppressing middle frequency turbulence effect, such as, 1.0 [rad/s] (see Fig. 6). However,
if R is set small then the proposed GA flight controller allows high rate elevator commands,
which lead to severe oscillatory accelerations. Thus, GA performance deteriorates.
Finally, CPU time to solve Proposition 2 is shown in Table 1. The simulation setting is the
same as for obtaining the results in Fig. 5. The simulations are conducted with Matlab® using
SeDuMi (Sturm, 1999) along with a parser YALMIP (Löfberg, 2004) with a PC (Dell Precision
T7400, Xeon®3.4 GHz, 32 GB RAM; PT7400) and a PC (Dell Precision 650, Xeon®3.2 GHz,
2 GB RAM; P650). Although CPU time with PT7400 is just about 30 % of P650, at the present
moment, solving Proposition 2 online is impossible with these PCs even when N is set as 10.
Thus, the reduction of numerical complexity for solving Proposition 2 is to be investigated.

4.2 Large aircraft example
Let us next consider the linearized longitudinal aircraft motions of large aircraft Boeing 747
(B747) (Heffley & Jewell, 1972) at an altitude of 12192 [m] and a true air speed of 236 [m/s].

4.2.1 Simulation setting
Similarly to MuPAL-α, it is supposed that only the elevator is used for aircraft motion control.
The transfer function of its actuator dynamics is also supposed to be modeled as 1/(0.1s + 1).
Then, the continuous-time system representing the linearized longitudinal motions with the
modeled actuator dynamics is given as (1), where the state, the turbulence, the control input,
and the performance output are the same as MuPAL-α.
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After the discretization of (1) with sampling period Ts [s] being set as 0.1 using a zero-order
hold, the discrete-time system (5) is given as (36).

�
A B1 B2
C D1 D2

�

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.99965 4.1350 × 10−3 −1.8544 −0.97754 0.10639
−5.6762 × 10−3 0.96481 22.643 −0.074565 −1.3157
6.5386 × 10−5 −3.1960 × 10−4 0.95423 1.0244 × 10−5 −0.071212
3.2771 × 10−6 −1.6194 × 10−5 0.097759 1.0000 −4.1894 × 10−3

0 0 0 0 0.36788
−0.065004 −0.32122 −5.3617 × 10−3 −5.2561 × 10−3 −5.5100

4.1498 × 10−3 0.044513
−0.034623 −0.55260

−3.2381 × 10−4 −0.041894
−1.6405 × 10−5 −1.5116 × 10−3

0 0.63212
−0.31497 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)
The delay Td for elevator command, the constraints for the augmented state, the control input
command deviation and the performance output, matrices Q and S in (16), the turbulence,
and the measurement errors are all set the same as for MuPAL-α.

4.2.2 Simulation results
The same numerical simulations in section 4.1.3 but the aircraft motion model being replaced
by the B747 model are carried out for the following parameter setting.

t̂d ∈ {1, 2, 3, 4} ,
ω ∈ {0.1, 0.5, 1.0, 3.0, 4.0, 5.0, 6.0} ,
R ∈ �

10−1, 100, 101, 102, 103, 104, 105, 106, 107� ,
N ∈ {10, 12, 14, 16, 18, 20, 22, 24} .

(37)

Fig. 8 shows the performance comparison for scenarios A, B and C. In this figure, JA, JB and
JC are similarly calculated as in Fig. 5.
The following are concluded from Fig. 8.

• For turbulence, whose frequencies are no more than 0.1 [rad/s], GA performance using the
proposed method is larger than the uncontrolled case.

• For turbulence, whose frequencies are more than 5 [rad/s], vertical acceleration is hardly
reduced even if prior turbulence data are obtained.

• It is sufficient for B747 to measure turbulence for 20 steps ahead.

• Using an appropriately chosen R (e.g. R = 103), the proposed GA flight controller in which
Proposition 2 is solved online improves GA performance for middle frequency turbulence,
such as, 0.5 ∼ 4 [rad/s].

Differently from MuPAL-α, low frequency turbulence effect to B747, e.g. 0.5 [rad/s], can
be reduced by the proposed GA controller; however, middle frequency turbulence effect,
e.g. 5 [rad/s], cannot be reduced. The third item is interesting in a sense that the step number
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Fig. 8. GA performance comparison for B747 under measurement errors in turbulence data
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for turbulence measurement does not depend on aircraft models. However, it is not sure that
this fact indeed holds for other aircraft, which is to be investigated.
For reference, several time histories with N = 18, R = 100 or 103, and t̂d = 3 or 4 are
shown in Fig. 9. For space problem, only actual elevator deflection command (δec) and its
created command by flight computer (δec(0)), and performance output are shown. These
figures confirm that small R, i.e. R = 100, allows large elevator deviation commands and
this consequently leads to severely oscillatory vertical accelerations. However, the proposed
controller with an appropriately chosen R, i.e. R = 103, well suppresses turbulence effect on
aircraft motions.

5. Conclusions

This paper tackles the design problem of Gust Alleviation (GA) flight controllers exploiting
a priori measured turbulence data for suppressing aircraft motions driven by turbulence. For
this problem, a robust Model Predictive Control (MPC) considering the plant uncertainties
and the measurement errors in the turbulence data is proposed. In the usual setting, MPC for
uncertain plant requires to solve an optimization problem with infinitely many conditions if
conservatism is avoided. However, it is shown that if the plant uncertainties are represented as
the bounded time-invariant uncertain delays at the control input, then the associated problem
for the robust MPC is equivalently transformed to an optimization problem for finitely many
plant models, which consequently means that the optimization problem has finitely many
conditions.
In our problem setting, the measurement errors in the a priori measured turbulence data
are represented as affine with respect to a constant uncertain vector, whose elements are
all bounded. Using this property, it is shown that it is necessary and sufficient to evaluate
the performance index in MPC at the maxima and minima of the uncertain vector. This
consequently means that the robust MPC has finitely many conditions even when the
measurement errors are considered.
Several numerical examples illustrate that the proposed GA flight controller with
appropriately chosen controller parameters effectively suppresses turbulence effect on aircraft
motions, and reveal that it is very difficult to suppress high frequency turbulence effect even
when the a priori measured turbulence data are exploited.
To guarantee the feasibility of the proposed MPC at every step is an important issue for
the implementation of the proposed method to real systems. Thus, this topic is now under
investigation.
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1. Introduction 
Model based predictive controller is a family of control algorithms suitable for some 
applications. They are useful for most of the real applications. But they are not used very 
often due to the complexity of them. So this kind of books should be closer to the real 
application in order to be more used. One of the main objectives, in this chapter, is to clarify 
the use of the MBPC for real applications. 
My experience is based on real application of MBPC. Additionally they are also suitable for 
small modification. One of the adaptations explained in this chapter is the one related with 
disturbance measurement. All real systems have disturbance. Many times the disturbance 
can be measured and identify. The disturbance measurable can be identified but you can not 
use this variable as a control variable. You can include this information in the optimization 
process. One the examples explained in this chapter is the management of this information. 
In the air management loop in a internal combustion engine use to manage VNT (Variable 
Nozzle turbine), EGR (Exhaust gas recirculation), SWIRL valve and others, but mass fuel 
injected is managed by air management loop. But this mass fuel has important influences in 
the air management process, so it should be considered. 
The philosophy considering disturbance measurable has influences on different parts of the 
control algorithm development. MBPC has 4 main topics: model, control cost, optimization 
process and receding horizon. In this chapter the development will be explained. 
Due to the high quantity of control parameters considered in the MBPC, it use to be rejected 
for using. In this chapter we will try to explain the influence of the most important 
parameters in order to show the way for tuning. 

2. State of art 
Control Engineering Science is a very brand new Science branch compared with other 
sciences. In fact the first servo system of the history was developed in 1788 by James Watt. 
But the strong theoretical development was done during 20th century. Additionally the 
control engineering science has been developed as a auxiliary tool for other real 
applications. One example is the development was SMC (Sliding Mode Control), which was 
developed to control artificial satellites.  
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Probably this is the main reason because, control engineering, is mainly considered as a 
secondary science. In this chapter MBPC will be explained, mainly the GPC (Generalized 
Predictive Control).  

2.1 Control engineering 
As explained in 1788, James Watt developed the first servo system of the history but the real 
development of this science was during 20th century. The first important mathematical 
development were done by Nyquist[27], this work studied stability of the system by means 
of closing the loop. One of the problems when closing the loop is the possibility of 
instability, that is why Nyquist developed the theory in 1932. During forties some 
techniques of frequency design were developed, thus control engineering were widely 
implemented in the Industry. During fifties Evans[14] proposed the root locus for designing 
algorithms with stability. From sixties the digital hardware were getting importance so 
digital or disserted algorithms were implemented. With discrete systems more flexible 
algorithms and structure were used, even thus the first approached were done by 
discrimination of classical controllers.  

2.2 Control algorithms MBPC history 
MBPC has its origin in Kalman’s work. He developed an observer in which design an 
optimization cost is used. Additionally the optimal control based on the optimization of a 
quadratic cost. This control was the LQG. In comparison with Evans[14] theory, the 
behaviour of the controlled system is not base on system response, but it is based on the 
minimum cost of a quadratic cost function.  
The first MBPC published was in 1976 by Richalet[33]. He formalized the development two 
years later in the Paper []. This algorithms is known as MPHC (Model Predictive Heuristic 
Control), which was commercially developed as IDCOM, this commercial software included 
identification, predictive controller and impulsion model. One year later Cutler and 
Ramaker[12] developed de DMC (Dynamic Matrix Controller) based also in the impulsion 
system response. Both algrothm were known as first generation MPC (Model Predictive 
Controllers), but neither IDCOM nor DMC were based in LQG models or state space 
models.  
During first half of eighties the second generation of algorithms was developed. DMC with 
constraints were presented by García[16] by using Quadratic Programming QP in the 
optimization process. Connoisseur from Invensys Corporation is also an algorithm of this 
family. 
The most important advance in MBPC were developed during second half of eighties and 
nineties were third generation appeared. In 1988 Keyser[20] compared some MBPC 
adaptative. Shell company worked in the first MBPC based in state space, its name is SMOC. 
An overview of MBPC was summarized by Qin[31,32], not only theoretical controllers but 
most of the commercial solutions were analyzed. In 1986 Clarke[8,9,10] presented the GPC 
or Generalized Predictive Controller. Clarke tried to develop a MBPC unifying all 
controllers in one algorithm. The way for getting this target is to use a general model, as 
general as possible, thus he decided to use the CARIMA model, this is a standard ARX plus 
a derivative white noise. Another proposal was done by Soeterbock[37] in which adaptative 
controller as general as possible.  In 1990 Zafirion [42] exposed the possibility of destabilize 
the system by including constraints in the optimization process. This fact should be 
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considered, because a stable system and stable controller can be destabilized by mean of 
including the constraints.  
Galanti[15] proposed, two years later, an interesting solution for constrained by dead zone. 
But Zheng[43] proposed an intelligent development for solving that problem. It consists on 
developing soft constraints in place of constraints. The system and controller must be under 
the constraints, I mean, it is something compulsory. But the soft constraint is not a constraint 
anymore, this is a recommendation, so id you are out the soft constraint for a while, this is 
not an alarm, this is a warning. Thus the stability of the system is stronger, this kind of soft 
constraints are suitable for outout.  
In 1997 Rositer and Kouvaritakis[22] proposed the terminal constraint in order to improve 
the stability when constraints in MBPC. A similar work was presented in Automatica by 
Havlena [18] where stability of optimum control when constraints were analyzed. That year 
some people[36] presented studies about tuning in MBPC for SISO systems. 
Two years later in 1999 Bordons and Camacho[2] summarized the state of the art in their 
book. They mainly focus the study in a wide development of GPC as a General proposal of 
MBPC.  
During century XXI MIMO approaches of MBPC were developed. Nuñez[26] proposed 
Hierarchy control, well accepted by Industry. An additional problem when MIMO MBPC 
approach is carried out, is instability due to problems in matrix as Pannochia[29] suggested. 
Poulser and Kouvaritakis[30] exposed some real application in chemical reactor in which 
MBPC offer its possibilities. Moreover, Kouvaritakis[21] presented different optimization 
tools in place of quadratic programming. 
An special case in the MBPC is the GPC. Due to special characteristics is one of the most 
developed controller. It was published in 1987 by Clarke, in these papers the linear 
controller was proposed[7,8] . Thi first idea was to find a controller with weak 
computational cost to be used in adaptative applications. In fact, Clarke and Gawthrop[5,6] 
developed the GMV or controller of minimum variance in 1975 and 1979[5,6]. GPC inherited 
from GVM the prediction model CARIMA.  CARIMA is based in a transfer function plus a 
white noise derivative model. All previous cotroller use to find some problems: 
1. Minimum phase zeros process can not be used. 
2. Instable process controlled by open loop architecture.  
3. Robustness when delays or not expected delays.  
4. Robustness when poles zeros were over stimulated.  
Not in all contemporaneous controller appeared that problems, but in most of them. 
CARIMA model include a derivative model which made this model suitable for real 
applications. GPC contains the main bases of the MBPC.: 
1. Prediction model: CARIMA model, what have some interesting proprieties. 
2. Cost Index: with quadratic error in a time slot or prediction horizon plus a control 

horizon or steps of control action. 
3. Optimization tool: at this point the GPC is using the standard optimization tool, roots in 

the first derivative and checking the second one is positive. 
4. Mobil horizon: it mean applying the first control action and recalculate every step 

updating the new information. 
During eighties the team of Clake were developing GPC. In 1988 Tsang[40] in this team 
explained the importance of  using constraints. Once this point, two problems should be 
solved: include constraint in the optimization and improving stability in close loop.  
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In 1992 few paper about robustness in GPC were published. Soeterboek[38] tried to 
generalize the MBPC in one general book. The importance of T polynomial (noise 
polynomial poles) were widely explained, specially about robustness of the algorithm. 
Moreover the correct tuning of lambda parameter (or weight of control actions) in the 
GPC robustness. That year Kouvaritakis[21] published a paper about GPC Stability and 
Mosca[25] proposed a control solution about constraints in dead zone. This year 
Albertos[1] published a new formulation on the model based in Diophantine 
decomposition. 
In 1994 a paper published by Clarke team is presented. Chow[4], the author of this paper, 
proposed some constraints applied to GPC which are: slew rate constraint, Coulomb 
friction, histeresys and dead zone by using two optimization algorithms; quadratic 
programming and Lagrange multipliers. In the University of Seville was presented by 
Camacho[3] an empirical approach of GPC. It consisted in using standard linear model 
(normalized) and setting up different model and different GPC every control area, thus a 
gain Schedule of GPC was proposed.  
One of the most important problems available in Industrial application is the disturbance. 
GPC can carry out this problem due to the CARIMA model. In this field Beg in 1995, 
published an application of controlling a MIMO system by mean of SISO controllers and 
feed forward architecture. 
In 1996 an approach with heuristic algorithm, genetic algorithms as a optimization tool in 
GPC scheme. This proposal was developed by CPOH[24], a R+D team in the UPV 
(Politecnical University of Valencia). In 1997 Corradini[11] proposed as hybrid solution 
between SMC (Sliding mode control) and GPC, in order to improve the stability.  
During this century the papers in this field are focused in real application if MBPC and GPC, 
in particular, or Industrial applications. The team of Seville University published a high 
level GPC MIMO controller and PID controllers in low level, the same was done by 
Kennel[19]. Salcedo[34] from CPOH, published a paper in which CARIMA model is 
changed by state space CARIMA model. Thus the algorithm is faster, the computational 
effort is lower and less storage information is needed, but an state observer must be used.  
In 2002 Perez de la Parte[13] from Seville, tried to improve the robustness by the same way 
as Corradini. Sanchis[35] used another solution for improving the robustness, he proposed 
the use of singular values decomposition SVD. 

2.3 Planning 
When MBPC is selected to be the controller for a system, some steps must be done. Firstly 
the system must be studied. Secondly the model system must be obtained. Thirdly the 
control must be designed. Fourthly the control should be implemented and tuned. 
The system must be studied. We have to discover the main variables, inputs, outputs and 
disturbance. Moreover the main dynamics and behavior of the system should be 
considered. 
Getting the model of the system should be done. The model is one of the key in the 
MBPC. Getting a good quality model is sometimes the difference between success and 
failure. 
After that, control architecture and design should be done. Finally tuning the algorithm and 
checking parameters as robustness or others must be done. 
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3. Model based predictive controller 
In this section the control algorithms will be developed. MBPC are based in 4 different 
beams. One of the most important is the system model. Other important tool is the 
optimization process.  
Many time the system has a, more or less, linear behaviour. At this time a linear model uses 
to be a good approach. Linea model has the main advantages of the small computational 
cost. Specially when constraint are not considered. The optimization can be carried out off-
line. Thus the control action is a combination of multiplications and additions. So the 
computational effort into a microcontroller is very small. 
Sometimes the system has a nonlinear behaviour. Then linear approach can not be carried 
out by its selves. A non-linear model with constraints use to cost the highest computational 
effort, but with a high accurate control behaviour.  
Sometimes linear approaches in gaps use to be an intelligent solution. It consists on using 
different linear models around linear system behaviour, and changing the model when the 
system is out of its gap of influence of that model. Thus an offline optimization can be 
carried out and the computational effort, during the control action, is very low. It looks like 
gain schedule but, in place of PID parameters, GPC controllers are used. 
Thus a standard GPC controller is not going to be developed because it can be obtained by 
simplifying the GPC with disturbance measurement. 
The system use to be influenced by some parameters. Those parameters many times could 
be considered as measurable disturbance. A measurable disturbance is an input of the 
system that is not controlled by the control algorithm. For instance, in a Diesel engine, the 
air management loop control VNT (variable nozzle turbine) and the EGR system. Mass fuel 
injected is controlled by the user. But the mass fuel injected in the engine affects quite a lot 
in the air management behaviour. Thus this important input has to be considered as 
measurable disturbance. 
These kinds of inputs need a special management in the algorithm. So this chapter shows 
one way to consider them into the algorithm, for past disturbance and also for future 
disturbances. Two different algorithms will be developed with this approach, the one based 
in the linear Markov parameters and the GPC (Generalized Predictive Controller) developed 
by Clarke. 

3.1 GPCDM, algorithm development 
We now briefly describe the control algorithm which is key issues of this paper. The control 
algorithm was based on the model shown in the Figure 1 in which there is the CARIMA 
model plus an input p which is a measurable disturbance. To simplify the development one 
input and one output are considered. 
 

 

 
Fig. 1. CARIMA model proposed. 
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( ) ( ) ( ) ( )TA y z B u k C p k kξ⋅ = ⋅ + ⋅ + ⋅
Δ

 

 ( ) ( ) ( ) ( )u Py k i y k i y k i n k i+ = + + + + +  (1) 

Equation (1) is the discrete one of the model shown in figure X. The yu is the output 
behaviour depending on the direct input. yp is output behaviour from measurable 
disturbance and n is the behaviour depending on few things like non-linearity, others inputs 
etc.  
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n(k+i|k) is the n prediction of (k+i) with the information in k sample time. Diophantine 
decomposition is applied in order to get the system response due to pass inputs and future 
inputs in different terms. Moreover the mean of ξ is zero, then: 
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and n(k+i|k) is at the same time: 
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We do the same with y as a result we have: 
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We can apply Diophantine decomposition to equation (6) and finally we can get: 
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With that we can develop the equation (5) for future prediction and sum up all terms in an 
equation  

 f f fy G u GP p Γ u ΓP p F y= ⋅ + ⋅ + ⋅ + ⋅ + ⋅   (8).  

Where: y is the predicted system output vector; model matrices are represented by G, Γ, ΓP, 
GP, and F (G and GP represent the future response; and Γ, ΓP and F represent the past 
system response or natural response); Δ is the incremental operator (1-z-1); u is the vector of 
future control action increment; p is the disturbance increment vector; the past action control 
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filtered by 1/T  is uf ; the past disturbance filtered by 1/T  is pf ;  the past system output 
filtered by 1/T  is yf. 
Equation (8) is the system model in a matrix form. More over we need the control cost which 
depend on error cost and control effort, represented in (9) as a matrix equation. Where ysp is 
a vector of future set points, λ is a diagonal matrix of control effort factor and α is the 
diagonal matrix of error cost. 

 ( ) ( ) T
sp spJ y y y y u uα λ= − ⋅ ⋅ − + ⋅ ⋅  (9) 

We put the model in the control cost, then using an optimization tool, like (10). 

 0J
u

∂ =
∂Δ

 (10) 

Eventually the result is given in next equation (11) 

 1( ) ( )f f fT T
spu G G G y u P p GP p F yα λ α−= ⋅ ⋅ + ⋅ ⋅ ⋅ − Γ ⋅ − Γ ⋅ − ⋅ − ⋅  (11) 

It is also possible to calculate the first value of equation (11) and using it like a combination 
of discrete time transfer functions. More details can be studied in Garcia-Ortiz[17] where the 
algorithm is widely explained and Camacho & Bordons[3].  
There are other ways to reach the same result. In terms of model in figure 1, may be 
considers ad a MISO system (Multiple input single output). Getting ecuations from MIMO 
CARIMA developed models we can find: 

 f fy G u Γ u F y= ⋅ + ⋅ + ⋅  (12) 

Where MISO system is: 
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Thus G11 is the G in equation (8) and G12 is GP in equation (8). So is very easy to see that both 
ways get the same result. 

3.2 DMCDM, algorithms development 
A similar approach can be developed for DMC controller. The differences are that prediction 
model is based in Markov coefficients.  
 

 
Fig. 2. Box Jenkins model. Model based for impulse response with measurable disturbances. 
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decomposition is applied in order to get the system response due to pass inputs and future 
inputs in different terms. Moreover the mean of ξ is zero, then: 

 
1( )( | ) ( ) ( ) ( )i

i
FT zn k i k k i E k i k

A A
ξ ξ ξ

−
+ = + ⋅ = ⋅ + + ⋅

Δ ⋅ Δ ⋅
 (3) 

and n(k+i|k) is at the same time: 

 ( | ) [ ( ) ( ) ( )]i
u p

Fn k i k y k y k y k
T

+ = − −  (4) 

We do the same with y as a result we have: 

 ( | ) ( 1) ( 1) ( )i i iB E C E Fy k i k u k i p k i y k
T T T
⋅ ⋅+ = Δ + − ⋅ + Δ + − ⋅ + ⋅  (5) 

 i i

i i

G B E
GP C E

= ⋅
= ⋅

  (6) 

We can apply Diophantine decomposition to equation (6) and finally we can get: 

 

1
|

1
|

.

.

i i
i

i i
i

G zG
T T
GP P zGP
T T

−

−

Γ= +

Γ= +
  (7) 

With that we can develop the equation (5) for future prediction and sum up all terms in an 
equation  

 f f fy G u GP p Γ u ΓP p F y= ⋅ + ⋅ + ⋅ + ⋅ + ⋅   (8).  

Where: y is the predicted system output vector; model matrices are represented by G, Γ, ΓP, 
GP, and F (G and GP represent the future response; and Γ, ΓP and F represent the past 
system response or natural response); Δ is the incremental operator (1-z-1); u is the vector of 
future control action increment; p is the disturbance increment vector; the past action control 
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filtered by 1/T  is uf ; the past disturbance filtered by 1/T  is pf ;  the past system output 
filtered by 1/T  is yf. 
Equation (8) is the system model in a matrix form. More over we need the control cost which 
depend on error cost and control effort, represented in (9) as a matrix equation. Where ysp is 
a vector of future set points, λ is a diagonal matrix of control effort factor and α is the 
diagonal matrix of error cost. 

 ( ) ( ) T
sp spJ y y y y u uα λ= − ⋅ ⋅ − + ⋅ ⋅  (9) 

We put the model in the control cost, then using an optimization tool, like (10). 

 0J
u

∂ =
∂Δ

 (10) 

Eventually the result is given in next equation (11) 

 1( ) ( )f f fT T
spu G G G y u P p GP p F yα λ α−= ⋅ ⋅ + ⋅ ⋅ ⋅ − Γ ⋅ − Γ ⋅ − ⋅ − ⋅  (11) 

It is also possible to calculate the first value of equation (11) and using it like a combination 
of discrete time transfer functions. More details can be studied in Garcia-Ortiz[17] where the 
algorithm is widely explained and Camacho & Bordons[3].  
There are other ways to reach the same result. In terms of model in figure 1, may be 
considers ad a MISO system (Multiple input single output). Getting ecuations from MIMO 
CARIMA developed models we can find: 

 f fy G u Γ u F y= ⋅ + ⋅ + ⋅  (12) 

Where MISO system is: 

 ( )1 1
11 12 11 12 1

2 2

( )
f

f
f

u u
y G G F y

u u

 Δ 
 = ⋅ + Γ Γ ⋅ + ⋅   Δ   

 (13) 

Thus G11 is the G in equation (8) and G12 is GP in equation (8). So is very easy to see that both 
ways get the same result. 

3.2 DMCDM, algorithms development 
A similar approach can be developed for DMC controller. The differences are that prediction 
model is based in Markov coefficients.  
 

 
Fig. 2. Box Jenkins model. Model based for impulse response with measurable disturbances. 
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1

( ) i k i
i

y k g u
∞

−
=

= ⋅  (14) 

Where g0 = 0 due to the delay in the discrete systems and gN = 0. From gN to gN+M=0 
whatever M. from this point all systems controlled by DMC should be type 0. All systems 
must be stable and integer term is not allowed. Most of the industrial processes have these 
characteristic, which is why this controller have been developed widely in the industrial 
applications.  

 
1

( ) i k i
i

y k s u
∞

−
=

= ⋅ Δ  (15) 

Thus there are a equivalence between impulsion coefficients and step ones.  

 
1

i

i i
j

s g
=

=  (16) 

So during the development both models will be used, depending the interest every time. 
Additionally some information will be defined: 
P: prediction horizon. Number of time steps will be considered in the cost index and the 
optimization process. 
M: Control Horizon. How many control actions are allowed in the optimizer to reach the 
target. From M to the future no movements in the control action are considered. 
N: number of coefficients with information in the impulse response. From N to the future g 
coefficient is zero.  
All that information will be used in the control cost(16). 

 
1

2 2 2 2
1

1 0
[ ( | ) ( )] ( ( ))

P M

i SP i
i i

J y k i k y k i R u k iψ
−

+
= =

= ⋅ + − + + ⋅ Δ +   (16) 

Where y(k+i|k) is the value of the prediction for the step k+i, calculated in the instant k 
with the information available in that time k. ysp(k+i) is the set point in the step k+i (when 
future set point is not available, this variable is considered as the set point in k. Ψ2 is the 
weight of error cost and R2,i+1 is the weight of the control effort. Δu(k+i) is the increment of 
the control action in time=k+i. 
From equation (15) we obtain: 

 
0 0

( ) ( ) ( ) ( 1)
N

i i N
i i

y k s u k i s u k i s u k N
∞

= =
= ⋅ Δ − = ⋅ Δ − + ⋅ Δ − −   (17) 

Thus we are ready to get the prediction model in the DMC. The main target is getting the 
future response of the system from one step time and the behaviour if the system when 
future control actions will be applied. The model will contain the system natural response, 
the one due to the past control actions applied in the system (this one is not changeable, 
because is produced) and the forced response, the one due to future control action (this one 
can be different because will be decided by the controller).  
Once the bases are fixed we will start with the model development, thus we will get the 
system response in a generic step k+t, from the information available in k. 
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1 2

1 2

1 2

( 1) ( ) ( ) ( ( 1))
( ) ( 1) ( 2) ( )

( 1| ) ( ) ( 1) ( ( 1)) ( )

N

N

N

y k g u k g u k g u k N
y k g u k g u k g u k N

y k k g u k g u k g u k N y k

+ + = ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ − −
− = ⋅ − + ⋅ − + ⋅ ⋅ ⋅ + ⋅ −

+ = ⋅ Δ + ⋅ Δ − + ⋅ ⋅ ⋅ + ⋅ Δ − − +

 (18) 

In the second iteration we can obtain: 

 

1 2

1 2

1 2

1 1 2 2 3

1

( 2| ) ( ) ( ) ( ( 2))
( 1) ( ) ( 1) ( ( 1))
( 2| ) ( 1) ( ) ( ( 2)) ( 1)
( 2| ) ( 1) ( ) ( ) ( ) ( 1)

(

N

N

N

N

y k k g u k g u k g u k N
y k g u k g u k g u k N
y k k g u k g u k g u k N y k
y k k g u k g g u k g g u k

g −

+ = ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ − −
+ = ⋅ + ⋅ − + ⋅ ⋅ ⋅ + ⋅ − −
+ = ⋅ Δ + + ⋅ Δ + ⋅ ⋅ ⋅ + ⋅ Δ − − + +
+ = ⋅ Δ + + + ⋅ Δ + + ⋅ Δ − + ⋅ ⋅ ⋅

⋅ ⋅ ⋅ + ) ( ( 2)) ( ( 1)) ( )N Ng u k N g u k N y k+ ⋅ Δ − − + ⋅ Δ − − +

     (19) 

By deducting generic element: 

 

1 2

1 2

1 2

( | ) ( 1) ( 2) ( )
( 1| ) ( 2) ( 3) ( 1)
( | ) ( 1) ( 2)

( ) ( 1)

N

N

N

y k t k g u k t g u k t g u k t N
y k t k g u k t g u k t g u k t N
y k t k g u k t g u k t

g u k t N y k t

+ = ⋅ + − + ⋅ + − + ⋅ ⋅ ⋅ + ⋅ + −
+ − = ⋅ + − + ⋅ + − + ⋅ ⋅ ⋅ + ⋅ + − −
+ = ⋅ Δ + − + ⋅ Δ + − + ⋅ ⋅ ⋅

⋅ ⋅ ⋅ + ⋅ Δ + − + + −

 (20) 

Getting all the information and summarizing the data in a matrix ecuation: 

 

( 1)
( 2) ( ) ( 1)

( 1) ( 2)
( )

( )
( 1) ( ( 1))

( )

f p p

y k
y k u k u k

u k u k
S S y k L

y k M
u k M u k N

y k P

+ 
 + Δ Δ −          Δ + Δ +   = ⋅ + ⋅ + ⋅     +       Δ + − Δ − −    

+  


 



 (21) 

Where ( ) 11 1 T
P PxL =    and: 

min(1, )

min(2, ) min(1, )

min( , ) min( 1, ) min(1, )

min( , ) min( 1, ) min( 1, ) ( 1)

0 0
0
0

N

N N

f
M N M N N

P N P N N P N Px N

s
s s

S
s s s

s s s

−

− + − −

 
 
 
 
 =
 
 
 
 
 




  


   


Matrix Sf 

min(2, ) 1 min( , ) 1

min(3, ) 1 min( 1, ) 1

min( 1, ) 1 min( 1, ) 1 ( 1)

N N N N

N N N N
P

P N N P N N Px N

s s s s
s s s s

S

s s s s

−

+ −

+ + − − −

− − 
 

− − =  
 
 − − 




  


Matrix Sp 
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1

( ) i k i
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y k g u
∞

−
=

= ⋅  (14) 

Where g0 = 0 due to the delay in the discrete systems and gN = 0. From gN to gN+M=0 
whatever M. from this point all systems controlled by DMC should be type 0. All systems 
must be stable and integer term is not allowed. Most of the industrial processes have these 
characteristic, which is why this controller have been developed widely in the industrial 
applications.  

 
1

( ) i k i
i

y k s u
∞

−
=

= ⋅ Δ  (15) 

Thus there are a equivalence between impulsion coefficients and step ones.  

 
1

i

i i
j

s g
=

=  (16) 

So during the development both models will be used, depending the interest every time. 
Additionally some information will be defined: 
P: prediction horizon. Number of time steps will be considered in the cost index and the 
optimization process. 
M: Control Horizon. How many control actions are allowed in the optimizer to reach the 
target. From M to the future no movements in the control action are considered. 
N: number of coefficients with information in the impulse response. From N to the future g 
coefficient is zero.  
All that information will be used in the control cost(16). 

 
1

2 2 2 2
1

1 0
[ ( | ) ( )] ( ( ))

P M

i SP i
i i

J y k i k y k i R u k iψ
−

+
= =

= ⋅ + − + + ⋅ Δ +   (16) 

Where y(k+i|k) is the value of the prediction for the step k+i, calculated in the instant k 
with the information available in that time k. ysp(k+i) is the set point in the step k+i (when 
future set point is not available, this variable is considered as the set point in k. Ψ2 is the 
weight of error cost and R2,i+1 is the weight of the control effort. Δu(k+i) is the increment of 
the control action in time=k+i. 
From equation (15) we obtain: 

 
0 0

( ) ( ) ( ) ( 1)
N

i i N
i i

y k s u k i s u k i s u k N
∞

= =
= ⋅ Δ − = ⋅ Δ − + ⋅ Δ − −   (17) 

Thus we are ready to get the prediction model in the DMC. The main target is getting the 
future response of the system from one step time and the behaviour if the system when 
future control actions will be applied. The model will contain the system natural response, 
the one due to the past control actions applied in the system (this one is not changeable, 
because is produced) and the forced response, the one due to future control action (this one 
can be different because will be decided by the controller).  
Once the bases are fixed we will start with the model development, thus we will get the 
system response in a generic step k+t, from the information available in k. 
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1 2

1 2

1 2

( 1) ( ) ( ) ( ( 1))
( ) ( 1) ( 2) ( )

( 1| ) ( ) ( 1) ( ( 1)) ( )

N

N

N

y k g u k g u k g u k N
y k g u k g u k g u k N

y k k g u k g u k g u k N y k

+ + = ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ − −
− = ⋅ − + ⋅ − + ⋅ ⋅ ⋅ + ⋅ −

+ = ⋅ Δ + ⋅ Δ − + ⋅ ⋅ ⋅ + ⋅ Δ − − +

 (18) 

In the second iteration we can obtain: 

 

1 2

1 2

1 2

1 1 2 2 3

1

( 2| ) ( ) ( ) ( ( 2))
( 1) ( ) ( 1) ( ( 1))
( 2| ) ( 1) ( ) ( ( 2)) ( 1)
( 2| ) ( 1) ( ) ( ) ( ) ( 1)

(

N

N

N

N

y k k g u k g u k g u k N
y k g u k g u k g u k N
y k k g u k g u k g u k N y k
y k k g u k g g u k g g u k

g −

+ = ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ − −
+ = ⋅ + ⋅ − + ⋅ ⋅ ⋅ + ⋅ − −
+ = ⋅ Δ + + ⋅ Δ + ⋅ ⋅ ⋅ + ⋅ Δ − − + +
+ = ⋅ Δ + + + ⋅ Δ + + ⋅ Δ − + ⋅ ⋅ ⋅

⋅ ⋅ ⋅ + ) ( ( 2)) ( ( 1)) ( )N Ng u k N g u k N y k+ ⋅ Δ − − + ⋅ Δ − − +

     (19) 

By deducting generic element: 

 

1 2

1 2

1 2

( | ) ( 1) ( 2) ( )
( 1| ) ( 2) ( 3) ( 1)
( | ) ( 1) ( 2)

( ) ( 1)

N

N

N

y k t k g u k t g u k t g u k t N
y k t k g u k t g u k t g u k t N
y k t k g u k t g u k t

g u k t N y k t

+ = ⋅ + − + ⋅ + − + ⋅ ⋅ ⋅ + ⋅ + −
+ − = ⋅ + − + ⋅ + − + ⋅ ⋅ ⋅ + ⋅ + − −
+ = ⋅ Δ + − + ⋅ Δ + − + ⋅ ⋅ ⋅

⋅ ⋅ ⋅ + ⋅ Δ + − + + −

 (20) 

Getting all the information and summarizing the data in a matrix ecuation: 

 

( 1)
( 2) ( ) ( 1)

( 1) ( 2)
( )

( )
( 1) ( ( 1))

( )

f p p

y k
y k u k u k

u k u k
S S y k L

y k M
u k M u k N

y k P

+ 
 + Δ Δ −          Δ + Δ +   = ⋅ + ⋅ + ⋅     +       Δ + − Δ − −    

+  


 



 (21) 

Where ( ) 11 1 T
P PxL =    and: 
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min(2, ) min(1, )

min( , ) min( 1, ) min(1, )

min( , ) min( 1, ) min( 1, ) ( 1)
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s s
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At this time we are able to get future response from the data available in the step k, but we 
have to include system information every step time so: d(k) = yreal(k) - y(k), this is the 
difference between real system and prediction. 
Finally yf is an array of output system predictions. Δuf is an array of future increment 
control actions. Δup is an array of past control actions. Sf is a matrix with dynamic future 
system response or forced response matrix and Sp is a matrix with past dynamic system 
response or natural response matrix.  

 ( )f f f P P real Py S u S u y k L= ⋅ Δ + ⋅ Δ + ⋅   (22) 

Applying this prediction model to the control cost: 

 ( ) ( )T T T T
f sp f sp f fJ y y y y u R R uψ ψ= − ⋅ ⋅ ⋅ − + Δ ⋅ ⋅ ⋅ Δ  (23) 

 
(( ( ) ) )

(( ( ) ) )

T
f f P P real P sp

T T
f f P P real P sp f f

J S u S u y k L y

S u S u y k L y u R R u

ψ ψ= ⋅ Δ + ⋅ Δ + ⋅ − ⋅ ⋅ ⋅

⋅ Δ + ⋅ Δ + ⋅ − + Δ ⋅ ⋅ ⋅ Δ
 (24) 

The optimization tool can be used at this point. An analytical optimization is applied by 
getting dJ/dΔuf and second derivative is positive defined. 

 2 ( ( ) ) 0T T T
f f f P P real P sp f

f

J S S u S u y k L y R R u
u

ψ ψ∂ = ⋅ ⋅ ⋅ ⋅ ⋅ Δ + ⋅ Δ + ⋅ − + ⋅ ⋅ Δ =
∂Δ

 (25)  

 2 T T
f f

f

J S S
u

ψ ψ∂ = ⋅ ⋅ ⋅ ⋅
∂Δ

 (26) 

As a result Δuf optimal is: 

 1( ) ( ( ) )T T T T T
f f f f sp P P real Pu S S R R S y S u y k Lψ ψ ψ ψ−Δ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ Δ − ⋅  (27) 

And simplifying, H Matrix is defined as follow: 

 1( )T T T T T
f f fH S S R R Sψ ψ ψ ψ−= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅  (H matrix) 

Once the standard DMC is developed and considering figure 2: 

 
( )
( )

fs fs f Ps P sreal P

fp fp f Pp P preal P

y S u S u y k L
y S p S p y k L

= ⋅ Δ + ⋅ Δ + ⋅

= ⋅ Δ + ⋅ Δ + ⋅
 (28) 

Where:  
yfs is the array of  ys predictions 
yfp is the array of predictions in disturbance output component.  
Sfs and Sfp are matrixes of future system response and disturbance response respectively.  
Sps and Spp are matrixes of past system response and disturbance response respectively. 
ysreal is the system component of the output 
ypreal is the disturbance component of the output 
Δ uf is the future increment in control action. 
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Δ pf is the future increment in disturbance. 
Δ up is the past increment in control action. 
Δ pf is the past increment in disturbance. 
Thus system predictions are: 

 ( ( ) ( ))f fs f Ps P fp f Pp P preal sreal Py S u S u S p S p y k y k L= ⋅ Δ + ⋅ Δ + ⋅ Δ + ⋅ Δ + + ⋅   (29) 

Using equation (23) and (29); and using the optimization tool, the result is: 

 
1( )

( ( ) )

T T T T T
f fs fs fs

sp Ps P Pp P real P

u S S R R S
y S u S p y k L

ψ ψ ψ ψ−Δ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅

− ⋅ Δ − ⋅ Δ − ⋅
 (30) 

Thus H is the same as (H Matrix) but, intead of Sf is Sfs. 
Every step time the controller is applying the first control action and update the data for 
getting new optimal control every step time. Thus only the first line in the matrix equation 
should be calculated. Additionally this matrix equation, first line, can be presented as a Z 
transform function transfer. This is the application of the fourth basis of MBPC, receding 
horizon policy. It means that every step time a new control action will be calculated by 
means of updating data in the algorithm. Thus the control algorithm must be presented as: 
In which h(z) is the first row of the H Matrix. The vector h(z) has different coefficients which 
will be multiplied by future set point, if the information is available. If the future set point is 
not available, a constant is calculated by adding all the h(z) vector coefficients.  
D(z1) polynomial in which the coefficients are the result by multiplying h(z)·Sp. This array is in 
z-1, because is using past information. All in all the algorithms structure is shown in figure 5.3. 
 

 
Fig. 3. DMCDM architecture with receding horizon. 

When I(z-1) is the convolution of two vectors: one array is product of h(z)·Spp, the second 
array is Δ operator. Spp is new matrix calculated as Sp but using Markov coefficients of 
disturbance of the system. More information is available at Thesis of Garcia[16]. 

4. Practical set up and experimental behavior 
This chapter is presenting the author’s experience for tuning the algorithm. Also the steps 
recommended for carry out a control solution. MBPC is a family on controller very suitable 
for controlling systems in different conditions. They can consider constraints, control cost, 
future information, model behavior etc... Getting the model by linearization should be 
considered. There are many identification algorithms, using the right ones and using the 
best parameters can bring you success or failure.  
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At this time we are able to get future response from the data available in the step k, but we 
have to include system information every step time so: d(k) = yreal(k) - y(k), this is the 
difference between real system and prediction. 
Finally yf is an array of output system predictions. Δuf is an array of future increment 
control actions. Δup is an array of past control actions. Sf is a matrix with dynamic future 
system response or forced response matrix and Sp is a matrix with past dynamic system 
response or natural response matrix.  

 ( )f f f P P real Py S u S u y k L= ⋅ Δ + ⋅ Δ + ⋅   (22) 

Applying this prediction model to the control cost: 

 ( ) ( )T T T T
f sp f sp f fJ y y y y u R R uψ ψ= − ⋅ ⋅ ⋅ − + Δ ⋅ ⋅ ⋅ Δ  (23) 
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The optimization tool can be used at this point. An analytical optimization is applied by 
getting dJ/dΔuf and second derivative is positive defined. 

 2 ( ( ) ) 0T T T
f f f P P real P sp f

f

J S S u S u y k L y R R u
u

ψ ψ∂ = ⋅ ⋅ ⋅ ⋅ ⋅ Δ + ⋅ Δ + ⋅ − + ⋅ ⋅ Δ =
∂Δ

 (25)  

 2 T T
f f

f

J S S
u

ψ ψ∂ = ⋅ ⋅ ⋅ ⋅
∂Δ

 (26) 

As a result Δuf optimal is: 
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Where:  
yfs is the array of  ys predictions 
yfp is the array of predictions in disturbance output component.  
Sfs and Sfp are matrixes of future system response and disturbance response respectively.  
Sps and Spp are matrixes of past system response and disturbance response respectively. 
ysreal is the system component of the output 
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Δ uf is the future increment in control action. 
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Δ pf is the future increment in disturbance. 
Δ up is the past increment in control action. 
Δ pf is the past increment in disturbance. 
Thus system predictions are: 
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Using equation (23) and (29); and using the optimization tool, the result is: 
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Thus H is the same as (H Matrix) but, intead of Sf is Sfs. 
Every step time the controller is applying the first control action and update the data for 
getting new optimal control every step time. Thus only the first line in the matrix equation 
should be calculated. Additionally this matrix equation, first line, can be presented as a Z 
transform function transfer. This is the application of the fourth basis of MBPC, receding 
horizon policy. It means that every step time a new control action will be calculated by 
means of updating data in the algorithm. Thus the control algorithm must be presented as: 
In which h(z) is the first row of the H Matrix. The vector h(z) has different coefficients which 
will be multiplied by future set point, if the information is available. If the future set point is 
not available, a constant is calculated by adding all the h(z) vector coefficients.  
D(z1) polynomial in which the coefficients are the result by multiplying h(z)·Sp. This array is in 
z-1, because is using past information. All in all the algorithms structure is shown in figure 5.3. 
 

 
Fig. 3. DMCDM architecture with receding horizon. 

When I(z-1) is the convolution of two vectors: one array is product of h(z)·Spp, the second 
array is Δ operator. Spp is new matrix calculated as Sp but using Markov coefficients of 
disturbance of the system. More information is available at Thesis of Garcia[16]. 

4. Practical set up and experimental behavior 
This chapter is presenting the author’s experience for tuning the algorithm. Also the steps 
recommended for carry out a control solution. MBPC is a family on controller very suitable 
for controlling systems in different conditions. They can consider constraints, control cost, 
future information, model behavior etc... Getting the model by linearization should be 
considered. There are many identification algorithms, using the right ones and using the 
best parameters can bring you success or failure.  
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4.1 System identification 
In control engineering ther are two important concepts that are opposite: Robustness and 
Performance. Usually as much Robust is a controller as less Performance it offers you. So as 
much Performance we demand as much easy to reach instable zones. There is one way to 
get both characteristic at the same time, Model accuracy. If we have a better model or a more 
accurate model, we will be able to demand more performance and more Robustness. So the 
system model is one of the most important topics in control engineering.  
The most famous PID control tuning techniques are Ziegler-Nochols rules or Cohen-Coon 
method. Methods have a main characteristic, you can tune a PID controller with Robustness, 
but unfortunately performance is not good enough. The main reason for is that you have not 
a system model. So the quality model is very poor, thus Robustness is more important than 
performance. When Performance is important, model quality must be improved. As good is 
the model as good will be the control.  
By other hand, the easiest way to get a model is by mean of physical equations. If we know 
the physics of the system, by using physical equation we can obtain a very good quality 
model. When physical equations are used model reach an important complexity, sometimes 
the computational effort done by the microcontroller or commuter is very high. Some 
models need mode than two day for calculating few second of real physical behavior.  
An important approach use to be linear model. The computational cost of linear model, use 
to be very low (few micro seconds every step time). Additionally much real system use to 
have a linear behavior, so linear approach, sometimes, is the most intelligent solution. When 
system has a non-linear behavior other solutions can be approached. Linearization is a good 
solution for that. 
When physical equations are hard to compute, linearization of them bring us a model easy 
to carry out and fast to be calculated. Another solution is linear model by identification 
techniques. When identification is our choice this kind of model works very well in the 
identified point and around of it, but we have problems when the operating point is too far 
from the identification point. When this problem appears a new linear model can be 
identified. We can do this topic as many times as we need. Thus we apply a technique 
similar to gain schedule but with models. 
The main advantages of liner models are:  
It is a simpler, so you have an easier solution for solving Differential equations. 
The system behavior can be observed. 
Any kind of order can be used. We should fit the order to the one system expected. 
As disadvantages we can find: 
The solution is exact, only in the operating pint and good enough close to it, but it is not 
good as far as we are. 
Experimental data is needed and sometimes particular experiments are not possible to carry 
out. 
No physical sense in poles and zeros identified can be found. 
Math of the transfer functions, state space model and other can be studied in Ogata 
continuous , Ogata Discrete  or Zhu [43] books. Additionally some identification algorithms 
were tested and studied widely in bibliography. 
Lineal model available in bibliography: 
Markov coefficients or impulse response model, there is an equivalent model, the step 
response. 
ARX: autoregressive with exogenous variable. ARMAX: Autoregressive moving average 
with exogenous variable. OE: Output error. BJ: box Jenkins. CARIMA or ARIMAX: 
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autoregressive integral moving average with exogenous variable. State space models 
deterministic, advanced and stochastic ones etc. all models are descried in Garcia [17]. 
Finally the solution proposed is linear models by sections. When linear model is valid, then 
it shall be used, when linear model is not valid a new linear model must be placed.  

4.1.1 Experimental data for identification 
Many times data available is not a suitable data for identification. That is why system is 
working and particular experiments are not allowed. Thus a measurement of system behavior 
should be done and transient data must be used in the identification.  Steady data does not 
include important dynamic information, so transient contains the system dynamics. 
When particular experiments can be done, they must be well chosen. An easy experiment 
use to be a step applied to the system. The step should contain some characteristics: 
powerful enough, long enough, the response must be in the linear zone. Theoretically white 
noise is the best signal. But some authors, as Luo[22] or Zhu[43], studied physical inputs 
and pseudo aleatori input is the best choice.  
Some times a simple step or impulse can be applied and Strejc, Csypkin methods can be 
applied. Simple model is obtained and some time it is good enough. Frequency 
identification methods are also available, based in bode diagram or graphical techniques.  
Identification algorithms are proposed in this chapter. Experimental data must be pre 
processed and model structure should be well chosen. Parametrical and state space 
identification can be carried out. 
When parametrical identification is proposed the following steps should be respected: 
1. Experimental identification design and data acquisition. 
2. Data pre processed: filtering, remove data tends, data normalization etc. 
3. definition of  model structure. 
4. Identify the model by using an appropriate identification algorithm. 
5. Studying model proprieties (zeros, poles, gain, … ) and model validation. 
6. If the model is the expected one, this task is finished, else come back to step 1, 2 or 3, 

depending on problems detected. 

4.1.2 Identification algorithms 
The identification algorithms proposed and tested in this work is the PEM (Prediction error 
method). Other where tested N4SID (Numerical Algorithm for Sub Space State System 
Identification) widely explained in [108,141,150]. Bud PEM is preferred by this author with 
very well results. PEM is an identification algorithm of state space model, so this model 
should be converted in a equivalent transfer function. 

4.1.3 System identification 
A Diesel engine is identified. Some experimental data is shown. At this studied case air path 
or air management system is going to be controlled. If suitable linear models cannot be 
found, algorithms based on the Hamertein and Wiener models [12] can be used or non 
linear models. The disadvantages of this latter group are: high computational cost and the 
difficulty of programming them in a commercial ECU (electronic control unite).    
The system air-path in a Diesel engine consists on controlling VNT (variable nozzle turbine) 
in order to keep boost pressure in the set point. The engine controlled is a Diesel engine of 
heavy duty applications, see figure 4. This is a truck engine, where EGR system is not 
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included but VNT is available. Air-path is influenced by mass fuel injected, as much fuel 
injected into cylinder, more power available in the turbine and more boost pressure. Fuel 
injected is available information in the ECU. 
 

 
Fig. 4. System controlled. 

Unfortunately the fuel injected is selected by user’s needs. Thus fuel injected can not be 
controlled by control algorithms and it is determined as a measurable disturbance.  
Experimental identification done is in figure 5. 
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Fig. 5. Identification test performed at 1200 rpm. PWM signal is the control action on the 
VNT, and mf is the injected fuel. Important variations in the engine speed are due to the 
dynamometer response. 
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The VNT input applied can be seen in figure 6, where pseudo-random PWM (Pulse Width 
Modulation PWM) is applied in the VNT. Aleatori fuel is injected in the engine. With these 
inputs the boost pressure response is shown in figure below: 
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Fig. 6. Boost pressure response. 

Apparently these data have not any kind of relation, but continuing with identification process 
we can obtain a system model. As shown the model poles are two. Physical systems don’t use 
to have more than three poles, when model is bigger than this we could find some problems, 
identification algorithm tried to identify signal noise, and it has identified fast poles. 
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Checking the results, we could realize that the system model is good enough, see figure 7. 
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Fig. 7. Measured evolution (black) and predicted evolution (grey) of the boost pressure for 
the validation test at 1200 rpm. 
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4.2 Control system examples 
Once the model is identified the controller is calculated by using control algorithms 
developed in section 3, it is time to control the system and testing with experimental data. A 
comparison is going to be shown in the following figures. The test proposed is a transient 
from steady conditions to full load. This is a typical situation in which a Diesel engine is 
requested full load to make advancement in a road. The engine is turning at 1200 rpm and 
no torque is need, suddenly all torque available is needed, and then engine, electronics and 
thermodynamics must change to the new conditions. Four different algorithms are 
controlling the system. The idea is testing those algorithms in order to check the engine 
behavior if the controller of air path is one algorithm or other one.  
The algorithms tested were: PID controller with feed forward of fuel behavior, PID with 
Fuzzy login in parameters plus feed forward in fuel injected, GPCDM developed before and 
DMCDM shown in section 3.  
PID controller was tuned for getting the best feasible performance. It was tuned from 
Ziegler Nichols parameter to updating PID until the performance was good enough. Feed 
forward was programmed to use measurable disturbance behavior available. 
PID Fuzzy: this controller was programmed as one improvement of standard PID. The 
proposed algorithm is a gain schedule depending on error. Feed forward is also used here. 
DMCDM: a model predictive controller based on impulse response with measurable 
disturbance. Control horizon and prediction horizon are chosen as long time. When 
performance is required long control horizon and prediction horizon must be chosen. Fro 
tuning the algorithm one weight is fixed to 1 and the other is changed.  
GPCDM: this is an other MBPC, so many ideas explained for DMCDM are applicable here. 
Long time control horizon and long time prediction horizon are used for reaching good 
performance. The real control cost is not available, so we keep one weight fixed and we fit 
the second weight for tuning the system. GPC and GPCDM have a very special parameter, 
which is not in other kinds of MBPC. T polynomial is a parameter, which theoretically is a 
polynomial with zeros of the colored derivative noise from CARIMA model. In fact, it is a 
parameter for tuning the GPC. When noise is present in the system, this parameter must be 
tuned else you could put it as 1. there are many works explaining the behavior of the 
parameter Clarke [26]. Moreover the robustness of the system is widely improved by tuning 
the parameter [28,132]. Typical values of T polynomial are T= 1-0,7*z-1; or T = convolution of 
( [1-0,7.z-1],[ 1-0,7.z-1]), sometimes 0,7 are placed by 0,8 or 0,6. This is an empirical rule that 
can help the designer to choose the best option.  
The structures are programmed as follow: 
PID feed forward: 
The boost pressure set point is depending on engine speed and mass fuel requested by used. 
Additionally the fuel injected is the measurable system disturbance. So the fuel injected is 
the feed forward control action. Error between boost pressure set point and measured boot 
pressure is the input to the PID controller. Control action calculated is the addition between 
feed forward and PID in figure 8. Finally control action applied is the calculated one 
processed by one anti-windup. Experimental result will be shown in following figures.  
The controller proposed and programmed in the figure 9 is similar architecture to the PID 
proposed but some differences. The PID parameters are scheduled by a Fuzzy logic 
technique. Other sub-systems are the same, PID, feed forward and anti-windup. The 
behavior is similar to the PID but parameters can be tuned more accurate than a standard 
PID controller. The main difficult in this controller is the tuning process, because the 
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parameters are more difficult to set up. The experience of the designer must be higher than 
the standard PID. For tuning the controller many experiments must be done and widely 
analyzed for choosing the best option. 
 
 
 

 
Fig. 8. PID Architecture programmed.  

 
 
 

 
Fig. 9. PID scheduled by fuzzy controller and feed forward. 

GPCDM architecture is the one proposed in the figure 10. Set point is processed by h(z). 
when future set point is not available, future ones are the actual one. Thus h(z) became as a 
constant term. Additionally measurable disturbance can be processed as past information 
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parameters are more difficult to set up. The experience of the designer must be higher than 
the standard PID. For tuning the controller many experiments must be done and widely 
analyzed for choosing the best option. 
 
 
 

 
Fig. 8. PID Architecture programmed.  

 
 
 

 
Fig. 9. PID scheduled by fuzzy controller and feed forward. 

GPCDM architecture is the one proposed in the figure 10. Set point is processed by h(z). 
when future set point is not available, future ones are the actual one. Thus h(z) became as a 
constant term. Additionally measurable disturbance can be processed as past information 
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Fig. 10. GPCDM programmed. 

and future information, see equation (30). In this experiment only actual and past fuel 
injected can be processed, but future disturbances can be considered. Anti-windup is also 
programmed, when control action calculated is higher than maximum, the algorithm is 
frozen. Thus the integral component of the algorithm can not affect to the algorithms 
performance. 
 

 
 

 
Fig. 11. DMCDM programmed.  

DMCDM programmed is shown in figure 11. Measurable disturbances are considered and 
included in the controller. Anti-windup is programmed, a similar system to the one used in 
the GPCDM. When maximum or minimum control action is reached, the algorithm is frozen 
until control action is going to the opposite way. 

MBPC – Theoretical Development for  
Measurable Disturbances and Practical Example of Air-path in a Diesel Engine 

 

387 

5. Experimental results 
As explained before full load transient test were done. The engine was in steady conditions 
or idle conditions at 1200 rpm. When test starts, full load is required from the engine. Thus 
maximum quantity of fuel is injected in order to burn it and getting the power. Additionally 
air mass is needed for burning the fuel, which is why VNT must be controller to give the 
boost pressure necessary for the new conditions. More boost pressure that necessary 
produces an increment in exhaust pressure and some loses of torque and power and more 
pollution in exhaust gases. If we have less boost pressure than set point then we will not 
have enough air flow for burning the fuel in the right conditions.  
Many experiments were done, but only the best performance is shown in this chapter. In 
figure 12, boost pressure can be observed, figure 13 contains exhaust pressure behavior, and 
the figure 14 shows engine torque.  
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Fig. 12. Boost pressure evolution in transient conditions. 
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Fig. 13. Exhaust pressure evolution in transient conditions. 
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In figure  12, boost pressure behavior is presented. Thin line is the set point requested from 
idle condition to full load one. This is the best boost pressure conditions considering, 
efficiency, torque, power, pollution etc. so the system must be in set point as soon as 
possible. Continuous lines are PID controller, solid red line is the PID with feed forward and 
solid blue line is the PID Fuzy logic controller. GPCDM is the dashed blue line and 
DMCDM is the dashed black line. 
When transient test starts, the first part of the test are the same in all controllers. This 
happens because VNT is in bounds, completely close and no different performance can be 
appreciated. When VNT must be opened controller performance is different. GPCDM is 
opening the VNT before than others, that is why over oscillation is lower than others. The 
predictive model CARIMA helps the GPCDM to advance the system behavior, thus 
GPCDM can predict the VNT open to be before and avoiding the over oscillation. PID must 
be tuned with low influences of derivative term, the reason is the stability. Derivative term 
can produce instable conditions in the system. This controller realizes later about over 
oscillation and start opening the VNT later. The worst performance is done by DMCDM. 
Maybe the system model is very single and it is more sensible to non-linearity. Fuzzy 
controller improves the PID behavior because it is an improvement of PID. 
Figure 12. contains the exhaust boost pressure. The steady conditions are reached in similar 
time to boost pressure. The over-pressure in exhaust produces over-speed in turbine or 
torque loses, and more pollutants than permitted.   
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Fig. 14. Torque evolution and air-path influence during transient. 
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Figure 14. shows torque performance. Both GPCDM and Fuzzy reach steady conditions at 
the same time. So the torque is not very influenced by boost pressure. But if other controllers 
are analyzed engine torque is influenced and oscillations are very uncomfortable. 
Finally a summary of system response are shown in table 1 and table 2. Table 1 summarizes 
the system response from the point of view of engine analysis. Table 2 analyzes the system 
from the point of view of control parameters. 
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PID+FF 3.223 53.48 0.482 2031 85 
PID+FF+Fuzzy 3.443 63.48 0.702 2100 86 
DMCDM 3.220 53.33 0.428 2101 133 
GPCDM 2.655 26.43 0.129 2055 36 

Table 1. Experimental results of system behavior. 

 
Experimental results 

 
22.5 2
5.5

( )e t dt⋅  
22.5 2
5.5

u dtΔ ⋅  J 
Boost 

pressure 
overshoot 

PID+FF 29.11 454.38 51.83 34.10 
PID+FF+Fuzzy 29.13 2911.15 174.68 33.10 
DMCDM 36.96 18.80 37.90 39.20 
GPCDM 27.62 37.40 29.49 12.60 

Table 2. Experimental results, control parameters. 

The most important variable from the point of view of control is the control Cost or J. This 
variable summarized the control behavior from the point of view of control cost, 
considering control effort and control error. 

5.2 Discussion 
The first conclusion that can be drawn from analyzing the results is that when fuel mass is 
considered in the algorithm, behavior is always improved. This fact had been observed 
during the identification process and is logical, since the more information the algorithm has 
about the system, the better control it can apply. This is due to the air management process 
being more influenced by fuel amount than VGT control actions. The fuel amount gives 
energy, this energy goes to the turbine and the turbocharger increases its speed, thus the air 
management system changes. The delivered fuel quantity therefore has a very strong 
influence on the air management system. If this variable is included in control algorithms, 
better control will be obtained.  
The analysis of the behavior of the Fuzzy controller seems to show quite a good response 
but at the cost of a high control effort. One of the disadvantages of this type of controller is 
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the high overshoot of the exhaust pressure. The control effort is one order of magnitude 
higher than the baseline controller. However, the greatest disadvantage is their complicated 
tuning process due to having a large number of independent parameters.      
Another interesting aspect is that not all the MPCs work better than the existing controllers. 
For example, the DMC provided rather doubtful results. This was a surprise and could be 
explained as follows: the prediction model of the DMC is considered to be highly sensitive 
to nonlinearities in the system, since the system itself is highly nonlinear (in spite of having 
linear zone models). This algorithm finds it difficult to predict engine behavior and 
therefore does not take the right decisions. However, the predictive control GPC algorithm 
is based on the CARIMA model and is more robust to system nonlinearities. In fact, one of 
the most important parameters for the correct GPC tuning was the polynomial T(z).   
The best all-round algorithm was the GPCDM. The most significant difference between 
algorithms can be seen in the exhaust pressure in Figures 8 and 9. This parameter indicates 
the effort made by the engine to control the air path and high pressure has a negative 
influence on engine torque.   
The air management system, and consequently various engine parameters, was strongly 
influenced by the controller used. One of the most susceptible to this influence is PMEP, 
which also affects engine torque, turbocharger pressure, etc. If an overshoot occurs it will 
produce exhaust pressure peak and pumping losses. This fact produced less efficiency and 
torque during transient conditions. 

6. Conclusions 
Few linear models were obtained from the air management system of the engine and they 
are quiet good approximations of the nonlinear plant. These models can be used for linear 
controller design with low computational effort. GPCDM, DMCDM, PID and Fuzzy PID are 
tested in a standard test bench. In comparison to standard gain scheduled PID, setpoint 
tracking could be improved. The additional degrees of freedom of GPC can be used for 
tuning the robustness of control. 
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1. Introduction 
This chapter describes the development and application of a model-based predictive 
adaptive (MPC) controller, commercially known as BrainWave®. This controller is a 
patented (US Patents #5,335,164 and #6,643,554) PC-based commercial software package 
with hundreds of installations around the world in many different process industries. The 
predictive control capability enables significant performance improvements compared to 
manual or other automatic control strategies for processes with long time delays or multi-
variable interactions. Process variability reductions of 50% or more are typically achieved 
using this technique.  
MPC technology has been used for many years in the petroleum industry but it is not yet 
common practice in most industries. The high cost and implementation complexity have 
been barriers to the wide spread use of MPC. It is therefore important that an MPC tool be 
designed for ease of use to reduce the cost of installation and life cycle maintenance. Model 
identification and controller tuning are the primary tasks involved in the installation of an 
MPC controller so the controller must be designed to make these functions as easy as 
possible. The controller should be designed to handle self-regulating systems, open loop 
unstable (integrating) systems, and multivariable systems, so that the one controller can be 
used to solve as many applications as possible, avoiding the need for the user to learn and 
support too many different controller designs. 
BrainWave is an MPC controller that has been developed to solve the most common types of 
difficult regulatory control problems. It has been deployed in a wide variety of process 
industries including pulp & paper, mineral processing, plastics, petrochemicals, oil and gas 
refining, food processing, lime and cement, and glass manufacturing. BrainWave is 
designed for ease of use. A novel process identification and modeling method based on the 
Laguerre series transfer function helps to simplify the steps required to obtain a model of 
the process response. Internal normalization techniques simplify the setup and tuning of the 
controller. BrainWave is designed to control processes that are self-regulating, integrating, 
or multivariable, so this one MPC tool can be used for virtually all difficult regulatory 
control loops in a plant. 
The chapter will describe the mathematics behind the Laguerre modeling method, and show 
the development of the predictive control law based on the Laguerre state space model used 
in the BrainWave controller. The user interface from the actual software implementation will 
be illustrated. Several application examples from the Pulp & Paper and Mineral Processing 
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industries will be provided that highlight the different types of regulatory control problems 
where MPC provides clear advantages over conventional PID type loop controllers.  

2. Adaptive model-based predictive controller development 

Obtaining a process response model is a key part of the implementation of an MPC 
controller.  In our design, the controller models the system response using a generic function 
series approximation technique based on Laguerre polynomials. This approach provides a 
simple and efficient method to mathematically model the process response with a minimum 
of a priori information. It also enables the controller to perform online adaptation of the 
process response models automatically. These factors reduce the implementation effort and 
contribute to quick installation times. The adaptive capabilities assist the control technician 
with developing the process response models, and the default configuration of the control 
parameters ensures excellent control performance once the process model is obtained. These 
features help to ensure the same good result will be achieved regardless of the expertise 
level of the person doing the application. For industrial customers that operate large plants 
with thousands of process controllers, this benefit alone is extremely valuable. 
Using these models as the basis for a predictive control design, the MPC is able to control 
processes with long delay or response times (or fast response processes where the time 
delay is a significant part of the response dynamics) better than is possible using PID type 
controllers. This technique can also be used to automatically model and counteract the 
effects of measured disturbances by incorporating them into the control strategy as feed 
forward variables. The use of feed forward variables is particularly important for long time 
delay systems so that disturbances can be cancelled much sooner than is possible using 
feedback control alone. 
The advanced process control algorithm presented here is an adaptive model-based 
predictive controller that has its origins in the work of (Zervos & Dumont, 1988). They 
proposed the use of a state-space model derived from Laguerre orthogonal basis functions 
so that adaptive control could be achieved without the need to know the process order or 
the time delay in advance. This approach reduces the a priori knowledge required to develop 
a high fidelity model of the process transient response, thus simplifying the modeling task. 
An analogy to this method is the use of Cosine functions in the Fourier series method to 
approximate periodic signals as is common in frequency analyzers. In this case, weights for 
each Cosine function in the series are determined such that when the weighted Cosine 
functions are summed, a reasonable approximation of the original signal is obtained. In this 
case the signal is represented by its frequency spectrum, with each basis function weighting 
coefficient representing the contribution of each frequency present in the original signal. 
This method is efficient due to the similarity of the basis functions in the series to the signal 
being modeled, and also due to the special mathematical property of the basis functions 
called orthogonality that ensures the unique solution of the basis function weighting 
coefficients in the identified model. 
In process control, the process transfer functions are transient in nature and are not periodic, 
so Cosine functions are not an appropriate choice as a basis for the model. However, the 
elegance of the Fourier series technique provides many advantages such as simple and 
efficient model structure and excellent parameter convergence when estimating the model 
from observed data sets due to the orthogonality property of the Fourier series. The 
motivation of this research was to find an equally simple and efficient method to model the 
transient responses common in process control applications. 
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The Laguerre functions are well suited to modeling the types of transient signals found in 
process control because they have similar behavior to the processes being modeled and are 
also an orthogonal function set. In addition, the Laguerre functions are able to efficiently 
model the dead time in the process response compared to other suitable function sets. This 
Laguerre model is used as a basis for the design of the predictive adaptive regulatory 
controller.  
Laguerre basis functions are defined by: 
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Where Li is the ith Laguerre function, and p is a scaling parameter referred to as the Laguerre 
pole. 
Each Laguerre basis function is a polynomial multiplied by a decaying exponential so these 
basis functions make an excellent choice for modeling transient behavior because they are 
similar to transient signals. For use in modeling processes, these basis functions are written 
in the form of a dynamic system. With appropriate discretization (assuming straight lines 
between sampling points), the orthogonality of the basis functions is preserved in discrete 
time. 
Summing each Laguerre basis function with an appropriate weighting factor approximates a 
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where: i is the number of Laguerre filters (i = 1, N); 
p > 0 is the time-scale; 
Li(s) are the Laguerre polynomials. 
The reason for using the Laplace domain is the simplicity of representing the Laguerre 
ladder network, as shown in Fig. 1. 
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Fig. 1. Laguerre ladder network 
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This network can be expressed as a stable, observable and controllable state space form as: 

 ( 1) ( ) ( )l k Al k bu k+ = +  (4) 

 ( ) ( )Ty k c l k=  (5) 

where: 

[ ]1( ) ( ),    ...   , ( ) TT
Nl k l k l k=  is the state of the ladder (i.e., the outputs of each block in Fig. 1); 

[ ]1( ) ( ),    ...   , ( )T
k NC k c k c k=  are the Laguerre coefficients at time k; 

A is a lower triangular square (N x N) matrix. 
The Laguerre coefficients C(k) represent a projection of the plant model onto a linear space 
whose basis is formed by an orthonormal set of Laguerre functions.  
The same concept used in the plant identification is used to identify the process response for 
measured feed forward variables. For unmeasured disturbances, an estimate of the load is 
made. This estimate is based on the observation that an external white noise feeds the 
disturbance model, resulting in a colored signal. The disturbance can be estimated as the 
difference between the plant process variable increment and the estimated plant model with 
the integrator removed. Using the plant and disturbance models we can then develop the 
Model Predictive Control (MPC) strategy. 
The discrete state space model used by Zervos and Dumont for the control design takes the 
(velocity) form: 
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Where u  is the input variable, which is adjusted to control the process variable y and x  is 
the nth-order Laguerre model state. The subscript k gives the time index in terms of number 
of controller update steps; so the Δ  operator indicates the difference from the past update. 
For example, 1k k k−Δ = −x x x . The n×n matrix A  and the n×1 matrix b  have fixed values 
derived from the Laguerre basis functions. Values of the 1×n matrix c  are adjusted 
automatically during model adaptation to match the process model predictions to the actual 
plant behaviour. The dimension n gives the number of Laguerre basis functions used in the 
process model. The algorithm presented here does not suffer from over parameterization of 
the process model. The BrainWave controller uses n=15, which has proven to be enough to 
model almost any industrial plant behaviour.  
Notice that the state equation recursively updates the process state to include the newest 
value of the manipulated variable. Therefore, we can view the process state as an encoded 
history of the input values.  
Model adaptation may be executed in real time following the recursive algorithm of 
(Salgado et al, 1988). This algorithm updates the matrix c  according to: 
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Where the covariance matrix P  evolves according to: 
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I  is the identity matrix. The constants α , λ , β  and δ  are essentially tuning parameters 
that can be adjusted to improve the convergence of the adapted Laguerre model 
parameters C. 
The value of the manipulated input variable u (the controller output) that will bring the 
process to set point ( SP ) d steps in the future may be calculated using the model equations. 
The formula for the process variable d steps in the future is: 
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Since it is desired to have the process reach set point d steps in the future, we set 
k d k dy SP+ +=  and solve for the manipulated input variable kuΔ .  
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This equation is the basic control law. As with most predictive control strategies, 
implementation of the strategy involves calculating the current controller output, 
implementing this new value, waiting one controller update period, and then repeating the 
calculation. 
Predictive feed forward control can easily be included in this control formulation. A state 
equation in velocity form is created for the feed forward variable: 

 1k ff k ff kv+Δ = Δ + Δz A z b   (11) 

Where z is the feed forward state and v is the measured feed forward variable. The effect of 
the feed forward variable is then simply added to the output equation for the process 
variable to become part of the modeled process response: 

 1k k k ff ky y −= + Δ + Δc x c z   (12) 

Notice that the feed forward state equation creates an encoded history of the feed forward 
variable in the same way that the main model state equation encodes the manipulated 
variable. 
Re-deriving the control law from the extended set of process model equations yields: 
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The basic structure of this control law does not change as additional feed forward variables 
are included in the process model, so it is a simple exercise to include as many feed 
forwards as necessary into this control law.  
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difference between the plant process variable increment and the estimated plant model with 
the integrator removed. Using the plant and disturbance models we can then develop the 
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The discrete state space model used by Zervos and Dumont for the control design takes the 
(velocity) form: 

 1

1

k k k

k k k

u
y y
+

−

Δ = Δ + Δ
= + Δ

x A x b
c x   (6) 

Where u  is the input variable, which is adjusted to control the process variable y and x  is 
the nth-order Laguerre model state. The subscript k gives the time index in terms of number 
of controller update steps; so the Δ  operator indicates the difference from the past update. 
For example, 1k k k−Δ = −x x x . The n×n matrix A  and the n×1 matrix b  have fixed values 
derived from the Laguerre basis functions. Values of the 1×n matrix c  are adjusted 
automatically during model adaptation to match the process model predictions to the actual 
plant behaviour. The dimension n gives the number of Laguerre basis functions used in the 
process model. The algorithm presented here does not suffer from over parameterization of 
the process model. The BrainWave controller uses n=15, which has proven to be enough to 
model almost any industrial plant behaviour.  
Notice that the state equation recursively updates the process state to include the newest 
value of the manipulated variable. Therefore, we can view the process state as an encoded 
history of the input values.  
Model adaptation may be executed in real time following the recursive algorithm of 
(Salgado et al, 1988). This algorithm updates the matrix c  according to: 
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Where the covariance matrix P  evolves according to: 
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I  is the identity matrix. The constants α , λ , β  and δ  are essentially tuning parameters 
that can be adjusted to improve the convergence of the adapted Laguerre model 
parameters C. 
The value of the manipulated input variable u (the controller output) that will bring the 
process to set point ( SP ) d steps in the future may be calculated using the model equations. 
The formula for the process variable d steps in the future is: 
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Since it is desired to have the process reach set point d steps in the future, we set 
k d k dy SP+ +=  and solve for the manipulated input variable kuΔ .  
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This equation is the basic control law. As with most predictive control strategies, 
implementation of the strategy involves calculating the current controller output, 
implementing this new value, waiting one controller update period, and then repeating the 
calculation. 
Predictive feed forward control can easily be included in this control formulation. A state 
equation in velocity form is created for the feed forward variable: 

 1k ff k ff kv+Δ = Δ + Δz A z b   (11) 

Where z is the feed forward state and v is the measured feed forward variable. The effect of 
the feed forward variable is then simply added to the output equation for the process 
variable to become part of the modeled process response: 

 1k k k ff ky y −= + Δ + Δc x c z   (12) 

Notice that the feed forward state equation creates an encoded history of the feed forward 
variable in the same way that the main model state equation encodes the manipulated 
variable. 
Re-deriving the control law from the extended set of process model equations yields: 
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  (13) 

The basic structure of this control law does not change as additional feed forward variables 
are included in the process model, so it is a simple exercise to include as many feed 
forwards as necessary into this control law.  
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Use of the Laguerre process model implicitly assumes that a self-regulating process is to be 
modeled. In cases where a process exhibits integrating behaviour, it is necessary to modify the 
Laguerre process model. The modification is two-fold. First, the Laguerre model is altered so 
that the Laguerre state gives the change in the slope of the process response. That is: 
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Second, an unmeasured disturbance component is added to the model to estimate the 
steady state load on the plant. The feedback control law is then derived based on the 
modified Laguerre model, including the disturbance component.  
The above gives the derivation of a d steps ahead adaptive model-based predictive 
control for a single variable. Full multivariable processes (multiple-input, multiple-
output) may also be modeled using Laguerre state-space equations. However, to derive a 
control law for the multivariable case it is preferable to optimize for a cost function such 
as the one proposed in the generalized predictive control (Clarke et al, 1987), rather than 
back calculating the control to achieve a d steps ahead outcome. This concept of predictive 
control involves the repeated optimization of a performance objective over a finite 
horizon extending from a future time (N1) up to a prediction horizon (N2). Fig. 2 
characterizes the way prediction is used within the MPC control strategy. Given a set 
point s(k + l), a reference r(k + l) is produced by pre-filtering and is used within the 
optimization of the MPC cost function. Manipulating the control variable u(k + l), over the 
control horizon (Nu), the algorithm drives the predicted output y(k + l), over the 
prediction horizon, towards the reference. 
The control moves are determined by looking at the predicted future error, which is the 
difference between the predicted future output and the desired future output (reference). 
The user can specify the region over which these error values will be summed. The region is 
bounded by the initial (N1) and final (N2) prediction horizon. It is also possible to set the 
number of control moves that the controller will take to get to the set point by adjusting a 
parameter called control horizon (Nu). If we weigh the predicted squared error from set 
point and the total actuator movement with weighting matrices Q and R respectively, and 
add the two sums, we arrive at the cost function employed within the BrainWave 
Multivariable controller: 

  
(15) 

where Y (i), S(i) and U(i) are the predicted process response, the set point reference and the 
controller output at update i, respectively. The tuning matrices Q and R allow greater 
flexibility in the solution of the cost function. The above cost function is optimized with 
respect to U. By differentiating and solving for U, the next set of optimal control moves is 
obtained. Input constraints are implemented via a multivariable anti-windup scheme which 
was proved to be equivalent to an on-line optimization for common processes (Goodwin & 
Sin, 1984). 
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Fig. 2. MPC control concept for multivariable applications 

Once the cost function is built, it remains the same until we change one of the models, Q, R, 
or one of the horizons. At each update, the following takes place: i) the state vector is 
estimated and adjusted; ii) the process response is estimated, and iii) the next control output 
is calculated. 
Measured disturbances (feed forwards) are assumed to affect one process variable at a time. 
There can be up to three measured disturbances per process variable in the current 
controller software structure.  
Aside from this change in the derivation of the control law, the multivariable algorithm is 
substantially the same as the single variable algorithm. That is, a deterministic control law is 
obtained which provides the current control move that will yield some future process 
response, the current move is implemented, and then a new control move is calculated 
based on new process data at the next control update step. For a complete mathematical 
development of the control law used in the multivariable case, refer to (Huzmezan, 1998). 
The controller outlined above has demonstrated more than twenty years of success in 
industrial applications, verifying the effectiveness of this adaptive model-based predictive 
control algorithm. 

3. Commercial implementation of the BrainWave controller 

The BrainWave MPC controller is commercially available as Windows based PC software. 
The system connects to existing control systems using the OLE for Process Control (OPC) 
standard interface. A communications watchdog scheme is used to ensure that the process 
control automatically reverts to the existing control system in the event of any 
communication or hardware faults associated with the BrainWave computer. 
Despite the complex mathematics use in the control and model adaptation algorithms, the 
software is designed to be easy to use and is suitable for control technicians to apply in an 
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industrial setting. The user interface for the BrainWave system is shown in Fig. 3. The 
interface includes a trend display of the process variables at the top right side of the 
interface. In this example, the set point is the yellow line, the process variable is the red line, 
and the controller output (the actuator) is the green line. 
The identified process transfer function is shown on the lower right side. The transfer 
function plot is generated based on a step input at time=0 and thus shows the open loop 
transient response of the process to a change in the actuator or measured disturbance 
variable. The white line is a plot of the estimated transfer function of the process (expressed 
as a simple first order system using a dead time, time constant, and gain) which is used as a 
starting point for the model identification. The red line is a plot of the identified process 
transfer function open loop step response based on the Laguerre representation. The blue 
bars represent the relative values of the 15 Laguerre series coefficients which are the 
identified process model parameters. 
 

 
Fig. 3. BrainWave user interface 

BrainWave allows the user to configure single loop controllers (Multiple Input Single 
Output – MISO) and multivariable controllers where more than one control loop interacts 
with other control loops (Multiple Input Multiple Output – MIMO). The process type is 
chosen as either self-regulating for stable systems or integrating for open loop unstable 
systems such as level controls. The primary information required is an initial estimate of the 
process response. This is entered using a simple first order plus dead time transfer function 
estimate. This estimate is used by BrainWave to determine the appropriate data sample rate 
for modeling and control of the process and also provides a starting point for the initial 
Laguerre model of the process. 
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Many systems are well described using the simple first order model estimate, and if the 
estimate is reasonably close to the actual process response, the BrainWave controller will be 
able to assume automatic control without any further configuration work. The default setup 
parameters are set to values that will provide a closed loop response time constant that is 
equal to the open loop response time constant of the process, thus providing effective and 
robust control without any additional tuning required.  
Multivariable MIMO systems can be configured with a dimension of up to 48 inputs and 12 
manipulated outputs. Estimates of the response of each process variable to each actuator or 
disturbance variable must be entered (if the cross coupling between the respective channels 
exists) so the complete array of process transfer functions is shown as a matrix.  
For MIMO systems, it is desirable to be able to place more priority on one process variable 
than another as part of the controller setup. Similarly, some actuators are able to move more 
quickly compared to other actuators. The MIMO control setup provides simple sliders that 
allow the user to impose these preferences on the controller in a relative fashion between the 
process variables and actuators. Note that the default settings provided will result in stable 
and robust control of the process where the closed loop response time constant is equal to 
the open loop response time constant for each process variable. 

3.1 Model identification 
The BrainWave controller has online modeling features that help the user obtain the correct 
process transfer function model for the process. The model identification can be performed 
in open loop by observing the process response to manual changes to the actuator(s) or in 
closed loop during automatic control in BrainWave mode. Performing the model 
identification in closed loop is advantageous as it allows the user to confirm the 
improvement in the control performance at the same time as the convergence of the 
identified model is monitored in the model viewer, thus providing real-time confirmation 
that the identified process model is correct.  
An example of the model identification procedure is shown in Fig. 4. The user starts by 
entering an estimate of the process response in simple first order terms as described earlier 
(the white line shown in the Model Viewer panel). BrainWave builds a Laguerre model that 
matches this estimate and uses this model as a starting point for both the predictive control 
operation and the model identification (the red line in the Model Viewer panel). A series of 
set point changes are made while the BrainWave controller is in control of the process as 
shown in the Trend display panel. Some overshoot is apparent during the first set point 
change due to the errors in the initial process response estimate provided by the user. As the 
series progresses, the identified process model converges to the correct value. As the model 
becomes more correct, the control performance during each successive set point change is 
improved. At the end of the sequence, the process model is completely converged to the 
correct value, and the resulting control performance is ideal. 
Feed forward disturbance variables can also be modeled automatically while BrainWave is 
in control of the process. This unique capability allows the controller to identify the transfer 
function of the disturbance variable to the process so that the controller can calculate the 
correct control move with the actuator to cancel the predicted disturbance on the process. 
This feature enables BrainWave to provide the best disturbance cancellation possible. An 
example of the adaptive disturbance cancellation capability is shown in Fig. 5. The feed 
forward variable is the square wave signal at the bottom of the figure. In this example, the 
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BrainWave controller begins with no model for the feed forward disturbance variable so the 
process is disturbed from the set point and the actuator (the trend in the center of the figure) 
reacts by feedback after the disturbance has already occurred to return the process to the set 
point. As the feed forward transfer function is identified by BrainWave, the controller 
begins to take immediate action when the feed forward disturbance signal changes, thus 
providing improved cancellation of the disturbance. As the identified feed forward model 
converges to the correct value, the cancellation of the disturbance is complete. 
 
 

 
 

Fig. 4. Process model identification during closed loop control 
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Fig. 5. Adaptive feed forward disturbance cancellation 

3.2 Predictive control 
The identified process model is used as the basis to calculate the required control moves 
with the actuator to bring the process to the set point some time in the future. For the single 
loop MISO controller, the primary adjustment for control performance is the prediction 
horizon. This is essentially the number of control steps into the future where the process 
variable must be on the set point. A long prediction horizon results in conservative closed 
loop control response; the actuator is simply positioned to the new calculated steady state 
value and the process reaches the set point according to its natural open loop response time. 
Shorter prediction horizons cause the controller to make a more aggressive transient move 
with the control actuator in order to bring the process to the set point in less time than the 
natural response. Fig. 6 shows the effect of adjusting the prediction horizon for self-
regulating (open loop stable) systems. 
Fig. 7 shows the effect of adjusting the prediction horizon for integrating (open loop 
unstable) systems. In addition to adjusting the prediction horizon, the set point reference is 
also internally filtered to provide less aggressive actuator movement during set point 
changes. It should be noted that integrating systems are only stable in closed loop for a 
certain range of controller behavior (a marginally stable system in closed loop) so the 
amount of arbitrarily fast or slow control performance adjustment is limited. 
In the multivariable MIMO controller, there are several parameters that can be adjusted to 
change the control performance. The weighting can be adjusted to change the penalty for set 
point tracking error for each process variable and the movement penalty for each actuator. 
The control horizon, which specifies the number of future control moves to be calculated, 
can be made longer for conservative actuator movement and slower process response or 
shorter for more aggressive actuator movement and faster process response. The prediction 
horizon is also adjusted to determine the range of future process response that will be 
included in the cost function minimization. Typically this range begins some time after the 
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process with the longest time delay has elapsed and ends where the process variables 
should naturally arrive at steady state. As there are many parameters that have a similar 
effect on the control performance, typically most are set to their default values and only the 
set point tracking error weightings are used to adjust the relative priority of the process 
variables being controlled. 
 

 
Fig. 6. Effect of Prediction Horizon Adjustment for Self-Regulating Systems 

 

 
Fig. 7. Effect of prediction horizon and set point reference filtering for integrating 
systems 
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Mineral recovery processes are notoriously difficult to control due to a combination of 
factors, including variable ore properties, complicated process dynamics, interacting process 
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mineral recovery plants due to the high value of the process. A typical approach is to use 
PID controllers, with enhancements such as cascade control, feed forward control, ratio 
control, and so forth, that are available in distributed control systems (DCS). It is possible to 
have some degree of success in automating and bringing stability to processes with these 
techniques; however, PID does not perform well when there are challenging loop dynamics 
(such as the transport delay associated with ore feed systems, or the integrating behaviour 
of flotation cell levels), or multiple interacting variables (such as rotation speed, recycle 
flows, and ore feed rate on SAG mill weight).  
A more advanced approach to automation that seems to be popular among mineral 
processors is the use of rule-based expert systems.  A rule-based expert system that mimics 
the best operator actions is a logical development towards solving underlying difficult 
feedback control problems in the absence of other alternatives to PID control. A number of 
these rule-based expert systems are commercially available and they typically take the form 
of software running on a PC that is frequently exchanging information (receiving process 
data and sending control outputs) with the DCS. However, in simply trying to automate the 
actions of even the best human operators, there is the potential to miss an opportunity to 
make a full step improvement in the control of the process.  For example, MPC can provide 
control performance improvements by managing the process dynamics and interactions in a 
completely different manner.  
MPC is able to provide a quality of regulatory control that cannot be matched by PID control 
or expert system control. The superior performance of MPC in controlling challenging loops 
provides a clear benefit in terms of plant profitability. It is not effective to replace this 
advanced regulatory control layer by trying to extend traditional DCS-based controls 
upwards, or expert system type controls downwards; so without the advanced regulatory 
control layer with MPC, a comprehensive plant automation strategy cannot be properly built. 

4.1 SAG mills 
A semi-autogenous grinding (SAG) mill is a rotating cylinder containing steel balls that is 
used as an intermediate stage in the comminution (size reduction) of ore. Typically, these 
mills receive ore from a primary stockpile and, operating continuously, reduce the particles 
to a size appropriate for finer grinding in ball mills. As the name indicates, size reduction in 
a SAG mill occurs both from the tumbling action with the balls and from autogenous (rock 
on rock) grinding.  
SAG mills are a critical component in mineral processing operations as they are often the 
bottleneck of the processing line; at the same time, they are a difficult process to control due 
to the transport delay inherent in the ore feed system and the integrating nature of the mill 
as it approaches maximum load. Depending on a number of factors, the weight of material 
resident in the mill will vary. It is important to maintain the weight within a specific range, 
as an overloaded mill quickly loses grinding efficiency, while an insufficiently loaded mill 
does not take proper advantage of the autogenous grinding mechanism. Grinding is also 
affected by rotation speed; in general, greater rotation speed allows for increased grinding. 
Finally, the power draw of the mill must be monitored to avoid exceeding the maximum 
power limit. Although brief, this description of mill operations begins to indicate the 
complex, multivariable nature of the SAG mill control problem.  
A very direct, and popular, approach to maximizing mill throughput is to use an expert 
system to gradually increase the feed rate to the mill until a high limit for weight or power 
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mineral recovery plants due to the high value of the process. A typical approach is to use 
PID controllers, with enhancements such as cascade control, feed forward control, ratio 
control, and so forth, that are available in distributed control systems (DCS). It is possible to 
have some degree of success in automating and bringing stability to processes with these 
techniques; however, PID does not perform well when there are challenging loop dynamics 
(such as the transport delay associated with ore feed systems, or the integrating behaviour 
of flotation cell levels), or multiple interacting variables (such as rotation speed, recycle 
flows, and ore feed rate on SAG mill weight).  
A more advanced approach to automation that seems to be popular among mineral 
processors is the use of rule-based expert systems.  A rule-based expert system that mimics 
the best operator actions is a logical development towards solving underlying difficult 
feedback control problems in the absence of other alternatives to PID control. A number of 
these rule-based expert systems are commercially available and they typically take the form 
of software running on a PC that is frequently exchanging information (receiving process 
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make a full step improvement in the control of the process.  For example, MPC can provide 
control performance improvements by managing the process dynamics and interactions in a 
completely different manner.  
MPC is able to provide a quality of regulatory control that cannot be matched by PID control 
or expert system control. The superior performance of MPC in controlling challenging loops 
provides a clear benefit in terms of plant profitability. It is not effective to replace this 
advanced regulatory control layer by trying to extend traditional DCS-based controls 
upwards, or expert system type controls downwards; so without the advanced regulatory 
control layer with MPC, a comprehensive plant automation strategy cannot be properly built. 

4.1 SAG mills 
A semi-autogenous grinding (SAG) mill is a rotating cylinder containing steel balls that is 
used as an intermediate stage in the comminution (size reduction) of ore. Typically, these 
mills receive ore from a primary stockpile and, operating continuously, reduce the particles 
to a size appropriate for finer grinding in ball mills. As the name indicates, size reduction in 
a SAG mill occurs both from the tumbling action with the balls and from autogenous (rock 
on rock) grinding.  
SAG mills are a critical component in mineral processing operations as they are often the 
bottleneck of the processing line; at the same time, they are a difficult process to control due 
to the transport delay inherent in the ore feed system and the integrating nature of the mill 
as it approaches maximum load. Depending on a number of factors, the weight of material 
resident in the mill will vary. It is important to maintain the weight within a specific range, 
as an overloaded mill quickly loses grinding efficiency, while an insufficiently loaded mill 
does not take proper advantage of the autogenous grinding mechanism. Grinding is also 
affected by rotation speed; in general, greater rotation speed allows for increased grinding. 
Finally, the power draw of the mill must be monitored to avoid exceeding the maximum 
power limit. Although brief, this description of mill operations begins to indicate the 
complex, multivariable nature of the SAG mill control problem.  
A very direct, and popular, approach to maximizing mill throughput is to use an expert 
system to gradually increase the feed rate to the mill until a high limit for weight or power 
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draw has been reached. Should a high limit be violated, feed rate to the mill is reduced until 
mill operations return to acceptable limits. This approach has the advantage of being direct 
and easy to understand, but can result in a ‘saw tooth’ pattern of feed rate increases and 
decreases, which may not be desirable. The area below this saw tooth pattern represents an 
opportunity to achieve higher average ore feed rate and throughput. 
An alternative to this approach is to adjust mill feed rate to maintain mill weight at a set 
target. The idea justifying this approach is that there is a mill weight at which optimum 
grinding occurs. Therefore, by maintaining the correct mill weight, mill throughput is 
maximized. This approach has the benefit of increasing the stability of mill weight (and 
power draw). The drawback to this approach is that it is not always clear what weight target 
should be chosen, although adjusting the weight target to maximize power draw may 
complete this strategy. 
Enhancements to these strategies may include the use of feed particle size distribution, ore 
hardness, and ore type as predictors for mill grinding efficiency. Mill sound may also be 
used as an indicator of the tumbling profile inside the mill. Some strategies have attempted 
to control the mill sound by adjusting mill rotation speed; however, this can be problematic 
due to the large and rapid effect that rotation speed can have on mill weight. 
The adaptive model-based predictive control strategy based on the BrainWave MPC 
controller has been applied to a number of SAG mills in primary copper producing 
mines. The mills had a range of capacities, with the smaller mills operating at ore 
throughputs as low as 40,000 tons per day, and the larger mills operating at 120,000 tons 
per day or more. 
The typical application of the BrainWave controller for SAG mills is for control of the mill 
load. In these cases, mill load was inferred either from a direct weight measurement or from 
bearing oil pressure. Fig. 8 gives a diagram showing the SAG Mill and the load control 
strategy. The mass feed rate of ore is measured on the feed belt and typically an enhanced 
PID control strategy is used to control the ore feed rate. BrainWave operates as a master 
controller over the feed rate controller. This controller takes the load measurement and set 
point, as well as key feed forward variables such as mill rotation speed, pebble recycle rate, 
and ore sizing information (coarse or fine fraction) and sets the set point for the feed rate 
controller. In some cases the BrainWave MPC may also be used for the feed rate control 
itself. Where there is significant transport delay between an increase in the addition of ore to 
the feed belt and the measurement of that feed rate increase, MPC can provide improved 
feed rate control.  
It should be noted that in the majority of cases, this strategy was implemented on SAG 
mills that were already operating with expert system control. In these cases, BrainWave 
was integrated with the expert system, taking over the task of setting the feed rate to the 
mill.  
The results of the MPC application demonstrated increases in mill throughput in the range 
of 1.5 to 2% relative to mill throughput with expert system control alone. Table 1 lists some 
results. To emphasize the significance of these increases, note that for a concentrator 
processing 120,000 tonnes per day of ore at a grade of 0.75%, with a recovery of 0.85, total 
annual copper production is roughly 550 million pounds. Even at a low profit margin of 
$0.20/pound, a production increase of 1% is worth over one million dollars of additional 
profit per year. 
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Fig. 8. BrainWave SAG mill load control 

 
Mine Site Number of SAG Mills Production Increase 
Minera Candelaria 2 1.6% 
Minera Escondida – Laguna Seca 1 >2% 
Minera Los Pelambres 2 1.5% 

Table 1. SAG Mill Throughput Increases with MPC 

Fig. 9 displays some process trend data from one of the applications over a period of several 
days. The trend also shows that when the MPC was taken off-line for some hours for 
maintenance the expert system was not able to maintain the mill load with the same stability 
(circled region in the trend plot). This particular concentrator plant is fed with a mixture of 
two ore types with significantly different work indexes. For this reason, grinding rates in the 
mill appear to change frequently and rapidly and the MPC control proved to react sooner 
and minimized the disturbances caused by these events. The impact of using MPC on 
overall mill performance was shown to go far beyond stabilization of mill load. One plant 
site observed reductions well above 50% in the standard deviation of ore feed rate, mill 
rotation speed, mill weight, and mill power draw. 

4.2 Flotation cells 
Mineral flotation is a process that takes advantage of differences in hydrophobicity to 
separate valuable minerals from tailings or one valuable mineral from a bulk concentrate. 
Hydrophobic ore particles become attached to air bubbles which rise to the top of the 
flotation cell to form a froth layer. The froth is collected as it overflows the top of the cell 
while the rest of the material passes through the cell outlet. Typically, a number of cells are 
arranged is series so that as the pulp flows through a flotation line, the hydrophobic 
particles have a number of opportunities to separate from the pulp.  
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Fig. 9. BrainWave control of SAG mill load 

To promote the success of flotation, it is important to have good control of the froth depth. 
Commonly, froth depth is inferred by measuring the location of the froth-pulp interface 
(with a float device) relative to the lip of the cell where the froth is able to spill into the 
recovery system. Under normal cell operations, froth will completely fill this space, from the 
top of the liquid level in the cell up to the lip of the cell. If the froth level can be maintained, 
a stable froth layer is formed without excessive bubble breakage, and there is a steady 
overflow of froth over the lip of the flotation cells. A well-chosen froth depth allows time for 
some ‘drainage’ of entrained water and tailings particles before the froth overflows the cell; 
however, greater froth depths can result in lower recovery and increased use of expensive 
frother chemicals (Wills & Napier-Munn, 2006). 
Froth level control can be a challenging problem for a number of reasons. There can be large 
and sudden changes in the flow of pulp into the flotation line. Often this flow is unmeasured 
and the changes can cause large level disturbances. The arrangement of a number of flotation 
cells in series means that the outlet flow from one cell is the inlet flow to the next cell in the 
line. Therefore, as outlet valve position is adjusted to control cell level, the levels in 
downstream cells will be affected. The valves used in flotation applications are often dart 
valves or pinch valves that may not always have a fast and accurate positioning response. To 
summarize, control of flotation level is difficult due to the combination of significant 
unmeasured process disturbances, interacting process variables and imperfect actuators. 
BrainWave MPC was applied to two copper rougher-scavenger flotation lines, each 
consisting of five 160 m3 flotation cells. Each cell level is controlled by an individual 
controller which adjusts the cell’s outlet valve position. To compensate for the impact of 
valve position changes on downstream cell levels each level controller takes the upstream 
cell’s outlet valve position as a feed forward disturbance variable. This allows each 
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controller to minimize disturbances by adjusting outlet valve positions at the same time as 
the inlet valve positions are changing. Fig. 10 provides a simple diagram illustrating the 
application of the control loops. 
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Fig. 10. Diagram of flotation control strategy 

The advanced control loops replaced the existing PID loops which the plant had previously 
used to maintain cell level. The PID controllers had struggled to maintain tight control and 
had particular difficulty stabilizing the cells after large disturbances or on plant start-ups. 
Fig. 11 demonstrates the improvement to the cell level control that was achieved by 
replacing traditional PID loops with the BrainWave loop controllers. In this case there was 
as much as 60% reduction in level variability as measured by standard deviation. 
It is suggested that improved level stability has the effect of improving mineral recovery, 
improving product grade, and reducing frother consumption. However, these are difficult 
benefits to prove, due to the problem in obtaining and collecting sufficient data, where the 
comparisons can be made given the same operating conditions (for example, with the same 
production rates and ore types). Unfortunately, to date, the plant has not been able to complete 
such an analysis. However, one obvious and easily measurable benefit came from the 
improved control performance on large production rate changes or plant start-ups. It was 
observed that the PID controllers had difficulty in stabilizing the cells after these events; often 
cell levels could swing for as much as two hours before settling into what could be considered 
steady-state. This settling time was greatly reduced with the BrainWave controllers. The 
benefits from avoiding this loss in operating time can be directly calculated. An example 
calculation can be made based on the business fundamentals given in Table 2. 
 

Tonnes Milled per Day 50,000 
Copper Grade 0.3% 
Recovery 75% 
Tonnes Copper Produced 112.5 
Pounds per Metric Tonne 2,205 
Price per Pound $4.00 
Production Cost $1.50 
Daily Profit $620,156 

Table 2. Example Mineral Concentrator Business Fundamentals 
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Tonnes Milled per Day 50,000 
Copper Grade 0.3% 
Recovery 75% 
Tonnes Copper Produced 112.5 
Pounds per Metric Tonne 2,205 
Price per Pound $4.00 
Production Cost $1.50 
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If the BrainWave control reaches ‘steady state’ in one hour less than PID control, and there is 
one of these large disturbances events per week, then this represents the equivalent of 2.2 
more days of operating time per year. Based on daily revenue of $620,156, this gives an 
increase in profit of $1.36 million annually.  
Note that this is only the ‘easily’ calculated benefit and does not include the additional 
benefits to be obtained through improvements in recovery. Even a modest 0.5 percentage 
point increase in recovery from improved froth level control yields close to an additional 
$1.1 million per year in profit.  
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Fig. 11. Comparison of PID and BrainWave control of flotation level  

5. Pulp and paper applications 
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sodium hydroxide to produce pulp, has a retention time of several hours. Many properties of 
the pulp are affected by conditions in the digester so it is very important to maintain the 
correct chip level, temperature profile, and chemical concentration throughout the cooking 
process to produce pulp with uniform quality. The chemical recovery circuit is used to 
regenerate the sodium hydroxide for use in the digester as part of a closed loop sodium cycle 
known as the Kraft process. The chemical recovery system consists of a lime kiln and 
recaustification process which is also a closed circuit that uses calcium carbonate and calcium 
hydroxide to transform the sodium carbonate back to sodium hydroxide. This system has long 
response times due to the large thermal mass in the kiln and the large retention time in the 
causticizing reactors. The pulp bleaching stages also have long process retention times to allow 
complete reaction of the pulp with the expensive bleaching chemicals. Finally, the pulp dryer, 
which is a very large unit with a long residence time for the drying pulp, must be controlled to 
maintain the final moisture content of the produced pulp. 
Each of these processes present unique challenges for automatic control. The BrainWave 
MPC controller has been successfully applied to these processes due to its ability to handle 
the long response times of these systems. 

5.1 Digester control 
Optimal digester operation requires precise control of the wood chip levels in the steaming 
bin, impregnation vessel, and the digester to maintain uniform residence time in the cooking 
process. Chemical addition, as measured by effective alkali (EA) and digester temperature 
profile must be constant to provide a consistent cook, or delignification, of the pulp as 
measured by a Kappa index. Reducing variability of these process parameters yields a 
corresponding reduction in Kappa variability. Precise Kappa control can reduce bleach plant 
costs and is certain to improve the quality of the pulp. 
The BrainWave controller is used to hold these critical digester variables on target. The 
digester cooking control strategy is shown in Fig. 12. The level of the wood chips in the  
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If the BrainWave control reaches ‘steady state’ in one hour less than PID control, and there is 
one of these large disturbances events per week, then this represents the equivalent of 2.2 
more days of operating time per year. Based on daily revenue of $620,156, this gives an 
increase in profit of $1.36 million annually.  
Note that this is only the ‘easily’ calculated benefit and does not include the additional 
benefits to be obtained through improvements in recovery. Even a modest 0.5 percentage 
point increase in recovery from improved froth level control yields close to an additional 
$1.1 million per year in profit.  
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digester is controlled by adjusting the flow of chips from the impregnation vessel (sluice 
flow) into the digester, which is fed at the top of the column. Transport delay time as well as 
delays in the digester level measurement, combined with the integrating level response, 
create a difficult control problem. 
The existing digester level control was based on a PID controller in the DCS. During large 
disturbances, the operator assumed manual control to try and stabilize the level. The 
BrainWave controller was able to reduce the standard deviation of the level by more than 
50% and required much less intervention from the operator. Fig. 13 provides a comparison 
of the control performance when using the existing DCS/Manual control approach and the 
improved control achieved with BrainWave. 
 

 
Fig. 13. Comparison of MPC vs. DCS control of digester level 
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The lime kiln is used to convert calcium carbonate into calcium oxide (lime) for use in the 
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digester. The properties of the lime are dependent on the temperature profile of the kiln. The 
temperature profile is typically manually controlled due to the long time delays and 
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multivariable interactions of the draft (air flow) and fuel on the kiln temperature profile that 
make automatic operation with conventional PID controllers impractical. Response times of 
one to three hours or more are typical. Operators are often impatient with the long response 
time of this system and tend to make large corrections to the fuel feed rate in an attempt to 
recover the temperature profile quickly during process disturbances such as production rate 
changes. These actions result in extremes of temperature in the kiln, leading to poor lime 
quality, ring formation problems, and reduced refractory life. Operators also tend to control 
the temperature profile at a higher value than necessary for the lime burning and at a high 
excess oxygen level to provide a comfortable operating margin that requires less frequent 
attention. These practices lead to increased fuel consumption and maintenance costs. 
Adjusting draft and fuel cause shifts in the flame length and excess oxygen levels. In 
addition to the long response times, this interaction must also be addressed by the control 
strategy to achieve responsive yet stable control performance. The ultimate objective of the 
control strategy is to maintain a constant lime discharge temperature to ensure consistent 
lime quality as measured by the residual calcium carbonate (un-burned lime) and reactivity 
with water to produce calcium hydroxide (slaking rate). 
A multivariable MIMO BrainWave controller is used to control the temperature and oxygen 
level at the feed end of the kiln by adjusting the fuel and induced draft (ID) fan. A single 
loop BrainWave controller is used to control the lime discharge temperature by adjusting 
the target for the feed end temperature. This approach allows feed end temperature limits to 
be easily included in the control strategy, as low temperatures can lead to plugging of the 
lime mud feed and high temperatures can lead to equipment damage in the dust removal 
system. A schematic of the control scheme is given in Fig. 14. 
 

 
Fig. 14. Lime Kiln control scheme 

A chart of the feed end temperature, oxygen level, and firing end temperature is shown in 
Fig. 15 for both manual control and automatic control with BrainWave. A summary of the 
performance improvements obtained by the BrainWave MPC controller on this application 
is shown in Table 3. The range of variation of each process variable was substantially 
reduced, allowing the kiln to operate at a lower average temperature with lower excess 
oxygen. These improvements resulted in reduced fuel consumption, reduced incidence of 
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ring formation, increased production capacity, and a better quality lime (as measured by 
residual Calcium Carbonate CaCO3) as shown in Fig. 16. Based on the results of this 
application, as well as experience with over 20 other similar applications, the control 
improvements possible with MPC provide reductions in fuel consumption of 5% or more 
while reducing lime quality variability by 50%. 
 
 
 

 
Fig. 15. Lime Kiln control comparison 

 
 
 
 

Process Variable Manual Control MPC Control Improvement 

Excess Oxygen  1% 0.3% 70% 

Feed Temperature  40ºF 7ºF 82% 

Lime Temperature 200ºF 25ºF 87% 

Table 3. Lime Kiln process variability comparison 
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Fig. 16. Lime Kiln CaCO3 residual laboratory results comparison 

5.3 Pulp bleaching 
The pulp bleaching process consists of several stages where bleaching chemicals are applied 
to the pulp to increase brightness. These reactions occur in large towers with plug flow of 
the pulp to allow long retention time for completion of the bleaching reaction. One of the 
stages in the bleaching process is known as extraction stage where sodium hydroxide is 
applied to the pulp to remove remaining lignin that was not removed in the digester. The 
addition rate of the sodium hydroxide is controlled based on the pH at the exit of the 
extraction stage as this measurement provides an indication if the correct amount of 
chemical was applied. High pH values indicate that excess chemical was applied and can 
result in damage to the pulp fibers and loss of pulp quality. Low pH values indicate that 
insufficient chemical was applied resulting in less removal of lignin. The higher lignin 
content will require additional expensive bleaching chemicals in the downstream stages in 
order to achieve the target final pulp brightness. 
Control of extraction stage after tower pH is challenging due to the long and varying dead 
time, and that fact that the dead time and the process gain change significantly with 
production rate. Due to the plug flow nature of the reaction tower, the process dead time for 
the pH control is five times longer than the process time constant, making this control 
application particularly difficult. The pH response to a change in addition rate of sodium 
hydroxide had about two hours of dead time and a time constant of about 17 minutes.  
As production rate changes affected these process dynamics significantly, the BrainWave 
MPC controller was configured with a set of process models to cover the entire production 
range. The main differences between the models were the process gain and dead time. 
Process gain ranged from 0.6 to 2.0 and dead time ranged from 2,000 to 6,000 seconds. 
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the pulp to allow long retention time for completion of the bleaching reaction. One of the 
stages in the bleaching process is known as extraction stage where sodium hydroxide is 
applied to the pulp to remove remaining lignin that was not removed in the digester. The 
addition rate of the sodium hydroxide is controlled based on the pH at the exit of the 
extraction stage as this measurement provides an indication if the correct amount of 
chemical was applied. High pH values indicate that excess chemical was applied and can 
result in damage to the pulp fibers and loss of pulp quality. Low pH values indicate that 
insufficient chemical was applied resulting in less removal of lignin. The higher lignin 
content will require additional expensive bleaching chemicals in the downstream stages in 
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range. The main differences between the models were the process gain and dead time. 
Process gain ranged from 0.6 to 2.0 and dead time ranged from 2,000 to 6,000 seconds. 



  
Advanced Model Predictive Control 

 

416 

Lower production rates will require models with higher gain and longer dead time. As 
production rate increases, model gain and dead time will decrease. The MPC controller 
dynamically loaded the appropriate model according to the production rate as this provides 
a faster solution in this case than relying on adaptation alone to correct for the changes in 
the process. The mill had attempted to implement a Dahlin type controller but they had 
difficulty keeping the process stable. The addition rate of sodium hydroxide was applied as 
a ratio to the pulp production rate and the operator manually adjusted this ratio to maintain 
the extraction pH in the correct range. 
Fig. 17 shows the control performance achieved by the operator and the MPC control. Table 
4 shows the comparison between the MPC control and manual control. The improved 
control stability provided by the MPC control allowed operation at an average pH set point 
of 10.2 instead of 10.5, resulting in a reduction of sodium hydroxide addition with 
corresponding savings of about $100,000 per year. 
 

Performance Index Manual Control MPC control Improvement 
Standard Deviation 0.089 0.032 64% 

Table 4. E Stage pH control improvement summary 
 

 
Fig. 17. Extraction stage pH control comparison  

5.4 Pulp dryer control 
Pulp dryers are used to control the final moisture content of the pulp before it is shipped. The 
moisture must not exceed a maximum specification limit so the dryer tends to be operated with 
slightly over-dry pulp. This energy required for pulp drying can be reduced if the pulp 
moisture can be controlled as close as possible to the specified limit. BrainWave MPC is ideally 
suited to control the drying process due to its ability to account for the long transport delay time 
as the pulp moves through the dryer to the moisture measurement sensor located at the dryer 
exit.  The MPC controller also provides an effective means to incorporate measured disturbance 
variables such as sheet speed, broke flow, and pulp consistency as feed forward signals. 
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Fig. 18. Pulp dryer control scheme 
 

 
Fig. 19. Pulp dryer control performance comparison 
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In addition to pulp moisture control, MPC was also used to control the pulp gramature (mass 
of pulp per square meter) in the mat forming section at the feed end of the dryer. A diagram of 
the pulp dryer control schematic is shown in Fig. 18. The pulp gramature is controlled by 
adjusting the flow rate of pulp stock onto the wire section that forms the pulp mat. The final 
pulp moisture is controlled by adjusting the steam pressure applied to the dryer sections. 
In this example, the pulp dryer was part of a new pulp mill and was one of the largest pulp 
dryers ever built. The existing Quality Control System (QCS) was used to control the pulp 
moisture and gramature before the BrainWave MPC was installed. A comparison of the 
moisture and gramature control performance is shown in Fig. 19. Standard deviation of the 
pulp moisture and gramature was reduced by more than 50% compared to the QCS system. 
With the improved stability, the average pulp moisture could be kept closer to maximum, 
leading to increased production and energy savings. 

6. Conclusions 

In this chapter, the development and application of a Model Predictive Controller (MPC) has 
been presented. It is clear that many industrial processes cannot be adequately controlled 
using conventional Proportional-Integral-Derivative (PID) control techniques due to common 
problems such as time delay and multivariable interactions. MPC exploits the abundance of 
inexpensive computing power that is now available so the limitations of the old pneumatically 
powered PID approach can be eliminated. MPC provides an opportunity to improve the 
performance of most industrial processes in order to reduce production costs and 
environmental impact, and improve product quality and profitability. These improvements 
can be achieved much faster and at less capital cost compared to modifications or upgrades of 
the process equipment resulting in an attractive return on investment. 
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moisture and gramature before the BrainWave MPC was installed. A comparison of the 
moisture and gramature control performance is shown in Fig. 19. Standard deviation of the 
pulp moisture and gramature was reduced by more than 50% compared to the QCS system. 
With the improved stability, the average pulp moisture could be kept closer to maximum, 
leading to increased production and energy savings. 

6. Conclusions 

In this chapter, the development and application of a Model Predictive Controller (MPC) has 
been presented. It is clear that many industrial processes cannot be adequately controlled 
using conventional Proportional-Integral-Derivative (PID) control techniques due to common 
problems such as time delay and multivariable interactions. MPC exploits the abundance of 
inexpensive computing power that is now available so the limitations of the old pneumatically 
powered PID approach can be eliminated. MPC provides an opportunity to improve the 
performance of most industrial processes in order to reduce production costs and 
environmental impact, and improve product quality and profitability. These improvements 
can be achieved much faster and at less capital cost compared to modifications or upgrades of 
the process equipment resulting in an attractive return on investment. 
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