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Preface

Superconductivity was discovered 1911 by Kamerlingh Onnes. During the last centu-
ry, the history of superconductivity has been full of theoretical challenges and practi-
cal developments. In 1986, the discovery of Bednorz and Müller of an oxide supercon-
ductor with critical temperature (Tc) approximately equal to 35 K, has given a novel 
impetus to this fascinating subject. Since this discovery, there are a great number of la-
boratories all over the world involved in research of superconductors with high Tc 
values, the so-called “high-Tc superconductors”. The discovery of a room temperature 
superconductor has been a long-standing dream of many scientists. The technological 
and practical applications of such a discovery should be tremendous. However, the ac-
tual use of superconducting devices is limited by the fact that they must be cooled to 
low temperatures to become superconducting. Until 2011, one hundred years after the 
first Kamerlingh Onnes' discovery, the highest Tc value is approximately equal to 135 
K at 1 atm. The knowledge of the microscopic mechanisms of high-Tc superconductors 
should be a theoretical guide in the researches of room temperature superconductivity.  

This book contains 15 chapters reporting interesting researches about theoretical and 
experimental aspects of superconductivity. Here you will find a great number of 
works containing theories and describing properties of high-Tc superconductors (ma-
terials with Tc > 30 K). In a few chapters there are also discussions about low-Tc super-
conductors (materials with Tc < 30 K). 

The plan of this book is: 

Chapter 1 contains theoretical discussions about the possibility of room temperature 
superconductivity. 

In the chapters 2, 3, 4 and 5 are discussed interesting theories about physical proper-
ties of superconductors. 

Chapter 6 presents report about the electronic transport in an NS system with a pure 
normal channel. 

In chapter 7 can be found a theoretical discussion concerning the effects of impurities 
on a noncentrosymmetric superconductor. 



XII      Preface

Chapter 8 contains a research about the Meissner effect and the use of superconduc-
tors as magnets. 

Chapter 9 is a report about the properties of macroscopic quantum effects in super-
conductors. 

Chapter 10 presents theoretical discussions concerning the vortex state of supercon-
ductors. 

In Chapter 11 the development of Josephson voltage standards is analyzed. 

Chapter 12 contains critical state analysis using a SQUID magnetometer. 

Chapter 13 is a theoretical discussion about superconducting transistors. 

Chapter 14 presents some physical properties of the superconductor photonic crystal. 

Finally, in chapter 15 you can find a theoretical discussion about the electrodynamics 
of high pinning superconductors.  

I expect that this book will be useful to encourage further experimental and theoretical 
research of superconductivity. 

Adir Moysés Luiz 
Instituto de Física, Universidade Federal do Rio de Janeiro 

Brazil 
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Room Temperature Superconductivity 
Adir Moysés Luiz 

Instituto de Física, Universidade Federal do Rio de Janeiro 
Brazil 

1. Introduction 
Superconductivity was discovered by Kamerlingh Onnes in 1911. For one century 
superconductivity has been a great challenge to theoretical physics. The first successful set of 
phenomenological equations for superconducting metals was given by F. London in 1935. Yet, 
in 1950, almost 40 years after the discovery of this phenomenon, there was not any adequate 
microscopic theory of superconductivity. However, by 1935, single elements necessary to a 
successful theory to explain superconductivity was known to theorists. The peculiar 
condensation of a Bose-Einstein gas was predicted by Einstein in 1925. The idea that pairs of 
fermions can combine to form bosons has been known since 1931. In 1950 the most relevant 
ideas of superconductivity has been summarized by F. London in his famous book 
“Superfluids”, volume 1. At last, BCS theory (Bardeen et al., 1957) was the first successful 
theory to explain the microscopic mechanisms of superconductivity in metals and alloys. 
Practical applications of superconductivity are steadily improving every year. However, the 
actual use of superconducting devices is limited by the fact that they must be cooled to low 
temperatures to become superconducting. For example, superconducting magnets used in 
most particle accelerators are cooled with liquid helium, that is, it is necessary to use 
cryostats that should produce temperatures of the order of 4 K. Helium is a very rare and 
expensive substance. On the other hand, because helium reserves are not great, the world's 
supply of helium can be wasted in a near future. Thus, because liquid nitrogen is not 
expensive and the reserves of nitrogen could not be wasted, it is important to use high-Tc 
superconductors cooled with liquid nitrogen. Superconductors with critical temperatures 
greater 77 K may be cooled with liquid nitrogen. 
We know that BCS theory (Bardeen et al., 1957) explains the microscopic mechanisms of 
superconductivity in metals. According to BCS theory, electrons in a metallic 
superconductor are paired by exchanging phonons. According to many researchers (De 
Jongh, 1988; Emin, 1991; Hirsch, 1991; Ranninger, 1994), BCS theory is not appropriate to be 
applied to explain the mechanisms of superconductivity in oxide superconductors. 
Nevertheless, other models relying on a BCS-like picture replace the phonons by another 
bosons, such as: plasmons, excitons and magnons, as the mediators causing the attractive 
interaction between a pair of electrons and many authors claim that superconductivity in 
the oxide superconductors can be explained by the conventional BCS theory or BCS-like 
theories (Canright & Vignale, 1989; Tachiki & Takahashi, 1988; Takada, 1993). 
Copper oxide superconductors are the most important high-Tc superconductors. The 
discovery of a room temperature superconductor should trigger a great technological 
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revolution. There are claims of synthesis of a room temperature superconductor (see, for 
example, www.superconductors.org, 2011). But these claims are not accepted by the 
scientific community. It is generally accepted in the scientific literature that the highest Tc is 
approximately equal to 135 K at 1 atm in the Hg-Ba-Ca-Cu-O system (Schilling & Cantoni, 
1993). However, Tc in this system can be raised up to 180 K using high external pressures. 
We believe that the discovery of a room temperature superconductor would be possible 
only when the microscopic mechanisms of oxide superconductors should be clarified. 
However, up to the present time, the microscopic mechanisms responsible for high-Tc 
superconductivity are unclear. In a recent article (Luiz, 2010), we have discussed a simple 
model to study microscopic mechanisms in high-Tc superconductors. The objective of this 
chapter is to present new studies in order to give new theoretical support for that simple 
model. We also discuss the possibility of room temperature superconductivity. 

2. Possibility of room temperature superconductivity 
It is well known that the superconducting state is characterized by a quantum macroscopic 
state that arises from a Bose-Einstein condensation (BEC) of paired electrons (Cooper pairs). 
Initially, it is convenient to clarify some concepts regarding BEC. It is well known that a 
collection of particles (bosons) that follows the counting rule of Bose-Einstein statistics 
might at the proper temperature and density suddenly populate the collections ground state 
in observably large numbers (Silvera, 1997). The average de Broglie wavelength dB which is 
a quantum measurement of delocalization of a particle, must satisfy this condition. We 
know that dB = h/p, where h is Planck’s constant and p is the momentum spread or 
momentum uncertainty of the wave packet. In the other extreme, for particles in the zero 
momentum eigenstate, the delocalization is infinite; i.e., the packet is spread over the entire 
volume V occupied by the system. It is generally accepted that BEC occurs when the 
interparticle separation is of the order of the delocalization dB (Silvera, 1997). 
The thermal de Broglie wavelength dB is a measure of the thermodynamic uncertainty in 
the localization of a particle of mass M with the average thermal momentum. Thus, dB is 
given by  

 dB = h/[3MkT]1/2  (1) 

where k is Boltzmann’s constant. Equation (1) shows that at a certain low temperature T 
or/and for a small mass M, dB may be spread over great distances. In order to determine 
the critical temperature Tc at which the addition of more particles leads to BEC it is sufficient 
to calculate a certain critical density n = N/V, where N is the number of bosons. This 
calculation is performed using Bose-Einstein statistics; according to (Silvera, 1997) and 
considering the mass of the boson (Cooper pair) M = 2m*, where m* is the effective mass of 
the electron, we obtain 

 Tc = 3.31h2n2/3/(42kM) (2) 

The first application of BEC theory to explain 4He superfluidity was realized in 1938 
(London, 1938). In an important paper (Blatt, 1962), the BEC approach has been extended to 
give the same results predicted by BCS theory. Thus, it is reasonable to conclude that the 
conventional n-type superconductivity in metals (explained by BCS theory) is a special case 
that can also be considered as a phenomenon of BEC of Cooper pairs. 
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There are three possibilities of occurrence of BEC: (a) BEC involving just bosons, (b) BEC 
involving just fermions, and (c) BEC involving bosons and fermions simultaneously. In (a) 
there is a direct BEC without the need of an interaction to bind the bosons. However, in the 
cases (b) and (c) BEC is possible only indirectly in two steps: in the first step it occurs the 
binding between pairs of fermions giving rise to bosons and, in the second step, BEC of 
these bosons may occur. 
Because liquid 4He is a system of bosons, the condensation of 4He is a BEC of type (a). 
Superfluidity of 3He (Lee, 1997) is an example of BEC of type (b). Because liquid 3He is a 
system of fermions, in order to occur BEC, two particles must be binded to form a boson 
and, in he next step, a BEC of these bosons may occur. Another example of BEC of type 
(b) is the phenomenon of superconductivity in metals and alloys. In the last case, BCS 
theory (Bardeen et al., 1957) is a successful theory to explain the microscopic mechanisms 
of superconductivity in metals, and in this case, Equation (2) is not appropriate to 
calculate the critical temperature Tc because we cannot predict the density n of the bosons 
formed exchanging phonons. In BCS theory, the critical temperature Tc is the temperature 
at which a great number of Cooper pairs are formed by exchanging phonons. When the 
density n of pairs formed are sufficiently high it is possible to occur a Bose-Einstein 
condensation. For example, in pure copper the density n of Cooper pairs formed are not 
sufficiently high, thus pure copper cannot become superconductor even at temperatures 
in the neighborhood of 0 K. 
We study now the possibility of occurrence of a Bose-Einstein condensation in an oxide 
material. If possible, this phenomenon should be a BEC of type (c) just mentioned, that is, 
the mechanism should involve bosons and fermions simultaneously. In order to verify if 
BEC is possible in oxide superconductors, it is sufficient to calculate the order of magnitude 
of the critical temperature Tc using Equation (2). According to Table 1 in the reference (De 
Jongh, 1988), in a p-type copper oxide superconductor, a typical order of magnitude of the 
carrier density is given by n = 1021/cm3. Considering an effective mass m* = 12m, where m 
is the rest mass of the electron, we obtain by Equation (2) the following approximated value: 
Tc = 100 K. This calculation is very crude because Equation (2) is based on an isotropic 
model of an ideal Bose gas. However, oxide superconductors are not isotropic; on the other 
hand, pair of electrons (bipolarons) in oxide materials are not an ideal Bose gas because we 
must consider Coulomb interactions. But the crude calculation based on Equation (2) is 
sufficient to show that BEC in oxide superconductors cannot be ruled out. A more 
appropriate formula to calculate Tc (supposing BEC) has been derived in (Alexandrov & 
Edwards, 2000). 
On the basis of the crude calculation based on Equation (2) we will now discuss the 
possibility of room temperature superconductivity. Using the same above mentioned values 
and considering a carrier density greater than n = 1021/cm3 we conclude that the critical 
temperature Tc could be enhanced. For example, considering m* = 12m and a carrier density 
n = 3 1021/cm3, we obtain a critical temperature Tc = 300 K. Thus, if we apply Equation (2), 
it is reasonable to conclude that room temperature superconductivity is possible. 
According to the type of charge carriers, superconductors can be classified in two types: n-
type superconductors, when the charge carriers are Cooper pairs of electrons and p-type 
superconductors, when the charge carriers are Cooper pairs of holes. 
We claim that only p-type materials should be considered in the researches to synthesize a 
room temperature superconductor. We claim that n-type materials are not qualified to 
obtain a room temperature superconductor, because in an n-type material the carriers are 
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electrons and these electrons should be binded in order to form bosons. On the other hand, 
due to Coulomb interactions, it is very difficult to accept a situation of an ideal Bose gas of 
electrons pairs in order to apply Equation (2). However, considering p-type materials, there 
are two types of interactions: Coulomb repulsions between electrons, but Coulomb 
attractions between electrons and holes. Thus, it is reasonable to accept an approximation 
considering an ideal Bose gas of Cooper pairs of holes in order to apply Equation (2). On the 
other hand, Bose-Einstein condensation is not restricted only to an ideal Bose gas of bosons 
(Blatt, 1962). The phenomenon of Bose-Einstein condensation could also be extended to a 
real Bose gas. It is worthwhile to develop a complete theory to extend the predictions of BEC 
to a real Bose gas. A fermion-boson mixture of unpaired electrons coexisting and interacting 
with Cooper pairs treated as real two-electrons and two-holes has been proposed in a letter 
(Tolmachev, 2000). Finally, considering the simple calculation based on Equation (2) we 
conclude that the possibility of room temperature superconductivity cannot be ruled out. 

3. Superconductors containing oxygen 
The most relevant metallic superconductors are pure metals and alloys. BCS theory is 
appropriate to explain the microscopic mechanisms of superconductivity in pure metals and 
alloys. However, a great number of oxide materials may become non-metallic 
superconductors. It seems that BCS theory is not appropriate to explain the microscopic 
mechanisms in superconductors containing oxygen. An interesting review about oxide 
superconductors is found in the references (Cava, 2000). The history of oxide 
superconductors begins in 1933 with the synthesis of the superconductor NbO; with Tc = 1.5 
K (Sleight, 1995). In 1975 it was discovered the oxide superconductor BaPb0.7Bi0.3O3 (Sleight 
et al., 1975) with Tc = 13 K.  
 

Superconductor Year TC Reference 
NbO 1933 1.5 Sleight, 1995 

KxWO3 1967 6.0 Remeika et al., 1967 
LiTi2 + xO4 1973 1.2 Johnston et al., 1973 

BaPb1 - xBi xO3 1975 13 Sleight et al., 1975 
La2 - xBaxCuO4 1986 30 Bednorz & Müller, 1986 
YBa2Cu3O7 - x 1987 90 Wu et al., 1987 
Ba1 - xKxBiO3 1988 30 Cava et al.,1988 

BiSrCaCu2O6 + x 1988 105 Maeda et al., 1988 
Tl2Ba2Ca2Cu3O9 + x 1988 110 Shimakawa et al., 1988 
HgBa2Ca2Cu3O8 + x 1993 130 Schilling & Cantoni, 1993 

NdFeAsO1-x 2008 54 Yang et al., 2008 

Table 1. List of the most relevant superconductors containing oxygen in chronological order. 

In 1986, the oxide superconductor Ba0.15La1.85CuO4 with Tc = 30 K has been discovered 
(Bednorz & Müller, 1986). The expression “high-Tc superconductors” has been generally 
used in the literature to denote superconductors with critical temperatures higher than 30 K. 
After this famous discovery many cuprate high-Tc superconductors have been synthesized. 
The cuprate superconductor HgBa2Ca2Cu3O8 + x (Hg-1223) has the highest critical 
temperature (Tc = 135 K) at 1 atm (Schilling & Cantoni, 1993). In 2008, a new type of high-Tc 
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superconductor containing iron (without copper) has been discovered (Yang et al., 2008). In 
Table 1, we list in chronological order the most important discoveries of superconductors 
containing oxygen. In Table 1, Tc is expressed in Kelvin and x is a variable atomic fraction of 
the doping element. 

4. Valence skip and double valence fluctuations 
What is the principal feature observed in all superconductors listed in Table 1? It is easy to 
verify that all metals used in the synthesis of superconductors containing oxygen have 
mixed oxidation states. For example, we can verify that in the superconductor NbO, Nb may 
have the oxidation states Nb(+III) and Nb(+V). In the bronze superconductor KxWO3, W 
may have the oxidation states W(+IV) and W(+VI). In the superconductor LiTi2 + xO4, Ti may 
have the oxidation states Ti(+II) and Ti(+IV). In the superconductor BaPb1 - xBixO3, Pb may 
have the oxidation states: Pb(+II) and Pb(+IV) and Bi may have the oxidation states Bi(+III) 
and Bi(+V). Finally, we verify that in the copper oxide superconductors listed in Table 1, Cu 
may have the oxidation states Cu(+I) and Cu(+III). 
Note also that in the superconductor NdFeAsO1-x, an example of the recent discovery of 
iron-based superconductors (Yang et al., 2008), we can verify that Fe may have the oxidation 
states Fe(+II) and Fe(+IV) and As may have the oxidation states As(+III) and As(+V). 
According to a number of authors the probable existence of double charge fluctuations in 
oxide superconductors is very likely (Callaway et al., 1987; Foltin, 1988; Ganguly & Hegde, 
1988; Varma, 1988). Spectroscopic experiments (Ganguly & Hegde, 1988), indicate that 
double charge fluctuations is a necessary, but not sufficient, criterion for superconductivity. 
We argue that these charge fluctuations should involve paired electrons hoping from ions 
(or atoms) in order to occupy empty levels. That is, our basic phenomenological hypothesis 
is that the electrons involved in the hopping mechanisms might be paired electrons coming 
from neighboring ions or neighboring atoms. 
The discovery of Fe-based high-Tc superconductors (Yang et al., 2008) has reopened the 
hypothesis of spin fluctuations for the microscopic mechanisms of high-Tc 
superconductivity. However, it is interesting to note that Fe may have the oxidation states 
Fe(+II) and Fe(+IV). Thus, the conjecture of double charge fluctuations cannot be ruled out 
in the study of the microscopic mechanisms in all Fe-based high-Tc superconductors. It is 
worthwhile to study the competition between double charge fluctuations and spin 
fluctuations in order to identify which phenomenon is more important in the microscopic 
mechanisms responsible for the condensation of the superconducting state of Fe-based 
materials. 
What is valence skip? About fifteen elements in the periodic table skip certain valences in all 
compounds they form. For example, it is well known that the stable oxidation states of 
bismuth are Bi(+III) and Bi(+V). The oxidation state Bi(+IV) is not stable. If the state Bi(+IV) 
is formed, it occurs immediately a disproportionation, according to the reaction: 2Bi(+IV) = 
Bi(+III) + Bi(+V). In the compound BaBiO3, the formal valence Bi(+IV) is understood as an 
equilibrium situation involving a mixture of equal amounts of the ions Bi(+III) and Bi(+V). 
Other important examples of elements with valence skip are As, Pb and Tl. In (Varma, 1988) 
there is an interesting discussion about the microscopic physics responsible for the 
phenomenon of valence skip. The electronic states of valence-skipping compounds are 
described in a conference paper (Hase & Yanagisawa, 2008). Elements with valence skip, 
like Bi and Pb, are the most appropriate elements to study the hypothesis of double charge 
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electrons and these electrons should be binded in order to form bosons. On the other hand, 
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may have the oxidation states W(+IV) and W(+VI). In the superconductor LiTi2 + xO4, Ti may 
have the oxidation states Ti(+II) and Ti(+IV). In the superconductor BaPb1 - xBixO3, Pb may 
have the oxidation states: Pb(+II) and Pb(+IV) and Bi may have the oxidation states Bi(+III) 
and Bi(+V). Finally, we verify that in the copper oxide superconductors listed in Table 1, Cu 
may have the oxidation states Cu(+I) and Cu(+III). 
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double charge fluctuations is a necessary, but not sufficient, criterion for superconductivity. 
We argue that these charge fluctuations should involve paired electrons hoping from ions 
(or atoms) in order to occupy empty levels. That is, our basic phenomenological hypothesis 
is that the electrons involved in the hopping mechanisms might be paired electrons coming 
from neighboring ions or neighboring atoms. 
The discovery of Fe-based high-Tc superconductors (Yang et al., 2008) has reopened the 
hypothesis of spin fluctuations for the microscopic mechanisms of high-Tc 
superconductivity. However, it is interesting to note that Fe may have the oxidation states 
Fe(+II) and Fe(+IV). Thus, the conjecture of double charge fluctuations cannot be ruled out 
in the study of the microscopic mechanisms in all Fe-based high-Tc superconductors. It is 
worthwhile to study the competition between double charge fluctuations and spin 
fluctuations in order to identify which phenomenon is more important in the microscopic 
mechanisms responsible for the condensation of the superconducting state of Fe-based 
materials. 
What is valence skip? About fifteen elements in the periodic table skip certain valences in all 
compounds they form. For example, it is well known that the stable oxidation states of 
bismuth are Bi(+III) and Bi(+V). The oxidation state Bi(+IV) is not stable. If the state Bi(+IV) 
is formed, it occurs immediately a disproportionation, according to the reaction: 2Bi(+IV) = 
Bi(+III) + Bi(+V). In the compound BaBiO3, the formal valence Bi(+IV) is understood as an 
equilibrium situation involving a mixture of equal amounts of the ions Bi(+III) and Bi(+V). 
Other important examples of elements with valence skip are As, Pb and Tl. In (Varma, 1988) 
there is an interesting discussion about the microscopic physics responsible for the 
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described in a conference paper (Hase & Yanagisawa, 2008). Elements with valence skip, 
like Bi and Pb, are the most appropriate elements to study the hypothesis of double charge 
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fluctuations proposed in this chapter. It has been claimed that all elements with valence skip 
may be used in the synthesis of superconductors (Varma, 1988). 

5. Oxygen doping by diffusion 
The most relevant doping procedures used for the synthesis of cuprate superconductors 
have been described in a review article (Rao et al., 1993). Historically, the first synthesis of a 
high-Tc oxide superconductor was the copper oxide BaxLa2-xCuO4 (Bednorz & Muller, 1986). 
This superconductor is synthesized by doping the parent material La2CuO4 with Ba atoms. 
Soon after this discovery, it was realized (Schirber et al., 1988) that doping the parent 
material La2CuO4 with oxygen, without the introduction of any Ba atomic fraction x, it is 
also possible to synthesize the superconductor La2CuO4+x. Thus, in this case, we conclude 
that the introduction of oxygen is responsible for the doping mechanism of the parent 
material La2CuO4 (Schirber et al., 1988). 
Oxide materials may become superconductors when a parent material is doped by the 
traditional doping mechanism with cation substitution or by a doping mechanism based on 
oxygen nonstoichiometry (De Jongh, 1988). If a certain oxide contains a metal with mixed 
oxidation numbers, by increasing (or decreasing) the oxygen content, the metal may be 
oxidized (or reduced) in order to maintain charge neutrality. Therefore, the synthesis of p-
type superconductors may be obtained by doping the parent materials with an excess of 
oxygen atoms and the synthesis of n-type superconductors may be obtained by doping the 
parent materials with a deficiency of oxygen atoms. 
The most famous example of oxygen doping is provided by the family of p-type oxide 
superconductors Y-Ba-Cu-O. It is well known that YBa2Cu3O6+x, considering compositions x 
between x = 0.5 and x = 0.9, are superconductors, and with a maximum Tc corresponding to 
a composition x = 0.9. An important example of n-type superconductor is provided by the 
recent discovery of the superconductor GdFeAsO1-x, a high-Tc superconductor with oxygen-
deficiency; it has been shown that oxygen doping is a good and reliable procedure for the 
synthesis of a new family of iron-based high-Tc superconductors (Yang et al., 2008).  
In the present chapter we shall study only oxygen doping of p-type oxide superconductors. 
It is well known that high-Tc superconductors are generally synthesized when a parent 
material is doped by the traditional doping mechanism with cation (or anion) substitution. 
But it seems that doping mechanisms based on oxygen nonstoichiometry are more 
appropriate than doping mechanisms based on cation (or anion) substitutions. However, 
doping mechanisms based on oxygen nonstoichiometry are not completely clear. In this 
chapter we give some ideas to study the microscopic mechanisms associated with oxygen 
doping of p-type oxide superconductors. 
A normal atmosphere contains about 21% of O2, 78% of N2, and 1% of other gases. Consider 
an oxide material. When it is heated in a furnace containing atmospheric air at ambient 
pressure or containing an oxygen reach atmosphere, due to diffusion, some O2 molecules 
may be absorbed in the bulk of the solid material. Thus, oxygen nonstoichiometry is a 
necessary consequence of heating processes of oxide materials submitted to ambient 
pressure or submitted to atmospheres containing an oxygen excess. The diffusion of oxygen 
in binary metal oxides has been studied in a book (Kofstad, 1983). 
According to molecular orbital (MO) theory (Petrucci et al., 2000), to obtain the molecular 
orbital electronic configuration of O2 molecule it is necessary to combine the atomic orbitals 
of two O atoms. We obtain the following molecular orbital electronic configuration of O2 
molecules: 
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[MO configuration of O2]: [inner electrons](2s)2(*2s)2(2p)4(2p)2(*2p)2 
Considering the above MO configuration of O2 we conclude that there are two unpaired 
electrons in the orbital *2p. By diffusion and solid state reaction, O2 molecules may oxidize 
metal atoms or ions in the bulk material. Because there are two unpaired electrons, the O2 
molecule may pick two electrons in the neighboring metal ions, becoming a peroxide ion 
O2(-II) species. Our hypothesis of formation of peroxide ion species in oxide 
superconductors is supported by a great number of spectroscopic measurements (Rao et al., 
1987; Sarma et al., 1987; Dai et al., 1988; Mehta et al., 1992). 
In order to understand the microscopic mechanisms of oxygen doping, we give an example. 
Consider an oxide material containing bismuth (without copper); for instance, consider 
BaBiO3. As we have stressed in Section 4, the bismuth stable oxidation states are Bi(+III) and 
Bi(+V). When an oxygen molecule reacts with a Bi(+III) ion, it is reasonable to suppose that 
this ion gives two electrons to the O2 molecule, that is, we may write the following reaction: 

O2 + Bi(+III)  O2(-II) + Bi(+V) 

Considering this oxidation reaction we conclude that the formation of the peroxide species 
O2(-II) corresponds to the creation of a double hole. In many oxide compounds the electrons 
or holes may be considered to be localized at lattice atoms forming lattice defects. In such a 
case, we may suppose that p-type conduction may involve hopping of electrons from site to 
site (Kofstad, 1983). Therefore, in the bismuth example just mentioned, we claim that 
conductivity (and superconductivity) may be explained by hopping of electron pairs that 
jump from neighboring sites to occupy hole pairs. 
It is well known that for p-type superconductors the optimal oxygen doping of high-Tc 
oxide superconductors corresponds to a certain critical hole content. An under-doped 
superconductor is synthesized when the hole content is less than this critical value and an 
over-doped superconductor is synthesized when the hole content is greater than this critical 
value. The prediction of the optimal doping is an unresolved issue. In the next Section we 
propose a simple model to estimate the optimal doping of p-type oxide superconductors.  

6. Optimal doping of p-type oxide superconductors containing bismuth 
without copper 
Our basic hypothesis is that the existence of double charge fluctuations involving paired 
electrons may be a key to study the microscopic mechanisms in oxide superconductors. The 
essential concept in this hypothesis is that the hopping mechanism involves two paired 
electrons, instead of the hopping of a single electron. Our hypothesis may be easily applied 
in the oxide superconductors containing Bi (without Cu) because, in this case, it is well 
known that Bi (+III) and Bi (+V) are the only stable oxidation states for the Bi ions. Thus, 
double charge fluctuations may occur between the ions Bi (+III) and Bi (+V). In this Section 
we propose a simple method to calculate the optimal doping of oxide superconductors 
containing bismuth without copper and in the next Section we consider oxide 
superconductors containing copper without bismuth. 
What should be the ideal chemical doping of oxide p-type superconductors containing 
bismuth without copper in order to obtain the maximum value of Tc? This optimal doping 
should be obtained by cation substitution or by increasing the oxygen content in the 
material. 
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[MO configuration of O2]: [inner electrons](2s)2(*2s)2(2p)4(2p)2(*2p)2 
Considering the above MO configuration of O2 we conclude that there are two unpaired 
electrons in the orbital *2p. By diffusion and solid state reaction, O2 molecules may oxidize 
metal atoms or ions in the bulk material. Because there are two unpaired electrons, the O2 
molecule may pick two electrons in the neighboring metal ions, becoming a peroxide ion 
O2(-II) species. Our hypothesis of formation of peroxide ion species in oxide 
superconductors is supported by a great number of spectroscopic measurements (Rao et al., 
1987; Sarma et al., 1987; Dai et al., 1988; Mehta et al., 1992). 
In order to understand the microscopic mechanisms of oxygen doping, we give an example. 
Consider an oxide material containing bismuth (without copper); for instance, consider 
BaBiO3. As we have stressed in Section 4, the bismuth stable oxidation states are Bi(+III) and 
Bi(+V). When an oxygen molecule reacts with a Bi(+III) ion, it is reasonable to suppose that 
this ion gives two electrons to the O2 molecule, that is, we may write the following reaction: 

O2 + Bi(+III)  O2(-II) + Bi(+V) 

Considering this oxidation reaction we conclude that the formation of the peroxide species 
O2(-II) corresponds to the creation of a double hole. In many oxide compounds the electrons 
or holes may be considered to be localized at lattice atoms forming lattice defects. In such a 
case, we may suppose that p-type conduction may involve hopping of electrons from site to 
site (Kofstad, 1983). Therefore, in the bismuth example just mentioned, we claim that 
conductivity (and superconductivity) may be explained by hopping of electron pairs that 
jump from neighboring sites to occupy hole pairs. 
It is well known that for p-type superconductors the optimal oxygen doping of high-Tc 
oxide superconductors corresponds to a certain critical hole content. An under-doped 
superconductor is synthesized when the hole content is less than this critical value and an 
over-doped superconductor is synthesized when the hole content is greater than this critical 
value. The prediction of the optimal doping is an unresolved issue. In the next Section we 
propose a simple model to estimate the optimal doping of p-type oxide superconductors.  

6. Optimal doping of p-type oxide superconductors containing bismuth 
without copper 
Our basic hypothesis is that the existence of double charge fluctuations involving paired 
electrons may be a key to study the microscopic mechanisms in oxide superconductors. The 
essential concept in this hypothesis is that the hopping mechanism involves two paired 
electrons, instead of the hopping of a single electron. Our hypothesis may be easily applied 
in the oxide superconductors containing Bi (without Cu) because, in this case, it is well 
known that Bi (+III) and Bi (+V) are the only stable oxidation states for the Bi ions. Thus, 
double charge fluctuations may occur between the ions Bi (+III) and Bi (+V). In this Section 
we propose a simple method to calculate the optimal doping of oxide superconductors 
containing bismuth without copper and in the next Section we consider oxide 
superconductors containing copper without bismuth. 
What should be the ideal chemical doping of oxide p-type superconductors containing 
bismuth without copper in order to obtain the maximum value of Tc? This optimal doping 
should be obtained by cation substitution or by increasing the oxygen content in the 
material. 
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Let us first suppose equal amounts of the ions Bi (+III) and Bi (+V). In this case the formal 
oxidation state of bismuth should be Bi (+IV). Thus, charge fluctuations should be balanced 
and the formation of holes is very difficult. 
For example, it is well known that BaBiO3 is an insulator because in this material the formal 
oxidation state of bismuth is Bi (+IV). However, by doping BaBiO3 by cation substitution or 
by increasing the oxygen content a superconductor may be obtained. Chemical doping may 
destroy the balance between the ions Bi (+III) and Bi (+V). If the ions Bi (+V) are increased, it 
is possible to create holes. It is reasonable to suppose that the maximum concentration for 
optimal doping should correspond to a ratio [(Bi(+V) ions)/(Bi(+III) ions)] = 2, that is, the 
optimal concentration of the ions Bi (+V) should be the double of the concentration of the 
ions Bi (+III). Why we have proposed the ratio [(Bi(+V) ions)/(Bi(+III) ions)] = 2 for optimal 
doping? It is well known that Tc decreases when the hole concentration is higher than a 
certain critical concentration (Zhang & Sato, 1993). This important property is the 
nonmonotonic dependence of Tc on the carrier concentration, a high-Tc characteristic feature 
of all oxide superconductors. If the concentration of the ions Bi (+V) are further increased 
(and the concentration of the ions Bi (+III) are further decreased), the material becomes 
overdoped and Tc decreases. Thus, for optimal doping, the bismuth ion concentrations 
should be: (2/3)Bi (+V) and (1/3)Bi (+III). In the next section we propose an analogous 
simple model to estimate the optimal doping of p-type copper oxide superconductors 
(without bismuth). 
Now we apply the above simple model to estimate the optimal doping of p-type oxide 
superconductors containing bismuth without copper. As an example, we apply our 
hypothesis to the material Ba0.6K0.4BiOx, a famous oxide superconductor without copper, 
with Tc approximately equal to 30 K (Cava et al., 1988). 
We shall suppose for the Bi ions the proportionality assumed in the model just suggested, 
that is, for optimal doping, we assume that the relative concentrations should be given by: 
(2/3)Bi(+V) and (1/3)Bi(+III). Considering the oxidation states Ba(+II) and K(+I) and using 
the charge neutrality condition, we have: 

 1.2 + 0.4 + (1/3)(3) + (2/3)(5) – 2x = 0 (3) 

From Equation (3) we obtain the result: 

 x = 2.97  (4) 

The result (4) is in good agreement with the value (x = 3) reported in the reference (Cava et 
al., 1988). 
In the next section we extend the simple model just proposed to estimate the optimal doping 
of p-type oxide superconductors containing copper without bismuth. 

7. Optimal doping of p-type oxide superconductors containing copper 
without bismuth 
To apply our hypothesis to a copper oxide superconductor (without Bi) it should be 
necessary to suppose the existence of Cu (+I) because we are assuming double charge 
fluctuations between the states Cu(+I) and Cu(+III). In p-type Cu oxide superconductors, 
the existence of the oxidation state Cu(+III) is obvious by the consideration of charge 
neutrality. Thus, from an experimental point of view, it is very important to verify if the 
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oxidation state Cu(+I) is present in the high-Tc Cu oxide superconductors. The probable 
existence of the states Cu(+I) and Cu(+III) has been verified in the works (Karppinen et al., 
1993; Sarma & Rao, 1988). 
It is generally believed that the microscopic mechanisms in a cuprate superconductor 
depends only on the ions Cu(+II) and Cu(+III), without the presence of the ions Cu(+I). 
Let us suppose that the hopping mechanism involves just a single electron between 
Cu(+II) and Cu(+III); if this single charge fluctuation would be responsible for 
superconductivity, we should conclude that the enhancement of Cu(+III) ions should 
produce a continuous enhancement of the critical temperature Tc. However, it is well 
known that Tc decreases when the hole concentration is higher than a certain 
concentration (Zhang & Sato, 1993). This important property is the nonmonotonic 
dependence of Tc on the carrier concentration, a high-Tc characteristic feature of all oxide 
superconductors. Thus, by this reasoning and considering the experimental results 
(Karppinen et al., 1993; Sarma & Rao, 1988), we can accept the presence of the mixed 
oxidation states Cu(+I), Cu(+II) and Cu(+III) in the copper oxide superconductors. On the 
other hand, this conjecture is supported if we consider the copper disproportionation 
reaction (Raveau et al, 1988): 2Cu(+II) = Cu(+I) + Cu(+III). 
What should be the optimal chemical doping of Cu oxide superconductors in order to obtain 
the maximum value of Tc? Initially, considering the disproportionation reaction (Raveau et 
al, 1988): 2Cu(+II) = Cu(+I) + Cu(+III), we may suppose an equal probability for the 
distribution of the copper ions states Cu (+I), Cu (+II) and Cu (+III). Thus, the initial 
concentrations of these ions should be (1/3)Cu(+I), (1/3)Cu(+II) and (1/3)Cu(+III). 
However, we may suppose that by oxidation reactions, (1/3)Cu(+II) ions may be completely 
converted to (1/3)Cu(+III) ions. In this case, the maximum concentration of the Cu(+III) ions 
should be: (1/3) + (1/3) = (2/3). Thus, the optimal doping should correspond to the 
following maximum relative concentrations: (1/3)Cu(+I) ions and (2/3)Cu(+III) ions. That 
is, the optimal doping, should be obtained supposing the following concentration ratio: 
[(Cu(+III) ions)/(Cu(+I) ions)] = 2. 
We apply this hypothesis to estimate the optimal doping of the famous cuprate 
superconductor YBa2Cu3Ox, where x is a number to be calculated. Using the relative values: 
(1/3) for Cu(+I) ions and (2/3) for Cu(+III) ions, we may write the formula unit: 
YBa2Cu1(+I)Cu2(+III)Ox. Considering the oxidation states Y(+III), Ba(+II) and O(-II) and 
using the charge neutrality condition, we get:  

 3 + (2  2) + (1  1) + (2  3) – 2x = 0  (5) 

From Equation (5) we obtain:  

 x = 7.0 (6) 

The result (6) is in good agreement with the result (x = 6.9) reported in (Kokkallaris et al., 
1999). 
Using the simple model just described, we estimate the necessary oxygen content to 
obtain the optimal doping of the most relevant p-type cuprate superconductors. It is 
important to note that the experimental determination of the oxygen content is a very 
difficult task. In Table 2 we have selected a number of works containing this experimental 
information. 
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is, the optimal doping, should be obtained supposing the following concentration ratio: 
[(Cu(+III) ions)/(Cu(+I) ions)] = 2. 
We apply this hypothesis to estimate the optimal doping of the famous cuprate 
superconductor YBa2Cu3Ox, where x is a number to be calculated. Using the relative values: 
(1/3) for Cu(+I) ions and (2/3) for Cu(+III) ions, we may write the formula unit: 
YBa2Cu1(+I)Cu2(+III)Ox. Considering the oxidation states Y(+III), Ba(+II) and O(-II) and 
using the charge neutrality condition, we get:  

 3 + (2  2) + (1  1) + (2  3) – 2x = 0  (5) 

From Equation (5) we obtain:  

 x = 7.0 (6) 

The result (6) is in good agreement with the result (x = 6.9) reported in (Kokkallaris et al., 
1999). 
Using the simple model just described, we estimate the necessary oxygen content to 
obtain the optimal doping of the most relevant p-type cuprate superconductors. It is 
important to note that the experimental determination of the oxygen content is a very 
difficult task. In Table 2 we have selected a number of works containing this experimental 
information. 
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Superconductor Predicted Measured REFERENCE 
Ba0.15La1.85CuOx x = 4.1 x = 4.0 Bednorz & Müller, 1986 

La2CuOx x = 4.2 x = 4.1 Schirber et al., 1988 
YBa2Cu3Ox x = 7.0 x = 6.9 Kokkallaris et al.,1999 
YBa2Cu4Ox x = 8.2 x = 8.0 Rao et al., 1993 

Sr2CuOx x = 3.17 x = 3.16 Hiroi et al., 1993 
HgBa2Ca2Cu3Ox x = 8.5 x = 8.4 Hung et al., 1997 

Table 2. Comparison between the values of oxygen content of copper oxide superconductors 
(not containing Bi) predicted by our simple model and the experimental values reported in 
the literature. 

According to our model, we have used for the copper ions the following relative values: 
(1/3) for Cu(+I) ions and (2/3) for Cu(+III) ions. For the other elements in Table 2, we have 
considered the following stable oxidation states: La(+III), Y(+III), Ba(+II), Sr(+II), Ca(+II), 
Hg(+II) and O(-II). We verify that the results predicted by the simple model proposed here 
are in good agreement with the experimental results listed in Table 2. 

8. Discussion 
We believe that the simple model proposed in this paper in the case of p-type oxide 
superconductors could also be extended to estimate the optimal doping of n-type oxide 
superconductors. However, in the case of n-type oxide superconductors, the reaction 
produced by oxygen doping is a reduction reaction instead of an oxidation reaction that 
occurs in p-type oxide superconductors. Since we have not found in the literature any 
experimental determination of the oxygen content in the case of n-type oxide 
superconductors we shall not discuss this issue here. This question will be addressed in a 
future work. 
We have proposed a simple model to estimate the relative concentrations of the ions 
involved to estimate the oxygen content for optimal doping of p-type oxide 
superconductors. The predictions based on this model are in good agreement with 
experimental results reported in the literature (Table 2). However, we emphasize that the 
model proposed in this chapter is not a complete theoretical model, it is just a simple 
phenomenological model. 
Our conjectures can be used to explain some remarkable properties of high-Tc 
superconductors: (a) the anisotropy is explained considering that the electrons involved in 
the hopping mechanisms are 3d-electrons (in the case of copper oxide superconductors); (b) 
the order of magnitude of the coherence length (the mean distance between two electron 
pairs) is in accordance with the order of magnitude of the distance between the electron 
clouds of two neighboring ions; (c) the nonmonotonic dependence of Tc on the carrier 
concentration is explained by the hypothesis of double charge fluctuations and the optimal 
doping model proposed in this chapter. 
The theory of bipolaronic superconductivity (Alexandrov & Edwards, 2000) is similar to our 
phenomenological model. In the theory of bipolaronic superconductivity, bipolarons are 
formed supposing a mechanism to bind two polarons. However, by our hypothesis, it is not 
necessary to suppose the formation of bipolarons by the binding of two polarons. We have 
assumed that the preformed pairs are just pairs of electrons existing in the electronic 

 
Room Temperature Superconductivity 

 

11 

configurations of the ions or atoms involved in double charge fluctuations. These pairs 
should be, for example, lone pairs in atoms or ions or pairs of electrons in the electronic 
configurations obtained when Hund’s rule is applied. 

9. Concluding remarks 
In this chapter we have studied the most relevant questions about the microscopic 
mechanisms of superconductivity in oxide materials. Parts of our arguments may be found 
in the list of references in the next Section. However, we believe that our ideas have been 
expressed in a clear form for the questions at hand. 
The simple model described here is not a theoretical model and cannot be used to account 
quantitatively for the microscopic mechanisms responsible for superconductivity in oxide 
materials. However, we believe that our assumptions are helpful to the investigations of the 
microscopic mechanisms in oxide superconductors. We expect that this simple model will 
also be useful to encourage further experimental and theoretical researches in 
superconducting materials. It is worthwhile to study the details of the role of double charge 
fluctuations in the microscopic mechanisms responsible for superconductivity in oxide 
materials. 
We have stressed in Section 2 that in p-type materials there are two types of interactions: 
Coulomb repulsions between electrons, but Coulomb attractions between electrons and 
holes. Thus, considering the possibility of a Bose-Einstein condensation, we claim that only 
p-type materials are qualified to be considered in the researches to obtain a room 
temperature superconductor. 
Finally, we suggest some future researches. It is worthwhile to make experiments to verify if 
this model is correct. Supposing that this simple model works, it would be possible to 
calculate stoichiometric compositions in order to obtain the optimal doping in the researches 
to synthesize new oxide superconductors. It is well known that the most important method 
in semiconductor technology is obtained by ion implantation techniques. Similarly, we 
believe that ion implantation techniques probably will be important in superconductor 
technology as well. Thus, we hope that future researches based on ion implantation 
techniques could open a new route in the synthesis of high-Tc superconductors. These future 
researches, using ion implantation, should take advantage of the possibility of double 
charge hoping mechanisms, instead of single charge hoping mechanisms existing in the case 
of ion implantation in the semiconductor technology. 
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1. Introduction

Two different ground states, superconductivity and magnetism, were believed to be
incompatible, and impossible to coexist in a single compound. The Ce based heavy Fermion
superconductor CeCu2Si2, however, was discovered in the vicinity of magnetic phase Steglich
et al. (1979). This new class of superconductors, which are referred to as "unconventional"
superconductor, demonstrate various novel properties which are not accounted for in the
framework of the BCS theory. Electrons in unconventional superconductors are strongly
correlated through the Coulomb interaction, while strong electron-electron correlations are
not preferable for the conventional BCS superconductors. Modern theory predicts that the
repulsive Coulomb interaction can induce attractive interaction to form superconducting
Cooper pairs as the result of many-body effect
Unconventional superconductivity is often observed nearby a quantum critical point
(QCP), where magnetic instability is suppressed to T = 0 by some physical parameters.
It is invoked that the quantum critical fluctuations, which are enhanced around
QCP, drive the superconducting pairing interactions, instead of the electron-phonon
interaction proposed in the BCS theory. In addition to the novel pairing mechanisms,
unconventional superconductivity shows various novel superconducting states, such as
Fulde-Ferrell-Larkin-Ovchinnikov state and spin-triplet pairing state. Unveiling novel
mechanism and resulting novel properties is the main topic of condensed matter physics.
The cobaltate compound is also classified to an unconventional superconductor when we take
the results of nuclear spin-lattice relaxation rate Fujimoto et al. (2004); Ishida et al. (2003),
and specific heat Yang et al. (2005) measurements into account. A power-law temperature
dependence, observed for both physical quantities in the superconducting state, yields the
existence of nodes (zero gap with sign change) on the superconducting gap, and addresses
the unconventional pairing mechanism. Besides, a magnetic instability was found in the
sufficiently water intercalated cobaltates Ihara, Ishida, Michioka, Kato, Yoshimura, Takada,
Sasaki, Sakurai & Takayama-Muromachi (2005). The close proximity of superconductivity
to magnetism in cobaltates lead us to consider that the same situation as heavy Fermion
superconductors is realized in cobaltates.
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Fig. 1. Crystal structures of non-hydrate, mono-layer hydrate and bilayer hydrate
compounds.

In this chapter, the relationship between superconductivity and magnetism will be explored
from the nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)
experiments on superconducting and magnetic cobaltate. The principles of experimental
technique is briefly reviewed in §3. Then the experimental results are presented in
the following sections, §4 and §5. Finally, we will discuss the superconducting paring
mechanisms in bilayer-hydrate cobaltate, showing the similarity between cobaltate and heavy
Fermion superconductors.

2. Water induced superconductivity in Nax(H3O)zCoO2 · yH2O

Superconductivity in a cobalt oxide compound was discovered in 2003 Takada et al. (2003).
The hydrous cobaltate Nax(H3O)zCoO2 · yH2O demonstrates superconductivity when water
molecules are sufficiently intercalated into the compound by a soft chemical procedure. In
contrast, anhydrous NaxCoO2 does not undergo superconducting transition at least above 40
mK Li et al. (2004). A peculiarity of superconductivity in Nax(H3O)zCoO2 · yH2O compound
is the necessity of sufficient amount of water intercalation between the CoO2 layers, and
depending on the water content, superconducting transition temperatures vary from 2 K to
4.8 K. This compound is the first superconductor which shows superconductivity only in the
hydrous phase.
The cobaltate compound has three types of crystal structures with different water
concentrations as shown in Fig. 1. The parent compound NaxCoO2, which is y = 0
and z = 0, contains the randomly occupied Na layer between the CoO2 layers. When
Na ions are deintercaleted and water molecules are intercalated between the CoO2 layers,
the crystal structure changes to bilayer hydrate (BLH) structure, in which the Na layer
is sandwiched with double water layers to form H2O-Na-H2O block layer. Due to the
formulation of this thick block layer, the CoO2 layers are separated by approximately 10 Å,
and is considered to have highly two-dimensional nature. Superconductivity is observed in
this composition below 5 K. The crystal structure of the superconducting BLH compound
changes to mono-layer hydrate (MLH) structure, which forms Na-H2O mixed layers between
the CoO2 layers containing less water molecules than those of BLH compounds. The water
molecules inserted between CoO2 layers are easily evaporated into the air at an ambient
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condition, seriously affecting the physical properties, namely superconductivity, of BLH
compounds.
A BLH compound left in the vacuum space for three days becomes a MLH compound,
and does not demonstrate superconductivity. Inversely the crystal structure of the MLH
compound stored in high-humid atmosphere comes back to the BLH structure, and
superconductivity recovers, although the transition temperature of the BLH compound
after the dehydration-hydration cycle is lower than that of a fresh BLH compound.
Superconducting and normal-state properties in various kinds of samples have been
investigated with several experimental methods.
In the normal state, spin susceptibility is almost temperature independent above 100 K, which
is a unique behavior irrespective of samples. The sample dependence appears below 100
K, for instance, spin susceptibility increases with decreasing temperature in some samples,
but some do not. From the temperature dependence of spin susceptibility below 100 K,
temperature independent susceptibility χ0, effective moment μeff and Weiss temperature ΘW
were reported to be χ0 = 3.02 × 10−4 emu/mol, μeff ∼ 0.3 μB and ΘW = −37 K by Sakurai
et al. (2003). Different values are reported by Chou, Cho & Lee (2004), where the increase
of susceptibility toward low temperature is hardly observed, and correspondingly, μeff is
rather small. Although the low temperature behavior of susceptibility is strongly sample
dependent, we believe that the slight increase below 100 K is an intrinsic behavior because it
is observed in most of the high-quality powder samples and also observed in the Knight shift
measured by nuclear magnetic resonance Ihara, Ishida, Yoshimura, Takada, Sasaki, Sakurai &
Takayama-Muromachi (2005) and muon spin rotation measurements Higemoto et al. (2004).
In the superconducting state, specific heat is intensively measured by several groups Cao et al.
(2003); Chou, Cho, Lee, Abel, Matan & Lee (2004); Jin et al. (2005); Lorenz et al. (2004); Oeschler
et al. (2005); Ueland et al. (2004); Yang et al. (2005). The specific heat jump at superconducting
transition temperature ΔC/γTc is estimated to be approximately 0.7, which is half of the
BCS value 1.43. The small jump suggests either the quality of the sample is insufficient, or
the superconductivity is an unconventional type with nodes. Below the superconducting
transition temperature, C/T does not follow exponential temperature dependence but follows
power law behavior, which is universally observed in unconventional superconductor. The
power law behavior observed from nuclear-spin-lattice relaxation rate 1/T1 measurement
also supports unconventional superconductivity Fujimoto et al. (2004); Ishida et al. (2003).
The results of 1/T1 measurements are presented in § 4. The values of Sommerfeld constant,
which are 12 ∼ 16 mJ/molK2 depending on samples, are comparable to those of anhydrous
compound Na0.3CoO2 and less than those of mother compound Na0.7CoO2. It is curious
that the BLH compound which has smaller density of state compared to mother compounds
demonstrates superconductivity, while a single crystal of Na0.7CoO2 with larger density of
state is not a superconductor. The hydrous phases ought to have specific mechanisms to
induce superconducting pairs.
The discovery of magnetism in a sufficiently water intercalated BLH compound provides
important information to understand the origin of superconductivity. The superconducting
BLH is located in the close vicinity of magnetic phase, as in the case for heavy Fermion
superconductors. This similarity lets us invoke that the magnetic fluctuations near magnetic
criticality can induce superconductivity in BLH system. The magnetic fluctuations are
examined in detail with nuclear quadrupole resonance and nuclear magnetic resonance
technique in order to unravel the superconducting mechanisms.
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Fig. 1. Crystal structures of non-hydrate, mono-layer hydrate and bilayer hydrate
compounds.
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3. Nuclear magnetic resonance and nuclear quadrupole resonance

3.1 Nuclear quadrupole resonance measurement
In this section, the fundamental principles of nuclear quadrupole resonance (NQR) are
briefly reviewed. Resonance phenomena are observed between split nuclear states and radio
frequency fields with energy comparable to the splitting width. To observe the resonance,
degenerated nuclear spin states have to be split by a magnetic field and/or an electric-field
gradient (EFG). For NQR measurements, a magnetic field is not required because the nuclear
levels are split only by the electric-field gradient. Under zero magnetic field, nuclear levels
are determined by the electric quadrupole Hamiltonian HQ, which describes the interaction
between the electric quadrupole moment of the nuclei Q and the EFG at the nuclear site. In
general, HQ is expressed as

HQ =
νzz

6

[
(3I2

z − I2) +
1
2

η(I2
+ + I2−)

]
,

(
νzz =

6e2qQ
4I(2I − 1)

)
(1)

where eq(= Vzz) and η = (Vyy − Vxx)/Vzz are the EFG along the principal axis (z axis) and
the asymmetry parameter, respectively. The resonant frequency is calculated by solving the
Hamiltonian. From the measurement of these resonant frequencies, νzz and η are estimated
separately. These two quantities provide information concerning with the Co-3d electronic
state and the subtle crystal distortions around the Co site, because the EFG at the Co site
is determined by on-site 3d electrons and ionic charges surrounding the Co site. The ionic
charge contribution is estimated from a calculation, in which the ions are assumed to be point
charges (point-charge calculation). The result of the point-charge calculation indicates that Vzz
is mainly dependent on the thickness of the CoO2 layers, because the effect of the neighboring
O2− ions is larger than that of oxonium ions and Na+ ions that are distant from the Co ions.
Due to the ionic charge contribution, the resonant frequency was found to increase with the
compression of the CoO2 layers.
When small magnetic fields, which are comparable to EFG, are applied, the perturbation
method is no longer valid to estimate the energy level. The resonant frequency should
be computed numerically by diagonalizing Hamiltonian, which includes both Zeeman and
electric quadrupole interactions. The total Hamiltonian is expressed as

H = HQ +HZ (2)

=
νzz

6

[
(3I2

z − I2) +
1
2

η(I2
+ + I2−)

]
− γh̄

(
IzHz + IxHx + IyHy

)
. (3)

The results of a numerical calculation is displayed in Fig. 2, where the parameters νzz, η are
set to be 4.2 MHz and 0.2, respectively. The shift of the resonant frequency depends on the
direction of the small magnetic fields. The magnetic fields parallel to the principal axis of EFG
(z axis) affect the transition between the largest m states, while spectral shift of this transition
is small when the magnetic fields are perpendicular to z axis. In other word, when internal
magnetic fields appear in the magnetically ordered state, the direction of the internal fields can
be determined from the observation of NQR spectrum with the highest resonant frequency
above and below the magnetic transition.

3.2 Nuclear spin-lattice relaxation rate
The nuclear spin system has weak thermal coupling with the electron system. Through the
coupling, heat supplied to the nuclear spin system by radio-frequency pulses flows into the
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electron system, and the excited nuclear spin system relaxes after a characteristic time scale
T1. The nuclear spin-lattice relaxation rate 1/T1 contains important information concerning
with the dynamics of the electrons at the Fermi surface.
When the nuclear spin system is relaxed by the magnetic fields induced by electron spins δH ,
the transition probability is formulated by using the Fermi’s golden rule as

Wm,ν→m+1,ν� =
2π

h̄

∣∣∣�m, ν|γnh̄I · δH |m + 1, ν��
∣∣∣
2
δ(Em + Eν − Em+1 − Eν� ). (4)

With this transition probability, 1/T1 is defined as

1
T1

= ∑
ν,ν�

2Wm,ν→m+1,ν�

(I − m)(I + m + 1)
(5)

=
γ2

n
2

∫ ∞

−∞
dt cos ω0t

〈
δH+(t)δH−(0) + δH−(t)δH+(0)

2

〉
. (6)

Equation (6) is derived by expanding equation (4) with the relation δH+(T) =
exp(iHt/h̄)δH+ exp(−iHt/h̄). When fluctuation-dissipation theorem is adopted to
equation (6), the general representation for 1/T1 is obtained.

1
T1

=
2γ2

nkBT
(γeh̄)2 ∑

q

AqA−q
χ��
⊥(q, ω0)

ω0
. (7)

Here, Aq and χ��
⊥(q, ω) are the coupling constant in q space and the imaginary part of the

dynamical susceptibility, respectively. ω0 in the equation is the NMR frequency, which is
usually less than a few hundreds MHz. The q dependence of Aq is weak, when 1/T1 is
measured at the site where electronic spins are located.
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3. Nuclear magnetic resonance and nuclear quadrupole resonance

3.1 Nuclear quadrupole resonance measurement
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νzz

6

[
(3I2

z − I2) +
1
2

η(I2
+ + I2−)

]
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νzz =

6e2qQ
4I(2I − 1)

)
(1)
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νzz

6

[
(3I2

z − I2) +
1
2

η(I2
+ + I2−)

]
− γh̄

(
IzHz + IxHx + IyHy

)
. (3)

The results of a numerical calculation is displayed in Fig. 2, where the parameters νzz, η are
set to be 4.2 MHz and 0.2, respectively. The shift of the resonant frequency depends on the
direction of the small magnetic fields. The magnetic fields parallel to the principal axis of EFG
(z axis) affect the transition between the largest m states, while spectral shift of this transition
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3.2 Nuclear spin-lattice relaxation rate
The nuclear spin system has weak thermal coupling with the electron system. Through the
coupling, heat supplied to the nuclear spin system by radio-frequency pulses flows into the
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electron system, and the excited nuclear spin system relaxes after a characteristic time scale
T1. The nuclear spin-lattice relaxation rate 1/T1 contains important information concerning
with the dynamics of the electrons at the Fermi surface.
When the nuclear spin system is relaxed by the magnetic fields induced by electron spins δH ,
the transition probability is formulated by using the Fermi’s golden rule as
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Equation (6) is derived by expanding equation (4) with the relation δH+(T) =
exp(iHt/h̄)δH+ exp(−iHt/h̄). When fluctuation-dissipation theorem is adopted to
equation (6), the general representation for 1/T1 is obtained.
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=
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Here, Aq and χ��
⊥(q, ω) are the coupling constant in q space and the imaginary part of the

dynamical susceptibility, respectively. ω0 in the equation is the NMR frequency, which is
usually less than a few hundreds MHz. The q dependence of Aq is weak, when 1/T1 is
measured at the site where electronic spins are located.
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The temperature dependence of 1/T1 has been studied by using the self-consistent
renormalization (SCR) theory Moriya (1991). The dynamical susceptibility assumed in this
theory is formulated as

χ(Q+ q, ω) =
χ(Q)

1 + q2Aχ(Q)− iωq−θCχ(Q)
. (8)

The dynamical susceptibility is expanded in q space around Q, which represents the ordering
wave vector. When the magnetic ordering is ferromagnetic (Q = 0), θ = 1 is used to calculate
χ(q, ω), and when it is anti-ferromagnetic (Q > 0), θ is zero. The parameters A and C are
determined self-consistently to minimize the free energy. The SCR theory is available when
the electronic system is close to a magnetic instability. The temperature dependence of 1/T1
above TC and TN is derived using the renormalized dynamical susceptibility. The results
depend on the dimensionality and the θ values, which determine that the magnetic ordering
is ferromagnetic (FM) or anti-ferromagnetic (AFM). The temperature dependence anticipated
from the SCR theory is listed in Table 1.

2-D 3-D

FM 1/T1 ∝ T/(T − TC)
3/2 1/T1 ∝ T/(T − TC)

AFM 1/T1 ∝ T/(T − TN) 1/T1 ∝ T/(T − TN)1/2

Table 1. Temperature dependence of 1/T1 anticipated from the SCR theory.

In the superconducting state, thermally exited quasiparticles can contribute to the Knight shift
K and the nuclear spin-lattice relaxation rate 1/T1. Since the quasiparticles do not exist within
the superconducting gap, the energy spectrum of the quasiparticle density of state is expressed
as

N(E; θ, φ) =
N0E√

E2 − Δ2(θ, φ)
for E > Δ(θ, φ) (9)

= 0 for 0 < E < Δ(θ, φ), (10)

where E is the quasiparticle energy, which is determined as E2 = ε2 + Δ2, and N0 is the
density of state in the normal state. In order to obtain the total density of state N(E), N(E; θ, φ)
should be integrated over all the solid angles. N(E) is calculated with considering simple
angle dependence for Δ, and the resulting energy spectra are represented in Fig. 3. The angle
dependence of the superconducting gap, which we considered for the calculations, are listed
below.

Δ(θ, φ) = Δ0 for s-wave, (11)

Δ(θ, φ) = Δ0 sin θeiφ for p-wave axial state, (12)

Δ(θ, φ) = Δ0 cos θeiφ for p-wave polar state, (13)

Δ(θ, φ) = Δ0 cos 2φ for two-dimensional d-wave. (14)

The temperature dependence of the Knight shift and the nuclear spin-lattice relaxation rate
in the superconducting state can be computed from the following equations with using N(E)
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calculated above. The temperature dependence of the gap maximum Δ0 was assumed to be
that anticipated from the BCS theory for all the gap symmetry considered above.

K =
Ahf
NμB

χs = − 4μBAhf
N

∫
N(E)

∂ f (E)
∂E

dE, (15)

1
T1

=
πA2

hf
h̄N2

∫ (
1 +

Δ2
0

E2

)
N(E)2 f (E)(1 − f (E))dE. (16)

Here, f (E) is the Fermi distribution function. The term (1+Δ2
0/E2) in equation (16) is referred

to as the coherence factor, which is derived from the spin flip process of unpaired electrons
through the interactions between the unpaired electrons and the Cooper pairs Hebel & Slichter
(1959).
As an initial state |i�, it is assumed that one unpaired electron with up spin and one Cooper
pair have wave numbers k and k�, respectively. After the interaction between these particles,
the wave numbers are exchanged, and the electronic spin of the unpaired electron can flip
with preserving energy. The final state | f � is chosen to be one electron with down spin and
wave number −k�, and one Cooper pair with wave number k. This process can contribute to
the relaxation rate by exchanging the electronic spins and the nuclear spins. The initial state
and the final state are expressed with using the creation and annihilation operators c∗k and ck
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Fig. 3. Quasiparticle density of state in various superconducting states. Finite Ns(E) exists at
the energy lower than maximum gap size, when superconducting gap has nodes. The energy
dependence of Ns(E) at low energy determines the exponents for the power-law temperature
dependence of physical quantities.
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the superconducting gap, the energy spectrum of the quasiparticle density of state is expressed
as
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E2 − Δ2(θ, φ)
for E > Δ(θ, φ) (9)

= 0 for 0 < E < Δ(θ, φ), (10)

where E is the quasiparticle energy, which is determined as E2 = ε2 + Δ2, and N0 is the
density of state in the normal state. In order to obtain the total density of state N(E), N(E; θ, φ)
should be integrated over all the solid angles. N(E) is calculated with considering simple
angle dependence for Δ, and the resulting energy spectra are represented in Fig. 3. The angle
dependence of the superconducting gap, which we considered for the calculations, are listed
below.

Δ(θ, φ) = Δ0 for s-wave, (11)

Δ(θ, φ) = Δ0 sin θeiφ for p-wave axial state, (12)

Δ(θ, φ) = Δ0 cos θeiφ for p-wave polar state, (13)

Δ(θ, φ) = Δ0 cos 2φ for two-dimensional d-wave. (14)

The temperature dependence of the Knight shift and the nuclear spin-lattice relaxation rate
in the superconducting state can be computed from the following equations with using N(E)
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as

|i� =
[√

1 − hk� +
√

hk�c
∗
k�↑c∗−k�↓

]
c∗k↑|ψ0� (17)

| f � =
[√

1 − hk +
√

hkc∗k↑c∗−k↓
]

c∗−k�↓|ψ0�, (18)

where ψ0 represents the vacuum state, and hk is determined as hk = (1 − εk/Ek)/2. The
perturbation Hamiltonian, which flips one electronic spin, is described as

Hp = A ∑
k,k�

1
2

(
I+c∗k�↓ck↑ + I−c∗k�↑ck↓

)
. (19)

The transition probability from |i� to | f � originating from Hp is derived as

∣∣∣� f |Hp|i�
∣∣∣
2
=

1
2

(√
1 − hk

√
1 − hk� +

√
hk
√

hk�
)2

(20)

=
1
2

(
1 +

εkεk�

EkEk�
+

Δ2

EkEk�

)
. (21)

Here, the anticommutation relation of c∗k and Ek =
√

ε2
k + Δ2 are used. The second term of

equation (21) is canceled out when this term is integrated over the Fermi surface, because εk
is the energy from the Fermi energy. The counter process that a down spin flips to an up
spin should also be considered. When this process is included, the transition probability
becomes twice of |� f |Hp|i�|2. The third term Δ2/EkEk� possesses finite value only for an
s-wave superconductor with an isotropic superconducting gap, such as Al metal Hebel &
Slichter (1959). This term vanishes when the superconducting pairing symmetry is p-wave
and two-dimensional d-wave type, which are represented in equations (12), (13) and (14).
In unconventional superconductors with an anisotropic order parameter, the temperature
dependence of 1/T1 shows power-law behavior, because the quasiparticle density of states
exist even below the maximum value of the gap Δ0. The existence of the density of states
in the small energy region originates from the nodes on the superconducting gap. In the
p-wave axial state, where the superconducting gap possesses point nodes at θ = 0, π, N(E)
is proportional to E2 near E = 0. As a result, 1/T1 is proportional to T5 far below Tc. In the
p-wave polar state and the d-wave state, where the superconducting gap possesses line nodes
at θ = π/2 and φ = 0, π/2, respectively, the temperature dependence of 1/T1 becomes T3,
which is derived from the linear energy dependence of N(E) in the low energy region. The
observation of the power-law behavior in the temperature dependence of 1/T1 far below Tc is
strong evidence for the presence of nodes on the superconducting gap, and therefore, for the
unconventional superconductivity.

4. Ground states of Nax(H3O)zCoO2 · yH2O

4.1 Superconductivity
In order to investigate the symmetry of superconducting order parameter, 1/T1 was measured
at zero field using NQR signal of the best superconducting sample with Tc = 4.7 K. The
temperature dependence of 1/T1 observed in the superconducting state shows a power-law
behavior as shown in Fig. 4 Ishida et al. (2003). This power-law decrease starts just below Tc
without any increase due to Hebel-Slichter mechanism, and gradually changes the exponent
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from ∼ 3 at half of Tc to unity below 1 K. The overall temperature dependence can be
sufficiently fitted by the theoretical curve assuming the two-dimensional d-wave pairing
state with the gap size 2Δ/kBTc = 3.5 and residual density of state Nres/N0 ∼ 0.32. The
unconventional superconductivity with nodes on the superconducting gap is concluded for
the superconductivity in BLH compounds. The residual density of states are generated by
tiny amount of impurities inherent in the powder samples, because superconducting gap
diminishes to zero along certain directions in the unconventional superconductors.
Next, the normal-state temperature dependence of 1/T1T for BLH compound is compared
with those of non-superconducting MLH and anhydrous compounds in order to identify
the origin of superconductivity. Surprisingly, 1/T1T in MLH is nearly identical to that in
anhydrous cobaltate, even though the water molecule content is considerably different. In
these compositions, gradual decrease in 1/T1T from room temperature terminates around
100 K, below which Fermi-liquid like Korringa behavior is observed. This gradual decrease
in 1/T1T at high temperatures is reminiscent of the spin-gap formation in cuprate Alloul
et al. (1989); Takigawa et al. (1989). The temperature dependence of the MLH and anhydrous
samples are mimicked by

(
1

T1T

)

PG
= 8.75 + 15 exp

(
−Δ

T

)
(sec−1K−1) (22)

with Δ = 250 K. The value of Δ is in good agreement with the pseudogap energy ∼ 20 meV
determined by photoemission spectroscopy Shimojima et al. (2006). The spin-gap behavior
observed by relaxation rate measurement indicates the decrease in density of states due to the
strong correlations.
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Fig. 4. (a) Temperature dependence of 1/T1 measured at zero magnetic field Ishida et al.
(2003). Red solid curve is a theoretical fit to the date below Tc = 4.7 K, for which line nodes
on the superconducting gap are taken into account. (b) Temperature dependence of 1/T1T in
superconducting BLH compound, MLH compound, and anhydrous cobaltate Na0.35CoO2.
The experimental data of the anhydrous cobaltate was reported by Ning et al. (2004). The
dashed line represents the sample-independent pseudogap contribution, which is expressed
in equation (22). Ihara et al. (2006)
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observed by relaxation rate measurement indicates the decrease in density of states due to the
strong correlations.

1 10 100
0

10

20
T

c

 Bilayer hydrate
 Monolayer hydrate
 unhydrous Na

0.35
CoO

2

1 
/ T

1T
   

( 
s 

-1
 K

-1
 )

T   ( K )

(b)

0.1 1 10 100
0.1

1

10

100

1000

~ T
~ T 3

 

 

1/
T

1 
 (

 s
-1
 )

T  ( K )

T
c
 = 4.7 K

Superconducting
Na

x
(H

3
O)

z
CoO

2
 - yH

2
O

(a)

Fig. 4. (a) Temperature dependence of 1/T1 measured at zero magnetic field Ishida et al.
(2003). Red solid curve is a theoretical fit to the date below Tc = 4.7 K, for which line nodes
on the superconducting gap are taken into account. (b) Temperature dependence of 1/T1T in
superconducting BLH compound, MLH compound, and anhydrous cobaltate Na0.35CoO2.
The experimental data of the anhydrous cobaltate was reported by Ning et al. (2004). The
dashed line represents the sample-independent pseudogap contribution, which is expressed
in equation (22). Ihara et al. (2006)
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In contrast to the sample independent high-temperature behavior, the Korringa behavior
is not observed in the superconducting BLH samples and, instead, magnetic fluctuations
increase approaching to Tc. The sample independent high-temperature behavior and
strongly sample dependent low-temperature behavior lead us to conclude that the pseudogap
contribution robustly exists in all phases, and the increasing part of 1/T1T detected only in
the superconducting BLH sample is responsible for the superconducting pairing interactions.
Multi orbital band structure of cobaltate allows to coexist strongly and weakly correlated
bands in a uniform system. The sophisticated analyses based on the sample dependent 1/T1T
measurements are made in § 5.

4.2 Magnetism
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Fig. 5. (a) Temperature dependence of 1/T1 for magnetic ordering sample Ihara, Ishida,
Michioka, Kato, Yoshimura, Takada, Sasaki, Sakurai & Takayama-Muromachi (2005). Abrupt
increase in relaxation rate was observed at the magnetic ordering temperature TM = 6 K. (b)
The 59Co NQR spectra above and below TM. The clear spectral broadening was observed at
1.5 K. The internal field distribution is estimated from the broadened spectra and exhibited in
the inset.

Immediately after the water filtration for BLH compounds, some samples do not show
superconductivity. Superconductivity appears, even for these samples, after a few days of
duration. NQR experiment on freshly hydrated non-superconducting samples has revealed
that magnetic ordering sets in below TM = 6 K. Ihara, Ishida, Michioka, Kato, Yoshimura,
Takada, Sasaki, Sakurai & Takayama-Muromachi (2005) This magnetism was evidenced from
divergence of 1/T1 at TM (Fig. 5(a)) and NQR spectral broadening (Fig. 5(b)).
In a case of conventional Néel state, in which the same size of ordered moments are arranged
antiferromagnetically, the internal-field strength could be uniquely determined from the split
NQR spectra. The frequency separation between the split spectra is converted to internal field
strength through the frequency-field relation derived from the Hamiltonian introduced by
equation (3). For the cobaltate, however, the NQR spectrum does not split but just broadens
due to the distributing internal fields. We have succeeded in extracting the distribution of the
internal fields by taking the process explained below.
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First, we determined the direction of the internal field to Hint ⊥ c, where the c axis is
the principal axis of the electric field gradient, because the resonance peak arising from
m = ±5/2 ↔ ±3/2 transitions become broader than that arising from m = ±7/2 ↔ ±5/2
transitions. If the internal fields were along the c axis, ±7/2 ↔ ±5/2 transition line would
become the broadest within the three NQR lines. Obviously, this is not a case. The anisotropic
broadening of ±7/2 ↔ ±5/2 transitions is also consistently explained by assuming Hint ⊥ c.
These two results suggest that the internal fields direct to the ab plane.
Next, the intensity of the internal fields is estimated using frequency-field map derived from
equation (3), and shown in Fig. 2. The details of the analyses are described in the separate
paper Ihara et al. (2008). For the estimation of the fraction, we used the NQR spectra in the
frequency range of 7 ∼ 10.5 MHz, because almost linear relationship was observed between
the frequency and internal field in this frequency range. The internal field profile is exhibited
in the inset of Fig. 5.
It is found that the maximum fraction is at zero field, and that rather large fraction is in the
small field region. We also point out a weak hump around 0.15 T, which corresponds to 0.1 μB
when we adopt 1.47 T/μB as the coupling constant Kato et al. (2006). It should be noted that
NQR measurements were performed for Co nuclei, where the magnetic moments are located.
The distribution of the hyperfine fields at the Co site suggests that the size of the ordered
moments has spatial distributions. The magnetic ordering with the modulating ordered
moments is categorized to the spin-density-wave type with incommensurate ordering vector.
In order to investigate the magnetic structure in detail, neutron diffraction measurements are
required.

4.3 Phase diagram
The ground state of Nax(H3O)zCoO2 · yH2O strongly depends on the chemical compositions,
Na ion (x), oxonium ion H3O+ (z) and water molecule (y) contents. The samples evolve
drastically after water intercalation, as the water molecules evaporate easily into the air,
when the samples were preserved in an ambient condition. This unstable nature causes
the sample dependence of various physical quantities. The sample properties of the fragile
BLH compounds have to be clarified in detail both from the microscopic and macroscopic
measurements before the investigation on ground states.
In order to compare the physical properties of our samples to those of others, the
superconducting transition temperatures reported in the literature Badica et al. (2006); Barnes
et al. (2005); Cao et al. (2003); Chen et al. (2004); Chou, Cho, Lee, Abel, Matan & Lee (2004); Foo
et al. (2005; 2003); Ihara et al. (2006); Jin et al. (2003; 2005); Jorgensen et al. (2003); Lorenz et al.
(2004); Lynn et al. (2003); Milne et al. (2004); Ohta et al. (2005); Poltavets et al. (2006); Sakurai
et al. (2005); Schaak et al. (2003); Zheng et al. (2006) are plotted against the c-axis length of
each sample in Fig. 6(a). A relationship was observed between Tc and the c-axis length. The
scattered data points indicate that the c-axis length is not the only parameter that determines
the ground state of the BLH compound. The c-axis length, however, behaves as a dominant
parameter, and can be a useful macroscopic reference to compare the sample properties of
various reports. In the figure, superconductivity seems to be suppressed in some samples with
c ∼ 19.75 Å, probably due to the appearance of magnetism. The magnetism was reported on
samples in the red region Higemoto et al. (2006); Ihara, Ishida, Michioka, Kato, Yoshimura,
Takada, Sasaki, Sakurai & Takayama-Muromachi (2005); Sakurai et al. (2005). We also found,
in some samples, that both the magnetic and superconducting transitions are observed Ihara
et al. (2006). It has not been revealed yet how these two transitions coexist in one sample.
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In contrast to the sample independent high-temperature behavior, the Korringa behavior
is not observed in the superconducting BLH samples and, instead, magnetic fluctuations
increase approaching to Tc. The sample independent high-temperature behavior and
strongly sample dependent low-temperature behavior lead us to conclude that the pseudogap
contribution robustly exists in all phases, and the increasing part of 1/T1T detected only in
the superconducting BLH sample is responsible for the superconducting pairing interactions.
Multi orbital band structure of cobaltate allows to coexist strongly and weakly correlated
bands in a uniform system. The sophisticated analyses based on the sample dependent 1/T1T
measurements are made in § 5.
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Fig. 5. (a) Temperature dependence of 1/T1 for magnetic ordering sample Ihara, Ishida,
Michioka, Kato, Yoshimura, Takada, Sasaki, Sakurai & Takayama-Muromachi (2005). Abrupt
increase in relaxation rate was observed at the magnetic ordering temperature TM = 6 K. (b)
The 59Co NQR spectra above and below TM. The clear spectral broadening was observed at
1.5 K. The internal field distribution is estimated from the broadened spectra and exhibited in
the inset.

Immediately after the water filtration for BLH compounds, some samples do not show
superconductivity. Superconductivity appears, even for these samples, after a few days of
duration. NQR experiment on freshly hydrated non-superconducting samples has revealed
that magnetic ordering sets in below TM = 6 K. Ihara, Ishida, Michioka, Kato, Yoshimura,
Takada, Sasaki, Sakurai & Takayama-Muromachi (2005) This magnetism was evidenced from
divergence of 1/T1 at TM (Fig. 5(a)) and NQR spectral broadening (Fig. 5(b)).
In a case of conventional Néel state, in which the same size of ordered moments are arranged
antiferromagnetically, the internal-field strength could be uniquely determined from the split
NQR spectra. The frequency separation between the split spectra is converted to internal field
strength through the frequency-field relation derived from the Hamiltonian introduced by
equation (3). For the cobaltate, however, the NQR spectrum does not split but just broadens
due to the distributing internal fields. We have succeeded in extracting the distribution of the
internal fields by taking the process explained below.
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First, we determined the direction of the internal field to Hint ⊥ c, where the c axis is
the principal axis of the electric field gradient, because the resonance peak arising from
m = ±5/2 ↔ ±3/2 transitions become broader than that arising from m = ±7/2 ↔ ±5/2
transitions. If the internal fields were along the c axis, ±7/2 ↔ ±5/2 transition line would
become the broadest within the three NQR lines. Obviously, this is not a case. The anisotropic
broadening of ±7/2 ↔ ±5/2 transitions is also consistently explained by assuming Hint ⊥ c.
These two results suggest that the internal fields direct to the ab plane.
Next, the intensity of the internal fields is estimated using frequency-field map derived from
equation (3), and shown in Fig. 2. The details of the analyses are described in the separate
paper Ihara et al. (2008). For the estimation of the fraction, we used the NQR spectra in the
frequency range of 7 ∼ 10.5 MHz, because almost linear relationship was observed between
the frequency and internal field in this frequency range. The internal field profile is exhibited
in the inset of Fig. 5.
It is found that the maximum fraction is at zero field, and that rather large fraction is in the
small field region. We also point out a weak hump around 0.15 T, which corresponds to 0.1 μB
when we adopt 1.47 T/μB as the coupling constant Kato et al. (2006). It should be noted that
NQR measurements were performed for Co nuclei, where the magnetic moments are located.
The distribution of the hyperfine fields at the Co site suggests that the size of the ordered
moments has spatial distributions. The magnetic ordering with the modulating ordered
moments is categorized to the spin-density-wave type with incommensurate ordering vector.
In order to investigate the magnetic structure in detail, neutron diffraction measurements are
required.

4.3 Phase diagram
The ground state of Nax(H3O)zCoO2 · yH2O strongly depends on the chemical compositions,
Na ion (x), oxonium ion H3O+ (z) and water molecule (y) contents. The samples evolve
drastically after water intercalation, as the water molecules evaporate easily into the air,
when the samples were preserved in an ambient condition. This unstable nature causes
the sample dependence of various physical quantities. The sample properties of the fragile
BLH compounds have to be clarified in detail both from the microscopic and macroscopic
measurements before the investigation on ground states.
In order to compare the physical properties of our samples to those of others, the
superconducting transition temperatures reported in the literature Badica et al. (2006); Barnes
et al. (2005); Cao et al. (2003); Chen et al. (2004); Chou, Cho, Lee, Abel, Matan & Lee (2004); Foo
et al. (2005; 2003); Ihara et al. (2006); Jin et al. (2003; 2005); Jorgensen et al. (2003); Lorenz et al.
(2004); Lynn et al. (2003); Milne et al. (2004); Ohta et al. (2005); Poltavets et al. (2006); Sakurai
et al. (2005); Schaak et al. (2003); Zheng et al. (2006) are plotted against the c-axis length of
each sample in Fig. 6(a). A relationship was observed between Tc and the c-axis length. The
scattered data points indicate that the c-axis length is not the only parameter that determines
the ground state of the BLH compound. The c-axis length, however, behaves as a dominant
parameter, and can be a useful macroscopic reference to compare the sample properties of
various reports. In the figure, superconductivity seems to be suppressed in some samples with
c ∼ 19.75 Å, probably due to the appearance of magnetism. The magnetism was reported on
samples in the red region Higemoto et al. (2006); Ihara, Ishida, Michioka, Kato, Yoshimura,
Takada, Sasaki, Sakurai & Takayama-Muromachi (2005); Sakurai et al. (2005). We also found,
in some samples, that both the magnetic and superconducting transitions are observed Ihara
et al. (2006). It has not been revealed yet how these two transitions coexist in one sample.
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The NQR frequency sensitively reflects the crystalline distortions around the Co site, which is
induced by the water intercalation. Therefore, in our phase diagram shown in Fig. 6(b), the
Co-NQR frequency νQ was used as a microscopic reference for the ground states Ihara et al.
(2006). Similar phase diagrams, in which NQR frequency is used as the microscopic reference,
were reported by subsequent experiments Kobayashi et al. (2007); Michioka et al. (2006), and
extended to the higher frequency region. It is empirically shown that the νQ detects the sample
dependence of parameters which are closely related to the formation of superconductivity.
Theoretically, the compression of CoO2 layer along the c axis has been predicted to have a
relation with the formation of superconductivity Mochizuki et al. (2005); Yanase et al. (2005).
However, for the full understanding of the relationship between the ground state of the BLH
compounds and the NQR frequency, the effect of the hole doping to the CoO2 layers has to be
investigated in detail, because the NQR frequency depends also on the concentration of the
on-site 3d electrons in addition to the dominant lattice contributions.

5. Magnetic fluctuations near quantum critical point

5.1 Magnetically ordering regime
In this section, we analyze the magnetic fluctuations of BLH phases in detail. First, we
analyze the temperature dependence of 1/T1T in the magnetically ordering M1 sample,

Fig. 6. Superconducting transition temperature Tc and magnetic transition temperature TM
of various samples reported in the literature Badica et al. (2006); Barnes et al. (2005); Cao et al.
(2003); Chen et al. (2004); Chou, Cho, Lee, Abel, Matan & Lee (2004); Foo et al. (2005; 2003);
Ihara et al. (2006); Jin et al. (2003; 2005); Jorgensen et al. (2003); Lorenz et al. (2004); Lynn et al.
(2003); Milne et al. (2004); Ohta et al. (2005); Poltavets et al. (2006); Sakurai et al. (2005);
Schaak et al. (2003); Zheng et al. (2006). These values are plotted against (a) the c-axis length
and (b) the NQR frequency. The circles and the triangles indicate Tc and TM, respectively.
The down arrow indicates that the superconducting transition was not observed down to 1.5
K. The superconducting transition temperature becomes maximum around c = 19.69 Å. The
magnetic phase appears in the red region, where the c axis is approximately 19.8 Å.
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Fig. 7. (a) Temperature dependence of 1/T1T in magnetically ordering sample (M1 in Fig. 6).
A prominent peak is observed at TM = 6 K. The full lines are the fitting curves for 2-D
antiferromagnetic fluctuations (black) and 3-D antiferromagnetic fluctuations (orange). A
good fit of experimental results to the orange line indicates the 3-D nature of magnetic
fluctuations in BLH compounds Ihara et al. (2006). (b) Sample dependence of 1/T1T on the
samples in the red region in our phase diagram. The full lines are fit to the equation (24). The
fitting parameters for each sample are given in Table. 2.

whose position in our phase diagram is located in Fig. 6(b). The strongly enhanced 1/T1T
in M1 sample is shown in Fig. 7(a) together with the pseudogap behavior of MLH compound.
It is noteworthy that a prominent divergence of 1/T1T at TM = 6 K is observed in M1 sample,
which has the highest NQR frequency among thirteen samples examined. We found that the
diverging 1/T1T in M1 sample could be fitted to a function consisting of two contributions
expressed as (

1
T1T

)

M1
=

(
1

T1T

)

PG
+

20√
T − 6

(sec−1K−1). (23)

The first term on the right-hand side is the pseudogap contribution expressed in equation (22).
The second term represents the magnetic contribution, which gives rise to the magnetic
ordering. The functional form of the magnetic-fluctuations contribution, (T − TM)−1/2, is the
temperature dependence anticipated for the three-dimensional itinerant antiferromagnet in
the framework of the self-consistent renormalization (SCR) theory Moriya (1991), as explained
in §3. The functional form for two-dimensional antiferromagnet, (T − TM)−1, would be more
appropriate if the two-dimensional crystal structure of the BLH compound were taken into
account, but the experimental data cannot be fitted well by the temperature dependence of
2-D antiferromagnet, as shown in Fig. 7(a). The magnetic correlation length is longer than the
neighboring Co-Co distance along c axis, which is approximately 10 Å.
We adopted a fitting function with two fitting parameters, a and θ,

1
T1T

=

(
1

T1T

)

PG
+

a√
T − θ

(24)

to inspect the sample-dependent low-temperature magnetic fluctuations. Here, a is a
proportionality constant related to the band structure at the Fermi level and to the hyperfine
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The NQR frequency sensitively reflects the crystalline distortions around the Co site, which is
induced by the water intercalation. Therefore, in our phase diagram shown in Fig. 6(b), the
Co-NQR frequency νQ was used as a microscopic reference for the ground states Ihara et al.
(2006). Similar phase diagrams, in which NQR frequency is used as the microscopic reference,
were reported by subsequent experiments Kobayashi et al. (2007); Michioka et al. (2006), and
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dependence of parameters which are closely related to the formation of superconductivity.
Theoretically, the compression of CoO2 layer along the c axis has been predicted to have a
relation with the formation of superconductivity Mochizuki et al. (2005); Yanase et al. (2005).
However, for the full understanding of the relationship between the ground state of the BLH
compounds and the NQR frequency, the effect of the hole doping to the CoO2 layers has to be
investigated in detail, because the NQR frequency depends also on the concentration of the
on-site 3d electrons in addition to the dominant lattice contributions.

5. Magnetic fluctuations near quantum critical point

5.1 Magnetically ordering regime
In this section, we analyze the magnetic fluctuations of BLH phases in detail. First, we
analyze the temperature dependence of 1/T1T in the magnetically ordering M1 sample,
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of various samples reported in the literature Badica et al. (2006); Barnes et al. (2005); Cao et al.
(2003); Chen et al. (2004); Chou, Cho, Lee, Abel, Matan & Lee (2004); Foo et al. (2005; 2003);
Ihara et al. (2006); Jin et al. (2003; 2005); Jorgensen et al. (2003); Lorenz et al. (2004); Lynn et al.
(2003); Milne et al. (2004); Ohta et al. (2005); Poltavets et al. (2006); Sakurai et al. (2005);
Schaak et al. (2003); Zheng et al. (2006). These values are plotted against (a) the c-axis length
and (b) the NQR frequency. The circles and the triangles indicate Tc and TM, respectively.
The down arrow indicates that the superconducting transition was not observed down to 1.5
K. The superconducting transition temperature becomes maximum around c = 19.69 Å. The
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fitting parameters for each sample are given in Table. 2.

whose position in our phase diagram is located in Fig. 6(b). The strongly enhanced 1/T1T
in M1 sample is shown in Fig. 7(a) together with the pseudogap behavior of MLH compound.
It is noteworthy that a prominent divergence of 1/T1T at TM = 6 K is observed in M1 sample,
which has the highest NQR frequency among thirteen samples examined. We found that the
diverging 1/T1T in M1 sample could be fitted to a function consisting of two contributions
expressed as (
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The first term on the right-hand side is the pseudogap contribution expressed in equation (22).
The second term represents the magnetic contribution, which gives rise to the magnetic
ordering. The functional form of the magnetic-fluctuations contribution, (T − TM)−1/2, is the
temperature dependence anticipated for the three-dimensional itinerant antiferromagnet in
the framework of the self-consistent renormalization (SCR) theory Moriya (1991), as explained
in §3. The functional form for two-dimensional antiferromagnet, (T − TM)−1, would be more
appropriate if the two-dimensional crystal structure of the BLH compound were taken into
account, but the experimental data cannot be fitted well by the temperature dependence of
2-D antiferromagnet, as shown in Fig. 7(a). The magnetic correlation length is longer than the
neighboring Co-Co distance along c axis, which is approximately 10 Å.
We adopted a fitting function with two fitting parameters, a and θ,
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to inspect the sample-dependent low-temperature magnetic fluctuations. Here, a is a
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27
Unconventional Superconductivity Realized
Near Magnetism in Hydrous Compound Nax(H3O)zCoO2 . yH2O



14 Will-be-set-by-IN-TECH

coupling constant. The other parameter θ is the ordering temperature for the magnetically
ordering samples and the measure of the closeness to the magnetic instability for the samples
without magnetic ordering.

Sample ID c axis (Å) νQ (MHz) Tc (K) TM (K) θ (K) a

SC 19.691 12.39 4.8 – −1 20

IM 19.739 12.50 4.4 – 4 20

M1 19.820 12.69 3.6 6 6 20

M2 19.751 12.54 – 5 5 20

Table 2. Various parameters for the samples shown in Fig. 6. The θ and a values are
determined from the fitting (see text).

Figure 7(b) shows the temperature dependence of 1/T1T in SC, IM, M1, and M2 samples.
The microscopic and macroscopic sample properties of these samples are summarized in
Table. 2 together with the parameters used for the fitting. As shown in Fig. 7(b), the sample
dependent 1/T1T of four samples in red regime in our phase diagram is fitted by tuning
only the ordering temperature θ. The sample independent a value indicates that in the red
regime, where magnetism appears at low temperatures, the magnetic part of Fermi surface is
stably formed. For the samples in superconducting blue region, the a coefficient is also sample
dependent, as shown in the next subsection. It should be noted here, that θ for SC sample is
−1 K, which indicates that the system is very close to the quantum critical point (θ = 0).

5.2 Superconducting regime
For the superconducting samples, which are located in the blue region in our phase diagram,
the magnetic-fluctuations term of equation (24) disappears abruptly so that the a coefficient
should also have sample dependence. To better explore the magnetic contribution, the
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pseudogap contribution is subtracted from the experimental data, and the normalized spin
term F(t) is derived from the following formula,

F(t) =
1
Tc

[(
1

T1T

)

BLH
−

(
1

T1T

)

PG

]
. (25)

Here, t = T/Tc is the reduced temperature. A coefficient 1/Tc was introduced to normalize
the magnetic contribution. The physical interpretation for this coefficient will be given later.
As shown in Fig. 8, where F(t) is plotted against the reduced temperature, all the F(t) curves
in five different SC samples fall onto a universal line both in superconducting and normal
states. A good scaling in superconducting state is not surprising, as the energy scale of
superconducting gap determines the character of magnetic excitations. In the normal state,
however, a special condition is required to obtain this scaling.
Generally, when the energy and momentum distribution of the spin fluctuations is assumed
to be of a Lorentzian form, 1/T1T of a three-dimensional system is proportional to χQ/ΓQξ3,
where χQ, ΓQ and ξ are the weight of the spin fluctuations at the wave number Q,
the characteristic energy of them and the magnetic correlation length, respectively. The
temperature dependent Γ(T) and ξ(T) give rise to the magnetic contribution of 1/T1T. The
universal scaling by Tc indicates that superconducting energy scale determines ΓQ and ξ in
the normal state. In addition to ΓQ and ξ, χQ can also be normalized by Tc for the BLH
system. This χQ normalization was not observed in a similar scaling plot performed for
high-Tc cuprate Tokunaga et al. (1997). The weight of spin fluctuations has to be normalized
for the multi-band cobaltate superconductor, since magnetic part of the Fermi surface develop
only in the superconducting samples, while for the cuprate, a rigid single band is not
modified through the carrier doping. The scaling of normal-state magnetic properties by
superconducting energy scale clearly evidences that the magnetic fluctuations developed only
in the BLH compounds are responsible for the superconducting pairing formation.

5.3 Intermediate regime
In this subsection, let us give an insight into the samples located on the phase boundary, which
are labeled as SC and IM in Fig. 6(b). As shown in the Table 2, IM sample with Tc = 4.4 K has
a positive θ value, indicating a magnetic ground state, while θ for the SC sample with Tc = 4.8
K is very close to 0 K. The NQR measurements in zero magnetic field have revealed that the
sample inhomogeneity, which is evaluated using the NQR spectral width, is the same for the
two samples, and no trace of magnetic anomaly is observed even at the lowest temperature
measured. We have carried out NMR measurements, an experiment under magnetic fields,
in order to suppress superconducting state and investigate the metallic ground state at low
temperatures Ihara et al. (2007; 2009).
The temperature dependence of 1/T1T was measured on SC and IM samples in various fields
up to 14 T, and the results for SC sample is displayed in Fig. 9, together with that obtained
in zero magnetic field with the NQR measurement. The NQR results are normalized at 10
K in order to eliminate the angle dependence of the coupling constant. For this NMR study,
external fields were applied parallel to the EFG principal axis.
In the field-induced normal state, 1/T1T increases at low temperature following the fitting
curve defined above 5 K, which is expressed by equation (24) with a = 30 and θ =
−0.7 ± 0.2 K. The continuous increase is interrupted only by the onset of superconductivity.
The arrows indicate the superconducting transition temperatures in various fields, which
were determined as the temperature where 1/T1T starts to deviate from the normal-state
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coupling constant. The other parameter θ is the ordering temperature for the magnetically
ordering samples and the measure of the closeness to the magnetic instability for the samples
without magnetic ordering.

Sample ID c axis (Å) νQ (MHz) Tc (K) TM (K) θ (K) a

SC 19.691 12.39 4.8 – −1 20

IM 19.739 12.50 4.4 – 4 20

M1 19.820 12.69 3.6 6 6 20

M2 19.751 12.54 – 5 5 20

Table 2. Various parameters for the samples shown in Fig. 6. The θ and a values are
determined from the fitting (see text).

Figure 7(b) shows the temperature dependence of 1/T1T in SC, IM, M1, and M2 samples.
The microscopic and macroscopic sample properties of these samples are summarized in
Table. 2 together with the parameters used for the fitting. As shown in Fig. 7(b), the sample
dependent 1/T1T of four samples in red regime in our phase diagram is fitted by tuning
only the ordering temperature θ. The sample independent a value indicates that in the red
regime, where magnetism appears at low temperatures, the magnetic part of Fermi surface is
stably formed. For the samples in superconducting blue region, the a coefficient is also sample
dependent, as shown in the next subsection. It should be noted here, that θ for SC sample is
−1 K, which indicates that the system is very close to the quantum critical point (θ = 0).

5.2 Superconducting regime
For the superconducting samples, which are located in the blue region in our phase diagram,
the magnetic-fluctuations term of equation (24) disappears abruptly so that the a coefficient
should also have sample dependence. To better explore the magnetic contribution, the
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pseudogap contribution is subtracted from the experimental data, and the normalized spin
term F(t) is derived from the following formula,

F(t) =
1
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Here, t = T/Tc is the reduced temperature. A coefficient 1/Tc was introduced to normalize
the magnetic contribution. The physical interpretation for this coefficient will be given later.
As shown in Fig. 8, where F(t) is plotted against the reduced temperature, all the F(t) curves
in five different SC samples fall onto a universal line both in superconducting and normal
states. A good scaling in superconducting state is not surprising, as the energy scale of
superconducting gap determines the character of magnetic excitations. In the normal state,
however, a special condition is required to obtain this scaling.
Generally, when the energy and momentum distribution of the spin fluctuations is assumed
to be of a Lorentzian form, 1/T1T of a three-dimensional system is proportional to χQ/ΓQξ3,
where χQ, ΓQ and ξ are the weight of the spin fluctuations at the wave number Q,
the characteristic energy of them and the magnetic correlation length, respectively. The
temperature dependent Γ(T) and ξ(T) give rise to the magnetic contribution of 1/T1T. The
universal scaling by Tc indicates that superconducting energy scale determines ΓQ and ξ in
the normal state. In addition to ΓQ and ξ, χQ can also be normalized by Tc for the BLH
system. This χQ normalization was not observed in a similar scaling plot performed for
high-Tc cuprate Tokunaga et al. (1997). The weight of spin fluctuations has to be normalized
for the multi-band cobaltate superconductor, since magnetic part of the Fermi surface develop
only in the superconducting samples, while for the cuprate, a rigid single band is not
modified through the carrier doping. The scaling of normal-state magnetic properties by
superconducting energy scale clearly evidences that the magnetic fluctuations developed only
in the BLH compounds are responsible for the superconducting pairing formation.

5.3 Intermediate regime
In this subsection, let us give an insight into the samples located on the phase boundary, which
are labeled as SC and IM in Fig. 6(b). As shown in the Table 2, IM sample with Tc = 4.4 K has
a positive θ value, indicating a magnetic ground state, while θ for the SC sample with Tc = 4.8
K is very close to 0 K. The NQR measurements in zero magnetic field have revealed that the
sample inhomogeneity, which is evaluated using the NQR spectral width, is the same for the
two samples, and no trace of magnetic anomaly is observed even at the lowest temperature
measured. We have carried out NMR measurements, an experiment under magnetic fields,
in order to suppress superconducting state and investigate the metallic ground state at low
temperatures Ihara et al. (2007; 2009).
The temperature dependence of 1/T1T was measured on SC and IM samples in various fields
up to 14 T, and the results for SC sample is displayed in Fig. 9, together with that obtained
in zero magnetic field with the NQR measurement. The NQR results are normalized at 10
K in order to eliminate the angle dependence of the coupling constant. For this NMR study,
external fields were applied parallel to the EFG principal axis.
In the field-induced normal state, 1/T1T increases at low temperature following the fitting
curve defined above 5 K, which is expressed by equation (24) with a = 30 and θ =
−0.7 ± 0.2 K. The continuous increase is interrupted only by the onset of superconductivity.
The arrows indicate the superconducting transition temperatures in various fields, which
were determined as the temperature where 1/T1T starts to deviate from the normal-state
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temperature dependence. The strongly temperature dependent 1/T1T in the field-induced
normal state is a great contrast to the Korringa behavior (T1T = const.), which would be
observed when the electron-electron interactions are weak enough to construct Fermi liquid
state. The absence of Korringa behavior down to Tc(H) indicates the existence of the strong
electronic correlations. Especially in SC sample, its small θ value indicates that the magnetic
fluctuations possess quantum critical nature. As the superconducting transition temperature
is the highest in this SC sample, we conclude that the quantum critical fluctuations induce
attractive interactions between electrons to cause superconductivity.
The physical properties of the IM sample are quite different from those of the SC sample in
magnetic fields, although they are nearly identical in zero field. At the temperatures above 4
K, the relaxation curves were consistently explained by the theoretical function written by

m(∞)− m(t)
m(∞)

= A
(

3
14

e−
3t
T1 +

50
77

e−
10t
T1 +

3
22

e−
21t
T1

)
, (26)

where t is the time after the saturation pulse Narath (1967). The coefficient A is a fitting
parameter, which represents how completely nuclear magnetization is saturated. When IM
sample was cooled down below 4 K, the experimental results could not be fitted by the same
function. The results of the least square fitting to the whole relaxation curves obtained at 2.5
K and 5.5 K are exhibited in Fig. 10. The insufficient fit at 2.5 K is due to the appearance of
short-T1 components, which originate from the ordered magnetic moments. In Fig. 10, the
relaxation curves are plotted against the product of the time and the temperature, in order
to represent the existence of the short-T1 components at low temperatures. If a short-T1
component contributes to the relaxation curve, the slope would become steep. Obviously,
the relaxation curve obtained at 2.5 K indicates the presence of short-T1 components in the
short time regime. In addition, the existence of the long-T1 components is also observed in
the long time regime. The relaxation rate in the magnetically ordered state is distributed in
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et al. (2007). The arrows indicate the superconducting transition temperatures at each field,
which were determined by the deviation of 1/T1T from the normal-state temperature
dependence. The dashed line is the fitting function described in the text.
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Fig. 10. Relaxation curves of the nuclear magnetization on the IM sample Ihara et al. (2009).
The dashed lines represent the theoretical curves for a single T1. The experimental data
cannot be fitted by the single T1 at low temperatures. Inset shows the temperature
dependence of 1/T1T at 5.6 T, 10.1 T, and 0 T(NQR). The absolute value of 1/T1T obtained
with NQR measurements were normalized to those with NMR measurement.

space probably due to the distribution of the internal fields at the Co site. More than two
distinct components (long and short T1) are needed for the best fitting, suggesting that the
T1 values are continuously distributed. The spatial distribution could not be resolved by the
present NMR experiments on powder samples. We fitted all the relaxation curves to the same
theoretical function with the single T1 component even in the magnetically ordered state to
determine the typical T1 values. The least square fits with using full time range can extract the
relaxation rates of the major fraction with large errors below 4 K.
The temperature dependence of 1/T1T is displayed in the inset of Fig. 10, where the
normalized NQR results are shown together. Field dependence of 1/T1T is negligible
in the normal state, while significant anomaly was observed below 4 K. In the normal
state, where the relaxation curves were consistently fitted by the theoretical curve, 1/T1T
already has a tendency to diverge toward 4 K, which was foreseen from the positive θ
value obtained by the NQR experiment. An anomaly is actually observed at 4 K, when the
superconductivity is suppressed by the strong magnetic fields. It should be stressed, here,
that the superconductivity of IM sample at zero field is uniform and magnetism is absent at
any part of the sample. The magnetic anomaly in IM sample cannot be explained by the
sample inhomogeneity, because the anomaly is absent in any fields in SC sample, whose
sample inhomogeneity is comparable to that of IM sample.

6. Superconductivity near quantum critical point

Superconductivity in BLH cobaltates appears in the close vicinity of magnetism. We have
shown, in the previous sections, that the quantum critical fluctuations bind two electrons
to form the Cooper pairs, and induce unconventional superconductivity. The ground state
of the samples at the superconductivity-magnetism phase boundary is easily modified by
a small perturbation, such as magnetic field. The field-temperature phase diagrams for
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temperature dependence. The strongly temperature dependent 1/T1T in the field-induced
normal state is a great contrast to the Korringa behavior (T1T = const.), which would be
observed when the electron-electron interactions are weak enough to construct Fermi liquid
state. The absence of Korringa behavior down to Tc(H) indicates the existence of the strong
electronic correlations. Especially in SC sample, its small θ value indicates that the magnetic
fluctuations possess quantum critical nature. As the superconducting transition temperature
is the highest in this SC sample, we conclude that the quantum critical fluctuations induce
attractive interactions between electrons to cause superconductivity.
The physical properties of the IM sample are quite different from those of the SC sample in
magnetic fields, although they are nearly identical in zero field. At the temperatures above 4
K, the relaxation curves were consistently explained by the theoretical function written by
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where t is the time after the saturation pulse Narath (1967). The coefficient A is a fitting
parameter, which represents how completely nuclear magnetization is saturated. When IM
sample was cooled down below 4 K, the experimental results could not be fitted by the same
function. The results of the least square fitting to the whole relaxation curves obtained at 2.5
K and 5.5 K are exhibited in Fig. 10. The insufficient fit at 2.5 K is due to the appearance of
short-T1 components, which originate from the ordered magnetic moments. In Fig. 10, the
relaxation curves are plotted against the product of the time and the temperature, in order
to represent the existence of the short-T1 components at low temperatures. If a short-T1
component contributes to the relaxation curve, the slope would become steep. Obviously,
the relaxation curve obtained at 2.5 K indicates the presence of short-T1 components in the
short time regime. In addition, the existence of the long-T1 components is also observed in
the long time regime. The relaxation rate in the magnetically ordered state is distributed in
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dependence. The dashed line is the fitting function described in the text.
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cannot be fitted by the single T1 at low temperatures. Inset shows the temperature
dependence of 1/T1T at 5.6 T, 10.1 T, and 0 T(NQR). The absolute value of 1/T1T obtained
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space probably due to the distribution of the internal fields at the Co site. More than two
distinct components (long and short T1) are needed for the best fitting, suggesting that the
T1 values are continuously distributed. The spatial distribution could not be resolved by the
present NMR experiments on powder samples. We fitted all the relaxation curves to the same
theoretical function with the single T1 component even in the magnetically ordered state to
determine the typical T1 values. The least square fits with using full time range can extract the
relaxation rates of the major fraction with large errors below 4 K.
The temperature dependence of 1/T1T is displayed in the inset of Fig. 10, where the
normalized NQR results are shown together. Field dependence of 1/T1T is negligible
in the normal state, while significant anomaly was observed below 4 K. In the normal
state, where the relaxation curves were consistently fitted by the theoretical curve, 1/T1T
already has a tendency to diverge toward 4 K, which was foreseen from the positive θ
value obtained by the NQR experiment. An anomaly is actually observed at 4 K, when the
superconductivity is suppressed by the strong magnetic fields. It should be stressed, here,
that the superconductivity of IM sample at zero field is uniform and magnetism is absent at
any part of the sample. The magnetic anomaly in IM sample cannot be explained by the
sample inhomogeneity, because the anomaly is absent in any fields in SC sample, whose
sample inhomogeneity is comparable to that of IM sample.

6. Superconductivity near quantum critical point

Superconductivity in BLH cobaltates appears in the close vicinity of magnetism. We have
shown, in the previous sections, that the quantum critical fluctuations bind two electrons
to form the Cooper pairs, and induce unconventional superconductivity. The ground state
of the samples at the superconductivity-magnetism phase boundary is easily modified by
a small perturbation, such as magnetic field. The field-temperature phase diagrams for
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Fig. 11. Field-temperature phase diagram for (a) SC sample, and (b) IM sample. Field
induced magnetic anomaly is observed only in the IM sample, which is located just on the
superconductivity-magnetism phase boundary.

SC and IM samples, which are located nearby the phase boundary, are shown in Fig. 11.
The field-induced normal state for SC sample is paramagnetic with low-energy magnetic
fluctuations. The continuous increase in 1/T1T, shown in Fig. 9, suggests the existence of
quantum critical point at low temperature and high field, where a star is located in Fig. 11(a).
In the IM sample, whose chemical composition is slightly different from SC sample, a
magnetic phase sets in at high fields, as shown by the red region in Fig. 11(b). The field
induced magnetic anomaly suggests that magnetic interactions are strong enough to cause
magnetic transition at 4 K, but at zero field in fact, superconductivity disguises magnetism.
A similar phase diagram has been reported for the Ce-based heavy Fermion superconductors,
CeCu2Si2 Steglich et al. (1979), CeRhIn5 Knebel et al. (2006) and CeCoIn5 Young et al. (2007),
in which ground states are tuned by pressures of few GPa.
In CeRhIn5, for instance, the optimal pressure pc for superconductivity is reported to be
∼ 2.4 GPa, and a magnetism is induced in pressures lower than pc. When the pressure is
reduced to 2.07 GPa, magnetism is stabilized only in the field-induced normal state with
uniform superconductivity in zero field Knebel et al. (2006; 2008). At the optimal pressure,
this field-induced magnetism is suppressed to zero K, showing a quantum critical behavior.
In a case of CeCoIn5, the critical point is at an ambient pressure. The continuous increase in
the density of state at low temperatures has been reported from the specific heat measurement
Ikeda et al. (2001), which is a quantity equivalent to 1/T1T. A magnetism was detected by the
NMR spectral broadening in strong magnetic fields Young et al. (2007). In this compound,
the magnetism can also be induced surrounding a small amount of impurity injected in
the sample. Both the field and impurity induced magnetism results from the proximity to
quantum critical point.
The interplay between superconductivity and magnetism is universally observed for the
superconductivity near quantum critical point. We would refer the interplay as cooperative
effects rather than competitive one, as superconductivity can exist only in the vicinity of
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quantum critical point. The sample quality is a fatal parameter nearby the quantum critical
point, where even a small perturbation can drastically modify the ground state. A fine sample
control on BLH cobaltates with novel synthetic method, and eventually the single crystal
growth will open a path to uncover physics at quantum critical point.
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Fig. 11. Field-temperature phase diagram for (a) SC sample, and (b) IM sample. Field
induced magnetic anomaly is observed only in the IM sample, which is located just on the
superconductivity-magnetism phase boundary.

SC and IM samples, which are located nearby the phase boundary, are shown in Fig. 11.
The field-induced normal state for SC sample is paramagnetic with low-energy magnetic
fluctuations. The continuous increase in 1/T1T, shown in Fig. 9, suggests the existence of
quantum critical point at low temperature and high field, where a star is located in Fig. 11(a).
In the IM sample, whose chemical composition is slightly different from SC sample, a
magnetic phase sets in at high fields, as shown by the red region in Fig. 11(b). The field
induced magnetic anomaly suggests that magnetic interactions are strong enough to cause
magnetic transition at 4 K, but at zero field in fact, superconductivity disguises magnetism.
A similar phase diagram has been reported for the Ce-based heavy Fermion superconductors,
CeCu2Si2 Steglich et al. (1979), CeRhIn5 Knebel et al. (2006) and CeCoIn5 Young et al. (2007),
in which ground states are tuned by pressures of few GPa.
In CeRhIn5, for instance, the optimal pressure pc for superconductivity is reported to be
∼ 2.4 GPa, and a magnetism is induced in pressures lower than pc. When the pressure is
reduced to 2.07 GPa, magnetism is stabilized only in the field-induced normal state with
uniform superconductivity in zero field Knebel et al. (2006; 2008). At the optimal pressure,
this field-induced magnetism is suppressed to zero K, showing a quantum critical behavior.
In a case of CeCoIn5, the critical point is at an ambient pressure. The continuous increase in
the density of state at low temperatures has been reported from the specific heat measurement
Ikeda et al. (2001), which is a quantity equivalent to 1/T1T. A magnetism was detected by the
NMR spectral broadening in strong magnetic fields Young et al. (2007). In this compound,
the magnetism can also be induced surrounding a small amount of impurity injected in
the sample. Both the field and impurity induced magnetism results from the proximity to
quantum critical point.
The interplay between superconductivity and magnetism is universally observed for the
superconductivity near quantum critical point. We would refer the interplay as cooperative
effects rather than competitive one, as superconductivity can exist only in the vicinity of
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quantum critical point. The sample quality is a fatal parameter nearby the quantum critical
point, where even a small perturbation can drastically modify the ground state. A fine sample
control on BLH cobaltates with novel synthetic method, and eventually the single crystal
growth will open a path to uncover physics at quantum critical point.
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1. Introduction 
To present day overwhelming majority works on theory of superconductivity were devoted 
to single gap superconductors. More than 50 years ago the possibility of superconductors 
with two superconducting order parameters were considered by V. Moskalenko  
 

 
Fig. 1. a. The structure of MgB2 and the Fermi surface of MgB2 calculated by Kortus et al. 
(Kortus et al., 2001). 
b. The coexistence of two complex order parameters (in momentum space).  
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1. Introduction 
To present day overwhelming majority works on theory of superconductivity were devoted 
to single gap superconductors. More than 50 years ago the possibility of superconductors 
with two superconducting order parameters were considered by V. Moskalenko  
 

 
Fig. 1. a. The structure of MgB2 and the Fermi surface of MgB2 calculated by Kortus et al. 
(Kortus et al., 2001). 
b. The coexistence of two complex order parameters (in momentum space).  



 
Superconductivity – Theory and Applications 

 

38

(Moskalenko, 1959) and H. Suhl, B.Matthias and L.Walker (Suhl et al., 1959). In the model of 
superconductor with the overlapping energy bands on Fermi surface V.Moskalenko has 
theoretically investigated the thermodynamic and electromagnetic properties of two-band 
superconductors. The real boom in investigation of multi-gap superconductivity started 
after the discovery of two gaps in 2MgB  (Nagamatsu et al., 2001) by the scanning tunneling 
(Giubileo et al., 2001; Iavarone et al., 2002 ) and point contact spectroscopy (Szabo et al., 
2001; Schmidt et al., 2001; Yanson & Naidyuk, 2004). The structure of 2MgB  and the Fermi 
surface of 2MgB   calculated by Kortus et al. (Kortus et al, 2001) are presented at Fig.1.a. The 
compound 2MgB  has the highest critical temperature 39cT   K among superconductors 
with phonon mechanism of the pairing and two energy gaps 1 7meV   and 2 2,5meV   
at 0T  . At this time two-band superconductivity is studied also in another systems, e.g. in 
heavy fermion compounds (Jourdan et al., 2004; Seyfarth et al., 2005), high-Tc cuprates 
(Kresin & Wolf, 1990), borocarbides (Shulga et al., 1998), liquid metallic hydrogen (Ashcroft, 
2000; Babaev, 2002; Babaev et. al, 2004). Recent discovery of high-temperature 
superconductivity in iron-based compounds (Kamihara et al., 2008) have expanded a range 
of multiband superconductors.  Various thermodynamic and transport properties of 2MgB  
and iron-based superconductors were studied in the framework of two-band BCS model 
(Golubov et al., 2002; Brinkman et al., 2002; Mazin et al., 2002; Nakai et al., 2002; Miranovic 
et al., 2003; Dahm & Schopohl, 2004; Dahm et al., 2004; Gurevich, 2003; Golubov & Koshelev, 
2003). Ginzburg-Landau functional for two-gap superconductors was derived within the 
weak-coupling BCS theory in dirty (Koshelev & Golubov, 2003) and clean (Zhitomirsky & 
Dao, 2004) superconductors. Within the Ginzurg-Landau scheme the magnetic properties 
(Askerzade, 2003a; Askerzade, 2003b; Doh et al., 1999) and peculiar vortices (Mints et al., 
2002; Babaev et al., 2002; Gurevich & Vinokur, 2003) were studied.  
Two-band superconductivity proposes new interesting physics. The coexistence of two 
distinctive order parameters 1 1 1exp( )i   and 2 2 2exp( )i    (Fig.1.b.) renewed 
interest in phase coherent effects in superconductors. In the case of two order parameters we 
have the additional degree of freedom, and the question arises, what is the phase shift 

1 2     between 1  and 2 ? How this phase shift manifested in the observable effects? 
From the minimization of the free energy it follows that in homogeneous equilibrium state 
this phase shift is fixed at 0 or , depending on the sign of interband coupling. It does not 
exclude the possibility of soliton-like states ( )x  in the ring geometry (Tanaka, 2002). In 
nonequilibrium state the phases 1  and 2  can be decoupled as small plasmon oscillations 
(Leggett mode) (Legett, 1966) or due to formation of phase slips textures in strong electric 
field (Gurevich & Vinokur, 2006).  
In this chapter we are focusing on the implication of the  -shift in the coherent 
superconducting current states in two-band superconductors. We use a simple (and, at the 
same time, quite general) approach of the Ginsburg–Landau theory, generalized on the case 
of two superconducting order parameters (Sec.2).  In Sec.3 the coherent current states and 
depairing curves have been studied. It is shown the possibility of phase shift switching in 
homogeneous current state with increasing of the superfluid velocity sv . Such switching 
manifests itself in the dependence sj(v ) and also in the Little-Parks effect (Sec.3). The 
Josephson effect in superconducting junctions is the probe for research of phase coherent 
effects. The stationary Josephson effect in tunnel S1-I-S2 junctions (I - dielectric) between 
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two- and one- band superconductors have been studied recently in a number of articles 
(Agterberg et al., 2002; Ota et al., 2009; Ng & Nagaosa, 2009). Another basic type of 
Josephson junctions are the junctions with direct conductivity, S-C-S contacts (C – 
constriction). As was shown in (Kulik & Omelyanchouk, 1975; Kulik & Omelyanchouk, 
1978; Artemenko et al., 1979) the Josephson behavior of S-C-S structures qualitatively differs 
from the properties of tunnel junctions. A simple theory (analog of Aslamazov-Larkin 
theory( Aslamazov & Larkin, 1968)) of stationary Josephson effect in S-C-S point contacts for 
the case of two-band superconductors is described in Sec.4). 

2. Ginzburg-Landau equations for two-band superconductivity. 

The phenomenological Ginzburg-Landau (GL) free energy density functional for two 
coupled superconducting order parameters  1  and 2  can be written as  
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The terms  1F   and 2F  are conventional contributions from 1  and 2 ,  term 12F  describes 
without the loss of generality the interband coupling of order parameters. The coefficients 
  and  describe the coupling of two order parameters (proximity effect) and their 
gradients (drag effect) (Askerzade, 2003a; Askerzade, 2003b; Doh et al., 1999), respectively.  
The microscopic theory for two-band superconductors (Koshelev & Golubov, 2003; 
Zhitomirsky & Dao, 2004; Gurevich, 2007) relates the phenomenological parameters to 
microscopic characteristics of superconducting state. Thus, in clean multiband systems the 
drag coupling term ( ) is vanished. Also, on phenomenological level there is an important 

condition , that absolute minimum of free GL energy exist: 
1 2

1
2 m m

  (see Yerin et al., 

2008). 
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(Moskalenko, 1959) and H. Suhl, B.Matthias and L.Walker (Suhl et al., 1959). In the model of 
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By minimization the free energy   F=
2

3
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8
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    with respect to 1 , 2  and A


 

we obtain the differential GL equations for two-band superconductor  
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and expression for the supercurrent 
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In the absence of currents and gradients the equilibrium values of order parameters 
1,2(0)

1,2 1,2
ie    are determined by the set of coupled equations 
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For the case of two order parameters the question arises about the phase difference 
1 2     between 1  and 2 . In homogeneous zero current state, by analyzing the free 

energy term F12   (3), one can obtain that for 0   phase shift   0   and for 0     . 
The statement, that   can have only values 0 or   takes place also in a current carrying 
state, but for coefficient 0   the criterion for   equals 0 or   depends now on the value 
of the current (see below).   
If the interband interaction is ignored, the equations (6) are decoupled into two ordinary    
GL equations with two different critical temperatures

1cT and
2cT . In general, independently 

of the sign of  , the superconducting phase transition results at a well-defined temperature 
exceeding both 

1cT and 
2cT  , which is determined from the equation: 

     2
1 2 .c cT T    (7) 

Let the first order parameter is stronger then second one, i.e. 
1 2c cT T . Following 

(Zhitomirsky & Dao, 2004) we represent temperature dependent coefficients as 
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Phenomenological constants 1,2 20,a a  and 1,2 ,   can be related to microscopic parameters 
in two-band BCS model. From (7) and (8) we obtain for the critical temperature cT : 
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For arbitrary value of the interband coupling   Eq.(6) can be solved numerically. For 0   , 
1c cT T  and for temperature close to cT  (hence for 2c cT T T  ) equilibrium values of the 

order parameters are (0)
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weak interband coupling,   we have from Eqs. (6-9) corrections 2  to these values: 
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Expanding expressions (10) over (1 ) 1
c

T
T

   we have conventional temperature 

dependence of equilibrium order parameters in weak interband coupling limit 
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Considered above case (expressions (9)-(11)) corresponds to different critical temperatures 

1 2c cT T  in the absence of interband coupling  . Order parameter in the second band (0)
2  

arises from the “proximity effect” of stronger (0)
1  and is proportional to the value of  . 

Consider now another situation, which we will use in the following as the model case. 
Suppose for simplicity that two condensates in current zero state are identical. In this case 
for arbitrary value of   we have 

      1 2 1 21 , .
c

TT T T a
T

     
 

       
 

 (12) 

 (0) (0)
1 2 .

 
 




   (13) 

2. Homogeneous current states and GL depairing current 

In this section we will consider the homogeneous current states in thin wire or film with 
transverse dimensions 1,2 1,2( ), ( )d T T  , where 1,2( )T and 1,2( )T are coherence lengths 
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and London penetration depths for each order parameter, respectively. This condition leads 
to a one-dimensional problem and permits us to neglect the self-magnetic field of the 
system.  (see Fig.2) . In the absence of external magnetic field we use the calibration   0A 


. 

 

 
Fig. 2. Geometry of the system. 

The current density j and modules of the order parameters do not depend on the 
longitudinal direction x. Writing 1,2( )x  as  1,2 1,2 1,2exp ( )i x    and introducing the 
difference and weighted sum phases: 
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for the free energy density (1)-(3) we obtain  
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The current density j  in terms of phases   and   has the following form 
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Total current j includes the partial inputs 1,2j  and  proportional to   the drag current 12j .  
In contrast to the case of single order parameter (De Gennes, 1966), the condition 

j 0div  does not fix the constancy of superfluid velocity. The Euler – Lagrange equations for 
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( )x  and ( )x  are complicated coupled nonlinear equations, which generally permit the 
soliton like solutions (in the case 0   they were considered in (Tanaka, 2002)). The 
possibility of states with inhomogeneous phase ( )x is needed in separate investigation. 
Here, we restrict our consideration by the homogeneous phase difference between order 
parameters const  .  For const   from equations it follows that ( )x qx  (q is total 
superfluid momentum) and cos 0  , i.e.   equals 0 or . Minimization of free energy for 
  gives  

  2 2cos .sign q      (18) 

 
Note, that now the value of  , in principle, depends on q, thus, on current density j. Finally, 
the expressions (15), (17) take the form: 
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We will parameterize the current states by the value of superfluid momentum q , which for 
given value of j  is determined by equation (20). The dependence of the order parameter 
modules on q  determines by GL equations: 
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The system of equations (20-22) describes the depairing curve  ,j q T  and the 
dependences 1  and 2  on the current j  and the temperature T. It can be solved 
numerically for given superconductor with concrete values of phenomenological 
parameters. 
In order to study the specific effects produced by the interband coupling and dragging 
consider now the model case when order parameters coincide at 0j   (Eqs. (12), (13)) but 
gradient terms in equations (4) are different. Eqs. (20)-(22) in this case take the form  

 
      
      

2 2 2 2
1 1 1 2

2 2 2 2
2 2 2 1

1 1 0

1 1 0

f f f q f q sign q

f f kf q f q sign q

    

    

      

      

    

    
 (23) 



 
Superconductivity – Theory and Applications 

 

42

and London penetration depths for each order parameter, respectively. This condition leads 
to a one-dimensional problem and permits us to neglect the self-magnetic field of the 
system.  (see Fig.2) . In the absence of external magnetic field we use the calibration   0A 


. 

 

 
Fig. 2. Geometry of the system. 

The current density j and modules of the order parameters do not depend on the 
longitudinal direction x. Writing 1,2( )x  as  1,2 1,2 1,2exp ( )i x    and introducing the 
difference and weighted sum phases: 
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The current density j  in terms of phases   and   has the following form 
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Total current j includes the partial inputs 1,2j  and  proportional to   the drag current 12j .  
In contrast to the case of single order parameter (De Gennes, 1966), the condition 
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  2 2 2
1 2 1 22j f q kf q f f qsign q         (24) 

Here we normalize 1,2  on the value of the order parameters at 0j   (13), j is measured in 

units of 
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If 1k   order parameters coincides also in current-carrying state 1 2f f f   and from eqs. 
(23), 24) we have the expressions 
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     2 22 1 ,j q f sign q q        (26) 

which for 0     are conventional dependences for one-band superconductor (De 
Gennes, 1966) (see Fig. 3 a,b). 
 
 

 
 
                                      (a)                                                                      (b) 
 

Fig. 3. Depairing current curve (a) and the graph of the order parameter modules versus 
current (b) for coincident order parameters. The unstable branches are shown as dashed 
lines. 

For 1k   depairing curve   j q  can contain two increasing with q stable branches, which 
corresponds to possibility of bistable state. In Fig. 4 the numerically calculated from 
equations (23,24)  curve  j q is shown for 5k   and 0    .  
The interband scattering ( 0  ) smears the second peak in  j q , see Fig.5. 
If dragging effect ( 0  ) is taking into account the depairing curve  j q  can contain the 
jump at definite value of q  (for 1k   see eq. 34), see Fig.6. This jump corresponds to the 
switching of relative phase difference from 0 to  .  
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Fig. 4. Dependence of the current j  on the superfluid momentum q  for two band 
superconductor. For the value of the current 0j j  the stable (  ) and unstable (  ) states are 
depicted. The ratio of effective masses 5k   , and 0    . 

 

 
Fig. 5. Depairing current curves for different values of interband interaction: 0   (solid 
line), 0.1   (dotted line) and 1   (dashed line). The ratio of effective masses 5k   , and 

0  . 
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Fig. 6. Depairing current curves for different values of the effective masses ratio 1k   (solid 
line), 1.5k   (dotted line) and 5k   (dashed line). The interband interaction coefficient 

0.1   and drag effect coefficient 0.5  . 

4. Little-Parks effect for two-band superconductors 
In the present section we briefly consider the Little–Parks effect for two-band 
superconductors. The detailed rigorous theory can be found in the article (Yerin et al., 2008). 
It is pertinent to recall that the classical Little–Parks effect for single-band superconductors 
is well-known as one of the most striking demonstrations of the macroscopic phase 
coherence of the superconducting order parameter (De Gennes, 1966; Tinkham, 1996). It is 
observed in open thin-wall superconducting cylinders in the presence of a constant external 
magnetic field oriented along the axis of the cylinder. Under conditions where the field is 
essentially unscreened the superconducting transition temperature cT  (    is the magnetic 
flux through the cylinder) undergoes strictly periodic oscillations (Little–Parks oscillations)  

 2

0
min( ) ,( 0, 1, 2,...),c c

c

T T n n
T

 
    


 (27) 

where 0c cT T   and 0 /c e    is the quantum of magnetic flux.  
How the Little–Parks oscillations ( 27) will be modified in the case of two order parameters 
with taking into account the proximity (  ) and dragging ( ) coupling? Let us consider a 
superconducting film in the form of a hollow thin cylinder in an external magnetic field H 
(see Fig.6).  
We proceed with free energy density (19), but now the momentum q  is not determined by 
the fixed current density j as in Sec.3. At given magnetic flux A dl H d     

   the 
superfluid momentum q  is related to the applied magnetic field 
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At fixed flux  the value of q  take on the infinite discrete set of values for 0, 1, 2,...n    . The 
possible values of n  are determined from the minimization of free energy 1 2[ , , ]F q  .  As a 
result the critical temperature of superconducting film depends on the magnetic field. The 
dependencies of the relative shift of the critical temperature ( ) /c c c ct T T T    for different 
values of parameters , ,R   were calculated in (Yerin et al., 2008). The dependence of ( )ct   
as in the conventional case is strict periodic function of  with the period 0 (contrary to the 
assertions made in Askerzade, 2006). The main qualitative difference from the classical case  is 
the nonparabolic character of the flux dependence   ( )ct   in regions with the fixed optimal 
value of n . More than that, the term     2 2 2 2q sign q       in the free energy (19) 
engenders possibility of observable singularities in  the function ( )ct  , which are completely 
absent in the classical case (see Fig.8.). 
 

 
Fig. 7. Geometry of the problem. 

 

 
Fig. 8. ( )ct   for the case where the bands 1 and 2 have identical parameters and values of 
  are indicated.  
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5. Josephson effect in two-band superconducting microconstriction  

In the Sec.3 GL-theory of two-band superconductors was applied for filament’s length 
L  . Opposite case of the strongly inhomogeneous current state is the Josephson 
microbridge or point contact geometry (Superconductor-Constriction-Superconductor 
contact), which we model as narrow channel connecting two massive superconductors 
(banks).  The length L  and the diameter d  of the channel (see Fig. 9) are assumed to be 
small as compared to the order parameters coherence lengths  1 2,  . 
 

 
Fig. 9. Geometry of  S-C-S contact as narrow superconducting channel in contact with bulk 
two-band superconductors. The values of the order parameters at the left (L) and right (R) 
banks are indicated 

For d L  we can solve one-dimensional GL equations (4) inside the channel with the rigid 
boundary conditions for order parameters at the ends of the channel. 
In the case 1 2,L    we can neglect in equations (4) all terms except the gradient ones and 
solve equations: 
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with the boundary conditions:  

    1 01 10 exp Li   ,    2 02 10 exp ,Ri    (30) 

   1 01 2exp LL i   ,    2 02 1exp .RL i    

Calculating the current density j  in the channel we obtain: 

 11 22 12 21j j j j j    , (31) 
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11 01 1 1

1

2 sin ,R Lej
Lm
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 12 01 02 1 2
4 sin ,R Lej
L

     
  

 21 02 01 2 1
4 sin .R Lej
L

     
  

The current density j  (31) consists of four partials inputs produced by transitions from left 
bank to right bank between different bands. The relative directions of components ikj  
depend on the intrinsic phase shifts in the banks 1 2

L L L     and 1 2
R R R     (Fig.10). 

 

 
Fig. 10. Current directions in S-C-S contact between two-band superconductors. (a) – there is 
no shift between phases of order parameters in the left and right superconductors; (b) - there 
is the  -shift of  order parameters phases at the both banks  ; (c) –  -shift  is present in the 
right superconductor and is absent in the left superconductor; (d) –  -shift  is present in the 
left superconductor and is absent in the right superconductor . 
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Introducing the phase difference on the contact 1 1
R L     we have the current-phase 

relation ( )j   for different cases of phase shifts ,R L  in the banks: 
a. 0R L    
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2sin ( 4 )sinc
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L m m
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d. 0,R L     
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The critical current cj  in cases a) and b)  is positively defined quadratic form of 01  and 

02 for 
1 2

1
2 m m

  . In cases c) and d) the value of cj  can be negative. It corresponds to 

the so-called   junction (see e.g. (Golubov et. al, 2004)) (see illustration at Fig.11).  
 

 
Fig. 11. Current-phase relations for different phase shifts in the banks. 

This phenomenological theory, which is valid for temperatures near critical temperature cT , 
is the generalization of Aslamazov-Larkin theory (Aslamazov & Larkin, 1968) for the case of 
two superconducting order parameters. The microscopic theory of Josephson effect in S-C-S 
junctions (KO theory) was developed in (Kulik & Omelyanchouk, 1975; Kulik & 
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Omelyanchouk, 1978;) by solving the Usadel and Eilenberger equations (for dirty and clean 
limits). In papers (Omelyanchouk & Yerin, 2009; Yerin & Omelyanchouk, 2010) we 
generalized KO theory for the contact of two-band superconductors. Within the microscopic 
Usadel equations we calculate the Josephson current and study its dependence on the 
mixing of order parameters due to interband scattering and phase shifts in the contacting 
two-band superconductors. These results extend the phenomenological theory presented in 
this Section on the range of all temperatures 0 cT T  . The qualitative feature is the 
possibility of intermediate between sin  and sin  behavior ( )j   at low temperatures 
(Fig.12).  

 
Fig. 12. The possible current-phase relations ( )j    for hetero-contact with 0,R L    . 

6. Conclusion 

In this chapter the current carrying states in two-band superconductors are described in the 
frame of phenomenological Ginzburg-Landau theory. The qualitative new feature, as 
compared with conventional superconductors, consists in coexistence of two distinct 
complex order parameters 1  and 2 . It means the appearing of an additional internal 
degree of freedom, the phase shift between order parameters. We have studied the 
implications of the  -shift in homogeneous current state in  long films or channels, Little-
Parks oscillations in magnetic field, Josephson effect in microconstrictions.  The observable 
effects are predicted. Along with fundamental problems, the application of two band 
superconductors with internal phase shift in SQUIDS represents significant interest (see 
review (Brinkman & Rowell, 2007).  
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1. Introduction  
In the mixed state of type II superconductors, the external magnetic field penetrates the 
superconducting material in the form of normal cored regions, each carrying a quantum 
of flux (Φ0 = 2.07×10-7 G-cm2). These normal cores have radii equal to the coherence length 
(ξ). Surrounding each normal core is a vortex of supercurrent that decays over a 
characteristic length scale known as the penetration depth (λ). These elastic string-like 
normal entities (or vortices) mutually repel each other leading to the formation of 
triangular vortex lattices in ideal superconductors (Blatter et al., 1994; Natterman & 
Scheidl, 2000). However, real samples always have defects (point defects, dislocations) 
and inhomogeneities. The superconducting order parameter is preferentially suppressed 
at these random defect locations, thereby energetically favoring pinning of vortices at 
these locations. But, pinning also leads to loss of long range order in the vortex lattice. The 
vortex matter can be considered as a typical prototype for soft materials, where pinning 
forces and thermal fluctuations are comparable to the elastic energy scale of the vortex 
lattice. The perennial competition between elastic interactions in the vortex lattice, which 
establishes order in the vortex state and effects of pinning and thermal fluctuations which 
try to destabilize the vortex lattice, leads to a variety of pinning regimes, viz., the weak 
collective pinning regime and the strong pinning regime (Blatter et al., 2004). The 
competition in different portions of the field-temperature (H,T) phase space leads to the 
emergence of a variety of vortex phases, like, the Bragg glass, vortex glass, vortex liquid 
(for review see, Blatter et al., 1994; Natterman & Scheidl, 2000) and transformation 
amongst them, along with the appearance of significant thermomagnetic history 
dependent response. The competing effects ever present in the vortex lattice also lead to a 
quintessential phenomenon called the peak effect (PE), which we shall discuss in the next 
section.  
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normal entities (or vortices) mutually repel each other leading to the formation of 
triangular vortex lattices in ideal superconductors (Blatter et al., 1994; Natterman & 
Scheidl, 2000). However, real samples always have defects (point defects, dislocations) 
and inhomogeneities. The superconducting order parameter is preferentially suppressed 
at these random defect locations, thereby energetically favoring pinning of vortices at 
these locations. But, pinning also leads to loss of long range order in the vortex lattice. The 
vortex matter can be considered as a typical prototype for soft materials, where pinning 
forces and thermal fluctuations are comparable to the elastic energy scale of the vortex 
lattice. The perennial competition between elastic interactions in the vortex lattice, which 
establishes order in the vortex state and effects of pinning and thermal fluctuations which 
try to destabilize the vortex lattice, leads to a variety of pinning regimes, viz., the weak 
collective pinning regime and the strong pinning regime (Blatter et al., 2004). The 
competition in different portions of the field-temperature (H,T) phase space leads to the 
emergence of a variety of vortex phases, like, the Bragg glass, vortex glass, vortex liquid 
(for review see, Blatter et al., 1994; Natterman & Scheidl, 2000) and transformation 
amongst them, along with the appearance of significant thermomagnetic history 
dependent response. The competing effects ever present in the vortex lattice also lead to a 
quintessential phenomenon called the peak effect (PE), which we shall discuss in the next 
section.  
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2. The peak effect phenomenon 
Theoretical works in late nineteen eighties and nineties have shown that by taking into 
account the effects of thermal fluctuations and pinning centers on vortices, the mean field 
description of a type II superconductor gets substantially modified and new phases and 
phase boundaries in the vortex matter were predicted. In particular, in a clean pinning free 
system, it was shown that under the influence of thermal fluctuations, the vortex lattice 
phase is stable only in the intermediate field range. A new phase was predicted to be 
present at both very low and at very high fields, viz., the Vortex Liquid State (Nelson, 1988), 
in which the r.m.s, fluctuation of the vortices about their mean positions become ~10 – 20 % 
of the intervortex spacing a0 (a0  B1/2, where B is the field) and the vortex-vortex spatial 
correlations reduced down length scales of the order ~ a0. Experimental works on the high 
temperature superconductors (HTSC) have established the vortex solid to liquid transition 
at high fields, however, the demonstration of the reentrant behavior of the vortex solid to 
liquid phase boundary has so far not been vividly elucidated  (Blatter et al, 1998; Natterman 
& Scheidl, 2000). The mean field picture of a perfectly periodic arrangement of vortices in 
the vortex solid phase is also expected to be modified under the influence of pinning and the 
vortex solid phase is considered to behave like a vortex glass (Fisher 1989; Fisher, et al. 
1989), which is characterized by zero linear resistivity, and could exhibit many metastable 
states. Further detailed investigations (Giammarchi and P. Le Doussal, 1995), showed, the 
existence of a novel vortex solid to solid transformation as a function of varying field at a 
fixed temperature in which a novel Bragg Glass phase (a reasonably well ordered lattice 
with correlation extending over few hundreds of a0 ) at low fields transforms into a Vortex 
Glass state with spatial correlations surviving over a very short range at high fields. This 
solid to solid transformation is considered to arise due to a sudden injection / proliferation 
of dislocations into the Bragg glass phase (for a review see Natterman & Scheidl, 2000).  
 

 
Fig. 1. Schematic representation of the peak effect (PE) in the critical current density, Jc, with 
applied field (or temperature). The field Hp (or temperature Tp) represents the peak position 
of the PE.  

To experimentally investigate the phases of vortex matter, few popular routes are via ac 
susceptibility, dc magnetization, transport measurements, all of which provide information 
on the critical current density (Jc) (the maximum dissipationless current which is carried by 
a superconductor). Usually a change in the phase of vortex matter is accompanied by a 
change in the pinning experienced by the vortices. As the Jc is a direct measure of the 
pinning experienced by a given phase, changes in the behavior of Jc are a good indicator of 
the transformation/transition in the vortex matter. Usually the Jc of a superconductor is 
expected to monotonically decrease with increasing values of the temperature or field. 
However, in a large variety of superconductors it is found that the monotonic decrease in Jc 
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with increasing field (H) or temperature (T) is interrupted by an anomalous enhancement in 
Jc just before the superconductor turns normal (Figure.1). This anomaly in the Jc behavior is 
known as the peak effect (PE) phenomenon and has been observed in many low and high-
temperature superconductors (Berlincourt, 1961; Bhattacharya & Higgins, 1993; Higgins and 
Bhattacharya, 1996; Ling et al., 2001; Ghosh et al., 1996; Banerjee et al., 1998, 1999a, 1999b, 
2000a, 2000b, 2001). In electrical transport experiments, from which Jc is deduced, the PE 
appears as a bump in Jc as in the schematic of Fig.1. Due to the enhancement in pinning, the 
PE appears as an anomalous increase of the diamagnetic screening or shielding response 
and a drop in the dissipation response in the ac susceptibility (quadrature signal) 
measurements before the diamagnetic ac-susceptibility (in -phase signal) crashes to zero at 
Hc2 or Tc(H) (Banerjee et al., 1998-2001; Mohan et al., 2007). 
Though a complete theoretical description of the PE is lacking, there have been plausible 
proposals articulating different mechanisms to explain this phenomenon. Pippard (Pippard, 
1969) put forth the notion that if the vortex lattice (VL) loses rigidity near Hc2 at a rate much 
faster than the pinning force, then the softened vortices would conform more easily to the 
pinning centers thereby getting strongly pinned, and consequently producing the peak in Jc. 
The idea acquired a quantitative basis, when a correct statistical summation procedure for the 
pinning force was proposed by A. I. Larkin and Yu. N. Ovchinnikov (LO) (Larkin, 1970a, 
1970b; Larkin and Ovchinnikov, 1979), which took into account the elasticity of the vortex 
lattice. The basic premise of the LO theory is that the flux lines lower their free energy by 
passing through the pinning sites, thereby deviating from an ideal periodic arrangement. The 
deformation of the FLL costs elastic energy despite the lowering in free energy due to the 
pinning of flux lines. The equilibrium configuration of the flux lines in a deformed state is 
obtained by minimizing the sum of these two energies. This work of Larkin and Ovchinnikov 
showed that random distribution of weak pins destroys long range order in the FLL, with 
short range order being preserved only within a volume bounded by two correlation lengths 
viz., the radial (Rc, the correlation length across the surface of the sample and perpendicular to 
the vortex line) and the longitudinal (Lc, the correlation length parallel to the vortex line). 
These length scales were shown to be related to the elastic modulii of the vortex lattice (Larkin 
and Ovchinnikov, 1979), and the net pinning force experienced by the VL, viz., Fp   c cR L   , 
where  and  are positive powers. The PE stood explained within the LO theory due to 
softening of the elastic modulii of the VL, which caused a decrease in Rc and Lc, thereby 
causing Fp or Jc to anomalously increase at PE.  While the LO theory provides an explanation 
of the PE phenomenon, a quantitative match of the details of the PE with LO theory lacked. 
While theoretically some difference persist as regards the origin of the PE phenomenon, the 
experimental investigations (Banerjee et al., 1998, 1999a, 1999b, 2000a, 2000b, 2001; 
Bhattacharya & Higgins, 1993; Gammel et al., 1998; Ghosh et al, 1996; Higgins and 
Bhattacharya, 1996; Marchevsky et al., 2001; Thakur et. al, 2005, 2006; Troyanovski et al., 
1999, 2002) are almost concurrent towards in establishing PE as an order to disorder 
transformation in the vortex lattice. Studies (Banerjee et al, 1998, 1999a, 1999b, 2000a,b, 2001) 
on different single crystals of 2H-NbSe2, with progressively increasing amounts of the 
quenched random pinning have revealed that the details of PE phenomenon are 
significantly affected by level of disorder, amounting to the appearance of significant 
variation in the metastable response(s) of the vortex lattice. These studies were able to 
demonstrate the correlation between the thermomagnetic history effects (i.e., difference 
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between the field cooled (FC) and zero - field cooled (ZFC) response exhibited by the FLL in 
single crystal of a conventional superconductor 2H-NbSe2 and the pinning strength in the 
samples (Banerjee  et al, 1999b). These observations lead to proposals pertaining to the 
existence of a pinning induced transformation across glassy phases of the vortex matter.  In 
recent times an interesting explanation for PE has been proposed based on a crossover from 
weak to collective pinning in the vortex matter (Blatter et al. 2004). We shall discuss this 
work in relation to the experimental findings in section 3.3.  

2.1 The effect of disorder on the behavior of critical current (Jc) and  the peak effect 
(PE) phenomenon 
2.1.1 Single crystals of different pinning strengths 
We are collating here results reported on good quality single crystals of 2H-NbSe2, grown in 
different laboratories (University of Warwick, UK, NEC research Institute, Princeton, USA 
and Bell Labs, Murray Hills, USA).  On the basis of correlation between pinning strength 
and the metastability effects in the elastic region of vortex phase diagram, the crystals can be 
sequentially enumerated in terms of the progressively enhanced pinning.  For instance, in 
2H-NbSe2 crystals, ranging from nomenclature A to C, the Jc   values vary from 10 A/cm2 to 
1000 A/cm2 (Banerjee et al., 1998, 1999a, 1999b, 2000a, 2000b, 2001; Thakur et al. 2005, 2006). 

2.1.2 Identification of different pinning regimes and the behavior of PE as a function 
of pinning 
We extracted Jc(H) (for H//c) in two varieties of single crystals A and B, of 2H-NbSe2, either 
by directly relating Jc(H) to the widths of the isothermal magnetization hysteresis  loops 
(Bean, 1962, 1964) or by analyzing the in-phase and out-of-phase ac susceptibility data 
(Bean, 1962, 1964; Angurel et al., 1997).  Figure 2 summarizes the Jc vs. H data (H\\c) for the 
crystals A and B in two sets of log-log plots in the temperature regions close to the 
respective Tc(0) values (Banerjee, 2000b; Banerjee et al. 2001). The peaks in Jc(H) occur at 
fields (Hp) less than 1 kOe (see insets in Fig.2(c) and Fig.2(g) for the tp(H) curves in A and B, 
viz., locus of the PE in the H - reduced temperature (t = T/Tc(0)) space for the two samples, 
with pinning strength in B > A). 
We first focus on the shapes of the Jc(H) curves (cf. Fig.2(a) to 2(d)) in the crystal A. In 
Fig.2(a), the three regimes (marked I, II and III in the figure) of Jc(H), at a reduced 
temperature t~0.973, are summarized as follows : (1) At the lowest fields (H  10 Oe), Jc 
varies weakly with H (region I), as expected in the individual pinning or small bundle 
pinning regime, noted earlier (Duarte et al. 1996), (2) Above a threshold field value, marked 
by an arrow, Jc(H) variation (in region II) closely follows the archetypal collective pinning 
power law (Duarte et al. 1996, Larkin, 1970a, 1970b; Larkin and Ovchinnikov, 1979) 
dependence (see the linear behaviour in region II of Jc vs. H on log-log scale in Fig.2), (3) 
This power law regime terminates at the onset (marked by another arrow) position of the PE 
phenomenon (region III). 
On increasing the temperature (see Figs. 2(a) and 2(b) for the data at t=0.973 and 0.994), the 
following trends are immediately apparent: (1) the peak effect becomes progressively 
shallower, i.e., the ratio of Jc(H) at the peak position to that at the onset of PE becomes 
smaller. For instance, the said ratio has a value of about 8 at t=0.973 and it reduces to a value 
of 3.5 at t=0.994. ; (2) The power law region shrinks; for example, the field interval between 
the pair of arrows (identifying the power law region) spans from 10 Oe to about 500 Oe at 
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Fig. 2. Log-Log plots of Jc vs. H for H\\c at selected reduced temperatures (t = T/Tc(0)) in 
crystals A and B of 2H- NbSe2. The insets in Fig.2(c) and Fig.2(g) display the locus of PE 
curve, tp(H)(=Tp(H)/Tc(0)) and the superconductor-normal phase boundary 
tc(H)(=Tc(H)/Tc(0)) in crystals A and B, respectively. The marked data points on the PE 
curves in each of these insets identify the reduced temperatures at which Jc(H) data have 
been displayed in Figs.2(a) to 2(d) and in Figs.2(e) to 2(h). (Ref. Banerjee et al, 2000a) 

t=0.973 in Fig.2(a), whereas at t=0.996 in Fig. 2(c), the power law regime terminates near 40 
Oe. Also, the slope value of linear variation of log Jc vs. log H in the latter case is somewhat 
smaller. At still higher temperatures (see, for instance, Fig.2(d) at 0.997), the power law 
region is nearly invisible and the anomalous PE peak cannot be distinctly identified 
anymore, as only a residual shoulder survives. 
In contrast, the second set of plots (see Figs. 2(e) to 2(h)) in the crystal B shows a different 
behaviour, although the overall evolution in the shapes of Jc(H) curves is generically the 
same. In Fig.2(e), at a reduced temperature t~0.965, one can see the same power law regime 
as in Fig.2(a), but as the extrapolated dotted line shows, Jc(H) departs from the power law 
behaviour in the low field region (i.e., for H < 200 Oe). As the field decreases below 200 Oe, 
the current density in crystal B (t=0.965) increases rapidly towards the background 
saturation limit (i.e., in the single vortex pinning regime). The approach to background 
saturation limit occurs at much lower field (H < 10 Oe) in crystal A. The smooth crossover to 
individual or small bundle pinning regime as seen in the crystal A, therefore adds on an 
additional characteristic in the crystal B. We label the region of rapid rise of Jc(H) at low 
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fields from a power law behaviour in region II into the weakly field dependent Jc(H) 
behaviour in region I, as the region with "loss of order" (cf. Fig.2(f)). Further, with increasing 
temperature, the power law regime in the crystal B shrinks faster than that in sample A (cf. 
Fig.2(e) at t=0.965 and Fig.2(f) at t=0.973), leaving only a rather featureless monotonic Jc(H) 
behaviour upto the highest fields (cf. Fig.2(g) and Fig.2(h)). Note, also, that the limiting 
value of the reduced temperature upto which the power law regime along with the PE peak 
survives in the crystal B is smaller than that in crystal A. In crystal B, the PE peak can be 
distinctly discerned only upto t=0.977, whereas in crystal A it can be seen even upto t=0.994. 
Recalling that the crystal B is more strongly pinned than crystal A, the above observation 
reaffirms the notion that the progressive enhancement in effective pinning (which occurs as 
we go from sample A to B) shrinks the (H,T) region over which the vortex matter responds 
like an elastically (ordered) pinned vortex lattice. 
Having identified the regime of collective pinning where the vortex matter behaves like an 
ordered elastic medium and determined its sensitivity to pinning, it is fruitful to explore 
transformation in the elastic regime for weak collective to strong pinning (Blatter et al., 
2004), and investigate if it coincides with the appearance of PE 

3. Weak collective pinning, strong pinning and thermal fluctuations 
dominated regimes for the quasi-static vortex state 
3.1.1 AC susceptibility measurements:  
It is chosen to focus on A’ type of a crystal of 2H-NbSe2 (cf. section 2.1.1, A’ has pinning 
inbetween that of samples A and B), has dimensions 1.5 x 1.5 x 0.1 mm3, Tc(0) ~ 7.2 K and Jc 
~ 50 – 100 A/cm2 (at 4.2 K and 10 kOe). The 2H-NbSe2 system, being a layered material, 
often has extended defects (dislocations, stacking faults) present along its crystalline c axis. 
If H is applied along the c axis, then the vortex lines (also oriented along c direction) could 
be strongly pinned by these extended defects between layers. To reduce the emphasis on the  
inevitably present  strong pinning centers, we have chosen to focus on behaviour obtained 
for the H  c orientation (the c-axis of hexagonal crystallographic lattice is aligned along the 
thickness of the platelet shaped sample) for our measurements. This choice of the field 
direction also avoids geometric and surface barrier effects, which are known to persist up to 
the PE in H //c orientation (Zeldov, et al. 1994; Paltiel et al., 1998). 
We measured the ac susceptibility response as well as DC magnetization of the vortex state 
in the weak pinning 2H-NbSe2 sample in the above mentioned orientation. The real (’) 
component of the ac susceptibility response (viz., =’+i’’) is a measure of its diamagnetic 
shielding response. The maximum value of (normalized) ’= -1 corresponds to the perfectly 
shielded, Meissner state of the superconductor. The ’ is related to the shielding currents    

(= Jc)  setup in the sample via (Bean 1962, 1964), c
ac

J
h   for hac > H*, where hac is the ac 

excitation magnetic field used to measure the ac susceptibility response and H* is the 
penetration field value at which induced screening currents flow through the entire bulk of 
the sample. (Note, H*  Jc(H,T)). The quadrature ” signal is a measure of energy dissipated 
by vortices, which maximizes at hac = H*. If the vortices get strongly pinned then ’’shows a 
decrease, which is encountered in the PE regime.  In the PE region, vortex matter gets better 
pinned and the ” response anomalously decreases. 
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3.1.2 Typical characteristics of AC susceptibility response  
The ’(T) behavior in the presence of a dc field (H) of 100 Oe is shown in Fig.3(a). In this figure 
the various curves correspond to different values of the amplitude of the hac at a frequency of 
211 Hz applied parallel to H ( c). Note that at a fixed T, on increasing hac the ’ (viz., the 
diamagnetic shielding) response progressively decreases from -1 value (see the dashed arrow 
marked at 6.8 K in Fig.3(a)). At fixed T, the decrease in ’ is due to hac approaching close to H* 
( Jc(100 Oe, 6.8 K) and the magnetic flux penetrates the bulk of the sample, leading to a 
decrease in the screening response. As the hac penetrates deeper into the superconductor, one 
begins to clearly observe features associated with the bulk pinning of vortices inside the 
superconductor, viz., the peak effect (PE) phenomenon. The quintessential PE is easily 
observed as the anomalous enhancement in ’ between Ton (corresponding to the onset of PE 
at a given H, T) and Tp (the peak of PE at a given H, T) . Notice that due to the enhanced 
pinning in the PE regime between Ton and Tp, the sample attempts to shield its interior better 
from the penetrating hac as a consequence the ’ increases. Also notice that as the hac increases, 
the PE width between Ton and Tp becomes narrower. 
 

 
Fig. 3. (a) The behaviour of ’(T) at H=100 Oe for different values of hac. Ton and Tp denote 
the onset and peak temperatures of the PE phenomenon. (b) The ’’(T) behaviour at H=100 
Oe for different values of hac. Location marked as A indicates the broad dissipation peak due 
to penetration of hac into the bulk of the sample (hac > H*). [Banerjee 2000b; Mohan (2009)b] 

The behaviour of the out-of-phase component (’’) of the ac susceptibility for various values 
of hac at H =100 Oe is shown in Fig,.3(b). It is clear that for hac < 1 Oe and at low T, due to 
almost complete shielding of the probing hac from the bulk of the sample, the ’’response is 
nearly zero. At a fixed T, say T=6.8 K, as hac increases, ’’ response also increases 
monotonically. Full penetration of hac into the bulk of the sample causes a significant rise in 
dissipation, which in turn leads to a broad maximum in the ’’ response (location marked as 
A in Fig.3(b) for hac =2 Oe).  On approaching the PE region, due to enhancement in vortex 
pinning, one observes a drop in ’’response (marked as Tp for hac = 2 Oe). Beyond Tp, 
dissipation has a tendency to rise sharply before decreasing close to Tc(H). From Fig.3(b) we 
note that at H =100 Oe and T=6.8 K, significant flux penetration starts at hac = 1.6 Oe. Within 
the Bean’s Critical State model (Bean 1962, 1964) the field for flux penetration is given by 
H*~Jc.d, where d is the relevant dimension in which the critical state is established. Using 
Fig.3(b), by approximating H*= 1.6 Oe, we estimate the Jc ~ 130 A/cm2  at 6.8 K at 100 Oe 
(note Jc decreases significantly with increasing H). 



 
Superconductivity – Theory and Applications 60

fields from a power law behaviour in region II into the weakly field dependent Jc(H) 
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direction also avoids geometric and surface barrier effects, which are known to persist up to 
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3.1.2 Typical characteristics of AC susceptibility response  
The ’(T) behavior in the presence of a dc field (H) of 100 Oe is shown in Fig.3(a). In this figure 
the various curves correspond to different values of the amplitude of the hac at a frequency of 
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diamagnetic shielding) response progressively decreases from -1 value (see the dashed arrow 
marked at 6.8 K in Fig.3(a)). At fixed T, the decrease in ’ is due to hac approaching close to H* 
( Jc(100 Oe, 6.8 K) and the magnetic flux penetrates the bulk of the sample, leading to a 
decrease in the screening response. As the hac penetrates deeper into the superconductor, one 
begins to clearly observe features associated with the bulk pinning of vortices inside the 
superconductor, viz., the peak effect (PE) phenomenon. The quintessential PE is easily 
observed as the anomalous enhancement in ’ between Ton (corresponding to the onset of PE 
at a given H, T) and Tp (the peak of PE at a given H, T) . Notice that due to the enhanced 
pinning in the PE regime between Ton and Tp, the sample attempts to shield its interior better 
from the penetrating hac as a consequence the ’ increases. Also notice that as the hac increases, 
the PE width between Ton and Tp becomes narrower. 
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3.2 Transformation in the vortex state deep in the elastic regime 
From Fig.3 it can be noted that the PE phenomenon is distinctly observed for hac ≥ 2 Oe as at 
these hac, the ac field fully penetrate the bulk of the superconductor, and one can probe 
changes in the bulk pinning characteristics of the sample. Choosing hac = 2 Oe, we measured 
the ’(T) and ’’(T) for different values of H. Figures 4(a) and 4(c) and Figs. 4(b) and  4(d) 
 

 

 
Fig. 4. The real ((a),(c)) and imaginary ((b), (d)) parts of the ac susceptibility as a function of 
T with hac=2 Oe and for different H. [Mohan 2009b] 

show the ’(T) and ’’(T), respectively. At 7.0 K in Fig.4(a), with increasing H the value of 
’varies from about -1 at 25 Oe to about -0.2 at 250 Oe. This decrease in the diamagnetic 
shielding response, we believe, arises from the inverse field relation of the critical current 
density, e.g., 1

cJ H (Kim et al., 1962). In all the curves the location of PE is clearly visible 

as the anomalous enhancement in ’ due to the anomalous increase in pinning or Jc. 
However below 100 G the PE is very shallow, and we see an enhancement in ’’which 
occurs very close to Tc(H). At 100 Oe we see the decrease in ’’ at PE quite clearly, before the 
’’increases near Tc(T). At higher fields of 250 Oe (Fig.4(a)) from ’(T) we see that the PE gets 
narrower in temperature width. As one moves to still higher fields (Fig.4(c)), the PE width 
gets still narrower and sharper. In the ’’(T) at Fig.4(d), as well as in Fig.4(b) (above 100 Oe) 
we do not find the drop in  ’’ associated with PE as the drop over a narrow temperature 
window in ’’ due to PE gets merged into the enhancement in ’’ signal one observes in the 
vicinity of Tc(H). However from Figs.4(c) and 4(d), we see that there is a decrease in ’’ 
which begins (see an arrow in Fig.4(d)) well before the anomalous enhancement in ’(T) sets 
in at PE.  
The fig. 5 provides a glimpse into ac susceptibility data at high fields. Above H = 750 Oe, the 
signature of PE survives as a subtle change in slope of ’(T) at Tp (see locations marked by 
arrows in Fig.5(a)) just before ’crashes to zero value at Tc(H). A distinct feature seen at these 
fields is that the dissipation ’’ behaviour (Fig.5(b)), which is large at lower T, decreases 
sharply as one approaches Tc. This decrease begins from a region located far below the PE and 
is similar to the decrease in ’’(T) found above 450 Oe in fig. 4(d). The sharp increase in the 
dissipation (on ’’(T)) very close to Tc(H) (as noted in Fig.4), is observed only for 1000 Oe 
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Fig. 5. The real (a) and imaginary (b) parts of the ac susceptibility measured with hac = 2 Oe 
and for different dc fields: 1000 Oe  H  12500 Oe. The arrows in panel (a) mark the peak 
locations of the PE. (c) The ’’ response for 1000 Oe, 5000 Oe and 12500 Oe. The Tcr and Tfl 
locations determine the different regimes of dissipation marked as the regions 1, 2 and 3 
(See text for details). (d) The ’ response corresponding to (c). [Mohan et al. 2007; Mohan 
2009b]. 

(position marked C in Fig.5(b)). Above 1000 Oe, instead of a peak in ’’(T), the ’’ response 
exhibits only a change in slope near Tc(H) before becoming zero on reaching Tc(H). It should 
be noted that the temperature at which where the ’’response drops sharply from a large 
value does not correspond to any specific feature in ’(T) and, also, occurs well before the 
onset of PE. In Figs.6 (a) to (c) we can identify locations of the drop in dissipation ’’ by 
detecting the change in slope of through plots d’’/dT vs T (see Figs.6(f), 6(e) and 6(d)) . 
In Figs.6(d)-(f), the onset of the drop in dissipation at lower T is marked with arrows as Tcr 
and the T at which there occurs a change in slope of the dissipation curves close to Tc(H) are 
marked as Tfl. (The nomenclature Tcr and Tfl, signify the temperature above which, there 
occur  pinning crossover and thermal fluctuation dominated regimes, respectively). The 
dashed lines are a guide to the eye representing the base line behavior of the d’’/dT. The 
onset of deviation in d’’/dT from the baseline identifies Tcr (cf. Figs.6(d) – (f)). In Figs.6 (d)-
(f) the base lines for different H have been artificially offset for clarity in the data 
representation. After the locations of Tcr and Tfl are identified from d’’/dT (cf. Figs.6(d) – 
(f)), their positions are identified and marked on the corresponding ’’(T) curves (Figs.6(a)-
(c)). We now consider three representative ’’(T) curves, namely the response for 1000 Oe, 
5000 Oe and 12500 Oe in Fig.5(c) to understand the significance of the Tcr and Tfl. 
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3.2 Transformation in the vortex state deep in the elastic regime 
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Fig. 5. The real (a) and imaginary (b) parts of the ac susceptibility measured with hac = 2 Oe 
and for different dc fields: 1000 Oe  H  12500 Oe. The arrows in panel (a) mark the peak 
locations of the PE. (c) The ’’ response for 1000 Oe, 5000 Oe and 12500 Oe. The Tcr and Tfl 
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(See text for details). (d) The ’ response corresponding to (c). [Mohan et al. 2007; Mohan 
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(position marked C in Fig.5(b)). Above 1000 Oe, instead of a peak in ’’(T), the ’’ response 
exhibits only a change in slope near Tc(H) before becoming zero on reaching Tc(H). It should 
be noted that the temperature at which where the ’’response drops sharply from a large 
value does not correspond to any specific feature in ’(T) and, also, occurs well before the 
onset of PE. In Figs.6 (a) to (c) we can identify locations of the drop in dissipation ’’ by 
detecting the change in slope of through plots d’’/dT vs T (see Figs.6(f), 6(e) and 6(d)) . 
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dashed lines are a guide to the eye representing the base line behavior of the d’’/dT. The 
onset of deviation in d’’/dT from the baseline identifies Tcr (cf. Figs.6(d) – (f)). In Figs.6 (d)-
(f) the base lines for different H have been artificially offset for clarity in the data 
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(c)). We now consider three representative ’’(T) curves, namely the response for 1000 Oe, 
5000 Oe and 12500 Oe in Fig.5(c) to understand the significance of the Tcr and Tfl. 
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Fig. 6. The panels on the left (a)-(c) show the ’’(T) response for different H. The right hand 
panels (d)-(f), show the derivative d’’/dT determined from the corresponding ’’(T) curves 
on the left panel. (see discussion in the text) [Mohan et al. 2007; Mohan 2009b] 

In Fig.5(c), for H= 12500 Oe, three distinct regimes of behaviour in the ’’(T) response have 
been identified as the regions 1, 2 and 3. Region 1 is characterized by a high dissipation 
response. As noted earlier, this high dissipation results from full penetration of hac to the 
center of the sample, similar to the dissipation peak marked at A in Fig.3(b). As noted earlier 
in Fig.5(a), at these high fields beyond 1000 G, at T > Tcr, ’(T) response possesses no distinct 
signature of the PE phenomenon. The absence of any distinct PE feature in ’(T) should have 
caused no modulations in the behavior of ’’(T) response, except for a peak in dissipation 
close to Tc(H). Instead, in the region 2 (cross shaded and located between the Tcr and Tfl 
arrows in Fig.5(c)) a new behaviour in the dissipation response is observed, viz., in this 
region there is a substantial decrease in dissipation. 
As seen earlier in the context of PE in Fig.3(b), that any anomalous increase in pinning 
corresponds to a decrease in the dissipation. The observation of a large drop in dissipation 
across Tcr (Fig.5(c)) indicates there is a transformation from low Jc state to a high Jc state, i.e., 
a transformation from weak pinning to strong pinning. Subsequent to the drop in ’’(T) in 
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region 2, the dissipation response attempts to show an abrupt increase (see change in slope 
in d’’/dT in Fig.6(d) to (f)) at the onset of region 3 (marked as Tfl in Fig.5 and Fig.6). The 
abrupt increase in dissipation beyond Tfl is more pronounced at low H and high T (see 
behavior in Fig.5(b)). The significance of Tfl will be revealed in subsequent sections. In brief, 
the Tfl will be considered to identify the onset of a regime dominated by thermal 
fluctuations, where pinning effects become negligible and dissipation response goes through 
a peak. It is interesting to note that the Tfl locations are identical to the location of Tp (viz., 
the peak of PE) in Figs.5(a) and 5(c). For H < 750 Oe, the Tfl location can be identified with 
the appearance of a distinct PE peak at Tp (see Fig.4, where dissipation enhances at Tp = Tfl). 
It is important to reiterate that the anomalous drop in dissipation in region 2 near Tcr is not 
associated with the PE phenomenon.  
 

 
Fig. 7. The real (a) and imaginary (b) parts of the ac susceptibility measured in the ZFC and 
FC modes, for H = 1000 Oe. Also marked for are the locations of the Tcr and Tfl.  [Mohan et 
al. 2007; Mohan 2009b] 

All the above discussions pertain to susceptibility measurements performed in the zero field 
cooled (ZFC) mode. Detailed studies of the dependence of the thermomagnetic history 
dependent magnetization response on the pinning (Banerjee et al. 1999b, Thakur et al., 
2006), had shown an enhancement in the history dependent magnetization response and 
enhanced metastablility developing in the vortex state as the pinning increases across the 
PE. While the ZFC and field cooling (FC), ’(T) response can be identical in samples with 
weak pinning, the will show that ’’(T) is a more sensitive measure of small difference in the 
thermomagnetic history dependent response. Figures 7(a) and 7(b) display ’(T) and ’’(T) 
measured for a vortex state prepared either in ZFC or FC state in 1000 Oe. Figure 7(a) shows 
the absence of PE at Tcr in the ’(T) response at 1000 Oe for vortex state prepared in both FC 
and ZFC modes. Furthermore, there is no difference between the ZFC and FC ’(T) 
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Fig. 6. The panels on the left (a)-(c) show the ’’(T) response for different H. The right hand 
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As seen earlier in the context of PE in Fig.3(b), that any anomalous increase in pinning 
corresponds to a decrease in the dissipation. The observation of a large drop in dissipation 
across Tcr (Fig.5(c)) indicates there is a transformation from low Jc state to a high Jc state, i.e., 
a transformation from weak pinning to strong pinning. Subsequent to the drop in ’’(T) in 
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region 2, the dissipation response attempts to show an abrupt increase (see change in slope 
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fluctuations, where pinning effects become negligible and dissipation response goes through 
a peak. It is interesting to note that the Tfl locations are identical to the location of Tp (viz., 
the peak of PE) in Figs.5(a) and 5(c). For H < 750 Oe, the Tfl location can be identified with 
the appearance of a distinct PE peak at Tp (see Fig.4, where dissipation enhances at Tp = Tfl). 
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measured for a vortex state prepared either in ZFC or FC state in 1000 Oe. Figure 7(a) shows 
the absence of PE at Tcr in the ’(T) response at 1000 Oe for vortex state prepared in both FC 
and ZFC modes. Furthermore, there is no difference between the ZFC and FC ’(T) 
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responses (cf.Fig.7(a)). However, the dissipation (’’(T)) behaviour in the two states  
(Fig.7(b)) are slightly different. While there are no clear signatures of Tcr in the ’(T) 
response, in ’’(T) response (Fig.7(b)) below Tcr one observes that the FC response 
significantly differs from that of the ZFC state, with the dissipation in the FC state below Tcr 
being lower as compared to that in the ZFC state. The presence of a strong pinning vortex 
state above Tcr, causes the freezing in of a metastable stronger pinned vortex state present 
above Tcr, when the sample is field cooled to T < Tcr. As the FC state has higher pinning than 
the ZFC state (which is in a weak pinning state) at the same T below Tcr, therefore, the ’’(T) 
response is lower for the FC state. Above Tcr the behavior of ZFC and FC curves are 
identical, as both transform into a maximally pinned vortex state above Tcr. The behavior of 
’’(T) in the FC state indicates that the pinning enhances across Tcr. Beyond Tcr, the ZFC and 
FC curves match and the high pinning regime exists till Tfl. This observation holds true for 
all Hdc above 1000 Oe as well. 

3.2.1 Transformation in pinning: evidence from DC magnetization measurements 
Figure 8 displays measured forward (Mfwd) and (Mrev) reverse magnetization responses of 
2H-NbSe2 at temperatures of 4.4 K, 5.4 K and 6.3 K for H  c.  
 

 
Fig. 8. The M-H hysteresis loops at different T. (a) The forward and reverse legs of the M-H 
loops are indicated as Mfwd and Mrev. (b) in Mrev (H) array at different T. The locations of the 
observed humps in the Mrev(H) curves  are marked with arrows. Also indicated, in the 6.3 K 
curve, is the location of the field that corresponds to the temperature, Tfl = Tirr. [Mohan et al. 
2007; Mohan 2009b] 

A striking feature of the M-H loops in Fig. 8 is the asymmetry in the forward (Mfwd) and 
reverse (Mrev) legs. The Mrev leg of the hysteresis curve exhibits a change in curvature at low 
fields. In Fig.8(b) we plot only the Mrev from the M-H recorded at 4.4 K, 5.4 K and 6.3 K. At 
low fields, the Mrev leg exhibits a hump; the location of the humps are denoted by arrows in 
Fig.8(b). The characteristic hump-like feature (marked with arrows in Fig.8(b)) can be 
identified closely with Tcr locations identified in Figs.4, 5 and 6. The tendency of the 
dissipation ’’ to rapidly rise close to Tfl(H) (cf. Figs.4, 5 and 6) is a behaviour which is 
expected across the irreversibility line (Tirr(H)) in the H-T phase diagram, where the bulk 
pinning and, hence, the hysteresis in the M(H) loop becomes undetectably small. The 
decrease in pinning at Tirr(H), results in a state with mobile vortices which are free to 
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dissipate. We have confirmed that Tfl(H) coincides with Tirr(H), by comparing dc 
magnetization with ’’ response measurements (cf. arrow marked as Tfl= Tirr in Fig.8 for the 
6.3 K curve). Thus Tfl(H) coincides with Tirr(H), which is also where the peak of the PE 
occurs, viz., the peak of PE at Tp occurs at the edge of irreversibility (cf. H-T phase diagram 
in Fig.9).  

3.3 The H-T vortex phase diagram and pinning crossover region  
Figure 9(a) shows the H  - T, vortex matter phase diagram wherein we show the location of 
the Tc(H) line which is determined by the onset of diamagnetism in (T), the Tp(B) line 
which denotes the location of the PE phenomenon, the Tcr(H) line across which the (T) 
response (shaded region 2 in Fig.5(c)) shows a substantial decrease in the dissipation and 
the Tfl line beyond which dissipation attempts to increase. The PE ceases to be a distinct 
noticeable feature beyond 750 G and the Tp(H) line (identified with arrows in Fig. 5(a)) 
continues as the Tfl(H) line. Note the Tfl(H) line also coincides with Tirr(H). For clarity we 
have indicated only the Tfl(H) line  in the phase diagram with open triangles in Fig.9(a). 
 

 
(a)                                                                   (b) 

Fig. 9. (a) The phase diagram showing the different regimes of the vortex matter. The inset is 
a log-log plot of the width of the hysteresis loop versus field at 6K. (b) An estimate of 
variation in Jc with fp/fLab in different pinning regimes. [Mohan et al. 2007; Mohan 2009b]. 

We consider the Tcr(H) line as a crossover in the pinning strength experienced by vortices, 
which occurs well prior to the PE. A criterion for weak to strong pinning crossover is when 
the pinning force far exceeds the change in the elastic energy of the vortex lattice, due to 
pinning induced distortions of the vortex line. This can be expressed as (Blatter et al, 2004), 
the pinning force (fp) ~ Labusch force (fLab) = (0/a0), where 0 = (0/4)2 is the energy 
scale for the vortex line tension,  is the coherence length, 0 flux quantum associated with a 
vortex,  is the penetration depth and a0 is the inter vortex spacing (a0  H-0.5). A softening of 
the vortex lattice satisfies the criterion for the crossover in pinning. At the crossover in 
pinning, we have a relationship, a0  0 fp-1. At Hcr(T) and far away from Tc, if we use a 
monotonically decreasing temperature dependent function for fp ~ fp0(1-t), where t=T/Tc(0) 
and  > 0, then we obtain the relation Hcr(T)  (1-t)2. We have used the form derived for 
Hcr(T) to obtain a good fit (solid line through the data Fig.9(a)) for Tcr(B) data, giving 2~ 
1.66  0.03. Inset of Fig. 9(a) is a log-log plot of the width of the magnetization loop (M) 
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responses (cf.Fig.7(a)). However, the dissipation (’’(T)) behaviour in the two states  
(Fig.7(b)) are slightly different. While there are no clear signatures of Tcr in the ’(T) 
response, in ’’(T) response (Fig.7(b)) below Tcr one observes that the FC response 
significantly differs from that of the ZFC state, with the dissipation in the FC state below Tcr 
being lower as compared to that in the ZFC state. The presence of a strong pinning vortex 
state above Tcr, causes the freezing in of a metastable stronger pinned vortex state present 
above Tcr, when the sample is field cooled to T < Tcr. As the FC state has higher pinning than 
the ZFC state (which is in a weak pinning state) at the same T below Tcr, therefore, the ’’(T) 
response is lower for the FC state. Above Tcr the behavior of ZFC and FC curves are 
identical, as both transform into a maximally pinned vortex state above Tcr. The behavior of 
’’(T) in the FC state indicates that the pinning enhances across Tcr. Beyond Tcr, the ZFC and 
FC curves match and the high pinning regime exists till Tfl. This observation holds true for 
all Hdc above 1000 Oe as well. 

3.2.1 Transformation in pinning: evidence from DC magnetization measurements 
Figure 8 displays measured forward (Mfwd) and (Mrev) reverse magnetization responses of 
2H-NbSe2 at temperatures of 4.4 K, 5.4 K and 6.3 K for H  c.  
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curve, is the location of the field that corresponds to the temperature, Tfl = Tirr. [Mohan et al. 
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reverse (Mrev) legs. The Mrev leg of the hysteresis curve exhibits a change in curvature at low 
fields. In Fig.8(b) we plot only the Mrev from the M-H recorded at 4.4 K, 5.4 K and 6.3 K. At 
low fields, the Mrev leg exhibits a hump; the location of the humps are denoted by arrows in 
Fig.8(b). The characteristic hump-like feature (marked with arrows in Fig.8(b)) can be 
identified closely with Tcr locations identified in Figs.4, 5 and 6. The tendency of the 
dissipation ’’ to rapidly rise close to Tfl(H) (cf. Figs.4, 5 and 6) is a behaviour which is 
expected across the irreversibility line (Tirr(H)) in the H-T phase diagram, where the bulk 
pinning and, hence, the hysteresis in the M(H) loop becomes undetectably small. The 
decrease in pinning at Tirr(H), results in a state with mobile vortices which are free to 
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dissipate. We have confirmed that Tfl(H) coincides with Tirr(H), by comparing dc 
magnetization with ’’ response measurements (cf. arrow marked as Tfl= Tirr in Fig.8 for the 
6.3 K curve). Thus Tfl(H) coincides with Tirr(H), which is also where the peak of the PE 
occurs, viz., the peak of PE at Tp occurs at the edge of irreversibility (cf. H-T phase diagram 
in Fig.9).  

3.3 The H-T vortex phase diagram and pinning crossover region  
Figure 9(a) shows the H  - T, vortex matter phase diagram wherein we show the location of 
the Tc(H) line which is determined by the onset of diamagnetism in (T), the Tp(B) line 
which denotes the location of the PE phenomenon, the Tcr(H) line across which the (T) 
response (shaded region 2 in Fig.5(c)) shows a substantial decrease in the dissipation and 
the Tfl line beyond which dissipation attempts to increase. The PE ceases to be a distinct 
noticeable feature beyond 750 G and the Tp(H) line (identified with arrows in Fig. 5(a)) 
continues as the Tfl(H) line. Note the Tfl(H) line also coincides with Tirr(H). For clarity we 
have indicated only the Tfl(H) line  in the phase diagram with open triangles in Fig.9(a). 
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Fig. 9. (a) The phase diagram showing the different regimes of the vortex matter. The inset is 
a log-log plot of the width of the hysteresis loop versus field at 6K. (b) An estimate of 
variation in Jc with fp/fLab in different pinning regimes. [Mohan et al. 2007; Mohan 2009b]. 

We consider the Tcr(H) line as a crossover in the pinning strength experienced by vortices, 
which occurs well prior to the PE. A criterion for weak to strong pinning crossover is when 
the pinning force far exceeds the change in the elastic energy of the vortex lattice, due to 
pinning induced distortions of the vortex line. This can be expressed as (Blatter et al, 2004), 
the pinning force (fp) ~ Labusch force (fLab) = (0/a0), where 0 = (0/4)2 is the energy 
scale for the vortex line tension,  is the coherence length, 0 flux quantum associated with a 
vortex,  is the penetration depth and a0 is the inter vortex spacing (a0  H-0.5). A softening of 
the vortex lattice satisfies the criterion for the crossover in pinning. At the crossover in 
pinning, we have a relationship, a0  0 fp-1. At Hcr(T) and far away from Tc, if we use a 
monotonically decreasing temperature dependent function for fp ~ fp0(1-t), where t=T/Tc(0) 
and  > 0, then we obtain the relation Hcr(T)  (1-t)2. We have used the form derived for 
Hcr(T) to obtain a good fit (solid line through the data Fig.9(a)) for Tcr(B) data, giving 2~ 
1.66  0.03. Inset of Fig. 9(a) is a log-log plot of the width of the magnetization loop (M) 
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versus H. The weak collective pinning regime is characterized by the region shown in the 
inset, where the measured M(H) (red curve) values coincide with the black dashed line, 
viz., 1

c pM J
H

   , with p as a positive integer (discussed earlier). Using expressions for 

Jc(fp/fLab) (Blatter, 2004), a0 ~  and = 2300 A, = 23 A for 2H-NbSe2 (Higgins and 
Bhattacharya, 1996) and parameters like density of pins suitably chosen to reproduce Jc 
values comparable to those experimentally measured for 2H-NbSe2, Fig.9(b) shows the 
enhancement in Jc expected at the weak to strong pinning regime, viz., around the shaded 
region in Fig.9(b) marked Jc, in the vicinity of fp/fLab ~ 1.   In Fig.9(a), the shaded region in 
the M(H) ( Jc(H), Bean, 1962; 1967) plot shows the excess pinning that develops due to the 
pinning crossover across Hcr(T) ( Tcr(H)). Comparing Figs.9(b) and 9(a) we find Jc/Jc,weak  
~ 1 compares closely with the (change in M in shaded region ~ 0.6 T in Fig.9(a) inset)/ M 
(along extrapolated black line ~ 0.6 T) ~ 0.5. In the PE regime, usually  Jc/Jc,weak  10 (see 
for example in Fig.2). Note from the above analysis and the distinctness of the Tcr and Tp 
lines in Fig.9(a), shows that the excess pinning associated with the pinning crossover does 
not occur in the vicinity of the PE, rather it is a line which divides the elastically pinned 
regime prior to PE. Based on the above discussion we surmise that the Tcr(H) line marks the 
onset of an instability in the static elastic vortex lattice due to which there is a crossover 
from weak (region 1 in Fig.5(c)) to a strong pinning regime (region 2 in Fig.5(c)). The 
crossover in pinning produces interesting history dependent response in the 
superconductor, as seen in the Mrev measurements of Fig. 8 and in the (T) response for the 
ZFC and FC vortex states, in the main panel of Fig.7. In the inset (b) of Fig.8 we have 
schematically identified the pinning crossover (by the sketched dark curved arrows in 
Fig.8(b)) by distinguishing two different branches in the Mrev(H) curve, which correspond to 
magnetization response of vortex states with high and low Jc. We reiterate that the onset of 
instability of the elastic vortex lattice sets in well prior to PE phenomenon without 
producing the anomalous PE.  
As the strong pinning regime commences upon crossing Hcr, how then does pinning 
dramatically enhance across PE? The Tfl(H) line in Fig.9 marks the end of the strong pinning 
regime of the vortex state. Above the Tfl(H) line and close to Tc(H), the tendency of the 
dissipation response to increase rapidly (Figs.1 and 2) especially at low H and high T, 
implies that thermal fluctuation effects dominate over pinning. We find that our values (Hfl, 
Tfl) in Fig.9(a), satisfies the equation governing the melting of the vortex state, viz., 
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, where, m = 5.6 (Blatter et al, 1994), 

Lindemann no. cL ~ 0.25 (Troyanovski et al. 1999, 2002), 2 (0)c
cH = 14.5 T, if a parameter, Gi is 

in the range of 1.5 x 10-3 to 10-4. The Ginzburg number, Gi, in the above equation controls the 
size of the H - T region in which thermal fluctuations dominate. A value of O(10-4) is 
expected for 2H-NbSe2 (Higgins & Bhattacharya, 1996). The above discussion implies that 
thermal fluctuations dominate beyond Tfl(H). By noting that Tp(H) appears very close to 
Tfl(H), it seems that PE appears on the boundary separating strong pinning and thermal 
fluctuation dominated regimes. 
The above observations (Mohan et al, 2007) imply that instabilities developing within the 
vortex lattice lead to the crossover in pinning which occurs well before the PE. Infact, PE 
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seems to sit on a boundary which separates a strong pinning dominated regime from a 
thermal fluctuation dominated regime. These assertions could have significant ramifications 
pertaining to the origin of PE which was originally attributed to a softening of the elastic 
modulii of the vortex lattice. Even though thermal fluctuations try to reduce pinning, we 
believe newer results show that at PE, the pinning and  thermal fluctuations effects combine 
in a non trivial way to dramatically enhance pinning, much beyond what is expected from 
pinning crossovers. The change in the pinning response deep in the elastic vortex state is 
expected to lead to nonlinear response under the influence of a drive. It is interesting to ask 
if these crossovers and transformation in the static vortex state evolve and leave their 
imprint in the driven vortex state.  

4 Nonlinear response of the moving vortex state 
4.1 I-V characteristics and the various phases of the driven vortex matter 
In the presence of an external transport current (I) the vortex lattice gets set into motion. A 
Lorentz force, fL=J x 0/c, acting on each vortex due to a net current density J (due to current 
(I) sent through the superconductor and the currents from neighbouring vortices) sets the 
vortices in motion. As the Lorentz force exceeds the pinning force, i.e fL>fp, the vortices begin 
to move with a force-dependent velocity, v. The motion of the flux lines induces an electric 
field E = B x v, in the direction of the applied current causing the appearance of a longitudinal 
voltage (V) across the voltage contacts (Blatter et al, 1994). Hence, the measured voltage, V in a 
transport experiment can be related to the velocity (v) of the moving vortices via V=Bvd, 
where d is the distance between the voltage contacts. Measurements of the V (equivalent to 
vortex velocity v) as a function of I, H, T or time (t)  are expected to reveal various phases and 
their associated characteristics an nonlinear behavior of the driven vortex state.  
When vortices are driven over random pinning centers, broadly, four different flow regimes 
have been established theoretically and through significantly large number of experiments 
(Shi & Berlinski 1991; Giammarchi & Le Doussal, 1996; Le Doussal & Giammarchi, 1998; 
Giammarchi & Bhattacharya, 2002).  These are: (a) depinning, (b) elastic flow, (c) plastic 
flow, and (e) the free-flow regime. At low drives, the depinning regime is first encountered, 
when the driving force just exceeds the pinning force and the vortices begin moving. As the 
vortex state is set in motion near the depinning regime, the moving vortex state is 
proliferated with topological defects, like, dislocations (Falesky et al, 1996). As the drive is 
increased by increasing the current through the sample, the dislocations are found to heal 
out from the moving system and the moving vortex state enters an ordered flow regime 
(Giammarchi & Le Doussal, 1996; Yaron et al., 1994; Duarte, 1996).  The depinning regime is 
thus followed by an elastically flowing phase at moderately higher drives, when all the 
vortices are moving almost uniformly and maintain their spatial correlations. The nature 
and characteristics of this phase was theoretically described as the moving Bragg glass 
phase (Giammarchi & Le Doussal, 1996; Le Doussal & Giammarchi, 1998). In the PE regime 
of the H- T phase diagram, it is found that as the vortices are driven, the moving vortex state 
is proliferated with topological defects and dislocations, thereby leading to loss of 
correlation amongst the moving vortices (Falesky et al, 1996; Giammarchi & Le Doussal, 
1996; Le Doussal & Giammarchi, 1998; Giammarchi & Bhattacharya 2002). This is the regime 
of plastic flow. In the plastic flow regime, chunks of vortices remain pinned forming islands 
of localized vortices, while there are channels of moving vortices flowing around these 
pinned islands, viz., different parts of the system flow with different velocities 
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versus H. The weak collective pinning regime is characterized by the region shown in the 
inset, where the measured M(H) (red curve) values coincide with the black dashed line, 
viz., 1
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Bhattacharya, 1996) and parameters like density of pins suitably chosen to reproduce Jc 
values comparable to those experimentally measured for 2H-NbSe2, Fig.9(b) shows the 
enhancement in Jc expected at the weak to strong pinning regime, viz., around the shaded 
region in Fig.9(b) marked Jc, in the vicinity of fp/fLab ~ 1.   In Fig.9(a), the shaded region in 
the M(H) ( Jc(H), Bean, 1962; 1967) plot shows the excess pinning that develops due to the 
pinning crossover across Hcr(T) ( Tcr(H)). Comparing Figs.9(b) and 9(a) we find Jc/Jc,weak  
~ 1 compares closely with the (change in M in shaded region ~ 0.6 T in Fig.9(a) inset)/ M 
(along extrapolated black line ~ 0.6 T) ~ 0.5. In the PE regime, usually  Jc/Jc,weak  10 (see 
for example in Fig.2). Note from the above analysis and the distinctness of the Tcr and Tp 
lines in Fig.9(a), shows that the excess pinning associated with the pinning crossover does 
not occur in the vicinity of the PE, rather it is a line which divides the elastically pinned 
regime prior to PE. Based on the above discussion we surmise that the Tcr(H) line marks the 
onset of an instability in the static elastic vortex lattice due to which there is a crossover 
from weak (region 1 in Fig.5(c)) to a strong pinning regime (region 2 in Fig.5(c)). The 
crossover in pinning produces interesting history dependent response in the 
superconductor, as seen in the Mrev measurements of Fig. 8 and in the (T) response for the 
ZFC and FC vortex states, in the main panel of Fig.7. In the inset (b) of Fig.8 we have 
schematically identified the pinning crossover (by the sketched dark curved arrows in 
Fig.8(b)) by distinguishing two different branches in the Mrev(H) curve, which correspond to 
magnetization response of vortex states with high and low Jc. We reiterate that the onset of 
instability of the elastic vortex lattice sets in well prior to PE phenomenon without 
producing the anomalous PE.  
As the strong pinning regime commences upon crossing Hcr, how then does pinning 
dramatically enhance across PE? The Tfl(H) line in Fig.9 marks the end of the strong pinning 
regime of the vortex state. Above the Tfl(H) line and close to Tc(H), the tendency of the 
dissipation response to increase rapidly (Figs.1 and 2) especially at low H and high T, 
implies that thermal fluctuation effects dominate over pinning. We find that our values (Hfl, 
Tfl) in Fig.9(a), satisfies the equation governing the melting of the vortex state, viz., 
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size of the H - T region in which thermal fluctuations dominate. A value of O(10-4) is 
expected for 2H-NbSe2 (Higgins & Bhattacharya, 1996). The above discussion implies that 
thermal fluctuations dominate beyond Tfl(H). By noting that Tp(H) appears very close to 
Tfl(H), it seems that PE appears on the boundary separating strong pinning and thermal 
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seems to sit on a boundary which separates a strong pinning dominated regime from a 
thermal fluctuation dominated regime. These assertions could have significant ramifications 
pertaining to the origin of PE which was originally attributed to a softening of the elastic 
modulii of the vortex lattice. Even though thermal fluctuations try to reduce pinning, we 
believe newer results show that at PE, the pinning and  thermal fluctuations effects combine 
in a non trivial way to dramatically enhance pinning, much beyond what is expected from 
pinning crossovers. The change in the pinning response deep in the elastic vortex state is 
expected to lead to nonlinear response under the influence of a drive. It is interesting to ask 
if these crossovers and transformation in the static vortex state evolve and leave their 
imprint in the driven vortex state.  

4 Nonlinear response of the moving vortex state 
4.1 I-V characteristics and the various phases of the driven vortex matter 
In the presence of an external transport current (I) the vortex lattice gets set into motion. A 
Lorentz force, fL=J x 0/c, acting on each vortex due to a net current density J (due to current 
(I) sent through the superconductor and the currents from neighbouring vortices) sets the 
vortices in motion. As the Lorentz force exceeds the pinning force, i.e fL>fp, the vortices begin 
to move with a force-dependent velocity, v. The motion of the flux lines induces an electric 
field E = B x v, in the direction of the applied current causing the appearance of a longitudinal 
voltage (V) across the voltage contacts (Blatter et al, 1994). Hence, the measured voltage, V in a 
transport experiment can be related to the velocity (v) of the moving vortices via V=Bvd, 
where d is the distance between the voltage contacts. Measurements of the V (equivalent to 
vortex velocity v) as a function of I, H, T or time (t)  are expected to reveal various phases and 
their associated characteristics an nonlinear behavior of the driven vortex state.  
When vortices are driven over random pinning centers, broadly, four different flow regimes 
have been established theoretically and through significantly large number of experiments 
(Shi & Berlinski 1991; Giammarchi & Le Doussal, 1996; Le Doussal & Giammarchi, 1998; 
Giammarchi & Bhattacharya, 2002).  These are: (a) depinning, (b) elastic flow, (c) plastic 
flow, and (e) the free-flow regime. At low drives, the depinning regime is first encountered, 
when the driving force just exceeds the pinning force and the vortices begin moving. As the 
vortex state is set in motion near the depinning regime, the moving vortex state is 
proliferated with topological defects, like, dislocations (Falesky et al, 1996). As the drive is 
increased by increasing the current through the sample, the dislocations are found to heal 
out from the moving system and the moving vortex state enters an ordered flow regime 
(Giammarchi & Le Doussal, 1996; Yaron et al., 1994; Duarte, 1996).  The depinning regime is 
thus followed by an elastically flowing phase at moderately higher drives, when all the 
vortices are moving almost uniformly and maintain their spatial correlations. The nature 
and characteristics of this phase was theoretically described as the moving Bragg glass 
phase (Giammarchi & Le Doussal, 1996; Le Doussal & Giammarchi, 1998). In the PE regime 
of the H- T phase diagram, it is found that as the vortices are driven, the moving vortex state 
is proliferated with topological defects and dislocations, thereby leading to loss of 
correlation amongst the moving vortices (Falesky et al, 1996; Giammarchi & Le Doussal, 
1996; Le Doussal & Giammarchi, 1998; Giammarchi & Bhattacharya 2002). This is the regime 
of plastic flow. In the plastic flow regime, chunks of vortices remain pinned forming islands 
of localized vortices, while there are channels of moving vortices flowing around these 
pinned islands, viz., different parts of the system flow with different velocities 
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(Bhattacharya & Higgins, 1993, Higgins & Bhattacharya 1996; Nori, 1996; Tryoanovski et al, 
1999). The effect of the pins on the moving vortex phase driven over random pinning 
centers is considered to be equivalent to the effect of an effective temperature acting on the 
driven vortex state. This effective temperature has been theoretically considered to lead to a 
driven vortex liquid  regime at large drives (Koshelev & Vinokur, 1994). At larger drives, the 
vortex matter is driven into a freely flowing regime. Thus, with increasing drive, interplay 
between interaction and disordering effects, causes the flowing vortex matter to evolve 
between the various regimes. 
The plastic flow regime has been an area of intense study. The current (I) - voltage (V) 
characteristics in the plastic flow regime across the PE regime are highly nonlinear (Higgins 
& Bhattacharya, 1996), where a small change in I is found to produce large changes in V. 
Investigations into the power spectrum of V fluctuations revealed significant increase in the 
noise power on entering the plastic flow regime (Marley, 1995; Paltiel et al., 2000, 2002). The 
peak in the noise power spectrum in the plastic flow regime was reported to be of few Hertz 
(Paltiel et al., 2002).  The glassy dynamics of the vortex state in the plastic flow regime is 
characterized by metastability and memory effects (Li et al, 2005, 2006; Xiao et al, 1999). An 
edge contamination model pertaining to injection of defects from the nonuniform sample 
edges into the moving vortex state can rationalise variety of observations associated with 
the plastic flow regime (Paltiel et al., 2000; 2002). In recent times experiments (Li et al, 2006) 
have established a connection between the time required for a static vortex state to reach 
steady state flow with the amount of topological disorder present in the static vortex state. 
By choosing the H-T regime carefully, one finds that while the discussed times scales are 
relatively short for a well ordered static vortex state, the times scales become significantly 
large for a disordered vortex state set into flow, especially in the PE regime. The discovery 
of pinning transformations deep in the elastic vortex state (Mohan et al, 2007), motivated a 
search for nonlinear response deep in the elastic regime as well as to investigate the time 
series response in the different regimes of vortex flow (Mohan et al, 2009).  

4.2 Identification of driven states of vortex matter in transport measurements 
The single crystal of 2H-NbSe2 used in our transport measurements (Mohan et al, 2009) had 
pinning strength in between samples of A and B variety (see section 2.1.1). The dc magnetic 
field (H) applied parallel to the c-axis of the single crystal and the dc current (Idc) applied 
along its ‘ab’ plane (Mohan et al, 2009). The voltage contacts had spacing of d ~ 1 mm apart. 
Figure 10(a) shows the plots of resistance (R=V/Idc) versus H at 2.5 K, 4 K, 4.5 K, 5 K, 5.8 K 
and 6 K measured with Idc=30 mA. With increasing H, all the R-H curves exhibit common 
features viz., nearly zero R values at lowest H, increasing R after depinning at larger H, an 
anomalous drop in R associated with onset of plastic flow regime and finally, a transition to 
the normal state at high values of H. To illustrate in detail these main features, and to 
identify different regime of driven vortex state, we draw attention only to the 5 K data in 
Figure 10(b). 
At 5 K, for H < 1.2 kOe, R < 0.1 m, which implies an immobile, pinned vortex state. 
Beyond 1.2 kOe (position marked as Hdp in Fig.10(b)), the FLL gets depinned and R 
increases to m  range. From this we estimate the critical current Ic to be 30 mA (at 5 K, 1.2 
kOe). The enhanced pinning associated with the anomalous PE phenomenon leads to a drop 
in R starting at around 6 kOe (onset location marked as Hpl) and continuing up to around 8 
kOe (location marked as Hp). The PE ( plastic flow) region is shaded in Fig.10(b). As 
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Fig. 10. (a) R versus H (H \\ c) of the vortex state, measured at different T with Idc=30 mA. 
(b)  R-H at 5 K only, with the different driven vortex state regimes marked with arrows. The 
arrows marks the locations of, depinning (Hdp), onset of plastic deformations (Hp), peak 
location of PE (Hp) and upper critical field (Hc2) at 5 K, respectively. The inset location of 
above fields (Fig.10(b)) on the H-T diagram. [Mohan et al. 2009a; Mohan 2009b]. 

 
Fig. 11. (a) The V-Idc characteristics and dV/dIdc vs Idc in the elastic phase at 4 K and 7.6 kOe. 
The solid line is a fit to the V-Idc data, (cf. text for details). (b) R-H curve at 4.5 K and Idc= 30 
mA. [Mohan et al. 2009a; Mohan 2009b] 

discussed earlier (Fig.9), beyond Hp, thermal fluctuations dominate causing large increase in 
R associated with pinning free mobile vortices until the upper critical field Hc2 is reached. 
We determine Hc2(T) as the intersection point of the extrapolated behaviour of the R-H 
curve in the normal and superconducting states, as shown in Fig.10(b). By identifying these 
features from the other R-H curves (Fig.10(a)), an inset in Fig.10(b) shows the H-T vortex 
phase diagram for the vortex matter driven with Idc = 30 mA. 
Figure 11  shows the V-Idc characteristics at 4 K and 7.6 kOe; this field value lies between 
Hdp(T) and Hpl(T) (see inset, Fig.10(b)), i.e. in the elastic flow regime. It is seen that the data 
fits (see solid line in Fig.11(a)) to V~(Idc - Ic), where  ~ 2 and Ic = 18 mA (I = Ic, when V ≥ 5 
V, as V develops only after the vortex state is depinned), which inturn indicates the onset 
of an elastically flow. Experiments indicate the concave curvature in I-V coincides with 
ordered elastic vortex flow (Duarte et al, 1996; Yaron et al.,1994; Higgins and Bhattacharya 
1996). Unlike the elastic flow regime, the plastic flow regime is characterized by a convex 
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(Bhattacharya & Higgins, 1993, Higgins & Bhattacharya 1996; Nori, 1996; Tryoanovski et al, 
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edge contamination model pertaining to injection of defects from the nonuniform sample 
edges into the moving vortex state can rationalise variety of observations associated with 
the plastic flow regime (Paltiel et al., 2000; 2002). In recent times experiments (Li et al, 2006) 
have established a connection between the time required for a static vortex state to reach 
steady state flow with the amount of topological disorder present in the static vortex state. 
By choosing the H-T regime carefully, one finds that while the discussed times scales are 
relatively short for a well ordered static vortex state, the times scales become significantly 
large for a disordered vortex state set into flow, especially in the PE regime. The discovery 
of pinning transformations deep in the elastic vortex state (Mohan et al, 2007), motivated a 
search for nonlinear response deep in the elastic regime as well as to investigate the time 
series response in the different regimes of vortex flow (Mohan et al, 2009).  

4.2 Identification of driven states of vortex matter in transport measurements 
The single crystal of 2H-NbSe2 used in our transport measurements (Mohan et al, 2009) had 
pinning strength in between samples of A and B variety (see section 2.1.1). The dc magnetic 
field (H) applied parallel to the c-axis of the single crystal and the dc current (Idc) applied 
along its ‘ab’ plane (Mohan et al, 2009). The voltage contacts had spacing of d ~ 1 mm apart. 
Figure 10(a) shows the plots of resistance (R=V/Idc) versus H at 2.5 K, 4 K, 4.5 K, 5 K, 5.8 K 
and 6 K measured with Idc=30 mA. With increasing H, all the R-H curves exhibit common 
features viz., nearly zero R values at lowest H, increasing R after depinning at larger H, an 
anomalous drop in R associated with onset of plastic flow regime and finally, a transition to 
the normal state at high values of H. To illustrate in detail these main features, and to 
identify different regime of driven vortex state, we draw attention only to the 5 K data in 
Figure 10(b). 
At 5 K, for H < 1.2 kOe, R < 0.1 m, which implies an immobile, pinned vortex state. 
Beyond 1.2 kOe (position marked as Hdp in Fig.10(b)), the FLL gets depinned and R 
increases to m  range. From this we estimate the critical current Ic to be 30 mA (at 5 K, 1.2 
kOe). The enhanced pinning associated with the anomalous PE phenomenon leads to a drop 
in R starting at around 6 kOe (onset location marked as Hpl) and continuing up to around 8 
kOe (location marked as Hp). The PE ( plastic flow) region is shaded in Fig.10(b). As 
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Fig. 10. (a) R versus H (H \\ c) of the vortex state, measured at different T with Idc=30 mA. 
(b)  R-H at 5 K only, with the different driven vortex state regimes marked with arrows. The 
arrows marks the locations of, depinning (Hdp), onset of plastic deformations (Hp), peak 
location of PE (Hp) and upper critical field (Hc2) at 5 K, respectively. The inset location of 
above fields (Fig.10(b)) on the H-T diagram. [Mohan et al. 2009a; Mohan 2009b]. 
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The solid line is a fit to the V-Idc data, (cf. text for details). (b) R-H curve at 4.5 K and Idc= 30 
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discussed earlier (Fig.9), beyond Hp, thermal fluctuations dominate causing large increase in 
R associated with pinning free mobile vortices until the upper critical field Hc2 is reached. 
We determine Hc2(T) as the intersection point of the extrapolated behaviour of the R-H 
curve in the normal and superconducting states, as shown in Fig.10(b). By identifying these 
features from the other R-H curves (Fig.10(a)), an inset in Fig.10(b) shows the H-T vortex 
phase diagram for the vortex matter driven with Idc = 30 mA. 
Figure 11  shows the V-Idc characteristics at 4 K and 7.6 kOe; this field value lies between 
Hdp(T) and Hpl(T) (see inset, Fig.10(b)), i.e. in the elastic flow regime. It is seen that the data 
fits (see solid line in Fig.11(a)) to V~(Idc - Ic), where  ~ 2 and Ic = 18 mA (I = Ic, when V ≥ 5 
V, as V develops only after the vortex state is depinned), which inturn indicates the onset 
of an elastically flow. Experiments indicate the concave curvature in I-V coincides with 
ordered elastic vortex flow (Duarte et al, 1996; Yaron et al.,1994; Higgins and Bhattacharya 
1996). Unlike the elastic flow regime, the plastic flow regime is characterized by a convex 
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curvature in the V-Idc curve alongwith a conspicuous peak in the differential resistance 
(Higgins and Bhattacharya, 1996), which is absent in Fig.11 (see dV/dIdc vs Idc in Fig.11(a)). 
All the above indicate ordered elastic vortex flow regime at 4 K, 7.6 kOe and I = 30 mA. The 
dV/dIdc curve also indicates a nonlinear V-Idc response deep in the elastic flow regime.  

4.3 Time series measurements of voltage fluctuations and its evolution across 
different driven phases of the vortex matter 
Figure 11(b), shows the R-H curve for 4.5 K. Like Fig.10(b), in Fig. 11 (b), the Hdp, Hpl, Hp 
and Hc2 locations are identified by arrows, which also identify the field values, at which 
time series measurements were performed. The protocol for the time series measurements 
was as follows: At a fixed T, H and Idc, the dc voltage V0 across the electrical contacts of the 
sample was measured by averaging over a large number of measurements ~ 100. The V0 
measurement prior to every time series measurement run, ensures that we are in the desired 
location on R-H curve, viz., the V0/I value measured before each time series run should be 
almost identical to the value on the R(H) curve at the given H,T, like the one shown in 
Figs.10(b) or 11(b). After ensuring the vortex state has acquired a steady flowing state, viz., 
by ensuring the mean V,i.e., <V> ~ V0, the time series of the voltage response (V(t)) is 
measured in bins of 35 ms for a net time period of a minute, at different H, T. 
 

 
Fig. 12. (a) The left most vertical column of panels represent the fluctuations in voltage 
V(t)/V0 measured at different fields at 4.5 K with Idc of 30 mA. Note: V0(2.6 kOe) = 1.4 V, 
V0(3 kOe) = 3.7 V, V0(3.6 kOe) = 9.5 V, V0(5 kOe) = 21.1 V, V0(7.6 kOe) = 50.7 V. The 
middle set of panels are the C(t) calculated from the corresponding V(t)/V0 panels on the 
left. The right hand set of panels show the amplitude of the FFT spectrum calculated from 
the corresponding C(t) panels. In Fig.12 (b), the organization of panels is identical to that in 
Fig.12 (a) with, V0(8 kOe) = 54.5 V, V0(9.6 kOe) = 9.8 V, V0(10 kOe) = 1.0 V, V0(10.8 kOe) 
= 0.2 V, V0(12 kOe) = 3.2 V. [Mohan et al. 2009a; Mohan 2009b] 

The time series V(t) measurements at T=4.5 K are summarised in Figs.12 (a), Fig.12 (b), Fig. 
13 (a) and Fig.13 (b). The stack of left hand panels in Figs. 12(a), 12(b), 13(a) and 13(b) show 
the normalized V(t)/V0 versus time (t) for different driven regimes, viz., the just depinned 
state (H ~ Hdp), the freely flowing elastic regime (Hdp <H < Hpl), above the onset of the 
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plastic regime (H > Hpl), deep inside the plastic regime (H ~ Hp) and above PE regime (H > 
Hp) (cf. Fig.11(b)). A striking feature in these panels is the amplitude of fluctuations in V(t) 
about the V0 value are significantly large, varying between 10-50% of V0, depending on the 
vortex flow regime. As one approaches very near to the normal regime, the fluctuations in 
V(t) are about 1% of V0 (see bottom  most plot at 16 kOe the left stack of panels in Fig.13(a)) 
and is about 0.02% deep inside the normal state (see Fig. 13(b), left panel). Near Hdp (2.6 kOe 
and 3 kOe, Fig.12(a)) the fluctuations are not smooth, but on entering the elastic flow 
regime, one can observe spectacular nearly-periodic oscillations of V(t) (see at 3.6 kOe, 5 kOe 
and 7.6 kOe in panels of Fig.12(a)). Such conspicuously large amplitude, slow time period 
fluctuations of the voltage V(t), which are sustained within the elastically driven state of the 
vortex matter (up to 7.6 kOe), begin to degrade on entering the plastic regime (above 8 kOe, 
see Fig.12(b)).  
 

 
Fig. 13. (a) consists of three columns representing V(t)/V0 , C(t) and power spectrum of 
fluctuations (see text for details) measured with Idc of 30 mA. Note: V0(12.4 kOe) = 13.6 V, 
V0(12.8 kOe) = 49.6 V, V0(13.6 kOe) = 284.9 V, V0(14 kOe) = 404.5 V, V0(16 kOe) = 513.7 
V. (b)Panels show similar set of panels as (a) in the normal state at T = 10 K and H = 10 kOe 
with Idc of 30 mA (V0 = 539. 6 V). [Mohan et al. 2009a; Mohan 2009b] 

Considering that the voltage (V) developed between the contacts on the sample is 
proportional to the velocity (v) of the vortices (see section 4.1, V=Bvd), therefore to 
investigate the velocity – velocity correlations in the moving vortex state, the voltage-

voltage ( velocity – velocity) correlation function: )()(1)( 2
0

tVttV
V

tC  , was determined 

from the V(t)/V0 signals (see the middle sets of panels in  Figs.12 (a) and 12 (b) and Fig. 13 
for the C(t) plots). In the steady flowing state, if all the vortices were to be moving 
uniformly, then the velocity – velocity correlation (C(t)) will be featureless and flat. While if 
the vortex motion was uncorrelated then they would lose velocity correlation within a short 
interval of time after onset of motion, then the C(t) would be found to quickly decay. Note 
an interesting evolution in C(t) with the underlying different phases of the vortex matter. 
While there are almost periodic fluctuations in C(t) at 3.6 kOe, 5 kOe and 7.6 kOe (at H < 
Hpl) sustained over long time intervals, there are also intermittent quasi-periodic 
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curvature in the V-Idc curve alongwith a conspicuous peak in the differential resistance 
(Higgins and Bhattacharya, 1996), which is absent in Fig.11 (see dV/dIdc vs Idc in Fig.11(a)). 
All the above indicate ordered elastic vortex flow regime at 4 K, 7.6 kOe and I = 30 mA. The 
dV/dIdc curve also indicates a nonlinear V-Idc response deep in the elastic flow regime.  

4.3 Time series measurements of voltage fluctuations and its evolution across 
different driven phases of the vortex matter 
Figure 11(b), shows the R-H curve for 4.5 K. Like Fig.10(b), in Fig. 11 (b), the Hdp, Hpl, Hp 
and Hc2 locations are identified by arrows, which also identify the field values, at which 
time series measurements were performed. The protocol for the time series measurements 
was as follows: At a fixed T, H and Idc, the dc voltage V0 across the electrical contacts of the 
sample was measured by averaging over a large number of measurements ~ 100. The V0 
measurement prior to every time series measurement run, ensures that we are in the desired 
location on R-H curve, viz., the V0/I value measured before each time series run should be 
almost identical to the value on the R(H) curve at the given H,T, like the one shown in 
Figs.10(b) or 11(b). After ensuring the vortex state has acquired a steady flowing state, viz., 
by ensuring the mean V,i.e., <V> ~ V0, the time series of the voltage response (V(t)) is 
measured in bins of 35 ms for a net time period of a minute, at different H, T. 
 

 
Fig. 12. (a) The left most vertical column of panels represent the fluctuations in voltage 
V(t)/V0 measured at different fields at 4.5 K with Idc of 30 mA. Note: V0(2.6 kOe) = 1.4 V, 
V0(3 kOe) = 3.7 V, V0(3.6 kOe) = 9.5 V, V0(5 kOe) = 21.1 V, V0(7.6 kOe) = 50.7 V. The 
middle set of panels are the C(t) calculated from the corresponding V(t)/V0 panels on the 
left. The right hand set of panels show the amplitude of the FFT spectrum calculated from 
the corresponding C(t) panels. In Fig.12 (b), the organization of panels is identical to that in 
Fig.12 (a) with, V0(8 kOe) = 54.5 V, V0(9.6 kOe) = 9.8 V, V0(10 kOe) = 1.0 V, V0(10.8 kOe) 
= 0.2 V, V0(12 kOe) = 3.2 V. [Mohan et al. 2009a; Mohan 2009b] 

The time series V(t) measurements at T=4.5 K are summarised in Figs.12 (a), Fig.12 (b), Fig. 
13 (a) and Fig.13 (b). The stack of left hand panels in Figs. 12(a), 12(b), 13(a) and 13(b) show 
the normalized V(t)/V0 versus time (t) for different driven regimes, viz., the just depinned 
state (H ~ Hdp), the freely flowing elastic regime (Hdp <H < Hpl), above the onset of the 
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plastic regime (H > Hpl), deep inside the plastic regime (H ~ Hp) and above PE regime (H > 
Hp) (cf. Fig.11(b)). A striking feature in these panels is the amplitude of fluctuations in V(t) 
about the V0 value are significantly large, varying between 10-50% of V0, depending on the 
vortex flow regime. As one approaches very near to the normal regime, the fluctuations in 
V(t) are about 1% of V0 (see bottom  most plot at 16 kOe the left stack of panels in Fig.13(a)) 
and is about 0.02% deep inside the normal state (see Fig. 13(b), left panel). Near Hdp (2.6 kOe 
and 3 kOe, Fig.12(a)) the fluctuations are not smooth, but on entering the elastic flow 
regime, one can observe spectacular nearly-periodic oscillations of V(t) (see at 3.6 kOe, 5 kOe 
and 7.6 kOe in panels of Fig.12(a)). Such conspicuously large amplitude, slow time period 
fluctuations of the voltage V(t), which are sustained within the elastically driven state of the 
vortex matter (up to 7.6 kOe), begin to degrade on entering the plastic regime (above 8 kOe, 
see Fig.12(b)).  
 

 
Fig. 13. (a) consists of three columns representing V(t)/V0 , C(t) and power spectrum of 
fluctuations (see text for details) measured with Idc of 30 mA. Note: V0(12.4 kOe) = 13.6 V, 
V0(12.8 kOe) = 49.6 V, V0(13.6 kOe) = 284.9 V, V0(14 kOe) = 404.5 V, V0(16 kOe) = 513.7 
V. (b)Panels show similar set of panels as (a) in the normal state at T = 10 K and H = 10 kOe 
with Idc of 30 mA (V0 = 539. 6 V). [Mohan et al. 2009a; Mohan 2009b] 

Considering that the voltage (V) developed between the contacts on the sample is 
proportional to the velocity (v) of the vortices (see section 4.1, V=Bvd), therefore to 
investigate the velocity – velocity correlations in the moving vortex state, the voltage-
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from the V(t)/V0 signals (see the middle sets of panels in  Figs.12 (a) and 12 (b) and Fig. 13 
for the C(t) plots). In the steady flowing state, if all the vortices were to be moving 
uniformly, then the velocity – velocity correlation (C(t)) will be featureless and flat. While if 
the vortex motion was uncorrelated then they would lose velocity correlation within a short 
interval of time after onset of motion, then the C(t) would be found to quickly decay. Note 
an interesting evolution in C(t) with the underlying different phases of the vortex matter. 
While there are almost periodic fluctuations in C(t) at 3.6 kOe, 5 kOe and 7.6 kOe (at H < 
Hpl) sustained over long time intervals, there are also intermittent quasi-periodic 
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fluctuations sustained for a relatively short intervals even at H > Hpl, viz., at 10.8 kOe and 
13.6 kOe (see Fig.12 and Fig.13). The periodic nature of C(t) indicates that in certain regimes 
of vortex flow, viz., even deep in the driven elastic regime (viz., 3.6 kOe, 5 kOe and 7.6 kOe 
in Fig.12(a) panels) the moving steady state of the vortex flow, the vortices are not always 
perfectly correlated. Instead their velocity appears to get periodically correlated and then 
again drops out of correlation.  
Once can deduce the power spectrum of the fluctuations by numerically determining the 
fast Fourier transform (FFT) of C(t). The FFT results are presented in the right hand set of 
panels in Figures 12(a), 12(b), 13(a) and 13(b). A summary of the essential features of the 
power spectrum are as follows. At 2.6 kOe where the vortex array is just above the 
depinning limit for Idc = 30 mA, one finds two peak-like features in the power spectrum 
centered around 0.25 Hz and 2 Hz (Fig.12(a)). With increasing field, the peak feature at 2 Hz 
vanishes, and with the onset of freely flowing elastic regime (>3 kOe), a distinct sharp peak 
located close to 0.25 Hz survives. This low-frequency peak, which exists up to H = 7.6 kOe, 
has an amplitude nearly five times that at 0.25 Hz for 2.6 kOe. In the plastic flow regime, 
viz., H > Hpl ~ 8 kOe, the amplitude of the 0.25 Hz frequency starts diminishing (Figs.12(b), 
the right most panel). At the peak location of the PE (Hp=10.8 kOe), the 0.25 Hz frequency is 
absent but there is now a well defined peak in the power spectrum close to 2 Hz (see 
Fig.12(b)). Close to the vortex state depinning out of the plastic regime (i.e., close to the 
termination of PE (e.g., at 12.4 kOe and beyond, in Fig.13(b)), the 2 Hz peak dissappears and 
a broad noisy feature, which seems to be peaked, close to mean value ~ 0.25 Hz makes a 
reappearance (cf. right hand panels set in Fig.13(a)).  
Close to 13.6 kOe and 14 kOe, one finds that the fluctuations begin to appear at multiple 
frequencies, indicating a regime of almost random and chaotic regime of response. Features 
related to a chaotic regime of fluctuations are being described  later in section 4.6. As one 
begins to approach close to Hc2, i.e., at 16 kOe, one observes a broad spread out spectrum  
with weak amplitude. For the sake of comparison, in the panels in Fig.13(b), the measured 
and analyzed V(t)/V0, C(t) and the power spectrum of voltage fluctuations in the normal 
state of the superconductor at 10 K and 10 kOe stand depicted. Note that the V(t) is just abut 
0.02% of V0, which is far lower than that present in the superconducting state. The C(t) is 
featureless and the power spectrum of the fluctuations in the normal state also does not 
show any characteristics peak in the vicinity of 0.25 Hz or 2 Hz. 
The evolution in the fluctuations described above at T=4.5 K is also found at other 
temperatures. Similar to 4.5 K measurements of the voltage – time series were done at 2.5 K, 5 
K, 5.8 K, 6 K (Mohan, 2009b). Figure 14 shows the power spectrum of the fluctuations in V 
recorded at 2.5 K in different field regimes (Mohan, 2009a). Panel (a) of Fig.14 shows the R-H 
behavior plot for T=2.5 K, where the field locations of Hdp, Hpl, Hp and Hc2 have been marked 
with arrows. By comparing the power spectrum of fluctuations at 2.5 K (Figs.14 (a) and 14(b)) 
with those at 4.5 K (the left most set of panels in Figs.12(a), 12(b) and 13(a)), one can find 
similarity in overall features, along with some variations as well. For example, note that like at 
4.5 K, in 2.5 K also, just after depinning, the vortex state viz., at 6. 5 kOe at 2.5 K (Fig.14) and 
2.6 kOe at 4.5 K (Fig.12(a)), one can observe the presence of two discernable features in the 
power spectrum located in the vicinity of the 0.2 Hz and 2.25 Hz. However, unlike at 4.5 K 
where the peak at 2 Hz quickly disappeared by 3 kOe (Fig.12(a)) at 2.5 K on moving to fields 
away from the Hdp, the two peak structure (one close to 0.2 Hz and another close to 2.25 Hz) in 
the power spectrum persists upto field of 12. 5 kOe (see Fig.14(b)). At 2.5 K the peak located 
near 2.25 Hz in the power spectrum progressively decreases with increasing H until it 
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dissapears at 13.5 kOe and only a broad feature with peaks in the sub- Hertz regime remains 
(see, 13.5 kOe and 14.5 kOe data in the panels of Fig.14(c)). Unlike at 4.5 K, where the 
periodic nature of the fluctuations in the ordered elastic flow regime was clearly 
discernable, at 2.5 K the fluctuations in V(t) are not as periodic (perhaps due to the 
admixture of the two characteristic frequencies). Here one can argue that both drive and 
thermal fluctuation effects play a significant role in generating the characteristic 
fluctuations. At 2.5 K, on entering the PE regime, similar to 4.5 K data, one finds only find a 
lone peak surviving near 2 Hz in the power spectrum of fluctuations (compare 18 kOe data 
at 2.5 K in Fig.14(c) panel with the 10.8 kOe data in Fig.12(b)). Beyond the PE regime at 22 
kOe at 2.5 K only the broad feature in the sub-Hertz regime survives. At other higher T (> 
4.5 K and close to Tc(H)) the features in the power spectrum are almost identical to those 
seen for 4.5 K with the difference being that features in the sub-Hertz regime become 
dominant compared to the Hertz regime (Mohan, 2009).   
 

 
Fig. 14. (a) R–H behavior at 2.5 kOe measured with Idc = 30 mA. Panels (b) and (c) represent 
the power spectrum of fluctuations at 2.5 K at different H. [Mohan 2009b] 

4.4 Excitation of resonant like modes of fluctuations in the driven vortex phase  
The above measurements have revealed that a dc drive (with Idc) excites large fluctuations in 
voltage (equivalent to velocity) in the range of 10 – 40% of the mean voltage level (V0) at 
characteristic frequencies (f0 and f‘0) located in the range of 0.2 Hz and 2 Hz, respectively. 
The observation that low-frequency modes can get excited in the driven (by Idc) vortex 
lattice had led Mohan et al, (2009)  to explore the effect of a small ac current (Iac) 
superimposed on Idc, where the external periodic drive with frequencies (f) close to f0 and f‘0 
may result in a resonant like response of the driven vortex medium. The vortex lattice was 
driven with a current, I = Idc +Iac, where Iac = I0Cos(2ft) is the superposed ac current on Idc. 
At 4 K at different H, the vortex state is driven with I(f), and the dc voltage V of the sample 
was measured while varying the f of Iac(f). Figure 15  shows the measured V against f at 
different values of H, where Idc = 22 mA and I0 = 2.5 mA (Iac = I0Cos(2ft)), where the I0 is 
chosen to ensure that Idc+I0 gives the same V as with only Idc = 30 mA, at the given H,T. 
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fluctuations sustained for a relatively short intervals even at H > Hpl, viz., at 10.8 kOe and 
13.6 kOe (see Fig.12 and Fig.13). The periodic nature of C(t) indicates that in certain regimes 
of vortex flow, viz., even deep in the driven elastic regime (viz., 3.6 kOe, 5 kOe and 7.6 kOe 
in Fig.12(a) panels) the moving steady state of the vortex flow, the vortices are not always 
perfectly correlated. Instead their velocity appears to get periodically correlated and then 
again drops out of correlation.  
Once can deduce the power spectrum of the fluctuations by numerically determining the 
fast Fourier transform (FFT) of C(t). The FFT results are presented in the right hand set of 
panels in Figures 12(a), 12(b), 13(a) and 13(b). A summary of the essential features of the 
power spectrum are as follows. At 2.6 kOe where the vortex array is just above the 
depinning limit for Idc = 30 mA, one finds two peak-like features in the power spectrum 
centered around 0.25 Hz and 2 Hz (Fig.12(a)). With increasing field, the peak feature at 2 Hz 
vanishes, and with the onset of freely flowing elastic regime (>3 kOe), a distinct sharp peak 
located close to 0.25 Hz survives. This low-frequency peak, which exists up to H = 7.6 kOe, 
has an amplitude nearly five times that at 0.25 Hz for 2.6 kOe. In the plastic flow regime, 
viz., H > Hpl ~ 8 kOe, the amplitude of the 0.25 Hz frequency starts diminishing (Figs.12(b), 
the right most panel). At the peak location of the PE (Hp=10.8 kOe), the 0.25 Hz frequency is 
absent but there is now a well defined peak in the power spectrum close to 2 Hz (see 
Fig.12(b)). Close to the vortex state depinning out of the plastic regime (i.e., close to the 
termination of PE (e.g., at 12.4 kOe and beyond, in Fig.13(b)), the 2 Hz peak dissappears and 
a broad noisy feature, which seems to be peaked, close to mean value ~ 0.25 Hz makes a 
reappearance (cf. right hand panels set in Fig.13(a)).  
Close to 13.6 kOe and 14 kOe, one finds that the fluctuations begin to appear at multiple 
frequencies, indicating a regime of almost random and chaotic regime of response. Features 
related to a chaotic regime of fluctuations are being described  later in section 4.6. As one 
begins to approach close to Hc2, i.e., at 16 kOe, one observes a broad spread out spectrum  
with weak amplitude. For the sake of comparison, in the panels in Fig.13(b), the measured 
and analyzed V(t)/V0, C(t) and the power spectrum of voltage fluctuations in the normal 
state of the superconductor at 10 K and 10 kOe stand depicted. Note that the V(t) is just abut 
0.02% of V0, which is far lower than that present in the superconducting state. The C(t) is 
featureless and the power spectrum of the fluctuations in the normal state also does not 
show any characteristics peak in the vicinity of 0.25 Hz or 2 Hz. 
The evolution in the fluctuations described above at T=4.5 K is also found at other 
temperatures. Similar to 4.5 K measurements of the voltage – time series were done at 2.5 K, 5 
K, 5.8 K, 6 K (Mohan, 2009b). Figure 14 shows the power spectrum of the fluctuations in V 
recorded at 2.5 K in different field regimes (Mohan, 2009a). Panel (a) of Fig.14 shows the R-H 
behavior plot for T=2.5 K, where the field locations of Hdp, Hpl, Hp and Hc2 have been marked 
with arrows. By comparing the power spectrum of fluctuations at 2.5 K (Figs.14 (a) and 14(b)) 
with those at 4.5 K (the left most set of panels in Figs.12(a), 12(b) and 13(a)), one can find 
similarity in overall features, along with some variations as well. For example, note that like at 
4.5 K, in 2.5 K also, just after depinning, the vortex state viz., at 6. 5 kOe at 2.5 K (Fig.14) and 
2.6 kOe at 4.5 K (Fig.12(a)), one can observe the presence of two discernable features in the 
power spectrum located in the vicinity of the 0.2 Hz and 2.25 Hz. However, unlike at 4.5 K 
where the peak at 2 Hz quickly disappeared by 3 kOe (Fig.12(a)) at 2.5 K on moving to fields 
away from the Hdp, the two peak structure (one close to 0.2 Hz and another close to 2.25 Hz) in 
the power spectrum persists upto field of 12. 5 kOe (see Fig.14(b)). At 2.5 K the peak located 
near 2.25 Hz in the power spectrum progressively decreases with increasing H until it 
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dissapears at 13.5 kOe and only a broad feature with peaks in the sub- Hertz regime remains 
(see, 13.5 kOe and 14.5 kOe data in the panels of Fig.14(c)). Unlike at 4.5 K, where the 
periodic nature of the fluctuations in the ordered elastic flow regime was clearly 
discernable, at 2.5 K the fluctuations in V(t) are not as periodic (perhaps due to the 
admixture of the two characteristic frequencies). Here one can argue that both drive and 
thermal fluctuation effects play a significant role in generating the characteristic 
fluctuations. At 2.5 K, on entering the PE regime, similar to 4.5 K data, one finds only find a 
lone peak surviving near 2 Hz in the power spectrum of fluctuations (compare 18 kOe data 
at 2.5 K in Fig.14(c) panel with the 10.8 kOe data in Fig.12(b)). Beyond the PE regime at 22 
kOe at 2.5 K only the broad feature in the sub-Hertz regime survives. At other higher T (> 
4.5 K and close to Tc(H)) the features in the power spectrum are almost identical to those 
seen for 4.5 K with the difference being that features in the sub-Hertz regime become 
dominant compared to the Hertz regime (Mohan, 2009).   
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At 4 K at different H, the vortex state is driven with I(f), and the dc voltage V of the sample 
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different values of H, where Idc = 22 mA and I0 = 2.5 mA (Iac = I0Cos(2ft)), where the I0 is 
chosen to ensure that Idc+I0 gives the same V as with only Idc = 30 mA, at the given H,T. 
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In the elastic regime (7.6 kOe, cf. Fig. 15(a)) one observes spectacular oscillations in V(f). 
Significantly large oscillations are observed in V at low f , viz., f < 3 Hz, where the 
oscillations can exceed (by nearly 100%) of the mean V level determined by the Idc. Shown in 
Fig.15(b) is an enlarged view of the low-f region of the V(f) data at 7.6 kOe presented in 
Fig.15(a). An important feature to note in Fig. 15(b) is the enhanced regimes of fluctuations 
in V(f) occurring at the harmonics of 0.25 Hz (see arrows in bold in Fig.15(b)).  
 

 
Fig. 15. (a) The measured dc voltage V against frequency f of Iac at different values of H at 4 
K and with a current I = Idc +Iac, where Idc = 22 mA and I0 = 2.5 mA. (b) An enlarged view of 
V(f) at 4 K and 7.6 kOe (panel (a)). The arrows in ‘bold‘ mark the location of the resonant 
peaks in V(f). [Mohan et al. 2009a; Mohan 2009b] 

Note that the peak of the fluctuations in V(f) at the harmonics of 0.25 Hz appears to follow 
an envelope curve, which has a frequency of 2 Hz (see envelope curve in Fig.15(b)), though 
the envelope of fluctuation at f0‘ ~ 2 Hz damps out faster than that at f0~ 0.25 Hz. However, 
one can see that f of Iac matches with the characteristic frequencies f0 and f‘0 (cf Figs. 12 and 
13), which are excited with Idc, viz., ~ 0.25 Hz and ~ 2 Hz, where one observes resonant 
oscillations in the V. Note that by increasing H as one enters the plastic regime, for example 
at 9.2 kOe (Fig.15(a)), the enhanced resonant like fluctuations in V(f) at the harmonics of 0.25 
Hz seem to rapidly diminish. At 7.6 kOe, while one observes resonant like fluctuations in 
V(f) upto 6f0, f0 = 0.25 Hz,  at 9.2 kOe, one observes the same till only about 4f0. Notice that 
above the peak of the PE, viz., at 14 kOe and beyond, one observes no resonant like behavior 
in V(f), instead the system seems to exited at all frequencies, which is indicative of a chaotic 
regime of fluctuations. It is interesting to note similar behavior was also observed in the 
power spectrum of fluctuations in the vortex velocity excited at 14 kOe in Fig.13(a). Thus, 
the observation of large (~100%) excursions in the measured Vdc signal at harmonics of 0.25 
Hz indicates a significantly large nonlinear response in the traditionally assumed linear, 
weakly disordered - driven vortex solid prior to the PE. The above chaotic behavior 
continues well above the onset of the PE regime. Though from the earlier discussion of Figs. 
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12 and 13, it may have appeared that f0 ~ 0.2 – 0.25 Hz makes a comeback above the PE, 
leading one to propose a similarity of driven phases before and above the PE, yet the present 
measurements indicate that above PE, the f0 does not excite the resonant like feature which 
are characteristic of f0 deep in the elastic regime (viz., see Fig.15). 
It has been proposed (Mohan et al, 2009a) that the resistance of the sample varies as, 
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   ,under the influence of current, I = Idc +Iac. Here, 

R0 is the resistance of the sample in response to the Idc alone, Rn and Rn/ are the f dependent 
coefficients of the in-phase and out-of-phase responses, and f0 is the characteristic frequency 
of fluctuations. The f0 (= 0.25 Hz) corresponds to the peak value in the power spectrum for H 
= 7.6 kOe and T = 4.5 K in Fig.15(b). Taking the time average of the expression, V = IR, 
yields, Vdc = IdcR0  (I0Rn)/2, at f = nf0. From the very large fluctuations (~100%) seen in 
Fig.15, it is clear that (I0R1)/2  IdcR0 or R1 ~ 20 R0, is a substantially large component excited 
at f = f0. Similarly, at f = 2 f0, R2 ~ 15 R0. Notice from Fig.15, that the nonlinear response can 
be easily seen upto f = 5 to 6f0 (see the positions of solid arrows in Fig.15(b)). The envelope of 
the amplitude of fluctuations in Fig.15(b) appears to decrease upto 5 f0; thereafter, the 
envelope regenerates itself into second and third cycles of oscillations, but, with 
progressively, reduced intensities. Thus, a small perturbation with Iac ~ 0.1 Idc triggers large 
fluctuations along with a higher-harmonic generation indicating a highly nonlinear nature 
of the dynamics. It is noteworthy that the envelope of the resonant oscillations at nf0 seen at 
7.6 kOe with a frequency of 2 Hz (= f‘0) is damped out in the plastic regime. Thus, the peak 
in the vicinity of f0‘=2 Hz as seen in Figs.12, 13 and 14, have properties different from f0 ~ 0.2 
– 0.25 Hz.  Unlike f0, the Iac(f0‘) does not excite resonant like modes of fluctuations especially 
in the plastic regime, and even in the elastic regime as noted earlier the envelope (dotted 
curve in Fig.15(b)) with frequency f0‘ = 2 Hz damps out very quickly. Thus f0 and f0‘ are 
associated with distinct behavior of different states of the driven vortex matter. 

4.5 Evolution in the characteristic frequencies observed in the power spectrum with 
vortex velocity 
It is known that the periodically spaced vortices when driven over pins, lead to a specific 
variety of vortex-velocity fluctuations, called the washboard frequency (Fiory 1971; Felming & 
Grimes 1979; Harris et al., 1995; Kokubo et al, 2005), which are in the range of 0.1-1 MHz. The 
wash board frequency is far larger than the frequencies, elucidated above. It has also been 
reported that the nonlinear I-V characteristics in the PE regime is accompanied with low 
frequency noise (<< washboard frequency) in the range of few Hz (Higgins and Bhattacharya 
1996; Paltiel et al, 2000; 2002; Gordeev et al 1997; Marley et al 1995; Merithew et al. 1996).  The 
peak in the noise power density in the vicinty of 3 Hz in the PE regime in 2H-NbSe2 was 
rationalized within the edge contamination framework (Paltiel et al., 2000;2002). Qualitatively, 
as per the edge contamination model (Paltiel et al, 2000; 2002), the disordered vortices injected 
from irregularities on the sample boundaries lead to a slow down of the ordered vortices 
driven inside the sample. This causes a reduction in the injection rate of the disordered 
vortices. As the fraction of the injected disordered vortices decreases, the velocity of the driven 
state inturn increases and the entire process repeats. This is the source of velocity fluctuations 
via the edge contamination picture. It has been argued that edge contamination should result 
in velocity fluctuations, which are proportional to the rate of injection of vortices which 
typically are in the range few Hz. In our case, vortices need about 0.1 s to traverse the typical 
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above the peak of the PE, viz., at 14 kOe and beyond, one observes no resonant like behavior 
in V(f), instead the system seems to exited at all frequencies, which is indicative of a chaotic 
regime of fluctuations. It is interesting to note similar behavior was also observed in the 
power spectrum of fluctuations in the vortex velocity excited at 14 kOe in Fig.13(a). Thus, 
the observation of large (~100%) excursions in the measured Vdc signal at harmonics of 0.25 
Hz indicates a significantly large nonlinear response in the traditionally assumed linear, 
weakly disordered - driven vortex solid prior to the PE. The above chaotic behavior 
continues well above the onset of the PE regime. Though from the earlier discussion of Figs. 
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12 and 13, it may have appeared that f0 ~ 0.2 – 0.25 Hz makes a comeback above the PE, 
leading one to propose a similarity of driven phases before and above the PE, yet the present 
measurements indicate that above PE, the f0 does not excite the resonant like feature which 
are characteristic of f0 deep in the elastic regime (viz., see Fig.15). 
It has been proposed (Mohan et al, 2009a) that the resistance of the sample varies as, 
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R0 is the resistance of the sample in response to the Idc alone, Rn and Rn/ are the f dependent 
coefficients of the in-phase and out-of-phase responses, and f0 is the characteristic frequency 
of fluctuations. The f0 (= 0.25 Hz) corresponds to the peak value in the power spectrum for H 
= 7.6 kOe and T = 4.5 K in Fig.15(b). Taking the time average of the expression, V = IR, 
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Fig.15, it is clear that (I0R1)/2  IdcR0 or R1 ~ 20 R0, is a substantially large component excited 
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the amplitude of fluctuations in Fig.15(b) appears to decrease upto 5 f0; thereafter, the 
envelope regenerates itself into second and third cycles of oscillations, but, with 
progressively, reduced intensities. Thus, a small perturbation with Iac ~ 0.1 Idc triggers large 
fluctuations along with a higher-harmonic generation indicating a highly nonlinear nature 
of the dynamics. It is noteworthy that the envelope of the resonant oscillations at nf0 seen at 
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associated with distinct behavior of different states of the driven vortex matter. 
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from irregularities on the sample boundaries lead to a slow down of the ordered vortices 
driven inside the sample. This causes a reduction in the injection rate of the disordered 
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width of our sample of ~ 0.1 cm, with a vortex velocity , v = <V(t)>/(d.B) ~ 10-2 m/s( = 1 
cm/s), where V ~ 10 V observed at 30 mA, B =0H = 1 Tesla, and d is the distance between 
the electrical contacts = 10-3 m. Therefore, the injection rate of disordered vortices into the 
moving vortex medium from irregularities at the sample edges is at the rate of ~ 10 Hz. The 
observation of a peak in the velocity fluctuation spectrum centered around 2 Hz (cf. Figs. 12, 
13 and 14) in the PE region could be termed as consistent with earlier reported observations of 
peak in noise power in similar frequency range in the PE regime of NbSe2 (Paltiel et al., 2002; 
Merithew et al., 1996) and YBa2CuO7- (Gordeev et al., 1997). However, in the ordered elastic 
driven vortex state prior to PE, one also notes a much lower frequency of 0.25 Hz (cf. Figs.12, 
13 and 14), which as per the edge contamination model would imply an effective sample 
width of 4 cm (with u = 1 cm/s), which would be >> actual sample width (~ 0.1 cm). This 
implies a deviation from the edge contamination picture.  
 

 
Fig. 16. The evolution of the characteristic frequencies associated with fluctuations in vortex 
motion as a function of velocity of vortices. The shaded band represents the behaviour of the 
higher characteristic frequency. [Mohan et al. 2009a; Mohan 2009b] 

Figure16 shows an evolution in f0 (~ 0.05 Hz, solid squares) and f‘0 (~ 2 Hz, solid triangles) 
with velocity (v) of the vortices (Mohan et al, 2009). This compilation is based on 
measurements at different H, T, and Idc. One can see that the higher characteristic frequency f0‘ 
increases with v, varying from around 1.75 Hz to 3.5 Hz, while the lower f0 is v independent. 
This is consistent with the impression from the Idc+Iac experiments that f0 and f0‘ have distinct 
behavior and do not correspond to part of the same behavior repeating at different 
frequencies. From the conventional noise mechanism, based on edge contamination model, 
one would expect the frequency of v fluctuations (equivalent to the disorder injection rate) to 
increase with v without showing any tendency to saturate with v. However, this is not the case 
as seen in Fig.16. While the higher frequency f0’does seem to increase with v at lower values 
(see shaded region in Fig.16), it shows a much more slower change with v at higher values, 
with a tendency to saturate. The lower frequency appears to be nominally v independent, 
which is unexpected within edge contamination model. One may clarify that in certain v 
regimes only one of the two frequencies survives. It can be stated that the detailed richness of 
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the fluctuations in the descriptions presented here do not find a rationalization within the 
present models relating to noise in the driven vortex state.  
The current understanding of the nature of the flowing vortex state and transitions within it 
are inadequate. This is best illustrated by the nonlinear nature of the response within the 
steady state of driven elastic vortex medium (cf. discussion pertaining to Figs.12 – 16 above), 
which is far from the conventional notion that the elastic medium is almost a benign medium, 
which responds almost linearly to drive. Infact though a lot has been understood regarding the 
plastic flow regime (see discussion relating to the plastic flow regime in section 4.1), newer 
works (Olive & Soret, 2006; 2008) have indicated that the vortices in this regime exhibit chaotic 
regimes of flow, where the velocity fluctuations of the vortices may show intermittent velocity 
bursts which can be a route for the emergence of chaos in the vortex state. 

4.6 Intermittent voltage bursts in driven vortex state 
The nature of voltage fluctuations and the associated power spectrum of fluctuations at 4.5 K 
(cf. Fig.13(a), 14 kOe data) reveal that in the regime just after PE the vortices driven by a dc 
drive (Idc) begin to exhibit v fluctuations at all possible frequencies. This behavior is further 
corroborated by the V(f) data in Fig.15, which shows that the vortex state at 14 kOe (just above 
the PE regime) when driven with Idc and perturbed with Iac.  The driven vortex state at 14 kOe 
begins to show large nonlinear excursion in v (equivalent to V) at all f in the range over which 
f is varied. Such a behavior, where the nonlinear fluctuations in v exists uniformly over a large 
frequency interval is indicative of the onset of a chaotic regime of flow in the vortex state. 
 

 
Fig. 17. Panels (a) and (b) show the measured temporal response of the dc voltage (V(t)) at 6 
K in the plastic flux-flow regime. Panel (c) is a blow-up of the rectangular region marked in 
(b). [Mohan et al. 2009a; Mohan 2009b] 

One can capture the time resolved voltages (V(t)) in smaller time intervals of 1.25 ms (as 
against the 35 ms interval in the earlier data) using the data storage buffer of the ADC in a 
lock-in amplifier. At a higher T and deep in the plastic phase, one  observe, the development 
of an interesting fluctuation behaviour in the time domain, viz., that of intermittency 
(Mohan et al, 2009a). The panels (a) and (b) in Fig.17 show the measured V(T) data at 6 K in 
the plastic regime with H=2 kOe and H=2.2 kOe (see phase diagram in the inset of Fig.10). 
At 2 kOe, one observes nearly-periodic fluctuations about a mean level 160 V. But, these V 
fluctuations are interrupted by large, sudden voltage bursts. On entering deeper into the 
plastic regime, i.e. at 2.2 kOe, these chaotic voltage bursts become much more prominent 
(see Fig.17(b)). The intermittent large V (equivalent to v) bursts are almost twice as large as 
the mean V level. In terms of the vortex velocity (v=V/Bd), the mean velocity level at 6 K 
and 30 mA, is 750 mm/sec whereas during the intermittent bursts the voltage shoots up to a 
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width of our sample of ~ 0.1 cm, with a vortex velocity , v = <V(t)>/(d.B) ~ 10-2 m/s( = 1 
cm/s), where V ~ 10 V observed at 30 mA, B =0H = 1 Tesla, and d is the distance between 
the electrical contacts = 10-3 m. Therefore, the injection rate of disordered vortices into the 
moving vortex medium from irregularities at the sample edges is at the rate of ~ 10 Hz. The 
observation of a peak in the velocity fluctuation spectrum centered around 2 Hz (cf. Figs. 12, 
13 and 14) in the PE region could be termed as consistent with earlier reported observations of 
peak in noise power in similar frequency range in the PE regime of NbSe2 (Paltiel et al., 2002; 
Merithew et al., 1996) and YBa2CuO7- (Gordeev et al., 1997). However, in the ordered elastic 
driven vortex state prior to PE, one also notes a much lower frequency of 0.25 Hz (cf. Figs.12, 
13 and 14), which as per the edge contamination model would imply an effective sample 
width of 4 cm (with u = 1 cm/s), which would be >> actual sample width (~ 0.1 cm). This 
implies a deviation from the edge contamination picture.  
 

 
Fig. 16. The evolution of the characteristic frequencies associated with fluctuations in vortex 
motion as a function of velocity of vortices. The shaded band represents the behaviour of the 
higher characteristic frequency. [Mohan et al. 2009a; Mohan 2009b] 

Figure16 shows an evolution in f0 (~ 0.05 Hz, solid squares) and f‘0 (~ 2 Hz, solid triangles) 
with velocity (v) of the vortices (Mohan et al, 2009). This compilation is based on 
measurements at different H, T, and Idc. One can see that the higher characteristic frequency f0‘ 
increases with v, varying from around 1.75 Hz to 3.5 Hz, while the lower f0 is v independent. 
This is consistent with the impression from the Idc+Iac experiments that f0 and f0‘ have distinct 
behavior and do not correspond to part of the same behavior repeating at different 
frequencies. From the conventional noise mechanism, based on edge contamination model, 
one would expect the frequency of v fluctuations (equivalent to the disorder injection rate) to 
increase with v without showing any tendency to saturate with v. However, this is not the case 
as seen in Fig.16. While the higher frequency f0’does seem to increase with v at lower values 
(see shaded region in Fig.16), it shows a much more slower change with v at higher values, 
with a tendency to saturate. The lower frequency appears to be nominally v independent, 
which is unexpected within edge contamination model. One may clarify that in certain v 
regimes only one of the two frequencies survives. It can be stated that the detailed richness of 
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the fluctuations in the descriptions presented here do not find a rationalization within the 
present models relating to noise in the driven vortex state.  
The current understanding of the nature of the flowing vortex state and transitions within it 
are inadequate. This is best illustrated by the nonlinear nature of the response within the 
steady state of driven elastic vortex medium (cf. discussion pertaining to Figs.12 – 16 above), 
which is far from the conventional notion that the elastic medium is almost a benign medium, 
which responds almost linearly to drive. Infact though a lot has been understood regarding the 
plastic flow regime (see discussion relating to the plastic flow regime in section 4.1), newer 
works (Olive & Soret, 2006; 2008) have indicated that the vortices in this regime exhibit chaotic 
regimes of flow, where the velocity fluctuations of the vortices may show intermittent velocity 
bursts which can be a route for the emergence of chaos in the vortex state. 

4.6 Intermittent voltage bursts in driven vortex state 
The nature of voltage fluctuations and the associated power spectrum of fluctuations at 4.5 K 
(cf. Fig.13(a), 14 kOe data) reveal that in the regime just after PE the vortices driven by a dc 
drive (Idc) begin to exhibit v fluctuations at all possible frequencies. This behavior is further 
corroborated by the V(f) data in Fig.15, which shows that the vortex state at 14 kOe (just above 
the PE regime) when driven with Idc and perturbed with Iac.  The driven vortex state at 14 kOe 
begins to show large nonlinear excursion in v (equivalent to V) at all f in the range over which 
f is varied. Such a behavior, where the nonlinear fluctuations in v exists uniformly over a large 
frequency interval is indicative of the onset of a chaotic regime of flow in the vortex state. 
 

 
Fig. 17. Panels (a) and (b) show the measured temporal response of the dc voltage (V(t)) at 6 
K in the plastic flux-flow regime. Panel (c) is a blow-up of the rectangular region marked in 
(b). [Mohan et al. 2009a; Mohan 2009b] 

One can capture the time resolved voltages (V(t)) in smaller time intervals of 1.25 ms (as 
against the 35 ms interval in the earlier data) using the data storage buffer of the ADC in a 
lock-in amplifier. At a higher T and deep in the plastic phase, one  observe, the development 
of an interesting fluctuation behaviour in the time domain, viz., that of intermittency 
(Mohan et al, 2009a). The panels (a) and (b) in Fig.17 show the measured V(T) data at 6 K in 
the plastic regime with H=2 kOe and H=2.2 kOe (see phase diagram in the inset of Fig.10). 
At 2 kOe, one observes nearly-periodic fluctuations about a mean level 160 V. But, these V 
fluctuations are interrupted by large, sudden voltage bursts. On entering deeper into the 
plastic regime, i.e. at 2.2 kOe, these chaotic voltage bursts become much more prominent 
(see Fig.17(b)). The intermittent large V (equivalent to v) bursts are almost twice as large as 
the mean V level. In terms of the vortex velocity (v=V/Bd), the mean velocity level at 6 K 
and 30 mA, is 750 mm/sec whereas during the intermittent bursts the voltage shoots up to a 
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maximum v ~ 1500 mm/sec. Such bursts are followed by time intervals, when the 
fluctuations are nearly periodic, as can be clearly seen in panel (c) of Fig.17. Here, it is useful 
to mention that from simulations studies Olive and Soret (2006, 2008) have proposed that in 
the plastic regime of flow the vortex motion within the channels periodically synchronizes 
with the fluctuating vortices trapped in the pinned islands leading to periodic fluctuations. 
This periodic regime can become unstable and give way to a chaotic burst, with large 
velocity fluctuations. The intermittent velocity bursts indicate the onset of disordered 
trajectories of the moving vortices, which is symptomatic of the onset of chaotic motion of 
vortices. Apart from observing intermittency features in the plastic flow regime (Fig.17) at 6 
K there are indirect evidences at 14 kOe at 4.5 K close to Tc(H) (see Fig.13(a)) and Fig.15(a), 
which indicate the onset of chaotic behavior at these T, H. Perhaps onset of such intermittant 
velocity bursts appear closer to a regime where thermal fluctuations also begin to play a 
significant role in the behavior of the vortices in the driven state especially after the onset of 
plastic flow. 

5. Epilogue and future directions 
The nonlinear response deep within the driven elastic medium is presumably related to a 
possible transformation into a heterogenous vortex configuration observed deep within the 
elastic phase (Mohan et al, 2007). Complex nonlinear systems under certain conditions can 
produce slow spontaneous organization in its dynamics. Under the influence of a sufficient 
driving force, the system can exhibit coherent dynamics, with well-defined one or more 
frequencies (Ganapati & Sood 2006; Ganapati et al., 2008). The evolution of fluctuations, 
such as those illustrated in Figures 12, 13 and 14, can be viewed as the complex behavior of a 
nonlinear driven vortex state with multiple attractors (stable cycles). The appearance of 
stable cycles are characteristic of a particular phase of the driven vortex state. Underlying 
phase transformations in the driven vortex state induce the system to fluctuate between 
different stable cycles, leading to a typical spectrum of fluctuations discussed in Figs. 12, 13 
and 14. The above nature may lead to extreme sensitivity of the driven vortex system to the 
low amplitude perturbations, as is shown in Fig.15. We believe that the fluctuations with 
characteristic frequencies with the nonlinear response discussed above are indicative of 
phase transformations in the driven vortex state. Figures 15 and 16 have shown that the 
behavior the characteristic low frequencies f0 and f‘0 are distinct and cannot be completely 
attributed to irregular edge related effects of the superconductor. Infact f0 can be attributed 
to the due to the elastic fraction of the vortices, where its response is found to be maximum 
in Figs.12-16, while the 2 Hz represents to disordered fraction in the driven vortex state. 
To summarise, we have dwelled the nature of transformations deep in the quasi static elastic 
vortex state. As the vortex state is driven in the steady state, exploration of vortex-velocity 
fluctuations in the time domain have uncovered signatures of complex nonlinear dynamics 
even deep in the elastic driven vortex state prior to the onset of plastic flow. These pertain to 
new regimes of coherent driven dynamics in the elastic phase with distinct frequencies of 
fluctuations. These regimes are a precursor to chaotic fluctuations, which can germinate 
deep in the plastic regime.  In ongoing experiments pertaining to more detailed time series 
measurements on systems other than NbSe2, novel interesting signatures of critical 
behaviour at dynamical phase transition in driven mode of plastically deformed vortex 
matter have recently been identified (Banerjee et al, 2011, unpublished).  
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maximum v ~ 1500 mm/sec. Such bursts are followed by time intervals, when the 
fluctuations are nearly periodic, as can be clearly seen in panel (c) of Fig.17. Here, it is useful 
to mention that from simulations studies Olive and Soret (2006, 2008) have proposed that in 
the plastic regime of flow the vortex motion within the channels periodically synchronizes 
with the fluctuating vortices trapped in the pinned islands leading to periodic fluctuations. 
This periodic regime can become unstable and give way to a chaotic burst, with large 
velocity fluctuations. The intermittent velocity bursts indicate the onset of disordered 
trajectories of the moving vortices, which is symptomatic of the onset of chaotic motion of 
vortices. Apart from observing intermittency features in the plastic flow regime (Fig.17) at 6 
K there are indirect evidences at 14 kOe at 4.5 K close to Tc(H) (see Fig.13(a)) and Fig.15(a), 
which indicate the onset of chaotic behavior at these T, H. Perhaps onset of such intermittant 
velocity bursts appear closer to a regime where thermal fluctuations also begin to play a 
significant role in the behavior of the vortices in the driven state especially after the onset of 
plastic flow. 

5. Epilogue and future directions 
The nonlinear response deep within the driven elastic medium is presumably related to a 
possible transformation into a heterogenous vortex configuration observed deep within the 
elastic phase (Mohan et al, 2007). Complex nonlinear systems under certain conditions can 
produce slow spontaneous organization in its dynamics. Under the influence of a sufficient 
driving force, the system can exhibit coherent dynamics, with well-defined one or more 
frequencies (Ganapati & Sood 2006; Ganapati et al., 2008). The evolution of fluctuations, 
such as those illustrated in Figures 12, 13 and 14, can be viewed as the complex behavior of a 
nonlinear driven vortex state with multiple attractors (stable cycles). The appearance of 
stable cycles are characteristic of a particular phase of the driven vortex state. Underlying 
phase transformations in the driven vortex state induce the system to fluctuate between 
different stable cycles, leading to a typical spectrum of fluctuations discussed in Figs. 12, 13 
and 14. The above nature may lead to extreme sensitivity of the driven vortex system to the 
low amplitude perturbations, as is shown in Fig.15. We believe that the fluctuations with 
characteristic frequencies with the nonlinear response discussed above are indicative of 
phase transformations in the driven vortex state. Figures 15 and 16 have shown that the 
behavior the characteristic low frequencies f0 and f‘0 are distinct and cannot be completely 
attributed to irregular edge related effects of the superconductor. Infact f0 can be attributed 
to the due to the elastic fraction of the vortices, where its response is found to be maximum 
in Figs.12-16, while the 2 Hz represents to disordered fraction in the driven vortex state. 
To summarise, we have dwelled the nature of transformations deep in the quasi static elastic 
vortex state. As the vortex state is driven in the steady state, exploration of vortex-velocity 
fluctuations in the time domain have uncovered signatures of complex nonlinear dynamics 
even deep in the elastic driven vortex state prior to the onset of plastic flow. These pertain to 
new regimes of coherent driven dynamics in the elastic phase with distinct frequencies of 
fluctuations. These regimes are a precursor to chaotic fluctuations, which can germinate 
deep in the plastic regime.  In ongoing experiments pertaining to more detailed time series 
measurements on systems other than NbSe2, novel interesting signatures of critical 
behaviour at dynamical phase transition in driven mode of plastically deformed vortex 
matter have recently been identified (Banerjee et al, 2011, unpublished).  
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1. Introduction 
Low energy dissipation and ability to operate at low temperatures provide for Josephson 
junction circuits a niche as a support for low temperature devices. With high speed 
operation (Chen W. et al., 1999) capability the Josephson junction circuits make a prime 
candidate for applications which are difficult to engineer with existing CMOS technology. 
The development of Josephson junction technology took a major turn for the better with 
the invention of the Rapid-Single-Flux-Quantum (RSFQ) devices (Likharev K.K. et al., 
1991), an improvement over voltage biased Josephson Junctions logic which were plagued 
with the junction switching and reset problems. The modern applications of SFQ circuits 
extend to a larger range of temperature operation and the applications vary from low 
temperature magnetic sensor, to high speed mixed signal circuits, voltage and current 
standards (Turner C.W. et al., 1998), and auxiliary components for quantum computing 
circuits. Most of the SFQ circuits are fabricated with Niobium, but Aluminum based 
circuits are being used for quantum gates (Nielsen M.A. et al., 2000) and qubit operations. 
SFQ circuits based on Magnesium di-Boride junctions are being developed for higher 
temperature operations (Tahara S. et al., 2004). Predominantly most of the Josephson 
junction circuits today are operated at around 4K. All the circuits are optimized usually 
for liquid helium temperatures, so the circuits operated in helium bath Dewars or 
cryostat's do not experience any temperature gradients or drift effects which can affect the 
operating margins. 
With the improvement in the fabrication technology and soft-wares for SFQ circuit 
technology, the designing complex circuits have become easier. Complex Circuits with over 
20K junctions such digital synthesizer and digital RF Trans-receiver have already been 
demonstrated (Oleg M.A. et al., 2011). Development of circuits over 100K junctions are 
actively under progress. However, with enormously large circuits, power requirements also 
increase. 
Looking at the range of applications and complexity of the problems of energy 
minimization, we try to look at the problem in two approaches. One for large complex 
circuits, we try to reduce the power bias itself, or the overall load of current that is supplied 
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demonstrated (Oleg M.A. et al., 2011). Development of circuits over 100K junctions are 
actively under progress. However, with enormously large circuits, power requirements also 
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Looking at the range of applications and complexity of the problems of energy 
minimization, we try to look at the problem in two approaches. One for large complex 
circuits, we try to reduce the power bias itself, or the overall load of current that is supplied 
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to the chip. And secondly, we try to improve the operation of the circuit blocks by designing 
components that can be operated in power independent mode.   
The proposals made here should be applicable to all operations to make the maximum 
benefit of the advantage of the design. To operate at lower temperatures such as in milli-
Kelvin ranges, required for quantum computing, the junctions and circuit components have 
to be scaled. The cells, modules or blocks used in design of building larger parts of circuits, 
are modified in a way such that the cells are capable of maintaining the state of the logic 
even when the power bias is switched off.  
The second and larger energy dissipation source, which can be directly, reduced by 
lowering the bias current supply. One of the simplest methods of reducing the DC bias 
current is recycling the bias from one part of the circuit to bias the other parts. This 
technique called current recycling is a method for serially biasing the circuits. Small scale 
demonstrations of the technique have been demonstrated a few years ago (Johnson M.W. et 
al., 2003). We present here some of the results for techniques for over 1k junctions in a single 
chip and also discuss some of the limitations of these techniques. 

2. Background and related work 
The problem of power dissipation has been attempted by several groups over the last two 
decades and the problem has gained more attention based on the new developments of 
applications into quantum computing technology and wireless technology applications 
(Tahara S. et al., 2004, Narayana S. 2011). If Josephson SFQ technology has to be extended to 
quantum computers, which require far fewer junctions but must be operated at much lower 
temperatures to maintain longer quantum coherence, the issue of power dissipation comes 
to the forefront. 
Despite the numerous advantages, over its semiconductor counterparts, the power 
dissipation is high in the conventional digital Josephson technology. If the application 
revolves around quantum computation, the size of circuit is small but power dissipation 
could seriously disrupt the quantum operations.  On the other hand, if the circuits being 
designed are large power dissipation in the bias lines could be larger by several orders of 
magnitude compared to the power dissipation in single block or cell.  
Early efforts of reducing power dissipation were using large inductances connected to the 
bias resistors. This method was demonstrated for moderate size circuits in (Yoshikawa N. et 
al., 2001), but operating margins were reported to be reduced at higher frequencies due 
limitation of L/R time constant compared to the switching frequency.  But reducing R also 
reduces the maximum clock frequency, which limits the high circuit design.  
Static power dissipation, largest source of power dissipation, was eliminated by 
eliminating resistive biasing elements in circuit design (Polonsky S. 1999).  An effort to 
mimic CMOS logic, also to eliminate static power dissipation was presented by (Silver 
A.H. et al., 2001), but was harder to integrate into SFQ circuits. But the method 
successfully was designed for high speed circuits. A new RQL logic has been presented 
which involves multi phase AC bias, which has been known to cause AC crosstalk (Silver 
A.H. et al., 2006). Another method for static power dissipation was presented in 
(Kirichenko D.E. et al., 2011), where the JTL is used to a digital controller to supply bias 
current to the circuits under operation.  
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3. Power dissipation in RSFQ circuits 
Before we go into methods and experiments results, we can go to present a simplified model 
as which are well studied in Detail (Rylyakov A. 1997). We will just recap some of the main 
purpose with a numerical example so as to provide a continuation and feel for the value of 
method presented. Let us begin with a simple model as to get an idea of the power 
estimated without going into detailed mathematical models. The most power is dissipated 
in the bias resistors and second source of power dissipation is the shunt resistors in the 
junctions when junctions are in the resistive state. 
If the clock operation has a frequency f , the power dissipation due to the switching of the 
Josephson junction is 

 0P FE f Ic    (1) 

Where, E is the total energy dissipated, IC is the critical current of the junction and Ф0 is the 
quantum flux constant.  Now for a critical current of 100µA, and the clock frequency of 
50GHz the power dissipated for a single junction by switching is 10 nW. 
Now let us look at the second source of power dissipation, in figure 1, is a Josephson 
junction network, the junctions are usually biased to a lower value than IC, about 0.7 IC, the 
junction can switch when a correct SFQ pulse arrives. 
 

 
Fig. 1. Josephson junction network 

The inductances can Lbi and Li, ratios influences the order of switching events and the effects 
have been studied well in (Chen W. et al., 1999 and references therein) power dissipation.  
So for a typical power dissipation based on V = 2.6mv, which is the sub band gap of the 
niobium superconductors, and critical current 100uA. The power dissipation is P = VI, so 
the power dissipation is P = 260nW, which is nearly 25 times higher in the bias resistors 
compared to the junctions. In broader context, one can say that, the power dissipation is at 
least one order of magnitude higher in bias resistors.  

3.1 Temperature scaling  
With the growing interest in quantum computing and the favorable choice of single flux 
quantum circuits for its application, we do have to modify a few parameters for better 
design. Since most of the quantum computing circuits are operate in milli- Kelvin range, we 
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to the chip. And secondly, we try to improve the operation of the circuit blocks by designing 
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3. Power dissipation in RSFQ circuits 
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If the clock operation has a frequency f , the power dissipation due to the switching of the 
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 0P FE f Ic    (1) 

Where, E is the total energy dissipated, IC is the critical current of the junction and Ф0 is the 
quantum flux constant.  Now for a critical current of 100µA, and the clock frequency of 
50GHz the power dissipated for a single junction by switching is 10 nW. 
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Fig. 1. Josephson junction network 
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present a simple scaling method to avoid errors in design of SFQ circuits. The resistance of 
the shunt resistance (RSh) and the sub-band gap resistance of the junction is Rm, and both the 
resistances can be seen in parallel and can be calculated  as in equation 2.  

 .Rm RshR
Rm Rsh




 (2) 

The principle governing factors for the Josephson junction with the combined resistance R is 
such that disparity must be avoided so the scaling of resistance should avoid errors due to 
quantum fluctuations and these quantum fluctuations must be smaller than the thermal 
fluctuations. So, the ratio of resistances must be smaller to the ratio of thermal noise and 
critical current contributions and resistance scaling must be smaller. So for scaling 
conditions to be satisfied we must have,  

 T

C Q
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Where 2Q
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 , IC is the critical current, IT is the thermal noise. Bias voltage cannot be 

scaled similarly as resistance.  However, for all conventional reasons the bias voltage is 
fairly independent of temperature. But in reduction to the crosstalk reductions and circuit 
designs specifics, the bias voltage can be reduced by a factor of 2 to 5 (Narayana S. 2011, 
Salvin A. et al., 2006).  

4. Power independent RSFQ logic 
Superconducting structures have been known to keep circulating currents for unlimited 
time. If this current or magnetic field caused by this persistent current then one can use this 
phenomenon to perform useful functions without any energy dissipation. Unfortunately, 
the list of such functions is quite small (Tahara S. et al., 2004). This are because most of 
functions or blocks using the persistent currents such as RSFQ cells/latches lose their state 
when the power is turned off. However, below we would like to show that RSFQ cells could 
be modified for Power Independent (PI) operation. Let us remind that power independence 
means an ability of circuits to be un-powered without any loss of stored information. As a 
result, power independent circuits should be powered only when logic operations should be 
performed. 
The simplest power independent circuit with memory is a well-known single junction 
SQUID as shown in figure 2a. The single junction SQUID is a superconducting loop with 
sufficiently large loop inductance L interrupted by a single Josephson junction. The 
dynamics of single Josephson junction SQUID has been well known for many years now 
and will not be discussed in detail here. But, it may be sufficient to recap the flux 
modulation as a function of the bias current to the SQUID as shown in figure 2b. From the 
figure 2b we can see that, we can write "1" or "0" by applying large enough positive 
( 1b thI I ) or negative ( 0b thI I ) bias current  Ib . 
The device continues to remember any of these states if bias current is switched off ( 0bI   ) 
as there is no dissipation in the superconducting loop. 
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Fig. 2. (a) Single Junction SQUID ;(b) Current vs Flux characteristics. A single junction 
SQUID as the simplest power independent cell. 

The introduced memory cell of single junction SQUID could be incorporated into RSFQ flip-
flops and logic gates. The construction of power independent RS flip flop is presented in the 
next section. 

4.1 Power Independent RSFQ RS flip-flop 
The transformation of the RSFQ cell into Power Independent RSFQ cell is explained here. In 
the case of regular RSFQ RS Flip Flop (Turner C.W. et al.,  1998), as shown in figure 3a, the 
Josephson junctions J3, J4 and loop inductance L, form a two junction interferometer 
with 01.25CI L   , so that a flux quantum can be stored in it. The current in the loop can be 
expressed as the sum of the bias current equally divided between the two junctions and 
circulating current / 2PI L  . Initially, the circulating current is counterclockwise, 
representing a stored “0”. The currents when the bias is applied are 3 ( / 2)J b PI I I   and  

4 ( / 2)J b PI I I   . 
 

 
Fig. 3. (a) RSFQ RS- Flip Flop (b) RSFQ Power Independent Flip Flop. Transformation of a 
conventional RSFQ RS Flip flop into power independent RSFQ RS Flipflop. 
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When input pluses are applied to the input (set) and clock (reset) terminals, this causes 
circulating current to reverse polarity. When pulse arrives on the input, its current passes 
through the J2 (nearly biased at Φ = 0 ) and causes J3 to switch and the circulating current is 
transferred to J4. The clockwise circulating current is representative of a stored “1”. Then, 
when a clock pulse (reset) is applied, it passes through L1 and J1 and into J4, thus causing it 
to switch. The voltage pulse developed during the switching reverses the circulating 
current, so again a “0” is stored in the loop; it simultaneously applies this SFQ voltage pulse 
to the output inductor L3. 
The junctions J1 and J2 have lower critical currents than J3 and J4 and to protect the inputs 
from back reaction of the interferometer if pulses come under the wrong circumstances. 
In the RSFQ RS Flip Flop  cell as shown in figure 3a,  the magnetic bias is created by 
asymmetrically applying bias current Ib . This magnetic bias disappears if the bias current is 
switched off. As a result the circuit keeps its internal state only as long as the bias current 
remains applied. 
In figure 3b the transformation for the RS flip-flop into Power Independent cell is shown. 
The operation of the Power independent RS flip flop operates in the similar manner as the 
conventional RSFQ RS flip flop, the junction and inductance parameters have to be adjusted 
accordingly. In contrast PI cell (Figure 3b) holds its magnetic bias inside its SQUID, instead 
of a single quantizing inductance L. To activate the SQUID and the circuit one should apply 
large enough bias current Ib. (Note that this "activating" current is slightly greater than its 
nominal value for regular logic operation.) Being activated the circuit remains magnetically 
biased (presumably by flux about Φ0/2 ) even if bias current is off. Note that even power 
independent circuits should be powered to perform logic operations, in order to provide the 
needed additional magnetic flux bias. 

4.2 Investigations of power independent circuits 
In order to investigate the power independent RSFQ flip flop we simulated the RSFQ flip 
flop. The clocked RS flip flop, where the reset terminal used as the clock terminal can be 
used as the RSFQ D flip-flop.  The circuits were designed based on the simulations to be 
fabricated for Hypres 1KA/cm2 Nb trilayer technology.  
 

 
Fig. 4. Power independent D flip-flop( Clocked RS Flip-flop). Bias current IPI does 2 things: 
it “activates” the SQUID with junction J0 and the power the cell during normal operation. 
Values of paramerters are shown in dimensionless ‘PSCAN’ units (Polonsky S. et al., 1991).  
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4.3 Design of 6-bit shift register with PI cells 
Figure 4 shows schematics of a D flip-flop (Clocked RS Flip flop), re-optimized for operation 
in power independent mode at 4 K. The power independent D flip-flop has the single 
junction interferometer that can be identified by schematic components L1, L2, LD4 and J0. 
The interferometer is biased by current IPI. The components in the figure 4 are represented 
by dimensionless PSCAN units, which are easier for computation. 
Figure 5 illustrate current and input data patterns used for a numerical circuit optimization 
with PSCAN software package. The new feature of the simulation is a more complex shape 
of applied bias current IPI. During the simulation it was required that junction J0 is switched 
only one time and when IPI current it applied for the first time. No other junctions switched 
when bias current goes down. 
 

 
Fig. 5. Current (upper trace) and voltage waveforms illustrating the power independent 
operation of D cell. Note that the initial “activation” procedure could require larger current 
IPI than those during the regular circuit operation 

A 6-bit shift register with PI D cells has been designed and laid out for HYPRES fabrication 
technology. The shift register has been incorporated into a benchmark test chip developed 
for a comparative study of flux trapping sensitivities (Polyakov Y.A. et al., 2007) of different 
D cells. (The earlier revisions of the test circuits are documented in Narayana S. 2011.) 
Figure 6 shows a microphotograph of a fully operational circuit (as shown in Figure 4) 
fabricated at HYPRES (1 KA/cm2 technology). Bias current margins (±16%) for the only 
measured chip are about 2 times below our numerical estimations (35%). The figure 7 the shift 
register was tested with Octupux (Zinoviev D. et al.,) setup where the low speed testing was 
use to confirm the correct operation of the shift registers. Since the shift register is a counter 
shift register, the clock and the data pulses travel in the opposite direction and this can be 
confirmed by the traces in figure 5. The chip was not tested for high speed operation 
These measurements show a complete operation of the circuit but with about ±16% bias 
current margins that are more than 2 times below of our numerical estimations (35%). We 
believe that the discrepancy is mostly because of the large number (over a dozen) of corners 
in the SQUID loop. This is because we believe that the inductances for the corners in the 
loop have been overestimated (Narayana S 2011).  
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Fig. 6. The microphotographs of the chip and 2 cell fragment of the shift register (encircled 
on the left) consisting of power independent RSFQ D cells. Horizontal pitch of the 2 cells is 
270µm. 
 

 
Fig. 7. The low frequency operation of counter flow shift register. The traces 3(clock), 5(data) 
are the inputs and 1, 2 are the clock and data output traces respectively. 

5. Current recycling 
One of the main advantages of RSFQ circuit is that only dc bias is needed. It eliminates the 
cross-talk problems caused by ac biasing and makes designing larger circuits easier. 
However, in larger circuits the total dc bias current could add up to a few amperes and such 
large bias currents cause large heat dissipation, which is not preferred (for larger modular 
designs the bias currents could add up several amperes).One of the techniques that has been 
proposed (Kang J.H. 2003) is biasing the circuits serially otherwise commonly known as 
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'current recycling'. Biasing large circuit blocks in series (referred to as current recycling or 
current re-use) will essentially reduce the total current supply for the superconducting IC to 
a manageable value. Both capacitive (Teh C.K., et al., 2004) and inductive methods (Kang 
J.H., et al., 2003) of coupling for current recycling have been demonstrated at a small scale. It 
is difficult to estimate the impact of the technique based on single gate operation as in 
(Johnson MW et al, 2003). Current recycling becomes easier at higher current density of the 
superconducting IC (Narayana S 2011). Current recycling however has its limitations; it 
does not reduce the on-chip static power dissipation by the circuit blocks and also due to 
additional structures, the area occupied by the circuit increases.  
To demonstrate the method of current recycling, we have designed a Josephson junction 
transmission line (JTL) as shown in figure 8, which represents one module. The module 
consists of three parts, the driver, receiver and the payload. The payload is usually the 
circuit block that is used for operation, in this case to keep matters simple a JTL has been 
used, as its operating margins are very high. The payload can otherwise be replaced by flip-
flops, filters, or logic gates. 
 

 
Fig. 8. Block diagram of current recycling digital transmission line 

Before we explain the operation of the driver-receiver circuit, it is important to remember a 
few thumb rules for the current recycling design. For current recycling, the ground planes 
under adjacent circuit blocks must be separated and subsequent blocks biased in series. It 
will also be necessary to isolate SFQ transients between adjacent blocks. This may be 
achieved by low pass filters, but will need to avoid power dissipation in the filters. Series 
inductance could provide high frequency isolation; the inductors could be damped by 
shunting with suitable resistance, such that there is no large DC power dissipation. 
Capacitive coupling between adjacent blocks can be used for current recycling however they 
are not discussed here and also capacitors (Teh C.K., et al, 2004) used for this method also 
occupy larger space compared to the inductive filtering method. 

5.1 Current recycling basics 
The fundamental requirement for serial biasing of circuits is that current drawn from 
(supplied to) each circuit must be equal and the input/output must not add current to the 
serially biased circuits. The inputs and outputs are connected via galvanic connection to 
satisfy the above requirements. 
In figure 9, the complete schematic of the driver- receiver is shown. The driver and receiver 
circuits are completely different electrical grounds. An inductor connecting two Josephson 
junctions momentarily stores a single flux quantum while an SFQ pulse propagates from one 
junction to another. Typically, this duration time is about 5picoseconds, depending on the 
circuit parameters. Between the time when J13 and J14 generate a voltage pulse, the magnetic 
flux stored in the inductor that connects J13 and J14 induces a current in the inductor, L1u, 
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circuits are completely different electrical grounds. An inductor connecting two Josephson 
junctions momentarily stores a single flux quantum while an SFQ pulse propagates from one 
junction to another. Typically, this duration time is about 5picoseconds, depending on the 
circuit parameters. Between the time when J13 and J14 generate a voltage pulse, the magnetic 
flux stored in the inductor that connects J13 and J14 induces a current in the inductor, L1u, 
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connecting J1 and J2. With proper circuit parameters, this induced current causes a voltage 
pulse to be created on J1 and this pulse then propagates through J2 to be further processed. In 
this way, an SFQ signal pulse is transferred from one ground to another plane. 
 

 
Fig. 9. Circuit schematic for magnetic coupled SFQ pulse transfer between driver and 
receiver 

5.2 Current recycling experimental demonstration  
The complete block diagram for the circuit is shown in figure 11a along with the connection 
scheme for the 80 blocks to be biased serially. Figure 11b shows the microphotograph of the 
chip which was fabricated for the circuit schematics discussed in of figure 8 and 9. The bias 
Current for the junction on the input side is passed to one ground plane while the ground 
for the junctions on the output side is isolated from the other ground by a ground plane 
moat. The Josephson junction J13 and J14 are damped more heavily than other junctions to 
guarantee that minimum reflections take place at the end of the input JTL. Tight magnetic 
coupling is required between the pulse transmitting the JTL and the pulse receiving JTL to 
obtain a robust circuit with excellent operational margins. To ensure higher coupling holes 
were opened in both the upper and lower ground planes as shown in figure 10. 
 

 
Fig. 10. The layout showing the JTL-driver-receiver connections is shown. 
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                                                 (a)                                                         (b) 

Fig. 11. (a) The block diagram for serial biasing.(b)The microphotograph of the chip for 
demonstrating current recycling. 

The digital traces for the correct operation of the circuit are shown in figure 12. The 
measurements were carried out at low frequency using Octupux setup (Zinoviev 1997). The 
circuit tested used the standard I/O blocks of SFQ/DC converters to measure the operating 
margins of the circuits. The circuits were fabricated for both 1kA and 4.5KA/cm2 Hypres tri-
layer Niobium technology. The circuit has margins of ±15%. The bias current to obtain 
correct operation was reduced to 1.7mA by current recycling method; otherwise the 
operation of 80 blocks with parallel biasing would require nearly 200mA. 
 

 
Fig. 12. The digital waveform of the input and three outputs as shown in figure 5.4. The 
traces 1,3,5 are the outputs and 2 is the input trace 
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6. Discussions and summary  
In sections 4 and 5, we have demonstrated the operation of power independent RSFQ cell 
and current recycling technique for over 1k junctions in a single chip.. Now let us consider 
the latter case. If N blocks were parallel biased (that is individually biased), the power 
dissipated would be 

 2

1
.

N

i b
i

Pp Ib R


   (4) 

For the serially biased case  

 2. .iPs Ib R N  (5) 

Comparing the two cases for N uniform cells, the ratio of Pp/Ps is N. So essentially, one can 
reduce the bias current by maximum of N times by serial biasing scheme. However, one 
should note that, this scheme cannot reduce the on chip power dissipation but only reduce 
the total bias current load, which could prove very significant in designing large circuits.  
In the power independent mode the cells can be turned on only when the cells have to be 
operated and can be turned off, rest of the time. Also they retain the logic state of the circuit, 
when they are switched off so one can eliminate static power dissipation by this method. In 
both the schemes discussed, we note that there is a significant increase in area overhead 
(about 30%).  
In this chapter, we have presented solutions for energy minimization in single flux quantum 
circuits. We have also presented a method for scaling resistances to modify existing SFQ 
based circuits to fit designs for quantum computation. We have also presented some of the 
short comings of the proposed methods, giving us an avenue for further research in the 
areas to make the proposed methods more widely acceptable for application in quantum 
computing and high performance mixed signal circuits.  
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1. Introduction

The proved possibility really to observe quantum-interference phenomena in metals of
various purity, in conditions when the scattering occurs mainly at static defects and the
electron mean free path, lel, is much less than the size L of the investigated sample, convinces
that the phase ϕ of electron wave functions does not break down at elastic (without changing
electron energy) scattering. Even in very pure metals with lel ≈ 0.1 mm, at T ≤ 4 K,
collisions of electrons with phonons occur much less frequently than those with static defects
occur, so that the role of the former in electron kinetics becomes minor. In other words, the
inequality Lϕ > lel is usually satisfied in a metal at sufficiently low temperatures, where Lϕ

is the phase-breaking length. This condition, however, is not sufficient to observe coherent
phenomena. For example, the phenomena of interference nature such as the oscillations
in conductance in a magnetic flux φ in normal - metal systems (Sharvin & Sharvin, 1981)
or coherent effects in hybrid systems "normal metal/superconductor" (NS) (Lambert &
Raimondi, 1998), can become apparent given certain additional relations are fulfilled between
the parameters, which define the level of the effects: lel ≤ L ≤ ξT ≤ Lϕ. Here, ξT is the thermal
coherence length. Otherwise, at reverse inequalities, a fraction of the coherent phenomena in
total current is expected to be exponentially small. It follows from the general expression for
the phase-sensitive current: J(φ) ∼ F(φ)(lel/L) exp(−L/ξT) exp(−Lϕ/ξT) (F(φ) is a periodic
function).
The majority of coherent effects, as is known, is realized in experiments on mesoscopic
systems with typical parameters L ∼ 1 μm � lel ∼ 0.01 μm, i. e., under conditions where
the level of the effects is exponentially small, but still supposed to be detected (Lambert &
Raimondi, 1998; Washburn & Webb, 1986). Really, the maximum possible (in the absence of
scattering) spatial coherence length, ξ0, according to the indeterminacy principle, is of the
order of ξ0 = (h̄vF/kBT) ∼ 1 μm in value, for a pair of single-particle excitations in a normal
metal (for example, for e − h hybrids resulting from the Andreev reflection (Andreev, 1964)).
That value is the same as a typical size of mesoscopic systems. As a consequence, from the
ratio ξT ∼ √

(1/3)ξ0lel it follows that in these systems, coherent effects are always realized
under conditions L � ξT � lel and are exponentially small on the L scale.
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2 Will-be-set-by-IN-TECH

From the above typical relations between the basic microscopic parameters in mesoscopic
systems one can see that such systems cannot give an idea about a true scale of the most
important parameter - the phase-breaking length Lϕ for electron wave functions. It is only
possible to say that its value is greater than L ∼ 1 μm. In mesoscopic systems, a value of the
thermal coherence length ξT remains not quite clear as well, since, under strong inequality
ξT � lel, the scale of this parameter should be additionally restricted: At high frequency of
elastic scattering processes on impurity centers (at short lel), the portion of inelastic scattering
on the same impurities, which breaks down a phase of wave functions, should be also
significant.
It is clear that due to spatial restrictions, mesoscopic systems are also of little use for
experimental investigation of non-local coherent effects; a keen interest in those effects has
recently increased in connection with the revival of general interest in non-local quantum
phenomena (Hofstetter et al., 2009).
Our approach to the investigation of phase-breaking and coherence lengths in metals is based
on an alternative, macroscopical, statement of the experiment. We presume that in order to
assess the real spatial scale of the parameters Lϕ, ξT, and ξ0 in metals, the preference should be
given to studying coherent effects, first, in pure systems, where the contribution from inelastic
scattering processes is minimized due to the lowered concentration of impurities, and, second,
at such sizes of systems, which would certainly surpass physically reasonable limiting scales
of the specified spatial parameters. The listed requirements mean holding the following chain
of inequalities: L > Lϕ > lel � ξ0 (lel/ξ0 ≥ 10). They can be satisfied by increasing the
electron mean free path lel and the system size L by several orders of magnitude in comparison
with the same quantities for mesoscopic systems.
At first glance, such changing in the above parameters should be accompanied by the same,
by several orders, reduction in the value of registered effects. Fortunately, this concerns only
normal-metal systems, where coherent effects have a weak-localization origin (Altshuler et
al., 1981). The remarkable circumstance is that the value of coherent effects in normal (N) and
NS systems can differ by many orders of magnitude in favor of the latter. Thus, oscillation
amplitude of the conductance in a magnetic field in a normal-metal ring (the Aharonov - Bohm
effect in a weak - localization approach (Altshuler et al., 1981; Washburn & Webb, 1986)) can
be m times less than that in a ring of similar geometry with a superconducting segment (NS -
ring) due to possible resonant degeneration of transverse modes in the Andreev spectrum
arising in the SNS system (Kadigrobov et al., 1995). For example, for mesoscopic rings
m ∼ 104 ÷ 105. As it will be shown below, coherent effects in macroscopical formulation of
experiments remain, nevertheless, rather small in value, and for their observing, the resolution
of a voltage level down to 10−11 V is required. Unlike mesoscopic statement of the experiment,
it makes special non-standard requirements for measuring technique of such low signals. To
satisfy the requirements, we have developed the special superconducting commutator with
picovolt sensitivity (Chiang, 1985).
Here, we describe the results of our research of quantum coherent phenomena in NS
systems consisting of normal metals with macroscopical electron mean free path and having
macroscopical sizes, which fact allows us to regard our statement of the experiment as
macroscopical. The phenomena are considered, observed in such systems of different
connectivity: for both simply connected and doubly connected geometry.
In Section 2, phase-sensitive quantum effects in the "Andreev conductance" of open and closed
macroscopic SNS systems are briefly considered. The open SNS systems contain segments,
up to 350 μm in length, made of high-pure (lel ∼ 100 μm) single-crystal normal metals Cu
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and Al which are in contact with In, Sn, and Pb in the superconducting or intermediate
state. The phase-sensitive magnetoresistive oscillations are described, with a period equal
to the flux quantum hc/2e, which were found in hybrid quasi-ballistic doubly connected SNS
structures with single-crystal normal segments of macroscopic sizes (L = 100 ÷ 500 μm) and
elastic electron mean free path on the same scale. The description of resistive oscillations
of a resonance shape for the structure In(S) - Al(N) - In(S) of the similar size is provided.
The oscillations undergo a phase inversion (a shift by π) with respect to the phase of the
nonresonance oscillations.
In Section 3, the results of studying coherent and spin-dependent effects in the conductance
of macroscopic heterosystems "magnetic (Fe, Ni) - superconductor (In)" are presented. The
first proof of the possibility of observing, with adequate resolution, the characteristic coherent
effect in the conductivity of sufficiently pure ferromagnets was given on the example of nickel.
The effect consists in an interference decrease in the conductivity on the scale of the very
short coherence length of Andreev e − h hybrids. It was shown that this length did not
exceed the coherence length estimated using the semiclassical theory for ferromagnetic metals
with high exchange energy. Additional proof was obtained for spin accumulation on F/S
interfaces. This accumulation comes from the special features of the Andreev reflection under
the conditions of spin polarization of the current in a ferromagnet.
The first observation of the hc/2e-oscillations (solid-state analogue of the Aharonov-Bohm
effect (Aharonov & Bohm, 1959)) is described in the conductance of a ferromagnet, Ni, as a
part of the macroscopical S(In) - F(Ni) - S(In) interferometer (LNi ∼ 500 μm). A physical
explanation is offered for the parameters of the oscillations observed. We have found that
the oscillation amplitude corresponds to the value of the positive resistive contribution to the
resistance from a ferromagnetic layer, several nanometers thick, adjacent to the F/S interface.
We have demonstrated that the scale of the proximity effect cannot exceed that thickness.
The oscillations observed in a disordered conductor of an SFS system, about 1 mm in length,
indicate that the diffusion phase-breaking length is macroscopical in sufficiently pure metals,
including ferromagnetic ones, even at not too low helium temperatures. The analysis of the
non-local nature of the effect is offered.
Section 4 is the Conclusion.

2. Macroscopical NS systems with a non-magnetic normal-metal segment

While trying to detect possible manifestations of quantum coherent phenomena in
conductivity of normal metals, the main results were obtained in experiments on the samples
of mesoscopic size under diffusion transport conditions, L ≥ ξT � lel. In such case,
the contribution from the coherent electrons is exponentially small relative to the averaged
contribution from all electrons in all distributions. The portion of coherent electrons can
be increased due to weak-localization effect. For example, in a doubly connected sample,
so-called self-intersecting coherent trajectory of interfering electrons is artificially organized
(Washburn & Webb, 1986). If the length of the loop, L, covering the cavity of the doubly
connected system does not exceed the phase-breaking length, Lϕ, then introducing a magnetic
field into the cavity may lead to a synchronous shift of the phase of wave functions of
all electrons. As a result, the conductance of the system, determined by a superposition
of these functions, will oscillate periodically in the magnetic field. The amplitude of the
oscillations will be defined by the weak-localization contribution from interfering reversible
self-intersecting transport trajectories (Aharonov & Bohm, 1959; Sharvin & Sharvin, 1981),
and the period will be twice as small as that for the conventional Aharonov-Bohm effect in a
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In Section 2, phase-sensitive quantum effects in the "Andreev conductance" of open and closed
macroscopic SNS systems are briefly considered. The open SNS systems contain segments,
up to 350 μm in length, made of high-pure (lel ∼ 100 μm) single-crystal normal metals Cu
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Fig. 1. Positive jump of resistance of bimetallic system Bi/In at converting indium into the
superconducting state. Inset: Superconducting transition of In.

normal-metal ring, where the reversibility of the trajectories in the splitted electron beam is
not provided.

2.1 Singly connected NS systems
2.1.1 Artificial NS boundary

Fig. 2. Positive jump of resistance of bimetallic system Cu/Sn measured on the probes LN1;
LN2 at converting tin into the superconducting state (curve 1); calculated portion of the
boundary resistance (curve 2); crosses are experimental points excluding curve 2; dotted
curve 3 is calculated in accordance with Eq. (4). Inset: Schematic view of the sample.

As it has been noted in Introduction, in comparison with weak-localization situation, the
role of coherent interference repeatedly increases in the normal metal, which is affected
by Andreev reflection - the mechanism naturally generating coherent quasiparticles. In a

102 Superconductivity – Theory and Applications Electronic Transport in an NS System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 5

hybrid "normal metal/type I superconductor" system (NS system), the contribution from the
coherent excitations into normal conductivity dominates over the distance scale of the order of
a ballistic path from the NS boundary (∼ 1μm), irrespective of the system size, its connectivity,
and, generally, the electron mean free path; due to Andreev reflection, the spectrum of
coherent excitations is always resolved on this scale. From the discussion in Introduction it
clearly follows that in macroscopical statement of experiments, maximum level of the coherent
effects should be reached in conditions, where the electron mean free path, lel, the greatest
possible coherence length, ξ0, and the sample length, L (the separation between potential
probes), are of the same order of magnitude. In these conditions, when studying even
singly connected NS systems in 1988, we first revealed an unusual behavior of the normal
conductivity of the heterosystem Bi(N)/In(S) (Chiang & Shevchenko, 1988): The resistance of
the area containing the boundary between the two metals unexpectedly decreased rather than
increased at the transition of one of the metals (In) from the superconducting into normal state
(Fig. 1).
Further theoretical (Herath & Rainer, 1989; Kadigrobov, 1993; Kadigrobov et al., 1995) and
our experimental research have shown that the effect is not casual but fundamental. It
accompanies diffusive transport of electrons through non-ballistic NS contacts. Figure
2 presents some experimental data revealing the specific features of coherent excitation
scattering in the vicinity of the NS boundaries (see more data in (Chiang & Shevchenko, 1998))
for Cu(N)/Sn(S) system (schematic view of the sample is shown in the Inset). The basis of the
bimetallic NS system under investigation was a copper single crystal with a "macroscopically"
large elastic mean free path lN

el � 10 − 20 μm. The single crystal was in contact with a type
I superconductor (tin) (lS

el � 100 μm). The transverse size of contact areas under probes
was 20-30 μm so that tunnel properties were not manifested in view of the large area of the
junction. Separation of the N-probes from the boundary LN1, LN2, and LS were 13, 45, and 31
μm, respectively. The curve 1 shows a general regularity in the behavior of the resistance of

Fig. 3. Resistance of the region of the Cu/In system incorporating the NS boundary, below Tc
of the superconductor (In): Experimental points (curve 1) and calculated contributions of the
boundary resistance (z �= 0, curve 2) and of the proximity effect (curve 3).

103
Electronic Transport in an NS
System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 



4 Will-be-set-by-IN-TECH

Fig. 1. Positive jump of resistance of bimetallic system Bi/In at converting indium into the
superconducting state. Inset: Superconducting transition of In.

normal-metal ring, where the reversibility of the trajectories in the splitted electron beam is
not provided.

2.1 Singly connected NS systems
2.1.1 Artificial NS boundary

Fig. 2. Positive jump of resistance of bimetallic system Cu/Sn measured on the probes LN1;
LN2 at converting tin into the superconducting state (curve 1); calculated portion of the
boundary resistance (curve 2); crosses are experimental points excluding curve 2; dotted
curve 3 is calculated in accordance with Eq. (4). Inset: Schematic view of the sample.

As it has been noted in Introduction, in comparison with weak-localization situation, the
role of coherent interference repeatedly increases in the normal metal, which is affected
by Andreev reflection - the mechanism naturally generating coherent quasiparticles. In a

102 Superconductivity – Theory and Applications Electronic Transport in an NS System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 5

hybrid "normal metal/type I superconductor" system (NS system), the contribution from the
coherent excitations into normal conductivity dominates over the distance scale of the order of
a ballistic path from the NS boundary (∼ 1μm), irrespective of the system size, its connectivity,
and, generally, the electron mean free path; due to Andreev reflection, the spectrum of
coherent excitations is always resolved on this scale. From the discussion in Introduction it
clearly follows that in macroscopical statement of experiments, maximum level of the coherent
effects should be reached in conditions, where the electron mean free path, lel, the greatest
possible coherence length, ξ0, and the sample length, L (the separation between potential
probes), are of the same order of magnitude. In these conditions, when studying even
singly connected NS systems in 1988, we first revealed an unusual behavior of the normal
conductivity of the heterosystem Bi(N)/In(S) (Chiang & Shevchenko, 1988): The resistance of
the area containing the boundary between the two metals unexpectedly decreased rather than
increased at the transition of one of the metals (In) from the superconducting into normal state
(Fig. 1).
Further theoretical (Herath & Rainer, 1989; Kadigrobov, 1993; Kadigrobov et al., 1995) and
our experimental research have shown that the effect is not casual but fundamental. It
accompanies diffusive transport of electrons through non-ballistic NS contacts. Figure
2 presents some experimental data revealing the specific features of coherent excitation
scattering in the vicinity of the NS boundaries (see more data in (Chiang & Shevchenko, 1998))
for Cu(N)/Sn(S) system (schematic view of the sample is shown in the Inset). The basis of the
bimetallic NS system under investigation was a copper single crystal with a "macroscopically"
large elastic mean free path lN

el � 10 − 20 μm. The single crystal was in contact with a type
I superconductor (tin) (lS

el � 100 μm). The transverse size of contact areas under probes
was 20-30 μm so that tunnel properties were not manifested in view of the large area of the
junction. Separation of the N-probes from the boundary LN1, LN2, and LS were 13, 45, and 31
μm, respectively. The curve 1 shows a general regularity in the behavior of the resistance of

Fig. 3. Resistance of the region of the Cu/In system incorporating the NS boundary, below Tc
of the superconductor (In): Experimental points (curve 1) and calculated contributions of the
boundary resistance (z �= 0, curve 2) and of the proximity effect (curve 3).

103
Electronic Transport in an NS
System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 



6 Will-be-set-by-IN-TECH

normal regions adjoining the common boundary of two contacting metals - occurrence of the
positive contribution to the resistance closely related to the temperature dependence of the
superconducting gap at transition of one of the metals into the superconducting state. This
effect is most pronounced just in the macroscopical statement of experiment in the formulated
above optimum conditions lN

el ∼ ξ0(N) ∼ LN .
The considered effect was predicted in (Herath & Rainer, 1989) and (Kadigrobov, 1993). It has
been shown that there exists a correction to the normal resistance (hereafter, δRAndr

N ) leading
to an increase in the metal resistance within ballistic distances from the NS boundary upon
cooling. The correction may occur due to increased cross section of electron scattering by
impurities during multiple interaction of phase-coherent electron and Andreev excitations
with impurities and with the NS boundary. According to (Kadigrobov et al., 1995), the relative

Fig. 4. Temperature hc/2e oscillations of the resistance of the Pb plate (see the outline above)
in the intermediate state.
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increase in the resistance of a layer, LN in thickness, measured from the NS boundary and
having a resistance RN prior to the formation of this boundary, should be equal to

δRAndr
N

RN
= (lN

el /LN){Tp}, (1)

where {Tp} is the effective probability of electron scattering by a layer of thickness of the order
of "coherence length" ξT taking into account Andreev reflection and the conditions lN

el ∼ ξ∗N ∼
LN . The quantity {Tp} can be obtained by integrating Tp = h̄vF/εlN

el , viz., the probability
that the particle is scattered by an impurity and reflects as an Andreev particle with energy
ε (measured from the Fermi level), thus contributing to the resistance over the length lN

el ; the
integration is over the entire energy range between the minimum energy εmin = h̄vF/lN

el and
the maximum energy of the order of the gap energy Δ(T):

{Tp} =
∫ Δ(T)

εmin

(− ∂ f0

∂ε
)Tpdε. (2)

Integration to a second approximation gives the following analytical result for the correction
to the resistance of the layer LN under investigation as a function of temperature:

δRAndr
N

RN
=

ξT

LN
F(T), (3)

where F(T) is of order of unity with ξT ∼ lN
el . For a pair of probes (LN1; LN2) (see Fig. 2) with

LN1,2 > lN
el it provides

δRAndr
LN1;LN2

RLN1;LN2

=
ξT

LN1 − LN2
ln(LN1/LN2)F(T). (4)

Using Eq. (4) we have estimated the data received for different samples, including those
presented in Fig. 2. The analysis reveals not only qualitative but also quantitative agreement
between the experiment and the concept of increasing the dissipative scattering contribution
due to Andreev reflection (dotted curve 3 in Fig. 2). It is thus important to emphasize once
again that optimum conditions for observing this effect are realized by setting measuring
probes at a distance of several ballistic coherence lengths ξ0 from the NS boundary, i. e.,
in the macroscopical statement of experiment.
Curve 2 in Fig. 2 gives an idea of the portion of the boundary resistance which arises due
to dissipative quasiparticle current flowing in the areas close to NS borders, where the order
parameter Δ = Δ(x) is less than Δ(∞) = 1. Since the condition eV � kBT was satisfied in our
experiment we calculated this curve using the CESST-HC theory (Clarke et al., 1979; Hsiang
& Clarke, 1980). In accordance with the theory, the boundary resistance, RNS

b , caused by the
potential VNS

b extending into the near-boundary region of a superconductor where Δ(x) < 1,
should be of the order of

RNS
b = VNS

b /I = Y(z, T)RCu; RCu = λQ · ρCu/A, (5)

where λQ is the distance from the boundary on the side of the superconductor, over which the
potential decays that arises from the imbalance between the charges of the pair current and
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Fig. 5. Temperature hc/2e oscillations of the resistance of the intermediate-state Sn
constriction (see the outline above) in a self-current magnetic field of the measuring current
I = 1 A as the critical magnetic field (50G - intervals are specified).

that of independent quasiparticles; ρCu = 3/2e2 N(0)lCu
el vF; N(0) is the density of states per

spin at the Fermi level, e is the electron charge, vF is the Fermi velocity, and

Y(z, T) = (1 + z2)
kBT
Δ

√
2πΔ
kBT

exp(−Δ/kBT). (6)

Measurements across the probes LN1; LS, with the NS boundary between them and LN1 >
lCu
el , and estimation of the boundary resistance of Eqs. (5; 6) indicate a manifestation of

such coherent transport mechanism, which leads to an increase in conductivity in these
non-ballistic conditions (Fig. 3).
According to the Landauer concept (Landauer, 1970), complete thermalization of an electron
is the result not of momentum relaxation but of relaxation of the wave function phase due
to inelastic scattering in regions with an equilibrium distribution, called "reservoirs" (regions
that are sinks and sources of charges). The simulation of a continuous random walk of an
elastically scattered particle in a three-dimensional normal layer of the metal showed the need
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to consider the trajectories with multiple Andreev reflections. As shown in (Van Wees et al.,
1992), the mean diffusional path length �L� depends linearly on the width d of the normal
layer, where d is the distance between the boundary and the region of equilibrium distribution
(reservoir), which is of the order of magnitude of the inelastic mean free path linel, i. e., d ∼
linel. Since the probability τr for excitations to pass from the boundary to the reservoir is
inversely proportional to the layer width, τr ∼ (lel/d), it follows from the linear relation
between �L� and d that �L� ∼ τ−1

r ∝ linel.
It is also necessary to take into account the probability of realizing a diffusional trajectory by
equating its length to the elastic mean free path, or, equivalently, equating the length �L� ∼√

h̄D/kBT (D is the diffusion coefficient) to the real length L of the trajectory. On the other
hand, �L� =

√
Dt with t = L/vF. Therefore, �L�/L = lel/�L�. In addition, we assume

that the only temperature-dependent cause of inelastic scattering is inelastic electron-phonon
collisions, with a corresponding mean free path linel ∼ le−ph

inel ∼ T3.
As a result, the effective probability for coherent excitations to pass through the phase
coherence region in elastic scattering can be written in the form

τr =
lel

linel
· lel
�L� = βT3.5,

β = l3/2
el (h̄vF)

−1/2(l∗inelT
∗3)−1.

(7)

In accordance with the Landauer concept, we find the relative contribution to the conductance
G in the phase coherence region by calculating the proportion F(m) of coherent trajectories
(those that return to the reservoir after m reflections from the boundary, starting with the
trajectory with m = 1) and their contribution to the current and summing over all trajectories:

δG
G0

=
∞

∑
m=1

F(m)I(m), (8)

where δG = G − G0, G0 ≡ GT=0; F(m) = τ2
r (1 − τr)m−1 (m �= 0).

The probabilistic contribution to the current from a charge on trajectory with reflections is
(Blonder et al., 1982; Van Wees et al., 1992)

I(m) = 1 + |reh(m)|2|ree(m)|2, |reh(m)|2 + |ree(m)|2 = 1,

where |ree(m)|2 and |reh(m)|2 are the probabilities for an electron incident on the NS boundary,
to leave the boundary after m reflections in the form of an electron wave or a hole (Andreev)
wave, respectively. The expression for I(m) shows that for a large enough number of
reflections, which increases the probability of Andreev reflection to such a degree that
|reh(m)|2 → 1, the contribution of the corresponding trajectory to the current increases
by a factor of 2. If all of those trajectories reached the reservoir, the dissipation would
be increased by the same factor. Formally this is a consequence of the same fundamental
conclusion of the theory which was mentioned above: in coherent Andreev reflection the
efficiency of the elastic scattering of the electron momentum increases as a result of the
interference of the e and h excitations. Actually, the fraction of the coherent trajectories that
returns to the reservoir decreases rapidly with increasing distance to the reservoir from the
boundary and with increasing number of reflections, which determines the length of the
trajectory; thus we have the directly opposite result. In fact, assuming that for low electron
energies (eV/(h̄vF/lel) � 1) and a large contact area the main contribution to the change in
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Fig. 5. Temperature hc/2e oscillations of the resistance of the intermediate-state Sn
constriction (see the outline above) in a self-current magnetic field of the measuring current
I = 1 A as the critical magnetic field (50G - intervals are specified).

that of independent quasiparticles; ρCu = 3/2e2 N(0)lCu
el vF; N(0) is the density of states per

spin at the Fermi level, e is the electron charge, vF is the Fermi velocity, and
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kBT
Δ

√
2πΔ
kBT

exp(−Δ/kBT). (6)
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√
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−1/2(l∗inelT
∗3)−1.

(7)
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∞
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be increased by the same factor. Formally this is a consequence of the same fundamental
conclusion of the theory which was mentioned above: in coherent Andreev reflection the
efficiency of the elastic scattering of the electron momentum increases as a result of the
interference of the e and h excitations. Actually, the fraction of the coherent trajectories that
returns to the reservoir decreases rapidly with increasing distance to the reservoir from the
boundary and with increasing number of reflections, which determines the length of the
trajectory; thus we have the directly opposite result. In fact, assuming that for low electron
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conductivity is from coherent trajectories with large numbers of reflections, so that I(m) ≈ 2,
and converting the sum in Eq. (8) to an integral, we find to a second approximation:

δG
G0

≈ 2
∫ m∗

1
F(m)dm ≈ −τ2

r (m
∗2τr − 2m∗). (9)

The upper limit of integration m∗ is the number of reflections corresponding to a certain
critical length for a coherent trajectory L that reaches the reservoir. This limit can be
introduced as m∗ = γτ−1

r with a certain coefficient γ that is to be determined experimentally.
Substituting m∗ into Eq. (9), we finally obtain

δG
G0

≈ −(γ2 − 2γ)τr = −AT3.5,

A = β(γ2 − 2γ).
(10)

The nature of the effect consists in the fact that the number of trajectories leaving from the
number of attainable reservoirs increases in the long-range phase coherence region, i.e., an
ever greater number of trajectories appear on which the phase of the coherent wave functions
does not relax; this decreases the dissipation. Thus, in accordance with Eq. (9), one expects
that the temperature dependence of the relative effective resistance measured at the probes
located within the phase coherence region will be in the form of a function that decreases with
decreasing temperature below Tc as curve 1 in Fig. 3:

R/RN = (R0/RN)(1 + AT3.5). (11)

2.1.2 Natural NS boundary
The discovery of an unusual increase in the resistance of normal conductors upon the
appearance of an NS boundary (Figs. 1, 2) pointed to the need to deeper understand the
properties of the systems with such boundaries. Since then study of the unconventional
behavior of the electron transport in such systems has been taken on a broader scope.
As it was noted in Introduction, the early experiments detecting the phase-coherent
contribution of quasiparticles to the kinetic properties of normal metals were carried out
on samples that did not contain NS boundaries. In such a case this contribution, due
solely to the mechanism of weak localization of electrons, appears as a small quantum
interference correction to the diffusional contribution. Nevertheless, the existence of coherent
transport under those conditions was proved experimentally. Study of the NS structures
containing singly connected type I superconductors in the intermediate state, with large
electron elastic mean free path, lel, revealed resistance quantum oscillations of a type similar
to the Aharonov-Bohm effect (Tsyan, 2000). The temperature - dependent resistances of Pb
and In plates and Sn constriction were studied. The intermediate state was maintained by
applying a weak external transverse magnetic field Bext to the plates and by a self-current
field BI in the constriction. Thickness of Pb plates was 20 μm, with a separation Lm ≈ 250 μm
between the measuring probes in the middle part of the samples. A rolled In slab with
dimensions L × W × t = 1.5 mm × 0.5 mm × 50 μm was soldered at its ends to one of the
faces of a copper single crystal and was separated from this face by an insulating spacer.
Measurements of the system with In were carried out at a direct current 0.7 A, which
self-current magnetic field at a surface of the slab with the specified sizes made 5 G. The tin
constriction was t ≈ 20 μm in diameter and L ≈ 50 μm in length, with Lm ≈ 100 μm. At the
constriction surface, BI amounted to ≈ 100 G at I = 1 A. The bulk elastic mean free path in the
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Fig. 6. R - oscillations for the doubly connected Cu-In system as a function of temperature
(upper curve) and of the critical magnetic field (lower curve) at temperatures below TIn

c in
the self-magnetic field (∼ 5 G) of the measuring direct current.

workpieces from which the samples were fabricated was lel ∼ 100 μm. Such macroscopical
value of elastic mean free path in macroscopical statement of experiment makes it necessary to
measure samples of (0.1 ÷ 1) l3

el in volume, which resistance may make down to 10−8 ÷ 10−9

Ohm.
Figures 4, 5, and 6 show the oscillatory parts of the current-normalized potential difference δR
(hereinafter referred to as R - oscillations), obtained by subtracting the corresponding mean
monotonic part for each of the samples. It follows from these graphs that the resistances of
the samples oscillate in temperature in the fields maintaining the intermediate state. As is
seen, the oscillation amplitude (δR)max weakly depends on the temperature and the external
magnetic field (although the monotonic resistance components vary over no less than two
orders of magnitude). The character of oscillations in the Pb plate at various Bext values
(Fig. 4) indicates that the oscillation phase φ depends on the strength and sign of the external
magnetic field: φ(480 G) is shifted from φ(550 G) by approximately π, while φ(520 G) and
φ(550 G) coincide.
Constructing the critical-field scale for the oscillation region according to the equation Bc(T) �
Bc(0)[1 − (T/Tc(0))2] (Tc is the superconducting transition temperature), one finds that the
oscillation period ΔB in a magnetic field is constant for any pair of points one period apart and
is equal to the difference in the absolute values of the critical field (see Figs. 4 and 5) for each
of the samples. Here, we used BPb

c (0) = 803 G and BSn
c (0) = 305 G ((Handbook, 1974-1975)).

This suggests that the ΔB(Bc) period is a function of the direct rather than inverse field. The
temperature T∗ corresponding to the onset of R-oscillations in the Sn constriction is equal to
the temperature for which BSn

c (T∗) = BI(≈ 100 G), viz., the temperature of the appearance
of the intermediate state. The conditions for the confident resolution of the oscillations were
fully satisfied for this sample up to 3.5 K. With the values of Bext used for the Pb plate, T∗
should lie outside the range of helium temperatures.
It is known that in the intermediate state of a type-I superconductor in a magnetic field, a
laminar domain structure arises, with alternating normal and superconducting regions. The
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contribution of quasiparticles to the kinetic properties of normal metals were carried out
on samples that did not contain NS boundaries. In such a case this contribution, due
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interference correction to the diffusional contribution. Nevertheless, the existence of coherent
transport under those conditions was proved experimentally. Study of the NS structures
containing singly connected type I superconductors in the intermediate state, with large
electron elastic mean free path, lel, revealed resistance quantum oscillations of a type similar
to the Aharonov-Bohm effect (Tsyan, 2000). The temperature - dependent resistances of Pb
and In plates and Sn constriction were studied. The intermediate state was maintained by
applying a weak external transverse magnetic field Bext to the plates and by a self-current
field BI in the constriction. Thickness of Pb plates was 20 μm, with a separation Lm ≈ 250 μm
between the measuring probes in the middle part of the samples. A rolled In slab with
dimensions L × W × t = 1.5 mm × 0.5 mm × 50 μm was soldered at its ends to one of the
faces of a copper single crystal and was separated from this face by an insulating spacer.
Measurements of the system with In were carried out at a direct current 0.7 A, which
self-current magnetic field at a surface of the slab with the specified sizes made 5 G. The tin
constriction was t ≈ 20 μm in diameter and L ≈ 50 μm in length, with Lm ≈ 100 μm. At the
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seen, the oscillation amplitude (δR)max weakly depends on the temperature and the external
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magnetic field: φ(480 G) is shifted from φ(550 G) by approximately π, while φ(520 G) and
φ(550 G) coincide.
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Bc(0)[1 − (T/Tc(0))2] (Tc is the superconducting transition temperature), one finds that the
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is equal to the difference in the absolute values of the critical field (see Figs. 4 and 5) for each
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This suggests that the ΔB(Bc) period is a function of the direct rather than inverse field. The
temperature T∗ corresponding to the onset of R-oscillations in the Sn constriction is equal to
the temperature for which BSn

c (T∗) = BI(≈ 100 G), viz., the temperature of the appearance
of the intermediate state. The conditions for the confident resolution of the oscillations were
fully satisfied for this sample up to 3.5 K. With the values of Bext used for the Pb plate, T∗
should lie outside the range of helium temperatures.
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observed dependence of the magnitude of the effect on the critical field in the intermediate
state, first, provides direct evidence for the presence of a laminar domain NS structure and,
second, indicates that the mechanism responsible for the R-oscillations occurs in the normal
areas of domains, where, as is known, the magnetic field is equal to the superconductor critical
field Bc(T) (De Gennes, 1966). The use of the phenomenological theory of superconductivity
(De Gennes, 1966; Lifshitz & Sharvin, 1951) for estimating the number of domains between the
measuring probes brought about the values of approximately 12 at 3 K and 16 at 1.5 K for the
Pb plate, 1 or 2 for the Sn constriction, and the value of 15-22 mm for the distance dn between
the NS boundaries in the oscillation region of interest. These data suggest the lack of any
correlation between the indicated numbers and the number of observed oscillation periods.

Fig. 7. The criterion of coherent interaction of an electron e and an Andreev hole h with the
same elastic scattering center (see Eq. (12) in the text) establishes a distribution of areas A of
quantization of the flux of the magnetic vector potential. The maximum admissible area
Amax

edge, bounded by the ballistic trajectories passing through the impurities m of maximum

cross section ∼ q2
max at the positions [xmax

edge, y, z] for θmax
edge = π/2 is separated.

As is known, the direct dependence of the oscillation phase on the field strength arises when
the quantization is associated with a real-space "geometric" factor, i. e., with the interference
of coherent excitations on the geometrically specified closed dissipative trajectories in a
magnetic vector-potential field (Aharonov & Bohm, 1959; Altshuler et al., 1981). At distances
of the order of the thermal length ξT ∼ ξ0 ≈ h̄vF/kBT from the NS boundary, where
lel � ξ0, the main type of dissipative trajectories are those coherent trajectories on which
the elastic-scattering center (impurity) interacts simultaneously with the coherent e (usual)
and h (Andreev) excitations (Herath & Rainer, 1989; Kadigrobov, 1993). It was demonstrated
in (Herath & Rainer, 1989) that, owing to the doubled probability for the h excitations to be
scattered by the impurity, the interference on these trajectories generated the R-oscillations.
In the presence of an electric field alone, neither the impurity nor the relevant coherent -
trajectory size are set off, so that the oscillations do not arise (Kadigrobov et al., 1995; Van
Wees et al., 1992).
Since the e and h trajectories spatially diverge in a magnetic field, the distance r from
the impurity to the outermost boundary point, from which the particle can return to the
same impurity after being Andreev-reflected, is bounded, according to the simple classical

110 Superconductivity – Theory and Applications Electronic Transport in an NS System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 13

geometric considerations, by the value

r =
√

2qRL[Bc(T)]. (12)

In Eq. (12), RL is the Larmor radius and q is the parameter (of the order of a screening radius)
characterizing the impurity size. For instance, in fields of several hundred Gauss, RL ≈ 1.5 ·
10−2 cm and r does not exceed (1-2) μm at q ≈ (2 − 5) · 10−8 cm; i. e., ξ0 ≤ r ≤ ξT ∼
10−2lel (lel � dn, ξT; ξT ≈ 3 μm). Therefore, for every impurity with coordinate z, the
magnetic field separates in the z = const plane a finite region of possible coherent trajectories
passing through the impurity and closing two arbitrary reflection points on the NS boundary
between the two most distant points which positions are determined by Eq. (12) (see Fig. 7).
After averaging over all impurities, only a single trajectory (or a group of identical trajectories)
specified by the edge of integration over the quantization area A makes an uncompensated
contribution to the wave-function phase. The integration edge Aedge = (1/2)r2

max
corresponds to the area bounded by the trajectory passing through the most efficient (with
∼ q2

max) impurity situated at a maximum distance from the boundary, as allowed by criterion
(12). One can easily verify that in our samples with lel ≤ 0.1 mm, every layer of impurity-size
thickness parallel to the NS boundary comprises no less than 103 impurities; i. e., the coherent
trajectories corresponding to the integration edge continuously resume upon shifting or the
formation of new NS boundaries, so that Aedge is a continuously defined constant accurate to
∼ qmax/rqmax ∼ 10−4. According to (Aronov & Sharvin, 1987; Chiang & Shevchenko, 1999),
the wave-function phase of the excitations with energy E = eU in the field B should change
along a coherent trajectory of length Λ as follows

φ = φe + φh = 2π[(1/π)(E/h̄vF)Λ + BA/(Φ0/2)], (13)

where Φ0 = hc/e = 4.14 · 10−7 G·cm2. The first term in Eq. (13) can be ignored because, in
our samples, it does not exceed 10−5 at U ≤ 10−8 V. One can thus expect that the interference
contribution coming from the elastic-scattering centers to the conductivity oscillates as δR ∝
δRmax cos φ (Chiang & Shevchenko, 2001), where δRmax is the amplitude depending on the
concentration of the most efficient scattering centers and, hence, proportional to the total
concentration c.
The maximum number of oscillation periods ΔBext;I that can be observed in a magnetic field
upon changing the temperature clearly depends on the Bc variation scale. It varies from the
value Bc(TO) = Bext;I at the temperature TO at which the SNS structure with the intermediate
state arises, to the value Bc(T) at a given temperature. Therefore, the phase of the oscillations
at a given temperature should depend on the values of Bext;I in a following way:

φ = 2π
[Bc(T)− Bext;I]Amax

Φ0/2
. (14)

To estimate the interval of Bc values within which the change in Aedge with varying Bc may be
neglected, we used Eq. (14) and the differential of the parameter r from Eq. (12). This yields
ΔBc ≈ 3ΔBext;I.
From the condition ΔB · Aedge = Φ0/2 and ΔB ≈ (45; 50) G, we obtain r ≈ 1 μm, in
accordance with the above-mentioned independent estimation. The ratio of the oscillation
amplitudes also conforms to its expected value: [(δRosc)Sn/(δRosc)Pb] ∼ (cSn/cPb) ∼
(lPb

el /lSn
el ) ∼ 10. One can expect that a change in the number of domains in the plate from

12 to 16 alters the oscillation amplitude by no more than 40%; i. e., it only modifies the
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As is known, the direct dependence of the oscillation phase on the field strength arises when
the quantization is associated with a real-space "geometric" factor, i. e., with the interference
of coherent excitations on the geometrically specified closed dissipative trajectories in a
magnetic vector-potential field (Aharonov & Bohm, 1959; Altshuler et al., 1981). At distances
of the order of the thermal length ξT ∼ ξ0 ≈ h̄vF/kBT from the NS boundary, where
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and h (Andreev) excitations (Herath & Rainer, 1989; Kadigrobov, 1993). It was demonstrated
in (Herath & Rainer, 1989) that, owing to the doubled probability for the h excitations to be
scattered by the impurity, the interference on these trajectories generated the R-oscillations.
In the presence of an electric field alone, neither the impurity nor the relevant coherent -
trajectory size are set off, so that the oscillations do not arise (Kadigrobov et al., 1995; Van
Wees et al., 1992).
Since the e and h trajectories spatially diverge in a magnetic field, the distance r from
the impurity to the outermost boundary point, from which the particle can return to the
same impurity after being Andreev-reflected, is bounded, according to the simple classical
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passing through the impurity and closing two arbitrary reflection points on the NS boundary
between the two most distant points which positions are determined by Eq. (12) (see Fig. 7).
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Fig. 8. Oscillations of the generalized resistance of the interferometer s1 (In-Cu-Sn) vs
magnetic field at T = 3.25 K. The oscillation period is ΔH = (hc/2e)/Amax, whereAmax is the
area of the abcd contour in the (xy) cross section of the interferometer (see right panel).

oscillations but does not disturb the overall periodicity pattern (Fig. 4). It also follows from
Eq. (14) that the number of periods between the temperature of oscillation onset, TO, and an
arbitrary temperature depends on the value of Bc(TO) = Bext. This makes understandable
the relation between the phases of oscillations observed for the Pb plate in different fields:
(φ550G − φ480G) ≈ 3π and (φ520G − φ480G + π) ≈ 3π (it is taken into account that B[520 G] =
-B[480 G]). Such a relation is a result of the different number of periods, ΔB, measured from
Bext;I.
The significant distortions of the shape of the oscillation curves in the Pb sample is most likely
due to variations in the value of qmax when the number of domains varies in the investigated
temperature interval, thereby changing the position of the NS boundaries.
In the sample containing In, the values of TO and Tc(B = 0) are extremely close to each other
because of the small BI ≈ 5 G. As a result, in the same temperature interval as for Sn and Pb
one can observe more than three oscillation periods (compare Figs. 5 and 6). In such case, the
change in Amax and, hence, in the oscillation period is hardly noticeable (see the estimation
above).
It is appropriate here to compare (although qualitatively) the order of magnitude of the
interference contributions to the conductance in the absence of an NS boundary, in the
approximation of a weak-localization mechanism, and in the presence of an NS boundary.
According to the theory of weak localization (Altshuler et al., 1980), the probability of an
occurrence of self-intersecting trajectories is of the order of (λB/lel)

2 ∼ 10−7 (λB(∼ q) is
the de Broglie wavelength; lel ≈ 100 μm), while as the probability that coherent trajectories
will arise in the case of an NS boundary in a layer with a characteristic size of the order of
the mean free path is larger by a factor of (r/λB)

2 ∼ 108 than the probability of formation of
self-crossing trajectories. The existence of coherent trajectories in the NS system is determined
by the area of the base of the cone formed by accessible coherent trajectories arising as a result
of Andreev reflection, the base of the cone resting on the superconductor and the vertex at an
impurity (see Fig. 7). Hence, the expected relative interference contribution to the resistance
of an NS system is as follows

(δR/R) ∼ (r/λB)
2(λB/lel)

2 � 1, (15)

and agrees completely with the amplitude of the oscillations we observed in a Pb slab.
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Fig. 9. Oscillations of "Andreev resistance" δR = R(Hext)− R(Hext = 0) in interferometer s3
(Pb/Cu/Pb) as a function of magnetic field at T = 4.125 K. The oscillation period is
ΔH = (hc/2e)/Amin, whereAmin is the area of xy projection of the stretched opening of the
interferometer onto the direction of magnetic field upon the deviation from the z axis;
R(Hext = 0) = 2.6245 × 10−8 Ohm.

2.2 Doubly connected SNS structures
Below we present the results from the study of the conductance of doubly connected
NS systems. Similarly to singly connected ones considered above, they meet the same
"macroscopic" conditions, namely, L, lel � ξT = ξ0 (L/ξT ≈ 100). This means that a spatial
scale of the possible proximity effect is much less than the size of a normal segment of the
system, this effect can be therefore neglected completely when considering phenomena of the
interferential nature in such "macroscopical" systems.
Macroscopical hybrid samples s1 [In(S)/Cu(N)/Sn(S)], s2 [Sn(S)/Cu(N)/Sn(S)], s3
[Pb(S)/Cu(N)/Pb(S)], and [In(S)/Al(N)/In(S)] were prepared using a geometry of a doubly
connected SNS Andreev interferometer with a calibrated opening. Figures 8 (right panel) and
10 (upper panel) show schematically (not to scale) the typical construction of the samples,
together with a wire turn as a source of an external magnetic field Hext for controlling the
macroscopic phase difference in the interferometer formed by a part of a normal single crystal
(Cu, Al) and a superconductor connected to it. Interferometers varied in size, type of a
superconductor, and area of the NS interfaces. The field Hext was varied within a few Oersteds
in increments of 10−5 Oe. An error of field measurement amounted to no more than 10 %. To
compensate external fields, including the Earth field, the container with the sample and the
turn was placed into a closed superconducting shield.
Conductance of all the systems studied oscillated while changing the external magnetic field
which was inclined to the plane of the opening. It has thus appeared that the areas of extreme
projections, Sextr, onto the plane normal to the vector of the external magnetic field are related
to the periods of observed oscillations, ΔH, by the expression SextrΔH = Φ0, where Φ0 is
the magnetic flux quantum hc/2e. The values of Smin and Smax differed from each other by
more than an order of magnitude for each of the interferometers, allowing the corresponding
oscillation periods to be resolved (see Figs. 8 - 10).
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(Cu, Al) and a superconductor connected to it. Interferometers varied in size, type of a
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compensate external fields, including the Earth field, the container with the sample and the
turn was placed into a closed superconducting shield.
Conductance of all the systems studied oscillated while changing the external magnetic field
which was inclined to the plane of the opening. It has thus appeared that the areas of extreme
projections, Sextr, onto the plane normal to the vector of the external magnetic field are related
to the periods of observed oscillations, ΔH, by the expression SextrΔH = Φ0, where Φ0 is
the magnetic flux quantum hc/2e. The values of Smin and Smax differed from each other by
more than an order of magnitude for each of the interferometers, allowing the corresponding
oscillation periods to be resolved (see Figs. 8 - 10).
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The sensitivity of dissipative conduction to the macroscopic phase difference in a closed SNS
contour is a direct evidence for the realization of coherent transport in the system and the
role played by both NS interfaces in it. In turn, at L � ξT, the coherent transport can
be caused by only those normal-metal excitations which energies, ε � T < Δ, fill the
Andreev spectrum that arises due to the restrictions on the quasiparticle motion because of
the Andreev reflections (Zhou et al., 1995). It follows from the quasiclassical dimensional
quantization (Andreev, 1964; Kulik, 1969) that the spacing between the levels of the Andreev
spectrum should be εA ≈ h̄vF/Lx ≈ 20 mK for the distance between NS interfaces Lx �
0.5 mm. It corresponds to the upper limit for energies of the e − h excitations on the
dissipative (passing through the elastic scattering centers) coherent trajectories in the normal
region. To zero order in the parameter λB/l, only these trajectories can make a nonaveraged
phase-interference contribution to conductance, often called the "Andreev" conductance GA
(Lambert & Raimondi, 1998). Accordingly, it was supposed that the modulation depth for the
normal conductance GN (or resistance RN) in our interferometers in the temperature range
measured would take the form

1 − GA
GN

≡ δRA
RN

≈ εA
T

� 10−2. (16)

In the approximation of noninteracting trajectories, the macroscopic phase, φi, which coherent
excitations with phases φei and φhi is gaining while moving along an i-th trajectory closed by
a superconductor, depends in an external vector-potential field A on the magnetic flux as
follows

φi = φei + φhi = φ0i + 2π
Φi
Φ0

, (17)

where φ0i is the microscopic phase related to the length of a trajectory between the interfaces
by the Andreev-reflection phase shifts; Φi = Hext · Si is the magnetic flux through the
projection Si onto the plane perpendicular to Hext; Hext = ∇× A is the magnetic field vector;
Si = nSi

· Si; nSi
is the unit normal vector; Si is the area under the trajectory; and Φ0 is the

flux quantum hc/2e.
The evaluation of the overall interference correction, 2Re( fe f ∗h ), in the expression for the
total transmission probability | fe + fh|2 ( fe,h are the scattering amplitudes) along all coherent
trajectories can be reduced to the evaluation of the Fresnel-type integral over the parameter Si
(Tsyan, 2000). This results in the separation of the S-nonaveraged phase contributions at the
integration limits. As a result, the oscillating portion of the interference addition to the total
resistance of the normal region in the SNS interferometer, in particular, for Hext||z, takes the
form

δRA
RN

∼ εA
T

sin[2π(φ0 +
HextSextr

Φ0
)], (18)

where Sextr is the minimal or maximal area of the projection of doubly connected SNS
contours of the system onto the plane perpendicular to H, and φ0 ∼ (1/π)(L/lel) ∼ 1 (Van
Wees et al., 1992). Our experimental data are in good agreement with this phase dependence
of the generalized interferometer resistance and the magnitude of the effect. Since all doubly
connected SNS contours include e − h coherent trajectories in the normal region with a length
of no less than ∼ L ≈ 102ξT, one can assert that the observed oscillations are due to the
long-range quantum coherence of quasiparticle excitations under conditions of suppressed
proximity effect for the major portion of electrons.
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Fig. 10. Non-resonance oscillations of the phase-sensitive dissipative component of the
resistance of the indium narrowing (curve 1) at T = 3.2 K and the resonance oscillations of
this component in the aluminum part (curve 2) at T = 2 K for the interferometer with
Ra � Rb, as functions of the external magnetic field.

3. Macroscopical NS systems with a magnetic N - segment

The peculiarities of electron transport arising due to the influence of a superconductor
contacted to a normal metal and, particularly, to a ferromagnet (F) have been never deprived
of attention. Recently, a special interest in the effects of that kind has been shown, in
connection with the revived interest to the problem of nonlocal coherence (Hofstetter et al.,
2009). Below we demonstrate that studying the coherent phenomena associated with the
Andreev reflection, in the macroscopical statement of experiments, may be directly related
to this problem. As is known, even in mesoscopic NS systems, the coherent effects has been
noted in a normal-metal (magnetic) segment at a distance of x � ξexch from a superconductor
(ξexch is the coherence length in the exchange field of a magnetic) (Giroud et al., 2003;
Gueron et al., 1996; Petrashov et al., 1999). That fact gave rise to the intriguing suggestion
that magnetics could exhibit a long-range proximity effect, which presumed the existence
of a nonzero order parameter Δ(x) at the specified distance. Such a suggestion, however,
contradicts the theory of FS junctions, since ξexch � ξT ∼ vF/T, and vF/T is the ordinary
scale of the proximity effect in the semiclassical theory of superconductivity (De Gennes,
1966). This assumption, apparently, is beneath criticism, because of the specific geometry
of the contacts in mesoscopic samples. As a rule, these contacts are made by a deposition
technology. Consequently, they are planar and have the resistance comparable in value
with the resistance of a metal located under the interface. A shunting effect arises, and the
estimation of the value and even sign of the investigated transport effects becomes ambiguous
(Belzig et al., 2000; Jin & Ketterson, 1989; De Jong & Beenakker, 1995).

115
Electronic Transport in an NS
System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 



16 Will-be-set-by-IN-TECH

The sensitivity of dissipative conduction to the macroscopic phase difference in a closed SNS
contour is a direct evidence for the realization of coherent transport in the system and the
role played by both NS interfaces in it. In turn, at L � ξT, the coherent transport can
be caused by only those normal-metal excitations which energies, ε � T < Δ, fill the
Andreev spectrum that arises due to the restrictions on the quasiparticle motion because of
the Andreev reflections (Zhou et al., 1995). It follows from the quasiclassical dimensional
quantization (Andreev, 1964; Kulik, 1969) that the spacing between the levels of the Andreev
spectrum should be εA ≈ h̄vF/Lx ≈ 20 mK for the distance between NS interfaces Lx �
0.5 mm. It corresponds to the upper limit for energies of the e − h excitations on the
dissipative (passing through the elastic scattering centers) coherent trajectories in the normal
region. To zero order in the parameter λB/l, only these trajectories can make a nonaveraged
phase-interference contribution to conductance, often called the "Andreev" conductance GA
(Lambert & Raimondi, 1998). Accordingly, it was supposed that the modulation depth for the
normal conductance GN (or resistance RN) in our interferometers in the temperature range
measured would take the form

1 − GA
GN

≡ δRA
RN

≈ εA
T

� 10−2. (16)

In the approximation of noninteracting trajectories, the macroscopic phase, φi, which coherent
excitations with phases φei and φhi is gaining while moving along an i-th trajectory closed by
a superconductor, depends in an external vector-potential field A on the magnetic flux as
follows

φi = φei + φhi = φ0i + 2π
Φi
Φ0

, (17)

where φ0i is the microscopic phase related to the length of a trajectory between the interfaces
by the Andreev-reflection phase shifts; Φi = Hext · Si is the magnetic flux through the
projection Si onto the plane perpendicular to Hext; Hext = ∇× A is the magnetic field vector;
Si = nSi

· Si; nSi
is the unit normal vector; Si is the area under the trajectory; and Φ0 is the

flux quantum hc/2e.
The evaluation of the overall interference correction, 2Re( fe f ∗h ), in the expression for the
total transmission probability | fe + fh|2 ( fe,h are the scattering amplitudes) along all coherent
trajectories can be reduced to the evaluation of the Fresnel-type integral over the parameter Si
(Tsyan, 2000). This results in the separation of the S-nonaveraged phase contributions at the
integration limits. As a result, the oscillating portion of the interference addition to the total
resistance of the normal region in the SNS interferometer, in particular, for Hext||z, takes the
form

δRA
RN

∼ εA
T

sin[2π(φ0 +
HextSextr

Φ0
)], (18)

where Sextr is the minimal or maximal area of the projection of doubly connected SNS
contours of the system onto the plane perpendicular to H, and φ0 ∼ (1/π)(L/lel) ∼ 1 (Van
Wees et al., 1992). Our experimental data are in good agreement with this phase dependence
of the generalized interferometer resistance and the magnitude of the effect. Since all doubly
connected SNS contours include e − h coherent trajectories in the normal region with a length
of no less than ∼ L ≈ 102ξT, one can assert that the observed oscillations are due to the
long-range quantum coherence of quasiparticle excitations under conditions of suppressed
proximity effect for the major portion of electrons.

114 Superconductivity – Theory and Applications Electronic Transport in an NS System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 17

Fig. 10. Non-resonance oscillations of the phase-sensitive dissipative component of the
resistance of the indium narrowing (curve 1) at T = 3.2 K and the resonance oscillations of
this component in the aluminum part (curve 2) at T = 2 K for the interferometer with
Ra � Rb, as functions of the external magnetic field.

3. Macroscopical NS systems with a magnetic N - segment

The peculiarities of electron transport arising due to the influence of a superconductor
contacted to a normal metal and, particularly, to a ferromagnet (F) have been never deprived
of attention. Recently, a special interest in the effects of that kind has been shown, in
connection with the revived interest to the problem of nonlocal coherence (Hofstetter et al.,
2009). Below we demonstrate that studying the coherent phenomena associated with the
Andreev reflection, in the macroscopical statement of experiments, may be directly related
to this problem. As is known, even in mesoscopic NS systems, the coherent effects has been
noted in a normal-metal (magnetic) segment at a distance of x � ξexch from a superconductor
(ξexch is the coherence length in the exchange field of a magnetic) (Giroud et al., 2003;
Gueron et al., 1996; Petrashov et al., 1999). That fact gave rise to the intriguing suggestion
that magnetics could exhibit a long-range proximity effect, which presumed the existence
of a nonzero order parameter Δ(x) at the specified distance. Such a suggestion, however,
contradicts the theory of FS junctions, since ξexch � ξT ∼ vF/T, and vF/T is the ordinary
scale of the proximity effect in the semiclassical theory of superconductivity (De Gennes,
1966). This assumption, apparently, is beneath criticism, because of the specific geometry
of the contacts in mesoscopic samples. As a rule, these contacts are made by a deposition
technology. Consequently, they are planar and have the resistance comparable in value
with the resistance of a metal located under the interface. A shunting effect arises, and the
estimation of the value and even sign of the investigated transport effects becomes ambiguous
(Belzig et al., 2000; Jin & Ketterson, 1989; De Jong & Beenakker, 1995).

115
Electronic Transport in an NS
System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 



18 Will-be-set-by-IN-TECH

Influence of the shunting effect is well illustrated by our previous results (Chiang &
Shevchenko, 1999); one of them is shown in Fig. 11. The conductance measured outside the
NS interface (see curve 1 and Inset 1) behaves in accordance with the fundamental ideas of
the semiclassical theory (see Sec. 2. 1): Because of "retroscattering", the cross section for elastic
scattering by impurities in a metal increases at the coherence length of e − h hybrids formed
in the process of Andreev reflection, i. e., the conductivity of the metal decreases rather than
increases. Additional scattering of Andreev hole on the impurity is completely ignored in case
of a point-like ballistic junction (Blonder et al., 1982). At the same time, the behavior of the
resistance of the circuit which includes a planar interface (see Inset 2) may not even reflect
that of the metal itself (curve 2; see also (Petrashov et al., 1999)), but it is precisely this type of
behavior that can be taken as a manifestation of the long-range proximity effect.

Fig. 11. Temperature dependences of the resistance of the system normal
metal/superconductor in two measurement configurations: outside the interface (curve 1,
Inset 1) and including the interface (curve 2, Inset 2).

3.1 Singly connected FS systems
Here, we present the results of experimental investigation of the transport properties of
non-film single - crystal ferromagnets Fe and Ni in the presence of F/ In interfaces of various
sizes (Chiang et al., 2007). We selected the metals with comparable densities of states in the
spin subbands; conducting and geometric parameters of the interfaces, as well as the thickness
of a metal under the interface were chosen to be large in comparison with the thickness of the
layer of a superconductor. In making such a choice, we intended to minimize the effects of
increasing the conductivity of the system that could be misinterpreted as a manifestation of
the proximity effect.
The geometry of the samples is shown (not to scale) in Fig. 12. The test region of the samples
with F/S interfaces a and b is marked by a dashed line. After setting the indium jumper,
the region abdc acquired the geometry of a closed "Andreev interferometer", which made it
possible to study simultaneously the phase-sensitive effects. Both point (p) and wide (w)
interfaces were investigated. We classify the interface as "point" or "wide" depending on the
ratio of its characteristic area to the width of the adjacent conductor (of the order of 0.1 or 1,
respectively).
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3.1.1 Doubling the cross section of scattering by impurities
Figure 13 shows in relative units δR/R = [R(T)− R(T = TIn

c )]/R(T = TIn
c ) the resistance of

the ferromagnetic segments with point (Fe, curve 1 and Ni, curve 2) and wide (Ni, curve 3)
F/S interfaces measured with current flow parallel to the interfaces [for geometry, see Insets
(a) and (b)]. In this configuration, with indium in the superconducting state, the interfaces, as
parts of the potential probes, play a passive role of "superconducting mirrors". It can be seen
that for T ≤ TIn

c (after Andreev reflection is actuated), the resistance of Ni increases abruptly
by 0.04% (δRp ≈ 1× 10−8 Ohm) in the case of two point interfaces and by 3% (δRw ≈ 7× 10−7

Ohm) in the case of two wide ones. In Fe with point interfaces, a negligible effect of opposite
sign is observed, its magnitude being comparable to that in Ni, δRNi

p .
Just as in the case of a nonmagnetic metal (Fig. 11), the observed decrease in the conductivity
of nickel when the potential probes pass into the "superconducting mirrors" state, corresponds
to an increase in the efficiency of the elastic scattering by impurities in the metal adjoining the
superconductor when Andreev reflection appears. (We recall that the shunting effect is small).
In accordance with Eq. (3), the interference contribution from the scattering of a singlet pair of
e− h excitations by impurities in the layer, of the order of the coherence length ξ in thickness, if
measured at a distance L from the N/S interface, is proportional to ξ/L. From this expression
one can conclude that the ratio of the magnitude of the effect, δR, to the resistance measured at
an arbitrary distance from the boundary is simply the ratio of the corresponding spatial scales.
It is thereby assumed that the conductivity σ is a common parameter for the entire length, L,
of the conductor, including the scale ξ. Actually, we find from Eq. (3) that the magnitude of
the positive change in the resistance, δR, of the layer ξ in whole is

Fig. 12. Schematic view of the F/S samples. The dashed line encloses the workspace. F/In
interfaces are located at the positions a and b. The regimes of current flow, parallel or
perpendicular to the interfaces, were realized by passing the feed current through the
branches 1 and 2 with disconnected indium jumper a − b or through 5 and 6 when the
jumper was closed (shown in the figure).

δR ξ = (ξ/σξ Aif)r̄ ≡
Nimp

∑
i=1

δR ξ
i . (19)

Here, σξ is the conductivity in the layer ξ; Aif is the area of the interface; Nimp is the number

of Andreev channels (impurities) participating in the scattering; δRξ
i is the resistance resulting

from the e − h scattering by a single impurity, and r̄ is the effective probability for elastic
scattering of excitations with the Andreev component in the layer ξ as a whole. Control
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increasing the conductivity of the system that could be misinterpreted as a manifestation of
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with F/S interfaces a and b is marked by a dashed line. After setting the indium jumper,
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In accordance with Eq. (3), the interference contribution from the scattering of a singlet pair of
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one can conclude that the ratio of the magnitude of the effect, δR, to the resistance measured at
an arbitrary distance from the boundary is simply the ratio of the corresponding spatial scales.
It is thereby assumed that the conductivity σ is a common parameter for the entire length, L,
of the conductor, including the scale ξ. Actually, we find from Eq. (3) that the magnitude of
the positive change in the resistance, δR, of the layer ξ in whole is

Fig. 12. Schematic view of the F/S samples. The dashed line encloses the workspace. F/In
interfaces are located at the positions a and b. The regimes of current flow, parallel or
perpendicular to the interfaces, were realized by passing the feed current through the
branches 1 and 2 with disconnected indium jumper a − b or through 5 and 6 when the
jumper was closed (shown in the figure).

δR ξ = (ξ/σξ Aif)r̄ ≡
Nimp

∑
i=1

δR ξ
i . (19)

Here, σξ is the conductivity in the layer ξ; Aif is the area of the interface; Nimp is the number

of Andreev channels (impurities) participating in the scattering; δRξ
i is the resistance resulting

from the e − h scattering by a single impurity, and r̄ is the effective probability for elastic
scattering of excitations with the Andreev component in the layer ξ as a whole. Control
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measurements of the voltages in the configurations included and not included interfaces
showed that in our systems, the voltages themselves across the interfaces were negligibly
small, so that we can assume r̄ ≈ 1. It is evident that the Eq. (19) describes the resistance
of the ξ-part of the conductor provided that σξ = σL i. e., for ξ > lel. For ferromagnets,
ξ � lel and lL

el �= lel. In this case, to compare the values of δR measured on the length L with
the theory, one should renormalize the value of RN from the Eq. (3).
In the semiclassical representation, the coherence of an Andreev pair of excitations in a metal
is destroyed when the displacement of their trajectories relative to each other reaches a value
of the order of the trajectory thickness, i. e., the de Broglie wavelength λB. The maximum
possible distance ξm (collisionless coherence length) at which this could occur in a ferromagnet
with nearly rectilinear e and h trajectories (Fig. 14a) is

ξm ∼ λB
εexch/εF

=
πh̄vF
εexch

; εexch = μBHexch ∼ Texch (20)

(μB is the Bohr magneton, Hexch is the exchange field, and Texch is the Curie temperature).
However, taking into account the Larmor curvature of the e and h trajectories in the field
Hexch, together with the requirement that both types of excitations interact with the same
impurity (see Fig. 14b), we find that the coherence length decreases to the value (De Gennes,
1966) ξ∗ =

√
2qr =

√
2qξm (compare with Eq. (12)). Here, r is the Larmor radius in the field

Hexch and q is the screening radius of the impurity ∼ λB. Figure 14 gives a qualitative idea
of the scales on which the dissipative contribution of Andreev hybrids can appear, as a result
of scattering by impurities (Nimp � 1), with the characteristic dimensions of the interfaces
y, z � lel.

Fig. 13. Temperature dependences of the resistance of Fe and Ni samples in the presence of
F/In interfaces acting as "superconducting mirrors" at T < TIn

c . Curves 1 and 2: Fe and Ni
with point interfaces, respectively; curve 3: Ni with wide interfaces. Insets: geometry of
point (a) and wide (b) interfaces.

For Fe with Texch ≈ 103 K and Ni with Texch ≈ 600 K, we have ξ∗ ≈ 0.001 μm. It follows
that in our experiment with lel ≈ 0.01 μm (Fe) and lel ≈ 1 μm (Ni), the limiting case lel �
ξ∗ and lL

el �= lξ
el is realized. From Fig. 14b it can be seen that for y, z � lel � ξ∗ in the normal
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state of the interface, the length lξ
el within the layer ξ∗ corresponds to the shortest distance

between the impurity and the interface, i. e., lξ
el ≡ ξ∗ (σL �= σξ∗). Note that for an equally

probable distribution of the impurities, the probability of finding an impurity at any distance
from the interface in a finite volume, with at least one dimension greater than lel, is equal to
unity. Renormalizing Eq. (3), with ξT replaced by ξ∗, we obtain the expression for estimating
the coherence correction to the resistance measured on the length L in the ferromagnets:

δRξ∗

RL
=

ξ∗
L

· lel

lξ∗
el

r̄ ≈ lel
L

r̄; δRξ∗
=

ξ∗
σξ∗Ai f

r̄ ≡
Nimp

∑
i=1

δR ξ∗
i . (21)

Here, σξ∗ is the conductivity in the layer ξ∗; δR ξ∗
i is the result of e − h scattering by a single

impurity. Equation (21) can serve as an observability criterion for the coherence effect in
ferromagnets of different purity. It explains why no positive jump of the resistance is seen
on curve 1, Fig. 13, in case of a point Fe/In interface: with lFe

el ≈ 0.01 μm, the interference
increase in the resistance of the Fe segment with the length studied should be ≈ 10−9 Ohm and
could not be observed at the current Iacdb ≤ 0.1 A, at which the measurement was performed,
against the background due to the shunting effect.
Comparing the effects in Ni for the interfaces of different areas also shows that the observed
jumps pertain precisely to the coherent effect of the type studied. Since the number of Andreev
channels is proportional to the area of an N/S interface, the following relation should be met
between the values of resistance measured for the samples that differ only in the area of the
interface: δRξ∗

w /δRξ∗
p = Nw

imp/Np
imp ∼ Aw/Ap (the indices p and w refer to point and wide

interfaces, respectively). Comparing the jumps on the curves 2 and 3 in Fig. 13 we obtain:
δRw/δRp = 70, which corresponds reasonably well to the estimated ratio Aw/Ap = 25 − 100.
In summary, the magnitude and special features of the effects observed in the resistance of
magnetics Fe and Ni are undoubtedly directly related with the above-discussed coherent
effect, thereby proving that, in principle, it can manifest itself in ferromagnets and be
observed provided an appropriate instrumental resolution. Although this effect for magnetics
is somewhat surprising, it remains, as proved above, within the bounds of our ideas about
the scale of the coherence length of Andreev excitations in metals, which determines the
dissipation; therefore, this effect cannot be regarded as a manifestation of the proximity effect
in ferromagnets.

3.1.2 Spin accumulation effect
The macroscopic thickness of ferromagnets under F/S interfaces made it possible to
investigate the resistive contribution from the interfaces, Ri f , in the conditions of current
flowing perpendicular to them, through an indium jumper with current fed through the
contacts 5 and 6 (see Fig. 12 and Inset in Fig. 15).
Figure 15 presents in relative units the temperature behavior of Rp

i f for point Fe/In
interfaces (curve 1) and Rw

i f for wide Ni/In interfaces (curve 2) as δRi f /Ri f = [Ri f (T) −
Ri f (TIn

c )]/Ri f (TIn
c ). The shape of the curves shows that with the transition of the interfaces

from the F/N state to the F/S state the resistance of the interfaces abruptly increases but
compared with the increase due to the previously examined coherent effect it increases by an
incomparably larger amount. It is also evident that irrespective of the interfacial geometry
the behavior of the function Ri f (T) is qualitatively similar in both systems. The value of
Ri f (TIn

c ) is the lowest resistance of the interface that is attained when the current is displaced
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the scale of the coherence length of Andreev excitations in metals, which determines the
dissipation; therefore, this effect cannot be regarded as a manifestation of the proximity effect
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Fig. 14. Scattering of Andreev e − h hybrids and their coherence length ξ∗ in a normal
ferromagnetic metal with characteristic F/S interfacial dimensions greater than lel. Panels
a, b : ξ∗ � lel; panel c : ξ∗ � lel; ξD ∼ √

lelξ
∗.

to the edge of the interface due to the Meissner effect. The magnitudes of the positive
jumps with respect to this resistance, δRi f /Ri f (TIn

c ) ≡ δRF/S/RF/N , are about 20% for Fe
(curve 1) and about 40% for Ni (curve 2). The values obtained are more than an order of

Fig. 15. Spin accumulation effect. Relative temperature dependences of the resistive
contribution of spin-polarized regions of Fe and Ni near the interfaces with small (Fe/In) and
large (Ni/In) area.

magnitude greater than the contribution to the increase in the resistance of ferromagnets
which is related with the coherent interaction of the Andreev excitations with impurities
(as is shown below, because of the incomparableness of the spatial scales on which they
are manifested). This makes it possible to consider the indicated results as being a direct
manifestation of the mismatch of the spin states in the ferromagnet and superconductor,
resulting in the accumulation of spin on the F/S interfaces, which decreases the conductivity
of the system as a whole. We suppose that such a decrease is equivalent to a decrease in
the conductivity of a certain region of the ferromagnet under the interface, if the exchange
spin splitting in the ferromagnetic sample extends over a scale not too small compared to the
size of this region. In other words, the manifestation of the effect in itself already indicates
that the dimensions of the region of the ferromagnet which make the effect observable are
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comparable to the spin relaxation length. Therefore, the effect which we observed should
reflect a resistive contribution from the regions of ferromagnets on precisely the same scale.
The presence of such nonequilibrium regions and the possibility of observing their resistive
contributions using a four-contact measurement scheme are due to the "non-point-like nature"
of the potential probes (finiteness of their transverse dimensions). In addition, the data
show that the dimensions of such regions near Fe/S and Ni/S interfaces are comparable
in our experiments. Indeed, the value of δRNi/S/RNi/N corresponding according to the
configuration to the contribution from only the nonequilibrium regions and the value of
δRFe/S/RFe/N obtained from a configuration which includes a ferromagnetic conductor of
length obviously greater than the spin-relaxation length, are actually of the same order of
magnitude. In addition, according to the spin-accumulation theory (Hofstetter et al., 2009;
Lifshitz & Sharvin, 1951; Van Wees et al., 1992), the expected magnitude of the change in the
resistance of the F/S interface in this case is of the order of

δRF/S =
λs

σA
· P2

1 − P2 ; P = (σ↑ − σ↓)/σ; σ = σ↑ + σ↓. (22)

Here, λs is the spin relaxation length; P is the coefficient of spin polarization of the
conductivity; σ, σ↑, σ↓, and A are the total and spin-dependent conductivities and the cross
section of the ferromagnetic conductor, respectively. Using this expression, substituting the
data for the geometric parameters of the samples, and assuming PFe ∼ PNi, we obtain
λs(Fe/S)/λ∗

s (Ni/S) ≈ 2. This is an additional confirmation of the comparability of the
scales of the spin-flip lengths λs for Fe/S and λ∗

s for Ni/S, indicating that the size of the
nonequilibrium region determining the magnitude of the observed effects for those interfaces
is no greater than (and in Fe equal to) the spin relaxation length in each metal. In this case,
according to Eq. (22), the length of the conductors, with normal resistance of which the values
of δRF/S must be compared, should be set equal to precisely the value of λs for Fe/S and λ∗

s
for Ni/S. This implies the following estimate of the coefficients of spin polarization of the
conductivity for each metal:

P =
√
(δRF/S/RF/N)/[1 + (δRF/S/RF/N)]. (23)

Using our data we obtain PFe ≈ 45% for Fe and PNi ≈ 50% for Ni, which is essentially
the same as the values obtained from other sources (Soulen et al., 1998). If in Eq. (22) we
assume that the area of the conductor, A, is of the order of the area of the current entrance
into the jumper (which is, in turn, the product of the length of the contour of the interface
by the width of the Meissner layer), then a rough estimate of the spin relaxation lengths in
the metals investigated, in accordance with the assumption of single-domain magnetization
of the samples, will give the values λFe

s ∼ 90 nm and λNi
s > 50 nm. Comparing these

values with the value of coherence length in ferromagnets ξ∗ ≈ 1 nm we see that although the
coherent effect leads to an almost 100% increase in the resistance, this effect is localized within
a layer which thickness is two orders of magnitude less than that of the layer responsible for
the appearance of the spin accumulation effect, therefore it does not mask the latter.

3.2 Doubly connected SFS systems
The observation of the coherent effect in the singly connected FS systems raised the following
question: Can effects sensitive to the phase of the order parameter in a superconductor be
manifested in the conductance of ferromagnetic conductors of macroscopic size? To answer
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Fig. 16. Schematic diagram of the F/S system in the geometry of a doubly connected
"Andreev interferometer". The ends of the single-crystal ferromagnetic (Ni) segment (dashed
line) are closed by a superconducting In bridge.

this question we carried out direct measurements of the conductance of Ni conductors in a
doubly connected SFS configuration (in the Andreev interferometer (AI) geometry shown in
Fig. 16).
Figures 17 and 18 show the magnetic-field oscillations of the resistance of two samples in
a doubly connected S/Ni/S configuration with different aperture areas, measured for the
arrangement of the current and potential leads illustrated in Fig. 16. The oscillations in Fig.
17 are presented on both an absolute scale (δRosc = RH − R0, left axis) and a relative scale
(δRosc/R0, right axis). R0 is the value of the resistance in zero field of the ferromagnetic
segment connecting the interfaces in the area of a dashed line in Fig. 16. Such oscillations
in SFS systems in which the total length of the ferromagnetic segment reaches the values of
the order of 1 mm (along the dashed line in Fig. 16), were observed for the first time. Figures
17 and 18 were taken from two samples during two independent measurements, for opposite
directions of the field, with different steps in H and are typical of several measurements, which
fact confirms the reproducibility of the oscillation period and its dependence on the aperture
area of the interferometer.
The period of the resistive oscillations shown in Fig. 17 is ΔB ≈ (5 − 7) × 10−4 G and is
observed in the sample with the geometrical parameters shown in Fig. 16. It follows from
this figure that the interferometer aperture area, enclosed by the midline of the segments and
the bridge, amounts to A ≈ 3 × 10−4cm2. In the sample with twice the length of the sides
of the interferometer and, hence, approximately twice the aperture area, the period of the
oscillations turned out to be approximately half as large (solid line in Fig. 18). From the values
of the periods of the observed oscillations it follows that, to an accuracy of 20%, the periods are
proportional to a quantum of magnetic flux Φ0 = hc/2e passing through the corresponding
area A : ΔB ≈ Φ0/A.
Obviously, the oscillatory behavior of the conductance is possible if the phases of the
electron wave functions are sensitive to the phase difference of the order parameter in the
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Fig. 17. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni)
conductor in an AI system with the dimensions given in Fig. 16, in absolute (left-hand scale)
and relative (right-hand scale) units. R0 = 4.12938 × 10−5 Ohm. T = 3.1 K.

Fig. 18. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni)
conductor in an AI system with an aperture area twice that of the system illustrated in Fig. 16
(solid curve, right-hand scale). R0 = 3.09986 × 10−6 Ohm. T = 3.2 K. The dashed curve
shows the oscillations presented in Fig. 17.

superconductor at the interfaces. Consequently, this parameter should be related to the
diffusion trajectories of the electrons on which the "phase memory" is preserved within the
whole length L of the ferromagnetic segment. This means that the oscillations are observed in
the regimes L ≤ Lϕ =

√
Dτϕ � ξT (D is the diffusion coefficient, ξT is the coherence length

of the metal, over which the proximity effect vanishes, and τϕ is the dephasing time). It is
well known that the possibility for the Aharonov-Bohm effect to be manifested under these
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Fig. 16. Schematic diagram of the F/S system in the geometry of a doubly connected
"Andreev interferometer". The ends of the single-crystal ferromagnetic (Ni) segment (dashed
line) are closed by a superconducting In bridge.

this question we carried out direct measurements of the conductance of Ni conductors in a
doubly connected SFS configuration (in the Andreev interferometer (AI) geometry shown in
Fig. 16).
Figures 17 and 18 show the magnetic-field oscillations of the resistance of two samples in
a doubly connected S/Ni/S configuration with different aperture areas, measured for the
arrangement of the current and potential leads illustrated in Fig. 16. The oscillations in Fig.
17 are presented on both an absolute scale (δRosc = RH − R0, left axis) and a relative scale
(δRosc/R0, right axis). R0 is the value of the resistance in zero field of the ferromagnetic
segment connecting the interfaces in the area of a dashed line in Fig. 16. Such oscillations
in SFS systems in which the total length of the ferromagnetic segment reaches the values of
the order of 1 mm (along the dashed line in Fig. 16), were observed for the first time. Figures
17 and 18 were taken from two samples during two independent measurements, for opposite
directions of the field, with different steps in H and are typical of several measurements, which
fact confirms the reproducibility of the oscillation period and its dependence on the aperture
area of the interferometer.
The period of the resistive oscillations shown in Fig. 17 is ΔB ≈ (5 − 7) × 10−4 G and is
observed in the sample with the geometrical parameters shown in Fig. 16. It follows from
this figure that the interferometer aperture area, enclosed by the midline of the segments and
the bridge, amounts to A ≈ 3 × 10−4cm2. In the sample with twice the length of the sides
of the interferometer and, hence, approximately twice the aperture area, the period of the
oscillations turned out to be approximately half as large (solid line in Fig. 18). From the values
of the periods of the observed oscillations it follows that, to an accuracy of 20%, the periods are
proportional to a quantum of magnetic flux Φ0 = hc/2e passing through the corresponding
area A : ΔB ≈ Φ0/A.
Obviously, the oscillatory behavior of the conductance is possible if the phases of the
electron wave functions are sensitive to the phase difference of the order parameter in the
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Fig. 17. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni)
conductor in an AI system with the dimensions given in Fig. 16, in absolute (left-hand scale)
and relative (right-hand scale) units. R0 = 4.12938 × 10−5 Ohm. T = 3.1 K.

Fig. 18. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni)
conductor in an AI system with an aperture area twice that of the system illustrated in Fig. 16
(solid curve, right-hand scale). R0 = 3.09986 × 10−6 Ohm. T = 3.2 K. The dashed curve
shows the oscillations presented in Fig. 17.

superconductor at the interfaces. Consequently, this parameter should be related to the
diffusion trajectories of the electrons on which the "phase memory" is preserved within the
whole length L of the ferromagnetic segment. This means that the oscillations are observed in
the regimes L ≤ Lϕ =

√
Dτϕ � ξT (D is the diffusion coefficient, ξT is the coherence length

of the metal, over which the proximity effect vanishes, and τϕ is the dephasing time). It is
well known that the possibility for the Aharonov-Bohm effect to be manifested under these
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conditions was proved by Spivak and Khmelnitskii (Spivak & Khmelnitskii, 1982), although
the large value of Lϕ coming out of our experiments is somewhat unexpected.

3.2.1 The entanglement of Andreev hybrids
The estimated value of Lϕ raises a legitimate question of the nature of the observed effect and
the origin of the dephasing length scale evaluated. Since, as discussed in the Introduction,
Lϕ is determined by the scale of the inelastic mean free path, the main candidates for the
mechanism of inelastic scattering of electrons in terms of their elastic scattering on impurities
remain electron-electron (e − e) and electron-phonon (e − ph) interactions.
Direct measurement of the temperature-dependent resistance of the ferromagnetic (Ni)
segment in the region below TIn

c found that (δRe−ph/Rel) ∼ (lel/le−ph) ≈ 10−3 − 10−4. It
follows that for our Ni segment with lel > 10−3 cm and D ∼ 105 cm2/s, the electron-phonon
relaxation time should be τe−ph ∼ (10−7 − 10−8) s, which value coincides, incidentally,
with the semiclassical estimate τe−ph ∼ (h̄/T)(TD/T)4 (TD is the Debye temperature). On
the other part, τe−e ∼ h̄μe/T2 (μe is the chemical potential) at 3 K has the same order of
magnitude. Thereby, the dephasing length in the studied systems can have a macroscopical
scale of the order of Lϕ =

√
Dτϕ ∼ 1 mm, which corresponds to the length of F segments of

our interferometers.
Under these conditions the nature of the observed oscillations can be assumed as follows.
According to the arguments offered by Spivak and Khmelnitskii (Spivak & Khmelnitskii,
1982), in a metal, regardless of the sample geometry (the parameters Lx,y,z), there always
exists a finite probability for the existence of constructively interfering transport trajectories,
the oscillatory contribution of which does not average out. Such trajectories coexist
with destructively interfering ones, the contributions from which average to zero. An
example would be the Sharvin’s experiment (Sharvin & Sharvin, 1981). In the doubly
connected geometry, the probability for the appearance of trajectories capable of interfering
constructively increases.
Consider the model shown in Fig. 19. Cooper pairs injected into the magnetic segment are
split due to the magnetization and lose their spatial coherence over a distance ξ∗ =

√
2λBrexch

from the interface (see Sec. 3. 1. 1). rexch is the Larmor radius in the exchange field Hexch ≈
kBTC; rexch ∼ 1 μm. (Recall that ξ∗ is the distance at which simultaneous interaction of e and
h quasiparticles with the same impurity is still admissible.)
The phase shifts acquired by (for example ) an electron 3 and hole 2 on the trajectories
connecting the interfaces are equal, respectively, to

φe = (kF + εT/h̄vF)Le + 2πΦ/Φ0 = φ0e + 2πΦ/Φ0,

φh = −(kF − εT/h̄vF)Lh + 2πΦ/Φ0 = φ0h + 2πΦ/Φ0.
(24)

Here εT and kF are the energy, measured from the Fermi level and the modulus of the Fermi
wave vector, respectively. Since the trajectories of an e − h pair are spatially incoherent, their
oscillatory contributions, proportional to the squares of the probability amplitudes, should
combine additively:

| fh(2)|2 + | fe(3)|2 ∼ cos φh + cos φe ∼ cos(φ0 + 2πΦ/Φ0), (25)

where φ0 is the relative phase shift of the independent oscillations, equal to

φ0 = (1/2)(φ0e + φ0h) ≈ (εT/εL)(Le + Lh)/2L, (26)
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Fig. 19. Geometry of the model.

where εL = h̄vF/L; εT = kBT = h̄D/ξ2
T. Hence it follows that any spatially separated e and

h diffusion trajectories with φ0 = 2πN, where N is an integer, can be phase coherent. Clearly
this requirement can be satisfied only by those trajectories whose midlines along the length
coincide with the shortest distance L connecting the interfaces. In this case, (Le + Lh)/2L
is an integer, since Li(e,h), L ∝ lel and (Li(e,h)/L) = m(1 + α), where α � 1. Furthermore,
(εT/εL)/2π is also an integer n to an accuracy of n(1 + γ), where γ ≈ (d/L) � 1 (d is the
transverse size of the interface). In sum, considering all the foregoing we obtain

cos(φ0 + 2πΦ/Φ0) ∼ cos(2πΦ/Φ0). (27)

This means that the contributions oscillatory in magnetic field from all the trajectories should
have the same period. Taking into consideration the quasiclassical thickness of a trajectory,
we find that the number of constructively interfering trajectories with different projections
on the quantization area, those that must be taken into account, is of the order of (lel/λB).
However, over the greater part of their length, except for the region ξ∗, all (lel/λB) trajectories
are spatially incoherent. They lie with equal probability along the perimeter of the cross
section of a tube of radius lel and axis L, and therefore outside the region ξ∗ they average out.
Constructive interference of particles on these trajectories can be manifested only over the
thickness of the segment ξ∗, reckoned from the interface, where the particles of the e − h pairs
are both phase- and spatially coherent. In this region the interaction of pairs with an impurity,
as mentioned in the Introduction, leads to a resistive contribution. When the total length of the
trajectories is taken into account, the value of this contribution for one pair should be of the
order of ξ∗/L. Accordingly, one can expect that the amplitude of the constructive oscillations
will have a relative value of the order of

δRξ∗
/RL ≈ (ξ∗/L)(lel/lξ∗

el ) ∼ lL
el/L, (28)

(lξ∗
el ∼ λB, see sec. 2.1.1), i. e., the same as the value of the effect measured with the

superconducting bridge open. Our experiment confirms this completely: For the samples

125
Electronic Transport in an NS
System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 



26 Will-be-set-by-IN-TECH
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the oscillatory contribution of which does not average out. Such trajectories coexist
with destructively interfering ones, the contributions from which average to zero. An
example would be the Sharvin’s experiment (Sharvin & Sharvin, 1981). In the doubly
connected geometry, the probability for the appearance of trajectories capable of interfering
constructively increases.
Consider the model shown in Fig. 19. Cooper pairs injected into the magnetic segment are
split due to the magnetization and lose their spatial coherence over a distance ξ∗ =
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from the interface (see Sec. 3. 1. 1). rexch is the Larmor radius in the exchange field Hexch ≈
kBTC; rexch ∼ 1 μm. (Recall that ξ∗ is the distance at which simultaneous interaction of e and
h quasiparticles with the same impurity is still admissible.)
The phase shifts acquired by (for example ) an electron 3 and hole 2 on the trajectories
connecting the interfaces are equal, respectively, to

φe = (kF + εT/h̄vF)Le + 2πΦ/Φ0 = φ0e + 2πΦ/Φ0,

φh = −(kF − εT/h̄vF)Lh + 2πΦ/Φ0 = φ0h + 2πΦ/Φ0.
(24)

Here εT and kF are the energy, measured from the Fermi level and the modulus of the Fermi
wave vector, respectively. Since the trajectories of an e − h pair are spatially incoherent, their
oscillatory contributions, proportional to the squares of the probability amplitudes, should
combine additively:

| fh(2)|2 + | fe(3)|2 ∼ cos φh + cos φe ∼ cos(φ0 + 2πΦ/Φ0), (25)

where φ0 is the relative phase shift of the independent oscillations, equal to
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Fig. 19. Geometry of the model.
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This means that the contributions oscillatory in magnetic field from all the trajectories should
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we find that the number of constructively interfering trajectories with different projections
on the quantization area, those that must be taken into account, is of the order of (lel/λB).
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section of a tube of radius lel and axis L, and therefore outside the region ξ∗ they average out.
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order of ξ∗/L. Accordingly, one can expect that the amplitude of the constructive oscillations
will have a relative value of the order of

δRξ∗
/RL ≈ (ξ∗/L)(lel/lξ∗

el ) ∼ lL
el/L, (28)

(lξ∗
el ∼ λB, see sec. 2.1.1), i. e., the same as the value of the effect measured with the

superconducting bridge open. Our experiment confirms this completely: For the samples

125
Electronic Transport in an NS
System With a Pure Normal Channel. Coherent and Spin-Dependent Effects 



28 Will-be-set-by-IN-TECH

with the oscillations shown in Figs. 17 and 18, δRξ∗
/RL ≈ 0.03% and 0.01%, respectively.

This is much larger than the total contribution from the destructive trajectories, which in the
weak-localization approximation is of the order of (λB/lel)

2 and which can lead to an increase
in the conductance (Altshuler et al., 1981). One should also note that the property of the
oscillations under discussion described by Eq. (27) presupposes that the resistance for H = 0
will decrease as the field is first introduced, and this, as can be seen in Figs. 17 and 18, agrees
with the experiment.

4. Conclusion

Here, we presented the results of the study of Andreev reflection in a macroscopic formulation
of experiments, consisting in increasing simultaneously the diffusion coefficient in normal
segments of NS hybrid systems and the size of these segments by a factor of 103 − 104

as compared with those characteristics of mesoscopic systems. Our data prove that at
temperatures below 4 K, the relaxation of the electron momentum, at least at sufficiently
rare collisions of electrons with static defects, are not accompanied by a break of the phase
of electron wave functions. Hence, the electron trajectories in the classical approximation
may be reversible on a macroscopic length scale of the order of several millimeters, both
in a nonmagnetic and in a sufficiently pure ferromagnetic metal. In this situation, there
appears a possibility to observe conductance oscillations in doubly connected NS systems
in Andreev-reflection regime, with a period hc/2e in a magnetic field, which indicates that the
interference occurs between singlet bound quasiparticles rather than between triplet bound
electrons, as in the Aharonov-Bohm ring. With the current flowing perpendicular to the
N(F)S interfaces in singly connected samples, a nonequilibrium resistive contribution of the
interfaces was found. We associate this with the spin polarization of a certain region of a
ferromagnet under the interface. The observed increase in the resistance corresponds to the
theoretically predicted magnitude of the change occurring in the resistance of a single-domain
region with spin-polarized electrons as a result of spin accumulation at the F/S interface
under the conditions of limiting Andreev reflections.
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1. Introduction  

In the past two decades, a number of novel superconducting materials have been discovered 
where order parameter symmetries are different from an s-wave spin singlet, predicted by 
the Bardeen-Cooper-Schrieffer (BCS) theory of electron-phonon mediated pairing. From the 
initial discoveries of unconventional superconductivity in heavy-fermion compounds, the 
list of examples has now grown to include the high- cT  cuprate superconductors, ruthenates, 
ferromagnetic superconductors, and possibly organic materials. 
In most of these materials, there are strong indications that the pairing is caused by the 
electron correlations, in contrast to conventional superconductors such as Pb, Nb, etc. 
Nonphononic mechanisms of pairing are believed to favor a nontrivial spin structure and 
orbital symmetry of the Cooper pairs. For example, the order parameter in the high- cT  
superconductors, where the pairing is thought to be caused by the antiferromagnetic 
correlations, has the d-wave symmetry with lines of zeroes at the Fermi surface. A powerful 
tool of studying unconventional superconducting states is symmetry analysis, which works 
even if the pairing mechanism is not known.  
In general, the superconducting BCS ground state is formed by Cooper pairs with zero total 
angular momentum. The electronic states are four-fold degenerate k  , and k   have 
the same energy  k . The states with opposite momenta and opposite spins are 
transformed to one another under time reversal operation k k      and states with 
opposite momenta are transformed to one another under inversion operation I k k    . 
The four degenerate states are a consequence of space and time inversion symmetries. Parity 
symmetry is irrelevant for spin-singlet pairing, but is essential for spin-triplet pairing. Time 
reversal symmetry is required for spin-singlet configuration, but is unimportant for spin-
triplet state (Anderson, 1959, 1984). 
If this degeneracy is lifted, for example, by a magnetic field or magnetic impurities coupling 
to the electron spins, then superconductivity is weakened or even suppressed. For spin-
triplet pairing, Anderson noticed that additionally inversion symmetry is required to obtain 
the necessary degenerate electron states. Consequently, it became a widespread view that a 
material lacking an inversion center would be an unlikely candidate for spin-triplet pairing. 
For example, the absence of superconductivity in the paramagnetic phase of MnSi close to 
the quantum critical point to itinerant ferromagnetism was interpreted from this point of 
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triplet pairing, Anderson noticed that additionally inversion symmetry is required to obtain 
the necessary degenerate electron states. Consequently, it became a widespread view that a 
material lacking an inversion center would be an unlikely candidate for spin-triplet pairing. 
For example, the absence of superconductivity in the paramagnetic phase of MnSi close to 
the quantum critical point to itinerant ferromagnetism was interpreted from this point of 
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view (Mathur, 1998; Saxena, 2000). Near this quantum critical point the most natural spin 
fluctuation mediated Cooper pairing would occur in the spin-triplet channel. However, 
MnSi has the so-called B20 structure (P21), without an inversion center, inhibiting spin-
triplet pairing.  
Unusual properties are expected in superconductors whose crystal structure does not 
possess an inversion center (Edelstein, 1995; Frigeri et al., 2004; Gor’kov & Rashba, 2001; 
Samokhin et al., 2004;  Sergienko& Curnoe, 2004).  
Recent discovery of heavy fermion superconductor CePt3Si has opened up a new field of the 
study of superconductivity (Bauer et al., 2004). This is because this material does not have 
inversion center, which has stimulated further studies (Akazawa et al., 2004; Yogi et al., 
2005). Because of the broken inversion symmetry, Rashba-type spin–orbit coupling (RSOC) 
is induced (Edelstein, 1995; Rashba, 1960; Rashba & Bychkov, 1984)), and hence different 
parities, spin-singlet pairing and spin triplet pairing, can be mixed in a superconducting 
state (Gor’kov & Rashba, 2001).  
From a lot of experimental and theoretical studies, it is believed that the most possible 
candidate of superconducting state in CePt3Si is s+p-wave pairing (Frigeri et al., 2004; 
Hayashi et al., 2006). This mixing of the pairing channels with different parity may result in 
unusual properties of experimentally observed quantities such as a very high upper critical 
field 2cH which exceeds the paramagnetic limit (Bauer  et al., 2004; Bauer et al., 2005a, 
2005b; Yasuda et al., 2004), and the simultaneous appearance of a coherence peak feature in 
the NMR relaxation rate 

1

1T  and low-temperature power-law behavior suggesting line 
nodes in the quasiparticle gap (Bauer et al., 2005a, 2005b; Yogi et al., 2004). The presence of 
line nodes in the gap of CePt3Si is also indicated by measurements of the thermal 
conductivity (Izawa et al., 2005) and the London penetration depth (Bauer et al., 2005; 
Bonalde et al., 2005).  
It is known that the nonmagnetic as well as the magnetic impurities in the conventional and 
unconventional superconductors already have been proven to be a useful tool in 
distinguishing between various symmetries of the superconducting state (Blatsky et al., 
2006). For example, in the conventional isotropic s-wave superconductor, the single 
magnetic impurity induced resonance state is located at the gap edge, which is known as 
Yu-Shiba-Rusinov state (Shiba, 1968). In the case of unconventional superconductor with 

2 2x yd
 -wave symmetry of the superconducting state, the nonmagnetic impurity-induced 

bound state appears near the Fermi energy as a hallmark of 2 2x yd


-wave pairing symmetry 

(Salkalo et al., 1996). The origin of this difference is understood as being due to the nodal 
structure of two kinds of SC order: in the 2 2x yd


-wave case, the phase of Cooper pairing 

wave function changes sign across the nodal line, which yields finite density of states (DOS) 
below the superconducting gap, while in the isotropic s-wave case, the density of states is 
gapped up to energies of about 0   and thus the bound state can appear only at the gap 
edge. In principle the formation of the impurity resonance states can also occur in 
unconventional superconductors if the nodal line or point does not exist at the Fermi surface 
of a superconductor, as it occurs for isotropic nodeless p-wave and/or x yd id -wave 

superconductors for the large value of the potential strength (Wang Q.H. & Wang,Z.D, 
2004). 
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In unconventional superconductors non-magnetic impurities act as pair-breakers, similar to 
magnetic impurities in s-wave superconductors. A bound state appears near an isolated 

non-magnetic strong (scattering phase shift
2
 , or unitarity) scatterer, at the energy close to 

the Fermi level. The broadening of this bound state to an impurity band at finite disorder 
leads to a finite density of states at zero energy,  0N , that increases with increasing 
impurity concentration (Borokowski & Hirschfeld, 1994). The impurity scattering changes 
the temperature dependence of the physical quantities below T  corresponding to the 
impurity bandwidth:  changes the behavior from T  to 2T  the NMR relaxation rate 
changes from 3T  to T , and specific heat  C T changes from 2T  to T . In other words, the 
impurities modify the power laws, especially at low temperatures. 
The problem of a magnetic impurity in a superconductor has been extensively studied, but 
is not completely solved because of the difficulty of treating the dynamical correlations of 
the coupled impurity-conduction electron system together with pair correlations. Generally, 
the behavior of the system can be characterized by the ratio of the Kondo energy scale in the 

normal metal to the superconducting transition temperature K

c

T
T

. For 1K

c

T
T
 , conduction 

electrons scatter from classical spins and physics in this regime can be described by the 

Abrikosov-Gor'kov theory (Abrikosov & Gor'kov, 1961). In the opposite limit, 1K

c

T
T
 , the 

impurity spin is screened and conduction electrons undergo only potential scattering. In this 
regime s-wave superconductors are largely unaffected by the presence of Kondo impurities 
due to Anderson's theorem. Superconductors with an anisotropic order parameter, e.g. p-
wave, d-wave etc., are strongly affected, however and the potential scattering is pair-
breaking. The effect of pair breaking is maximal in s-wave superconductors in the 

intermediate region, K cT T , while in the anisotropic case it is largest for K

c

T
T

  

(Borkowski & Hirschfeld, 1992). 
In the noncentrosymmetric superconductor with the possible coexistence of s-wave and p-
wave pairing symmetries, it is very interesting to see what the nature of the impurity state is 
and whether a low energy resonance state can still occur around the impurity through 
changing the dominant role played by each of the pairing components. Previously, the effect 
of nonmagnetic impurity scattering has been studied in the noncentrosymmetric 
superconductors with respect to the suppression of cT  and the behavior of the upper critical 
field (Frigeri et al., 2004; Mineev& Samokhin, 2007). 
This in turn stimulates me to continue studying more properties. My main goal in this 
chapter is to find how the superconducting critical temperature, magnetic penetration 
depth, and spin–lattice relaxation rate of a noncentrosymmetric superconductor depend on 
the magnetic and nonmagnetic impurity concentration and also discuss the application of 
our results to a model of superconductivity in CePt3Si. I do these by using the Green’s 
function method when both s-wave and p-wave Cooper pairings coexist. 
The chapter is organized as follows. In Sect. 2, the disorder averaged Green’s functions in 
the superconducting states are calculated and the effect of impurity is treated via the self-
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energies of the system. In Sect. 3, the equations for the superconducting gap functions 
renormalized by impurities are used to find the critical temperature cT .  
In Sect. 4, by using linear response theory I calculate the appropriate correlation function 
to evaluate the magnetic penetration depth. In this system the low temperature behavior 
of the magnetic penetration depth is consistence with the presence of line nodes in the 
energy gap.  
In Sect. 5, the spin–lattice relaxation rate of nuclear magnetic resonance (NMR) in a 
superconductor without inversion symmetry in the presence of impurity effect is 
investigated. 
In the last two cases I assume that the superconductivity in CePt3Si is most likely 
unconventional and our aim is to show how the low temperature power law is affected by 
nonmagnetic impurities.  
Finally sect. 6 contains the discussion and conclusion remarks of my results. 

2. Impurity scattering in normal and superconducting state 
By using a single band model with electron band energy k  measured from the Fermi 
energy where electrons with momentum k and spin s are created (annihilated) by 
operators

,

†
k s

C   ,k sC , the Hamiltonian including the pairing interaction can be written as 

 † † †
, , , , , ,,

, , ,

1
2k k s k s k k k s k s k sk s

k s k k s s
H C C V C C C C     

 
    (1) 

This system possesses time reversal and inversion symmetry  k k   and the pairing 
interaction does not depend on the spin and favors either even parity (spin-singlet) or odd 
parity (spin-triplet) pairing as required. The absence of inversion symmetry is incorporated 
through the antisymmetric Rashba-type spin-orbit coupling  

 †
,

, ,
.so k s s ks ks

k s s
H g C C   


     (2) 

which removes parity but conserves time-reversal symmetry, i.e., 1
so soIH I H     and 

1
so soTH T H  . In Eq. (2), denotes the Pauli matrices (this satisfies the above condition 

1I I     and 1T T   ), kg is a dimensionless vector [ k kg g   to preserve time 
reversal symmetry], and  0  denotes the strength of the spin-orbit coupling. The 
antisymmetric spin-orbit coupling (ASOC) term .kg    is different from zero only for 
crystals without an inversion center and can be derived microscopically by considering the 
relativistic corrections to the interaction of the electrons with the ionic potential (Frigeri 
et al., 2004; Dresselhaus, 1995). For qualitative studies, it is sufficient to deduce the structure 
of the g-vector from symmetry arguments (Frigeri et al., 2004) and to treat α as a parameter. 
I set 2 1k k

g  , where ...  denotes the average over the Fermi surface. The ASOC term lifts 
the spin degeneracy by generating two bands with different spin structure. 
In the normal state the eigenvalues of the total Hamiltonan  soH H  are 

 k k kg        (3) 
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where 
2

2k
k
m

   and and  is the chemical potential. 

It is obvious from here that the time reversal symmetry is lost and the shape of the Fermi 
surfaces does not obey the mirror symmetry. 
Due to the big difference between the Fermi momenta we neglected the pairing of electronic 
states from different bands. The structure of theory is now very similar to the theory of 
ferromagnetic superconductors with triplet pairing (Mineev, 2004). 
Effects of disorder are described by potential scattering of the quasiparticles, which in real-
space representation is given by 

    †
imp s imp s

i
H r U r dr 

    (4) 

where imp n mU U U  , nU is the potential of a non-magnetic impurity, which we consider 
rather short-ranged such that s-wave scattering is dominant and   .mU J r S

   is the 
potential interaction between the local spin on the impurity site and conduction electrons, 
here J is the exchange coupling and S is the spin operator.  

2.1 Impurity averaging in superconducting state 
Let us calculate the impurity-averaged Green`s functions in the superconducting state. The 
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here nn and mn are the concentrations of nonmagnetic and magnetic impurities, 
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The equations for each band are only coupled through the order parameters given by the 
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energies of the system. In Sect. 3, the equations for the superconducting gap functions 
renormalized by impurities are used to find the critical temperature cT .  
In Sect. 4, by using linear response theory I calculate the appropriate correlation function 
to evaluate the magnetic penetration depth. In this system the low temperature behavior 
of the magnetic penetration depth is consistence with the presence of line nodes in the 
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superconductor without inversion symmetry in the presence of impurity effect is 
investigated. 
In the last two cases I assume that the superconductivity in CePt3Si is most likely 
unconventional and our aim is to show how the low temperature power law is affected by 
nonmagnetic impurities.  
Finally sect. 6 contains the discussion and conclusion remarks of my results. 
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By using a single band model with electron band energy k  measured from the Fermi 
energy where electrons with momentum k and spin s are created (annihilated) by 
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This system possesses time reversal and inversion symmetry  k k   and the pairing 
interaction does not depend on the spin and favors either even parity (spin-singlet) or odd 
parity (spin-triplet) pairing as required. The absence of inversion symmetry is incorporated 
through the antisymmetric Rashba-type spin-orbit coupling  
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which removes parity but conserves time-reversal symmetry, i.e., 1
so soIH I H     and 

1
so soTH T H  . In Eq. (2), denotes the Pauli matrices (this satisfies the above condition 

1I I     and 1T T   ), kg is a dimensionless vector [ k kg g   to preserve time 
reversal symmetry], and  0  denotes the strength of the spin-orbit coupling. The 
antisymmetric spin-orbit coupling (ASOC) term .kg    is different from zero only for 
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I set 2 1k k

g  , where ...  denotes the average over the Fermi surface. The ASOC term lifts 
the spin degeneracy by generating two bands with different spin structure. 
In the normal state the eigenvalues of the total Hamiltonan  soH H  are 
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where 
2

2k
k
m

   and and  is the chemical potential. 
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where    . 
Solving the Gor’kov equations one obtains the following expressions for the disorder-
averaged Green’s functions  
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here    imp imp n imp m     is the self energy due to non magnetic and magnetic impurities. 
The energies of elementary excitations are given by 
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The presence of the antisymmetric spin-orbit coupling would suppress spin-triplet pairing. 
However, it has been shown by Frigeri et al., (Frigeri et al., 2004) that the antisymmetric 
spin-orbit coupling is not destructive to the special spin-triplet state with the d vector 

parallel to kg   k kd g
  .  Therefore, by choosing  3 1 , ,0

2k y x
F

g k k
k

 
 , one adopts the p-

wave pairing state with parallel d


 vector  , ,0k y xd k k     . Here the unit 

vector    , , cos sin ,sin sin ,cosx y zk k k k          . 

By considering this parity-mixed pairing state the order parameter defined in (5) and (6) can 
be expressed as 

           0 0 0 0ˆ ˆ ˆ ˆ ˆ, . y y x x yr k r d k i r r k k                   
       (14) 

with the spin-singlet s-wave component  0 r
  and the d


vector      , ,0k y xd r r k k  

    , 
here, the vector r indicates the real-space coordinates. While this spin-triplet part alone has 
point nodes (axial state with two point nodes), the pairing state of Eq. (14) can possess line 
nodes in a gap as a result of the combination with the s-wave component (Hayashi et al., 
2006; Sergienko 2004). In the presence of uniform supercurrent the gap function has the 
r dependence as  

   2 ., si mv r
kr k e  

   (15) 

where m is the bare electron mass.  
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The particular form of order parameter prevents the existence of interband terms in the 
Gor’kov equations 
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and  

 0 kd g     (20) 

 

I consider the superconducting gaps 0 sin    and 0 sin    on the Fermi surfaces I 
and II, respectively (such as superconductor CePt3Si). Such a gap structure can lead to line 
nodes on either Fermi surface I or II (Hayashi et al., 2006). These nodes are the result of the 
superposition of spin-singlet and spin-triplet contributions (each separately would not 
produce line nodes). On the Fermi surface I, the gap is 0 sin   and is nodeless, (not that 
we choose 0 0   and 0  ). On the other hand, the form of the gap on the Fermi surface II 
is 0 sin   , where line nodes can appear for 0    (Hayashi et al., 2006). 

3. Effects of impurities on the transition temperature of a 
noncentrosymmetrical superconductor 
In the case of large SO band splitting, the order parameter has only intraband components 
and the gap equation (Eq. (9)) becomes 
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The coupling constants  ,V k k 
 

′ I have used in previous considerations can be expressed 
through the real physical interactions between the electrons naturally introduced in the 
initial spinor basis where BCS type Hamiltonian has the following form 
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where    . 
Solving the Gor’kov equations one obtains the following expressions for the disorder-
averaged Green’s functions  
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where the pairing interaction is represented as a sum of the k-even, k-odd, and mixed-parity 
terms: s t mV V V V   . The even contribution is 

       †2 2, ,s sV k k V k k i i    
   

 (23) 

The odd contribution is 
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here the amplitudes  ,sV k k
 

and  ,t
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 are even and odd with respect to their 
arguments correspondingly. 
Finally, the mixed-parity contribution is 
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The first term on the right-hand side of Eq. (25) is odd in k and even in k′, while the second 
term is even in k and odd in k′. 
The pairing interaction leading to the gap function [Eq. (14)] is characterized by three 
coupling constants, sV , tV , and mV . Here, sV , and tV  result from the pairing interaction 
within each spin channel ( s : singlet, t : triplet). mV  is the scattering of Cooper pairs 
between those two parity channels, present in systems without inversion symmetry. The 
linearized gap equations acquire simple algebraic form  
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where the angular brackets denote the average over the Fermi surface, assuming the 
spherical Fermi surface for simplicity, 
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From Eqs. (26) and (27) one obtains then the following expression for the critical 
temperature 
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 x is the digamma function ,  0 2N N N   , N  are the densities of state (DOS) of 
the two bands at the Fermi level, and 0cT  is the critical temperature of the clean 
superconductor. 

The coefficient
 
 

2

2
1 FS

FS

p

p


  


quantifies the degree of anisotropy of the order parameter 

on the Fermi surface (FS), where the angular brackets ... FS stand for a FS average.  

For isotropic s-wave pairing    2 2
FS FS

p p    0  and for any pairing state with 

angular momentum 1l  , e.g., for p-wave and d-wave states  1,2l  , 11, 0
m

    
 

 Eq. 

(29) reduces to the well-known expressions (Abrikosov, 1993; Abrikosov, A. A. & Gor’kov, 
1959). 
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For mixing of s-wave state with some higher angular harmonic state , e.g., for example 

s p and s d , 10 1, 0
m

     
 

, Eq. (29) becomes 
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At 0 1n cT  and 0 1m cT   (weak scattering) one has from Eq. (29): 
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In two particular cases of (i) both nonmagnetic and magnetic scattering in an isotropic s-
wave superconductor ( 0  ) and (ii) nonmagnetic scattering only in a superconductor with 

arbitrary anisotropy of  p  ( 1 0
m
 , 0 1   ), the Eq. (34) reduces to well-known 

expressions 
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In the strong scattering limit ( 1n cT  , 1m cT  ), by using 
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From Eq. (29) one finds 
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One can see that the left hand side of Eq. (38) increases monotonically with both 1

n
and 

1

m
for any value of   , with the exception of the case 0  which does not depend on 

magnetic impurities. 
For strongly anisotropic gap parameter  1  , Eq. (38) reduces to 
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i.e., the contribution of magnetic and nonmagnetic impurities to pairing breaking is about 
the same. 
For strongly isotropic case  1 , one has 
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and cT  is determined primarily by magnetic impurities. 
For the case of s p wave pairing in the absence of magnetic impurities, one has 
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In this case the value of cT  asymptotically goes to zero as 1
n
  increase, whereas cT of a d or 

p wave superconductor with 1  vanishes at a critical value 01 c
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In the absence of nonmagnetic impurities one obtains 
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And for the s-wave superconductor with  0    one has 0
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Application of these results to real noncentrosymmetric materials is complicated by the lack 
of definite information about the superconducting gap symmetry and the distribution of the 
pairing strength between the bands.  
As far as the pairing symmetry is concerned, there is strong experimental evidence that the 
superconducting order parameter in CePt3Si has lines of gap nodes (Yasuda et al., 2004; 
Izawa et al., 2005; Bonalde et al., 2005). The lines of nodes are required by symmetry for all 
nontrivial one-dimensional representations of 4vC ( 2A , 1B , and 2B ), so that the 
superconductivity in CePt3Si is most likely unconventional. This can be verified using the 
measurements of the dependence of cT on the impurity concentration: For all types of 
unconventional pairing, the suppression of the critical temperature is described by the 
universal Abrikosov-Gor’kov function, see Eq. (32). 
It should be mentioned that the lines of gap nodes can exist also for conventional pairing 
( 1A representation), in which case they are purely accidental. While the accidental nodes 
would be consistent with the power-law behavior of physical properties observed 
experimentally, the impurity effect on cT  in this case is qualitatively different from the 
unconventional case. In this case in the absence of magnetic impurities one obtains the 
following equation for the critical temperature: 
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In the low  1n cT   and dirty  0 1n cT   limit of impurity concentration one has 
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This means that anisotropy of the conventional order parameter increases the rate at which 
cT is suppressed by impurities. Unlike the unconventional case, however, the 

superconductivity is never completely destroyed, even at strong disorder. 

4. Low temperature magnetic penetration depth of a superconductor without 
inversion symmetry 

To determine the penetration depth or superfluid density in asuperconductor without 
inversion symmetry one calculates the electromagnetic response tensor  , ,sK q v T  , relating 
the current density J


 to an applied vector potential  A
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     (46) 

The  expression for the response function can be obtained as   
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In the strong scattering limit ( 1n cT  , 1m cT  ), by using 
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the same. 
For strongly isotropic case  1 , one has 
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and cT  is determined primarily by magnetic impurities. 
For the case of s p wave pairing in the absence of magnetic impurities, one has 
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In this case the value of cT  asymptotically goes to zero as 1
n
  increase, whereas cT of a d or 

p wave superconductor with 1  vanishes at a critical value 01 c
c
n

T


 . 

In the absence of nonmagnetic impurities one obtains 
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And for the s-wave superconductor with  0    one has 0
1

2
m

cc T


 . 

 
Effects of Impurities on a Noncentrosymmetric Superconductor - Application to CePt3Si 

 

139 

Application of these results to real noncentrosymmetric materials is complicated by the lack 
of definite information about the superconducting gap symmetry and the distribution of the 
pairing strength between the bands.  
As far as the pairing symmetry is concerned, there is strong experimental evidence that the 
superconducting order parameter in CePt3Si has lines of gap nodes (Yasuda et al., 2004; 
Izawa et al., 2005; Bonalde et al., 2005). The lines of nodes are required by symmetry for all 
nontrivial one-dimensional representations of 4vC ( 2A , 1B , and 2B ), so that the 
superconductivity in CePt3Si is most likely unconventional. This can be verified using the 
measurements of the dependence of cT on the impurity concentration: For all types of 
unconventional pairing, the suppression of the critical temperature is described by the 
universal Abrikosov-Gor’kov function, see Eq. (32). 
It should be mentioned that the lines of gap nodes can exist also for conventional pairing 
( 1A representation), in which case they are purely accidental. While the accidental nodes 
would be consistent with the power-law behavior of physical properties observed 
experimentally, the impurity effect on cT  in this case is qualitatively different from the 
unconventional case. In this case in the absence of magnetic impurities one obtains the 
following equation for the critical temperature: 
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 (43) 

In the low  1n cT   and dirty  0 1n cT   limit of impurity concentration one has 
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  (45) 

This means that anisotropy of the conventional order parameter increases the rate at which 
cT is suppressed by impurities. Unlike the unconventional case, however, the 

superconductivity is never completely destroyed, even at strong disorder. 

4. Low temperature magnetic penetration depth of a superconductor without 
inversion symmetry 

To determine the penetration depth or superfluid density in asuperconductor without 
inversion symmetry one calculates the electromagnetic response tensor  , ,sK q v T  , relating 
the current density J


 to an applied vector potential  A


 

      , ,sJ q K q v T A q 
     (46) 

The  expression for the response function can be obtained as   

      
2

2

,

2 ˆ, , , 1 , , ,s m n n m
n k

neK q v T T k k k
mc m

      

 
     
 

 
    (47) 



 
Superconductivity – Theory and Applications 

 

140 

where
2
qk k   , 2k̂  is the direction of the supercurrent and ........ represents a Fermi 

surface average. 
By using the expression of Green`s function into Eq. (47) one obtains 
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Now we separate out the response function as 

      , , 0,0,0 , ,s sK q v T K K q v T 
     (49) 

where  
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is the zero temperature London penetration 

depth). 
Doing the summation over Matsubara frequencies for each band one gets  
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(50) 

The factor kg characterizes and quantifies the absence of an inversion center in a crystal lattice. 
This is the main result of my work i.e. nonlocality, nonlineary, impurity and 
nonsentrosymmetry are involved in the response function. The first two terms in Eq. (50) 
represent the nonlocal correction to the London penetration depth and the third represents the 
nonlocal and impure renormalization of the response while the forth combined nonlocal, 
nonlinear, and impure corrections to the temperature dependence.  
I consider a system in which a uniform supercurrent flows with the velocity sv , so all 
quasiparticles Matsubara energies modified by the semiclassical Doppler shift .s Fv k

 . 
The specular boundary scattering in terms of response function can be written as (Kosztin & 
Leggett, 1997) 
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In the pure case there are four relevant energy scales in the low energy sector in the 
Meissner state: T, nonlinE , nonlocE , and kg . The first two are experimentally controlled 
parameters while the last two are intrinsic one. 
In low temperatures limit the contribution of the fully gap ( 0 sin   ) Fermi surface I 
decrease and the effect of the gap 0 sin   Fermi surface II is enhanced. I consider 
geometry where the magnetic field is parallel to c axis and thus sv  and the penetration 
direction q are in the ab plane, and in general, sv makes an angle   with the axis. There are 
two effective nonlinear energy scales  

1nonlin s F lE v k u
   and

2nonlin s F lE v k u
  .where 

cos sinlu l     and 1 2, 1l l   . 
In the nonlocal  0q  , linear  0sv  limit, i.e., in the range of temperature where 

nonlin nonlocE T E  one gets 
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where
2
qk k   , 2k̂  is the direction of the supercurrent and ........ represents a Fermi 

surface average. 
By using the expression of Green`s function into Eq. (47) one obtains 
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The factor kg characterizes and quantifies the absence of an inversion center in a crystal lattice. 
This is the main result of my work i.e. nonlocality, nonlineary, impurity and 
nonsentrosymmetry are involved in the response function. The first two terms in Eq. (50) 
represent the nonlocal correction to the London penetration depth and the third represents the 
nonlocal and impure renormalization of the response while the forth combined nonlocal, 
nonlinear, and impure corrections to the temperature dependence.  
I consider a system in which a uniform supercurrent flows with the velocity sv , so all 
quasiparticles Matsubara energies modified by the semiclassical Doppler shift .s Fv k
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The specular boundary scattering in terms of response function can be written as (Kosztin & 
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In the pure case there are four relevant energy scales in the low energy sector in the 
Meissner state: T, nonlinE , nonlocE , and kg . The first two are experimentally controlled 
parameters while the last two are intrinsic one. 
In low temperatures limit the contribution of the fully gap ( 0 sin   ) Fermi surface I 
decrease and the effect of the gap 0 sin   Fermi surface II is enhanced. I consider 
geometry where the magnetic field is parallel to c axis and thus sv  and the penetration 
direction q are in the ab plane, and in general, sv makes an angle   with the axis. There are 
two effective nonlinear energy scales  

1nonlin s F lE v k u
   and
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where sin coslw l    , sinlu cos l    , and 2
2 2

F
k

qv g    . 

Depending on the effective nonlocal energy scales 
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 (53) 

For CePt3Si superconductor with 0.75cT K , the linear temperature dependence would 
crossover to a quadratic dependence below 0.015nonlocT K  . 
Magnetic penetration depth measurements in CePt3Si did not find a 2T law as expected for 
line nodes. I argue that it may be due to the fact that such measurements were performed 
above 0.015K. On the other hand, it is note that CePt3Si is an extreme type-II 
superconductor with the Ginzburg-Landau parameter, 140K  , and the nonlocal effect can 
be safely neglected, and because this system is a clean superconductor, neglect the impurity 
effect can be neglected (Bauer  et al., 2004; Bauer  et al., 2005). 
In the local, clean, and nonlinear limit  0, 0sq v   the penetration depth is given by 
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Thus by considering only the second term in the right hand side of Eq. (55) into Eq. (51) one 
gets  
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 (56) 

 

The linear temperature dependence of penetration depth is in agreement with Bonalde et 
al's result (Bonalde et al., 2005). 
Thus the T  behavior at low temperatures of the penetration depth in Eq. (56) is due to 
nonlineary indicating the existence of line nodes in the gap parameter in CePt3Si compound.  
A T  linear dependence of the penetration depth in the low temperature region is expected 
for clean, local and nonlinear superconductors with line nodes in the gap function. 
Now the effect of impurities when both s-wave and p-wave Cooper pairings coexist is 
considered. 
I assume that the superconductivity in CePt3Si is unconventional and is affected only by 
nonmagnetic impurities.  The equation of motion for self-energy can be written as 

      , , ,n n nimp n p i n T p p i  
    (57) 

 where the T matrix is given by 

    
3

3
, ,

1 , ,n
n

uT p p i
u p p i


 

 
 

 
   (58) 

here 3 is the third Pauli-spin operator. 
By using the expression of the Green’s function in Eq. (58) one can write 
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and 0u  is a single s-wave matrix element of scattering potential u .Small 0u puts us in the 
limit where the Born approximation is valid, where large  0 0u u  , puts us in the 
unitarity limit. 
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The linear temperature dependence of penetration depth is in agreement with Bonalde et 
al's result (Bonalde et al., 2005). 
Thus the T  behavior at low temperatures of the penetration depth in Eq. (56) is due to 
nonlineary indicating the existence of line nodes in the gap parameter in CePt3Si compound.  
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and 0u  is a single s-wave matrix element of scattering potential u .Small 0u puts us in the 
limit where the Born approximation is valid, where large  0 0u u  , puts us in the 
unitarity limit. 
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Theoretically it is known that the nodal gap structure is very sensitive to the impurities. If 
the spin-singlet and triplet components are mixed, the latter might be suppressed by the 
impurity scattering and the system would behave like a BCS superconductor. For p-wave 
gap function the polar and axial states have angular structures,    0 cosk kT T    and 

   0 sink kT T    respectively. The electromagnetic response now depends on the mutual 
orientation of the vector potential A and Î (unit vector of gap symmetry), which itself may 
be oriented by surfaces, fields and superflow. A detailed experimental and theoretical study 
for the axial and polar states was presented in Ref. (Einzel, 1986). In the clean limit and in 
the absence of Fermi-Liquid effects the following low-temperature asymptotic were 
obtained for   axial and polar states 
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where in the axial state  2 4n  and
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, and in the polar state  3 1n   and 
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, for the orientations   . 

The influence of nonmagnetic impurities on the penetration depth of a p-wave 
superconductor was discussed in detail in Ref (Gross et al., 1986). At very low temperatures, 
the main contribution will originated from the eigenvalue with the lower temperature 
exponent n, i.e., for the axial state (point nodes) with 2T  low, and for the polar state (line 
nodes) the dominating contribution with a linear T . The quadratic dependence in axial state 
may arise from nonlocality. 
The low temperature dependence of penetration depth in polar and axial states used by 
Einzel et al., (Einzel et al. 1986) to analyze the   2T T  behavior of Ube13 at low 
temperatures. The axial ˆA I


  case seems to be the proper state to analyze the experiment 

because it was favored by orientation effects and was the only one with 2T  dependence. 
Meanwhile, it has turned out that 2T  behavior is introduced immediately by T-matrix 
impurity scattering and also by weak scattering in the polar case. The axial sate., and 
according to the Andersons theorem the s-wave value of the London penetration depth are 
not at all affected by small concentration of nonmagnetic impurities.  
Thus, for the polar state, Eq. (60) can be written as 
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Doing the angular integration in Eq. (62) and using Eqs. (57) and (59) one obtains 
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here K   is the elliptic integral and  imp ni    . We note that in the impurity dominated 
gapless regime, the normalized frequency  takes the limiting form i     , where   is 
a constant depending on impurity concentration and scattering strength. 
In the low temperature limit we can replace the normalized frequency  everywhere by its 
low frequency limiting form and after integration over frequency one gets 
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As in the case of d-wave order parameter, from Eqs. (64) and (51) one finds 
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In p-wave cuprates, scattering fills in electronic states at the gap nodes, thereby suppressing 
the penetration depth at low temperatures and changing T -linear to 2T behavior. 

5. Effect of impurities on the low temperature NMR relaxation rate of a 
noncentrosymmetric superconductor  

I consider the NMR spin-lattice relaxation due to the interaction between the nuclear spin 
magnetic moment nI  ( n is the nuclear gyro magnetic ratio) and the hyperfine field h, 
created at the nucleus by the conduction electrons. Thus the system Hamiltonian is 

 0 intso nH H H H H     (66) 

where 0H  and soH  are defined by Eqs. (1) and (2), n nH IH   is the Zeeman coupling of 
the nuclear spin with the external field H


, and int nH Ih   is the hyperfine interaction. 

The spin-lattice relaxation rate due to the hyperfine contact interaction of the nucleus with 
the band electron is given by 
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where   is the NMR frequency, 8
3 n eJ     ( e is the electron geomagnetic ratio) is the 

hyperfine coupling constant, and  R 


 , the Fourier transform of the retarded correlation 
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Theoretically it is known that the nodal gap structure is very sensitive to the impurities. If 
the spin-singlet and triplet components are mixed, the latter might be suppressed by the 
impurity scattering and the system would behave like a BCS superconductor. For p-wave 
gap function the polar and axial states have angular structures,    0 cosk kT T    and 

   0 sink kT T    respectively. The electromagnetic response now depends on the mutual 
orientation of the vector potential A and Î (unit vector of gap symmetry), which itself may 
be oriented by surfaces, fields and superflow. A detailed experimental and theoretical study 
for the axial and polar states was presented in Ref. (Einzel, 1986). In the clean limit and in 
the absence of Fermi-Liquid effects the following low-temperature asymptotic were 
obtained for   axial and polar states 
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The influence of nonmagnetic impurities on the penetration depth of a p-wave 
superconductor was discussed in detail in Ref (Gross et al., 1986). At very low temperatures, 
the main contribution will originated from the eigenvalue with the lower temperature 
exponent n, i.e., for the axial state (point nodes) with 2T  low, and for the polar state (line 
nodes) the dominating contribution with a linear T . The quadratic dependence in axial state 
may arise from nonlocality. 
The low temperature dependence of penetration depth in polar and axial states used by 
Einzel et al., (Einzel et al. 1986) to analyze the   2T T  behavior of Ube13 at low 
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  case seems to be the proper state to analyze the experiment 

because it was favored by orientation effects and was the only one with 2T  dependence. 
Meanwhile, it has turned out that 2T  behavior is introduced immediately by T-matrix 
impurity scattering and also by weak scattering in the polar case. The axial sate., and 
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function of the electron spin densities at the nuclear site, in the Matsubara formalism is 
given by (in our units 1Bk   ) 

      0R T S S       (68) 

here T  is the time order operator,   is the imaginary time,   H HS e S e  
  , and 

      †S r r r  
                 †S r r r  

   (69) 

with  † r
 and  r

  being the electron field operators. 
The Fourier transform of the correlation function is given by  
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The retarded correlation function is obtained by analytical continuation of the Matsubara 
correlation function    
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From Eqs. (66)- (70), one gets 
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where 2m m T   are the bosonic Matsubara frequencies. By using  Eqs. (11) and (12) into 
Eq. (71), the final result for the relaxation rate is 
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 is the Fermi Function.,  N   and  M   defined by the 

retarded Green’s factions as 
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In low temperatures limit the contribution of the fully gap ( 0 sin   ) Fermi surface I 
decrease and the effect of the gap 0 sin    Fermi surface II is enhanced. 
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As I mentioned above, the experimental data for CePt3Si at low temperature seem to point 
to the presence of lines of the gap nodes in gap parameter (In our gap model for 0   , 

0 sin    has line nodes). Symmetry imposed gap nodes exist only for the order 
parameters which transform according to one of the nonunity representations of the point 
group. For all such order parameters 0M  .Thus, Eq. (72) can be written as 
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In the clean limit the density of state can be calculated from BCS expression 
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For the gap parameter with line nodes from Eq. (76) one gets  
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Thus from Eq. (75) one has 
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Therefore, line nodes on the Fermi surface II lead to the low-temperature 3T  law in 
1

1T  which is in qualitative agreement with the experimental results. 
In the dirty limit the density of state can be written as 
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In the limit, 0    where 
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 is the electron density) the density of state is 

 

     20impN N ac    (80) 

where 0cotc g  ( 0  is the s-wave scattering phase shift), a is a constant, and   0N  the 
zero energy  0   quasi-particle density of state is given by 
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where  
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In the unitary limit  0u  , 0c    0 2  , from Eqs. (75) and (80) one obtains 
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1
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Thus the power-low temperature dependence of 1
1T   is affected by impurities and it 

changes to linear temperature dependence characteristic of the normal state Koringa relation 
again is in agreement with the experimental results.  

6. Conclusion 
In this chapter I have studied theoretically the effect of both magnetic and nonmagnetic 
impurities on the superconducting properties of a non-centrosymmetric superconductor and 
also I have discussed the application of my results to a model of superconductivity in 
CePt3Si. 
First, the critical temperature is obtained for a superconductor with an arbitrary of impurity 
concentration (magnetic and nonmagnetic) and an arbitrary degree of anisotropy of the 
superconducting order parameter, ranging from isotropic s wave to p wave and mixed (s+p) 
wave as particular cases. 
The critical temperature is found to be suppressed by disorder, both for conventional and 
unconventional pairings, in the latter case according to the universal Abrikosov-Gor’kov 
function. 
In the case of nonsentrosymmetrical superconductor CePt3Si with conventional pairing ( 1A  
representation with purely accidental line nodes), I have found that the anisotropy of the 
conventional order parameter increases the rate at which cT  is suppressed by impurities. 
Unlike the unconventional case, however, the superconductivity is never completely 
destroyed, even at strong disorder. 
In section 4, I have calculated the appropriate correlation function to evaluate the magnetic 
penetration depth. Besides nonlineary and nonlocality, the effect of impurities in the 
magnetic penetration depth when both s-wave and p-wave Cooper pairings coexist, has 
been considered. 
For superconductor CePt3Si, I have shown that such a model with different symmetries 
describes the data rather well. In this system the low temperature behavior of the magnetic 
penetration depth is consistence with the presence of line nodes in the energy gap and a 
quadratic dependence due to nonlocality may accrue below 0.015nonlocT K  . In a dirty 
superconductor the quadratic temperature dependence of the magnetic penetration depth 
may come from either impurity scattering or nonlocality, but the nonlocality and nodal 
behavior may be hidden by the impurity effects.  
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Finally, I have calculated the nuclear spin-lattice relaxation of CePt3Si superconductor. In 
the clean limit the line nodes which can occur due to the superposition of the two spin 
channels lead to the low temperature 3T  law in 1

1T  . In a dirty superconductor the linear 
temperature dependence of the spin-lattice relaxation rate characteristic of the normal state 
Koringa relation.  
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1. Introduction  
It has long been known that a repulsive force arises between a magnetic field (generated, 
for instance, by a permanent magnet - PM) and a superconductor –Sc (Arkadiev, 1947). 
This force is due to the repulsion of the magnetic field away from the superconductor – 
the Meissner effect. Type I superconductors only can be in the Meissner state, which 
means that a magnetic field will be always expelled from the superconductor, 
independently of its poles orientation. Nevertheless, type II superconductors may be in 
two different states: first, provided the magnetic field is low enough, they are at a 
Meissner state similar to type I superconductors. In this Meissner state they absolutely 
expel the magnetic field and prevalent repulsive forces appear. Second, for magnetic 
fields larger than the so-called First Critical Field HC1, the magnetic flux penetrates the 
superconductor creating a magnetization which contributes to an attractive resulting 
force. This second state is known as mixed state.  
In 1953 Simon first tried to make a superconducting bearing (Simon, 1953) using 
superconductors in the mixed state.The first engine using a superconducting bearing was 
made in 1958 (Buchhold, 1960). After the discovery of high critical temperature 
superconductors (Bednorz & Müller, 1986), the Meissner repulsive force has become a 
popular way of demonstrating superconducting properties (Early et al., 1988).For 
calculating forces between a magnet and a superconductor it is necessary to have models 
that describe both the flux penetration state and the Meissner state repulsion. The first one 
can be solved by using conventional methods to compute forces between magnetic elements 
and magnetized volumes. However, for the Meissner state the question has remained open 
until these last years. 
Several models using the method of images to calculate superconducting repulsion forces 
(Lin, 2006; Yang & Zheng, 2007) have been proposed. However, this method of images is 
limited to a few geometrical configurations that can be solved exactly, and the physical 
interpretation of the method is under discussion (Giaro et al., 1990; Perez-Diaz & Garcia-
Prada, 2007). Furthermore, some discrepancies within experiments still exist (Hull, 2000). 
A general local model based on London’s and Maxwell’s equations has been developed to 
describe the mechanics of the superconductor-permanent magnet system (Perez-Diaz et al., 
2008). Due to its differential form, this expression can be easily implemented in a finite 
elements analysis (FEA) and is consequently appliable to any shape of superconductor in 
pure Meissner state (Diez-Jimenez et al. 2010). 
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In this chapter, we present the demonstration of the model, the implementation into a finite 
elements program, the experimental verification and its limit of application. To finish, we 
show an example of usage. 

2. Magneto-mechanics of a superconductor in Meissner state 

A superconductor is in a pure Meissner state when it is exposed to an externally applied 
magnetic field, apH


, lower than a certain value, HC1. HC1 is a characteristic of the material 

(Alario & Vincent, 1991), which depends on temperature. In this case, it is assumed that both 
H


 and B


 are equal to zero inside the superconductor. When a magnetic field is then 
applied –for example by moving a permanent magnet close to the superconductor - a 
surface current density is generated on the outermost surfaces. According to the London 
equation, this current is confined only to a depth of λ(T). Type II superconductors, such as 
the rare earth oxide high temperature superconductors, have the highest values for λ, 
reaching typical values of thousands of Amstrongs (Umezawa & Crabtree, 1998). Therefore, 
as this paper deals with macroscopic elements, it can be approximated that current density 
has an infinitely localized surface current 

 ( , ) ( )sJ j x y z


 (1) 
 

where ( , )sj x y


  is a surface current density tangent to the surface vector field and ( )z  is a 
Dirac delta function on z. This current density will make H


 discontinuous when passing 

from the air or vacuum (z>0) into the superconductor (z<0).The second Maxwell law 
(Jackson, 1975) relates the magnetic field and the current density in such a way that ( , )sj x y


 

is determined by apH


.Using units from the MKSA system, this second Maxwell law can be 
written as 

 DH j
t


  




  (2) 

 

In the static limit it can be assumed that 0D
t







. Therefore it may simply be written as: 

 H J 
 

 (3) 

H


may be decomposed in that externally applied apH


 and that generated by the 
superconducting currents scH


. Furthermore, these three vector fields will be decomposed 

both in tangent and normal to the surface components: 

 // ////
ap scH H H 

  
 (4) 

 

and 

 ap scH H H   
  

 (5) 
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Note that  apH


 is continuous and fulfils: 0apH 


, provided the permanent magnet does 
not touch the superconductor surface. On the contrary, both H


  and scH


 are discontinuous 

at the superconducting surface. In particular, both //H  and //
scH are discontinuous. 

By using the divergence theorem (Jackson, 1975) on a small parallelepiped with volume V, a 
face just above the superconductor surface and another parallel face under it, it can be 
written that: 

    3
s

V S

H d x n H dS   
    (6) 

where S is the surface defining this parallelepiped and Sn  its normal vector. By using 
Maxwell law (3) it can be reduced to:  

  3
s

V S

J d x n H dS  
   (7) 

But, taking (1) into account, and considering 0H 
 

 under the superconducting surface it 
can be written that: 

  //s s
S S

j dS n H dS  
   (8) 

where //H


 is evaluated at z=0+ (limit above the superconductor surface). 
As this result is independent of the small parallelepiped previously chosen, the integrands 
must equal: 

 //( 0 )s sj n H z   
   (9) 

Furthermore, //( 0 ) 0H z  


  and  // //( 0 ) ( 0 )sc scH z H z    
 

 implies:  

 // //( 0 ) ( 0 )apscH z H z   
 

 (10) 

Therefore, an expression for the superconducting current as a function of the applied 
magnetic field may be written: 

 //2 2ap ap
s s sj n H n H   
     (11) 

All expressions shown use the MKS unit system. 
Applying the divergence theorem clearly shows that the total charge is always conserved, 
for whichever surface shape the superconductor has, provided the source of the applied 
field is outside the superconductor: 

 32 0ap ap
s s

S S V

j dS n H dS H d x      
     (12) 

Furthermore, 

 0ap scH H H    
   

 (13) 
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which is consistent with the previous expression for the superconducting current. 
The total field thus generated for a semi-infinite plane is equivalent to that generated by the 
method of images (Cansiz & Hull, 2005; Hellman et al. 1988; Hull & Cansiz, 1999; Moon, 
1994). As the expression (11) has been derived using only local arguments, it may be used 
for any shape of superconductor. It does not depend on the curvature of the surface. 

2.1 Force calculation 
The external force (by unit surface) experienced by the superconductor can be calculated by 
using Lorentz force. 

 ap
s

dF j B
dS

 
  

 (14) 

Using the previous expression for the superconducting current (1) and the constituent 
equation of air (15) (the medium in which the field is generated)   

 0
ap apB H
 

 (15) 

it can be written that: 

 02 ( )ap ap
s

dF n H H
dS

  
    (16) 

This is a local and exact expression for the “pressure” or more precisely “stress” or force per 
unit surface on the superconductor, which depends only on the applied magnetic field. It is 
useful for any shape of superconductor. This differs fundamentally from the general 
expression used to calculate the magnetic stress between magnetic materials as given by 
Moon. 
According to Newton’s law, the force exerted by the superconductor on the magnet is 
simply the opposite one. Therefore, for any shape of superconductor, the force exerted by 
the superconductor on the magnet can be written as: 

 02 ( )ap ap
sSc

F n H H dS   
    (17) 

where the integration extends over the whole surface of the superconductor. 

2.2 Torque calculation 
The torque suffered by the superconductor can easily be deduced as : 

 0(2 ( ) )ap ap
Sc sSc

M r n H H dS   
     (18) 

where r  is the position vector between the differential surface element and the center of 
mass of the superconductor bulk. Again, the integration extends over the whole surface of 
the superconductor. 
In order to calculate the moment applied over the magnet, the PMr must be the position 
vector between the differential surface element and the center of mass of the permanent 
magnet. As noted previously, the force exerted by the superconductor on the external 
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magnetic field (in this case a single permanent magnet) is simply the opposite one, and the 
same applies for the torque. 

 0(2 ( ) )ap ap
PM PM sSc

M r n H H dS    
     (19) 

3. Finite elements implementation 
Due to this differential form equation (16) can be easily implemented in a finite element 
program. A FEM algorithm has been adapted for the commercial software ANSYS. The 
SURF154 element of ANSYS was used insofar as it has defined a set of useful attributes e.g. 
the surface normal direction. The algorithm is valid in the context of a common 
electromechanical simulation. The steps for the simulation were: 
- Select Element Type: SOLID98 (with a maximum of one degree of freedom MAG) and 

SURF154. 
- Create the different materials to be used. For the superconductor bulk, air properties 

were used. 
- Generate the geometries of the volumes for the electromagnetic system. 
- Assign materials’ properties to each volume, selecting air for the superconductor.  
- Mesh the whole system with the SOLID98 element (as fine as is considered adequate - 

discussed further below).  
- Mesh the superconductor surface with the SURF154 element. 
- Apply the electromechanical loads to the system. 
- Solve the electromagnetic equation system. 
Once the system has been solved, the algorithm can be applied using a Command List. Fig. 1 
shows a flow-diagram of the procedure.  
This procedure has to be performed for each piece of superconductor in the system. Should 
there be more than one piece, a different internal SURF154 element must be created and 
accordingly, the number of SURF154 elements in the first step (ESEL) must be changed. 
These steps provide the three components of the force vector. The torque applied on the 
superconductor can also be calculated, from which the torques values can then be derived. 

3.1 Results provide by the post-processing 
The algorithm has been tested using one of the most common experiments found in relevant 
literature: a permanent magnet oriented vertically over a superconductor pile in any 
arbitrary position.  
Firstly, an electromagnetic system composed of a small magnet suspended over a 
superconducting cylinder was designed, as shown in Fig. 2.  
The dimensions of the superconductor were: 20 mm  diameter and 7.5 mm height, and the 
small magnet was characterized by a coercivity of 875 kA/m and a remanence of 1.18 T, 
with a 3.5 mm diameter and a 2 mm height. The magnet’s centroid was placed 10 mm over 
the surface of the superconductor. The entire system was placed in surroundings measuring 
100x100x100 mm. 
The results that can be obtained are the distribution of forces, torque and current densities 
per surface element. In fig 3, these distributions for an arbitrary position of the magnet over 
the superconductor are shown. 
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Fig. 1. Flow-diagram of the algorithm. 

 
 
 

 
 

Fig. 2. Small permanent magnet (m=0.016 Am2) over  superconductor. 
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Fig. 3. Force, torque and current density distributions per surface element. 
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The same simulation was repeated several times with different meshes, increasing the 
number of elements for the whole simulation. Using the parameter α, the fineness of the 
mesh can be defined as the ratio between the maximum of the area of the elements and the 
total area of the superconductor multiplied by 100. 

 max (elements areas)   100
total SC area

    (3) 

Different meshes along with their respective α parameters are shown in fig. 4. The number 
of SURF154 elements and the values of the solution are also displayed. 
 

 
Fig. 4. Different meshes of the superconductor pile. 

Fig. 5 shows the relative error of the calculations in relation to the analytical  solution (with a 
magnetic moment of 0.016 A·m2). The higher the number of surface elements, the smaller 
the relative error of the result. For example, where α is smaller than 0.1 %, the resulting 
relative error is less than 3 %.  
 

 
Fig. 5. Relative errors of the results vs. alpha for z=10 mm. 

In Fig. force versus z are shown for different values of  α. The FEM results tend towards the 
analytical values as α decreases. It is noted that the magnetic dipole approximation made for 
the analytical calculation only remains valid where there is a large distance between the 
permanent magnet and the superconductor.  
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Fig. 6. Levitation force computed by the analytical expression with a point magnetic dipole 
and by FEM with different α. 

The convergence of the algorithm has been checked in relation to the finite elements’ size, 
and compared to analytical solutions for simple geometries. An α parameter has been 
proposed to assess the relative error in the results. The results showed good accuracy, whilst 
not requiring high specification computing technology. 

4. Experimental verification 
Different experiments were carried out in order to check the validity of the model. Some of 
them will be summarized in the following. 

4.1 Force measurement 
The following methodology was used to measure the forces: a cylindrical superconductor 
made of polycrystalline YBa2Cu3O7-x,manufactured by CAN superconductors (Kamenice 
25168, Czech Republic) was immersed in a bath of liquid nitrogen N2 (77 K) at ambient 
pressure. The cylinder had a diameter of 45 mm and a height of 13 mm. It was fixed to a 
nitrogen vessel. The vessel, containing the superconductor, was placed on a lab jack stand to 
adjust the height. A small cylindrical permanent magnet was used, which had a coercivity of 
875 kA/m, a remanence of 1.18 T, and had a diameter of 5 mm and a height of 5 mm. All 
experimental measurements followed the same coordinate system shown in  Fig. 7. The 
origin of the coordinates was set at the center of the upper surface of the superconductor.  
The permanent magnet was placed over the superconductor (Z coordinate),and fixed 
vertically to a PVC cantilever according to its magnetization direction (θ = 90º). The 
cantilever had 2 pairs of strain gauges to measure vertical forces at its extremes. This strain 
gauge configuration is not sensitive to the lateral and axial forces. The torques were 
neglected due to the size of the magnet. The PVC cantilever was joined to a 3D positioning 
table. The position of the magnet was then fixed in relation to the superconductor surface 
with a precision of 0.1 mm. The strain gauges were calibrated using a dynamometer and a 
set of 12 references forces. The calibration constant was established by least squares fitting in 
K = (3.87±0.14)×10-4 N/με, with a correlation coefficient of R2 = 0.997. 
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Fig. 7. Coordinate system of the PM-SC configuration. The superconductor is down and the 
permanent magnet is over it. Figure is not scaled to real sizes. 

The measurement for every position was made in zero field cooling conditions (ZFC).   The 
vertical forces were recorded where X = 0.0, 5.0, 10.0, 15.0, 17.5, 20.0, 22.5 and 25.0 ± 0.1 mm; 
at 3 different heights from the surface of the superconductor: 12.0, 10.0, and 8.0  ± 0.1 mm. 
Furthermore, measurements were taken in the center of the upper superconductor face, X = 
0 mm from Z = 7.0 to 14.0 ± 0.1 mm. The Y position was always fixed at 0 mm.  
These positions were chosen in order to avoid exceeding a limit of 3.5 mT of magnetic flux 
density at any point of the superconductor surface. Using this limit ensures the Meissner state 
is retained. Regardless of this, after every measurement the remanent magnetization of the 
superconductor bulk was checked and in most cases no measurable magnetization was found. 
In order to compare the experimental and theoretical values, expression (16) was implemented 
in a finite element analysis program. The following figures (Fig 8-11) show the results. 
 

 
Fig. 8. Z dependence of vertical force for X=0 mm. 
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The FEA errors are estimated to be less than  3 %. 
The figures show positive agreement between experimental and theoretical values. Only 
Fig. 9 shows an appreciable difference for values approaching X = 20 mm. However, it must 
be pointed that the radius of the superconductor is 22.5 mm. It is only in these surroundings 
that a very low remanent magnetization was recorded, which indicates a non complete 
Meissner state. This explains why some  experimental values were lower than those of a 
complete Meissner state. 
 
 

 
Fig. 9. X dependence of vertical force for Z=8 mm. 

 

 
Fig. 10. X dependence of vertical force for Z=10 mm. 
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Fig. 11. X dependence of vertical force for Z=12 mm. 

4.2 Equilibrium angle measurement 
In addition to previous experiments, the mechanical behavior of a magnet which has the 
ability to tilt over the superconductor in the Meissner state was also studied in this paper. In 
the present experiment only one degree of freedom was permitted in the tilt angle of the 
magnet (θ coordinate). The equilibrium angle of the permanent magnet over the cylindrical 
superconductor was measured for different relative positions. The results can be used to 
understand not only how the permanent magnet is repelled, but also how it turns when it is 
released over a superconductor. 
 

 
Fig. 12. Measurement system: 1 - Superconductor bulk, 2 - Permanent magnet, 3 - 
Goniometer, 4 – Bearing (hidden), 5 – 3D table, 6 – Lab jack stand, 7 – Nitrogen vessel. 
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A cylindrical permanent magnet (made of NdFeB with a coercivity of 875 kA/m and a 
remanence of 1.29 T) was placed over the superconductor. Their dimensions were 6.3 mm in 
diameter and 25.4 mm in length and it had a magnetization direction parallel to its axis of 
revolution. A rigid plastic circular rod was fixed in the center of mass, perpendicular to the 
axis of revolution. This rod was used as the shaft in a plastic bearing, which was lubricated 
with oil. The whole bearing system was joined to a 3D displacement table. This arrangement 
ensured it was possible to control the position of the permanent magnet with an accuracy of 
0.1 mm, and the only permitted degree of freedom was the rotation around the Y axis. 
Concentric to the bearing, a graduate goniometer measured the angle of rotation of the 
magnet. The whole experiment design is shown in Fig 12. 
Fig. 13 shows the comparison between the equilibrium angles measured and those 
calculated by expression (19). 
 

 
Fig. 13. Comparative graph between experimental and FEA calculus of the equilibrium 
angle versus x position. Hight z  was fixed at + 15 mm. 

Again, there was a good agreement between the calculus made according to our model and 
the experiments. These experiments were carried out in  Zero Field cooling condition (ZFC), 
and consequently there is no remanent magnetization. 

5. Limits of application 

The lower critical field, Hc1, is one of the typical parameters of type II superconductors, 
which has been experimentally being assessed from the magnetization changes from the 
Meissner state slope to the reversible mixed-state behavior (Poole, 2007). Hc1 is directly 
related to the free energy of a flux line and contains information on essential mixed-state 
parameters, such as the London penetration depth, λL, and the Ginzburg–Landau 
parameter, κ. Measurements of Hc1 and, of course, of the upper critical field, Hc2, therefore 
provide a complete characterization of the mixed-state parameters of the superconductor. 
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Differences between the predicted Meissner forces and the experimentally measured ones 
indicate that a part of the sample is in the mixed-state. Establishing with precision the 
instant when the differences begin will permit us to determine the Hc1 mechanically. 
Nevertheless, many other experimental techniques have been used to determine the state 
transition; most of them based on some kind of d.c. or a.c. magnetic measurement, but also 
on muon spin rotation (μSR) or magneto-optical techniques (Meilikhov & Shapiro, 1992). 
The basic problem of magnetization measurements introduced by flux pinning lies in the 
fact that the change of slope at the lower critical field is extremely small, since the first 
penetrating flux lines are immediately pinned and change the overall magnetization 
( /M m V ) only marginally. Elaborate schemes of subtracting the measured moments 
from an initial Meissner slope (Vandervoort et al., 1991; Webber et al., 1983) or experiments 
providing us directly the derivative of magnetization (Hahn & Weber, 1983; Wacenoysky et 
al., 1989; Weber et al., 1989) have been employed, SQUIDS have also been used to improve 
the precision of these kind of means (Böhmer et al., 2007). 
The method also determines the zone at the sample where transition from Meissner to 
mixed state occurs. 
For a position of the magnet with respect to the superconductor we define the Meissner 
Efficacy as 
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where Fex is the experimentally measured force and FM is the calculated force according with 
the Meissner model cited above. For a certain position of the magnet a Meissner Efficacy 
equal to one (η =1) proves that the superconductor is completely in the Meissner state and 
there is not any flux penetration. On the contrary, values lower than 1 indicate that a part of 
the superconductor has flux penetration and is in the mixed-state. 
The measurement for every position was made in zero field cooling conditions (ZFC).  The 
origin of coordinates was set at the center of the upper surface of the superconductor. The 
reference point of the magnet was placed in the center of the lower surface of the magnet. 
Therefore, the Z coordinate is the distance between the faces of the magnet and the 
superconductor.  X is the distance of the center of the magnet to the axis of the 
superconductor cylinder (radial position).  We have recorded the vertical forces for X = 0.0, 
5.0, 10.0, 15.0, 17.5, 20.0, 22.5 and 25.0 ± 0.1 mm; at 4 different heights from the surface of the 
superconductor: 12.0, 10.0, 8.0 and 6.0  ± 0.1 mm.  
Fig. 14 shows the Meissner Efficacy versus the maximum of the surface current density 
distribution Jsurf  for different positions. 
We observe that for low values of the maximum surface current density, the Meissner 
Efficacy is just 1.  
From a certain value, the Meissner Efficacy decays linearly.  From this data we can derive a 
weighted mean value of  Jc1 surf = 6452 ± 353 A/m for a polycrystalline YBa2Cu3O7-x sample at 
77 K.  
In Table 1  Hc1 values from different authors are shown for comparison. The values are those 
obtained for the Hc1  parallel to c-axis in monocrystalline samples. Our value for a 
polycrystalline sample is of the same order of magnitude than the lowest monocrystalline 
values.  
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Fig. 14. Meissner Efficacy versus maximum Jsurf for different positions. The values obtained 
for X=5.0, 10.0, 15.0 mm radial positions are similar to those obtained for the X=0.0 mm 
values. 
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Table 1. Comparison of the values found in different articles with that measured in this 
paper. The values and relative errors have been obtained directly from graphs, at 77 K. 
Available values for H  (a,b)  and H ‖ (c) in monocrystals are shown. H ‖ (c) is always 
greater than H  (a,b) 

The uncertainty in the determination of Jc1 surf may be reduced by increasing the number of 
series of measurements (or paths). Therefore, this is a method intrinsically more precise than 
other common methods.  
In fact, the values far from the Meissner state contribute to improve the accuracy of the Jc1 surf 
determination.  The determination of the slopes of  straight lines has a propagation of errors 
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more convenient than that in the case of the measurement of a change in the slope of the 
tangents to a curve. Other methods, therefore, would require high precision measurements 
to obtain a reasonable error for Hc1. 
This results are in according to the border and thickness effects and border magnetization 
that have been already described by other authors in an uniform magnetic field ( Brandt, 
2000; Morozov et al., 1996; Li et al., 2004; Schmidt et al., 1997): 

6. Example of application - permanent magnet over a superconducting torus 
We calculate the torque exerted between a superconducting torus and a permanent magnet 
by using this model. We find that there is a flip effect on the stablest direction of the magnet 
depending on its position. This could be easily used as a digital detector for proximity. 
 We consider a full superconducting torus and a cylindrical permanent NdFeB magnet over 
the superconductor axis (Z axis). In figure 15 we can observe the geometrical configuration 
of both components. Every calculation is referenced with respect of a Cartesian coordinate 
system placed in the center of mass of the torus which Z axis is coincident with the axis of 
the torus. 
 

 
Fig. 15. Permanent magnet over a toroidal superconductor set-up. The dimensions are: LPM - 
length of the cylindrical permanent magnet, ØPM – diameter of the  cylindrical permanent 
magnet, RINT – Inner radius of the torus, ØSECTION – Diameter of the circular section of the 
torus. z is the vertical coordinate of the center of the magnet and θ is the angle between the 
axis of the magnet and the vertical Z axis.  

The superconducting torus has an internal radius RINT = 6 mm and a diameter of the section 
ØSECTION = 10 mm. The cylindrical permanent magnet has a length LPM = 5 mm and a 
diameter ØPM  = 5 mm. When calculating the magnetic field generated by the magnet we 
define its magnetic properties as: Coercive magnetic field HCOERCIVITY = 875 kA/m and 
remanent magnetic flux density BREMANENT = 1.18 T. We assume that the direction of 
magnetization of the permanent magnet coincides with its axis of revolution. 
The variables θ and z are the coordinates we modify in order to analyze the mechanical 
behavior of the magnet over the superconductor. z is the distance along the Z axis between 
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the center of mass of the torus and the one of the cylindrical permanent magnet. θ is the 
angle between the axis of the magnet and the vertical Z axis. 
The equilibrium angle (θeq) as a function of z can be determined as follows. For a certain z 
we calculate the Y component of the torque (My) exerted on the magnet by the 
superconductor as a function of θ and we find the equilibrium angle as the value for which 
My(θeq)=0. The sign of the slope  dMy/dθ at that point determines the stability or instability 
of the equilibrium point.  
 

 
Fig. 16. My applied to the permanent magnet by the superconductor as a function of θ for z= 
0, 3, 6, 9, 12 and 15 mm. 

In figure 16 the torque (My) exerted on the magnet by the superconductor as a function of θ 
is shown for z = 0, 3, 6, 9, 12 and 15 mm.  The maximum values for the torque exerted to the 
permanent magnet appear at θ = 45º and θ = 135º for every z. The remarkable fact is that the 
sign suddenly changes when moving from z = 3 mm to z = 6 mm. The equilibrium points 
are always at θ = 0º and θ = 90º, but θ = 0º  is a stable equilibrium point for z = 0 mm and z = 
3 mm, while it is unstable for the rest of the positions. On the other hand θ = 90º is unstable 
for z = 0 mm and z = 3 mm, but it is stable for the rest of the positions. That means that if 
you approach a magnet along the Z axis and it is able to rotate, it will be perpendicular to 
the Z axis while it is at z  ≥ 6 mm, but it will suddenly rotate to be parallel to the Z axis when 
you pass from z = 6 to z ≤ 3.  
In figure 17 the variation of the torque at θ = 45º as a function of z.  The torque changes its 
sign between z =3 mm and z =4 mm. 
Finally, figure 18 shows the stable equilibrium angle as a function of z.  It is evident that, at a 
certain position between z =+ 3 and z =+ 4 mm we found that the stable equilibrium angle 
switches from a vertical orientation of the magnet to an horizontal one describing the flip 
effect claimed in this work.  
Therefore, it can be concluded that if you approach a magnet along the Z axis and it is able 
to rotate, it will be perpendicular to the Z axis while it is at a certain distance (z ≥ 4 mm in 
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our example) and it will change to be parallel to the Z axis for closer positions (z ≤ 3 mm in 
our example). As the equilibrium angle does not depend on the magnetic moment, the 
magnet can be much smaller. As a flip in the orientation of a permanent magnet can be 
easily instrumented, this effect can be easily used as a binary detector for proximity. 
 

 
Fig. 17. Torque My exerted on the magnet for θ = 45º as a function of z. 

 

 
Fig. 18. Stable equilibrium angle (θeq) as a function of z. 

7. Conclusion 
Magnet-superconductor forces both in Meissner and mixed states can be calculated with the 
accuracy required to engineer useful levitating devices. 
The implementation of a local differential expression in a finite elements program opens 
new perspectives to the use of magnet-superconductor devices for engineering. This can be 
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used to calculate forces whatever the size, shape and geometry of the system, for both 
permanent magnets and electromagnets. 
Accuracy and convergence, in addition to the experimental verification for different cases 
have been tested. There is a good agreement between experimental results and calculation, 
even with very low-cost computing resources involved. 
Moreover, the expression can be used to determine the point when the mixed state arises in 
a superconductor piece. 

8. References  
Alario, M.A. & Vicent, J.L. (1991). Superconductividad, 1st ed. (EUDEMA, Madrid, 1991). 
Arkadiev, V. (1947). A floating magnet. Nature 160, 330 (1947). 
Bednorz, J.G. & Müller, K.A. (1986). Possible highT c superconductivity in the Ba- La- Cu- O 

system. Zeitschrift Für Physik B Condensed Matte.r 64, 189–193 (1986). 
Böhmer, C.; Brandstatter, G. & Weber, H. (2007). The lower critical field of high-temperature 

superconductors. Supercond. Sci. Techn., 10 (2007) A1-A10 
Brandt, E.H. (2000). Superconductors in realistic geometries: geometric edge barrier versus

pinning. Physica C, 332 (2000)  99-107 
Buchhold, T.A. (1960). Applications of superconductivity. Scientific American 3, 74 (1960). 
Cansiz, A.; Hull, J.R. & Gundogdu O. (2005). Translational and rotational dynamic analysis

of a superconducting levitation system. Supercond. Sci. Technol. 18, 990 (2005). 
Diez-Jimenez E. et al. (2010). Finite element algorithm for solving supercondcuting Meissner 

repulsion forces. Icec 23 - Icmc 2010 (Wroclaw (Poland), 2010). 
Early, E.A.; Seaman, C.L.; Yang, K.N. & Maple, M.B. (1988) American Journal Of Physics 56, 

617 (1988). 
Geflbaux, X. & Tazawa, M. (1998). Étude de la variation de la longueur de London entre 5 et 

70 K , dans un film très mince d ’ YBaCuOç6 , par spectromérie dans I ’ infrarouge 
lointain ; comparaison avec NbN. C.R. de l’Academie Sciences. Fasc. B, 324 (1998) 389-
397 

Giaro, K.; Gorzkowski, W. & Motylewski, T. (1990). A correct description of the interaction 
between a magnetic moment and its image. Physica C 168, 479-481 (1990). 

Gijutsucho, K. (2001) Patent JP2001004652-A, (2001) Japan 
Hahn, P. & Weber, H.W. (1983). Automatic device for magnetization measurements on

superconductors. Cryogenics, 23 (1983) 87-90 
Hellman F. et al. (1988). Levitation of a magnet over a flat type II superconductor. Journal Of 

applied Physics 63, 447 (1988). 
Hull, J.R. & Cansiz, A. (1999). Vertical and lateral forces between a permanent magnet and a

high-temperature superconductor. Journal Of Applied Physics 86, (1999). 
Hull, J.R. (2000). Superconducting bearings. Supercond. Sci. Techn., 13 (2000) R1–R15 
Jackson, J.D. (1975) Classical Electrodynamics (John Wiley & Sons, New York, 1975). 
Kaiser, D.L. & Swartzendruber, L.J. (1991). Lower critical field measurements in YBACUO

single cristals. Proc. Adv. in mat. sci. & appl. of HTSC (1991) 
Li, Q.; Suenaga, M. & Ye, Z. (2004). Crossover of thickness dependence of critical current

density J(c)(T,H) in YBa2Cu3O7-delta thick films. App. Physics Lett. 84  (2004) 3528-
3530 

Lin, Q. (2006). Theoretical development of the image method for a general magnetic source



 
Superconductivity – Theory and Applications 

 

170 

our example) and it will change to be parallel to the Z axis for closer positions (z ≤ 3 mm in 
our example). As the equilibrium angle does not depend on the magnetic moment, the 
magnet can be much smaller. As a flip in the orientation of a permanent magnet can be 
easily instrumented, this effect can be easily used as a binary detector for proximity. 
 

 
Fig. 17. Torque My exerted on the magnet for θ = 45º as a function of z. 

 

 
Fig. 18. Stable equilibrium angle (θeq) as a function of z. 

7. Conclusion 
Magnet-superconductor forces both in Meissner and mixed states can be calculated with the 
accuracy required to engineer useful levitating devices. 
The implementation of a local differential expression in a finite elements program opens 
new perspectives to the use of magnet-superconductor devices for engineering. This can be 

 
Foundations of Meissner Superconductor Magnet Mechanisms Engineering 

 

171 

used to calculate forces whatever the size, shape and geometry of the system, for both 
permanent magnets and electromagnets. 
Accuracy and convergence, in addition to the experimental verification for different cases 
have been tested. There is a good agreement between experimental results and calculation, 
even with very low-cost computing resources involved. 
Moreover, the expression can be used to determine the point when the mixed state arises in 
a superconductor piece. 

8. References  
Alario, M.A. & Vicent, J.L. (1991). Superconductividad, 1st ed. (EUDEMA, Madrid, 1991). 
Arkadiev, V. (1947). A floating magnet. Nature 160, 330 (1947). 
Bednorz, J.G. & Müller, K.A. (1986). Possible highT c superconductivity in the Ba- La- Cu- O 

system. Zeitschrift Für Physik B Condensed Matte.r 64, 189–193 (1986). 
Böhmer, C.; Brandstatter, G. & Weber, H. (2007). The lower critical field of high-temperature 

superconductors. Supercond. Sci. Techn., 10 (2007) A1-A10 
Brandt, E.H. (2000). Superconductors in realistic geometries: geometric edge barrier versus

pinning. Physica C, 332 (2000)  99-107 
Buchhold, T.A. (1960). Applications of superconductivity. Scientific American 3, 74 (1960). 
Cansiz, A.; Hull, J.R. & Gundogdu O. (2005). Translational and rotational dynamic analysis

of a superconducting levitation system. Supercond. Sci. Technol. 18, 990 (2005). 
Diez-Jimenez E. et al. (2010). Finite element algorithm for solving supercondcuting Meissner 

repulsion forces. Icec 23 - Icmc 2010 (Wroclaw (Poland), 2010). 
Early, E.A.; Seaman, C.L.; Yang, K.N. & Maple, M.B. (1988) American Journal Of Physics 56, 

617 (1988). 
Geflbaux, X. & Tazawa, M. (1998). Étude de la variation de la longueur de London entre 5 et 

70 K , dans un film très mince d ’ YBaCuOç6 , par spectromérie dans I ’ infrarouge 
lointain ; comparaison avec NbN. C.R. de l’Academie Sciences. Fasc. B, 324 (1998) 389-
397 

Giaro, K.; Gorzkowski, W. & Motylewski, T. (1990). A correct description of the interaction 
between a magnetic moment and its image. Physica C 168, 479-481 (1990). 

Gijutsucho, K. (2001) Patent JP2001004652-A, (2001) Japan 
Hahn, P. & Weber, H.W. (1983). Automatic device for magnetization measurements on

superconductors. Cryogenics, 23 (1983) 87-90 
Hellman F. et al. (1988). Levitation of a magnet over a flat type II superconductor. Journal Of 

applied Physics 63, 447 (1988). 
Hull, J.R. & Cansiz, A. (1999). Vertical and lateral forces between a permanent magnet and a

high-temperature superconductor. Journal Of Applied Physics 86, (1999). 
Hull, J.R. (2000). Superconducting bearings. Supercond. Sci. Techn., 13 (2000) R1–R15 
Jackson, J.D. (1975) Classical Electrodynamics (John Wiley & Sons, New York, 1975). 
Kaiser, D.L. & Swartzendruber, L.J. (1991). Lower critical field measurements in YBACUO

single cristals. Proc. Adv. in mat. sci. & appl. of HTSC (1991) 
Li, Q.; Suenaga, M. & Ye, Z. (2004). Crossover of thickness dependence of critical current

density J(c)(T,H) in YBa2Cu3O7-delta thick films. App. Physics Lett. 84  (2004) 3528-
3530 

Lin, Q. (2006). Theoretical development of the image method for a general magnetic source



 
Superconductivity – Theory and Applications 

 

172 

in the presence of a superconducting sphere or a long superconducting cylinder.
Physical Review B 74, 24510 (2006). 

Mayer, B. & Schuster, S. (1993). Magnetic-field dependence of the critical current in
yba2cu3o7-delta bicrystal grain-boundary junctions. App. Physics Lett. 63  (1993) 
783-785 

Meilikhov, E. & Shapiro, V.G. (1992). Critical fields of the htsc superconductors.  Supercond. 
Sci. Techn., 5 (1992) S391-S394 

Moon, F.C. (1994). Superconducting Levitation (John Wiley & Sons, New York, 1994). 
Morozov, N. & Zeldov, E. (1996). Negative local permeability in Bi2Sr2CaCu2O8 crystals.

Phys. Rev. Lett. 76 (1996) 138-141 
Perez-Diaz, J.L. & Garcia-Prada, J.C. (2007). Finite-size-induced stability of a permanent 

magnet levitating over a superconductor in the Meissner state. Applied Physics 
Letters 91, 142503 (2007). 

Perez-Diaz, J.L. & Garcia-Prada, J.C. (2007). Interpretation of the method of images in 
estimating superconducting levitation. Physica C 467, 141-144 (2007). 

Perez-Diaz, J.L.; Garcia-Prada, J.C. & Diaz-Garcia, J.A. (2008). Universal Model for 
Superconductor-Magnet Forces in the Static Limit. I.R.E.M.E. 2, (2008). 

Poole, C.P. (2007) Superconductivity, 2nd ed.,AP, Elsevier, 2007 
Schmidt, B.; Morozov, N. & Zeldov, E. (1997). Angular dependence of the first-order vortex-

lattice phase transition in Bi2Sr2CaCu2O8. Phys. Rev. B, 55 (1997) R8705-R8708 
Simon, I. (1953). Forces acting on superconductors in magnetic fields. Journal Of Applied 

Physics 24, 19 (1953). 
Umezawa, A. & Crabtree, A. (1998). Anisotropy of the lowr critical field, magnetic

penetration depth, and equilibrium shielding current y single-crystal YBACUO.
Physical Review B. 38, (1998). 

Vandervoort, K.G.; Welp, U. & Kessler, J.E. (1991). Magnetic measurements of the upper and 
lower critical fields of oxygen-deficient yba2cu3o7-delta single-crystals. Phys. Rev. 
B, 43 (1991) 13042-13048 

Wacenovsky, M.; Weber, H.; Hyun, O.B. (1989). Magnetization of grain-aligned hoba2cu3o7-
delta. Physica C, 162 (1989) 1629-1630 

Weber, H.W.; Seidl, E. & Laa, C. (1991). Anisotropy effects in superconducting niobium.
Phys. Rev. B, 44 (1991) 7585-7600 

Wu, D.H. & Sridhar, S. (1990). Pinning forces and lower critical fields in YBACUO crystals:
temperature dependence and anisotropy. Phys. Rev. Lett. 65 (1990) 2074-2077 

Yang, Y. & Zheng, X. (2007). Method for solution of the interaction between superconductor 
and permanent magnet. Journal Of Applied Physics 101, 113922 (2007). 

 

9 

Properties of Macroscopic Quantum 
Effects and Dynamic Natures of 

Electrons in Superconductors 
Pang Xiao-feng 

Institute of Life Science and Technology, University of 
Electronic Science and Technology of China, Chengdu, 

International Centre for Materials Physics, 
Chinese Academy of Science, Shenyang, 

China 

1. Introduction 
So-called macroscopic quantum effects(MQE) refer to a quantum phenomenon that occurs 
on a macroscopic scale. Such effects are obviously different from the microscopic quantum 
effects at the microscopic scale as described by quantum mechanics. It has been 
experimentally demonstrated [1-17] that macroscopic quantum effects are the phenomena 
that have occurred in superconductors. Superconductivity is a physical phenomenon in 
which the resistance of a material suddenly vanishes when its temperature is lower than a 
certain value, Tc, which is referred to as the critical temperature of superconducting 
materials. Modern theories [18-21] tell us that superconductivity arises from the irresistible 
motion of superconductive electrons. In such a case we want to know “How the 
macroscopic quantum effect is formed? What are its essences? What are the properties and 
rules of motion of superconductive electrons in superconductor?” and, as well, the answers 
to other key questions. Up to now these problems have not been studied systematically. We 
will study these problems in this chapter.  

2. Experimental observation of property of macroscopic quantum effects in 
superconductor 

(1) Superconductivity of material. As is known, superconductors can be pure elements, 
compounds or alloys. To date, more than 30 single elements, and up to a hundred alloys and 
compounds, have been found to possess the characteristics [1-17] of superconductors. 
When cT T≤ , any electric current in a superconductor will flow forever without being 
damped. Such a phenomenon is referred to as perfect conductivity. Moreover, it was 
observed through experiments that, when a material is in the superconducting state, any 
magnetic flux in the material would be completely repelled resulting in zero magnetic fields 
inside the superconducting material, and similarly, a magnetic flux applied by an external 
magnetic field can also not penetrate into superconducting materials. Such a phenomenon is 
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called the perfect anti-magnetism or Maissner effect. Meanwhile, there are also other 
features associated with superconductivity, which are not present here  
How can this phenomenon be explained? After more than 40 years’ effort, Bardeen, Cooper 
and Schreiffier proposed the new idea of Cooper pairs of electrons and established the 
microscopic theory of superconductivity at low temperatures, the BCS theory [18-21],in 
1957, on the basis of the mechanism of the electron-phonon interaction proposed by Frohlich 
[22-23]. According to this theory, electrons with opposite momenta and antiparallel spins 
form pairs when their attraction, due to the electron and phonon interaction in these 
materials, overcomes the Coulomb repulsion between them. The so-called Cooper pairs are 
condensed to a minimum energy state, resulting in quantum states, which are highly 
ordered and coherent over the long range, and in which there is essentially no energy 
exchange between the electron pairs and lattice. Thus, the electron pairs are no longer 
scattered by the lattice but flow freely resulting in superconductivity. The electron pairs in a 
superconductive state are somewhat similar to a diatomic molecule but are not as tightly 
bound as a molecule. The size of an electron pair, which gives the coherent length, is 
approximately 10−4 cm. A simple calculation shows that there can be up to 106 electron pairs 
in a sphere of 10−4 cm in diameter. There must be mutual overlap and correlation when so 
many electron pairs are brought together. Therefore, perturbation to any of the electron 
pairs would certainly affect all others. Thus, various macroscopic quantum effects can be 
expected in a material with such coherent and long range ordered states. Magnetic flux 
quantization, vortex structure in the type-II superconductors, and Josephson effect [24-26] in 
superconductive junctions are only some examples of the phenomena of macroscopic 
quantum mechanics. 
(2) The magnetic flux structures in superconductor. Consider a superconductive ring. 
Assume that a magnetic field is applied at T >Tc, then the magnetic flux lines 0φ  produced 
by the external field pass through and penetrate into the body of the ring. We now lower the 
temperature to a value below Tc, and then remove the external magnetic field. The magnetic 
induction inside the body of circular ring equals zero ( B


= 0) because the ring is in the 

superconductive state and the magnetic field produced by the superconductive current 
cancels the magnetic field, which was within the ring. However, part of the magnetic fluxes 
in the hole of the ring remain because the induced current is in the ring vanishes. This 
residual magnetic flux is referred to as “the frozen magnetic flux”. It has been observed 
experimentally, that the frozen magnetic flux is discrete, or quantized. Using the 
macroscopic quantum wave function in the theory of superconductivity, it can be shown 
that the magnetic flux is established by 0' nΦ = φ  (n=0,1,2,…), where 0φ =hc/2e=2.07×10-15 
Wb is the flux quantum, representing the flux of one magnetic flux line. This means that the 
magnetic fluxes passing through the hole of the ring can only be multiples of 0φ [1-12]. In 
other words, the magnetic field lines are discrete. We ask, “What does this imply?” If the 
magnetic flux of the applied magnetic field is exactly n, then the magnetic flux through the 
hole is n 0φ , which is not difficult to understand. However, what is the magnetic flux 
through the hole if the applied magnetic field is (n+1/4) 0φ ? According to the above, the 
magnetic flux cannot be (n+1/4) 0φ . In fact, it should be n 0φ . Similarly, if the applied 
magnetic field is (n+3/4) 0φ  and the magnetic flux passing through the hole is not 
(n+3/4) 0φ , but rather (n+1) 0φ , therefore the magnetic fluxes passing through the hole of 
the circular ring are always quantized.  
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An experiment conducted in 1961 surely proves this to be so, indicating that the 
magnetic flux does exhibit discrete or quantized characteristics on a macroscopic scale. 
The above experiment was the first demonstration of the macroscopic quantum effect. 
Based on quantization of the magnetic flux, we can build a “quantum magnetometer” 
which can be used to measure weak magnetic fields with a sensitivity of 3×10-7 Oersted. 
A slight modification of this device would allow us to measure electric current as low as 
2.5×10-9 A.  
(3) Quantization of magnetic-flux lines in type-II superconductors. The superconductors 
discussed above are referred to as type-I superconductors. This type of superconductor 
exhibits a perfect Maissner effect when the external applied field is higher than a critical 
magnetic value cH


. There exists other types of materials such as the NbTi alloy and Nb3Sn 

compounds in which the magnetic field partially penetrates inside the material when the 
external field H


 is greater than the lower critical magnetic field 1cH


, but less than the 

upper critical field 2cH


[1-7]. This kind of superconductor is classified as type-II 
superconductors and is characterized by a Ginzburg-Landau parameter greater than 1/2. 
Studies using the Bitter method showed that the penetration of a magnetic field results in 
some small regions changing from superconductive to normal state. These small regions in 
normal state are of cylindrical shape and regularly arranged in the superconductor, as 
shown in Fig.1. Each cylindrical region is called a vortex (or magnetic field line)[1-12]. The 
vortex lines are similar to the vortex structure formed in a turbulent flow of fluid. Both 
theoretical analysis and experimental measurements have shown that the magnetic flux 
associated with one vortex is exactly equal to one magnetic flux quantum 0φ , when the 
applied field 1cH H≥

 
, the magnetic field penetrates into the superconductor in the form of 

vortex lines, increased one by one. For an ideal type-II superconductor, stable vortices are 
distributed in triagonal pattern, and the superconducting current and magnetic field 
distributions are also shown in Fig. 1. For other, non-ideal type-II superconductors, the 
triagonal pattern of distribution can be also observed in small local regions, even though its 
overall distribution is disordered. It is evident that the vortex-line structure is quantized and 
this has been verified by many experiments and can be considered a result of the 
quantization of magnetic flux. Furthermore, it is possible to determine the energy of each 
vortex line and the interaction energy between the vortex lines. Parallel magnetic field lines 
are found to repel each other while anti-parallel magnetic lines attract each other. 
(4) The Josephson phenomena in superconductivity junctions [24-26]. As it is known in 
quantum mechanics, microscopic particles, such as electrons, have a wave property and that 
can penetrate through a potential barrier. For example, if two pieces of metal are separated 
by an insulator of width of tens of angstroms, an electron can tunnel through the insulator 
and travel from one metal to the other. If voltage is applied across the insulator, a tunnel 
current can be produced. This phenomenon is referred to as a tunneling effect. If two 
superconductors replace the two pieces of metal in the above experiment, a tunneling 

current can also occur when the thickness of the dielectric is reduced to about 30
0
A . 

However, this effect is fundamentally different from the tunneling effect discussed above in 
quantum mechanics and is referred to as the Josephson effect.   
Evidently, this is due to the long-range coherent effect of the superconductive electron pairs. 
Experimentally, it was demonstrated that such an effect could be produced via many types 
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of junctions involving a superconductor, such as superconductor-metal-superconductor 
junctions, superconductor-insulator- superconductor junctions, and superconductor bridges. 
These junctions can be considered as superconductors with a weak link. On the one hand, 
they have properties of bulk superconductors, for example, they are capable of carrying 
certain superconducting currents. On the other hand, these junctions possess unique 
properties, which a bulk superconductor does not. Some of these properties are summarized 
in the following. 
(A) When a direct current (dc) passing through a superconductive junction is smaller than a 
critical value Ic, the voltage across the junction does not change with the current. The critical 
current Ic can range from a few tens of μA to a few tens of mA.  
(B) If a constant voltage is applied across the junction and the current passing through the 
junction is greater than Ic, a high frequency sinusoidal superconducting current occurs in 
the junction. The frequency is given by υ=2eV/h, in the microwave and far-infrared regions 
of (5-1000)×109Hz. The junction radiates a coherent electromagnetic wave with the same 
frequency. This phenomenon can be explained as follows: The constant voltage applied 
across the junction produces an alternating Josephson current that, in turn, generates an 
electromagnetic wave of frequency, υ. The wave propagates along the planes of the junction. 
When the wave reaches the surface of the junction (the interface between the junction and its 
surrounding), part of the electromagnetic wave is reflected from the interface and the rest is 
radiated, resulting in the radiation of the coherent electromagnetic wave. The power of 
radiation depends on the compatibility between the junction and its surrounding. 
(C) When an external magnetic field is applied over the junction, the maximum dc current, 
Ice , is reduced due to the effect of the magnetic field. Furthermore, Ic changes periodically 
as the magnetic field increases. The cI H−  curve resembles the distribution of light intensity 
in the Fraunhofer diffraction experiment , and the latter is shown in Fig. 2. This 
phenomenon is called quantum diffraction of the superconductivity junction. 
 

 
Fig. 1. Current and magnetic field distributionseffect in in a type-II superconductor. 
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Fig. 2. Quantum diffractionsuperconductor junction 

(D) When a junction is exposed to a microwave of frequency, υ, and if the voltage applied 
across the junction is varied, it can be seen that the dc current passing through the junction 
increases suddenly at certain discrete values of electric potential. Thus, a series of steps 
appear on the dc I − V curve, and the voltage at a given step is related to the frequency of 
the microwave radiation by nυ=2eVn/h(n=0,1,2,3…). More than 500 steps have been 
observed in experiments. 
Josephson first derived these phenomena theoretically and each was experimentally verified 
subsequently. All these phenomena are, therefore, called Josephson effects [24-26]. In 
particular, (1) and (3) are referred to as dc Josephson effects while (2) and (4) are referred to 
as ac Josephson effects. Evidently, Josephson effects are macroscopic quantum effects, which  
can be explained well by the macroscopic quantum wave function. If we consider a 
superconducting junction as a weakly linked superconductor, the wave functions of the 
superconducting electron pairs in the superconductors on both sides of the junction are 
correlated due to a definite difference in their phase angles. This results in a preferred 
direction for the drifting of the superconducting electron pairs, and a dc Josephson current 
is developed in this direction. If a magnetic field is applied in the plane of the junction, the 
magnetic field produces a gradient of phase difference, which makes the maximum current 
oscillate along with the magnetic field, and the radiation of the electromagnetic wave occur. 
If a voltage is applied across the junction, the phase difference will vary with time and 
results in the Josephson effect. In view of this, the change in the  phase difference of the 
wave functions of superconducting electrons plays an important role in Josephson effect, 
which will be discussed in more detail in the next section.   
The discovery of the Josephson effect opened the door for a wide range of applications of 
superconductor theory. Properties of superconductors have been explored to produce 
superconducting quantum interferometer–magnetometer, sensitive ammeter, voltmeter, 
electromagnetic wave generator, detector, frequency-mixer, and so on. 
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3. The properties of boson condensation and spontaneous coherence of 
macroscopic quantum effects 
3.1 A nonlinear theoretical model of theoretical description of macroscopic quantum 
effects 
From the above studies we know that the macroscopic quantum effect is obviously different 
from the microscopic quantum effect, the former having been observed for physical 
quantities, such as, resistance, magnetic flux, vortex line, and voltage, etc.  
 In the latter, the physical quantities, depicting microscopic particles, such as energy, 
momentum, and angular momentum, are quantized. Thus it is reasonable to believe that the 
fundamental nature and the rules governing these effects are different.  
We know that the microscopic quantum effect is described by quantum mechanics. 
However, the question remains relative to the definition of what are the mechanisms of 
macroscopic quantum effects? How can these effects be properly described?  
What are the states of microscopic particles in the systems occurring related to macroscopic 
quantum effects? In other words, what are the earth essences and the nature of macroscopic 
quantum states? These questions apparently need to be addressed.  
We know that materials are composed of a great number of microscopic particles, such as 
atoms, electrons, nuclei, and so on, which exhibit quantum features. We can then infer, or 
assume, that the macroscopic quantum effect results from the collective motion and 
excitation of these particles under certain conditions such as, extremely low temperatures, 
high pressure or high density among others. Under such conditions, a huge number of 
microscopic particles pair with each other condense in low-energy state, resulting in a 
highly ordered and long-range coherent. In such a highly ordered state, the collective 
motion of a large number of particles is the same as the motion of “single particles”, and 
since the latter is quantized, the collective motion of the many particle system gives rise to a 
macroscopic quantum effect. Thus, the condensation of the particles and their coherent state 
play an essential role in the macroscopic quantum effect.  
What is the concept of condensation? On a macroscopic scale, the process of transforming 
gas into liquid, as well as that of changing vapor into water, is called condensation. This, 
however, represents a change in the state of molecular positions, and is referred to as a 
condensation of positions. The phase transition from a gaseous state to a liquid state is a first 
order transition in which the volume of the system changes and the latent heat is produced, 
but the thermodynamic quantities of the systems are continuous and have no singularities. 
The word condensation, in the context of macroscopic quantum effects has its’ special 
meaning. The condensation concept being discussed here is similar to the phase transition 
from gas to liquid, in the sense that the pressure depends only on temperature, but not on 
the volume noted during the process, thus, it is essentially different from the above, first-
order phase transition. Therefore, it is fundamentally different from the first-order phase 
transition such as that from vapor to water. It is not the condensation of particles into a 
high-density material in normal space. On the contrary, it is the condensation of particles to 
a single energy state or to a low energy state with a constant or zero momentum. It is thus 
also called a condensation of momentum. This differs from a first-order phase transition and 
theoretically it should be classified as a third order phase transition, even though it is really 
a second order phase transition, because it is related to the discontinuity of the third 
derivative of a thermodynamic function. Discontinuities can be clearly observed in 
measured specific heat, magnetic susceptibility of certain systems when condensation 
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occurs. The phenomenon results from a spontaneous breaking of symmetries of the system 
due to nonlinear interaction within the system under some special conditions such as, 
extremely low temperatures and high pressures. Different systems have different critical 
temperatures of condensation. For example, the condensation temperature of a 
superconductor is its critical temperature cT , and from previous discussions[27-32]. 
From the above discussions on the properties of superconductors, and others we know that, 
even though the microscopic particles involved can be either Bosons or Fermions, those 
being actually condensed, are either Bosons or quasi-Bosons, since Fermions are bound as 
pairs. For this reason, the condensation is referred to as Bose-Einstein condensation[33-36] 
since Bosons obey the Bose-Einstein statistics. Properties of Bosons are different from those 
of Fermions as they do not follow the Pauli exclusion principle, and there is no limit to the 
number of particles occupying the same energy levels. At finite temperatures, Bosons can 
distribute in many energy states and each state can be occupied by one or more particles, 
and some states may not be occupied at all. Due to the statistical attractions between Bosons 
in the phase space (consisting of generalized coordinates and momentum), groups of Bosons 
tend to occupy one quantum energy state under certain conditions. Then when the 
temperature of the system falls below a critical value, the majority or all Bosons condense to 
the same energy level (e.g. the ground state), resulting in a Bose condensation and a series of 
interesting macroscopic quantum effects. Different macroscopic quantum phenomena are 
observed because of differences in the fundamental properties of the constituting particles 
and their interactions in different systems.  
In the highly ordered state of the phenomena, the behavior of each condensed particle is 
closely related to the properties of the systems. In this case, the wave function ief θφ = or 

ie θφ = ρ  of the macroscopic state[33-35], is also the wave function of an individual 
condensed particle. The macroscopic wave function is also called the order parameter of the 
condensed state. This term was used to describe the superconductive states in the study of 
these macroscopic quantum effects. The essential features and fundamental properties of 
macroscopic quantum effect are given by the macroscopic wave function φ  and it can be 
further shown that the macroscopic quantum states, such as the superconductive states are 
coherent and are Bose condensed states formed through second-order phase transitions after 
the symmetry of the system is broken due to nonlinear interaction in the system. 
In the absence of any externally applied field, the Hamiltonian of a given macroscopic 
quantum system can be represented by the macroscopic wave function φ  and written as 

 2 2 41H' [ ]
2

H dx dx= = − ∇φ − α φ + λ φ   (1) 

Here H’=H presents the Hamiltonian density function of the system, the unit system in 
which m=h=c=1 is used here for convenience. If an externally applied electromagnetic field 
does exist, the Hamiltonian given above should be replaced by  
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2 2 4*

j j ji
1 1H H' ( ie A ) F .F
2 4

dx dx  = = − ∂ − φ − α φ + λ φ +     

where ji j i tF A A j= ∂ − ∂ is the covariant field intensity, H= A∇ ×
   is the magnetic field 

intensity, e is the charge of an electron, and e*=2e, A


is the vector potential of the 
electromagnetic field, α  and λ  can be said to be some of the interaction constants. The 
above Hamiltonians in Eqs.(1) and (2) have been used in studying superconductivity by 
many scientists, including Jacobs de Gennes [37], Saint-Jams [38], Kivshar [39-40], Bullough 
[41-42], Huepe [43], Sonin [44], Davydov [45], et al., and they can be also derived from the 
free energy expression of a superconductive system given by Landau et al [46-47]. As a 
matter of fact, the Lagrangian function of a superconducting system can be obtained from 
the well-known Ginzberg-Landau (GL) equation [47-54] using the Lagrangian method, and 
the Hamiltonian function of a system can then be derived using the Lagrangian approach. 
The results, of course, are the same as Eqs. (1) and (2). Evidently, the Hamiltonian operator 
corresponding to Eqs. (1) and (2) represents a nonlinear function of the wave function of a 
particle, and the nonlinear interaction is caused by the electron-phonon interaction and due 
to the vibration of the lattice in BCS theory in the superconductors. Therefore, it truly exists. 
Evidently, the Hamiltonians of the systems are exactly different from those in  quantum 
mechanics, and a nonlinear interaction related to the state of the particles is involved in Eqs. 
(1) –(2). Hence, we can expect that the states of particles depicted by the Hamiltonian also 
differ from those in quantum mechanics, and the Hamiltonian can describe the features of 
macroscopic quantum states including superconducting states. These problems are to be 
treated in the following pages. Evidently, the Hamiltonians in Eqs. (1) and (2) possess the U 
(1) symmetry. That is, they remain unchanged while undergoing the following 
transformation: 

( , ) ( , ) ( , )jiQr t r t e r t− θ′φ → φ = φ    

where jQ  is the charge of the particle，θ is a phase and, in the case of one dimension, each 
term in the Hamiltonian in Eq. (1) or Eq. (2) contains the product of the ( , )j x t sφ , then we 
can obtain: 

1 2( )' ' '
1 2 1 2( , ) ( , ).... ( , ) ( , ) ( , ).... ( , )ni Q Q Q

n nx t x t x t e x t x t x t− + +⋅⋅⋅+ θφ φ φ = φ φ φ  

Since charge is invariant under the transformation and neutrality is required for the 
Hamiltonian, there must be (Q1 + Q2 + · · · + Qn) = 0 in such a case. Furthermore, since θ  is 
independent of x, it is necessary that ji Q

j je− θ∇φ → ∇φ . Thus each term in the Hamiltonian in 
Eqs. (1) is invariant under the above transformation, or it possesses the U(1) symmetry[16-17]. 
If we rewrite Eq. (1) as the following   

 2 2 4
eff eff

1H' =- ( ) U ( ),U ( )
2

∇φ + φ φ = −αφ + λφ  (3) 

We can see that the effective potential energy, ( )effU φ , in Eq. (3) has two sets of extrema, 
0 / 2φ = ± α λ  and 0φ =0, but the minimum is located at  

 0 / 2 0 0 ,φ = ± α λ = φ  (4) 
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rather than at 0φ =0 . This means that the energy at 0 / 2φ = ± α λ  is lower than that at 0φ =0. 
Therefore, 0φ =0 corresponds to the normal ground state, while 0 / 2φ = ± α λ  is the ground 
state of the macroscopic quantum systems .  
In this case the macroscopic quantum state is the stable state of the system. This shows that 
the Hamiltonian of a normal state differs from that of the macroscopic quantum state, in 
which the two ground states satisfy 0 0 0 0φ ≠ − φ  under the transformation, φ → −φ . 
That is, they no longer have the U(1) symmetry. In other words，the symmetry of the 
ground states has been destroyed. The reason for this is evidently due to the nonlinear term 

4λφ  in the Hamiltonian of the system. Therefore, this phenomenon is referred to as a 
spontaneous breakdown of symmetry. According to Landau’s theory of phase transition, 
the system undergoes a second-order phase transition in such a case, and the normal ground 
state 0φ ==0 is changed to the macroscopic quantum ground state 0 / 2φ = ± α λ . Proof will 
be presented in the following example .  
In order to make the expectation value in a new ground state zero in the macroscopic 
quantum state, the following transformation [16-17] is done:  

 '
0φ = φ + φ  (5) 

so that 

 0 ' 0φ =0 (6) 

After this transformation, the Hamiltonian density of the system becomes 

 2 2 2 3 3 4 2 4
0 0 0 0 0 0

1H'( + ) (6 ) 4 (4 2 )
2

φ φ = ∇φ + λφ − α φ + λφ φ + λφ − αφ φ + λφ − αφ + λφ  (7)  

Inserting Eq. (4) into Eq. (7), we have 2
0 0 04 2 0φ λφ − α φ =  . 

Consider now the expectation value of the variation H'/δ δφ  in the ground state, i.e. 
'0 0 0Hδ =

δφ
, then from Eq. (1), we get  

 2 3'0 0 0 - 2 4 0 0Hδ = ∇ φ + αφ − λφ =
δφ

 (8) 

After the transformation Eq. (6), it becomes  

 2 2 2 3 2
0 0 0 0 0(4 2 ) 12 0 0 4 0 0 (2 12 ) 0 0 0∇ φ + λφ − α φ + λφ φ + λ φ − α − λφ φ =  (9) 

where the terms 30 0φ  and 0 0φ  are both zero, but the fluctuation 2
012 0 0λφ φ  of the 

ground state is not zero. However, for a homogeneous system, at T=0K, the term 20 0φ  is 
very small and can be neglected.  
Then Eq. (9) can be written as  

 2 2
0 0 0- (4 2 ) 0∇ φ − λφ − α φ =  (10) 
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Obviously, two sets of solutions, 0 0φ =  , and 0 / 2φ = ± α λ , can be obtained from the 
above equation, but we can demonstrate that the former is unstable, and that the latter is 
stable. 
If the displacement is very small, i.e. '

0 0 0 0φ → φ + δφ = φ , then the equation satisfied by the 
fluctuation 0δφ  is relative to the normal ground state 0 0φ =  and is 

 2
0 02 0∇ δφ − αδφ =  (11) 

Its’ solution attenuates exponentially indicating that the ground state, 0 0φ =  is unstable. 
On the other hand, the equation satisfied by the fluctuation 0δφ  , relative to the ground 

state 0 / 2φ = ± α λ  is  2
0 02 0∇ δφ + αδφ = . Its’ solution, 0δφ , is an oscillatory function and 

thus the macroscopic quantum state ground state 0 / 2φ = ± α λ  is stable. Further 
calculations show that the energy of the macroscopic quantum state ground state is lower 
than that of the normal state by 2

0 / 4 0ε = −α λ < .Therefore, the ground state of the 
normal phase and that of the macroscopic quantum phase are separated by an energy gap 
of 2 /(4 )α λ so then, at T=0K, all particles can condense to the ground state of the 
macroscopic quantum phase rather than filling the ground state of the normal phase. 
Based on this energy gap, we can conclude that the specific heat of the macroscopic 
quantum systems has an exponential dependence on the temperature, and the critical 
temperature is given by: c pT =1.14 exp[ 1 /(3 / )N(0)]ω − λ α [16-17]. This is a feature of the 
second-order phase transition. The results are in agreement with those of the BCS theory 
of superconductivity.  
Therefore, the transition from the state 0 0φ = to the state 0 / 2φ = ± α λ  and the 
corresponding condensation of particles are second-order phase transitions. This is 
obviously the results of a spontaneous breakdown of symmetry due to the nonlinear 
interaction, 4λφ . 
In the presence of an electromagnetic field with a vector potential A


, the Hamiltonian of the 

systems is given by Eq. (2). It still possesses the U (1) symmetry.Since the existence of the 
nonlinear terms in Eq. (2) has been demonstrated, a spontaneous breakdown of symmetry 
can be expected. Now consider the following transformation: 

 1 2 1 0 2
1 1(x) [ (x) i (x)] [ (x) +i (x)]
2 2

φ = φ + φ → φ + φ φ  (12) 

Since i0 0 0φ = under this transformation,  then the equation (2) becomes  

2
2 2 2 2 2 2

i j j i 2 1 1 0 2 i 0 i 2

2 2 2 2 2 2
2 1 1 2 i 0 1 0 2 0 1 1 2

2 2 2 2 2 2
1 2 0 0 1 0 0

1 1 1 (e*)H' ( A A ) ( ) ( ) [( ) ]A e * A
4 2 2 2

1 1e * ( )A ( 12 2 ) (12 2 ) 4 ( )
2 2

4 ( ) (4 2 )

= ∂ − ∂ − ∇φ − ∇φ + φ + φ + φ − φ ∇φ +

φ ∇φ − φ ∇φ − − λφ + α φ − λφ + α φ + λφ φ φ + φ +

λ φ + φ − φ λφ + α φ − αφ + λφ

  (13) 

We can see that the effective interaction energy of 0φ  is still given by:  
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 2 4
eff 0 0 0U ( )φ = −αφ + λφ  (14)  

and is in agreement with that given in Eq. (4). Therefore, using the same argument, we can 
conclude that the spontaneous symmetry breakdown and the second-order phase transition 
also occur in the system. The system is changed from the ground state of the normal 
phase, 0 0φ =  to the ground state 0 / 2φ = ± α λ  of the  condensed phase in such a case. The 
above result can also be used to explain the Meissner effect and to determine its critical 
temperature in the superconductor. Thus, we can conclude that, regardless of the existence 
of any external field macroscopic quantum states, such as the superconducting state, are 
formed through a second-order phase transition following a spontaneous symmetry 
breakdown due to nonlinear interaction in the systems.  

3.2 The features of the coherent state of macroscopic quantum effects 
Proof that the macroscopic quantum state described by Eqs. (1) - (2) is a coherent state, using 
either the second quantization theory or the solid state quantum field theory is presented in 
the following paragraphs and pages.  
As discussed above, when '/Hδ δφ =0 from Eq. (1), we have 

 22 2 4 0∇ φ − αφ + λ φ φ =  (15)  

It is a time-independent nonlinear Schrödinger equation (NLSE), which is similar to the GL 
equation. Expanding φ  in terms of the creation and annihilation operators, +bp and bp 

 .ip xip +
p p

p p

1 1 (b e b e )
2V

x−φ = +
ε  (16) 

where V  is the volume of the system. After a spontaneous breakdown of symmetry, 0φ , the 
ground-state of φ , for the system is no longer zero, but 0 / 2φ = ± α λ . The operation of the 
annihilation operator on 0φ  no longer gives zero, i.e. 

 p 0b 0φ ≠  (17) 

A new field 'φ  can then be defined according to the transformation Eq. (5), where 0φ  is 
a scalar field and satisfies Eq. (10) in such a case. Evidently, 0φ can also be expanded 
into 

 .x .ip ip x+
0 p p

p p

1 1 ( e e )
2V

−φ = − ζ + ζ
ε  (18) 

The transformation between the fields φ  and 'φ  is obviously a unitary transformation, that 
is 

 ' 1 s s
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Obviously, two sets of solutions, 0 0φ =  , and 0 / 2φ = ± α λ , can be obtained from the 
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, the Hamiltonian of the 
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 1 2 1 0 2
1 1(x) [ (x) i (x)] [ (x) +i (x)]
2 2

φ = φ + φ → φ + φ φ  (12) 

Since i0 0 0φ = under this transformation,  then the equation (2) becomes  

2
2 2 2 2 2 2

i j j i 2 1 1 0 2 i 0 i 2

2 2 2 2 2 2
2 1 1 2 i 0 1 0 2 0 1 1 2

2 2 2 2 2 2
1 2 0 0 1 0 0

1 1 1 (e*)H' ( A A ) ( ) ( ) [( ) ]A e * A
4 2 2 2

1 1e * ( )A ( 12 2 ) (12 2 ) 4 ( )
2 2

4 ( ) (4 2 )

= ∂ − ∂ − ∇φ − ∇φ + φ + φ + φ − φ ∇φ +

φ ∇φ − φ ∇φ − − λφ + α φ − λφ + α φ + λφ φ φ + φ +

λ φ + φ − φ λφ + α φ − αφ + λφ

  (13) 

We can see that the effective interaction energy of 0φ  is still given by:  
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eff 0 0 0U ( )φ = −αφ + λφ  (14)  
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 ' ' ' ' ' '
0 0S i [ (x , t) (x , t) (x , t) (x , t)]dx= φ φ − φ φ  (20) 

φ  and 'φ   satisfy the following commutation relation 

 ' ' '[ (x , t), (x, t)] i (x )xφ φ = δ −  (21) 

From Eq. (6) we now have  '
00 ' 0 0φ = φ = . The ground state '

0φ  of the field 'φ thus 
satisfies  

 '
p 0b 0φ =  (22) 

From Eq. (6), we can obtain the following relationship between the annihilation operator ap 

of the new field 'φ  and the annihilation operator bp of the φ  field 

 S S
p p p pa e b e =b−= + ζ  (23) 

where 

 . .ip x -ip x*
p 0 03/2

p

1 [ (x, t)e i (x, t)e ]
(2 )

dxζ = φ + φ
π ε  (24) 

Therefore, the new ground state '
0φ   and the old ground state 0φ  are related through 

' S
0 0eφ = φ .  

Thus we have  

 ' ' '
p 0 p p 0 p 0a (b )φ = + ζ φ = ζ φ  (25) 

According to the definition of the coherent state, equation (25) we see that the new ground 
state '

0φ  is a coherent state. Because such a coherent state is formed after the spontaneous 
breakdown of symmetry of the systems, thus, it is referred to as a spontaneous coherent 
state. But when 0 0φ = , the new ground state is the same as the old state, which is not a 
coherent state.The same conclusion can be directly derived from the BCS theory [18-21]. In 
the BCS theory, the wave function of the ground state of a superconductor is written as  

 ' + + + +k
0 k k k -k 0 k k k-k 0 k-k 0

kkk k

ˆ ˆˆ( a a ) ( b ) ~ 'exp( b )υφ = μ + υ φ = μ + υ φ η φ
μ∏ ∏  (26) 

where + + +
k-k k -k

ˆ ˆ ˆb a a= . This equation shows that the superconducting ground state is a 
coherent state. Hence, we can conclude that the spontaneous coherent state in 
superconductors is formed after the spontaneous breakdown of symmetry. 
By reconstructing a quasiparticle-operator-free new formulation of the Bogoliubov-Valatin 
transformation parameter dependence [55], W. S. Lin et al [56] demonstrated that the BCS 
state is not only a coherent state of single-Cooper-pairs, but also the squeezed state of the 
double-Cooper- pairs, and reconfirmed thus the coherent feature of BCS superconductive 
state. 
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3.3 The Boson condensed features of macroscopic quantum effects 
We will now employ the method used by Bogoliubov in the study of superfluid liquid 
helium 4He to prove that the above state is indeed a Bose condensed state. To do that, we 
rewrite Eq. (16) in the following form [12-17] 

 ( )ipx
p p p - p

p p

1 1( ) ,
2

x q e q b b
V

+φ = = +
ε  (27) 

Since the field φ  describes a Boson, such as the Cooper electron pair in a superconductor 
and the Bose condensation can occur in the system, we will apply the following traditional 
method in quantum field theory, and consider the following transformation:   

 p 0 p p 0 p( ) , ( )b N p b N p+= δ + γ = δ + β  (28) 

where 0N is the number of Bosons in the system and   
0 ,if p 0

( )
1 , if p=0

p
≠

δ = 


  .  Substituting Eqs. 

(27) and (28) into Eq. (1), we can arrive at the Hamiltonian operator of the system as follows 

 ( ) ( )

( )

0 0
0 0

2 2
+ +0

0 0 0 p p - p p - p2 2
0 0 PP0 0

+ + + +
p - p p - p p - p0 0

+ + +
0 0 pp p - p p p p p

0 0
p p p p p

0 0 0 Pp

4 44

2 1
2 2

4 4
2 p

N NNH N
VV V

N N
V

N N
V V

+ +

+ +

 λ λ α λ = − γ + γ + β + β + − ε γ β + γ β + −  ε ε εε ε  
 β β + β β + γ γ +α λ  + +
 ε ε ε γ γ + γ β + β γ 

 λα λ
 ε − + γ γ + β β +
 ε ε ε ε ε 





 0 0
2

P

N NO O
V V

   + +       


 (29) 

Because the condensed density 0N V must be finite, it is possible that the higher order 
terms ( )00 N V and ( )2

00 N V may be neglected. Next we perform the following 
canonical transformation  

 * *
p p p p - p p p p p - p,.u c c u d d+ +γ = + υ β = + υ  (30) 

where pv and pu are real and satisfy ( )2 2
p p 1u − υ = . This introduces another transformation 

 ( )p p p p -p p p p - p
1
2

u u+ +ς = γ − υ γ + β − υ β , ( )p p p p - p p p p - p
1
2

u u+ + +η = γ − υ γ − β + υ β  (31) 

the following relations can be obtained  

 p p p p -p, ,H g M + ς = ς + ς          p p p p -p,H g M +  ′ ′η = η + η   (32) 

where 

 
( ) ( )
( ) ( )

2 2 2 2
p p p p p p p p p p p p p p;

2 2 2 2
p p p p p p p p p p p p p

2 ,  M 2   

2 ,  M 2  p

g G u F u F u G u

g G u F u F u G u

 = + υ + υ = + υ + υ


′ ′ ′ ′ ′ ′= + υ + υ = + υ + υ

 (33) 
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rewrite Eq. (16) in the following form [12-17] 
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V V
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Because the condensed density 0N V must be finite, it is possible that the higher order 
terms ( )00 N V and ( )2

00 N V may be neglected. Next we perform the following 
canonical transformation  

 * *
p p p p -p p p p p -p,.u c c u d d+ +γ = + υ β = + υ  (30) 

where pv and pu are real and satisfy ( )2 2
p p 1u − υ = . This introduces another transformation 

 ( )p p p p -p p p p - p
1
2

u u+ +ς = γ − υ γ + β − υ β , ( )p p p p - p p p p - p
1
2

u u+ + +η = γ − υ γ − β + υ β  (31) 

the following relations can be obtained  

 p p p p -p, ,H g M + ς = ς + ς          p p p p -p,H g M +  ′ ′η = η + η   (32) 

where 

 
( ) ( )
( ) ( )

2 2 2 2
p p p p p p p p p p p p p p;

2 2 2 2
p p p p p p p p p p p p p

2 ,  M 2   

2 ,  M 2  p

g G u F u F u G u

g G u F u F u G u

 = + υ + υ = + υ + υ


′ ′ ′ ′ ′ ′= + υ + υ = + υ + υ

 (33) 
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while  

 p p p p p
p p

6 ,  F 6
2 2

G α α′ ′= ε − + ξ = − + ξ
ε ε

,  '
p p p p

p p
2 ,  F 2

2 2pG α α′ ′ ′= ε − + ξ = − ξ
ε ε

 (34) 

where  ' 0

0 p

N=
Vp

λξ
ε ε

.  

We will now study two cases to illustrate the concepts. 
(A) Let p 0M′ = , then it can be seen from Eq. (32) that +

pη is the creation operator of 
elementary excitation and its energy is given by  

 2
p p p p4 2g′ ′= ε + ε ξ − α  (35) 

Using this concept, we can obtain the following form from Eqs. (32) and (34)  

 ( )2 p
p

p

1 1
2

G
u

g

 ′
′  = +

 ′ 
   and    ( )2 p

p
p

1 1
2

G
g

 ′
′  υ = − +

 ′ 
 (36) 

From Eq. (32), we know that +
pξ is not a creation operator of the elementary excitation. Thus, 

another transformation must be made  

 2 2
p p p p p p p, 1B +′ ′= χ ς + μ ς χ − μ =  (37)   

We can then prove that 

 [ , ]pB H p pE B=  (38) 

where    2
p p pE 12 2p′= ε ξ + ε − α

.
 

Now, inserting Eqs. (30), (37)-(38) and pM 0′ =  into Eq. (29), and after some reorganization, 
we have 

  ( ) ( )0 p p p - p - p p p p - p - p
p>0

H U E E B B B B g+ + + + ′= + + + + η η + η η   (39) 

where 

2
20 0

p p p p p2
0 pp p p>00

2 4 4 4 4 2
2

N NU u
V

 λ α α′ ′ ′ ′ ′ = − + ξ + ε + + ξ υ + η⋅ υ ε εε  
     

 ( )2
0 p p p p

p>0 p>0
2E E g E′= − μ = − −        (40) 

Both U and 0E are now independent of the creation and annihilation operators of the 
Bosons. 0U E+ gives the energy of the ground state. 0N can be determined from the 

condition, ( )0

0
0

U E
N

δ +
=

δ
, which gives  
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 20 0
0 0

1
4 2

N
V

αε= = ε φ
λ

 (41) 

This is the condensed density of the ground state 0φ .  From Eqs. (36), (37) and (40), thus we 
can arrive at:   

 2 2
p p p p,   Eg′ = ε − α = ε − α  (42) 

These correspond to the energy spectra of p
+η and pB+ ,respectively, and they are similar to 

the energy spectra of the Cooper pair and phonon in the BCS theory. Substituting Eq. (42) 
into Eq. (36), thus we now have:   

 
2 2
p p2 2

p p2 2
p p p p

2 - 21 1u 1+ ,     -1+
2 22 - e 2

   ε α ε − α   ′ ′= υ =      ε α ε − αε   

 (43) 

(B) In the case of Mp=0, a similar approach can be used to arrive at the energy spectrum 
corresponding to +

pξ as 2
p pE = ε + α , while that corresponding to +

p p p p -pA += χ η + μ η  is 
2

p pg′ = ε + α ,   where     

 
2 2
p p2 2

p p2 2
p p p p

2 21 1u 1+ ,     -1+
2 22 2

   ε + α ε + α   = υ =      ε ε + α ε ε + α   

                        (44) 

Based on experiments in quantum statistical physics, we know that the occupation number 
of the level with an energy of pε , for a system in thermal equilibrium at temperature 
T( 0)≠ is shown as:   

 
p Bp p p K T

1N b b
e 1

+
ε= =

−
 (45) 

where   denotes Gibbs average, defined as 
B

B

K T

K T

SP e

SP e

−Η

−Η

 
 =
 
 


 , here SP denotes the 

trace in a Gibbs statistical description. At low temperatures, or T 0 K→ , the majority of the 
Bosons or Cooper pairs in a superconductor condense to the ground state with p 0= . 

Therefore 0 0 0b b N+ ≈ , where 0N is the total number of Bosons or Cooper pairs in the 

system and 0N 1>> , i.e. 0 0b b 1 b b+ += << . 

As can be seen from Eqs. (27) and (28), the number of particles is extremely large when they 
lie in condensed state, that is to say:  

 ( )0 p=0 0 0
0

1 b b
2 V

+φ = φ = +
ε

 (46) 

Because 0 0 0γ φ = and 0 0 0β φ = , 0b and 0b+ can be taken to be 0N . The average value of 
∗φ φ in the ground state then becomes  
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−
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1 b b
2 V

+φ = φ = +
ε

 (46) 

Because 0 0 0γ φ = and 0 0 0β φ = , 0b and 0b+ can be taken to be 0N . The average value of 
∗φ φ in the ground state then becomes  
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Substituting Eq. (41) into Eq. (47), we can see that:   

0 2
∗ αφ φ =

λ
     or       

0 2
∗ αφ = ±

λ
  

which is the ground state of the condensed phase, or the superconducting phase, that we 
have known. Thus, the density of states, 0N V , of the condensed phase or the 
superconducting phase formed after the Bose condensation coincides with the average value 
of the Boson’s (or Copper pair’s) field in the ground state. We can then conclude from the 
above investigation shown in Eqs. (1) - (2) that the macroscopic quantum state or the 
superconducting ground state formed after the spontaneous symmetry breakdown is indeed 
a Bose-Einstein condensed state. This clearly shows the essences of the nonlinear properties 
of the result of macroscopic quantum effects. 
In the last few decades, the Bose-Einstein condensation has been observed in a series of 
remarkable experiments using weakly interacting atomic gases, such as vapors of rubidium, 
sodium lithium, or hydrogen. Its’ formation and properties have been extensively studied. 
These studies show that the Bose-Einstein condensation is a nonlinear phenomenon, 
analogous to nonlinear optics, and that the state is coherent, and can be described by the 
following NLSE or the Gross-Pitaerskii equation [57-59]:  

 ( )
2

3
2i V x

t' x'
∂φ ∂ φ= − − λ φ + φ
∂ ∂

 (48)       

where t =t ,   x =x 2m′ ′  . This equation was used to discuss the realization of the Bose-
Einstein condensation in the d 1+ dimensions (d 1,2,3)= by H. K. Bullough et.al [41-42]. 
Too, Elyutin et al [60-61]. gave the corresponding Hamiltonian density of a condensate 
system as follows:  
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2 41' ( ')
' 2

H V x
x

∂φ= + φ − λ φ
∂

 (49) 

where H’=H, the nonlinear parameters of λ  are defined as 2
1 02 /Naa aλ = − , with N being 

the number of particles trapped in the condensed state, a is the ground state scattering 
length, a0 and a1 are the transverse (y, z) and the longitudinal (x) condensate sizes (without 
self-interaction) respectively, (Integrations over y and z have been carried out in obtaining 
the above equation). λ  is positive for condensation with self-attraction (negative scattering 
length).The coherent regime was observed in Bose-Einstein condensation in lithium. The 
specific form of the trapping potential V (x’) depends on the details of the experimental 
setup. Work on Bose-Einstein condensation based on the above model Hamiltonian were 
carried out and are reported by C. F. Barenghi et al [31]. 
It is not surprising to see that Eq. (48) is exactly the same as Eq. (15), corresponding to the 
Hamiltonian density in Eq. (49) and, where used in this study is naturally the same as Eq. 
(1). This prediction confirms the correctness of the above theory for Bose-Einstein 
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condensation. As a matter of fact, immediately after the first experimental observation of 
this condensation phenomenon, it was realized that the coherent dynamics of the condensed 
macroscopic wave function could lead to the formation of nonlinear solitary waves. For 
example, self-localized bright, dark and vortex solitons, formed by increased (bright) or 
decreased (dark or vortex) probability density respectively, were experimentally observed, 
particularly for the vortex solution which has the same form as the vortex lines found in 
type II-superconductors and superfluids. These experimental results were in concordance 
with the results of the above theory. In the following sections of this text we will study the 
soliton motions of quasiparticles in macroscopic quantum systems, superconductors. We 
will see that the dynamic equations in macroscopic quantum systems do have such soliton 
solutions.   

3.4 Differences of macroscopic quantum effects from the microscopic quantum 
effects 
From the above discussion we may clearly understand the nature and characteristics of 
macroscopic quantum systems. It would be interesting to compare the macroscopic 
quantum effects and microscopic quantum effects. Here we give a summary of the main 
differences between them. 
1. Concerning the origins of these quantum effects; the microscopic quantum effect is 

produced when microscopic particles, which have only a wave feature are confined in a 
finite space, or are constituted as matter, while the macroscopic quantum effect is due 
to the collective motion of the microscopic particles in systems with nonlinear 
interaction. It occurs through second-order phase transition following the spontaneous 
breakdown of symmetry of the systems. 

2. From the point-of-view of their characteristics, the microscopic quantum effect is 
characterized by quantization of physical quantities, such as energy, momentum, 
angular momentum, etc. wherein the microscopic particles remain constant. On the 
other hand, the macroscopic quantum effect is represented by discontinuities in 
macroscopic quantities, such as, the resistance, magnetic flux, vortex lines, voltage, etc. 
The macroscopic quantum effects can be directly observed in experiments on the 
macroscopic scale, while the microscopic quantum effects can only be inferred from 
other effects related to them. 

3. The macroscopic quantum state is a condensed and coherent state, but the microscopic 
quantum effect occurs in determinant quantization conditions, which are different for 
the Bosons and Fermions. But, so far, only the Bosons or combinations of Fermions are 
found in macroscopic quantum effects. 

4. The microscopic quantum effect is a linear effect, in which the microscopic particles 
and are in an expanded state, their motions being described by linear differential 
equations such as the Schrödinger equation, the Dirac equation, and the Klein- 
Gordon equations.  

On the other hand, the macroscopic quantum effect is caused by the nonlinear interactions, 
and the motions of the particles are described by nonlinear partial differential equations 
such as the nonlinear Schrödinger equation (17). 
Thus, we can conclude that the macroscopic quantum effects are, in essence, a nonlinear 
quantum phenomenon. Because its’ fundamental nature and characteristics are different 
from those of the microscopic quantum effects, it may be said that the effects should be 
depicted by a new nonlinear quantum theory, instead of quantum mechanics.  
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condensation. As a matter of fact, immediately after the first experimental observation of 
this condensation phenomenon, it was realized that the coherent dynamics of the condensed 
macroscopic wave function could lead to the formation of nonlinear solitary waves. For 
example, self-localized bright, dark and vortex solitons, formed by increased (bright) or 
decreased (dark or vortex) probability density respectively, were experimentally observed, 
particularly for the vortex solution which has the same form as the vortex lines found in 
type II-superconductors and superfluids. These experimental results were in concordance 
with the results of the above theory. In the following sections of this text we will study the 
soliton motions of quasiparticles in macroscopic quantum systems, superconductors. We 
will see that the dynamic equations in macroscopic quantum systems do have such soliton 
solutions.   

3.4 Differences of macroscopic quantum effects from the microscopic quantum 
effects 
From the above discussion we may clearly understand the nature and characteristics of 
macroscopic quantum systems. It would be interesting to compare the macroscopic 
quantum effects and microscopic quantum effects. Here we give a summary of the main 
differences between them. 
1. Concerning the origins of these quantum effects; the microscopic quantum effect is 

produced when microscopic particles, which have only a wave feature are confined in a 
finite space, or are constituted as matter, while the macroscopic quantum effect is due 
to the collective motion of the microscopic particles in systems with nonlinear 
interaction. It occurs through second-order phase transition following the spontaneous 
breakdown of symmetry of the systems. 

2. From the point-of-view of their characteristics, the microscopic quantum effect is 
characterized by quantization of physical quantities, such as energy, momentum, 
angular momentum, etc. wherein the microscopic particles remain constant. On the 
other hand, the macroscopic quantum effect is represented by discontinuities in 
macroscopic quantities, such as, the resistance, magnetic flux, vortex lines, voltage, etc. 
The macroscopic quantum effects can be directly observed in experiments on the 
macroscopic scale, while the microscopic quantum effects can only be inferred from 
other effects related to them. 

3. The macroscopic quantum state is a condensed and coherent state, but the microscopic 
quantum effect occurs in determinant quantization conditions, which are different for 
the Bosons and Fermions. But, so far, only the Bosons or combinations of Fermions are 
found in macroscopic quantum effects. 

4. The microscopic quantum effect is a linear effect, in which the microscopic particles 
and are in an expanded state, their motions being described by linear differential 
equations such as the Schrödinger equation, the Dirac equation, and the Klein- 
Gordon equations.  

On the other hand, the macroscopic quantum effect is caused by the nonlinear interactions, 
and the motions of the particles are described by nonlinear partial differential equations 
such as the nonlinear Schrödinger equation (17). 
Thus, we can conclude that the macroscopic quantum effects are, in essence, a nonlinear 
quantum phenomenon. Because its’ fundamental nature and characteristics are different 
from those of the microscopic quantum effects, it may be said that the effects should be 
depicted by a new nonlinear quantum theory, instead of quantum mechanics.  
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4. The nonlinear dynamic natures of electrons in superconductors 
4.1 The dynamic equations of electrons in superconductors 
It is quite clear from the above section that the superconductivity of material is a kind of 
nonlinear quantum effect formed after the breakdown of the symmetry of the system due to 
the electron-phonon interaction, which is a nonlinear interaction.  
In this section we discuss the properties of motion of superconductive electrons in 
superconductors and the relation of the solutions of dynamic equations in relation to the 
above macroscopic quantum effects on it. The study presented shows that the 
superconductive electrons move in the form of a soliton, which can result in a series of 
macroscopic quantum effects in the superconductors. Therefore, the properties and motions 
of the quasiparticles are important for understanding the essences and rule of 
superconductivity and macroscopic quantum effects. 
As it is known, in the superconductor the states of the electrons are often represented by a 
macroscopic wave function,  

( , )
0( , ) ( , ) i r tr t f r t e θφ = φ

 
,   or   ie θφ = ρ , 

as mentioned above, where 2
0 / 2φ = α λ . Landau et al [45,46] used the wave function to give 

the free energy density function, f, of a superconducting system, which is represented by  

 
2

2 2 4

2s nf f
m

= − ∇φ − α φ + λ φ  (50) 

in the absence of any external field. If the system is subjected to an electromagnetic field 
specified by a vector potential A


, the free energy density of the system is of the form:  
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= − ∇ − φ − α φ + λ φ +
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 (51) 

where e*=2e , H= A∇ ×
  , α and λ  are some interactional constants related to the features of 

superconductor, m is the mass of electron, e* is the charge of superconductive electron, c is 
the velocity of light, h is Planck constant, / 2h= π , fn is the free energy of normal state. 
The free energy of the system is 3

s sF f d x=  . In terms of the conventional 
field, j

jl j l lF A A= ∂ − ∂ , (j, l=1, 2, 3), the term 2H /8π

  can be written as / 4jl

jlF F . Equations 
(50) - (51) show the nonlinear features of the free energy of the systems because it is the 
nonlinear function of the wave function of the particles, ( , )r tφ


. Thus we can predict that the 

superconductive electrons have many new properties relative to the normal electrons. From 
/ 0sFδ δφ =  we get 
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2 32 0
2m

∇ φ − αφ + λφ =  (52) 

and 
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in the absence and presence of an external fields respectively, and 

 2* *( * *)
2
e eJ A

mi mc
= + φ ∇φ − φ∇φ − φ
   (54) 

Equations (52) - (54) are just well-known the Ginzburg-Landau (GL) equation [48-54] in a 
steady state, and only a time-independent Schrödinger equation. Here, Eq. (52) is the GL 
equation in the absence of external fields. It is the same as Eq. (15), which was obtained from 
Eq. (1). Equation (54) can also be obtained from Eq. (2). Therefore, Eqs. (1)-(2) are the 
Hamiltonians corresponding to the free energy in Eqs. (50)- (51). 
From equations (52) - (53) we clearly see that superconductors are nonlinear systems. 
Ginzburg-Landau equations are the fundamental equations of the superconductors 
describing the motion of the superconductive electrons, in which there is the nonlinear term 
of 32λφ . However, the equations contain two unknown functions φ  and A


which make 

them extremely difficult to resolve.  

4.2 The dynamic properties of electrons in steady superconductors 
We first study the properties of motion of superconductive electrons in the case of no 
external field. Then, we consider only a one-dimensional pure superconductor [62-63], 
where 

 
2 2

0 ( , ), ' ( ) / 2 , / '( )x t T m x x T′φ = φ ϕ ξ = α = ξ                              (55) 

 

and where '( )Tξ  is the coherent length of the superconductor, which depends on 
temperature. For a uniform superconductor, 2

0'( ) 0.94 [ /( )]c cT T T Tξ = ξ − , where cT  is the 
critical temperature and 0ξ  is the coherent length of superconductive electrons at T=0. In 
boundary conditions of ϕ (x′=0)=1 , and ϕ (x′ → ±∞ ) =0, from Eqs. (52) and (54) we find 
easily its solution as: 

02 sec
'( )

x xh
T

 −ϕ = ±  ξ   
or  

 0
0

2sec [ ] sec [ ( )]
'( )

x x mh h x x
T

−α α αφ = ± = ± −
λ ξ λ 

  (56) 

 

This is a well-known wave packet-type soliton solution. It can be used to represent the 
bright soliton occurred in the Bose-Einstein condensate found by Perez-Garcia et. al. [64]. If 
the signs of α  and λ  in Eq. (52) are reversed, we then get a kink-soliton solution under the 
boundary conditions of ϕ (x′=0)=0, ϕ (x′ → ±∞ )= ± 1, 

 1/2 2 1/2
0( / 2 ) tanh{[ ( / ] }m x xφ = ± α λ α −   (57) 

 

The energy of the soliton, (56), is given by 
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 2* *( * *)
2
e eJ A

mi mc
= + φ ∇φ − φ∇φ − φ
   (54) 

Equations (52) - (54) are just well-known the Ginzburg-Landau (GL) equation [48-54] in a 
steady state, and only a time-independent Schrödinger equation. Here, Eq. (52) is the GL 
equation in the absence of external fields. It is the same as Eq. (15), which was obtained from 
Eq. (1). Equation (54) can also be obtained from Eq. (2). Therefore, Eqs. (1)-(2) are the 
Hamiltonians corresponding to the free energy in Eqs. (50)- (51). 
From equations (52) - (53) we clearly see that superconductors are nonlinear systems. 
Ginzburg-Landau equations are the fundamental equations of the superconductors 
describing the motion of the superconductive electrons, in which there is the nonlinear term 
of 32λφ . However, the equations contain two unknown functions φ  and A


which make 

them extremely difficult to resolve.  

4.2 The dynamic properties of electrons in steady superconductors 
We first study the properties of motion of superconductive electrons in the case of no 
external field. Then, we consider only a one-dimensional pure superconductor [62-63], 
where 

 
2 2

0 ( , ), ' ( ) / 2 , / '( )x t T m x x T′φ = φ ϕ ξ = α = ξ                              (55) 

 

and where '( )Tξ  is the coherent length of the superconductor, which depends on 
temperature. For a uniform superconductor, 2

0'( ) 0.94 [ /( )]c cT T T Tξ = ξ − , where cT  is the 
critical temperature and 0ξ  is the coherent length of superconductive electrons at T=0. In 
boundary conditions of ϕ (x′=0)=1 , and ϕ (x′ → ±∞ ) =0, from Eqs. (52) and (54) we find 
easily its solution as: 

02 sec
'( )

x xh
T

 −ϕ = ±  ξ   
or  

 0
0

2sec [ ] sec [ ( )]
'( )

x x mh h x x
T

−α α αφ = ± = ± −
λ ξ λ 

  (56) 

 

This is a well-known wave packet-type soliton solution. It can be used to represent the 
bright soliton occurred in the Bose-Einstein condensate found by Perez-Garcia et. al. [64]. If 
the signs of α  and λ  in Eq. (52) are reversed, we then get a kink-soliton solution under the 
boundary conditions of ϕ (x′=0)=0, ϕ (x′ → ±∞ )= ± 1, 

 1/2 2 1/2
0( / 2 ) tanh{[ ( / ] }m x xφ = ± α λ α −   (57) 

 

The energy of the soliton, (56), is given by 



 
Superconductivity – Theory and Applications 

 

192 

 
2 3/2

2 2 4
1

4( )
2 3 2so

dE dx
m dx m

∞

−∞

 φ α= − αφ − λφ = 
λ  


    (58) 

We assume here that the lattice constant, r0=1. The above soliton energy can be compared 
with the ground state energy of the superconducting state, Eground= 2 /4−α λ . Their 

difference is 3/2
1 ground

16 /2 0
3 2soE E

m
 − = α α + λ > 
 

 . This indicates clearly that the soliton 

is not in the ground state, but in an excited state of the system, therefore, the soliton is a 
quasiparticle. 
From the above discussion, we can see that, in the absence of external fields, the 
superconductive electrons move in the form of solitons in a uniform system. These solitons 
are formed by a nonlinear interaction among the superconductive electrons which 
suppresses the dispersive behavior of electrons. A soliton can carry a certain amount of 
energy while moving in superconductors. It can be demonstrated that these soliton states 
are very stable. 

4.3 The features of motion of superconductive electrons in an electromagnetic field 
and its relation to macroscopic quantum effects 
We now consider the motion of superconductive electrons in the presence of an 
electromagnetic field A


; its equation of motion is denoted by Eqs. (53)-(54)．Assuming now 

that the field A


 satisfies the London gauge 0A∇ ⋅ =


[65], and that the substitution of 
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 into Eqs. (53) and (54) yields [66-67]: 
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For bulk superconductors, J is a constant (permanent current) for a certain value of A


 , and 
it thus can be taken as a parameter. Let  2 2 2 2 2 4

0/ ( *)B m J e= φ , 2 22 / 'b m −= α = ξ , from Eqs. 
(59) and (60), we can obtain [66-67]: 
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where Ueff  is the effective potential of the superconductive electron in this case and it is 
schematically shown in Fig. 2. Comparing this case with that in the absence of external 
fields, we found that the equations have the same form and the electromagnetic field 
changes only the effective potential of the superconductive electron. When  0A =


, the 
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effective potential well is characterized by double wells. In the presence of an 
electromagnetic field, there are still two minima in the effective potential, corresponding to 
the two ground states of the superconductor in this condition. This shows that the 
spontaneous breakdown of symmetry still occurs in the superconductor, thus the 
superconductive electrons also move in the form of solitons. To obtain the soliton solution, 
we integrate Eq. (62) and can get: 
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Where E is a constant of integration which is equivalent to the energy, the lower limit of the 
integral, 1ϕ , is determined by the value of ϕ  at x=0, i.e. eff 0 eff 1( ) ( )E U U= ϕ = ϕ . Introduce 

the following dimensionless quantities 2 ,uϕ =  
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 , and equation (63) can 

be written as the following upon performing the transformation u→−u, 
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It can be seen from Fig. 3 that the denominator in the integrand in Eq. (64) approaches zero 
linearly when u=u1= 2

1ϕ , but approaches zero gradually when u=u2= 2
0ϕ . Thus we give [66-67]  
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where g= u0−u1 and satisfies 
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It can be seen from Eq. (65) that for a large part of sample, u1 is very small and may be 
neglected; the solution u is very close to u0. We then get from Eq. (65) that 
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ϕ = ϕ   
 

 (67) 

Substituting the above into Eq. (61), the electromagnetic field A


 in the superconductors can 
be obtained 

2 2 2 2 2 2
0 0 0

1 1  cot
* 2 *(e*) ( *)

Jmc c Jmc cA h gbx
e ee

 
= − − ∇θ = − ∇θ  φ ϕ φ ϕ  

     

For a large portion of the superconductor, the phase change is very small. Using H A= ∇ ×
 

 
the magnetic field can be determined and is given by [66-67] 
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difference is 3/2
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 . This indicates clearly that the soliton 

is not in the ground state, but in an excited state of the system, therefore, the soliton is a 
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For bulk superconductors, J is a constant (permanent current) for a certain value of A
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where Ueff  is the effective potential of the superconductive electron in this case and it is 
schematically shown in Fig. 2. Comparing this case with that in the absence of external 
fields, we found that the equations have the same form and the electromagnetic field 
changes only the effective potential of the superconductive electron. When  0A =
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effective potential well is characterized by double wells. In the presence of an 
electromagnetic field, there are still two minima in the effective potential, corresponding to 
the two ground states of the superconductor in this condition. This shows that the 
spontaneous breakdown of symmetry still occurs in the superconductor, thus the 
superconductive electrons also move in the form of solitons. To obtain the soliton solution, 
we integrate Eq. (62) and can get: 
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It can be seen from Fig. 3 that the denominator in the integrand in Eq. (64) approaches zero 
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0ϕ . Thus we give [66-67]  
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It can be seen from Eq. (65) that for a large part of sample, u1 is very small and may be 
neglected; the solution u is very close to u0. We then get from Eq. (65) that 
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Substituting the above into Eq. (61), the electromagnetic field A


 in the superconductors can 
be obtained 
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For a large portion of the superconductor, the phase change is very small. Using H A= ∇ ×
 

 
the magnetic field can be determined and is given by [66-67] 
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Equations (67) and (68) are analytical solutions of the GL equation.(63) and (64) in the one-
dimensional case, which are shown in Fig. 3. Equation (67) or (65) shows that the 
superconductive electron in the presence of an electromagnetic field is still a soliton. 
However, its amplitude, phase and shape are changed, when compared with those in a 
uniform superconductor and in the absence of external fields, Eq. (66). The soliton here is 
obviously influenced by the electromagnetic field, as reflected by the change in the form of 
solitary wave. This is why a permanent superconducting current can be established by the 
motion of superconductive electrons along certain direction in such a superconductor, 
because solitons have the ability to maintain their shape and velocity while in motion. 
It is clear from Fig.4 that (x)H  is larger where (x)φ  is small, and vice versa. When 0x → , 

( )H x reaches a maximum, while φ  approaches to zero. On the other hand, when x → ∞ , φ  
becomes very large, while ( )H x  approaches to zero. This shows that the system is still in 
superconductive state.These are exactly the well-known behaviors of vortex lines-magnetic 
flux lines in type-II superconductors [66-67]. Thus we explained clearly the macroscopic 
quantum effect in type-II superconductors using GL equation of motion of superconductive 
electron under action of an electromagnetic-field. 
 

  
Fig. 3. The effective potential energy in Eq. (67). 
 

 
Fig. 4. Changes of φ(x) and (x)H with x in Eqs. (67)-(68) 
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Recently, Garadoc-Daries et al. [68], Matthews et al. [69] and Madison et al.[70] observed 
vertex solitons in the Boson-Einstein condensates. Tonomure [71] observed experimentally 
magnetic vortexes in superconductors. These vortex lines in the type-II-superconductors are 
quantized. The macroscopic quantum effects are well described by the nonlinear theory 
discussed above, demonstrating the correctness of the theory. 
We now proceed to determine the energy of the soliton given by (67). From the earlier 
discussion, the energy of the soliton is given by: 

2 22 2+ 2 2 4 2 0 0
02 2

0

21 b= ( ) 1 (1 )
2 2 4 3 2 22 2

bd b B b BE dx
dx

∞

−∞

   ϕ ϕϕ + ϕ − ϕ − ≈ϕ − + − −  
ϕ ϕ      

  

which depends on the  interaction between superconductive electrons and electromagnetic 
field. 
From the above discussion, we understand that for a bulk superconductor, the 
superconductive electrons behave as solitons, regardless of the presence of external fields. 
Thus, the superconductive electrons are a special type of soliton. Obviously, the solitons are 
formed due to the fact that the nonlinear interaction 2λ φ φ  suppresses the dispersive effect 
of the kinetic energy in Eqs. (52) and (53). They move in the form of solitary wave in the 
superconducting state. In the presence of external electromagnetic fields, we demonstrate 
theoretically that a permanent superconductive current is established and that the vortex 
lines or magnetic flux lines also occur in type-II superconductors. 

5. The dynamic properties of electrons in superconductive junctions and its 
relation to macroscopic quantum effects  
5.1 The features of motion of electron in S-N junction and proximity effect 
The superconductive junction consists of a superconductor (S) which contacts with a normal 
conductor (N), in which the latter can be superconductive. This phenomenon refers to a 
proximity effect. This is obviously the result of long- range coherent property of 
superconductive electrons. It can be regarded as the penetration of electron pairs from the 
superconductor into the normal conductor or a result of diffraction and transmission of 
superconductive electron wave. In this phenomenon superconductive electrons can occur in 
the normal conductor, but their amplitudes are much small compare to that in the 
superconductive region, thus the nonlinear term 2λ φ φ in GL equations (53)-(54) can be 
neglected. Because of these, GL equations in the normal and superconductive regions have 
different forms. On the S side of the S-N junction, the GL equation is [72]  

 
2 *

3ie( A) 2 0
2m ch

∇ − φ − αφ + λφ =
  (69) 

while that on the N side of the junction is  

 
2 *ie( A) ' 0

2m ch
∇ − φ − α φ =

  (70) 

Thus, the expression for J


 remains the same on both sides. 
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* 2

2* *e (e*)J ( ) A
2mi mc

= φ ∇φ − φ∇φ − φ
   (71) 

In the S region, we have obtained solution of (69) in the previous section, and it is given by 
(65) or (67) and (68). In the N region,  from Eqs. (70)- (71) we can easily obtain  

 

'
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2 2 2 2i ' 2 2 ' i2 2 i2
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2 2

1e ( ) 4d sin(2 b x)e e
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where 
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'
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2m 1b ,α= =
ξ

  
2

2
2 2

4J m2d ,
(e*) '

λ=
α


   

'
' 'bE .

2
= ε   . 

here 'ε  is an integral constant. A graph of φ  vs. x in both the S and the N regions, as shown 
in Fig.5, coincides with that obtained by Blackbunu [73]. The solution given in Eq. (72) is the 
analytical solution in this case. On the other hand, Blackbunu’s result was obtained by 
expressing the solution in terms of elliptic integrals and then integrating numerically. From 
this, we see that the proximity effect is caused by diffraction or transmission of the 
superconductive electrons 

5.2 The Josephson effect in S-I-S and S-N-S as well as S-I-N-S junctions 
A superconductor-normal conductor -superconductor junction (S-N-S) or a superconductor-
insulator-superconductor junction (S-I-S) consists of a normal conductor or an insulator 
sandwiched between two superconductors as is schematically shown in Fig.6a．The 
thickness of the normal conductor or the insulator layer is assumed to be L and we choose 
the z coordinate such that the normal conductor or the insulator layer is located 
at L / 2 x L / 2− ≤ ≤ . The features of S-I-S junctions were studied by Jacobson et al.[74]. We 
will treat this problem using the above idea and method [75-76].  
The electrons in the superconducting regions ( x L / 2≥ ) are depicted by GL equation (69). 
Its’ solution was given earlier in Eq.(67). After eliminating u1 from Eq.(66), we have [73-74] 

0 0
1J= e * u (1 )u
2 m

αα −
λ

. 
 

 
Fig. 5. Proximity effect in S-N junction  
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Fig. 6. Superconductive junction of S-N(I)-S and S-N-I-S 

The electrons in the superconducting regions ( x L / 2≥ ) are depicted by GL equation (69). Its’ 

solution was given earlier. Setting 0J/ u 0d d = , we get the maximum current c
e *J

3 3m
α α=

λ
. 

This is the critical current of a perfect superconductor, corresponding to the three-fold 
degenerate solution of Eq.(66), i.e.,u1=u0.  

From Eq.(71), we have    2 2 2
0

mJc hcA
e *(e*)

= − + ∇θ
φ ϕ


.  Using the London gauge, .A 0∇ =


, we can 

get[75-76]   
2
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mJ 1( )
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d d
dxdx

θ =
φ ϕ

.  Integrating the above equation twice , we get the change 

of the phase to be 

 2 2 2
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mJ 1 1( )
e *

dx
∞

Δθ = −
φ ϕ ϕ  (73) 

where  2 uϕ = , and 2
0u∞ϕ = . Here we have used the following de Gennes boundary 

conditions in obtaining Eq. (73) 

 
x x

0, 0,  ( x )d d
dx dx ∞

→∞ →∞

φ θ= = φ → ∞ = φ    (74) 

If we substitute Eqs.(64) - (67) into Eq.(73), the phase shift of wave function from an 
arbitrary point x to infinite can be obtained directly from the above integral, and takes the 
form of: 

 1 11 1
L

0 1 1

u u(x ) tan tan
u u u u

− −Δθ → ∞ = − +
− −

 (75)    

For the S-N-S or S-I-S junction, the superconducting regions are located at x L / 2≥  and the 
phase shift in the S region is thus 
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 1 1
s L

s 1

L u=2 ( ) 2 tan
2 u u

−Δθ Δθ → ∞ ≈
−

 (76) 

According to the results in (70) - (71) and the above similar method, the change of the phase 
in the I or N region of the S-N-S or S-I-S junction may be expressed as [75-76]  
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mJL
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 is an additional term to satisfy the boundary 

conditions (74),and may be neglected in the case being studied. 
Near the critical temperature (T<Tc), the current passing through a weakly linked 

superconductive junction is very small ( J 1<< ), we then have  
2 2'

1 2 2
4J m 2A ,
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  and 

g’=1. Since 2ηϕ  and 2 /d dxϕ  are continuous at the boundary x=L/2, we have  

s N
x L/2 x L/2

d d
dx dx= =
μ μ= ,  s s x L/2 N N x L/2= =η μ = η μ ,  

where sη and Nη  are the constants related to features of superconductive and normal 
phases in the junction, respectively. These give [75-76]  

' '
N 1 s2 b Asin(2 ) [1 cos(2 )]sin( b L)Δθ = ε − Δθ , 

'
s N s Ncos( b L)sin(2 ) sin(2 ) sin(2 )Δθ = ε Δθ + Δθ + Δθ  

where 1 N S/ε = η η .  From the two equations, we can get 

' '
s N

2 2m Jsin( ) b sin( b L)
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Thus   

 max s N maxJ=J sin( ) J sin( )Δθ + Δθ = Δθ    (78) 

where  

 s
max s N' '

e * 1J . ,
2 2m b sin( b L)

α= Δθ = Δθ + Δθ
λ

  (79) 

Equation (78) is the well-known example of the Josephson current. From Section I we know 
that the Josephson effect is a macroscopic quantum effect. We have seen now that this effect 
can be explained based on the nonlinear quantum theory. This again shows that the 
macroscopic quantum effect is just a nonlinear quantum phenomenon.  
From Eq. (79) we can see that the Josephson critical current is inversely proportional to sin 
( 'b L ), which means that the current increases suddenly whenever 'b L approaches to nπ , 
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suggesting some resonant phenomena occurs in the system． This has not been observed 
before.  Moreover maxJ is proportional  to '

se * / 2 2m bα λ =  S N(e* /4m )α λα , which is 
related to (T-Tc)2． 
Finally, it is worthwhile to mention that no explicit assumption was made in the above on 
whether the junction is a potential well ( α <0) or a potential barrier ( α >0). The results are 
thus valid and the Josephson effect in Eq. (2.78), occurs for both potential wells and for 
potential barriers. 
We now study Josephson effect in the superconductor -normal conductor-insulator-
superconductor junction (SNIS) is shown schematically in Fig. 6b. It can be regarded as a 
multilayer junction consists of the S-N-S and S-I-S junctions. If appropriate thicknesses for 
the N and I layers are used (approximately 20 °A– 30 °A), the Josephson effect similar to that 
discussed above can occur in the SNIS junction. Since the derivations are similar to that in 
the previous sections, we will skip much of the details and give the results in the following. 
The Josephson current in the SNIS junction is still given by  

maxJ=J sin( )Δθ   

but, where   s1 N s2IΔθ = Δθ + Δθ + Δθ + Δθ  and 

'
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2 '
1

' ' 2 2

sinh( b L)1J { }
b 2[cosh( b L) cos(2 )]

1
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N N

N N N N

N I

ε
= ×

− Δθ

−
+ Δθ + Δθ − − Δθ − Δθ

ε − Δθ
×

− Δθ − + Δθ

− Δθ − Δθ



[1 cos(2 )][1 cos(2 )]N I+ + Δθ + Δθ

, 

It can be shown that the temperature dependence of maxJ is 2
max 0( )cJ T T∝ − ,which is quite 

similar to the results obtained by Blackburm et al[73] for the SNIS junction and those by 
Romagnan et al[7] using the Pb-PbO-Sn-Pb junction. Here, we obtained the same results 
using a complete different approach. This indicates again that we can obtain some results, 
which agree with the experimental data. 

6. The nonlinear dynamic-features of time- dependence of electrons in 
superconductor 
6.1 The soliton solution of motion of the superconductive electron 
We studied only the properties of motion of superconductive electrons in steady states in 
superconductors in section 2.3.2, and which are described by the time-independent GL 
equation. In such a case, the superconductive electrons move as solitons. We ask, “What are 
the features of a time-dependent motion in non-equilibrium states of a superconductor?” 
Naturally, this motion should be described by the time-dependent Ginzburg-Landau 
(TDGL) equation [48-54,77] in this case. Unfortunately, there are many different forms of the 
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 (76) 

According to the results in (70) - (71) and the above similar method, the change of the phase 
in the I or N region of the S-N-S or S-I-S junction may be expressed as [75-76]  
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N '
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2e * h b L mJL2 tan [ tan( )]
J 8m 2 2e*h

− αΔθ = − +
λ μ
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where ' N
2 '

tan( / 2)8m Jh
2e * tan( b L / 2)

Δθλ=
α


, '

0

mJL
2e*h μ


 is an additional term to satisfy the boundary 

conditions (74),and may be neglected in the case being studied. 
Near the critical temperature (T<Tc), the current passing through a weakly linked 

superconductive junction is very small ( J 1<< ), we then have  
2 2'

1 2 2
4J m 2A ,

(e*)
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α


  and 
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s N
x L/2 x L/2

d d
dx dx= =
μ μ= ,  s s x L/2 N N x L/2= =η μ = η μ ,  
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'
s N s Ncos( b L)sin(2 ) sin(2 ) sin(2 )Δθ = ε Δθ + Δθ + Δθ  
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' '
s N

2 2m Jsin( ) b sin( b L)
e*
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α


. 

Thus   

 max s N maxJ=J sin( ) J sin( )Δθ + Δθ = Δθ    (78) 

where  

 s
max s N' '

e * 1J . ,
2 2m b sin( b L)

α= Δθ = Δθ + Δθ
λ

  (79) 

Equation (78) is the well-known example of the Josephson current. From Section I we know 
that the Josephson effect is a macroscopic quantum effect. We have seen now that this effect 
can be explained based on the nonlinear quantum theory. This again shows that the 
macroscopic quantum effect is just a nonlinear quantum phenomenon.  
From Eq. (79) we can see that the Josephson critical current is inversely proportional to sin 
( 'b L ), which means that the current increases suddenly whenever 'b L approaches to nπ , 
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suggesting some resonant phenomena occurs in the system． This has not been observed 
before.  Moreover maxJ is proportional  to '

se * / 2 2m bα λ =  S N(e* /4m )α λα , which is 
related to (T-Tc)2． 
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It can be shown that the temperature dependence of maxJ is 2
max 0( )cJ T T∝ − ,which is quite 

similar to the results obtained by Blackburm et al[73] for the SNIS junction and those by 
Romagnan et al[7] using the Pb-PbO-Sn-Pb junction. Here, we obtained the same results 
using a complete different approach. This indicates again that we can obtain some results, 
which agree with the experimental data. 

6. The nonlinear dynamic-features of time- dependence of electrons in 
superconductor 
6.1 The soliton solution of motion of the superconductive electron 
We studied only the properties of motion of superconductive electrons in steady states in 
superconductors in section 2.3.2, and which are described by the time-independent GL 
equation. In such a case, the superconductive electrons move as solitons. We ask, “What are 
the features of a time-dependent motion in non-equilibrium states of a superconductor?” 
Naturally, this motion should be described by the time-dependent Ginzburg-Landau 
(TDGL) equation [48-54,77] in this case. Unfortunately, there are many different forms of the 
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TDGL equation under different conditions. The one given in the following is commonly 
used when an electromagnetic field A


 is involved 

 
2

21 22 ( )
2

ieie r A
t m c

∂ −   − μ φ = ∇ − + αφ − λ φ φ  ∂   


 Γ  (80) 

and 

 
2

21 4( ) ( * *)A ie eJ r A
c t m mc

 ∂= σ − − ∇μ + φ ∇φ − φ∇φ − φ ∂ 

   (81) 

here 1i = − , 1 1 4A JA
c t c t c

 ∂ ∂ π∇ × ∇ × = − − ∇μ +  ∂ ∂ 

 
 and σ  is the conductivity in the normal 

state, Γ  is an arbitrary constant, and μ  is the chemical potential of the system. In practice, 
Eq. (80) is simply a time-dependent Schrödinger equation with a damping effect.  
In certain situations, the following forms of the TDGL equation are also used. 

 
22

22
2

iei A
t m c

∂φ  = − ∇ − φ + αφ − λ φ φ ∂  




 (82) 

or 

 
22

21 ' 22 ( ) iei i e A
t c

∂ ξ   − μ φ = α − λ φ φ + ∇ − φ   ∂   




Γ Γ
 (83) 

here ' / 2mξ =  , and equation (82) is a nonlinear Schrödinger equation under an 
electromagnetic field having soliton solutions. However, these solutions are very difficult to 
find, and no analytic solutions have been obtained. An approximate solution was obtained 
by Kusayanage et al [78] by neglecting the 3φ  term in Eq. (80) or Eq. (82), in the case of 

(0, ,0),A Hx=
   , =(0, 0, ) KEx H Hμ = −

   and =( ,0,0)E E
  , where H


 is the magnetic field, while 

E


 is the electric field .We will solve the TDGL equation in the case of weak fields in the 
following. 
TDGL equation (83) can be written in the following form when A


 is very small[80-81] 

 
2

22 -2
2

i e
t m

∂φ λ α + ∇ φ + φ φ = μ φ ∂  


Γ Γ Γ

 (84) 

Where α  and Γ  are material dependent parameters, λ is the nonlinear coefficient, m is the 
mass of the superconductive electron. Equation (84) is actually a nonlinear Schrödinger 
equation in a potential field / 2eα μΓ − . Cai, Bhattacharjee et al [79], and Davydov [45] 
used it in their studies of superconductivity. However, this equation is also difficult to 
solve．In the following, Pang solves the equation only in the one-dimensional case. 
For convenience, let /t t′ =  , 2 /x x m′ = Γ , then Eq. (84) becomes 

 
2

2
2 -2 ( )i e x

t x
∂φ ∂ φ λ α ′+ + φ φ = μ φ ′∂ ′∂  Γ Γ

 (85) 
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If we let 2 0eα − μ =
Γ

, then Eq. (85) is the usual nonlinear Schrödinger equation whose 

solution is of the form [80-81] 

 0 ( , )0
0( , ) ,i x t

s x t e ′ ′θ′ ′φ = ϕ  (86) 
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2 4
e c e e c e
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Γ  (87) 

here  0
1( , ) ( )
2 e cx t x t′ ′ ′ ′θ = υ − υ . In the case of -2 0eα μ ≠

Γ
, let KEx′μ = −  , where K is a constant, 

and assume that the solution is of the form [80-81] 

 ( , )'( , ) i x tx t e ′ ′θ′ ′φ = ϕ  (88) 

Substituting Eq. (88) into Eq. (86), we get: 
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( / 2)

g t
u

′
ϕ =

∂θ ∂ξ − 
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 2
( )

2
g t u

x
′∂θ = +

′∂ ϕ


 (91) 

where / 'u du dt= . Integration of (91) yields: 

 
20

''( , ) ( ) ( )
2

x dx ux t g t x h t
′

′ ′ ′ ′ ′θ = + +
ϕ

  (92) 

and where ( ')h t  is an undetermined constant of integration. From Eq. (92) we can get: 

 02 2 20

''( ) ( )
2

x
x

gu gudx ug t x h t
t

′
′=

∂θ ′ ′ ′= − + + +
′∂ ϕ ϕ ϕ

     (93) 

Substituting  Eqs. (92) and (93) into Eq. (89), we have: 
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used it in their studies of superconductivity. However, this equation is also difficult to 
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If we let 2 0eα − μ =
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Since
2

2( )x
∂ ϕ

′∂
=

2

2
d
d

ϕ
ξ

, which is a function of ξ  only, the right-hand side of Eq. (94) is also a 

function of ξ  only, so it is necessary that 0( ) constantg t g′ = = , and  

'

2
' ' '

2 x 0
guu u(2KEex + )+ x h(t )+ ( )

2 4 f
V=

α + + = ξ
Γ

  . Next, we assume that 0( ) ( )V Vξ = ξ − β , where 

β  is real and arbitrary, then 

 
2

0 022 ( )  ( )   
2 4x

guu uKEex V x h t′=
 α′ ′ ′+ = ξ − + β − − − Γ ϕ  

                            (95) 

Clearly in the case discussed, 0( )V ξ = 0, and the function in the brackets in Eq. (95) is a 
function of t′. Substituting Eq. (95) into Eq. (94), we can get [80-81]: 

 
   

2 3 32
02 /g∂ ϕ λ= βϕ − ϕ + ϕ

∂ξ Γ
 (96) 

This shows that ϕ  is the solution of Eq. (96) when β  and g are constant. For large ξ , we 
may assume that  1/ +Δϕ ≤ β ξ , when Δ  is a small constant. To ensure that ϕ  and 2 2d dϕ ξ  
approach zero when ξ →∞ , only the solution corresponding to g0=0 in Eq. (96) is kept, and 
it can be shown that this soliton solution is stable in such a case. Therefore, we choose g0=0 
and obtain the following from Eq. (91): 

 / /2x u′∂θ ∂ =   (97) 

Thus, we obtain from Eq. (95) that 

2
' ' 'u u2KEex + x h(t )-

2 4
α = − + β −
Γ

  ,    
2 2 3 21 4( ) ( ) ( ) ( )  

4 3
                 

h t t KEe t e KE tα ′ ′ ′ ′= β − − υ − + υ 
 

 
Γ  (98) 

Substituting Eq. (98) into Eqs. (92) - (93), we obtain: 

 2 2 3 21 1 42 ( ) ( ) ( )  
2 4 3

KEet x t KEe t e KE tα   ′ ′ ′ ′ ′θ = − + υ + β − − υ − + υ   
   

  
Γ

 (99)  

Finally, substituting the Eq. (99) into Eq. (96), we can get 

 
  

2 3
2 0∂ ϕ λ− βϕ + ϕ =

∂ξ Γ
 (100) 

When 0β > , the solution of. Eq. (100) is of the form 

  ( )2 sechβϕ = βξ
λ
Γ  (101) 

Thus [80-81] 
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2 4 3
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eKEt m t eKE t KeEti x

  β − υ −φ = β + ×   λ    
  − υ α υ    + + β − − υ − +     

       



 

   

Γ Γ

Γ
Γ

 (102)  

This is also a soliton solution, but its shape，amplitude and velocity have been changed 
relatively as compared to that of Eq. (87). It can be shown that Eq. (102) does indeed satisfy 
Eq. (85). Thus, equation (85) has a soliton solution. It can also be shown that this solition 
solution is stable. 

6.2 The properties of soliton motion of the superconductive electrons 
For the solution of Eq. (102), we may define a generalized time-dependent wave number, 

2
2

k KEet
x

∂θ υ ′= = −
′∂

  and a frequency 

 

2 2 2

2

12 ( ) ( )
4

2 2

KEex e KEe t
t

KEe t KEex k

∂θ α ′ ′ω = − = − β − − υ + − ′∂  
α′ ′υ = − β − +

 

 

Γ

Γ

 (103) 

The usual Hamilton equations for the superconductive electron (soliton) in the macroscopic 

quantum systems are still valid here and can be written as [80-81] 2k
dk KEe
dt x

∂ω= − = −
′ ′∂

 , 

then the group velocity of the superconductive electron is 

 2 2 4
2g x

dx KEet KEet
dt k ′

′ ∂ω υ ′ ′υ = = = − = υ − ′ ∂  
   (104) 

This means that the frequency ω still represents the meaning of Hamiltonian in the case of 

nonlinear quantum systems. Hence, 0x k
d d dk dx
dt dk dt x dt′

′ω ω ∂ω= + =
′ ′ ′ ′∂

, as seen in the usual 

stationary linear medium.  
These relations in Eqs. (103)-(104) show that the superconductive electrons move as if they 
were classical particles moving with a constant acceleration in the invariant electric-field, 
and that the acceleration is given by 4KEe−  . If υ >0, the soliton initially travels toward the 
overdense region, it then suffers a deceleration and its velocity changes sign. The soliton is 
then reflected and accelerated toward the underdense region.The penetration distance into 
the overdense region depends on the initial velocity υ .  
From the above studies we see that the time-dependent motion of superconductive electrons 
still behaves like a soliton in non-equilibrium state of superconductor. Therefore, we can 
conclude that the electrons in the superconductors are essentially a soliton in both time-
independent steady state and time-dependent dynamic state systems. This means that the 
soliton motion of the superconductive electrons causes the superconductivity of material. 
Then the superconductors have a complete conductivity and nonresistance property 
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The usual Hamilton equations for the superconductive electron (soliton) in the macroscopic 

quantum systems are still valid here and can be written as [80-81] 2k
dk KEe
dt x

∂ω= − = −
′ ′∂

 , 

then the group velocity of the superconductive electron is 
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   (104) 

This means that the frequency ω still represents the meaning of Hamiltonian in the case of 

nonlinear quantum systems. Hence, 0x k
d d dk dx
dt dk dt x dt′

′ω ω ∂ω= + =
′ ′ ′ ′∂

, as seen in the usual 

stationary linear medium.  
These relations in Eqs. (103)-(104) show that the superconductive electrons move as if they 
were classical particles moving with a constant acceleration in the invariant electric-field, 
and that the acceleration is given by 4KEe−  . If υ >0, the soliton initially travels toward the 
overdense region, it then suffers a deceleration and its velocity changes sign. The soliton is 
then reflected and accelerated toward the underdense region.The penetration distance into 
the overdense region depends on the initial velocity υ .  
From the above studies we see that the time-dependent motion of superconductive electrons 
still behaves like a soliton in non-equilibrium state of superconductor. Therefore, we can 
conclude that the electrons in the superconductors are essentially a soliton in both time-
independent steady state and time-dependent dynamic state systems. This means that the 
soliton motion of the superconductive electrons causes the superconductivity of material. 
Then the superconductors have a complete conductivity and nonresistance property 
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because the solitons can move over a macroscopic distances retaining its amplitude, 
velocity, energy and other quasi- particle features.  In such a case the motions of the 
electrons in the superconductors are described by a nonlinear Schrödinger equations (52), 
or (53) or (80) or (82) or (84). According to the soliton theory, the electrons in the 
superconductors are localized and have a wave-corpuscle duality due to the nonlinear 
interaction, which is completely different from those in the quantum mechanics. 
Therefore, the electrons in superconductors should be described in nonlinear quantum 
mechanics[16-17].  

7. The transmission features of magnetic-flux lines in the Josephson 
junctions 
7.1 The transmission equation of magnetic-flux lines 
We have learned that in a homogeneous bulk superconductor, the phase ( , )r tθ


of the 

electron wave function ( ) ( ) ( ),, , i r tr t f r t e θφ =
  is constant, independent of position and time. 

However, in an inhomogeneous superconductor such as a superconductive junction 
discussed above, θ  becomes dependent of r


 and t. In the previous section, we discussed 

the Josephson effects in the S-N-S or S-I-S, and SNIS junctions starting from the 
Hamiltonican and the Ginzburg-Landau equations satisfied by ( ),r tφ  , and showed that the 
Josephson current, whether dc or ac, is a function of the phase change, 1 2ϕ θ θ θ= Δ = − . The 
dependence of the Josephson current on ϕ  is clearly seen in Eq. (78) . This clearly indicates 
that the Josephson current is caused by the phase change of the superconductive electrons. 
Josephson himself derived the equations satisfied by the phase difference ϕ , known as the 
Josephson relations, through his studies on both the dc and ac Josephson effects. The 
Josephson relations for the Josephson effects in superconductor junctions can be 
summarized as the following, 

 sin ,s mJ J= ϕ    2eV
t

∂ϕ =
∂

 , 2 ' /yed H c
x

∂ϕ =
∂
  ,  2 ' /xed H c

y
∂ϕ =
∂
  (105) 

where d’ is the thickness of the junction. Because the voltage V and magnetic field H


 are 
not determined, equation (105) is not a set of complete equations. Generally, these equations 
are solved simultaneously with the Maxwell equation (4 / )H c J∇ × = π

 
. Assuming that the 

magnetic field is applied in the xy plane, i.e. ( , ,0)x yH H H=


, the above Maxwell equation 
becomes 

 4( , , ) ( , , ) ( , , )y xH x y t H x y t J x y t
x y c
∂ ∂ π− =
∂ ∂

 (106)  

In this case, the total current in the junction is given by 0( , , ) ( , , ) ( , , )s n dJ J x y t J x y t J x y t J= + + +  
In the above equation, ( , , )sJ x y t is the superconductive current density, ( , , )nJ x y t is the 
normal current density in the junction (Jn =V/R(V ) if the resistance in the junction is R(V ) 
and a voltage V is applied at two ends of the junction), ( , , )dJ x y t  is called a displacement 
current and it is given by ( ) /dJ CdV t dt= , where C is the capacity of the junction, and 0J is a 
constant current density. Solving the equations in Eqs,(102) and (106) simultaneously, we 
can get 

Properties of Macroscopic Quantum Effects 
and Dynamic Natures of Electrons in Superconductors 

 

205 

 
2

2
2

0 02 2
0

1 1( ) sin
J

I
tv t

∂ ϕ ∂ϕ∇ ϕ − − γ = ϕ +
∂ λ∂

 (107) 

where 2
0 0/ 4 ', 1 / ,v c Cd RC= π γ = 2 2

0 0/ 4 ' * , 4 * / , * 2J c d e I e J c e eλ = π = π =  . 
Equation (107) is the equation satisfied by the phase difference. It is a Sine-Gordon equation 
(SGE) with a dissipative term. From Eq.(105), we see that the phase difference ϕ  depends on 

the external magnetic field H


, thus the magnetic flux in the junction  

'
*

cHds A dl dl
c

Φ = = = ϕ  
    can be specified in terms of ϕ , where A


 is vector potential of 

electromagnetic field, dl


is line element of vortex lines. Equation (107) represents 
transmission of superconductive vortex lines. It is a nonlinear equation. Therefore, we know 
clearly that the Josephson effect and the related transmission of the vortex line, or magnetic 
flux, along the junctions are also nonlinear problems. The Sine-Gordon equation given 
above has been extensively studied by many scientists including Kivshar and Malomed[39-
40]. We will solve it here using different approaches. 

7.2 The transmission features of magnetic-flux lines 
Assuming that the resistance R in the junction is very high, so that 0nJ → , or equivivalently  

0 0γ → , setting also I0 = 0, equation (107) reduces to 
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Define  0/ , /J JX x T v t= λ = λ  , then in one-dimension, the above equation becomes   

2 2

2 2
sin

X T
∂ ϕ ∂ ϕ− = ϕ
∂ ∂

 

which is the 1D Sine-Gordon equation. If we further assume that ( , ) ( ')X Tϕ = ϕ = ϕ θ  with 

'
0 0 0' ' ', ' / / 2 , ' / 2 /X X vT X X hc LI e T T I e hcθ = − − = =  

it becomes 2 2
'(1 ) ( ') 2( ' cos )v Aθ− ϕ θ = − ϕ ,where A’ is a constant of integration. Thus 

0

( ') 1/2[( ' cos )] 2 'A d
ϕ θ −
ϕ

− ϕ ϕ = δνθ    

where 21 / 1 , 1vν = − δ = ± . Choosing A’=1, we have 

1/2( ')
[sin( / 2)] 2 'd

−ϕ θ

π
ϕ ϕ = νθ       

A kink soliton solution can be obtained as follows ' ln[tan( / 2)],±νθ = ϕ 'or 
1( ') 4 tan [exp( ')]−ϕ θ = ±νθ . Thus yields 

 1 '
0( ', ') 4 tan {exp[ ( ' ')]}X T X X vT−ϕ = δν − −  (109) 
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From the Josephson relations, the electric potential difference across the junction can be 
written as 

'0 0
02

22 sec [ ( ' ')]
2 ' 2 ' 2

oI ed dV v h X X vT
e dT c dT cc

ϕ ϕϕ ϕ= = = δ ν ν − −
π π




 

where 7 2
0 2 10 /c Gauss cm− −ϕ = π = × 'is a quantum fluxon, c is the speed of light. A similar 

expression can be derived for the magnetic field 

'0 0
02

22 sec [ ( ' ')]
2 ' 2 ' 2

oz
I ed dH h X X vT

e dX c dX cc
ϕ ϕϕ ϕ= = = ± δν ν − −

π π



 

We can then determine the magnetic flux through a junction with a length of L and a cross 
section of 1 cm2. The result is 

'
0 0' ( , ) ( ', ') 'x xH x t dx B H X T dX

∞ ∞

−∞ −∞
Φ = = = δϕ   

Therefore, the kink ( 1δ = + ) carries a single quantum of magnetic flux in the extended 
Josephson junction. Such an excitation is often called a fluxon, and the Sine-Gordon 
equation or Eq.(107) is often referred to as transmission equation of quantum flux or fluxon. 
The excitation corresponding to δ  = −1 is called an antifluxon. Fluxon is an extremely stable 
formation. However, it can be easily controlled with the help of external effects. It may be 
used as a basic unit of information. 
This result shows clearly that magnetic flux in superconductors is quantized and this is a 
macroscopic quantum effect as mentioned in Section 1. The transmission of the quantum 
magnetic flux through the superconductive junctions is described by the above nonlinear 
dynamic equation (107) or (108).The energy of the soliton can be determined and it is given by 

28 / ,E m= β  where 2 2/ 1 / Jm β = λ . 
However, the boundary conditions must be considered for real superconductors. Various 
boundary conditions have been considered and studied. For example, we can assume the 
following boundary conditions for a 1D superconductor, (0, ) ( , ) 0x xt L tϕ = ϕ = . Lamb[47] 
obtained the following soliton solution for the SG equation (108) 

 
1( , ) 4 tan [ ( ) ( )]x t h x g t−ϕ =  (110)  

where h and g are the general Jacobian elliptical functions and satisfy the following 
equations 

2 4 2[ ( )] ' (1 ') ',h x a h b h c= + + −     2 4 2[ ( )] ' ' 'g x c h b h a= + −  

with a’, b’, and c’ being arbitrary constants. Coustabile et al. also gave the plasma oscillation, 
breathing oscillation and vortex line oscillation solutions for the SG equation under certain 
boundary conditions. All of these can be regarded as the soliton solution under the given 
conditions. 
Solutions of Eq.(108) in two and three-dimensional cases can also be found[80-81]. In two- 
dimensional case, the solution is given by 
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. In the three-dimensional case, the 

solution is given by 
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where X, Y , and T are similarly defined as in the 2D case given above, and / JZ z= λ  . The 
functions f and g are defined as 
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here 3y  is a linear combination of 1y   and 2y  ,  i.e., 3 1 2y y y= α + β . 
We now discuss the SG equation with a dissipative term 0 / tγ ∂ϕ ∂ . First we make the 
following substitutions to simplify the equation 

2 2
0 0 0 0/ , / / , / , ' .J J J J JX x T v t t a v B I= λ = λ = ω = γ λ = λ  

In terms of these new parameters, the 1D SG equation (107) can be rewritten as 

 
2

2 2

2 sin 'a B
TX T

∂ ϕ ∂ ϕ ∂ϕ− − = ϕ +
∂∂ ∂

   (113) 

The analytical solution of Eq.(113) is not easily found. Now let 
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 (114) 

Equation (113) then becomes 

 
2

2 ' sin ' 0q B∂ ϕ ∂ϕ+ + ϕ − =
∂η∂η

   (115) 

This equation is the same as that of a pendulum being driven by a constant external moment 
and a frictional force which is proportional to the angular displacement. The solution of the 
latter is well known, generally there exists an stable soliton solution[80-81]. Let '/Y d d= ϕ η , 
equation (115) can be written as 

 ' sin ' ' 0Y q Y B∂ + + ϕ − =
∂η

 (116) 

For 0 ' 1B< < , we can let 0 0' sin (0 / 2)B = ϕ < ϕ < π  and 0 1'ϕ = −π − ϕ + ϕ , then, equation (116) 
becomes 

 0 1 0' sin sin( )YY q Y∂ = − + ϕ + ϕ − ϕ
∂η

 (117) 

Expand Y as a power series of 1ϕ , i.e., 1 ,n
nnY c= ϕ and inserting it into Eq.(117), and 

comparing coefficients of terms of the same power of 1ϕ on both sides, we get 
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and so on. Substituting these 'nc s  into 2
1'/ ,nnY d d c= ϕ η = ϕ  the solution of 1ϕ may be 

found by integrating 2
1 1/ nnd cη = ϕ ϕ . In general, this equation has soliton solution or 

elliptical wave solution. For example, when 2 3
1 1 2 1 3 1'/d d c c cϕ η = ϕ + ϕ + ϕ  it can be found that 

1 12 ( ,sin ( ))A B AF
A C A BA C

−− − ϕη =
− −−

 

where 1( , )F k ϕ  is the first Legendre elliptical integral, and A, B and C are constants. The 
inverse function 1ϕ  of 1( , )F k ϕ  is the Jacobian amplitude ' 1 amFϕ = . Thus, 

1 1sin ( )A A Cam
A B A B

− − ϕ −= η
− −

   or  1 ) ( )A A Csn
A B A B

− ϕ −= η
− −

 

where snF is the Jacobian sine function. Introducing the symbol cscF = 1/snF, the solution 
can be written as 

 2
1 ( )[csc( )]A CA A B

A B
−ϕ = − − η
−
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This is a elliptic function. It can be shown that the corresponding solution at η → ∞  is a 
solitary wave. 
It can be seen from the above discussion that the quantum magnetic flux lines (vortex lines) 
move along a superconductive junction in the form of solitons. The transmission velocity 0v  
can be obtained from 2

0 01h v v= α − and nc  in Eq. (118) and it is given by 
2

0 01 / 1 [ / ( )]v h= + α ϕ . 
That is, the transmission velocity of the vortex lines depends on the current 0I injected and 
the characteristic decaying constant α  of the Josephson junction. When α  is finite, the 
greater the injection current I0 is, the faster the transmission velocity will be; and when I0 is 
finite, the greater the α  is, the smaller the 0v  will be, which are realistic. 

8. Conclusions 
We here first reviewed the properties of superconductivity and macroscopic quantum 
effects, which are different from the microscopic quantum effects, obtained from some 
experiments. The macroscopic quantum effects occurred on the macroscopic scale are 
caused by the collective motions of microscopic particles , such as electrons in 
superconductors, after the symmetry of the system is broken due to nonlinear interactions. 
Such interactions result in Bose condensation and self-coherence of particles in these 
systems. Meanwhile, we also studied the properties of motion of superconductive electrons, 
and arrived at the soliton solutions of time-independent and time-dependent Ginzburg-
Landau equation in superconductor, which are, in essence, a kind of nonlinear Schrödinger 
equation. These solitons, with wave-corpuscle duality, are due to the nonlinear interactions 
arising from the electron-phonon interaction in superconductors, in which the nonlinear 
interaction suppresses the dispersive effect of the kinetic energy in these dynamic equations, 
thus a soliton states of the superconductive electrons, which can move over a macroscopic 
distances retaining the energy, momuntum and other quasiparticle properties in the 
systems, are formed. Meanwhile, we used these dynamic equations and their soliton 
solutions to obtain, and explain, these macroscopic quantum effects and superconductivity 
of the systems. Effects such as quantization of magnetic flux in superconductors and the 
Josephson effect of superconductivity junctions,thus we concluded that the 
superconductivity and macroscopic quantum effects are a kind of nonlinear quantum effects 
and arise from the soliton motions of superconductive electrons. This shows clearly that 
studying the essences of macroscopic quantum effects and properties of motion of 
microscopic particles in the superconductors has important significance of physics. 
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Equation (113) then becomes 

 
2

2 ' sin ' 0q B∂ ϕ ∂ϕ+ + ϕ − =
∂η∂η

   (115) 

This equation is the same as that of a pendulum being driven by a constant external moment 
and a frictional force which is proportional to the angular displacement. The solution of the 
latter is well known, generally there exists an stable soliton solution[80-81]. Let '/Y d d= ϕ η , 
equation (115) can be written as 
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∂η

 (116) 

For 0 ' 1B< < , we can let 0 0' sin (0 / 2)B = ϕ < ϕ < π  and 0 1'ϕ = −π − ϕ + ϕ , then, equation (116) 
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Expand Y as a power series of 1ϕ , i.e., 1 ,n
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and so on. Substituting these 'nc s  into 2
1'/ ,nnY d d c= ϕ η = ϕ  the solution of 1ϕ may be 

found by integrating 2
1 1/ nnd cη = ϕ ϕ . In general, this equation has soliton solution or 

elliptical wave solution. For example, when 2 3
1 1 2 1 3 1'/d d c c cϕ η = ϕ + ϕ + ϕ  it can be found that 
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where 1( , )F k ϕ  is the first Legendre elliptical integral, and A, B and C are constants. The 
inverse function 1ϕ  of 1( , )F k ϕ  is the Jacobian amplitude ' 1 amFϕ = . Thus, 
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where snF is the Jacobian sine function. Introducing the symbol cscF = 1/snF, the solution 
can be written as 
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This is a elliptic function. It can be shown that the corresponding solution at η → ∞  is a 
solitary wave. 
It can be seen from the above discussion that the quantum magnetic flux lines (vortex lines) 
move along a superconductive junction in the form of solitons. The transmission velocity 0v  
can be obtained from 2

0 01h v v= α − and nc  in Eq. (118) and it is given by 
2

0 01 / 1 [ / ( )]v h= + α ϕ . 
That is, the transmission velocity of the vortex lines depends on the current 0I injected and 
the characteristic decaying constant α  of the Josephson junction. When α  is finite, the 
greater the injection current I0 is, the faster the transmission velocity will be; and when I0 is 
finite, the greater the α  is, the smaller the 0v  will be, which are realistic. 

8. Conclusions 
We here first reviewed the properties of superconductivity and macroscopic quantum 
effects, which are different from the microscopic quantum effects, obtained from some 
experiments. The macroscopic quantum effects occurred on the macroscopic scale are 
caused by the collective motions of microscopic particles , such as electrons in 
superconductors, after the symmetry of the system is broken due to nonlinear interactions. 
Such interactions result in Bose condensation and self-coherence of particles in these 
systems. Meanwhile, we also studied the properties of motion of superconductive electrons, 
and arrived at the soliton solutions of time-independent and time-dependent Ginzburg-
Landau equation in superconductor, which are, in essence, a kind of nonlinear Schrödinger 
equation. These solitons, with wave-corpuscle duality, are due to the nonlinear interactions 
arising from the electron-phonon interaction in superconductors, in which the nonlinear 
interaction suppresses the dispersive effect of the kinetic energy in these dynamic equations, 
thus a soliton states of the superconductive electrons, which can move over a macroscopic 
distances retaining the energy, momuntum and other quasiparticle properties in the 
systems, are formed. Meanwhile, we used these dynamic equations and their soliton 
solutions to obtain, and explain, these macroscopic quantum effects and superconductivity 
of the systems. Effects such as quantization of magnetic flux in superconductors and the 
Josephson effect of superconductivity junctions,thus we concluded that the 
superconductivity and macroscopic quantum effects are a kind of nonlinear quantum effects 
and arise from the soliton motions of superconductive electrons. This shows clearly that 
studying the essences of macroscopic quantum effects and properties of motion of 
microscopic particles in the superconductors has important significance of physics. 

9. References  
[1] Parks, R. D., Superconductivity, Marcel. Dekker, 1969. 
[2] Rogovin, D. and M. Scully, Superconductiviand macroscopic quantum phenomena, 

Phys. Rep. 25(1976) 178. 
[3] Rogovin, D., Electrodynamics of Josephson junctions，Phys. Rev. B11 (1975) 1906-108 
[4] Abrikosov, A. A. and L. P. Gorkov, I.V. Dzyaloshinkii, Quantum field theoretical 

mothods in statistic phyics, Pregamon Press, Oxfordea, 1965   
[5] Rogovin, D., Josephson tunneling: An example of steady-state superradiance,Phys. Rev. 

B12 (1975) 130-133. 



 
Superconductivity – Theory and Applications 

 

210 

[6] Ginzburg V L, Superconductivity, Superdiamagnetism, Superfluidity , Moscow: MIR 
Publ., 1987 

[7]  Ginzburg V L, Superconductivity, Moscow-Leningrad: Izd.  Moscoew, AN SSSR, 1946 
[8] Ginzburg, V. L.. Superconductivity and superfluidity Phys.-Usp. 40 (1997 ) 407 
[9] Leggett, A. J., Macroscopic Effect of P- and T-Nonconserving Interactions in 

Ferroelectrics: A Possible Experiment? Phys. Rev. Lett. 41 (1978) 586 
[10] Leggett, A. J., in Percolation, Localization and Superconductivity, eds. by A. M. 

Goldlinan,S. A. Bvilf, Plenum Press, New York, 1984. pp. 1- 41. 
[11] Leggett, A. J., Low temperature physics, Springer, Berlin, 1991, pp. 1-93; 
[12] Pang Xiao-feng, Investigations of properties of motion of superconductive electrons in 

superconductors by nonlinear quantum mechanics, J. Electronic Science and 
Technology of China, 6(2)(2008)205-211 

[13] Pang, Xiao-feng, macroscopic quantum effects, Chinese J. Nature, 5 (1982) 254, 
[14] Pang Xiao-feng, Investigations of properties and essences of macroscopic quantum 

effects in superconductors by nonlinear quantum mechanics, Nature Sciences, 
2(1)(2007) 42 

[15] Pang, Xiao-feng, Investigation of solutions of a time-dependent Ginzburg-Landau 
equation in superconductor by nonlinear quantumtheory, IEEE Compendex, 2009, 
274-277, DOI: 10.1109/ ASEMD.2009.5306641(EI) 

[16] Pang, Xiao-feng, Theory of Nonlinear Quantum Mechanics, Chongqing Press, 
Chongqing, 1994.p35-97 

[17] Pang Xiao-feng Nonlinear Quantum Mechanics, Beijing, Chinese Electronic Industry 
Press, Beijing, 2009,p20-63 

[18] Bardeen, L. N., L. N. Cooper and J. R. Schrieffer, Superconductivity theory, Phys. Rev. 
108 (1957) 1175; 

[19] Cooper, L. N., The bound electronic pairs in degenerated Fermi gas Phys. Rev. 104 
(1956) 1189. 

[20] Schrieffer, J. R., Superconductivity, Benjamin, New York, 1969. 
[21]  Schrieffer, J. R., Theory of Superconductivity, Benjamin, New York, 1964. 
[22]  Frohlich.H., Theory of superconductive states, Phys. Rev.79(1950)845;   
[23] Frohlich.H., On superconductivity theory : one-dimensional case, Proc. Roy.Soc.A, 

223(1954)296 
[24] Josephson, B.D, Possible New Effects in Superconducting Tunnelling , Phys. Lett. 1 

(1962) 251 
[25] Josephson, B.D, Supercurrents through barriers, Adv. Phys. 14 (1965) 419. 
[26] Josephson, B.D., Thesis, unpublised, Cambridge University (1964) 
[27] Pang, Xiao-feng, The relation between the physical parameters and effective spectrum 

of phonon, Southwest Inst. For Nationalities, . 17 (1991) 1. 
[28] Pang, Xiao-feng, On the solutions of the time-dependent Ginzburg-Landau equations 

for a superconductor in a weak field, J. Low Temp. Physics, 58(1985)333 
[29] Pang, Xiao-feng, The isotope effects of superconductor, Chinese. J. Low Temp. 

Supercond.,No. 3 (1982) 62  
[30] Pang, Xiao-feng, The properties of soliton motion for superconductivity electrons. Proc. 

ICNP, Shanghai, 1989, p139. 
[31] Rayfield, G. W. and F. Reif, Evidence for the creation and motion of quantized vortex 

rings in superfluid helium, Phys. Rev. Lett. 11 (1963) 305. 
[32] Perring, J. K., and T.H.R.Skyrme, A model unified field equation,Nucl. Phys. 31 (1962) 

550. 

Properties of Macroscopic Quantum Effects 
and Dynamic Natures of Electrons in Superconductors 

 

211 

[33] Barenghi, C. F., R. J. Donnerlly and W. F.Vinen, Quantized Vortex Dynamics and 
Superfluid Turbulence, Springer, Berlin, 2001. 

[34] Bogoliubov, N. N., Quantum statistics, Nauka, Moscow, 1949 
[35] Bogoliubov, N. N., V. V. Toimachev and D. V. Shirkov, A New Method in the Theory of 

Superconductivity, AN SSSR, Moscow, 1958. 
[36] London, F., superfluids Vol.1, Weley, New York 1950. 
[37] de Gennes, P. G., Superconductivity of Metals and Alloys, W. A. Benjamin, New York, 

1966. 
[38] Suint-James, D., et al., Type-II Superconductivity,  Pergamon, Oxford, 1966. 
[39] Kivshar, Yu. S. and B. A. Malomed, Dynamics of solitons in nearly integrable 

systems，Rev. Mod. Phys. 61 (1989) 763. 
[40] Kivshar, Yu. S., T. J. Alexander and S. K. Turitsy, Nonlinear modes of a macroscopic 

quantum oscillator， Phys. Lett. A 278(2001) 225. 
[41] Bullough, R. K., N. M. Bogolyubov, V. S. Kapitonov, C. Malyshev, J. Timonen, A. V. 

J.Rybin, A.V., Vazugin, G.G. and Lindberg, M, Quantum integrable and 
nonintegrable nonlinear Schrodinger models for realizable Bose-Einstein 
condensation in d+1 dimensions (d=1,2,3)， Theor. Math.Phys. 134(2003)47 

[42] Bullough, R. K. and P. T. Caudeey, Solitons, Plenum Press, New York, 1980. 
[43] Huepe, C. and M. E. Brachet, Scaling laws for vortical nucleation solutions in a model of 

superflow，Physica D 140  (2000) 126. 
[44] Sonin, E. B., Nucleation and creep of vortices in superfluids and clean 

superconductors,Physica，B210（1995）234-250  
[45] Davydov.A.S. and V.N.Ermakov, Stability of a Superconducting Condensate of 

Bisolitons, Phys. Stat.Sol.B148(1988)305 
[46] Landau, L. D. and E. M. Lifshitz, Quantum mechanics, Pergamon Press, Oxford, 1987 
[47] Lamb, G. L., Analytical descriptions of ultrashort optical pulse propagation in a 

resonant medium，Rev. Mod. Phys. 43 (1971) 99. 
[48] Ginzberg, V. L. and L. D. Landau, On the theory of superconductivity，Zh. Eksp. 

Theor. Fiz. 20 (1950) 1064;  
[49] Ginzburg V.L., On superconductivity and superfluidity, Physics –Usp. 47 (2004) 1155 -

1170  
[50] Ginzberg, V. L. and D. A. Kirahnits, Problems in High-Temperature Superconductivity, 

Nauka, Moscow, 1977. 
[51] Gorkov, L. P., On the energy spectrum of superconductors, Sov. Phys. JETP 7(1958) 505. 
[52] Gorkov, L. P., Microscopic derivation of the Ginzburg-Landau equation in the theory of 

superconductivity, Sov. Phys. JETP 9 (1959) 1364.  
[53] Abrikosov, A. A., On the magnetic properties of superconductors of the second 

group，Zh. Eksp. Theor. Fiz. 32 (1957) 1442. 
[54] Abrikosov, A. A. and L. P. Gorkov, Zh. Eksp. Theor. Phys. 39 (1960) 781; 
[55] Valatin. J.G. , Comments on the theory of superconductivity, Nuovo  Cimento7(1958)843 
[56] Liu, W. S. and X. P. Li,  BCS states as squeezed fermion-pair states, European Phys. J. D2 

(1998) 1. 
[57] Gross, E. F.,structure of a quantized vertex in boson systems, II Nuovo Cimento, 20 

(1961) 454. 
[58] Pitaevskii, L. P.. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP-USSR, 13 (1961)451 
[59] Pitaevskii, L. P. and Stringari, S. Bose–Einstein Condensation. Oxford, Clarendon Press, 2003 



 
Superconductivity – Theory and Applications 

 

210 

[6] Ginzburg V L, Superconductivity, Superdiamagnetism, Superfluidity , Moscow: MIR 
Publ., 1987 

[7]  Ginzburg V L, Superconductivity, Moscow-Leningrad: Izd.  Moscoew, AN SSSR, 1946 
[8] Ginzburg, V. L.. Superconductivity and superfluidity Phys.-Usp. 40 (1997 ) 407 
[9] Leggett, A. J., Macroscopic Effect of P- and T-Nonconserving Interactions in 

Ferroelectrics: A Possible Experiment? Phys. Rev. Lett. 41 (1978) 586 
[10] Leggett, A. J., in Percolation, Localization and Superconductivity, eds. by A. M. 

Goldlinan,S. A. Bvilf, Plenum Press, New York, 1984. pp. 1- 41. 
[11] Leggett, A. J., Low temperature physics, Springer, Berlin, 1991, pp. 1-93; 
[12] Pang Xiao-feng, Investigations of properties of motion of superconductive electrons in 

superconductors by nonlinear quantum mechanics, J. Electronic Science and 
Technology of China, 6(2)(2008)205-211 

[13] Pang, Xiao-feng, macroscopic quantum effects, Chinese J. Nature, 5 (1982) 254, 
[14] Pang Xiao-feng, Investigations of properties and essences of macroscopic quantum 

effects in superconductors by nonlinear quantum mechanics, Nature Sciences, 
2(1)(2007) 42 

[15] Pang, Xiao-feng, Investigation of solutions of a time-dependent Ginzburg-Landau 
equation in superconductor by nonlinear quantumtheory, IEEE Compendex, 2009, 
274-277, DOI: 10.1109/ ASEMD.2009.5306641(EI) 

[16] Pang, Xiao-feng, Theory of Nonlinear Quantum Mechanics, Chongqing Press, 
Chongqing, 1994.p35-97 

[17] Pang Xiao-feng Nonlinear Quantum Mechanics, Beijing, Chinese Electronic Industry 
Press, Beijing, 2009,p20-63 

[18] Bardeen, L. N., L. N. Cooper and J. R. Schrieffer, Superconductivity theory, Phys. Rev. 
108 (1957) 1175; 

[19] Cooper, L. N., The bound electronic pairs in degenerated Fermi gas Phys. Rev. 104 
(1956) 1189. 

[20] Schrieffer, J. R., Superconductivity, Benjamin, New York, 1969. 
[21]  Schrieffer, J. R., Theory of Superconductivity, Benjamin, New York, 1964. 
[22]  Frohlich.H., Theory of superconductive states, Phys. Rev.79(1950)845;   
[23] Frohlich.H., On superconductivity theory : one-dimensional case, Proc. Roy.Soc.A, 

223(1954)296 
[24] Josephson, B.D, Possible New Effects in Superconducting Tunnelling , Phys. Lett. 1 

(1962) 251 
[25] Josephson, B.D, Supercurrents through barriers, Adv. Phys. 14 (1965) 419. 
[26] Josephson, B.D., Thesis, unpublised, Cambridge University (1964) 
[27] Pang, Xiao-feng, The relation between the physical parameters and effective spectrum 

of phonon, Southwest Inst. For Nationalities, . 17 (1991) 1. 
[28] Pang, Xiao-feng, On the solutions of the time-dependent Ginzburg-Landau equations 

for a superconductor in a weak field, J. Low Temp. Physics, 58(1985)333 
[29] Pang, Xiao-feng, The isotope effects of superconductor, Chinese. J. Low Temp. 

Supercond.,No. 3 (1982) 62  
[30] Pang, Xiao-feng, The properties of soliton motion for superconductivity electrons. Proc. 

ICNP, Shanghai, 1989, p139. 
[31] Rayfield, G. W. and F. Reif, Evidence for the creation and motion of quantized vortex 

rings in superfluid helium, Phys. Rev. Lett. 11 (1963) 305. 
[32] Perring, J. K., and T.H.R.Skyrme, A model unified field equation,Nucl. Phys. 31 (1962) 

550. 

Properties of Macroscopic Quantum Effects 
and Dynamic Natures of Electrons in Superconductors 

 

211 

[33] Barenghi, C. F., R. J. Donnerlly and W. F.Vinen, Quantized Vortex Dynamics and 
Superfluid Turbulence, Springer, Berlin, 2001. 

[34] Bogoliubov, N. N., Quantum statistics, Nauka, Moscow, 1949 
[35] Bogoliubov, N. N., V. V. Toimachev and D. V. Shirkov, A New Method in the Theory of 

Superconductivity, AN SSSR, Moscow, 1958. 
[36] London, F., superfluids Vol.1, Weley, New York 1950. 
[37] de Gennes, P. G., Superconductivity of Metals and Alloys, W. A. Benjamin, New York, 

1966. 
[38] Suint-James, D., et al., Type-II Superconductivity,  Pergamon, Oxford, 1966. 
[39] Kivshar, Yu. S. and B. A. Malomed, Dynamics of solitons in nearly integrable 

systems，Rev. Mod. Phys. 61 (1989) 763. 
[40] Kivshar, Yu. S., T. J. Alexander and S. K. Turitsy, Nonlinear modes of a macroscopic 

quantum oscillator， Phys. Lett. A 278(2001) 225. 
[41] Bullough, R. K., N. M. Bogolyubov, V. S. Kapitonov, C. Malyshev, J. Timonen, A. V. 

J.Rybin, A.V., Vazugin, G.G. and Lindberg, M, Quantum integrable and 
nonintegrable nonlinear Schrodinger models for realizable Bose-Einstein 
condensation in d+1 dimensions (d=1,2,3)， Theor. Math.Phys. 134(2003)47 

[42] Bullough, R. K. and P. T. Caudeey, Solitons, Plenum Press, New York, 1980. 
[43] Huepe, C. and M. E. Brachet, Scaling laws for vortical nucleation solutions in a model of 

superflow，Physica D 140  (2000) 126. 
[44] Sonin, E. B., Nucleation and creep of vortices in superfluids and clean 

superconductors,Physica，B210（1995）234-250  
[45] Davydov.A.S. and V.N.Ermakov, Stability of a Superconducting Condensate of 

Bisolitons, Phys. Stat.Sol.B148(1988)305 
[46] Landau, L. D. and E. M. Lifshitz, Quantum mechanics, Pergamon Press, Oxford, 1987 
[47] Lamb, G. L., Analytical descriptions of ultrashort optical pulse propagation in a 

resonant medium，Rev. Mod. Phys. 43 (1971) 99. 
[48] Ginzberg, V. L. and L. D. Landau, On the theory of superconductivity，Zh. Eksp. 

Theor. Fiz. 20 (1950) 1064;  
[49] Ginzburg V.L., On superconductivity and superfluidity, Physics –Usp. 47 (2004) 1155 -

1170  
[50] Ginzberg, V. L. and D. A. Kirahnits, Problems in High-Temperature Superconductivity, 

Nauka, Moscow, 1977. 
[51] Gorkov, L. P., On the energy spectrum of superconductors, Sov. Phys. JETP 7(1958) 505. 
[52] Gorkov, L. P., Microscopic derivation of the Ginzburg-Landau equation in the theory of 

superconductivity, Sov. Phys. JETP 9 (1959) 1364.  
[53] Abrikosov, A. A., On the magnetic properties of superconductors of the second 

group，Zh. Eksp. Theor. Fiz. 32 (1957) 1442. 
[54] Abrikosov, A. A. and L. P. Gorkov, Zh. Eksp. Theor. Phys. 39 (1960) 781; 
[55] Valatin. J.G. , Comments on the theory of superconductivity, Nuovo  Cimento7(1958)843 
[56] Liu, W. S. and X. P. Li,  BCS states as squeezed fermion-pair states, European Phys. J. D2 

(1998) 1. 
[57] Gross, E. F.,structure of a quantized vertex in boson systems, II Nuovo Cimento, 20 

(1961) 454. 
[58] Pitaevskii, L. P.. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP-USSR, 13 (1961)451 
[59] Pitaevskii, L. P. and Stringari, S. Bose–Einstein Condensation. Oxford, Clarendon Press, 2003 



 
Superconductivity – Theory and Applications 

 

212 

[60] Elyutin P. V. and A. N. Rogovenko, Stimulated transitions between the self-trapped 
states of the nonlinear Schrödinger equation, Phys. Rev. E63 (2001) 026610. 

[61] Elyutin, P. V., Buryak A V, Gubernov V V, Sammut R A and Towers I N, Interaction of 
two one-dimensional Bose-Einstein solitons: Chaos and energy exchange, Phys. 
Rev. E64 (2001) 016607. 

[62] Pang, Xiao-feng, The properties of motion of superconductive electrons in 
superconductor, J. XinJiang Univ. (nature) 5(1988)33 

[63] Pang Xiao-feng, The G-L theory of superconductivity bin magnetic-superconductor, 
Investigations of metal materials, 12(1986) 31   

[64] Perez-Garcia, V. M., M. Michinel and H. Herrero, Bose-Einstein solitons in highly 
asymmetric traps,  Phys. Rev. A57 (1998) 3837. 

[65] London, F. and H. London, The electromagnetic equations of the superconductor, Proc. 
Roy. Soc. (London) A 149 (1935) 71 

[66] Pang, Xiao-feng, Interpretation of proximity effect in superconductive junctions by G-L 
theory, J. Kunming Tech. Sci. Univ., 14. (1989) 78 

[67] Pang, Xiao-feng, Properties of transmission of vortex lines along the superconductive 
junctions. J. Kunming Tech. Sci. Univ., 14 (1989) 83. 

[68] Caradoc-Davies, B. M., R. J. Ballagh and K. Bumett, Coherent Dynamics of Vortex 
Formation in Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 83 (1999) 895. 

[69] Matthews, M. R., B. P. Anderson*, P. C. Haljan, D. S. Hall†, C. E. Wieman, and E. A. 
Cornell, Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83 (1999) 2498. 

[70] Madison, K. W., F. Chevy, W. Wohlleben, and J. Dalibard , Vortex formation in a stirred 
Bose-Einstein condensate, Phys. Rev. Lett. 84 (2000) 806. 

[71] Tonomura A, Kasai H, Kamimura O, Matsuda T, Harada K, Yoshida T, Akashi T, 
Shimoyama J, Kishio K, Hanaguri T, Kitazawa K, Masui T, Tajima S, Koshizuka N, 
Gammel PL, Bishop D, Sasase M, Okayasu S, Observation of structures of chain 
vortices inside anisotropic high- Tc superconductors, Phys. Rev. Lett. 88( 2002) 237001 

[72] Pang, Xiao-feng, Investigation of solutions of Josephson equation in three dimension 
superconductive junctions, J. Chinghai Normal Univ. Sin. No. 1 (1989) 37. 

[73] Blackbunu, J. A., H.J.T. Smith and N.L. Rowell, Proximity effects and the generalized 
Ginzburg-Landau equation, Phys. Rev. B11 (1975) 1053. 

[74] Jacobson, D. A., Ginzburg-Landau equations and the Josephson effect, Phys. Rev. B8 
(1965) 1066;  

[75] Pang, Xiao-feng, The Bose condensation properties of superconductive states, J. Science 
Exploration Sin. 1(4 )(1986) 70. 

[76] Pang, Xiao-feng, The features of coherent state of superconductive states,  J. Southwest 
Inst. For Nationalities Sin. 17 (1991) 18. 

[77] Dewitt, B. S., Superconductors and Gravitational Drag, Phys. Rev. Lett. 16 (1966) 1092 
[78] Kusayanage.E, T. Kawashima and K.Yamafuji,Flux flow in nonideal type-II 

superconductor, J. Phys. Soc. Japan 33 (1972) 551. 
[79] Cai, S. Y. and A. Bhattacharjee, Ginzburg-Landau equation: A nonlinear model for the 

radiation field of a free-electron laser, Phys. Rev. A43 (1991) 6934. 
[80] Pang, Xiao-feng, Soliton Physics, Press of Sichuan Sci. and Tech., Chengdu, 2003 
[81] Guo Bai-lin and Pang Xiao-feng, solitons, Chinese Science Press, Beijing, 1987 

0

FFLO and Vortex States in Superconductors With
Strong Paramagnetic Effect

M. Ichioka, K.M. Suzuki, Y. Tsutsumi and K. Machida
Department of Physics, Okayama University

Japan

1. Introduction

In type-II superconductors (Fetter & Hohenberg, 1969), magnetic fields penetrate into
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constant, c velocity of light, e electron’s charge. Around a flux line, pair potential ∆(r) of
Cooper pair has a vortex structure, where ∆(r) has phase winding 2π reflecting screening
super-current around a flux line. At the vortex core, amplitude |∆(r)| is suppressed, and low
energy excitations appear within the superconducting gap of the electronic states.
Vortex physics makes important roles in the study of unconventional superconductors,
because unconventional characters hidden in the uniform superconducting state at a zero field
appear around vortices. For example, in superconductors with anisotropic superconducting
gap on Fermi surface in momentum space, electronic states around a vortex show real-space
anisotropy in the local density of states (LDOS) N(E, r) around vortex core. The vortex core
image is observed by scanning tunneling microscopy (STM) (Hess et al., 1990; Nishimori et al.,
2004). Around vortex cores, local zero-energy electronic states at Fermi level are seen as star
shape with tails extending toward node or weak-gap directions (Hayashi et al., 1996; 1997;
Ichioka et al., 1996; Schopohl & Maki, 1995). From the spatial average of the zero-energy
states, we can estimate the zero-energy density of states (DOS) N(E = 0), which determines
low temperature (T) behaviors of physical quantities. Due to the differences of electronic
states around the vortex core, N(E = 0) shows different magnetic field (H) dependences.
These H-dependences are studied to identify the pairing symmetry in the experiments for
vortex states, such as, electronic specific heat (Moler et al., 1994; Nohara et al., 1999), electronic
thermal conductivity, and paramagnetic susceptibility (Zheng et al., 2002). For example, the
H-dependence of low temperature specific heat C(H) is often used to distinguish the presence
of nodes in the pairing potential. As for Sommerfeld coefficient γ(H) ≡ limT→0 C(H)/T,
γ(H) ∝ H in s-wave pairing with full gap, and γ(H) ∝
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H by the Volovik effect in d-wave

pairing with line nodes (Ichioka et al., 1999a;b; Miranović et al., 2003; Nakai et al., 2004;
Volovik, 1993). The curves of γ(H) are expected to smoothly recover to the normal state
value towards the upper critical field Hc2. However, in some heavy fermion superconductors,
C(H) deviates from these curves. In CeCoIn5, C(H) shows convex curves, i.e., C(H) ∝ Hα

(α > 1) at higher fields(Ikeda et al., 2001). This behavior is not understood only by effects
of the pairing symmetry. A similar C(H) behavior is observed also in UBe13 (Ramirez et al.,
1999). The experimental data of magnetization curve Mtotal(H) in CeCoIn5 show a convex
curve at higher fields, instead of a conventional concave curve (Tayama et al., 2002). As an
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unconventional behavior of CeCoIn5, the small angle neutron scattering (SANS) experiment
reported anomalous H-dependence of flux line lattice (FLL) form factor determined from the
Bragg intensity (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al., 2010). While
the form factor shows exponential decay as a function of H in many superconductors, it
increases until near Hc2 for H � c in CeCoIn5. In some heavy fermion superconductors, the
paramagnetic effects due to Zeeman shift are important to understand the properties of the
vortex states, because the superconductivity survives until under high magnetic fields due to
the effective mass enhancement. A heavy fermion compound CeCoIn5 is a prime candidate of
a superconductor with strong Pauli-paramagnetic effect (Matsuda & Shimahara, 2007). There
at higher fields Hc2 changes to the first order phase transition (Bianchi et al., 2002; Izawa et al.,
2001; Tayama et al., 2002) and new phase, considered as Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state, appears (Bianchi, Movshovich, Capan, Pagliuso & Sarrao, 2003; Radovan
et al., 2003). As for properties of CeCoIn5, the contribution of antiferromagnetic fluctuation
and quantum critical point (QCP) is also proposed in addition to the strong paramagnetic
effect (Bianchi, Movshovich, Vekhter, Pagliuso & Sarrao, 2003; Paglione et al., 2003). Therefore,
it is expected to study whether properties of vortex states in CeCoIn5 are theoretically
explained only by the paramagnetic effect. Theoretical studies of the H-dependences also
help us to estimate strength of the paramagnetic effect, in addition to pairing symmetry, from
experimental data of the H-dependences in various superconductors.
In this chapter, we concentrate to discuss the paramagnetic effect in the vortex states, to see
how the paramagnetic effect changes structures and properties of vortex states. The BCS
Hamiltonian in magnetic field is given by

H− µ0N = ∑
σ=↑,↓

�
d3r ψ†

σ(r)Kσ(r)ψσ(r)

−
�

d3r1

�
d3r2

�
∆(r1, r2)ψ

†
↑(r1)ψ

†
↓(r2) +∆∗(r1, r2)ψ↓(r2)ψ↑(r1)

�
(1)

for superconductors of spin-singlet pairing, with

Kσ(r) =
h̄2

2m

�∇
i
+

π

φ0
A
�2

+ σµBB(r)− µ0, (2)

σ = ±1 for up/down spin electrons. Suppression of superconductivity by magnetic field
occurs by two contributions. One is diamagnetic pair-breaking from vector potential A in
Hamiltonian inducing screening current of vortex structure. And the other is paramagnetic
pair-breaking from Zeeman term, which induces splitting of up-spin and down-spin Fermi
surfaces as schematically presented in Fig. 1. Due to the Zeeman shift, in normal states,
numbers of occupied electron states are imbalance between up-spin and down-spin electrons.
The imbalance induces paramagnetic moment. In superconducting state with spin-singlet
pairing, formations of Cooper pair between up-spin and down-spin electrons reduce the
imbalance, and suppress the paramagnetic moment. However, the paramagnetic moment
may appear at place where superconductivity is locally suppressed, such as around vortex
core. Therefore, it is important to quantitatively estimate the spatial structure of paramagnetic
moment and the contributions to properties of superconductors in vortex states.
One of other paramagnetic effect is paramagnetic pair breaking. When the Zeeman effect is
negligible, as in Fig. 1(a), for Cooper pair of up-spin and down-spin electrons at Fermi level,
total momentum Q of the pair is zero, i.e., Q = k + (−k) = 0. However, in the presence of
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Fig. 1. Paramagnetic effect by Zeeman shift of energy dispersion is schematically presented.
Bold lines indicate occupied states. (a) The case when Zeeman shift is negligible. For Cooper
pairs at Fermi level, total momentum Q = k + (−k) = 0. (b) When Zeeman shift is
significant, the energy dispersions of up-spin and down-spin electrons are separated. When
Q = 0, the electrons of Cooper pair are not at Fermi level. In FFLO states, Q �= 0 so that
electrons of Cooper pair are located at Fermi level.

Zeeman splitting, in order to keep Q = 0, Cooper pair is formed between electrons far from
Fermi level, as shown in Fig. 1(b). Since the energy gain by this pairing is smaller than that
of negligible paramagnetic case, the Zeeman splitting induces paramagnetic pair-breaking
of superconductivity. In addition to Hc2 suppressed by the paramagnetic pair-breaking, it
is important to quantitatively estimate the contribution of paramagnetic pair-breaking on
properties of vortex states at H < Hc2.
When paramagnetic effect by Zeeman shift is further significant, transition to FFLO state
occurs at high magnetic fields near Hc2. In FFLO state, as shown in Fig. 1(b), electrons at Fermi
level form Cooper pair with non-zero total momentum (Q �= 0), which indicates periodic
modulation of pair potential (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965; Machida &
Nakanishi, 1984). When FFLO state appears in vortex state, we have to estimate properties
of the FFLO state, considering both of vortex and FFLO modulation (Adachi & Ikeda, 2003;
Houzet & Buzdin, 2001; Ichioka et al., 2007; Ikeda & Adachi, 2004; Mizushima et al., 2005a;b;
Tachiki et al., 1996). Another system for significant paramagnetic effect is superfluidity of
neutral 6Li atom gases under the population imbalance of two species for pairing (Machida
et al., 2006; Partridge et al., 2006; Takahashi et al., 2006; Zwierlein et al., 2006). There, we can
study vortex state by rotating fermion superfluids, under control of paramagnetic effect by
loaded population imbalance.
For theoretical studies of vortex states including electronic structure, we have to use
formulation of microscopic theory, such as Bogoliubov-de Gennes (BdG) theory (Mizushima
et al., 2005a;b; Takahashi et al., 2006) or quasi-classical Eilenberger theory (Eilenberger,
1968; Klein, 1987). In this chapter, based on the selfconsistent Eilenberger theory (Ichioka
et al., 1999a;b; 1997; Miranović et al., 2003), we discuss interesting phenomena of vortex
states in superconductors with strong paramagnetic effect, i.e., (i) anomalous magnetic
field dependence of physical quantities, and (ii) FFLO vortex states. We study the spatial
structure of the vortex states with and without FFLO modulation, in the presence of the
paramagnetic effect due to Zeeman-shift (Hiragi et al., 2010; Ichioka et al., 2007; Ichioka &
Machida, 2007; Watanabe et al., 2005). Since we calculate the vortex structure in vortex lattice
states, self-consistently with local electronic states, we can quantitatively estimate the field
dependence of some physical quantities. We will clarify the paramagnetic effect on the vortex
core structure, calculating the pair potential, paramagnetic moment, internal magnetic field,
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One of other paramagnetic effect is paramagnetic pair breaking. When the Zeeman effect is
negligible, as in Fig. 1(a), for Cooper pair of up-spin and down-spin electrons at Fermi level,
total momentum Q of the pair is zero, i.e., Q = k + (−k) = 0. However, in the presence of
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Fig. 1. Paramagnetic effect by Zeeman shift of energy dispersion is schematically presented.
Bold lines indicate occupied states. (a) The case when Zeeman shift is negligible. For Cooper
pairs at Fermi level, total momentum Q = k + (−k) = 0. (b) When Zeeman shift is
significant, the energy dispersions of up-spin and down-spin electrons are separated. When
Q = 0, the electrons of Cooper pair are not at Fermi level. In FFLO states, Q �= 0 so that
electrons of Cooper pair are located at Fermi level.

Zeeman splitting, in order to keep Q = 0, Cooper pair is formed between electrons far from
Fermi level, as shown in Fig. 1(b). Since the energy gain by this pairing is smaller than that
of negligible paramagnetic case, the Zeeman splitting induces paramagnetic pair-breaking
of superconductivity. In addition to Hc2 suppressed by the paramagnetic pair-breaking, it
is important to quantitatively estimate the contribution of paramagnetic pair-breaking on
properties of vortex states at H < Hc2.
When paramagnetic effect by Zeeman shift is further significant, transition to FFLO state
occurs at high magnetic fields near Hc2. In FFLO state, as shown in Fig. 1(b), electrons at Fermi
level form Cooper pair with non-zero total momentum (Q �= 0), which indicates periodic
modulation of pair potential (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965; Machida &
Nakanishi, 1984). When FFLO state appears in vortex state, we have to estimate properties
of the FFLO state, considering both of vortex and FFLO modulation (Adachi & Ikeda, 2003;
Houzet & Buzdin, 2001; Ichioka et al., 2007; Ikeda & Adachi, 2004; Mizushima et al., 2005a;b;
Tachiki et al., 1996). Another system for significant paramagnetic effect is superfluidity of
neutral 6Li atom gases under the population imbalance of two species for pairing (Machida
et al., 2006; Partridge et al., 2006; Takahashi et al., 2006; Zwierlein et al., 2006). There, we can
study vortex state by rotating fermion superfluids, under control of paramagnetic effect by
loaded population imbalance.
For theoretical studies of vortex states including electronic structure, we have to use
formulation of microscopic theory, such as Bogoliubov-de Gennes (BdG) theory (Mizushima
et al., 2005a;b; Takahashi et al., 2006) or quasi-classical Eilenberger theory (Eilenberger,
1968; Klein, 1987). In this chapter, based on the selfconsistent Eilenberger theory (Ichioka
et al., 1999a;b; 1997; Miranović et al., 2003), we discuss interesting phenomena of vortex
states in superconductors with strong paramagnetic effect, i.e., (i) anomalous magnetic
field dependence of physical quantities, and (ii) FFLO vortex states. We study the spatial
structure of the vortex states with and without FFLO modulation, in the presence of the
paramagnetic effect due to Zeeman-shift (Hiragi et al., 2010; Ichioka et al., 2007; Ichioka &
Machida, 2007; Watanabe et al., 2005). Since we calculate the vortex structure in vortex lattice
states, self-consistently with local electronic states, we can quantitatively estimate the field
dependence of some physical quantities. We will clarify the paramagnetic effect on the vortex
core structure, calculating the pair potential, paramagnetic moment, internal magnetic field,

215FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect



4 Will-be-set-by-IN-TECH

and local electronic states. We also study the paramagnetic effect by quantitatively estimating
the H-dependence of low temperature specific heat, Knight shift, magnetization and FLL
form factors. For quantitative estimate, it is important to appropriately determine vortex core
structure by selfconsistent calculation in vortex lattice states. These theoretical studies of the
magnetic field dependences help us to evaluate the strength of the paramagnetic effect from
the experimental data of the H-dependences in various superconductors.
After giving our formulation of selfconsistent Eilenberger theory in Sec. 2, we study the
paramagnetic effect in vortex states without FFLO modulation in Sec. 3, where we discuss the
H-dependence of paramagnetic susceptibility, low temperature specific heat, magnetization
curve, FLL form factor, and their comparison with experimental data in CeCoIn5. We also
show the paramagnetic contributions on the vortex core structure, and the local electronic
state in the presence of Zeeman shift. Section 4 is for the study of FFLO vortex state, in order
to theoretically estimate properties of the FFLO vortex states, and to show how the properties
appear in experimental data. We study the spatial structure of pair potential, paramagnetic
moment, internal field, and local electronic state, including estimate of magnetic field range
for stable FFLO vortex state. As possible methods to directly observe the FFLO vortex state,
we discuss the NMR spectrum and FLL form factors, reflecting FFLO vortex structure. Last
section is devoted to summary and discussions.

2. Quasiclassical theory including paramagnetic effect

One of the methods to study properties of superconductors by microscopic theory is a
formulation of Green’s functions. With field operators ψ↑, ψ↓, Green’s functions are defined
as

G(r, τ; r�, τ�) = −�Tτ [ψ↑(r, τ)ψ†
↑(r

�, τ�)]�,
F(r, τ; r�, τ�) = −�Tτ [ψ↑(r, τ)ψ↓(r�, τ�)]�, F†(r, τ; r�, τ�) = −�Tτ [ψ

†
↓(r, τ)ψ†

↑(r
�, τ�)]� (3)

in imaginary time formulation, where Tτ indicates time-ordering operator of τ, and �· · · � is
statistical ensemble average. The Green’s functions obey Gor’kov equation derived from the
BCS Hamiltonian of Eq. (1). Behaviors of Green’s functions include rapid oscillation of atomic
short scale at the Fermi energy. Thus, in order to solve Gor’kov equation or BdG equation
for vortex structure, we need heavy calculation treating all atomic sites within a unit cell of
vortex lattice. To reduce the task of the calculation, we adopt quasiclassical approximation to
integrate out the rapid oscillation of the atomic scale ∼ 1/kF (kF is Fermi wave number), and
consider only the spatial variation in the length scale of the superconducting coherence length
ξ0. This is appropriate when ξ0 � 1/kF, which is satisfied in most of superconductors in solid
state physics. The quasiclassical Green’s functions are defined as

g(ωn, kF, r) =
� dξ

iπ
G(ωn, k, r),

f (ωn, kF, r) =
� dξ

π
F(ωn, k, r), f †(ωn, kF, r) =

� dξ

π
F†(ωn, k, r), (4)

where we consider the Fourier transformation of the Green’s functions; from τ − τ to
Matsubara frequency ωn, and from r − r� to relative momentum k, and integral about
ξ ≡ k2/2m − µ0, i.e., momentum directions perpendicular to the Fermi surface. Thus, the
quasiclassical Green’s functions depends on the momentum kF on the Fermi surface, and the
center-of-mass coordinate (r + r�)/2 → r.
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center-of-mass coordinate (r + r�)/2 → r.
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From the Gor’kov equation, Eilenberger equations for quasiclassical Green’s functions are
derived as

{ωn + iµB + v · (∇+ iA)} f = ∆(r, kF)g,

{ωn + iµB − v · (∇− iA)} f † = ∆∗(r, kF)g, (5)

with v · ∇g = ∆∗(r, kF) f − ∆(r, kF) f †, g = (1 − f f †)1/2, Reg > 0, ∆(r, kF) = ∆(r)φ(kF),
and µ = µBB0/πkBTc. In this chapter, length, temperature, Fermi velocity, magnetic field and
vector potential are, respectively, in units of R0, Tc, v̄F, B0 and B0R0. Here, R0 = h̄v̄F/2πkBTc

is in the order of coherence length, B0 = h̄c/2|e|R2
0, and v̄F = �v2

F�1/2
kF

is an averaged Fermi
velocity on the Fermi surface. �· · · �kF indicates the Fermi surface average. Energy E, pair
potential ∆ and Matsubara frequency ωn are in unit of πkBTc. We set the pairing function
φ(kF) = 1 in the s-wave pairing, and φ(kF) =

√
2(k2

a − k2
b)/(k

2
a + k2

b) in the d-wave pairing.
The vector potential is given by A = 1

2 B̄ × r + a in the symmetric gauge, with an average flux
density B̄ = (0, 0, B̄). The internal field is obtained as B(r) = B̄ +∇× a.
The pair potential is selfconsistently calculated by

∆(r) = g0 N0T ∑
0≤ωn≤ωcut

�
φ∗(kF)

�
f + f †∗��

kF
(6)

with (g0 N0)
−1 = ln T + 2T ∑0≤ωn≤ωcut

ω−1
n . We set high-energy cutoff of the pairing

interaction as ωcut = 20kBTc. The vector potential is selfconsistently determined by the
paramagnetic moment Mpara = (0, 0, Mpara) and the supercurrent js as

∇×∇× a(r) = js(r) +∇× Mpara(r) ≡ j(r), (7)

with

js(r) = − 2T
κ2 ∑

0≤ωn

�vFIm{g}�kF
, (8)

Mpara(r) = M0

�
B(r)

B̄
− 2T

µB̄ ∑
0≤ωn

�Im {g}�kF

�
. (9)

Here, the normal state paramagnetic moment M0 = (µ/κ)2 B̄, κ = B0/πkBTc
√

8πN0, N0 is
DOS at the Fermi energy in the normal state.
The unit cell of the vortex lattice is given by r = w1(u1 − u2) + w2u2 + w3u3 with −0.5 ≤
wi ≤ 0.5 (i=1, 2, 3), u1 = (a, 0, 0), u2 = (ζa, ay, 0) with ζ = 1/2, and u3 = (0, 0, L). For
triangular vortex lattice ay/a =

√
3/2, and ay/a = 1/2 for square vortex lattice. For the

FFLO modulation, we assume ∆(x, y, z) = ∆(x, y, z + L) and ∆(x, y, z) = −∆(x, y,−z). Then,
∆(r) = 0 at the FFLO nodal planes z = 0, and ±0.5L. These configurations of the FFLO vortex
structure are schematically shown in Fig. 2, which show the unit cell in the xz plane including
vortex lines, and in the xy plane. We divide wi to Ni-mesh points in our numerical studies,
and calculate the quasiclassical Green’s functions, ∆(r), Mpara(r) and j(r) at each mesh point
in the three dimensional (3D) space. Typically we set N1 = N2 = N3 = 31 for the calculation
of vortex states with FFLO modulation. For the vortex states without FFLO modulation, we
assume uniform structure along the magnetic field direction, and set N1 = N2 = 41.
We solve Eq. (5) for g, f , f †, and Eqs. (6)-(9) for ∆(r), Mpara(r), A(r), alternately, and obtain
selfconsistent solutions, by fixing a unit cell of the vortex lattice and a period L of the FFLO
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and local electronic states. We also study the paramagnetic effect by quantitatively estimating
the H-dependence of low temperature specific heat, Knight shift, magnetization and FLL
form factors. For quantitative estimate, it is important to appropriately determine vortex core
structure by selfconsistent calculation in vortex lattice states. These theoretical studies of the
magnetic field dependences help us to evaluate the strength of the paramagnetic effect from
the experimental data of the H-dependences in various superconductors.
After giving our formulation of selfconsistent Eilenberger theory in Sec. 2, we study the
paramagnetic effect in vortex states without FFLO modulation in Sec. 3, where we discuss the
H-dependence of paramagnetic susceptibility, low temperature specific heat, magnetization
curve, FLL form factor, and their comparison with experimental data in CeCoIn5. We also
show the paramagnetic contributions on the vortex core structure, and the local electronic
state in the presence of Zeeman shift. Section 4 is for the study of FFLO vortex state, in order
to theoretically estimate properties of the FFLO vortex states, and to show how the properties
appear in experimental data. We study the spatial structure of pair potential, paramagnetic
moment, internal field, and local electronic state, including estimate of magnetic field range
for stable FFLO vortex state. As possible methods to directly observe the FFLO vortex state,
we discuss the NMR spectrum and FLL form factors, reflecting FFLO vortex structure. Last
section is devoted to summary and discussions.

2. Quasiclassical theory including paramagnetic effect

One of the methods to study properties of superconductors by microscopic theory is a
formulation of Green’s functions. With field operators ψ↑, ψ↓, Green’s functions are defined
as

G(r, τ; r�, τ�) = −�Tτ [ψ↑(r, τ)ψ†
↑(r
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in imaginary time formulation, where Tτ indicates time-ordering operator of τ, and �· · · � is
statistical ensemble average. The Green’s functions obey Gor’kov equation derived from the
BCS Hamiltonian of Eq. (1). Behaviors of Green’s functions include rapid oscillation of atomic
short scale at the Fermi energy. Thus, in order to solve Gor’kov equation or BdG equation
for vortex structure, we need heavy calculation treating all atomic sites within a unit cell of
vortex lattice. To reduce the task of the calculation, we adopt quasiclassical approximation to
integrate out the rapid oscillation of the atomic scale ∼ 1/kF (kF is Fermi wave number), and
consider only the spatial variation in the length scale of the superconducting coherence length
ξ0. This is appropriate when ξ0 � 1/kF, which is satisfied in most of superconductors in solid
state physics. The quasiclassical Green’s functions are defined as

g(ωn, kF, r) =
� dξ

iπ
G(ωn, k, r),

f (ωn, kF, r) =
� dξ

π
F(ωn, k, r), f †(ωn, kF, r) =

� dξ

π
F†(ωn, k, r), (4)

where we consider the Fourier transformation of the Green’s functions; from τ − τ to
Matsubara frequency ωn, and from r − r� to relative momentum k, and integral about
ξ ≡ k2/2m − µ0, i.e., momentum directions perpendicular to the Fermi surface. Thus, the
quasiclassical Green’s functions depends on the momentum kF on the Fermi surface, and the
center-of-mass coordinate (r + r�)/2 → r.
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Here, the normal state paramagnetic moment M0 = (µ/κ)2 B̄, κ = B0/πkBTc
√

8πN0, N0 is
DOS at the Fermi energy in the normal state.
The unit cell of the vortex lattice is given by r = w1(u1 − u2) + w2u2 + w3u3 with −0.5 ≤
wi ≤ 0.5 (i=1, 2, 3), u1 = (a, 0, 0), u2 = (ζa, ay, 0) with ζ = 1/2, and u3 = (0, 0, L). For
triangular vortex lattice ay/a =

√
3/2, and ay/a = 1/2 for square vortex lattice. For the

FFLO modulation, we assume ∆(x, y, z) = ∆(x, y, z + L) and ∆(x, y, z) = −∆(x, y,−z). Then,
∆(r) = 0 at the FFLO nodal planes z = 0, and ±0.5L. These configurations of the FFLO vortex
structure are schematically shown in Fig. 2, which show the unit cell in the xz plane including
vortex lines, and in the xy plane. We divide wi to Ni-mesh points in our numerical studies,
and calculate the quasiclassical Green’s functions, ∆(r), Mpara(r) and j(r) at each mesh point
in the three dimensional (3D) space. Typically we set N1 = N2 = N3 = 31 for the calculation
of vortex states with FFLO modulation. For the vortex states without FFLO modulation, we
assume uniform structure along the magnetic field direction, and set N1 = N2 = 41.
We solve Eq. (5) for g, f , f †, and Eqs. (6)-(9) for ∆(r), Mpara(r), A(r), alternately, and obtain
selfconsistent solutions, by fixing a unit cell of the vortex lattice and a period L of the FFLO

217FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect



6 Will-be-set-by-IN-TECH

(a) (b)

Fig. 2. Configurations of the vortex lines and the FFLO nodal planes are schematically
presented in the xz plane including vortex lines (a) and in the xy plane (b). The inter-vortex
distance is a in the x direction, and the distance between the FFLO nodal planes is L/2. The
hatched region indicates the unit cell. In (a), along the trajectories presented by “0 −→ π”,
the pair potential changes the sign (+ → −) across the vortex line or across the FFLO nodal
plane, due to the π-phase shift of the pair potential. Along the trajectory presented by
“0 −→ 2π”, the sign of the the pair potential does not change (+ → +) across the
intersection point of the vortex line and the FFLO nodal plane, since the phase shift is 2π. In
(b), • indicates the vortex center. u1 − u2 and u2 are unit vectors of the vortex lattice.

modulation. When we solve Eq. (5), we estimate ∆(r) and A(r) at arbitrary positions by the
interpolation from their values at the mesh points, and by the periodic boundary condition of
the unit cell including the phase factor due to the magnetic field. The boundary condition is
given by

∆(r + R) = ∆(r)eiχ(r,R) (10)

χ(r, R) = 2π{1
2
((m + nζ)

y
ay

− n
x
ax

) +
mn
2

+ (m + nζ)
y0

ay
− n

x0

ax
} (11)

for R = mu1 + nu2 (m, n : integer), when the vortex center is located at (x0, y0)− 1
2 (u1 + u2).

In the selfconsistent calculation of a, we solve Eq. (7) in the Fourier space qm1,m2,m3 , taking
account of the current conservation ∇ · j(r) = 0, so that the average flux density per unit cell
of the vortex lattice is kept constant. The wave number q is discretized as

qm1,m2,m3 = m1q1 + m2q2 + m3q3 (12)

with integers mi (i = 1, 2, 3), where q1 = (2π/a,−π/ay, 0), q2 = (2π/a, π/ay, 0), and
q3 = (0, 0, 2π/L). The lattice momentum is defined as G(qm1,m2,m3 ) = (Gx, Gy, Gz)
with Gx = [N1 sin(2πm1/N1) + N2 sin(2πm2/N2)]/a, Gy = [−N1 sin(2πm1/N1) +
N2 sin(2πm2/N2)]/2ay, and Gz = N3 sin(2πm3/N3)/L. We obtain the Fourier component
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The final selfconsistent solution satisfies ∇ · j(r) = 0.
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Using selfconsistent solutions, we calculate free energy, external field, and LDOS. In
Eilenberger theory, free energy is given by
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Using Doria-Gubernatis-Rainer scaling (Doria et al., 1990; Watanabe et al., 2005), we obtain
the relation of B̄ and the external field H as
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where �· · · �r indicates the spatial average. We consider the case when κ = 89 and low
temperature T/Tc = 0.1. For two-dimensional (2D) Fermi surface, κ = (7ζ(3)/8)1/2κGL ∼
κGL (Miranović & Machida, 2003). Therefore we consider the case of typical type-II
superconductors with large Ginzburg-Landau (GL) parameter. In these parameters, |B̄− H| <
10−4B0.
When we calculate the electronic states, we solve Eq. (5) with iωn → E + iη. The LDOS is
given by N(r, E) = N↑(r, E) + N↓(r, E), where

Nσ(r, E) = N0�Re{g(ωn + iσµB, kF, r)|iωn→E+iη}�kF (17)

with σ = 1 (−1) for up (down) spin component. We typically use η = 0.01, which is small
smearing effect of energy by scatterings. The DOS is obtained by the spatial average of the
LDOS as N(E) = N↑(E) + N↓(E) = �N(r, E)�r.

3. Vortex states in superconductors with strong paramagnetic effect

In this section, we study the paramagnetic effect in vortex state without FFLO modulation.
For simplicity, we consider fundamental case of isotropic Fermi surface, that is, 2D cylindrical
Fermi surface with kF = kF(cos θ, sin θ) and Fermi velocity vF = vF0(cos θ, sin θ). Magnetic
field is applied along the z direction. Even before the FFLO transition, the strong paramagnetic
effect induces anomalous field dependence of some physical quantities by paramagnetic
vortex core and paramagnetic pair-breaking. There are some theoretical approaches to
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where �· · · �r indicates the spatial average. We consider the case when κ = 89 and low
temperature T/Tc = 0.1. For two-dimensional (2D) Fermi surface, κ = (7ζ(3)/8)1/2κGL ∼
κGL (Miranović & Machida, 2003). Therefore we consider the case of typical type-II
superconductors with large Ginzburg-Landau (GL) parameter. In these parameters, |B̄− H| <
10−4B0.
When we calculate the electronic states, we solve Eq. (5) with iωn → E + iη. The LDOS is
given by N(r, E) = N↑(r, E) + N↓(r, E), where

Nσ(r, E) = N0�Re{g(ωn + iσµB, kF, r)|iωn→E+iη}�kF (17)

with σ = 1 (−1) for up (down) spin component. We typically use η = 0.01, which is small
smearing effect of energy by scatterings. The DOS is obtained by the spatial average of the
LDOS as N(E) = N↑(E) + N↓(E) = �N(r, E)�r.

3. Vortex states in superconductors with strong paramagnetic effect

In this section, we study the paramagnetic effect in vortex state without FFLO modulation.
For simplicity, we consider fundamental case of isotropic Fermi surface, that is, 2D cylindrical
Fermi surface with kF = kF(cos θ, sin θ) and Fermi velocity vF = vF0(cos θ, sin θ). Magnetic
field is applied along the z direction. Even before the FFLO transition, the strong paramagnetic
effect induces anomalous field dependence of some physical quantities by paramagnetic
vortex core and paramagnetic pair-breaking. There are some theoretical approaches to
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the study of paramagnetic effect, such as by BdG theory (Takahashi et al., 2006), or by
Landau level expansion in Eilenberger theory(Adachi et al., 2005). Here, we report results of
quantitative estimate by selfconsistent Eilenberger theory given in previous section (Ichioka
& Machida, 2007).

3.1 Field dependence of paramagnetic susceptibility and zero-energy DOS
First, we discuss the field dependence of zero-energy DOS γ(H) = N(E = 0)/N0
and paramagnetic susceptibility χ(H) = �Mpara(r)�r/M0, which are normalized by the
normal state values. From low temperature specific heats C, we obtain γ(H) ∝ C/T
experimentally. And χ(H) is observed by the Knight shift in NMR experiments, which
measure the paramagnetic component via the hyperfine coupling between a nuclear spin
and conduction electrons. As shown in Fig. 3, γ (dashed lines) and χ (solid lines) show
almost the same behavior at low temperatures. First, we see the case of d-wave pairing
with line nodes in Fig. 3(a). There γ(H) and χ(H) describe

√
H-like recovery smoothly

to the normal state value (γ = χ = 1 at Hc2) in the case of negligible paramagnetic effect
(µ = 0.02). With increasing the paramagnetic parameter µ, Hc2 is suppressed and the Volovik
curve γ(H) ∝

√
H gradually changes into curves with a convex curvature. For large µ, Hc2

changes to first order phase transition. We note that at lower fields all curves exhibit a
√

H
behavior because the paramagnetic effect (∝ H) is not effective. Further increasing H, γ(H)
behaves quite differently. There we find a turning point field which separates a concave curve
at lower H and a convex curve at higher H. H/Hc2 at the inflection point increases as µ
decreases. From these behaviors, we can estimate the strength of the paramagnetic effect, µ.

(a)
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χ

µ= 0.020.861.72.6

(b)
0 0.2 0.4H

0
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Fig. 3. The magnetic field dependence of paramagnetic susceptibility χ(H) (solid lines) and
zero-energy DOS γ(H) (dashed lines) at T = 0.1Tc for various paramagnetic parameters
µ = 0.02, 0.86, 1.7, and 2.6 in the d-wave (a) and s-wave (b) pairing cases.

To examine effects of the pairing symmetry, we show γ(H) and χ(H) also for s-wave
pairing in Fig. 3(b). In the H-dependence of γ(H) and χ(H), differences by the vortex
lattice configuration of triangular or square are negligibly small. The difference in the
H-dependences of Figs. 3(a) and 3(b) at low fields comes from the gap structure of the pairing
function. In the full gap case of s-wave pairing, γ(H) and χ(H) show H-linear-like behavior at
low fields. With increasing the paramagnetic effect, H-linear behaviors gradually change into
curves with a convex curvature. As seen in Figs. 3(a) and 3(b), paramagnetic effects appear
similarly at high fields both for s-wave and d-wave pairings.
The H-dependence of γ(H) for H � c and H � ab was used to identify the pairing symmetry
and paramagnetic effect in URu2Si2 (Yano et al., 2008).
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3.2 Field dependence of magnetization
We discuss the paramagnetic effect on the magnetization curves. The magnetization Mtotal =
B̄ − H includes both the diamagnetic and the paramagnetic contributions. In Fig. 4,
magnetization curves are presented as a function of H for various µ at T = 0.1Tc for s-wave
and d-wave pairings. When the paramagnetic effect is negligible, we see typical magnetization
curve of type-II superconductors. There, |Mtotal| in s-wave pairing is larger, compared with
that in d-wave pairing. Dashed lines in Fig. 4 indicate the magnetization in normal states,
which shows linear increase of paramagnetic moments as a function of magnetic fields.
When paramagnetic effect is strong for large µ, Mtotal(H) exhibits a sharp rise near Hc2 by
the paramagnetic pair breaking effect, and that Mtotal(H) has convex curvature at higher
fields, instead of a conventional concave curvature. These behaviors are qualitatively seen
in experimental data of CeCoIn5 (Tayama et al., 2002).
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Fig. 4. Magnetization curve Mtotal as a function of H at T/Tc = 0.1 for µ = 0.02, 0.86, 1.7 and
2.6 in s-wave (a) and d-wave (b) pairings. Dashed lines are normal state magnetization.

In Fig. 5(a), magnetization curves are presented as a function of H for various T at µ = 1.7.
With increasing T, the rapid increase of Mtotal(H) near Hc2 is smeared. In Fig. 5(b), Mtotal
is plotted as a function of T2 for various B̄. We fit these curves as Mtotal(T, H) = M0 +
1
2 β(H)T2 + O(T3) at low T. The slope β(H) = limT→0 ∂2Mtotal/∂T2 decreases on raising H
at lower fields. However, at higher fields approaching Hc2, the slope β(H) sharply increases.
Thus, as shown in Fig. 5(c), β(H) as a function of H exhibits a minimum at intermediate H
and rapid increase near Hc2 by the paramagnetic effect when µ = 1.7. This is contrasted with
the case of negligible paramagnetic effect (µ = 0.02), where β(H) is a decreasing function of H
until Hc2. The behavior of β(H) is consistent with that of γ(H), since there is a relation β(H) ∝
∂γ(H)/∂H obtained from a thermodynamic Maxwell’s relation ∂2Mtotal/∂T2 = ∂(C/T)/∂B
and B ∼ H (Adachi et al., 2005). In Fig. 3, we see that for µ = 1.7 the slope of γ(H) is
decreasing function of H at low H, but changes to increasing function near Hc2. This behavior
correctly reflects the H-dependence of β(H).

3.3 Paramagnetic contribution on vortex core structure
In order to understand contributions of the paramagnetic effect on the vortex structure, we
illustrate the local structures of the pair potential |∆(r)|, paramagnetic moment Mpara(r),
and internal magnetic field B(r) within a unit cell of the vortex lattice in Fig. 6. Since we
assume d-wave pairing with the line node gap here, the vortex core structure is deformed
to fourfold symmetric shape around a vortex core (Ichioka et al., 1999a;b; 1996). It is noted
that the paramagnetic moment is enhanced exclusively around the vortex core, as shown in
Fig. 6(b). Since the contribution of the paramagnetic vortex core is enhanced with increasing
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behaves quite differently. There we find a turning point field which separates a concave curve
at lower H and a convex curve at higher H. H/Hc2 at the inflection point increases as µ
decreases. From these behaviors, we can estimate the strength of the paramagnetic effect, µ.
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To examine effects of the pairing symmetry, we show γ(H) and χ(H) also for s-wave
pairing in Fig. 3(b). In the H-dependence of γ(H) and χ(H), differences by the vortex
lattice configuration of triangular or square are negligibly small. The difference in the
H-dependences of Figs. 3(a) and 3(b) at low fields comes from the gap structure of the pairing
function. In the full gap case of s-wave pairing, γ(H) and χ(H) show H-linear-like behavior at
low fields. With increasing the paramagnetic effect, H-linear behaviors gradually change into
curves with a convex curvature. As seen in Figs. 3(a) and 3(b), paramagnetic effects appear
similarly at high fields both for s-wave and d-wave pairings.
The H-dependence of γ(H) for H � c and H � ab was used to identify the pairing symmetry
and paramagnetic effect in URu2Si2 (Yano et al., 2008).
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low fields. With increasing the paramagnetic effect, H-linear behaviors gradually change into
curves with a convex curvature. As seen in Figs. 3(a) and 3(b), paramagnetic effects appear
similarly at high fields both for s-wave and d-wave pairings.
The H-dependence of γ(H) for H � c and H � ab was used to identify the pairing symmetry
and paramagnetic effect in URu2Si2 (Yano et al., 2008).
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3.2 Field dependence of magnetization
We discuss the paramagnetic effect on the magnetization curves. The magnetization Mtotal =
B̄ − H includes both the diamagnetic and the paramagnetic contributions. In Fig. 4,
magnetization curves are presented as a function of H for various µ at T = 0.1Tc for s-wave
and d-wave pairings. When the paramagnetic effect is negligible, we see typical magnetization
curve of type-II superconductors. There, |Mtotal| in s-wave pairing is larger, compared with
that in d-wave pairing. Dashed lines in Fig. 4 indicate the magnetization in normal states,
which shows linear increase of paramagnetic moments as a function of magnetic fields.
When paramagnetic effect is strong for large µ, Mtotal(H) exhibits a sharp rise near Hc2 by
the paramagnetic pair breaking effect, and that Mtotal(H) has convex curvature at higher
fields, instead of a conventional concave curvature. These behaviors are qualitatively seen
in experimental data of CeCoIn5 (Tayama et al., 2002).
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Fig. 4. Magnetization curve Mtotal as a function of H at T/Tc = 0.1 for µ = 0.02, 0.86, 1.7 and
2.6 in s-wave (a) and d-wave (b) pairings. Dashed lines are normal state magnetization.

In Fig. 5(a), magnetization curves are presented as a function of H for various T at µ = 1.7.
With increasing T, the rapid increase of Mtotal(H) near Hc2 is smeared. In Fig. 5(b), Mtotal
is plotted as a function of T2 for various B̄. We fit these curves as Mtotal(T, H) = M0 +
1
2 β(H)T2 + O(T3) at low T. The slope β(H) = limT→0 ∂2Mtotal/∂T2 decreases on raising H
at lower fields. However, at higher fields approaching Hc2, the slope β(H) sharply increases.
Thus, as shown in Fig. 5(c), β(H) as a function of H exhibits a minimum at intermediate H
and rapid increase near Hc2 by the paramagnetic effect when µ = 1.7. This is contrasted with
the case of negligible paramagnetic effect (µ = 0.02), where β(H) is a decreasing function of H
until Hc2. The behavior of β(H) is consistent with that of γ(H), since there is a relation β(H) ∝
∂γ(H)/∂H obtained from a thermodynamic Maxwell’s relation ∂2Mtotal/∂T2 = ∂(C/T)/∂B
and B ∼ H (Adachi et al., 2005). In Fig. 3, we see that for µ = 1.7 the slope of γ(H) is
decreasing function of H at low H, but changes to increasing function near Hc2. This behavior
correctly reflects the H-dependence of β(H).

3.3 Paramagnetic contribution on vortex core structure
In order to understand contributions of the paramagnetic effect on the vortex structure, we
illustrate the local structures of the pair potential |∆(r)|, paramagnetic moment Mpara(r),
and internal magnetic field B(r) within a unit cell of the vortex lattice in Fig. 6. Since we
assume d-wave pairing with the line node gap here, the vortex core structure is deformed
to fourfold symmetric shape around a vortex core (Ichioka et al., 1999a;b; 1996). It is noted
that the paramagnetic moment is enhanced exclusively around the vortex core, as shown in
Fig. 6(b). Since the contribution of the paramagnetic vortex core is enhanced with increasing

221FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect



10 Will-be-set-by-IN-TECH

(a)
0 0.1 0.2H

-5×10-5

0

5×10-5

M
to

ta
l

T=0.1
0.3
0.5
0.7

0.9
Normal

(b)
0 0.5T2

-5×10-5

0

5×10-5

M
to

ta
l

B=0.01

0.21

0.10

(c) 0 0.2 0.4B0

1×10-4

β

µ= 0.02

1.7

Fig. 5. (a) Magnetization curve Mtotal as a function of H for µ = 1.7 at T/Tc = 0.1, 0.3, 0.5,
0.7, 0.9 and 1.0 (normal state) in d-wave pairing. (b) Mtotal as a function of T2 at H = 0.01,
0.02, 0.03, · · · , 0.21. (c) H-dependence of factor β(H) at µ = 0.02 and 1.7.

-0.5
0

0.5
-0.5

0

0.5

0.4

0.0

x / a

y / a

0 3r0

0.4

|∆| µ=
0.02

0.86
1.7 2.6

|∆|

(a)

-0.5
0

0.5
-0.5

0

0.5

2
1

0.0

x / a

y / a

0 3r
0

0.0001

M

µ=

0.02
0.86

1.7

2.6
M/M0

(b)

-0.5
0

0.5
-0.5

0

0.5

0.1001
0.10

x / a

y / a

0 3r

0.1

0.1001

B

µ=

0.02

0.86 1.7
2.6

B

(c)

Fig. 6. Spatial structure of the pair potential (a), paramagnetic moment (b) and internal
magnetic field (c) at T = 0.1Tc and H ∼ B̄ = 0.1B0, where a = 11.2R0, in d-wave pairing. The
left panels show |∆(r)|, Mpara(r), and B(r) within a unit cell of the square vortex lattice at
µ = 1.7. The right panels show the profiles along the trajectory r from the vortex center to a
midpoint between nearest neighbor vortices. µ = 0.02, 0.86, 1.7, and 2.6.
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Fig. 6. Spatial structure of the pair potential (a), paramagnetic moment (b) and internal
magnetic field (c) at T = 0.1Tc and H ∼ B̄ = 0.1B0, where a = 11.2R0, in d-wave pairing. The
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µ = 1.7. The right panels show the profiles along the trajectory r from the vortex center to a
midpoint between nearest neighbor vortices. µ = 0.02, 0.86, 1.7, and 2.6.
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µ, internal field B(r) consisting of diamagnetic and paramagnetic contributions is further
enhanced around the vortex core by the paramagnetic effect, as shown in Fig. 6(c). When
µ is large, the pair potential |∆(r)| is slightly suppressed around the paramagnetic vortex
core, and the vortex core radius is enlarged, as shown in Fig. 6(a).
The enhancement of Mpara(r) around vortex core is related to spatial structure of the LDOS
Nσ(r, E). As shown in Fig. 7(a), the LDOS spectrum shows zero-energy peak at the vortex center,
but the spectrum is shifted to E = ±µH due to Zeeman shift. There is a relation between the
LDOS spectrum and local paramagnetic moment, as

Mpara(r) = −µB

� 0

−∞
{N↑(E, r)− N↓(E, r)}dE. (18)

In Fig. 7(a), the peak states at E > 0 is empty for N↑(E, r), and the peak at E < 0 is occupied
for N↓(E, r). Therefore, because of Zeeman shift of the zero-energy peak at the vortex core,
large Mpara(r) appears due to the local imbalance of up- and down-spin occupation around
the vortex core. As shown in Figs. 7(b) and 7(c), moving from the vortex center to outside,
the peak of the spectrum is split into two peaks, which are shifted to higher and lower
energies, respectively. When one of split peaks crosses E = 0, the imbalance of up- and
down-spin occupation is decreased. Thus, Mpara(r) is suppressed outside of vortex cores.
This corresponds to the behavior of Knight shift, i.e., the paramagnetic moment is suppressed
in uniform states of spin-singlet pairing superconductors by the formation of Cooper pair
between spin-up and spin-down electrons.
In Figs. 7(d) and 7(e), we present the spectrum of spatially-averaged DOS. In the DOS
spectrum, peaks of the LDOS are smeared by the spatial average. Because of the flat spectrum
at low energies, paramagnetic susceptibility χ(H) shows almost the same H-behavior as the
zero-energy DOS γ(H) ∼ N(E = 0) even for large µ, as shown in Fig. 3, while χ(H) counts
the DOS contribution in the energy range |E| < µH, i.e., from Eq. (18),

χ(H) ∼
� µH

0
N↑(E)dE/µH. (19)

3.4 Field dependence of flux line lattice form factor
One of the best ways to directly see the accumulation of the paramagnetic moment around the
vortex core is to observe the Bragg scattering intensity of the FLL in SANS experiment. The
intensity of the (h, k)-diffraction peak is given by Ih,k = |Fh,k|2/|qh,k| with the wave vector
qh,k = hq1 + kq2, q1 = (2π/a,−π/ay, 0) and q2 = (2π/a, π/ay, 0). The Fourier component
Fh,k is given by B(r) = ∑h,k Fh,k exp(iqh,k · r). In the SANS for FLL observation, the intensity
of the main peak at (h, k) = (1, 0) probes the magnetic field contrast between the vortex cores
and the surrounding.
The field dependence of |F1,0|2 in our calculations is shown in Fig. 8(a). In the case of
negligible paramagnetic effect (µ = 0.02), |F1,0|2 decreases exponentially as a function of H.
This exponential decay is typical behavior of conventional superconductors. With increasing
paramagnetic effect, however, the decreasing slope of |F1,0|2 becomes gradual, and changes to
increasing functions of H at lower fields in strong paramagnetic case (µ = 2.6).
The reason of anomalous enhancement of |F1,0| at high fields is because |F1,0| reflects
the enhanced internal field around the vortex core, shown in Fig. 6(c), by the induced
paramagnetic moment at the core. We present H-dependence of |F1,0| with the paramagnetic
contribution |M1,0| in Fig. 8(b). Fourier component M1,0 is calculated from paramagnetic
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µ = 1.7. The right panels show the profiles along the trajectory r from the vortex center to a
midpoint between nearest neighbor vortices. µ = 0.02, 0.86, 1.7, and 2.6.
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magnetic field (c) at T = 0.1Tc and H ∼ B̄ = 0.1B0, where a = 11.2R0, in d-wave pairing. The
left panels show |∆(r)|, Mpara(r), and B(r) within a unit cell of the square vortex lattice at
µ = 1.7. The right panels show the profiles along the trajectory r from the vortex center to a
midpoint between nearest neighbor vortices. µ = 0.02, 0.86, 1.7, and 2.6.
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µ, internal field B(r) consisting of diamagnetic and paramagnetic contributions is further
enhanced around the vortex core by the paramagnetic effect, as shown in Fig. 6(c). When
µ is large, the pair potential |∆(r)| is slightly suppressed around the paramagnetic vortex
core, and the vortex core radius is enlarged, as shown in Fig. 6(a).
The enhancement of Mpara(r) around vortex core is related to spatial structure of the LDOS
Nσ(r, E). As shown in Fig. 7(a), the LDOS spectrum shows zero-energy peak at the vortex center,
but the spectrum is shifted to E = ±µH due to Zeeman shift. There is a relation between the
LDOS spectrum and local paramagnetic moment, as

Mpara(r) = −µB

� 0

−∞
{N↑(E, r)− N↓(E, r)}dE. (18)

In Fig. 7(a), the peak states at E > 0 is empty for N↑(E, r), and the peak at E < 0 is occupied
for N↓(E, r). Therefore, because of Zeeman shift of the zero-energy peak at the vortex core,
large Mpara(r) appears due to the local imbalance of up- and down-spin occupation around
the vortex core. As shown in Figs. 7(b) and 7(c), moving from the vortex center to outside,
the peak of the spectrum is split into two peaks, which are shifted to higher and lower
energies, respectively. When one of split peaks crosses E = 0, the imbalance of up- and
down-spin occupation is decreased. Thus, Mpara(r) is suppressed outside of vortex cores.
This corresponds to the behavior of Knight shift, i.e., the paramagnetic moment is suppressed
in uniform states of spin-singlet pairing superconductors by the formation of Cooper pair
between spin-up and spin-down electrons.
In Figs. 7(d) and 7(e), we present the spectrum of spatially-averaged DOS. In the DOS
spectrum, peaks of the LDOS are smeared by the spatial average. Because of the flat spectrum
at low energies, paramagnetic susceptibility χ(H) shows almost the same H-behavior as the
zero-energy DOS γ(H) ∼ N(E = 0) even for large µ, as shown in Fig. 3, while χ(H) counts
the DOS contribution in the energy range |E| < µH, i.e., from Eq. (18),

χ(H) ∼
� µH

0
N↑(E)dE/µH. (19)

3.4 Field dependence of flux line lattice form factor
One of the best ways to directly see the accumulation of the paramagnetic moment around the
vortex core is to observe the Bragg scattering intensity of the FLL in SANS experiment. The
intensity of the (h, k)-diffraction peak is given by Ih,k = |Fh,k|2/|qh,k| with the wave vector
qh,k = hq1 + kq2, q1 = (2π/a,−π/ay, 0) and q2 = (2π/a, π/ay, 0). The Fourier component
Fh,k is given by B(r) = ∑h,k Fh,k exp(iqh,k · r). In the SANS for FLL observation, the intensity
of the main peak at (h, k) = (1, 0) probes the magnetic field contrast between the vortex cores
and the surrounding.
The field dependence of |F1,0|2 in our calculations is shown in Fig. 8(a). In the case of
negligible paramagnetic effect (µ = 0.02), |F1,0|2 decreases exponentially as a function of H.
This exponential decay is typical behavior of conventional superconductors. With increasing
paramagnetic effect, however, the decreasing slope of |F1,0|2 becomes gradual, and changes to
increasing functions of H at lower fields in strong paramagnetic case (µ = 2.6).
The reason of anomalous enhancement of |F1,0| at high fields is because |F1,0| reflects
the enhanced internal field around the vortex core, shown in Fig. 6(c), by the induced
paramagnetic moment at the core. We present H-dependence of |F1,0| with the paramagnetic
contribution |M1,0| in Fig. 8(b). Fourier component M1,0 is calculated from paramagnetic
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moment Mpara(r). From Fig. 8(b), we see that the increasing behavior of |F1,0| is due to the
paramagnetic contribution M1,0 proportional to µH. In Fig. 9, we present how profiles of
Mpara(r) and B(r) change, depending on magnetic fields. The form factors |F1,0| and |M1,0|
reflect the contrast of the variable range in the figures. Increasing magnetic field at low fields
(H = 0.02, 0.06), Mpara(r) is enhanced at vortex core. Reflecting this, B(r) is also enhanced at
the core, and the form factor |F1,0| increases as a function of a magnetic field. At higher fields
(H = 0.10, 0.12, 0.14), inter-vortex distance becomes short. Because of overlap of the regions
around vortex core with those of neighbor vortices, the contrasts of enhanced Mpara(r) and
B(r) around vortex core are smeared. Therefore, form factors |F1,0| and |M1,0| decrease at high
fields near Hc2 in Fig. 8(b).
The SANS experiment in CeCoIn5 for H � c reported that |F1,0|2 increases until near Hc2
instead of exponential decay (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al.,
2010). The anomalous increasing H-dependence of the SANS intensity in CeCoIn5 can
be explained qualitatively by the strong paramagnetic effect, as shown by our calculation.
The detailed comparison with the experimental data will be discussed later. Anomalous
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paramagnetic contribution M1,0 proportional to µH. In Fig. 9, we present how profiles of
Mpara(r) and B(r) change, depending on magnetic fields. The form factors |F1,0| and |M1,0|
reflect the contrast of the variable range in the figures. Increasing magnetic field at low fields
(H = 0.02, 0.06), Mpara(r) is enhanced at vortex core. Reflecting this, B(r) is also enhanced at
the core, and the form factor |F1,0| increases as a function of a magnetic field. At higher fields
(H = 0.10, 0.12, 0.14), inter-vortex distance becomes short. Because of overlap of the regions
around vortex core with those of neighbor vortices, the contrasts of enhanced Mpara(r) and
B(r) around vortex core are smeared. Therefore, form factors |F1,0| and |M1,0| decrease at high
fields near Hc2 in Fig. 8(b).
The SANS experiment in CeCoIn5 for H � c reported that |F1,0|2 increases until near Hc2
instead of exponential decay (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al.,
2010). The anomalous increasing H-dependence of the SANS intensity in CeCoIn5 can
be explained qualitatively by the strong paramagnetic effect, as shown by our calculation.
The detailed comparison with the experimental data will be discussed later. Anomalous
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enhancement of FLL form factor was also observed in TmNi2B2C, and explained by effective
strong paramagnetic effect (DeBeer-Schmitt et al., 2007).

3.5 Comparison with experimental data in CeCoIn5
Here, we discuss anomalous field dependence of low T specific heat, magnetization curve,
and FFL form factor in CeCoIn5, based on the comparison with theoretical estimates of
strong paramagnetic effect by Eilenberger theory. In Fig. 10(a), we present H-dependence of
zero-energy DOS N(E = 0) and low-T specific heat (Ikeda et al., 2001). Both H-dependences
show rapid increase at higher H. However, we see quantitative differences between theory
(line A) and experimental data (circles). Compared to the theoretical estimates, C/T by
experiments is smaller at low H and increase more rapidly at higher H. In order to
quantitatively reproduce the H-dependence of C/T, we phenomenologically introduce factor
N0(H) coming from the H-dependence of normal state DOS. So far, N0 was assumed to be a
constant in theoretical calculation. Thus, in calculation of Fermi surface average, we modify
�· · · �kF → �· · · �kF N0(H)/N0(Hc2). As shown in Fig. 10(a), the H-dependence of C/T can be
reproduced, if we set N0(H)/N0(Hc2) = 1 − 0.53{tanh 4(1 − H/Hc2)}3. This expression of
N0(H) is phenomenological one to reproduce the experimental behavior, without microscopic
theoretical consideration. This H-dependence of N0(H) indicates that normal states DOS is
enhanced near Hc2, and may be related to the effective mass enhancement near QCP (Bianchi,
Movshovich, Vekhter, Pagliuso & Sarrao, 2003; Paglione et al., 2003), which is suggested to
exist at Hc2(T = 0) in CeCoIn5.
Theoretical and experimental (Tayama et al., 2002) magnetization curve is presented in Fig.
10(b). There we see rapid increase at high fields and jump at Hc2 by strong paramagnetic
effects. The differences between experimental data (average of magnetization curves for
increasing and decreasing H) and theoretical estimate with constant N0 (line A) are improved
by considering the H-dependence of N0(H) (line B). There, by N0(H), slope of Mtotal(H)
becomes similar to that of experimental curve.
The H-dependence of FLL form factors using N0(H) is presented in Fig. 11. There, |F1,0|2
shows further increases until higher H. This sharp peak at high fields resembles to the
anomalous increasing behavior observed by SANS experiment in CeCoIn5 (Bianchi et al.,
2008; DeBeer-Schmitt et al., 2006). For higher T, the peak is smeared and the peak position is
shifted to lower fields. This T-dependence is consistent to those in experimental observation
in CeCoIn5 (White et al., 2010).

225FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect



12 Will-be-set-by-IN-TECH

0
1

4

N

0

1N

-1 0 1E
0

1N

(a)

(b)

(c)

0

0.5
N B=0.01

-1 0 1E0

0.5
N B=0.1

(d)

(e)

Fig. 7. Local density of states at r/R0 = 0 (a), 0.8 (b) and 1.6 (c) from the vortex center
towards the nearest neighbor vortex direction in d-wave pairing. Solid lines show
N↑(r, E)/N0 for up-spin electrons, and dashed lines show N↓(r, E)/N0 at H = 0.1B0. µ = 1.7
and T = 0.1Tc. Spatial-averaged DOS at H/B0 = 0.01 (d) and 0.1 (e) in d-wave pairing. Solid
lines show N↑(E)/N0 for up-spin electrons, and dashed lines show N↓(E)/N0.

(a)
0 0.2 0.4H

1×10-12

1×10-11

1×10-10

|F|2

2.6

1.7

0.86

0.02µ=

(b)
0 0.1 H

0

1×10-5

F10

F10

M10

Fig. 8. Field dependence of FLL form factor F1,0 for µ = 0.02, 0.86, 1.7, and 2.6 at T = 0.1Tc in
d-wave pairing. (a) |F1,0|2 is plotted as a function of H. The vertical axis is in logarithmic
scale. (b). Field dependence of |F1,0| and the paramagnetic contribution |M1,0| for µ = 2.6.
The vertical axis is in linear scale.

moment Mpara(r). From Fig. 8(b), we see that the increasing behavior of |F1,0| is due to the
paramagnetic contribution M1,0 proportional to µH. In Fig. 9, we present how profiles of
Mpara(r) and B(r) change, depending on magnetic fields. The form factors |F1,0| and |M1,0|
reflect the contrast of the variable range in the figures. Increasing magnetic field at low fields
(H = 0.02, 0.06), Mpara(r) is enhanced at vortex core. Reflecting this, B(r) is also enhanced at
the core, and the form factor |F1,0| increases as a function of a magnetic field. At higher fields
(H = 0.10, 0.12, 0.14), inter-vortex distance becomes short. Because of overlap of the regions
around vortex core with those of neighbor vortices, the contrasts of enhanced Mpara(r) and
B(r) around vortex core are smeared. Therefore, form factors |F1,0| and |M1,0| decrease at high
fields near Hc2 in Fig. 8(b).
The SANS experiment in CeCoIn5 for H � c reported that |F1,0|2 increases until near Hc2
instead of exponential decay (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al.,
2010). The anomalous increasing H-dependence of the SANS intensity in CeCoIn5 can
be explained qualitatively by the strong paramagnetic effect, as shown by our calculation.
The detailed comparison with the experimental data will be discussed later. Anomalous
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moment Mpara(r). From Fig. 8(b), we see that the increasing behavior of |F1,0| is due to the
paramagnetic contribution M1,0 proportional to µH. In Fig. 9, we present how profiles of
Mpara(r) and B(r) change, depending on magnetic fields. The form factors |F1,0| and |M1,0|
reflect the contrast of the variable range in the figures. Increasing magnetic field at low fields
(H = 0.02, 0.06), Mpara(r) is enhanced at vortex core. Reflecting this, B(r) is also enhanced at
the core, and the form factor |F1,0| increases as a function of a magnetic field. At higher fields
(H = 0.10, 0.12, 0.14), inter-vortex distance becomes short. Because of overlap of the regions
around vortex core with those of neighbor vortices, the contrasts of enhanced Mpara(r) and
B(r) around vortex core are smeared. Therefore, form factors |F1,0| and |M1,0| decrease at high
fields near Hc2 in Fig. 8(b).
The SANS experiment in CeCoIn5 for H � c reported that |F1,0|2 increases until near Hc2
instead of exponential decay (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al.,
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be explained qualitatively by the strong paramagnetic effect, as shown by our calculation.
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enhancement of FLL form factor was also observed in TmNi2B2C, and explained by effective
strong paramagnetic effect (DeBeer-Schmitt et al., 2007).

3.5 Comparison with experimental data in CeCoIn5
Here, we discuss anomalous field dependence of low T specific heat, magnetization curve,
and FFL form factor in CeCoIn5, based on the comparison with theoretical estimates of
strong paramagnetic effect by Eilenberger theory. In Fig. 10(a), we present H-dependence of
zero-energy DOS N(E = 0) and low-T specific heat (Ikeda et al., 2001). Both H-dependences
show rapid increase at higher H. However, we see quantitative differences between theory
(line A) and experimental data (circles). Compared to the theoretical estimates, C/T by
experiments is smaller at low H and increase more rapidly at higher H. In order to
quantitatively reproduce the H-dependence of C/T, we phenomenologically introduce factor
N0(H) coming from the H-dependence of normal state DOS. So far, N0 was assumed to be a
constant in theoretical calculation. Thus, in calculation of Fermi surface average, we modify
�· · · �kF → �· · · �kF N0(H)/N0(Hc2). As shown in Fig. 10(a), the H-dependence of C/T can be
reproduced, if we set N0(H)/N0(Hc2) = 1 − 0.53{tanh 4(1 − H/Hc2)}3. This expression of
N0(H) is phenomenological one to reproduce the experimental behavior, without microscopic
theoretical consideration. This H-dependence of N0(H) indicates that normal states DOS is
enhanced near Hc2, and may be related to the effective mass enhancement near QCP (Bianchi,
Movshovich, Vekhter, Pagliuso & Sarrao, 2003; Paglione et al., 2003), which is suggested to
exist at Hc2(T = 0) in CeCoIn5.
Theoretical and experimental (Tayama et al., 2002) magnetization curve is presented in Fig.
10(b). There we see rapid increase at high fields and jump at Hc2 by strong paramagnetic
effects. The differences between experimental data (average of magnetization curves for
increasing and decreasing H) and theoretical estimate with constant N0 (line A) are improved
by considering the H-dependence of N0(H) (line B). There, by N0(H), slope of Mtotal(H)
becomes similar to that of experimental curve.
The H-dependence of FLL form factors using N0(H) is presented in Fig. 11. There, |F1,0|2
shows further increases until higher H. This sharp peak at high fields resembles to the
anomalous increasing behavior observed by SANS experiment in CeCoIn5 (Bianchi et al.,
2008; DeBeer-Schmitt et al., 2006). For higher T, the peak is smeared and the peak position is
shifted to lower fields. This T-dependence is consistent to those in experimental observation
in CeCoIn5 (White et al., 2010).
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The above phenomenological discussion by N0(H) indicates that anomalous H-dependences
observed in CeCoIn5 is qualitatively reproduced by theoretical estimate considering strong
paramagnetic effect, but they still show systematic quantitative deviations from theoretical
estimate. These indicate that we need to consider additional effect, such as effective mass
enhancement near QCP, in addition to strong paramagnetic effect, in order to understand
anomalous H-dependence in CeCoIn5.

4. Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) vortex state

The FFLO state (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965) is an exotic
superconducting state expected to appear at low temperatures and high fields, when the
paramagnetic effect due to the Zeeman shift is significant. In the FFLO state, since the Fermi
surfaces for up-spin and down-spin electron bands are split by the Zeeman shift, Cooper pairs
of up- and down-spins acquire non-zero momentum for the center of mass coordinate of the
Cooper pair, inducing the spatial modulation of the pair potential. The possible FFLO state
is widely discussed in various research fields, ranging from superconductors in condensed
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The above phenomenological discussion by N0(H) indicates that anomalous H-dependences
observed in CeCoIn5 is qualitatively reproduced by theoretical estimate considering strong
paramagnetic effect, but they still show systematic quantitative deviations from theoretical
estimate. These indicate that we need to consider additional effect, such as effective mass
enhancement near QCP, in addition to strong paramagnetic effect, in order to understand
anomalous H-dependence in CeCoIn5.

4. Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) vortex state

The FFLO state (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965) is an exotic
superconducting state expected to appear at low temperatures and high fields, when the
paramagnetic effect due to the Zeeman shift is significant. In the FFLO state, since the Fermi
surfaces for up-spin and down-spin electron bands are split by the Zeeman shift, Cooper pairs
of up- and down-spins acquire non-zero momentum for the center of mass coordinate of the
Cooper pair, inducing the spatial modulation of the pair potential. The possible FFLO state
is widely discussed in various research fields, ranging from superconductors in condensed
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matters, neutral Fermion superfluids in an atomic cloud (Machida et al., 2006; Partridge et al.,
2006; Zwierlein et al., 2006), to color superconductivity in high energy physics (Casalbuoni &
Nardulli, 2004).
Experimentally, the FFLO state is suggested in a high field phase of a quasi-two dimensional
(Q2D) heavy Fermion superconductor CeCoIn5 for H � ab and H � c (Bianchi, Movshovich,
Capan, Pagliuso & Sarrao, 2003; Radovan et al., 2003), as reviewed by Matsuda & Shimahara
(2007). There, it is supposed that nodal planes of the pair potential run perpendicular to
the vortex lines. For H � ab, since spin density wave (SDW) appears in the high-field
phase (Kenzelmann et al., 2010; 2008; Koutroulakis et al., 2010; Young et al., 2007), we are
interested in the relation of FFLO and SDW.
In theoretical studies, many calculations for the FFLO states have been done by neglecting
vortex structure. However, we have to consider the vortex structure in addition to the FFLO
modulation, because the FFLO state appears at high fields in the mixed states. Among the
FFLO states, there are two possible spatial modulation of the pair potential ∆. One is the
Fulde-Ferrell (FF) state (Fulde & Ferrell, 1964) with phase modulation such as ∆ ∝ eiqz, where
q is the modulation vector of the FFLO states. The other is the Larkin-Ovchinnikov (LO)
state (Larkin & Ovchinnikov, 1965) with the amplitude modulation such as ∆ ∝ sin qz, where
the pair potential shows periodic sign change, and ∆ = 0 at the nodal planes. We discuss the
case of the LO states in this section, since some experimental (Matsuda & Shimahara, 2007)
and theoretical (Houzet & Buzdin, 2001; Ikeda & Adachi, 2004) works support the LO state for
the FFLO states in CeCoIn5. In the FFLO vortex state, it is instructive to clarify the role of the
FFLO nodal plane in order to obtain clear evidence of the FFLO states among the experimental
data.
When we consider vortex structure in the LO state, there are two possible choices of the
configuration for the vortex lines and the FFLO modulation. That is, the modulation vector of
the FFLO state is parallel (Tachiki et al., 1996) or perpendicular (Klein et al., 2000; Shimahara,
1994) to the applied magnetic field. In our study, 3D structure of the former case is investigated
by the selfconsistent Eilenberger theory. We calculate the spatial structures of pair potentials,
paramagnetic moments, internal magnetic fields and electronic states in the vortex lattice
state with the FFLO modulation. In our study, fully 3D structures of the vortex and the
FFLO modulation are determined by the selfconsistent calculation with local electronic states.
Since we can consider the system of vortex lattice and periodic FFLO modulation by the
periodic boundary condition, we can discuss the overlaps between tails of the neighbor vortex
cores or FFLO nodal planes. These calculations for the periodic systems make us possible to
estimate the resonance line shapes in the NMR experiments and FLL form factors in SANS
experiments.
On the other hand, the vortex and FFLO nodal plane structures in the FFLO state were
calculated by the BdG theory for a single vortex in a superconductor under a cylindrical
symmetry situation (Mizushima et al., 2005b). This study clarifies that the topological
structure of the pair potential plays important roles to determine the electronic structures
in the FFLO vortex state. The pair potential has 2π-phase winding around the vortex line,
and π-phase shift at the nodal plane of the FFLO modulation. These topologies of the pair
potential structure affect the distribution of paramagnetic moment and low energy electronic
states inside the superconducting gap. For example, the paramagnetic moment is enhanced
at the vortex core and the FFLO nodal plane. These structures are related to the bound states
due to the π-phase shift of the pair potential.
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The above phenomenological discussion by N0(H) indicates that anomalous H-dependences
observed in CeCoIn5 is qualitatively reproduced by theoretical estimate considering strong
paramagnetic effect, but they still show systematic quantitative deviations from theoretical
estimate. These indicate that we need to consider additional effect, such as effective mass
enhancement near QCP, in addition to strong paramagnetic effect, in order to understand
anomalous H-dependence in CeCoIn5.

4. Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) vortex state

The FFLO state (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965) is an exotic
superconducting state expected to appear at low temperatures and high fields, when the
paramagnetic effect due to the Zeeman shift is significant. In the FFLO state, since the Fermi
surfaces for up-spin and down-spin electron bands are split by the Zeeman shift, Cooper pairs
of up- and down-spins acquire non-zero momentum for the center of mass coordinate of the
Cooper pair, inducing the spatial modulation of the pair potential. The possible FFLO state
is widely discussed in various research fields, ranging from superconductors in condensed
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matters, neutral Fermion superfluids in an atomic cloud (Machida et al., 2006; Partridge et al.,
2006; Zwierlein et al., 2006), to color superconductivity in high energy physics (Casalbuoni &
Nardulli, 2004).
Experimentally, the FFLO state is suggested in a high field phase of a quasi-two dimensional
(Q2D) heavy Fermion superconductor CeCoIn5 for H � ab and H � c (Bianchi, Movshovich,
Capan, Pagliuso & Sarrao, 2003; Radovan et al., 2003), as reviewed by Matsuda & Shimahara
(2007). There, it is supposed that nodal planes of the pair potential run perpendicular to
the vortex lines. For H � ab, since spin density wave (SDW) appears in the high-field
phase (Kenzelmann et al., 2010; 2008; Koutroulakis et al., 2010; Young et al., 2007), we are
interested in the relation of FFLO and SDW.
In theoretical studies, many calculations for the FFLO states have been done by neglecting
vortex structure. However, we have to consider the vortex structure in addition to the FFLO
modulation, because the FFLO state appears at high fields in the mixed states. Among the
FFLO states, there are two possible spatial modulation of the pair potential ∆. One is the
Fulde-Ferrell (FF) state (Fulde & Ferrell, 1964) with phase modulation such as ∆ ∝ eiqz, where
q is the modulation vector of the FFLO states. The other is the Larkin-Ovchinnikov (LO)
state (Larkin & Ovchinnikov, 1965) with the amplitude modulation such as ∆ ∝ sin qz, where
the pair potential shows periodic sign change, and ∆ = 0 at the nodal planes. We discuss the
case of the LO states in this section, since some experimental (Matsuda & Shimahara, 2007)
and theoretical (Houzet & Buzdin, 2001; Ikeda & Adachi, 2004) works support the LO state for
the FFLO states in CeCoIn5. In the FFLO vortex state, it is instructive to clarify the role of the
FFLO nodal plane in order to obtain clear evidence of the FFLO states among the experimental
data.
When we consider vortex structure in the LO state, there are two possible choices of the
configuration for the vortex lines and the FFLO modulation. That is, the modulation vector of
the FFLO state is parallel (Tachiki et al., 1996) or perpendicular (Klein et al., 2000; Shimahara,
1994) to the applied magnetic field. In our study, 3D structure of the former case is investigated
by the selfconsistent Eilenberger theory. We calculate the spatial structures of pair potentials,
paramagnetic moments, internal magnetic fields and electronic states in the vortex lattice
state with the FFLO modulation. In our study, fully 3D structures of the vortex and the
FFLO modulation are determined by the selfconsistent calculation with local electronic states.
Since we can consider the system of vortex lattice and periodic FFLO modulation by the
periodic boundary condition, we can discuss the overlaps between tails of the neighbor vortex
cores or FFLO nodal planes. These calculations for the periodic systems make us possible to
estimate the resonance line shapes in the NMR experiments and FLL form factors in SANS
experiments.
On the other hand, the vortex and FFLO nodal plane structures in the FFLO state were
calculated by the BdG theory for a single vortex in a superconductor under a cylindrical
symmetry situation (Mizushima et al., 2005b). This study clarifies that the topological
structure of the pair potential plays important roles to determine the electronic structures
in the FFLO vortex state. The pair potential has 2π-phase winding around the vortex line,
and π-phase shift at the nodal plane of the FFLO modulation. These topologies of the pair
potential structure affect the distribution of paramagnetic moment and low energy electronic
states inside the superconducting gap. For example, the paramagnetic moment is enhanced
at the vortex core and the FFLO nodal plane. These structures are related to the bound states
due to the π-phase shift of the pair potential.
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In this section, we report our study of FFLO vortex states for a fundamental case of s-wave
pairing and 3D spherical Fermi surface, where kF = kF(sin θ cos φ, sin θ sin φ, cos θ) and Fermi
velocity vF = vF0(sin θ cos φ, sin θ sin φ, cos θ). The calculations of FFLO vortex states for Q2D
Fermi surface with rippled cylinder-shape and H � ab both for s-wave and d-wave pairings
were reported elsewhere (Ichioka et al., 2007). Main characteristic properties of FFLO vortex
state do not seriously depend on the pairing symmetry.

4.1 Spatial structure of FFLO vortex states
In the left panels of Fig. 12, we show the spatial structure of the FFLO vortex state within a
unit cell in the slice of the xz plane, i.e., the hatched region shown in Fig. 2(a). Right panels
of Fig. 12 are for profiles of the spatial structure along the path UNCVU shown in Fig. 2(a).
The point C (x = y = z = 0) is the intersection point of a vortex and a nodal plane. The point
V (x = y = 0, z = L/4) is at the vortex center and far from the FFLO nodal plane. The point
N (x = a/2, y = z = 0) is at the FFLO nodal plane and outside of the vortex. The point U
(x = a/2, y = 0, z = L/4) is far from both the vortex and the FFLO nodal plane.
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Fig. 12. Spatial structure of the FFLO vortex state in the xz plane at B̄ = 0.17985B0, T = 0.2Tc
and L = 100R0 for the s-wave pairing and spherical Fermi surface. (a) Amplitude of the pair
potential |∆(r)|. (b) Paramagnetic moment Mpara(r). (c) Internal magnetic field Bz(r). The
left panels show the spatial variation within a unit cell, i.e., hatched region in Fig. 2(a). The
right panels present the profiles along the path UNCVU shown in Fig. 2(a).

In the left panel of Fig. 12(a), we show the amplitude of the order parameter, |∆(r)|, which is
suppressed near the vortex center at x = y = 0 and the FFLO nodal plane at z = 0, ±0.5L. Far
from the FFLO nodal plane such as z = 0.25L [along path VU], |∆(r)| shows a typical profile
of the conventional vortex. When we cross the vortex line or the FFLO nodal plane, the sign
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In the left panel of Fig. 12(a), we show the amplitude of the order parameter, |∆(r)|, which is
suppressed near the vortex center at x = y = 0 and the FFLO nodal plane at z = 0, ±0.5L. Far
from the FFLO nodal plane such as z = 0.25L [along path VU], |∆(r)| shows a typical profile
of the conventional vortex. When we cross the vortex line or the FFLO nodal plane, the sign
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of ∆(r) changes due to the π-phase shift of the pair potential as schematically shown in Fig.
2(a). In the profile of |∆(r)| presented in the right panels of Fig. 12(a), |∆(r)| = 0 along the
FFLO nodal plane NC and along the vortex line CV.
Correspondingly, paramagnetic moment Mpara(r)/M0 is presented in Fig. 12(b). The
paramagnetic moment is suppressed, as Knight shift, at uniform-∆ region in the spin-singlet
pairing superconductors. In the figures, we see that Mpara(r) is suppressed outside of vortex
core and far from the FFLO nodal plane, as expected. However, Mpara(r) is enhanced at the
vortex core or at the FFLO nodal plane. The reason for these structures of Mpara(r) is discussed
later in connection with the LDOS. At the FFLO nodal plane Mpara(r) ∼ M0 [path NC in Fig.
12(b)]. Along the vortex line, Mpara(r) is enhanced more than M0 far from the FFLO nodal
planes [position V in Fig. 12(b)].
Figure 12(c) presents the z-component of the internal field, Bz(r). Due to the contribution
of the enhanced Mpara(r), Bz(r) is enhanced at the FFLO nodal plane even outside of
the vortex. A part of the contributions by Mpara(r) is compensated by the diamagnetic
contribution, because the average flux density per unit cell of the vortex lattice in the xy plane
should conserve along the magnetic field direction. Therefore, due to the conservation, the
enhancement of Bz(r) at the FFLO nodal plane [path NC in Fig. 12(c)] is smaller, compared
with the enhancement of Mpara(r) at the FFLO nodal plane [path NC in Fig. 12(b)]. While
Bz(r) is largely enhanced than B̄ at the vortex core far from the FFLO nodal plane [position V
in Fig. 12(c)], Bz(r) is not largely enhanced at the vortex core in the FFLO nodal plane [position
C]. Therefore Bz(r) ∼ B̄ at the FFLO nodal plane [path NC].
To estimate magnetic field range where the FFLO vortex state is stable, and the FFLO wave
number q = 2π/L, we present the field dependence of the free energy F for some L in Fig.
13(a). At H < 0.9987Hc2 conventional Abrikosov vortex state with q = 0 is stable, but H >
0.9987Hc2 FFLO vortex state with finite q becomes stable. This is an estimate in the presence
of vortices in addition to FFLO modulation. At higher H, q increases for stable FFLO state,
as shown in Fig. 13(b), which indicates that the FFLO period L becomes shorter at higher
H. In Figs. 13(c) and 13(d), respectively, we present profiles of ∆(r) and Mpara(r) along the
z-direction at a midpoint between vortices, i.e., along a line thorough UN in Fig. 2(a). When L
is longer at lower H, the FFLO vortex states have wide region of constant |∆(r)| and Mpara(r).
They change only near the FFLO nodal plane, where ∆(r) has sign change and Mpara(r) locally
accumulates as in soliton structure. On the other hand, when L becomes shorter at higher H,
the region near FFLO nodal plane overlaps with that of neighbor nodal planes. Thus, both
|∆(r)| and Mpara(r) become spatial structure of sinusoidal wave along z-directions.
Due to the presence of FFLO vortex states at high fields, instead of conventional Abrikosov
vortex state, Hc2 to normal state [F = 0 in Fig. 13(a)] is enhanced. We note that the FFLO
vortex state is stable only in narrow H range near Hc2 at T = 0.2Tc2 and µ = 2 for spherical
Fermi surface. At lower T or for larger paramagnetic parameter µ, the FFLO vortex states
becomes stable in wider H-range.

4.2 Electronic structure in the FFLO vortex state
The LDOS spectrum for up- and down-spin electrons are presented at some positions in Fig.
14. In the quasiclassical theory, Nσ(E, r) are symmetric by E ↔ −E in the absence of the
paramagnetic effect (µ = 0). In the presence of the paramagnetic effect, the LDOS spectrum
for up- (down-) spin electrons is shifted to positive (negative) energy by µH due to the Zeeman
shift. In this case, we have a relation N↑(E, r) = N↓(−E, r) within the quasiclassical theory.

229FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect



16 Will-be-set-by-IN-TECH

In this section, we report our study of FFLO vortex states for a fundamental case of s-wave
pairing and 3D spherical Fermi surface, where kF = kF(sin θ cos φ, sin θ sin φ, cos θ) and Fermi
velocity vF = vF0(sin θ cos φ, sin θ sin φ, cos θ). The calculations of FFLO vortex states for Q2D
Fermi surface with rippled cylinder-shape and H � ab both for s-wave and d-wave pairings
were reported elsewhere (Ichioka et al., 2007). Main characteristic properties of FFLO vortex
state do not seriously depend on the pairing symmetry.

4.1 Spatial structure of FFLO vortex states
In the left panels of Fig. 12, we show the spatial structure of the FFLO vortex state within a
unit cell in the slice of the xz plane, i.e., the hatched region shown in Fig. 2(a). Right panels
of Fig. 12 are for profiles of the spatial structure along the path UNCVU shown in Fig. 2(a).
The point C (x = y = z = 0) is the intersection point of a vortex and a nodal plane. The point
V (x = y = 0, z = L/4) is at the vortex center and far from the FFLO nodal plane. The point
N (x = a/2, y = z = 0) is at the FFLO nodal plane and outside of the vortex. The point U
(x = a/2, y = 0, z = L/4) is far from both the vortex and the FFLO nodal plane.

0

M0

M

0.17985

0.17987

U N C V U

B

 0

 0.02

 0.04

| |Δ

-0.5

 0

 0.5 -0.5

 0

 0.5 0
 0.5

 1
 1.5

x/a
z/L

-0.5

 0

 0.5 -0.5

 0

 0.50.17985

0.17989

x/a
z/L

-0.5

 0

 0.5 -0.5

 0

 0.5 0
 0.02
 0.04

x/a
z/L

Mpara

B z

| |Δ

(a)

(b)

(c)

Fig. 12. Spatial structure of the FFLO vortex state in the xz plane at B̄ = 0.17985B0, T = 0.2Tc
and L = 100R0 for the s-wave pairing and spherical Fermi surface. (a) Amplitude of the pair
potential |∆(r)|. (b) Paramagnetic moment Mpara(r). (c) Internal magnetic field Bz(r). The
left panels show the spatial variation within a unit cell, i.e., hatched region in Fig. 2(a). The
right panels present the profiles along the path UNCVU shown in Fig. 2(a).

In the left panel of Fig. 12(a), we show the amplitude of the order parameter, |∆(r)|, which is
suppressed near the vortex center at x = y = 0 and the FFLO nodal plane at z = 0, ±0.5L. Far
from the FFLO nodal plane such as z = 0.25L [along path VU], |∆(r)| shows a typical profile
of the conventional vortex. When we cross the vortex line or the FFLO nodal plane, the sign
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of ∆(r) changes due to the π-phase shift of the pair potential as schematically shown in Fig.
2(a). In the profile of |∆(r)| presented in the right panels of Fig. 12(a), |∆(r)| = 0 along the
FFLO nodal plane NC and along the vortex line CV.
Correspondingly, paramagnetic moment Mpara(r)/M0 is presented in Fig. 12(b). The
paramagnetic moment is suppressed, as Knight shift, at uniform-∆ region in the spin-singlet
pairing superconductors. In the figures, we see that Mpara(r) is suppressed outside of vortex
core and far from the FFLO nodal plane, as expected. However, Mpara(r) is enhanced at the
vortex core or at the FFLO nodal plane. The reason for these structures of Mpara(r) is discussed
later in connection with the LDOS. At the FFLO nodal plane Mpara(r) ∼ M0 [path NC in Fig.
12(b)]. Along the vortex line, Mpara(r) is enhanced more than M0 far from the FFLO nodal
planes [position V in Fig. 12(b)].
Figure 12(c) presents the z-component of the internal field, Bz(r). Due to the contribution
of the enhanced Mpara(r), Bz(r) is enhanced at the FFLO nodal plane even outside of
the vortex. A part of the contributions by Mpara(r) is compensated by the diamagnetic
contribution, because the average flux density per unit cell of the vortex lattice in the xy plane
should conserve along the magnetic field direction. Therefore, due to the conservation, the
enhancement of Bz(r) at the FFLO nodal plane [path NC in Fig. 12(c)] is smaller, compared
with the enhancement of Mpara(r) at the FFLO nodal plane [path NC in Fig. 12(b)]. While
Bz(r) is largely enhanced than B̄ at the vortex core far from the FFLO nodal plane [position V
in Fig. 12(c)], Bz(r) is not largely enhanced at the vortex core in the FFLO nodal plane [position
C]. Therefore Bz(r) ∼ B̄ at the FFLO nodal plane [path NC].
To estimate magnetic field range where the FFLO vortex state is stable, and the FFLO wave
number q = 2π/L, we present the field dependence of the free energy F for some L in Fig.
13(a). At H < 0.9987Hc2 conventional Abrikosov vortex state with q = 0 is stable, but H >
0.9987Hc2 FFLO vortex state with finite q becomes stable. This is an estimate in the presence
of vortices in addition to FFLO modulation. At higher H, q increases for stable FFLO state,
as shown in Fig. 13(b), which indicates that the FFLO period L becomes shorter at higher
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Fig. 13. (a) Field dependence of free energy F for conventional Abrikosov vortex state (q = 0)
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down-spin electrons N↓(E, r)/(0.5N0) (dashed lines) at positions U, V, N, and C, whose
locations are shown in Fig. 2(a). T = 0.2Tc, B̄ = 0.17985B0, and L = 100R0 in the s-wave
pairing.

Far from the FFLO nodal plane and outside of vortex, as shown in the spectrum at position
U in Fig. 14, we see Zeeman shift of full-gap structure in s-wave superconductors. There,
small LDOS also appears at low energies inside the gap due to the low energy excitations
extending from the vortex cores and the FFLO nodal planes at finite magnetic fields. Since the
LDOS are occupied at E < 0, and empty at E > 0, there is a relation of Eq. (18) between the
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Fig. 13. (a) Field dependence of free energy F for conventional Abrikosov vortex state (q = 0)
and FFLO vortex state for some q = 2π/L( �= 0). (b) Field dependence of FFLO wave number
q estimated from (a). (c) Profile of pair potential ∆(r) along z-direction at midpoints between
vortices for L =24, 50, 200. Normalized value ∆(r)/∆(z = −0.25L) is presented. (d) The
same as (c) but for Mpara(r). We present normalized value Mpara(r)/Mpara(z = 0). µ = 2
and T = 0.2Tc.
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Fig. 14. Spectrum of the LDOS for up-spin electrons N↑(E, r)/(0.5N0) (solid lines) and for
down-spin electrons N↓(E, r)/(0.5N0) (dashed lines) at positions U, V, N, and C, whose
locations are shown in Fig. 2(a). T = 0.2Tc, B̄ = 0.17985B0, and L = 100R0 in the s-wave
pairing.

Far from the FFLO nodal plane and outside of vortex, as shown in the spectrum at position
U in Fig. 14, we see Zeeman shift of full-gap structure in s-wave superconductors. There,
small LDOS also appears at low energies inside the gap due to the low energy excitations
extending from the vortex cores and the FFLO nodal planes at finite magnetic fields. Since the
LDOS are occupied at E < 0, and empty at E > 0, there is a relation of Eq. (18) between the
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LDOS spectrum and local paramagnetic moment. Because of superconducting gap structure,
the LDOS within superconducting gap is suppressed. Thus, difference of occupation number
between up- and down-spin electrons is small, since the LDOS at E < 0 are occupied similarly
in N↑(E, r) and N↓(E, r), except for small LDOS within the gap. This is the reason why
Mpara(r) is suppressed at the position U. Small but finite Mpara(r) comes from the small LDOS
weight of low energy states inside the gap at U in FFLO vortex states.
In the LDOS spectra at the position V on the vortex center and at the position N on the FFLO
nodal plane presented in Fig. 14, N↑(E, r) and N↓(E, r), respectively, have a sharp peak at
E = µ+ and E = µ−, with µ± ≡ µ0 ± µH. These peaks are related to the topological structure
of the pair potential, as schematically shown in Fig. 2. Since a vortex has phase winding
2π, along the trajectory through the vortex center, ∆(r) changes the sign by the π-phase shift
across the vortex center. Also at the trajectory through the FFLO nodal plane, ∆(r) changes
the sign across the nodal plane. The bound states appear as zero-energy peak, when the pair
potential has the π-phase shift. This peak is shifted to E = µ+ or E = µ− due to the Zeeman
effect. Since the peak of the LDOS spectrum for up-spin electrons is an empty state (E > 0)
and the peak of the LDOS for down-spin electrons is an occupied state (E < 0), Mpara(r)
becomes large at these positions, from the relation in Eq. (18).
On the other hand, along the trajectory through the intersection point of a vortex and a nodal
plane, ∆(r) does not change the sign, because the phase shift is 2π by summing π due to
vortex and π due to the nodal plane, as schematically shown in Fig. 2. Thus, the sharp
peaks do not appear at E = µ± as seen from the LDOS spectrum at the position C in Fig. 14.
Instead, N↑(E, r) has two broad peaks at finite energies shifted upper or lower from µ+. In
this situation, Mpara(r) is still large at position C, as in positions V and N, since the LDOS in
both peaks are empty (E > 0) in N↑(E, r), and occupied (E < 0) in N↓(E, r).

4.3 NMR spectrum in FFLO vortex states
In the NMR experiment, resonance frequency spectrum of the nuclear spin resonance is
determined by the internal magnetic field and the hyperfine coupling to the spin of the
conduction electrons. Therefore, in a simple consideration, the effective field for the nuclear
spin is given by Beff(r) = Bz(r) + AhfMpara(r), where Ahf is a hyperfine coupling constant
depending on species of the nuclear spins. The resonance line shape of NMR is given by

P(ω) =
�

δ(ω − Beff(r))dr, (20)

i.e., the intensity at each resonance frequency ω comes from the volume satisfying ω = Beff(r)
in a unit cell. When the contribution of the hyperfine coupling is dominant, the NMR
signal selectively detects Mpara(r). This is the experiment observing the Knight shift in
superconductors. As the NMR spectrum of the Knight shift, we calculate the distribution
function P(M) =

�
δ(M− Mpara(r))dr from the spatial structure of the paramagnetic moment

Mpara(r) shown in Fig. 12(b). On the other hand, in the case of negligible hyperfine
coupling, the NMR signal is determined by the internal magnetic field distribution. This
resonance line shape is called Redfield pattern of the vortex lattice. The distribution function
P(B) =

�
δ(B − Bz(r))dr is calculated from the internal field Bz(r).

First we discuss the line shape of the distribution function P(M), shown in Fig. 15(a). The
spectrum of P(M) in the conventional vortex state without FFLO modulation is shown by the
lowest line in Fig. 15(a). There, the peak of P(M) comes from the signal from the outside of
the vortex core. Shift of the peak position from M0 gives Knight shift in superconductors. The
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Fig. 13. (a) Field dependence of free energy F for conventional Abrikosov vortex state (q = 0)
and FFLO vortex state for some q = 2π/L( �= 0). (b) Field dependence of FFLO wave number
q estimated from (a). (c) Profile of pair potential ∆(r) along z-direction at midpoints between
vortices for L =24, 50, 200. Normalized value ∆(r)/∆(z = −0.25L) is presented. (d) The
same as (c) but for Mpara(r). We present normalized value Mpara(r)/Mpara(z = 0). µ = 2
and T = 0.2Tc.
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Fig. 14. Spectrum of the LDOS for up-spin electrons N↑(E, r)/(0.5N0) (solid lines) and for
down-spin electrons N↓(E, r)/(0.5N0) (dashed lines) at positions U, V, N, and C, whose
locations are shown in Fig. 2(a). T = 0.2Tc, B̄ = 0.17985B0, and L = 100R0 in the s-wave
pairing.

Far from the FFLO nodal plane and outside of vortex, as shown in the spectrum at position
U in Fig. 14, we see Zeeman shift of full-gap structure in s-wave superconductors. There,
small LDOS also appears at low energies inside the gap due to the low energy excitations
extending from the vortex cores and the FFLO nodal planes at finite magnetic fields. Since the
LDOS are occupied at E < 0, and empty at E > 0, there is a relation of Eq. (18) between the
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Fig. 13. (a) Field dependence of free energy F for conventional Abrikosov vortex state (q = 0)
and FFLO vortex state for some q = 2π/L( �= 0). (b) Field dependence of FFLO wave number
q estimated from (a). (c) Profile of pair potential ∆(r) along z-direction at midpoints between
vortices for L =24, 50, 200. Normalized value ∆(r)/∆(z = −0.25L) is presented. (d) The
same as (c) but for Mpara(r). We present normalized value Mpara(r)/Mpara(z = 0). µ = 2
and T = 0.2Tc.
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Fig. 14. Spectrum of the LDOS for up-spin electrons N↑(E, r)/(0.5N0) (solid lines) and for
down-spin electrons N↓(E, r)/(0.5N0) (dashed lines) at positions U, V, N, and C, whose
locations are shown in Fig. 2(a). T = 0.2Tc, B̄ = 0.17985B0, and L = 100R0 in the s-wave
pairing.

Far from the FFLO nodal plane and outside of vortex, as shown in the spectrum at position
U in Fig. 14, we see Zeeman shift of full-gap structure in s-wave superconductors. There,
small LDOS also appears at low energies inside the gap due to the low energy excitations
extending from the vortex cores and the FFLO nodal planes at finite magnetic fields. Since the
LDOS are occupied at E < 0, and empty at E > 0, there is a relation of Eq. (18) between the

FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect 19

LDOS spectrum and local paramagnetic moment. Because of superconducting gap structure,
the LDOS within superconducting gap is suppressed. Thus, difference of occupation number
between up- and down-spin electrons is small, since the LDOS at E < 0 are occupied similarly
in N↑(E, r) and N↓(E, r), except for small LDOS within the gap. This is the reason why
Mpara(r) is suppressed at the position U. Small but finite Mpara(r) comes from the small LDOS
weight of low energy states inside the gap at U in FFLO vortex states.
In the LDOS spectra at the position V on the vortex center and at the position N on the FFLO
nodal plane presented in Fig. 14, N↑(E, r) and N↓(E, r), respectively, have a sharp peak at
E = µ+ and E = µ−, with µ± ≡ µ0 ± µH. These peaks are related to the topological structure
of the pair potential, as schematically shown in Fig. 2. Since a vortex has phase winding
2π, along the trajectory through the vortex center, ∆(r) changes the sign by the π-phase shift
across the vortex center. Also at the trajectory through the FFLO nodal plane, ∆(r) changes
the sign across the nodal plane. The bound states appear as zero-energy peak, when the pair
potential has the π-phase shift. This peak is shifted to E = µ+ or E = µ− due to the Zeeman
effect. Since the peak of the LDOS spectrum for up-spin electrons is an empty state (E > 0)
and the peak of the LDOS for down-spin electrons is an occupied state (E < 0), Mpara(r)
becomes large at these positions, from the relation in Eq. (18).
On the other hand, along the trajectory through the intersection point of a vortex and a nodal
plane, ∆(r) does not change the sign, because the phase shift is 2π by summing π due to
vortex and π due to the nodal plane, as schematically shown in Fig. 2. Thus, the sharp
peaks do not appear at E = µ± as seen from the LDOS spectrum at the position C in Fig. 14.
Instead, N↑(E, r) has two broad peaks at finite energies shifted upper or lower from µ+. In
this situation, Mpara(r) is still large at position C, as in positions V and N, since the LDOS in
both peaks are empty (E > 0) in N↑(E, r), and occupied (E < 0) in N↓(E, r).

4.3 NMR spectrum in FFLO vortex states
In the NMR experiment, resonance frequency spectrum of the nuclear spin resonance is
determined by the internal magnetic field and the hyperfine coupling to the spin of the
conduction electrons. Therefore, in a simple consideration, the effective field for the nuclear
spin is given by Beff(r) = Bz(r) + AhfMpara(r), where Ahf is a hyperfine coupling constant
depending on species of the nuclear spins. The resonance line shape of NMR is given by

P(ω) =
�

δ(ω − Beff(r))dr, (20)

i.e., the intensity at each resonance frequency ω comes from the volume satisfying ω = Beff(r)
in a unit cell. When the contribution of the hyperfine coupling is dominant, the NMR
signal selectively detects Mpara(r). This is the experiment observing the Knight shift in
superconductors. As the NMR spectrum of the Knight shift, we calculate the distribution
function P(M) =

�
δ(M− Mpara(r))dr from the spatial structure of the paramagnetic moment

Mpara(r) shown in Fig. 12(b). On the other hand, in the case of negligible hyperfine
coupling, the NMR signal is determined by the internal magnetic field distribution. This
resonance line shape is called Redfield pattern of the vortex lattice. The distribution function
P(B) =

�
δ(B − Bz(r))dr is calculated from the internal field Bz(r).

First we discuss the line shape of the distribution function P(M), shown in Fig. 15(a). The
spectrum of P(M) in the conventional vortex state without FFLO modulation is shown by the
lowest line in Fig. 15(a). There, the peak of P(M) comes from the signal from the outside of
the vortex core. Shift of the peak position from M0 gives Knight shift in superconductors. The
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spectrum of P(M) has a tail toward larger M by the vortex core contribution of large Mpara(r).
The vortex core contribution is a one-dimensional (1D) structure, their volume contribution is
small in the spectrum, compared with the peak intensity due to the large volume contribution
from outside of the vortex core. After the FFLO transition, the line shape P(M) becomes
double peak structure in the FFLO vortex states, as presented by upper lines in Fig. 15(a).
The height of the main peak decreases, and there appears a new peak coming from the FFLO
nodal plane near Mpara ∼ M0. The contribution from 2D structure of the FFLO nodal plane
appears in P(M) more clearly than that of the 1D structure of the vortex line. When the period
L becomes shorter at higher H, new peak at M0 is enhanced, because the relative volume ratio
of region near FFLO nodal plane becomes larger.
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Fig. 15. (a) Distribution function of the paramagnetic moment. We show P(M) as a function
of Mpara/M0. (b) Distribution function of the internal magnetic field. We show P(B) as a
function of Bz/B. T = 0.2Tc and µ = 2. Right-side axis pointed by arrows from each line
indicates applied field H/Hc2 for each NMR spectrum. Lowest line is for conventional
Abrikosov vortex state of q = 0. Other upper lines are for FFLO vortex states. The heights of
P(M) and P(B) are scaled so that

�
P(M)dM =

�
P(B)dB = 1.

Second, we discuss the distribution function P(B) of the internal magnetic field, presented in
Fig. 15(b). There, in the absence of the FFLO modulation (the lowest line), the Redfield pattern
P(B) has sharp peak corresponding to saddle points of the internal field distribution. The tail
to higher B comes from the vortex core region of larger Bz(r). In the presence of the FFLO
modulation (other upper lines), the height of the original peak is decreased, and a new peak
appears at B ∼ B̄ as the contribution of the FFLO nodal plane. In the line shape of P(B), new
peak by FFLO nodal plane is located near original saddle-point peak, compared with the line
shape of P(M). When the period L becomes shorter at higher H, new peak at B is enhanced.
The experimental observation of the NMR resonance line shape is a method to identify the
FFLO vortex state in high-field phase of CeCoIn5 (Kakuyanagi et al., 2005; Kumagai et al.,
2006; 2011). For H � c, the NMR spectrum shows the double peak structure in the FFLO
phase, appearing new peak in addition to the main peak in the vortex state. For H � ab,
we see double peak structure in NMR spectrum, but it reflects magnetic moments of SDW
state (Koutroulakis et al., 2010; Young et al., 2007). The SDW structure in high field phase
was observed also by neutron scattering (Kenzelmann et al., 2010; 2008). However, in NMR
experiments at some species of nuclear spin, we can observe P(M) or P(B), excluding the
signal by SDW (Kumagai et al., 2011). Thus, we expect that the relation of the SDW and FFLO
for H � ab will be clarified in future studies.

232 Superconductivity    – Theory and Applications20 Will-be-set-by-IN-TECH

spectrum of P(M) has a tail toward larger M by the vortex core contribution of large Mpara(r).
The vortex core contribution is a one-dimensional (1D) structure, their volume contribution is
small in the spectrum, compared with the peak intensity due to the large volume contribution
from outside of the vortex core. After the FFLO transition, the line shape P(M) becomes
double peak structure in the FFLO vortex states, as presented by upper lines in Fig. 15(a).
The height of the main peak decreases, and there appears a new peak coming from the FFLO
nodal plane near Mpara ∼ M0. The contribution from 2D structure of the FFLO nodal plane
appears in P(M) more clearly than that of the 1D structure of the vortex line. When the period
L becomes shorter at higher H, new peak at M0 is enhanced, because the relative volume ratio
of region near FFLO nodal plane becomes larger.

(a)
 0

 2

 4

 6

 8

 10

 0.5  1
 0.998

 0.999

 1

 1.001

In
te

ns
ity

 [a
rb

. u
ni

ts
]

H
/H

c2

(b)

 0

 2

 4

 6

 8

 10

 0.9999  1  1.0001
 0.998

 0.999

 1

 1.001

In
te

ns
ity

 [a
rb

. u
ni

ts
]

H
/H

c2

Fig. 15. (a) Distribution function of the paramagnetic moment. We show P(M) as a function
of Mpara/M0. (b) Distribution function of the internal magnetic field. We show P(B) as a
function of Bz/B. T = 0.2Tc and µ = 2. Right-side axis pointed by arrows from each line
indicates applied field H/Hc2 for each NMR spectrum. Lowest line is for conventional
Abrikosov vortex state of q = 0. Other upper lines are for FFLO vortex states. The heights of
P(M) and P(B) are scaled so that
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P(B)dB = 1.

Second, we discuss the distribution function P(B) of the internal magnetic field, presented in
Fig. 15(b). There, in the absence of the FFLO modulation (the lowest line), the Redfield pattern
P(B) has sharp peak corresponding to saddle points of the internal field distribution. The tail
to higher B comes from the vortex core region of larger Bz(r). In the presence of the FFLO
modulation (other upper lines), the height of the original peak is decreased, and a new peak
appears at B ∼ B̄ as the contribution of the FFLO nodal plane. In the line shape of P(B), new
peak by FFLO nodal plane is located near original saddle-point peak, compared with the line
shape of P(M). When the period L becomes shorter at higher H, new peak at B is enhanced.
The experimental observation of the NMR resonance line shape is a method to identify the
FFLO vortex state in high-field phase of CeCoIn5 (Kakuyanagi et al., 2005; Kumagai et al.,
2006; 2011). For H � c, the NMR spectrum shows the double peak structure in the FFLO
phase, appearing new peak in addition to the main peak in the vortex state. For H � ab,
we see double peak structure in NMR spectrum, but it reflects magnetic moments of SDW
state (Koutroulakis et al., 2010; Young et al., 2007). The SDW structure in high field phase
was observed also by neutron scattering (Kenzelmann et al., 2010; 2008). However, in NMR
experiments at some species of nuclear spin, we can observe P(M) or P(B), excluding the
signal by SDW (Kumagai et al., 2011). Thus, we expect that the relation of the SDW and FFLO
for H � ab will be clarified in future studies.
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4.4 Small Angle Neutron Scattering (SANS) in FFLO vortex states
The modulation of the internal magnetic field Bz(r) may be observed by SANS experiment.
If the periodic modulation along the z-direction is observed, it can be direct evidence of the
FFLO modulation. Therefore, we discuss the neutron scattering in the FFLO vortex state.
The intensity of the (h, k, l)-diffraction peak is given by Ih,k,l = |Fh,k,l|2/|qh,k,l| with the wave
vector qh,k,l given in Eq. (12). Here we write (m1, m2, m3) = (h, k, l) following notations of the
neutron scattering. The Fourier component Fh,k,l is given by Bz(r) = ∑h,k,l Fh,k,l exp(iqh,k,l · r).
The spots at (h, k, l) = (1, 0, 0) and (0, 1, 0) are used to determine the configuration and the
orientation of the vortex lattice in SANS experiments (Bianchi et al., 2008; DeBeer-Schmitt
et al., 2006), and the higher component Fh,k,0 is used to estimate the detailed structure of the
internal magnetic field Bz(r) (Kealey et al., 2000; White et al., 2010). It is noted that F0,0,0 = B̄
and F0,0,l = 0 for l �= 0, because average flux density B̄ within the unit cell of the vortex lattice
is constant along the z-direction. Therefore, to detect the FFLO modulation, we have to use
the spot (1, 0, 2). The spot (1, 0, 2) is near the spot (1, 0, 0), which is used in the conventional
SANS experiment to observe the stable vortex lattice configuration.
Change of intensity |F1,0,0|2 in the FFLO vortex state is presented in Fig. 16(a). This shows
narrow H-range near Hc2 among the H-dependence of |F1,0|2 in Fig. 8. After the transition
from conventional Abrikosov vortex state (q=0) to FFLO vortex state (q �= 0), |F1,0,0|2 shows
rapid decrease. This is because Bz(r) of vortex core expands at FFLO nodal plane, and the
contrast of Bz(r) between vortex core and outside is smeared after the average along the
z-direction. When L becomes shorter at higher H, the relative volume ratio of the FFLO nodal
plane increases, and |F1,0,0|2 decreases. As presented in Fig. 16(b), intensity |F1,0,2|2 for the
signal of the FFLO vortex state appears at the FFLO transition. When L becomes shorter at
higher H, |F1,0,2|2 decreases, due to the overlap between neighbor FFLO nodal regions.
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Fig. 16. Magnetic field dependence of FLL form factor |F1,0,0|2 (a) and |F1,0,2|2 (b) in FFLO
vortex states. FFLO wave number q = 2π/L at each H is given in Fig. 13. T = 0.2Tc and
µ = 2. Lines are guide for the eye. Inset in (a) presents wider H-range.

5. Summary and discussion

We discussed interesting phenomena of vortex states in superconductors with strong
paramagnetic effect, based on quasi-classical Eilenberger theory. The paramagnetic effect
comes from splitting of up-spin and down-spin Fermi surfaces due to the Zeeman effect.
In our calculations, since spatial structures of the order parameter and the internal field
are calculated in vortex lattice states self-consistently with local electronic states, we
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spectrum of P(M) has a tail toward larger M by the vortex core contribution of large Mpara(r).
The vortex core contribution is a one-dimensional (1D) structure, their volume contribution is
small in the spectrum, compared with the peak intensity due to the large volume contribution
from outside of the vortex core. After the FFLO transition, the line shape P(M) becomes
double peak structure in the FFLO vortex states, as presented by upper lines in Fig. 15(a).
The height of the main peak decreases, and there appears a new peak coming from the FFLO
nodal plane near Mpara ∼ M0. The contribution from 2D structure of the FFLO nodal plane
appears in P(M) more clearly than that of the 1D structure of the vortex line. When the period
L becomes shorter at higher H, new peak at M0 is enhanced, because the relative volume ratio
of region near FFLO nodal plane becomes larger.

(a)
 0

 2

 4

 6

 8

 10

 0.5  1
 0.998

 0.999

 1

 1.001

In
te

ns
ity

 [a
rb

. u
ni

ts
]

H
/H

c2

(b)

 0

 2

 4

 6

 8

 10

 0.9999  1  1.0001
 0.998

 0.999

 1

 1.001

In
te

ns
ity

 [a
rb

. u
ni

ts
]

H
/H

c2

Fig. 15. (a) Distribution function of the paramagnetic moment. We show P(M) as a function
of Mpara/M0. (b) Distribution function of the internal magnetic field. We show P(B) as a
function of Bz/B. T = 0.2Tc and µ = 2. Right-side axis pointed by arrows from each line
indicates applied field H/Hc2 for each NMR spectrum. Lowest line is for conventional
Abrikosov vortex state of q = 0. Other upper lines are for FFLO vortex states. The heights of
P(M) and P(B) are scaled so that

�
P(M)dM =

�
P(B)dB = 1.

Second, we discuss the distribution function P(B) of the internal magnetic field, presented in
Fig. 15(b). There, in the absence of the FFLO modulation (the lowest line), the Redfield pattern
P(B) has sharp peak corresponding to saddle points of the internal field distribution. The tail
to higher B comes from the vortex core region of larger Bz(r). In the presence of the FFLO
modulation (other upper lines), the height of the original peak is decreased, and a new peak
appears at B ∼ B̄ as the contribution of the FFLO nodal plane. In the line shape of P(B), new
peak by FFLO nodal plane is located near original saddle-point peak, compared with the line
shape of P(M). When the period L becomes shorter at higher H, new peak at B is enhanced.
The experimental observation of the NMR resonance line shape is a method to identify the
FFLO vortex state in high-field phase of CeCoIn5 (Kakuyanagi et al., 2005; Kumagai et al.,
2006; 2011). For H � c, the NMR spectrum shows the double peak structure in the FFLO
phase, appearing new peak in addition to the main peak in the vortex state. For H � ab,
we see double peak structure in NMR spectrum, but it reflects magnetic moments of SDW
state (Koutroulakis et al., 2010; Young et al., 2007). The SDW structure in high field phase
was observed also by neutron scattering (Kenzelmann et al., 2010; 2008). However, in NMR
experiments at some species of nuclear spin, we can observe P(M) or P(B), excluding the
signal by SDW (Kumagai et al., 2011). Thus, we expect that the relation of the SDW and FFLO
for H � ab will be clarified in future studies.
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modulation (other upper lines), the height of the original peak is decreased, and a new peak
appears at B ∼ B̄ as the contribution of the FFLO nodal plane. In the line shape of P(B), new
peak by FFLO nodal plane is located near original saddle-point peak, compared with the line
shape of P(M). When the period L becomes shorter at higher H, new peak at B is enhanced.
The experimental observation of the NMR resonance line shape is a method to identify the
FFLO vortex state in high-field phase of CeCoIn5 (Kakuyanagi et al., 2005; Kumagai et al.,
2006; 2011). For H � c, the NMR spectrum shows the double peak structure in the FFLO
phase, appearing new peak in addition to the main peak in the vortex state. For H � ab,
we see double peak structure in NMR spectrum, but it reflects magnetic moments of SDW
state (Koutroulakis et al., 2010; Young et al., 2007). The SDW structure in high field phase
was observed also by neutron scattering (Kenzelmann et al., 2010; 2008). However, in NMR
experiments at some species of nuclear spin, we can observe P(M) or P(B), excluding the
signal by SDW (Kumagai et al., 2011). Thus, we expect that the relation of the SDW and FFLO
for H � ab will be clarified in future studies.
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4.4 Small Angle Neutron Scattering (SANS) in FFLO vortex states
The modulation of the internal magnetic field Bz(r) may be observed by SANS experiment.
If the periodic modulation along the z-direction is observed, it can be direct evidence of the
FFLO modulation. Therefore, we discuss the neutron scattering in the FFLO vortex state.
The intensity of the (h, k, l)-diffraction peak is given by Ih,k,l = |Fh,k,l|2/|qh,k,l| with the wave
vector qh,k,l given in Eq. (12). Here we write (m1, m2, m3) = (h, k, l) following notations of the
neutron scattering. The Fourier component Fh,k,l is given by Bz(r) = ∑h,k,l Fh,k,l exp(iqh,k,l · r).
The spots at (h, k, l) = (1, 0, 0) and (0, 1, 0) are used to determine the configuration and the
orientation of the vortex lattice in SANS experiments (Bianchi et al., 2008; DeBeer-Schmitt
et al., 2006), and the higher component Fh,k,0 is used to estimate the detailed structure of the
internal magnetic field Bz(r) (Kealey et al., 2000; White et al., 2010). It is noted that F0,0,0 = B̄
and F0,0,l = 0 for l �= 0, because average flux density B̄ within the unit cell of the vortex lattice
is constant along the z-direction. Therefore, to detect the FFLO modulation, we have to use
the spot (1, 0, 2). The spot (1, 0, 2) is near the spot (1, 0, 0), which is used in the conventional
SANS experiment to observe the stable vortex lattice configuration.
Change of intensity |F1,0,0|2 in the FFLO vortex state is presented in Fig. 16(a). This shows
narrow H-range near Hc2 among the H-dependence of |F1,0|2 in Fig. 8. After the transition
from conventional Abrikosov vortex state (q=0) to FFLO vortex state (q �= 0), |F1,0,0|2 shows
rapid decrease. This is because Bz(r) of vortex core expands at FFLO nodal plane, and the
contrast of Bz(r) between vortex core and outside is smeared after the average along the
z-direction. When L becomes shorter at higher H, the relative volume ratio of the FFLO nodal
plane increases, and |F1,0,0|2 decreases. As presented in Fig. 16(b), intensity |F1,0,2|2 for the
signal of the FFLO vortex state appears at the FFLO transition. When L becomes shorter at
higher H, |F1,0,2|2 decreases, due to the overlap between neighbor FFLO nodal regions.
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Fig. 16. Magnetic field dependence of FLL form factor |F1,0,0|2 (a) and |F1,0,2|2 (b) in FFLO
vortex states. FFLO wave number q = 2π/L at each H is given in Fig. 13. T = 0.2Tc and
µ = 2. Lines are guide for the eye. Inset in (a) presents wider H-range.

5. Summary and discussion

We discussed interesting phenomena of vortex states in superconductors with strong
paramagnetic effect, based on quasi-classical Eilenberger theory. The paramagnetic effect
comes from splitting of up-spin and down-spin Fermi surfaces due to the Zeeman effect.
In our calculations, since spatial structures of the order parameter and the internal field
are calculated in vortex lattice states self-consistently with local electronic states, we
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can quantitatively estimate the field dependence of physical quantities from obtained
quasi-classical Green’s functions in Eilenberger theory. These theoretical calculations give
helpful information to evaluate contributions of pairing symmetries and paramagnetic effects
etc. in experimental data observing physical properties of vortex states in unconventional
superconductors.
First, we discussed anomalous field dependence of physical quantities by strong
paramagnetic effect in vortex states at lower fields than the FFLO transition. Calculating the
spatial structure of the vortex states and local electronic states, we clarified the paramagnetic
effects in the vortex core structure. There, the core radius is enlarged and the internal field
around the core is further enhanced, due to the enhanced paramagnetic moments at the vortex
core. This occurs as a result of Zeeman splitting of bound electronic states at the vortex core.
We estimated the magnetic field dependence of low temperature specific heat, Knight shift,
magnetization, and flux line lattice form factor. There we found anomalous field dependence
when the paramagnetic effect is strong. The specific heat, Knight shift, and magnetization
show rapid increase near Hc2, due to the paramagnetic pair breaking which is eminent at
higher fields. Anomalous enhancement of the FLL form factor as a function of magnetic
field observed in CeCoIn5 may reflect the paramagnetic vortex core structure by the strong
paramagnetic effect. We quantitatively compared the anomalous magnetic field dependence
of specific heat, magnetization curve, and the FLL form factor observed in CeCoIn5 with
results of our theoretical calculations. The paramagnetic effect can explain the anomalous field
dependences qualitatively. However we found systematic quantitative deviation between the
theory and the experimental data. Therefore, we showed that the deviation can be improved
by considering phenomenological field dependence of normal state density of states, which
reflects mass enhancement near quantum critical point at Hc2.
Next, we studied the FFLO states coexisting with vortices. When the paramagnetic effect
is very strong, at high magnetic fields we can expect a transition to the FFLO phase where
the order parameter has periodic oscillation originating from the Zeeman splitting of the
Fermi surface. To discuss the FFLO states suggested in high field phase of CeCoIn5, we
have to consider vortices in addition to the FFLO modulation. By Eilenberger theory, we
selfconsistently calculated fully 3D spatial structure of the pair potential, the internal magnetic
field, the paramagnetic moment, and local electronic states in the vortex lattice state with
FFLO nodal planes perpendicular to vortex lines. In the FFLO vortex states, topological
structures of the pair potential determine their qualitative properties. At the FFLO nodal
plane or at the vortex line, π-phase shift of the pair potential gives rise to sharp peaks in the
LDOS at Fermi level of electronic states, and the Zeeman shift of the peaks enhances the local
paramagnetic moment. Based on these spatial structures, we discussed NMR spectrum and
neutron scattering, to identify characteristic behaviours in the FFLO states. We estimated the
period of FFLO modulation and the phase diagram as a function of magnetic field H, and
discussed the field dependence of NMR spectrum and FLL form factors in the FFLO vortex
states. We hope that these features will be used to identify the FFLO vortex structure in the
high-field phase of CeCoIn5 for H � c and for H � ab. For the latter, the FLLO modulation
may coexist with SDW states.
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can quantitatively estimate the field dependence of physical quantities from obtained
quasi-classical Green’s functions in Eilenberger theory. These theoretical calculations give
helpful information to evaluate contributions of pairing symmetries and paramagnetic effects
etc. in experimental data observing physical properties of vortex states in unconventional
superconductors.
First, we discussed anomalous field dependence of physical quantities by strong
paramagnetic effect in vortex states at lower fields than the FFLO transition. Calculating the
spatial structure of the vortex states and local electronic states, we clarified the paramagnetic
effects in the vortex core structure. There, the core radius is enlarged and the internal field
around the core is further enhanced, due to the enhanced paramagnetic moments at the vortex
core. This occurs as a result of Zeeman splitting of bound electronic states at the vortex core.
We estimated the magnetic field dependence of low temperature specific heat, Knight shift,
magnetization, and flux line lattice form factor. There we found anomalous field dependence
when the paramagnetic effect is strong. The specific heat, Knight shift, and magnetization
show rapid increase near Hc2, due to the paramagnetic pair breaking which is eminent at
higher fields. Anomalous enhancement of the FLL form factor as a function of magnetic
field observed in CeCoIn5 may reflect the paramagnetic vortex core structure by the strong
paramagnetic effect. We quantitatively compared the anomalous magnetic field dependence
of specific heat, magnetization curve, and the FLL form factor observed in CeCoIn5 with
results of our theoretical calculations. The paramagnetic effect can explain the anomalous field
dependences qualitatively. However we found systematic quantitative deviation between the
theory and the experimental data. Therefore, we showed that the deviation can be improved
by considering phenomenological field dependence of normal state density of states, which
reflects mass enhancement near quantum critical point at Hc2.
Next, we studied the FFLO states coexisting with vortices. When the paramagnetic effect
is very strong, at high magnetic fields we can expect a transition to the FFLO phase where
the order parameter has periodic oscillation originating from the Zeeman splitting of the
Fermi surface. To discuss the FFLO states suggested in high field phase of CeCoIn5, we
have to consider vortices in addition to the FFLO modulation. By Eilenberger theory, we
selfconsistently calculated fully 3D spatial structure of the pair potential, the internal magnetic
field, the paramagnetic moment, and local electronic states in the vortex lattice state with
FFLO nodal planes perpendicular to vortex lines. In the FFLO vortex states, topological
structures of the pair potential determine their qualitative properties. At the FFLO nodal
plane or at the vortex line, π-phase shift of the pair potential gives rise to sharp peaks in the
LDOS at Fermi level of electronic states, and the Zeeman shift of the peaks enhances the local
paramagnetic moment. Based on these spatial structures, we discussed NMR spectrum and
neutron scattering, to identify characteristic behaviours in the FFLO states. We estimated the
period of FFLO modulation and the phase diagram as a function of magnetic field H, and
discussed the field dependence of NMR spectrum and FLL form factors in the FFLO vortex
states. We hope that these features will be used to identify the FFLO vortex structure in the
high-field phase of CeCoIn5 for H � c and for H � ab. For the latter, the FLLO modulation
may coexist with SDW states.
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1. Introduction 

Exciting applications of superconductivity are based on the macroscopic quantum state 
which exists in a superconductor. In this chapter we investigate the behaviour of junctions 
consisting of two weakly coupled superconductors.  These junctions are nowadays called 
Josephson junctions1 (Josephson, 1962). The macroscopic quantum state results in an excep-
tional behaviour of these Josephson junctions. They are the basis for various applications in 
superconductive electronics (cf. Anders et al, 2010), e.g. in the field of metrology for high-
precision measurements.  The most significant representative of a metrological application is 
the Josephson voltage standard.  This quantum standard enables the reference of the unit of 
voltage, the volt, just to physical constants.  It is nowadays used in many laboratories world-
wide for high-precision voltage measurements. The main component of each modern 
Josephson voltage standard is the highly integrated series array consisting of tens of 
thousands of Josephson junctions fabricated in thin-film technology.   
While Josephson junctions are conceptually simple, nearly 50 years of developments were 
needed to progress from single junctions delivering a few millivolt at most to highly inte-
grated series arrays containing more than 10,000 or even 100,000 junctions. These large 
series arrays enable the generation of dc and ac voltages at the 10 V level, which is relevant 
for most applications. Conventional Josephson voltage standards based on underdamped 
Josephson junctions are used for dc applications.  The increasing interest in highly precise ac 
voltages has stimulated different attempts to develop measurement tools on the basis of 
Josephson arrays for ac applications, namely programmable Josephson voltage standards 
containing binary-divided arrays and pulse-driven Josephson voltage standards both based 
on overdamped Josephson junctions.  This chapter describes the development of these 
modern dc and ac Josephson voltage standards as well as their fundamentals and applica-
tions.  The development and use of Josephson voltage standards have also been described 
recently in several review papers (amongst others: Niemeyer, 1998; Hamilton, 2000; 
Yoshida, 2000; Behr et al., 2002; Kohlmann et al., 2003; Benz & Hamilton, 2004; Jeanneret & 
Benz, 2009).   
                                                 
1 When Brian D. Josephson was a 22-year-old graduate student at Trinity College in Cambridge, UK, he 
theoretically derived equations for the current and voltage across a junction consisting of two weakly 
coupled superconductors in 1962.  His discovery won him a share of the 1973 Nobel Prize in Physics. 
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2. Fundamentals - the Josephson effects  
A superconductor as a macroscopic object is quantum mechanically described by a macro-
scopic wavefunction.  This macroscopic wavefunction is an important aspect of the BCS 
theory of superconductivity named after the authors Bardeen, Cooper, and Schrieffer2 
(1957).  Brian Josephson investigated the behaviour of two weakly coupled superconductors 
on the basis of the BCS theory a few years after its publication (Josephson, 1962).  He 
predicted two effects due to the tunnelling of Cooper pairs across the connection, i.e. a 
coupling of the macroscopic wavefunction of the two superconductors:  (1) a dc super-
current I = Ic sin  can flow across this junction (Ic denotes the critical current and  the 
phase between the macroscopic wavefunction of the two superconductors);  (2) an ac super-
current of frequency fJ = (2e/h)V occurs if the junction is operated at a non-zero voltage V, 
i.e. a Josephson junction is an oscillator (e is the elementary charge and h is Planck’s 
constant).  Irradiation of the junction by external microwaves of frequency f vice versa 
produces constant-voltage steps due to the phase locking of the Josephson oscillator by the 
external oscillator: Vn = n(h/2e)f  (n = 1, 2, 3, … denotes the integer step number).  As an 
illustration, the generation of constant-voltage steps can also be described as a specific 
transfer of flux quanta 0 = h/2e through the Josephson junction.  The irradiation of the 
Josephson junctions with external microwaves of frequency f effects this specific transfer 
and produces constant-voltage steps Vn:   

 Vn = n  0   f (1) 

The Josephson effect thus reduces the reproduction of voltages to the determination of a 
frequency, which can be finely controlled with high precision and accurately referenced to 
atomic clocks.  The constant-voltage steps were observed soon after by Shapiro (1963).  A 
single Josephson junction operated at the first-order constant-voltage step generates about 
145 µV, when irradiated by 70 GHz microwaves. Highly integrated junction series arrays are 
therefore needed to achieve practical output voltages up to 1 V or 10 V.   
The frequency range for the best operation of Josephson junctions is determined by their dy-
namic characteristics.  The most important parameter is the characteristic voltage Vc = Ic  Rn 
(Rn denotes the normal state resistance of the junctions).  The characteristic voltage is related 
to the characteristic frequency by equation (1):  fc = (2e/h)Vc = (2e/h)IcRn.  
The dynamics of a Josephson junction is often investigated using the resistively-capacitively-
shunted-junction (RCSJ) model (Stewart, 1968; McCumber, 1968). Within this model, the real 
Josephson junction is described as a parallel shunting of an ohmic resistance R, a capacitance 
C, and an ideal Josephson element. In the linear approximation, the resonance frequency is 
given by the plasma frequency fp = (ejc/hCs)1/2 (jc denotes the critical current density, 
Cs = C/A the specific junction capacitance, and A the junction area). Details of the behaviour 
depend on the kind of junction, which can be characterized by the dimensionless 
McCumber parameter c = Q2 being equal to the square of the quality factor Q = 2fpRC of 
the junction.  Underdamped junctions with c > 1 show a hysteretic current-voltage charac-
teristic, overdamped junctions with c  1 a non-hysteretic one as schematically shown in 
Fig. 1.  Detailed descriptions of the Josephson effects and Josephson junctions have been 

                                                 
2 Bardeen, Cooper, and Schrieffer were awarded the 1972 Nobel Prize in Physics for their theory of 
superconductivity.   
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given in several reviews (e.g. Josephson, 1965; Kautz, 1992; Rogalla, 1998) and textbooks 
(e.g. Barone & Paternò, 1982; Likharev, 1986; Kadin, 1999).  
 

 
Fig. 1. Schematic current-voltage characteristic of underdamped (left) and overdamped 
(right) Josephson junctions without (top) and with (bottom) microwave irradiation.   Some 
constant-voltage steps are marked.   

3. Realization of Josephson junctions and series arrays  
A Josephson junction is composed of two weakly coupled superconductors.  While Joseph-
son (1962) originally investigated the tunnelling of Cooper pairs through a barrier, i.e. an in-
sulator, he also mentioned that similar effects should occur when two superconductors are 
separated by a thin normal region.  These two junction types are nowadays indeed the most 
important ones for Josephson junctions, namely the so-called SIS junctions and SNS 
junctions, respectively (S: Superconductor, I: Insulator, N: Normal metal).  SIS junctions are 
typically underdamped junctions, while SNS junctions are overdamped ones.  Moreover, 
further possibilities for the realization of Josephson junctions exist such as e.g. SINIS junc-
tions, grain boundary junctions (especially for high-temperature superconductors), and 
junctions consisting of two superconductors connected by a narrow constriction.  As junc-
tions for Josephson voltage standards are mainly based on SIS, SNS, or SINIS junctions, 
these types will be described in more detail in the following.  The fabrication of the inte-
grated circuits containing these junctions is based on the same main steps; the fabrication 
processes differ only in detail.   

3.1 Fabrication process 
The development of Josephson voltage standards is intimately connected with improve-
ments of the fabrication technology for series arrays.  The fabrication process should be as 
simple and reliable as possible, and must be realized in thin-film technology, in order to 
enable the fabrication of highly integrated circuits containing thousands of junctions in a 
similar way to in the semiconductor industry.  Josephson junctions and the first series arrays 
in the 1980s were fabricated in lead/lead alloy technology (cf. Niemeyer et al, 1984); but the 
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main problem was the susceptibility to damage of the lead alloy circuits by humidity and 
thermal cycling.  The main important breakthrough in the development of a more robust 
fabrication process was the invention of the Nb/Al-Al2O3 technology by Gurvitch et al 
(1983).  This technology combines the use of the durable and chemically stable metal Nb 
with the high critical temperature of about 9.2 K, the outstanding covering of thin Al layers 
on Nb, and the formation of a very homogeneous and stable oxide of Al by thermal oxi-
dation.  The adaptation of this process and several improvements made possible the fabrica-
tion of voltage standard arrays consisting of Nb/Al-Al2O3/Nb Josephson junctions in 1986 
(Niemeyer et al, 1986).  Nowadays, all Josephson arrays for voltage standard applications 
are fabricated in processes fundamentally based on this invention.   
Sputtered Nb is typically used at present for the superconducting layers and NbN in case of 
operation at 10 K, respectively.  Dielectric layers are realized by SiO2.  Lithography is made 
optically or by electron-beam depending on the dimensions of the structure and its com-
plexity.  The different layers are patterned by adapted fluorine-based dry etching processes.  
For a reliable process, the trilayer or multilayer defining the junctions are deposited as a 
sandwich structure without breaking the vacuum.  This process requires an additional wiring 
layer for connecting neighbouring junctions by a window technology.  The barrier material is 
also sputtered; if the barrier includes an oxide, a metallic layer is thermally oxidized.  SIS 
junctions contain an Al2O3 barrier realized by thermal oxidation of the Al layer.  SINIS 
junctions consist of a multilayer of Nb/Al2O3/Al/Al2O3/Nb.  SIS junctions are typically 
operated at around 70 GHz.  The characteristic voltage of SINIS junctions can be tuned over a 
wide range enabling operation either at frequencies around 15 GHz or around 70 GHz.   
Different materials have been investigated and used for the N layer of SNS junctions.  As the 
specific resistance of most metals is rather low, high-resistive materials are preferred in 
order to increase the characteristic voltage.  Most SNS junctions are therefore operated at 
frequencies between 10 GHz and 20 GHz.  The high resistivity for the N layer is reached by 
binary alloys as PdAu (Benz et al, 1997), HfTi (Hagedorn et al, 2006), or MoSi2 (Chong et al, 
2005).  Junctions containing an N layer of Ti (Schubert et al, 2001a) or TiN (Yamamori et al, 
2008) have also been realized.  Recently, a new type of junction has increasingly gained in 
importance: its barrier consists of a semiconductor such as Si doped with a metal and being 
near a metal insulator transition (Baek et al, 2006).  Although these junctions behave like 
SNS junctions, they are more their own class of junctions and sometimes called SI’S 
junctions.  A promising version of these SI’S junctions is realized by an amorphous Si barrier 
doped by Nb.  Nb and Si are co-sputtered from two sputter targets; the Nb content is varied 
by adjusting the power for sputtering.  
The thickness of the superconducting layers is typically above about 150 nm and therefore 
roughly twice the superconducting penetration depth at least.  The superconducting layers 
are consequently both thick enough, to ensure appropriate microwave behaviour, and thin 
enough, to allow reliable thin-film processes.  The barrier is between 10 nm and 30 nm thick 
depending on the details of the material.  Stacked junctions have also been investigated in 
order to increase the integration density of junctions.  They contain multilayers of super-
conducting Nb and barrier material.  Adapted etching processes guarantee vertical edges 
and thus an identical size of each individual junction in order to yield homogeneous 
electrical parameters of the junction stacks.  Arrays of double- and triple-stacked junctions 
have successfully been fabricated delivering output voltages between a few volts and even 
10 V (Chong et al, 2005; Yamamori et al, 2008).  
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Fig. 2. Cross section of a microstripline.  

3.2 Designs - a brief survey 
An important requirement for the design of the circuits is the uniform microwave power 
distribution over all Josephson junctions in order to generate wide and stable constant-volt-
age steps.  The step width of the constant-voltage steps depends on the applied microwave 
power; in some cases, the dependence is given by a Bessel function (Kautz, 1992 & 1995).  A 
uniform power distribution is achieved by the integration of the Josephson junctions into 
adapted microwave transmission lines.  Most modern Josephson voltage standards are 
based on one of three different microwave lines: a low-impedance microstrip line (cf. Fig. 2), 
a 50  coplanar waveguide transmission line (CPW) (cf. Fig. 9), and a 50  coplanar stripline 
(CPS).  The microstrip line caused the breakthrough for the first version of modern voltage 
standards, i.e. the conventional Josephson voltage standard (cf. Niemeyer et al, 1984), and is 
mainly used to date for circuits operated in the frequency range around 73 GHz.  Circuits 
based on CPWs have been introduced for programmable Josephson voltage standards 
operated in the frequency range from 10 GHz to 20 GHz (cf. Benz, 1995).  Coplanar strip-
lines were first used for conventional voltage standards operated at 75 GHz (Schubert et al, 
2001b).  CPW and CPS offer the advantage of a rather simple required fabrication technol-
ogy compared to the microstrip line that needs an additional ground plane and a dielectric 
layer.  An advantage of the microstrip line is that it enables a rather simple possibility of 
splitting a single high-frequency line in two parallel ones; this splitting can be performed 
several times.  Each microwave branch is terminated by a matched lossy microwave line 
that serves as a load.  Microwave reflections are therefore suppressed, which consequently 
provides a uniform microwave distribution by avoiding standing waves.   
Most conventional dc Josephson voltage standards are based on microstrip line designs.  
The design of programmable Josephson voltage standards depends on the frequency range 
for their operation.  Most programmable standards operated around 73 GHz are also based 
on microstrip line designs.  Circuits for operation between 10 GHz and 20 GHz use CPWs 
(cf. Benz et al, 1997; Dresselhaus et al, 2009).  The design is determined in detail by the high-
frequency behaviour of the Josephson junctions. 
Fig. 3 shows, as an example, the PTB design of a 10 V SNS array for operation at 70 GHz and 
this is briefly described in the following.  An antipodal finline taper serves as an antenna. It 
connects the microstrip line, containing the Josephson junctions, to the E-band rectangular 
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doped by Nb.  Nb and Si are co-sputtered from two sputter targets; the Nb content is varied 
by adjusting the power for sputtering.  
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Fig. 2. Cross section of a microstripline.  

3.2 Designs - a brief survey 
An important requirement for the design of the circuits is the uniform microwave power 
distribution over all Josephson junctions in order to generate wide and stable constant-volt-
age steps.  The step width of the constant-voltage steps depends on the applied microwave 
power; in some cases, the dependence is given by a Bessel function (Kautz, 1992 & 1995).  A 
uniform power distribution is achieved by the integration of the Josephson junctions into 
adapted microwave transmission lines.  Most modern Josephson voltage standards are 
based on one of three different microwave lines: a low-impedance microstrip line (cf. Fig. 2), 
a 50  coplanar waveguide transmission line (CPW) (cf. Fig. 9), and a 50  coplanar stripline 
(CPS).  The microstrip line caused the breakthrough for the first version of modern voltage 
standards, i.e. the conventional Josephson voltage standard (cf. Niemeyer et al, 1984), and is 
mainly used to date for circuits operated in the frequency range around 73 GHz.  Circuits 
based on CPWs have been introduced for programmable Josephson voltage standards 
operated in the frequency range from 10 GHz to 20 GHz (cf. Benz, 1995).  Coplanar strip-
lines were first used for conventional voltage standards operated at 75 GHz (Schubert et al, 
2001b).  CPW and CPS offer the advantage of a rather simple required fabrication technol-
ogy compared to the microstrip line that needs an additional ground plane and a dielectric 
layer.  An advantage of the microstrip line is that it enables a rather simple possibility of 
splitting a single high-frequency line in two parallel ones; this splitting can be performed 
several times.  Each microwave branch is terminated by a matched lossy microwave line 
that serves as a load.  Microwave reflections are therefore suppressed, which consequently 
provides a uniform microwave distribution by avoiding standing waves.   
Most conventional dc Josephson voltage standards are based on microstrip line designs.  
The design of programmable Josephson voltage standards depends on the frequency range 
for their operation.  Most programmable standards operated around 73 GHz are also based 
on microstrip line designs.  Circuits for operation between 10 GHz and 20 GHz use CPWs 
(cf. Benz et al, 1997; Dresselhaus et al, 2009).  The design is determined in detail by the high-
frequency behaviour of the Josephson junctions. 
Fig. 3 shows, as an example, the PTB design of a 10 V SNS array for operation at 70 GHz and 
this is briefly described in the following.  An antipodal finline taper serves as an antenna. It 
connects the microstrip line, containing the Josephson junctions, to the E-band rectangular 
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Fig. 3. Design of a 10 V SNS Josephson series array developed at PTB.  The array consist of 
69,632 junctions embedded into 128 parallel low-impedance microstriplines.  The length and 
width of a single junctions is 6 µm x 20 µm.  The size of the total chip is 24 mm x 10 mm. 

waveguide while simultaneously matching the impedance of the waveguide (about 520 ) 
to that of the microstrip line (about 5 ).  The microstrip line is split in several stages 
forming parallel branches.  The design of conventional 10 V circuits contains two stages 
resulting in four parallel branches.  The design of programmable 1 V (10 V) circuits consists 
of 6 (7) stages forming 64 (128) parallel branches.  The reason for these differences can be 
understood by using the RCSJ model (cf. section 2).  For SIS junctions, the ohmic resistance 
Rn is of the order of 50 , while the impedance of the capacitive branch Zd = 1/(2fC) is of 
the order of 50 m for a junction capacitance of 50 pF.  High-frequency currents therefore 
flow mainly capacitively resulting in a very low attenuation of the microwave power from 
about 1 dB/1,000 junctions to 2 dB/1,000 junctions.  Each branch can therefore contain a lot 
of junctions (about 3,500 junctions in the real design) without loosing a uniform microwave 
power distribution to each junction.  The conditions are completely different for over-
damped SINIS junctions.  Now, Rn and Zd are comparable (about 50 m each) leading to the 
significant dissipation of the microwave current and thus to a significant attenuation of the 
microwave power of about 50 dB/1,000 junctions (Schulze et al, 1999).  The high attenuation 
is, however, compensated in part by an active contribution of the junctions; the junctions act 
as oscillators.  The single branches of programmable series arrays consist therefore of 128 
junctions (1 V design) and up to 582 junctions (10 V design), respectively.  Overdamped SNS 
junctions integrated into a low-ohmic microstrip line show similar behaviour, as a signifi-
cant part of the microwave is dissipated resistively.   
Another situation is found for overdamped SNS junctions embedded into the centre line of a 
CPW.  The ratio of the low junction impedance to the 50  impedance of the CPW leads to a 
situation which is similar to that of the microstrip line for conventional SIS arrays: Atten-
uation of the microwave power is low, because the junctions are loosely linked to the CPW.  
Each branch can therefore contain more junctions than in the microstrip line designs.  
Typical numbers for 1 V (10 V) arrays are 8 (32) branches with 4096 (8400) junctions each 
(Benz et al, 1997; Burroughs et al, 2009a).   
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4. DC measurements - conventional Josephson voltage standards  
While at the beginning of Josephson voltage standards the voltage of a single junction in the 
millivolt range was used as a reference (cf. Niemeyer, 1998; Hamilton, 2000), the chapter of 
modern Josephson voltage standards was opened by two new ideas:  First, Levinson et al 
(1977) suggested the use of highly underdamped junctions with hysteretic current-voltage 
characteristics producing constant-voltage steps whose current ranges overlap one another 
for small bias currents.  A single bias current source can consequently be used to bias all 
junctions of a series array on the quantized constant-voltage steps.  Secondly, the Josephson 
junctions are embedded into an adapted microwave transmission line resulting in first 1 V 
arrays realized by Niemeyer et al (1984).  Because of this arrangement, the Josephson 
junction series array is connected in series for the dc bias and acts as a microstrip line at rf 
frequencies.  As the microwave power is mainly capacitively coupled to the underdamped 
junctions, the rf attenuation of the series array is very low, therefore, enabling uniform rf 
bias of all junctions.   
Since the mid 1980s Josephson voltage standards based on these concepts have been 
available. Underdamped Josephson junctions are typically realized by SIS junctions (S: 
Superconductor, I: Insulator).  Large series arrays of Josephson junctions are needed to reach 
the voltage level essential for real applications, namely 1 V or especially 10 V.  A 10 V series 
array typically contains between about 14,000 and 20,000 Josephson junctions depending on 
the details of the specific design.  The circuits developed and fabricated at PTB consist of 
about 14,000 junctions distributed to four parallel low-impedance microstrip-lines.  Typical 
arrays show under 70 GHz microwave irradiation a step width above 20 µA, best arrays up 
to 50 µA.  This kind of so-called conventional Josephson voltage standard has been success-
fully operated to date for dc applications in many national, industrial, and military 
standards labs around the world.  They are now commercially offered by two companies.3  
In spite of their very successful use for dc applications, conventional Josephson voltage 
standards have two important drawbacks due to the ambiguity of the constant-voltage 
steps:  First, they do not enable switching rapidly and reliably between different specific 
steps.  Secondly, the constant-voltage steps are only metastable so that electromagnetic 
interference can cause spontaneous switching between steps.   

5. From DC to AC - programmable Josephson voltage standards  
As described in the previous section, conventional Josephson voltage standards are operated 
very successfully for dc applications.  The increasing interest in rapidly switching arrays 
and in highly precise ac voltages stimulated research activities in the mid 1990s to develop 
measurement tools based on Josephson junctions to meet these requirements.  Different 
attempts have been suggested and partly realized.  The main important ones are pro-
grammable voltage standards based on binary-divided arrays (cf. 5.1), pulse-driven arrays 
(cf. 5.3), and a d/a converter based on the dynamic logic of processing single flux quanta 
(SFQ) (cf. Semenov & Polyakov, 2001).  In the following, the first two versions are described 
in more detail, as most research activities are presently focused on these two, and promising 
results have meanwhile been demonstrated.  Both are intended to extend the use of high-
precision Josephson voltage standards from dc to ac.   

                                                 
3 Hypres Inc., USA: www.hypres.com and Supracon AG, Germany: www.supracon.com. 
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Fig. 3. Design of a 10 V SNS Josephson series array developed at PTB.  The array consist of 
69,632 junctions embedded into 128 parallel low-impedance microstriplines.  The length and 
width of a single junctions is 6 µm x 20 µm.  The size of the total chip is 24 mm x 10 mm. 
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of 6 (7) stages forming 64 (128) parallel branches.  The reason for these differences can be 
understood by using the RCSJ model (cf. section 2).  For SIS junctions, the ohmic resistance 
Rn is of the order of 50 , while the impedance of the capacitive branch Zd = 1/(2fC) is of 
the order of 50 m for a junction capacitance of 50 pF.  High-frequency currents therefore 
flow mainly capacitively resulting in a very low attenuation of the microwave power from 
about 1 dB/1,000 junctions to 2 dB/1,000 junctions.  Each branch can therefore contain a lot 
of junctions (about 3,500 junctions in the real design) without loosing a uniform microwave 
power distribution to each junction.  The conditions are completely different for over-
damped SINIS junctions.  Now, Rn and Zd are comparable (about 50 m each) leading to the 
significant dissipation of the microwave current and thus to a significant attenuation of the 
microwave power of about 50 dB/1,000 junctions (Schulze et al, 1999).  The high attenuation 
is, however, compensated in part by an active contribution of the junctions; the junctions act 
as oscillators.  The single branches of programmable series arrays consist therefore of 128 
junctions (1 V design) and up to 582 junctions (10 V design), respectively.  Overdamped SNS 
junctions integrated into a low-ohmic microstrip line show similar behaviour, as a signifi-
cant part of the microwave is dissipated resistively.   
Another situation is found for overdamped SNS junctions embedded into the centre line of a 
CPW.  The ratio of the low junction impedance to the 50  impedance of the CPW leads to a 
situation which is similar to that of the microstrip line for conventional SIS arrays: Atten-
uation of the microwave power is low, because the junctions are loosely linked to the CPW.  
Each branch can therefore contain more junctions than in the microstrip line designs.  
Typical numbers for 1 V (10 V) arrays are 8 (32) branches with 4096 (8400) junctions each 
(Benz et al, 1997; Burroughs et al, 2009a).   
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arrays show under 70 GHz microwave irradiation a step width above 20 µA, best arrays up 
to 50 µA.  This kind of so-called conventional Josephson voltage standard has been success-
fully operated to date for dc applications in many national, industrial, and military 
standards labs around the world.  They are now commercially offered by two companies.3  
In spite of their very successful use for dc applications, conventional Josephson voltage 
standards have two important drawbacks due to the ambiguity of the constant-voltage 
steps:  First, they do not enable switching rapidly and reliably between different specific 
steps.  Secondly, the constant-voltage steps are only metastable so that electromagnetic 
interference can cause spontaneous switching between steps.   
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As described in the previous section, conventional Josephson voltage standards are operated 
very successfully for dc applications.  The increasing interest in rapidly switching arrays 
and in highly precise ac voltages stimulated research activities in the mid 1990s to develop 
measurement tools based on Josephson junctions to meet these requirements.  Different 
attempts have been suggested and partly realized.  The main important ones are pro-
grammable voltage standards based on binary-divided arrays (cf. 5.1), pulse-driven arrays 
(cf. 5.3), and a d/a converter based on the dynamic logic of processing single flux quanta 
(SFQ) (cf. Semenov & Polyakov, 2001).  In the following, the first two versions are described 
in more detail, as most research activities are presently focused on these two, and promising 
results have meanwhile been demonstrated.  Both are intended to extend the use of high-
precision Josephson voltage standards from dc to ac.   

                                                 
3 Hypres Inc., USA: www.hypres.com and Supracon AG, Germany: www.supracon.com. 



 
Superconductivity – Theory and Applications 

 

246 

5.1 Programmable voltage standards based on binary-divided arrays 
The limitations of conventional Josephson voltage standards are mainly due to the over-
lapping steps resulting from the hysteretic current-voltage characteristic of underdamped 
Josephson junctions.  Therefore, Josephson junctions showing a non-hysteretic current-
voltage characteristic have been investigated.  Such behaviour is shown by an overdamped 
Josephson junction.  The current voltage-characteristic is non-hysteretic and remains single-
valued under microwave irradiation (cf. Fig. 1).  The constant-voltage steps are 
consequently inherently stable and can rapidly be selected by external biasing.  All junctions 
are operated on the same constant-voltage step (typically the first one) in contrast to those of 
conventional standards, which are operated at the fourth to fifth step as average.  The 
number of junctions necessary to attain a given voltage must be increased correspondingly.  
The series array of junctions must additionally be divided into segments in order to enable 
the generation of different voltage levels.  The Josephson array is hence operated as a multi-
bit digital-to-analogue (d/a) converter based on a series array of overdamped Josephson 
junctions divided into segments containing numbers of junctions belonging e.g. to a binary 
sequence of independently biased smaller arrays (cf. Fig. 4).  Any integral number of 
constant-voltage steps permitted by that sequence can consequently be generated by these 
arrays, often called programmable Josephson voltage standards.   
A programmable Josephson voltage standard was suggested and demonstrated for the first 
time by Hamilton et al (1995).  In that case 2,048 junctions of an array containing 8,192 
externally shunted SIS junctions were operated at 75 GHz and delivered an output voltage 
of about 300 mV.  As the critical current and consequently the step width are limited to a 
few hundred microamperes due to design restrictions of externally shunted SIS arrays, and 
a design for these junctions is rather complex and challenging, other junction types have 
subsequently been investigated.  The final breakthrough of programmable voltage stand-
ards was enabled by the implementation of SNS junctions (Benz, 1995), whereupon calcu-
lations by Kautz (1995) had given important hints for their realization (S: Superconductor, 
N: Normal metal).   
The first practical 1 V arrays were realized by Benz et al (1997).  A total of 32,768 SNS 
junctions containing PdAu as the normal metal were embedded into the middle of a 
coplanar waveguide transmission line (CPW) with an impedance of 50 .  The width of the 
constant-voltage steps exceeds 1 mA under microwave operation around 16 GHz.  This low 
microwave frequency gives rise to a drawback of SNS junctions, namely the large number of 
junctions needed to reach the 1 V (32,000 junctions) or the 10 V level (300,000 junctions). 
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Fig. 4. Schematic design of a programmable Josephson voltage standard based on a binary-
divided series array of Josephson junctions shown as X.  The array is operated as multi-bit 
digital-to analogue converter. 
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Fig. 5. Photo of a 10 V programmable Josephson junction series array.   

This huge number of junctions causes enormous challenges for the microwave design and 
for the fabrication technology.  The use of stacked junctions was subsequently investigated 
in order to handle this huge number of junctions.  For example, arrays of double- and triple-
stacked junctions containing MoSi2 barriers were developed generating voltages up to 3.9 V 
(Chong et al, 2005).   
Other kinds of junctions have therefore been investigated, in order to reach characteristic 
voltages of about 150 µV which allows operation at 70 GHz.  A successful development has 
been SINIS junctions consisting of a multilayer superconductor-insulator-normal metal-in-
sulator-superconductor originally investigated for electronic applications (Maezawa & Shoji, 
1997; Sugiyama et al, 1997).  The first small series arrays and 1 V arrays were subsequently 
fabricated (Schulze et al, 1998; Behr et al, 1999).  The 1 V arrays contain 8,192 junctions.  The 
first 10 V arrays consisting of 69,120 junctions were also developed shortly afterwards 
(Schulze et al, 2000) and later significantly improved (Mueller et al, 2007).  
In spite of their successful use, a serious drawback of SINIS junctions is their sensitivity to 
particular steps during fabrication often resulting in a few shorted junctions of a SINIS 
series array (typically between 0 and 10 of 10,000 junctions) probably due to the very thin in-
sulating oxide barriers (cf. Mueller et al, 2009).  The search for more robust barrier materials 
led to an amorphous silicon layer doped with a metal such as niobium (Baek et al, 2006).  
The niobium content is tuned to a value near a metal-insulator transition observed at a 
niobium concentration of about 11.5% (Hertel et al, 1983).  This region combining a high 
resistivity and a sufficient conductivity allows the fabrication of 1 V and 10 V arrays for 
operation at 70 GHz (Mueller et al, 2009).  Fig. 5 shows a photo of a 10 V programmable 
Josephson junction series array.  Measurements showed that a few 10 V arrays consisting of 
69,632 junctions had been realized without any shorted junction, which was never achieved 
using SINIS junctions.  Step widths above 1 mA have meanwhile been reached (cf. Fig. 6).  
This junction type currently enables the most reliable fabrication process.   
Series arrays of junctions with an amorphous NbxSi1-x barrier were originally used for 
circuits operated around 15 GHz.  Burroughs et al (2009a) developed 10 V arrays containing 
three-junction stacks with 268,800 junctions arranged in 32 parallel branches.  Constant-
voltage steps at 10 V were generated under microwave irradiation between about 18 GHz 
and 20 GHz.  Tapered CPWs have been used in order to assure a homogeneous microwave 
power distribution along 8,400 junctions in each branch (Dresselhaus et al, 2009).   
Some other kinds of junctions have also been investigated.  While most Josephson arrays are 
operated in liquid helium at 4.2 K, Yamamori et al (2006) developed arrays for operation at 
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Fig. 4. Schematic design of a programmable Josephson voltage standard based on a binary-
divided series array of Josephson junctions shown as X.  The array is operated as multi-bit 
digital-to analogue converter. 

 
Development of Josephson Voltage Standards 

 

247 

 
Fig. 5. Photo of a 10 V programmable Josephson junction series array.   

This huge number of junctions causes enormous challenges for the microwave design and 
for the fabrication technology.  The use of stacked junctions was subsequently investigated 
in order to handle this huge number of junctions.  For example, arrays of double- and triple-
stacked junctions containing MoSi2 barriers were developed generating voltages up to 3.9 V 
(Chong et al, 2005).   
Other kinds of junctions have therefore been investigated, in order to reach characteristic 
voltages of about 150 µV which allows operation at 70 GHz.  A successful development has 
been SINIS junctions consisting of a multilayer superconductor-insulator-normal metal-in-
sulator-superconductor originally investigated for electronic applications (Maezawa & Shoji, 
1997; Sugiyama et al, 1997).  The first small series arrays and 1 V arrays were subsequently 
fabricated (Schulze et al, 1998; Behr et al, 1999).  The 1 V arrays contain 8,192 junctions.  The 
first 10 V arrays consisting of 69,120 junctions were also developed shortly afterwards 
(Schulze et al, 2000) and later significantly improved (Mueller et al, 2007).  
In spite of their successful use, a serious drawback of SINIS junctions is their sensitivity to 
particular steps during fabrication often resulting in a few shorted junctions of a SINIS 
series array (typically between 0 and 10 of 10,000 junctions) probably due to the very thin in-
sulating oxide barriers (cf. Mueller et al, 2009).  The search for more robust barrier materials 
led to an amorphous silicon layer doped with a metal such as niobium (Baek et al, 2006).  
The niobium content is tuned to a value near a metal-insulator transition observed at a 
niobium concentration of about 11.5% (Hertel et al, 1983).  This region combining a high 
resistivity and a sufficient conductivity allows the fabrication of 1 V and 10 V arrays for 
operation at 70 GHz (Mueller et al, 2009).  Fig. 5 shows a photo of a 10 V programmable 
Josephson junction series array.  Measurements showed that a few 10 V arrays consisting of 
69,632 junctions had been realized without any shorted junction, which was never achieved 
using SINIS junctions.  Step widths above 1 mA have meanwhile been reached (cf. Fig. 6).  
This junction type currently enables the most reliable fabrication process.   
Series arrays of junctions with an amorphous NbxSi1-x barrier were originally used for 
circuits operated around 15 GHz.  Burroughs et al (2009a) developed 10 V arrays containing 
three-junction stacks with 268,800 junctions arranged in 32 parallel branches.  Constant-
voltage steps at 10 V were generated under microwave irradiation between about 18 GHz 
and 20 GHz.  Tapered CPWs have been used in order to assure a homogeneous microwave 
power distribution along 8,400 junctions in each branch (Dresselhaus et al, 2009).   
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Fig. 6. Current-voltage characteristic of a 10 V programmable Josephson junction series 
array without (red) and with (blue) 70 GHz microwave irradiation.  The inset shows the 
constant-voltage step at the 10 V level with high resolution.   

temperatures around 10 K by using NbN for the superconducting layers and TiN for the 
barrier.  The arrays consisting of more than 500,000 junctions for operation at 16 GHz gen-
erate voltages up to 17 V (Yamamori et al, 2008).  Another version for 70 GHz operation is 
based on an improved design of 3315 externally shunted SIS junctions operated on the third-
order constant-voltage step (Hassel et al, 2005).  Recently 1 V SNIS arrays were developed 
by Lacquaniti et al (2011) using a slightly oxidized thick Al layer (up to 100 nm) as a barrier.   

5.2 Applications using binary-divided programmable Josephson voltage standards   
Conventional Josephson voltage standards are used for dc applications, namely to calibrate 
voltage references e.g. Weston elements or Zener references, and to measure the linearity of 
voltmeters.  The Josephson voltage standards in many countries around the world have 
been verified by international comparisons.  The Bureau International des Poids et Mesures 
(BIPM) developed a travelling Josephson voltage standard for performing direct com-
parisons, typically achieving uncertainties of 1 part in 1010 (Wood & Solve, 2009). The 
advantage of programmable Josephson voltage standards over conventional ones is given in 
the speed required to adjust a precise voltage.  In direct comparisons using a null-detector at 
room temperature, the main uncertainty source is the type-A uncertainty from the null-
detector’s noise.  In speeding up a comparison the uncertainty can be reduced by a factor n 
where n is the number of polarity reversals. Using two programmable 10 V Josephson 
voltage standards, the polarity reversing procedure can be easily automated.  This has been 
demonstrated (Palafox et al, 2009) with a type-A uncertainty of 3 parts in 1012. 
Binary-divided Josephson arrays were originally developed aiming at d/a converters with 
fundamental accuracy as a source for ac calibrations.  Fig. 7 shows a step-wise approximated 
sine wave.  It was tested to calibrate thermal transfer standards (Hamilton et al, 1995).  The 
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synthesized waveforms contain small parts of undefined voltages during transients between 
well-defined quantized voltage levels.  To improve achievable uncertainties, the transients 
have been made faster and faster, from 1 µs (Hamilton et al, 1997) to below 100 ns (Williams 
et al, 2007).  Measurements on thermal transfer standards have shown possible uncertainties 
better than 1 µV/V for frequencies below 200 Hz (Behr et al, 2005) but for higher frequencies 
transients dominate uncertainties.  Different error analyses (Lee et al, 2009; Burroughs et al, 
2009b) confirm that transients will make it very difficult to further improve the pre-
dictability of these quantized voltage sources as the transients depend on too many para-
meters like applied bias current, microwave power or helium levels in the dewar.  The only 
way for further improvements seems to require specific assumptions for the device under 
test (Séron et al, 2011).   
Due to this fundamental limitation from transients the idea came up of combining the step-
wise approximated Josephson waveforms with sampling methods.  In a first experiment, a 
sampling voltmeter was calibrated by sampling the quantized voltage levels (Ihlenfeld et al, 
2005).  Later stepwise approximated waveforms and sampling were used to demonstrate an 
ac quantum voltmeter measuring ac voltage differentially (Behr et al, 2007).  Both methods 
are used nowadays to link a power standard directly to a quantum basis (Palafox et al, 2007 
& 2009; Rüfenacht et al, 2009).  By introducing faster sampling systems and pre-amplifiers 
for a wide range of ac applications like ac-dc transfer calibrations, this idea has been further 
improved.  As here the Josephson system is acting as a voltage reference, it also allows com-
bining it with an external ac source traced back or locked to the Josephson voltage 
(Rüfenacht et al, 2011).  For certain applications this is favourable as ac sources can drive a 
current to low-impedance devices.  Driving a current from a Josephson voltage standard is 
very limited as typically step widths are not much larger than 1 mA, accordingly the 
impedance must be larger than 10 k for 10 V Josephson arrays.   
Towards higher frequencies sampling methods are limited due to the bandwidth of a/d 
converters which are affected by fast voltage edges in stepwise approximated waveforms 
and a decreasing aperture time for raising frequencies.  The frequency limit is determined 
by the number of samples taken for a period.  When using rectangular waveforms, i.e. the 
 

 
Fig. 7. Synthesis of a step-wise approximated 50 Hz sine wave using a 10 V Josephson 
junction series array.   
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Fig. 6. Current-voltage characteristic of a 10 V programmable Josephson junction series 
array without (red) and with (blue) 70 GHz microwave irradiation.  The inset shows the 
constant-voltage step at the 10 V level with high resolution.   

temperatures around 10 K by using NbN for the superconducting layers and TiN for the 
barrier.  The arrays consisting of more than 500,000 junctions for operation at 16 GHz gen-
erate voltages up to 17 V (Yamamori et al, 2008).  Another version for 70 GHz operation is 
based on an improved design of 3315 externally shunted SIS junctions operated on the third-
order constant-voltage step (Hassel et al, 2005).  Recently 1 V SNIS arrays were developed 
by Lacquaniti et al (2011) using a slightly oxidized thick Al layer (up to 100 nm) as a barrier.   

5.2 Applications using binary-divided programmable Josephson voltage standards   
Conventional Josephson voltage standards are used for dc applications, namely to calibrate 
voltage references e.g. Weston elements or Zener references, and to measure the linearity of 
voltmeters.  The Josephson voltage standards in many countries around the world have 
been verified by international comparisons.  The Bureau International des Poids et Mesures 
(BIPM) developed a travelling Josephson voltage standard for performing direct com-
parisons, typically achieving uncertainties of 1 part in 1010 (Wood & Solve, 2009). The 
advantage of programmable Josephson voltage standards over conventional ones is given in 
the speed required to adjust a precise voltage.  In direct comparisons using a null-detector at 
room temperature, the main uncertainty source is the type-A uncertainty from the null-
detector’s noise.  In speeding up a comparison the uncertainty can be reduced by a factor n 
where n is the number of polarity reversals. Using two programmable 10 V Josephson 
voltage standards, the polarity reversing procedure can be easily automated.  This has been 
demonstrated (Palafox et al, 2009) with a type-A uncertainty of 3 parts in 1012. 
Binary-divided Josephson arrays were originally developed aiming at d/a converters with 
fundamental accuracy as a source for ac calibrations.  Fig. 7 shows a step-wise approximated 
sine wave.  It was tested to calibrate thermal transfer standards (Hamilton et al, 1995).  The 
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synthesized waveforms contain small parts of undefined voltages during transients between 
well-defined quantized voltage levels.  To improve achievable uncertainties, the transients 
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et al, 2007).  Measurements on thermal transfer standards have shown possible uncertainties 
better than 1 µV/V for frequencies below 200 Hz (Behr et al, 2005) but for higher frequencies 
transients dominate uncertainties.  Different error analyses (Lee et al, 2009; Burroughs et al, 
2009b) confirm that transients will make it very difficult to further improve the pre-
dictability of these quantized voltage sources as the transients depend on too many para-
meters like applied bias current, microwave power or helium levels in the dewar.  The only 
way for further improvements seems to require specific assumptions for the device under 
test (Séron et al, 2011).   
Due to this fundamental limitation from transients the idea came up of combining the step-
wise approximated Josephson waveforms with sampling methods.  In a first experiment, a 
sampling voltmeter was calibrated by sampling the quantized voltage levels (Ihlenfeld et al, 
2005).  Later stepwise approximated waveforms and sampling were used to demonstrate an 
ac quantum voltmeter measuring ac voltage differentially (Behr et al, 2007).  Both methods 
are used nowadays to link a power standard directly to a quantum basis (Palafox et al, 2007 
& 2009; Rüfenacht et al, 2009).  By introducing faster sampling systems and pre-amplifiers 
for a wide range of ac applications like ac-dc transfer calibrations, this idea has been further 
improved.  As here the Josephson system is acting as a voltage reference, it also allows com-
bining it with an external ac source traced back or locked to the Josephson voltage 
(Rüfenacht et al, 2011).  For certain applications this is favourable as ac sources can drive a 
current to low-impedance devices.  Driving a current from a Josephson voltage standard is 
very limited as typically step widths are not much larger than 1 mA, accordingly the 
impedance must be larger than 10 k for 10 V Josephson arrays.   
Towards higher frequencies sampling methods are limited due to the bandwidth of a/d 
converters which are affected by fast voltage edges in stepwise approximated waveforms 
and a decreasing aperture time for raising frequencies.  The frequency limit is determined 
by the number of samples taken for a period.  When using rectangular waveforms, i.e. the 
 

 
Fig. 7. Synthesis of a step-wise approximated 50 Hz sine wave using a 10 V Josephson 
junction series array.   
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minimum number of samples, frequencies up to 6 kHz have been used to calibrate 
impedance ratios (Lee et al, 2011), while typically 16 to 256 samples reduce the bandwidth to 
clearly below 1 kHz (Kim et al, 2010).   
Another way to minimize the effect of transients is to use the rectangular waveforms and to 
just look at the fundamental tone of the waveform.  Practically this is easy when a lock-in 
amplifier is used as a null-detector. Internally the lock-in amplifier multiplies the rectangu-
lar waveform with a sine wave heavily weighting the quantized plateaus and almost neg-
lecting the transients (Jeanneret et al, 2010).  The influence of the transients is suppressed to 
below parts in 108 which is being utilized fully for impedance ratio measurements (Lee et al, 
2010).   
However, the only way to completely avoid transients at all is to use the so-called pulse-
driven Josephson arbitrary waveform synthesizer.  This method is described in detail in the 
next paragraph. 

5.3 Pulse-driven arrays   
The interest in quantum-accurate ac waveform synthesis led to the development of another 
version of Josephson voltage standards for ac applications (Benz & Hamilton, 1996).  Those 
Josephson voltage standards described so far are operated by sinusoidal microwaves in 
order to effect the transfer of flux quanta through Josephson junctions.  This works well, if 
the operating frequency is close to the characteristic frequency of the junctions (cf. chapter 2 
and equation (1); Kautz, 1992 & 1995).  A modulation of the output voltage by changing the 
frequency of the irradiated microwaves over a wide frequency range is therefore not possi-
ble.  Nevertheless, a direct time-dependent manipulation of the flux quanta transfer seems 
to be very promising for an ac voltage standard, in order to enable the synthesis of spectrally 
pure waveforms and to avoid those drawbacks related to the multi-bit d/a converter 
operation of binary-divided arrays.   
Indeed, the limitations of sinusoidal operation do not appear, if Josephson junctions are 
operated by a train of short current pulses as shown first by calculations (Monaco, 1990).  
The width of the constant-voltage steps is nearly independent of the pulse repetition fre-
quency between zero and the characteristic frequency, if rise and fall time of the pulses are 
short compared to the characteristic frequency (10 GHz corresponds to 100 ps).  The train of 
pulses then determines the number of flux quanta transferred through the Josephson 
junctions at any time.  The waveform to be generated is encoded in the pulse train.  A high 
pulse repetition rate generates high voltages; the voltage decreases with decreasing pulse 
repetition rate.  Fig. 8 schematically shows the principle of operation.  Arbitrary output 
waveforms can be synthesized by modulating the pulse train using a pulse pattern gen-
erator; sometimes this version of pulse-driven Josephson arrays is therefore also called 
Josephson Arbitrary Waveform Synthesizer (JAWS).   
The pulse train is typically created by the use of a second-order sigma-delta (SD) modula-
tion (cf. Benz et al, 1998; Kieler et al, 2009).  This procedure shifts the quantization noise to 
high frequencies; noise contributions are then removed by appropriate filtering.  The 
Josephson junctions act as a quantizer due to the transfer of flux quanta.  Spectrally pure 
waveforms are synthesized that way with higher harmonics suppressed by more than 
100 dB (cf. Benz et al, 2009a; Kieler et al, 2009).  The easiest way to prove perfect quanti-
zation of a synthesized signal is to generate and measure a sine wave, whose spectrum 
should show a single tone without any additional harmonics.   
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Fig. 8. Schematic of operation for pulse-driven arrays.   

Pulse-driven arrays need overdamped Josephson junctions, which have predominantly been 
realized by SNS junctions.  Different materials have been used for the barrier such as e.g. 
PdAu (Benz et al, 2001), HfTi (Hagedorn et al, 2006) or NbxSi1-x (Benz et al, 2007).  SINIS 
junctions have also been investigated (Kohlmann et al, 2006).   
Pulse-driven arrays were suggested and first demonstrated by Benz and Hamilton (1996).  
An array of 512 junctions generated constant-voltage steps up to 265 µV under operation by 
unipolar pulses with a repetition frequency up to 250 MHz.  Continuous enhancements 
gradually improved the spectra of the synthesized signals and increased the output volt-
ages.  The first important steps ahead have been, amongst others: a code generator allowing 
a pulse repetition frequency of about 10 GHz (Benz et al, 1998) and the use of a bipolar drive 
signal (Benz et al, 1999).  The overdamped Josephson junctions are embedded into the 
middle of a coplanar waveguide transmission line (CPW).  As the pulses consist of broad-
band frequency components ranging from dc to about 30 GHz, a complicated microwave 
assembly is required in order to enable the transmission of these broadband signals.   
The broadband pulse drive including dc and low-frequency components causes additional 
requirements in operation compared to sinusoidal driven arrays.  The dc component must 
be delivered to the array, e.g. by a direct connection to the code generator.  A resistive 
microwave termination at the end of the CPW would produce an unwanted common mode 
voltage; in order to avoid this common mode voltage, the initially used arrays were 
designed as lumped elements, whose junction series array are directly grounded.  Finally, a 
simple splitting of the array in parallel microwave paths is not possible.   
The configuration as lumped arrays, however, limits the length of the series array, which 
must be short compared to the wavelength  of the highest significant frequency.  A length 
of typically /8 ensures a uniform distribution of the high-frequency power comprised in 
the pulses to all junctions (  12 mm for a frequency of 10 GHz within a CPW on a Si 
wafer).  The number of junctions is therefore restricted to about 2,000 at most using sub-µm 
junction technology (Hagedorn et al, 2006).  A promising suggestion for increasing the 
number of junctions is their arrangement within a meander-like structure as shown in Fig. 9 
(Kieler et al, 2007a).  Arrays containing more than 10,000 junctions were realized; the 
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minimum number of samples, frequencies up to 6 kHz have been used to calibrate 
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below parts in 108 which is being utilized fully for impedance ratio measurements (Lee et al, 
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driven Josephson arbitrary waveform synthesizer.  This method is described in detail in the 
next paragraph. 
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version of Josephson voltage standards for ac applications (Benz & Hamilton, 1996).  Those 
Josephson voltage standards described so far are operated by sinusoidal microwaves in 
order to effect the transfer of flux quanta through Josephson junctions.  This works well, if 
the operating frequency is close to the characteristic frequency of the junctions (cf. chapter 2 
and equation (1); Kautz, 1992 & 1995).  A modulation of the output voltage by changing the 
frequency of the irradiated microwaves over a wide frequency range is therefore not possi-
ble.  Nevertheless, a direct time-dependent manipulation of the flux quanta transfer seems 
to be very promising for an ac voltage standard, in order to enable the synthesis of spectrally 
pure waveforms and to avoid those drawbacks related to the multi-bit d/a converter 
operation of binary-divided arrays.   
Indeed, the limitations of sinusoidal operation do not appear, if Josephson junctions are 
operated by a train of short current pulses as shown first by calculations (Monaco, 1990).  
The width of the constant-voltage steps is nearly independent of the pulse repetition fre-
quency between zero and the characteristic frequency, if rise and fall time of the pulses are 
short compared to the characteristic frequency (10 GHz corresponds to 100 ps).  The train of 
pulses then determines the number of flux quanta transferred through the Josephson 
junctions at any time.  The waveform to be generated is encoded in the pulse train.  A high 
pulse repetition rate generates high voltages; the voltage decreases with decreasing pulse 
repetition rate.  Fig. 8 schematically shows the principle of operation.  Arbitrary output 
waveforms can be synthesized by modulating the pulse train using a pulse pattern gen-
erator; sometimes this version of pulse-driven Josephson arrays is therefore also called 
Josephson Arbitrary Waveform Synthesizer (JAWS).   
The pulse train is typically created by the use of a second-order sigma-delta (SD) modula-
tion (cf. Benz et al, 1998; Kieler et al, 2009).  This procedure shifts the quantization noise to 
high frequencies; noise contributions are then removed by appropriate filtering.  The 
Josephson junctions act as a quantizer due to the transfer of flux quanta.  Spectrally pure 
waveforms are synthesized that way with higher harmonics suppressed by more than 
100 dB (cf. Benz et al, 2009a; Kieler et al, 2009).  The easiest way to prove perfect quanti-
zation of a synthesized signal is to generate and measure a sine wave, whose spectrum 
should show a single tone without any additional harmonics.   
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microwave termination at the end of the CPW would produce an unwanted common mode 
voltage; in order to avoid this common mode voltage, the initially used arrays were 
designed as lumped elements, whose junction series array are directly grounded.  Finally, a 
simple splitting of the array in parallel microwave paths is not possible.   
The configuration as lumped arrays, however, limits the length of the series array, which 
must be short compared to the wavelength  of the highest significant frequency.  A length 
of typically /8 ensures a uniform distribution of the high-frequency power comprised in 
the pulses to all junctions (  12 mm for a frequency of 10 GHz within a CPW on a Si 
wafer).  The number of junctions is therefore restricted to about 2,000 at most using sub-µm 
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Fig. 9. Design of a Josephson junction series array for pulse drive (left).  The scanning 
electron microscope pictures (right) show a part of the middle of the CPW containing 
Josephson junctions arranged in a meander-like structure. 

synthesis of spectrally pure waveforms with low distortion has, however, been successful 
only in part so far (Kieler et al, 2007b).   
A way of avoiding the limitations related to lumped arrays and of solving the common 
mode problem is the ac-coupling technique for the operation of Josephson arrays (Benz et al, 
2001).  Here, the broadband pulse drive is split into high-frequency and low-frequency 
signals (split around 10 MHz).  While the high-frequency signal is capacitively coupled to 
the series array, the low-frequency part is separately applied by an additional compensation 
bias.  A resistive microwave termination can now be placed at the end of the array without 
causing common-mode voltages.  Therefore, extended series arrays can be used, which con-
sequently enables a significant increase in the number of junctions.  Further improvements 
resulted in output voltages up to 275 mV rms (Benz et al, 2009a).  Two arrays containing 
6,400 junctions each were simultaneously operated by using the data output and the com-
plementary data output of the code generator, respectively.  Higher harmonics are sup-
pressed by more than 110 dB (Benz et al, 2007 & 2009a).   
In spite of these very encouraging results the synthesis of voltages at 1 V or more remains very 
challenging. It will probably require a parallel operation of several arrays using adapted 
electronics (Benz et al, 1999 & 2009a) or the approach for the operation of multiple arrays that 
has been suggested by Kohlmann et al (2006). It is based on balanced photodiodes arranged at 
each array and operated by short optical pulses (Williams et al, 2004).  The operation of 
Josephson arrays by optical pulses has also been investigated by Urano et al (2010).   
The pulse train is typically provided by a commercial pulse pattern generator (bitstream 
generator).  Fifteen years ago these generators just delivered unipolar pulses.  As bipolar 
signals are preferred for metrological applications, and the peak-to-peak voltage is simply 
doubled, ways and means have been investigated to generate bipolar pulse trains even with 
unipolar pulses.  The initially used procedure for this purpose is the suitable superposition 
of a high-frequency sine wave and a two-level digital signal as first proposed by Benz et al 
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Fig. 10. Synthesized 1.25 kHz sine wave (top) and its frequency spectrum (bottom).  Higher 
harmonics are suppressed by 118 dBc.  The small signal at about 8.8 kHz is not related to the 
synthesized signal, as it is also present at the noise level when no waveform is synthesized.   

(1999).  Today the direct generation of bipolar pulses using a three-level code generator is 
easy as corresponding instruments have recently been made available (van den Brom et al, 
2008).  Now the measurement setup is less complex (cf. Fig. 8) and more temporally stable 
when this three-level code generator is used (van den Brom et al, 2007 & 2008).  Different 
waveforms were synthesized over a wide frequency range from about 150 Hz to above 
100 kHz using arrays containing nearly 4,800 junctions; higher harmonics are suppressed up 
to 118 dBc (Kieler et al, 2010).  In addition, the operation margins of the arrays were signifi-
cantly improved, and 200 mV (rms) signals at 1 kHz were synthesized by simultaneously 
operating two arrays containing 5120 junctions each (Houtzager et al, 2009).   
A comparison between the output voltages of a pulse-driven and a binary divided Joseph-
son voltage standard at 8 mV showed an excellent agreement of both systems within a 
relative deviation of 5  10-7 (Kohlmann et al, 2009).   
The arbitrary perfect waveforms synthesized by pulse-driven arrays are useful for different 
metrological applications.  First of all, pulse-driven arrays were used as synthesizers for 
arbitrary waveforms up to 100 kHz with very pure frequency spectra and quantum-accurate 
voltages (cf. Benz et al, 2009a; Houtzager et al, 2009; Kieler et al, 2009).  Then, pulse-driven 
arrays were utilized for calibrations of thermal converters and transfer standards, which are 
well-established devices in ac metrology (cf. Lipe et al, 2008; Benz et al, 2009a).  Single- or 
multi-tone signals were, in addition, used for the characterization of electronic components 
like filters or a/d converters (cf. Toonen and Benz, 2009).  The use of pulse-driven arrays 
was also suggested in combination with a binary-divided array; the spectrum of the pulse-
driven array is adjusted to modify the spectrum of the 1 V or 10 V signal generated by the 
binary divided array (Kohlmann et al, 2007).  In addition, pulse-driven arrays provide the 
opportunity for synthesizing a calculable pseudo-noise waveform consisting of a comb of 
random-phase harmonics each having identical voltage amplitude.  A low-voltage version 
of this noise source is used in a quantum-based Johnson noise thermometry system to 
measure the voltage noise of the resistor, and thus its temperature (Benz et al, 2009b).   
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arrays were utilized for calibrations of thermal converters and transfer standards, which are 
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multi-tone signals were, in addition, used for the characterization of electronic components 
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6. Conclusions   
100 years after the discovery of superconductivity and nearly 50 years after the discovery of 
the Josephson effect, Josephson voltage standards play an essential role in electrical metro-
logy and high-precision voltage measurements.  The significant progress of the fabrication 
technology has been a major prerequisite for the development of large series arrays for 
Josephson voltage standards containing tens of thousands Josephson junctions.  Conven-
tional 10 V Josephson voltage standards are well established for dc measurements and com-
mercially available.  Programmable voltage standards opened up the world of ac applica-
tions and have, hence, been the next step in the exciting story of the applications of the 
Josephson effect in metrology.  While 1 V arrays are meanwhile fabricated routinely, the first 
10 V arrays containing tens or even hundreds of thousands of Josephson junctions are now 
available.  Conventional Josephson voltage standards will be replaced in the future more 
and more by these programmable Josephson voltage standards, as they are easier to operate 
and provide exciting additional possibilities and applications.  The synthesis of real quan-
tum-based ac voltages is enabled by pulse-driven arrays.  Very promising results have been 
achieved; output voltages of about 275 mV were synthesized with higher harmonics sup-
pressed by about 120 dBc.  However, the aim to generate 1 V ac voltages is very challenging 
due to the complex operation by short current pulses.  The value of ac Josephson voltage 
standards has successfully been demonstrated in initial experiments. Further developments 
will establish these Josephson voltage standards as a quantum basis for ac metrology.   
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1. Introduction

The critical state in type II superconductors determines the maximum current the
superconductor can carry without an energy dissipation. The critical state results from a
competition between the Lorentz force acting on flux lines (quantized vortices), thermal
agitation, pinning force, and repulsive interaction between flux lines. The pinning force
localizes the flux lines on crystal lattice defects (dislocations, voids or impurities) and favors
glassy state of flux lines, whereas the repulsive interaction between vortices results in a regular
flux line lattice. Materials with a strong pinning are called hard superconductors. Such
materials are relevant for power application of superconductors: solenoids for high magnetic
fields or cables for large transport currents. Recently, high temperature superconductor (HTS)
materials with the critical current density jc of the order of 100 GA m−2 at zero temperature
and zero applied field were prepared. The second generation of HTS wires (2GHTSC) is
constituted from RE-Ba2Cu3O6+x (YBCO) films. The critical current density is one or two
orders higher than was achieved in Bi2Sr2CaCu2O8+x (BSCCO) round wires or MgB2, Nb-Ti,
Nb3Sn, and Nb3Al wires. Unlike BSCCO wires whose performance is lowered by a flux flow
at temperature above 35 K the YBCO wires operate even at liquid nitrogen temperature.
Another important field of application of superconductors is superconducting electronics.
Most of today’s superconducting electronics like superconducting quantum interferometer
devices (SQUIDs), radiation detectors (SIS mixers), etc. are made of Nb, NbN, or HTS films.
The flux lines trapped in the superconducting film may deteriorate sensor sensitivity as the
moving flux lines generate noise (Wellstood et al., 1987). The above mentioned elucidates an
interest in flux dynamics in thin films, particularly models to a disk and stripe.
The critical state is affected by material properties, the wire or sensor geometry (shape),
applied current, field, and temperature. Conventionally the critical state is studied (judged)
using contact measurements (four probe resistive method) or magnetic measurements (local
magnetization profile or magnetization loops). The latter method eliminates the need for
electrical contacts and allows us to study the response of the critical state to an applied
magnetic field. Frequency dependent magnetization loops reveal a flux creep or flux flow
while nonlinear magnetization loops reveal surface or bulk pinning. In order to analyze
these magnetic measurements we need appropriate models. In general, these model represent
solution of 3D+t partial differential equations for a magnetic vector potential or flux density.
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applied current, field, and temperature. Conventionally the critical state is studied (judged)
using contact measurements (four probe resistive method) or magnetic measurements (local
magnetization profile or magnetization loops). The latter method eliminates the need for
electrical contacts and allows us to study the response of the critical state to an applied
magnetic field. Frequency dependent magnetization loops reveal a flux creep or flux flow
while nonlinear magnetization loops reveal surface or bulk pinning. In order to analyze
these magnetic measurements we need appropriate models. In general, these model represent
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2 Will-be-set-by-IN-TECH

Numerical methods apply to conductors and superconductors with axial symmetry, but
otherwise with an arbitrary cross section like cylinders of finite length, thin and thick disks,
cones, spheres, and rotational ellipsoids. The specimen may even be inhomogeneous and
anisotropic as long as axial symmetry pertains (Brandt, 1998). Complete analytical solutions
are known only for particular geometries and quasistatic behavior of the magnetic flux when
the problem may be reduced to 2D. Two such examples are thin disk and strip in Bean critical
state in perpendicular magnetic field.
For magnetization loop measurements, one needs a low frequency magnetic field and low
frequency sensor of the magnetic moment of the sample. The whole system should be of high
linearity, flat frequency and phase dependence - good choice is the superconducting solenoid
and SQUID magnetometer. However, commercial SQUID magnetometers are not suitable for
such measurements because the solenoid operates in a persistent mode during a measurement
and settling time (dead time) affects (slows down) the measurement.1 Further, a residual field
in the high field solenoid causes a nonlinear H(I) dependence. Since the magnetic moment of
the sample is measured differentially, reciprocating the sample punctuates the measurement.

2. Continuous reading SQUID magnetometer

An operation of a continuous reading SQUID magnetometer (CRSM) with an immobile
sample is based on detection coils in a gradiometer arrangement, which are insensitive to
the homogeneous time varying applied magnetic field, but respond to the magnetic sample
placed in proximity of one of the coils. A spontaneous or induced magnetic moment of
the sample creates a difference in a magnetic flux in the coils and generates a current in an
input coil of the SQUID. The SQUID thus measures the variations in the magnetic moment
of the sample. Since the sample is immobile no noise or disturbances are generated due to a
sample motion and measurement is not interrupted due to a reciprocating sample or sample
positioning. The applied field is generated by a superconducting solenoid operating in a
nonpersistent mode.
We use SQUID magnetometers in two basic configurations: Standard Sensitivity and High
Sensitivity. In a Standard Sensitivity SQUID Magnetometer (SSSM), the superconducting
solenoid, gradiometer, and SQUID are immersed in a liquid helium bath, see Fig. 1. The
sample holder with a sample temperature sensor is placed inside an anticryostat.
In a High Sensitivity SQUID Magnetometer (HSSM), the superconducting solenoid,
gradiometer, SQUID, and a sample holder with a temperature sensor and heater are placed in
a copper vacuum chamber with an inset lead can, see Fig. 1. While the solenoid, gradiometer
and SQUID are thermally anchored to the vacuum chamber immersed in a cooling liquid
helium bath, the sample is mounted on a block suspended on a support with a low thermal
conductivity.

2.1 Applied field generation
The applied homogeneous field is generated using a superconducting solenoid operating
in the non-persistent mode. The solenoid is wound with a Nb-Ti wire (number of layers)
on a coil-former. The solenoid is supplied from a current source driven by a digital
to analog converter (DAC) of a data generation/acquisition card.2 These Σ − Δ DAC

1 Quantum Design.
2 National Instruments PC card model PCI-4451.
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Fig. 1. Schematic drawing of the SQUID magnetometer

have superior linearity and dynamic range. An applied field h(t) may essentially be of
an arbitrary waveform: an AC field superimposed on a DC field for measurement of
temperature dependence of susceptibility, with a linear or sinusoidal sweep for measurement
of magnetization loops, pulse or step-like for relaxation measurements, frequency sweep, etc.
The waveform is designed numerically.

SSSM HSSM

Field range (Setting resolution) ±25 mT () ±4 mT ()

Frequency range DC - 100 Hz DC - 100 Hz

Temperature range 4.2 - 300 K 4.2 - 150 K

Temperature rate 0.001 - 1 K/min 0.001 - 1 K/min

Sensitivity 7 pA m2 Hz−1/2 5 fA m2 Hz−1/2

Table 1. The parameters of the magnetometers.

Another important property of a SQUID magnetometer is the degree of homogeneity of the
applied magnetic field (both in z and r direction). High homogeneity solenoids generating a
DC bias field have the homogeneity of the order of 10−4 over 4 cm (Vrba, 2001).

2.2 Detection system
The detection system includes superconducting flux transformer and the SQUID. The
transformer comprises of coils in a gradiometric arrangement. Two coils with an opposite
winding (sense) direction and areas S1 and S2 form a first order axial gradiometer which is
insensitive to the homogeneous applied field H0. A balance of the gradiometer, defined as

η = (S1 + S2) · S1/|S1|2 (1)

is η = 0 in an ideal case. In practise, any gradiometer is manufactured with a finite mechanical
precision and the balance η = 0.0001 may be achieved with a careful construction (Vrba, 2001).
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sample holder with a sample temperature sensor is placed inside an anticryostat.
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gradiometer, SQUID, and a sample holder with a temperature sensor and heater are placed in
a copper vacuum chamber with an inset lead can, see Fig. 1. While the solenoid, gradiometer
and SQUID are thermally anchored to the vacuum chamber immersed in a cooling liquid
helium bath, the sample is mounted on a block suspended on a support with a low thermal
conductivity.

2.1 Applied field generation
The applied homogeneous field is generated using a superconducting solenoid operating
in the non-persistent mode. The solenoid is wound with a Nb-Ti wire (number of layers)
on a coil-former. The solenoid is supplied from a current source driven by a digital
to analog converter (DAC) of a data generation/acquisition card.2 These Σ − Δ DAC
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have superior linearity and dynamic range. An applied field h(t) may essentially be of
an arbitrary waveform: an AC field superimposed on a DC field for measurement of
temperature dependence of susceptibility, with a linear or sinusoidal sweep for measurement
of magnetization loops, pulse or step-like for relaxation measurements, frequency sweep, etc.
The waveform is designed numerically.
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Table 1. The parameters of the magnetometers.

Another important property of a SQUID magnetometer is the degree of homogeneity of the
applied magnetic field (both in z and r direction). High homogeneity solenoids generating a
DC bias field have the homogeneity of the order of 10−4 over 4 cm (Vrba, 2001).

2.2 Detection system
The detection system includes superconducting flux transformer and the SQUID. The
transformer comprises of coils in a gradiometric arrangement. Two coils with an opposite
winding (sense) direction and areas S1 and S2 form a first order axial gradiometer which is
insensitive to the homogeneous applied field H0. A balance of the gradiometer, defined as

η = (S1 + S2) · S1/|S1|2 (1)

is η = 0 in an ideal case. In practise, any gradiometer is manufactured with a finite mechanical
precision and the balance η = 0.0001 may be achieved with a careful construction (Vrba, 2001).
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An inhomogeneous applied field and imperfect gradiometer balance result in a crosstalk of
the field to the SQUID and reduce a dynamic range of the CRSM. In SSSM a compensation
coil wound on an upper part of the solenoid and supplied with an adjustable current derived
from the solenoid supply current minimizes crosstalk. A careful design and construction
keeps down deformation of the field affected by a proximity of magnetic or superconducting
materials (solder) and frequency dependent eddy currents in metallic (nonsuperconducting)
parts.
The magnetic moment of the sample is

m =
1
2

∫

V
(r × j) d3r. (2)

A vector potential of the induced or spontaneous magnetic moment m of the sample is

A = μ
m × r

r3 . (3)

The magnetic flux in the pickup coil is

Φ =
∮

Γ
A · dl, (4)

where Γ is the coil circumference. The SQUID indicates difference in the flux in an upper and
lower coil, ΔΦ = Φupper − Φlower, and thus the SQUID output voltage is proportional to a
projection of the measured magnetic moment on a gradiometer axis, m(t) ∝ ΔΦ(t).
Since the detection system is superconducting, the output voltage m(t) is proportional to the
magnetic moment of the sample and not to a rate of change of the magnetic moment like in
case of induction magnetometers (ac susceptometer (ACS) or vibrating sample magnetometer
(VSM)).
Both the SSSM and HSSM use bulk Nb SQUID of the Zimmerman type operating at the rf
frequency of about 40 MHz. The Josephson junction is a point contact type in the SSSM and
thin film bridge in the HSSM. Both SQUIDs have an equivalent input flux noise density of the
order of 10−4 Φ0 Hz−1/2 in a white noise region (> 1 Hz) and range ±500 Φ0 limited by a slew
rate 104 Φ0/s.3

A shielding of an external dc and time varying electromagnetic field originating from an earth
magnetic field and man-made sources is necessary to utilize the extraordinary sensitivity of
the SQUIDs. The shielding is ensured by a soft magnetic materials (the cryostat is placed
inside the shielding) and superconducting shielding (Tsoy et al., 2000).

2.3 Sample mounting and temperature reading and control
In SSSM a sample is glued on a bottom surface of a cylindrical sapphire holder using a varnish
or grease. A sample temperature sensor, the Si or GaAlAs diode4, is mounted on the upper
surface. The sapphire holder is connected to a (nonmagnetic, nonconducting) polyethylene
straw that extends a thin wall stainless tube suspended in an anticryostat. Another Si diode

3 iMAG 303 SQUID: The equivalent input noise for the standard LTS SQUID system is less than 10−5 Φ0
Hz−1/2, from 1 Hz to 50 kHz in the ±500 Φ0 range. The response is flat from DC to the 3 dB points,
slow slew mode 500 Hz (- 3 dB), normal slew mode 50 kHz (- 3 dB). The input inductance of the LTS
SQUID is 1.8 × 10−6 H.

4 Lake Shore or CryoCon

264 Superconductivity    – Theory and Applications Critical State Analysis Using Continuous Reading SQUID Magnetometer 5

temperature sensor measures temperature of the anticryostat to facilitate better closed-loop
temperature control. Two section resistance wire (constantan) heater is wound around the top
and bottom part of the anticryostat to ensure uniform warming. Heat is removed from the
sample by a 4He gas at atmospheric pressure.
In HSSM the sample is mounted on the upper surface of the sapphire holder. The holder is
embedded in a copper block whose temperature is measured using the Si diode sensor. The
block is heated using a resistance wire heater and suspended on a low thermal conductivity
fibreglass support which removes heat to liquid 4He bath. The sample is in vacuum.
In both magnetometers, a temperature controller5 connected to the computer regulates
temperature with relative stability of 10 ppm and 1 ppm in SSSM and HSSM, respectively,
and controls cooling or warming with rate from 1 mK/min to 10 K/min.

2.4 Measurement modes
The magnetometers are designed for measurements of: i) temperature dependence of a
response to fixed AC and DC applied magnetic field (temperature dependence of the
susceptibility); ii) response to field sweep at fixed temperature and AC field (magnetization
loops and AC susceptibility); iii) relaxation of a DC magnetic moment (after applied field
pulse or step) as a function of time or temperature; iv) frequency dependence at a fixed DC
field and temperature. Additional measurement modes require only a software change.

2.5 Data acquisition
The dynamic range of the SQUID is extraordinary, the range of ±500 Φ0 and spectral flux
noise density of 10−4 Φ0 Hz−1/2 represent output voltage range ±10 V and voltage noise
density 10 μV Hz−1/2, a range of 7 orders (140 dB).6 The frequency response is flat both in a
frequency and phase. In slow slew mode the -3 dB point is 100 Hz. The SQUID output signal
m(t) falls into an audio range and thus may be easily digitized in "CD" quality as well as the
signal of the applied field H(t), recorded on a hard disk, and digitally processed in real time.7

Processed data file includes temperature readings.

2.6 AC susceptibility measurement (calculation)
Let the time varying applied AC magnetic field is

H (t) = Hac cos (2π f0t) = HacRe exp (i2π f0t) , (5)

where Hac is the amplitude and f0 is the frequency of the applied field. The complex AC
susceptibility of the sample is

χn =
M (n f0)

HacV
, (6)

5 CryoCon model 34
6 This applies to rf-SQUIDs. The flux noise density in DC SQUIDs is lower, 10−6 Φ0 Hz−1/2,

corresponding voltage noise density 0.1 μV Hz−1/2, and dynamic range of 9 orders (180 dB).
7 We use the National Instruments PC cards model PCI-4451 with Σ − Δ digital to analog and analog

to digital converters for a digital signal generation and acquisition (two input channels with 16 bit
resolution, frequency range from 0 (true DC) to 95 kHz, and sampling rate up to 204.8 kS/s).
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4 Lake Shore or CryoCon
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temperature sensor measures temperature of the anticryostat to facilitate better closed-loop
temperature control. Two section resistance wire (constantan) heater is wound around the top
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sample by a 4He gas at atmospheric pressure.
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embedded in a copper block whose temperature is measured using the Si diode sensor. The
block is heated using a resistance wire heater and suspended on a low thermal conductivity
fibreglass support which removes heat to liquid 4He bath. The sample is in vacuum.
In both magnetometers, a temperature controller5 connected to the computer regulates
temperature with relative stability of 10 ppm and 1 ppm in SSSM and HSSM, respectively,
and controls cooling or warming with rate from 1 mK/min to 10 K/min.

2.4 Measurement modes
The magnetometers are designed for measurements of: i) temperature dependence of a
response to fixed AC and DC applied magnetic field (temperature dependence of the
susceptibility); ii) response to field sweep at fixed temperature and AC field (magnetization
loops and AC susceptibility); iii) relaxation of a DC magnetic moment (after applied field
pulse or step) as a function of time or temperature; iv) frequency dependence at a fixed DC
field and temperature. Additional measurement modes require only a software change.

2.5 Data acquisition
The dynamic range of the SQUID is extraordinary, the range of ±500 Φ0 and spectral flux
noise density of 10−4 Φ0 Hz−1/2 represent output voltage range ±10 V and voltage noise
density 10 μV Hz−1/2, a range of 7 orders (140 dB).6 The frequency response is flat both in a
frequency and phase. In slow slew mode the -3 dB point is 100 Hz. The SQUID output signal
m(t) falls into an audio range and thus may be easily digitized in "CD" quality as well as the
signal of the applied field H(t), recorded on a hard disk, and digitally processed in real time.7

Processed data file includes temperature readings.

2.6 AC susceptibility measurement (calculation)
Let the time varying applied AC magnetic field is

H (t) = Hac cos (2π f0t) = HacRe exp (i2π f0t) , (5)

where Hac is the amplitude and f0 is the frequency of the applied field. The complex AC
susceptibility of the sample is

χn =
M (n f0)

HacV
, (6)

5 CryoCon model 34
6 This applies to rf-SQUIDs. The flux noise density in DC SQUIDs is lower, 10−6 Φ0 Hz−1/2,

corresponding voltage noise density 0.1 μV Hz−1/2, and dynamic range of 9 orders (180 dB).
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to digital converters for a digital signal generation and acquisition (two input channels with 16 bit
resolution, frequency range from 0 (true DC) to 95 kHz, and sampling rate up to 204.8 kS/s).
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where n denotes harmonics and M(n f0) are the Fourier components of the magnetic moment
m(t). Higher harmonics of the complex susceptibility appear in the case of a nonlinear
response to the applied field. Usually the susceptibility is normalized to a volume V (or mass)
of the sample. Using the susceptibility, the magnetization loops are

M (H (t)) = ∑
n

χn Hac exp (ni2π f0t) , (7)

A common way to measure the AC susceptibility is to detect a signal of the magnetic moment
using a phase sensitive lock-in amplifier, preferably a two phase instrument indicating both
real and imaginary part of the AC susceptibility, and drive the AC field using a signal
generator. The conventional analog lock-in amplifier multiplies the input signal m(t) by a
square wave r(t) derived from a reference signal H(t) and integrates the product. The DC
output are in-phase and out-of-phase components

ReM( f0) =
4

πτ

∫ t

t−τ

[
∞

∑
n=1

1
n

sin(n
π

2
) cos

(
n2π f0t�

)]
m(t�)dt�, (8)

ImM( f0) =
4

πτ

∫ t

t−τ

[
∞

∑
n=1

1
n

sin
(
n2π f0t�

)]
m(t�)dt�, (9)

where n is odd and τ is the averaging time constant. Since the reference signal r(t) is a square
wave, the DC output is proportional not only to the Fourier component of the first harmonic
but also to 1/3 of third, 1/5 of fifth, etc. Evidently, this way of signal processing is not suitable
for the measurement of a nonlinear response. One can apply input filters that sufficiently
suppress third and higher odd harmonics, but remain unaffected the fundamental frequency.
However, suitable tunable filters are complex and expensive.
In the digital signal processor (DSP) lock-in amplifiers the signal is filtered with a simple
anti-aliasing filter and digitized by over-sampling ADC with subsequent digital filtering. The
DSP chip then synthesizes digital reference sine (and cosine) wave at the reference frequency
n f0 and multiplies the signal by this reference. After multiplication, stages of digital low-pass
filtering are applied to average over the signal period. The DSP lock-in amplifier generates
the true rms values of the complex Fourier components of M( f0) or nth harmonic M(n f0):

M (n f0) =
1

NΔt

N−1

∑
k=0

m (tk) exp (ni2π f0tk) , (10)

where Δt = tk − tk−1 is the sampling interval and NΔt is averaging time. However,
commercial DSP lock-in amplifiers provide only components at single frequency. Hence,
unless successive measurements of the harmonics are done, one needs an extra instrument
for the each additional harmonic.
With computational power of today’s processors in personal computers (PC) and data
generation/acquisition hardware the problem as a whole may be solved much more
effectively. The single PC card, with essentially the same ADC as are used in the DSP lock-in
amplifier, substitutes for the generator and lock-in amplifiers. Since the DACs generating
the applied field and ADCs sampling m(t) and H(t) use the same clock, synchronization is
guaranteed. In reality, an approach using a direct digital signal generation, acquisition, and
processing is more cost effective and less time consuming.
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The nth harmonic of the AC susceptibility is given by generalized Eq. 6,

χn =
M(n f0)

Hac exp(niϕ)
, (11)

where complex Hac exp(niϕ) ≡ |H( f0)| exp(ni argH( f0)) takes into account a phase of the
Fourier component of the applied field H( f0), i.e. a time shift between a Fourier transformed
data segment and cosine field. The M( f ) and H( f ) spectra are computed using a discrete fast
Fourier transform (FFT) of real data arrays m(tk) and H(tk).

Ml ≡
N−1

∑
k=0

m(tk) exp (i2πkl/N) , (12)

(the same holds for H(t) ⇔ H( f )), where N is the transform length (Press et al., 1992). Spectra
of the complex amplitudes M( f ) and H( f ) are calculated for frequencies lΔ f , Ml ≡ M(lΔ f ).
With an applied FFT algorithm N must be a power of 2, FFT is computed in N log N
operations, and Δ f = fs/N, where fs = 1/Δt is the sampling frequency.8 Unlike the DSP
lock-in amplifiers, where another instrument performing N operations to process NΔt long
record is need for each measured harmonic, here the whole frequency spectrum from DC to
f /2 is computed with only N log N operations using the single instrument. Computation time
takes few ms.
Strictly speaking, the measurement of temperature dependence of the susceptibility represents
a continuous measurement of magnetization loops at slowly varying temperature. Since
the input signals are recorded as well as temperature readings, various time domain and
frequency domain filters may be applied thereupon. The magnetization loops may be
processed using different time windows (for example to remove a linear trend in m(t)) or
different averaging times.

3. Critical state in type II superconductors

3.1 Vortex matter
Type II superconductors, ie. those with λ/ξ > 2−1/2, where λ is the flux penetration length
and ξ is the coherence length of a superconducting order parameter, remain superconducting
even in a high magnetic field due to lowering of their energy by creating walls between normal
and superconducting regions. Consequently, flux lines (vortices) with a normal core of a
radius of ≈ ξ, where the order parameter vanishes, and persistent current circulating around
the core and decaying away from the vortex core at distances comparable with λ are created
at sample edges and penetrate into an interior of the superconductor. The vortex is a linear (in
three dimensions) object which is characterized by a quantized circulation of the phase of the
order parameter around its axis and carries a single quantum of the magnetic flux Φ0 = h/2e.
The superconductor penetrated with the flux lines is called to be in a mixed state. A repulsive
interaction between the flux lines eventually forms flux line bundles and consecutively a flux

8 Let us take N = 214 (16 K samples), easy for real time processing on a common PC. With fs = 6.4 kS/s
the Δ f = 0.390625 Hz. A right choice for the AC field frequency f0 is an integer multiple of Δ f . For
example, with f0 = 4Δ f = 1.5625 Hz, one period of the AC field is represented by 4 K samples. In this
case the 16 K FFT means averaging over 4 periods (2.56 s) of the AC field. If the 16 K data are shifted
by 4 K and a void part is replaced with samples of the latest read period, the spectra are averaged over
2.56 s and updated in 0.64 s interval. The index of the nth harmonics amplitude is l = n4.
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where n denotes harmonics and M(n f0) are the Fourier components of the magnetic moment
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of the sample. Using the susceptibility, the magnetization loops are
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A common way to measure the AC susceptibility is to detect a signal of the magnetic moment
using a phase sensitive lock-in amplifier, preferably a two phase instrument indicating both
real and imaginary part of the AC susceptibility, and drive the AC field using a signal
generator. The conventional analog lock-in amplifier multiplies the input signal m(t) by a
square wave r(t) derived from a reference signal H(t) and integrates the product. The DC
output are in-phase and out-of-phase components

ReM( f0) =
4

πτ

∫ t

t−τ

[
∞
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n

sin(n
π

2
) cos

(
n2π f0t�

)]
m(t�)dt�, (8)

ImM( f0) =
4

πτ

∫ t
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∞

∑
n=1
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n

sin
(
n2π f0t�

)]
m(t�)dt�, (9)

where n is odd and τ is the averaging time constant. Since the reference signal r(t) is a square
wave, the DC output is proportional not only to the Fourier component of the first harmonic
but also to 1/3 of third, 1/5 of fifth, etc. Evidently, this way of signal processing is not suitable
for the measurement of a nonlinear response. One can apply input filters that sufficiently
suppress third and higher odd harmonics, but remain unaffected the fundamental frequency.
However, suitable tunable filters are complex and expensive.
In the digital signal processor (DSP) lock-in amplifiers the signal is filtered with a simple
anti-aliasing filter and digitized by over-sampling ADC with subsequent digital filtering. The
DSP chip then synthesizes digital reference sine (and cosine) wave at the reference frequency
n f0 and multiplies the signal by this reference. After multiplication, stages of digital low-pass
filtering are applied to average over the signal period. The DSP lock-in amplifier generates
the true rms values of the complex Fourier components of M( f0) or nth harmonic M(n f0):

M (n f0) =
1

NΔt

N−1

∑
k=0

m (tk) exp (ni2π f0tk) , (10)

where Δt = tk − tk−1 is the sampling interval and NΔt is averaging time. However,
commercial DSP lock-in amplifiers provide only components at single frequency. Hence,
unless successive measurements of the harmonics are done, one needs an extra instrument
for the each additional harmonic.
With computational power of today’s processors in personal computers (PC) and data
generation/acquisition hardware the problem as a whole may be solved much more
effectively. The single PC card, with essentially the same ADC as are used in the DSP lock-in
amplifier, substitutes for the generator and lock-in amplifiers. Since the DACs generating
the applied field and ADCs sampling m(t) and H(t) use the same clock, synchronization is
guaranteed. In reality, an approach using a direct digital signal generation, acquisition, and
processing is more cost effective and less time consuming.
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The nth harmonic of the AC susceptibility is given by generalized Eq. 6,

χn =
M(n f0)

Hac exp(niϕ)
, (11)

where complex Hac exp(niϕ) ≡ |H( f0)| exp(ni argH( f0)) takes into account a phase of the
Fourier component of the applied field H( f0), i.e. a time shift between a Fourier transformed
data segment and cosine field. The M( f ) and H( f ) spectra are computed using a discrete fast
Fourier transform (FFT) of real data arrays m(tk) and H(tk).

Ml ≡
N−1

∑
k=0

m(tk) exp (i2πkl/N) , (12)

(the same holds for H(t) ⇔ H( f )), where N is the transform length (Press et al., 1992). Spectra
of the complex amplitudes M( f ) and H( f ) are calculated for frequencies lΔ f , Ml ≡ M(lΔ f ).
With an applied FFT algorithm N must be a power of 2, FFT is computed in N log N
operations, and Δ f = fs/N, where fs = 1/Δt is the sampling frequency.8 Unlike the DSP
lock-in amplifiers, where another instrument performing N operations to process NΔt long
record is need for each measured harmonic, here the whole frequency spectrum from DC to
f /2 is computed with only N log N operations using the single instrument. Computation time
takes few ms.
Strictly speaking, the measurement of temperature dependence of the susceptibility represents
a continuous measurement of magnetization loops at slowly varying temperature. Since
the input signals are recorded as well as temperature readings, various time domain and
frequency domain filters may be applied thereupon. The magnetization loops may be
processed using different time windows (for example to remove a linear trend in m(t)) or
different averaging times.

3. Critical state in type II superconductors

3.1 Vortex matter
Type II superconductors, ie. those with λ/ξ > 2−1/2, where λ is the flux penetration length
and ξ is the coherence length of a superconducting order parameter, remain superconducting
even in a high magnetic field due to lowering of their energy by creating walls between normal
and superconducting regions. Consequently, flux lines (vortices) with a normal core of a
radius of ≈ ξ, where the order parameter vanishes, and persistent current circulating around
the core and decaying away from the vortex core at distances comparable with λ are created
at sample edges and penetrate into an interior of the superconductor. The vortex is a linear (in
three dimensions) object which is characterized by a quantized circulation of the phase of the
order parameter around its axis and carries a single quantum of the magnetic flux Φ0 = h/2e.
The superconductor penetrated with the flux lines is called to be in a mixed state. A repulsive
interaction between the flux lines eventually forms flux line bundles and consecutively a flux

8 Let us take N = 214 (16 K samples), easy for real time processing on a common PC. With fs = 6.4 kS/s
the Δ f = 0.390625 Hz. A right choice for the AC field frequency f0 is an integer multiple of Δ f . For
example, with f0 = 4Δ f = 1.5625 Hz, one period of the AC field is represented by 4 K samples. In this
case the 16 K FFT means averaging over 4 periods (2.56 s) of the AC field. If the 16 K data are shifted
by 4 K and a void part is replaced with samples of the latest read period, the spectra are averaged over
2.56 s and updated in 0.64 s interval. The index of the nth harmonics amplitude is l = n4.
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line lattice. In increasing applied field the flux lines enter into the superconductor when the
magnetic field exceeds the lower critical field Hc1 ≈ Φ0/μ0λ2. Type II superconductors
experience a second-order phase transition into a normal state at the upper critical field
Hc2 ≈ Φ0/μ0ξ2. In type I superconductors this transition is a first-order in a nonzero field.

3.2 Pinning and surface barrier
In a real type II superconductor there are always crystal lattice distortions, voids, interstitials,
and impurities with reduced superconducting properties. The superconducting order
parameter is either reduced or suppressed completely, just as within a vortex core. That
implies that such defects are energetically favorable places for vortices to reside and the
vortices will be pinned in the potential of these so-called pinning centers. The efficiency of
such a pinning center is at its maximum if its size is of the order of the coherence length ξ. If
there is almost no pinning, flux flow occurs (Bardeen, 1965). On the other hand, when there is
finite pinning, flux creep of a vortex bundles takes place (Anderson, 1962; 1964). The bundle
size is determined by the competition between pinning and the elastic properties of the vortex
lattice.
An edge or surface barrier may oppose a flux entry into the sample (Beek et al., 1996). A
surface barrier arises as a result of the repulsive force between vortices and the surface
shielding current. The first example is Bean-Livingston barrier, which is a feature of flat
type II superconductor surfaces in general and is related to a deformation of the vortex at the
surface (mirror vortex). The second example is the edge-shape barrier, which is a geometric
effect related to the distribution of the Meissner shielding current density in non-ellipsoidal
samples.
When an increasing magnetic field is initially applied, flux cannot overcome the barrier, and
M = −H. At the field of the first flux penetration Hp, the magnetic pressure is sufficiently high
to overcome the barrier. If there is no pinning, vortices will now distribute themselves through
the sample in such a way that the bulk current is zero and vortex density is homogeneous.

3.3 Flux line dynamics
When the superconductor is carrying a bulk transport or shielding current density j the
flux lines experience a volume density of the driving Lorentz force fL = j × B, where B
is the flux density inside the flux line. When the Lorentz force acting on the flux lines is
exactly balanced by the pinning force density, i.e. FL = Fp, the current density is called the
depinning current density, jc. Under this force the flux lines may move through the crystal
lattice and dissipate energy. In this case the electrical losses are no longer zero. In an ideal
(homogeneous) type II superconductor there is nothing to hinder the motion of flux lines and
the flux lines distribution is homogeneous. The flux lines can move freely, which is equivalent
to a vanishing critical depinning current density jc. On the other hand, the non-dissipative
macroscopic currents are the result of the spatial gradients in the density of flux lines or due
to their curvature. This is possible only due to the existence of pinning centers, which can
compensate the Lorentz force.
The moving flux lines dissipate energy by two effects which give approximately equal
contributions: (a) eddy currents that surround each moving flux line and have to pass through
the vortex core, which in the model of Bardeen and Stephen is approximated by a normal
conducting cylinder (normal currents flowing through the vortex core) (Bardeen, 1962); (b)
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Tinkham’s mechanism of a retarded recovery of the order parameter at places where the
vortex core has passed (Tinkham, 1996).
In general, the current density in type II superconductors can have three different origins: (a)
Surface currents within the penetration depth λ. In the Meissner state the current passing
through a thick superconductor is restricted to a thin surface layer where the magnetic
field can penetrate. Otherwise the magnetic field due to the current would exist inside the
superconductor; (b) A gradient of the flux-line density; (c) A curvature of the flux lines.
A flux line motion is discouraged (inhibited) by pinning of individual flux lines, their bundles
or lattice. In cases of flux flow and flux creep, the vortices are considered to move in an
elastic bundle. With discovery of HTS, however, more complex forms of vortex motion are
considered. When the driving force is small, the vortices move in a plastic manner - plastic
flow where there are channels in which vortices move with a finite velocity, whereas in other
channels the vortices remain pinned (Jensen, 1988). Thus, between moving channels and static
channels there are dislocations in the flux lattice. With further increasing driving current,
vortices tend to re-order. Through dynamic melting, a stationary flux lattice changes into a
moving flux lattice via the plastic flow (Koshelev & Vinokur, 1994).
If pinning is efficient the critical depinning current density jc becomes high and the material
is interesting for applications. The properties of the flux line lattice and the pinning properties
are important for applications; on the other hand they are complex and interesting topics of
condensed-matter physics and materials science.

3.4 Equation of motion of vector potential
In general, computation of magnetization loops represents a full treatment of a nonlinear 3D
problem described by a partial differential equation for a vector potential

∂A
∂t

= D∇2A, (13)

where D is the diffusivity. Due to an axial symmetry or for a long sample in a parallel field,
the problem may reduce to 2D and the current density j, vector potential A, and electric field
E are parallel to each other and have only a y or φ component (applied field is parallel to z
axis) (Brandt, 1998). The magnetization loops are obtained solving Eq. 13 using specialized
software packages or directly by the time integration of the nonlocal and nonlinear diffusion
equation of motion for the azimuthal current density. A long cylinder or slab in parallel field
or thin circular disk and strip in an axial field are 1D problems. The flux density and electric
field are B = ∇× A and E = −∂A/∂t, respectively.
In the normal (nonsuperconducting) state with an ohmic conductivity σ is D = 1/μ0σ =
m/μ0ne2τ. In Meissner state the diffusivity is the pure imaginary D = iωm/μ0nse2 with a
linear frequency dependence, where ns is the superconducting condensate density.
In an inhomogeneous type II superconductor with flux pinning the electric field is given by
nonlinear local and isotropic resistivity ρ(j). A material law E(j) reflects a flux line pinning.
In case of a strong pinning E(j) is zero up to the critical depinning density jc at which electric
field raises sharply. A power law voltage current relation

E(j) = Ec|j/jc|nj/j = ρc|j/jc|n−1j, (14)

269Critical State Analysis Using Continuous Reading SQUID Magnetometer



8 Will-be-set-by-IN-TECH

line lattice. In increasing applied field the flux lines enter into the superconductor when the
magnetic field exceeds the lower critical field Hc1 ≈ Φ0/μ0λ2. Type II superconductors
experience a second-order phase transition into a normal state at the upper critical field
Hc2 ≈ Φ0/μ0ξ2. In type I superconductors this transition is a first-order in a nonzero field.

3.2 Pinning and surface barrier
In a real type II superconductor there are always crystal lattice distortions, voids, interstitials,
and impurities with reduced superconducting properties. The superconducting order
parameter is either reduced or suppressed completely, just as within a vortex core. That
implies that such defects are energetically favorable places for vortices to reside and the
vortices will be pinned in the potential of these so-called pinning centers. The efficiency of
such a pinning center is at its maximum if its size is of the order of the coherence length ξ. If
there is almost no pinning, flux flow occurs (Bardeen, 1965). On the other hand, when there is
finite pinning, flux creep of a vortex bundles takes place (Anderson, 1962; 1964). The bundle
size is determined by the competition between pinning and the elastic properties of the vortex
lattice.
An edge or surface barrier may oppose a flux entry into the sample (Beek et al., 1996). A
surface barrier arises as a result of the repulsive force between vortices and the surface
shielding current. The first example is Bean-Livingston barrier, which is a feature of flat
type II superconductor surfaces in general and is related to a deformation of the vortex at the
surface (mirror vortex). The second example is the edge-shape barrier, which is a geometric
effect related to the distribution of the Meissner shielding current density in non-ellipsoidal
samples.
When an increasing magnetic field is initially applied, flux cannot overcome the barrier, and
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is the flux density inside the flux line. When the Lorentz force acting on the flux lines is
exactly balanced by the pinning force density, i.e. FL = Fp, the current density is called the
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lattice and dissipate energy. In this case the electrical losses are no longer zero. In an ideal
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the flux lines distribution is homogeneous. The flux lines can move freely, which is equivalent
to a vanishing critical depinning current density jc. On the other hand, the non-dissipative
macroscopic currents are the result of the spatial gradients in the density of flux lines or due
to their curvature. This is possible only due to the existence of pinning centers, which can
compensate the Lorentz force.
The moving flux lines dissipate energy by two effects which give approximately equal
contributions: (a) eddy currents that surround each moving flux line and have to pass through
the vortex core, which in the model of Bardeen and Stephen is approximated by a normal
conducting cylinder (normal currents flowing through the vortex core) (Bardeen, 1962); (b)
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where D is the diffusivity. Due to an axial symmetry or for a long sample in a parallel field,
the problem may reduce to 2D and the current density j, vector potential A, and electric field
E are parallel to each other and have only a y or φ component (applied field is parallel to z
axis) (Brandt, 1998). The magnetization loops are obtained solving Eq. 13 using specialized
software packages or directly by the time integration of the nonlocal and nonlinear diffusion
equation of motion for the azimuthal current density. A long cylinder or slab in parallel field
or thin circular disk and strip in an axial field are 1D problems. The flux density and electric
field are B = ∇× A and E = −∂A/∂t, respectively.
In the normal (nonsuperconducting) state with an ohmic conductivity σ is D = 1/μ0σ =
m/μ0ne2τ. In Meissner state the diffusivity is the pure imaginary D = iωm/μ0nse2 with a
linear frequency dependence, where ns is the superconducting condensate density.
In an inhomogeneous type II superconductor with flux pinning the electric field is given by
nonlinear local and isotropic resistivity ρ(j). A material law E(j) reflects a flux line pinning.
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where j = |j|, is observed in numerous experiments (Brandt, 1996). From the theories on
(collective) creep, flux penetration, vortex glass picture, and AC susceptibility one obtains the
useful general interpolation formula

U(J) = U0
(jc/j)α − 1

α
. (15)

Here U(j) is a current-dependent activation energy for depinning which vanishes at the
critical current density jc, and α is a small positive exponent. In the limit α → 0 one has a
logarithmic dependence of the activation energy U(j) = U0 ln(jc/j), which inserted into an
Arrhenius law yields

E(j) = Ec exp
(
−U (j)

kBT

)
= Ec

(
j
jc

)U0/kBT
. (16)

When we compare Eq. 16 with Eq. 14 the exponent is n = U0/kBT. For α = −1 the Eq.
15 coincides with the result of the Kim-Anderson model, E(j) = Ec exp[(U0/kBT)(1 − j/jc)],
(Blatter et al., 1994). For α = 1 one gets E(j) = Ec exp[(U0/kBT)(jc/j − 1)].
In general, the Ec and activation energy U in Eq. 16 depend on the local induction B(r) and
thus also α(B, T) and jc(B, T) depend on B.
With E = −∂A/∂t and Eq. 14 one obtains for the diffusivity in Eq. 13

D(j, jc, U0, T) =
1

μ0

∂E
∂j

=
1

μ0

Ec

jc

(
j
jc

)U0/kBT−1
=

ρc

μ0

(
j
jc

)U0/kBT−1
. (17)

Power-law electric field versus current density (Eq. 14) induces:
i) An Ohmic conductor behavior with a constant resistivity ρ = E/j for U0/kBT = 1. This
applies also to superconductors in the regime of a linear flux flow or thermally activated
flux flow (TAFF) at low frequencies with flux-flow resistivity ρ f = ρnB/μ0Hc2, known as
the Bardeen-Stephen model. The diffusivity D is large and vector potential profiles are time
dependent. The magnetization loops have a strong frequency dependence, as well as the
susceptibility, and the AC susceptibility has only fundamental component independent on
the AC field amplitude (Gömöry, 1997).
ii) Flux creep behavior for 1 � U0/kBT < ∞. The magnetization loops have a weak frequency
dependence, as well as the AC susceptibility which has higher harmonics and is dependent
on the AC field amplitude.
iii) Hard superconductors with strong pinning for U0/kBT → ∞. In this case the flux
dynamics is quasistatic, described by a Bean model of the critical state with D = 0 for |j| < jc
and D → ∞ for |j| = jc. The magnetization loops are frequency independent, as well as the AC
susceptibility which has higher harmonics and strongly depends on the AC field amplitude.
A general solution of Eq. 13 represents time dependent vector potential profiles which
dynamics covers a viscous flow, diffusion (creep), and quasistatic (sand pile like) behavior.
The resistivity generated by the flux creep is Ohmic in the low-driving force limit.

3.5 Analytically solvable models
3.5.1 Normal state with ohmic conductivity and flux flow state
In normal state with an ohmic conductivity σ = ne2τ/m the diffusion constant is D =
1/μ0σ = ωδ2, where ω is the angular frequency of the applied AC field and δ = (2μ0ωσ)−1/2
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is the normal skin depth. In this case the analytical solutions to Eq. 13 are known for an
infinitely long cylinder and slab in a parallel field, cylinder in a perpendicular field, and sphere
(Brandt, 1998; Khoder & Couach, 1991; Lifshitz et al., 1984).
With an increasing ratio δ/R or δ/d, where and R is the radius of the cylinder or sphere and 2d
id the slab thickness, a sample changes from a diamagnetic (but lossy) at δ � R, to absorptive
at δ ≈ R, and to transparent for applied field at δ � R. The magnetization loops M(H)
are ellipses which major axis lies on H axis of H − M diagram for transparent medium and
gradually turns to −π/4 direction for diamagnetic medium. The susceptibility as a function
of (δ/R)2 is shown in Fig. 2.
In a limit of low frequencies when the skin depth δ � R, d and the sample is transparent for
AC field the first terms in series expansion of the susceptibility are (up to a shape dependent
multiplication factor)

Reχ ≈ −
(

R2μωσ
)2

(18)

Imχ ≈
(

R2μωσ
)

, (19)

and Reχ � Imχ. A measurement of χ yields contactless estimation of the electrical
conductivity σ.
In a linear or thermally activated flux flow state as the applied field approaches the upper
critical field Hc2, the flux density in the superconductor B → μ0Hc2 and the flux flow
resistivity ρ f smoothly transforms to ρn = 1/σ

ρ f

ρn
≈ B

μ0Hc2
(20)

as the phase transition between a mixed state and normal state is of second order (Bardeen
Stephen model) (Bardeen, 1965). Flux flow resistivity may be estimated using Eq. 19.

3.5.2 Meissner state
At initial magnetization the superconductor is in Meissner state in field lower that Hc1. In
this case the diffusivity is pure imaginary D = iωλ2, where the flux penetration length is
λ = (μ0nse2/m)−1/2. The susceptibility of an infinitely long cylinder and slab in a parallel
field, cylinder in a perpendicular field, and sphere is obtained like for normal state but
replacing (1 + i)/δ with i/λ (Brandt, 1998; Khoder & Couach, 1991; Lifshitz et al., 1984). The
susceptibility as a function of (λ/R)2 is shown in Fig. 2.
In a weak field, low temperature part of the susceptibility (T/Tc < 0.5) is proportional to the
flux penetration length

Reχ(T) = −1 + aλ(T)/R. (21)

A measurement of temperature dependence λ(T) allows us to distinguish different
pairing symmetries. While in conventional superconductors with an isotropic gap
the quasiparticle excitations rise with increasing temperature as exp(−Δ/kBT), in
nonconventional superconductors, for example HTS, a temperature dependence is power-law.
As far as we know, it fails to fit experimental χ(T) at T → Tc even for well known λ(T), at
low temperatures.
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3.5 Analytically solvable models
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In normal state with an ohmic conductivity σ = ne2τ/m the diffusion constant is D =
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conductivity σ.
In a linear or thermally activated flux flow state as the applied field approaches the upper
critical field Hc2, the flux density in the superconductor B → μ0Hc2 and the flux flow
resistivity ρ f smoothly transforms to ρn = 1/σ

ρ f

ρn
≈ B

μ0Hc2
(20)

as the phase transition between a mixed state and normal state is of second order (Bardeen
Stephen model) (Bardeen, 1965). Flux flow resistivity may be estimated using Eq. 19.

3.5.2 Meissner state
At initial magnetization the superconductor is in Meissner state in field lower that Hc1. In
this case the diffusivity is pure imaginary D = iωλ2, where the flux penetration length is
λ = (μ0nse2/m)−1/2. The susceptibility of an infinitely long cylinder and slab in a parallel
field, cylinder in a perpendicular field, and sphere is obtained like for normal state but
replacing (1 + i)/δ with i/λ (Brandt, 1998; Khoder & Couach, 1991; Lifshitz et al., 1984). The
susceptibility as a function of (λ/R)2 is shown in Fig. 2.
In a weak field, low temperature part of the susceptibility (T/Tc < 0.5) is proportional to the
flux penetration length

Reχ(T) = −1 + aλ(T)/R. (21)

A measurement of temperature dependence λ(T) allows us to distinguish different
pairing symmetries. While in conventional superconductors with an isotropic gap
the quasiparticle excitations rise with increasing temperature as exp(−Δ/kBT), in
nonconventional superconductors, for example HTS, a temperature dependence is power-law.
As far as we know, it fails to fit experimental χ(T) at T → Tc even for well known λ(T), at
low temperatures.
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Fig. 2. The dependence of the complex AC susceptibility of a sphere and slab in a normal
(ohmic) state in a parallel field on (δ/R)2 ∝ ρn and of the sphere, slab and cylinder in
Meissner state on (λ/R)2 ∝ 1/ns. In an ohmic state an absorption peak appears on Imχ, the
height of which is characteristic of sample shape.

3.5.3 Bean critical state
The Bean model of the critical state is the case of a strong pinning when the flux density
variation is quasi-static (frequency independent) in a slowly varying applied magnetic field
and the flux density profile changes only when induced shielding current density reaches the
critical depinning current density j = ±jc. An electric field is induced when the flux density
changes. In a slab the flux density profile is linear |∂Bz(x)/∂x| = μ0 jc in flux penetrated
regions and |B| = 0 in untouched regions. The model assumes lower critical field Hc1 → 0,
surface barrier Hbarrier → 0, and field independent critical depinning current density jc, i.e.
jc(B) is constant (Bean, 1964).
Analytical solutions for magnetization loops are known for an infinitely long slab or cylinder
in a parallel field (Goldfarb, 1991) and thin disk (Clem & Sanchez, 1994; Mikheenko &
Kuzovlev, 1993) or strip (Brandt, 1993) in a perpendicular field. In these cases the 3D partial
differential equation (PDE) Eq. 13 reduces to a time independent 2D PDE due to sample shape
symmetry.
The model to the disks was work out by Clem and Sanches who improved and corrected
former model worked out by Mikheenko and Kuzovlev (Clem & Sanchez, 1994). The model
is restricted to slow, quasistatic flux changes for which the magnitude of the electric field E
induced by the moving magnetic flux is small in comparison with ρ f jc, where ρ f is the flux
flow resistivity. Under these conditions, the magnitude of the induced current density is close
to the critical depinning current density. The validity of the model is restricted for d � R,
d ≥ λ or if d < λ, that Λ = 2λ2/d � R, where λ is the flux penetration length and Λ is the
2D screening length.
In the case of the infinitely long (or sufficiently long) sample (slab or cylinder) in parallel
applied field the shielding current density is at a surface parallel with applied field,

μ0 jφ = −∂Bz/∂r (22)

while in case of the sufficiently thin sample (disk or strip) in perpendicular applied field
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μ0 jφ = ∂Br/∂z, (23)

the shielding current appears simultaneously everywhere over the sample cross-section upon
application of the field, and decreases everywhere simultaneously after a decrease of the
field (Beek et al., 1996). The complete magnetic hysteresis loop can be obtained from the
first magnetization curve, which is almost the same for the above cases. The hysteresis loop
develops from the thin lens-shaped to parallelogram as the Hac is increased or jc decreases.
The lens shape corresponds to partial penetration of the magnetic flux while the parallelogram
occurs when the magnetization is saturated.
The component of the magnetization parallel to the applied periodically time varying field
H(ϕ) = Hac sin ϕ is

M∓ = ∓χ0HacS
�

Hac

Hd

�
± χ0 (Hac ∓ H) S

�
Hac ∓ H

2Hd

�
, (24)

where M− and M+ are for decreasing and increasing applied field, respectively (Clem &
Sanchez, 1994). A characteristic field Hd = djc/2, where d is the disk thickness and jc is
the critical depinning current density (temperature dependent). The function S(x) is defined
as

S (x) =
1

2x

�
arccos

�
1

cosh x

�
+

sinh |x|
cosh2 x

�
. (25)

3.5.4 Mapping of model susceptibility to experimental susceptibility
The model AC susceptibility is calculated for magnetization loops Eq. 24 using Eq. 11, i.e.
in the same way as the experimental susceptibility (Youssef et al., 2009). To map the model
susceptibility χ(Hac/Hd) to the experimental temperature dependent susceptibility χ(T) we
use a proportionality of the characteristic field to the critical depinning current density, Hd =
djc/2, and a fact that experimentally observed temperature dependence, jc(T) = jc(0)(1 −
T/Tc)n, is power-law. Further, we need an inverse function for jc(T) and insert the amplitude
of the applied field. Let us take

jc(T)
jc(0)

=
Hd(T)
Hd(0)

=

�
1 −

�
T
Tc

�m�n

. (26)

Relation between temperature T and ratio Hd/Hac, i.e. experimental and model susceptibility,
is obtained using inverse function for Eq. 26 and multiplying both the numerator and
denominator, Hd/Hd(0), by Hac

�
T
Tc

�

model
=

�
1 −

�
Hac

Hd(0)
Hd
Hac

�1/n
�1/m

. (27)

We have four free parameters c ≡ Hac/Hd(0), n, m, and Tc to match the model and
experimental susceptibility

⎡
⎣
�

1 −
�

c
Hd
Hac

� 1
n
� 1

m

, χ

�
Hd
Hac

�⎤
⎦ ←→

�
T
Tc

, χ(T)
�

. (28)
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Fig. 2. The dependence of the complex AC susceptibility of a sphere and slab in a normal
(ohmic) state in a parallel field on (δ/R)2 ∝ ρn and of the sphere, slab and cylinder in
Meissner state on (λ/R)2 ∝ 1/ns. In an ohmic state an absorption peak appears on Imχ, the
height of which is characteristic of sample shape.

3.5.3 Bean critical state
The Bean model of the critical state is the case of a strong pinning when the flux density
variation is quasi-static (frequency independent) in a slowly varying applied magnetic field
and the flux density profile changes only when induced shielding current density reaches the
critical depinning current density j = ±jc. An electric field is induced when the flux density
changes. In a slab the flux density profile is linear |∂Bz(x)/∂x| = μ0 jc in flux penetrated
regions and |B| = 0 in untouched regions. The model assumes lower critical field Hc1 → 0,
surface barrier Hbarrier → 0, and field independent critical depinning current density jc, i.e.
jc(B) is constant (Bean, 1964).
Analytical solutions for magnetization loops are known for an infinitely long slab or cylinder
in a parallel field (Goldfarb, 1991) and thin disk (Clem & Sanchez, 1994; Mikheenko &
Kuzovlev, 1993) or strip (Brandt, 1993) in a perpendicular field. In these cases the 3D partial
differential equation (PDE) Eq. 13 reduces to a time independent 2D PDE due to sample shape
symmetry.
The model to the disks was work out by Clem and Sanches who improved and corrected
former model worked out by Mikheenko and Kuzovlev (Clem & Sanchez, 1994). The model
is restricted to slow, quasistatic flux changes for which the magnitude of the electric field E
induced by the moving magnetic flux is small in comparison with ρ f jc, where ρ f is the flux
flow resistivity. Under these conditions, the magnitude of the induced current density is close
to the critical depinning current density. The validity of the model is restricted for d � R,
d ≥ λ or if d < λ, that Λ = 2λ2/d � R, where λ is the flux penetration length and Λ is the
2D screening length.
In the case of the infinitely long (or sufficiently long) sample (slab or cylinder) in parallel
applied field the shielding current density is at a surface parallel with applied field,

μ0 jφ = −∂Bz/∂r (22)

while in case of the sufficiently thin sample (disk or strip) in perpendicular applied field
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μ0 jφ = ∂Br/∂z, (23)

the shielding current appears simultaneously everywhere over the sample cross-section upon
application of the field, and decreases everywhere simultaneously after a decrease of the
field (Beek et al., 1996). The complete magnetic hysteresis loop can be obtained from the
first magnetization curve, which is almost the same for the above cases. The hysteresis loop
develops from the thin lens-shaped to parallelogram as the Hac is increased or jc decreases.
The lens shape corresponds to partial penetration of the magnetic flux while the parallelogram
occurs when the magnetization is saturated.
The component of the magnetization parallel to the applied periodically time varying field
H(ϕ) = Hac sin ϕ is

M∓ = ∓χ0HacS
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Hac

Hd
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± χ0 (Hac ∓ H) S
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2Hd
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, (24)

where M− and M+ are for decreasing and increasing applied field, respectively (Clem &
Sanchez, 1994). A characteristic field Hd = djc/2, where d is the disk thickness and jc is
the critical depinning current density (temperature dependent). The function S(x) is defined
as

S (x) =
1

2x
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arccos
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1

cosh x
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sinh |x|
cosh2 x
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. (25)

3.5.4 Mapping of model susceptibility to experimental susceptibility
The model AC susceptibility is calculated for magnetization loops Eq. 24 using Eq. 11, i.e.
in the same way as the experimental susceptibility (Youssef et al., 2009). To map the model
susceptibility χ(Hac/Hd) to the experimental temperature dependent susceptibility χ(T) we
use a proportionality of the characteristic field to the critical depinning current density, Hd =
djc/2, and a fact that experimentally observed temperature dependence, jc(T) = jc(0)(1 −
T/Tc)n, is power-law. Further, we need an inverse function for jc(T) and insert the amplitude
of the applied field. Let us take

jc(T)
jc(0)

=
Hd(T)
Hd(0)

=

�
1 −

�
T
Tc

�m�n

. (26)

Relation between temperature T and ratio Hd/Hac, i.e. experimental and model susceptibility,
is obtained using inverse function for Eq. 26 and multiplying both the numerator and
denominator, Hd/Hd(0), by Hac
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T
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�

model
=
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1 −
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Hac

Hd(0)
Hd
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. (27)

We have four free parameters c ≡ Hac/Hd(0), n, m, and Tc to match the model and
experimental susceptibility
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When we find c, n, m, and Tc, the zero temperature critical depinning current density is

jc(0) = 2Hac/cd (29)

and its temperature dependence is given by Eq. 26.
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Fig. 3. Differences in the harmonics of AC susceptibility for models of cylinders and disks.
The susceptibility is plotted versus "model temperature" given by Eq. 27 (Youssef et al.,
2009). Here Hp is the characteristic field for a cylinder, Hp = Rjc.

3.5.5 Interpretation of complex AC susceptibility
The real part of the fundamental AC susceptibility represents a magnetic energy of the
sample stored in the diamagnetic shielding current. The imaginary part of the fundamental
susceptibility is related to losses caused by resistive response (dissipation).
In normal state or in flux flow state the AC susceptibility is a function of applied
field frequency, conductivity (resistivity), and temperature but is independent of the field
amplitude. On the other hand, in a case of strong pinning the AC susceptibility is a function
of the applied field amplitude, critical depinning current density, and temperature but is
independent of frequency. Nonlinear dependence of the sample magnetization on applied
field amplitude generates harmonics of AC susceptibility. Their behavior is characteristic for
a given sample shape. Due to a symmetry of the magnetization loops, M(H) = −M(−H),
the coefficients of even harmonics of the AC susceptibility are zero.

4. Experimental results on critical state in type II superconductors

Recently developed second generation of the high temperature superconductor wires on the
basis of YBaCuO films and Nb films for superconductor electronics production represent
proper materials to study models to the critical state in hard superconductors.
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4.1 Materials
The Nb film of thickness of 250 nm was deposited by a dc magnetron sputtering in Ar gas
on 400 nm thick silicon-dioxide buffer layer which was grown by a thermal oxidation of a
silicon single crystal wafer (May, 1984). The film is polycrystalline with texture of a preferred
orientation in the (110) direction and is highly tensile. Grain size is about 100 nm. The square
samples of 5 × 5 mm2 in dimensions were cut out from the 3-inch wafer.
Second-generation high temperature superconductor wire (2G HTS wire) consists of a 50 μm
nonmagnetic nickel alloy substrate (Hastelloy), 0.2 μm of a textured MgO-based buffer stack
deposited by an assisting ion beam, 1 μm RE-Ba2Cu3Ox superconducting layer SmYBaCuO
deposited by metallo-organic chemical vapor deposition, and 2 μm of Ag, with 40 μm total
thickness of surround copper stabilizer (20 μm each side) .9 The sample is cut into 4 mm long
segment of 4 mm wide wire.

4.2 Estimation of the critical depinning current density and its temperature dependence
Since the model susceptibility is not given analytically the standard fitting procedures cannot
be applied here. A convenient way to map the model susceptibility to the experimental
one is to plot the experimental susceptibility as a function of reduced temperature T/Tc
and superimpose the model susceptibility by fitting parameters c, n, and m in Eq. 27 and
Tc interactively (manually), see Fig. 4. The critical depinning current density estimated
using Eq. 29 is jc(0) = 3 × 1011 A/m2 in the Nb film with temperature dependence
jc(T) = jc(0)[1 − (T/Tc)]3/2. The critical depinning current density found in the YBCO wire
is jc(0) = 1012 A/m2 with steeper temperature dependence, jc(T) = jc(0)[1 − (T/Tc)]2. This
result well agrees with jc estimated using a four point probe contact measurements (Youssef
et al., 2009; 2010).

5. Conclusion

The thin film type II superconductors with a strong pinning allowed us to verify the complete
analytical model of a response of a thin disk in the Bean critical state to an applied time varying
magnetic field. On the other hand, the application of this model gives a contactless estimation
of the critical depinning current density and its temperature dependence.
To observe the characteristic critical state response from an YBCO sample as is shown in
Fig. 4 at lower temperatures the applied time varying field has to be of the order of 0.1
T at 77 K and of the order of 1 T at 4.2 K. Such fields may rather be generated using a
normal (nonsuperconducting) solenoid that avoids a residual field of flux lines trapped in the
superconducting solenoid winding and guaranties a linear H(I) relation. However, dissipated
power will be large. Also, since the induced magnetic moment will be large, there is no need
for a sensitive superconducting detection system, but a detector with high linearity and flat
frequency and phase response is necessary as the maximum amplitude of 3rd harmonic is
only 6% and 5th harmonic of only 1% of the real part of the fundamental susceptibility.
The fit to the model reveals an excess of few % of the real part of the susceptibility as
temperature decreases to zero. This diamagnetic contribution is due to the temperature

9 Wire type SCS4050 SuperPower, Inc., Schenectady, NY 12304 USA. The critical current of the wire as
estimated using four probe method and 1 μV/cm criterion is from 80 to 110 A at 77 K (97 A for our
piece of wire).
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-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

-3 -2.5 -2 -1.5 -1 -0.5 0

-(H p /3H ac )1/3, -(H d /H ac )1/2

3r
d

 h
ar

m
o

n
ic

 o
f 

ac
 s

u
sc

ep
ti

b
ili

ty

ReX(3) Cylinder
ImX(3) Cylinder
ReX(3) Disk
ImX(3) Disk

(a) The third harmonic of the AC susceptibility.

-0.015

-0.01

-0.005

0

0.005

-3 -2.5 -2 -1.5 -1 -0.5 0

-(H p /3H ac )1/3, -(H d /H ac )1/2

5t
h

 h
ar

m
o

n
ic

 o
f 

ac
 s

u
sc

ep
ti

b
ili

ty

ReX(5) Cylinder
ImX(5) Cylinder
ReX(5) Disk
ImX(5) Disk

(b) The fifth harmonic of the AC susceptibility.

Fig. 3. Differences in the harmonics of AC susceptibility for models of cylinders and disks.
The susceptibility is plotted versus "model temperature" given by Eq. 27 (Youssef et al.,
2009). Here Hp is the characteristic field for a cylinder, Hp = Rjc.

3.5.5 Interpretation of complex AC susceptibility
The real part of the fundamental AC susceptibility represents a magnetic energy of the
sample stored in the diamagnetic shielding current. The imaginary part of the fundamental
susceptibility is related to losses caused by resistive response (dissipation).
In normal state or in flux flow state the AC susceptibility is a function of applied
field frequency, conductivity (resistivity), and temperature but is independent of the field
amplitude. On the other hand, in a case of strong pinning the AC susceptibility is a function
of the applied field amplitude, critical depinning current density, and temperature but is
independent of frequency. Nonlinear dependence of the sample magnetization on applied
field amplitude generates harmonics of AC susceptibility. Their behavior is characteristic for
a given sample shape. Due to a symmetry of the magnetization loops, M(H) = −M(−H),
the coefficients of even harmonics of the AC susceptibility are zero.

4. Experimental results on critical state in type II superconductors

Recently developed second generation of the high temperature superconductor wires on the
basis of YBaCuO films and Nb films for superconductor electronics production represent
proper materials to study models to the critical state in hard superconductors.

274 Superconductivity    – Theory and Applications Critical State Analysis Using Continuous Reading SQUID Magnetometer 15

4.1 Materials
The Nb film of thickness of 250 nm was deposited by a dc magnetron sputtering in Ar gas
on 400 nm thick silicon-dioxide buffer layer which was grown by a thermal oxidation of a
silicon single crystal wafer (May, 1984). The film is polycrystalline with texture of a preferred
orientation in the (110) direction and is highly tensile. Grain size is about 100 nm. The square
samples of 5 × 5 mm2 in dimensions were cut out from the 3-inch wafer.
Second-generation high temperature superconductor wire (2G HTS wire) consists of a 50 μm
nonmagnetic nickel alloy substrate (Hastelloy), 0.2 μm of a textured MgO-based buffer stack
deposited by an assisting ion beam, 1 μm RE-Ba2Cu3Ox superconducting layer SmYBaCuO
deposited by metallo-organic chemical vapor deposition, and 2 μm of Ag, with 40 μm total
thickness of surround copper stabilizer (20 μm each side) .9 The sample is cut into 4 mm long
segment of 4 mm wide wire.

4.2 Estimation of the critical depinning current density and its temperature dependence
Since the model susceptibility is not given analytically the standard fitting procedures cannot
be applied here. A convenient way to map the model susceptibility to the experimental
one is to plot the experimental susceptibility as a function of reduced temperature T/Tc
and superimpose the model susceptibility by fitting parameters c, n, and m in Eq. 27 and
Tc interactively (manually), see Fig. 4. The critical depinning current density estimated
using Eq. 29 is jc(0) = 3 × 1011 A/m2 in the Nb film with temperature dependence
jc(T) = jc(0)[1 − (T/Tc)]3/2. The critical depinning current density found in the YBCO wire
is jc(0) = 1012 A/m2 with steeper temperature dependence, jc(T) = jc(0)[1 − (T/Tc)]2. This
result well agrees with jc estimated using a four point probe contact measurements (Youssef
et al., 2009; 2010).

5. Conclusion

The thin film type II superconductors with a strong pinning allowed us to verify the complete
analytical model of a response of a thin disk in the Bean critical state to an applied time varying
magnetic field. On the other hand, the application of this model gives a contactless estimation
of the critical depinning current density and its temperature dependence.
To observe the characteristic critical state response from an YBCO sample as is shown in
Fig. 4 at lower temperatures the applied time varying field has to be of the order of 0.1
T at 77 K and of the order of 1 T at 4.2 K. Such fields may rather be generated using a
normal (nonsuperconducting) solenoid that avoids a residual field of flux lines trapped in the
superconducting solenoid winding and guaranties a linear H(I) relation. However, dissipated
power will be large. Also, since the induced magnetic moment will be large, there is no need
for a sensitive superconducting detection system, but a detector with high linearity and flat
frequency and phase response is necessary as the maximum amplitude of 3rd harmonic is
only 6% and 5th harmonic of only 1% of the real part of the fundamental susceptibility.
The fit to the model reveals an excess of few % of the real part of the susceptibility as
temperature decreases to zero. This diamagnetic contribution is due to the temperature

9 Wire type SCS4050 SuperPower, Inc., Schenectady, NY 12304 USA. The critical current of the wire as
estimated using four probe method and 1 μV/cm criterion is from 80 to 110 A at 77 K (97 A for our
piece of wire).
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Fig. 4. Temperature dependence of the AC susceptibility of Nb and YBCO films in
perpendicular field μ0Hac = 10 μT and f = 1.5625 Hz (Youssef et al., 2010).

dependent flux penetration length λ(T) which depends exponentially on temperature in
conventional superconductors (Nb) and obeys a power-law in unconventional ones (YBCO).
As was shown by Brandt, the normalized magnetization curves for hard (Bean)
superconductors obtained by a numerical treatment differ very little for similar geometries
(Brandt, 1996): between strips and circular disks the relative difference is < 0.011, between
thin circular and quadratic disks the difference is < 0.002. This makes an application of fully
analytical models for contactless estimation of the critical depinning current density and its
temperature dependence favorable.
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Fig. 4. Temperature dependence of the AC susceptibility of Nb and YBCO films in
perpendicular field μ0Hac = 10 μT and f = 1.5625 Hz (Youssef et al., 2010).

dependent flux penetration length λ(T) which depends exponentially on temperature in
conventional superconductors (Nb) and obeys a power-law in unconventional ones (YBCO).
As was shown by Brandt, the normalized magnetization curves for hard (Bean)
superconductors obtained by a numerical treatment differ very little for similar geometries
(Brandt, 1996): between strips and circular disks the relative difference is < 0.011, between
thin circular and quadratic disks the difference is < 0.002. This makes an application of fully
analytical models for contactless estimation of the critical depinning current density and its
temperature dependence favorable.
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1. Introduction 
Since the original paper from Josephson on tunnel phenomena occurring in 
superconducting junctions (Josephson, 1962), superconductors have been widely studied by 
metrologists, because of the quantistic origin of most effects observed in such class of 
materials. There is, in fact, an intimate relationship between the definition of more accurate 
and stable standards and Quantum Mechanics. Indeed, the Josephson Voltage Standard 
(JVS) is believed to be a fundamental quantum physical effect, which is the same 
everywhere, and at all times.  
Tunnel effect has, however, several other implications, one of them being the possibility of 
localizing a single electron in space. An electric current can flow through the conductor 
because some electrons are free to move through the lattice of atomic nuclei. The charge 
transferred through the conductor determines the current. This transferred charge can have 
practically any value, in particular, a fractional charge value as a consequence of the 
displacement of the electron cloud against the lattice of atoms. This shift can be changed 
continuously and thus the transferred charge is a continuous quantity, not quantized at all!  
If a discontinuity in space is introduced, e.g. by means of a tunnel junction, electric charge 
will move through the system by both continuous and discrete processes. Since, from a 
semi-classical point of view, only discrete electrons can tunnel through junctions, charge 
will accumulate at the surface of the electrode against the isolating layer, until a high 
enough bias has built up across the tunnel junction, and one electron will be transferred. 
This argument, which will be substantiated in a purely quantistic view in the following, led 
K. Likharev (Likharev, 1988) to coin the term `dripping tap' as an analogy of this process. In 
other words, if a constant current I is forced to pass through a single tunnel junction, the so 
called Coulomb oscillations will appear with  frequency f = I/e where e is the charge of an 
electron. The current biased tunnel junction is a very simple circuit able to show the 
controlled transfer of electrons. 
Differently from the JVS, devices capable to control the electron transfer one-by-one are still 
far to reach the accuracy level necessary for metrological applications. Controlling and 
counting electrons one-by-one in an electrical circuit will give the possibility of realizing a 
quantum standard for electrical current. It is important to remember that in the SI system, 
the base electrical unit is the ampere, but, nowadays, the primary electrical standards are the 
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quantum Hall effect (QHE) resistance standard and the JVS. Both are believed to be 
fundamental physical effects and widely used in metrological laboratories. The quantum 
Hall resistance R and Josephson voltage V are given by: 

 R = Rk/i           (Rk = h/e2) (1) 

 V = nf/Kj,         (Kj = 2e/h) (2) 

where i and n are integers, f is a frequency, h and e are fundamental constants, namely, the 
Planck’s constant and the electron charge. 
The QHE ohm and Josephson volt are linked to the ampere via  difficult experiments, with a 
relatively high uncertainty (Flowers, 2004). In consequence, the QHE and JVS are referred to 
as ‘representations’ of the SI ohm and volt. To address this inconsistency, the International 
Committee of Weights and Measures (CIPM) recommended the study of proposals to re-
define some of the SI units in 2011. 
A quantum electrical standard, based on single electron transport, yields a current given by: 

 I= n’f’e (3) 

where the current I through the transistor is defined by the number n’ of elementary charges 
(e) injected in one period and f’ is the frequency. 
There are two basic requirements for a transistor to act as an electron turnstile. The first is that 
the charging energy for an electron confined into an island of material in between two tunnel 
junction must be larger than the thermal energy of electrons. This condition can be written as 
e2/2CΣ >> kT,  where CΣ is the total capacitance of the device. This first condition has two 
direct technological and physical consequences: to observe Coulomb blockade, junctions with 
lateral dimension in the 10-100 nm range are required so to have CΣ < 10−16 F. Of course, the 
measurement must be carried out at cryogenic temperatures, with typical values in the mK 
range. What is important to underline here is the need of nano-technologies to realize the 
device. Standard photolithograpy, widely employed by microelectronic industries for high 
density package of devices in a single chip, can hardly approach the geometrical limit 
required, so, Electron Beam Lithography (EBL) is commonly used for the purpose.  
The second condition to be fulfilled by an electron turnstile is more related to the basics of 
Quantum Mechanics. In a classical picture it is clear if an electron is either on an island or 
not. In other words, the localization is implicitly assumed in a classical formalism. However, 
in a more precise quantum mechanical description, the number of electrons N localized on 
an island are in terms of an average value N which is not necessarily an integer. The        
so-called Coulomb blockade effect prevents island charging with an extra electron, that is 
|N-N|2<<1. Clearly, if the tunnel barriers are not present, or are fairly opaque, no island 
charging or electrons localization on a quantum dot will be accomplished, because of the 
absence of confinement for an electron within a certain volume. From a quanto-mechanical 
point of view, the condition |N-N|2<<1 requires for the time t which an electron resides 
on the island, t >> Δt > h/ΔE. Let us assume that for moderate bias and temperature at most 
one extra electron resides on the island at any time, so the current cannot exceed e/t. This 
means that the energy uncertainty on the electron must be ΔE<Vb, where Vb is the applied 
bias. Trivial calculations lead to the conclusion that the resistance of the tunnel junctions  
RT= Vb/I >> h/e2. The last quantity is the von Klitzing constant RK, known to be RK ≡ 25813 
Ω. More rigorous theoretical studies on this issue have supported this conclusion (Zwerger 
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& Scharpf, 1991). Experimental tests have also shown this to be a necessary condition for 
observing single-electron charging effects (Geerligs et al., 1989).  
An important experiment, in which all the three electrical standards are joined together, is 
the Metrological Triangle. We can describe this experiment like a sort of quantum validation 
of the Ohm’s Law. Joining eqs. (1), (2) and (3), we will yield the product RkKje. This is 
expected to be exactly 2. Any discrepancy from this value will indicate a flaw in our 
understanding of one or more of these quantum effects. This experiment will be an 
important input into the CIPM deliberations on the future of the SI. It is one of the higher 
priorities in fundamental metrology today. 
Current pumps based on mesoscopic metallic tunnel junctions have been proposed in the 
past  (Geerligs et al., 1990; Pothier et al., 1992) and demonstrated to drive a current with a 
very low uncertainty (Keller et al., 1996). Unfortunately, these systems are difficult to control 
and relatively slow (Zimmerman & Keller, 2003). Amongst the various attempts to 
overcome these limitations by using e.g. surface-acoustic-wave driven one-dimensional 
channels (Talyanskii et al. 1997), superconducting devices (Vartiainen et al., 2007; Niskanen 
et al., 2003; Lotkhov, 2004; Governale et al., 2005; Kopnin et al. ,2006; Mooij and Nazarov, 
2006, Cholascinski & Chhajlany, 2007) and semiconducting quantum dots (Blumenthal et al., 
2007), a system based on hybrid superconducting-metal assemblies and capable of higher 
accuracy has been recently proposed (Pekola et al., 2008). 

2. Theorethical background 
2.1 The Orthodox theory 
In the present chapter,  we will review the Orthodox (Averin & Likharev, 1991) theory for 
the Normal-metal Single Electron Transistor (n-SET) with the aim of extending it to the case 
of hybrid Superconductor/Normal structures. This model, which will be discussed in a 
following section, enables to predict the h-SET performances when different 
superconductors are employed.  
For clarity purposes, we will give a heuristic treatment for the n-SET but without any lack of 
generality, while a more detailed discussion will be devoted to the hybrid case. 
The energy that determines the transport of electrons through a single-electron device is 
Helmholtz's free energy which is defined as difference between total energy EΣ stored in the 
device and work done by power sources. The total energy stored includes all the before 
mentioned energy components that have to be considered when charging an island with an 
electron. The change in Helmholtz's free energy a tunnel event causes is a measure of the 
probability of this tunnel event. The general fact that physical systems tend to occupy lower 
energy states, is apparent in electrons favoring those tunnel events which reduce the free 
energy. 
In the framework of the Orthodox theory (Averin & Likharev, 1991) the tunneling rate Γ 
across a single junction between two normal metal electrodes can be extracted using the 
Golden Rule as: 

[ ]2 1 ( , ) 1 ( , )e R f E T f E F T dET
−+ +∞Γ = − − Δ−∞

 

 [ ]2 1 ( , ) 1 ( , )e R f E F T f E T dET
−− +∞Γ = + Δ −−∞  (4.1) 
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[ ]2 1 ( , ) 1 ( , )e R f E T f E F T dET
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where ∆F is the variation in the Helmholtz free energy of the system. Integration of (4.1) 
yields: 

 
2 1 1 exp( / )Fe R F k TT B

−  Γ = −Δ − Δ   (4.2) 

It can be easily concluded that, in the low T limit, Γ= 0 when ∆F > 0, whereas: 

 2 1Fe RT
−Γ = −Δ   ΔF < 0 (4.3) 

The quantity ∆F for a n-SET with i junctions can be written in the following way: 

 ( / 2 )i iF e e C V±
ΣΔ = ±  (5) 

where i=1,2 in a single-island n-SET, Vi is the voltage bias across the junctions. Here, we are 
dealing with 4 different equations, which consider the possibility for one electron to enter in 
(+) or to exit from (-) the island both from junctions 1 or 2. 
Eq. (5) gives a perspicuous representation of the Helmoltz free energy for an island limited 
by two tunnel junctions.  The energy Ec=e2/2CΣ is clearly the energy stored in the device, 
whereas +eVi represents the work done by the power sources. 

2.2 The Normal-Insulator-Normal SET 
In Fig. 1 a SET equivalent circuit is displayed. First, it is helping to write the equations for a 
double junction system, and then to correct them when a gate contact is added. 
The charge qi at the i-th junction can be written as qi=CiVi, so, the total charge into the island 
is q= q2-q1+q0=-ne+q0 where q0 is the background charge inside the island and n=n1-n2 is an 
integer number indicating the electrons in excess. 
 

 
Fig. 1. Equivalent circuit of a single-island, two-junctions SET 

The voltage bias across the i-th junction is then: 

 ( ) ( ) ( ) 1
03 1 i

i SDiV C V q ne C−
Σ−

 = + − −   (6) 

where VSD is the bias across the device (VSD= ΣVi) and CΣ=ΣCi. 
To add the contribution of the gate contact in the device, we can simply take into account 
for effect of the gate electrode on the background charge q0. This quantity can be changed 
at will, because the gate additionally polarizes the island, so that the island charge 
becomes: 
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 ( )0 2g gq ne q C V V= − + + −  (7) 

with Vg the gate voltage. 
Now, after, some trivial calculations, one can write the final relationship giving the voltage 
bias across the i-th junction in Single Electron Transistor (SET) composed by 1 island 
surrounded by 2 tunnel junctions: 

 ( ) ( ) ( ){ }11
,1 03 1 1i i

i g i SD g giV C C C V C V ne qδ +−
Σ −

 = + + − + − +   (8) 

where δi,1 is the Dirac’s function and CΣ=ΣCi+Cg. 
By combining (8) and (5) it is possible to explicitly write the equations governing the free 
energy change in a system with two tunnel junctions and a gate electrode. For example, 
under the particular conditions: q0 = 0, R1 = R2 and C1 = C2 = C>> Cg, one gets: 

( )1 2 1 / 2 / 2c g SDF E n n V±Δ = ± + ±  

 ( )2 2 1 / 2 / 2c g SDF E n n V±Δ = ± + ±  (9) 

where ng=Cg(Vg-V2) and Ec=e2/2C. 
In order to model the behavior of such a complex system, some simplifying assumptions are 
needed. First of all, we consider the tunneling events as instantaneous and uncorrelated, 
say, one  is occurring at a time. Since any single-electron tunneling event changes the charge 
state of the island, at least two states are required for current transport. 
Having the rates of tunneling through the two junctions at hand we can now define the rates 
of elementary charge variation for the island as: 

 1 21, ( ) ( )n n n n+Γ = Γ + Γ
 

       2 11, ( ) ( )n n n n−Γ = Γ + Γ
 

 (10) 

 
With the aid of the above considerations it is possible to define a master equation that 
governs the behavior of the system, whose solution is (Ingold & Nazarov, 1992): 

 , 1 1 1,n n n n n nP P+ + +Γ = Γ  (11) 

where Pn is the probability distribution for the island charge state. 
Taking as a starting state that one with no excess charge in the island and considering that 
only the nearest neighbors states are connected by non-null rates, the probability 
distribution can be derived from eq. (11) as: 

1
0 1, , 10 /n

n m m m mmP P −
+ +=

= Γ Γ∏         n > 0 

 0
0 1, , 11 /n m m m mm nP P − −= +

= Γ Γ∏       n < 0 (12) 

where the free parameter P0 can be extracted from the normalization condition 1nP
+∞

−∞
= . 

Being the steady-state currents through the two junctions equal to I we can write: 
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 1 1 2 2( ) ( ) ( ) ( )n nI e P n n e P n n
+∞ +∞

−∞ −∞

   = Γ − Γ = Γ − Γ    
   

 (13) 

It’s trivial to note that in the T=0 limit the terms ( 1 1Γ − Γ
 

 and 2 2Γ − Γ
 

) of eq. (13) are 
identically null for some values of VSD and ng. In these states it is also noted that the 
probability distribution Pn=1 for a well defined value of n. This means that these regions are 
stable in terms of the number of charges on the island and both tunnel junctions are in the 
so-called Coulomb Blockade state. 
In the zero temperature limit, by imposing 0iF±Δ = , one is able to write down the equations 
providing the dependence of VSD on ng at the boundaries between the regions in which 
tunneling is allowed ( 0iF±Δ < ) and forbidden ( 0iF±Δ > ). Without going into details on this 
rather simple calculation, we can easily observe that such dependence is linear, with slopes 
given by ( ) ,13/g g iiC C C−

 + δ   and intercepts related to the number n of excess electrons into 
the island. These lines give rise to the well-known Stability Diagram for a n-SET depicted in 
Fig. 2. 
Diamonds in the Stability Diagram are representative for the region where tunneling is 
inhibited ( 0iF±Δ > ). They are defined by two families of parallel lines having positive (1st 
junction) and negative (2nd junction) slopes, respectively. Outside such regions, current can 
flow freely across the device, whereas the control of the charging state at single-electron 
level can be obtained only when the working point with coordinates ng ,VSD lies inside a 
stable diamond. 
 

 
Fig. 2. Stability Diagram for a n-SET 
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It is important to stress that the stable states in the case of n-SETs have a single degeneracy 
point in which the the states with n or n +1 are equiprobable (Fig. 2).  
The only location on the stability diagram, and therefore the only set of coordinates ng ,VSD 
which allows the system to switch from one stable state to another passes through the 
degeneracy point where the bias voltage VSD is nil in any circuit configuration. Then, the 
reader can understand how a simple n-SET can control the number of elementary charges in 
excess on the island, solely, but not the flow of single electrons from source to drain 
electrodes. This because the system switch from n to n +1 can occur either through the 
forward tunneling in the first junction or the backward tunneling in the second junction, 
with the same probability. In other words, VSD=0 implies that no directionality for the events 
is defined, that is, the n-SET cannot work as a turnstile. 
For VSD≠ 0, the current can freely flow across the device in well-defined Vg intervals. The   
so-called SET oscillations can then be observed (Fig. 3). 
Investigators have tried to circumvent this problem by using multi-island electron pumps 
(Zimmerman & Keller, 2003). In such devices some islands are in series and driven by their 
own gate contact. Sinusoidal waveforms for each of these gates are shifted in phase, so to 
ensure that successive tunnel process occur from the first to the last junction. The relatively 
complicated experiment with such a slow device yields an output value for the singular 
current much lower than the limit (10-10-10-9 A) necessary for carrying out the Metrological 
Triangle experiment with the required accuracy. 
 

 
Fig. 3 The SET oscillations occurring when VSD≠ 0. Values for VSD are given on the right side 
of the Fig. With scanning Vg, we find peaks representing the current flow through the 
device, when 0iF±Δ <  (outside of the diamonds in Fig. 2), and minima related to 0iF±Δ > . 
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2.3 The hybrid SET 
Hybrid superconducting-metal assemblies have been recently proposed and shown to be 
capable of higher accuracy (Pekola et al., 2008). From a technological point of view, this 
assembly is composed by a normal-metal island sandwiched by two superconducting 
electrodes (SNS), or the reverse (NSN) scheme. For the purpose of this chapter, the 
theoretical description is the same for both the arrangements.  
In the following chapter, eqs. (4) will be rewritten in the case of NIS junction and applied to 
h-SET. 

2.3.1 Tunneling in a S-I-N junction 
Typical applications of SIN junctions are microcoolers (Nahum et al., 1994; Clark et al., 2005; 
Giazotto et al., 2006) and thermometers (Nahum & Martinis, 2003; Schmidt et al. 2003; 
Meschke et al. 2006; Giazotto et al., 2006). In these applications, SIN junctions are usually 
employed in the double-junction (SINIS) geometry. The opposite NISIN geometry has 
gathered less attention. Recently, there has been interest in SINIS structures with 
considerable charging energy. They have been proposed for single-electron cooler 
applications (Pekola et al., 2007; Saira et al., 2007) that are closely related to the quantized 
current application (Pekola et al., 2008). Thermometry in the Coulomb-blocked case has 
been considered, too (Koppinen et al., 2009). 
In the case where the superconductor in study is well below its transition temperature 
(TS<Tc) it can be assumed for the superconducting gap Δ that Δ(TS)=Δ(0) = Δ.  
Because the number of particles for a given amount of energy must be the same in the 
superconducting state (quasi-particles) and in the normal one (free electrons), the 
relationship: 

 ( ) ( )s ng E dE g dε ε=  (14) 

must hold, and then: 

 ( ) ( )
1/22 2( ) ( )s ng E g E E Eε θ

−
= − Δ − Δ

 
(15) 

where θ is the Heaviside’s step function. 
Then, the density of states in a superconductor can be written as: 

 ( ) ( )
1/22 2( ) (0)s ng E g E E Eθ

−
≅ − Δ − Δ  (16) 

by considering that:  
1. all the energy terms at low temperatures have significant values of the order of kBT 

(which is several orders of magnitude less than the Fermi energy, kBT<<EF); 
2. the energies are measured with respect to the Fermi level (ε=0 at EF);  
3. ( ) (0)n ng gε ≈ . 
A further assumption is that the electrons in the metal and the quasiparticles in 
superconductor are weakly interacting and at thermal equilibrium due to the high potential 
barrier of the dielectric layer. It is then possible, to consider tunneling as a perturbation and 
to apply the Golden Rule approach. The dominating current transport mechanism in a NIS 
junction is single-electron tunneling between the normal metal and the quasi-particle states 
of the superconductor. 
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The equations governing the rate of tunneling back and forth in a NIS can be written in a 
similar way to that for the NIN system by simply adding a term proportional to the 
superconductor density of states: 

( )2 1 ( , ) 1 ( , )e R n E f E T f E F T dET s S N
−+ +∞  Γ = − − Δ−∞    

 ( )2 1 ( , ) 1 ( , )e R n E f E F T f E T dET s N S
−− +∞  Γ = + Δ −−∞    (17) 

where Ts and TN are temperatures for the superconductor and normal electrodes, 
respectively and ns=gs(E)/gN(0). 
For T = 0, the corresponding of eq. (4.3) is found for the SIN case: 

 2 1 2 2
Te R F− −Γ = Δ − Δ       FΔ ≤ −Δ  (18) 

whereas Γ= 0 for ΔF>-Δ (the other two solutions cannot be considered because transitions 
are allowed only for negative free energy variations). 
Finding a solution for eq. (17) is not a trivial task and will not be reported here, but some 
words are deserved to the tunneling effects occurring in the SIN junction at voltages values 
below gap. Here, if the condition KbTN <<ΔF  (i.e., if TN<<1.76 Tc) is fulfilled, the rate of 
tunneling through the SIN junction is given by: 

 ( ) ( )0, exp /T N b NV T F k TΓ = Γ  Δ − Δ    (19) 

 
the quantity 2 1

0 /2T b Ne R k Tπ− −Γ = Δ Δ  being called the characteristic rate and 
approximately representing the tunneling rate when the free energy variation approaches 
the gap. 
From eq. (19) it can be seen that for free energy variations below the gap the tunneling rate 
strongly depends on temperature. This opens the possibility of using this type of junction as 
a thermometer at low temperature. As a drawback, limits in the accuracy of electron 
counting for metrological applications of h-SETs can arise, as discussed in the next chapters. 

2.3.2 Stability diagram for h-SET 
Following the same n-SET master equation approach for the SINIS system, it is now possible 
to combine eqs. (9) and (17) in order to consider the case in which the mesoscopic tunnel 
junctions charging energy is not negligible and the central island is coupled to a gate 
electrode. 
Results from calculations of the electrical characteristics for the previous ideal system are 
shown in Fig. 4. Using a similar procedure for the n-SET device we can study the h-SET 
behavior at temperature T->0 K in order to extract the modified stability diagram. 
It is observed from eq. (18) that when ΔF > -Δ, the tunneling rate is nil (in principle) and the 
junction does not allow for the electron flow. The areas in the stability diagram in which 
such conditions hold identify the stable regions with a defined number of elementary 
charges on the island (n). 
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Fig. 4. 3-dimensional view of the Stability Diagram for a h-SET 

The present formalism allows us to treat the hybrid assembly in the same way as the normal 
system. Then, very trivial calculations let us to extract the equations for the two families of 
straight lines defining the boundaries between regions of allowed and forbidden tunneling, 
with an offset value with respect to the lines in the normal case of 2Δ (Fig. 5).  
The dashed lines in Fig. 5 define the regions of inhibited tunneling, as in the case of the       
n-SET (purple areas). In the hybrid system, each of them is shifted by an offset 2Δ, defining 
the blue regions where the mechanism of tunnel inhibition is the band offset at the SIN 
junction. 
When the Current across a Single Electron Tunneling device is recorded as a function of the 
VSD, for different ng values, a family of Current-Voltage characteristics is obtained. This 
means we are moving along parallel vertical pathways on the Stability Diagram. The 
extension of the Coulomb gap, obviously depends on the ng value: in a Normal SET it 
periodically oscillates from 0 to e/2C, with a periodicity of one unit (see Fig. 6).  
It is then interesting to compare the Current-Voltage characteristics of the Normal and 
Hybrid SETs. This comparison, reported in Fig. 6, clearly indicates a broadening of the 
conduction gap in the hybrid structure. The gap oscillates with tuning Vg from ∆ to             
∆+ e/2C. In a few words, the presence of the superconducting gap broadens the region of 
inhibited tunneling, whose width never equals to zero. 
In this configuration for the h-SET, the degeneracy point linking the stable states is 
suppressed by a region in the VSD—ng space where the pathway from point A to point B 
occurs with negligible backward tunneling at both junctions (VSD> 0) and without departing 
from the stable regions. E.g., with Vg oscillating between the states A and B, one can move a 
single electron per cycle from source electrode to drain with a well defined directionality 
given by the sign of VSD. 
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In the next section we will analyze some of the possible effects that can alter the process of 
controlled transport of electric charges in a h-SET turnstile configuration. 
The extension of the Coulomb blocked region to VSD values ≠ 0 is the peculiar feature of the 
hybrid assembly. This opens the possibility for such a device to operate as a turnstile. In fact, 
we can operate the device along the pathway between points A and B with VSD ≠ 0 (Fig. 5). 
From points A and A' (B' and B) tunneling inhibition is accomplished thanks to the Coulomb 
Energy e2/2C (ΔF<0), whereas in the intermediate region A'B', the presence of the 
superconducting gap is the limiting mechanism (0<ΔF<Δ). 

2.3.3 Error sources in hybrid SET 
The following treatment on the error sources in Hybrid SET will not be exhaustive, since 
second-order (e.g. co-tunneling), and technology-related (e.g. Adreev’s reflections at the 
oxide pinholes) effects, will not be discussed. We will focus on a sort of “ideal” h-SET, in 
order to determine the optimal conditions for turnstile operation. 
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It is rather intuitive that small VSD values lead to an increased probability for tunneling 
events in the backward direction, according to the relationship (Pekola et al., 2008): 

 ( )exp /b SD B NeV k TΓ ∝ −  (20) 

where Γb  is the rate of backward tunneling kB the Boltzmann constant and TN the 
temperature at the Normal electrode. On the other hand, the rate of unwanted intra-gap 
events increases when VSD approaches 2∆, as described by eq. (19). Thus, the probability of 
both kinds of spurious events described by eqs. (19) and (20) reaches a maximum value 
either for VSD= 2∆ or VSD=0, respectively. Minimizing the contributions displayed in eqs. 
(19) and (20) leads to VSD=∆. 
It could seem, at a first sight, that the incorporation of superconductors with larger ∆ is, at 
first sight advisable, if a drastic suppression of thermal error rates is required as in the case 
of metrological applications. This because larger ∆ values would in principle allow 
operating the device at higher VSD bias. 
Examples of h-SETs in literature generally employ Al as the superconductive component    
(∆ ≈ 170 μeV). Apart from the ease of producing efficient dielectric junction barriers by 
means of simple Al oxidation, the ∆ value for Al is relatively low, if compared e.g with Nb 
(∆ ≈ 1.4 meV). As a matter of fact, there are limitations in employing larger gap 
superconductors (Pb, Nb) in state-of-art hybrid SETs. Such limitations are either of 
fundamental or of technological nature. In the followings we will discuss both these aspects. 

2.3.4 A scaling rule 
The capability of a h-SET device to act as a single elecron turnstile is related to the 
possibility of switching the system between two stable states A and B (Fig. 5), keeping the 
system in a blocked region of the stability diagram. All paths at nonzero VSD values which 
connect A and B, necessarly contain a set of states where the current is suppressed by means 
of the superconducting gap, solely. In the present chapter we consider the simplest 
theoretical and experimental setup for a turnstile with dc bias and ac gate voltage: in this 
framework the system switches between two blocked states, the first related to the Coulomb 
blockade in analogy with the n-SET and depicted by means of the AA' and BB' segments, the 
second represented by the A'B' segment  in which the tunnel current is suppressed by the 
superconducting gap. As previously discussed the superconductive gap cannot be 
considered as a perfect barrier and the transition in the A'B' segment is a potential source of 
current leakage inside the tunnel junctions, then some considerations are needeed in order 
to minimize this effect mantaining the advantages of h-SET turnstile configuration. 
Minimizing the resident time tΔ in this region is then an important issue in order to reduce 
errors related to leakage effects. Authors (Pekola et al., 2008), suggested a squared 
waveform for the Vg signal, even if the sinusoidal signal can be more easily handled during 
a turnstile experiment. 
Evaluation of such resident time is easily obtained in the case of sinusoidal waveform, by 
considering the extension of the A’B’ region in Fig. 5. We consider a value for VSD=Δ (with Δ 
in eV), say, we assume the SET as working in the optimal conditions according to eqs. (19) 
and (20). From geometrical considerations, as can be evident when observing Fig. 5, the 
condition: 

 Δ < Ec. (21) 
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Fig. 6. Comparison between the Current-Voltage characteristics of a Normal (top) and 
hybrid (bottom) SET, taken at different gate voltage values. According to the Stability 
Diagram of Fig. 2 we observe the broadening of the Coulomb gap with varying Vg. In the 
hybrid assembly the contribution from ∆ broadens the region of inhibited tunneling. 
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Fig. 6. Comparison between the Current-Voltage characteristics of a Normal (top) and 
hybrid (bottom) SET, taken at different gate voltage values. According to the Stability 
Diagram of Fig. 2 we observe the broadening of the Coulomb gap with varying Vg. In the 
hybrid assembly the contribution from ∆ broadens the region of inhibited tunneling. 
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must hold, otherwise the system will never reach a stable Coulomb-blocked state. Such 
simple relationship provides an important scaling rule for designing h-SETs. It says that 
employing high gap superconductors (Nb is a key example) into a hybrid assembly does not 
guarantee better device performances. That is, the Charging Energy EC must be increased, 
too. As an example, if we envisage to replace Al with Nb (2∆ ≈ 340 μeV vs. 2∆ ≈ 3 meV), we 
have to find a way to increase the EC value by a factor of ~10; this can be accomplished by 
decreasing the tunnel capacitance values, solely.  
The ratio between tΔ, the time interval in which the system is blocked only by the 
superconductive gap during a cycle, and the cycle half-period T/2, can be written as: 

 [ ]12 / cos( / ) cos( / )c ct T ar E ar EπΔ = −Δ − Δ  (22) 

and displayed as a function of the junction capacitance and the superconducting gap 
Δ(Fig. 7).  The 2tΔ/T ratio is <1 (indicative for the presence of a Coulomb Blockade region in 
the Stability Diagram, see Fig. 5) only in the  portion of the Δ-C plane in which the values of 
Δ, and/or C are low. As a comparison, Δ-values for typical low-Tc superconductors are 
indicated together with the reasonnable lower limits for junction capacitance with the most 
common SET technologies, the SAIL (Self Aligning In-Line) (Götz et al., 1996) and the 
Shadow evaporation (Dolan, 1977). 
 

 
Fig. 7. The graph displays the calculated dependence of The 2tΔ/T on the superconductor 
gap Δ and the junction capacitance C. Lines perpendicular to the Δ-axis show the typical gap 
values for most common low-Tc superconductors, whereas the lines across the C-axis 
represent the limit of two typical techniques for producing SETs (see text for details). 
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The following chapter will review the technological approaches to realize SET devices, with 
the purpose of identifying the most promising ones as far as the capacitance reduction issue 
is concerned. 

3. SET Technologies 
3.1 The Shadow evaporation technique  
The shadow evaporation technique (Dolan, 1977) was the first to be used for the fabrication  
of single-electron devices based on metallic systems and is currently the most widespread. 
This technology takes advantage from a shadow effect, implying that the deposition 
techniques must be highly non-conformal. The typical deposition process is then thermal or, 
better, e-beam evaporation: this dramatically limits the choice of materials to be deposited 
(Nb, for example, being a refractory material, is hardly evaporated). 
 
 

 
Fig. 8. SEM image of a suspended mask for Shadow evaporation. 
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The critical step for the success of the process is to fabricate suspended segments of electron 
beam resist at a certain distance from the substrate. In common lift-off process, the films are 
defined by evaporating the metal through the openings in the mask at normal incidence 
substrate, so as to ensure the break between the parts of the layer on the substrate and those 
on the mask.  
The creation of masks with suspended bridges is possible thanks to the use of two different 
types of resists for electron beam lithography, the lower with greater sensitivity to electron 
beam than the upper one. During the development step, the exposed resist region is 
chemically removed in a selective way, with a wider pattern in the polymer underneath. In 
this way, using the so-called proximity effect, typical of electron beam lithography, it is 
possible to obtain suspended bridges structures.  
Fig. 8 shows the SEM tilted view of the mask we are dealing with: it consists of a support 
resist layer of thickness δ1~350 nm, on which the layer that define the structures, with 
thickness δ2~200 nm is lying.  
If the mask is suspended one no longer needs to deposit the metal at normal incidence to 
guarantee the successful lift-off and can vary the angle of deposition thus obtaining different 
patterns on the substrate. From simple geometrical considerations we can see that creating 
an opening of width W0 in the top layer of resist and carrying out the evaporation at an 
angle Θ respect to the normal will produce a deposided feature of width: 

 0 2 tan( )W δ= Θ  (22) 

If the angle of incidence is greater than the critical one: 

 0 0 2arctan( / )W δΘ > Θ =  (23) 

the opening in the mask appears as "closed" and the deposition does not reach the substrate. 
 

 
Fig. 9. Schematics of the angled Shadow evaporation process 
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The practical realization of this effect depends on the ability to produce shadow masks 
similar to the ideal ones presented so far. To apply this calculation it is important that the 
experimental values of δ1 and δ2 are reliable, and that the cross section of the top resist layer 
is rectangular. 
For the construction of tunnel junctions, first a pattern mask with two, very tight openings 
must be created. A bridge in the top layer resist between them is then defined.  
One can then proceed to the fabrication of tunnel junctions with a deposition-oxidation-
deposition sequence, which occurs in the same vacuum cycle. After the first evaporation 
performed to an angle δ1, (Al in Fig. 9) the deposited film is oxidized in O2 atmosphere then 
growing an insulating layer, commonly Al oxide, ~1nm thick. After pumping down, the 
second layer is then deposited at angle δ2 (Cu in Fig. 9). 

3.2 The Self Aligning In Line Process (SAIL) 
The principle of the SAIL technique (Koch, 1987) is to fabricate the tunnel junctions at the 
two sides of the island, so that the size of the junctions is determined by the thickness and 
width of metal thin films: in this way one gets a planar configuration with vertical barriers. 
In this section we will discuss the basic steps of the process originally created and provide 
some hints on how it could be used for manufacturing h-SETs. 
The SAIL process, as presented by Gotz (Gotz et al., 1995) consists of the following steps: 
i. Preparation of a narrow and thin metal film on the substrate (Fig. 10 (a)). 
ii. Fabrication of a resist mask which leaves the area open for the following counter 

electrode deposition step (Fig. 10 (b)). 
iii. Anisotropic etching of the film in order to define the island (Fig. 10 (c)). 
iv. Formation of a dielectric barrier on the exposed surface of the island (Fig. 10 (d)) 
v. Deposition of the second metal film (Fig. 10 (e)). 
vi. Lift off (Fig. 10 (f)). 
There are no particular requirements for the island deposition technique, e.g. sputtering or 
evaporation, while the subsequent transfer of the pattern can be accomplished with lift off 
or anisotropic etching. 
The mask generated in the second step defines the location and size of the island and that of 
source and drain electrodes. The process is self-aligned along the length of the island, while 
mismatches in the cross direction can be easily compensated by choosing one of the two 
metal strips wider: then one can realize an island sandwiched with two wide electrodes 
(WNW), as shown in Figure 9, or a large island between two narrow electrodes (NWN), 
obtaining in both cases the same junction area. 
Difficulties could arise from the use of the same mask for etching and lift off: in fact, the 
resist must remain soluble and thick enough to allow reliable lift off, even after the ion beam 
bombardment. One will then need to tune the thickness of the resist or the metal depending 
on the etching selectivity. The solution may be to replace the ion beam etching, barely 
physical, with Reactive Ion Etching (RIE), taking advantage from the chemical selectivity of 
the gas employed.  
An alternate solution is the use of a multi-layered mask, e.g. two layers of resist with an 
intermediate layer with lower etching rate. In this way, the lower resist layer is protected 
against the ion bombardment, and can be used as lift off mask.  
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Fig. 10. The main technological steps for the SAIL technique. See text for details. 

In order to be used for lift off, the resist mask should show in section walls with negative 
slope. The generation of a suitable mask is the crucial step and more complicated in the 
SAIL technique than in the shadow evaporation one.  
The creation of the barrier after the anisotropic etching of the first mask avoids its damage 
due to high-energy ions.  
Over-etching in the substrate during step iii. can lead to re-deposition of substrate material 
on the exposed sides of the island, and then serious barrier uniformity problems can arise. 
To improve the quality of the barrier as well as to minimize the over-etching, it is possible to 
choose as substrate the same material of the barrier to be fabricated: in fact, the barrier 
dielectrics usually have lower etching rates than the corresponding pure metals, and 
therefore can excellently act as etch-stop layers.  
A further technological complication is that the formation of reliable contacts requires a 
more anisotropic etching (step iii.) than the second metal deposition step (step vi.). 
Apart from these difficulties, the SAIL process has several advantages if compared to the 
shadow evaporation technique. 
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As mentioned above, there is complete freedom in the choice of the deposition process of 
metal layer, e.g. evaporation can be replaced by sputtering. It is worth noting, for instance, 
that the latter technique is more suitable for depositing a robust and reliable superconductor 
like Nb. Moreover, one can get rid of fragile structures like suspended bridges necessary for 
the shadow evaporation. Finally, since the tunnel junction is obtained at the sides of the 
island, the electrodes overlapping is absent, and the junction capacitance is lower than in 
devices realized by the shadow evaporation.   
The first SET made with the SAIL technique was reported by M. Gotz (Gotz et al., 1995). The 
device is based on the system Al/AlOx/Al. The island, with thickness and width of 50 nm 
and 80-150 nm, respectively, is defined by EBL and subsequent lift off on a single layer of      
AR-P610 resist. The metal was deposited by sputtering. The second mask was made with a 
double resist layer composed by AR-P671 and AR-P 641. The thickness of the second metal 
layer was 100nm. The anisotropic etching was carried out with Ar+ ions. Immediately after 
the etching, the dielectric barrier has been created by means of oxidation step in dry air. The 
reported yield is 40%. 
From the width of the Coulomb Blockade areas, the junction capacitance was estimated to 
be 0.5 fF, a value in agreement with the calculations for a tunnel junction area of 50 x 150 
nm2, and a barrier thickness of the order of 1 nm. 

4. Conclusions 
The employment of the Shadow evaporation technique dramatically limits the choice for 
superconductors to use, either from a merely technical (materials to be evaporated) or from 
a more fundamental (difficulties in reducing junction areas) points of view. As a matter of 
fact, h-SETs made by Al/Cu assemblies have been recently produced and characterized 
(Pekola et al., 2008). The SAIL technique seems promising, since it allows for a wider choice 
of superconducting materials. It is possible, for example, to envisage the employment of 
In:Pb alloys (with improved electrical and thermal properties with respect to the unalloyed 
elements) in SAIL SETs by taking advantage from composition-related gap tunability. In this 
case, however, technological problems related to deposition of continuous, ~10 nm thick, 
films from metals with low fusion temperature require solution. It is noteworthy that such 
alloys were used years ago in the first generation Josephson junctions (Lacquaniti et al., 
1982). V or Ta could be interesting alternatives, but the best candidate for the realization of 
stable and robust turnstiles should obviously be Nb. Indeed, the graph in Fig. 7 shows that 
the inclusion of such material in a h-SET arrangement still requires to overcome the 
technological limitations of the SAIL technique. 
The possibility of device biasing, offered by the hybrid arrangement can improve the 
accuracy of electron pumping process, but care must be taken in reducing leakage through 
the superconducting gap. Optimizing between these opposite effects requires the increase of 
both the superconducting gap and the charging energy.  
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1. Introduction  

The photonic crystal (PhC) is formed with a dielectric periodic structure and exhibits new 
electromagnetic phenomena (John, 1987). It shows some properties analog to the 
semiconductor, such as the photonic band structure (PBS) including photonic passing bands 
and photonic band gaps (PBGs), and complicated dispersion relations. In analogous to the 
electron transport in the semiconductor, the Bloch theorem is also applied to describe 
electromagnetic waves propagating in the PhC very well.  
The PBS strongly depends on refracted indices of constituent materials and the geometry of 
the PhC. Once the materials and geometry structure of a PhC are constructed, the possible 
way to change its PBS is tuning the refracted indices of its constituent materials utilizing the 
temperature effect, the external electric field effect, or the external magnetic field effect, etc 
(Busch & John, 1999; Kee & Lim, 2001; Kee et al., 2000, 2001; Figotin et al., 1998; Takeda & 
Yoshino, 2003a, 2003b, 2003c, 2003d, 2004). For PhCs composed of ferroelectric or 
ferromagnetic materials, PBSs can be tuned by the external electric field effect and the 
external magnetic field effect (Busch & John, 1999; Figotin et al.). On the other hand, the 
variation on the PBS of the liquid-crystal PhC controlled by the external electric field or the 
temperature has also been investigated (Kee & Lim, 2001b; Takeda & Yoshino, 2003a, 2003b, 
2003c, 2003d, 2004). Another potential material that can be used to tune the PBS is the 
superconductor by varying the temperature and the external magnetic field (Lee et al., 1995; 
Raymond Ooi et al., 2000; Takeda & Yoshino, 2003e).  
In our previous works, we have designed a tunable PhC Mach-Zehnder interferometer 
composed of copper oxide high-temperature superconductors (HTSCs) utilizing the 
temperature modulation to reach the on and off states (Pei & Huang, 2007a). The Mach-
Zehnder interferometer, whose path-length difference of two arms is fixed after designed, 
can be realized as an optical switching device or sensor due to the temperature effect. In the 
output, the signals from two arms interfere with each other, and the phases of these two 
signals can be modulated by HTSCs. Besides, we also discussed the superprism effect in the 
superconductor PhC (Pei & Huang, 2007b). The superprism effect was demonstrated 
experimentally by Kosaka et al. in 1998 (Kosaka et al., 1998). They found that the refracted 
angle of a light beam in a PhC is very sensitive to the incident angle and wavelength. The 
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Raymond Ooi et al., 2000; Takeda & Yoshino, 2003e).  
In our previous works, we have designed a tunable PhC Mach-Zehnder interferometer 
composed of copper oxide high-temperature superconductors (HTSCs) utilizing the 
temperature modulation to reach the on and off states (Pei & Huang, 2007a). The Mach-
Zehnder interferometer, whose path-length difference of two arms is fixed after designed, 
can be realized as an optical switching device or sensor due to the temperature effect. In the 
output, the signals from two arms interfere with each other, and the phases of these two 
signals can be modulated by HTSCs. Besides, we also discussed the superprism effect in the 
superconductor PhC (Pei & Huang, 2007b). The superprism effect was demonstrated 
experimentally by Kosaka et al. in 1998 (Kosaka et al., 1998). They found that the refracted 
angle of a light beam in a PhC is very sensitive to the incident angle and wavelength. The 
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basic explanation of the superprism effect is based on the anomalous dispersion 
characteristics of the PBS. The propagation direction of light in the PhC is the same as the 
direction of the group velocity, which is determined by the equifrequency surfaces (EFS). 
The group velocity is normal to the EFS at a certain wave vector and is defined as 

g kv grad   , where k


 and ω are the wave vector and the frequency, respectively. Notomi 
has published a detailed study on the superprism effect (Notomi, 2000). In our work, we not 
only study the transmission of light propagating through the superconductor PhC, but also 
pay lots of attentions on the refraction. The result shows that the refraction can be changed 
sensitively by the temperature of the superconductor. 
In this chapter, we deduce the way to calculate the PBS of the superconductor PhC based on 
the plane wave expansion method first. It is not like the way to calculate the PBS of the PhC 
only composed of dielectric materials. Second, the finite-difference time-domain (FDTD) 
method for the PhC composed of dispersive materials such as superconductors are derived 
carefully. The time-domain auxiliary differential equations (ADEs) are introduced to 
represent effects of currents in dispersive materials. The ADE-FDTD algorithm can be used 
to calculate the transmission of the finite superconductor PhC. It has also been used in our 
previous works to discuss the tunability of the PhC Mach-Zehnder interferometer composed 
of HTSCs and the superprism effect in the superconductor PhC.  
Finally, the internal-field expansion method developed by Sakoda is also introduced 
(Sakoda, 1995a, 1995b, 2004). This method is used to calculate the transmission of the two-
dimensional PhC composed of air cylinders embedded in certain background medium. It is 
much like the grating theory that describes the scattering waves as Bragg waves. He 
successively calculated the transmission and the Bragg reflection spectra using this method, 
and also mentioned that the existences of the uncoupled modes (Sakoda, 1995a, 1995b). 
However, this method has not been yet verified on the superconductor PhC. We use this 
method to calculate the transmission of the finite superconductor PhC and compare the 
result of it with that of the ADE-FDTD method. 

2. The plane wave expansion method for calculating the photonic band 
structure of the superconductor photonic crystal 
The superconductivity of the superconductor is strongly sensitive to the temperature and 
the external magnetic field. We only discuss the temperature effect in this chapter. The PhC 
structure is composed of superconductor cylinders with triangular lattice in air as shown in 
Fig. 1. The two-fluid model is used to describe the electromagnetic response of a typical 
superconductor without an additional magnetic field (Tinkham, 2004), and it describes that 
the electrons occupy two states. One is the superconducting state, in which the 
superconducting electrons of density Ns(x, y) are paired and transport with no resistance. 
The definition of the superconducting state under the temperature and magnetic field effects 
is shown in Fig. 2. The other is the normal state, in which the normal conducting electrons of 
density Nn(x, y) act like electrons in general materials with a nonzero resistance. Both 
superconducting and normal conducting electrons coexist in the superconductor when the 
temperature is lower than the critical temperature. This model also characterizes the 
performance of high-frequency superconductive devices very well (Van Duzer & Truner, 
1998).  
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Fig. 1. The cross-section of the two-dimensional PC formed in a triangular array. 

 

 
Fig. 2. The definition of the superconducting state under the effects of the temperature and 
the magnetic field. 

Utilizing this model, the E-polarized light with its electric field parallel to the z-axis (TM 
mode) is incident on a two-dimensional PhC lying in the x-y plane. In the presence of the 
external electric field, superconducting and normal conducting current densities Jsz and Jnz 
flowing along the z-axis can be expressed as the following equations (Tinkham, 2004): 
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λ(x, y) is the London penetration depth, ε1(x, y) is the distribution of the dielectric constant, τ 
is the relaxation time, c is the wave velocity in free space, and m is the mass of the electron. 
Because the incident electric field is harmonic with frequency ω, the induced Jsz and Jnz also 
have the same oscillating period. Eqs. (1) and (2) can be further expressed as follows: 
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Substituting Eqs. (5) and (6) into the E-polarized wave equation results in the following 
equation (Pei & Huang, 2007a): 
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where εs(x, y, ω) is the effective dielectric function given by 
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For HTSCs, optical characteristics show the anisotropic properties (Takeda & Yoshino, 
2003e). The electric fields parallel and perpendicular to the c-axis feel different dielectric 
indices. However, Eq. (7) is still valid even for anisotropic materials (Lee et al., 1995). When 
the electric fields are parallel to the c-axis, plasma frequencies are in the microwave and far-
infrared regions (Takeda & Yoshino, 2003e). In our study, the z-axis is chosen as the c-axis. 
In the superconducting state, the electromagnetic wave can propagate in the range of the 
London penetration depth. The London penetration depth is dependent on the temperature T, 

which can be expressed as    4
0 1 cT T T    (Zhou, 1999), where Tc and λ0 are the 

critical temperature and the London penetration depths at the absolute zero temperature, 
respectively. When the temperature is above about 0.8 times the critical temperature, the 
London penetration depth increases rapidly and then approaches infinity as the temperature is 
close to Tc. Besides, ( , )s

p x y  strongly depends on the London penetration depth as well as the 

temperature. Based on the experimental results (Shibata & T. Yamada, 1996; Matsuda, 1995) in 
the far-infrared region, the small contribution of the normal conducting electrons can be 
neglected and the plasma frequency ( , )s

p x y  can be assumed to be uniform within the rods. 

Then the third term on the right side of Eq. (6) can be dropped and then simplified as  
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Eq. (9) is known as the Drude model (Grosso & Parravicini, 2000) which can also be applied 
to the kind of PhCs constituting metallic components. 
Kuzmiak et al. (Kuzmiak et al., 1994) has dealt with the two-dimensional PhC containing 
metallic components. We use the same method based on the plane-wave expansion to 
calculate the PBSs of the superconductor PhCs. In this method, the dielectric function of the 
PhC is directly expanded in a Fourier series. The dielectric constant of the PhC can be 
written explicitly in the form  
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where the integral is now over the 2D unit cell (2)
0V and ac is the area of the unit cell in the 

PhC. Eq. (12) can be expressed as 
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where f is the filling fraction. For the triangular superconductor PhC, the filling fraction of 
the superconductor rod in a unit cell is 2 2(2 3)f R a . According to the Bloch theory, 
the electric field can be expanded in the form 
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where ˆ ˆ
x yk k i k j 


 is the wave vector of the electromagnetic waves propagating inside the 

PhC. Substituting Eqs. (11) and (15) into Eq. (7), we obtain a set of equations for the 
coefficients ( | )zE k G

 
. It is a standard eigenvalue problem of a real and symmetric matrix 

with respect to the frequency ω. The set of equations for coefficients ( | )zE k G
 

 shows as 
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Rearranging Eq. (16) that we have 
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To solve this matrix eigenvalue problem, the frequencies can be determined at a certain 
wave vector and the whole PBS can be obtained. 

3. The E-polarized photonic band structure 

In our designed device, we used high-Tc superconductor Bi1.85Pb0.35Sr2Ca2Cu3.1Oy (Takeda & 
Yoshino, 2003). Previous study (Takeda & Yoshino, 2003) utilized parallel copper oxide 
HTSCs rods to form PhCs with square lattices repeating in two-dimensional directions (x-y 
plane). The authors theoretically investigated the tunability of the photonic band gap (PBG) 
of the two-dimensional PhC by changing temperatures of superconductors and external 
magnetic fields. The PhC structure we discuss here is composed of superconductor 
cylinders with triangular lattice in air as shown in Fig. 1. The E-polarized electromagnetic 
wave with the electric field parallel to the extended direction of the rod propagates in the x-y 
plane. Adjusting the temperature of the superconductor can control the refracted index of 
the superconductor as well as the PBS of the superconductor PhC. When T   Tc is satisfied, 
the dependence of the plasma frequency on the temperature is given by (Zhou, 1999)  

  4
.

( ) (0) 1s s
p p cT T T                         (18) 

For this superconductor, the London penetration depth of the copper oxide HTSCs is λ = 23 
μm at T = 5 K, the critical temperature Tc = 107 K, and the dielectric constant is ε1 = 12 
(Shibata & Yamada, 1996). When T = 5 K, we obtain 4/ 1.3 10s

p c   cm-1. 
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Fig. 3. The PBS of the PhC composed of superconductor cylinders at T = 5 K with radius of 
cylinders r = 0.2a and lattice constant a = 100 μm. The first Brillouin zone shows at the right 
lower corner. In this figure, the region between two paired horizontal lines is the PBG. 

The theory discussed in Section 2 is used to calculate the PBS along the three directions ΜΓ, 
ΓΚ, and ΚΜ in the reduced Brillouin zone when the periodic lattice constant of the PhC is a 
= 100 μm, the radius of cylinders is r = 0.2a, and the overall temperature is fixed at 5 K. The 
PBS is shown in Fig. 3 and the first Brillouin zone at the right lower corner. The reduced 
Brillouin zone is denoted as the triangle ΓΚΜ. From Eq. (9), we can see that the optical 
response of the superconductor under the E-polarized wave is the same as that of the metal 
described by the Drude model. The lowest point of the first band for a metal or metal-like 
material is above zero frequency, which is not like a non-dispersive material whose lowest 
point of the first band is at zero frequency. A PBG exists from zero to a certain frequency 
ωlowest, which means that the light can propagate in the PhC only in the frequency range 
above ωlowest. In Fig. 3, the region between two paired horizontal lines is the PBG region. The 
PhC has a large second PBG, which is located in the frequency range from 0.33 to 0.47 
(2πc/a). The third PBG is located in the frequency range from 0.595 to 0.605 (2πc/a). 

4. The finite-difference time-domain method for the photonic crystal 
composed of dispersive materials 
In 1966, K. S. Yee first provided the FDTD method to solve electromagnetic scattering 
problems (Yee, 1966). The Yee’s equations are obtained to discretize Maxwell’s equations in 
time and space. The fields on the nodal points of the space-time mesh can be calculated in an 
iteration process when the source is excited. Because the finite resource of the hardware 
limits the size of simulation domain, an absorbing boundary condition (ABC) needs to be set 
on the outer surface of the computational domain. In 1994, Berenger proposed a perfectly 
matched layer (PML), which is an artificial electromagnetic wave absorber with electric 
conductivity σ and magnetic conductivity σ* (Berenger, 1994). The PML absorbs outgoing 
waves very well, so it can simulate the electromagnetic wave propagating in free space. 
Therefore, we apply the PML as the absorbing layer used in the FDTD method. 
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p p cT T T                         (18) 

For this superconductor, the London penetration depth of the copper oxide HTSCs is λ = 23 
μm at T = 5 K, the critical temperature Tc = 107 K, and the dielectric constant is ε1 = 12 
(Shibata & Yamada, 1996). When T = 5 K, we obtain 4/ 1.3 10s

p c   cm-1. 
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Fig. 3. The PBS of the PhC composed of superconductor cylinders at T = 5 K with radius of 
cylinders r = 0.2a and lattice constant a = 100 μm. The first Brillouin zone shows at the right 
lower corner. In this figure, the region between two paired horizontal lines is the PBG. 

The theory discussed in Section 2 is used to calculate the PBS along the three directions ΜΓ, 
ΓΚ, and ΚΜ in the reduced Brillouin zone when the periodic lattice constant of the PhC is a 
= 100 μm, the radius of cylinders is r = 0.2a, and the overall temperature is fixed at 5 K. The 
PBS is shown in Fig. 3 and the first Brillouin zone at the right lower corner. The reduced 
Brillouin zone is denoted as the triangle ΓΚΜ. From Eq. (9), we can see that the optical 
response of the superconductor under the E-polarized wave is the same as that of the metal 
described by the Drude model. The lowest point of the first band for a metal or metal-like 
material is above zero frequency, which is not like a non-dispersive material whose lowest 
point of the first band is at zero frequency. A PBG exists from zero to a certain frequency 
ωlowest, which means that the light can propagate in the PhC only in the frequency range 
above ωlowest. In Fig. 3, the region between two paired horizontal lines is the PBG region. The 
PhC has a large second PBG, which is located in the frequency range from 0.33 to 0.47 
(2πc/a). The third PBG is located in the frequency range from 0.595 to 0.605 (2πc/a). 

4. The finite-difference time-domain method for the photonic crystal 
composed of dispersive materials 
In 1966, K. S. Yee first provided the FDTD method to solve electromagnetic scattering 
problems (Yee, 1966). The Yee’s equations are obtained to discretize Maxwell’s equations in 
time and space. The fields on the nodal points of the space-time mesh can be calculated in an 
iteration process when the source is excited. Because the finite resource of the hardware 
limits the size of simulation domain, an absorbing boundary condition (ABC) needs to be set 
on the outer surface of the computational domain. In 1994, Berenger proposed a perfectly 
matched layer (PML), which is an artificial electromagnetic wave absorber with electric 
conductivity σ and magnetic conductivity σ* (Berenger, 1994). The PML absorbs outgoing 
waves very well, so it can simulate the electromagnetic wave propagating in free space. 
Therefore, we apply the PML as the absorbing layer used in the FDTD method. 
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In the FDTD method, Maxwell's equations are solved directly in time domain via finite 
differences and time steps without any approximations or theoretical restrictions. The basic 
approach is relatively easy to understand and is an alternative to more usual frequency-
domain approaches, so this method is widely used as a propagation solution technique in 
integrated optics. Imagine a region of space where no current flows and no isolated charge 
exists. Maxwell's curl equations can be written in Cartesian coordinates as six simple scalar 
equations. Two examples are: 
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The most common method to solve these equations is based on Yee's mesh and computes 
the E and H field components at points on a grid with grid points spaced Δx, Δy, and Δz 
apart, which are named grid sizes. The E and H field components are then interlaced in all 
three spatial dimensions. Furthermore, time is broken up into discrete steps of Δt. The E 
field components are then computed at times t = nΔt and the H at times t = (n + 1/2)Δt, 
where n is an integer representing the computing step. For example, the E field at a time t = 
nΔt is equal to the E field at t = (n - 1)Δt plus an additional term computed from the spatial 
variation, or curl of the H field at time t. This method results in six equations that can be 
used to compute the field at a given mesh point, denoted by integers i, j, k 
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These equations are iteratively solved in a leapfrog manner, alternating between computing 
the E and H fields at subsequent Δt/2 intervals. The grid sizes and time step in 2D 
simulations are set Δx =Δy and Δt = Δx/2. 
The method for implementing FDTD models of dispersive materials utilizes ADE equations 
which describe the time variation of the electric current densities (Taflove & Hagness, 2005). 
These equations are time-stepped synchronously with Maxwell’s equations. ADE-FDTD 
method is a second-order accurate method.  
Consider a dispersive medium whose Ampere’s Law can be expressed as  

 0
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E tH t E t J t
t

  


   
 
  

                         (23) 

 
Photonic Band Structure and Transmittance of the Superconductor Photonic Crystal 

 

309 

where ( )pJ t


 is the polarization current. The goal of the ADE technique is to develop a 
simple time-stepping scheme for ( )pJ t


. In our superconductor system, szJ


 and nzJ


contribute 

to E


 and pJ


, respectively, so Eq. (23) can be rewritten as  
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Another time-dependent Maxwell’s curl equation is  
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where μ(x,y) is the position dependent permeability of the material. Eqs. (24) and (25) can 
be discretized in two-dimensional space and time by the Yee-cell technique(Yee, 1966). 
Eqs. (1) and (2) are the required ADEs for szJ


 and nzJ


. They both can be easily and 

accurately implemented in an FDTD code using the semi-implicit scheme where fields at 
time-step n+1 are created and updated by fields known at time-step n. Then, we 
implement Eqs. (1) and (2) in an FDTD code by finite differences, centered at time-step 
n+1/2:  
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Solving Eqs. (26) and (27) for 1
,|n

sz i jJ   and 1
,|n

nz i jJ  , we obtain 
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Then we can evaluate Eq. (24) at time-step n + 1/2: 
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Applying Eq. (30) into the implementation of Eq. (25) in an FDTD code by finite differences, 
we obtain the E fields at time-step n+1: 
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These equations are iteratively solved in a leapfrog manner, alternating between computing 
the E and H fields at subsequent Δt/2 intervals. The grid sizes and time step in 2D 
simulations are set Δx =Δy and Δt = Δx/2. 
The method for implementing FDTD models of dispersive materials utilizes ADE equations 
which describe the time variation of the electric current densities (Taflove & Hagness, 2005). 
These equations are time-stepped synchronously with Maxwell’s equations. ADE-FDTD 
method is a second-order accurate method.  
Consider a dispersive medium whose Ampere’s Law can be expressed as  
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where ( )pJ t


 is the polarization current. The goal of the ADE technique is to develop a 
simple time-stepping scheme for ( )pJ t


. In our superconductor system, szJ
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contribute 

to E


 and pJ


, respectively, so Eq. (23) can be rewritten as  
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Another time-dependent Maxwell’s curl equation is  
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where μ(x,y) is the position dependent permeability of the material. Eqs. (24) and (25) can 
be discretized in two-dimensional space and time by the Yee-cell technique(Yee, 1966). 
Eqs. (1) and (2) are the required ADEs for szJ


 and nzJ


. They both can be easily and 

accurately implemented in an FDTD code using the semi-implicit scheme where fields at 
time-step n+1 are created and updated by fields known at time-step n. Then, we 
implement Eqs. (1) and (2) in an FDTD code by finite differences, centered at time-step 
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Then we can evaluate Eq. (24) at time-step n + 1/2: 
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Applying Eq. (30) into the implementation of Eq. (25) in an FDTD code by finite differences, 
we obtain the E fields at time-step n+1: 
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Thus, the ADE-FDTD algorithm for calculating dispersive media has three processes. 
Starting with the assumed known values of zE


, n

szJ


, n
nzJ


, and 1 2nH  , we first calculate the 
new 1n

zE   components using Eq. (31). Next, we calculate the new 1n
szJ   and 1n

nzJ   components 
using Eqs. (28) and (29). Finally, 3 2n

xH   is obtained from 1 2n
xH   and 1n

zE   by using Eq. (30). 
3 2n

yH   is updated as 3 2n
xH   be done.  

In the end of this section, let us return to discuss the numerical stability. We choose the two-
dimensional cell space steps, i.e. Δx and Δy, and the time step Δt based on the required 
accuracy. The space step is usually chosen less one twentieth of the smallest wavelength in 
order to avoid the non-physical oscillation. The time step must satisfy the well-known 
“Courant Condition”: 

 
1

2 2
max ,

1 1 1
( ) ( )

t
V x y


 

   
   

                             (32) 

where Vmax is the maximum wave velocity in the computational domain. 

5. The transmission of the finite photonic crystal composed of the 
superconductor 

In this section, the ADE-FDTD method is used to calculate the transmission of the finite 
thickness PhC from the frequency 0.01 to 1.00 (2πc/a). As we know, the PBS represents the 
existing mode with photon energy inside the infinite PhC; but in practice, the thickness of a 
PhC is always finite. So it is necessarily to calculate the transmission and further compare to 
the PBS in the previous section. This also verifies calculations of the PBS through the ADE-
FDTD method. The triangular PhC is shown in Fig. 1 in which the interface is along the ΓΜ 
direction (x-direction). Light is normally incident and propagates along the ΓΚ direction (y-
direction). The numbers of layers along the x- and y-directions are 40 and 30, respectively. 
The lattice constant along the x-direction is a1 and that along y-direction a2. We choose a2 = a 
= 100 μm and a1 = 3 a2. For simplicity, the square unit cell ΔxΔy are used in the ADE-FDTD 
calculations where Δx =Δy = a/30. The time increment is Δt = Δx/2c. The Gaussian wave is 
supposed to be incident from air on the PhC. The transmissions from 0.01 to 1.00 (2πc/a) are 
shown in Fig. 4. The increment of the frequency is 0.005 (2πc/a). In this simulation, we 
consider both currents szJ


 and nzJ


. The contribution of the current szJ


 in the calculations is 

dominant and that of the current nzJ


 is very small. It can be seen that almost zero 
transmission below frequency 0.16 (2πc/a) matches the prediction of the PBS. All 
transmissions are more than 0.80 at frequencies from 0.16 to 0.33 (2πc/a). This frequency 
region just corresponds to the first photonic band, in which the highest transmission is close 
to 1.0 at 0.28 (2πc/a). The second PBG occurs at frequencies between 0.33 and 0.47 (2πc/a). It 
can be seen that the transmission dramatically drops to nearly zero at 0.33 (2πc/a) and then 
continues almost zero until 0.47 (2πc/a). The second and third bands both occupy the 
frequency region from 0.47 to 0.59 (2πc/a), so the transmission becomes larger in this 
frequency region. From the PBS, we can predict that another sharp drop should take place in 
a narrow region between 0.59 and 0.61 (2πc/a), which is just the third PBG. A sharp drop 
after 0.59 (2πc/a) is indeed investigated and then rapid rise after 0.61 (2πc/a) from the ADE-
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FDTD calculations. The frequency region above 0.61 (2πc/a) and below 1.00 (2πc/a) is 
occupied by several bands. Hence, the most parts of this frequency region should have non-
zero transmission. 
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Fig. 4. Transmissions calculated by the FDTD method when the Gaussian wave is incident 
from air into the PhC. The radius of cylinders is 0.2a and the lattice constant a is 100 μm. We 
set Δx = a/30 and 30 layers in the propagation direction. 
 

 
Fig. 5. The transmission and reflection when the electromagnetic wave propagates through 
three media including two interfaces. 

Another possible low transmission predicted by the PBS occurs in the vicinity of the 
intersection between the fifth and sixth bands. In Fig. 4, these two bands intersect at the Γ 
point of the first Brillouin zone when the frequency is 0.86 (2πc/a). Because the modes in the 
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where Vmax is the maximum wave velocity in the computational domain. 
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occupied by several bands. Hence, the most parts of this frequency region should have non-
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Fig. 4. Transmissions calculated by the FDTD method when the Gaussian wave is incident 
from air into the PhC. The radius of cylinders is 0.2a and the lattice constant a is 100 μm. We 
set Δx = a/30 and 30 layers in the propagation direction. 
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PhC only occupy k=0 states, the density of states (DOS) is very small at the intersection. On 
the other hand, from the viewpoint of the effectively refracted index of the PhC, they have 
very small effectively refracted indices in the vicinity of the intersection. Hence, the 
multilayer model instead of DOS can be used to explain the extremely low transmissions. In 
our calculations, the PhC is sandwiched between two homogeneous media. If the PhC is 
replaced with an effective homogeneous medium (Pei et al., 2011a, 2011b), it can define the 
effectively dielectric constant. εpc, effectively magnetic permeability μpc, effectively refracted 
index npc, and effective impedance ηpc in the normally incident case. The effective refracted 
index and effective impedance are defined as pc pc pcn    and pc pc pc   for the 
positive refraction, respectively. For the negative refraction, the refracted index and effective 
impedance are defined as ( )( )pc pc pcn      and ( ) ( )pc pc pc      (Engheta & 
Ziolkowski, 2006). The relation between the effectively refracted index and effective 
impedance is  

 .pc pc pcn                                      (33) 

The transmission and reflection become the problem of multiple scattering by interfaces as 
shown in Fig. 5 (Moreno, 2002). The total transmitted coefficient of the system consisting of 
one finite and two semi-infinite media with two interfaces is (Yariv & Yeh, 2002) 
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where kpc=npcω/c and L is the length of the PhC along the y direction. The r12, r23, t12, and t23 
are defined as  
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where i i i    and t t t    are the impedances of the incident region and 
transmitted region, respectively. The incident and transmitted regions are both air here, so 
the ηi = ηt. If the effectively refracted index of the PhC is zero in Eq. (33), either εpc or μpc has 
to be zero. It deduces that ηpc is zero if μpc=0, and ηpc is infinite if εpc=0. By calculations, the 
effectively refracted index at the intersection of two bands is zero as well as the 
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transmission. We can further check this point of view by using the ADE-FDTD method at 
0.86 (2πc/a). The result shows that most of the electromagnetic wave cannot pass through the 
first interface between the incident region and the PhC. According to the above discussion 
of transmission and Eq. (37), the zero t12 deduces zero effective impedance ηpc. Due to ηpc=0, 
we have a non-zero εpc and a zero μpc here. 
 

                                      
Fig. 6. The determination of the refracted wave vector and refracted angle by the 
conservation of wave vector parallel to the interface. The outer circle represents the EFS with 
frequency ω in air, and the inner one the EFS with frequency ω in the PhC. The line is 
perpendicular to the interface along the ΓΜ direction.  

From the ADE-FDTD calculation in Fig. 4, we find out that the extremely low transmission 
not only takes place at the intersection, but also extends to the vicinity. They locate at 
frequencies between 0.80 and 0.88 (2πc/a). To explain it we should calculate the effectively 
refracted indices in this frequency region. The effectively refracted indices can be 
determined from EFSs. According to the conservation rule, the incident and the refracted 
wave vectors are continuous for the tangential components parallel to the interface. Given 
the incident wave vector and an incident angle, the refracted wave vector and the refracted 
angle will be determined. How to determine the refracted wave vector and refracted angle 
by the conservation rule is shown in Fig. 6. The incident and refracted waves are on 
different sides of the normal line, so it is the positive refraction. By applying Snell’s law, the 
effectively refracted index can be further determined. But traditional Snell’s law cannot be 
applied if the EFSs move inward with an increasing frequency (Notomi, 2000). It needs to 
add minus sign on the effectively refracted index. Figs. 7–10 show the 3D EFSs of the fourth 
to seventh photonic bands in the first Brillouin zone. It can be seen that the frequency range 
of 3D EFSs matches the calculation in Fig. 3. They all form a bell shape. Some erect upward 
and some erect downward. The upward bell usually corresponds to the positive refraction 
and the downward bell usually corresponds to the negative refraction.  
Crosscutting the 3D EFS at a certain frequency reduces to a two-dimensional contour. Thus, 
we obtain a lot of kx and ky at the same frequency drawn in the two-dimensional plane. Each 
point on the contour is the allowed propagating mode in the PhC for the chosen frequency. 
In the following, we further discuss the extremely low transmission at frequencies from 0.80 
to 0.88 (2πc/a). EFSs of frequencies 0.81, 0.83, and 0.85 (2πc/a) for discussions are shown in 
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PhC only occupy k=0 states, the density of states (DOS) is very small at the intersection. On 
the other hand, from the viewpoint of the effectively refracted index of the PhC, they have 
very small effectively refracted indices in the vicinity of the intersection. Hence, the 
multilayer model instead of DOS can be used to explain the extremely low transmissions. In 
our calculations, the PhC is sandwiched between two homogeneous media. If the PhC is 
replaced with an effective homogeneous medium (Pei et al., 2011a, 2011b), it can define the 
effectively dielectric constant. εpc, effectively magnetic permeability μpc, effectively refracted 
index npc, and effective impedance ηpc in the normally incident case. The effective refracted 
index and effective impedance are defined as pc pc pcn    and pc pc pc   for the 
positive refraction, respectively. For the negative refraction, the refracted index and effective 
impedance are defined as ( )( )pc pc pcn      and ( ) ( )pc pc pc      (Engheta & 
Ziolkowski, 2006). The relation between the effectively refracted index and effective 
impedance is  

 .pc pc pcn                                      (33) 

The transmission and reflection become the problem of multiple scattering by interfaces as 
shown in Fig. 5 (Moreno, 2002). The total transmitted coefficient of the system consisting of 
one finite and two semi-infinite media with two interfaces is (Yariv & Yeh, 2002) 
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where kpc=npcω/c and L is the length of the PhC along the y direction. The r12, r23, t12, and t23 
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where i i i    and t t t    are the impedances of the incident region and 
transmitted region, respectively. The incident and transmitted regions are both air here, so 
the ηi = ηt. If the effectively refracted index of the PhC is zero in Eq. (33), either εpc or μpc has 
to be zero. It deduces that ηpc is zero if μpc=0, and ηpc is infinite if εpc=0. By calculations, the 
effectively refracted index at the intersection of two bands is zero as well as the 
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transmission. We can further check this point of view by using the ADE-FDTD method at 
0.86 (2πc/a). The result shows that most of the electromagnetic wave cannot pass through the 
first interface between the incident region and the PhC. According to the above discussion 
of transmission and Eq. (37), the zero t12 deduces zero effective impedance ηpc. Due to ηpc=0, 
we have a non-zero εpc and a zero μpc here. 
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Figs. 11–13. A large circle drawn at the center in each figure represents the FES of air at the 
same frequency. All EFSs of air in these three figures have larger radius than those in the 
PhC. If we use the conservation rule mentioned before, they all result in the same conclusion 
that the refracted angle is larger than the incident angle. It also indicates that the absolute 
value of the effectively refracted index is smaller than 1.0. Because each EFS shrinks with an 
increasing frequency, the effectively refracted index is negative. Therefore, the negative 
refraction takes place here. When the frequency is higher, the shape of the EFS of the fifth 
photonic band is closer to a circle. The circular EFS means that the PhC can be considered as 
a homogeneous medium at this frequency. The relations between the incident and refracted 
angles for these three frequencies are shown in Figs. 15(a)-(c). On the one hand, the lower 
curve of each figure shows the negative refraction, where the refracted angle is defined as 
negative for convenience. The negative angles are calculated from lines intersecting with the 
EFSs in the first Brillouin zone as shown in Figs. 11-13. It can be seen that the relation 
between the incident angle and refracted angle is much like that in a homogeneous medium. 
On the other hand, the upper curves for a larger incident angle in Fig. 15 (a) and (b) show 
the normal refraction with positive refracted angle. They are calculated from lines 
intersecting with the EFSs in the right repeated Brillouin zone as shown in Figs. 11-13. 
 

 
Fig. 7. The EFS of the fourth photonic band in the first Brillouin zone. 
 

 
Fig. 8. The EFS of the fifth photonic band in the first Brillouin zone. 
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Fig. 9. The EFS of the sixth photonic band in the first Brillouin zone. 

 

 
Fig. 10. The EFS of the seventh photonic band in the first Brillouin zone. 

Next, we calculate the effectively refracted index varying with the incident angle only for 
negative refraction as shown in Fig. 16. From Figs. 15(a)-(c), the normally incident case belongs 
to negative refraction. It can be found out that the effectively refracted indices of three 
frequencies 0.81, 0.83, and 0.85 (2πc/a) at incident angle 0° are -0.31, -0.30, and -0.16, 
respectively. Using Eq. (33), we can calculate these three corresponding effective impedances. 
But we do not explicitly know the effectively dielectric constants for these three frequencies at 
normal incidence. However, according to the previous discussion about the normal incidence 
at 0.86 (2πc/a), we have the conclusion that the effective impedance ηpc is zero with a zero μpc 
and a non-zero εpc. Utilizing the similar explanation and a little correction, the effective 
impedance at 0.85 (2πc/a) should be very close to zero with non-zero μpc and εpc. The conclusion 
can also be applied to frequencies 0.81 and 0.83 (2πc/a). As a result, the effective impedances in 
the frequency range from 0.81 to 0.85 (2πc/a) are very small. Using Eqs. (34)-(38), we obtain 
extremely low transmissions at frequencies from 0.81 to 0.85 (2πc/a).  

6. The internal-field expansion method 
In this section, we introduce the internal-field expansion method (IFEM) to calculate the 
transmission of the finite thickness PhC (Sakoda, 1995a, 1995b, 2004). This method is based on 
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Fig. 11. The EFS of the fifth photonic band at 0.81 (2πc/a) in the repeated Brillouin zone. The 
largest circle at the center represents the FES of air with the same frequency. 

 

 
Fig. 12. The EFS of the fifth photonic band at 0.83 (2πc/a) in the repeated Brillouin zone. The 
largest circle at the center represents the FES of air with the same frequency. 

 

 
Fig. 13. The EFS of the fifth photonic band at 0.85 (2πc/a) in the repeated Brillouin zone. The 
largest circle at the center represents the FES of air with the same frequency. 
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Fig. 14. EFSs of the fifth photonic band when frequencies are 0.81, 0.83, and 0.85 (2πc/a). 
 

 
                                                (a)                      (b)                      (c) 
Fig. 15. Refracted angles vs. incident angles calculated from Figs. 11–13 for T = 5 K at (a) 
0.81, (b) 0.83, and (c) 0.85 (2πc/a). 
 

 
Fig. 16. Effectively refracted indices versus incident angles at 0.81, 0.83, and 0.85 (2πc/a). 
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Fig. 11. The EFS of the fifth photonic band at 0.81 (2πc/a) in the repeated Brillouin zone. The 
largest circle at the center represents the FES of air with the same frequency. 

 

 
Fig. 12. The EFS of the fifth photonic band at 0.83 (2πc/a) in the repeated Brillouin zone. The 
largest circle at the center represents the FES of air with the same frequency. 

 

 
Fig. 13. The EFS of the fifth photonic band at 0.85 (2πc/a) in the repeated Brillouin zone. The 
largest circle at the center represents the FES of air with the same frequency. 
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the internal fields expanded in Fourier series. We consider a two-dimensional PhC 
composed of a triangular array of air cylinders with radius of r in a dielectric background. 
The dielectric constants of the cylinders and the background are εa and εb, respectively. The 
infinitely extended direction of air holes is parallel to the z-axis. The PhC is infinitely 
extended in the x-direction and the width of the PhC in the y-direction is finite. Therefore, 
two dielectric-PhC interfaces exist at the left and right sides of the PhC. a1 and a2 are the 
lattice periods along the x- and y- directions, respectively. The region from the interface to 
the edge of the nearest cylinder is called the edge region, in which the width is d. The PhC 
has two edge regions at the left and right sides. The other region including all the cylinders 
is called the middle region. The total width L of the PhC in the y-direction is L = 2(r + d) + 
(NL - 0.5)a2, where NL is the periodic number. So the total layers of cylinders are 2NL. The 
configuration of the PhC is shown in Fig. 17. The first Brillouin zone is shown at the up-right 
corner. The region at the left-handed side of the PhC is called the incident region, and that at 
the right-handed side of the PhC is called the transmitted region. The plane wave in the 
incident region is incident on the left interface. After propagating through the PhC, the 
transmitted wave is through the right interface and into the transmitted region. 
 

 
Fig. 17. The PhC structure with finite length in the y-direction and infinite length in the x-
direction. 

Because the two-fluid model is only suitable for the currents flowing along the cylinder 
direction, we only discuss an E-polarized plane wave incident upon the superconductor 
PhC here. Two interfaces are along the ΓΜ direction of the PhC. The 2D wave vector of the 
incident wave is denoted by ik


= (kisinθ, kicosθ) = (ki,x, , ki,y), where θ is the incident angle and 

i ik c  . εi is the dielectric constant of the incident region, ω is the angular frequency of 
the incident wave, and c is the light velocity in vacuum. The wave in the incident region 
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consists of the incident plane wave and the reflected Bragg waves. In the transmitted region, 
the wave is composed of the transmitted Bragg waves. The reflected and transmitted Bragg 
waves are represented as space harmonics with the wave vector 
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reflected and transmitted waves of order n, respectively, Gn = 2nπ/a1 is the reciprocal lattice 
vector corresponding to the periodicity a1, and n is an integer. Each component of the Eq. 
(39) is called the nth order phase matching condition. It means that the periodicity along the 
ΓΜ direction is like a diffraction grating. The wave-vector components of the nth order 
Bragg reflected and transmitted waves normal to the interface are 
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Here, t tk c  and εt are the transmitted wave vector and dielectric constant of the 
transmitted region, respectively. The electric fields in the incident region and the 
transmitted region are given by 
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where E0, Rn, and Tn are the amplitudes of the electric field of the incident wave, the 
reflected Bragg wave, and the transmitted Bragg wave, respectively. The electric field inside 
the PhC satisfies the following equation derived from Maxwell’s equations: 
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where δnm is the Kronecker’s δ. The boundary value function fE(x,y) satisfies the boundary 
conditions at each interface: 
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The problem of unknown Epc becomes to deal with the internal field. We have to solve Eq. 
(48) to obtain Epc field in the PhC. If we expand ψE(x,y) and ε-1(x,y,ω) in Fourier series, we 
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Then the electric field in the PhC is expressed as 
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If we substitute Eqs. (45), (50), and (51) into Eq. (48) and compare the independent Fourier 
components, the equation about coefficients Rn, Tn, and Anm are obtained as follows: 
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where κn,m is the Fourier coefficient of the inverse of ε(x,y,ω). Next, we calculate the Fourier 
coefficients of the configuration shown in Fig. 17. In our case, we have 
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where εa=εs(ω) and ( , , )u j l l is the center of each cylinder, which are 
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The S here is the spatial function of the cylinder. The inverse of ε(x,y,ω) now is extended 
symmetrically to the negative y region (-L≦y≦0) to calculate the Fourier coefficients. Then, 
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where ( , )nm nG G m L


. After calculating the integration, we obtain 
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where f is the filling fraction of the superconductor rods in the calculation domain:  

 2
1 .2 Lf N R a L                                (63) 

Finally, we want to solve the unknown coefficients, Anm, Rn, and Tn. Eq. (53) is not enough to 
solve all unknown coefficients because the number of equations is less than the number of 
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where δnm is the Kronecker’s δ. The boundary value function fE(x,y) satisfies the boundary 
conditions at each interface: 
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If we substitute Eqs. (45), (50), and (51) into Eq. (48) and compare the independent Fourier 
components, the equation about coefficients Rn, Tn, and Anm are obtained as follows: 
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where κn,m is the Fourier coefficient of the inverse of ε(x,y,ω). Next, we calculate the Fourier 
coefficients of the configuration shown in Fig. 17. In our case, we have 
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where f is the filling fraction of the superconductor rods in the calculation domain:  
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Finally, we want to solve the unknown coefficients, Anm, Rn, and Tn. Eq. (53) is not enough to 
solve all unknown coefficients because the number of equations is less than the number of 
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all unknown coefficients. We need other boundary conditions to solve all Anm, Rn, and Tn. 
The reminder boundary conditions is the continuity of the x components of the magnetic 
field, which leads to  
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Follow the calculation processes and consider the boundary conditions for the E-polarized 
mode, we can determine the unknown coefficients, Anm, Rn, and Tn. In practical calculation, 
we restrict the Fourier expansion up to n = ±N and m = M. So there are (2N + 1)M terms in 
the Fourier expansion. The total number of the unknown coefficients is (2N + 1)(M + 2). 
From Eqs. (42) and (43) and the boundary conditions, we also obtain (2N + 1)(M + 2) 
independent equations. Solving these independent equations can obtain these coefficients. 
To discuss the reflection and transmission along the y-direction, we can sum up the y-
components of the Poynting vectors of all waves and consider the energy flow conservation 
across these two interfaces. The y component of the wave vector with an imaginary value 
represents the evanescent wave in the incident region or the transmitted region, so it’s not 
necessary to consider this kind of wave in the summation. Then, we obtain the following 
relations for the E-polarized mode: 
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where n and n  represent the summation over the Bragg waves with real wave vectors. 
Then, we can use the Eq. (52) to define the transmission and reflection: 
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Eqs. (67) and (68) will be used in Section 7. 

7. The transmission calculated by internal-field expansion method 
In previous Section, we have introduced the internal-field expansion method to calculate the 
finite thickness PhC. This method used to calculate the transmission of the electromagnetic 
wave propagating through the PhC is faster than the FDTD method if the size of the (2N + 
1)(M + 2) × (2N + 1)(M + 2) matrix is not very large. In the original references (Sakoda, 
1995a, 1995b, 2004), the author concludes that this method can be used for the general two-
dimensional PhC. In the following, we use this method to calculate transmissions of the 
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superconductor PhC. Obviously, the boundary conditions of the magnetic field in Eqs. (64) 
and (65) are no more suitable for the superconductor PhC if superconductor rods are 
embedded in air. It is the factor that the boundary conditions of the magnetic field in this 
method are dealt with at the interface between two homogeneous media but not between 
cylinders and a homogeneous medium. In the latter half part of this section, we try to 
overcome this problem by adding a virtual edge region. At the beginning, transmissions are 
directly calculated without adding a virtual edge region. Then we investigate the effect on 
transmissions after adding it.  
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Fig. 18. The transmission versus the M value when the frequency is 0.54 (2πc/a) without a 
virtual edge region. 
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Fig. 19. Transmissions versus frequency with N=5 and M=600 without a virtual edge region. 

The same parameters as those in the previous section are used. The final results of this 
method are compared with those of the ADE-FDTD method. The wave is supposed to be 
normally incident on the superconductor PhC, and the propagation direction is along the ΓΚ 
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superconductor PhC. Obviously, the boundary conditions of the magnetic field in Eqs. (64) 
and (65) are no more suitable for the superconductor PhC if superconductor rods are 
embedded in air. It is the factor that the boundary conditions of the magnetic field in this 
method are dealt with at the interface between two homogeneous media but not between 
cylinders and a homogeneous medium. In the latter half part of this section, we try to 
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Fig. 18. The transmission versus the M value when the frequency is 0.54 (2πc/a) without a 
virtual edge region. 
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Fig. 19. Transmissions versus frequency with N=5 and M=600 without a virtual edge region. 
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method are compared with those of the ADE-FDTD method. The wave is supposed to be 
normally incident on the superconductor PhC, and the propagation direction is along the ΓΚ 
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direction (y-direction) perpendicular to the interface which is along the ΓΜ direction (x-
direction). The number of layers along the x-direction is assumed to be infinite. The number 
of layers along the y-direction is still 30. The lattice constant along the x-direction is a1 and 
that along the y-direction is a2. We choose a2 = a = 100 μm and a1 = 3 a2. The radius of all 
superconductor cylinders is 0.2a. 
First, the width of the edge region d is considered to be zero. N is fixed at 5 and M is 
determined at the situation when the transmission is convergent. The frequency is chosen at 
0.54 (2πc/a). In Fig. 18, it is found out that M=600 is enough for calculation. Then N=5 and 
M=600 are used to calculate transmissions from 0.01 to 1.00 (2πc/a). The transmissions of the 
internal-field expansion method have some differences with those of the ADE-FDTD 
method shown in Fig. 4. The transmissions at frequencies below 0.17 (2πc/a) are not all close 
to zero. They are more than 0.1 when the frequencies are below 0.035 (2πc/a) and at 0.105 
(2πc/a). These results are not coincident with the results of the PBS and the ADE-FDTD 
method. From the calculations of the PBS before, no propagation modes exist below 0.16 
(2πc/a). The calculations of the ADE-FDTD method also confirm this conclusion even if the 
thickness of the PhC is finite. It means that the internal-field expansion method has some 
errors at the low frequency region. In the frequency region from 0.17 to 0.33 (2πc/a), 
transmissions of the internal-field expansion method and the ADE-FDTD method almost 
match each other except for the value at 0.175 (2πc/a).  
The region from 0.33 to 0.47 (2πc/a) is the PBG region. It is found out that this region shifts to 
the right in the internal-field expansion method. The region extends to 0.53 (2πc/a) in Fig. 19. 
After the PBG region, the PBS displays two photonic bands existing between 0.47 and 0.595 
(2πc/a), and a narrow PBG region between 0.595 and 0.605 (2πc/a). However, the 
transmissions in Fig. 19 show that high values exist between 0.53 and 0.64 (2πc/a) and nearly 
zero between 0.64 and 0.65 (2πc/a). In this region, they show a shift about 0.035 (2πc/a) 
forward higher frequency. From 0.65 to 0.845 (2πc/a), the trend of the transmissions in Fig. 19 
is much similar to that of the ADE-FDTD method but the frequency region shifts to the right 
about 0.045 (2πc/a). In frequencies from 0.80 to 0.895 (2πc/a), the transmissions of the ADE-
FDTD method show the third zero-transmission region. This region exists between 0.845 
and 0.955 (2πc/a) in Fig. 19, which is 0.02 (2πc/a) larger than that of the ADE-FDTD method.   
Next, we try to extend the boundary away from the edge of the cylinder by increasing the 
width d of the edge region. It is an imaginary boundary between air and the superconductor 
PhC because the background medium of the superconductor PhC is also air. In fact, such 
edge region doesn’t exist. The nonzero edge region implies that the results should have 
something to do with the width of it. Several values of d=0.5a, 1.0a, 1.5a, and 2.0a are 
calculated and all of them are shown in Figs. 5-20(a)-(d). After comparing all results, we find 
out that the nonzero edge region only affects transmissions below 0.17 (2πc/a), where the 
dielectric function in Eq. (9) is negative. The transmissions above 0.17 (2πc/a) are almost 
unchanged. So it explicitly reveals that this method is not suitable for negative dielectric 
function. 
To summarize, some transmissions of the internal-field expansion method are close to those 
of the ADE-FDTD method, and some frequency regions have relative shifts between two 
methods. Roughly speaking, the shift is about 0.06 multiplying the frequency, so it is 
obvious that all zero-transmission regions below 1.00 (2πc/a) broaden in the internal-field 
expansion method. In Fig. 21, both results of the internal-field expansion method and the 
ADE-FDTD method are shown, in which the frequency scale of the ADE-FDTD method is 
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(c)                                                                    (d) 

Fig. 20. Transmissions at (a) d = 0.5a, (b) d =1.0a, (c) d = 1.5a, and (d) d = 2.0a, respectively.  
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Fig. 21. The transmission versus the M value when the width of the edge region and 
frequencies are 10.6a and 0.1 (2πc/a), respectively.  
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superconductor cylinders is 0.2a. 
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edge region doesn’t exist. The nonzero edge region implies that the results should have 
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out that the nonzero edge region only affects transmissions below 0.17 (2πc/a), where the 
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function. 
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Fig. 20. Transmissions at (a) d = 0.5a, (b) d =1.0a, (c) d = 1.5a, and (d) d = 2.0a, respectively.  
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Fig. 21. The transmission versus the M value when the width of the edge region and 
frequencies are 10.6a and 0.1 (2πc/a), respectively.  
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multiplied by 1.06. It can be seen that most results of two methods can match each other 
much better after 0.17 (2πc/a). We find that the calculations of the internal-field expansion 
method exists some errors, which need to be overcome. It still cannot solve the problem, 
even the edge region is added in calculations. In order to match the results of the PBS and 
the ADE-FDTD method, the internal-field expansion method needs to be modified in some 
way.  

8. Conclusion 

This study focuses on the transmissions of the two-dimensional superconductor PhC. The 
PhC, composed of copper oxide high-temperature superconductor rods in a triangular array 
in air, can be tunable utilizing the temperature modulation. We use the plane wave 
expansion method introduced in Section 2 to calculate the PBS of it, which is much like a 
metallic PhC system described by the Drude’s model if the normal conducting current is 
ignored. The frequency of the fundamental mode in the superconductor PhC is far above 
zero. It is the reason that the dielectric function is positive when frequency is more than 

( , )s
p x y , the plasma frequency of the superconducting electron. Because both the electric 

susceptibility and magnetic permeability have to be either positive or negative, light has the 
ability to propagate through the superconductor.  
Then we use the ADE-FDTD method introduced in Section 4 to calculate the transmission 
when light is normally incident from air into the superconductor PhC. The results of the ADE-
FDTD method are consistent with the PBS and also verify the frequency of the fundamental 
mode is more than ( , )s

p x y , which is 0.17 (2πc/a) in our demonstrated case. It can be seen that 
the extremely low transmissions correspond to the PBG regions. Some extremely low 
transmissions exist at the fifth and sixth bands. They can be explained by treating the 
superconductor PhC as an effective medium sandwiched between two air regions. 
Finally, we use the internal-field expansion method developed by Sakoda to calculate the 
transmission when light is also normally incident from air into the superconductor PhC. It 
can be found out that transmissions below 0.17 (2πc/a) are not all close to zero. These non-
zero transmissions can’t reach convergent values even we use large M in calculations. The 
results point out that this method can’t be directly applied on the negative dielectric 
constant media. We try to increase the width of the edge region to overcome this problem, 
but it is useless. Transmissions above 0.17 (2πc/a) can reach stable values as long as M is 
large enough. However, the frequency scale has to reduce 1.06 times in order to match the 
results of the ADE-FDTD method. To sum up, this method is successful to calculate the 
transmission of the PhC with air cylinders embedded in the homogeneous medium but not 
suitable very well for the superconductor PhC. One reason is that the boundary conditions 
between the superconductor PhC and air are not correct. So this method needs modification 
to obtain correct transmissions.  
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1. Introduction 

High pinning superconductors (HPSC) hold much promise for power engineering. There are 
some annoying consequences of up-to-date unequal state of these materials electrodynamics. 
The main one is for lack of superconducting winding engineering environment. Applied 
superconductivity is still a field of empirical activity. There are two ways for a reliable design 
developing, either using of steady state stabilized conductor with a lot of normal metal, or 
protracted trial-and-error manufacturing of full-scale model windings. Both ways are too 
expensive. In the narrow sense, new approaches are called for effective computation of real 
conductor stability, loss, etc. Probably in the more wide sense, putting the fundamentals in 
order will provide more stability to the whole applied superconductivity for opposition from 
new wasteful initiatives.The state of HPSC physics gives another cause for concerning. Now it 
is a vast collection of incoherent effects and several options of mezoscopic models for each one.  
The analysis of the situation has uncovered the following probable causes of the modern 
state of the electrodynamics: 1. the most popular constitutive law so called thermal  
activation model [Anderson 1962], is not only inconvenient  but  most likely unequal; 2 a 
good deal of discovered effects is conditioned by incorrect data processing.   
A detailed examination [Klimenko et al., 2005] had shown that in fact the thermal activation  
hypothesis had neither grounds nor verifications. However, taking into account the 
fabulous popularity of the hypothesis we considered necessary to revise all the points from 
the beginning [Klimenko et al., 2005].  
This paper contains an alternative constitutive law and reasoning in its favour, general setting 
up the problem of quasisteady HPSC electrodynamics, and discussion of some features of 
HPSC which must be kept in mind during experiment setting up and data processing. 

2. HPSC constitutive law (Nb-Ti) 
There were several reasons for selecting a niobium–titanium as the material for constitutive 
law revising.  It is analogous to niobium–zirconium wires widely used in basic experiments 
favouring establishment of the thermal activation model. However, this is not the only 
ground for this choice: we believe niobium–titanium wire and foil to be the most suitable 
materials for studying the transition characteristics of superconductors with high pinning as 
well as the problems of their electrodynamics. The high level of commercial technology of 
niobium–titanium alloys provides relatively homogeneous materials exhibiting uniform 
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2. HPSC constitutive law (Nb-Ti) 
There were several reasons for selecting a niobium–titanium as the material for constitutive 
law revising.  It is analogous to niobium–zirconium wires widely used in basic experiments 
favouring establishment of the thermal activation model. However, this is not the only 
ground for this choice: we believe niobium–titanium wire and foil to be the most suitable 
materials for studying the transition characteristics of superconductors with high pinning as 
well as the problems of their electrodynamics. The high level of commercial technology of 
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properties along the wire length and the foil area. The niobium–titanium conductors are 
convenient for pinning anisotropy studying. Sufficiently high anisotropic pinning is not 
complicated with critical field anisotropy. No other commercially available material offers 
these advantages. These advantages make it possible to study the general laws of 
electrodynamics in technical superconductors [Klimenko et al., 1997], which are almost not 
masked by specific features of particular samples. Experiments with niobium–titanium 
wires are not complicated by brittleness and high sensitivity to straining; those are typical 
features of intermetallic compounds and HTSC. On the other hand, niobium–titanium wires 
are by no means a simple material. These wires were displaced from the focus of research, 
not even having been exhaustively studied. Later, it was found that niobium–titanium alloys 
are two-component (as manifested by a difference in the critical fields of the grain body and 
boundaries [Klimenko et al., 2001a]) and are characterized by anisotropic pinning in the 
cross section of a  wire [Klimenko et al., 2001b]. 
We used a commercial monofilament copper coated Nb-50wt%Ti wire 0.15 mm in diameter. 
Superconducting core diameter was 0.12 mm. Several dozens of voltage-current curves were 
recorded in magnetic field range from zero up to Bc2 [Klimenko et al., 2005]. The curves were 
converted into ohm-ampere ones. The latter were linear in semi-logarithmic scale at several 
 

 
Fig. 1. Dependence of reduced resistivity of Nb-Ti wire on magnetic field at zero current 
[11]. The resistivity was obtained by the extrapolation of ohm-ampere curves to zero 
current. Some of the used ohm-ampere curves are shown on a panel. Another panel 
illustrates the extrapolation procedure. 
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orders of resistance values. There were two reasons to use just ohm-ampere curves. Firstly, a 
finite value of resistance being obtained by the curve extrapolation to zero current (Fig.1) 
was  quite natural contrary to a finite voltage value at zero current. The later self-
contradiction of thermal activation model is avoidable by no workarounds 
[Ketterson&Song]. Secondly, this approach  corresponded to usual way of critical values 
determination, say, Tc and Bc2.  
The experimental results were compared with a simplest constitutive law proposed thirty 
years ago [Dorofeev et al., 1980]: 

 �(�� �� �) = ���1 +	������1 + �
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|�|
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traditional form should be replaced with a smooth transition layer. The comparison is not 
complicated because expression (1) contains only one fitting parameter: critical current 
corresponding to effective resistivity equal to a half of normal one at zero temperature and 
zero magnetic field.  In the strict sense, Tc and Bc2 are also fitting parameters, but they must 
be closely alligned to the critical values measured at small current. Fig.2 shows that this 
critical current value is a good constant, as well as parameter δ describing transition width. 
Corresponding to another measurement series [Dorofeev et al., 1979] Fig.3 shows rather a 
vast tablelands of the parameters in dependence on temperature and magnetic field. Their 
rise at low magnetic field governs with pinning anisotropy. It will be discussed in part 5 of 
the paper.  
It follows from (1) that nothing as “true critical current” exists. More likely a certain 
insignificant seed resistivity exists at zero temperature and magnetic fields. The resistivity 
increases exponentially with raising any parameter T, B or j. Fig.1 is a kind of this 
conception confirming. However, the extremely low resistivity is more likely statistics of 
local resistive barriers than the homogeneous property. Anybody will be wrong calculating, 
for example, skin depth by using this resistivity. This value may not be less than λ (length of 
field penetration depth into superconductor).  
An isotropic HPSC is a media which conductivity depends on magnetic field direction 
relative to current. In this case the conductivity must be a tensor. Current density and 
electric field are related through the material equation:  

 �� = ����� (2) 

Where σαβ just is the electrical conductivity tensor.  
According to the general principles, the electrical conductivity tensor for high pinning 
superconductors in magnetic field obeys the condition  

 ���(�) = ���(��) (3)  

The part of the conductivity tensor odd with respect to magnetic field is antisymmetric with 
respect to transposition of indices and determines the physical phenomena such as Hall 
Effect etc. This part does not contribute to the heat generation and is small in 
superconductors. Therefore, we restrict ourselves only with the symmetric part of this 
tensor. For isotropic superconductors in magnetic field the symmetric part may be 
presented in the form  



 
Superconductivity – Theory and Applications 330 

properties along the wire length and the foil area. The niobium–titanium conductors are 
convenient for pinning anisotropy studying. Sufficiently high anisotropic pinning is not 
complicated with critical field anisotropy. No other commercially available material offers 
these advantages. These advantages make it possible to study the general laws of 
electrodynamics in technical superconductors [Klimenko et al., 1997], which are almost not 
masked by specific features of particular samples. Experiments with niobium–titanium 
wires are not complicated by brittleness and high sensitivity to straining; those are typical 
features of intermetallic compounds and HTSC. On the other hand, niobium–titanium wires 
are by no means a simple material. These wires were displaced from the focus of research, 
not even having been exhaustively studied. Later, it was found that niobium–titanium alloys 
are two-component (as manifested by a difference in the critical fields of the grain body and 
boundaries [Klimenko et al., 2001a]) and are characterized by anisotropic pinning in the 
cross section of a  wire [Klimenko et al., 2001b]. 
We used a commercial monofilament copper coated Nb-50wt%Ti wire 0.15 mm in diameter. 
Superconducting core diameter was 0.12 mm. Several dozens of voltage-current curves were 
recorded in magnetic field range from zero up to Bc2 [Klimenko et al., 2005]. The curves were 
converted into ohm-ampere ones. The latter were linear in semi-logarithmic scale at several 
 

 
Fig. 1. Dependence of reduced resistivity of Nb-Ti wire on magnetic field at zero current 
[11]. The resistivity was obtained by the extrapolation of ohm-ampere curves to zero 
current. Some of the used ohm-ampere curves are shown on a panel. Another panel 
illustrates the extrapolation procedure. 

 
Electrodynamics of High Pinning Superconductors 331 

orders of resistance values. There were two reasons to use just ohm-ampere curves. Firstly, a 
finite value of resistance being obtained by the curve extrapolation to zero current (Fig.1) 
was  quite natural contrary to a finite voltage value at zero current. The later self-
contradiction of thermal activation model is avoidable by no workarounds 
[Ketterson&Song]. Secondly, this approach  corresponded to usual way of critical values 
determination, say, Tc and Bc2.  
The experimental results were compared with a simplest constitutive law proposed thirty 
years ago [Dorofeev et al., 1980]: 

 �(�� �� �) = ���1 +	������1 + �
�� +

|�|
��� +

|�|
��
�

� �
�]} (1) 

The law was derived from assumption that a critical surface (��� +
�
��� +

�
��
= 1)		in its 

traditional form should be replaced with a smooth transition layer. The comparison is not 
complicated because expression (1) contains only one fitting parameter: critical current 
corresponding to effective resistivity equal to a half of normal one at zero temperature and 
zero magnetic field.  In the strict sense, Tc and Bc2 are also fitting parameters, but they must 
be closely alligned to the critical values measured at small current. Fig.2 shows that this 
critical current value is a good constant, as well as parameter δ describing transition width. 
Corresponding to another measurement series [Dorofeev et al., 1979] Fig.3 shows rather a 
vast tablelands of the parameters in dependence on temperature and magnetic field. Their 
rise at low magnetic field governs with pinning anisotropy. It will be discussed in part 5 of 
the paper.  
It follows from (1) that nothing as “true critical current” exists. More likely a certain 
insignificant seed resistivity exists at zero temperature and magnetic fields. The resistivity 
increases exponentially with raising any parameter T, B or j. Fig.1 is a kind of this 
conception confirming. However, the extremely low resistivity is more likely statistics of 
local resistive barriers than the homogeneous property. Anybody will be wrong calculating, 
for example, skin depth by using this resistivity. This value may not be less than λ (length of 
field penetration depth into superconductor).  
An isotropic HPSC is a media which conductivity depends on magnetic field direction 
relative to current. In this case the conductivity must be a tensor. Current density and 
electric field are related through the material equation:  

 �� = ����� (2) 

Where σαβ just is the electrical conductivity tensor.  
According to the general principles, the electrical conductivity tensor for high pinning 
superconductors in magnetic field obeys the condition  

 ���(�) = ���(��) (3)  

The part of the conductivity tensor odd with respect to magnetic field is antisymmetric with 
respect to transposition of indices and determines the physical phenomena such as Hall 
Effect etc. This part does not contribute to the heat generation and is small in 
superconductors. Therefore, we restrict ourselves only with the symmetric part of this 
tensor. For isotropic superconductors in magnetic field the symmetric part may be 
presented in the form  



 
Superconductivity – Theory and Applications 332 

 ��� = ������� − ����� � ������ (4) 

Here δαβ is Kronecker delta and b is the unit vector along the magnetic field B. In the normal 
state the electrical conductivity is isotropic, σt = σl = σn, and j = σnE. The first term in the 
right-hand side of (4) refers to the dissipative motion of vortices under the action of Lorentz 
force. The longitudinal part σl in (4) is related to the dissipation processes induced when the 
current flows along magnetic field. Although the longitudinal conductivity σl is well-
established, its influence, as well as the tensor character of HPSC electrical conductivity, is 
commonly neglected in the applied researches. Such approximation holds only when 
current and magnetic field are mutually perpendicular. That is not the case, for example, in 
twisted multifilament wires. 
 

 
 

Fig. 2. The parameters describing Nb-Ti wire transition are surprisingly stable 

In the critical state model, it is assumed that the transition from the superconducting state to 
normal one occurs when physical parameters attain the critical surface  

 �(�, |�|, |�|) = 0 (5) 

where |B|and |j| are modules of a vector. Due to intrinsic textural inhomogeneity of HPSC 
the actually observed transition to resistive state is smoothed at the vicinity of critical state. 
The tensor approach requires generalising of (1) for the transverse and longitudinal parts of 
electrical conductivity in superconductors: 

 �� = ���1 � ��� ���� �� (6) 
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here ��� = {1, � = �
0, � � �  is Kronecker delta. It has nothing common with δ in (1, 6 and 9). By 

analogy with (6-8)  longitudinal conductivity may be written  

 �� = ���1 � ��� ���� �� (9) 

 
Electrodynamics of High Pinning Superconductors 333 

 �� = 1 − �
�� −

|�|
��� −

|��|
�����

 (10) 

 ���� = ������ (11) 

Here σn is the electrical conductivity in the normal state. In this notation the critical surface 
defined by (5) corresponds to σeff = 2σn and parameters Tc, Bc2 and jc/2 are the intercepts of 
the critical surface with reference axes. Parameter δ characterizes the width of a gradual 
kinetic transition from superconducting to normal state. In the limit δ → 0 our scheme tends 
to the critical state model [Bean, 1962]. As δ varies in the range 0.05–0.005, the values of Tc 
and Bc2(0) appear to be close to the related thermodynamic quantities (generally, these 
parameters may be redefined if needed). 
There is no trace of thermal activation process in the experimentally approved HPSC 
constitutive law. An alternative model is statistic one. [Baixeras&Fournet, 1967]. 
 

 
Fig. 3. These parameters weakly depends on temperature as well as on magnetic field.  

It appeared that (1) described well transition of a model multilinked network consisting of 
superconducting elements if their critical temperatures had been normally distributed 
around certain mean value (Fig.4a) [Klimenko, 1983, 1985]. This model bears relation to 
“bulk inhomogeneous” superconductor such as monofilament wire.  Another type of wires 
was current important in eighties. It was multifilament wire with broken filaments. This 
type needed another approach. We proposed regarding it as “longitudinally 
inhomogeneous” [Dorofeev et al., 1980]. 

 � = �� � ����
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� exp	[(�����)���� ���� (12) 

This carrying back makes sense due to far-reaching analogy between voltage-current curves 
of longitudinally inhomogeneous wires and modern HTSC. It would be absurd to look for 
any physical reasons of the analogy. Statistical reason seems more probable. This hypothesis 
helps discussing some features of HTSC, though, certainly, no analogy has evidential force. 
A group of voltage-current curves according to (12) is presented at Fig.4b,c. In semi-
logarithmic scale the curves are parabolas (Fig4b), as it was shown and experimentally 
approved in [Dorofeev et al., 1980]. However, the SC community had preferred straightening 
curves by using logarithmic scale at both coordinates (Fig.4c). This transformation had given 
power behaviour to rather long parts of the curves. This explanation looks less naive than a 
model known as “logarithmic potential well” [Zeldov et al., 1990]. 
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Fig. 4. Om-ampere curves of bulk inhomogeneous (a) and longitudinal inhomogeneous (b,c) 
superconductors. 

An irreversible line is used to consider as one of the important characteristic of HTSC. It is 
assumed that this line separates voltage-current curves with positive and negative 
curvatures, the negative curvature considering as an evidence of the true superconducting 
condition. Fig.4c hints that irreversible line, perhaps, has no real sense. In fact, every curve 
changes its curvature from negative value to positive one at certain resistance level. The 
positive curvature itself arises due to stretching the current coordinate by logarithmic scale 
at low currents.  
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3. Electrodynamics equations 
The electrodynamics of isotropic HPSC may be described in terms of the general 
quasistationary electrodynamics of a continuous media. In fact all the known HPSC are 
anisotropic. However, isotropic electrodynamics is ever considered as a necessary step 
[Klimenko et al., 2010]. 

 ���� = ���
��   (13) 

 ���� = (14) 

 ���� = ��� (15) 

Here E and B are the electric and magnetic fields, respectively, j is the current density, and 
μ0 is the magnetic constant. At a boundary of superconductor 1 and normal metal 2 the 
following components must be continuous 

 �(�) = �(�) � �(�(�)) (16) 

 ��(�) = ��(�) (17) 

 ��(�) = ��(�) (18) 

here n is the unit vector normal to a boundary.  M-is magnetic moment of ideal type II 
superconductor. Ch. Bean [Bean, 1962] was the first, who had neglected this value. In fact, it 
is rather small,  if � = �

� ≫ 1: ( �(�) = 	 �����
(�����)��) 

Instead of electric and magnetic fields, it is more conveniently to use the scalar and vector 
potentials, 

 � = ���� (19) 

 � = �∇� � ��
��  (20) 

In terms of potentials (19) and (20) the equations of electrodynamics are given by 

 ∇�A� = μ�σ��(∇�φ + ���
�� ) (21) 

 ∇� ���� �∇�� + ���
�� �� = � (22) 

The potentials φ and A should be continuous and satisfy boundary conditions (16–18). 
Due to high sensitivity SC conductivity to temperature the electrodynamics equations must 
be supplemented by the heat transfer equation 

 �(�) ���� = 	∇�����(�)∇��� + �(�) (23) 

with Neumann boundary conditions. Here C(T) is the specific heat per unit volume, καβ(T) is 
thermal conductivity, and the heat generation G(T) is determined as 

 �(�) = �� (24) 
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The constitutive law (6,9) permits to enclose the set of equations. 
A package of computer codes was developed on the basis of Eq(21-24) for real geometry and 
heat exchange condition. It provides a possibility of stability and AC loss computation for 
arbitrary cycles of external magnetic field and current. The results will be soon published on 
behalf of the whole team. 

4. 2D voltage-current curves 
The introduced above tensor conductivity is in contradiction with a widespread belief that 
current and electric field are collinear in isotropic superconductor:  � � �� ��. [Carr, 1983].  
W.J. Carr had supposed it as an intuitive generalization of Bean model. However the 
generalisation has appeared wrong. It is right only for the case of magnetic field 
perpendicular to current, as well as Bean model. Indeed moving vortices generate electric 
field in a plane normal to magnetic field. This field must be tilted to the current, if later does 
not lie in the plane. 

 � � [��] � ��[� � �(��)] (25) 

The normal to current electric field component was called “satellite electric field” [Klimenko 
2001a]. Fig.5 brings it clearly. It is significant that the tilt disappears, when the external 
magnetic field exceeds critical value, and the field components become independent. It may 
be the most convincing demonstration of electric field generating by vortices movement in 
superconductors.  
 

 
Fig. 5. The satellite electric field observation at 10 μm Nb-Ti foil covered with 1 μm layer of 
copper (φ=37°) and -the same foil without copper layer (φ=53°). 

Another significant feature is quite large field interval (~2T) in which the tilt falls to zero. It is 
evidence of inhomogeneity of the superconductor. In all likelihood, the critical fields of 
elongated grains bodies and their borders are different. This assumption is supported with 
results of the similar experiment with the same foil samples cut at various angles to rolling 
direction. (Fig.6). One can see pikes in the transition interval. The current flows at angle to the 
superconducting borders and must to cross normal bodies generating transversal electric field. 
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5. Pinning anisotropy 
There are no isotropic HPSC actually. Their electrodynamics is mainly of theoretical interest. 
Real anisotropic pinning brings to a wide variety of phenomena and will provide a lot of 
new “discoveries” if the proper electrodynamics is not developed in the nearest future. 
 

 
Fig. 6. The satellite electric field observation at the same foil samples cut at angle x to the 
rolling direction. 

We cannot yet offer something being equivalent to the theory described in part 3. An 
approach [Klimenko et al., 1997] was developed in frames of critical state model. That time 
we used Critical Lorentz Force for critical state description. Critical Lorentz force (scalar) 
related to unit superconductor volume is a radius of certain closed surface (called “pinning 
surface”) in a space of Lorentz forces. Notice, subsequent reasoning always relates to unit 
superconducting volume. In the case of isotropic superconductor critical Lorentz force 
doesn’t depend on Lorentz force direction and the pinning surface is 3D sphere. In the case 
of anisotropic pinning the critical Lorentz force depends not only on Lorentz force direction 
but also on magnetic field direction. So the pinning surface must be constructed in 5D space: 
three components of magnetic field plus only two components of Lorentz force because the 
Lorentz force is always normal to magnetic field. 
The following procedure was proposed as a simplest option of the pinning 5D-surface 
construction.  It is well known that energy of pinned array of vortices is less than energy of 
free one. It means that the pinning array forms a potential well, which may be described with 
three parameters: height, width and steepness of a potential barrier. The height is an energy 
gain of pinned magnetic flux at rest. The width is a distance between nearby positions of the 
flux with the same energy gain. It is obvious that the width equals to the least of two mean 
values: distance between pinning centers or between vortices. The barrier steepness is a 
maximum derivative of the flux energy with respect to coordinate when the flux is displaced 
from the rest position. If shapes or distribution of pinning centers are anisotropic, the barrier 
parameters are described with tensors corresponding to certain ellipsoids which main 
diameters are aligned with the main directions of the pinning centers array.  
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Tensor U corresponds to the barrier height: 
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The flux energy gain Ub at rest depends on magnetic field direction. It equals U-ellipsoid 
radius collinear to the magnetic field. 
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|�| is a unit vector in magnetic field direction. 

Tenzor L will help to calculate critical Lorentz force in direction l, which is ���� = max	(����),  
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here  ��� = �
���	(�����)

. This effective barrier half-width allows critical Lorentz force calculating: 
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|��|  is a unit vector in Lorentz force direction. and   

 ��� = (�L�)��	 (30) 

 

 
Fig. 7. The depth of potential well as well as the half-width of the potential barrier are 
described either with the symmetrical tensors of second valence or the ellipsoids 
corresponding to the tensors. The pinning surface main 2D cross sections are shown. 
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The effective half-width was assumed a geometrical parameter independent on Ub. 
Experimental data treatment must show, if the assumption was correct.  The complete 
pinning surface may be constructed by division all radii of U-ellipsoid by L-ellipsoid radii in 
its cross section normal to the field directions. Fig.7 shows some 2D-cross-sections of the 5D 
pinning surface. Fig. 8. shows an example of 3D-cross section built for varying magnetic 
field directions.  
The model doesn’t allow getting all the six main diameters of the ellipsoids from critical 
Lorentz forces measurements. It is possible to write six values:  

 ����� = ��
����
� ,      i≠j (31) 

 
Fig. 8. 3D- cross section of a pinning surface. (U- ellipsoid main radii are related as 1:2:3, L-
ellipsoid ones - as 1:2;4. Magnetic fields vectors  are laying in the U-central plane with radii 
related as 1:3). 

It is easy to see that ����� ����� ����� = ������ ����� ����� . Thus, only five of them are independent on 
one another.  
We have studied a large series of samples made from cold deformed Nb-Ti foil. They were 
cut at various angles to rolling direction and tested in magnetic fields tilted at various angles 
both to the sample plane and current direction. Fig.9 shows the main radii of the ellipsoids, 
the barrier half-width Ly normal to the foil plane being accepted as unity. The pinning 
centers density in this direction was maximum, and the half-width didn’t change while 
magnetic field increased in contrary with Lx  aligned to  the rolling direction.  
 

 
Fig. 9. The main radii of L- and U- ellipsoids of the cold rolled Nb-Ti 10 μ foil.  The data are 
extracted from a set of experiments with various orientations of magnetic fields and 
currents. 
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The degree of the foil anisotropy is seen from Figs.10 and 12. It allows estimating of 
agreement between experimental data and model predictions.  
There are two causes of transverse electric field origin.  The above-mentioned satellite field 
arises due to movement of vortices tilted to current direction. Another one is known as 
guided vortices motion [Niessen&Weijsenfeld, 1969]. It arises due to vortices movement at 
an angle to Lorentz force direction. Fig. 11a explains this phenomenon. Due to the special 
shape of a cross section of the pinning surface normal to the magnetic field, a certain 
projection of the Lorentz force vector pierces the pinning surface in point ‘d’, whereas the 
vector itself does not reach point ‘c’ at the surface. So the magnetic flux moves in the 
projection direction. Fig.11b compares the prediction with our experimental data. 
 

 
Fig. 10. A comparison of the experimental data on pinning density with predictions (solid 
curves) calculated with the main radii of L- and U- ellipsoids. The dependence of the 
pinning anisotropy on both the magnetic field and Lorentz force directions can be seen. 

 

 
                                     (a)                                                         (b) 

Fig. 11. A scheme of guiding vortices motion arising (left) and comparison of experimental 
points and predicted curve (right) obtained by magneto-optical method in low magnetic field. 
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A problem of critical current in longitudinal magnetic field was very exciting for a long time 
due to nontrivial process of vortices reconnecting. There were tested four foil samples in 
magnetic field aligned to current direction with accuracy better than 0.2°.  The samples were 
cut at different angles x to the rolling direction.  Fig.13 shows results of foil samples testing 
compared with model calculations made on the following assumptions: a. The vortices 
reconnection is free at pinning centers, b. The vortices array breaks virtually up into 
longitudinal and transverse ones moving in opposite directions, c. pinning centers number 
is sufficient for independent pinning of both virtual arrays. The semiquantitative agreement 
is obvious. The model predicts correctly nontrivial dependence of longitudinal critical 
currents on pinning. 
 

 
Fig. 12. Results of studying critical currents and tilts of electrical field to current directions in 
dependence on preliminary slopes and rotation angles. 
 

 
Fig. 13. The critical currents in the longitudinal magnetic fields. The experimental values 
obtained with the samples (1.3 mm width) cut from a piece of Nb-Ti 10 μm foil at various 
tilts to the rolling direction are compared with predictions (curves) calculated with the main 
radii of L- and U- ellipsoids (Fig.9) 
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The foil anisotropy arises due to the rolling process. The wire drawing process has certain 
features in common with rolling. It also forms the anisotropic structure. Significant difference 
in critical current values for axial and azimuth currents is well known [Jungst, 1977]. It 
appeared that significant pinning anisotropy existed in a wire cross section [Klimenko et al., 
2001b]. It was found out on trials of a Nb-Ti wire 0.26 mm in diameter  with cross section 
reduced by grinding into segment shape (segment height was 0.21 of the wire diameter). 
 

 

Fig. 13. Critical Lorentz Force anisotropy in  Nb-Ti wire cross section. 1. The critical value 
for azimuthally aligned vortices, 2. The critical value for radial aligned vortices. 

Maximum and minimum critical Lorentz Forces (curves 1 and 2 at Fig.13) were derived 
from results of segment tests in magnetic fields of orthogonal directions. The anisotropy 
affects the wire critical current and the magnetic moment. Figs.14 and 15 show these effects, 
the foil anisotropy parameters being used for the calculations to make the effects more 
pronounced. The results differ in dependence on prevalence of radial or azimuth pinning. 
The anisotropy affects critical currents in low magnetic field, where azimuth component of 
the current self field becomes dominant (Fig.14), as it is seen from current distributions 
shown at the left pictures. When the azimuth aligned vortices pinning is higher than one of 
radial vortices the critical current rises steeply up as the field decreases (curve 2 at Fig.14). 
The Nb-Ti wire demonstrates just this type of Ic(B) curve. A material with opposite ratio of 
pinning forces would show a plateau in this field region (curve 1).  
There is a large range of magnetic fields where critical currents don’t depend on the type of 
anisotropy. Current distributions in this range are similar (right pictures of Fig.14 This 
independence allowed the constitutive law (part 2 of this paper) deducing under the 
assumption that the averaged current density had a definite physical meaning (part 6 of the 
paper). 
The type of anisotropy influences on the wire magnetic moment in the whole range of 
magnetic fields due to difference in distances of current density maxima from the cross 
section symmetry lines (Fig 15). 
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Fig. 14. Comparison of field dependences of the critical current of wires on the type of 
anisotropy. 1. Pinning of  radial aligned vortices  prevails. 2. pinning of azimuth aligned 
vortices prevails. Current density distributions in low and high magnetic fields are shown 
on left and right sides of the picture.   

 

 
Fig. 15. Comparison of field dependences of the magnetic moments of wires on the type of 
anisotropy. 1. Pinning of  radial aligned vortices  prevails. 2. Pinning of azimuth aligned 
vortices prevails. Current density and magnetic field distributions are shown on left and 
right sides of the picture. 

6. Self-consistent distributions of magnetic field and current density 
The most of important problems of applied superconductivity, such as conductor stability, 
AC loss, winding quench, require nonsteady equations solving.  There is, may be, only one 
situation which needs steady state analyzing. That is testing of a conductor, namely voltage-
current curve registration. There is a crafty trap in this seemingly simplest procedure. The 
point is that this procedure gives an integral result that is dependence of the curves on 
external magnetic field or, less appropriately, dependence of critical current on the external 
magnetic field (Ic(He)). This result is sufficient for a winding designer. A material researcher 
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needs differential result that is dependence of critical current density on internal magnetic 
field (jc(B)). It is considered usually that 

 ��(����) = 	 ��(��)�  (32) 

Firstly, it is not trivial because current distribution is not homogeneous in conductor cross 
section due to current self field. There was shown [Klimenko&Kon, 1977] that in high fields 

 ��(��) = ��(����)���� �� � �����	 ��(����)���� � (33) 

here  r0 – wire radius,  jc(B)~B-0.5 was assumed. Taken from the same paper Fig.16 shows that 
(32) may not be used in low external fields due to the current self  field  becomes  more than 
the external field. An example of habitual mistake [Kim et al., 1963]:  the dependence 

 ��(�) = 	 ��
���� (34) 

by no means follows from  more or less acceptable approximation : ��(��) = 	 �
����� 

 

 
Fig. 16. Critical current dependence on external magnetic field calculated and measured for 
the case wire with Nb-Ti core 0.22 mm in diameter(Critical current density was  assumed 
1.06 1010B-0.5 A/m2) 

If the constitutive law is known, the self consisted distributions of current density and inner 
magnetic field can be found by iterations for any external magnetic and electric fields. In the 
case of anisotropic pinning results of the solution seem to be unexpected.  Fig.17 shows 
calculated critical currents of a tape 4 mm wide (a) and 2 μm thick (b) for two anisotropy 
directions. The constitutive law was used in the form (1). It is seen that non-monotone run of 
the current curves is a macroscopic effect that follows from quite monotone critical current 
density falling with magnetic field rising.  
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The critical current corresponding to zero external magnetic field is the presently accepted 
standard of HTSC conductor evaluating. The insufficient information is not a main 
drawback of the standard. Sometimes it provokes false conclusions. Fig.18 suggests that 
HTSC layer thickness increasing uses to spoil the material properties; in fact the current 
density goes down due to current self field increasing. 
 

 
Fig. 17. Calculated Ic(B) curves depending on magnetic field tilt (q) in respect to the normal 
to the tape surface for the cases when maximum critical Lorentz force direction aligns to the 
tape width (left) and to the thickness (right). 

 

 
Fig. 18. Calculated dependence of critical current and averaged critical current density on 
the HTSC layer thickness. 

7. Conclusion 
There are countless numbers of complete phenomena and characteristics of HPSC 
discovered during last half century and last quarter in particular. We hope that the 
completeness is not inherent property of the HPSC but it is consequence of superposition of 
several quite simple features: nonlinear constitutive law, inhomogeneity, various types of 
anisotropy, self consistent distributions of magnetic field and current density and may be 
something else.  
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