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Preface

This book covers 27 articles in the applications of arti cial neural networks (ANN) in 
various disciplines which includes business, chemical technology, computing, engi-
neering, environmental science, science and nanotechnology. They modeled the ANN 
with veri cation in diff erent areas. They demonstrated that the ANN is very useful 
model and the ANN could be applied in problem solving and machine learning. This 
book is suitable for all professionals and scientists in understanding how ANN is ap-
plied in various areas.

Chi-Leung Hui
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World-Level Analysis in Top Level Football 
Analysis and Simulation of Football  
Specific Group Tactics by Means of  

Adaptive Neural Networks 
Memmert Daniel1, Bischof Jürgen2, Endler Stefan2, Grunz Andreas1,  

Schmid Markus3, Schmidt Andrea1 and Perl Jürgen2 

1Institute of Cognitive and Team/Racket Sport ResearchGerman Sport University Cologne 
2Institute of Computer Science, University of Mainz 

3Institute of Sport and Sport Science, University of Heidelberg 
Germany 

1. Introduction 
In modern soccer tactical skills play an important role in all age groups and proficiency 
levels (Memmert & Harvey, 2010; Memmert & König, 2007). Many experts regard tactics as 
the factor which gets the least attention in the training process (Greco, Memmert & Morales, 
2010; Memmert & Roth, 2007). For that reason, the most potential seems to lie in the tactics 
area. There are a couple of journal articles in the area of group tactics, however, a systematic 
overview is not available yet. It is even more crucial that there are no empirically validated 
differentiations of group tactical requirements in soccer. To be more specific: Of course 
taxonomies of group tactics occur in books sporadically, but it was not shown yet, whether 
they are actually relevant in amateur or competitive soccer.  
Therefore, Memmert (2006) work on those deficits in order to provide a scientifically based 
analysis of soccer specific group tactics. Building on pilot studies (second division of German 
Bundesliga), the coaching philosophy of Hansi Flick (current assistant coach of the German 
national soccer team) was indirectly examined based on 27 3rd division home games of 1899 
Hoffenheim in the seasons 2002/2003 and 2003/2004. During the recorded game, he selected 
important positive and negative behaviours of different position groups without being aware 
of the fact that their coaching skills were being evaluated. All in all, 585 match situations were 
judged and commented on by the coaches. The implicit expert knowledge (video sequences 
and comments) from the single case analysis was solidified with the help of further qualitative 
content analyses. The resulting offensive and defensive group tactical skills were allocated to 
superordinate basic categories by means of inductive categorization. Thus, group tactical 
challenges were identified, which have to be solved through cooperation of several team 
members (= position groups). Such position groups are, for instance, strikers or midfielders, 
but also players in certain areas (e.g. left and right wing) or players from different positions, 
that move across those areas in a particular moment. Based on the analysis, the following 
group tactical categories were validated empirically (cf. Table 1.1. & Table 1.2).  



1 

World-Level Analysis in Top Level Football 
Analysis and Simulation of Football  
Specific Group Tactics by Means of  

Adaptive Neural Networks 
Memmert Daniel1, Bischof Jürgen2, Endler Stefan2, Grunz Andreas1,  

Schmid Markus3, Schmidt Andrea1 and Perl Jürgen2 

1Institute of Cognitive and Team/Racket Sport ResearchGerman Sport University Cologne 
2Institute of Computer Science, University of Mainz 

3Institute of Sport and Sport Science, University of Heidelberg 
Germany 

1. Introduction 
In modern soccer tactical skills play an important role in all age groups and proficiency 
levels (Memmert & Harvey, 2010; Memmert & König, 2007). Many experts regard tactics as 
the factor which gets the least attention in the training process (Greco, Memmert & Morales, 
2010; Memmert & Roth, 2007). For that reason, the most potential seems to lie in the tactics 
area. There are a couple of journal articles in the area of group tactics, however, a systematic 
overview is not available yet. It is even more crucial that there are no empirically validated 
differentiations of group tactical requirements in soccer. To be more specific: Of course 
taxonomies of group tactics occur in books sporadically, but it was not shown yet, whether 
they are actually relevant in amateur or competitive soccer.  
Therefore, Memmert (2006) work on those deficits in order to provide a scientifically based 
analysis of soccer specific group tactics. Building on pilot studies (second division of German 
Bundesliga), the coaching philosophy of Hansi Flick (current assistant coach of the German 
national soccer team) was indirectly examined based on 27 3rd division home games of 1899 
Hoffenheim in the seasons 2002/2003 and 2003/2004. During the recorded game, he selected 
important positive and negative behaviours of different position groups without being aware 
of the fact that their coaching skills were being evaluated. All in all, 585 match situations were 
judged and commented on by the coaches. The implicit expert knowledge (video sequences 
and comments) from the single case analysis was solidified with the help of further qualitative 
content analyses. The resulting offensive and defensive group tactical skills were allocated to 
superordinate basic categories by means of inductive categorization. Thus, group tactical 
challenges were identified, which have to be solved through cooperation of several team 
members (= position groups). Such position groups are, for instance, strikers or midfielders, 
but also players in certain areas (e.g. left and right wing) or players from different positions, 
that move across those areas in a particular moment. Based on the analysis, the following 
group tactical categories were validated empirically (cf. Table 1.1. & Table 1.2).  



 Artificial Neural Networks - Application 

 

4 

Defense 
Quick regrouping �  Group tactical requirement, which demands that 

position groups prevent their opponent’s attacks through 
quick changes from offense to defense   

Pressing �  Group tactical requirement, which demands that 
position groups disturb the offense actions of their 
opponent as early as possible 

Man to man marking �  Group tactical requirement, which demands that the 
members of a position groups are aware of the marking 
of their opponents e.g. during corner kicks or man-
marking in general 

Competing for the second 
ball 

�  Group tactical requirement, which demands that 
position groups and individual players position 
themselves adequately in order to win second balls (e.g. 
after goal-kicks or tacklings)  

Communication �  Group tactical requirement, which demands that 
position groups keep their orientation on the pitch by 
making adequate use of previously agreed codewords 

Support play �  Group tactical requirement, which demands that 
position groups gain ball possession or avoid shots on 
goal by an appropriate position play  

Table 1.1. List of 6 defensive group tactics, which result from inductive category formation 
and further qualitative evaluation steps (Memmert, 2006) 

Offense 
Attacking play �  Group tactical requirement, which demands that position 

groups initiate play by systematic actions, e.g. vertical 
passes 

Combination play �  Group tactical requirement, which demands that position 
groups keep the ball possession through double passes, 
short passes or triangular passes  

Switch play �  Group tactical requirement, which demands that position 
groups create space by passing the ball from one side of the 
pitch to the other 

Creating space  �  Group tactical requirement, which demands that position 
groups choose  adequate paths (e.g. cross-over and dummy 
runs in order to give each other space 

Wing play �  Group tactical requirement, which demands that position 
groups pose a goal threat on the wings e.g. by through-balls 

Counter attacks �  Group tactical requirement, which demands that position 
groups try to intersect the defense quickly, e.g. by playing 
through balls  

Set pieces �  Group tactical requirement, which demands that position 
groups create a goal threat through free kicks, corner kicks 
and throw-ins. 

Setting up shots  
on goal 

�  Group tactical requirement, which demands that position 
groups try to pass to their team mates so that they can score 
a goal from a long or short distance 

 
Table 1.2. List of 8 offensive group tactics, which result from inductive category formation 
and further qualitative evaluation steps (Memmert, 2006) 
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These group tactics constitute the theoretical framework for our project in which evaluation 
tools are developed for the analysis of group tactics. Therefore, international top level soccer 
matches (world level analysis) are examined on the basis of position data with reference to 
the effectiveness of group tactical processes. “Considering the influence of the opponent, 
how do the players have to play together at which point in time in order to be a goal 
threat?” or to be more specific: “How can group tactical behaviour patterns in soccer be 
modeled and summarized to characteristic categories? This question is explored in section 2 
of the chapter (step 1). By means of an example, potential problems in the process are 
illustrated and possible solutions are given. In addition, first preliminary results (step 2) are 
presented which compare the net based position data related procedure with conventional 
methods (validation study; Section 3). Section 4 of that Chapter illustrates how behaviour 
patterns can be evaluated, how one can identify creative behaviour and how the simulation 
can be used for a prognostic evaluation of the effectiveness (step 3).  

2. Modelling and typification of group tactical behavior patterns by means of 
position data (step 1) 

 
 

 
Fig. 1. Display of the in-house developed software system for the conventional analysis (a) 
and position data-supported analysis (b) of team sports (soccer)  
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At the moment, a variety of team sports (soccer, handball, basketball, volleyball) are 
analyzed by means of video sequences (conventional analysis, cf. Figure 1a). Current 
technical improvements however, allow a complete capture of position data of all 22 players 
and the ball (cf. Figure 1b) so that one can access the xy coordinates of the players and the 
ball for the entire 90 minutes. With a sampling rate of 25 frames per second, 135.000 xy data 
per player are produced. Thus, when looking at all players including the ball, one gets the 
amount of 23 x 135.000, i.e. 3.105.000 xy data. 
With the software system from Figure 1b, individual match sequences can be allocated to 
different categories. By means of these categories, according position data can be extracted 
and used to train neural nets (Memmert & Perl, 2005). This process is illustrated through the 
following example. 
 

 
Fig. 2. Display of a video sequence of wing play and the schematic representation as it is 
usually used to display the actions. 

In the video sequence, a wing play is identified (cf. Figure 2, above). The according match 
sequence is thus allocated to the category “wing play” in the software system and the 
involved players are inputted. By means of the extracted position data, the wing play can be 
illustrated schematically on a graphic pitch (cf. Figure 2, down right). Figure 2 shows just 
one possible realization of a wing play. A couple of variations are schematically depicted in 
Figure 3. The position data of involved players obtained from several wing plays are then 
used to train a neural net and memorize the pattern “wing play”. When looking at the wing 
plays, their capture through a neural net poses a first problem. The number of the involved 
players varies, down left in Figure 3 there are three players, in the other ones there are just 
two. Hence, the xy data set from the position data of the players and the ball contains four 
xy data for the wing play down left and  three for the other ones. A neural net however, has 
a fixed dimension and thus can only process data of a certain length.  
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Fig. 3. Display of variations of wing play. 

One solution can be to train different nets for different numbers of involved players (which 
would be one for two players and one for three players with respect to Figure 3). If there are 
more players involved, further nets would be necessary. A second problem arises due to the 
fact that areas on neural nets with a lot of information do not have more neurons available 
than areas with only few information. Thus, the lower information content could be solved  
 

 
Fig. 4. Exemplary display of a neural net with variable neuron density (Perl, Memmert, 
Bischof & Gerharz, 2006). 
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better than the higher information content. With respect to the wing play, for example, this 
could imply that certain formations of the involved players occur more often than others, 
and that the more important ones are underrepresented on the net. This problem could, for 
example be solved with the help of a dynamic generation and administration of nodes. This 
is illustrated in Figure 4 by means of a two-dimensional neural net: On the left there is an 
area in which no neurons exist. On the bottom right, on the contrary, one can see a cluster of 
neurons. Thus, from left to right there is an increase of the neuron density. 
When the training of the nets is complete, the movement patterns of individual players, 
position groups or the whole team can be depicted as trajectories on the net (cf. Figure 5)  
 

 
Fig. 5. Exemplary display of a trajectory as an image of a game sequence on a neural net 
(Perl et al., 2006). 
In this process, every data set of a match sequence activates a neuron in the net. 
Consecutively connected, all activated neurons result in a trajectory. With a superior neural 
net, groups of similar match sequence patterns shall then be allocated to a mutual neuron or 
a cluster of adjacent neurons. For instance, all realizations of a wing play shall be identified 
by a neuron or neuron cluster “wing play”. For this purpose, the net must have been trained 
with a multiplicity of different wing play patterns in advance. From this follows a third 
problem: For being extracted from recorded matches, there are usually only a limited 
number of realizations of a pattern available. Thus, it could, for example, happen that there 
are no position data available for some of the variations of a wing play. One solution could 
be to schematically draw the variations of a movement pattern onto a graphic display of a 
pitch, in order to let the software calculate the position data for the training with the help of 
a Monte Carlo simulation. This approach may seem a bit odd, but it turned out to be 
remarkably successful and effective due to the special training model (Perl, 2004). When 
processing the trajectories, the above mentioned problems occur: On the one hand, 
trajectories can be too long so that high dimensional nets are generated. On the other hand, 
trajectories can differ in length. When looking at the schematic displays in Figure 3, one can 
recognize that the distance covered by the involved players and the ball, varies in each 
example. Consequently, due to the length of the match sequence, longer trajectories are 
generated if the distance in longer movement patterns is not covered faster. As mentioned 
before, training specific nets with different lengths is not viable. With the systematic 
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removal of redundant vectors, trajectories which are too long, can be shortened to a 
standard length. However, this approach is problematic for implicitly accelerating the speed 
of the actions. A practicable solution is the “sliding window method”: from sequences of 
different lengths, sequences with a constant length are cut out.  

3. Validation study (step 2) 
For the validation of the trained nets, the results of the traditional game analysis (“golden 
standard”) and the results of the net based position data based procedure have to be 
compared. Pre-studies showed that almost 80 % of the traditionally identified group tactical 
match events from Table 1 like playmaking, set pieces (further differentiated into throw-ins, 
free kicks and corner kicks) and shots on goal were also identified by our nets. At the moment 
we are working on a further optimization in order to obtain matching rates of more than 90 %. 

4. Evaluation, creativity and simulation (step 3) 
With the help of trained nets, it is possible to automatically display all match sequences of 
the above mentioned categories – even for yet uncategorized matches. For example, one 
wants to have an overview of all wing plays in a soccer match, view all sequences on video 
and capture them in a database for a comprehensive analysis. For example, the action 
patterns, which were obtained through the net based typification, can be analyzed 
statistically. This way, the frequency can be determined, with which a certain pattern occurs, 
as well as frequency of the transition from one pattern to the other. 
Therefore, in a study analyzing the individual creativity (see for a definition: Memmert, 
2010) of soccer players, nets were developed and validated in pre-studies, which were able 
to represent the individual training processes of soccer players including creative behavior 
(cf. Memmert & Perl, 2009b). Beginning with a red and ending with a yellow square, Figure 
6 depicts the particular time steps of the respective process as red edges on all of the 
individual net representations. In the three steps of the process, the trajectory runs through 
the colored quality areas (from light green (excellent) to dark violet (poor)). The results 
(Figure 6) show a very unequal creativity development of 20 soccer players over the time 
period of 15 training months: In 5 of 20 cases (25%) the performance increased in the 
beginning, but turned out to be worse than in the middle of the training process eventually 
(up-down fluctuation process). The opposite results came up for 30 % of the test persons 
(down-up fluctuation process). In 25 % of the cases the performance increased 
monotonically, whereas it decreased monotonically in 10 % of the cases. In 10 % of the cases 
the performance remained (almost) entirely the same. 
For the qualitative classification of actions and action types, a rating is required, which 
normally is not just the result of a team’s actions, but rather the result of the interaction with 
the opponent team. The net based solution for this problem consists of the usage of team 
specific nets for the actions, which enable the identification and analysis of the interaction 
types through a hierarchically super-ordinate net. This way, actions and action types can be 
rated in the context of the respective interaction. 
Figure 7 illustrates the used methodology: The sequence of the offense actions of Team A is 
illustrated in the according offense net (top left) in colored sub-sequence representations, so 
called phases (phase diagram offense, top), which correspond with the according defense 
phases of Team B (phase diagram defense, bottom). The corresponding phase sequences are 
transferred to the interaction net where they deliver the data for interaction and movement 
analyses. 
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processing the trajectories, the above mentioned problems occur: On the one hand, 
trajectories can be too long so that high dimensional nets are generated. On the other hand, 
trajectories can differ in length. When looking at the schematic displays in Figure 3, one can 
recognize that the distance covered by the involved players and the ball, varies in each 
example. Consequently, due to the length of the match sequence, longer trajectories are 
generated if the distance in longer movement patterns is not covered faster. As mentioned 
before, training specific nets with different lengths is not viable. With the systematic 
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removal of redundant vectors, trajectories which are too long, can be shortened to a 
standard length. However, this approach is problematic for implicitly accelerating the speed 
of the actions. A practicable solution is the “sliding window method”: from sequences of 
different lengths, sequences with a constant length are cut out.  

3. Validation study (step 2) 
For the validation of the trained nets, the results of the traditional game analysis (“golden 
standard”) and the results of the net based position data based procedure have to be 
compared. Pre-studies showed that almost 80 % of the traditionally identified group tactical 
match events from Table 1 like playmaking, set pieces (further differentiated into throw-ins, 
free kicks and corner kicks) and shots on goal were also identified by our nets. At the moment 
we are working on a further optimization in order to obtain matching rates of more than 90 %. 

4. Evaluation, creativity and simulation (step 3) 
With the help of trained nets, it is possible to automatically display all match sequences of 
the above mentioned categories – even for yet uncategorized matches. For example, one 
wants to have an overview of all wing plays in a soccer match, view all sequences on video 
and capture them in a database for a comprehensive analysis. For example, the action 
patterns, which were obtained through the net based typification, can be analyzed 
statistically. This way, the frequency can be determined, with which a certain pattern occurs, 
as well as frequency of the transition from one pattern to the other. 
Therefore, in a study analyzing the individual creativity (see for a definition: Memmert, 
2010) of soccer players, nets were developed and validated in pre-studies, which were able 
to represent the individual training processes of soccer players including creative behavior 
(cf. Memmert & Perl, 2009b). Beginning with a red and ending with a yellow square, Figure 
6 depicts the particular time steps of the respective process as red edges on all of the 
individual net representations. In the three steps of the process, the trajectory runs through 
the colored quality areas (from light green (excellent) to dark violet (poor)). The results 
(Figure 6) show a very unequal creativity development of 20 soccer players over the time 
period of 15 training months: In 5 of 20 cases (25%) the performance increased in the 
beginning, but turned out to be worse than in the middle of the training process eventually 
(up-down fluctuation process). The opposite results came up for 30 % of the test persons 
(down-up fluctuation process). In 25 % of the cases the performance increased 
monotonically, whereas it decreased monotonically in 10 % of the cases. In 10 % of the cases 
the performance remained (almost) entirely the same. 
For the qualitative classification of actions and action types, a rating is required, which 
normally is not just the result of a team’s actions, but rather the result of the interaction with 
the opponent team. The net based solution for this problem consists of the usage of team 
specific nets for the actions, which enable the identification and analysis of the interaction 
types through a hierarchically super-ordinate net. This way, actions and action types can be 
rated in the context of the respective interaction. 
Figure 7 illustrates the used methodology: The sequence of the offense actions of Team A is 
illustrated in the according offense net (top left) in colored sub-sequence representations, so 
called phases (phase diagram offense, top), which correspond with the according defense 
phases of Team B (phase diagram defense, bottom). The corresponding phase sequences are 
transferred to the interaction net where they deliver the data for interaction and movement 
analyses. 
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Fig. 6. Representation of intra-individual trajectories of a soccer training. The learning 
process begins in the red square and ends in the yellow square (cf. Memmert & Perl, 2009b). 
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Fig. 7. Hierarchical interaction - and evaluation analysis (Grunz, Memmert & Perl, 2009) 
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From this approach result two important applications: First, by means of a simulation, the 
effectiveness of behavior processes can be evaluated prognostically. For that purpose, the 
game is stopped, and instead of the next action type, another type with a higher rating is 
chosen for the examined team. Afterwards, the game proceeds and a target performance 
analysis is conducted in order to determine a possible advantage of the simulated action. 
This way, tactical options can be tested in simulations and dropped if necessary. Second, 
creative actions in the sense of relevance (surprising, rare) and adequacy (successful in a 
particular situation) can be identified and inserted into the simulative analysis process.  
 

 
Fig. 8. Exemplary display of creative behavior in the frame of a neural net (cf. figure 5) 
Figure 8, as opposed to figure 5, is a schematic depiction of a behavioral process with a new, 
creative aspect. The progression of the trajectory taken from figure 5 is illustrated by the 
dashed line. Due to the creative action, a neuron is activated and hence the trajectory 
deviates from the expected progression. In a longitudinal study, Memmert and Perl 
(2009a,b) could validate neural nets that are able to identify creative actions. Therefore, 
special neural nets were constructed, which combined DyCoN’s (Dynamically Controlled 
Networks, see Perl, 2004) and neural gas elements. With their help, it was possible to select 
not only rare, but also tactically relevant behaviours from a multiplicity of behavior 
patterns. By the means of these preliminary works (Memmert & Perl, 2009a,b), in a third 
research episode, it is looked for rare but successful actions in the frame of different group 
tactics. To be concrete, the important question for practical application is explored, whether 
there are unusual actions in the set of wing play situations that pose a goal threat.  

5. Summary and practical applications in competitive soccer 
The developed nets allow a comparison of match scenes of one or more games in order to 
find out which tactical formations lead to which results on the pitch. The goal is to make the 
selection of soccer match scenes easier so that it does not have to be done manually 
(conventional analysis) but automatically with the help of neural nets. Thus, it is made 
possible to classify extensive data volume according to differences and similarities within a 
short time period. The analysis system based on neural nets can arrange match situations 
according to success or failure within seconds and hence find out whether a 4-2-3-1 
formation is superior to an opponent’s 4-4-2 formation under certain circumstances. With 
the aid of simulations, the question is followed whether changes in offense and defense 
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(change of formation or replacements of players) have an influence on the probability of 
success of certain tactical moves. Furthermore, the net based approach helps not only to 
identify standard match sequences, but also rare and surprising sequences, and evaluates 
those with respect to success and adequacy in their specific contexts. Often, extraordinary 
actions or rare goals are discounted as coincidence, which can be identified as spontaneous, 
creative and non-accidental processes after a closer analysis. This could be extremely helpful 
for the evaluation of sport-specific training concepts to improve creative behavior 
(Memmert, 2007; Memmert, Baker & Bertsch, 2010). 
Of course, neural nets will still never be able to replace experts. However, they offer the 
opportunity of an interactive communication (high speed and online) with coaches and 
provide them with specific data and information that they can interpret and make use of. 
This way, results are provided in a quick and convenient manner. These results are helpful 
to study an opponent and they give information about which game formations are more 
likely to be successful against a certain team with a certain tactic and a certain formation. 

6. References 
Greco, P.; Memmert, D. & Morales, J. C. P. (2010). The effect of deliberate play on tactical 

performance in basketball. Perceptual & Motor Skills, 110, 849-856. [0.30] 
Grunz, A.; Memmert, D. & Perl, J. (2009). Analysis and Simulation of Actions in Games by 

Means of Special Self-Organizing Maps. International Journal of Computer Science in 
Sport, 8, 22–37. 

Memmert, D. (2006). Optimales Taktiktraining im Leistungsfußball [Optimal Training of 
Group Tactics in Top Level Soccer]. Balingen: Spitta Verlag. 

Memmert, D. (2007). Can creativity be improved by an attention-broadening training 
program? – An Exploratory Study Focusing on Team Sports. Creativity Research 
Journal, 19, 281–292. [0.81] 

Memmert, D. (2010, in press). Sports and Creativity. M. Runco & S. Pritzker, Encyclopedia of 
Creativity, 2nd Edition. Elsevier. 

Memmert, D. & Harvey, S. (2010, in press). Identification of Non-Specific Tactical Problems 
in Invasion Games. Physical Education and Sport Pedagogy. 

Memmert, D. & König, S. (2007). Teaching Games at Elementary Schools. International 
Journal of Physical Education, 44, 54–67. 

Memmert, D. & Perl, J. (2005). Game Intelligence Analysis by Means of a Combination of 
Variance-Analysis and Neural Networks. International Journal of Computer Science in 
Sport, 4, 29–38. 

Memmert, D. & Perl, J. (2009a). Analysis and Simulation of Creativity Learning by Means of 
Artificial Neural Networks. Human Movement Science, 28, 263–282. 

Memmert, D. & Perl, J. (2009b). Game Creativity Analysis by Means of Neural Networks. 
Journal of Sport Science, 27, 139–149. 

Memmert, D. & Roth, K. (2007). The Effects of Non-Specific and Specific Concepts on 
Tactical Creativity in Team Ball Sports. Journal of Sport Science, 25, 1423–1432. [1.80] 

Memmert, D.; Baker, J. & Bertsch, C. (2010). Play and Practice in the Development of Sport-
Specific Creativity in Team Ball Sports. High Ability Studies, 21, 3-18. 

Perl, J. (2004). A Neural Network approach to movement pattern analysis. Human Movement 
Science, 23, 605–620. 

Perl, J.; Memmert, D.; Bischof, J. & Gerharz, Ch.(2006). On a First Attempt to Modelling 
Creativity Learning by Means of Artificial Neural Networks. International Journal of 
Computer Science in Sport, 5, 33–38. 

2 

Artificial Neural Networks Numerical 
Forecasting of Economic Time Series 

Michael Štencl and Jiří Šťastný 
Mendel University in Brno, Faculty of Business and Economics, Dept. of Informatics 

Czech Republic 

1. Introduction 
The current global market is driven by many factors, e.g. by the facts that we live in the 
information age and that information is distributed in short times, large amounts and by 
many data channels. It is practically impossible to analyse all kinds of incoming information 
flows and transform them to data by classical methods. New requirements call for new 
methods. Artificial neural networks once trained on patterns can be used for forecasting and 
they are able to work with extremely big datasets in reasonable time. Traditionally, this is 
solved by means of a statistical analysis - first a time-series model is constructed and then 
statistical prediction algorithms are applied to it in order to obtain future values. The 
common point for both methods is the learning process from samples of past data, or 
learning from the past. From many of the uncommon points the input conditions for the 
model creation and the length of the time series pattern set could be pointed out. On one 
hand, very sophisticated statistical methods exist that have strictly defined input conditions 
for datasets; on the other hand, practically open input conditions of artificial neural 
networks can be used. Regarding the length of the time series, the main problem of the 
Czech Republic, short and middle term predictions are valuable datasets. The lengths of 
selected economic values are not huge enough for quality of prediction or forecasting. 
Hand-in-hand with typical problems of real datasets (noisiness and/or missing data), there 
is the issue of the quality of the numerical forecasting. In addition, the strong nonlinearity of 
the models leads to an unsolvable usage of classical methods or construction of models that 
are not representing the reality. These are only few of the difficulties related to economic 
and financial modelling and prediction. Possible problems of numerous types of the 
artificial neural networks with n-setups make the issue even more complicated. 
The aim of this chapter is to compare different types of artificial neural networks using short 
and middle terms predictions of a real-world economic index. A number of papers dealing 
with artificial neural networks used for particular problems and often for the test do not use 
real-world economic indexes. 
The chapter is divided into four sections. The first simply presents the introduction to the 
research domain. The second section describes state-of-the-art artificial intelligence approaches 
to both prediction and forecasting of economic indexes. In the third section,  neural network 
types and learning algorithms dealing with the prediction of time series and learning 
optimization are presented. In detail, the third section also includes methods of verification 
and validation of artificial neural networks and description of real-world economic indexes 
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1. Introduction 
The current global market is driven by many factors, e.g. by the facts that we live in the 
information age and that information is distributed in short times, large amounts and by 
many data channels. It is practically impossible to analyse all kinds of incoming information 
flows and transform them to data by classical methods. New requirements call for new 
methods. Artificial neural networks once trained on patterns can be used for forecasting and 
they are able to work with extremely big datasets in reasonable time. Traditionally, this is 
solved by means of a statistical analysis - first a time-series model is constructed and then 
statistical prediction algorithms are applied to it in order to obtain future values. The 
common point for both methods is the learning process from samples of past data, or 
learning from the past. From many of the uncommon points the input conditions for the 
model creation and the length of the time series pattern set could be pointed out. On one 
hand, very sophisticated statistical methods exist that have strictly defined input conditions 
for datasets; on the other hand, practically open input conditions of artificial neural 
networks can be used. Regarding the length of the time series, the main problem of the 
Czech Republic, short and middle term predictions are valuable datasets. The lengths of 
selected economic values are not huge enough for quality of prediction or forecasting. 
Hand-in-hand with typical problems of real datasets (noisiness and/or missing data), there 
is the issue of the quality of the numerical forecasting. In addition, the strong nonlinearity of 
the models leads to an unsolvable usage of classical methods or construction of models that 
are not representing the reality. These are only few of the difficulties related to economic 
and financial modelling and prediction. Possible problems of numerous types of the 
artificial neural networks with n-setups make the issue even more complicated. 
The aim of this chapter is to compare different types of artificial neural networks using short 
and middle terms predictions of a real-world economic index. A number of papers dealing 
with artificial neural networks used for particular problems and often for the test do not use 
real-world economic indexes. 
The chapter is divided into four sections. The first simply presents the introduction to the 
research domain. The second section describes state-of-the-art artificial intelligence approaches 
to both prediction and forecasting of economic indexes. In the third section,  neural network 
types and learning algorithms dealing with the prediction of time series and learning 
optimization are presented. In detail, the third section also includes methods of verification 
and validation of artificial neural networks and description of real-world economic indexes 
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used in the experiments. In addition, the experimental approach including methods and 
strategies for neural network adaption to real-world data approximation and prediction is 
included as a subchapter. The last chapter presents a number of prediction experiment results 
of the real-world economic indexes, including the learning process optimization by different 
learning algorithms, multithread implementation of artificial neural networks. Evaluating the 
different artificial neural networks types on short and middle term prediction with 
commented results is another part of the fourth section. Global conclusions end this chapter 
and give further perspectives for future development of proposed approaches. 

2. Artificial Neural Network approach  
Artificial neural networks do not need to know the algorithm to reach forecast as in the 
statistics methods and this makes the main difference (Novák, 1998; Sarle, 1994; Šnorek & 
Jiřina, 1998). The forecasting of future values with artificial neural networks is based on 
learned past pattern sets for a defined length. The principle of artificial neural networks is 
based on learning values from past periods and then approximating the future values. The 
accuracy of the prediction is influenced by several attributes such as the topology of the 
selected artificial neural network, the learning rule, the types of activation function, the 
number of inputs, the length and also the structure of input time series. Globally, there are 
two main categories of artificial neural network models – feed-forward networks and 
recurrent networks. A feed-forward network represents a function of its current input; thus, 
it has no internal state other than the weights themselves. A recurrent network feeds its 
outputs back into its own inputs. (Russel & Norvig, 2003) These authors formulate learning 
as an optimization search in weight space. The definition means the reset of the weights of 
inputs on each input node. Artificial neural networks use two types of learning – supervised 
and unsupervised. When supervised learning is used a training set for output validation 
must be supplied. Training sets are used as inputs for the network and the computed 
outputs are compared with sample results. Weights of all neurons are adjusted backwards 
according to the output error. The learning algorithm used defines a specific algorithm of 
resetting the weights. Both genetic algorithm and back-propagation algorithm were tested 
as the learning algorithms. Back-propagation seems to yield better results in prediction tasks 
(Štastný & Škorpil, 2007). 
One of the basic but also very powerful types of the network is the Multi Layer Perceptron 
Network (MLP); it belongs to the group of feed-forward neural networks. The configuration 
variations of MLP networks including the selection of different learning algorithms are a 
very complex task. The MLP network with the back-propagation learning algorithm 
(Štastný & Škorpil, 2005) is also one of the most widely used methods in time series 
forecasting. Often the MLP model is also combined with statistical models in hybrid systems 
(Tseng & Tzeng, 2002). The MLP model is one of the basic models but often brings very 
good results. According to the article (Štastný & Štencl, 2008), there has been wide interest in 
making the comparison study of the published MLP forecast with other models such as the 
radial basis function (RBF-NN) or competitive networks. The prediction of economic values 
has its own specifics. First of all, a large number of variables causes a strong non-linear 
increase in complexity of its analysis and usually the time series (Mostafa, 2009), especially 
in the conditions of the Czech Republic, is not very long. Another notable problem is 
incompleteness of and uncertainty in the datasets. Making the models with statistic methods 
is often impossible, but certain artificial intelligence methods are able to solve that problem. 
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3. Methods 
This part describes two learning algorithms for training MLP networks. Commonly known 
Back Propagation learning algorithm and Levenberg-Marquardt algorithm are described. 
Both were selected during previous research (Štencl & Štastný, 2009; Štencl & Štastný, 2010; 
Štastný & Škorpil, 2005) focused on learning process optimization and both showed the 
ability to be used for short and middle term prediction of real-world economic time series. 
As the second type of the artificial neural network, the Radial Basis Function network was 
selected (Štencl et al., 2009; Štencl & Štastný, 2009). At the end of the upcoming Results part 
of this chapter, the comparison of selected artificial neural network results with genetic 
algorithm approach is presented (Štencl et al., 2009; Štastný & Škorpil, 2007). 

3.1 Neural Networks learning algorithms 
First, and most known, the Back Propagation (BP) learning algorithm is the most common 
learning algorithm for Multi-layer perceptron networks (MLP NN). The algorithm is based 
on minimizing the error of neural network output compared to the target value. A more 
detailed description of BP was published previously (e.g. Bishop, 2000; Štastný & Škorpil, 
2005; Štencl & Štastný, 2009). Standard BP algorithm could be modified to BP with 
momentum and variable step learning. 
The features and usage of the momentum in BP is described in classical BP algorithm. 
Basically, the algorithm remembers in a parameter the direction in which the current state in 
error space was reached. This parameter prevents the algorithm from being stuck in local 
minima. The momentum is added to the learning rule fitting up to changes in weights 
which are equal to the sum of the recent changes and new variations calculated using BP. 
The momentum constant defines the effect of the momentum. If the constant is equal to 
zero, the momentum is ignored, if it is equal to one, the changes are ignored and weights 
remain the same. 
Variable step learning (η ) provides learning acceleration. MLP is learning faster with a 
bigger learning step. However, when the learning step reaches the maximal value, the 
learning process becomes unstable. Variable step learning is set up by the maximal (initial) 
learning step, the minimal (final) learning step and the type of the function. 
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At the beginning, the maximal (initial) learning step is set to boost the network learning 
progress. The network looks first for the rough values of weights. After that, the values are 
decreasing with each learning step according to the selected type of the function. The curve 
defined by the type of the function connects the maximal and the minimal step value. The type 
of the curve can be anything from abscissa, over quadratic function to the cubic function. The 
exponent value determines the decreasing speed at the beginning of the learning process and 
at the end of the learning process. The value of learning step in the i-th iteration is obtained by 
formula (1); where exp is representing the exponent of the calculated curve, the ceti  is the 
global amount of iteration, maxη  and minη  is the maximal, resp. minimal, learning step. 
The momentum and variable learning steps are some of the optimization methods for the BP 
algorithm. The set-up of the BP algorithm with a momentum and a variable step is 
presented at Fig. 1. 
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Fig. 1. Set-up window of MLP Network for BP algorithm with a variable learning step 
There are also many different techniques including the Levenberg–Marquardt algorithm. 
The Levenberg–Marquardt method is one of the fastest learning algorithm methods for MLP 
networks (Hagan & Menhaj, 1999; Sotirov, 2005). The Levenberg-Marquardt (LM) algorithm 
is an iterative technique that locates the minimum of a multivariate function which is 
expressed as the sum of squares of non-linear real-valued functions (Sotirov, 2005). It has 
become a standard technique for non-linear least-squares problems, widely adopted in a 
broad spectrum of disciplines. LM can be thought of as a combination of steepest descent 
and the Gauss-Newton method. 
As noticed before, the LM algorithm is a variant of the Gauss-Newton method and was 
designed to approach second-order training speed without having to compute the Hessian 
matrix (Hagan & Menhaj, 1999). Typically, for the learning of feed-forward neural networks, 
a sum of squares is used as the performance function. Then the Hessian matrix can be 
approximated as 

 TH J J=  (2) 
and the gradient can be computed as 

 Tg J e=  (3) 

where J  is the Jacobian matrix (for single neuron shown at (4), where w  is vector of the 
weights, 0w  bias of the neuron, ε  error vector) that contains first derivate of the network 
error with respect to the weights and biases, and e  is a vector of network errors (Hagan & 
Menhaj, 1999; Sotirov, 2005). 
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The LM algorithm uses the (2) approximation of the Hessian matrix, and the determination 
of new weight configuration is calculated as follows: 
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When the scalar µ is zero, the algorithm uses an approximation of the Hessian matrix. When 
µ is large, this becomes gradient descent with a small step size. Each iteration decreases µ 
after a successful step, which reduces the performance function and increases µ only when a 
tentative step would increase the performance function (Hagan & Menhaj, 1999; 
MathWorks, 2010). Matlab R2010a has an efficient implementation of LM. Because the 
solution of the matrix equation is a built-in function, its attributes become even more 
pronounced in a Matlab environment (MathWorks, 2010). 

3.2 RBF Neural Networks 
Radial Basis Function neural networks (RBF-NN) belong to the feed-forward models of 
neural networks. RBF-NN consists of three layers of nodes. The first is the input layer that 
transports the input vector to each of the nodes in the hidden (second) layer. The third layer 
consists of one node. It sums up the outputs of the hidden layer of nodes to yield the 
decision value (Wedding & Cios, 1996). 
As defined in (Wedding & Cios, 1996; Šíma & Neruda, 1996) the hidden layer of nodes, each 
node represents a data cluster, which is centred at a particular point and has a given radius 
and could be named as local unit. As in (Šíma & Neruda, 1996) the local units have the 
relevant output located at the point in close neighbourhood defined by its parameters. 
When an input vector goes on each node of hidden layer simultaneously, each node then 
calculates the distance from the input vector to its own centre (Wedding & Cios, 1996). The 
MLP nodes, on the other hand, divide the input space into subspaces in which there is a big 
difference on output. 
Radial Basis Functions are used for the approximation and interpolation in numerical 
mathematics. The approximation process is based on a function. Usually, the linear 
combination of base functions, here the radial functions, is used. The basis function realizes 
the transformation of the distance value, calculated from the input vector to its own centre, 
to the output value of the node. The output value is then multiplied by a weighting value or 
a constant. 
Problems with the creation of RBF-NN consist in the determination of the number of neurons 
in the hidden layer, the determination of the middles of these neurones and the determination 
of the neurones width. A powerful method for the determination of the number and quality of 
neurons of the hidden layer is the algorithm APC-III (Štencl & Štastný, 2009). This single-pass 
associating algorithm unlike others uses a constant radial (Ripley, 1996). 



Artificial Neural Networks - Application 

 

16 

 
Fig. 1. Set-up window of MLP Network for BP algorithm with a variable learning step 
There are also many different techniques including the Levenberg–Marquardt algorithm. 
The Levenberg–Marquardt method is one of the fastest learning algorithm methods for MLP 
networks (Hagan & Menhaj, 1999; Sotirov, 2005). The Levenberg-Marquardt (LM) algorithm 
is an iterative technique that locates the minimum of a multivariate function which is 
expressed as the sum of squares of non-linear real-valued functions (Sotirov, 2005). It has 
become a standard technique for non-linear least-squares problems, widely adopted in a 
broad spectrum of disciplines. LM can be thought of as a combination of steepest descent 
and the Gauss-Newton method. 
As noticed before, the LM algorithm is a variant of the Gauss-Newton method and was 
designed to approach second-order training speed without having to compute the Hessian 
matrix (Hagan & Menhaj, 1999). Typically, for the learning of feed-forward neural networks, 
a sum of squares is used as the performance function. Then the Hessian matrix can be 
approximated as 

 TH J J=  (2) 
and the gradient can be computed as 

 Tg J e=  (3) 

where J  is the Jacobian matrix (for single neuron shown at (4), where w  is vector of the 
weights, 0w  bias of the neuron, ε  error vector) that contains first derivate of the network 
error with respect to the weights and biases, and e  is a vector of network errors (Hagan & 
Menhaj, 1999; Sotirov, 2005). 

Artificial Neural Networks Numerical Forecasting of Economic Time Series 

 

17 

 
1 1

1 1 1

11 0

1

1 0

1

1
p p

nn

p p p n

n

x xw w w
J

x x
w w w

∂ε ∂ε ∂ε
∂ ∂ ∂

∂ε ∂ε ∂ε

∂ ∂ ∂

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦

 (4) 

The LM algorithm uses the (2) approximation of the Hessian matrix, and the determination 
of new weight configuration is calculated as follows: 

 
1

1
T T

k k kw w J J I Jμ ε
−

+ ⎡ ⎤= − +⎣ ⎦  (5) 

When the scalar µ is zero, the algorithm uses an approximation of the Hessian matrix. When 
µ is large, this becomes gradient descent with a small step size. Each iteration decreases µ 
after a successful step, which reduces the performance function and increases µ only when a 
tentative step would increase the performance function (Hagan & Menhaj, 1999; 
MathWorks, 2010). Matlab R2010a has an efficient implementation of LM. Because the 
solution of the matrix equation is a built-in function, its attributes become even more 
pronounced in a Matlab environment (MathWorks, 2010). 

3.2 RBF Neural Networks 
Radial Basis Function neural networks (RBF-NN) belong to the feed-forward models of 
neural networks. RBF-NN consists of three layers of nodes. The first is the input layer that 
transports the input vector to each of the nodes in the hidden (second) layer. The third layer 
consists of one node. It sums up the outputs of the hidden layer of nodes to yield the 
decision value (Wedding & Cios, 1996). 
As defined in (Wedding & Cios, 1996; Šíma & Neruda, 1996) the hidden layer of nodes, each 
node represents a data cluster, which is centred at a particular point and has a given radius 
and could be named as local unit. As in (Šíma & Neruda, 1996) the local units have the 
relevant output located at the point in close neighbourhood defined by its parameters. 
When an input vector goes on each node of hidden layer simultaneously, each node then 
calculates the distance from the input vector to its own centre (Wedding & Cios, 1996). The 
MLP nodes, on the other hand, divide the input space into subspaces in which there is a big 
difference on output. 
Radial Basis Functions are used for the approximation and interpolation in numerical 
mathematics. The approximation process is based on a function. Usually, the linear 
combination of base functions, here the radial functions, is used. The basis function realizes 
the transformation of the distance value, calculated from the input vector to its own centre, 
to the output value of the node. The output value is then multiplied by a weighting value or 
a constant. 
Problems with the creation of RBF-NN consist in the determination of the number of neurons 
in the hidden layer, the determination of the middles of these neurones and the determination 
of the neurones width. A powerful method for the determination of the number and quality of 
neurons of the hidden layer is the algorithm APC-III (Štencl & Štastný, 2009). This single-pass 
associating algorithm unlike others uses a constant radial (Ripley, 1996). 



Artificial Neural Networks - Application 

 

18 

 
Fig. 2. Algorithm APC-III symbolic implementation (Štencl & Štastný, 2009) 

The learning process consists in a precept of the given network to answer correctly to an 
entire training set. As the hidden layer was in this network represented by so-called areas 
and the middles of the areas are fast added to it, the learning process oversimplifies only to 
the setting of scales and thresholds of the output layer. The gradient method and the Least 
Mean Square (LMS) method were tested for learning of the neuron network. 
The gradient method uses relations derived for the outgoing layer for algorithm Back-
Propagation (BP). In contrast to the BP method, this method only optimizes scales and 
thresholds of the outgoing layer. 
In the learning stages, the network 
1. estimates centres of cj with x(t), 
2. estimates widths bj, 
3. determines the weights wsj of input neurones (x(t),y(t)). 
At the first stage, centres cj are determined for each RBF unit. The centres cj are represented 
by the weights between the input and the hidden layer. For example, the algorithms for 
cluster analysis are used. To speed up this stage, non-adaptive methods can also be used 
such as uniform or random distribution of RBF neuron centres over the input space. The 
second stage sets up other values of RBF neurons. The setup values of RBF units (bj) 
determine the wideness of the area around estimated centres of cj. The objective of the third 
stage of learning is to determine the weights of input neurons, for example the least square 
method or gradient algorithms can be used. 

Algorithm APC-III: 
C: the number of neurons   
cj: the middle of  j-th  neuron 
nj: the number of samples in j-th neuron 
dij: the distance between  xi and j-th neuron 
 
{ 
 C=1; c1 ← x1; n1 = 1; 

for(i = 2; i =< P; i++) // for every pattern from training set 
{ 

  for(i = 1; i =< C; i++) // for every neuron 
{ 

    calculatedij; 
    if(dij=< R0) // insert xi into j-th neuron 
    { 
   cj = (cjnj + xi)/(nj + 1); 

  nj = nj + 1; 
   break; 

}; 
}; 
if(xi is not in any neuron) // create new neuron 
{ 
 C = C + 1; 
 cc ← xi; 
 nc= 1; 
};  

}; 
};   
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In global view, the RBF-NN learning includes the unsupervised learning at the first stage. At 
the second stage the setup of RBF units is made. The typically used function for this setup is 
the Gaussian Radial Basis Function (Šíma & Neruda, 1996) defined as in (6). 

 ( )

2x c
bx eϕ

⎛ − ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠=  (6) 

The RBF unit determines the important output values in the radial zone with the centre in c;  
b represents the width of φ and determines the size of the radial zone. The setup parameters 
of RBF units determine the wideness of the controlled area and affect the generalization 
capability of the network. If the parameters are smaller it means a lower generalization 
capability; on the other hand, for a wider area the units lost their local mean. 
At the last stage, the supervised learning is used. The last stage sets up the weights wsj. The 
setup is made by mineralization process of typical error function (Šíma & Neruda, 1996). 
After the learning process the RBF-NN is ready to approximate training sets and also provide 
good results for answers outside the training set. Different techniques for regularization have 
been discussed for a long time. For example, Bishop (1991) works with the same RBF units as 
training patterns. This technique brings a uniform resolution and wideness of the Gaussian 
function, provided that the input data have the same time of generation. 

4. Results 
All of the above described methods are applied to solve the prediction of real numerical 
time series represented by Czech household consumption expenditures. The tested dataset 
includes twenty-eight observations between the years 2001 and 2007. The observations are 
represented by quarterly data and the goal is to predict three future values for the first three 
quarters of 2008. As the second real-world economic index, the Czech Republic Goods 
transport indexes were used. The data are originally from the Czech Statistical Office and 
are measured quarterly. The length of the time series is 32 units and represents quarters of 
the years 2000 and 2008. The number of data used to train networks and to test network is a 
representative for the generalization ability testing of each selected method. The predicted 
values of both experiments are compared with the measured values. In the next step, a 
comparison of neural network topology efficiency with respect to learning algorithms is 
made. The used dataset includes all of the previously specified problems of the real-world 
economic index. Conditions for all the experiments remain defined as following: 
• the tests were performed at the same hardware with monitoring of the kernel processes 

to keep them on the same level 
• all the comparison tests were performed in Matlab 2010a environment with the neural 

Network Toolbox 
• the same input, targets, validation and cross-validation datasets are used 
• the short and middle term prediction is performed. 
The parameters compared are based on previous research and they reflect the objective 
comparison with other methods. The first of the parameters is the output precision 
measured with the Mean Square Error and the Normalized Mean Square Error respectively. 
The second comparison parameter is the absolute comparison of the output value with the 
absolute value of the specific index. 
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Fig. 2. Algorithm APC-III symbolic implementation (Štencl & Štastný, 2009) 

The learning process consists in a precept of the given network to answer correctly to an 
entire training set. As the hidden layer was in this network represented by so-called areas 
and the middles of the areas are fast added to it, the learning process oversimplifies only to 
the setting of scales and thresholds of the output layer. The gradient method and the Least 
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3. determines the weights wsj of input neurones (x(t),y(t)). 
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Algorithm APC-III: 
C: the number of neurons   
cj: the middle of  j-th  neuron 
nj: the number of samples in j-th neuron 
dij: the distance between  xi and j-th neuron 
 
{ 
 C=1; c1 ← x1; n1 = 1; 

for(i = 2; i =< P; i++) // for every pattern from training set 
{ 

  for(i = 1; i =< C; i++) // for every neuron 
{ 

    calculatedij; 
    if(dij=< R0) // insert xi into j-th neuron 
    { 
   cj = (cjnj + xi)/(nj + 1); 

  nj = nj + 1; 
   break; 

}; 
}; 
if(xi is not in any neuron) // create new neuron 
{ 
 C = C + 1; 
 cc ← xi; 
 nc= 1; 
};  

}; 
};   
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The results of the experiments identify the main differences in the used neural networks 
architectures together with numerical forecasting of a real-world economic index. The 
detected differences are then verified by means of practical comparative examples. 
The most important and also difficult part of working with ANN generally is the right 
architecture setup of selected network. For the multi-layer networks the number of hidden 
layers and units is one of the most important setups. The number of hidden units and layers 
estimates the flexibility of the network to approximate nonlinearization in the data. For 
estimating the “right” number of hidden layers and unit there is no universal approach. 
Hastie (2001) claims that the choice of the number of hidden layers is guided by background 
knowledge and experimentation. Typically, the number of hidden units is somewhere in the 
range of 5 to 100, the number increasing with the number of inputs and number of training 
cases (Hastie et al., 2001). Kecman (2001) gives a reasonable approach when deciding about 
the MLP networks architecture. We should specify the cost function for the neural network 
performance, including the size of the neural network learning time, implement ability in 
hardware, accuracy achieved, and the like (Kecman, 2001). Based on author’s experience, the 
pseudo system approach has been applied in presented experiments. We covered all areas 
defined by Kecnam (2001) and used automated implementation of testing different numbers 
of hidden units and layers. The system approach starts with a huge number (it depends on 
the number of inputs) of hidden units, decreasing in several steps depending on the 
generalization capability. The presented architectures brings best setups of selected neural 
networks models. 

4.1 Learning Algorithms comparison 
The first set of experiments was performed using our own modification of MLP network 
with BP learning algorithm tested through Matlab R2010a environment. The second part of 
the experiment was performed using the MLP network with LM algorithm implementation 
in Matlab R2010a based on the previously described principles. The dataset was divided 
into input data and validation data in order to obtain better generalization of the results. 
Both networks described in the following section are based on one-hidden-layer architecture. 
The stopping criterions for learning process were normalized mean square error (MSE), and 
total amount of epochs set to 2000 epochs. The observed values for comparison are the total 
amount of learning epochs and the number of neurons in the hidden layer respecting the 
specified learning algorithm. In order to compare the MLP network using the BP learning 
algorithm and the MLP network using the LM learning algorithm, the dataset was divided 
into a training set (70 % of the dataset) and a test set (remaining 30 % of the dataset). The 
training set was then divided into the training set itself (80 %) and a validation set (20 %). The 
performance of both experiments was evaluated for the test set. For the purposes of the 
experiment, the comparison starts at the third quarter of 2002. 
The comparison process stops at the fourth quarter of 2007. The prediction is made for the 
first three quarters of 2008. The computed results of both MLP networks are then compared 
with real measured values. The hardware used for both experiments was an Intel Core i5, 
with 2.66 GHz and 4 GB of RAM. The operating system was the UNIX based Mac OS X. 
Both experiments had the same conditions so that the learning process is not affected. 
The first setup is made by the MLP network with the BP learning algorithm. The 
architecture had twenty neurons in the hidden layer and the learning process ended when 
the stopping criterion defined by MSE (valued to 0.01) was reached after 890 epochs. The 
 

Artificial Neural Networks Numerical Forecasting of Economic Time Series 

 

21 
 

 
Fig. 3. Prediction with MLP network using BP learning algorithm (Štencl & Štastný, 2010) 

results of the experiment are presented at Figure 3. The dashed line represents the original 
real input values and the solid line represents the calculated output of the MLP network 
with the BP learning algorithm. The prediction starts with the first quarter of 2008 (as 
indicated by the solid line and description forecast). The difference between the calculated 
value and the real value for the first quarter of 2009 is 0.00169. With the next two values the 
prediction gains more error. 
The second setup works with the MLP network using the LM learning algorithm. The 
architecture was different because the LM learning algorithm works with smaller networks 
topologies. The test was performed with more network architectures. The best result, by 
reaching the stopping criterion of MSE, has been reached by the MLP network with ten (10) 
neurons in the hidden layer. The performance of the learning and the validation processes is 
presented at Fig. 4. The plot presents training, validation and test values calculated using 
mean square errors (MSE). The MLP network reached the stopping criterion on epoch 20 
with the best validation performance value of 0.0058 (MSE). 
Figure 4 represents the comparison of the values calculated by the MLP network with the 
LM learning algorithm implemented in Matlab R2010a (by function trainlm). Again, the 
dotted line represents normalized real Czech household consumption expenditure. The 
solid line represents the calculated values of the MLP network with the LM learning 
algorithm. Again, the comparison starts at the third quarter of 2002 and ends with the last 
quarter of 2007. The prediction is made for the first three quarters of 2008. When comparing 
the real and the calculated values of the MLP network, the main difference is in the first 
quarter of 2008, where the empirical variance is -0.076. For the next calculated values the 
empirical value decrease to vales of -0.00047 and 0.00074 respectively. 
Both networks ended the learning process on reaching the first stopping criterion defined by 
normalized mean square error (MSE). The first difference is in the architecture of the MLP 
networks. When using the LM with twenty neurons in the hidden layer, the network over 
fits the data. By decreasing the number of neurons in the hidden layer, it brings better 
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Fig. 3. Prediction with MLP network using BP learning algorithm (Štencl & Štastný, 2010) 
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Fig. 4. Prediction with MLP network using LM learning algorithm (Štencl & Štastný, 2010) 

results. With ten neurons in the hidden layer the stopping criterion has been reached. 
Further decrease in the number of neurons in the hidden layer did not enhance the network 
error. Another difference is in the learning time. The MLP network with the BP needed 890 
epochs to reach the stopping criterion defined by the mean square error. The MLP network 
with the LM finished the learning process after twenty epochs by reaching the stopping 
criterion. Regarding just to these two facts the LM algorithm seems to be more effective even 
on the time series models with limited data. 
The MLP network with the BP brings better approximation (as presented at Fig. 2) and with a 
better prediction for the first quarter of 2008. Then the prediction error increases continually. 
The MLP network with the LM did not fit with the target data as well as the MLP network 
with the BP, but it computed better results for the second and the third quarters of 2008. 
We can conclude by the fact that it is either possible to retrieve the results in short time 
(using the LM algorithm), or use the standard learning algorithm to obtain competitive 
computed values of the used dataset. The prediction results of the LM algorithm for the 
second and the third quarters of 2008 are definitely positive within the experiments. Both 
methods generally agree on the future values of the time-series. 

4.2 Multithread MLP-NN implementation 
This experimented was motivated by the learning process optimization on the 
computational level. Taking into account the results of the first experiments, we expected a 
better approximation ability of data. The multi-threaded calculation may allow faster 
computation (the value is lower than the maximum number of epochs) with a greater range 
of the network. The expectations of the multi-thread experiment results were defined as the 
achievement of more accurate values for the middle-term prediction in fewer learning 
epochs. The total number of epochs was chosen as a criterion because of relativity of time as 
evaluation criterion. The main evaluation criterion remains the MSE as used within the 
previous experiments to reach a qualified comparison. 
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For the multi-thread calculation, the open source Java framework Joone has been used 
(available at http://sourceforge.net/projects/joone). The chosen Joone function was 
executed through the Matlab 2010a environment to keep the experiment conditions. The 
calculation was performed on the workstation with an Intel Core i5 with a frequency of 2.66 
GHz and 8 GB memory. The aim of the tests was to identify the key indicators for the 
optimization of the prediction of multithreaded real data with previously defined 
expectations. For multithreaded computations it was necessary to choose a greater range of 
MLP network topology. Based on the cross-validation a network with three layers with 5 
neurons in the first hidden layer (linear activation function), 15 neurons in the second 
hidden layer (sigmoid activation function), 5 neurons in the second hidden layer (sigmoid 
activation function) and one neuron in output layer was selected for testing. As a training 
evaluation criteria the overall network error (set to the desired value 0.001) and the 
maximum number of epochs of network training (1000 epochs) were selected. 
 

 
Fig. 5. Multi-thread prediction of standardised amount of transported goods by railway 

Experiment Time series consists of goods transported by railway in as long-term trend of 
individual indicators by months and years as Volume indicators. Experiment dataset contains 
tons of goods transported by railways in the Czech Republic. The values where standardized 
to the interval <0, 1> for better adaptation of ANN. The length of the validation set was 35 
observations (the last value of the second quarter of 2007). The forecast was set at 5 future 
values. The resulting values were compared with the real values from upcoming quarters in 
2007 and 2008. The training of the ANN ended at 1320 epoch with a total network error (MSE) 
of 0.00098. The subsequent validation of the real data demonstrates the ability to predict the 
mean square error of 0.0012, which corresponds to the learning setup. 
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Fig. 4. Prediction with MLP network using LM learning algorithm (Štencl & Štastný, 2010) 
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For the multi-thread calculation, the open source Java framework Joone has been used 
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Fig. 5. Multi-thread prediction of standardised amount of transported goods by railway 
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The validation result of the comparison experiment is shown at Figure 5. The figure includes 
the comparison of the computed values with the real-values of the selected index. The 
comparison starts at the second quarter of 2007 (signed as forecast).  Networks of larger scale 
have a better capability of approximation for large datasets. A positive benefit of our 
experiment is the good ability of the trained network to successfully predict the trend of 
real-world index of a small input dataset. 
The resulting total number of epochs in training may be due to the nature of the training 
dataset. Another positive conclusion is the ability of the network to predict the huge 
decrease in the future as is shown between the third quarter of 2008 and the second quarter 
of 2009. In this period the index fell down to the extreme – the global minimum. The trained 
network was, in spite of the unexpected decrease, able to forecast. The expectations of this 
experiment were not confirmed. Working with the multi-thread implementation did not 
optimize the learning process by decreasing the number of epochs with reaching the defined 
learning error. But the experiment confirmed a better ability of generalization of the multi-
layer MLP implementation than the single layer implementation used in previous 
experiments. 

4.3 Radial basis function experiment 
The experiment consists of comparison tasks of the RBF NN implementation in Matlab 
R2007a and MLP NN used in (Štencl & Štastný, 2008). Figure 6 describes the standard 
topology of the Matlab RBF NN implantation algorithm. The experiment dataset consists of 
selected consumption expenditures time series violated by a random constant. The 
customization of the selected value has been made to get diverse time series model 
simulating different variations. 
 

 
Fig. 6. Matlab RBF-NN topology (Štencl & Štastný, 2009) 

The final model consists of 40 observations representing quarters of the years from 1998 to 
2008. The absolute variety in the dataset is 3. The forecast is made for five future periods. 
The stopping criterion for learning process was the normalized mean square error (MSE), 
and the total amount of epochs was set to 2000 epochs. The learning criterions are identical 
to the previous experiment because of the comparison aspect. The observed values for 
comparison are the total amount of learning epochs and the number of neurons in the 
hidden layer with respect to the radial basis neural network learning process. The learning 
process of the network was much faster than in the case of the MLP network with the Back-
propagation algorithm. 
The obtained values are not as exact as in the case of the MLP network. Precisely in this case, 
Matlab implementation does not allow a better configuration of the network. Figure 7 shows 
the performance progress for the Matlab implementation of RBF NN. The performance 
value for the MLP NN was 0.23124. The performance value for the Matlab was 0.6973. 
Concluding this experiment, the RBF network should be used more for the short-term 
prediction. For smaller datasets there is a notable huge noisiness in the data computed by 
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RBF networks. In spite of that, RBF networks produce good results for datasets containing 
approximately fifty observations. For datasets with fewer observations, RBF networks are 
unable to approximate the selected data as the MLP networks in our case. As shown at 
figure 7, both types of ANN have shown a good generalization ability resulting in a better 
prediction for the MLP NN when reaching a smaller error. The RBF networks confirmed a 
better endurance for architecture changes than the MLP NN during the experiment and 
faster learning adoption. 
 

 
Fig. 7. Comparison of MLP-NN and RBF-NN (Štencl & Štastný, 2009) 

4.4 Comparison of RBF NN and two-level grammatical evolution  
The experiment was previously published as (Štencl et al., 2009). The sample dataset for 
experiment consists of 40 observations defined at part 4.3; values lie in interval <1, 9.5>. The 
first part of the experiment was performed using RBF NN implementation in Matlab R2007a 
based on the previously described principles. The dataset was divided into input data and 
validation data in order to obtain better generalization of the results. The second part of the 
experiment was conducted using our own implementation of two-level grammatical 
evolution (Popelka, 2007). 
Figure 8 shows the input data and two sample runs of both methods. Both methods generally 
agree on the future values of the time-series. The output of neural network is shown only with 
the values displayed, the output of the grammatical evolution is both the values displayed and 
the formula that makes the main difference between both the approaches. But if we focus on 
the learning time efficiency, the grammatical evolution provides us with more information, but 
its training would take much more time than training a neural network. In this simple case it 
would be about 10 generations of the underlying genetic algorithm, which takes about 40 
minutes (about 4 times longer) using the same computer. 
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The validation result of the comparison experiment is shown at Figure 5. The figure includes 
the comparison of the computed values with the real-values of the selected index. The 
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Fig. 6. Matlab RBF-NN topology (Štencl & Štastný, 2009) 
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and the total amount of epochs was set to 2000 epochs. The learning criterions are identical 
to the previous experiment because of the comparison aspect. The observed values for 
comparison are the total amount of learning epochs and the number of neurons in the 
hidden layer with respect to the radial basis neural network learning process. The learning 
process of the network was much faster than in the case of the MLP network with the Back-
propagation algorithm. 
The obtained values are not as exact as in the case of the MLP network. Precisely in this case, 
Matlab implementation does not allow a better configuration of the network. Figure 7 shows 
the performance progress for the Matlab implementation of RBF NN. The performance 
value for the MLP NN was 0.23124. The performance value for the Matlab was 0.6973. 
Concluding this experiment, the RBF network should be used more for the short-term 
prediction. For smaller datasets there is a notable huge noisiness in the data computed by 

Artificial Neural Networks Numerical Forecasting of Economic Time Series 

 

25 

RBF networks. In spite of that, RBF networks produce good results for datasets containing 
approximately fifty observations. For datasets with fewer observations, RBF networks are 
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better endurance for architecture changes than the MLP NN during the experiment and 
faster learning adoption. 
 

 
Fig. 7. Comparison of MLP-NN and RBF-NN (Štencl & Štastný, 2009) 
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Fig. 8. Comparison of trained RBF NN and two-level grammatical evolution (Štencl et al., 2009) 

Both methods provide comparable results in terms of accuracy. Briefly this could be 
described that it is either possible to obtain numerical results in a short time, or use a more 
complicated algorithm to obtain autoregressive formula of the time-series. 

5. Conclusion 
In this chapter we have presented comparison studies of different artificial neural networks 
on prediction of the real-world economic index. For this type of tasks the statistical analysis 
is used. For the statistical prediction, a time-series model must be constructed first and then 
the prediction is made. The set of input conditions is strictly defined which limits the 
generalization ability. The resulting forecast is then affected also by the noisiness and the 
length of the input dataset. The length of economic datasets is the typical problem of Czech 
conditions. Thus, the length of the input dataset and the noisiness, joined with the strong 
nonlinearity of the input models lead to an unsolvable usage of classical methods. Some of 
the mentioned difficulties can be reduced by using selected Artificial Neural Network 
models. 
We evaluated the selected Artificial Neural Networks using different types of networks 
models by means of a systematic approach. The selection is based on a state-of-the-art 
analysis and also author’s experience. The evaluation of the selected ANN is based on 
previously published papers with added consequences between them. For the experiments 
the real-world economic time series has been used. The input datasets include typical 
problems mentioned before. All the predictions are based on the comparison with real 
values of selected time-series model. For comparison purposes a few values of the dataset 
where excluded from the learning process to be compared later with the computed values. 
The basic, but also very powerful, type of the ANN is the multi-layer perceptron network 
(MLP NN). The network architecture is the key element for an effective usage of the MLP 
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NN, together with the learning method. As we proposed in the text, there is no guaranteed 
approach to setup the right network architecture. For our experiment we used the 
systematic approach similar to cross-validation. We also tested different learning algorithms 
as part of the learning process optimization. The results of the experiments show better 
approximation of MLP NN with Back-propagation learning rule. The training of the MLP 
NN with Levenberg-Marquardt learning rule results in overfitting of the data. The 
comparison of both approaches leads to conclusion that both methods are effective. We also 
add an experiment with the multithread MLP NN. The expected results were not confirmed 
because of the maximal number of epochs (which was one of the comparison aspects). The 
multi-thread implementation provides a better generalization ability than in case of single 
thread computation. 
As the second type of ANN used for prediction, the Radial Basis Function neural networks 
have been tested. The RBF NN generally provide a good forecasting ability. The RBF NN 
had a worse approximation ability than the MLP NN. Another interesting point is the 
endurance of the RBF NN for the architecture changes. The computed values show noisiness 
in the resulting values. This is probably produced because of the length of the input dataset. 
The RBF NN typically needs to have more data for better generalization.  In the last 
experiment of this work we have compared the RBF NN with the two-level grammatical 
evolution. The experiment results confirmed the ability of both approaches with the main 
difference in time efficiency. We can conclude that the RBF NN are more effective for 
retrieving the values of the prediction. 
Generally, we can conclude that these approaches have a good potential for short and 
middle term predictions of real-world economic index. We have also confirmed good 
efficiency of ANN when working with short or missing datasets. When comparing the 
different type of the ANN, the MLP NN showed the best generalization ability. The RBF NN 
is better to use with a longer input dataset, but they are more effective for obtaining the 
numerical values of time-series model as another Artificial Intelligence approach (a genetic 
algorithm in our case). 
In future work we would like to use artificial neural network methods on different real-
world data. Newly, the analysis of the business cycle opens a new application area for 
different types of artificial neural networks. A thorough analysis including the comparison 
with selected statistical methods shows that possible inconsistencies in the prediction of 
used methods can be described and quantified. The scope of further research will be also 
focused on testing of different architectures including the multi-thread implementations 
which show a very good generalization ability. The research will also include the modelling 
with Bayesian Networks. 
This work has been supported by the Research design of MENDELU in Brno number 
116/2101/IG1100791. 
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1. Introduction 
According to a recent study quoted by the Union National Observatory, in 2009 about 50% 
of European bank robberies took place in Italy. Beyond the reliability of this percentage 
value, such datum highlights one of the most complex problems security bank officers have 
to face in order to make all national branches more secure. 
Since 2009 ABI (Italian Banking Association) has been trying to solve such problem by using 
a software to analyze the bank robbery risk. The software is based on a model involving the 
analysis, description, explanation and estimation of the phenomenon. The last version of the 
tool, released in May 2010, is the final result of a five-year activity of researches, 
experimentations and sharing with companies managers. 
The latest update of the software supplies an online control panel to analyze the actual state 
of all Italian branches and scientifically support the robbery risk management in real time. 
The specific goal of this tool is to provide Italian bank security managers with an operative 
model able to: 
a. “describe” the variables and define the “robbery” phenomenon; 
b. “explain“ the modalities to calculate (i) the “Exogenous”, (ii) the “Endogenous” and  

(iii) the Global Risk Indexes for each single branch; 
c. “predict”, by a simulation module, the variations of the compound risk in relation with 

the different branches security systems. 
Thanks to these data resulting from years of experience, I decided to generalize and extend 
the features of the model in other contexts such as the management of the Cash Risk, energy 
sources, e-learning courses and so on. Then I developed a meta-model exclusively focused 
on criminal phenomenology, NBNC (Neural and Bayesian Network to fight Crime). Such 
meta-model integrates ANN and Bayesian network in order to effectively analyze many 
kinds of operative risks related to the organized crime, such as anti-terrorism and criminal 
investigation techniques. 
The present chapter includes:  
• a premise about the concepts of “complexity” and “risk management” applied to crime 

phenomenology; 
• an analytical presentation of the logic structure and the main features of the NBNC 

meta-model; 
• a brief discussion about the method used in order to derivate a Bayesian network from 

a database through an ANN; 
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• a description of a concrete application of this meta-model, that is the ABI model applied 
to analyze the robbery risk in Italian Banking System. 

2. Complex phenomena and risk management in criminality 
The NBNC meta-model represents a theoretical framework to design and develop 
“intelligent models” in order to analyze the Risk in criminality. 
This meta-model is based on three elements: a hybrid architecture integrating a database 
related to the phenomenology we need to analyze, a Bayesian network reproducing the 
probabilistic conditions between the variables involved, an ANN network system defining 
the rules that build the Bayesian simulator. 
The structure of the NBNC model has been designed according to the complexity of the 
criminality and the risk analysis techniques: before describing its features, it would be useful 
to answer some questions:  
what is “complex criminality”? Why it’s so difficult to analyze and prevent “events” like 
bank robberies or terrorist attacks? Why is it almost impossible to build an “intelligent 
model” in order to effectively apply the most advanced criminal investigation techniques? 
Which are the Risk general features in criminality? 

2.1 Definition of “complex phenomenon” in criminality 
Let’s start from a general definition: the complexity of a phenomenon essentially derives 
from the “impossibility” of representing its fundamental characteristics and dynamic 
evolutions through a linear quantitative frame. Such frame can correspond to any 
polynomial function, as: 

 ( ) 2
0 1 2 ...... n

nf x a a x a x a x= + + + +  (1) 

where n is the function degree f, coefficients ai are real numbers entirely independent of each 
others and a0 is the constant term. 
This “impossibility” depends on several interrelated factors: 
• the coefficients of the hypothetical function meant to describe the phenomenon are 

interdependent; 
• the variables composition effects can’t be explained through the analysis of each single 

variable behavior; 
• the phenomenon shows a very high number of inhomogeneous variables; 
• the initial conditions affect the phenomenon dynamic evolution and show a “chaotic” 

behavior. 
A phenomenon having these characteristics is defined as a “complex phenomenon”. For 
instance, in most cases a “robbery” represents an “unpredictable” phenomenon related to 
different and interdependent factors (social, economic, psychological, geographical and 
environmental). 
Similarly, a terrorist attack represents the effect of some variables interactions: International 
Relations, religious views, conflicting interests, social and economic conditions, links with 
the organized crime.  
The same happens in case of many criminal events, in particular murders involving specific 
investigation techniques. As forensics experts could tell, the phenomenon shows a strong 
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fragmentation and stratification of several factors and initial conditions. That’s why the 
model should take into account the following variables: 
• the preliminary investigations results, that are the final outputs of public prosecutor, 

police, lawyers and defense experts activities; 
• the crime scene reconstruction through planimetry, photos, collection of trace evidence, 

autopsies; 
• the identity checks, through several kind of identification techniques (fingerprint, 

anthropological, vocal, genetic identification, graphology and so on); 
• the forensic ballistics results. 

2.2 The criminal “risk” analysis 
The “criminal” phenomena analysis entails five different and complementary meanings of 
“risk”. Then a risk can be: 

1. the probability some conditions B can occur and cause the criminal event A: P(B); 
2. the probability that, given some initial conditions B, the criminal event A: P(A|B) 

can occur; 
3. the probability that, given some initial conditions B, the criminal event A can occur 

with some particular characteristics or specific magnitude P(Ai|B); 
4. the probability that, given some initial conditions B, the criminal event A can 

determine some (almost always harmful) effects C while P[C|(A and B)] is 
happening; 

5. the probability that, given some initial conditions B, the criminal event A can 
determine some (almost always harmful) effects D after P{D|[C and (A and B)]} 
happened. 

Clearly, these five meanings imply different analysis modalities and risk management 
typologies. 
Focusing only on the first and second definition, we could analyze the risk by essentially 
monitoring the initial conditions in order to avoid the criminal event – robbery, terroristic 
attack, murder –. In terms of probabilistic conditions, it’s necessary to control B so that 
P(A|B) = 0. In bank robberies this kind of approach could support the defense systems 
maintenance management or justify the introduction of a new armed security service. Or in 
the terroristic attack prevention, the initial conditions control could be focused on arms 
dealers travels in a particular risk area. 
According to the third definition, the analysis model could be based on the assumption the 
criminal event is unavoidable: then, it would be necessary to focus on the initial conditions 
control in order to determine the criminal event characteristics. If Ai is the particular state 
describing the criminal event “expected” characteristics (the maximum threshold of 
magnitude), the goal is monitoring B so that P(Ai|B) = 1. Therefore, in case of a bank 
robbery, the risk analysis modality could be translated in a set of indications aimed at 
dealing some initial conditions (for example timed safes, instructions about cash 
management for all bank employees and so on) and reducing the robbery duration or the 
cash stolen amount. 
The forth definition is an extension of the second one and suggests a more refined risk 
analysis model. According to the logical flow B A C, if we monitor B and, after that, A we 
can reduce C effects related to the criminal event. In the bank robbery example, the analysis 
results could induce the bank to provide all employees with some guidelines: learning 
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• a description of a concrete application of this meta-model, that is the ABI model applied 
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The NBNC meta-model represents a theoretical framework to design and develop 
“intelligent models” in order to analyze the Risk in criminality. 
This meta-model is based on three elements: a hybrid architecture integrating a database 
related to the phenomenology we need to analyze, a Bayesian network reproducing the 
probabilistic conditions between the variables involved, an ANN network system defining 
the rules that build the Bayesian simulator. 
The structure of the NBNC model has been designed according to the complexity of the 
criminality and the risk analysis techniques: before describing its features, it would be useful 
to answer some questions:  
what is “complex criminality”? Why it’s so difficult to analyze and prevent “events” like 
bank robberies or terrorist attacks? Why is it almost impossible to build an “intelligent 
model” in order to effectively apply the most advanced criminal investigation techniques? 
Which are the Risk general features in criminality? 

2.1 Definition of “complex phenomenon” in criminality 
Let’s start from a general definition: the complexity of a phenomenon essentially derives 
from the “impossibility” of representing its fundamental characteristics and dynamic 
evolutions through a linear quantitative frame. Such frame can correspond to any 
polynomial function, as: 

 ( ) 2
0 1 2 ...... n

nf x a a x a x a x= + + + +  (1) 

where n is the function degree f, coefficients ai are real numbers entirely independent of each 
others and a0 is the constant term. 
This “impossibility” depends on several interrelated factors: 
• the coefficients of the hypothetical function meant to describe the phenomenon are 

interdependent; 
• the variables composition effects can’t be explained through the analysis of each single 

variable behavior; 
• the phenomenon shows a very high number of inhomogeneous variables; 
• the initial conditions affect the phenomenon dynamic evolution and show a “chaotic” 

behavior. 
A phenomenon having these characteristics is defined as a “complex phenomenon”. For 
instance, in most cases a “robbery” represents an “unpredictable” phenomenon related to 
different and interdependent factors (social, economic, psychological, geographical and 
environmental). 
Similarly, a terrorist attack represents the effect of some variables interactions: International 
Relations, religious views, conflicting interests, social and economic conditions, links with 
the organized crime.  
The same happens in case of many criminal events, in particular murders involving specific 
investigation techniques. As forensics experts could tell, the phenomenon shows a strong 
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fragmentation and stratification of several factors and initial conditions. That’s why the 
model should take into account the following variables: 
• the preliminary investigations results, that are the final outputs of public prosecutor, 

police, lawyers and defense experts activities; 
• the crime scene reconstruction through planimetry, photos, collection of trace evidence, 

autopsies; 
• the identity checks, through several kind of identification techniques (fingerprint, 

anthropological, vocal, genetic identification, graphology and so on); 
• the forensic ballistics results. 

2.2 The criminal “risk” analysis 
The “criminal” phenomena analysis entails five different and complementary meanings of 
“risk”. Then a risk can be: 

1. the probability some conditions B can occur and cause the criminal event A: P(B); 
2. the probability that, given some initial conditions B, the criminal event A: P(A|B) 

can occur; 
3. the probability that, given some initial conditions B, the criminal event A can occur 

with some particular characteristics or specific magnitude P(Ai|B); 
4. the probability that, given some initial conditions B, the criminal event A can 

determine some (almost always harmful) effects C while P[C|(A and B)] is 
happening; 

5. the probability that, given some initial conditions B, the criminal event A can 
determine some (almost always harmful) effects D after P{D|[C and (A and B)]} 
happened. 

Clearly, these five meanings imply different analysis modalities and risk management 
typologies. 
Focusing only on the first and second definition, we could analyze the risk by essentially 
monitoring the initial conditions in order to avoid the criminal event – robbery, terroristic 
attack, murder –. In terms of probabilistic conditions, it’s necessary to control B so that 
P(A|B) = 0. In bank robberies this kind of approach could support the defense systems 
maintenance management or justify the introduction of a new armed security service. Or in 
the terroristic attack prevention, the initial conditions control could be focused on arms 
dealers travels in a particular risk area. 
According to the third definition, the analysis model could be based on the assumption the 
criminal event is unavoidable: then, it would be necessary to focus on the initial conditions 
control in order to determine the criminal event characteristics. If Ai is the particular state 
describing the criminal event “expected” characteristics (the maximum threshold of 
magnitude), the goal is monitoring B so that P(Ai|B) = 1. Therefore, in case of a bank 
robbery, the risk analysis modality could be translated in a set of indications aimed at 
dealing some initial conditions (for example timed safes, instructions about cash 
management for all bank employees and so on) and reducing the robbery duration or the 
cash stolen amount. 
The forth definition is an extension of the second one and suggests a more refined risk 
analysis model. According to the logical flow B A C, if we monitor B and, after that, A we 
can reduce C effects related to the criminal event. In the bank robbery example, the analysis 
results could induce the bank to provide all employees with some guidelines: learning 
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which are the most appropriate behaviors to keep in case of robbery can help avoiding 
things or people damages. 
The fifth definition, a particular version of the third one, includes a risk analysis model aimed 
at monitoring the logical flow B A  C  D (representing the criminal event A effects). In 
the case of a bank robbery, this analysis modality could be translated in some training 
activities to involve all the employees in the criminal event simulation in order to reduce the 
post-robbery psychological trauma. Another possibility could be the implementation of a 
communication plan to assure the customers the robbed bank branch is actually safe. 

3. The NBNC meta-model 
The NBNC meta-model includes the five “risk” meanings and summarizes them in a unique 
analysis modality: such approach includes the criminal event prevention, the analysis of 
possible practices to contain the event and the selection of specific activities to reduce its 
effects during and after. 
In fact, given a Ω set of criminal phenomena, the meta-model application to the Ω analysis 
must guarantee: 
1. a “description” of each Ω element state in a particular time interval tn; 
2. an “explanation” of every Ω event ei in a specific moment tn, according to the initial 

conditions set; 
3. a definition of a “predictive system” to evaluate/simulate the Ω initial conditions and 

calculate the probability an event can occur in a specific time interval tn; 
The NBNC meta-model application shows a “descriptive” dimension based on the Ω 
modeling through the definition of an ontology in order to represent all the potentially 
occurring events (α1, α2, α3, … , αn) in Ω. 
Hence the construction of a relational database describing the “story” of Ω consistently with 
the defined ontology. 
The “explanatory” and “predictive” dimensions are based on a symbolic rules system and the 
construction of a Bayesian network. The ANN system recurrent training refers to an updated 
database describing the Ω phenomena story: this will help us building the Bayesian network.  

3.1 The “descriptive” dimension 
First, the meta-model must provide an exhaustive, quantitative and operative description of 
the αi phenomenon in Ω. In other words it has to: 
• identify all the different factors affecting and determining the criminal events α1, α2, α3, 

… , αn subject of the analysis; 
• introduce  a measurement system in order to translate the different factors in 

quantitative terms; 
• clearly describe the identified factors characteristics in order to define the measurement 

different areas;  
• adopt a “translator” handbook in order to map all the categories used by the field 

leading experts (who are the future users of the tool);  
• develop a theoretical framework to "tell" the evolution of the phenomenon ei over time; 
• distinguish the dynamic variables defined in state description from the boundary 

structural variables; 
• introduce new categories in order to circumscribe clusters of similar variables; 
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• define the observation conditions of each variable depending on the measurement 
system adopted; 

• determine the specific factors frequency and the a priori probability through descriptive 
statistics tools; 

• map the national and international legislation, in particular the different sanctions for 
criminal acts, affecting the categories definition; 

• develop a relational database structure in order to include all the variables the model 
introduced. 

In brief, it’s about defining the system reference ontology and the specific vocabulary to 
highlight the more relevant aspects of the phenomenon αi in Ω. The goal is determining a 
univocal “description” of the different criminal events involved. The identification of the 
"fundamentals" implies as final output a formalized language to represent every possible 
phenomenon αi. 

3.2 The transition from the “descriptive” to the “explanatory” dimension  
After providing all the information and categories to describe every possible phenomenon, 
the tool must quantitatively define the involved variables rules and relations. 
Therefore the explanatory dimension includes the preparation of a series of assumptions on 
the set functional rules meant to represent the variables relationships. These rules are 
essential in order to support the αi criminal phenomenon "modeling" – which will be 
complete only when the phenomenon characteristics will be reproduced within a simulation 
-. A symbolic notation can synthesize the different elements without any loss of information. 
 

 
Fig. 1. Representation of simple conditional probabilities 

As already mentioned, in case of complex phenomena such as bank robberies, terrorist 
attacks or murders, it may be useful to adopt the notation of the conditional probabilities 
calculation. A Bayesian framework can define the possible causal or interdependence 
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which are the most appropriate behaviors to keep in case of robbery can help avoiding 
things or people damages. 
The fifth definition, a particular version of the third one, includes a risk analysis model aimed 
at monitoring the logical flow B A  C  D (representing the criminal event A effects). In 
the case of a bank robbery, this analysis modality could be translated in some training 
activities to involve all the employees in the criminal event simulation in order to reduce the 
post-robbery psychological trauma. Another possibility could be the implementation of a 
communication plan to assure the customers the robbed bank branch is actually safe. 

3. The NBNC meta-model 
The NBNC meta-model includes the five “risk” meanings and summarizes them in a unique 
analysis modality: such approach includes the criminal event prevention, the analysis of 
possible practices to contain the event and the selection of specific activities to reduce its 
effects during and after. 
In fact, given a Ω set of criminal phenomena, the meta-model application to the Ω analysis 
must guarantee: 
1. a “description” of each Ω element state in a particular time interval tn; 
2. an “explanation” of every Ω event ei in a specific moment tn, according to the initial 

conditions set; 
3. a definition of a “predictive system” to evaluate/simulate the Ω initial conditions and 

calculate the probability an event can occur in a specific time interval tn; 
The NBNC meta-model application shows a “descriptive” dimension based on the Ω 
modeling through the definition of an ontology in order to represent all the potentially 
occurring events (α1, α2, α3, … , αn) in Ω. 
Hence the construction of a relational database describing the “story” of Ω consistently with 
the defined ontology. 
The “explanatory” and “predictive” dimensions are based on a symbolic rules system and the 
construction of a Bayesian network. The ANN system recurrent training refers to an updated 
database describing the Ω phenomena story: this will help us building the Bayesian network.  

3.1 The “descriptive” dimension 
First, the meta-model must provide an exhaustive, quantitative and operative description of 
the αi phenomenon in Ω. In other words it has to: 
• identify all the different factors affecting and determining the criminal events α1, α2, α3, 

… , αn subject of the analysis; 
• introduce  a measurement system in order to translate the different factors in 

quantitative terms; 
• clearly describe the identified factors characteristics in order to define the measurement 

different areas;  
• adopt a “translator” handbook in order to map all the categories used by the field 

leading experts (who are the future users of the tool);  
• develop a theoretical framework to "tell" the evolution of the phenomenon ei over time; 
• distinguish the dynamic variables defined in state description from the boundary 

structural variables; 
• introduce new categories in order to circumscribe clusters of similar variables; 
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• define the observation conditions of each variable depending on the measurement 
system adopted; 

• determine the specific factors frequency and the a priori probability through descriptive 
statistics tools; 

• map the national and international legislation, in particular the different sanctions for 
criminal acts, affecting the categories definition; 

• develop a relational database structure in order to include all the variables the model 
introduced. 

In brief, it’s about defining the system reference ontology and the specific vocabulary to 
highlight the more relevant aspects of the phenomenon αi in Ω. The goal is determining a 
univocal “description” of the different criminal events involved. The identification of the 
"fundamentals" implies as final output a formalized language to represent every possible 
phenomenon αi. 

3.2 The transition from the “descriptive” to the “explanatory” dimension  
After providing all the information and categories to describe every possible phenomenon, 
the tool must quantitatively define the involved variables rules and relations. 
Therefore the explanatory dimension includes the preparation of a series of assumptions on 
the set functional rules meant to represent the variables relationships. These rules are 
essential in order to support the αi criminal phenomenon "modeling" – which will be 
complete only when the phenomenon characteristics will be reproduced within a simulation 
-. A symbolic notation can synthesize the different elements without any loss of information. 
 

 
Fig. 1. Representation of simple conditional probabilities 

As already mentioned, in case of complex phenomena such as bank robberies, terrorist 
attacks or murders, it may be useful to adopt the notation of the conditional probabilities 
calculation. A Bayesian framework can define the possible causal or interdependence 



Artificial Neural Networks - Application 

 

34 

relations between initial conditions B = { β1, β2, β3, … , βn}, the criminal event A, the primary 
effects C and the secondary effects D (Fig.1). 
Then on a descriptive level, it might be useful to identify a number of intermediate levels in 
order to define any clusters of variables and possible interactions within each level, as 
exemplified in the following Bayesian network (Fig. 2):  
 

 
Fig. 2. Representation of complex conditional probabilities 

3.3 The “explanatory” and “predictive” dimensions: Bayesian network learning 
system based on neural networks 
The logical structure represented by the Bayesian network is still a hypothesis about general 
rules managing the phenomenology under observation. In fact, it shows the relationships 
but doesn’t provide any information about the variables weight and the probability 
distributions values. At this point it is necessary to test the hypothesis derived from 
historical data and information necessary to effectively build the Bayesian network and turn 
the model into a powerful tool for risk analysis. 
This can be possible by referring to the Motomura and Hara application of the method 
(Motomura & Hara, 2000). According to the authors we have to create one ANN for each 
conditional probability, that is each child node. 
Let’s start, for instance, from an elementary conditional probability: B  A. 
According to Motomura and Hara method, we can build the ANN for the conditional 
probability P(A|B).  This ANN has input neurons to represent the parent node B, hidden 
and output neurons to represent the child node A.  
In our case, A and B are discrete variables and the number of ANN neurons input and 
output depends on the number of states A and B can assume. 
In particular, if the child node A can assume a number of discrete values k, then:  

 A = (1; 2; 3; …  ; k). (2) 
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Fig. 3. The ANN representing P(A|B) 
k is the neurons output number P(1); P(2) ; P(3); … ; P(k), that is the probability vector of 
the child node A (Fig. 3). 
Then, how can we “neuronally” represent each conditional probability P(A| B = β) in order 
to build a Bayesian network?  
First, we must analyze all k and β possible combinations: 
 

 k not k 

β k and β not k and β 

not β 
 

k and not β 
 

not k and not β 
 

Table 1. Possible combinations of  and β 
Secondly, we have to determine the probability of each combination: 
 

 k not k Sum 

β P(k and β) P(not k and β) P(β) 

not β P(k and not β) P(not k and not β) P(not β) 

Sum 
 

P(k) 
 

P(not k) 
 

1 
 

Table 2. Probabilities of  and β combinations 
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probability P(A|B).  This ANN has input neurons to represent the parent node B, hidden 
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In our case, A and B are discrete variables and the number of ANN neurons input and 
output depends on the number of states A and B can assume. 
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 A = (1; 2; 3; …  ; k). (2) 

Neural and Bayesian Networks to Fight Crime: the NBNC Meta-Model of Risk Analysis   

 

35 

 
Fig. 3. The ANN representing P(A|B) 
k is the neurons output number P(1); P(2) ; P(3); … ; P(k), that is the probability vector of 
the child node A (Fig. 3). 
Then, how can we “neuronally” represent each conditional probability P(A| B = β) in order 
to build a Bayesian network?  
First, we must analyze all k and β possible combinations: 
 

 k not k 

β k and β not k and β 

not β 
 

k and not β 
 

not k and not β 
 

Table 1. Possible combinations of  and β 
Secondly, we have to determine the probability of each combination: 
 

 k not k Sum 

β P(k and β) P(not k and β) P(β) 

not β P(k and not β) P(not k and not β) P(not β) 

Sum 
 

P(k) 
 

P(not k) 
 

1 
 

Table 2. Probabilities of  and β combinations 



Artificial Neural Networks - Application 

 

36 

in the strength of these premises and according to Bayes Theorem,  

 k(  and )( | )
( )k

PP
P

α β
α β

β
= . (3) 

From a neuronal point of view,  
• if v, w and b are ANN connection weights,  
• and the logistic activation function is 
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• the Motomura and Hara (Motomura & Hara, 2000) solution will be: 
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Similarly, in the case of a more complex network that describes the criminal phenomenon A 
and the related effects, this method allows us assigning step by step all the conditional 
probabilities values and exactly defining the functional architecture of the Bayesian network 
(Fig. 4). 
In addition, through the ANN training we can indirectly verify the conditional dependency 
between each child node and its corresponding parent in the network. Indeed, the learning 
failure shows there isn’t a conditional dependency between nodes and the network 
structure must be updated.  
 

 
Fig. 4. ANN representing a complex Bayesian network 
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The final output is a Bayesian probabilistic model: describing, explaining and simulating a 
certain class of events allows supporting the security officers in the operational management 
of the different crime risk levels. In order to simulate different scenarios and the 
corresponding risk levels it will be sufficient to observe the states of the network 
independent variables and calculate the output values. Instead, in a preventing perspective, 
it will be necessary to go back to the initial functional values by associating the output to the 
expected values. 

4. A real application of the NBNC meta-model: the ABI model of robbery risk 
analysis 
The ABI robbery risk analysis model is a NBNC meta-model application in the world of 
crime. 
First, the “descriptive” dimension of the model ensues from a compared analysis of different 
banks institutional data and involves the direct confrontation with the major Italian banking 
groups security representatives. Secondly, the “explanatory” dimension derives from the 
generalization of the robbery risk variables relations through the network recurrent training 
including other artificial neural networks (ANN). At last, the “predictive” dimension is 
based on the attribution of “weights” to the single internal variables and on the definition of 
a Bayesian network representing the probabilistic conditions and the variables dependence 
relations.  

4.1 The “descriptive” dimension: the three robbery risk indexes 
The first fundamental achievement of ABI research team was to create a univocal 
vocabulary of variables in order to describe all the basic features, plants and services of a 
bank branch. From this vocabulary the team elaborated the criteria to define the robbery risk 
different meanings and identify three Indexes: 
1. the Exogenous Risk index, 
2. the Endogenous Risk index, 
3. the Global Risk Index. 
Currently, security officers of the Italian banking system are using the three risk indexes in 
their analysis and robbery risk management. The integration of Exogenous, Endogenous 
and Global risk also supports an effective risk management procedure in order to prevent 
the robberies and mitigate the damages. 

4.1.1 The Exogenous Risk index and the "environmental" variables of a bank branch 
The Exogenous Risk index is annually calculated for every single Italian municipality and 
shows the concentration degree of criminal events in a specific area. The analyzed variables 
include: 
• the geographical position,  
• the population density, 
• the annual crime rate in the area, calculated in relation with: 

• the ratio of robberies number per municipality’s inhabitants (N), 
• the ratio of bank robberies number per N, 
• the ratio of thefts number per N,  
• the ratio of murders number per N,  
• the ratio of suicides number per N,  
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The final output is a Bayesian probabilistic model: describing, explaining and simulating a 
certain class of events allows supporting the security officers in the operational management 
of the different crime risk levels. In order to simulate different scenarios and the 
corresponding risk levels it will be sufficient to observe the states of the network 
independent variables and calculate the output values. Instead, in a preventing perspective, 
it will be necessary to go back to the initial functional values by associating the output to the 
expected values. 

4. A real application of the NBNC meta-model: the ABI model of robbery risk 
analysis 
The ABI robbery risk analysis model is a NBNC meta-model application in the world of 
crime. 
First, the “descriptive” dimension of the model ensues from a compared analysis of different 
banks institutional data and involves the direct confrontation with the major Italian banking 
groups security representatives. Secondly, the “explanatory” dimension derives from the 
generalization of the robbery risk variables relations through the network recurrent training 
including other artificial neural networks (ANN). At last, the “predictive” dimension is 
based on the attribution of “weights” to the single internal variables and on the definition of 
a Bayesian network representing the probabilistic conditions and the variables dependence 
relations.  

4.1 The “descriptive” dimension: the three robbery risk indexes 
The first fundamental achievement of ABI research team was to create a univocal 
vocabulary of variables in order to describe all the basic features, plants and services of a 
bank branch. From this vocabulary the team elaborated the criteria to define the robbery risk 
different meanings and identify three Indexes: 
1. the Exogenous Risk index, 
2. the Endogenous Risk index, 
3. the Global Risk Index. 
Currently, security officers of the Italian banking system are using the three risk indexes in 
their analysis and robbery risk management. The integration of Exogenous, Endogenous 
and Global risk also supports an effective risk management procedure in order to prevent 
the robberies and mitigate the damages. 

4.1.1 The Exogenous Risk index and the "environmental" variables of a bank branch 
The Exogenous Risk index is annually calculated for every single Italian municipality and 
shows the concentration degree of criminal events in a specific area. The analyzed variables 
include: 
• the geographical position,  
• the population density, 
• the annual crime rate in the area, calculated in relation with: 

• the ratio of robberies number per municipality’s inhabitants (N), 
• the ratio of bank robberies number per N, 
• the ratio of thefts number per N,  
• the ratio of murders number per N,  
• the ratio of suicides number per N,  



Artificial Neural Networks - Application 

 

38 

• the ratio of rapes number per N,  
• the ratio of extortions number per N,  
• the ratio of usury crimes number per N,   
• the ratio of substance abuses number per N. 

The latest version indicator shows a trend index calculated by the minimum square method 
and expressed by a geo-referenced probabilistic value. Its aim is defining the specific 
criminal exposure risk in the branch geographic area. 

4.1.2 The Endogenous Risk index and the characteristics of a bank branch 
The Endogenous Risk index expresses the single branch exposure degree to robberies apart 
from the geographic situation and the local crime rate. It consequently derives by the 
combination of the banking branch characteristics: 
• the “basic characteristics”: the number of employees, the location, the cash risk and so 

on. 
• the “services”: for example, the bank security guards; 
• the “plants”‘: for example, the bandit barriers. 
The index is calculated with a complex function of robberies in a single branch, during a 
unit of time in which every “event” has modified the branch internal order. 
For example after a robbery, a bank can decide to put in a video camera directly connected 
to the police. 

4.1.3 The Global Risk Index of a bank robbery 
The Global Risk Index defines the actual robbery exposure degree of a specific bank branch, 
including its intrinsic features and geographic situation. It is calculated by considering the 
evolution of the suffered robberies in relation with the units of time and expresses a trend 
value.  
 

 
Fig. 5. Graphical representation of the branch states 
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Therefore the Global Risk Index derives by the non-linear combination of Exogenous and 
Endogenous Risk and corresponds to the synthesis of the robberies number per month and 
the number of days the branch is open.  
Expressed by a value between 0 and 1, it can be calculated by the minimum square method 
and represents the trend in relation to the previous values. 
But what Global Risk Index means and which is its relationship with the other risk indexes? 
The model is based on the description of the branch history as a sequence of states (Fig. 5), 
taking into account every change of its structure (for example, the introduction of a new 
defending service). In this way we create a direct relation between the branch and the 
Robbery Global Risk evolutions (Fig. 6). 
 

 
Fig. 6. Graphical representation of the evolution of Robbery Global Risk 

To simplify the question, we can use a biological metaphor: the transformation of the branch 
over time is like a “mutation” of biological organisms populations.   
This metaphor allows overcoming a wrong interpretation of the concept of “deterrent”. 
And the Robbery Global Risk suggests how the “robbery market” replies to the security 
managers activities. 

4.2 A Bayesian simulator for the robbery risk analysis 
The recent implementation of a Bayesian network in the simulation module is a significant 
evolutionary factor in the ABI robbery risk analysis model. Compared to the 2009 release the 
new version: 
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• the ratio of rapes number per N,  
• the ratio of extortions number per N,  
• the ratio of usury crimes number per N,   
• the ratio of substance abuses number per N. 

The latest version indicator shows a trend index calculated by the minimum square method 
and expressed by a geo-referenced probabilistic value. Its aim is defining the specific 
criminal exposure risk in the branch geographic area. 

4.1.2 The Endogenous Risk index and the characteristics of a bank branch 
The Endogenous Risk index expresses the single branch exposure degree to robberies apart 
from the geographic situation and the local crime rate. It consequently derives by the 
combination of the banking branch characteristics: 
• the “basic characteristics”: the number of employees, the location, the cash risk and so 

on. 
• the “services”: for example, the bank security guards; 
• the “plants”‘: for example, the bandit barriers. 
The index is calculated with a complex function of robberies in a single branch, during a 
unit of time in which every “event” has modified the branch internal order. 
For example after a robbery, a bank can decide to put in a video camera directly connected 
to the police. 

4.1.3 The Global Risk Index of a bank robbery 
The Global Risk Index defines the actual robbery exposure degree of a specific bank branch, 
including its intrinsic features and geographic situation. It is calculated by considering the 
evolution of the suffered robberies in relation with the units of time and expresses a trend 
value.  
 

 
Fig. 5. Graphical representation of the branch states 
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Therefore the Global Risk Index derives by the non-linear combination of Exogenous and 
Endogenous Risk and corresponds to the synthesis of the robberies number per month and 
the number of days the branch is open.  
Expressed by a value between 0 and 1, it can be calculated by the minimum square method 
and represents the trend in relation to the previous values. 
But what Global Risk Index means and which is its relationship with the other risk indexes? 
The model is based on the description of the branch history as a sequence of states (Fig. 5), 
taking into account every change of its structure (for example, the introduction of a new 
defending service). In this way we create a direct relation between the branch and the 
Robbery Global Risk evolutions (Fig. 6). 
 

 
Fig. 6. Graphical representation of the evolution of Robbery Global Risk 

To simplify the question, we can use a biological metaphor: the transformation of the branch 
over time is like a “mutation” of biological organisms populations.   
This metaphor allows overcoming a wrong interpretation of the concept of “deterrent”. 
And the Robbery Global Risk suggests how the “robbery market” replies to the security 
managers activities. 

4.2 A Bayesian simulator for the robbery risk analysis 
The recent implementation of a Bayesian network in the simulation module is a significant 
evolutionary factor in the ABI robbery risk analysis model. Compared to the 2009 release the 
new version: 
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i. contributes to make the compound risk predictive system more effective, 
ii. allows an exhaustive check and an indirect validation of the ANN training results, 
iii. introduces an algorithm that can be easily integrated in many computer system 

supports,  
iv. facilitates the final users (bank security managers) to understand the model 

functionalities, solving all the skepticisms outcropped in the previous versions.  
The analysis of the variables and of the three risk indexes allows defining the logical 
structure of the probabilistic conditions governing the "bank robbery” phenomenon: 
 

 
Fig. 7. Bayesian Network of the ABI robbery risk analysis model 

The Bayesian Network in Fig. 7 graphically represents the output of the design process: the 
probabilistic model to analyze the robbery risk. The input values of the simulation software 
are the elements composing the external and internal risks, whereas the output is defined by 
the a priori calculation of the global risk. The reference database consists of a branches and 
criminal acts historical archive concerning the time interval 2000-2010. 
The creation of the Bayesian Network was articulated in five phases.  
1. In the first phase the team revised the database in order to remove possible critical 

factors.  
2. In the second phase all variables connected to the Exogenous and Endogenous Risk 

were normalized.  
3. The third phase was dedicated to design the general structure of the system of ANN 

and its mathematical properties in relation with the Bayesian network of reference;  
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4. In the fourth phase we decided to implement a variation of the Back propagation: the 
“OS.SI.F Quick-propagation” to solve numerical instability and avoid the net 
permanence in critical situations of local minima.  

5. Finally, in the last phase of the process we verified the Bayesian network structure 
based on ANN. Also some critical nodes were modified in strength of the Exogenous 
Risk variations according to the population density and the relationship between 
Endogenous Risk and some new plants.  

4.3 The advantages of applying the NBNC meta-model to the robbery risk analysis 
The implementation of NBNC to support the Robbery Risk analysis has five fundamental 
advantages: 

• it coherently faces the high complexity degree of the robbery phenomenon;  
• it overcomes limited local vision in aid of the Robbery Risk analysis systemic 

approach;   
• it provides a higher degree of accuracy and scientific reliability to define the “risk” 

and the whole calculation model;  
• it ensures the maximum level of flexibility, dynamism and adaptability to contexts 

and conditions; 
• it guarantees an effective integration between a solid calculation model and the 

security managers professional and human experience. 

5. Conclusion 
The NBNC meta-model was successfully applied in the creation of the ABI robbery risk 
analysis tool (currently used in the Italian banking system). Moreover it is a theoretical tool 
to design “intelligent” systems for the risk analysis in criminal investigations. In fact, it 
represents an operational framework for the models implementation and takes into account 
the criminal phenomenology complexity. 
In the previous pages I tried to present the meta-model main features, primarily focusing on 
the importance of the descriptive dimension in the criminal risk analysis tool. In fact, the 
creation of a formalized language constitutes the foundation to identify some criteria and 
rigorously analyze the five risk levels. Experience taught me in most cases the community of 
experts in criminal risk management adopts different words to express the same variables or 
labels to describe unlike events. This causes ambiguities and misunderstandings that 
hamper the theoretical framework definition. 
Secondly, I reflected on the power of a Bayesian model based on neural networks to 
adequately describe the complexity of the crime phenomenon. This method allows: 
• identifying relevant variables in the mechanism governing the crime phenomenon; 
• introducing new variables or redefining the previous ones; 
• weighing each variable in relation to the overall structure; 
• discarding irrelevant variables; 
• falsifying or supporting the same consistency of the assumed logical structure; 
• identifying the likely strong causal links between variables; 
• defining the values of the Bayesian network probability distributions; 
• limiting the reliability of the results expected. 
By supporting the activities of prevention, monitoring, control and mitigation of the five risk 
typologies related to a wide range of phenomena, this method represents a useful 
contribution to the fight against crime. 
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1. Introduction 
This chapter has the objective of presenting four studies involving neural networks in the 
area of advanced oxidative process. Advanced Oxidative Processes area based on the 
generation and reaction of hydroxyl radicals. Because they are not selective and it possesses 
a high oxidizing power are able to degrade organic contaminants. 
Mathematical modeling of chemical process is often addressed in photocatalytic function of 
some parameters that are inherent in the process, such as the geometry of a reactor or 
characteristics of the compound to be worked, such as solubility and spectral characteristics 
of organic compounds. By moving the geometry of the reactor, moves through the proposed 
model. When they moved the reagents, changes completely the kinetics of the reactions 
involved and consequently the reactor performance.  
The process of decolorization and degradation of organic compounds may involve, 
according to criteria adopted modeling, a series of reactions kinetics. The photocatalytic 
process modeling involves the solution to a complex set of equations of energy (radiation), 
the mass balance, momentum and heat, being a difficult process description. The 
performance of a photoreactor is strongly influenced by many physical-chemical interaction 
occurring between these variables. Conventional modeling techniques can produce models 
not appropriate.  
This sense, neural modeling, empirical, presents itself as alternative to the traditional model, 
because it is based on mathematical equation. Based on the study of behavioral 
characteristics of the sets of input and output of the process of discoloration and 
degradation of organic compounds, possessing the ability to "learn" the behavior of linear or 
nonlinear experimental data. Through this "learning" may provide the optimization of the 
action of hydroxyl radical oxidation.  
Are presented four applications involving neural networks modeling. 
a. Neural approximation of the reduction of cod effluents from the manufacturing of 

polyesters trought photo-fenton procces/ozonization 
b. Hybrid neural model for decoloration by UV/H2O2 involving process variables and 

structural parameters characteristics to azo dyes 
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c. Optimization of the AZO dyes decoloration process through neural networks: 
Determination of the H2O2 addition critical point 

d. Decoloration process modeling by neural network 

2. Artificial Neural Networks 
A neural network is formed by processing elements (neurons) interconnected with the 
bordering neurons through coefficients or weights that stand for the relative influence of the 
entry neurons on other neurons, in an analogy with the human being brain behavior. There 
are various types of neural networks and, among them, the feedforward networks make up 
one  of the most utilized classes. 
With no further considerations on the physical-chemical processes involved in the 
transmission of information among the biological neurons, the signal enters the neuron 
through the dendrites and next it is transmitted to other neurons of the neural network via 
the axon. The passage of a neuron signal to other neuron dendrites is named synapse, which 
basically has the function of modulating the signal exchanged through them. In the artificial 
neuron this signal modulation, or signal intensity, is represented by a ponderation factor, 
named synaptic weight.  
In the feedforward network (Figure 1), the neurons are connected to all the neurons in the 
posterior layer. The information deriving from a layer undergoes a pondering through 
weights and is sent to all the neurons in the following layer.  
 

 
Fig. 1. Example of FeedForward Neural Network Model applied to Oxidative Advanced 
Process 
In the feedforward networks the processing elements of a same layer work in parallel and 
the process among the layers is sequential.  
The Equations that rule the feedforward networks are: 
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In this relation, ( )k
js  refers to the output of k layer i element activation function, indicates the 

weight pondered sum through the inputs and ( )k
ijw  refers to the synaptic connections at k 

layer j element input, where I is the connection index and Nk is the k layer processing 
element number. 
The feedforward neural network input and output neurons can be related by sigmoidal or 
linear type functions, given by Equations (3) and (4) respectively. 
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However, other transference functions can be used depending on the characteristics of the 
problem being studied.  
The linear activating function for the output layer is adequate for continuous phenomena, as 
for instance the oxygen biochemical demand or the absorbance degree in decoloration 
process. The sigmoidal type transference functions are necessary to introduce non linearities 
in the network. 
Training a network aims to adjust their weight in such a way that the application of a 
pattern produces an output value, and in this sense the Generalized Delta Rule or any other 
defined rule intends to reduce the network quadratic error indicated by: 
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In Equation (5) dj stands for the experimental or real value and yi represents the value 
predicted from the neural model (Loesch & Sari, 1996). 
From a mathematical standpoint, if a network has n processing elements in the input layer 
and m elements in the output layer, then the network processes the vector nX∈ℜ , 
supplying a vector mY ∈ℜ  in such a way that the network works as a function : n mf ℜ →ℜ  
The training algorithm named backpropagation refers to the way the weights are adjusted 
and this algorithm is also known as Generalized Delta Rule. 
In the Generalized Delta Rule, in order to minimize the mean square error the derivatives 
defined by Euation (6) are estimated. 
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The backpropagation algorithm utilizes this derivative information (gradient) to change the 
weights according to Equation (7): 
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In Equation (7) µ > 0 is the network learning rate that controls the degree in which the 
gradient affects the weight changes and n represents the current iteration. 
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The neural network model adopted in this work comprises three layers: input, hidden and 
output. Some theorems have already been found out relative to the network characteristics: 
• if a functions consists of a finite collection of points, then a three layer network is able to 

learn it; 
• in case this function is continuous and defined in a compact dominium, a three layer 

network is able to learn it, as long as there are enough processing elements in the 
hidden layer. 

The linear activating function for the output layer is adequate for continuous phenomena, as 
for instance the oxygen biochemical demand or the absorbance degree in decoloration 
process. The sigmoidal type transference functions are necessary to introduce non linearities 
in the network. 

3. Advanced Oxidatives Process AOP 

Advanced Oxidative Processes are methods for water treatment used on substances 
resistant to conventional processes (Quici et al., 2005) Advanced Oxidative Processes are 
based on  generation of hydroxyl radicals ( )OH•  have been applied to pollutant breakdown 
due to the radical’s high oxidative power (2.8 V).  
The Fenton reagent was discovered approximately 100 years ago and its use as an oxidant in 
the breakdown of organic compounds dates back to 1960 (Neyens & Baeyens, 2003). The 
Fenton reaction has the advantage of completely breaking down contaminants, producing 
water, carbon dioxide and non-organic salts through oxidant dissociation and hydroxyl 
radical production, which acts and destroys organic compounds. 
It is characterized as a mix of hydrogen peroxide and iron salts (Lu et al., 2001), generating 
hydroxyl radicals (Equations 8 and 9) : 

 2 3
2 2Fe H O Fe OH OH+ + • −+ → + +  (8) 

 2 3OH Fe OH Fe• + − ++ → +  (9) 

The production of hydroxyl radical is potentially increased by the association of the 
ultraviolet radiation, according to the reaction given by the Equation (10), known as Photo-
Fenton Process.  

 [Fe(OH)]2+ + hv→ Fe2+ + OH•  (10) 

In this work the action of Photo-Fenton processes combined with ozone action has been 
studied. The beneficient effects of using ozone or oxygen peroxide in UV combined 
processes are highlighted as related to the individual employment of each one, as the rate of 
hydroxyl radicals is strongly increased. Ozone is a powerful oxidant (Eo=2.07 V) which is 
able to react with molecules possessing non-saturated links (C=C, C=N, N=N, etc.) (Cogate 
& Pandit, 2004). In the presence of ultraviolet radiation, the ozone also can form the radical 
according to Equations (11) and (12): 

 O3 + H2O 
hv
→ H2O2 + O2 (11) 

 H2O2 
hv
→ 2 OH•  (12) 
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4. Results and analysis 
4.1 Neural approximation of the reduction of cod effluents from the manufacturing of 
polyesters trought photo-fenton process/ozonization 
For this experiment, a “Pyrex” glass reactor, 1000 mL with an ozone diffusing whirl pooling 
system was employed.  The ultra-violet source (UV) was two 125 W mercury vapor lamps. 
The thermostatized bath was made with a temperature controller and an ozonizer. 
The reagents and solutions used were: Fenton reagent – H2O2 at 30% v/v and FeSO4.7H2O 
0.18 mol L-1.; reagents for COD – solution of Ag2SO4 conc (98 w/w), K2Cr2O7 1.0 eq L-1, 
HgSO4 (98 % w/w); for pH control – NaOH 5.0 eq L-1 and H2SO4 5.0 eq L-1 
Iron sulphate was initially added at a concentration of 0.18 mol/L for every trial, and the 
oxygen peroxide concentration was of 30 % of the total weight. The generation of ozone was 
performed by the method of electrical discharge via dielectric  barriers with the following 
characteristics: 220 V electrical energy, required power of 60 W, goods with oxygen or dry 
air, working pressure below 2 bar and production of up to 1.0 g of O3 per hour. The 
ozonization occurred with the use of bubbling system through diffusion, with a flow 
scattering adapted to its outlet. The ozone was given by the conversion of O2 to O3 through 
the Ozone Generator MV 01, which alows a control of variation in its flow.  
Table 1 shows the minimum and maximum values of the input variables  in the process.  
 

Inlet variables Minimum Maximum 
T1 30 min 120 min 

[O3] 2 mg/L 4 mg/L 
T2 30 mim 120 min 
V1 2.5 mL 15 mL 
pH 2 5 
T 25 ºC 35 ºC 
V2 3 mL 18 mL 

Table 1. Input variables and their respective levels 
All the neural models were implemented with the use of the software MatLab. The neural 
model input and output values were normalized in such a way that the average value 
would be zero and the standard deviation equal to 1. In Table 2 we can see the results  
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Epochs 
8 0.993 0.980 0.991 6 

11 0.994 0.995 0.990 17 
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21 0.965 0.989 0.991 6 
23 0.994 0.987 0.989 11 

Table 2. Pearson Correlation Coefficients  
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The neural network model adopted in this work comprises three layers: input, hidden and 
output. Some theorems have already been found out relative to the network characteristics: 
• if a functions consists of a finite collection of points, then a three layer network is able to 

learn it; 
• in case this function is continuous and defined in a compact dominium, a three layer 

network is able to learn it, as long as there are enough processing elements in the 
hidden layer. 
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 2 3
2 2Fe H O Fe OH OH+ + • −+ → + +  (8) 

 2 3OH Fe OH Fe• + − ++ → +  (9) 

The production of hydroxyl radical is potentially increased by the association of the 
ultraviolet radiation, according to the reaction given by the Equation (10), known as Photo-
Fenton Process.  

 [Fe(OH)]2+ + hv→ Fe2+ + OH•  (10) 

In this work the action of Photo-Fenton processes combined with ozone action has been 
studied. The beneficient effects of using ozone or oxygen peroxide in UV combined 
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according to Equations (11) and (12): 

 O3 + H2O 
hv
→ H2O2 + O2 (11) 

 H2O2 
hv
→ 2 OH•  (12) 
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calculated through ANN with their linear correlation coefficients, reached during the 
training and net generalization and verification phase. It can be noticed that the behavior of 
the created ANN shows an optimal performance. 
During the net training process a number of configurations were made with  the number of 
existing neurons in the hidden layer. The best results  are shown  in Table 3. Among them, 
we underline the configuration that acted with twelve  neurons in the hidden layer, for that 
was the one that presented best results.  The net incorporates 7 neurons in the input layer, 
corresponding to the 7 input variables; the hidden layer is built with twelve  neurons and 
the net closes with the outcome layer, using 1 neuron referring to the output variable named 
COD decrease. The charts on Figures 3, 4 and  5portray the best configuration reached, 12 
neurons in the hidden layer.  
In order to check the neural model, the data total set (27 samples) was divided in three sets: 
training (50 %) validation (25 %) and test (25 %). In Figures 2, 3 and 4 values of the x and y 
axis represent the decreasing percentage of the Chemical Oxygen Demand. 
 

 
Fig. 2. Adjustment for the Training Set 

 
Fig. 3. Adjustment for the Validating Set 
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Fig. 4. Adjustment for the Testing Set 

Through application of the Disturbance method (Gevrey & Lek, 2003). the relative importance 
of the input and output variables was evaluated (Figure 5). The Disturbance method consists 
of attributing isolated noises to every input variable and then observing the quadratic error 
determination as a function of such variation. Each input neuron passes through an error 
variation, and its error is compared with quadratic error, not liable to noise. 

 

0

0,005
0,01

0,015
0,02

0,025
0,03

M
ea

n 
Sq

ua
re

 E
rr

or
 

(M
SE

)

MSE
(without
noise)

(R1) (R2) (R3) (R4) (R5) (R6) (R7)

 
Fig. 5. Chart of MSE with input affected by noise. 

We notice in the chart represented by Figure 6 that the 50 % noise provoked on each end every 
input neuron caused the influence perceived on the MSE value to be larger, in this order, as 
related to neurons: R3, R1, R2, R6, R7, R4, and R5, which represent, respectively, variables T2, 
T1, [O3], T, V2, V1 and pH. Once the disturbance method indicates only the absolute importance 
of each neuron or input variable, in order that the aspect of positive or negative influence 
could be verified, option was made for the study of the effects through Experimental Design. 
Thus, input variables were as well evaluated according to Experimental Design technology  
(27), where the most important effects can be seen  in Figure 6. 
Not every independent variable has a strong influence on the process of the reduction of 
COD as related to the observed output variable (COD), for the predominant ones, in their 
order, are: T2, T1, [O3], T  and V2, being that the increase in V1 and pH variables caused a 
decrease on the yield of COD variation. 
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Fig. 6. Influence of Input Variables (Main Effects)  
As related to V1 e pH factors, a negative behavior was observed in the decrease of COD This 
can be explained as a function of the fact that Fenton Reagent behaves better in a strong acid 
environment with a pH around 2-3.  With respect and a related to the increase of oxygen 
peroxide amount, it is observed that from a given concentration, it passes to act as a self 
consumer, of hydroxyl radical, according to the reaction (Equation 13): 

 2 2 2 2H O OH H O HO• •+ → +  (13) 
 

The ozone outflow and ozonization time are important factors to be considered in the 
reduction of Chemical Oxygen Demand.  At this point the influence of ozone for the 
production of hydroxyl radicals enhance, for they can combine with the 2HO•  radical, as per 
the reaction (Equation 14), and thus, a greater amount of radicals is made liable to attack 
from organic compounds.  

 3 2 22O HO O OH• •+ → +  (14) 
 

It is pointed out that, from a specific concentration, the hydrogen peroxide works as a 
hydroxyl radical self-consumer and thus a decrease of the system's oxidizing power 
happens. 

4.2 Hybrid neural model for decoloration by UV/H2O2 involving process variables and 
structural parameters characteristics to azo dyes 
Azodyes are defined as compounds that have in their structure one or more unsaturated 
groups –N=N- known as chromophore structure, capable of providing color through radiant 
energy absorbance.  Azo class dyes can reach aquatic environments, dissolved or suspended in 
water, for the conventional treatments can not effectively remove them. The decoloration 
modeling process, due to the dye complex nature and its dependence on a lot of factors, brings 
a high level of difficulty to the problem, characterizing itself as a multiple analysis problem.  
The polluted water color is reduced when there is cleavage of –C=C- and -N=N- bonds  or 
the cleavage of the aromatic and heterocyclic rings. A lot of f actors may influence the dye 
chromophore behavior and we have, as example, the dye feature solubility, which is 
influenced by the change of one substituting in the aromatic ring, with the inclusion of 
sufonate groups.  Hydroxyl radicals ( OH• ) formed in the H2O2 photolysis process under 
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UV light action and responsible for the organic compound degradation process start, have a 
short lifetime, in such a way that they can react only where they are formed in a 180 A  mean 
distance. This reaction occurs more likely in homogeneous means.  
Thus, the proposed model, which relates the azodye structure to the discoloration rate via 
UV/H2O2 process was set in function of the azo bond number (LA) and sulphonate group 
number (GS) parameters, besides the process operational parameters. 
The azodyes and their properties of interest are presented in Table 3. 
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Table 3. Azodyes Characteristics 

Table 4 defines the process operational variant dominium and the Table 3 also defines the 
dyes structural variant dominium, remarkably in discrete form, being defined by the sets 
GS={1,2} and LA={1,2,3}. 
 

Parameters min max 
Operating Time 

(min) 
5 150 

Dye Mass (mg) 100 300 
H2O2 (ml) 2 30 
Initial pH 2 11 

Temperature (oC) 22 45 

Table 4. Operational variant dominium   
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The decoloration was evaluated in function of the absorbance, measured every 5 minutes 
via removal of 2 ml of sample, through the Femto 600 spectrophotometer, in the maximum 
wavelengths raised from the dyes in aqueous solution.  The network used in this work was 
the feedforward backpropagation type implemented at Matlab environment and the sample 
total kit comprises 498 inlet-outlet values, which were initially normalized. After 
normalization, the kit of sample data was divided in three sets: training, validation and test 
for further verification of neural model generalization capacity. Figure 7 presents the 
network macrostructure utilized in the training process. 
 

 
Fig. 7. Neural scheme implemented 

As a general feature, in the model proposed the inlet layer is composed of seven 
independent variants named with azo bond number, sulphonic group number, dye 
concentration, reaction mean pH, time of operation of the reactor, H2O2 volume and 
temperature. The outlet layer is represented by the absorbance. The hidden layer was 
composed by a neuron variable number, for each model, in a range from 1 to 25 Neurons, 
aiming to map a relation of the form A=f(LA, GS, Cc, pH, TO, Vp, T), where A stands for the 
absorbance, LA is azo bond number, GS the sulphonate group number, Cc the dye 
concentration, TO is the photo-oxidizing process operation time, Vp is the hydrogen 
peroxide volume and T the reaction mean temperature.  
The Pearson Correlation coefficients higher than 0.9 indicate again the good neural 
adjustment quality. 16 neurons in the hidden layer was the configuration chosen. Figures 9 
to 12 indicate the relation between the real values (T) and the values foreseen by the neural 
model (A) of the absorbance values. 

 
Fig. 8. Training Set Adjustment 
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Fig. 9. Validation Set Adjustment 

 

 
 

Fig. 10. Test Set Adjustment 

The application of the Garson Partition Method reveals a slight predominance of the time of 
operation in the decoloration process and shows a balance between the structural 
parameters influence, that is, between the azo bonds and the suphonate groups (Table 5). 
The Garson method (Equation 15) and is founded in the partition of the hidden and outlet 
layer neural weights, in order to determine each network inlet variant relative importance 
(Garson, 1991), being formulated as shown:  
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Input Variables Neuron Importance (%) 
Azo Bond number 1 15.48 
Sulphonate group 

number 
2 15.74 

Concentration 
(dye) 

3 15.95 

Initial pH 4 13.41 
Operating Time 5 16.53 
H2O2 (volume) 6 10.28 
Temperature 7 12.61 

Table 5. Classification of the Input Variables 
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 (15) 

The relation Ij above mentioned is the relative importance of the jth input variable on output 
variable, Ni and Nh are the input and hidden neuron numbers, respectively and w 
represents the neural weights, and I h and o superscripts refer to the input, hidden and 
output layers. K, m and n subscripts refer respectively to the input, hidden and output 
layers. 

4.3 Optimization of the AZO dyes decoloration process through neural networks: 
Determination of the H2O2 addition critical point 
In recent years, neural networks have been applied in various areas in the Chemical 
Engineering and, concerning the Advanced Oxidation Process it can be quoted the work of 
Pareek et al. (2002) in which it was studied the photodegrading of Spent Bayer liquor, with 
the use of a feedforward-type neural network. Pearson correlation coefficients above 0.99 
were obtained in this work.  
Slokar et al. (1999) utilized Kohonen type neural networks for modeling the Reactive Red 
120 dye decoloration process, as a function of the use of H2O2/UV. 
The present work aimed the determination of an optimum mass relation between the initial 
amount of hydrogen peroxide and the amount of dye involved in the decoloration process.  
For the analysis of this relation, was chosen the corante Acid Brown 75, manufactured for 
industry BASF, widely used in the industries textile and of leathers. It is observed that 
works related to the degradation or discolouration of this corante had not been found in the 
bibliography. 
The Acid Brown 75 decoloration was evaluated as a function of the absorbance measured 
every 5 minutes, via Femto 600 spectrophotometer, at the maximum absorbance wavelength 
(430 nm), optimized from the dye absorbance spectrum in aqueous solution.   
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The mineralization extents were determined on the basis of total organic carbon content 
measurements  (TOC), performed by using total organic carbon analyzer; TOC- ASI 5000A, 
Shimadzu.  
The photooxidizing process was performed in a Germetec GPJ 463-1 plug-flow reactor, with 
low pressure radiation source of 21 W, and at the end of each experiment, the system, for 
washing purposes, was filled with slight acid solution and recirculated. 
Table 6 defines the levels of the operational variables utilized in the experiments.  
 

 pH TO 
(min) 

[dye] 
mg/L 

2 2H OV  
(ml) 

T 
(OC) 

min 
(-1) 

2 15 30 2 22 

max 
(+1) 

11 150 100 22 45 

Table 6. Levels of the Operational Variables 

An experimental design (25) was implemented  making up 32 experiments for the dye. The 5 
minute interval data collection provided the formation of a neural network input matrix of 
528 lines (samples) by 5 columns (process input variables) with the addition of some 
random experiments. The addition of these randon points was made in central and 
intermediate points to the extremes of the variables. The output factor of a neural model was 
constituted of 528 absorbance values in the range of [0, 2]. 
The sample set deriving from the experiments was divided in training (50%), validation (25%) 
and test (25%).  A scheme for implementing the optimization process by means of “complete” 
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Input Variables Neuron Importance (%) 
Azo Bond number 1 15.48 
Sulphonate group 

number 
2 15.74 

Concentration 
(dye) 

3 15.95 

Initial pH 4 13.41 
Operating Time 5 16.53 
H2O2 (volume) 6 10.28 
Temperature 7 12.61 

Table 5. Classification of the Input Variables 
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The relation Ij above mentioned is the relative importance of the jth input variable on output 
variable, Ni and Nh are the input and hidden neuron numbers, respectively and w 
represents the neural weights, and I h and o superscripts refer to the input, hidden and 
output layers. K, m and n subscripts refer respectively to the input, hidden and output 
layers. 

4.3 Optimization of the AZO dyes decoloration process through neural networks: 
Determination of the H2O2 addition critical point 
In recent years, neural networks have been applied in various areas in the Chemical 
Engineering and, concerning the Advanced Oxidation Process it can be quoted the work of 
Pareek et al. (2002) in which it was studied the photodegrading of Spent Bayer liquor, with 
the use of a feedforward-type neural network. Pearson correlation coefficients above 0.99 
were obtained in this work.  
Slokar et al. (1999) utilized Kohonen type neural networks for modeling the Reactive Red 
120 dye decoloration process, as a function of the use of H2O2/UV. 
The present work aimed the determination of an optimum mass relation between the initial 
amount of hydrogen peroxide and the amount of dye involved in the decoloration process.  
For the analysis of this relation, was chosen the corante Acid Brown 75, manufactured for 
industry BASF, widely used in the industries textile and of leathers. It is observed that 
works related to the degradation or discolouration of this corante had not been found in the 
bibliography. 
The Acid Brown 75 decoloration was evaluated as a function of the absorbance measured 
every 5 minutes, via Femto 600 spectrophotometer, at the maximum absorbance wavelength 
(430 nm), optimized from the dye absorbance spectrum in aqueous solution.   
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The mineralization extents were determined on the basis of total organic carbon content 
measurements  (TOC), performed by using total organic carbon analyzer; TOC- ASI 5000A, 
Shimadzu.  
The photooxidizing process was performed in a Germetec GPJ 463-1 plug-flow reactor, with 
low pressure radiation source of 21 W, and at the end of each experiment, the system, for 
washing purposes, was filled with slight acid solution and recirculated. 
Table 6 defines the levels of the operational variables utilized in the experiments.  
 

 pH TO 
(min) 

[dye] 
mg/L 

2 2H OV  
(ml) 

T 
(OC) 

min 
(-1) 

2 15 30 2 22 

max 
(+1) 
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Table 6. Levels of the Operational Variables 
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Fig. 11. Implementation of the Optimization Process 
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After the training and validation phases of the neural model obtained, the mapping of the 
operational conditions was performed. This phase comprised the discretization of all 
possible process inlet variables. The multifunctional points discretized and simulated by the 
neural model generated discretized absorbance values. The discretization period  was equal 
to 0.01 when simulating the neural model obtained. 
Once simulated the discretization process to obtain the absorbance values, the linear 
regression (Time of Operation versus Absorbance) was performed (least square method) for 
the adjustment of the constant of reaction (k) in a pseudo first order model, mapping the 
values of this constant through the discretization of the inlet variables, up to the obtainment 
of its maximum value of this constant. 
The following restrictions were imposed during the training phase and complete mapping 
or discretization. 

 22 45o o
iC T C≤ ≤  (16) 

 30 / [ ] 100 /mg L dye mg L≤ ≤  (17) 

 0.90GD =  (18) 

 2 11pH≤ ≤  (19) 

 15 150TO< ≤ mim (20) 

 2ml ≤
2 2H OV ≤ 22ml (21) 

Thus, the objective was to determine the process inlet variables values that provided the 
maximum value of the reaction constant, with the restriction of being reached a decoloration 
degree imposed as a maximum of 90% for this study. 
The photooxidation is supposed to be a reaction of pseudo first order and the kinetics of 
color degrading can be expressed by:  

 dye
dye

dC
kC

dt
= −  (22) 

The integration of this expression produces: 

 Ln( Cdye)= -kt + c1 (23) 
 

From this expression, by linear regression, the values of the constants of reaction kinetics 
were determined. These values made the composition of the objective function to be 
mapped in a discretized form by the neural model. 
Table 7 present the results of the adjustments for the training (50%), validation (25 %) and 
test (25 %) sets. The percentages refer to the experimental data total set.  
The values of the Pearson Correlation Coefficients above 0.98 for value predicted for 
absorbance and absorbance real value indicate a good adjustment and prediction capacity 
for the neural model. The neural model obtained (16 neurons in the hidden layer) mapped a 
multidimensional space of the form Absorbance=([dye], pH, T, TO, 

2 2H OV ). 
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Neurons Hidden Layer R (training) R (validation) 
 

R (test) 
 

8 0.965 0.954 0.923 
12 0.976 0.971 0.963 
15 0.982 0.980 0.979 
16 0,987 0.981 0.984 
20 0.951 0.934 0.921 

Table 7. Coefficients of Correlation 

The graphic verification of the H2O2 addition critical behavior was performed through 
surface graphs. The k reaction constant maximum value was reached experimentally for 
values of F in the range of 50 to 60, according to the Equation (24): 

 0

1

mF
m

=  (24) 

In the Equation (24), mo represents the initial hydrogen peroxide mass and m1 stands for the 
dye mass. 
Figure 12 exemplifies the contour surface graph obtained for experimental values. 
 

 
Fig. 12. Contour Surface, ABr 75, Ti=45 ºC, 15<TO<150 
Table 8 shows some results of the pseudo first order adjustment, where the best 
performances of the process around a mass relation close to F=50.449 is verified. 
In Table 9, some results from contour surfaces graphs (exemplified in Figure 11) are 
presented, for different operational conditions. 

4.4 Discoloration process modelling by Neural Network 
Initially a high dye concentration of 170 mg/L and a lesser amount of hydrogen peroxide 
(1ml) was established for a model experiement.  This model experiment was performed up 
to the point  where the absorbance came close to zero  value, providing a time of 150 min, 
that was set as this variable amplitude range maximum value, being characterized a process 
inspection model.  Table 10 presents the levels for which the proposed neural network input 
variable dominium set was established. 



Artificial Neural Networks - Application 

 

58 
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Table 8 shows some results of the pseudo first order adjustment, where the best 
performances of the process around a mass relation close to F=50.449 is verified. 
In Table 9, some results from contour surfaces graphs (exemplified in Figure 11) are 
presented, for different operational conditions. 
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(1ml) was established for a model experiement.  This model experiment was performed up 
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that was set as this variable amplitude range maximum value, being characterized a process 
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F K(1/min) R 
3.2450 0.0625 0.9989 
9.9990 0.0971 0.9864 
16.6650 0.1253 0.9985 
26.7170 0.1296 0.9966 
33.0330 0.1326 0.9912 
50.4490 0.1564 0.9958 
53.2216 0.1481 0.9982 
56.3206 0.1386 0.9956 
73.6900 0.1112 0.9975 

100.0900 0.1097 0.9965 

Table 8. Constant of Pseudo First Order 
 

pH mdye Freal Fpredicted 

9.8 100 50<F<60 55.55 
10.0 120 50<F<60 51.33 
10.5 130 50<F<60 52.22 
10.1 140 50<F<60 58.00 
9.9 150 50<F<60 50.00 
9.6 200 50<F<60 57.89 
9.4 250 50<F<60 58.90 

10.0 300 50<F<60 53.76 

Table 9. Some Results of the Complete Mapping 
 

Variable Level min max 
H2O2 (ml) 2 15 

[dye] (mg/L) 3 170 
pH 2 12 

Temperature (oC) 21 45 
Operating Time (minute) 15 150 

Table 10. Variables Level 
The performance of the method indicated irrelevant results in the reduction of color at 
absence of peroxide or radiation in isolated processes. The input variable matrixes presented 
to the neural model are generically shown by:  

 

1 1 1 1 1

2 2 2 2 2

218 218 218 218 218

. . . . .
.

. . . . .

. . . . .

c pH t V T
c pH t V T

X

c pH t V T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (25) 

Applications of Neural Networks in Advanced Oxidative Process 

 

61 

Aiming to verify the existence of this matrix outliers, or solitary points of experiment, and in 
order to check the homogeneity of the data, each sample “leverage” (Figure 3) was 
estimated, which is a measurement of how the sample influences the totality of data, and a 
small value identifies little sample influence over the model building. 
Ferreira et al. (1999) indicate that a critical value, or practical rule for the identification of 
anomalous points, namely, considered points with “leverage” higher than 3k/n, where n is 
the number of samples (218) and k the number of main components or latent variables, five 
of them (analysis of components in Matlab environment) for the current work, resulting in a 
critical value of 0.068807 and, therefore, some samples were discarded from the set to be 
tested. Matlab prepcap (pn, 0.02) code transforms the input set data matrix already 
normalized (pn), retaining only the components that contribute with more than 2% in the 
input data set variance. 
There are several methods for picking out the sets to be used as training, validation and test 
sets. Kanduc et al. (2003) establish the random selection, Kennard-Stone and Kohonen maps 
as some of the possibilities to be employed. 
In the present work, the data were worked by following the basic algorithm given by: 
1. A clustering was established using K-Means algorithm.  
2. After having determined the groups, a statistic test was used to set the training 

validation and test groups, in such a way that the training, validation and test sets 
pattern deviation and mean value be equal to less than a value tending to zero.  

3. The input variables (in number of 5) and the output variables were processed in such a 
way that the mean value for each vector containing the dependent and independent 
variables be zero and the pattern deviation equal to 1, through the pn = (p-meanp)/stdp 
Matlab environment algorithm, where p is the input or output process matrix or data 
vector. In Matlab environment, this normalization and the generated set recording were 
performed by the command: 

%NORMALIZED SET GENERATION 
[pn, meanp, stdp, tn, meant, stdt] = prestd(p’, t’); 
The implementation of algorithm K-Means identified 4 clusters, herein named as clusters 1 
to 4 (Table 11): 
 

Cluster Cluster samples number 
1 57 
2 58 
3 51 
4 52 

Table 11. Cluster Distribution 

Table 12 presents the best results with a single hidden layer topology, with the respective 
linear (R) correlation coefficients. Neural networks with a hidden layer and a sufficiently 
large number of neurons can interpret any input-output structure and that the hidden layer 
neuron number is determined in function of the required accuracy.  
All the configurations worked with the same 0.01 learning tax and the training performed in 
22 epochs.  
The functions used in the network training algorithm were tansig and purelin (Matlab 
language) and the network weight actualization function was the Levenberg-Marquardt 
backpropagation (trainlm in Matlab language).  
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Hidden layer neuron number R1 (Training Set) R2 ( Validation set) R3 (Test Set) 
8 0.988 0.982 0.979 
12 0.976 0.971 0.963 
15 0.990 0.980 0.979 
16 0.991 0.986 0.981 
20 0.990 0.984 0.977 

Table 12. Correlation Coefficients 

The function of error performance was MSE, or mean square error, and the performance 
learning function utilized was the descending Gradient (learngdm). 
Some of the parameters can be visualized in the sequence of commands given by: 
net=newff(minmax(pn),[co1{‘tansig’,’purelin’},’trainml’); 
net.trainParam.epochs = 100; net.trainParam.goal = 0;  
net.trainParam.1r = 0.01; % Learning tax 
net.trainParam.show = 25; net.trainParam.mc = 0.9;  
net.trainParam.1r_inc = 1.05; net.trainParam.1r_dec = 0.7; net.trainParam.max_perf_inc = 1.04; 
net.performFcn=’MSE’; 
The diagram of the network implemented may be seen in Figure 13, where 5 input layer 
neurons related to the 5 network input variables, the 16 layer hidden layer and the input 
layer with a neuron corresponding to the absorbance output variable. 
 

 
Fig. 13. Diagram of implemented Neural Model 
The linear activating function for the output layer is adequate for continuous phenomena, as 
for instance the oxygen biochemical demand or the absorbance degree in 
DISCOLORATION process. The sigmoidal type transference functions are necessary to 
introduce non linearities in the network. 
In order to prevent overfitting problem, the training is interrupted if the error for the 
validation set becomes bigger than the training set error. 
In function of the results obtained, hidden layer 16 neuron configuration was chosen. 
Graphically, the results may be visualized via Figures 14 through 16. 
The level of influence of each input variable concerning the modeling problem output 
variable may be obtained through the neural weight matrix. 
As it can be seen in the Table 13, all independent variables strongly influence the 
absorbances of the discoloration process. 
In order to confirm the value importance order classification the pertubation method was 
applied. Gevrey et al. (2003) indicates the perturbation method for input variable analysis.  
This consists of changes in the form xi = xi + δ, where xi is the selected input variable and δ is 
the variable change or noise. The method consists of attributing this noise and verifying the 
changes in the output yi variable. In this work, the mean square error was used as 
comparison criterion.  
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Fig. 14. Linear Regression Test Set 

 
Fig. 15. Linear Regression for validation set 

 
Fig. 16. Linear Regression for Training Set 
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Fig. 14. Linear Regression Test Set 

 
Fig. 15. Linear Regression for validation set 

 
Fig. 16. Linear Regression for Training Set 
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Variable Importance(%) 
H2O2 19.15 
[dye] 21.44 
pH 21.49 

Temperature 16.97 
Operating Time 29.95 

Table 13. Input Variable Classification 

The value δ = 10% attributed in each variable, maintaining the other constants, produced the 
graph shown in Figure 17, where the major importance of time of operation (t) is visualized, 
followed by the reaction mean (pH) and hydrogen peroxide volume (V). 
 
 

 
 

Fig. 17. MSE Variation Percentage 

The factors that presented the minor MSE importance were the dye concentration (Cdye) and 
temperature (T), keeping this order of importance. It is noticed the coincidence in the three 
most important factors in the Garson Partition and Pertubation Methods, namely, time of 
operation, pH and hydrogen peroxide volume. 
In order to verify the stability of the values obtained through Garson Partition and 
Pertubation methods, the network trainings were repeated 10 times and the average 
contribution of each variable was calculated. 
By comparing the results obtained through Garson Partition and Pertubation methods,  
an inversion is noticed concerning the dye concentration and temperature variables 
behavior, but equivalence was observed in the other variables, maintained the levels of 
importance.  
A 10% noise value is attributed to the input data matrix aiming to verify the network 
capacity to self-adapt and prevent small failures or measurement errors, and Table 14 shows 
the network adaptation capacity to these noises, with the mean quadratic errors, and the 
linear correlation coefficients for training set (R1), validation set (R2) and test set (R3). 
 

 R1 R2 R3 
Noise (0)% 0.978 0.977 0.947 
Noise(10%) 0.974 0.968 0.923 

Table 14. Correlation Coefficients under noise in the input variables 
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5. Conclusion 
The employment of a neural model to describe the photo-chemical influence of effluents 
from polyesters and alcodic resins has shown excellent results, as the model can describe the 
complex behavior of the process within the experimentation range employed.  
The model achieved also allows, for the study of the influence of input variables in the 
photo-chemical process.  
Thus, simulations based on neural nets afford the estimation of the complex behavior of 
oxidation processes that combine photo-Fenton and ozone agents. Such information is 
essential for the treatment of industry effluents. 
Concerning the efficiency of the oxidizing process utilized, it has to be pointed out the 
obtainment of the best results close to 55%, values that due to high Chemical Oxygen 
Demand initial value present the practical feasibility of the oxidizing method proposed for 
effluents with very high organic charge values. 
In relation to case B, This work proposes, via neural networks, a model that involves the 
process operational and compound structure features to be treated, in such a way that a 
higher model amplitude occurs. This process has the advantage of working as a database, 
where new samples, with totally different characteristics, may be added with the need of 
equationing a new model. Implemented the neural model and analyzed the correlation 
coefficients (approximately 0.96 for the data total, validation and test sets) it was verified the 
good model prediction capacity and also the possibility of determining the inlet variable 
influence degree of the Garson Method. The neural model, because it simply involves the 
numerical or statistical “behavior analysis”, does not troubles about the mathematics 
involved in the process and, thus, it makes possible the analysis of structural sets that 
comprise variants of several different spectrums, such as operational and structural ones, 
opening room for a hybrid and more embracing model. It is pointed out the capacity of 
application of the herein named hybrid modeling by neural networks, with the possible 
incorporation of other structural parameters which may foresee different environment 
values such as oxygen chemical, dissolved organic carbon demand, among other factors of 
environmental concern. In the present model, the neural model hybrid character was not 
connected to the fact that the entry variant values be experimental or deriving from certain 
mathematics models but in these variant nature composition aspect, being of the process 
operational aspect and structural concerning the dyes.For dyes with the same azo bonds 
number and sulfonated groups other caracteristics, as label hydrogen number, benzenic and 
naphthalenic  can be incorporated, which will object of further researches. 
In relation to the Case “C”, The implementation of a neural model and the optimization 
through complete mapping of the dominium of the independent variables in a process of 
decoloration by UV/H2O2 is presented as a promising technique in the optimization of 
processes with multiple inlet variables. 
The neural model reached good prediction capacity with Pearson Correlation Coefficients 
above 0.98 for the training, validation and test sets. 
From this neural model, the discretization of all process variables could be performed, which 
made possible the search for the Acid Brown 75 dye decoloration process critical point through 
the use of UV/H2O2. The determination of the critical point, or maximum amount of 
Hydrogen Peroxide to be added as a function of the dye initial mass, was established in a 
50<F<60 interval, coinciding with the real values obtained in the experiments.   
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Variable Importance(%) 
H2O2 19.15 
[dye] 21.44 
pH 21.49 

Temperature 16.97 
Operating Time 29.95 

Table 13. Input Variable Classification 

The value δ = 10% attributed in each variable, maintaining the other constants, produced the 
graph shown in Figure 17, where the major importance of time of operation (t) is visualized, 
followed by the reaction mean (pH) and hydrogen peroxide volume (V). 
 
 

 
 

Fig. 17. MSE Variation Percentage 
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The study of the case “An Acid Orange 52 dye DISCOLORATION neural model”, with 
hydrogen peroxide, activated by UV radiation, was evaluated concerning five factors. The 
neural network was trained with 218 samples and utilized a configuration with a hidden 
layer and 16 neurons in this layer, presenting high correlation coefficients for training, 
validation and test sets (>0.98), verifying the network prediction capacity with high accuracy 
level. The input layer is formed by five variables: dye concentration, initial pH, time of 
operation, hydrogen peroxide volume at 30% and temperature. The study of the variable 
influence level determined that the input variables that influence the Acid Orange 52 
DISCOLORATION process are time of operation, initial pH and hydrogen peroxide volume.  
However, temperature and concentration of the dye should not be neglected, as they also 
appear to be significant factors. 
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1. Introduction 
Mineral exploration is a multidisciplinary task requiring the simultaneous consideration of 
numerous disparate geophysical, geological, and geochemical datasets (Knox-Robinson, 
2000). The size and complexity of regional exploration data available to geologist are 
increasing rapidly from a variety of sources such as remote sensing, airbone geophysics, 
large commercially available geological and geochemical data (Brown et al., 2000). This 
demands more effective integration and analysis of regional and various of geospatial data 
with different formats and attributes. In addition, this needs spatial modeling techniques 
using observations regarding the association of mineral occurrences with various geological 
features in a qualitative manner. 
Geographic Information System (GIS) methods are very useful for processing and 
combining data within maps in mineral potential mapping. The development of GIS-based 
methods for integration and analysis of regional exploration datasets has an important role 
in assisting the decision-making processes for geologists in selection of exploration area 
(Brown et al., 2000). More recently, the mineral exploration industry has taken this approach 
further and with the help of spatial data modeling in GIS (Partington, 2010).  
The spatial modeling techniques been proposed for mineral potential mapping, such as 
weights of evidence model (Bonham-Carter et al., 1988, 1989; Agterberg et al., 1990; Xu et al., 
1992; Rencz et al., 1994; Pan, 1996; Raines, 1999; Carranza & Hale, 2000; Tangestani & Moore, 
2001; Carranza, 2004; Agterberg & Bonham-Carter, 2005; Jianping et al., 2005; Nykanen & 
Raines, 2006; Porwal et al., 2006; Roy et al., 2006; Nykänen & Ojala, 2007; Raines et al., 2007; 
Oh & Lee, 2008; Harris et al., 2008; Benomar et al., 2009), Bayesian network classifiers 
(Porwal et al., 2006), logistic regression (Chung and Agterberg, 1980; Agterberg, 1988; Oh & 
Lee, 2008), fuzzy logic (An et al., 1991; Bonham-Carter, 1994; Eddy et al., 1995; D’Ercole et 
al., 2000; Knox-Robinson, 2000; Luo & Dimitrakopoulos, 2003; De Quadros et al., 2006; 
Carranza et al., 2008; Nykänen, 2008), artificial neural networks (Singer & Kouda, 1996; 
Harris & Pan, 1999; Brown et al., 2000, 2003; Rigol-Sanchez et al., 2003; Behnia, 2007; Skabar, 
2007; Oh & Lee, 2008), and an evidence theory model (Moon, 1990, 1993; An & Moon, 1993; 
Moon & So, 1995; Porwal et al., 2003; Carranza et al., 2005). Researches using GIS have 
involved comparison of methods (Harris et al., 2003; Oh & Lee, 2008) and resolutions of 
spatial data used for mapping mineral potential, development of advanced methods, 
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improvement of prediction accuracy, and case studies for mineral potential mapping. These 
approaches have been successfully applied to mineral resource appraisal. 
Artificial neural network (ANN), one of the spatial modeling methods, has great potential in 
various fields of application such as pattern recognition, classification, identification, vision, 
speech, and control systems in solving complex problems. The artificial neural network has 
advantage compared with statistical methods. Firstly, the artificial neural network method 
is independent of the statistical distribution of the data and there is no need of specific 
statistical variables. Compared with the statistical methods, neural networks allow the 
target classes to be defined with much consideration to their distribution in the 
corresponding domain of each data source (Zhou, 1999). Mineral potential mapping is an 
example where ANN method can be applied because the deposit occurrence is usually 
controlled by numerous interlocking geological features with non-linear relationship. It is 
difficult to estimate a spatial recognition criteria for appropriate training data in processes of 
various geological factors to form the deposits on the surface (Nykanen, 2008). It is 
important to select the training data such as deposit- and non-deposit locations used as 
input to the ANN’s learning algorithm, which is proposed that minimizes some targeted 
minimal error between the desired and actual outputs of the network (Paola & 
Schowengerdt, 1995, Skabar, 2005).  
 

 
Fig. 1. Study area with tectonic units (GM = Gyeonggi Massif, OB = Ogcheon Belt, YM = 
Yeongnam Massif, GB = Gyeongsang Basin) 
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The objective of this study is to set some cases for selection of training data using 
quantitative mineral potential index by likelihood ratio, weights of evidence and logistic 
regression models, generate gold-silver potential maps using GIS and ANN to the various 
training sets, and estimate the predictive accuracy of those potential maps in the Taebaeksan 
mineralized district, Korea (Fig. 1). The preparation of mineral potential maps using GIS 
(ArcGIS 9.0) was accomplished in five major steps (Fig. 2): (1) Assembly of a spatial 
database. A total of 46 gold-silver mineral deposits were used to create a spatial database 
using GIS. Geological, geochemical and geophysical maps were similarly treated. (2) 
Processing the data from the database. The known mineral deposits were randomly split 
70/30 for training/testing, which used for analyzing and validating mineral potential maps 
using likelihood ratio, weights of evidence, logistic regression and ANN models (Leite & 
Souza Filho, 2009). Training locations (deposit and none-deposit occurrence) for ANN 
analysis were extracted from potential maps based on likelihood ration, weights of evidence 
and logistic regression models. Training dataset and the factors were analyzed and their 
weights were determined quantitatively. Especially, the nine cases for selection of training 
datasets determined from likelihood ratio, weights of evidence and logistic regression 
models were simulated to evaluate the sensitivity of ANN to training data. (3) Application 
of weights to generate a mineral potential map. (4) Validation of the potential map using test 
deposits that were not used directly in the analysis. 
 

 
Fig. 2. Study flow for mineral potential mapping 

2. Study area 
The study area is bounded by latitudes 37°15´24´´–37°30´00´´ N and longitudes 128°30´30´´–
129°02´40´´ E and lies in the Taebaeksan mineralized district at central east part of the 
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Korean Peninsula (Fig. 1). The total study area occupies approximately 1,050 km2. The study 
area was chosen as high mineral potential area after regional gold-silver potential analysis in 
the Taebaeksan mineralized district (Oh & Lee, 2008). This region has many mineral 
deposits and geological, geochemical and geophysical survey data available. 
Geological setting is largely distinguished by five groups of in the study area (Fig. 3). 1) 
Precambrian metamorphic and metasedimentary rocks (the unit Jugr and PCEt) in the 
northeastern part. 2) Cambro-Ordovician Joseon System (the unit CEj, CEm, CEp, CEw, 
Odu, Omg, Od and Oj) largely in the central part. 3) Carboniferous to Early Triassic 
Pyeongan System (the unit Ch, Ps, TRg, TRn3, TRn2, TRn1 and TRn) in the northwestern 
and southern parts. 4) Jurassic plutonic rocks (the unit Jigr) in the northern part and around 
the study area. 5) Cretaceous plutonic rocks (the unit Ksgr) in the southeastern part. Map-
scale faults (~20km) trend mostly NNE-SSW and are of Late Cretaceous to Early Paleocene 
age (Fig. 3).  
 
 

 
Fig. 3. Geological map with mineral deposits of the study area in Tabaeksan mineralized 
distract, Korea (combined geological map of Jeongseon, Imgye, Yemi and Homyeong sheets 
produced by the Korea Institute of Geoscience & Mineral Resources at 1:50,000) 
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Precambrian metamorphic rocks consist largely of banded gneiss, with lesser amounts of 
migmatitic gneiss, schist and quartzite. Additionally, there is abundant orthogenic granitic, 
garnet-bearing granitic, leucocratic and porphyroblastic gneiss incorporated within the 
complex unit. The Cambro-Ordovician Joseon System is mainly shallow marine in origin 
and consists predominantly of carbonates with lesser amounts of sandstone and shale, 
whereas the Carboniferous to Early Triassic Pyeongan System comprises thick clastic 
successions of marginal marine to non-marine environments. The Jurassic plutonic rock, 
Imgye Granite, mainly occurs as a large batholith trend NW-SE and as small stocks along 
the Ogcheon Belt consisting of granite with minor syenite and diorite. The Cretaceous 
plutonic rock, Samhwa Granite, mainly occurs as small stocks composed of granodiorite 
andesite, diorite, granite and granite porphyry (Kim et al., 1996, 2001).  
Igneous rocks related to gold-silver deposits in the Korean Peninsula are Jurassic and 
Cretaceous granites. Gold-silver deposits are distributed in and around those granites. The 
Taebaeksan district is a famous metallogenic area that contains a variety of deposit types, 
including Cu-Fe-Au, W-Mo and Pb-Zn skarns, Pb-Zn-Ag hydrothermal carbonate replacement 
ores, Carlne-like, alakite, pegmatite, greisen and gold-silver vein deposits. Gold-silver bearing 
hydrothermal vein deposits in the study area occur in various host lithologies, consist of 
multiple generations of quartz and/or carbonates with base metal sulphides, and have NNW, 
NS or NNE strikes, which seem to be related to NE strike-slip faults. Veins generally comprise 
quartz, lesser carbonate and polymetallic minerals including pyrite, sphalerite, galena, 
arsenopyrite, chalcopyrite and pyrrhotite. Electrum is the most common gold bearing ore 
mineral and the common silver-bearing phases are native silver, argentite, pyrargyrite and 
polybasite (Park et al., 1988; Lee & Park, 1996; Koh et al., 2003). 

3. Spatial database 
Data of hydrothermal gold-silver deposits were obtained from mineral deposit maps of the 
Taebaeksan mineralization with mineral variety and type, which were obtained from the 
MIRECO (Mine Reclamation Crop.), NHMRG (Natural Hazard Mitigation Research Group) 
and KIGAM (Korea Institute of Geoscience and Mineral Resources). The available factors 
related to gold-silver mineral occurrence are geophysical data of magnetic anomaly (Chi et 
al., 2001), geological data of geology and fault structure, and geochemical data of Al, As, Ba, 
Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Si, Sr, V, W, Zn, Cl– and F– produced by 
KIGAM (Table 1). All of these factors were used within a spatial database with a pixel size 
of 30m x 30m. Most of the continuous data was classified into 10 equal-area classes. 
Categorical data, such as the geology, was set the unique attribute value to the each class. 
The numbers of rows and columns are, respectively, 986 and 1,183, and the total number of 
cells in the study area is 1,166,438. The number of mineral deposit occurrences is 46 and the 
number of factor is 26.  
The geological data were derived from 1:50,000 geological maps (Jeongseon, Imgye, Yemi 
and Homyeong sheets). The geology and distance from fault were registered (Fig. 3). The 
geochemical maps were made from IDW (Inverse Distance Weighting) interpolation of 
values of geochemical elements, which were analyzed and collected from a stream water 
and sediment geochemical survey (Fig. A1a-w, Lee et al., 1998). The geophysical data was 
acquired through airborne magnetic surveys (Koo et al., 2001) (Fig. A1x). 
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Fig. 3. Geological map with mineral deposits of the study area in Tabaeksan mineralized 
distract, Korea (combined geological map of Jeongseon, Imgye, Yemi and Homyeong sheets 
produced by the Korea Institute of Geoscience & Mineral Resources at 1:50,000) 
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and sediment geochemical survey (Fig. A1a-w, Lee et al., 1998). The geophysical data was 
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Category Factors Data type Scale Remarks 

Deposit Au-Ag Point - 46 deposits 

Geochemical 
Data 

Al, As, Ba, Ca, Cd, Cl-, Co,
Cr, Cu, F-, Fe, K, Li, Mg, Mn,
Na, Ni, Pb, Si, Sr, V, W, Zn

Point 1:250,000
IDW 

(Inverse Distance Weight) 
Interpolation 

Geological 
Data 

Geology 
Distance from fault 

Polygon 
Line 1:50,000 Combination of four 

geological map sheets 

Geophysical 
Data Magnetic anomaly Point 1:250,000

IDW 
(Inverse Distance Weight) 

Interpolation 

Table 1. Data layer of study area 

4. Models 
4.1 Artificial neural network model 
An artificial neural network is a “computational mechanism able to acquire, represent, and 
compute a mapping from one multivariate space of information to another, given a set of 
data representing that mapping” (Garrett, 1994). The purpose of an artificial neural network 
is to build a model of the data-generating process, so that the network can generalize and 
predict outputs from inputs that it has not previously seen. The back-propagation is one of 
the most popular training algorithm used neural network method and is the method used in 
this study. The back-propagation algorithm trains network layer by layer doing forward and 
backward computation and is trained using a set of examples of associated input and output 
values. This learning algorithm is a multi-layered neural network, which consists of three 
layers; input, hidden and output. The hidden and output layer neurons process their inputs 
by multiplying each input by a corresponding weight, summing the product, then 
processing the sum using a log-sigmoid transfer function to produce a result (Fig. 4). An 
artificial neural network learns by adjusting the weights between the neurons in response to 
the errors between the actual output values and the target output values. At the end of this 
training phase, the neural network provides a model that should be able to predict a target 
value from a given input value (Lee et al., 2007). 
There are two stages involved in using neural network for multi-source classification; the 
training stage, in which the internal weights are adjusted; and the classifying stage. 
Typically, the back-propagation algorithm trains the network until some targeted minimal 
error is achieved between the desired and actual output values of the network. Once the 
training is complete, the network is used as a feed-forward structure to produce a 
classification for the entire data (Paola & Schowengerdt, 1995).  
A neural network consists of a number of interconnected nodes. Each node is a simple 
processing element that responds to the weighted inputs it received from other nodes. The 
arrangement of the nodes is referred to as the network architecture (Fig. 4). The receiving 
node sums the weighted signals from all nodes to which it is connected in the preceding 
layer. Formally, the input that a single node j receives is weighted according to Eq. (1): 
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 j ij i
i

net w o= ⋅∑  (1) 

 

 
Fig. 4. The architecture of the artificial neural network 

where wij represents the weight between node i and node j, and oi is the output from node i 
such as Eq. (2): 

 ( )j jo f net=  (2) 

The valued produced by hidden node j, oj, is the activation function, f, evaluated at the sum 
produced within node j, netj, netj, in turn, is a function of the weights between the input and 
hidden layer, wij, and the outputs of the input layer nodes, oi. The function f is usually a non-
linear sigmoid function that is applied to the weighted sum of inputs before the signal 
processes proceeds to the next layer. Advantage of the sigmoid function is that its derivative 
can be expressed in terms of the function itself such as Eq. (3): 

 '( ) ( )(1 ( ))j j jf net f net f net= −  (3) 

The error, E, for one training pattern for input layer, t, is a function of the desired output 
vector, d, and the actual output vector, o, given by Eq. (4): 

 1 ( )
2 k k

k
E d o= −∑  (4) 

The error back propagated through neural network and the error is minimized by changing 
the weight between layers. So, the weight can be expressed by Eq. (5): 

 ( 1) ( )ij j i ijw n o wη δ α+ = ⋅ + Δ  (5) 

where η is the learning rate parameter, δj is an index of the rate of change of the error, and α 
is the momentum parameter. This process of feeding forward signals and back propagating 
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the error is repeated iteratively until the error of the network as a whole is minimized or 
reaches an acceptable magnitude.  
Using the backpropagation, the weight of each factor can be recognized and it can be used to 
weight determination for mineral potential. Zhou (1999) described the method of 
determination of the weight using backpropagation. From Eq. (2), the effect of an output oj 
from a hidden layer node j on the output ok from an output layer node k can be represented 
by the partial derivative of ok with respect to oj such as Eq. (6): 

 ( )'( ) '( )k k
k k jk

j j

o netf net f net w
o o
∂ ∂

= ⋅ = ⋅
∂ ∂

 (6) 

 

The Eq. (6) equation can produce values with both positive and negative signs. If only the 
magnitude of the effects is of interest, the importance of node j relative to another node jo in 
the hidden layer can be calculated as the ratio of the absolute values from the Eq. (6): 
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The Eq. (7) shows that, with respect to a particular node k in the output layer, the relative 
importance of a node j in the hidden layer is proportional to the absolute value of the weight 
on its connection to the node k in the output layer. When more than one node in the output 
layer is concerned, the Eq. (7) equation cannot be used to compare the importance of two 
nodes in the hidden layer. In other words, the relative importance of a node must somehow 
normalized to make it more comparable with that of other nodes. One choice is to let, in (7): 
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to obtain the normalized importance of node j with respect to node k 
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Therefore, with respect to the node k, each node in the hidden layer has a value greater or 
smaller than one, depending on whether it is more or less important than the average, 
respectively. With respect to the same node k, all the nodes in the hidden layer have a total 
importance such as Eq. (10): 
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Consequently, with respect to all nodes in the output layer, to which connected to hidden 
layer, the overall importance of node j can be calculated as Eq. (11): 
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Similar to Eq. (9), with respect to the node j in the hidden layer, the normalized importance 
of the node i in the input layer can be defined as Eq. (12): 
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With respect to the hidden layer, the overall importance of node i is done by Eq. (13): 
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Correspondingly, the overall importance of the input node i with respect to the output node 
k is given by Eq. (14): 

 
1

1 J

i ij j
j

st s t
J =

= ⋅ ⋅∑  (14) 

 

 

4.2 Likelihood ratio model 
The likelihood ratio is a simple technique for producing a mineral potential map, and it is 
highly compatible with GIS. The likelihood ratio approach is based on observed 
relationships between the distribution of mineral deposits and each mineral deposit-related 
factor and are used to reveal the correlation between mineral deposit locations and factors in 
the study area. The likelihood ratio is the ratio of occurrence probability to non-occurrence 
probability for specific attributes.   
For a given number of units cells, N(D), containing a mineral deposit, D, and given number 
of total cells, N(T), the prior probability of an occurrence is expressed by  

 ( )( )
( )

N DP D
N T

=  (15) 

 
 

Now suppose that a binary predictor pattern, B, occupying N(B) unit cells, occurs in the 
region, and that a number of known mineral deposits occur preferentially within the 
pattern, i.e., N(D∩B), then the probability of locating a deposit given the presence of a 
predictor(B), and the probability of a deposit occurrence in the absence of a pattern( B ) can 
be expressed by the following conditional probabilities, respectively: 

 ( ) ( | )( | ) ( )
( ) ( )

P D B P B DP D B P D
P B P B

= =
∩  (16) 
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( ) ( )
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The posterior probability of a deposit occurrence given presence and absence of a favorable 
predictor pattern are denoted by ( | )P D B  and ( | )P D B , respectively. ( | )P B D  and ( | )P B D  
are the posterior probabilities of being inside and outside the predictor pattern B, 
respectively, given the presence of  a deposit D. ( )P B  and ( )P B  are the prior probabilities of 
the presence of a predictor pattern B.  
The odds, O, is defined as the ration of the probability P that an event will occur to the 
probability that the event will not occur; i.e. / (1 )O P P P P= = − . Expressed as odds, Eqs. 18 
and 19 become:  

 ( | )( | ) ( )
( | )

P B DO D B O D
P B D

=  (18) 

 

 ( | )( | ) ( )
( | )

P B DO D B O D
P B D

=  (19) 

 

where ( | )O D B  and ( | )O D B are the posterior odds of a deposit given the presence and 
absence of a binary predictor pattern B, respectively, and ( )O D is the prior odds of a 
deposit. The likelihood ratios, which are sufficiency ratio (LS) and necessity ratio (LN), are 
quire by the following equation: 

 ( | )
( | )

P B DLS
P B D

=  (20) 

 

 ( | )
( | )

P B DLN
P B D

=  (21) 

 

To calculate the likelihood ratio for the class or type of each factor, all scale factors that 
consisted of a raster type were reclassified into 10 classes based on equal areas using GIS 
techniques. The cross tabulation in ArcGIS 9.0 was used to calculate the number of deposit 
occurrences in the class or type of each factor. The likelihood ratio was used to calculate the 
ratio of the cell with deposit occurrence in each class for a reclassified factor or categorical 
factor (i.e., geochemical data and geology), and the ratio was assigned to each factor class 
again. Finally, the likelihood ratios (Table A1)  of each factor type or range were summed to 
calculate the Mineral Potential Index (MPI) (Fig. 5a), as shown in Eq. (22):  

 MPILR = Lr1 + Lr2 + Lr3 + . . . + Lrn (22) 
 

where Lrn = likelihood ratio of each factor type or range. 
The MPILR represents relative potential of mineral deposit occurrence. The greater the value, 
the higher the potential of mineral deposit occurrence and the lower the value, the lower the 
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potential of mineral deposit occurrence. The mineral deposit potential map was made using 
the MPILR and was used for selecting training sites. 

4.3 Weights of evidence model 
The following application of Bayesian probability known as the likelihood ratio and weighs 
of evidence to mineral potential analysis was synthesized from Bonham-Carter (1994) and 
Bonham-Carter et al. (1989). A detailed description of the formulation of the weights of 
evidence method is available in Bonham-Carter et al. (1989) and Bonham-Carter (1994). The 
weights can be defined as shown in Eqs. 23 and 24:  

 logW LSe
+ =  (23) 

 

 logW LRe
− =  (24) 

 

 C W W+ −= −  (25) 
 

 )()()( 22 −+ += WSWScS  (26) 
 

where W+ and W- are the weights of evidence when a binary predictor pattern is present and 
absent, respectively and also shows the level of positive and negative correlation between 
the presence and absence of the predictable variable and the deposit occurrence. The 
difference between the W+ and W- weight is known as the weight contrast, C. The C reflects 
the overall spatial association between the predictable variable and the mineral deposit. The 
S2(W+) and S2(W-) are variances of W+ and W- and S(C) is the standard deviation of the 
contrast. The studentized value of C, calculated as the ratio of C to its standard deviation, 
C/S(C), serves as a guide to the significance of the spatial association, and becomes useful in 
determining cutoff value to convert multiclass evidential data into binary predictor maps 
(Bonham-Carter et al., 1989; Carranza, 2004). In this study the cutoff value within which 
their spatial association with a given pattern is most statistically significant was chosen 
based on the maximum studentized value of contrast(C/s(C)). 
To calculate the weights of evidence for the class or type of each factor, the same type of 
input factor as the likelihood ratio is used. The cell number of deposit occurrence in each 
class of reclassified or categorical factors was also calculated using cross tabulation function 
in ArcGIS. The binary predictor patterns were also assigned weights (Table A1) and were 
combined according to Eq. (27). The mineral potential map was shown in Fig. 5b. 

 MPIWOE= Woe1 + Woe2 + Woe3 + . . . + Woen (27) 
 

where Woe = W+ and W– of the binary pattern for a range of each factor values or factor 
class.  
The mineral deposit potential map was made using the MPIWOE and was used for selecting 
training sites. 
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where Lrn = likelihood ratio of each factor type or range. 
The MPILR represents relative potential of mineral deposit occurrence. The greater the value, 
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potential of mineral deposit occurrence. The mineral deposit potential map was made using 
the MPILR and was used for selecting training sites. 
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4.4 Logistic regression model 
The logistic regression, which is one of the multivariate analysis models, is useful for 
predicting the presence or absence of a characteristic or outcome based on values of a set of 
spatial variables. The advantage of logistic regression is that, through the addition of an 
appropriate link a function to a usual linear regression model, the variables may be either 
continuous or discrete, or any combination of both types (Lee et al, 2007). In this study, the 
dependent variable is binary representing presence or absence of a mineral deposit and 
therefore a logistic link function is applicable (Atkinson & Massari 1998). For this study, the 
dependent variable must be input as either 0 or 1, so the method applies well to mineral 
potential analysis. Logistic regression coefficients can be used to estimate odds ratios for 
each of independent variables in the model. The relationship between the occurrence and its 
dependency on several variables can be expressed as: 

 p=  1  (1+e-z ) (28) 

where p is the probability of the event occurring and z is parameter. In this study, the p is 
the estimated probability of mineral deposit occurrence. The probability varies from 0 to 1 
on an S-shaped curve and z is the linear combination. It follows that logistic regression 
involves fitting an equation of the following form to the data: 

 z = b0 + b1x1 + b2x2 + … + bnxn (29) 

where z is parameter, b0 is the y-axis intercept, bi (i = 0, 1, 2, …, n) are the slope coefficients 
of the logistic regression model and the xi (i = 0, 1, 2, …, n) are the independent variables. 
The logistic regression coefficient values are listed in Table A1. The mineral potential map 
was made using Eqs. (28) and (29) and was used for selecting training sites. 
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(c) 

Fig. 5. Mineral potential maps based on likelihood ratio (a), weights of evidence (b) and 
logistic regression models (c): reclassification of low 60% (ivory colour), medium 20% (green 
colour), high 10% (sky blue colour), and very high 10% (blue colour) based on mineral 
potential index; training sites including “prone” (very high 10%) and “non-prone” (very low 
10%) to deposit occurrence 
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5. Mineral deposit potential analysis using the Artificial Neural Network 
The 26 factors were used as the input data. Nine cases of training sites of mineral deposit-
prone locations and the locations that were not prone to mineral deposits were made (Table 
2). It can be difficult to specifically estimate a criterion for selection of training sites using 
any predictor map because deposits are formed by various geological factors processes. 
Classification of location that is prone and non-prone to mineral deposits from expert’s 
experience can also change and be subjective when more information is available. While 
cells including a known deposit are indubitably mineralized, cells that do not include a 
known deposit may or may not be mineralized. If small deposit and non-deposit training 
data are selected from the known deposit cell and the large corpus of non-deposit cell, 
respectively, the mineral potential map can be highly sensitive to particular choice of 
deposit and non-deposit training data (Skabar, 2005; Harris et al., 2003). Porwal et al., 2003 
and Nykanen (2008) approached the problem of sensitivity of ANN to this non-deposit site 
training data by selecting training data in low mineral potential area modeled previously 
using a weights of evidence method. Skabar (2005) used for replicates of deposit locations. 
For each replicate set, they randomly selected and used 3/4 and 1/4 of the deposit locations 
for training and testing, respectively. 
 

Models Case Prone area Non-prone area 

Case 1 Deposit occurrence 10% areas with low mineral 
potential index (MPILR) 

Case 2 5% areas with high mineral 
potential index (MPILR) 

10% areas with low mineral 
potential index (MPILR) 

Likelihood 
ratio 

Case 3 10% areas with high mineral 
potential index (MPILR) 

10% areas with low mineral 
potential index (MPILR) 

Case 4 Deposit occurrence 10% areas with low mineral 
potential index (MPIWOE) 

Case 5 5% areas with high mineral 
potential index (MPIWOE) 

10% areas with low mineral 
potential index (MPIWOE) 

Weights of 
evidence 

Case 6 10% areas with high mineral 
potential index (MPIWOE) 

10% areas with low mineral 
potential index (MPILO) 

Case 7 Deposit occurrence 10% areas with low mineral 
potential index (MPIWOE) 

Case 8 5% areas with high mineral 
potential index (MPILO) 

10% areas with low mineral 
potential index (MPILO) 

Logistic regression

Case 9 10% areas with high mineral 10% areas with low mineral 

Table 2. Nine different training cases determined from likelihood ratio, weights of evidence 
and logistic regression models 

To select training sites based on scientific and objective criteria, we used values of MPILR, 
MPIWOE, MPILO (Fig. 5) because they represent relationships of deposit- and non-deposit 
locations with various factors. Pixels from each of the two classes were randomly selected as 
training pixels, with 32 pixels denoting areas where training mineral deposits occurred. 
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5. Mineral deposit potential analysis using the Artificial Neural Network 
The 26 factors were used as the input data. Nine cases of training sites of mineral deposit-
prone locations and the locations that were not prone to mineral deposits were made (Table 
2). It can be difficult to specifically estimate a criterion for selection of training sites using 
any predictor map because deposits are formed by various geological factors processes. 
Classification of location that is prone and non-prone to mineral deposits from expert’s 
experience can also change and be subjective when more information is available. While 
cells including a known deposit are indubitably mineralized, cells that do not include a 
known deposit may or may not be mineralized. If small deposit and non-deposit training 
data are selected from the known deposit cell and the large corpus of non-deposit cell, 
respectively, the mineral potential map can be highly sensitive to particular choice of 
deposit and non-deposit training data (Skabar, 2005; Harris et al., 2003). Porwal et al., 2003 
and Nykanen (2008) approached the problem of sensitivity of ANN to this non-deposit site 
training data by selecting training data in low mineral potential area modeled previously 
using a weights of evidence method. Skabar (2005) used for replicates of deposit locations. 
For each replicate set, they randomly selected and used 3/4 and 1/4 of the deposit locations 
for training and testing, respectively. 
 

Models Case Prone area Non-prone area 

Case 1 Deposit occurrence 10% areas with low mineral 
potential index (MPILR) 

Case 2 5% areas with high mineral 
potential index (MPILR) 

10% areas with low mineral 
potential index (MPILR) 

Likelihood 
ratio 

Case 3 10% areas with high mineral 
potential index (MPILR) 

10% areas with low mineral 
potential index (MPILR) 

Case 4 Deposit occurrence 10% areas with low mineral 
potential index (MPIWOE) 

Case 5 5% areas with high mineral 
potential index (MPIWOE) 

10% areas with low mineral 
potential index (MPIWOE) 

Weights of 
evidence 

Case 6 10% areas with high mineral 
potential index (MPIWOE) 

10% areas with low mineral 
potential index (MPILO) 

Case 7 Deposit occurrence 10% areas with low mineral 
potential index (MPIWOE) 

Case 8 5% areas with high mineral 
potential index (MPILO) 

10% areas with low mineral 
potential index (MPILO) 

Logistic regression

Case 9 10% areas with high mineral 10% areas with low mineral 

Table 2. Nine different training cases determined from likelihood ratio, weights of evidence 
and logistic regression models 

To select training sites based on scientific and objective criteria, we used values of MPILR, 
MPIWOE, MPILO (Fig. 5) because they represent relationships of deposit- and non-deposit 
locations with various factors. Pixels from each of the two classes were randomly selected as 
training pixels, with 32 pixels denoting areas where training mineral deposits occurred. 
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Mag.: Magnetic anomaly 
S.D.: Standard deviation 
N.V.: Normalized value divided by the minimum average weight  

Table 3. Weight of artificial neural network in study area 
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Mag.: Magnetic anomaly 
S.D.: Standard deviation 
N.V.: Normalized value divided by the minimum average weight  

Table 3. Weight of artificial neural network in study area 
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The back-propagation algorithm was then applied to calculate the weights between the 
input layer and the hidden layer, and between the hidden layer and the output layer, by 
modifying the number of hidden node and the learning rate. A three-layered feed-forward 
network was implemented using the MATLAB software package based on the framework 
provided by Hines (1997). Here, “feed-forward” denotes that the interconnections between 
the layers propagate forward to the next layer. The number of hidden layers and the 
number of nodes in a hidden layer required for a particular classification problem are not 
easy to deduce. In this study, a 26 x 52 x 2 structure was selected for the network, with input 
data normalized in the range 0.0-1.0. The nominal and interval class group data were 
converted to continuous values ranging between 0.0 and 1.0. Therefore, the continuous 
values were not ordinal data, but nominal data, and the numbers denote the classification of 
the input data. The learning rate was set to 0.01, and the initial weights were randomly 
selected to values between 0.1 and 0.3. The weights calculated from 5 test cases were 
compared to determine whether the variation in the final weights was dependent on the 
selection of the initial weights (Table 3). 
The results show that the initial weights did not have an influence on the final weight under 
the conditions used. The back-propagation algorithm was used to minimize the error 
between the predicted output values and the calculated output values. The algorithm 
propagated the error backwards, and iteratively adjusted the weights. The number of 
epochs was set to 5,000, and the root mean square error (RMSE) value used for the stopping 
criterion was set to 0.01. Most of the training data sets met the 0.01 RMSE goal. However, if 
the RMSE value was not achieved, then the maximum number of iterations was terminated 
at 5,000 epochs. When the latter case occurred, then the maximum RMSE value was <0.2. 
The final weights between layers acquired during training of the neural network and the 
contribution or importance of each of the 26 factors used to predict mineral deposit potential 
are shown in Table 3. The results were not the same, as the initial weights were assigned 
random values. Therefore, in this study, the calculations were repeated 5 times, to allow the 
results to achieve similar values. For easy interpretation, the average values were calculated, 
and these values were divided by the average of the weights of the some factor that had a 
minimum value. For Case 1, the geology value was the minimum value, 1.00, and the Ni 
was the maximum value, 1.294. For Case 2, the Cd value was the minimum value, 1.00, and 
the Ni was the maximum value, 1.270. For Case 3, the K value was the minimum value, 1.00, 
and the Cl- was the maximum value, 1.254. For Case 4, the Fe value was the minimum 
value, 1.00, and the W was the maximum value, 1.335. For Case 5, the geology value was the 
minimum value, 1.00, and the Ni was the maximum value, 1.212. For Case 6, the Pb value 
was the minimum value, 1.00, and the F- was the maximum value, 1.197. For Case 7, the Ba 
value was the minimum value, 1.00, and the As was the maximum value, 1.192. For Case 8, 
the Zn value was the minimum value, 1.00, and the As was the maximum value, 1.413. For 
Case 9, the magnetic value was the minimum value, 1.00, and the Pb was the maximum 
value, 1.317. The standard deviations of the results for all cases were in the range 0.001–
0.008, and therefore, the random sampling did not have a large effect on the results. As the 
result, the As value was the minimum value, 1.00, and the Si was the maximum value, 
1.1829. Finally, the weights were applied to the entire study area, and the mineral deposit 
potential maps were created for each training cases (Fig. 6). 

Application of Artificial Neural Network for Mineral Potential Mapping 

 

85 

 
 

(a) Case 1 
 
 

 
 

(b) Case 2 



Artificial Neural Networks - Application 

 

84 

The back-propagation algorithm was then applied to calculate the weights between the 
input layer and the hidden layer, and between the hidden layer and the output layer, by 
modifying the number of hidden node and the learning rate. A three-layered feed-forward 
network was implemented using the MATLAB software package based on the framework 
provided by Hines (1997). Here, “feed-forward” denotes that the interconnections between 
the layers propagate forward to the next layer. The number of hidden layers and the 
number of nodes in a hidden layer required for a particular classification problem are not 
easy to deduce. In this study, a 26 x 52 x 2 structure was selected for the network, with input 
data normalized in the range 0.0-1.0. The nominal and interval class group data were 
converted to continuous values ranging between 0.0 and 1.0. Therefore, the continuous 
values were not ordinal data, but nominal data, and the numbers denote the classification of 
the input data. The learning rate was set to 0.01, and the initial weights were randomly 
selected to values between 0.1 and 0.3. The weights calculated from 5 test cases were 
compared to determine whether the variation in the final weights was dependent on the 
selection of the initial weights (Table 3). 
The results show that the initial weights did not have an influence on the final weight under 
the conditions used. The back-propagation algorithm was used to minimize the error 
between the predicted output values and the calculated output values. The algorithm 
propagated the error backwards, and iteratively adjusted the weights. The number of 
epochs was set to 5,000, and the root mean square error (RMSE) value used for the stopping 
criterion was set to 0.01. Most of the training data sets met the 0.01 RMSE goal. However, if 
the RMSE value was not achieved, then the maximum number of iterations was terminated 
at 5,000 epochs. When the latter case occurred, then the maximum RMSE value was <0.2. 
The final weights between layers acquired during training of the neural network and the 
contribution or importance of each of the 26 factors used to predict mineral deposit potential 
are shown in Table 3. The results were not the same, as the initial weights were assigned 
random values. Therefore, in this study, the calculations were repeated 5 times, to allow the 
results to achieve similar values. For easy interpretation, the average values were calculated, 
and these values were divided by the average of the weights of the some factor that had a 
minimum value. For Case 1, the geology value was the minimum value, 1.00, and the Ni 
was the maximum value, 1.294. For Case 2, the Cd value was the minimum value, 1.00, and 
the Ni was the maximum value, 1.270. For Case 3, the K value was the minimum value, 1.00, 
and the Cl- was the maximum value, 1.254. For Case 4, the Fe value was the minimum 
value, 1.00, and the W was the maximum value, 1.335. For Case 5, the geology value was the 
minimum value, 1.00, and the Ni was the maximum value, 1.212. For Case 6, the Pb value 
was the minimum value, 1.00, and the F- was the maximum value, 1.197. For Case 7, the Ba 
value was the minimum value, 1.00, and the As was the maximum value, 1.192. For Case 8, 
the Zn value was the minimum value, 1.00, and the As was the maximum value, 1.413. For 
Case 9, the magnetic value was the minimum value, 1.00, and the Pb was the maximum 
value, 1.317. The standard deviations of the results for all cases were in the range 0.001–
0.008, and therefore, the random sampling did not have a large effect on the results. As the 
result, the As value was the minimum value, 1.00, and the Si was the maximum value, 
1.1829. Finally, the weights were applied to the entire study area, and the mineral deposit 
potential maps were created for each training cases (Fig. 6). 

Application of Artificial Neural Network for Mineral Potential Mapping 

 

85 

 
 

(a) Case 1 
 
 

 
 

(b) Case 2 



Artificial Neural Networks - Application 

 

86 

 
 

(c) Case 3 
 
 

 
 

(d) Case 4 

Application of Artificial Neural Network for Mineral Potential Mapping 

 

87 

 
 

(e) Case 5 
 
 

 
 

(f) Case 6 



Artificial Neural Networks - Application 

 

86 

 
 

(c) Case 3 
 
 

 
 

(d) Case 4 

Application of Artificial Neural Network for Mineral Potential Mapping 

 

87 

 
 

(e) Case 5 
 
 

 
 

(f) Case 6 



Artificial Neural Networks - Application 

 

88 

 
 

(g) Case 7 
 
 

 
 

(h) Case 8 

Application of Artificial Neural Network for Mineral Potential Mapping 

 

89 

 
(i) Case 9 

Fig. 6. Predictive gold-silver mineral potential map generated by reclassification of low 60% 
(ivory colour), medium 20% (green colour), high 10% (sky blue colour), and very high 10% 
(blue colour) based on mineral potential index; Case 1 (a), Case 2 (b), Case 3 (c), Case 4 (d) 
Case 5 (e), Case 6 (f), Case 7 (g), Case 8 (h) and Case 9 (i) 

6. Validation 
The mineral potential maps were validated by comparison with known mineral deposit 
locations (test set: 30% of total deposit) which were not used during the training of the 
artificial neural network model. For this, the success rate curves were calculated for 
quantitative prediction and area of under the curves was calculated. The rate shows how 
well the model and factors predict the mineral deposit occurrence. Thus, the area beneath 
the curve qualitatively assesses the prediction accuracy. To obtain the relative ranking for 
each prediction pattern, the calculated index values of all the pixels in the study area were 
sorted in descending order. The ordered pixel values were then divided into 100 classes 
with accumulated 1% intervals. The validation rate appears as a graph (Fig. 7).  

For Case 1, Case 2, Case 3, Case 4, Case 5, Case 6, Case 7, Case 8 and Case 9, the 80–100% 
class (20%) in which the mineral potential index had a high rank could explain 56%, 50%, 
56%, 56%, 56%, 50%, 44%, 25% and 44% of all the mineral deposit occurrences, respectively. 
The graphs shown are the best prediction accuracy among the five running. 
To compare the result quantitatively, the areas under the curve were re-calculated as if the 
total area were one, which indicates perfect prediction accuracy. The area beneath a curve 
can therefore be used to assess the prediction accuracy qualitatively. For Case 1, Case 2, 
Case 3, Case 4, Case 5, Case 6, Case 7, Case 8 and Case 9, the area ratio was 0.7406, 0.7459,  
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Fig. 7. Illustration of cumulative frequency diagram showing rank (%) of mineral potential 
index (x-axis) occurring in cumulative percent of mineral deposit occurrence (y-axis) 
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0.7409, 0.7140, 0.7269, 0.7072, 0.7347, 0.6140 and 0.6155 meaning a prediction accuracy of 
74.06%, 74.59%, 74.09%, 71.40%, 72.69%, 70.72%, 73.47%, 61.40% and 61.55%. 

7. Conclusion 
Training sites were extracted from mineral potential maps based on likelihood ratio, weights 
of evidence and logistic regression methods, which showed 72.98%, 64.71% and 66.48% 
prediction accuracy validated by the test set. In the study, the mineral potential map of gold-
silver were made using the artificial neural network and nine cases of training sites, each of 
which consist of 32 locations randomly selected among known mineral occurrences in 5% 
and 10% of areas with the high mineral potential index values and 32 non-deposit locations 
randomly selected in 10% of areas with low mineral potential index. The validation result of 
Case 1, Case 2, Case 3, Case 4, Case 5, Case 6, Case 7, Case 8 and Case 9 showed, 
respectively, the 74.06%, 74.59%, 74.09%, 71.40%, 72.69%, 70.72%, 73.47%, 61.40% and 
61.55% prediction accuracy using 14 test mineral deposits not used directly for the analysis. 
All training cases exhibited accuracies of over 70% but Cases 8 and 9, slightly higher or 
lower than likelihood ratio and very higher than weights of evidence and logistic regression 
models. Overall, training cases based on likelihood ratio model, gave higher accuracies than 
training cases based on weights of evidence and logistic regression models. This result 
shows that some of the testing deposits plotted in non-prone area to deposit occurrence 
(Figs. 5b and 5c), and the weights of evidence and logistic regression represented the low 
accuracy among the methods. However, the analysis result of some training sets shows 
more sensitive to training data by logistic regression than weighs of evidence.  
Some researches approached a degree of sensitivity by selecting non-deposit site training 
data in low-probability area of previously generated potential maps made using weights of 
evidence or/and logistic regression (Porwal et al., 2003; Behnia, 2007; Nykanen & 
Salmirinne, 2007; Nykanen, 2008). Using larger training data reduces the variance of initial 
weight in the ANN and improves accuracy of the resulting potential map (Skabar, 2005; 
Nykanen, 2008). In the study, 32 deposit and non-deposit cells were represented equally in 
the training set, although, the network to training data was repeated five times to reduce 
sensitive to initial weights of factors related to gold-silver mineral.  
The resulting map by ANN can be possible to show better prediction accuracy if training 
dataset are selected from MPM with more high accuracy than MPM by likelihood ratio in 
the study. A Geographic Information System (GIS), in concert with artificial neural network 
software was used to compile, manipulate, analyze and visualize a large geological, 
geochemical and geophysical dataset collected from the Taebaeksan mineralized district of 
Eastern Korea. The GIS is not only capable of routine display, but also offer great potential 
by providing a range of tools to query, manipulate, visualize and analyze geological, 
geochemical and geophysical data in mineral exploration applications. The artificial neural 
network that was applied to the logistic sigmoid transfer function proved useful for 
predicting and evaluating the mineral potential map produced in this study. The models are 
useful for providing a quantitative measure of the weights among the factors for gold-silver 
prospects. Furthermore, the maps generated by the models, not only predict known areas of 
gold-silver occurrence, but also identify areas of potential mineralization where no known 
deposit occurs. Several areas within the study area are identified as having high gold-silver 
potential. Many of these areas coincide with areas of known deposits.  
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(m) Li       (n) Mg    (o) Mn 
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(s) Si       (t) Sr     (u) V 

 

 
(v) W       (w) Zn  (x) Magnetic anomaly 

 

Fig. A1. Geochemical (Lee et al., 1998) and magnetic anomaly (Koo et al., 2001) maps 
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Fig. A1. Geochemical (Lee et al., 1998) and magnetic anomaly (Koo et al., 2001) maps 
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Likelihood ratio Weights of evidence Logistic 
regression 

Factor 

Class a No. of
pixels %Area Mineral

occ. %occ. LS b W+ W- C C/S(c) Coefficient c 

Al 
(ppb) 

26.00-44.15
44.16-84.54

84.55-103.39
103.40-112.87
112.88-119.29
119.30-124.97
124.98-133.04
133.05-164.69
164.70-231.11
231.12-499.99

116666
116651
116737
116716
116695
116601
116613
116594
116586
116579

10.00 
10.00 
10.01 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 

3
3
4
2
7
7
1
3
2
0

9.38
9.38

12.50
6.25

21.88
21.88

3.13
9.38
6.25
0.00

0.94
0.94
1.25
0.62
2.19
2.19
0.31
0.94
0.63
0.00

-0.06
-0.06
0.22

-0.47
0.78
0.78

-1.16
-0.06
-0.47
NaN

0.01
0.01

-0.03
0.04

-0.14
-0.14
0.07
0.01
0.04
0.11

-0.07
-0.07
0.25

-0.51
0.92
0.92

-1.24
-0.07
-0.51
NaN

-0.12 
-0.12 
0.47 

-0.70 
2.16 
2.16 

-1.22 
-0.12 
-0.70 
NaN 

0.00806 

As 
(ppm) 

1.01-14.58
14.59-21.78
21.79-27.56
27.57-35.09
35.10-43.43
43.44-47.59
47.60-49.47
49.48-49.99

50.00

116689
116779
116734
116702
116782
116901
116516

65606
283729

10.00 
10.01 
10.01 
10.00 
10.01 
10.02 

9.99 
5.62 

24.32 

0
8
0
3
1
4
0
3

13

0.00
25.00

0.00
9.38
3.13

12.50
0.00
9.38

40.63

0.00
2.50
0.00
0.94
0.31
1.25
0.00
1.67
1.67

NaN
0.92

NaN
-0.07
-1.16
0.22

NaN
0.51
0.51

0.11
-0.18
0.11
0.01
0.07

-0.03
0.11

-0.04
-0.24

NaN
1.10

NaN
-0.07
-1.24
0.25

NaN
0.55
0.76 

NaN 
2.69 

NaN 
-0.12 
-1.22 
0.47 

NaN 
0.91 
2.10 

0.03186 

Ba 
(ppb) 

2.00-3.99
4.00-5.96
5.97-7.04
7.05-7.86
7.87-8.55
8.56-9.61

9.62 -10.87
10.88-13.28
13.29-17.38

17.39-200.97

117477
116734
117258
116532
116787
116822
116583
116120
116242
115883

10.07 
10.01 
10.05 

9.99 
10.01 
10.02 

9.99 
9.96 
9.97 
9.93 

0
8
2
3
5
4
3
1
3
3

0.00 
25.00 

6.25 
9.38 

15.63 
12.50 

9.38 
3.13 
9.38 
9.38 

0.00 
2.50 
0.62 
0.94 
1.56 
1.25 
0.94 
0.31 
0.94 
0.94 

NaN
0.92 

-0.48 
-0.06 
0.45 
0.22 

-0.06 
-1.16 
-0.06 
-0.06 

0.11 
-0.18 
0.04 
0.01 

-0.06 
-0.03 
0.01 
0.07 
0.01 
0.01 

NaN
1.10 

-0.52 
-0.07 
0.51 
0.25 

-0.07 
-1.23 
-0.07 
-0.06 

NaN 
0.41  
0.73  
0.61  
0.49  
0.53  
0.61  
1.02  
0.61  
0.61  

0.04983 

Ca 
(ppm) 

1.53-6.24
6.25-18.99

19.00-28.24
28.25-35.41
35.42-40.44
40.45-43.42
43.43-46.01
46.02-48.04
48.05-49.16
49.17-50.00

116712
116637
116714
116742
116662
116679
116621
117223
116647
115801

10.01 
10.00 
10.01 
10.01 
10.00 
10.00 
10.00 
10.05 
10.00 

9.93 

2
5
1
3
2
2
3
4
5
5

6.25 
15.63 

3.13 
9.38 
6.25 
6.25 
9.38 

12.50 
15.63 
15.63 

0.62 
1.56 
0.31 
0.94 
0.62 
0.62 
0.94 
1.24 
1.56 
1.57 

-0.47 
0.45 

-1.16 
-0.07 
-0.47 
-0.47 
-0.06 
0.22 
0.45 
0.45 

0.04 
-0.06 
0.07 
0.01 
0.04 
0.04 
0.01 

-0.03 
-0.06 
-0.07 

-0.51 
0.51 

-1.24 
-0.07 
-0.51 
-0.51 
-0.07 
0.25 
0.51 
0.52 

0.73  
0.49  
1.02  
0.61  
0.73  
0.73  
0.61  
0.53  
0.49  
0.49  

-0.00001 

Cd 
(ppm) 

1.0000-1.1008
1.1009-1.2239
1.2240-1.3473

116740
116647
116690

10.01 
10.00 
10.00 

3
3
2

9.38 
9.38 
6.25 

0.94 
0.94 
0.62 

-0.07 
-0.06 
-0.47 

0.01 
0.01 
0.04 

-0.07 
-0.07 
-0.51 

0.61  
0.61  
0.73  

-0.12562 
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1.3474-1.4928
1.4929-1.6538
1.6539-1.8480
1.8481-1.9829
1.9830-2.2506
2.2507-3.2164
3.2165-9.9992

116699
116626
116640
116621
116610
116585
116580

10.00 
10.00 
10.00 
10.00 
10.00 

9.99 
9.99 

3
5
4
2
5
1
4

9.38 
15.63 
12.50 

6.25 
15.63 

3.13 
12.50 

0.94 
1.56 
1.25 
0.63 
1.56 
0.31 
1.25 

-0.07 
0.45 
0.22 

-0.47 
0.45 

-1.16 
0.22 

0.01 
-0.06 
-0.03 
0.04 

-0.06 
0.07 

-0.03 

-0.07 
0.51 
0.25 

-0.51 
0.51 

-1.24 
0.25 

0.61  
0.49  
0.53  
0.73  
0.49  
1.02  
0.53  

Cl- 
(ppm) 

1.0106-2.2074
2.2075-2.4546
2.4547-2.7386
2.7387-2.9874
2.9875-3.2353
3.2354-3.4804
3.4805-3.8803
3.8804-4.7479
4.7480-5.9843

5.9844-27.6669

116644
116681
116654
116642
116647
116642
116637
116635
116628
116628

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

1
0
3
4
1
7
5
5
2
4

3.13 
0.00 
9.38 

12.50 
3.13 

21.88 
15.63 
15.63 

6.25 
12.50 

0.31 
0.00 
0.94 
1.25 
0.31 
2.19 
1.56 
1.56 
0.63 
1.25 

-1.16 
NaN
-0.06 
0.22 

-1.16 
0.78 
0.45 
0.45 

-0.47 
0.22 

0.07 
0.11 
0.01 

-0.03 
0.07 

-0.14 
-0.06 
-0.06 
0.04 

-0.03 

-1.24 
NaN
-0.07 
0.25 

-1.24 
0.92 
0.51 
0.51 

-0.51 
0.25 

1.02  
NaN 
0.61  
0.53  
1.02  
0.43  
0.49  
0.49  
0.73  
0.53  

0.00005 

Co 
(ppb) 

1.0000-1.5665
1.5666-2.5807
2.5808-1.9789
1.9790-3.1012
3.1013-3.3506
3.3507-3.6660
3.6661-3.9952
3.9953-4.4250
4.4251-5.0758
5.0759-9.9999

116648
116657
116722
116636
116651
116656
116621
116620
116620
116607

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

4
1
6
1
3
2
5
7
2
1

12.50 
3.13 

18.75 
3.13 
9.38 
6.25 

15.63 
21.88 

6.25 
3.13 

1.25 
0.31 
1.87 
0.31 
0.94 
0.62 
1.56 
2.19 
0.63 
0.31 

0.22 
-1.16 
0.63 

-1.16 
-0.06 
-0.47 
0.45 
0.78 

-0.47 
-1.16 

-0.03 
0.07 

-0.10 
0.07 
0.01 
0.04 

-0.06 
-0.14 
0.04 
0.07 

0.25 
-1.24 
0.73 

-1.24 
-0.07 
-0.51 
0.51 
0.92 

-0.51 
-1.24 

0.53  
1.02  
0.45  
1.02  
0.61  
0.73  
0.49  
0.43  
0.73  
1.02  

-0.51670 

Cr 
(ppb) 

1.0000-1.1958 
1.1959-1.3244 
1.3245-1.4319 
1.4320-1.5656 
1.5657-1.8305 
1.8306-2.0343 
2.0344-2.3185 
2.3186-2.7629 
2.7630-3.2865 
3.2866-9.9987 

116649
116645
116772
116663
116650
116653
116625
116602
116601
116578

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 

6
0
2
6
4
3
4
1
6
0

18.75 
0.00 
6.25 

18.75 
12.50 

9.38 
12.50 

3.13 
18.75 

0.00 

1.87 
0.00 
0.62 
1.87 
1.25 
0.94 
1.25 
0.31 
1.88 
0.00 

0.63 
NaN
-0.47 
0.63 
0.22 

-0.06 
0.22 

-1.16 
0.63 
NaN

-0.10 
0.11 
0.04 

-0.10 
-0.03 
0.01 

-0.03 
0.07 

-0.10 
0.11 

0.73 
NaN
-0.51 
0.73 
0.25 

-0.07 
0.25 

-1.24 
0.73 
NaN

0.45  
NaN 
0.73  
0.45  
0.53  
0.61  
0.53  
1.02  
0.45  
NaN 

-0.01601 

Cu 
(ppb) 

1.000-2.034
2.035-2.450
2.451-2.744
2.745-2.994
2.995-3.262
3.263-3.669
3.670-3.977
3.978-4.710
4.711-7.695

7.696-2.9999

116889
116787
116603
117174
116784
116566
116422
116412
116407
116394

10.02 
10.01 
10.00 
10.05 
10.01 

9.99 
9.98 
9.98 
9.98 
9.98 

1
4
5
6
6
2
4
2
1
1

3.13 
12.50 
15.63 
18.75 
18.75 

6.25 
12.50 

6.25 
3.13 
3.13 

0.31 
1.25 
1.56 
1.87 
1.87 
0.63 
1.25 
0.63 
0.31 
0.31 

-1.17 
0.22 
0.45 
0.62 
0.63 

-0.47 
0.23 

-0.47 
-1.16 
-1.16 

0.07 
-0.03 
-0.06 
-0.10 
-0.10 
0.04 

-0.03 
0.04 
0.07 
0.07 

-1.24 
0.25 
0.51 
0.73 
0.73 

-0.51 
0.25 

-0.51 
-1.23 
-1.23 

1.02  
0.53  
0.49  
0.45  
0.45  
0.73  
0.53  
0.73  
1.02  
1.02  

-0.50809 
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Likelihood ratio Weights of evidence Logistic 
regression 

Factor 

Class a No. of
pixels %Area Mineral

occ. %occ. LS b W+ W- C C/S(c) Coefficient c 

Al 
(ppb) 

26.00-44.15
44.16-84.54

84.55-103.39
103.40-112.87
112.88-119.29
119.30-124.97
124.98-133.04
133.05-164.69
164.70-231.11
231.12-499.99

116666
116651
116737
116716
116695
116601
116613
116594
116586
116579

10.00 
10.00 
10.01 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 

3
3
4
2
7
7
1
3
2
0

9.38
9.38

12.50
6.25

21.88
21.88

3.13
9.38
6.25
0.00

0.94
0.94
1.25
0.62
2.19
2.19
0.31
0.94
0.63
0.00

-0.06
-0.06
0.22

-0.47
0.78
0.78

-1.16
-0.06
-0.47
NaN

0.01
0.01

-0.03
0.04

-0.14
-0.14
0.07
0.01
0.04
0.11

-0.07
-0.07
0.25

-0.51
0.92
0.92

-1.24
-0.07
-0.51
NaN

-0.12 
-0.12 
0.47 

-0.70 
2.16 
2.16 

-1.22 
-0.12 
-0.70 
NaN 

0.00806 

As 
(ppm) 

1.01-14.58
14.59-21.78
21.79-27.56
27.57-35.09
35.10-43.43
43.44-47.59
47.60-49.47
49.48-49.99

50.00

116689
116779
116734
116702
116782
116901
116516

65606
283729

10.00 
10.01 
10.01 
10.00 
10.01 
10.02 

9.99 
5.62 

24.32 

0
8
0
3
1
4
0
3

13

0.00
25.00

0.00
9.38
3.13

12.50
0.00
9.38

40.63

0.00
2.50
0.00
0.94
0.31
1.25
0.00
1.67
1.67

NaN
0.92

NaN
-0.07
-1.16
0.22

NaN
0.51
0.51

0.11
-0.18
0.11
0.01
0.07

-0.03
0.11

-0.04
-0.24

NaN
1.10

NaN
-0.07
-1.24
0.25

NaN
0.55
0.76 

NaN 
2.69 

NaN 
-0.12 
-1.22 
0.47 

NaN 
0.91 
2.10 

0.03186 

Ba 
(ppb) 

2.00-3.99
4.00-5.96
5.97-7.04
7.05-7.86
7.87-8.55
8.56-9.61

9.62 -10.87
10.88-13.28
13.29-17.38

17.39-200.97

117477
116734
117258
116532
116787
116822
116583
116120
116242
115883

10.07 
10.01 
10.05 

9.99 
10.01 
10.02 

9.99 
9.96 
9.97 
9.93 

0
8
2
3
5
4
3
1
3
3

0.00 
25.00 

6.25 
9.38 

15.63 
12.50 

9.38 
3.13 
9.38 
9.38 

0.00 
2.50 
0.62 
0.94 
1.56 
1.25 
0.94 
0.31 
0.94 
0.94 

NaN
0.92 

-0.48 
-0.06 
0.45 
0.22 

-0.06 
-1.16 
-0.06 
-0.06 

0.11 
-0.18 
0.04 
0.01 

-0.06 
-0.03 
0.01 
0.07 
0.01 
0.01 

NaN
1.10 

-0.52 
-0.07 
0.51 
0.25 

-0.07 
-1.23 
-0.07 
-0.06 

NaN 
0.41  
0.73  
0.61  
0.49  
0.53  
0.61  
1.02  
0.61  
0.61  

0.04983 

Ca 
(ppm) 

1.53-6.24
6.25-18.99

19.00-28.24
28.25-35.41
35.42-40.44
40.45-43.42
43.43-46.01
46.02-48.04
48.05-49.16
49.17-50.00

116712
116637
116714
116742
116662
116679
116621
117223
116647
115801

10.01 
10.00 
10.01 
10.01 
10.00 
10.00 
10.00 
10.05 
10.00 

9.93 

2
5
1
3
2
2
3
4
5
5

6.25 
15.63 

3.13 
9.38 
6.25 
6.25 
9.38 

12.50 
15.63 
15.63 

0.62 
1.56 
0.31 
0.94 
0.62 
0.62 
0.94 
1.24 
1.56 
1.57 

-0.47 
0.45 

-1.16 
-0.07 
-0.47 
-0.47 
-0.06 
0.22 
0.45 
0.45 

0.04 
-0.06 
0.07 
0.01 
0.04 
0.04 
0.01 

-0.03 
-0.06 
-0.07 

-0.51 
0.51 

-1.24 
-0.07 
-0.51 
-0.51 
-0.07 
0.25 
0.51 
0.52 

0.73  
0.49  
1.02  
0.61  
0.73  
0.73  
0.61  
0.53  
0.49  
0.49  

-0.00001 

Cd 
(ppm) 

1.0000-1.1008
1.1009-1.2239
1.2240-1.3473

116740
116647
116690

10.01 
10.00 
10.00 

3
3
2

9.38 
9.38 
6.25 

0.94 
0.94 
0.62 

-0.07 
-0.06 
-0.47 

0.01 
0.01 
0.04 

-0.07 
-0.07 
-0.51 

0.61  
0.61  
0.73  

-0.12562 
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1.3474-1.4928
1.4929-1.6538
1.6539-1.8480
1.8481-1.9829
1.9830-2.2506
2.2507-3.2164
3.2165-9.9992

116699
116626
116640
116621
116610
116585
116580

10.00 
10.00 
10.00 
10.00 
10.00 

9.99 
9.99 

3
5
4
2
5
1
4

9.38 
15.63 
12.50 

6.25 
15.63 

3.13 
12.50 

0.94 
1.56 
1.25 
0.63 
1.56 
0.31 
1.25 

-0.07 
0.45 
0.22 

-0.47 
0.45 

-1.16 
0.22 

0.01 
-0.06 
-0.03 
0.04 

-0.06 
0.07 

-0.03 

-0.07 
0.51 
0.25 

-0.51 
0.51 

-1.24 
0.25 

0.61  
0.49  
0.53  
0.73  
0.49  
1.02  
0.53  

Cl- 
(ppm) 

1.0106-2.2074
2.2075-2.4546
2.4547-2.7386
2.7387-2.9874
2.9875-3.2353
3.2354-3.4804
3.4805-3.8803
3.8804-4.7479
4.7480-5.9843

5.9844-27.6669

116644
116681
116654
116642
116647
116642
116637
116635
116628
116628

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

1
0
3
4
1
7
5
5
2
4

3.13 
0.00 
9.38 

12.50 
3.13 

21.88 
15.63 
15.63 

6.25 
12.50 

0.31 
0.00 
0.94 
1.25 
0.31 
2.19 
1.56 
1.56 
0.63 
1.25 

-1.16 
NaN
-0.06 
0.22 

-1.16 
0.78 
0.45 
0.45 

-0.47 
0.22 

0.07 
0.11 
0.01 

-0.03 
0.07 

-0.14 
-0.06 
-0.06 
0.04 

-0.03 

-1.24 
NaN
-0.07 
0.25 

-1.24 
0.92 
0.51 
0.51 

-0.51 
0.25 

1.02  
NaN 
0.61  
0.53  
1.02  
0.43  
0.49  
0.49  
0.73  
0.53  

0.00005 

Co 
(ppb) 

1.0000-1.5665
1.5666-2.5807
2.5808-1.9789
1.9790-3.1012
3.1013-3.3506
3.3507-3.6660
3.6661-3.9952
3.9953-4.4250
4.4251-5.0758
5.0759-9.9999

116648
116657
116722
116636
116651
116656
116621
116620
116620
116607

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

4
1
6
1
3
2
5
7
2
1

12.50 
3.13 

18.75 
3.13 
9.38 
6.25 

15.63 
21.88 

6.25 
3.13 

1.25 
0.31 
1.87 
0.31 
0.94 
0.62 
1.56 
2.19 
0.63 
0.31 

0.22 
-1.16 
0.63 

-1.16 
-0.06 
-0.47 
0.45 
0.78 

-0.47 
-1.16 

-0.03 
0.07 

-0.10 
0.07 
0.01 
0.04 

-0.06 
-0.14 
0.04 
0.07 

0.25 
-1.24 
0.73 

-1.24 
-0.07 
-0.51 
0.51 
0.92 

-0.51 
-1.24 

0.53  
1.02  
0.45  
1.02  
0.61  
0.73  
0.49  
0.43  
0.73  
1.02  

-0.51670 

Cr 
(ppb) 

1.0000-1.1958 
1.1959-1.3244 
1.3245-1.4319 
1.4320-1.5656 
1.5657-1.8305 
1.8306-2.0343 
2.0344-2.3185 
2.3186-2.7629 
2.7630-3.2865 
3.2866-9.9987 

116649
116645
116772
116663
116650
116653
116625
116602
116601
116578

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 

6
0
2
6
4
3
4
1
6
0

18.75 
0.00 
6.25 

18.75 
12.50 

9.38 
12.50 

3.13 
18.75 

0.00 

1.87 
0.00 
0.62 
1.87 
1.25 
0.94 
1.25 
0.31 
1.88 
0.00 

0.63 
NaN
-0.47 
0.63 
0.22 

-0.06 
0.22 

-1.16 
0.63 
NaN

-0.10 
0.11 
0.04 

-0.10 
-0.03 
0.01 

-0.03 
0.07 

-0.10 
0.11 

0.73 
NaN
-0.51 
0.73 
0.25 

-0.07 
0.25 

-1.24 
0.73 
NaN

0.45  
NaN 
0.73  
0.45  
0.53  
0.61  
0.53  
1.02  
0.45  
NaN 

-0.01601 

Cu 
(ppb) 

1.000-2.034
2.035-2.450
2.451-2.744
2.745-2.994
2.995-3.262
3.263-3.669
3.670-3.977
3.978-4.710
4.711-7.695

7.696-2.9999

116889
116787
116603
117174
116784
116566
116422
116412
116407
116394

10.02 
10.01 
10.00 
10.05 
10.01 

9.99 
9.98 
9.98 
9.98 
9.98 

1
4
5
6
6
2
4
2
1
1

3.13 
12.50 
15.63 
18.75 
18.75 

6.25 
12.50 

6.25 
3.13 
3.13 

0.31 
1.25 
1.56 
1.87 
1.87 
0.63 
1.25 
0.63 
0.31 
0.31 

-1.17 
0.22 
0.45 
0.62 
0.63 

-0.47 
0.23 

-0.47 
-1.16 
-1.16 

0.07 
-0.03 
-0.06 
-0.10 
-0.10 
0.04 

-0.03 
0.04 
0.07 
0.07 

-1.24 
0.25 
0.51 
0.73 
0.73 

-0.51 
0.25 

-0.51 
-1.23 
-1.23 

1.02  
0.53  
0.49  
0.45  
0.45  
0.73  
0.53  
0.73  
1.02  
1.02  

-0.50809 
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F- 
(ppm) 

0.03-0.14
0.15-0.15
0.16-0.16
0.17-0.17
0.18-0.18
0.19-0.20
0.21-0.22
0.23-0.24
0.25-0.28
0.29-1.99

117101
116775
117073
117348
117148
116558
116117
116151
116321
115846

10.04 
10.01 
10.04 
10.06 
10.04 

9.99 
9.95 
9.96 
9.97 
9.93 

6
2
3
3
2
5
4
3
3
1

18.75 
6.25 
9.38 
9.38 
6.25 

15.63 
12.50 

9.38 
9.38 
3.13 

1.87 
0.62 
0.93 
0.93 
0.62 
1.56 
1.26 
0.94 
0.94 
0.31 

0.62 
-0.47 
-0.07 
-0.07 
-0.47 
0.45 
0.23 

-0.06 
-0.06 
-1.16 

-0.10 
0.04 
0.01 
0.01 
0.04 

-0.06 
-0.03 
0.01 
0.01 
0.07 

0.73 
-0.51 
-0.08 
-0.08 
-0.52 
0.51 
0.26 

-0.07 
-0.07 
-1.23 

0.45  
0.73  
0.61  
0.61  
0.73  
0.49  
0.53  
0.61  
0.61  
1.02  

-0.01003 

Fe 
(ppm) 

2.00-6.77  
6.78-7.86  
7.87-8.88  
8.89-9.91  

9.92-11.12 
11.13-12.99 
13.00-15.76 
15.77-21.24 
21.25-35.77 
35.78-99.99 

117031
116771
116611
117384
116592
116876
116535
116233
116234
116171

10.03 
10.01 
10.00 
10.06 
10.00 
10.02 

9.99 
9.96 
9.96 
9.96 

2
5
5
4
6
1
2
3
3
1

6.25 
15.63 
15.63 
12.50 
18.75 

3.13 
6.25 
9.38 
9.38 
3.13 

0.62 
1.56 
1.56 
1.24 
1.88 
0.31 
0.63 
0.94 
0.94 
0.31 

-0.47 
0.45 
0.45 
0.22 
0.63 

-1.17 
-0.47 
-0.06 
-0.06 
-1.16 

0.04 
-0.06 
-0.06 
-0.03 
-0.10 
0.07 
0.04 
0.01 
0.01 
0.07 

-0.51 
0.51 
0.51 
0.24 
0.73 

-1.24 
-0.51 
-0.07 
-0.07 
-1.23 

0.73  
0.49  
0.49  
0.53  
0.45  
1.02  
0.73  
0.61  
0.61  
1.02  

0.00002 

K 
(ppm) 

0.1201-0.3403
0.3404-0.4005
0.4006-0.4634
0.4635-0.5461
0.5462-0.6365
0.6366-0.7389
0.7390-0.8133
0.8134-0.9078
0.9079-1.0807
10.808-4.7295

116712
116798
116644
116707
116600
116663
116604
116604
116575
116531

10.01 
10.01 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 

9.99 
9.99 

2
1
5
2
5
4
5
3
2
3

6.25 
3.13 

15.63 
6.25 

15.63 
12.50 
15.63 

9.38 
6.25 
9.38 

0.62 
0.31 
1.56 
0.62 
1.56 
1.25 
1.56 
0.94 
0.63 
0.94 

-0.47 
-1.16 
0.45 

-0.47 
0.45 
0.22 
0.45 

-0.06 
-0.47 
-0.06 

0.04 
0.07 

-0.06 
0.04 

-0.06 
-0.03 
-0.06 
0.01 
0.04 
0.01 

-0.51 
-1.24 
0.51 

-0.51 
0.51 
0.25 
0.51 

-0.07 
-0.51 
-0.07 

0.73  
1.02  
0.49  
0.73  
0.49  
0.53  
0.49  
0.61  
0.73  
0.61  

-0.00053 

Li 
(ppb) 

1.0000-1.0041
1.0042-1.1144
1.1145-1.2670
1.2671-1.4984
1.4985-1.9352
1.9353-2.6544
2.6545-3.5996
3.5997-4.7935
4.7936-6.6524
6.6525-9.9999

116661
116662
116704
116661
116631
116633
116624
116622
116623
116617

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

6
10

4
0
2
3
3
2
1
1

18.75 
31.25 
12.50 

0.00 
6.25 
9.38 
9.38 
6.25 
3.13 
3.13 

1.87 
3.12 
1.25 
0.00 
0.63 
0.94 
0.94 
0.63 
0.31 
0.31 

0.63 
1.14 
0.22 
NaN
-0.47 
-0.06 
-0.06 
-0.47 
-1.16 
-1.16 

-0.10 
-0.27 
-0.03 
0.11 
0.04 
0.01 
0.01 
0.04 
0.07 
0.07 

0.73 
1.41 
0.25 
NaN
-0.51 
-0.07 
-0.07 
-0.51 
-1.24 
-1.24 

0.45  
0.38  
0.53  
NaN 
0.73  
0.61  
0.61  
0.73  
1.02  
1.02  

-0.22232 

Mg 
(ppm) 

0.36-1.12
1.13-2.50
2.51-3.04
3.05-3.64
3.65-4.41
4.42-5.26
5.27-6.18

116873
117756
118493
117481
116189
116652
116279

10.02 
10.10 
10.16 
10.07 

9.96 
10.00 

9.97 

0
8
4
3
1
5
4

0.00 
25.00 
12.50 

9.38 
3.13 

15.63 
12.50 

0.00 
2.48 
1.23 
0.93 
0.31 
1.56 
1.25 

NaN
0.91 
0.21 

-0.07 
-1.16 
0.45 
0.23 

0.11 
-0.18 
-0.03 
0.01 
0.07 

-0.06 
-0.03 

NaN
1.09 
0.23 

-0.08 
-1.23 
0.51 
0.25 

NaN 
0.41  
0.53  
0.61  
1.02  
0.49  
0.53  

-0.00001 
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6.19-7.30
7.31-9.32

9.33-49.99

115792
115912
115011

9.93 
9.94 
9.86 

5
1
1

15.63 
3.13 
3.13 

1.57 
0.31 
0.32 

0.45 
-1.16 
-1.15 

-0.07 
0.07 
0.07 

0.52 
-1.23 
-1.22 

0.49  
1.02  
1.02  

Mn 
(ppb) 

1.00-1.26
1.27-1.60
1.61-1.90
1.91-2.38
2.39-3.54
3.55-6.19

6.20-11.26
11.27-25.24
25.25-67.60

67.61-199.99

118658
117500
117854
118036
115883
115970
115651
115647
115630
115609

10.17 
10.07 
10.10 
10.12 

9.93 
9.94 
9.91 
9.91 
9.91 
9.91 

4
2
7
4
2
5
1
2
4
1

12.50 
6.25 

21.88 
12.50 

6.25 
15.63 

3.13 
6.25 

12.50 
3.13 

1.23 
0.62 
2.17 
1.24 
0.63 
1.57 
0.32 
0.63 
1.26 
0.32 

0.21 
-0.48 
0.77 
0.21 

-0.46 
0.45 

-1.15 
-0.46 
0.23 

-1.15 

-0.03 
0.04 

-0.14 
-0.03 
0.04 

-0.07 
0.07 
0.04 

-0.03 
0.07 

0.23 
-0.52 
0.91 
0.24 

-0.50 
0.52 

-1.23 
-0.50 
0.26 

-1.23 

0.53  
0.73  
0.43  
0.53  
0.73  
0.49  
1.02  
0.73  
0.53  
1.02  

0.02688 

Na 
(ppm) 

0.2200-0.5790
0.5791-0.6504
0.6505-0.6959
0.6960-0.7287
0.7288-0.7844
0.7845-0.8366
0.8367-0.8943
0.8944-0.9611
0.9612-1.1210
1.1211-4.1488

116685
116721
116839
116664
116629
116622
116676
116614
116524
116464

10.00 
10.01 
10.02 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 
9.98 

0
1
3
3
8
2
3
5
3
4

0.00 
3.13 
9.38 
9.38 

25.00 
6.25 
9.38 

15.63 
9.38 

12.50 

0.00 
0.31 
0.94 
0.94 
2.50 
0.63 
0.94 
1.56 
0.94 
1.25 

NaN
-1.16 
-0.07 
-0.06 
0.92 

-0.47 
-0.06 
0.45 

-0.06 
0.22 

0.11 
0.07 
0.01 
0.01 

-0.18 
0.04 
0.01 

-0.06 
0.01 

-0.03 

NaN
-1.24 
-0.07 
-0.07 
1.10 

-0.51 
-0.07 
0.51 

-0.07 
0.25 

NaN 
1.02  
0.61  
0.61  
0.41  
0.73  
0.61  
0.49  
0.61  
0.53  

-0.00046 

Ni 
(ppb) 

1.0001-5.3709
5.3710-8.8292

8.8293-10.4420
10.4421-11.6711
11.6712-12.7538
12.7539-13.9820
13.9821-14.9556
14.9557-15.9219
15.9220-16.7251
16.7252-19.9999

116644
116646
116644
116651
116655
116648
116644
116646
116633
116627

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

2
4
3
6
1
2
1
1
7
5

6.25 
12.50 

9.38 
18.75 

3.13 
6.25 
3.13 
3.13 

21.88 
15.63 

0.62 
1.25 
0.94 
1.87 
0.31 
0.62 
0.31 
0.31 
2.19 
1.56 

-0.47 
0.22 

-0.06 
0.63 

-1.16 
-0.47 
-1.16 
-1.16 
0.78 
0.45 

0.04 
-0.03 
0.01 

-0.10 
0.07 
0.04 
0.07 
0.07 

-0.14 
-0.06 

-0.51 
0.25 

-0.07 
0.73 

-1.24 
-0.51 
-1.24 
-1.24 
0.92 
0.51 

0.73  
0.53  
0.61  
0.45  
1.02  
0.73  
1.02  
1.02  
0.43  
0.49  

-0.63794 

Pb 
(ppb) 

1.00-8.76
8.77-17.68

17.69-21.65
21.66-24.56
24.57-27.30
27.31-30.38
30.39-33.10
33.11-36.51
36.52-39.37
39.38-49.99

116772
116678
116889
117006
116743
116786
116634
116709
116345
115876

10.01 
10.00 
10.02 
10.03 
10.01 
10.01 
10.00 
10.01 

9.97 
9.93 

2
5
0
4
4
2
1
4
5
5

6.25 
15.63 

0.00 
12.50 
12.50 

6.25 
3.13 

12.50 
15.63 
15.63 

0.62 
1.56 
0.00 
1.25 
1.25 
0.62 
0.31 
1.25 
1.57 
1.57 

-0.47 
0.45 
NaN
0.22 
0.22 

-0.47 
-1.16 
0.22 
0.45 
0.45 

0.04 
-0.06 
0.11 

-0.03 
-0.03 
0.04 
0.07 

-0.03 
-0.06 
-0.07 

-0.51 
0.51 
NaN
0.25 
0.25 

-0.51 
-1.24 
0.25 
0.51 
0.52 

0.73  
0.49  
NaN 
0.53  
0.53  
0.73  
1.02  
0.53  
0.49  
0.49  

0.27793 

Si 
(ppm) 

10.801-16.979
16.980-18.317
18.318-19.271
19.272-20.521

116655
116728
116675
116693

10.00 
10.01 
10.00 
10.00 

3
0
2
5

9.38 
0.00 
6.25 

15.63 

0.94 
0.00 
0.62 
1.56 

-0.06 
NaN
-0.47 
0.45 

0.01 
0.11 
0.04 

-0.06 

-0.07 
NaN
-0.51 
0.51 

0.61  
NaN 
0.73  
0.49  

0.00165 
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F- 
(ppm) 

0.03-0.14
0.15-0.15
0.16-0.16
0.17-0.17
0.18-0.18
0.19-0.20
0.21-0.22
0.23-0.24
0.25-0.28
0.29-1.99

117101
116775
117073
117348
117148
116558
116117
116151
116321
115846

10.04 
10.01 
10.04 
10.06 
10.04 

9.99 
9.95 
9.96 
9.97 
9.93 

6
2
3
3
2
5
4
3
3
1

18.75 
6.25 
9.38 
9.38 
6.25 

15.63 
12.50 

9.38 
9.38 
3.13 

1.87 
0.62 
0.93 
0.93 
0.62 
1.56 
1.26 
0.94 
0.94 
0.31 

0.62 
-0.47 
-0.07 
-0.07 
-0.47 
0.45 
0.23 

-0.06 
-0.06 
-1.16 

-0.10 
0.04 
0.01 
0.01 
0.04 

-0.06 
-0.03 
0.01 
0.01 
0.07 

0.73 
-0.51 
-0.08 
-0.08 
-0.52 
0.51 
0.26 

-0.07 
-0.07 
-1.23 

0.45  
0.73  
0.61  
0.61  
0.73  
0.49  
0.53  
0.61  
0.61  
1.02  

-0.01003 

Fe 
(ppm) 

2.00-6.77  
6.78-7.86  
7.87-8.88  
8.89-9.91  

9.92-11.12 
11.13-12.99 
13.00-15.76 
15.77-21.24 
21.25-35.77 
35.78-99.99 

117031
116771
116611
117384
116592
116876
116535
116233
116234
116171

10.03 
10.01 
10.00 
10.06 
10.00 
10.02 

9.99 
9.96 
9.96 
9.96 

2
5
5
4
6
1
2
3
3
1

6.25 
15.63 
15.63 
12.50 
18.75 

3.13 
6.25 
9.38 
9.38 
3.13 

0.62 
1.56 
1.56 
1.24 
1.88 
0.31 
0.63 
0.94 
0.94 
0.31 

-0.47 
0.45 
0.45 
0.22 
0.63 

-1.17 
-0.47 
-0.06 
-0.06 
-1.16 

0.04 
-0.06 
-0.06 
-0.03 
-0.10 
0.07 
0.04 
0.01 
0.01 
0.07 

-0.51 
0.51 
0.51 
0.24 
0.73 

-1.24 
-0.51 
-0.07 
-0.07 
-1.23 

0.73  
0.49  
0.49  
0.53  
0.45  
1.02  
0.73  
0.61  
0.61  
1.02  

0.00002 

K 
(ppm) 

0.1201-0.3403
0.3404-0.4005
0.4006-0.4634
0.4635-0.5461
0.5462-0.6365
0.6366-0.7389
0.7390-0.8133
0.8134-0.9078
0.9079-1.0807
10.808-4.7295

116712
116798
116644
116707
116600
116663
116604
116604
116575
116531

10.01 
10.01 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 

9.99 
9.99 

2
1
5
2
5
4
5
3
2
3

6.25 
3.13 

15.63 
6.25 

15.63 
12.50 
15.63 

9.38 
6.25 
9.38 

0.62 
0.31 
1.56 
0.62 
1.56 
1.25 
1.56 
0.94 
0.63 
0.94 

-0.47 
-1.16 
0.45 

-0.47 
0.45 
0.22 
0.45 

-0.06 
-0.47 
-0.06 

0.04 
0.07 

-0.06 
0.04 

-0.06 
-0.03 
-0.06 
0.01 
0.04 
0.01 

-0.51 
-1.24 
0.51 

-0.51 
0.51 
0.25 
0.51 

-0.07 
-0.51 
-0.07 

0.73  
1.02  
0.49  
0.73  
0.49  
0.53  
0.49  
0.61  
0.73  
0.61  

-0.00053 

Li 
(ppb) 

1.0000-1.0041
1.0042-1.1144
1.1145-1.2670
1.2671-1.4984
1.4985-1.9352
1.9353-2.6544
2.6545-3.5996
3.5997-4.7935
4.7936-6.6524
6.6525-9.9999

116661
116662
116704
116661
116631
116633
116624
116622
116623
116617

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

6
10

4
0
2
3
3
2
1
1

18.75 
31.25 
12.50 

0.00 
6.25 
9.38 
9.38 
6.25 
3.13 
3.13 

1.87 
3.12 
1.25 
0.00 
0.63 
0.94 
0.94 
0.63 
0.31 
0.31 

0.63 
1.14 
0.22 
NaN
-0.47 
-0.06 
-0.06 
-0.47 
-1.16 
-1.16 

-0.10 
-0.27 
-0.03 
0.11 
0.04 
0.01 
0.01 
0.04 
0.07 
0.07 

0.73 
1.41 
0.25 
NaN
-0.51 
-0.07 
-0.07 
-0.51 
-1.24 
-1.24 

0.45  
0.38  
0.53  
NaN 
0.73  
0.61  
0.61  
0.73  
1.02  
1.02  

-0.22232 

Mg 
(ppm) 

0.36-1.12
1.13-2.50
2.51-3.04
3.05-3.64
3.65-4.41
4.42-5.26
5.27-6.18

116873
117756
118493
117481
116189
116652
116279

10.02 
10.10 
10.16 
10.07 

9.96 
10.00 

9.97 

0
8
4
3
1
5
4

0.00 
25.00 
12.50 

9.38 
3.13 

15.63 
12.50 

0.00 
2.48 
1.23 
0.93 
0.31 
1.56 
1.25 

NaN
0.91 
0.21 

-0.07 
-1.16 
0.45 
0.23 

0.11 
-0.18 
-0.03 
0.01 
0.07 

-0.06 
-0.03 

NaN
1.09 
0.23 

-0.08 
-1.23 
0.51 
0.25 

NaN 
0.41  
0.53  
0.61  
1.02  
0.49  
0.53  

-0.00001 
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6.19-7.30
7.31-9.32

9.33-49.99

115792
115912
115011

9.93 
9.94 
9.86 

5
1
1

15.63 
3.13 
3.13 

1.57 
0.31 
0.32 

0.45 
-1.16 
-1.15 

-0.07 
0.07 
0.07 

0.52 
-1.23 
-1.22 

0.49  
1.02  
1.02  

Mn 
(ppb) 

1.00-1.26
1.27-1.60
1.61-1.90
1.91-2.38
2.39-3.54
3.55-6.19

6.20-11.26
11.27-25.24
25.25-67.60

67.61-199.99

118658
117500
117854
118036
115883
115970
115651
115647
115630
115609

10.17 
10.07 
10.10 
10.12 

9.93 
9.94 
9.91 
9.91 
9.91 
9.91 

4
2
7
4
2
5
1
2
4
1

12.50 
6.25 

21.88 
12.50 

6.25 
15.63 

3.13 
6.25 

12.50 
3.13 

1.23 
0.62 
2.17 
1.24 
0.63 
1.57 
0.32 
0.63 
1.26 
0.32 

0.21 
-0.48 
0.77 
0.21 

-0.46 
0.45 

-1.15 
-0.46 
0.23 

-1.15 

-0.03 
0.04 

-0.14 
-0.03 
0.04 

-0.07 
0.07 
0.04 

-0.03 
0.07 

0.23 
-0.52 
0.91 
0.24 

-0.50 
0.52 

-1.23 
-0.50 
0.26 

-1.23 

0.53  
0.73  
0.43  
0.53  
0.73  
0.49  
1.02  
0.73  
0.53  
1.02  

0.02688 

Na 
(ppm) 

0.2200-0.5790
0.5791-0.6504
0.6505-0.6959
0.6960-0.7287
0.7288-0.7844
0.7845-0.8366
0.8367-0.8943
0.8944-0.9611
0.9612-1.1210
1.1211-4.1488

116685
116721
116839
116664
116629
116622
116676
116614
116524
116464

10.00 
10.01 
10.02 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 
9.98 

0
1
3
3
8
2
3
5
3
4

0.00 
3.13 
9.38 
9.38 

25.00 
6.25 
9.38 

15.63 
9.38 

12.50 

0.00 
0.31 
0.94 
0.94 
2.50 
0.63 
0.94 
1.56 
0.94 
1.25 

NaN
-1.16 
-0.07 
-0.06 
0.92 

-0.47 
-0.06 
0.45 

-0.06 
0.22 

0.11 
0.07 
0.01 
0.01 

-0.18 
0.04 
0.01 

-0.06 
0.01 

-0.03 

NaN
-1.24 
-0.07 
-0.07 
1.10 

-0.51 
-0.07 
0.51 

-0.07 
0.25 

NaN 
1.02  
0.61  
0.61  
0.41  
0.73  
0.61  
0.49  
0.61  
0.53  

-0.00046 

Ni 
(ppb) 

1.0001-5.3709
5.3710-8.8292

8.8293-10.4420
10.4421-11.6711
11.6712-12.7538
12.7539-13.9820
13.9821-14.9556
14.9557-15.9219
15.9220-16.7251
16.7252-19.9999

116644
116646
116644
116651
116655
116648
116644
116646
116633
116627

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

2
4
3
6
1
2
1
1
7
5

6.25 
12.50 

9.38 
18.75 

3.13 
6.25 
3.13 
3.13 

21.88 
15.63 

0.62 
1.25 
0.94 
1.87 
0.31 
0.62 
0.31 
0.31 
2.19 
1.56 

-0.47 
0.22 

-0.06 
0.63 

-1.16 
-0.47 
-1.16 
-1.16 
0.78 
0.45 

0.04 
-0.03 
0.01 

-0.10 
0.07 
0.04 
0.07 
0.07 

-0.14 
-0.06 

-0.51 
0.25 

-0.07 
0.73 

-1.24 
-0.51 
-1.24 
-1.24 
0.92 
0.51 

0.73  
0.53  
0.61  
0.45  
1.02  
0.73  
1.02  
1.02  
0.43  
0.49  

-0.63794 

Pb 
(ppb) 

1.00-8.76
8.77-17.68

17.69-21.65
21.66-24.56
24.57-27.30
27.31-30.38
30.39-33.10
33.11-36.51
36.52-39.37
39.38-49.99

116772
116678
116889
117006
116743
116786
116634
116709
116345
115876

10.01 
10.00 
10.02 
10.03 
10.01 
10.01 
10.00 
10.01 

9.97 
9.93 

2
5
0
4
4
2
1
4
5
5

6.25 
15.63 

0.00 
12.50 
12.50 

6.25 
3.13 

12.50 
15.63 
15.63 

0.62 
1.56 
0.00 
1.25 
1.25 
0.62 
0.31 
1.25 
1.57 
1.57 

-0.47 
0.45 
NaN
0.22 
0.22 

-0.47 
-1.16 
0.22 
0.45 
0.45 

0.04 
-0.06 
0.11 

-0.03 
-0.03 
0.04 
0.07 

-0.03 
-0.06 
-0.07 

-0.51 
0.51 
NaN
0.25 
0.25 

-0.51 
-1.24 
0.25 
0.51 
0.52 

0.73  
0.49  
NaN 
0.53  
0.53  
0.73  
1.02  
0.53  
0.49  
0.49  

0.27793 

Si 
(ppm) 

10.801-16.979
16.980-18.317
18.318-19.271
19.272-20.521

116655
116728
116675
116693

10.00 
10.01 
10.00 
10.00 

3
0
2
5

9.38 
0.00 
6.25 

15.63 

0.94 
0.00 
0.62 
1.56 

-0.06 
NaN
-0.47 
0.45 

0.01 
0.11 
0.04 

-0.06 

-0.07 
NaN
-0.51 
0.51 

0.61  
NaN 
0.73  
0.49  

0.00165 
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20.522-21.914
21.915-23.443
23.444-25.021
25.022-27.559
27.560-31.012
31.013-96.079

116619
116686
116607
116627
116583
116565

10.00 
10.00 
10.00 
10.00 

9.99 
9.99 

5
3
1
4
3
6

15.63 
9.38 
3.13 

12.50 
9.38 

18.75 

1.56 
0.94 
0.31 
1.25 
0.94 
1.88 

0.45 
-0.06 
-1.16 
0.22 

-0.06 
0.63 

-0.06 
0.01 
0.07 

-0.03 
0.01 

-0.10 

0.51 
-0.07 
-1.24 
0.25 

-0.07 
0.73 

0.49  
0.61  
1.02  
0.53  
0.61  
0.45  

Sr 
(ppb) 

8.00-20.48
20.49-42.65
42.66-57.42
57.43-66.48
66.49-71.81
71.82-76.94
76.95-84.38
84.39-96.47

96.48-134.78
134.79-499.92

116702
116644
116749
116649
116821
116630
116686
116540
116509
116508

10.00 
10.00 
10.01 
10.00 
10.02 
10.00 
10.00 

9.99 
9.99 
9.99 

3
6
1
2
2
3
7
4
4
0

9.38 
18.75 

3.13 
6.25 
6.25 
9.38 

21.88 
12.50 
12.50 

0.00 

0.94 
1.87 
0.31 
0.62 
0.62 
0.94 
2.19 
1.25 
1.25 
0.00 

-0.07 
0.63 

-1.16 
-0.47 
-0.47 
-0.06 
0.78 
0.22 
0.22 
NaN

0.01 
-0.10 
0.07 
0.04 
0.04 
0.01 

-0.14 
-0.03 
-0.03 
0.11 

-0.07 
0.73 

-1.24 
-0.51 
-0.51 
-0.07 
0.92 
0.25 
0.25 
NaN

0.61  
0.45  
1.02  
0.73  
0.73  
0.61  
0.43  
0.53  
0.53  
NaN 

-0.01602 

V 
(ppb) 

10.000-10.001
10.002-10.320
10.321-10.744
10.745-11.616
11.617-12.435
12.436-14.190
14.191-15.335
15.336-17.900
17.901-20.623
20.624-99.985

116806
116672
116623
116648
116656
116633
116625
116593
116598
116584

10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 

4
5
4
1
4
4
1
5
4
0

12.50 
15.63 
12.50 

3.13 
12.50 
12.50 

3.13 
15.63 
12.50 

0.00 

1.25 
1.56 
1.25 
0.31 
1.25 
1.25 
0.31 
1.56 
1.25 
0.00 

0.22 
0.45 
0.22 

-1.16 
0.22 
0.22 

-1.16 
0.45 
0.22 
NaN

-0.03 
-0.06 
-0.03 
0.07 

-0.03 
-0.03 
0.07 

-0.06 
-0.03 
0.11 

0.25 
0.51 
0.25 

-1.24 
0.25 
0.25 

-1.24 
0.51 
0.25 
NaN

0.53  
0.49  
0.53  
1.02  
0.53  
0.53  
1.02  
0.49  
0.53  
NaN 

0.53038 

W 
(ppb) 

1.000-2.152
2.153-2.458
2.459-2.683
2.684-2.988
2.989-3.363
3.364-4.015
4.016-4.478
4.479-4.946
4.947-6.530

6.531-49.994

116858
116646
116776
116706
116762
116577
116788
116606
116366
116353

10.02 
10.00 
10.01 
10.01 
10.01 

9.99 
10.01 
10.00 

9.98 
9.98 

1
2
5
5
0
5
4
6
4
0

3.13 
6.25 

15.63 
15.63 

0.00 
15.63 
12.50 
18.75 
12.50 

0.00 

0.31 
0.62 
1.56 
1.56 
0.00 
1.56 
1.25 
1.88 
1.25 
0.00 

-1.16 
-0.47 
0.45 
0.45 
NaN
0.45 
0.22 
0.63 
0.23 
NaN

0.07 
0.04 

-0.06 
-0.06 
0.11 

-0.06 
-0.03 
-0.10 
-0.03 
0.11 

-1.24 
-0.51 
0.51 
0.51 
NaN
0.51 
0.25 
0.73 
0.25 
NaN

1.02  
0.73  
0.49  
0.49  
NaN 
0.49  
0.53  
0.45  
0.53  
NaN 

-0.10819 

Zn 
(ppb) 

1.00-3.28
3.29-4.34
4.35-5.21
5.22-6.13
6.14-7.22
7.23-8.81

8.82-11.02
11.03-13.62
13.63-21.96
21.97-49.99

117143
117519
117200
116683
116931
116420
116562
116052
115998
115930

10.04 
10.08 
10.05 
10.00 
10.02 

9.98 
9.99 
9.95 
9.94 
9.94 

4
3
1
3
3
3
2
3
4
6

12.50 
9.38 
3.13 
9.38 
9.38 
9.38 
6.25 
9.38 

12.50 
18.75 

1.24 
0.93 
0.31 
0.94 
0.94 
0.94 
0.63 
0.94 
1.26 
1.89 

0.22 
-0.07 
-1.17 
-0.06 
-0.07 
-0.06 
-0.47 
-0.06 
0.23 
0.63 

-0.03 
0.01 
0.07 
0.01 
0.01 
0.01 
0.04 
0.01 

-0.03 
-0.10 

0.25 
-0.08 
-1.24 
-0.07 
-0.07 
-0.07 
-0.51 
-0.07 
0.26 
0.74 

0.53  
0.61  
1.02  
0.61  
0.61  
0.61  
0.73  
0.61  
0.53  
0.45  

0.06175 

Application of Artificial Neural Network for Mineral Potential Mapping 

 

99 

Magnetic 
anomaly 

(nT) 

-145--101
-100--92

-91--83
-82--76
-75--68
-67--59
-58--49
-48--32

-31--9
-8-153

128137
121586
118890
131697
118478
115975
115502
110107
105926
100140

10.99 
10.42 
10.19 
11.29 
10.16 

9.94 
9.90 
9.44 
9.08 
8.59 

3
4
6
4
3
4
0
4
2
2

9.38 
12.50 
18.75 
12.50 

9.38 
12.50 

0.00 
12.50 

6.25 
6.25 

0.85 
1.20 
1.84 
1.11 
0.92 
1.26 
0.00 
1.32 
0.69 
0.73 

-0.16 
0.18 
0.61 
0.10 

-0.08 
0.23 
NaN
0.28 

-0.37 
-0.32 

0.02 
-0.02 
-0.10 
-0.01 
0.01 

-0.03 
0.10 

-0.03 
0.03 
0.03 

-0.18 
0.21 
0.71 
0.12 

-0.09 
0.26 
NaN
0.32 

-0.40 
-0.34 

0.61  
0.53  
0.45  
0.53  
0.61  
0.53  
NaN 
0.53  
0.73  
0.73  

-0.00657 

Distance 
from fault 

(m) 

0-120
123-256
258-408
416-577
579-771
774-993

994-1268
1271-1632
1633-2292
2294-6224

119087
118526
118732
117138
115748
115764
115499
115411
115313
115220

10.21 
10.16 
10.18 
10.04 

9.92 
9.92 
9.90 
9.89 
9.89 
9.88 

0
4
3
7
5
2
3
6
0
2

0.00 
12.50 

9.38 
21.88 
15.63 

6.25 
9.38 

18.75 
0.00 
6.25 

0.00 
1.23 
0.92 
2.18 
1.57 
0.63 
0.95 
1.90 
0.00 
0.63 

NaN
0.21 

-0.08 
0.78 
0.45 

-0.46 
-0.05 
0.64 
NaN
-0.46 

0.11 
-0.03 
0.01 

-0.14 
-0.07 
0.04 
0.01 

-0.10 
0.10 
0.04 

NaN
0.23 

-0.09 
0.92 
0.52 

-0.50 
-0.06 
0.74 
NaN
-0.50 

NaN 
0.53  
0.61  
0.43  
0.49  
0.73  
0.61  
0.45  
NaN 
0.73  

0.00003 

Lithology 

Ogl
lgr
Di

Hagr
Hb

Oyb
Qr
Qd

Kad
Kbd

Kfl
Kgp

Kh
Kj

Kqp
Ksgr

Jigr
Jgr
Jbs
Jbc

TRn
TRn1
TRn2
TRn3

TRg
Ps

Ch
Oj

1064
4841

14
245

2281
1022

49757
533
136
881

3
359
262
792
520

9862
19233
3466

584
3969

20281
20837
12158
6944

53754
18150
69942
78322

0.09
0.42
0.00
0.02
0.20
0.09
4.27
0.05
0.01
0.08
0.00
0.03
0.02
0.07
0.04
0.85
1.65
0.30
0.05
0.34
1.74
1.79
1.04
0.60
4.61
1.56
6.00
6.71

0
0
0
0
2
0
2
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0.00 
0.00 
0.00 
0.00 
6.25 
0.00 
6.25 
0.00 
0.00 
3.13 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
3.13 

0.00 
0.00 
0.00 
0.00 

31.96 
0.00 
1.47 
0.00 
0.00 

41.37 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.47 

NaN
NaN
NaN
NaN
3.46 
NaN
0.38 
NaN
NaN
3.72 
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-0.76 

0.00 
0.00 
0.00 
0.00 

-0.06 
0.00 

-0.02 
0.00 
0.00 

-0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.02 
0.00 
0.00 
0.00 
0.02 
0.02 
0.01 
0.01 
0.05 
0.02 
0.06 
0.04 

NaN
NaN
NaN
NaN
3.53 
NaN
0.40 
NaN
NaN
3.75 
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-0.80 

NaN 
NaN 
NaN 
NaN 
4.83  
NaN 
0.55  
NaN 
NaN 
3.69  
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
-0.79  

-1.54617 
-2.63001 
-2.82522 
-3.00918 
10.46756 
-1.30763 
8.51705 

-0.77791 
-2.43856 
12.86849 
-2.66456 
-0.74304 
0.00000 

-1.41765 
-1.78021 
-2.19213 
-3.80720 
-1.49119 
-1.66856 
-1.74379 
-0.32642 
-1.21220 
-0.83909 
-1.12328 
-1.18890 
-1.79743 
-2.32484 
8.10235 
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20.522-21.914
21.915-23.443
23.444-25.021
25.022-27.559
27.560-31.012
31.013-96.079

116619
116686
116607
116627
116583
116565

10.00 
10.00 
10.00 
10.00 

9.99 
9.99 

5
3
1
4
3
6

15.63 
9.38 
3.13 

12.50 
9.38 

18.75 

1.56 
0.94 
0.31 
1.25 
0.94 
1.88 

0.45 
-0.06 
-1.16 
0.22 

-0.06 
0.63 

-0.06 
0.01 
0.07 

-0.03 
0.01 

-0.10 

0.51 
-0.07 
-1.24 
0.25 

-0.07 
0.73 

0.49  
0.61  
1.02  
0.53  
0.61  
0.45  

Sr 
(ppb) 

8.00-20.48
20.49-42.65
42.66-57.42
57.43-66.48
66.49-71.81
71.82-76.94
76.95-84.38
84.39-96.47

96.48-134.78
134.79-499.92

116702
116644
116749
116649
116821
116630
116686
116540
116509
116508

10.00 
10.00 
10.01 
10.00 
10.02 
10.00 
10.00 

9.99 
9.99 
9.99 

3
6
1
2
2
3
7
4
4
0

9.38 
18.75 

3.13 
6.25 
6.25 
9.38 

21.88 
12.50 
12.50 

0.00 

0.94 
1.87 
0.31 
0.62 
0.62 
0.94 
2.19 
1.25 
1.25 
0.00 

-0.07 
0.63 

-1.16 
-0.47 
-0.47 
-0.06 
0.78 
0.22 
0.22 
NaN

0.01 
-0.10 
0.07 
0.04 
0.04 
0.01 

-0.14 
-0.03 
-0.03 
0.11 

-0.07 
0.73 

-1.24 
-0.51 
-0.51 
-0.07 
0.92 
0.25 
0.25 
NaN

0.61  
0.45  
1.02  
0.73  
0.73  
0.61  
0.43  
0.53  
0.53  
NaN 

-0.01602 

V 
(ppb) 

10.000-10.001
10.002-10.320
10.321-10.744
10.745-11.616
11.617-12.435
12.436-14.190
14.191-15.335
15.336-17.900
17.901-20.623
20.624-99.985

116806
116672
116623
116648
116656
116633
116625
116593
116598
116584

10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

9.99 

4
5
4
1
4
4
1
5
4
0

12.50 
15.63 
12.50 

3.13 
12.50 
12.50 

3.13 
15.63 
12.50 

0.00 

1.25 
1.56 
1.25 
0.31 
1.25 
1.25 
0.31 
1.56 
1.25 
0.00 

0.22 
0.45 
0.22 

-1.16 
0.22 
0.22 

-1.16 
0.45 
0.22 
NaN

-0.03 
-0.06 
-0.03 
0.07 

-0.03 
-0.03 
0.07 

-0.06 
-0.03 
0.11 

0.25 
0.51 
0.25 

-1.24 
0.25 
0.25 

-1.24 
0.51 
0.25 
NaN

0.53  
0.49  
0.53  
1.02  
0.53  
0.53  
1.02  
0.49  
0.53  
NaN 

0.53038 

W 
(ppb) 

1.000-2.152
2.153-2.458
2.459-2.683
2.684-2.988
2.989-3.363
3.364-4.015
4.016-4.478
4.479-4.946
4.947-6.530

6.531-49.994

116858
116646
116776
116706
116762
116577
116788
116606
116366
116353

10.02 
10.00 
10.01 
10.01 
10.01 

9.99 
10.01 
10.00 

9.98 
9.98 

1
2
5
5
0
5
4
6
4
0

3.13 
6.25 

15.63 
15.63 

0.00 
15.63 
12.50 
18.75 
12.50 

0.00 

0.31 
0.62 
1.56 
1.56 
0.00 
1.56 
1.25 
1.88 
1.25 
0.00 

-1.16 
-0.47 
0.45 
0.45 
NaN
0.45 
0.22 
0.63 
0.23 
NaN

0.07 
0.04 

-0.06 
-0.06 
0.11 

-0.06 
-0.03 
-0.10 
-0.03 
0.11 

-1.24 
-0.51 
0.51 
0.51 
NaN
0.51 
0.25 
0.73 
0.25 
NaN

1.02  
0.73  
0.49  
0.49  
NaN 
0.49  
0.53  
0.45  
0.53  
NaN 

-0.10819 

Zn 
(ppb) 

1.00-3.28
3.29-4.34
4.35-5.21
5.22-6.13
6.14-7.22
7.23-8.81

8.82-11.02
11.03-13.62
13.63-21.96
21.97-49.99

117143
117519
117200
116683
116931
116420
116562
116052
115998
115930

10.04 
10.08 
10.05 
10.00 
10.02 

9.98 
9.99 
9.95 
9.94 
9.94 

4
3
1
3
3
3
2
3
4
6

12.50 
9.38 
3.13 
9.38 
9.38 
9.38 
6.25 
9.38 

12.50 
18.75 

1.24 
0.93 
0.31 
0.94 
0.94 
0.94 
0.63 
0.94 
1.26 
1.89 

0.22 
-0.07 
-1.17 
-0.06 
-0.07 
-0.06 
-0.47 
-0.06 
0.23 
0.63 

-0.03 
0.01 
0.07 
0.01 
0.01 
0.01 
0.04 
0.01 

-0.03 
-0.10 

0.25 
-0.08 
-1.24 
-0.07 
-0.07 
-0.07 
-0.51 
-0.07 
0.26 
0.74 

0.53  
0.61  
1.02  
0.61  
0.61  
0.61  
0.73  
0.61  
0.53  
0.45  

0.06175 
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Magnetic 
anomaly 

(nT) 

-145--101
-100--92

-91--83
-82--76
-75--68
-67--59
-58--49
-48--32

-31--9
-8-153

128137
121586
118890
131697
118478
115975
115502
110107
105926
100140

10.99 
10.42 
10.19 
11.29 
10.16 

9.94 
9.90 
9.44 
9.08 
8.59 

3
4
6
4
3
4
0
4
2
2

9.38 
12.50 
18.75 
12.50 

9.38 
12.50 

0.00 
12.50 

6.25 
6.25 

0.85 
1.20 
1.84 
1.11 
0.92 
1.26 
0.00 
1.32 
0.69 
0.73 

-0.16 
0.18 
0.61 
0.10 

-0.08 
0.23 
NaN
0.28 

-0.37 
-0.32 

0.02 
-0.02 
-0.10 
-0.01 
0.01 

-0.03 
0.10 

-0.03 
0.03 
0.03 

-0.18 
0.21 
0.71 
0.12 

-0.09 
0.26 
NaN
0.32 

-0.40 
-0.34 

0.61  
0.53  
0.45  
0.53  
0.61  
0.53  
NaN 
0.53  
0.73  
0.73  

-0.00657 

Distance 
from fault 

(m) 

0-120
123-256
258-408
416-577
579-771
774-993

994-1268
1271-1632
1633-2292
2294-6224

119087
118526
118732
117138
115748
115764
115499
115411
115313
115220

10.21 
10.16 
10.18 
10.04 

9.92 
9.92 
9.90 
9.89 
9.89 
9.88 

0
4
3
7
5
2
3
6
0
2

0.00 
12.50 

9.38 
21.88 
15.63 

6.25 
9.38 

18.75 
0.00 
6.25 

0.00 
1.23 
0.92 
2.18 
1.57 
0.63 
0.95 
1.90 
0.00 
0.63 

NaN
0.21 

-0.08 
0.78 
0.45 

-0.46 
-0.05 
0.64 
NaN
-0.46 

0.11 
-0.03 
0.01 

-0.14 
-0.07 
0.04 
0.01 

-0.10 
0.10 
0.04 

NaN
0.23 

-0.09 
0.92 
0.52 

-0.50 
-0.06 
0.74 
NaN
-0.50 

NaN 
0.53  
0.61  
0.43  
0.49  
0.73  
0.61  
0.45  
NaN 
0.73  

0.00003 

Lithology 

Ogl
lgr
Di

Hagr
Hb

Oyb
Qr
Qd

Kad
Kbd

Kfl
Kgp

Kh
Kj

Kqp
Ksgr

Jigr
Jgr
Jbs
Jbc

TRn
TRn1
TRn2
TRn3

TRg
Ps

Ch
Oj

1064
4841

14
245

2281
1022

49757
533
136
881

3
359
262
792
520

9862
19233
3466

584
3969

20281
20837
12158
6944

53754
18150
69942
78322

0.09
0.42
0.00
0.02
0.20
0.09
4.27
0.05
0.01
0.08
0.00
0.03
0.02
0.07
0.04
0.85
1.65
0.30
0.05
0.34
1.74
1.79
1.04
0.60
4.61
1.56
6.00
6.71

0
0
0
0
2
0
2
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0.00 
0.00 
0.00 
0.00 
6.25 
0.00 
6.25 
0.00 
0.00 
3.13 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
3.13 

0.00 
0.00 
0.00 
0.00 

31.96 
0.00 
1.47 
0.00 
0.00 

41.37 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.47 

NaN
NaN
NaN
NaN
3.46 
NaN
0.38 
NaN
NaN
3.72 
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-0.76 

0.00 
0.00 
0.00 
0.00 

-0.06 
0.00 

-0.02 
0.00 
0.00 

-0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.02 
0.00 
0.00 
0.00 
0.02 
0.02 
0.01 
0.01 
0.05 
0.02 
0.06 
0.04 

NaN
NaN
NaN
NaN
3.53 
NaN
0.40 
NaN
NaN
3.75 
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-0.80 

NaN 
NaN 
NaN 
NaN 
4.83  
NaN 
0.55  
NaN 
NaN 
3.69  
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
-0.79  

-1.54617 
-2.63001 
-2.82522 
-3.00918 
10.46756 
-1.30763 
8.51705 

-0.77791 
-2.43856 
12.86849 
-2.66456 
-0.74304 
0.00000 

-1.41765 
-1.78021 
-2.19213 
-3.80720 
-1.49119 
-1.66856 
-1.74379 
-0.32642 
-1.21220 
-0.83909 
-1.12328 
-1.18890 
-1.79743 
-2.32484 
8.10235 
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Omg
Odu

Od
CEw
CEp

CEm
CEj

PCEt
Jugr

215666
89243
6794

129104
112818

58514
17535

103955
52597

18.49
7.65
0.58

11.07
9.67
5.02
1.50
8.91
4.51

8
4
0
3
5
2
0
2
2

25.00 
12.50 

0.00 
9.38 

15.63 
6.25 
0.00 
6.25 
6.25 

1.35 
1.63 
0.00 
0.85 
1.62 
1.25 
0.00 
0.70 
1.39 

0.30 
0.49 
NaN
-0.17 
0.48 
0.22 
NaN
-0.35 
0.33 

-0.08 
-0.05 
0.01 
0.02 

-0.07 
-0.01 
0.02 
0.03 

-0.02 

0.38 
0.54 
NaN
-0.18 
0.55 
0.23 
NaN
-0.38 
0.34 

0.94  
1.02  
NaN 
-0.30  
1.13  
0.32  
NaN 
-0.53  
0.47  

9.80276 
9.55816 

-1.58241 
8.72195 
8.86861 
7.71460 

-3.25116 
7.64571 
7.53975 

a Using the quantile classification method 
b Likelihood ratio 

c Constant value : - 19.07087 

Table A1. Spatial relationship between mineral deposits and some related factors 
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1. Introduction  
Treatment of recalcitrant wastewater by advanced oxidation processes (AOPs) is influenced 
by several factors. Due to complexity of the processes, they are difficult to be modelled and 
simulated using conventional mathematical modelling. Artificial neural network is used in 
many areas of science and engineering as a promising tool because of its simplicity in 
simulation, prediction and modelling of process performance (Prakash et al., 2008). The 
chapter presents artificial neural network and training of artificial neural network, advanced 
oxidation processes (AOPs), case studies, conclusions and references.  

2. Artificial Neural Network (ANN) 
The ANN is an artificial intelligence technique that mimics the human brain’s biological 
neural network in the problem solving processes. As humans solve a new problem based on 
the past experience, a neural network takes previously solved examples, looks for patterns 
in these examples, learns these patterns and develops the ability to correctly classify new 
patterns. In addition, the neural network has the ability to resemble human characteristics in 
problem solving that is difficult to simulate using the logical, analytical techniques of expert 
system and standard software technologies (Daosud et al., 2005). 
A neural network is defined as a system of simple processing elements called neurons, 
which are connected to a network by a set of weights. The neuron is a processing element 
that takes a number of inputs, weighs them, sums them up, adds a bias and uses the 
outcome  as the argument for a singule-valued function (transfer function) which results in 
the neuron’s output (Strik et al., 2005). The network is determined by the architecture of the 
network, the magnitude of the weights and the processing element’s mode of operation. At 
the start of training, the output of each node tends to be small. Consequently, the derivatives 
of the transfer function and changes in the connection weights are large with respect to the 
input. As learning progresses and the network reaches a local minimum in error surface, the 
node outputs approach stable values. Consequently, the derivatives of the transfer function 
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simulated using conventional mathematical modelling. Artificial neural network is used in 
many areas of science and engineering as a promising tool because of its simplicity in 
simulation, prediction and modelling of process performance (Prakash et al., 2008). The 
chapter presents artificial neural network and training of artificial neural network, advanced 
oxidation processes (AOPs), case studies, conclusions and references.  

2. Artificial Neural Network (ANN) 
The ANN is an artificial intelligence technique that mimics the human brain’s biological 
neural network in the problem solving processes. As humans solve a new problem based on 
the past experience, a neural network takes previously solved examples, looks for patterns 
in these examples, learns these patterns and develops the ability to correctly classify new 
patterns. In addition, the neural network has the ability to resemble human characteristics in 
problem solving that is difficult to simulate using the logical, analytical techniques of expert 
system and standard software technologies (Daosud et al., 2005). 
A neural network is defined as a system of simple processing elements called neurons, 
which are connected to a network by a set of weights. The neuron is a processing element 
that takes a number of inputs, weighs them, sums them up, adds a bias and uses the 
outcome  as the argument for a singule-valued function (transfer function) which results in 
the neuron’s output (Strik et al., 2005). The network is determined by the architecture of the 
network, the magnitude of the weights and the processing element’s mode of operation. At 
the start of training, the output of each node tends to be small. Consequently, the derivatives 
of the transfer function and changes in the connection weights are large with respect to the 
input. As learning progresses and the network reaches a local minimum in error surface, the 
node outputs approach stable values. Consequently, the derivatives of the transfer function 
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with respect to input, as well as changes in the connection weights, are small (Maier and 
Dandy, 1998). 
The different types of neural network based on their incremental complexity are:  feedforward, 
recurrent, stochastic and modular network  (Prakash et al., 2008). The chapter will focus on the 
feedforward network which is widely used in the area of wastewater treatment. 

2.1 Feedforward ANN 
The feedforward ANN is composed of two or more layers of processing elements which are 
linked by weighted connections (Figure 1). The information flow is unidirectional, no 
feedback connections are present and data are presented to input layer, passed on to hidden 
layer and passed on to output layer.  

 
Fig. 1. Feedforward ANN 

2.2 Training of Artificial Neural Network 
According to Artificial neural network tutorial (2008), the learning situation can be 
categorized as the following.  
Supervised learning 

In supervised or associative learning, the network is trained by providing it with input and 
matching output patterns. Backpropagation is a form of supervised training. Using the 
actual outputs, the backpropagation training algorithm takes a calculated error and adjusts 
the weights of the various layers backwards from the output layer to the input layer. It 
means adjusting the weights in neurons with regard to the difference between the outputs 
predicted by the model and the actual outputs (Figure 2).  
Unsupervised learning  

In unsupervised learning or self-organisation, an output unit is trained to respond to 
clusters of pattern within the input. In this paradigm, the system is supposed to discover 
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statistically salient features of the input population. Unlike the supervised learning 
paradigm, there is no a priori set of categories into which the patterns are to be classified; 
rather the system must develop its own representation of the input stimuli.  
Reinforcement learning 

This category of learning may be considered as an intermediate form of the above two types 
of learning. Here the learning machine does some action on the environment and gets a 
feedback response from the environment. The learning system grades its action as good 
(rewarding) or bad (punishable) based on the environmental response and accordingly 
adjusts its parameters. Generally, parameter adjustment is continued until an equilibrium 
state occurs, following which there will be no more changes in its parameters. The self 
organizing neural learning may be categorized under this type of learning. 
 

 
Fig. 2. Supervised learning (Artificial neural network tutorial, 2008) 

3. Advanced Oxidation Processes (AOPs) 
AOPs are defined by Glaze et al. (1987) as near ambient temperature and pressure water 
treatment processes which involve the generation of highly reactive radicals (especially, 
hydroxyl radicals (OH•)) in sufficient  quantity to effect water purification. These treatment 
processes are considered very promising methods for the remediation of contaminated 
water and wastewater containing non-biodegradable organic pollutants. Due to the toxic 
characteristics of non-biodegradable organic pollutants, e.g. antibiotics, a wastewater 
containing these pollutants may not suitably be treated by a conventional biological process. 
In addition, separation technologies such as coagulation-filtration, activated carbon 
adsorption and reverse osmosis only transfer the pollutants from one phase to another 
without destroying them. AOPs are promising methods for the remediation of contaminated 
wastewaters containing non-biodegradable (recalcitrant) organic pollutants. AOPs can be 
classified by considering the phase where the process takes place, hence homogenous or 
heterogeneous processes can be differentiated. AOP classification can also consider the 
different possible ways of hydroxyl radical production. In this way, photochemical and non-
photochemical processes can be distinguished. Table 1 shows classification of the most 
important AOPs into photochemical and non-photochemical processes. 
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Photochemical process Non-photochemical process 
Photo-Fenton (UV/Fe2+/H2O2)  Fenton (Fe2+/H2O2) 
UV/O3 O3/H2O2 
UV/H2O2 O3/Ultrasound 
UV/H2O2/O3  Ozonation (O3/OH-) 
Heterogeneous photocatalysis (UV/TiO2) H2O2/Ultrasound 

Table 1. Classification of AOPs as photochemical and non-photochemical processes 

The chapter will focus on the Fenton, photo-Fenton, UV/H2O2, heterogeneous 
photocatalysis and ozonation, and these processes are described in the following sections.  

3.1 Fenton and photo-Fenton processes 
Fenton and photo-Fenton are homogenous advanced oxidation process. The Fundamentals 
of these processes as well as the main factors affecting the process are described below. 

Fundamentals of Fenton Reactions 

The Fenton reaction was discovered by Fenton (1894) and forty year later, the reaction 
mechanism was described by Haber and Weiss (1934). In the Fenton reaction, hydroxyl 
radicals (OH•) are generated by interaction of H2O2 with ferrous salts as in Reaction (1). 

 Fe2+ + H2O2 → Fe3+ + OH• + OH-   (1) 

Generated Fe3+ can be reduced by reaction with exceeding H2O2 to form again ferrous ion 
and more radicals. This second process is called Fenton-like and it is slower than Fenton 
reaction as in Reactions 2 and 3 (Sychev and Isaak, 1995).  

 Fe3+ + H2O2 → HO2• + Fe2+ + H+  (2) 

 Fe3+ + HO2• → Fe2+ + O2 + H+    (3) 

Other important dark reactions involving ferrous ion and hydrogen peroxide in absence of 
other interfering ions and organic substances are shown in Reactions 4-6.  

 Fe2+ + HO2• + H+ → Fe3+ + H2O2 (4) 

 Fe2+ + OH• → Fe3+ + OH- (5) 

 H2O2 + OH• → HO2• + H2O  (6) 

The below listed radical-radical reactions, as well as the auto-decomposition of H2O2 are 
also part of the complex process as shown in Reactions 7-10.  

 2H2O2 → 2H2O + O2 (7) 

 2OH• → H2O2 (8) 

 2HO2• → H2O2 + O2 (9) 

 HO2• + OH• → H2O + O2  (10) 
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Fundamentals of Photo-Fenton Reactions 

Fenton reaction rate is strongly increased by irradiation with UV/visible light (Kiwi et al., 
1994; Huston & Pignatello, 1999). During the reaction, Fe3+ ions accumulate in the system 
and after Fe2+ are consumed, the reaction practically stops. Photochemical regeneration 
(Reaction 11) of Fe2+ ions by photoreduction of Fe3+ ions was proposed (Huston & 
Pignatello, 1999). The newly generated ferrous ion reacts with H2O2 generating a second 
OH• radical and Fe3+ and the cycle continues. 

 Fe3+ + H2O + hυ → Fe2+ + OH•  (11) 

The main factors affecting Fenton and photo-Fenton processes are summarized below. 
Initial H2O2 Concentration 
Degradation rate of the organics increases with increase of H2O2 concentration. This could be 
explained by the effect of the additionally produced OH• radicals (Zhao et al., 2004). However, 
above a certain H2O2 concentration, the reaction rate levels off and sometimes is negatively 
affected by the increase of H2O2 concentration. This may be due to scavenging of OH• by H2O2 
as in Reaction 6 (Kavitha and Palanivelu, 2005). Therefore, H2O2 should be added at an 
optimal concentration to achieve the best degradation. This optimal H2O2 concentration 
depends on the nature and concentration of the pollutants and the iron concentration. 
Initial Fe2+ Concentration  
Degradation rate of the organics increases with increase of iron concentration; however, 
above a certain iron concentration the efficiency decreases. This may be due to the 
recombination of OH• radicals or increase of turbidity that hinders the absorption of the UV 
light required for the photo-Fenton process. Fe2+ reacts with OH• radicals as a scavenger 
(Reaction 5). It is desirable for Fe2+ or Fe3+ to be as small as possible, so recombination can be 
avoided and iron complex production reduced (Kwon et al., 1999). 

pH  
The Fenton and photo-Fenton processes have a maximum activity at about pH 3. The pH 
value influences the generation of OH• radicals and thus the oxidation efficiency of the 
process. At higher pH, generation of OH• radicals decreases and this is due to the decrease 
of dissolved iron as well as dissociation and auto-decomposition of H2O2 (Zhao et al., 2004). 
At low pH, oxidation efficiency is lower due to solvation of hydrogen   peroxide in presence 
of high concentration of H+ to form stable oxonium ion (H3O2+), thus reducing substantially 
its reactivity with ferrous ions (Kwon et al., 1999). 

Temperature 

Fenton and photo-Fenton processes are generally conducted at ambient temperature. 
However, temperature is a key parameter that has to be taken into account because thermal 
Fenton process is accelerated with increasing temperature (Arasasinghan et al., 1989). But 
high temperature (above 40 ºC) may decompose hydrogen peroxide to oxygen and water as 
in Reaction 7 (Nesheiwat & Swanson, 2000). 

3.2 UV/H2O2 process 
The UV/H2O2 system involves the formation of OH• radicals by hydrogen peroxide 
photolysis and subsequent propagation reactions. The mechanism most commonly accepted 
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for the photolysis of H2O2 is the cleavage of the molecule into hydroxyl radicals as in 
Reaction 12.  

 H2O2 + hυ → 2OH• (12) 

The major drawback of this process is that if the solution presents a strong absorbance, this can 
compete with hydrogen peroxide for the radiation. Thus, cloudy water or water containing 
compounds absorbing UV radiation can present problems in treatment by this method. 

3.3 Heterogeneous photocatalysis 
Heterogeneous photocatalysis is a technology based on the irradiation of a catalyst, usually 
a semiconductor, which may be photoexcited to form electron-donor sites (reducing sites) 
and electron-acceptor sites (oxidizing sites) providing great scope as redox reagents. The 
bands of interest in photocatalysis are the occupied valence band (VB) and the unoccupied 
conduction band (CB), separated by an energy distance referred to as the band gap (Ebg). 
When the semiconductor is illuminated with light of greater energy than that of the band 
gap, an electron is promoted from the VB to the CB leaving a positive hole in the valence 
band as illustrated in Figure 3 (Cardona, 2001). After separation, the electron (e-) and hole 
(h+) pair may recombine generating heat or can become involved in electron transfer 
reactions with other species in solution. 
 

 
Fig. 3. Mechanism of semiconductor photocatalysis (Cardona, 2001). 

Among the semiconductors, titanium dioxide (TiO2) has proven to be the most suitable for 
widespread environmental applications. TiO2 is biologically and chemically inert; it is stable 
to photo and chemical corrosion, and inexpensive. Furthermore, TiO2 is of special interest 
since it can be photoexcited by natural (solar) UV radiation. This is because TiO2 has an 
appropriate energetic separation between its valence and conduction bands, which can be 
surpassed by the energy of a solar photon. The VB and CB energies of the TiO2 are estimated 
to be +3.1 and −0.1 eV,  respectively, which means that its band gap is 3.2 eV and therefore 
absorbs in the near UV region (λ<387 nm)      

Mechanism of TiO2 Photocatalysis  

Reaction mechanisms of photocatalytic processes have been discussed in the literature (Sadik 
et al., 2007). When a semiconductor such as TiO2 is illuminated by photons having an energy 
level that exceeds their band gap (hv > Ebg = 3.2 eV in case of TiO2), electrons (e-) are excited 
from the valence band to the conduction band and holes (h+) are produced in the valence band 
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(Reaction 13). The photogenerated valence band holes react with either water (H2O) or 
hydroxyl ions (OH-) adsorbed on the catalyst surface to generate OH• radicals which are 
strong oxidants (Reaction 14 and 15). The hydroxyl radical reacts readily with surface 
adsorbed organic molecules, either by electron or hydrogen atom abstraction, forming organic 
radical cations, or by addition reactions to unsaturated bonds (Sadik et al., 2007) (Reaction 16). 
Since the reaction of the holes on the particle interface is faster than electrons, the particles 
under illumination contain an excess of electrons. Removal of these excess of electrons is 
necessary to complete the oxidation reaction, by preventing the recombination of electrons 
with holes. The most easily available electron acceptor is molecular oxygen and in presence of 
oxygen the predominant reaction of electrons is that with O2 to form superoxide ions (•O2−) as 
in Reaction (17). In acidic condition, superoxide ion combines with proton to form a 
hydroperoxide radical and it reacts with conduction band electron to form hydroperoxide ion. 
The hydroperoxide ion reacts with proton to form hydrogen peroxide. Cleavage of hydrogen 
peroxide by the conduction band electrons yields further hydroxyl radicals and hydroxyl ions 
(Reaction 18).  The hydroxyl ions can then react with the valence band holes to form additional 
hydroxyl radicals. Recombination of the photogenerated electrons and holes may occur and 
indeed it has been suggested that preadsorption of substrate (organic substance) onto the 
photocatalyst is a prerequisite for highly efficient degradation.  

 TiO2+ hv  → TiO2 (e- + h+)  (13) 

 h+ + H2O →   H+ + OH• (14) 

 h++ OH− → OH• (15) 

 Organics + OH• → products  (16)  

 e− + O2 →•O2− (17) 

 H2O2 + e- → OH•+OH- (18) 

Main Factors Affecting Photocatalytic  

The main factors affecting photocatalysis reactions are described below. 
Catalyst Concentration  
The reaction rate is affected by the catalyst concentration; however, above a certain 
concentration value the reaction rate becomes independent of catalyst concentration. This limit 
depends on the nature of the pollutant and on the geometry and working conditions of the 
photoreactor corresponding to the maximum catalyst concentration in which all the particles 
are totally illuminated.  Decrease of reaction rate at higher catalyst concentration may be due 
to decrease of light penetration or increase of light scattering (Kansal et al., 2007). 
Agglomeration and sedimentation of catalyst under high catalyst concentration may take place 
and available catalyst surface for photon absorption may decrease (San et al., 2007). 
Temperature and pH 
Experimental studies on dependence of the reaction rate of degradation of organic 
compounds on temperature have been conducted (Evgenidou et al., 2005). Generally, 
increase in temperature enhances recombination of charge carriers and desorption process 
of adsorbed reactant species, resulting in decrease of photocatalytic activity.  
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 Artificial Neural Networks - Application 

 

112 

Nature of the Photocatalyst   
A very important parameter influencing the performance of photocatalyst in photocatalytic 
oxidation is the surface morphology (Dinga et al., 2005). Numerous forms of photocatalyst 
have been synthesized by different methods to arrive at a photocatalyst exhibiting desirable 
physical properties, activity and stability for photocatalytic application (Gao & Liu, 2005). 
Smaller particle size is reported to give higher degradation of organic compounds (Maira et 
al., 2001). 
Light Intensity  
Photocatalytic reaction rate depends largely on the radiation absorption of the photocatalyst 
(Curcó et al., 2002). The increase of degradation rate with increase of light intensity during 
photocatalytic degradation have been reported (Qamar et al., 2006).  

3.4 Ozonation  
Ozonation is the oxidation process based on the use of ozone as basic compound. Ozone 
may be used alone or with other compounds such as UV radiation, hydrogen peroxide, 
activated carbon, etc.  Ozone formation in the upper atmosphere is based on the photolysis 
of diatomic oxygen as in the following reaction: 

 O2 + hυ → 2O• (19) 

 O2 + 2O• → O3 (20)  

The first use of ozone was reported at the end of the 19th century as a disinfectant in  water 
treatment plants, hospitals, and research centres such as the University of Paris where the 
first doctoral thesis on ozonation was presented (Le Paulouë & Langlais 1999). Ozone is 
known as a very reactive agent in both air and water and its high reactivity is due to its 
electronic configuration. The half-life of ozone in water is highly dependent on the pH and 
matrix content of the water. For example, the half-life of ozone in distilled water can vary 
from about 102 sec at pH 12 to 105 sec at pH 2 or from 10 sec for secondary wastewater 
effluents to 104 sec for certain ground and surface waters (Hoigné, 1998). The  fundamentals 
of ozonation is beyond the scope of this chapter. 

4. Case studies 
In this section, eight case studies on use of artificial neural network for modelling, simulation 
and prediction of advanced oxidation process (Fenton, photo-Fenton, UV/H2O2, UV/TiO2 and 
Ozonation) performance in recalcitrant wastewater treatment are summarized.  

4.1 The use of Artificial Neural Network (ANN) for modeling of COD removal from 
antibiotic aqueous solution by the Fenton process 
Elmolla et al. (2010) reported the implementation of artificial neural networks (ANNs) for 
the prediction and simulation of antibiotic degradation in aqueous solution by the Fenton 
process. Experimental data sets (120) were divided into input matrix [p] and target matrix 
[t]. The input variables were reaction time (t), H2O2/COD molar ratio, H2O2/Fe2+ molar 
ratio, pH and COD concentration. The corresponding COD removal was used as a target. 
Principal component analysis (PCA) was performed on input data to filter out uncorrelated 
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random data. The data sets were divided into training (one half), validation (one fourth) and 
test (one fourth) subsets, each of which contained 60, 30 and 30 sets, respectively. 
A three-layer backpropagation neural network was optimized to predict and simulate the 
degradation of amoxicillin, ampicillin and cloxacillin in aqueous solution in terms of COD 
removal. Figure 4 shows the optimized network. It was a three-layer ANN with tangent 
sigmoid transfer function (tansig) at hidden layer with (1) neurons, linear transfer function 
 

 
Fig. 4. Artificial neural network optimized structure (Elmolla et al., 2010) 

(purelin) at output layer and Levenberg–Marquardt backpropagation training algorithm 
(LMA). The network was tested and the mean square error was 0.000376. In a comparison 
between ANN predicted results and the experimental results, the correlation coefficient (R2) 
was 0.997 (Figure 5). The sensitivity analysis was conducted using two methods. The first 
one was based on the neural net weight matrix and Garson equation (Aleboyeh et al., 2008). 
Garson (1991) proposed an equation based on the partitioning of connection weights 
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where, Ij is the relative importance of the jth input variable on the output variable, Ni and Nh 
are the numbers of input and hidden neurons, respectively, Ws are connection weights, the 
superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output layers, respectively, and 
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subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and output neurons, respectively. The 
second evaluation process was based on the possible combination of variables (Yetilmezsoy 
and Demirel, 2008). Performance of the groups of one, two, three, four, and five variables 
were examined by the optimum ANN structure. The input variables were reaction time (P1), 
H2O2/COD molar ratio (P2), H2O2/Fe2+ molar ratio (P3), pH (P4) and COD concentration (P5). 
Table 2 shows the results of the sensitivity analysis for different combination of input 
variables. 
 

 
Fig. 5. Comparison between predicted and measured values of the output (Elmolla et al., 2010) 

The sensitivity analysis showed that all studied variables (reaction time, H2O2/COD molar 
ratio, H2O2/Fe2+ molar ratio, pH and COD) have strong effect on antibiotics degradation in 
terms of COD removal. In addition, H2O2/Fe2+ molar ratio is the most influential parameter 
with relative importance of 25.8%. The results showed that neural network modelling could 
effectively predict and simulate the behaviour of the Fenton process. 

4.2 The use of Artificial Neural Network (ANN) with oxidation reduction potential for 
dosage control of the Fenton process for color removal from textile wastewater 
Yu et al. (2009) built a Fenton dosage control strategy that uses oxidation reduction potential 
(ORP) monitoring and artificial neural network models for removing color from textile 
wastewater. The input variables were peak value (mV), pH value at the ORP peak, H2O2 

dose Fe2+, dose and H2O2/Fe2+ molar ratio. The corresponding decolorization efficiency was 
used as a target. The data sets (74) were divided into training 46 and testing 24. A three-
layer backpropagation neural network was used to predict and simulate the process. The 
network was tested and the root mean square (RMS) value was 0.053. In a comparison 
between ANN predicted results and the experimental results, the correlation coefficient (R2) 
was 0.97 (Figure 6). Figure 7 shows the proposed Fenton dosage control strategy based on 
the developed artificial neural network control model. 
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Combination Mean square 
error (MSE) 

Epoch Correlation 
coefficient (R2) 

Best linear equation 

P1 365.889 6 0.315 y = 3.71X +880 

P2 276.46 8 0.599 y = 7.44X +763 

P3* 270.141 10 0.616 y = 8.93X +689 

P4 378.575 7 0.395 y = 3.15X +991 

P5 404.727 12 0.284 y = 1,7X +953 

P1+P2 0.500941 7 0.538 y = 0.409X +29.2 

P1+P3 0.451707 8 0.649 y = 0.452X +25.9 

P1+P4 0.65364 9 0.451 y = 0.32X +31.8 

P1+P5 0.714965 6 0.391 y = 0.30X +38 

P2+P3 0.415012 9 0.742 y = 0.528X +25 

P2+P4 0.388861 5 0.764 y = 0.528X +24.3 

P2+P5 0.552496 5 0.636 y = 0.405X +32.1 

P3+P4* 0.304122 9 0.848 y = 0.701X +16.9 

P3+P5 0.571864 10 0.646 y = 0.509X +23.5 

P4+P5 0.755573 5 0.487 y = 0.232X +40.6 

P1+P2+P3 0.313754 16 0.802 y = 0.642X +18.1 

P1+P2+P4 0.2901 14 0.825 y = 0.675X +16.4 

P1+P2+P5 0.453212 10 0.702 y = 0.675X +25.2 

P1+P3+P4 0.141262 25 0.873 y = 0.873X +6.2 

P1+P3+P5 0.43797 10 0.69 y = 0.57X +21.1 

P1+P4+P5 0.583005 16 0.528 y = 0.57X +32.7 

P2+P3+P4* 0.117252 12 0.936 y = 0.849X +9.37 

P2+P3+P5 0.379122 47 0.77 y = 0.579X +23.1 

P3+P4+P5 0.300483 25 0.85 y = 0.695X +17.1 

P1+P2+P3+P4* 0.00278282 34 0.995 y = 0.997X +0.402 

P1+P2+P3+P5 0.270749/0 25 0.818 y = 0.679X +15.7 

P1+P2+P4+P5 0.264695 15 0.832 y = 0.682X +15.8 

P1+P3+P4+P5 0.139748 15 0.912 y = 0.87X +6.27 

P2+P3+P4+P5 0.113608 36 0.915 y = 0.862X +8.92 

P1+P2+P3+P4+P5* 0.000376 20 0.997 y = 0.999X +0.116 

* The best group performances according to number of parameters 
 

Table 2. Evaluation of combination of input variables (Elmolla et al., 2010) 
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Fig. 6. Correlation of measured color removal efficiency and control target for real textile 
wastewater (Yu et al., 2009) 
 

 
Fig. 7. Proposed Fenton dosage control strategy based on the developed artificial neural 
network control model (Yu et al., 2009) 

4.3 The use of Artificial Neural Network (ANN) for modeling of DOC removal from 
polyvinyl alcohol aqueous solution by the photo-Fenton process 
Giroto et al. (2006) reported the implementation of artificial neural network (ANN) for 
modelling of DOC removal from polyvinyl alcohol aqueous solution by the photo-Fenton 
process. Experimental data sets (432) were divided into input matrix [p] and target matrix 

The Use of Artificial Neural Network (ANN) for Modelling, Simulation and Prediction  
of Advanced Oxidation Process Performance in Recalcitrant Wastewater Treatment   

 

117 

[t]. The input variables were reaction time (t), initial DOC, Fe2+ and H2O2 concentrations. 
The corresponding DOC removal was used as a target. In a comparison between ANN 
calculated DOC and the experimental DOC, the correlation coefficient (R2) was 0.966  
(Figure 8). 
 

 
Fig. 8. Comparison between calculated and experimental DOC (Giroto et al., 2006) 

4.4 The use of Artificial Neural Network (ANN) for prediction of azo dye decolorization 
by UV/H2O2  
Aleboyeh et al. (2008) developed an artificial neural network model for the prediction and 
simulation of photochemical decolorization of C.I. Acid Orange 7 solution by UV/H2O2 

process. Experimental data sets were divided into input matrix [p] and target matrix [t]. The 
input variables were initial concentration of dye and hydrogen peroxide, the pH of the 
solution and time of UV irradiation. The corresponding decolorization efficiency was used 
as a target. The data sets (228) were divided into training (one half), validation (one fourth) 
and test (one fourth) subsets, each of which contained 114, 57 and 57 sets, respectively. 
 

 
Fig. 9. Comparison between predicted and experimental decolorization (Aleboyeh et al., 
2008) 
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A three-layer backpropagation neural network was used to predict and simulate the process. 
Figure 9 shows the optimized network. It was a three-layer ANN with tangent sigmoid 
transfer function (tansig) at hidden layer with 14 neurons, linear transfer function (purelin) at 
output layer and scaled conjugate gradient algorithm training algorithm. The network was tested 
and the mean square error was 0.004. In a comparison between ANN predicted results and the 
experimental results, the correlation coefficient (R2) was 0.996 (Figure 10). The sensitivity 
analysis was conducted based on Garson equation (Equation 1) and it showed that all studied 
variables (initial concentration of the dye and H2O2, initial pH and reaction time) had 
considerable effects on decolorization. In addition, the initial concentration of H2O2 was the 
most influential parameter in the decolorization process with relative importance of 48.89%. 
 

 
Fig. 10. Comparison between predicted and measured decolorization (Aleboyeh et al., 2008) 

4.5 Decolorization process modeling by neural network  
Guimarães et al. (2008) developed an artificial neural network model for the prediction and 
simulation of photochemical decolorization of acid orange 52 dye solution by the UV/H2O2 

process. The input variables were dye concentration, pH, hydrogen peroxide concentration, 
temperature and time of operation. The corresponding absorbance was used as a target. A 
three-layer backpropagation neural network was used to predict and simulate the process. It 
was a three-layer ANN with tangent sigmoid transfer function (tansig) at hidden layer with 
16 neurons, linear transfer function (purelin) at output layer and descending gradient 
(learngdm) training algorithm. The neural network was trained with 218 samples and 
utilized a configuration with a hidden layer and 16 neurons in the layer, presenting high 
correlation coefficient of (R2) 0.991 (Figure 11). The sensitivity analysis using Garson 
equation (Equation 1) showed that all studied variables (dye concentration, pH, hydrogen 
peroxide concentration, temperature and time of operation) had considerable effects on the 
decolorization.  
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Fig. 11. Comparison between predicted and measured absorbance (Guimarães et al., 2008) 

4.6 The use of Artificial Neural Network (ANN) for prediction of Methyl Tert-Butyl Ether 
(MTBE) degradation by UV/H2O2 process  
Salari et al. (2005) proposed an artificial neural network model for the prediction and 
simulation MTBE concentration during irradiation time in optimized conditions of the 
UV/H2O2 process. The input variables were reaction time (t),  initial concentration of MTBE,  
initial concentration of H2O2 and pH of the solution.  The concentration of MTBE, as a 
function of reaction time ([MTBE]t), was used as a target. The data sets were divided into 
training (one half), validation (one fourth) and test (one fourth) subsets, each of which 
contained 32, 16 and 16 sets, respectively. Figure 12 shows the optimized network. It was a 
three-layer ANN with tangent sigmoid transfer function (tansig) at hidden layer with 14 
neurons  and linear transfer function (purelin) at output layer. The network was tested and  
 

 
Fig. 12. Artificial neural network optimized structure (Salari et al., 2008) 
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the mean square error was 0.0004. In a comparison between ANN predicted results and the 
experimental results, the correlation coefficient (R2) was 0.998 (Figure 13). 
 

 
Fig. 13. Comparison between predicted and experimental results (Salari et al., 2008) 

4.7 The use of Artificial Neural Network (ANN) for prediction of nitrogen oxides 
removal efficiency by TiO2 photocatalysis  
Toma et al. (2004) predicted the photocatalytic removal efficiency of nitrogen oxides (NO 
and NOx) over a TiO2 powder (Degussa P25). The network input layer contained three 
neurons representing powder quantity, irradiation time and surface, respectively. The 
output layer comprised two neurons representing the photocatalytic efficiency in terms of 
NO and NOx. The data of 488 experimental sets were used to feed an ANN structure. Figure 
14 shows the optimized ANN structure characterized by three hidden layers containing 
seven, four and three neurons, respectively. Correlations were learnt from the database with 
a percentage of 98.57%. The overall optimization error was on average less than 5%.  
 

 
Fig. 14. Artificial neural network optimized structure (Toma et al., 2004) 
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4.8 The use of Artificial Neural Network (ANN) modeling of humic substance removal 
from an aqueous solution by ozonation 
Oguz et al. (2008) modelled the removal of humic substances from aqueous solution by 
ozonation. The input variables to the neural network were treatment time (t), initial 
concentration of humic substance, powdered activated carbon dose (PAC), ozone-air flow 
rate, ozone generation potential, pH, temperature and HCO3− ion concentration. The output 
variable was humic substance removal. The best result was obtained from the Levenberg–
Marquardt algorithm, hyperbolic tangent function in the hidden layer and the linear 
activation function in the output layer. As shown in Figure 15, the optimized network 
structure was 8 neurons at the input layer, 1 neuron at the hidden layer and 1 neuron at the 
output layer. In a comparison between ANN predicted values and the observed values, the 
correlation coefficient (R2) was 0.995 with standard deviation ratio 0.065, mean absolute 
error 4.057 and root mean square error 5.4967 (Figure 16).   
 

 
Fig. 15. Artificial neural network optimized structure (Oguz et al., 2008) 
 

 
Fig. 16. Comparison between predicted and observed values (Oguz et al., 2008) 

5. Conclusions 
Artificial neural network is a promising tool for simulation, modelling and prediction of 
advanced oxidation process (AOP) performance. The output of modelling can be used for 
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sensitivity analysis and to study the dynamic behaviour of the AOP. More research should 
be done for application of other artificial intelligent technique such as Neuro-fuzzy for 
prediction as well as control the process. 
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1. Introduction

Artificial neural networks (ANNs) are computational models of their biological counterparts.
They consists of densely interconnected computing units that work together to solve a specific
problem. The information, which is acquired during a learning process, is stored in the
synaptic weights of the internodal connections. The main advantage of neural networks is
their ability to represent complex functions and the efficient storage of information. ANNs
are frequently employed in applications involving data classification, function approximation,
and signal processing (Haykin, 1994).
The topology of ANNs consists of an arrangement of neurons, which are equipped with
a transfer function and synaptic weights, and the nodal connections. Despite these
simple topological elements, the flexible arrangement of neurons and connections allows
the generation of ANNs with arbitrary complexity. The resulting topological complexity,
however, directly affects the network performance. The performance, or fitness, is a measure
of the accuracy of a network in representing an input-output relation. For instance, network
topologies with only few neurons and synaptic weights provide only limited flexibility in
representing complex functions. They have therefore typically only a poor fitness. On the
other side, complex networks that provide large flexibility in representing new data, can lead
to poor generalizability and extensive computational costs for training and data retrieval (Yao,
1999). Considering the integration of such networks in large-scale simulations, data retrieval
from such large networks can lead to a significant increase in overall computing time. Because
of the inherent topological complexity it is apparent that the a priori identification of a
network topology with near-optimal performance is a challenging task, and is often guided
by heuristics or trial-and-error.
The design of a specific network topology with optimal performance can be formulated as an
optimization problem. The choice of the method to solve this problem is determined by the
inherent properties of the ANN (Miller et al., 1989):

1. The dimension of the architecture space is infinite since the number of neurons and nodal
connections is unbounded.
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The topology of ANNs consists of an arrangement of neurons, which are equipped with
a transfer function and synaptic weights, and the nodal connections. Despite these
simple topological elements, the flexible arrangement of neurons and connections allows
the generation of ANNs with arbitrary complexity. The resulting topological complexity,
however, directly affects the network performance. The performance, or fitness, is a measure
of the accuracy of a network in representing an input-output relation. For instance, network
topologies with only few neurons and synaptic weights provide only limited flexibility in
representing complex functions. They have therefore typically only a poor fitness. On the
other side, complex networks that provide large flexibility in representing new data, can lead
to poor generalizability and extensive computational costs for training and data retrieval (Yao,
1999). Considering the integration of such networks in large-scale simulations, data retrieval
from such large networks can lead to a significant increase in overall computing time. Because
of the inherent topological complexity it is apparent that the a priori identification of a
network topology with near-optimal performance is a challenging task, and is often guided
by heuristics or trial-and-error.
The design of a specific network topology with optimal performance can be formulated as an
optimization problem. The choice of the method to solve this problem is determined by the
inherent properties of the ANN (Miller et al., 1989):

1. The dimension of the architecture space is infinite since the number of neurons and nodal
connections is unbounded.
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2. Assessing the performance of a particular network topology usually requires the prior
training of the network, which in itself is an optimization problem and usually time
consuming.

3. The design parameters determining the topology of the network can be both of continuous
and categorical type.

4. The objective function that quantifies the network performance with respect to the design
variables is noisy and non-differentiable.

5. Different ANN topologies can lead to similar performance, implying that the solution
space is multimodal.

Over recent years considerable research has been conducted on the evolution of topological
structures of networks using evolutionary strategies (Bornholdt & Graudenz 1992; Fogel
& Fogel 1990; Husken et al. 2005; Koza & Rice 1991; Miller et al. 1989; Porto et al. 1995;
Tang et al. 1995 and references in Yao 1999). Evolutionary strategies (ESs) are global search
algorithms and have frequently been used to find optimal network topologies and nodal
transfer functions. ESs can conveniently be implemented in an existing code and do not
require gradient information. Despite their popularity, ESs are known to be expensive,
typically characterized by slow convergence, and usually lack formal convergence theory.
Other methods which have been employed for the automatic design of near-optimal networks
are so-called construction and destruction algorithms (Frean, 1990; Mozer & Smolensky,
1989), in which neurons are systematically added or deleted with the objective to improve
the network fitness. These methods, however, search only in a restricted subset of possible
network architectures (Angeline et al., 1994).
As an alternative to these optimization techniques Ihme et al. (2008) proposed to use a
generalized pattern search (GPS) method for the generation of optimal ANNs. They applied
the GPS method to the optimization of multi-layer perceptrons (MLPs), and considered the
number of neurons, transfer functions, and the nodal connectivity as free parameters in the
optimization problem. The GPS algorithm is a derivative-free, mesh-based optimization
method and provides robust convergence properties (Audet & Dennis, 2003). To increase
the efficiency of the GPS for computationally expensive problems, this method can be
complemented by a surrogate representation, which was developed by Serafini (1998)
and Booker et al. (1999).
The objective of this work is to utilize the GPS method and an evolutionary strategy for
the generation of optimal artificial neural networks (OANNs) to approximate non-linear
functions, that are, for instance, encountered in representing chemical systems. These
chemical system can be formulated as:

D(φ) = w(φ) , (1)

where D is a linear operator acting on φ (in the simplest case, D is the temporal derivative ∂t),
φ ∈ RN+1 denotes the vector of N chemical species and temperature, and w : RN+1 → RN+1

is a function, representing the chemical source terms and the heat release rate.
Chemical mechanisms often comprise thousands of reactions among hundreds of species.
In numerical simulations of combustion systems the direct solution of transport equations
for all of these species is usually not feasible. Alternative approaches, such as intrinsic low
dimensional manifolds (Maas & Pope, 1992) or computational singular perturbation (Lam &
Goussis, 1988) have been developed, in which a part of the chemical species are projected onto
a lower dimensional manifold, resulting in a reduced chemical reaction mechanism. However,
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is a function, representing the chemical source terms and the heat release rate.
Chemical mechanisms often comprise thousands of reactions among hundreds of species.
In numerical simulations of combustion systems the direct solution of transport equations
for all of these species is usually not feasible. Alternative approaches, such as intrinsic low
dimensional manifolds (Maas & Pope, 1992) or computational singular perturbation (Lam &
Goussis, 1988) have been developed, in which a part of the chemical species are projected onto
a lower dimensional manifold, resulting in a reduced chemical reaction mechanism. However,

the necessary introduction of certain assumptions, required for reducing the mechanism, can
result in a degradation of the accuracy and generality.
On the other side, tabulation techniques, such as conventional structured look-up tables, are
often employed for the parameterization of thermochemical quantities. Since, however, the
memory requirement for the tabulation rapidly increases with the number of independent
parameters, this method imposes drastic restrictions when more than three or four
independent parameters are used. Other tabulation techniques include the in situ
adaptive tabulation (ISAT) (Pope, 1997) or solution mapping using piecewise polynomial
approximation (PRISM) (Tonse et al., 1999).
Over recent years, ANNs have successfully been employed for the approximation of chemical
systems (Blasco, Fueyo, Dopazo & Ballester, 1999; Blasco et al., 2000; Blasco, Fueyo, Larroya,
Dopazo & Chen, 1999; Chen et al., 2000; Christo, Masri & Nebot, 1996; Christo, Masri, Nebot
& Pope, 1996; Flemming et al., 2005; Ihme et al., 2009; Sen & Menon, 2008; 2010). Important
advantages of ANNs over tabulation methods are the modest memory requirement, and
cost-effective and smooth function representation. However, in many if not all of these
applications ad hoc network topologies were used, that were not fully optimized for the
particular problem, so that the optimal performance could not be achieved.
Motivated by the chemistry application, the objective of this work is to demonstrate
the potential of OANNs for application to chemical reacting flows. To this end, two
different chemical systems of increasing complexity are considered. Specifically, the first
problem considers an one-step chemical reaction in a homogeneous flow, representing
decaying turbulence. The particular advantage of this problem is that it allows us to
systematically evaluate different ANN-representations and compare the results against other
predictions. The second problem considers the unsteady three-dimensional combustion of
a methane/hydrogen-air mixture in a technical-relevant burner system. For this, large-scale
simulations are employed and the accuracy of ANNs and conventional tabulation methods
are assesses in the context of high-performance computations of turbulent reacting flows.
In order to assess the ANN performance, we consider two metrics, namely the ANN fitness
evaluation under static and dynamic conditions. To explain both metrics, we consider Eq. (1),
in which the source term is now approximated through an ANN:

D(ϕ) = wA(ϕ) . (2)

where ϕ = φ + ε and wA is the source-term representation by the ANN. After writing wA as

wA = w + Ω , (3)

with Ω denoting the ANN approximation error, Eqs. (1) and (2) can be combined to derive the
following expression for the evolution of the error ε:

D(ε) = Ω(φ) + ε w�
A(φ) . (4)

This expression shows that the ANN-approximation error acts as a spurious source term on
the solution φ. Depending on the functional form of Ω and wA, the error ε can either grow,
decay, or cancel.
The static ANN analysis characterizes the ability of the network to accurately represent the
function w. For this, a large set of sample data is used to evaluate the network fitness following
the ANN training process. This metric is widely-used and is typically referred to as “testing.”
As such, the static analysis allows for the assessment of the ANN approximation error Ω.
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Fig. 1. Architecture of a multilayer perceptron, consisting of an input layer with two input
channels X1 and X2, one output channel Y, and 4 hidden layers with, respectively, 3, 2, 3, and
1 neurons in each layer. The neurons in the hidden layers are denoted by ni, with i = 1, . . . , 9,
and the number of neurons in this network is |NN| = 9.

Since ANNs are integrated into dynamic systems of the form of Eq. (2), a main shortcoming
of this static analysis is that it does not account for the feedback on the solution vector ϕ. In
particular, small errors arising from the network approximation could either cancel, or – worse
– induce a drift in the solution vector leading to long-time instability issues of the governing
equations.
To address this issue, we will also assess the ANN-performance under dynamic conditions.
To this end, the temporal evolution of the error ε in Eq. (4) is evaluated in order to assess the
dynamic stability of the system. This metric, which we refer to as dynamic ANN performance
measure, allows us to directly characterize feedback-effects of ANN-approximation errors
on the solution. It will be shown in the second part of this article that this dynamic
ANN performance evaluation provides more realistic estimates of the ANN-fitness potential,
whereas the static ANN analysis gives typically too optimistic estimates.
The remainder of this article is organized as follows. Section 2 discusses the ANN model
and describes the training process. The GPS method and ES are presented in Sec. 3. The
performance of OANNs are assesses by considering two combustion-chemical problem of
increasing complexity. Specifically, Sec. 4 considers the evolution of a chemical species
in decaying homogeneous isotropic turbulence. The combustion process is described
by a reversible one-step chemical reaction, in which the mixing and combustion are
described by a Lagrangian Fokker-Planck model. In the second problem, OANNs are
integrated into a high-fidelity large-eddy simulation to predict the turbulent combustion in a
swirl-stabilized burner system of practical relevance. Model formulation, experimental setup
and comparisons with experimental data and conventional tabulation methods are presented
in Sec. 5, and conclusions are drawn in Sec. 6.

2. Artificial neural networks

In the following, the class of multilayer perceptrons (MLPs) is considered. A MLP,
schematically shown in Fig. 1, consists of an input layer with NI input channels, an output
layer having NO channels, and NL hidden layers. The number of neurons in each hidden layer
is denoted by NN ∈ ZNL . The connectivity of the network is denoted by C, corresponding to
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In the following, the class of multilayer perceptrons (MLPs) is considered. A MLP,
schematically shown in Fig. 1, consists of an input layer with NI input channels, an output
layer having NO channels, and NL hidden layers. The number of neurons in each hidden layer
is denoted by NN ∈ ZNL . The connectivity of the network is denoted by C, corresponding to

a binary matrix, in which the element Cij is unity if neurons i and j are connected and zero
otherwise. The output yi of neuron i is computed according to

yi = ψi




NC

∑
j=0

Cijωijxij


 , (5)

where NC is the number of connections in the network, ωij are the synaptic weights, and
xij are the input signals. Note that xi0 = −1 is a threshold value. The transfer function of
the neuron i is denoted by ψi. The synaptic weights in the network are adapted during the
training process, which in itself represents an optimization problem and can be written as

min
ω∈RNω

E(ω) , (6)

where Nω denotes the number of synaptic weights in the network, and E : RNO×Nt → R is
a measure of the error between the actual and desired output of the network. The number of
training samples is denoted by Nt. In the following, E is defined as

E =
1

2Nt

Nt

∑
j=1

et(j) , (7)

with

et(j) =
NO

∑
i=1

�
Yi(j)− Yt

i (j)
�2 , (8)

and Yt
i (j) represents the jth training sample of the output signal i.

The topology of a particular network is defined by its neural arrangement, consisting of the
number of layers NL and neurons per layer NN, the connectivity C, and the neural transfer
functions ψ. In the following, this network topology is formally written as

A = A(NL, NN, C, ψ|NI, NO, Y, J) , (9)

in which the last four arguments are constrained by the problem and the desired performance
of the ANN. The performance – or generalization potential – of a trained network can be
characterized by the cost function J, which is evaluated using test samples that typically differ
from the training data. Testing – or static ANN performance analysis – is done after training
to evaluate the ability of the network in representing untrained samples. In the present work,
the following cost function is used:

J(A) = log10



���� 1

Ns

Ns

∑
j=1

(es(j))2


 , (10)

where Ns refers to the number of test samples, and the decadic logarithm is introduced to
enlarge the resolution of the cost function.
The objective is to identify a particular network topology A that minimizes the cost function,
or in other words, maximizes the generalizability. In the following, we will restrict
our discussion to a multidimensional optimization problem that only includes continuous
parameters, i.e., real- or integer-valued variables. For this, a network will be considered, in
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Since ANNs are integrated into dynamic systems of the form of Eq. (2), a main shortcoming
of this static analysis is that it does not account for the feedback on the solution vector ϕ. In
particular, small errors arising from the network approximation could either cancel, or – worse
– induce a drift in the solution vector leading to long-time instability issues of the governing
equations.
To address this issue, we will also assess the ANN-performance under dynamic conditions.
To this end, the temporal evolution of the error ε in Eq. (4) is evaluated in order to assess the
dynamic stability of the system. This metric, which we refer to as dynamic ANN performance
measure, allows us to directly characterize feedback-effects of ANN-approximation errors
on the solution. It will be shown in the second part of this article that this dynamic
ANN performance evaluation provides more realistic estimates of the ANN-fitness potential,
whereas the static ANN analysis gives typically too optimistic estimates.
The remainder of this article is organized as follows. Section 2 discusses the ANN model
and describes the training process. The GPS method and ES are presented in Sec. 3. The
performance of OANNs are assesses by considering two combustion-chemical problem of
increasing complexity. Specifically, Sec. 4 considers the evolution of a chemical species
in decaying homogeneous isotropic turbulence. The combustion process is described
by a reversible one-step chemical reaction, in which the mixing and combustion are
described by a Lagrangian Fokker-Planck model. In the second problem, OANNs are
integrated into a high-fidelity large-eddy simulation to predict the turbulent combustion in a
swirl-stabilized burner system of practical relevance. Model formulation, experimental setup
and comparisons with experimental data and conventional tabulation methods are presented
in Sec. 5, and conclusions are drawn in Sec. 6.

2. Artificial neural networks

In the following, the class of multilayer perceptrons (MLPs) is considered. A MLP,
schematically shown in Fig. 1, consists of an input layer with NI input channels, an output
layer having NO channels, and NL hidden layers. The number of neurons in each hidden layer
is denoted by NN ∈ ZNL . The connectivity of the network is denoted by C, corresponding to
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a binary matrix, in which the element Cij is unity if neurons i and j are connected and zero
otherwise. The output yi of neuron i is computed according to

yi = ψi




NC

∑
j=0

Cijωijxij


 , (5)

where NC is the number of connections in the network, ωij are the synaptic weights, and
xij are the input signals. Note that xi0 = −1 is a threshold value. The transfer function of
the neuron i is denoted by ψi. The synaptic weights in the network are adapted during the
training process, which in itself represents an optimization problem and can be written as

min
ω∈RNω

E(ω) , (6)

where Nω denotes the number of synaptic weights in the network, and E : RNO×Nt → R is
a measure of the error between the actual and desired output of the network. The number of
training samples is denoted by Nt. In the following, E is defined as

E =
1

2Nt

Nt

∑
j=1

et(j) , (7)

with

et(j) =
NO

∑
i=1

�
Yi(j)− Yt

i (j)
�2 , (8)

and Yt
i (j) represents the jth training sample of the output signal i.

The topology of a particular network is defined by its neural arrangement, consisting of the
number of layers NL and neurons per layer NN, the connectivity C, and the neural transfer
functions ψ. In the following, this network topology is formally written as

A = A(NL, NN, C, ψ|NI, NO, Y, J) , (9)

in which the last four arguments are constrained by the problem and the desired performance
of the ANN. The performance – or generalization potential – of a trained network can be
characterized by the cost function J, which is evaluated using test samples that typically differ
from the training data. Testing – or static ANN performance analysis – is done after training
to evaluate the ability of the network in representing untrained samples. In the present work,
the following cost function is used:

J(A) = log10



���� 1

Ns

Ns

∑
j=1

(es(j))2


 , (10)

where Ns refers to the number of test samples, and the decadic logarithm is introduced to
enlarge the resolution of the cost function.
The objective is to identify a particular network topology A that minimizes the cost function,
or in other words, maximizes the generalizability. In the following, we will restrict
our discussion to a multidimensional optimization problem that only includes continuous
parameters, i.e., real- or integer-valued variables. For this, a network will be considered, in
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which a single neuron in the last hidden layer is used having a linear transfer function,

ψ(s) = s . (11)

A sigmoidal function,
ψ(s) = γ1 tanh(γ2s) , (12)

is used for all other neurons in the NL − 1 hidden layers. The parameters γ1 and γ2,
characterizing the saturation and slope of the transfer function, are considered as free
parameters that will be adjusted during the optimization process. Furthermore, the network
architecture will be constrained to a fully connected feed-forward network. With this, the
resulting optimization problem may be formulated as

min
NL,NN,γ

J(A) (13)

subject to NL = Nmax
L ,

NN,i ∈ {0, 1, . . . , Nmax
N }, for i = 1, 2, . . . , NL−1 ,

NN,NL = 1 ,

γ ∈ G ,

where γ ∈ R2×(|NN |−1), G denotes the bounded parameter space for the transfer function
coefficients, and the number of neurons in all layers is denoted by |NN|.
In this context it is important to point out that the herein employed optimization method is not
restricted to continuous variables, and can also be applied to the optimization of categorical
or discrete variables. This has been discussed by Ihme et al. (2008), in which the connectivity
and transfer functions were included in the optimization of the network topology.

3. Topological optimization

3.1 Generalized pattern search method
In the following, a generalized pattern search method is used to solve the optimization
problem (13). The GPS method is a derivative-free method, in which a sequence of iterates
is generated whose cost function is non-increasing (Audet & Dennis, 2003). All points at
which the cost function is evaluated are restricted to lie on a mesh, and the limited point of
the sequence of iterates corresponds to a local optimal solution that is defined with respect to
a user-specified neighborhood. GPS methods for unbounded problems have been discussed
and analyzed by Torczon (1997); they were later extended by Lewis & Torczon (1999; 2000) to
bounded and linearly constrained problems.
The GPS algorithm, schematically shown in Fig. 2, proceeds in two steps, namely a search
and a poll step. In the search step a finite set of search points are evaluated to facilitate
a global exploration of the parameter space. Since the search step is not required for
convergence, different strategies can be employed to identify a promising region in the
parameter space that potentially results in an improved cost function. For instance, a priori
knowledge, random sampling using Latin hypercube sampling (LHS) (McKay et al., 1979), or
a surrogate can be employed. In the case of a surrogate, the cost function is approximated
by a lower-dimensional model, whose evaluation is typically less expensive. This surrogate
approximation is continuously updated during the simulation, and is then used to identify a
new point with a potentially lower cost function. Kriging is frequently employed as surrogate
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Fig. 2. Schematic diagram of the GPS algorithm.

approximation, and its multidimensional extension makes this method particularly attractive
for application to network optimization.
In the case that the search step does not result in an improvement in the cost function, the
algorithm continues with a poll step, which guarantees the convergence of the GPS algorithm.
The poll step is restricted to a mesh that is constrained by the parameter space, and centered
around the incumbent point η. The vector η is of dimension NL − 1 + 2(|NN| − 1), and
contains information about the number of non-linear neurons and coefficients in its respective
non-linear transfer functions. At iteration k the mesh for the poll step is defined by

Mk =
�

η
k
+ ∆kD

�
(14)

where ∆k > 0 is the mesh size parameter, which is obtained through a successive refinement
of the mesh according to

∆k = τk∆0 , (15)

and τ = 1/2 is used in the following application. The discrete directions in the parameter
space that are evaluated during a poll step are specified by the matrix D whose columns form
a positive spanning set. That is, if I denotes the identity matrix and i is the vector of ones,
then D is typically chosen as D = [I,−i] or D = [I,−I] (Audet & Dennis, 2003). During the
poll step the cost function is evaluated for these poll candidates. In the case that the poll step
is unsuccessful the mesh is refined, and the algorithm continues with a new iteration, starting
with a search step (see Fig. 2). This process continues until a convergence criterion is met
or ∆k reaches a minimum mesh size. More details on the algorithm and convergence proofs

131
Construction of Optimal Artificial Neural Network Architectures for Application to Chemical
Systems: Comparison of Generalized Pattern Search Method and Evolutionary Algorithm



which a single neuron in the last hidden layer is used having a linear transfer function,

ψ(s) = s . (11)

A sigmoidal function,
ψ(s) = γ1 tanh(γ2s) , (12)

is used for all other neurons in the NL − 1 hidden layers. The parameters γ1 and γ2,
characterizing the saturation and slope of the transfer function, are considered as free
parameters that will be adjusted during the optimization process. Furthermore, the network
architecture will be constrained to a fully connected feed-forward network. With this, the
resulting optimization problem may be formulated as

min
NL,NN,γ

J(A) (13)

subject to NL = Nmax
L ,

NN,i ∈ {0, 1, . . . , Nmax
N }, for i = 1, 2, . . . , NL−1 ,

NN,NL = 1 ,

γ ∈ G ,

where γ ∈ R2×(|NN |−1), G denotes the bounded parameter space for the transfer function
coefficients, and the number of neurons in all layers is denoted by |NN|.
In this context it is important to point out that the herein employed optimization method is not
restricted to continuous variables, and can also be applied to the optimization of categorical
or discrete variables. This has been discussed by Ihme et al. (2008), in which the connectivity
and transfer functions were included in the optimization of the network topology.

3. Topological optimization

3.1 Generalized pattern search method
In the following, a generalized pattern search method is used to solve the optimization
problem (13). The GPS method is a derivative-free method, in which a sequence of iterates
is generated whose cost function is non-increasing (Audet & Dennis, 2003). All points at
which the cost function is evaluated are restricted to lie on a mesh, and the limited point of
the sequence of iterates corresponds to a local optimal solution that is defined with respect to
a user-specified neighborhood. GPS methods for unbounded problems have been discussed
and analyzed by Torczon (1997); they were later extended by Lewis & Torczon (1999; 2000) to
bounded and linearly constrained problems.
The GPS algorithm, schematically shown in Fig. 2, proceeds in two steps, namely a search
and a poll step. In the search step a finite set of search points are evaluated to facilitate
a global exploration of the parameter space. Since the search step is not required for
convergence, different strategies can be employed to identify a promising region in the
parameter space that potentially results in an improved cost function. For instance, a priori
knowledge, random sampling using Latin hypercube sampling (LHS) (McKay et al., 1979), or
a surrogate can be employed. In the case of a surrogate, the cost function is approximated
by a lower-dimensional model, whose evaluation is typically less expensive. This surrogate
approximation is continuously updated during the simulation, and is then used to identify a
new point with a potentially lower cost function. Kriging is frequently employed as surrogate

130 Artificial Neural Networks- Application

which a single neuron in the last hidden layer is used having a linear transfer function,

ψ(s) = s . (11)

A sigmoidal function,
ψ(s) = γ1 tanh(γ2s) , (12)

is used for all other neurons in the NL − 1 hidden layers. The parameters γ1 and γ2,
characterizing the saturation and slope of the transfer function, are considered as free
parameters that will be adjusted during the optimization process. Furthermore, the network
architecture will be constrained to a fully connected feed-forward network. With this, the
resulting optimization problem may be formulated as

min
NL,NN,γ

J(A) (13)

subject to NL = Nmax
L ,

NN,i ∈ {0, 1, . . . , Nmax
N }, for i = 1, 2, . . . , NL−1 ,

NN,NL = 1 ,

γ ∈ G ,

where γ ∈ R2×(|NN |−1), G denotes the bounded parameter space for the transfer function
coefficients, and the number of neurons in all layers is denoted by |NN|.
In this context it is important to point out that the herein employed optimization method is not
restricted to continuous variables, and can also be applied to the optimization of categorical
or discrete variables. This has been discussed by Ihme et al. (2008), in which the connectivity
and transfer functions were included in the optimization of the network topology.

3. Topological optimization

3.1 Generalized pattern search method
In the following, a generalized pattern search method is used to solve the optimization
problem (13). The GPS method is a derivative-free method, in which a sequence of iterates
is generated whose cost function is non-increasing (Audet & Dennis, 2003). All points at
which the cost function is evaluated are restricted to lie on a mesh, and the limited point of
the sequence of iterates corresponds to a local optimal solution that is defined with respect to
a user-specified neighborhood. GPS methods for unbounded problems have been discussed
and analyzed by Torczon (1997); they were later extended by Lewis & Torczon (1999; 2000) to
bounded and linearly constrained problems.
The GPS algorithm, schematically shown in Fig. 2, proceeds in two steps, namely a search
and a poll step. In the search step a finite set of search points are evaluated to facilitate
a global exploration of the parameter space. Since the search step is not required for
convergence, different strategies can be employed to identify a promising region in the
parameter space that potentially results in an improved cost function. For instance, a priori
knowledge, random sampling using Latin hypercube sampling (LHS) (McKay et al., 1979), or
a surrogate can be employed. In the case of a surrogate, the cost function is approximated
by a lower-dimensional model, whose evaluation is typically less expensive. This surrogate
approximation is continuously updated during the simulation, and is then used to identify a
new point with a potentially lower cost function. Kriging is frequently employed as surrogate

Initialize GPS Algorithm

Search-Step

Search

yes

yes

yes

no

no

no

Poll-Step

Poll
Successful?

Successful?

Refine Mesh

Mesh Convergence or
Exit Condition Met?

Exit GPS and
Finish Training

Fig. 2. Schematic diagram of the GPS algorithm.

approximation, and its multidimensional extension makes this method particularly attractive
for application to network optimization.
In the case that the search step does not result in an improvement in the cost function, the
algorithm continues with a poll step, which guarantees the convergence of the GPS algorithm.
The poll step is restricted to a mesh that is constrained by the parameter space, and centered
around the incumbent point η. The vector η is of dimension NL − 1 + 2(|NN| − 1), and
contains information about the number of non-linear neurons and coefficients in its respective
non-linear transfer functions. At iteration k the mesh for the poll step is defined by

Mk =
�

η
k
+ ∆kD

�
(14)

where ∆k > 0 is the mesh size parameter, which is obtained through a successive refinement
of the mesh according to

∆k = τk∆0 , (15)

and τ = 1/2 is used in the following application. The discrete directions in the parameter
space that are evaluated during a poll step are specified by the matrix D whose columns form
a positive spanning set. That is, if I denotes the identity matrix and i is the vector of ones,
then D is typically chosen as D = [I,−i] or D = [I,−I] (Audet & Dennis, 2003). During the
poll step the cost function is evaluated for these poll candidates. In the case that the poll step
is unsuccessful the mesh is refined, and the algorithm continues with a new iteration, starting
with a search step (see Fig. 2). This process continues until a convergence criterion is met
or ∆k reaches a minimum mesh size. More details on the algorithm and convergence proofs

131
Construction of Optimal Artificial Neural Network Architectures for Application to Chemical
Systems: Comparison of Generalized Pattern Search Method and Evolutionary Algorithm



can be found in Audet & Dennis (2003) and extensions of the algorithm to include categorical
parameters are discussed in Audet & Dennis (2000) and Abramson (2004).

3.2 Evolutionary strategy
In addition to the GPS method, an evolutionary strategy is used to solve Eq. (13). Evolutionary
strategies have been proposed as simple mutation selection mechanisms by Rechenberg
(1973), and were later generalized by Schwefel (1977; 1981). ES belongs to the general category
of evolutionary algorithms, and is based on a collective evolution process of individuals
in a population. The evolution of this population follows a biologically inspired process,
consisting of a sequence of steps, involving mutation, recombination, and selection. In
this work, a so-called (µ, λ)-ES is used, in which µ denotes the number of parents and λ
corresponds to the number of offsprings in each generation. For completeness, the general
form of the ES algorithm (Bäck & Schwefel, 1993) is briefly summarized.
In ES, the independent parameters for each individual network candidate are represented
by a joint Gaussian distribution. This distribution is characterized by a zero expectation, a
variance for each optimization parameter, and a rotation vector to ensure positive definiteness
of the parameter covariance matrix. The mutation of each individual is sampled from the
joint Gaussian distribution, which is modified by mutating the standard deviation and the
rotation angle. More details on this mutation strategy and the self-adaptation, which are
employed in the present work, can be found in Bäck & Schwefel (1993). For the recombination
of individuals and strategy parameters, different mechanisms are used. Here, a discrete
recombination of individuals is used, in which a new individual is produced from a random
sampling of parameter components from two parents. For the recombination of the strategy
parameters, i.e., mutation step size and rotation angle, pairwise intermediate recombination
is used. Following the recombination and mutation, the ES continues with a deterministic
selection step. In the (µ, λ)-ES, the µ-best candidates out of λ offsprings are selected. The best
candidates are then used as parents in the subsequent generation. In the following application
µ = 2, λ = 12, and at most 80 iterations were used in the ES algorithm. It was found that the
results for the optimal ANN topology showed some sensitivity to the initialization and the
choice of the exogenous parameters in the ES algorithm. It is assumed that this sensitivity is
mainly attributed to the heterogeneous search space, and the slow convergence of the ES.

4. Combustion in decaying homogeneous isotropic turbulence

4.1 Mathematical model
In the following problem, the mixing and reaction of fuel and oxidizer in decaying
homogeneous isotropic turbulence are considered. The corresponding reaction equation can
be written as

F + rO � (1 + r)P . (16)

The reaction rate w of this one-step reversible reaction follows an Arrhenius expression

w(Z, C) = (1 + r)A exp {−β} exp
�
− β(1 − C)

C

�

×
�

Zst(1 − Zst)

�
Z
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− C

��
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�
− 1

K
C2

�
,

(17)

in which r is the stoichiometric coefficient, A is the frequency factor, β is the Zeldovich number,
Zst is the stoichiometric mixture fraction, and K is the equilibrium constant. Values for these
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Table 1. Parameters used for one-step chemical reaction.
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Fig. 3. Chemical reaction rate w as function of mixture fraction and reaction progress variable.

parameters are summarized in Tab. 1, and the interested reader is referred to Sripakagorn et al.
(2004) for a more detailed discussion on the chemical reaction and parameter specifications.
The chemical reaction rate given in Eq. (17) is only a function of mixture fraction Z and
reaction progress variable C, corresponding to the non-dimensional temperature. Here,
Z ∈ [0, 1] and C ∈ [0, Ceq], and the reaction rate as function of Z and C is shown in Fig. 3(a).
The progress variable at equilibrium, Ceq, is a function of Z, and is obtained by solving Eq. (17)
for w = 0, resulting in:

Ceq =
25
24

�
1 −

�
1 − 96

25
Z(1 − Z)

�
, (18)

in which prescribed values for Zst and K from Tab. 1 are used. Using Ceq, a normalized
progress variable can be introduced, �C = C/Ceq, so that �C ∈ [0, 1], and w as function of �C
and Z is illustrated in Fig. 3(b). In the following, OANNs are generated for the approximation
of the chemical reaction rate as function of Z and �C.
The temporal evolution of reactants and products is obtained from the solution of a
Lagrangian Fokker-Planck (LFP) model. In this model, the trajectories of individual particles
in composition space are described by the solution of a set of stochastic differential equations
(SDEs). For the one-step chemical reaction, which is fully characterized by mixture fraction Z
and reaction progress variable C, the Fokker-Planck model can be written as (Fox, 2003):

d
�

Z
C

�
=

�
0
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where W is a Wiener process, and the angular brackets denote the mean value which is defined
by �φ� =

�
φP(φ)dφ for φ = {Z, C}. The PDF is denoted by P, and the scalar fluctuation φ� is
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can be found in Audet & Dennis (2003) and extensions of the algorithm to include categorical
parameters are discussed in Audet & Dennis (2000) and Abramson (2004).

3.2 Evolutionary strategy
In addition to the GPS method, an evolutionary strategy is used to solve Eq. (13). Evolutionary
strategies have been proposed as simple mutation selection mechanisms by Rechenberg
(1973), and were later generalized by Schwefel (1977; 1981). ES belongs to the general category
of evolutionary algorithms, and is based on a collective evolution process of individuals
in a population. The evolution of this population follows a biologically inspired process,
consisting of a sequence of steps, involving mutation, recombination, and selection. In
this work, a so-called (µ, λ)-ES is used, in which µ denotes the number of parents and λ
corresponds to the number of offsprings in each generation. For completeness, the general
form of the ES algorithm (Bäck & Schwefel, 1993) is briefly summarized.
In ES, the independent parameters for each individual network candidate are represented
by a joint Gaussian distribution. This distribution is characterized by a zero expectation, a
variance for each optimization parameter, and a rotation vector to ensure positive definiteness
of the parameter covariance matrix. The mutation of each individual is sampled from the
joint Gaussian distribution, which is modified by mutating the standard deviation and the
rotation angle. More details on this mutation strategy and the self-adaptation, which are
employed in the present work, can be found in Bäck & Schwefel (1993). For the recombination
of individuals and strategy parameters, different mechanisms are used. Here, a discrete
recombination of individuals is used, in which a new individual is produced from a random
sampling of parameter components from two parents. For the recombination of the strategy
parameters, i.e., mutation step size and rotation angle, pairwise intermediate recombination
is used. Following the recombination and mutation, the ES continues with a deterministic
selection step. In the (µ, λ)-ES, the µ-best candidates out of λ offsprings are selected. The best
candidates are then used as parents in the subsequent generation. In the following application
µ = 2, λ = 12, and at most 80 iterations were used in the ES algorithm. It was found that the
results for the optimal ANN topology showed some sensitivity to the initialization and the
choice of the exogenous parameters in the ES algorithm. It is assumed that this sensitivity is
mainly attributed to the heterogeneous search space, and the slow convergence of the ES.

4. Combustion in decaying homogeneous isotropic turbulence

4.1 Mathematical model
In the following problem, the mixing and reaction of fuel and oxidizer in decaying
homogeneous isotropic turbulence are considered. The corresponding reaction equation can
be written as

F + rO � (1 + r)P . (16)

The reaction rate w of this one-step reversible reaction follows an Arrhenius expression

w(Z, C) = (1 + r)A exp {−β} exp
�
− β(1 − C)
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in which r is the stoichiometric coefficient, A is the frequency factor, β is the Zeldovich number,
Zst is the stoichiometric mixture fraction, and K is the equilibrium constant. Values for these
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Table 1. Parameters used for one-step chemical reaction.
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Fig. 3. Chemical reaction rate w as function of mixture fraction and reaction progress variable.

parameters are summarized in Tab. 1, and the interested reader is referred to Sripakagorn et al.
(2004) for a more detailed discussion on the chemical reaction and parameter specifications.
The chemical reaction rate given in Eq. (17) is only a function of mixture fraction Z and
reaction progress variable C, corresponding to the non-dimensional temperature. Here,
Z ∈ [0, 1] and C ∈ [0, Ceq], and the reaction rate as function of Z and C is shown in Fig. 3(a).
The progress variable at equilibrium, Ceq, is a function of Z, and is obtained by solving Eq. (17)
for w = 0, resulting in:

Ceq =
25
24
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25
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�
, (18)

in which prescribed values for Zst and K from Tab. 1 are used. Using Ceq, a normalized
progress variable can be introduced, �C = C/Ceq, so that �C ∈ [0, 1], and w as function of �C
and Z is illustrated in Fig. 3(b). In the following, OANNs are generated for the approximation
of the chemical reaction rate as function of Z and �C.
The temporal evolution of reactants and products is obtained from the solution of a
Lagrangian Fokker-Planck (LFP) model. In this model, the trajectories of individual particles
in composition space are described by the solution of a set of stochastic differential equations
(SDEs). For the one-step chemical reaction, which is fully characterized by mixture fraction Z
and reaction progress variable C, the Fokker-Planck model can be written as (Fox, 2003):
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where W is a Wiener process, and the angular brackets denote the mean value which is defined
by �φ� =

�
φP(φ)dφ for φ = {Z, C}. The PDF is denoted by P, and the scalar fluctuation φ� is
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computed as φ� = φ − �φ�. The drift matrix A is given by

A =
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from Eq. (18). �χZ� and �χC� are the mean scalar dissipation rates for mixture fraction and
progress variable, and are modeled by an exponential decay

�χφ� = �χφ�0 exp
�
−t/τφ

�
. (23)

The initial particle distribution is sampled from a beta distribution with �Z�(t = 0) = �Z�0 =
0.5 and �Z�2�(t = 0) = �Z�2�0 = 0.2, and the progress variable is set to the equilibrium
condition Ceq(Z). The mean lifetime for the decay rates of �χZ� and �χC� correspond to the
averaged decay constant from the direct numerical simulation by Sripakagorn et al. (2004)
with τZ = 1.5 and τC = 1.0. Note that the time in Eq. (19) is non-dimensionalized by the initial
large-eddy turnover time (Sripakagorn et al., 2004). Since the evolution of �Z�2� obeys the ODE
dt�Z�2� = −�χZ� and limt→∞ �Z�2�(t) = 0, the initial condition for �χZ� is �χZ�0 = �Z�2�/τZ,
and �χC�0 is set to 0.25. After the initialization of 2× 106 particles, the LFP model is advanced
over T = 10 non-dimensional time units with a step size of dt = 1 × 10−3. In order to allow
for a direct comparison of the different simulations, the increment in the Wiener process is
kept identical for all runs.

4.2 Network optimization
The chemical source term, given in Eq. (17), is approximated by optimal ANNs. For this, GPS
and ES are used to identify optimal network topologies that result in the lowest approximation
error. For the network optimization the following constraints on the topological parameter
space are imposed: The maximum number of hidden layers (including the last linear layer) is
Nmax

L = 3, and the maximum number of non-linear neurons per hidden layer is restricted to
Nmax

L = 8. Only fully connected networks are considered, and sigmoidal transfer functions are
used in all non-linear neurons. The free parameters γ1 and γ2 in Eq. (12) are adjusted during
the optimization process. Since the GPS algorithm is a mesh-based method these parameters
are constrained to 0.4 ≤ γ1 ≤ 1.2 and 1 ≤ γ2 ≤ 5 having a maximum mesh size of ∆γmax

1 =

0.4 and ∆γmax
2 = 1, respectively, and the minimum mesh size is ∆γmin

1 = ∆γmin
2 = 10−4.

To evaluate the fitness of a particular network candidate, the synaptic weights are first
adjusted using a supervised learning strategy. In this technique, a set of training data is
presented to the network and the weights are adjusted to reproduce the input-output relation.
The training set consists of 50,000 randomly chosen samples, and a Levenberg-Marquardt
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The chemical source term, given in Eq. (17), is approximated by optimal ANNs. For this, GPS
and ES are used to identify optimal network topologies that result in the lowest approximation
error. For the network optimization the following constraints on the topological parameter
space are imposed: The maximum number of hidden layers (including the last linear layer) is
Nmax

L = 3, and the maximum number of non-linear neurons per hidden layer is restricted to
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L = 8. Only fully connected networks are considered, and sigmoidal transfer functions are
used in all non-linear neurons. The free parameters γ1 and γ2 in Eq. (12) are adjusted during
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To evaluate the fitness of a particular network candidate, the synaptic weights are first
adjusted using a supervised learning strategy. In this technique, a set of training data is
presented to the network and the weights are adjusted to reproduce the input-output relation.
The training set consists of 50,000 randomly chosen samples, and a Levenberg-Marquardt

algorithm (Hagan et al., 1996) is used to iteratively adjust the synaptic weights. Since
this training step is computationally expensive only a maximum of 100 iterations in the
Levenberg-Marquardt algorithm are used to train each individual network. Although
typically more iterations are necessary to ensure that the synaptic weights are fully converged,
it was concluded that this number of iterations is sufficient to assess the fitness potential
of a particular network architecture. After an optimal network architecture is identified by
the optimization algorithm, this ANN is further trained until the synaptic weights are fully
converged (see Fig. 2). It was found that the outcome of the training process shows some
sensitivity to the initialization of the synaptic weights that are typically sampled from a
uniform distribution. To allow for an objective comparison between different optimization
methods, this sensitivity is here eliminated by initializing all synaptic weights with ω = 0.1.
For the evaluation of the static performance of each network candidate during the GPS, the
cost function (10) is evaluated using Ns = 50,000 test samples.

4.3 Static ANN performance analysis
Results from the GPS and ES network optimization are presented in Tab. 2. The second
column in this table lists the network architecture of the optimal ANN. The static network
fitness, characterized by the cost-function, is shown in the third column, and the last column
presents the memory requirement which is necessary to store the network architecture. In
addition to these optimal network structures, results for conventional look-up tables are also
presented. For this, the chemical source term, Eq. (17), is tabulated in terms of Z and �C using
an equidistant grid.

OANN/Table Architecture Cost Function Iterations Memory [kB]

GPS-OANN 7-8-1 -3.289/-3.727 876 7
ES-OANN 7-4-1 -3.077/-3.144 960 4

ANN (fixed γ) 7-8-1 -3.480 – 7
Table 50 × 50 -2.023 – 20
Table 100 × 100 -2.624 – 78
Table 200 × 200 -3.228 – 313
Table 300 × 300 -3.579 – 703
Table 400 × 400 -3.831 – 1,250
Table 500 × 500 -4.022 – 1,953

Table 2. Comparison of OANN architecture and performance obtained from GPS and ES
with conventional tabulation. Comparisons with conventional tabulation techniques are also
summarized, showing results for tables with increasing grid resolution.

The optimal network structure that was returned from the GPS algorithm consists of a
7-8-1 ANN. This architecture was found after 876 function evaluations in the 34-dimensional
parameter space. The cost function of this GPS-OANN is J(A) = −3.289, and was further
reduced to J(A) = −3.727 during the training following the GPS optimization. The evolution
of J(A) for the GPS-OANN is shown in Fig. 4(a). From this figure it can be seen that after
a transition phase the cost function decays continuously, and the evaluation of J after 100
iterations is adequate to assess the fitness potential of a particular network structure.
The coefficients in the neural transfer functions for the GPS-OANN are shown in Fig. 4(b).
Note that these parameters are typically kept constant for all neurons with values for the
saturation γ1 = 1.075 and the slope γ2 = 2.0 (Haykin, 1994). It is interesting to point out
that the transfer function coefficients in the GPS-OANN are considerably different from these
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The initial particle distribution is sampled from a beta distribution with �Z�(t = 0) = �Z�0 =
0.5 and �Z�2�(t = 0) = �Z�2�0 = 0.2, and the progress variable is set to the equilibrium
condition Ceq(Z). The mean lifetime for the decay rates of �χZ� and �χC� correspond to the
averaged decay constant from the direct numerical simulation by Sripakagorn et al. (2004)
with τZ = 1.5 and τC = 1.0. Note that the time in Eq. (19) is non-dimensionalized by the initial
large-eddy turnover time (Sripakagorn et al., 2004). Since the evolution of �Z�2� obeys the ODE
dt�Z�2� = −�χZ� and limt→∞ �Z�2�(t) = 0, the initial condition for �χZ� is �χZ�0 = �Z�2�/τZ,
and �χC�0 is set to 0.25. After the initialization of 2× 106 particles, the LFP model is advanced
over T = 10 non-dimensional time units with a step size of dt = 1 × 10−3. In order to allow
for a direct comparison of the different simulations, the increment in the Wiener process is
kept identical for all runs.

4.2 Network optimization
The chemical source term, given in Eq. (17), is approximated by optimal ANNs. For this, GPS
and ES are used to identify optimal network topologies that result in the lowest approximation
error. For the network optimization the following constraints on the topological parameter
space are imposed: The maximum number of hidden layers (including the last linear layer) is
Nmax

L = 3, and the maximum number of non-linear neurons per hidden layer is restricted to
Nmax

L = 8. Only fully connected networks are considered, and sigmoidal transfer functions are
used in all non-linear neurons. The free parameters γ1 and γ2 in Eq. (12) are adjusted during
the optimization process. Since the GPS algorithm is a mesh-based method these parameters
are constrained to 0.4 ≤ γ1 ≤ 1.2 and 1 ≤ γ2 ≤ 5 having a maximum mesh size of ∆γmax

1 =

0.4 and ∆γmax
2 = 1, respectively, and the minimum mesh size is ∆γmin
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To evaluate the fitness of a particular network candidate, the synaptic weights are first
adjusted using a supervised learning strategy. In this technique, a set of training data is
presented to the network and the weights are adjusted to reproduce the input-output relation.
The training set consists of 50,000 randomly chosen samples, and a Levenberg-Marquardt
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The optimal network structure that was returned from the GPS algorithm consists of a
7-8-1 ANN. This architecture was found after 876 function evaluations in the 34-dimensional
parameter space. The cost function of this GPS-OANN is J(A) = −3.289, and was further
reduced to J(A) = −3.727 during the training following the GPS optimization. The evolution
of J(A) for the GPS-OANN is shown in Fig. 4(a). From this figure it can be seen that after
a transition phase the cost function decays continuously, and the evaluation of J after 100
iterations is adequate to assess the fitness potential of a particular network structure.
The coefficients in the neural transfer functions for the GPS-OANN are shown in Fig. 4(b).
Note that these parameters are typically kept constant for all neurons with values for the
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values, showing distinct spreading for all neurons. As an example, the transfer functions for
the first two neurons are shown in Fig. 5. While γ1 for the transfer function of the second
neuron is generally in good agreement with the frequently employed value of 1.075, the
saturation and the slope for the first neuron are considerably different, resulting in a distinctly
different neural response characteristics between both neurons. To emphasize the effect of
adaptive transfer function coefficients on the network fitness, a 7-8-1 network with constant
γ1 and γ2 for all neurons is trained resulting in a cost function of J(A) = −3.480. Note,
however, that J(A) corresponds to the decadic logarithm of the L2 error norm. Therefore, this
difference of seven percent in the cost function corresponds to an deviation of more than 75
percent in the L2-norm.
The optimal topology identified by the evolutionary algorithm consists of a 7-4-1 ANN, and
was obtained from a total ES population of 960 networks candidates, which have been evolved
over 80 generations with two parents and 12 offsprings per generation. The termination of the
ES optimization after 80 iterations was mainly motivated by the argument to have comparable
computational cost for both GPS and ES optimization. The cost function of the ES-OANN is

136 Artificial Neural Networks- Application

0 50 100 150 200
-4

-3

-2

-1

0

0 4 8 12 16
0

1

2

3

4

5

6

Iterations in training process

J(
A
)

Neuron, ni

γ

γ1
γ2

(a) Convergence (b) Parameters in transfer function

GPS-Optimization Final Convergence Layer l1 Layer l2

GPS-OANN
ES-OANN
ANN (fixed γ)

Fig. 4. Performance evolution of the 7-8-1 OANN obtained from the GPS method and
optimal coefficients in the neural transfer functions. The dotted line in the left panel shows
the fitness for a 7-8-1 ANN having constant transfer function coefficients with γ1 = 1.075 and
γ2 = 2.0 for all neurons.

-5 -2.5 0 2.5 5
-2

-1

0

1

2

ψ
(s
)

Transfer function of neuron n1 with γ1 = 0.5 and γ2 = 1.125
Transfer function of neuron n2 with γ1 = 1.1 and γ2 = 4.750

s

Fig. 5. Transfer function for the first two neurons in the OANN obtained from the GPS
algorithm.

values, showing distinct spreading for all neurons. As an example, the transfer functions for
the first two neurons are shown in Fig. 5. While γ1 for the transfer function of the second
neuron is generally in good agreement with the frequently employed value of 1.075, the
saturation and the slope for the first neuron are considerably different, resulting in a distinctly
different neural response characteristics between both neurons. To emphasize the effect of
adaptive transfer function coefficients on the network fitness, a 7-8-1 network with constant
γ1 and γ2 for all neurons is trained resulting in a cost function of J(A) = −3.480. Note,
however, that J(A) corresponds to the decadic logarithm of the L2 error norm. Therefore, this
difference of seven percent in the cost function corresponds to an deviation of more than 75
percent in the L2-norm.
The optimal topology identified by the evolutionary algorithm consists of a 7-4-1 ANN, and
was obtained from a total ES population of 960 networks candidates, which have been evolved
over 80 generations with two parents and 12 offsprings per generation. The termination of the
ES optimization after 80 iterations was mainly motivated by the argument to have comparable
computational cost for both GPS and ES optimization. The cost function of the ES-OANN is

-3.5 -3 -2.5 -2 -1.5 -1 -0.5
0

0.5

1

1.5

2

P
D

F(
J(
A
))

Generalized Pattern Search
Evolutionary Strategy

J(A)

Fig. 6. Probability density function of the cost function evaluated from all network
candidates that were evaluated during the GPS and ES optimization.

J(A) = −3.144, and the evolution of J(A) is shown by the dashed line in Fig. 4(a). The
initial convergence of the cost function for the ES-OANN is similar to that of the GPS-OANN;
however, J(A) decreases only marginally after 80 iterations. This apparent saturation of the
fitness can primarily be attributed to the small number of neurons in the second layer. The
transfer function coefficients for this network are illustrated in Fig. 4(b). It is interesting to
point out that both ES and GPS give similar values for slope and saturation of the neural
transfer function in the first hidden layer.
A statistical comparison of the fitness of all network candidates that were evaluated during
the GPS and ES optimization is shown in Fig. 6. The distributions of the network performance
from both optimization methods is considerably different. For instance, the bimodal PDF from
the GPS optimization is strongly skewed towards lower values of J(A). Network candidates
with poor fitness were mainly obtained from the random sampling of the parameter space
during the search step. In comparison, the PDF from the ES is nearly unimodal and peaks
around J(A) ≈ −2.5. In this context it is important to point out that the outcome of the ES
method is sensitive to the initial conditions and prescribed step size. Therefore, it can be
anticipated that a different set of parameters and initial conditions can potentially lead to a
different optimal network topology.
In addition to the smooth function representation, a main advantage of ANNs over
conventional tabulation techniques is the high knowledge density. This is reflected by
the modest memory requirement necessary to store a network architecture. While the
ANN-memory demand is nearly independent from the number of input parameters, the
storage requirements for look-up tables grows exponentially with the dimensionality of the
function. A comparison of the knowledge-density, which is here defined as the ratio between
accuracy and memory requirement, is illustrated in Fig. 7. This figure illustrates that ANNs
perform significantly better than conventional look-up tables, and for equivalent accuracy the
memory savings can be in excess of two orders of magnitude.

4.4 Dynamic ANN Performance Analysis
In the previous section, the fitness of the network architectures obtained from GPS and ES
were compared with the conventional tabulation method. It was found that the performance
of the GPS-OANN is comparable to that of the tabulation method with a resolution of more
than 300 grid points in both Z and �C directions. In this static comparison, a homogeneously
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γ1 and γ2 for all neurons is trained resulting in a cost function of J(A) = −3.480. Note,
however, that J(A) corresponds to the decadic logarithm of the L2 error norm. Therefore, this
difference of seven percent in the cost function corresponds to an deviation of more than 75
percent in the L2-norm.
The optimal topology identified by the evolutionary algorithm consists of a 7-4-1 ANN, and
was obtained from a total ES population of 960 networks candidates, which have been evolved
over 80 generations with two parents and 12 offsprings per generation. The termination of the
ES optimization after 80 iterations was mainly motivated by the argument to have comparable
computational cost for both GPS and ES optimization. The cost function of the ES-OANN is
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J(A) = −3.144, and the evolution of J(A) is shown by the dashed line in Fig. 4(a). The
initial convergence of the cost function for the ES-OANN is similar to that of the GPS-OANN;
however, J(A) decreases only marginally after 80 iterations. This apparent saturation of the
fitness can primarily be attributed to the small number of neurons in the second layer. The
transfer function coefficients for this network are illustrated in Fig. 4(b). It is interesting to
point out that both ES and GPS give similar values for slope and saturation of the neural
transfer function in the first hidden layer.
A statistical comparison of the fitness of all network candidates that were evaluated during
the GPS and ES optimization is shown in Fig. 6. The distributions of the network performance
from both optimization methods is considerably different. For instance, the bimodal PDF from
the GPS optimization is strongly skewed towards lower values of J(A). Network candidates
with poor fitness were mainly obtained from the random sampling of the parameter space
during the search step. In comparison, the PDF from the ES is nearly unimodal and peaks
around J(A) ≈ −2.5. In this context it is important to point out that the outcome of the ES
method is sensitive to the initial conditions and prescribed step size. Therefore, it can be
anticipated that a different set of parameters and initial conditions can potentially lead to a
different optimal network topology.
In addition to the smooth function representation, a main advantage of ANNs over
conventional tabulation techniques is the high knowledge density. This is reflected by
the modest memory requirement necessary to store a network architecture. While the
ANN-memory demand is nearly independent from the number of input parameters, the
storage requirements for look-up tables grows exponentially with the dimensionality of the
function. A comparison of the knowledge-density, which is here defined as the ratio between
accuracy and memory requirement, is illustrated in Fig. 7. This figure illustrates that ANNs
perform significantly better than conventional look-up tables, and for equivalent accuracy the
memory savings can be in excess of two orders of magnitude.

4.4 Dynamic ANN Performance Analysis
In the previous section, the fitness of the network architectures obtained from GPS and ES
were compared with the conventional tabulation method. It was found that the performance
of the GPS-OANN is comparable to that of the tabulation method with a resolution of more
than 300 grid points in both Z and �C directions. In this static comparison, a homogeneously
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Fig. 8. Evolution of the chemical composition of three representative particles: (a) mixture
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distributed set of random test samples was used for the performance evaluation. However, the
reaction rate which is represented by ANNs and look-up tables corresponds to a source term
in a partial differential equation describing the evolution of a chemical system. The primary
variable which is of interest in the characterization of this system is the species composition,
whose prediction is directly affected by the accurate representation of the chemical source
term. This chemical reaction evolves along trajectories that typically occupy only a small
region in composition space. This suggests that the static analysis as discussed in the
previous section could have only limited relevance for the present application. Therefore,
a dynamic OANN performance analysis is conducted in order to assess feedback-effects of
ANN approximation errors on the evolution of the dynamic system.
Before analyzing the performance of OANNs and tabulation methods, the evolution
of the chemical system as described by the LFP model, Eq. (19), is briefly discussed.
The temporal evolutions of the mixture fraction and reaction progress variable for three
representative particles are shown in Figs. 8(a) and (b), and the corresponding trajectories
in Z-C-composition space are illustrated in Fig. 8(c). Following an initial phase of intense
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reaction rate which is represented by ANNs and look-up tables corresponds to a source term
in a partial differential equation describing the evolution of a chemical system. The primary
variable which is of interest in the characterization of this system is the species composition,
whose prediction is directly affected by the accurate representation of the chemical source
term. This chemical reaction evolves along trajectories that typically occupy only a small
region in composition space. This suggests that the static analysis as discussed in the
previous section could have only limited relevance for the present application. Therefore,
a dynamic OANN performance analysis is conducted in order to assess feedback-effects of
ANN approximation errors on the evolution of the dynamic system.
Before analyzing the performance of OANNs and tabulation methods, the evolution
of the chemical system as described by the LFP model, Eq. (19), is briefly discussed.
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mixing, the trajectories of the particles, shown by the black and blue lines, converge and reach
after approximately two respectively four eddy turn-over times the equilibrium condition.
The trajectory of the particle shown by the red line indicates that the particle fails to reach a
stably burning state. This can mainly be attributed to the initially large fluctuations in mixture
fraction and progress variable.
The statistical evolution of the LFP model is illustrated in Fig. 9, in which the first two
moments of mixture fraction and reaction progress variable are shown. From the governing
equation for the mean mixture fraction, viz. dt�Z� = 0, follows that �Z� is constant
and equal to the initial condition, and the mixture fraction variance decays as �Z�2�(t) =
�Z�2�0 exp{−t/τZ}. The evolution of the reaction progress variable, which is equal to the
normalized temperature, is shown by the dashed line in Fig. 9. Starting from the initial
condition, the mixture slowly ignites and with increasing time �C� approaches a steady
condition. Note that this final state corresponds to the equilibrium condition; however, the
maximum temperature �C� = Ceq(�Z�) = 5/6, is not reached, which is also evidenced by the
non-vanishing progress variable variance, shown by the dotted line in Fig. 9.
Instead of performing the costly evaluation of the chemical source term from Eq. (17), in the
following w(Z, C) is obtained from the GPS-OANN and look-up tables. This comparison
allows us to critically assess effects of approximation errors in the source term representation
on the evolution of the reaction progress variable. To quantify this error, the following norm
is used:

L2
2(�C�) =

1
T

� T

0
[�C� − �C�ref]

2dt , (24)

where the subscript “ref” denotes the solution obtained from the analytical evaluation of the
chemical source term, and T corresponds to the simulation time.
Comparisons of the L2-norm, obtained from the simulations with GPS-OANN and look-up
tables, are summarized in Tab. 3. From these results the following observations can be
made. First, the solution from the tabulation exhibits a monotonic convergence with quadratic
convergence rate. Second, the overall accuracy of the results from the GPS-OANN simulation
for this dynamic application is comparable to a tabulation having approximately 80 × 80 grid
point resolution. This is different to the findings from the static analysis of Sec. 4.3. The main
reasons for this are the non-linearity in the diffusion matrix B and the rather strict constraints
for Nmax

L and Nmax
N in Eq. (13). In this ANN optimization, the GPS method was restricted to

include only two non-linear hidden layers with a maximum of eight neurons per layer. By
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mixing, the trajectories of the particles, shown by the black and blue lines, converge and reach
after approximately two respectively four eddy turn-over times the equilibrium condition.
The trajectory of the particle shown by the red line indicates that the particle fails to reach a
stably burning state. This can mainly be attributed to the initially large fluctuations in mixture
fraction and progress variable.
The statistical evolution of the LFP model is illustrated in Fig. 9, in which the first two
moments of mixture fraction and reaction progress variable are shown. From the governing
equation for the mean mixture fraction, viz. dt�Z� = 0, follows that �Z� is constant
and equal to the initial condition, and the mixture fraction variance decays as �Z�2�(t) =
�Z�2�0 exp{−t/τZ}. The evolution of the reaction progress variable, which is equal to the
normalized temperature, is shown by the dashed line in Fig. 9. Starting from the initial
condition, the mixture slowly ignites and with increasing time �C� approaches a steady
condition. Note that this final state corresponds to the equilibrium condition; however, the
maximum temperature �C� = Ceq(�Z�) = 5/6, is not reached, which is also evidenced by the
non-vanishing progress variable variance, shown by the dotted line in Fig. 9.
Instead of performing the costly evaluation of the chemical source term from Eq. (17), in the
following w(Z, C) is obtained from the GPS-OANN and look-up tables. This comparison
allows us to critically assess effects of approximation errors in the source term representation
on the evolution of the reaction progress variable. To quantify this error, the following norm
is used:
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where the subscript “ref” denotes the solution obtained from the analytical evaluation of the
chemical source term, and T corresponds to the simulation time.
Comparisons of the L2-norm, obtained from the simulations with GPS-OANN and look-up
tables, are summarized in Tab. 3. From these results the following observations can be
made. First, the solution from the tabulation exhibits a monotonic convergence with quadratic
convergence rate. Second, the overall accuracy of the results from the GPS-OANN simulation
for this dynamic application is comparable to a tabulation having approximately 80 × 80 grid
point resolution. This is different to the findings from the static analysis of Sec. 4.3. The main
reasons for this are the non-linearity in the diffusion matrix B and the rather strict constraints
for Nmax

L and Nmax
N in Eq. (13). In this ANN optimization, the GPS method was restricted to

include only two non-linear hidden layers with a maximum of eight neurons per layer. By

139
Construction of Optimal Artificial Neural Network Architectures for Application to Chemical
Systems: Comparison of Generalized Pattern Search Method and Evolutionary Algorithm



Architecture L2(�C�)
GPS-OANN 4.820 × 10−4

Table 50 × 50 1.038 × 10−3

Table 100 × 100 2.712 × 10−4

Table 200 × 200 6.294 × 10−5

Table 300 × 300 2.549 × 10−5

Table 400 × 400 1.336 × 10−5

Table 500 × 500 5.321 × 10−6

Table 3. Comparison of the convergence error for the solution of the LFP model.

relaxing these constraints and extending the search space to include a larger number of layers
and neurons, the ANN topology becomes more flexible, and will lead to improvements in the
ANN performance characteristics. To demonstrate this, an additional GPS optimization was
conducted in which four hidden layers with a maximum of eight neurons per non-linear layer
were used for the network optimization. For training and performance evaluation of the GPS
network candidates respectively 100,000 samples were used, and all synaptic weights were
initialized with random numbers. The GPS algorithm returned as optimal topology a 8-8-8-1
network having a cost function of J(A) = −4.242. The application of this larger OANN in the
LFP model resulted in an improvement of the L2 norm by more than 20 % compared to the
7-8-1 GPS-OANN.
To quantify the approximation quality of the ANN and the look-up table, the error surface
is compared in Fig. 10. For this, the error Ω is defined as the difference between ANN
approximation wA(Z, �C) and the corresponding analytical value (see Eq. (3)). The apparent
oscillations in the error surface are an indication for underfitting, and the small differences
in the chemical source term representation can lead to incremental deviations in the particle
trajectories. The analysis of the ANN function representation suggests that the training of
networks with a larger number of samples or a biased distribution of sample points, using for
instance an acception-rejection algorithm (Ihme et al., 2008), can lead to a further reduction of
this error.

5. Turbulent combustion in a swirl-stabilized burner system

In the previous section, the advantages of optimal ANNs in application to a zero-dimensional
combustion problem were discussed. The present section extends this analysis by considering
the unsteady turbulent combustion in a technical-relevant burner system. In this application,
the large-eddy simulation (LES) technique in combination with a flamelet-based combustion
model is employed for predicting the turbulent reacting flow field, heat release, and
pollutant formation. These high-fidelity LES computations of turbulent reacting flows are
typically performed on massively parallel computing architectures. As such, the utilization
of ANNs for chemistry representation and function approximation can provide significant
benefits over conventional look-up tables in at least the following three aspects. First, the
reduction in storage requirements allows to perform these large-scale combustion simulations
on computing architectures with restricted memory. Second, the information retrieval
from ANNs amounts to a direct function evaluation which is typically more efficient than
table-interpolation. In addition, the smooth function representation of ANNs can result in
improved model accuracy and faster convergence.
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Fig. 10. Error surface Ω(Z, �C), showing the difference between the source term
approximation from ANN (a) and tabulation (b) and the analytical expression from Eq. (17).

In the following, the potential of ANNs in application to turbulent reacting flows will be
assessed, and qualitative comparisons with conventional look-up tables will be presented.
The mathematical formulation and governing equations that are solved in the large-eddy
simulation are summarized in the next section, and results of the OANN-technique in static
and dynamic applications are presented in Secs. 5.3 and 5.4.

5.1 Mathematical formulation and combustion model
The LES technique is based on the separation of large and small scales in a turbulent flow. The
decomposition into the different scales is achieved by applying a filtering operator to the field
quantities (Sagaut, 1998). Specifically, a Favre-filtered quantity of a scalar φ is defined as

�φ(t, x) =
1
ρ

�
ρ(t, y)φ(t, y)G(y, x; ∆)dy , (25)

where ρ is the density, ∆ is the filter width and G is the filter-kernel. The time is denoted by
t and x corresponds to the spatial coordinate. The residual field is then defined as φ��(t, x) =
φ(t, x) − �φ(t, x), and Favre-filtered quantities are related to Reynolds-filtered quantities by
ρ�φ = ρφ.
In the following, the Favre-filtered form of the Navier-Stokes equations are solved in
the low-Mach number limit. These equations, describing the conservation of mass and
momentum, can be written as

�Dtρ = −ρ∇ · �u , (26a)

ρ �Dt�u = −∇p +∇ · σ +∇ · σres + ρg , (26b)

where

σ = 2ρ�ν
�
�S − 1

3
(∇ · �u)I

�
and σres = ρ�u�u − ρ�uu (27)
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relaxing these constraints and extending the search space to include a larger number of layers
and neurons, the ANN topology becomes more flexible, and will lead to improvements in the
ANN performance characteristics. To demonstrate this, an additional GPS optimization was
conducted in which four hidden layers with a maximum of eight neurons per non-linear layer
were used for the network optimization. For training and performance evaluation of the GPS
network candidates respectively 100,000 samples were used, and all synaptic weights were
initialized with random numbers. The GPS algorithm returned as optimal topology a 8-8-8-1
network having a cost function of J(A) = −4.242. The application of this larger OANN in the
LFP model resulted in an improvement of the L2 norm by more than 20 % compared to the
7-8-1 GPS-OANN.
To quantify the approximation quality of the ANN and the look-up table, the error surface
is compared in Fig. 10. For this, the error Ω is defined as the difference between ANN
approximation wA(Z, �C) and the corresponding analytical value (see Eq. (3)). The apparent
oscillations in the error surface are an indication for underfitting, and the small differences
in the chemical source term representation can lead to incremental deviations in the particle
trajectories. The analysis of the ANN function representation suggests that the training of
networks with a larger number of samples or a biased distribution of sample points, using for
instance an acception-rejection algorithm (Ihme et al., 2008), can lead to a further reduction of
this error.

5. Turbulent combustion in a swirl-stabilized burner system

In the previous section, the advantages of optimal ANNs in application to a zero-dimensional
combustion problem were discussed. The present section extends this analysis by considering
the unsteady turbulent combustion in a technical-relevant burner system. In this application,
the large-eddy simulation (LES) technique in combination with a flamelet-based combustion
model is employed for predicting the turbulent reacting flow field, heat release, and
pollutant formation. These high-fidelity LES computations of turbulent reacting flows are
typically performed on massively parallel computing architectures. As such, the utilization
of ANNs for chemistry representation and function approximation can provide significant
benefits over conventional look-up tables in at least the following three aspects. First, the
reduction in storage requirements allows to perform these large-scale combustion simulations
on computing architectures with restricted memory. Second, the information retrieval
from ANNs amounts to a direct function evaluation which is typically more efficient than
table-interpolation. In addition, the smooth function representation of ANNs can result in
improved model accuracy and faster convergence.
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instance an acception-rejection algorithm (Ihme et al., 2008), can lead to a further reduction of
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combustion problem were discussed. The present section extends this analysis by considering
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the large-eddy simulation (LES) technique in combination with a flamelet-based combustion
model is employed for predicting the turbulent reacting flow field, heat release, and
pollutant formation. These high-fidelity LES computations of turbulent reacting flows are
typically performed on massively parallel computing architectures. As such, the utilization
of ANNs for chemistry representation and function approximation can provide significant
benefits over conventional look-up tables in at least the following three aspects. First, the
reduction in storage requirements allows to perform these large-scale combustion simulations
on computing architectures with restricted memory. Second, the information retrieval
from ANNs amounts to a direct function evaluation which is typically more efficient than
table-interpolation. In addition, the smooth function representation of ANNs can result in
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Fig. 10. Error surface Ω(Z, �C), showing the difference between the source term
approximation from ANN (a) and tabulation (b) and the analytical expression from Eq. (17).

In the following, the potential of ANNs in application to turbulent reacting flows will be
assessed, and qualitative comparisons with conventional look-up tables will be presented.
The mathematical formulation and governing equations that are solved in the large-eddy
simulation are summarized in the next section, and results of the OANN-technique in static
and dynamic applications are presented in Secs. 5.3 and 5.4.

5.1 Mathematical formulation and combustion model
The LES technique is based on the separation of large and small scales in a turbulent flow. The
decomposition into the different scales is achieved by applying a filtering operator to the field
quantities (Sagaut, 1998). Specifically, a Favre-filtered quantity of a scalar φ is defined as

�φ(t, x) =
1
ρ
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ρ(t, y)φ(t, y)G(y, x; ∆)dy , (25)

where ρ is the density, ∆ is the filter width and G is the filter-kernel. The time is denoted by
t and x corresponds to the spatial coordinate. The residual field is then defined as φ��(t, x) =
φ(t, x) − �φ(t, x), and Favre-filtered quantities are related to Reynolds-filtered quantities by
ρ�φ = ρφ.
In the following, the Favre-filtered form of the Navier-Stokes equations are solved in
the low-Mach number limit. These equations, describing the conservation of mass and
momentum, can be written as

�Dtρ = −ρ∇ · �u , (26a)

ρ �Dt�u = −∇p +∇ · σ +∇ · σres + ρg , (26b)

where

σ = 2ρ�ν
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and σres = ρ�u�u − ρ�uu (27)
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are the filtered viscous stress tensor and the residual stress tensor, respectively. In these
equations, �u is the filtered velocity vector, p is the filtered pressure, g is the body force, �ν
is the filtered kinematic viscosity, �S is the filtered strain rate tensor, and �Dt ≡ ∂t + �u · ∇
is the substantial derivative. The residual stress tensor, appearing as unclosed term in the
momentum equations, is modeled by a dynamic Smagorinsky model (Germano et al., 1991;
Lilly, 1992).
In addition to the residual stresses, the filtered density and kinematic viscosity are also
unknown and are dependent on the temperature and the species distribution in the flame. To
provide information about these quantities, a combustion model is employed which relates
the density and all other thermochemical quantities to a reduced set of reaction coordinates.
In the present work, the flamelet/progress variable (FPV) approach (Pierce & Moin, 2004)
is used for the prediction of the turbulent reactive flow field. This model is based on
the steady laminar flamelet equations (Peters, 1983; 1984), in which all thermochemical
quantities are obtained from the solution of the steady flamelet equations. These quantities
are parameterized in terms of mixture fraction Z and scalar dissipation rate χZ. However, for
reasons which are outlined in Pierce & Moin (2004) and Ihme et al. (2005), in the FPV model
the scalar dissipation rate is replaced by a reaction progress variable C. This reactive scalar
corresponds to a linear combination of major product mass fractions, and is here defined
as C = YCO2 + YCO + YH2O + YH2 . With this, all thermochemical quantities, denoted by φ,
can then be written as φ = Gφ(Z, C), where G denotes the FPV chemistry library, and �φ is
obtained by employing a presumed PDF approach, in which the joint PDF of Z and C is
modeled by a beta distribution for the mixture fraction and a mixture fraction-conditioned
Dirac function for the progress variable (Pierce & Moin, 2004). The Favre-filtered form
of all thermochemical quantities can then be written as �φ = �Gφ(

�Z, �Z��2, �C). In addition to
the solution of the Favre-filtered Navier-Stokes equations, the FPV model requires also the
solution of the Favre-filtered conservation equations for mixture fraction, progress variable,
and residual mixture fraction variance, which is denoted by �Z��2. These equations can be
written as

ρ �Dt �Z = ∇ · (ρ�α∇�Z) +∇ · τres
Z , (28a)

ρ �Dt �C = ∇ · (ρ�α∇ �C) +∇ · τres
C + ρ �wC , (28b)

ρ �Dt
�Z��2 = ∇ · (ρ�α∇�Z��2) +∇ · τres

�Z��2 − 2ρ �u��Z�� · ∇�Z − ρ�χres
Z , (28c)

where �α is the filtered diffusivity, �wC is the chemical source term of the progress variable.
The residual scalar fluxes τres.

ψ = ρ�u �ψ − ρ�uψ, turbulent scalar transport �u��Z��, and scalar
dissipation rate �χres

Z are modeled using turbulence closure formulations.
In the LES computation, information about the filtered quantities of density ρ, chemical source
term for the progress variable �wC, kinematic viscosity �ν, and molecular diffusivity �α are
required. In addition, for the computation of statistical properties of the flame structure, the
filtered temperature �T, and mass fractions of CO2, H2O and other species are also obtained
from the state relation. In order to increase the resolution in the direction of the mixture
fraction variance, the unmixedness �S = �Z��2/(�Z(1− �Z)) is introduced and all thermochemical
quantities, which are of importance for the numerical simulation, are then parameterized as

�φ = �Gφ(
�Z, �S, �C) , (29)
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In the present work, the flamelet/progress variable (FPV) approach (Pierce & Moin, 2004)
is used for the prediction of the turbulent reactive flow field. This model is based on
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�Z��2 − 2ρ �u��Z�� · ∇�Z − ρ�χres
Z , (28c)

where �α is the filtered diffusivity, �wC is the chemical source term of the progress variable.
The residual scalar fluxes τres.

ψ = ρ�u �ψ − ρ�uψ, turbulent scalar transport �u��Z��, and scalar
dissipation rate �χres

Z are modeled using turbulence closure formulations.
In the LES computation, information about the filtered quantities of density ρ, chemical source
term for the progress variable �wC, kinematic viscosity �ν, and molecular diffusivity �α are
required. In addition, for the computation of statistical properties of the flame structure, the
filtered temperature �T, and mass fractions of CO2, H2O and other species are also obtained
from the state relation. In order to increase the resolution in the direction of the mixture
fraction variance, the unmixedness �S = �Z��2/(�Z(1− �Z)) is introduced and all thermochemical
quantities, which are of importance for the numerical simulation, are then parameterized as

�φ = �Gφ(
�Z, �S, �C) , (29)

and �φ = (ρ, �wC, �ν,�α, �T, �YCO2 , �YH2O)
T . This information is made accessible during the

simulation through a structured look-up table or OANNs.

5.2 Experimental configuration
The SMH1-flame from a series of bluff-body/swirl-stabilized flame experiments is used to
analyze the effects due to errors in the table interpolation and in the ANN approximation on
the statistical flow field quantities in the context of an LES application.
The burner configuration (see Fig. 11) of this well-characterized flame consists of a central
fuel nozzle of 3.6 mm diameter which is surrounded by a bluff body with Dref = 50 mm
diameter. Swirling air at an axial bulk velocity of Us = 42.8 m/s is supplied through an
annulus of 10 mm width. The burner is surrounded by a coflowing air stream with an axial
velocity of Ue = 20 m/s. The fuel consists of a methane/hydrogen mixture in a volumetric
ratio of 1:1. The bulk exit velocity of the fuel stream is UJ = 140.8 m/s. The geometric
swirl number for this configuration is Sg = 0.32. The turbulent flow field of this flame series
was measured by Kalt et al. (2002) and Al-Abdeli & Masri (2003), species measurements were
performed by Kalt et al. (2002) and Masri et al. (2004), and all experimental results are available
from Masri (2006).

Fig. 11. Schematic of the swirl-stabilized burner (Masri, 2006).

The Favre-filtered transport equations for mass, momentum, mixture fraction, progress
variable, and residual mixture fraction variance are solved in cylindrical coordinates (Pierce
& Moin, 2004). The computational domain is 5 Dref × 3 Dref × 2π in axial, radial, and
circumferential directions, respectively. The radial direction is discretized by 230 unevenly
spaced grid points concentrated in the shear layer region surrounding the fuel jet and swirling
annulus. The grid in axial direction uses 192 points and is stretched in downstream direction
while the circumferential direction is equally spaced and uses 64 points.
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are the filtered viscous stress tensor and the residual stress tensor, respectively. In these
equations, �u is the filtered velocity vector, p is the filtered pressure, g is the body force, �ν
is the filtered kinematic viscosity, �S is the filtered strain rate tensor, and �Dt ≡ ∂t + �u · ∇
is the substantial derivative. The residual stress tensor, appearing as unclosed term in the
momentum equations, is modeled by a dynamic Smagorinsky model (Germano et al., 1991;
Lilly, 1992).
In addition to the residual stresses, the filtered density and kinematic viscosity are also
unknown and are dependent on the temperature and the species distribution in the flame. To
provide information about these quantities, a combustion model is employed which relates
the density and all other thermochemical quantities to a reduced set of reaction coordinates.
In the present work, the flamelet/progress variable (FPV) approach (Pierce & Moin, 2004)
is used for the prediction of the turbulent reactive flow field. This model is based on
the steady laminar flamelet equations (Peters, 1983; 1984), in which all thermochemical
quantities are obtained from the solution of the steady flamelet equations. These quantities
are parameterized in terms of mixture fraction Z and scalar dissipation rate χZ. However, for
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corresponds to a linear combination of major product mass fractions, and is here defined
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can then be written as φ = Gφ(Z, C), where G denotes the FPV chemistry library, and �φ is
obtained by employing a presumed PDF approach, in which the joint PDF of Z and C is
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Dirac function for the progress variable (Pierce & Moin, 2004). The Favre-filtered form
of all thermochemical quantities can then be written as �φ = �Gφ(

�Z, �Z��2, �C). In addition to
the solution of the Favre-filtered Navier-Stokes equations, the FPV model requires also the
solution of the Favre-filtered conservation equations for mixture fraction, progress variable,
and residual mixture fraction variance, which is denoted by �Z��2. These equations can be
written as

ρ �Dt �Z = ∇ · (ρ�α∇�Z) +∇ · τres
Z , (28a)

ρ �Dt �C = ∇ · (ρ�α∇ �C) +∇ · τres
C + ρ �wC , (28b)

ρ �Dt
�Z��2 = ∇ · (ρ�α∇�Z��2) +∇ · τres

�Z��2 − 2ρ �u��Z�� · ∇�Z − ρ�χres
Z , (28c)

where �α is the filtered diffusivity, �wC is the chemical source term of the progress variable.
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Z are modeled using turbulence closure formulations.
In the LES computation, information about the filtered quantities of density ρ, chemical source
term for the progress variable �wC, kinematic viscosity �ν, and molecular diffusivity �α are
required. In addition, for the computation of statistical properties of the flame structure, the
filtered temperature �T, and mass fractions of CO2, H2O and other species are also obtained
from the state relation. In order to increase the resolution in the direction of the mixture
fraction variance, the unmixedness �S = �Z��2/(�Z(1− �Z)) is introduced and all thermochemical
quantities, which are of importance for the numerical simulation, are then parameterized as
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is the substantial derivative. The residual stress tensor, appearing as unclosed term in the
momentum equations, is modeled by a dynamic Smagorinsky model (Germano et al., 1991;
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provide information about these quantities, a combustion model is employed which relates
the density and all other thermochemical quantities to a reduced set of reaction coordinates.
In the present work, the flamelet/progress variable (FPV) approach (Pierce & Moin, 2004)
is used for the prediction of the turbulent reactive flow field. This model is based on
the steady laminar flamelet equations (Peters, 1983; 1984), in which all thermochemical
quantities are obtained from the solution of the steady flamelet equations. These quantities
are parameterized in terms of mixture fraction Z and scalar dissipation rate χZ. However, for
reasons which are outlined in Pierce & Moin (2004) and Ihme et al. (2005), in the FPV model
the scalar dissipation rate is replaced by a reaction progress variable C. This reactive scalar
corresponds to a linear combination of major product mass fractions, and is here defined
as C = YCO2 + YCO + YH2O + YH2 . With this, all thermochemical quantities, denoted by φ,
can then be written as φ = Gφ(Z, C), where G denotes the FPV chemistry library, and �φ is
obtained by employing a presumed PDF approach, in which the joint PDF of Z and C is
modeled by a beta distribution for the mixture fraction and a mixture fraction-conditioned
Dirac function for the progress variable (Pierce & Moin, 2004). The Favre-filtered form
of all thermochemical quantities can then be written as �φ = �Gφ(

�Z, �Z��2, �C). In addition to
the solution of the Favre-filtered Navier-Stokes equations, the FPV model requires also the
solution of the Favre-filtered conservation equations for mixture fraction, progress variable,
and residual mixture fraction variance, which is denoted by �Z��2. These equations can be
written as

ρ �Dt �Z = ∇ · (ρ�α∇�Z) +∇ · τres
Z , (28a)

ρ �Dt �C = ∇ · (ρ�α∇ �C) +∇ · τres
C + ρ �wC , (28b)

ρ �Dt
�Z��2 = ∇ · (ρ�α∇�Z��2) +∇ · τres

�Z��2 − 2ρ �u��Z�� · ∇�Z − ρ�χres
Z , (28c)

where �α is the filtered diffusivity, �wC is the chemical source term of the progress variable.
The residual scalar fluxes τres.

ψ = ρ�u �ψ − ρ�uψ, turbulent scalar transport �u��Z��, and scalar
dissipation rate �χres

Z are modeled using turbulence closure formulations.
In the LES computation, information about the filtered quantities of density ρ, chemical source
term for the progress variable �wC, kinematic viscosity �ν, and molecular diffusivity �α are
required. In addition, for the computation of statistical properties of the flame structure, the
filtered temperature �T, and mass fractions of CO2, H2O and other species are also obtained
from the state relation. In order to increase the resolution in the direction of the mixture
fraction variance, the unmixedness �S = �Z��2/(�Z(1− �Z)) is introduced and all thermochemical
quantities, which are of importance for the numerical simulation, are then parameterized as

�φ = �Gφ(
�Z, �S, �C) , (29)

and �φ = (ρ, �wC, �ν,�α, �T, �YCO2 , �YH2O)
T . This information is made accessible during the

simulation through a structured look-up table or OANNs.

5.2 Experimental configuration
The SMH1-flame from a series of bluff-body/swirl-stabilized flame experiments is used to
analyze the effects due to errors in the table interpolation and in the ANN approximation on
the statistical flow field quantities in the context of an LES application.
The burner configuration (see Fig. 11) of this well-characterized flame consists of a central
fuel nozzle of 3.6 mm diameter which is surrounded by a bluff body with Dref = 50 mm
diameter. Swirling air at an axial bulk velocity of Us = 42.8 m/s is supplied through an
annulus of 10 mm width. The burner is surrounded by a coflowing air stream with an axial
velocity of Ue = 20 m/s. The fuel consists of a methane/hydrogen mixture in a volumetric
ratio of 1:1. The bulk exit velocity of the fuel stream is UJ = 140.8 m/s. The geometric
swirl number for this configuration is Sg = 0.32. The turbulent flow field of this flame series
was measured by Kalt et al. (2002) and Al-Abdeli & Masri (2003), species measurements were
performed by Kalt et al. (2002) and Masri et al. (2004), and all experimental results are available
from Masri (2006).

Fig. 11. Schematic of the swirl-stabilized burner (Masri, 2006).

The Favre-filtered transport equations for mass, momentum, mixture fraction, progress
variable, and residual mixture fraction variance are solved in cylindrical coordinates (Pierce
& Moin, 2004). The computational domain is 5 Dref × 3 Dref × 2π in axial, radial, and
circumferential directions, respectively. The radial direction is discretized by 230 unevenly
spaced grid points concentrated in the shear layer region surrounding the fuel jet and swirling
annulus. The grid in axial direction uses 192 points and is stretched in downstream direction
while the circumferential direction is equally spaced and uses 64 points.
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The turbulent inflow profiles for the fuel nozzle and annulus are computed from a separate
pipe flow simulation by enforcing the bulk axial and azimuthal velocity reported in the
experiment. The GRI 2.11 mechanism (Bowman et al., 1997) is used for the description of
the chemistry, consisting of 279 chemical reactions among 49 species.

5.3 Static ANN performance analysis
The accuracy, memory requirements, and computational cost associated with the table
interpolation and the network evaluation are addressed in this section.
In the following, each thermochemical quantity is represented by one network, whose
architecture is obtained from the GPS optimization. In this optimization process, the
maximum size of the network is restricted to NL = 5 hidden layers, in which the last layer
contains only one linear neuron. The maximum number of neurons in the remaining four
layers is set to Nmax

N = 8, having a sigmoidal transfer function. The coefficients in the
transfer function, Eq. (12), are kept equal and constant for all neurons with γ1 = 1.075 and
γ2 = 2.0. The training set used for adjusting the synaptic weights consists of 50,000 samples,
and 1.2 × 106 data samples are used to evaluate the network fitness, defined in Eq. (10). The
optimization of the networks for each thermochemical quantity is performed in parallel and
takes approximately three days.

Quantity OANN Architecture

ρ 4-8-4-4-1
�wC 6-6-8-4-1
�ν 7-8-8-1
�α 8-8-8-1
�T 8-4-7-8-1

�YCO2 4-8-8-4-1
�YH2O 3-8-8-8-1

Table 4. Architecture of the OANNs identified from the GPS algorithm for all
thermochemical species in the LES calculation. The connectivity corresponds to a
fully-connected feed-forward network with sigmoidal transfer function for all non-linear
neurons.

The optimal architectures for the seven networks are summarized in Tab. 4. This table
shows that all OANNs except those for �ν and �α have four non-linear layers and considerably
different neural arrangements. These results support the assumption that a separate ANN
for each thermochemical quantity provides greater flexibility in obtaining an optimal fitness
characteristic.
Table 5 compares the memory requirements and the accuracy between four structured tables
and GPS-OANNs. The accuracy of the table increases with increasing resolution. Note,
however, that the finest table with 64 million grid points requires 3.4 GB of memory which is
typically not available on massively parallel systems. The fitness of all OANNs is comparable
to that of a tabulation with a 400 × 50 × 400 resolution. However, the memory requirement to
store the network is approximately 5,000 times smaller.
Figure 12 shows regression plots for two structured tables and the optimal ANNs for the
temperature and the chemical source term. It is interesting to point out that the scattering
for the chemical source term increases with decreasing values in the ANN representation,
which might affect the solution of the flame structure in equilibrium-near regions in an LES
application.
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Cost function
Table size Mem. [MB] ρ �wC �ν �α �T �YCO2

�YH2O

GPS-OANN 0.1 -2.48 -2.67 -2.52 -2.65 -2.49 -1.98 -2.62
100×13×100 7 -1.54 -1.81 -1.84 -1.83 -1.81 -1.61 -1.79
200×25×200 53 -1.86 -2.15 -2.16 -2.17 -2.12 -2.12 -2.10
400×50×400 427 -2.55 -2.78 -2.72 -2.83 -2.66 -2.07 -2.91

800×100×800 3,417 -2.55 -2.98 -2.79 -2.92 -2.74 -2.13 -2.86

Table 5. Comparison of memory requirements and network fitness between tabulation
method with increasing resolution and OANNs. Note that a reduction of the table size by a
factor of two can be achieved by storing the data in single precision format.

Fig. 12. Regression analysis for the table representation and ANN approximation for the
normalized temperature (top) and chemical source term (bottom). The subscript “A” refers
to data evaluated from OANNs, and �T and �wC are the sample data.

5.4 Dynamic ANN performance analysis
In this section, results from LES computations employing look-up tables and OANNs
for the chemistry representation are presented. Statistical data are collected over four
flow-through-times. For reference, the azimuthal and temporal averaged quantity of a scalar
φ is denoted by ��φ�, and the resolved scalar variance is indicated by ��φ��2

< �.
Figure 13 compares the averaged axial velocity field between experiments (left) and ANN
simulation (right). The solid line in both figures separates the regions of positive and negative
axial velocities. From both figures the decay of the central fuel jet and the contraction of the
swirling oxidizer stream after the recirculation bubble are evident.
Radial profiles of the mean and rms mixture fraction are shown in Fig. 14. Both, simulations
and experiments predict a region of homogeneous mixture directly behind the bluff body. The
location of stoichiometry is aligned with the inner shear layer of the swirling stream. Since
the value of the stoichiometric mixture fraction is Zst = 0.042, accurate prediction of the shear
layer is crucial for the determination of species and temperature distributions. Even though
both simulations slightly over-predict the spreading rate of ��Z�, the computed axial decay
rates are in excellent agreement with the experiments.
Radial profiles of mean temperature and CO2 mass fraction are shown in Fig. 15. The
numerical results for ��YCO2 � from the simulations employing the tabulation method are in
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Fig. 13. Comparison of averaged axial velocity fields between experiment (left) and LES
calculation employing an OANN chemistry representation (right).
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Fig. 14. Comparison of measured and calculated mean and resolved rms statistics of mixture
fraction at different axial locations in the Sydney SMH1 flame.

reasonable agreement with experimental data; however, the simulation with ANN chemistry
representation under-predicts �YCO2 on the fuel-rich side of the flame. This is primarily
attributed to the poor fitness of the CO2-OANN. The shift of the profiles for ��T� and ��YCO2�
towards the lean side of the flame is due to the slight over-prediction of the mixture fraction in
the shear layer surrounding the swirling oxidizer stream. The mean temperature in the region
of the bluff body at x/Dref = 0.2 is correctly predicted.
In summary, the comparisons of statistical flow field results shows that both methods for
the chemistry representation yield similar results. Discrepancies for CO2-species predictions
are primarily attributed to the poor fitness of the ANN, which can be further improved
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Fig. 15. Comparison of measured and calculated mean temperature and CO2 mass fraction at
different axial locations in the Sydney SMH1 flame.

by considering larger network architectures. These discrepancies emphasize the sensitivity
of the flow field structure to the ANN-representation. Furthermore, they demonstrate the
significance of evaluating the network performance in dynamic applications, in which the
integrated effect of ANN-approximation errors on the system evolution can be assessed.

6. Conclusions

Topological optimization of ANNs for application to chemically reacting flows was
conducted. To this end, a generalized pattern search method was presented as attractive
alternative to previously employed ANN optimization strategies. This GPS method offers
extensive flexibility in the implementation and allows for the consideration of optimization
parameters that are of categorical and continuous type. In addition, an evolutionary strategy
(ES) was also utilized in order to establish a direct comparison with the GPS method. For
the present application, it was shown that, compared to ES, the GPS method is more robust,
converges faster, and returns ANN topologies with better performance.
The GPS method was applied to the generation of optimal ANNs to approximate chemical
source terms, species mass fractions, and other thermochemical quantities in chemical
reacting systems. For this, two different combustion problems with increasing complexity
were considered. In the first problem, the combustion of a fuel/air mixture in decaying
homogeneous isotropic turbulence was modeled, in which the chemical source term,
describing the fuel-conversion rate, was approximated by an optimal ANN. The particularly
interesting aspect of this problem is that it allows for a systematic evaluation of ANN
approximation errors on the transient evolution of the reacting system. The second problem
focused on the unsteady three-dimensional combustion of a methane/hydrogen-air mixture
in a technical-relevant burner system. For this, large-scale simulations were employed, and
the accuracy of ANNs and conventional tabulation methods were assesses in the context of
high-performance computations of turbulent reacting flows.
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Fig. 13. Comparison of averaged axial velocity fields between experiment (left) and LES
calculation employing an OANN chemistry representation (right).
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fraction at different axial locations in the Sydney SMH1 flame.

reasonable agreement with experimental data; however, the simulation with ANN chemistry
representation under-predicts �YCO2 on the fuel-rich side of the flame. This is primarily
attributed to the poor fitness of the CO2-OANN. The shift of the profiles for ��T� and ��YCO2�
towards the lean side of the flame is due to the slight over-prediction of the mixture fraction in
the shear layer surrounding the swirling oxidizer stream. The mean temperature in the region
of the bluff body at x/Dref = 0.2 is correctly predicted.
In summary, the comparisons of statistical flow field results shows that both methods for
the chemistry representation yield similar results. Discrepancies for CO2-species predictions
are primarily attributed to the poor fitness of the ANN, which can be further improved
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Fig. 13. Comparison of averaged axial velocity fields between experiment (left) and LES
calculation employing an OANN chemistry representation (right).
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reasonable agreement with experimental data; however, the simulation with ANN chemistry
representation under-predicts �YCO2 on the fuel-rich side of the flame. This is primarily
attributed to the poor fitness of the CO2-OANN. The shift of the profiles for ��T� and ��YCO2�
towards the lean side of the flame is due to the slight over-prediction of the mixture fraction in
the shear layer surrounding the swirling oxidizer stream. The mean temperature in the region
of the bluff body at x/Dref = 0.2 is correctly predicted.
In summary, the comparisons of statistical flow field results shows that both methods for
the chemistry representation yield similar results. Discrepancies for CO2-species predictions
are primarily attributed to the poor fitness of the ANN, which can be further improved
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by considering larger network architectures. These discrepancies emphasize the sensitivity
of the flow field structure to the ANN-representation. Furthermore, they demonstrate the
significance of evaluating the network performance in dynamic applications, in which the
integrated effect of ANN-approximation errors on the system evolution can be assessed.

6. Conclusions

Topological optimization of ANNs for application to chemically reacting flows was
conducted. To this end, a generalized pattern search method was presented as attractive
alternative to previously employed ANN optimization strategies. This GPS method offers
extensive flexibility in the implementation and allows for the consideration of optimization
parameters that are of categorical and continuous type. In addition, an evolutionary strategy
(ES) was also utilized in order to establish a direct comparison with the GPS method. For
the present application, it was shown that, compared to ES, the GPS method is more robust,
converges faster, and returns ANN topologies with better performance.
The GPS method was applied to the generation of optimal ANNs to approximate chemical
source terms, species mass fractions, and other thermochemical quantities in chemical
reacting systems. For this, two different combustion problems with increasing complexity
were considered. In the first problem, the combustion of a fuel/air mixture in decaying
homogeneous isotropic turbulence was modeled, in which the chemical source term,
describing the fuel-conversion rate, was approximated by an optimal ANN. The particularly
interesting aspect of this problem is that it allows for a systematic evaluation of ANN
approximation errors on the transient evolution of the reacting system. The second problem
focused on the unsteady three-dimensional combustion of a methane/hydrogen-air mixture
in a technical-relevant burner system. For this, large-scale simulations were employed, and
the accuracy of ANNs and conventional tabulation methods were assesses in the context of
high-performance computations of turbulent reacting flows.
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reasonable agreement with experimental data; however, the simulation with ANN chemistry
representation under-predicts �YCO2 on the fuel-rich side of the flame. This is primarily
attributed to the poor fitness of the CO2-OANN. The shift of the profiles for ��T� and ��YCO2�
towards the lean side of the flame is due to the slight over-prediction of the mixture fraction in
the shear layer surrounding the swirling oxidizer stream. The mean temperature in the region
of the bluff body at x/Dref = 0.2 is correctly predicted.
In summary, the comparisons of statistical flow field results shows that both methods for
the chemistry representation yield similar results. Discrepancies for CO2-species predictions
are primarily attributed to the poor fitness of the ANN, which can be further improved
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To enable a comprehensive assessment of the network fitness, two complementary metrics
were examined. The first metric considers the static ANN performance analysis, and evaluates
the ability of the network to represent untrained samples. A main shortcoming of this
metric, which is also referred to as “testing,” is that it does not account for feedback-effects
of ANN approximation errors on the evolution of the dynamic system. To address this
issue, a dynamic ANN performance measure is developed. This metric provides additional
diagnostics, and is useful for applications in which ANNs are used as substitutes for complex
function-evaluations in dynamic systems. It was shown that this dynamic performance metric
provides a practical-relevant assessment of the network fitness, whereas the static ANN
analysis gives typically too optimistic estimates.

7. Acknowledgments

The author gratefully acknowledges financial support through ONR under Grant No.
N00014-10-1-0717. Helpful discussions with Heinz Pitsch, Christoph Schmitt, and Rodney
Fox on the ANN optimization and the LFP model formulation are much appreciated.

8. References

Abramson, M. A. (2004). Mixed variable optimization of a load-bearing thermal insulation
system using a filter pattern search algorithm, Optimization and Engineering
5(2): 157–177.

Al-Abdeli, Y. A. & Masri, A. R. (2003). Stability characteristics and flowfields of turbulent
non-premixed swirling flames, Comb. Theory Modelling 7: 731–766.

Angeline, P. J., Saunders, G. M. & Pollack, J. B. (1994). Evolutionary algorithm that constructs
recurrent neural networks, IEEE Trans. Neural Networks 5: 54–65.

Audet, C. & Dennis, Jr., J. E. (2000). Pattern search algorithms for mixed variable
programming, SIAM J. Optim. 11(3): 573–594.

Audet, C. & Dennis, Jr., J. E. (2003). Analysis of generalized pattern searches, SIAM J. Optim.
13(3): 889–903.

Bäck, T. & Schwefel, H.-P. (1993). An overview of evolutionary algorithms for parameter
optimization, Evolutionary Computation 1 (1): 1–23.

Blasco, J. A., Fueyo, N., Dopazo, C. & Ballester, J. (1999). Modelling the temporal evolution
of a reduced combustion chemical system with an artificial neural network, Combust.
Flame 113(1-2): 38–52.

Blasco, J. A., Fueyo, N., Dopazo, C. & Chen, J. Y. (2000). A self-organizing-map approach
to chemistry representation in combustion applications, Combust. Theory Modelling
4(1): 61–76.

Blasco, J. A., Fueyo, N., Larroya, J. C., Dopazo, C. & Chen, J. Y. (1999). Single-step
time-integrator of a methane-air chemical system using artificial neural networks,
Computers and Chemical Engineering 23(9): 1127–1133.

Booker, A. J., Dennis, Jr., J. E., Frank, P. D., Serafini, D. B., Torczon, V. & Trosset, M. W. (1999). A
rigorous framework for optimization of expensive functions by surrogates, Structural
Optimization 17(1): 1–13.

Bornholdt, S. & Graudenz, D. (1992). General asymmetric neural networks and structure
design by genetic algorithms, Neural Networks 5(2): 327–334.

Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Lissianski, V., Smith, G. P.,
Golden, D. M., Frenklach, M. & Goldenberg, M. (1997). GRI-Mech 2.11. available
from http://www.me.berkeley.edu/gri-mech/.

148 Artificial Neural Networks- Application

To enable a comprehensive assessment of the network fitness, two complementary metrics
were examined. The first metric considers the static ANN performance analysis, and evaluates
the ability of the network to represent untrained samples. A main shortcoming of this
metric, which is also referred to as “testing,” is that it does not account for feedback-effects
of ANN approximation errors on the evolution of the dynamic system. To address this
issue, a dynamic ANN performance measure is developed. This metric provides additional
diagnostics, and is useful for applications in which ANNs are used as substitutes for complex
function-evaluations in dynamic systems. It was shown that this dynamic performance metric
provides a practical-relevant assessment of the network fitness, whereas the static ANN
analysis gives typically too optimistic estimates.

7. Acknowledgments

The author gratefully acknowledges financial support through ONR under Grant No.
N00014-10-1-0717. Helpful discussions with Heinz Pitsch, Christoph Schmitt, and Rodney
Fox on the ANN optimization and the LFP model formulation are much appreciated.

8. References

Abramson, M. A. (2004). Mixed variable optimization of a load-bearing thermal insulation
system using a filter pattern search algorithm, Optimization and Engineering
5(2): 157–177.

Al-Abdeli, Y. A. & Masri, A. R. (2003). Stability characteristics and flowfields of turbulent
non-premixed swirling flames, Comb. Theory Modelling 7: 731–766.

Angeline, P. J., Saunders, G. M. & Pollack, J. B. (1994). Evolutionary algorithm that constructs
recurrent neural networks, IEEE Trans. Neural Networks 5: 54–65.

Audet, C. & Dennis, Jr., J. E. (2000). Pattern search algorithms for mixed variable
programming, SIAM J. Optim. 11(3): 573–594.

Audet, C. & Dennis, Jr., J. E. (2003). Analysis of generalized pattern searches, SIAM J. Optim.
13(3): 889–903.

Bäck, T. & Schwefel, H.-P. (1993). An overview of evolutionary algorithms for parameter
optimization, Evolutionary Computation 1 (1): 1–23.

Blasco, J. A., Fueyo, N., Dopazo, C. & Ballester, J. (1999). Modelling the temporal evolution
of a reduced combustion chemical system with an artificial neural network, Combust.
Flame 113(1-2): 38–52.

Blasco, J. A., Fueyo, N., Dopazo, C. & Chen, J. Y. (2000). A self-organizing-map approach
to chemistry representation in combustion applications, Combust. Theory Modelling
4(1): 61–76.

Blasco, J. A., Fueyo, N., Larroya, J. C., Dopazo, C. & Chen, J. Y. (1999). Single-step
time-integrator of a methane-air chemical system using artificial neural networks,
Computers and Chemical Engineering 23(9): 1127–1133.

Booker, A. J., Dennis, Jr., J. E., Frank, P. D., Serafini, D. B., Torczon, V. & Trosset, M. W. (1999). A
rigorous framework for optimization of expensive functions by surrogates, Structural
Optimization 17(1): 1–13.

Bornholdt, S. & Graudenz, D. (1992). General asymmetric neural networks and structure
design by genetic algorithms, Neural Networks 5(2): 327–334.

Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Lissianski, V., Smith, G. P.,
Golden, D. M., Frenklach, M. & Goldenberg, M. (1997). GRI-Mech 2.11. available
from http://www.me.berkeley.edu/gri-mech/.

Chen, J. Y., Blasco, J. A., Fueyo, N. & Dopazo, C. (2000). An economical strategy for storage of
chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks,
Proc. Comb. Institute 28: 115–121.

Christo, F. C., Masri, A. R. & Nebot, E. M. (1996). Artificial neural network implementation of
chemistry with PDF simulation of H2/CO2 flames, Combust. Flame 106(4): 406–427.

Christo, F. C., Masri, A. R., Nebot, E. M. & Pope, S. B. (1996). An integrated PDF/neural
network approach for simulating turbulent reacting systems, Proc. Comb. Institute
26: 43–48.

Flemming, F., Sadiki, A. & Janicka, J. (2005). LES using artificial neural networks for chemistry
representation, Progress in Computational Fluid Dynamics 5(7): 375–385.

Fogel, D. B. & Fogel, L. J. (1990). Evolving neural networks, Biological Cybern. 63(6): 487–493.
Fox, R. O. (2003). Computational Models for Turbulent Reacting Flows, Cambridge University

Press, Cambridge.
Frean, M. (1990). The upstart algorithm: A method for constructing and training feedforward

neural networks, Neural Computation 2(2): 198–209.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. (1991). A dynamic subgrid-scale eddy

viscosity model, Phys. Fluids A 3(7): 1760–1765.
Hagan, M. T., Demuth, H. B. & Beale, M. (1996). Neural Network Design, PWS Publishing

Company, Boston, Massachusetts, USA.
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle

River, N.J.
Husken, M., Jin, Y. & Sendhoff, B. (2005). Structure optimization of neural networks for

evolutionary design optimization, Soft Computing 9(1): 21–28.
Ihme, M., Cha, C. M. & Pitsch, H. (2005). Prediction of local extinction and re-ignition effects

in non-premixed turbulent combustion using a flamelet/progress variable approach,
Proc. Combust. Inst. 30: 793–800.

Ihme, M., Marsden, A. L. & Pitsch, H. (2008). Generation of optimal artificial neural networks
using a pattern search algorithm: Application to approximation of chemical systems,
Neural Computation 20(2): 573–601.

Ihme, M., Schmitt, C. & Pitsch, H. (2009). Optimal artificial neural networks and tabulation
methods for chemistry representation in LES of a bluff-body swirl-stabilized flame,
Proc. Combust. Inst. 32: 1527–1535.

Kalt, P. A. M., Al-Abdeli, Y. A., Masri, A. R. & Barlow, R. S. (2002). Swirling turbulent
non-premixed flames of methane: Flow field and compositional structure, Proc.
Combust. Inst. 29: 1913–1919.

Koza, J. R. & Rice, J. P. (1991). Genetic generation of both the weights and architecture
for a neural network, Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN’91 Seattle),
pp. 397–404.

Lam, S. H. & Goussis, D. A. (1988). Understanding complex chemical kinetics with
computational singular perturbation, Proc. Comb. Inst. 22: 931–941.

Lewis, R. M. & Torczon, V. (1999). Pattern search algorithms for bound constrained
minimization, SIAM J. Optim. 9(4): 1082–1099.

Lewis, R. M. & Torczon, V. (2000). Pattern search methods or linearly constrained
minimization, SIAM J. Optim. 10(3): 917–941.

Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method,
Phys. Fluids A 4(3): 633–635.

Maas, U. & Pope, S. B. (1992). Simplifying chemical kinetics: Intrinsic low-dimensional
manifolds in composition space, Combust. Flame 88(3-4): 239–264.

149
Construction of Optimal Artificial Neural Network Architectures for Application to Chemical
Systems: Comparison of Generalized Pattern Search Method and Evolutionary Algorithm



To enable a comprehensive assessment of the network fitness, two complementary metrics
were examined. The first metric considers the static ANN performance analysis, and evaluates
the ability of the network to represent untrained samples. A main shortcoming of this
metric, which is also referred to as “testing,” is that it does not account for feedback-effects
of ANN approximation errors on the evolution of the dynamic system. To address this
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1. Introduction

Methanol (MeOH) and dimethyl ether (DME), which can be easily obtained from MeOH,
are superior candidates for clean transportation fuel. A compact and simple process with
good economy has been proposed to produce these fuels from dispersed unused carbon
resources (Yamada, 2003). The key point of this process is development of a noble catalyst
which is active for MeOH synthesis under mild reaction conditions. A number of new
catalysts for MeOH synthesis from syngas were discovered and some of them are more
active than the conventional Cu/Zn/Al catalyst. Cu-lanthanoid catalyst was reported as
one of the alternative catalyst (Andriamasinoro et al., 1993; Nix et al., 1987; Walker et al.,
1992). Under mild conditions Cu-Yb showed higher activity than Cu-Zn-Al (Sakata et al.,
1998). Prediction of the characteristics of new catalysts or catalyst additives from the
physicochemical properties of catalyst components would accelerate catalyst development.
In the present study such prediction methodology was developed and applied for MeOH
synthesis by Cu-Lanthanoid catalyst.
As reviewed in the introduction of reference(Valero et al., 2009), modeling methodologies
were suggested in the research field of catalysis (Baumes et al., 2004; 2007; Farrusseng et al.,
2005; Grubert et al., 2003; Holeňa & Baerns, 2003; Serra et al., 2003; Serra, Corma, Valero,
Argente & Botti, 2007; Wolf et al., 2000). It was also reported that an artificial neural network,
especially a radial basis function network(RBFN),(Omata et al., 2004; Umegaki et al., 2003) was
successfully applied for the regression of catalytic phenomena instead of the conventional
polynomial equation. Such methodology is effective for integrating the observation(Serna
et al., 2008) and the characterization(Barr et al., 2004; Baumes et al., 2009; 2008; Gilmore
et al., 2004; Takeuchi et al., 2005). Successful prediction of catalytic properties from the
physicochemical properties of the catalyst elements was, however, reported only in few
cases (Kito et al., 1992; 1994).
We recently succeeded in identifying an effective additive for Ni/active carbon (AC)
catalyst for the carbonylation of methanol based on previous experimental results and the
physicochemical properties of the elements (Omata & Yamada, 2004). The physicochemical
properties of element X were correlated by means of RBFN to the catalytic selectivity
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resources (Yamada, 2003). The key point of this process is development of a noble catalyst
which is active for MeOH synthesis under mild reaction conditions. A number of new
catalysts for MeOH synthesis from syngas were discovered and some of them are more
active than the conventional Cu/Zn/Al catalyst. Cu-lanthanoid catalyst was reported as
one of the alternative catalyst (Andriamasinoro et al., 1993; Nix et al., 1987; Walker et al.,
1992). Under mild conditions Cu-Yb showed higher activity than Cu-Zn-Al (Sakata et al.,
1998). Prediction of the characteristics of new catalysts or catalyst additives from the
physicochemical properties of catalyst components would accelerate catalyst development.
In the present study such prediction methodology was developed and applied for MeOH
synthesis by Cu-Lanthanoid catalyst.
As reviewed in the introduction of reference(Valero et al., 2009), modeling methodologies
were suggested in the research field of catalysis (Baumes et al., 2004; 2007; Farrusseng et al.,
2005; Grubert et al., 2003; Holeňa & Baerns, 2003; Serra et al., 2003; Serra, Corma, Valero,
Argente & Botti, 2007; Wolf et al., 2000). It was also reported that an artificial neural network,
especially a radial basis function network(RBFN),(Omata et al., 2004; Umegaki et al., 2003) was
successfully applied for the regression of catalytic phenomena instead of the conventional
polynomial equation. Such methodology is effective for integrating the observation(Serna
et al., 2008) and the characterization(Barr et al., 2004; Baumes et al., 2009; 2008; Gilmore
et al., 2004; Takeuchi et al., 2005). Successful prediction of catalytic properties from the
physicochemical properties of the catalyst elements was, however, reported only in few
cases (Kito et al., 1992; 1994).
We recently succeeded in identifying an effective additive for Ni/active carbon (AC)
catalyst for the carbonylation of methanol based on previous experimental results and the
physicochemical properties of the elements (Omata & Yamada, 2004). The physicochemical
properties of element X were correlated by means of RBFN to the catalytic selectivity
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for vapor-phase carbonylation of methanol with a Ni-X/AC catalyst. Parameters of the
RBFN were determined using the experimental results. As a result Sn was predicted and
experimentally verified to suppress the methane formation. In the similar way, beryllium
was predicted as the most effective additive of Cu/Zn for methanol synthesis from syngas,
which was verified experimentally (Omata et al., 2005). In other case, La and Ce, Sc and Nd
were predicted to promote the activity of Ni/α-Al2O3 for oxidative reforming of methane.
The experimentally observed activity of Ni-Sc/α-Al2O3 was five times higher than that of
unpromoted Ni/α-Al2O3 catalyst (Omata et al., 2008).
In the present study, the activity of Cu-lanthanoid catalyst was correlated to the
physicochemical properties by means of multiple regression analysis (model 1), RBFN (model
2), and support vector regression (SVR, model 3, 4, and 5). Through the prediction of activity
of Cu-Sc and Cu-Pr catalyst, the generalization activity of these methods were compared and
then the influential physicochemical properties were determined by the best methodology.

2. Experimental

Ethanol-oxalate method was employed for catalyst preparation. Ethanol solution of nitrates of
Cu and lanthanoid was mixed with a given composition (Cu/lanthanoid = 5/1 molar ratio),
and then an ethanol solution of oxalic acid was added to precipitate the mixed oxalic salts.
The resulting mixed oxalates were washed with ethanol and dried at 353 K for 4 h in vacuo,
and then were calcined at 573 K for 4 h into mixed oxide. The catalyst precursor oxide
was activated at 403 K, 2.5 h, and 523 K, 1 h in the reaction gas. The reaction gas (syngas)
composition was : 60% H2, 30% CO, 5% CO2 and 5% Ar (as internal standard). The reaction
was conducted at 498 K, 1 MPa, W/F = 1 g·h/mol. Under these conditions, CO conversion
is lower than equilibrium limit of methanol synthesis. Activity is shown as a space-time
yield (STY, g-MeOH/kg-cat./h). Product gas was analyzed by micro-GC (Agilent, M-200,
Molecular Sieve 5A/PoraPLOT U).

3. Prediction method

3.1 Dataset for parameter decision
Experimental results of the activity test are summarized in Fig. 1. The activity of Cu-Sc is
much higher than those of Cu-La, Cu-Ce and Cu-Pr which were previously reported. The
target of the present study is to predict the activity of Cu-Sc and Cu-Pr (black bars in Fig. 1)
based on the experimental result in the figure other than the two catalysts.
As variables of regressions, physicochemical properties of lanthanoid (Periodic Table X ,
Synergy Creations) such as 1st ionization energy (1I [eV]), 2nd ionization energy (2I [eV]),
electro negativity (EN [-]), electric dipole polarizability (ED [Å3]), boiling point (BP [K]),
melting point (MP [K]), specific heat capacity (HC [J/g/K]), heat of fusion (HF [kJ/mol]),
heat of vaporization (HV [kJ/mol]), thermal conductivity (TC [W/m/K]), covalent radius
(CR [pm]), density (DS [g/cm3]), ionic radius (IR [pm]), and atomic weight (AW [g/mol])
were used with formation enthalpy of oxide (FE [kJ/mol])(Barin et al., 1993).
These primary properties should affect the secondary properties of catalyst such as surface
area, surface composition, metal dispersion, electric state, morphology, thermal stability, and
so on. These secondary properties then determine the catalytic activity. Therefore, properties
of element should be correlated to the catalytic performance in complicated non-linear
manner. Physicochemical properties of lanthanoid used for both the parameter decision and
the activity prediction were normalized to 0∼1 as shown in Table 1.
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Fig. 1. Activity of Cu-Lanthanoid Catalyst for Methanol Synthesis from Syngas at 1 MPa.
Data of black bars were only used for the validation of models.

3.2 Multiple regression analysis (Model 1)
Multiple regression analysis was performed by using statistical language R as model 1. R
provides many functions such as lm() and step() available for statistical analysis. Because
correlation coefficients of MP to HF, BP to HV, and EN to 2I were over 0.9, respectively,
these properties (MP, BP, EN) were eliminated from the analysis to reduce the number of
the variables. Then, step() function of R was used to find the influential variables, and HF, 2I,
and DS were not included in the final model because of their high AIC (Akaike’s Information
Criterion (Akaike, 1974)) score. Predicted STYs by the final model are plotted in Fig. 2 and
the regression coefficients were determined as shown in Table 2. The activities of Cu-Pr and
Cu-Sc were predicted by the regression equation.
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melting point (MP [K]), specific heat capacity (HC [J/g/K]), heat of fusion (HF [kJ/mol]),
heat of vaporization (HV [kJ/mol]), thermal conductivity (TC [W/m/K]), covalent radius
(CR [pm]), density (DS [g/cm3]), ionic radius (IR [pm]), and atomic weight (AW [g/mol])
were used with formation enthalpy of oxide (FE [kJ/mol])(Barin et al., 1993).
These primary properties should affect the secondary properties of catalyst such as surface
area, surface composition, metal dispersion, electric state, morphology, thermal stability, and
so on. These secondary properties then determine the catalytic activity. Therefore, properties
of element should be correlated to the catalytic performance in complicated non-linear
manner. Physicochemical properties of lanthanoid used for both the parameter decision and
the activity prediction were normalized to 0∼1 as shown in Table 1.
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Ethanol-oxalate method was employed for catalyst preparation. Ethanol solution of nitrates of
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was activated at 403 K, 2.5 h, and 523 K, 1 h in the reaction gas. The reaction gas (syngas)
composition was : 60% H2, 30% CO, 5% CO2 and 5% Ar (as internal standard). The reaction
was conducted at 498 K, 1 MPa, W/F = 1 g·h/mol. Under these conditions, CO conversion
is lower than equilibrium limit of methanol synthesis. Activity is shown as a space-time
yield (STY, g-MeOH/kg-cat./h). Product gas was analyzed by micro-GC (Agilent, M-200,
Molecular Sieve 5A/PoraPLOT U).

3. Prediction method

3.1 Dataset for parameter decision
Experimental results of the activity test are summarized in Fig. 1. The activity of Cu-Sc is
much higher than those of Cu-La, Cu-Ce and Cu-Pr which were previously reported. The
target of the present study is to predict the activity of Cu-Sc and Cu-Pr (black bars in Fig. 1)
based on the experimental result in the figure other than the two catalysts.
As variables of regressions, physicochemical properties of lanthanoid (Periodic Table X ,
Synergy Creations) such as 1st ionization energy (1I [eV]), 2nd ionization energy (2I [eV]),
electro negativity (EN [-]), electric dipole polarizability (ED [Å3]), boiling point (BP [K]),
melting point (MP [K]), specific heat capacity (HC [J/g/K]), heat of fusion (HF [kJ/mol]),
heat of vaporization (HV [kJ/mol]), thermal conductivity (TC [W/m/K]), covalent radius
(CR [pm]), density (DS [g/cm3]), ionic radius (IR [pm]), and atomic weight (AW [g/mol])
were used with formation enthalpy of oxide (FE [kJ/mol])(Barin et al., 1993).
These primary properties should affect the secondary properties of catalyst such as surface
area, surface composition, metal dispersion, electric state, morphology, thermal stability, and
so on. These secondary properties then determine the catalytic activity. Therefore, properties
of element should be correlated to the catalytic performance in complicated non-linear
manner. Physicochemical properties of lanthanoid used for both the parameter decision and
the activity prediction were normalized to 0∼1 as shown in Table 1.
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Fig. 1. Activity of Cu-Lanthanoid Catalyst for Methanol Synthesis from Syngas at 1 MPa.
Data of black bars were only used for the validation of models.

3.2 Multiple regression analysis (Model 1)
Multiple regression analysis was performed by using statistical language R as model 1. R
provides many functions such as lm() and step() available for statistical analysis. Because
correlation coefficients of MP to HF, BP to HV, and EN to 2I were over 0.9, respectively,
these properties (MP, BP, EN) were eliminated from the analysis to reduce the number of
the variables. Then, step() function of R was used to find the influential variables, and HF, 2I,
and DS were not included in the final model because of their high AIC (Akaike’s Information
Criterion (Akaike, 1974)) score. Predicted STYs by the final model are plotted in Fig. 2 and
the regression coefficients were determined as shown in Table 2. The activities of Cu-Pr and
Cu-Sc were predicted by the regression equation.
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Fig. 2. Predicted STY by optimized model 1–5.
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Fig. 2. Predicted STY by optimized model 1–5.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 352.9520 83.8388 4.21 0.0136
HV -11.5397 14.0399 -0.82 0.4573
HC -166.8569 97.6436 -1.71 0.1627
CR -257.3117 57.7042 -4.46 0.0112
IR 100.9706 29.2293 3.45 0.0259
X1I -53.1008 21.2195 -2.50 0.0666
ED -139.1426 30.6455 -4.54 0.0105
DS -78.1877 52.0711 -1.50 0.2076
TC 29.8160 24.2563 1.23 0.2864
FE -82.7350 16.3662 -5.06 0.0072

Residual standard error: 9.319 on 4 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.8687

F-statistic: 10.55 on 9 and 4 DF, p-value: 0.01837

Table 2. Regression Coefficient of Model 1

3.3 Radial basis function network (Model 2)
Activity of methanol synthesis (response) was expressed by a RBFN as functions of the
physicochemical properties in model 2:

response =
14

∑
i=1

wi exp

�
− (x − ci)

2

2σ2
i

�
(1)

where ci is the centers, σi is the radii, and wi is the weights of the radial basis functions
and x is the physicochemical properties. σi was defined as the average of the distance to
the two nearest-neighbors in the training data, and ci was determined as an input vector of
the physicochemical properties of elements used as the training data. Of course data of Cu-Sr
and Cu-Pr are not included in the training data. The RBFN was coded and constructed by R
as below where predicted STY was plotted as shown in Fig. 2 and then the activities of Cu-Pr
and Cu-Sc were predicted by the RBFN. The number of nodes in the input layer, in the hidden
layer, and in the output layer of the RBFN was 15, 14, and 1 respectively.

model2<-function(t,p) {
p<-as.matrix(p)
response<-t[,ncol(t)]
center<-as.matrix(t[,-ncol(t)])
sigma2<-apply(apply(as.matrix(dist(center))^2,1,sort)[2:3,],2,mean)
weight<-t(solve(exp(as.matrix(dist(center)^2)/(-2)/sigma2)))%*%response
pre<-NULL
tt<-NULL
for (i in 1:nrow(p)){

tt<-matrix(data=p[i,],nrow=nrow(center),ncol=ncol(center),byrow=T)
pre[i]<-exp(apply((tt-center)^2/(-2)/sigma2,1,sum))%*%weight}

return (pre)}
plot(training$response, model2(training,check))
cbind(symbol,model2(training,prediction))
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3.4 Support vector regression (Model 3)
Recently support vector machine (SVM) attracts much attention because of its high
generalization capability. SVM was first reported in the field of solid catalysis as a classifier
(Baumes et al., 2006; Serra, Baumes, Moliner, Serna & Corma, 2007). It can be used also for
regression, and by SVM the inputs are mapped into a high-dimensional space in nonlinear
manner and then the modified inputs are correlated linearly with the output (Fan et al., 2005;
Nandi et al., 2004). These reported results show clearly the superior generalization capability
of a SVM and better availability through open source program makes SVM more applicable
than an artificial neural network.
In the present study, SVR was performed using libsvm library (Fan et al., 2005) through svm()
function in package e1071 of R. A radial basis function was used as the kernel function and
the normalized physicochemical properties and STY in Table 1 other than Cu-Pr and Cu-Sc
were used.
In model 3, only cost parameter of SVM (the penalty parameter of the error term) was
optimized as below using a trial-and-error method. By increasing cost parameter, the residual
sum of squares was decreased as shown in Fig. 3. The predicted STY was in the steady state
when cost parameter was larger than 10000. Predicted STY by the final model (cost=10000,
gamma=1/15 as default) was plotted in Fig. 2 and then the activities of Cu-Pr and Cu-Sc were
predicted by the SVM.

library(e1071)
model3<-svm(response~., data=training,cost=10000,scale=F)
(rss<-sum((training$response-fitted(model3))^2))
plot(training$response,fitted(model3))
cbind(symbol,predict(model3,prediction))
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Fig. 3. Optimization of cost parameter of model 3.
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3.5 Support vector regression (Model 4)
In model 4, gamma parameters of SVM (the kernel parameter of the RBFs) and cost parameter
were optimized simultaneously using a grid search (Fan et al., 2005). tune.svm() function
was used as below to decrease the sum of squared error between the experimental and the
predicted STY other than Cu-Pr and Cu-Sc. The ranges of cost and gamma were gradually
narrowed whereas the optimum parameters should not be located at the edge of the range.
For example the range of cost parameter was changed from 104∼10−4 to 102.3∼102.4 with
smaller steps. Predicted STY by the final model was plotted as shown in Fig. 2 and then the
activities of Cu-Pr and Cu-Sc were predicted by the SVM.

library(e1071)
cost=10^c(seq(2.3,2.4,0.01))
gamma=10^c(seq(-0.3,-0.2,0.01))
model=tune.svm(response~., data=training, gamma=gamma, cost=cost, scale=F,

tunecontrol=tune.control(sampling="fix"),
validation.x=training[,-ncol(training)],
validation.y=training[,ncol(training)])

model4=model$best.model
plot(training$response,fitted(model4))
cbind(symbol,predict(model4,prediction))

3.6 Support vector regression (Model 5)
In model 5, leave-one-out method (in this case, 14-fold cross validation) were used instead
of the grid search to prevent the over-fitting problem. The ranges of cost and gamma were
gradually narrowed as in model 4. Predicted STY by the final model was plotted as shown in
Fig. 2 and then the activities of Cu-Pr and Cu-Sc were predicted by the SVM.

library(e1071)
cost=10^c(seq(3.85,3.95,0.01))
gamma=10^c(seq(-1.15,-1.05,0.01))
model=tune.svm(response~., data=training, gamma=gamma, cost=cost, scale=F,

tunecontrol=tune.control(sampling="cross",cross=14))
model5=model$best.model
plot(training$response,fitted(model5))
cbind(symbol,predict(model5,prediction))

4. Result and discussion

The activity of Cu-Pr and Cu-Sc were predicted using model 1–5. As mentioned above,
activity data of Cu-Sc(159 g-MeOH/kg-cat/h) and Cu-Pr(4.1 g-MeOH/kg-cat/h) were not
included in the construction of model 1–5. In Fig. 4 the prediction errors are compared. The
activity of Cu-Pr was predicted to be larger than the experimental result in the all model.
The precision of the prediction was high as follows: model 5 > model 3 > model 4 > model
2 ≈ model 1. Physicochemical properties such as 1I(1st ionization energy) and AW(atomic
weight) of lanthanoid are plotted in Fig. 5. Based on the open circles (training data for the
regression), activities corresponding to the closed circle (target data) should be predicted. It
is understandable that prediction error of Cu-Pr is smaller than that of Cu-Sc because Sc is
located far from the training elements. Among the model 1–5, only model 5 is equipped
with a mechanism to avoid over-fitting. Using the unevenly distributed training data as
shown in Fig. 5, leave-one-out (14-fold cross-validation) was proved to be effective for the
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precise prediction. Thus, SVM will give the best regression if the parameters are optimized by
leave-one-out method.
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Fig. 4. Comparison of the Prediction Error by Various Regression Method.

In order to find the correlation between the physicochemical properties and the activity of
Cu-lanthanoid for methanol synthesis, the best regression model was constructed using the
all data in Table 1.
The model 6 was constructed using the SVM of which parameters were optimized by
leave-one-out method as same as model 5.
In the model 6, correlation between the physicochemical properties and the activity of
methanol synthesis should be unveiled.
The STY of Cu-Sc catalyst is plotted in Fig. 6 as a function of some physicochemical
property. Even when the property change is imaginary, the STY change can be predicted
by the regression model 6 if one properties is changed. As shown in the figure, effect of
TC on the activity of Cu-Sc should be small: even if TC can be changed, the activity of the
resulting catalyst is almost same. On the contrary, BP should be influential on the activity.
The difference of the maximum and the minimum of such imaginary activity of Cu-Sc was
predicted as shown in Fig. 7 for each physicochemical property. In this figure is shown that
the five properties are remarkably influential. They can be categorized in two groups:
group 1:EN, 1I
group 2:BP, HV, CR
In methanol synthesis active site of Cu catalyst is not clear yet. However, in Cu/ZnO-based
ternary catalysts for methanol synthesis from CO2 and H2, Cu0/Cu+ ratio influences the
activity (Saito et al., 1996). According the results it is natural that the ligand effect of the
lanthanoid is influential.
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model4=model$best.model
plot(training$response,fitted(model4))
cbind(symbol,predict(model4,prediction))

3.6 Support vector regression (Model 5)
In model 5, leave-one-out method (in this case, 14-fold cross validation) were used instead
of the grid search to prevent the over-fitting problem. The ranges of cost and gamma were
gradually narrowed as in model 4. Predicted STY by the final model was plotted as shown in
Fig. 2 and then the activities of Cu-Pr and Cu-Sc were predicted by the SVM.
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4. Result and discussion

The activity of Cu-Pr and Cu-Sc were predicted using model 1–5. As mentioned above,
activity data of Cu-Sc(159 g-MeOH/kg-cat/h) and Cu-Pr(4.1 g-MeOH/kg-cat/h) were not
included in the construction of model 1–5. In Fig. 4 the prediction errors are compared. The
activity of Cu-Pr was predicted to be larger than the experimental result in the all model.
The precision of the prediction was high as follows: model 5 > model 3 > model 4 > model
2 ≈ model 1. Physicochemical properties such as 1I(1st ionization energy) and AW(atomic
weight) of lanthanoid are plotted in Fig. 5. Based on the open circles (training data for the
regression), activities corresponding to the closed circle (target data) should be predicted. It
is understandable that prediction error of Cu-Pr is smaller than that of Cu-Sc because Sc is
located far from the training elements. Among the model 1–5, only model 5 is equipped
with a mechanism to avoid over-fitting. Using the unevenly distributed training data as
shown in Fig. 5, leave-one-out (14-fold cross-validation) was proved to be effective for the
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precise prediction. Thus, SVM will give the best regression if the parameters are optimized by
leave-one-out method.
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Fig. 4. Comparison of the Prediction Error by Various Regression Method.

In order to find the correlation between the physicochemical properties and the activity of
Cu-lanthanoid for methanol synthesis, the best regression model was constructed using the
all data in Table 1.
The model 6 was constructed using the SVM of which parameters were optimized by
leave-one-out method as same as model 5.
In the model 6, correlation between the physicochemical properties and the activity of
methanol synthesis should be unveiled.
The STY of Cu-Sc catalyst is plotted in Fig. 6 as a function of some physicochemical
property. Even when the property change is imaginary, the STY change can be predicted
by the regression model 6 if one properties is changed. As shown in the figure, effect of
TC on the activity of Cu-Sc should be small: even if TC can be changed, the activity of the
resulting catalyst is almost same. On the contrary, BP should be influential on the activity.
The difference of the maximum and the minimum of such imaginary activity of Cu-Sc was
predicted as shown in Fig. 7 for each physicochemical property. In this figure is shown that
the five properties are remarkably influential. They can be categorized in two groups:
group 1:EN, 1I
group 2:BP, HV, CR
In methanol synthesis active site of Cu catalyst is not clear yet. However, in Cu/ZnO-based
ternary catalysts for methanol synthesis from CO2 and H2, Cu0/Cu+ ratio influences the
activity (Saito et al., 1996). According the results it is natural that the ligand effect of the
lanthanoid is influential.

159Facile Tool for Prediction of Catalytic Activity - Cu-Lanthanoid Catalyst for Methanol Synthesis



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized 1I

no
rm

al
iz

ed
 A

W

Sc

Pr

Fig. 5. Distribution of some training data. Open circle = training data.

0.0 0.2 0.4 0.6 0.8 1.0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Normalized Physicochemical Property

pr
ed

ic
te

d 
S

T
Y

 (
g−

M
eO

H
/k

g−
ca

t/h
)

BP

FE

TC

Fig. 6. Predicted Effect of Physicochemical Properties on STY of Cu-Sc Catalyst. Closed
circles:experimental result of Cu-Sc.

160 Artificial Neural Networks- Application

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized 1I

no
rm

al
iz

ed
 A

W

Sc

Pr

Fig. 5. Distribution of some training data. Open circle = training data.

0.0 0.2 0.4 0.6 0.8 1.0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Normalized Physicochemical Property

pr
ed

ic
te

d 
S

T
Y

 (
g−

M
eO

H
/k

g−
ca

t/h
)

BP

FE

TC

Fig. 6. Predicted Effect of Physicochemical Properties on STY of Cu-Sc Catalyst. Closed
circles:experimental result of Cu-Sc.

On the other hand, in the case of metal alloy, metals with higher HV tend to be dominant on
the surface. Thus, BP and HV in group 2 probably are the indexes of surface mobility. With
Cu-Yb catalyst for hydrogenation, the catalyst morphology is influenced by the pretreatment
temperature. Cluster-like ytterbium oxide homogeneously dispersed in copper metal when
it is activated at the optimum temperature, and the morphology strongly affects the catalytic
performance (Sakata et al., 1999). Because CR is one of the most principal character of the
bimetallic catalyst (Cu-lanthanoid), CR can influence the morphology along with the HV or
BP, on the surface Cu metal and can influence hydrogenation activity.
Generally, sintering of Cu metal is a serious problem for the stability of Cu catalyst. When
highly dispersed and active Cu/Zn/Al catalyst was prepared by ethanol-oxalate method,
the cautious start-up was necessary for the appearance of high activity because methanol
synthesis is highly exothermic reaction and the facile start-up causes the heat-up and sintering
of the catalyst. Thus, thermal-effect-related properties such as TC and HC are potentially the
important factor for Cu catalyst. As shown in Fig. 7, however, the effect of TC and HC are
negligible on Cu-Sc catalyst. The result brings some insights into the active site of the catalyst.
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Fig. 7. Effect of Physicochemical Properties on STY Change of Cu-Sc Catalyst.

Thus the influential properties for Cu-lanthanoid catalyst were those for ligand effect (by EN
and 1I) and geometric effect (by BP, HV, and CR). Thermal effect (TC and HC) plays a small
role in this case.

5. Conclusion

Catalytic activities for methanol synthesis from syngas at 1 MPa and 498 K of Cu-Pr and Cu-Sc
were precisely predicted. The activity of Cu-Sc was predicted to be much higher than those
of the previous Cu-lanthanoid catalyst and the prediction was confirmed experimentally. For
the prediction only the physicochemical properties of lanthanoid elements and the catalytic
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On the other hand, in the case of metal alloy, metals with higher HV tend to be dominant on
the surface. Thus, BP and HV in group 2 probably are the indexes of surface mobility. With
Cu-Yb catalyst for hydrogenation, the catalyst morphology is influenced by the pretreatment
temperature. Cluster-like ytterbium oxide homogeneously dispersed in copper metal when
it is activated at the optimum temperature, and the morphology strongly affects the catalytic
performance (Sakata et al., 1999). Because CR is one of the most principal character of the
bimetallic catalyst (Cu-lanthanoid), CR can influence the morphology along with the HV or
BP, on the surface Cu metal and can influence hydrogenation activity.
Generally, sintering of Cu metal is a serious problem for the stability of Cu catalyst. When
highly dispersed and active Cu/Zn/Al catalyst was prepared by ethanol-oxalate method,
the cautious start-up was necessary for the appearance of high activity because methanol
synthesis is highly exothermic reaction and the facile start-up causes the heat-up and sintering
of the catalyst. Thus, thermal-effect-related properties such as TC and HC are potentially the
important factor for Cu catalyst. As shown in Fig. 7, however, the effect of TC and HC are
negligible on Cu-Sc catalyst. The result brings some insights into the active site of the catalyst.
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Thus the influential properties for Cu-lanthanoid catalyst were those for ligand effect (by EN
and 1I) and geometric effect (by BP, HV, and CR). Thermal effect (TC and HC) plays a small
role in this case.

5. Conclusion

Catalytic activities for methanol synthesis from syngas at 1 MPa and 498 K of Cu-Pr and Cu-Sc
were precisely predicted. The activity of Cu-Sc was predicted to be much higher than those
of the previous Cu-lanthanoid catalyst and the prediction was confirmed experimentally. For
the prediction only the physicochemical properties of lanthanoid elements and the catalytic
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activity of Cu-lanthanoid other than Cu-Pr and Cu-Sc were necessary. The best regression
model was obtained by support vector regression when the parameters of the model was
optimized by leave-one-out method. Such optimization method is important to prevent the
over-fitting problem. The influential physicochemical properties were those for geometric
effect and ligand effect for Cu catalyst, whereas thermal effect plays a small role. Support
vector machine can be a robust tool for rapid catalyst development.
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Holeňa, M. & Baerns, M. (2003). Feedforward neural networks in catalysis A tool for
the approximation of the dependency of yield on catalyst composition, and for
knowledge extraction, Catalysis Today 81(3): 485–494.

Kito, S., Hattori, T. & Murakami, Y. (1992). Estimation of the acid strength of mixed oxides by
a neural network, Industrial & Engineering Chemistry Research 31(3): 979–981.

Kito, S., Hattori, T. & Murakami, Y. (1994). Estimation of catalytic performance by neural
network: product distribution in oxidative dehydrogenation of ethylbenzene, Applied
Catalysis. A: General 114(2): 173–178.

Nandi, S., Badhe, Y., Lonari, J., Sridevi, U., Rao, B., Tambe, S. & Kulkarni, B. (2004). Hybrid
process modeling and optimization strategies integrating neural networks/support
vector regression and genetic algorithms: study of benzene isopropylation on Hbeta
catalyst, Chemical Engineering Journal 97(2-3): 115–129.

Nix, R., Rayment, T., Lambert, R., Jennings, J. & Owen, G. (1987). An in situ X-ray diffraction
study on the activation and performance of methanol synthesis catalysts derived
from rare earth-copper alloys, Journal of Catalysis 106(1): 216–234.

Omata, K., Endo, Y., Ishii, H., Masuda, A. & Yamada, M. (2008). Effective additives of
Ni/α-Al2O3 catalyst at low methane conversion of oxidative reforming for syngas
formation, Applied Catalysis A: General 351(1): 54–58.

Omata, K., Hashimoto, M., Sutarto, Ishiguro, G., Watanabe, Y., Umegaki, T. & Yamada,
M. (2005). Screening using artificial neural network of additives for Cu-Zn oxide
catalyst for methanol synthesis from syngas, Journal of the Japan Petroleum Institute
48(3): 145–149.

Omata, K., Watanabe, Y., Hashimoto, M., Umegaki, T. & Yamada, M. (2004). Simultaneous
optimization of preparation conditions and composition of the methanol synthesis
catalyst by an all-encompassing calculation on an artificial neural network, Industrial
& Engineering Chemistry Research 43(13): 3282 – 3288.

Omata, K. & Yamada, M. (2004). Prediction of effective additives to a Ni/active carbon catalyst
for vapor-phase carbonylation of methanol by an artificial neural network, Industrial
& Engineering Chemistry Research 43(20): 6622–6625.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Saito, M., Fujitani, T., Takeuchi, M. & Watanabe, T. (1996). Development of copper/zinc
oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide
and hydrogen, Applied Catalysis A, General 138(2): 311–318.

Sakata, Y., Nobukuni, S., Hashimoto, T., Takahashi, F., Imamura, H. & Tsuchiya, S. (1998).
Catalytic Activity for Methanol Synthesis over a Copper-Lanthanide Oxide Complex
System Prepared from a Copper-Lanthanide Complex Oxide of Cu6O8Yb(NO3),
Chemistry Letters 27(12): 1211–1212.

Sakata, Y., Nobukuni, S., Kikumoto, E., Tanaka, K., Imamura, H. & Tsuchiya, S. (1999).
Preparation and catalytic property of a copper–lanthanide oxide binary system for
hydrogenation reaction, Journal of Molecular Catalysis. A, Chemical 141(1-3): 269–276.

Serna, P., Baumes, L., Moliner, M. & Corma, A. (2008). Combining high-throughput
experimentation, advanced data modeling and fundamental knowledge to develop
catalysts for the epoxidation of large olefins and fatty esters, Journal of Catalysis
258(1): 25–34.

163Facile Tool for Prediction of Catalytic Activity - Cu-Lanthanoid Catalyst for Methanol Synthesis



activity of Cu-lanthanoid other than Cu-Pr and Cu-Sc were necessary. The best regression
model was obtained by support vector regression when the parameters of the model was
optimized by leave-one-out method. Such optimization method is important to prevent the
over-fitting problem. The influential physicochemical properties were those for geometric
effect and ligand effect for Cu catalyst, whereas thermal effect plays a small role. Support
vector machine can be a robust tool for rapid catalyst development.

6. References

Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on
Automatic Control 19(6): 716–723.

Andriamasinoro, D., Kieffer, R. & Kiennemann, A. (1993). Preparation of stabilized
copper-rare earth oxide catalysts for the synthesis of methanol from syngas, Applied
Catalysis. A: General 106(2): 201–212.

Barin, I., Sauert, F., Schultze-Rhonhof, S. & Sheng, W. (1993). Thermochemical data of pure
substances (2nd ed.), VCH, Weinheim.

Barr, G., Dong, W. & Gilmore, C. (2004). High-throughput powder diffraction. II.
Applications of clustering methods and multivariate data analysis, Journal of Applied
Crystallography 37(2): 243–252.

Baumes, L., Farrusseng, D., Lengliz, M. & Mirodatos, C. (2004). Using Artificial Neural
Networks to Boost High-throughput Discovery in Heterogeneous Catalysis, QSAR
& Combinatorial Science 23(9): 767–778.

Baumes, L., Moliner, M. & Corma, A. (2007). Prediction of ITQ-21 zeolite phase
crystallinity: Parametric versus non-parametric strategies, QSAR and Combinatorial
Science 26(2): 255.

Baumes, L., Moliner, M. & Corma, A. (2009). Design of a full-profile matching solution for
high-throughput analysis of multi-phases samples through powder x-ray diffraction,
Chemistry-A European Journal 15(17): 4258–4269.

Baumes, L., Moliner, M., Nicoloyannis, N. & Corma, A. (2008). A reliable methodology for
high throughput identification of a mixture of crystallographic phases from powder
X-ray diffraction data, CrystEngComm 10(10): 1321–1324.

Baumes, L., Serra, J., Serna, P. & Corma, A. (2006). Support vector machines for predictive
modeling in heterogeneous catalysis: a comprehensive introduction and overfitting
investigation based on two real applications, Journal of Combinatorial Chemistry
8(4): 583–596.

Fan, R.-E., Chen, P.-H. & Lin, C.-J. (2005). Working set selection using second order
information for training support vector machines, Journal of Machine Learning Research
6: 1889–1918.

Farrusseng, D., Klanner, C., Baumes, L., Lengliz, M., Mirodatos, C. & Schüth, F. (2005). Design
of discovery libraries for solids based on QSAR models, QSAR & Combinatorial Science
24(1): 78–93.

Gilmore, C., Barr, G. & Paisley, J. (2004). High-throughput powder diffraction. I. A new
approach to qualitative and quantitative powder diffraction pattern analysis using
full pattern profiles, Journal of Applied Crystallography 37(2): 231–242.

Grubert, G., Kondratenko, E., Kolf, S., Baerns, M., van Geem, P. & Parton, R. (2003).
Fundamental insights into the oxidative dehydrogenation of ethane to ethylene
over catalytic materials discovered by an evolutionary approach, Catalysis Today
81(3): 337–345.

162 Artificial Neural Networks- Application

activity of Cu-lanthanoid other than Cu-Pr and Cu-Sc were necessary. The best regression
model was obtained by support vector regression when the parameters of the model was
optimized by leave-one-out method. Such optimization method is important to prevent the
over-fitting problem. The influential physicochemical properties were those for geometric
effect and ligand effect for Cu catalyst, whereas thermal effect plays a small role. Support
vector machine can be a robust tool for rapid catalyst development.

6. References

Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on
Automatic Control 19(6): 716–723.

Andriamasinoro, D., Kieffer, R. & Kiennemann, A. (1993). Preparation of stabilized
copper-rare earth oxide catalysts for the synthesis of methanol from syngas, Applied
Catalysis. A: General 106(2): 201–212.

Barin, I., Sauert, F., Schultze-Rhonhof, S. & Sheng, W. (1993). Thermochemical data of pure
substances (2nd ed.), VCH, Weinheim.

Barr, G., Dong, W. & Gilmore, C. (2004). High-throughput powder diffraction. II.
Applications of clustering methods and multivariate data analysis, Journal of Applied
Crystallography 37(2): 243–252.

Baumes, L., Farrusseng, D., Lengliz, M. & Mirodatos, C. (2004). Using Artificial Neural
Networks to Boost High-throughput Discovery in Heterogeneous Catalysis, QSAR
& Combinatorial Science 23(9): 767–778.

Baumes, L., Moliner, M. & Corma, A. (2007). Prediction of ITQ-21 zeolite phase
crystallinity: Parametric versus non-parametric strategies, QSAR and Combinatorial
Science 26(2): 255.

Baumes, L., Moliner, M. & Corma, A. (2009). Design of a full-profile matching solution for
high-throughput analysis of multi-phases samples through powder x-ray diffraction,
Chemistry-A European Journal 15(17): 4258–4269.

Baumes, L., Moliner, M., Nicoloyannis, N. & Corma, A. (2008). A reliable methodology for
high throughput identification of a mixture of crystallographic phases from powder
X-ray diffraction data, CrystEngComm 10(10): 1321–1324.

Baumes, L., Serra, J., Serna, P. & Corma, A. (2006). Support vector machines for predictive
modeling in heterogeneous catalysis: a comprehensive introduction and overfitting
investigation based on two real applications, Journal of Combinatorial Chemistry
8(4): 583–596.

Fan, R.-E., Chen, P.-H. & Lin, C.-J. (2005). Working set selection using second order
information for training support vector machines, Journal of Machine Learning Research
6: 1889–1918.

Farrusseng, D., Klanner, C., Baumes, L., Lengliz, M., Mirodatos, C. & Schüth, F. (2005). Design
of discovery libraries for solids based on QSAR models, QSAR & Combinatorial Science
24(1): 78–93.

Gilmore, C., Barr, G. & Paisley, J. (2004). High-throughput powder diffraction. I. A new
approach to qualitative and quantitative powder diffraction pattern analysis using
full pattern profiles, Journal of Applied Crystallography 37(2): 231–242.

Grubert, G., Kondratenko, E., Kolf, S., Baerns, M., van Geem, P. & Parton, R. (2003).
Fundamental insights into the oxidative dehydrogenation of ethane to ethylene
over catalytic materials discovered by an evolutionary approach, Catalysis Today
81(3): 337–345.
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1. Introduction 
Accurate software cost estimation has always been a major concern especially for people 
involved in project management, resource control and schedule planning. A high-quality 
and reliable development effort estimate could provide more efficient planning and control 
over the whole software process and guide a project to success. As literature shows many 
researchers proposed a plethora of methods and techniques to model the relationship 
between software size and the actual development costs (Jørgensen & Shepperd, 2007). 
However, the track record of IT projects shows that often a large number fails. Most IT 
experts agree that such failures occur more regularly than they should (Charette, 2005). 
According to the 10th edition of the annual CHAOS report from the Standish Group that 
studied over 40,000 projects in 10 years, it seems that success rates increased to 34% and 
failures declined to 15% of the projects. Even though success rates increased, still, 51% of the 
projects overrun time/budget, lack critical features and requirements and/or important 
quality requirements are compromised. Furthermore, average software costs are apparently 
overrun by 43% (Software Magazine, 2004). One of the main reasons for these figures is 
failure to estimate the actual effort required to develop a software project. 
A reliable software cost estimation model has always been a major challenge and demand for 
project managers at the initiation phase of the project and also an important asset for the whole 
process of software development. In addition, there is a large discussion on the discovery of 
the relationship between cost drivers and effort, especially of one of the most critical cost 
factors, namely software size (Sommerville, 2007). The aforementioned modelling and 
estimation problem is further amplified due to the high level of complexity and uniqueness of 
each project. Estimating software costs, as well as deciding on assessing the appropriate cost 
drivers, remain difficult issues that need to be addressed. Such issues are constantly at the 
forefront of the project management’s interests from the initiation of the project until the 
system is delivered. Cost estimates, even for well-planned projects, are hard to make and will 
probably concern project managers long before the problem is adequately solved. 
Over the years software cost estimation has attracted considerable research attention and 
many techniques have been developed to effectively predict software costs (Briand & 
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Wieczorek, 2002; Moløkken & Jørgensen, 2003; Jørgensen & Shepperd, 2007). The dominant 
techniques during the past decades involved Regression since it was applied in well-known 
software cost estimation models (such as the COnstructive COst MOdel, COCOMO) to 
capture the relationship between cost drivers and effort. During the last years, analogy-
based, expert judgement, decision trees, neural networks, probabilistic and other 
approaches arose in software cost estimation studies (Jørgensen & Shepperd, 2007). 
Nevertheless, no single solution has yet been proposed to adequately address the problem. 
Typically, the amount and complexity of the development effort proportionally drives 
software costs. However, as other factors, such as technology, team and manager skills, 
software quality, project size, also affect the development process it becomes even more 
difficult to assess the actual costs.  
A commonly investigated approach is to estimate as accurately as possible some of the 
fundamental characteristics related to cost, such as effort, usually measured in person-months, 
through past empirical project examples. In addition, it is also preferable to measure a 
condensed set of several attributes which can be more informative (descriptive) in regards to 
effort and then use them to estimate the actual effort. However, previous research identified 
the lack of standard definitions in software terminology and the presence of inconsistencies in 
empirical data samples, where it was also concluded that models with too many variables and 
parameters are very hard to calibrate (Miyazaki et al., 1994). For this reason, building models 
that focus only on a small set of significant attributes is more practical.  
Software size is commonly recognised as one of the most important factors affecting the 
amount of effort required to complete a project (Fenton & Pfleeger, 1997). Software size in 
terms of actual code length is considered a fairly subjective metric as it depends on the 
development language and the code generated by tools or re-used in software development. 
Also, software size is impractical in providing early effort estimates, that is, at the beginning of 
a project, mainly because it is unknown until the project’s source code is actually written. 
Therefore, after software specification is finalised, the estimation of software size based on the 
outline of the project is a fundamental activity. Also, it is very critical to carry out estimation of 
software size after the initial phases of development and the success of the final effort 
approximation may probably depend greatly on its value. This chapter looks more closely into 
the relations of these two most significant parts of software cost estimation. 
More specifically, some researchers have investigated various cost models using size to 
estimate effort (e.g., Wittig & Finnie, 1997; Dolado, 2001) whereas others have directed their 
efforts towards defining concise methods and measures to estimate software size from the 
early project phases (e.g., Park, 2005; Albrecht, 1979). The present work is more relevant to 
the former, aspiring to provide size and effort-based estimations and modelling the 
relationship between size, as this is expressed in terms of Lines of Code (LOC) or Function 
Points (FP), and development effort. The size of the programs under development is 
considered known for a collection of past, historical projects and in some cases their 
respective effort value is used to train the Artificial Neural Networks (ANN) models 
proposed. A set of projects is intentionally left out from the training process and is used to 
verify the generalisation of the models. Therefore, the main target of this investigation is to 
use the size values of new projects and utilise the robust cost models developed to 
approximate their effort value. The proposed models also make use of the effort values for 
the projects employed in the training of the models to investigate accuracy performance. 
The hypothesis is that once a robust relationship between size and effort is established by 
means of a model, then it can be used along with the size estimations to predict effort of new 
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projects more accurately. In addition, a Genetic Algorithm (GA) is constructed to calibrate 
the model’s architecture. 
Thus, in this work we study the potentials of developing a software cost model using 
computational intelligence techniques relying only on size and effort data. The core of the 
model proposed consists of Artificial Neural Networks (ANN). Our principal investigation 
is to determine which size-related metric between LOC and FP is more descriptive of effort 
with the aid of ANN. The initial approach builds ANN using size-related input data and the 
architecture is empirically defined. The second approach investigates a more complicated 
issue, i.e., which combination of size and/or effort related data of historical projects and 
which ANN architecture provides better effort approximations for the new projects. 
Essentially what is investigated in this approach is the size of a sliding-window used to 
extract inputs and the ANN topology. The experiments conducted suggest that quite 
promising accuracy results can be obtained and that if we specify the appropriate ANN 
architecture for each dataset, even more improved effort approximations may be achieved. 
Therefore, in the third approach the sliding-window length and the ANN architecture are 
optimised with the use of a Genetic Algorithm (GA). The GA evolves the ANN structure 
with the appropriate number and type of size-related inputs (i.e., LOC or FP), as well as the 
optimal internal hidden neuron architecture, to predict effort as accurately as possible. The 
inputs used to train and test the ANN are in this case: project size measurements (either 
Lines of Code (LOC) or Function Points (FP)), and/or the associated effort to predict the 
subsequent in series, unknown project effort. In addition, a Regression cost estimation 
model is presented as a benchmark to assess the performance of the model materialising 
estimations of the dependent variable (effort) using the same aforementioned training and 
testing samples, so that the proposed models are compared to a classic method.  
The rest of the paper is organised as follows: Section 2 presents a literature overview of 
relative research on size-based software cost estimation and especially focuses on machine 
learning techniques utilising ANN. Section 3 provides a description of the datasets and 
performance metrics used in the experiments following in Section 4. Section 4 includes the 
application of an ANN cost estimation model and describes an investigation of further 
improvements of the model proposing a hybrid algorithm to evaluate the optimal input 
methods and architectures for the datasets. In addition, this section summarises the results 
of each respective approach proposed and presents a comparison of the results to a classic 
Regression. Section 5, concludes with the overall remarks and findings of this work, 
discusses a few limitations and suggests future research steps.  

2. Related work 
Several techniques have been investigated for software cost estimation, especially data-
driven artificial intelligence techniques, such as neural networks, evolutionary computing, 
regression trees, rule-based induction as they present several advantages over other, 
traditional approaches like regression. Most of the relevant studies investigate, among other 
issues, the identification and realisation of the most important factors that influence 
software costs. This section focuses on related work mainly of size-based, neural network 
models proposed for software cost estimation. 
To begin with, most size-based models consider either the number of lines written for a 
project (called Lines of Code (LOC) or thousands of Lines of Code (KLOC)) used in models 
such as the COCOMO (Boehm, 1981; Boehm et al., 1997), or the number of Function Points 
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models proposed for software cost estimation. 
To begin with, most size-based models consider either the number of lines written for a 
project (called Lines of Code (LOC) or thousands of Lines of Code (KLOC)) used in models 
such as the COCOMO (Boehm, 1981; Boehm et al., 1997), or the number of Function Points 
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(FP) used in models such as Albrecht’s Function Point Analysis (FPA) (Albrecht & Gaffney, 
1983). In size-based software cost estimation models essentially, the size of LOC or FP is 
estimated at the early stages of development. The LOC metric has been primarily used in 
models such as the COCOMO (Boehm, 1981; Boehm, 1997) and SLIM (Putnam, 1978; 
Putnam & Myers, 1992; Putnam & Myers, 2003), models first proposed in the previous 
decades. LOC was considered quite popular because it represents a direct measurement of 
the length of the software under development. However, the main weakness of the LOC 
metric is that it cannot be estimated accurately from the beginning of the development 
phases of a project. Therefore, the FP metric was proposed in order to overcome this 
limitation (Albrecht, 1979) and estimate software size based on the requirements. FP 
basically represent a weighted sum of the following five factors: Input Count, Output 
Count, Logic Files Count, Inquiries Count and Interface Files Count. FP’s advantage is that 
after requirements specification these factors become known and moreover different 
systems can be compared irrespectively of the technologies and languages used in 
development. However, there is a lot of discussion regarding the reliability and objectivity 
of both size metrics as different tools counting LOC depend on the language and definitions 
used and different practitioners counting FP for the same projects produce different results 
(Kemerer, 1993). 
Many research studies investigate the potential of developing software cost prediction 
systems using different approaches, datasets and cost factors. Review articles, like the ones 
of Briand & Wieczorek (2002), Jørgensen & Shepperd (2007), include a detailed description 
of such studies. In this section we highlight some of the most important relevant studies 
dealing with size-based estimations.  
Wittig and Finnie (1997) estimated effort using the backpropagation algorithm on ANN for 
the Desharnais and ASMA datasets, mainly using system size to determine it’s relationship 
with effort. The approach yielded promising prediction results indicating, though, that the 
model required a more systematic development approach to establish the topology and 
parameter settings so as to obtain better results.  
Dolado (2001) searched for the cost estimation equation of the relationship between size and 
effort by using Genetic Programming tree structures representing several classical 
equations, like the linear, power, quadratic, etc. The approach reached to moderately good 
levels of prediction accuracy results by using solely the size attribute and indicated that 
further improvements can be achieved.  
Mittas et al. (2010) proposed the Demming Regression for modelling the relationship 
between software effort and size on the four datasets, Desharnais, COCOMO, Maxwell and 
Nasa93 based on the assumption that the observed values of the variables are measurements 
which coincide with the actual size values. Under this assumption the proposed technique 
estimated the regression coefficients and showed significant improvements in comparison to 
the classic Ordinary Least Squares regression. 
In summary, the literature thus far, exhibits several research attempts focusing on 
measuring effort and size and accepting them as the key variables in cost estimation. Many 
studies indicate that ANN models are quite promising estimators or that they perform at 
least as well as other approaches. In the rest of this section we investigate such approaches. 
Heiat (2002) compared the performance of two cost estimation techniques with respect to the 
type of language used for developing a range of projects. The finding of this work was that the 
ANN performed equally well with Regression for the sample projects that were implemented 
with a third generation programming language (3GL). However, experimenting with a less 
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homogeneous set of projects, that is, projects that were implemented with a third generation 
programming language (3GL) and others that were implemented with a fourth generation 
programming language (4GL), ANN outperformed Regression. 
Idri et al. (2002) conducted two experiments using a backpropagation trained Multi-Layer 
Perceptron (MLP) ANN architecture on the COCOMO dataset, the outputs of which were 
mapped to a fuzzy rule-based system. Results indicated poor accuracy performance, while it 
is most likely that the experiments suffered from overfitting as an extreme number of 
iterations (300,000) were executed on just a small set of 63 samples. 
Idri et al. (2004) investigated the use and interpretation of Radial Basis Function Networks 
(RBFN) in software cost estimation by mapping the ANN to a fuzzy rule-based system. 
Results on the COCOMO dataset indicated that the accuracy of the ANN depended heavily 
on the parameters of the middle layer and more specifically on the number of hidden 
neurons and the weight values. 
Kumar et al. (2008) used Wavelet Neural Networks (WNN) for software development 
estimation and compared their effectiveness with MLP, RBFN, Multiple Linear Regression 
(MLR), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Support Vector 
Machines (SVM) in terms of the Mean Magnitude of Relative Error (MMRE). WNN seemed to 
outperform all other techniques. 
Tronto et al. (2008) investigated the application of ANN and stepwise regression for 
software effort prediction. The experiments were conducted on the COCOMO dataset 
employing categorical variables whose impact was identified based on the work of Angelis 
et al. (2001) forming new categorical values. It was observed that there is a strong 
relationship between the success of a technique and the size of the learning dataset, the 
nature of the function for cost and other dataset characteristics (such as existence of outliers, 
collinearity and number of attributes).  
Azzeh et al. (2010) investigated the impact of Grey Relational Analysis (GRA) integrated 
with Fuzzy set theory in a by-analogy estimation model and also compared it to ANN, CBR 
and MLR models using several public datasets, i.e., ISBSG, Desharnais, COCOMO, Albrecht 
and Kemerer. The Fuzzy GRA appeared to produce statistically more significant results than 
the rest of the models. Moreover, it effectively reduced the uncertainty of attribute 
measurement between two software projects and improved the way to handle both 
numerical and categorical data in similarity measurements. 
Kaur et al. (2010) proved the effectiveness of ANN models for the NASA dataset compared to 
the Halstead, Walston-Felix, Bailey-Basili and Doty models, all of which are popular legacy 
models used in software cost estimation. Backpropagation ANN were used and reported as 
the most generalised networks currently in use that present good estimation capabilities. 
Summarizing some of the findings of the relevant literature, we conclude that many 
researchers recognise the high prediction accuracy of ANN and their effectiveness in 
modelling the cost estimation environment. However, a deeper investigation on the 
topology and configurations of the ANN model, as well as the appropriate inputs required 
in each case, needs to be carried out, so that the complexity of the technique is not increased 
proportionally to the number of inputs and the complexity of the sample projects, and still 
accuracy is driven to better levels.  
Subsequently, in this work we firstly aim to examine the potentials of ANN in software cost 
modelling and secondly to investigate the possibility of providing further improvements for 
such a model. Our goal is to inspect: (i) whether a suitable ANN model, in terms of input 
parameters, may be built; (ii) whether we can achieve sufficient estimates of software 
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(FP) used in models such as Albrecht’s Function Point Analysis (FPA) (Albrecht & Gaffney, 
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Dolado (2001) searched for the cost estimation equation of the relationship between size and 
effort by using Genetic Programming tree structures representing several classical 
equations, like the linear, power, quadratic, etc. The approach reached to moderately good 
levels of prediction accuracy results by using solely the size attribute and indicated that 
further improvements can be achieved.  
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Nasa93 based on the assumption that the observed values of the variables are measurements 
which coincide with the actual size values. Under this assumption the proposed technique 
estimated the regression coefficients and showed significant improvements in comparison to 
the classic Ordinary Least Squares regression. 
In summary, the literature thus far, exhibits several research attempts focusing on 
measuring effort and size and accepting them as the key variables in cost estimation. Many 
studies indicate that ANN models are quite promising estimators or that they perform at 
least as well as other approaches. In the rest of this section we investigate such approaches. 
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mapped to a fuzzy rule-based system. Results indicated poor accuracy performance, while it 
is most likely that the experiments suffered from overfitting as an extreme number of 
iterations (300,000) were executed on just a small set of 63 samples. 
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Results on the COCOMO dataset indicated that the accuracy of the ANN depended heavily 
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employing categorical variables whose impact was identified based on the work of Angelis 
et al. (2001) forming new categorical values. It was observed that there is a strong 
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nature of the function for cost and other dataset characteristics (such as existence of outliers, 
collinearity and number of attributes).  
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and Kemerer. The Fuzzy GRA appeared to produce statistically more significant results than 
the rest of the models. Moreover, it effectively reduced the uncertainty of attribute 
measurement between two software projects and improved the way to handle both 
numerical and categorical data in similarity measurements. 
Kaur et al. (2010) proved the effectiveness of ANN models for the NASA dataset compared to 
the Halstead, Walston-Felix, Bailey-Basili and Doty models, all of which are popular legacy 
models used in software cost estimation. Backpropagation ANN were used and reported as 
the most generalised networks currently in use that present good estimation capabilities. 
Summarizing some of the findings of the relevant literature, we conclude that many 
researchers recognise the high prediction accuracy of ANN and their effectiveness in 
modelling the cost estimation environment. However, a deeper investigation on the 
topology and configurations of the ANN model, as well as the appropriate inputs required 
in each case, needs to be carried out, so that the complexity of the technique is not increased 
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accuracy is driven to better levels.  
Subsequently, in this work we firstly aim to examine the potentials of ANN in software cost 
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such a model. Our goal is to inspect: (i) whether a suitable ANN model, in terms of input 
parameters, may be built; (ii) whether we can achieve sufficient estimates of software 
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development effort using only size or function based metrics on different datasets of 
empirical cost samples; (iii) whether a hybrid computational model, which consists of a 
combination of ANN and GA, may contribute to devising the ideal ANN architecture and 
set of inputs that meet some evaluation criteria. Our strategy is to exploit the benefits of 
computational intelligence in software cost modelling and provide a near to optimal effort 
predictor for impending new projects.  

3. Datasets and performance metrics 
A variety of historical software cost data samples coming from different datasets that are 
popular in software cost estimation empirical research were employed to provide a strong 
comparative basis with the results reported in other relevant studies. Also, the performance 
metrics used to assess the ANN’s precision accuracy are described in this section. 

3.1 Datasets description 
The following datasets were selected to demonstrate and test the approach describing 
historical project data: COCOMO`81 (COC`81), Kemerer`87 (KEM`87), a combination of 
COCOMO`81 and Kemerer`87 (COKEM`87), Albrecht and Gaffney`83 (ALGAF`83) and 
finally Desharnais`89 (DESH`89). 
The COC`81 (Boehm, 1981) dataset contains information about 63 software projects from 
different applications. Each project is described by the following 17 cost attributes: 
reliability, database size, complexity, required reusability, documentation, execution time 
constraint, main storage constraint, platform volatility, analyst capability, programmer 
capability, applications experience, platform experience, language & tool experience, 
personnel continuity, use of software tools, multi-site development and required schedule. 
Also, for the projects LOC is measured. 
The second dataset, named KEM`87 (Kemerer, 1987) contains 15 software project records 
gathered by a single organisation in the USA, which constitute business applications written 
mainly in COBOL. The attributes of the dataset are: actual project’s effort measured in man-
months, duration, KLOC, unadjusted and adjusted FP’s count. In addition, a combination of 
the two previous datasets was created, namely COKEM`87, to allow us to experiment with a 
larger but rather heterogeneous dataset. 
The third dataset ALGAF`83 (Albrecht & Gaffney, 1983) contains information about 24 
projects developed by the IBM DP service organisation. The datasets’ characteristics 
correspond to the actual project effort, the KLOC, the number of inputs, the number of 
outputs, the number of master files, the number of inquiries and the FP’s count.  
The fourth dataset, DESH`89 (Desharnais, 1989), includes observations for more than 80 
systems developed by a Canadian software development house at the end of 1980. The basic 
characteristics of the dataset account for the following: project name, development effort 
measured in hours, team’s experience, project manager’s experience, number of transactions 
processed, number of entities, unadjusted and adjusted FP, development environment and 
year of completion. 
A major assumption of our work is that the measurements of some attributes provided for 
the projects in these datasets which are also used in our experiments, like for example the 
effort and the size-related factors of Lines of Code (LOC) and Function Points (FP), coincide 
with the actual values of developing the corresponding programs. However, since some of 
these software project metrics are conceptually subjective and lack standard definitions, 
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they depend on the person counting and the tools used to perform measurements, and thus, 
this high degree of subjectivity clearly makes the measurement of the software attributes 
and validation of the prediction systems for the attributes and effort problematic. 

3.2 Performance metrics 
The performance of the models was evaluated using a combination of common error 
metrics, namely the Mean Relative Error (MRE), the Correlation Coefficient (CC) and the 
Normalized Root Mean Squared Error (NRMSE), together with the Prediction at Level (pred(l))  
and a devised Sign prediction (Sign) metric. These error metrics were employed to validate 
the model’s forecasting ability by considering the difference between the actual and the 
predicted cost samples and their ascendant or descendant progression in relation to the 
actual values.  
The MRE, given in equation (1), shows the prediction error focusing on the sample being 
predicted. ( )actx i is the actual effort and ( )predx i  the predicted effort of the thi project. 
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The NRMSE assesses the quality of predictions and is calculated using the Root Mean Squared 
Error (RMSE) as follows: 
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If NRMSE=0 then predictions are perfect; if NRMSE=1 the prediction is no better than taking   
predx equal to the mean value of n samples. 

The Prediction Level (Pred(l)) defined in equation (5) specifies how many data predictions k 
out of n (total number of data points predicted) performed well, i.e., below a predefined 



Artificial Neural Networks - Application 

 

172 

development effort using only size or function based metrics on different datasets of 
empirical cost samples; (iii) whether a hybrid computational model, which consists of a 
combination of ANN and GA, may contribute to devising the ideal ANN architecture and 
set of inputs that meet some evaluation criteria. Our strategy is to exploit the benefits of 
computational intelligence in software cost modelling and provide a near to optimal effort 
predictor for impending new projects.  

3. Datasets and performance metrics 
A variety of historical software cost data samples coming from different datasets that are 
popular in software cost estimation empirical research were employed to provide a strong 
comparative basis with the results reported in other relevant studies. Also, the performance 
metrics used to assess the ANN’s precision accuracy are described in this section. 

3.1 Datasets description 
The following datasets were selected to demonstrate and test the approach describing 
historical project data: COCOMO`81 (COC`81), Kemerer`87 (KEM`87), a combination of 
COCOMO`81 and Kemerer`87 (COKEM`87), Albrecht and Gaffney`83 (ALGAF`83) and 
finally Desharnais`89 (DESH`89). 
The COC`81 (Boehm, 1981) dataset contains information about 63 software projects from 
different applications. Each project is described by the following 17 cost attributes: 
reliability, database size, complexity, required reusability, documentation, execution time 
constraint, main storage constraint, platform volatility, analyst capability, programmer 
capability, applications experience, platform experience, language & tool experience, 
personnel continuity, use of software tools, multi-site development and required schedule. 
Also, for the projects LOC is measured. 
The second dataset, named KEM`87 (Kemerer, 1987) contains 15 software project records 
gathered by a single organisation in the USA, which constitute business applications written 
mainly in COBOL. The attributes of the dataset are: actual project’s effort measured in man-
months, duration, KLOC, unadjusted and adjusted FP’s count. In addition, a combination of 
the two previous datasets was created, namely COKEM`87, to allow us to experiment with a 
larger but rather heterogeneous dataset. 
The third dataset ALGAF`83 (Albrecht & Gaffney, 1983) contains information about 24 
projects developed by the IBM DP service organisation. The datasets’ characteristics 
correspond to the actual project effort, the KLOC, the number of inputs, the number of 
outputs, the number of master files, the number of inquiries and the FP’s count.  
The fourth dataset, DESH`89 (Desharnais, 1989), includes observations for more than 80 
systems developed by a Canadian software development house at the end of 1980. The basic 
characteristics of the dataset account for the following: project name, development effort 
measured in hours, team’s experience, project manager’s experience, number of transactions 
processed, number of entities, unadjusted and adjusted FP, development environment and 
year of completion. 
A major assumption of our work is that the measurements of some attributes provided for 
the projects in these datasets which are also used in our experiments, like for example the 
effort and the size-related factors of Lines of Code (LOC) and Function Points (FP), coincide 
with the actual values of developing the corresponding programs. However, since some of 
these software project metrics are conceptually subjective and lack standard definitions, 
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they depend on the person counting and the tools used to perform measurements, and thus, 
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and validation of the prediction systems for the attributes and effort problematic. 
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If NRMSE=0 then predictions are perfect; if NRMSE=1 the prediction is no better than taking   
predx equal to the mean value of n samples. 

The Prediction Level (Pred(l)) defined in equation (5) specifies how many data predictions k 
out of n (total number of data points predicted) performed well, i.e., below a predefined 
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level specified by the RE metric (see equation (6)) is lower than level l. In the experiments 
the parameter l was set equal to 0.25. 
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The Sign Predictor (Sign(p)) metric assesses if there is a positive or a negative transition of the 
actual and predicted effort trace in the projects used only during the evaluation of the 
models with the sliding-window technique on unknown test data. With this measure we are 
not interested in the exact values, but only if the tendency of the next value to the previous 
is similar. This is expressed in equations (7) and (8). 
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4. Experimental approach  
As we have already mentioned, the software cost estimation literature has shown many 
research attempts focusing on predictions of Artificial Neural Network (ANN) models, 
which are treated as promising estimators with equal or better performance compared to 
other popular approaches, like by-analogy or regression-based estimation. Their input 
variables usually involve numerous internal and external project attributes, typically 
concerning the actual product under development, the people undertaking the development 
tasks and the process followed.  
In our approach size-based data of various size definitions is used, which have been 
gathered from industrial projects, either representing software actual lines of code or 
functionality delivered. We investigate cost estimators in the form of ANN models, that aim 
to learn and generalise the knowledge embedded in past project samples, so as to estimate 
the associated development effort as accurately as possible. Consequently, our focus is 
twofold: Firstly, we will study performance, stability and calibration issues of the proposed 
models and secondly, identify any present correlations of development effort and size-based 
attributes.  
In this section we provide the detailed experimental process and the results yielded by the 
models developed: (i) An ANN approach with random holdout samples for validation, (ii) 
An ANN approach, with varying input method (a random timestamp was given to the data 
samples which were inputted using a sliding-window technique); (iii) A Hybrid model, 
coupling ANN with a GA to reach to a near to optimal input method and internal 
architecture; (iv) A classic Regression model. 
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4.1 An ANN investigating size-effort relation 
The following section presents the ANN model proposed to investigate the relationship 
between software size (expressed in LOC or FP) and effort, by conducting a series of 
experiments. We are concerned with inspecting the predictive ability of the ANN with respect 
to the attribute counting the size of the software developed for each project in each dataset.  

4.1.1 Model description 
ANN are non-linear, model-free and alternative to traditional statistical methods able to 
solve complex pattern recognition problems. ANN consist of basic computational elements 
called neurons organised in groups that form layers. They may be also viewed as directed 
graphs, composed of nodes and connections, also called weights or synapses, which connect 
the neurons (Haykin, 1999). Certain types of neurons organised in multiple layers form the 
Multi-Layer Perceptron (MLP) (McCulloch & Pitts, 1943) which is one of the most popular 
types of ANN. A simple MLP ANN is shown in Figure 1.  
The number of neurons in the input (first) layer is equal to the number of attributes used as 
independent variables. The last layer is the network output which corresponds to the 
independent variable (in our case software effort). Each subsequent layer uses the weights 
coming from the previous layers and adjusts them so that the accuracy error between the 
actual and predicted values for the dependent variable is diminished. Each neuron uses the 
respective input vectors, the weights and a momentum coefficient to calculate its output. 
 

 
Fig. 1. A feed-forward Multi-Layer Perceptron Neural Network 

Equation (9) specifies how the outcome of the first hidden node in the first layer 1
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estimated. 
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level specified by the RE metric (see equation (6)) is lower than level l. In the experiments 
the parameter l was set equal to 0.25. 
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The Sign Predictor (Sign(p)) metric assesses if there is a positive or a negative transition of the 
actual and predicted effort trace in the projects used only during the evaluation of the 
models with the sliding-window technique on unknown test data. With this measure we are 
not interested in the exact values, but only if the tendency of the next value to the previous 
is similar. This is expressed in equations (7) and (8). 
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4. Experimental approach  
As we have already mentioned, the software cost estimation literature has shown many 
research attempts focusing on predictions of Artificial Neural Network (ANN) models, 
which are treated as promising estimators with equal or better performance compared to 
other popular approaches, like by-analogy or regression-based estimation. Their input 
variables usually involve numerous internal and external project attributes, typically 
concerning the actual product under development, the people undertaking the development 
tasks and the process followed.  
In our approach size-based data of various size definitions is used, which have been 
gathered from industrial projects, either representing software actual lines of code or 
functionality delivered. We investigate cost estimators in the form of ANN models, that aim 
to learn and generalise the knowledge embedded in past project samples, so as to estimate 
the associated development effort as accurately as possible. Consequently, our focus is 
twofold: Firstly, we will study performance, stability and calibration issues of the proposed 
models and secondly, identify any present correlations of development effort and size-based 
attributes.  
In this section we provide the detailed experimental process and the results yielded by the 
models developed: (i) An ANN approach with random holdout samples for validation, (ii) 
An ANN approach, with varying input method (a random timestamp was given to the data 
samples which were inputted using a sliding-window technique); (iii) A Hybrid model, 
coupling ANN with a GA to reach to a near to optimal input method and internal 
architecture; (iv) A classic Regression model. 
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4.1 An ANN investigating size-effort relation 
The following section presents the ANN model proposed to investigate the relationship 
between software size (expressed in LOC or FP) and effort, by conducting a series of 
experiments. We are concerned with inspecting the predictive ability of the ANN with respect 
to the attribute counting the size of the software developed for each project in each dataset.  

4.1.1 Model description 
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graphs, composed of nodes and connections, also called weights or synapses, which connect 
the neurons (Haykin, 1999). Certain types of neurons organised in multiple layers form the 
Multi-Layer Perceptron (MLP) (McCulloch & Pitts, 1943) which is one of the most popular 
types of ANN. A simple MLP ANN is shown in Figure 1.  
The number of neurons in the input (first) layer is equal to the number of attributes used as 
independent variables. The last layer is the network output which corresponds to the 
independent variable (in our case software effort). Each subsequent layer uses the weights 
coming from the previous layers and adjusts them so that the accuracy error between the 
actual and predicted values for the dependent variable is diminished. Each neuron uses the 
respective input vectors, the weights and a momentum coefficient to calculate its output. 
 

 
Fig. 1. A feed-forward Multi-Layer Perceptron Neural Network 

Equation (9) specifies how the outcome of the first hidden node in the first layer 1
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estimated. 
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The networks employed in the present work are single hidden layer networks and MLP 
networks, which use one hidden layer partitioned into three parallel sub-layers activated by 
a different function, e.g., the hyperbolic tangent, the Gaussian and the Gaussian complement 
specified in equations (10), (11) and (12) respectively.  

 1( ) (1 exp( )) * (1 exp( ))f y by by −= − − + −  (10) 

 ( )2( ) expf y x= −  (11) 

 ( )2( ) 1 expf y x= − −  (12) 

The error backpropagation algorithm is one of the most widely used algorithms for training 
the network and requires data samples in the form of input-output patterns. The 
backpropagation learning algorithm is used to calculate derivatives of performance of the 
mean square error with respect to the weight and bias variables. In order to learn efficiently 
the data fed, the network calculates an error, which is the difference between the desired 
and the actual response. The error is propagated to the network in a backward manner, so 
that for each neuron the weights are adjusted to minimise this error iteratively.  
Moreover, for the backpropagation algorithm the dataset is randomly divided into three 
subsets: the training set, the validation set and the testing set. The training set is utilised during 
the learning process, the validation set is used to ensure that no overfitting occurs in the final 
result of the learning process and that the network will be able to generalise the knowledge 
gained. The testing set is an independent subset of the dataset, i.e., does not participate during 
the learning process and measures how well the network performs with unknown data. 

4.1.2 Results 
During our experiments we employed a simple, single hidden layer architecture for estimating 
development effort using LOC or FP from each dataset as input. In case a dataset included 
both size metrics we developed one ANN model for each metric in order to compare 
performance results. The number of nodes in the hidden layer was empirically defined for 
each dataset case due to the simplicity of the models under investigation. For the input layer 
netsum function was used, for the hidden layer the tansig function and finally, for the output 
layer the purelin function was used. The models were developed in Matlab R2010b. 
Each ANN was trained in a supervised manner, using the backpropagation algorithm and a 
random selection of 60% of the total projects comprised the training data samples. Also, 20% 
of the original data samples were used for validation during the training of the ANN and 
the rest 20% were the holdout samples that were later used for testing the generalisation 
ability of the best trained model, i.e., the ANN that yielded the lowest MRE figure. We 
randomly initialised the weights and momentum coefficients and re-trained the network 20 
times with the backpropagation algorithm. Finally, we utilised the best ANN to proceed to 
the testing phase. 
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TRAINING PHASE TESTING PHASE DATASET INPUT TOPO-
LOGY MRE CC NRMSE Pred(.25) MRE CC NRMSE Pred(.25) 

COC`81 LOC 1-4-1 0.888 0.998 0.063 0.333 1.629 0.597 2.890 0.154 
KEM`87 FP 1-3-1 0.204 0.966 0.248 0.625 0.282 0.943 0.614 0.333 
KEM`87 LOC 1-3-1 0.258 0.861 0.476 0.750 0.257 0.792 0.527 0.333 

COKEM`87 LOC 1-2-1 1.335 0.892 0.446 0.132 1.542 0.599 0.971 0.188 
ALGAF`83 FP 1-2-1 0.304 0.978 0.213 0.545 0.324 0.987 0.149 0.600 
ALGAF`83 LOC 1-4-1 0.301 0.991 0.130 0.364 0.469 0.985 0.691 0.200 
DESH`89 FP 1-3-1 0.487 0.697 0.715 0.474 0.348 0.712 0.696 0.400 

Table 1. Experimental Results obtained with the ANN-model. 

Table 1 summarises the best results obtained with the specific ANN architectures and the 
various datasets. The first column refers to the dataset used, the second to the type of size 
metric that was used in the input layer (LOC or FP), the third refers to the ANN topology 
and the rest of the columns refer to the error metrics during the training and testing phase.  
As expected, the degree of accuracy across the datasets varies because accurate and 
optimum models cannot be developed for every case. However, in some cases the overall 
performance of the approach is a promising indication that ANN models can reach to quite 
accurate effort approximations. The datasets whose effort is better approximated is KEM`87, 
followed by ALGAF`83 using FP as input and then followed by DESH`89. The results of the 
training phase indicate that the ANN models were able to learn well the training data from 
all the datasets except COKEM`87, which comprises a concatenation of two different 
datasets. Therefore, this effect may be attributed to the less homogeneous form of the 
aforementioned dataset which was merged from two other datasets. The results of the 
testing phase are also quite successful for KEM`87, ALGAF`83 and DESH`89 datasets but 
less accurate for the COC`81 and COKEM`87 cases. These figures of effort approximations 
were considerably easy to achieve, experimenting with only a few internal hidden neurons, 
i.e., starting from 2 to 5, because we were using one single size attribute as input.  
Moreover, for datasets describing both size attributes LOC and FP, i.e., KEM`87 and 
ALGAF`83, we observe that the ANN models using FP are more accurate in terms of 
correlation (CC) in the first case, and more accurate in prediction level (MRE) in the second 
case, during the testing phase. This indicates that the proposed model can achieve better 
approximations using the FP size metric instead of LOC, even though it is worth noting that 
more thorough investigation needs to be performed with different ANN architectures and 
coupling LOC and/or FP with effort spent on past projects aiming at improving prediction 
performance. 

4.2 An ANN coupling size-effort 
The following section presents an ANN model which investigates the relationship between 
software size (expressed in LOC or FP) and effort, by conducting a series of experiments 
coupling size and effort data. We are concerned with inspecting the predictive ability of the 
ANN according to the architecture utilised and the input method (volume and order of the 
data fed to the model) per dataset. 

4.2.1 Model description 
The core architecture of a size-effort coupling ANN was a feedforward MLP (as previously 
described in Figure 1) connecting each input neuron with hidden layers consisting of 
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The networks employed in the present work are single hidden layer networks and MLP 
networks, which use one hidden layer partitioned into three parallel sub-layers activated by 
a different function, e.g., the hyperbolic tangent, the Gaussian and the Gaussian complement 
specified in equations (10), (11) and (12) respectively.  
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The error backpropagation algorithm is one of the most widely used algorithms for training 
the network and requires data samples in the form of input-output patterns. The 
backpropagation learning algorithm is used to calculate derivatives of performance of the 
mean square error with respect to the weight and bias variables. In order to learn efficiently 
the data fed, the network calculates an error, which is the difference between the desired 
and the actual response. The error is propagated to the network in a backward manner, so 
that for each neuron the weights are adjusted to minimise this error iteratively.  
Moreover, for the backpropagation algorithm the dataset is randomly divided into three 
subsets: the training set, the validation set and the testing set. The training set is utilised during 
the learning process, the validation set is used to ensure that no overfitting occurs in the final 
result of the learning process and that the network will be able to generalise the knowledge 
gained. The testing set is an independent subset of the dataset, i.e., does not participate during 
the learning process and measures how well the network performs with unknown data. 

4.1.2 Results 
During our experiments we employed a simple, single hidden layer architecture for estimating 
development effort using LOC or FP from each dataset as input. In case a dataset included 
both size metrics we developed one ANN model for each metric in order to compare 
performance results. The number of nodes in the hidden layer was empirically defined for 
each dataset case due to the simplicity of the models under investigation. For the input layer 
netsum function was used, for the hidden layer the tansig function and finally, for the output 
layer the purelin function was used. The models were developed in Matlab R2010b. 
Each ANN was trained in a supervised manner, using the backpropagation algorithm and a 
random selection of 60% of the total projects comprised the training data samples. Also, 20% 
of the original data samples were used for validation during the training of the ANN and 
the rest 20% were the holdout samples that were later used for testing the generalisation 
ability of the best trained model, i.e., the ANN that yielded the lowest MRE figure. We 
randomly initialised the weights and momentum coefficients and re-trained the network 20 
times with the backpropagation algorithm. Finally, we utilised the best ANN to proceed to 
the testing phase. 
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Table 1. Experimental Results obtained with the ANN-model. 

Table 1 summarises the best results obtained with the specific ANN architectures and the 
various datasets. The first column refers to the dataset used, the second to the type of size 
metric that was used in the input layer (LOC or FP), the third refers to the ANN topology 
and the rest of the columns refer to the error metrics during the training and testing phase.  
As expected, the degree of accuracy across the datasets varies because accurate and 
optimum models cannot be developed for every case. However, in some cases the overall 
performance of the approach is a promising indication that ANN models can reach to quite 
accurate effort approximations. The datasets whose effort is better approximated is KEM`87, 
followed by ALGAF`83 using FP as input and then followed by DESH`89. The results of the 
training phase indicate that the ANN models were able to learn well the training data from 
all the datasets except COKEM`87, which comprises a concatenation of two different 
datasets. Therefore, this effect may be attributed to the less homogeneous form of the 
aforementioned dataset which was merged from two other datasets. The results of the 
testing phase are also quite successful for KEM`87, ALGAF`83 and DESH`89 datasets but 
less accurate for the COC`81 and COKEM`87 cases. These figures of effort approximations 
were considerably easy to achieve, experimenting with only a few internal hidden neurons, 
i.e., starting from 2 to 5, because we were using one single size attribute as input.  
Moreover, for datasets describing both size attributes LOC and FP, i.e., KEM`87 and 
ALGAF`83, we observe that the ANN models using FP are more accurate in terms of 
correlation (CC) in the first case, and more accurate in prediction level (MRE) in the second 
case, during the testing phase. This indicates that the proposed model can achieve better 
approximations using the FP size metric instead of LOC, even though it is worth noting that 
more thorough investigation needs to be performed with different ANN architectures and 
coupling LOC and/or FP with effort spent on past projects aiming at improving prediction 
performance. 

4.2 An ANN coupling size-effort 
The following section presents an ANN model which investigates the relationship between 
software size (expressed in LOC or FP) and effort, by conducting a series of experiments 
coupling size and effort data. We are concerned with inspecting the predictive ability of the 
ANN according to the architecture utilised and the input method (volume and order of the 
data fed to the model) per dataset. 

4.2.1 Model description 
The core architecture of a size-effort coupling ANN was a feedforward MLP (as previously 
described in Figure 1) connecting each input neuron with hidden layers consisting of 
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parallel slabs activated by different functions. Empirical variations of this architecture were 
employed regarding the number of inputs and neurons in the internal hidden layers, 
whereas the difference between the actual and the predicted effort was again manifested at 
the output layer (forecasting deviation). Again, the ANN were trained in a supervised 
manner, using the backpropagation algorithm and 70% of the training data samples. Also, 
20% of the original data samples were used for validation of the training of the ANN and 
finally, 10% holdout samples were used for testing the model. 

4.2.2 Results 
The empirically conducted experiments investigated mainly the appropriate number and 
type of inputs and internal neurons forming the layers of the ANN. Here, a more complex 
ANN architecture was used with three different hidden slabs in the internal layers. In 
addition, in these experiments several ANN parameters were kept constant as some 
preliminary experiments conducted initially showed that varying the type of the activation 
function in each layer had no effect on the forecasting quality. More specifically, we 
employed the following functions: for the input layer the linear function [-1, 1], for each 
respective hidden layer the Gaussian, the tanh, and the Gaussian complement and finally, for 
the output the logistic function.  
In addition, for each experiment performed, a sliding-window technique was applied on the 
randomly generated subsets of training to extract the input vector and feed it to the ANN. 
Therefore, the selected projects were manifested to the ANN with specific order, so that they 
would couple size and effort information of past projects developed. Practically, this is 
expressed in Table 2, covering the following Input Methods (IM) of a varying length (or size 
i) sliding-window, with i=1,…,5: 
• IM1-IM2: Using the Lines of Code or the Function Points of the ith projects we estimate 

the effort of the ith projects; 
• IM3-IM4: Using Lines of Code or Function Points with effort of the ith project we 

estimate the effort required for the next project (i+1)th in the series sequence; 
• IM5-IM6: Using Lines of Code or Function Points of the ith and (i+1)th projects and effort 

of the ith project we estimate the effort required for the (i+1)th project. 
In each input method the number of past samples included in the sliding-window, that is, 
the size i of the window, is specified from 1 to 5 (i index). These combinations enabled us to 
draw conclusions regarding the dependent variable (effort) for each coupling of input cost 
drivers and identify its ability to approximate the effort value. 
 
INPUT METHOD SOFTWARE METRICS*  Output* 
IM1 LOC(ti) EFF(ti) 
IM2 FP(ti) EFF(ti) 
IM3 LOC(ti), EFF(ti) EFF(ti+1) 
IM4 FP(ti), EFF(ti) EFF(ti+1) 
IM5 LOC(ti), LOC(ti+1), EFF(ti) EFF(ti+1) 
IM6 FP(ti), FP(ti+1), EFF(ti) EFF(ti+1) 

Table 2. Sliding-window technique to determine the ANN input method (*where i=1,...,5).. 

The best results obtained with the ANN model and the various datasets are summarised in 
Table 3. The first column refers to the dataset used, the second to the input method with which 
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the i data are fed to the model, the third refers to the ANN topology and the rest of the 
columns refer to the error metrics during the training and testing phase. The last two columns 
indicate the number of predicted projects that have the same sign tendency, in the sequence of 
the effort samples and the total percentage of the successful tendencies during testing. 
The figures in Table 3 show that an ANN model deploying a mixture of architectures and 
input methods yields various accuracy levels. More specifically, the DESH`89 dataset 
achieves high prediction accuracy, with lowest MRE equal to 0.05 and CC equal to 1.0. The 
KEM`87 dataset also performs adequately well with relatively low error figures. The worst 
prediction performance is obtained with ALGAF`83 and COKEM`87 datasets. These failures 
may be attributed to the extremely small number of projects involved in the prediction in 
the first case, and to the use of a heterogeneous dataset in the latter case. Finally, in 
comparison with the simple ANN models developed previously, the overall prediction 
accuracy yielded is higher for COC`81, KEM`87 and COKEM`87 datasets, but considerably 
lower for ALGAF`83 and DESH`89 datasets.  
 

TRAINING PHASE TESTING PHASE DATASET INPUT TOPOLOGY
MRE CC NRMSE MRE CC NRMSE 

Sign 
(p) 

Sign 
(p) % 

COC`81 IM5 3-15-15-15-1 0.929 0.709 0.716 0.551 0.407 0.952 5/10 50 
COC`81 IM1 2-9-9-9-1 0.871 0.696 0.718 0.525 0.447 0.963 7/12 58.33 
KEM`87 IM1 1-15-15-15-1 0.494 0.759 0.774 0.256 0.878 0.830 2/3 66.67 
KEM`87 IM5 5-20-20-20-1 0.759 0.939 0.384 0.232 0.988 0.503 2/2 100 

COKEM`87 IM3 8-20-20-20-1 5.038 0.626 0.781 0.951 0.432 0.948 3/8 37.50 
COKEM`87 IM3 4-3-3-3-1 5.052 0.610 0.796 0.768 0.257 1.177 4/8 50 
ALGAF`83 IM6 5-3-3-3-1 0.371 0.873 0.527 1.142 0.817 0.649 3/4 75 
ALGAF`83 IM2 2-20-20-20-1 0.335 0.975 0.231 1.640 0.936 0.415 2/4 50 
DESH`89 IM4 4-9-9-9-1 0.298 0.935 0.355 0.481 0.970 0.247 17/20 85 
DESH`89 IM4 6-9-9-9-1 0.031 0.999 0.042 0.051 1.000 0.032 20/20 100 

Table 3. Experimental Results obtained with the ANN-model coupling size-effort metrics. 
In addition, as the results listed suggest, the COC`81, KEM`87 and DESH`89 datasets 
achieve adequately fit predictions and thus for some cases, the method is able to 
approximate the actual development cost. Another observation is that the majority of the 
best yielded results employ a large number of internal neurons. Therefore, further 
investigation is needed with respect to different ANN topologies and Input Methods (IM) 
for the various datasets. To this end, we resorted to using a hybrid scheme, combining ANN 
with GA, the latter attempting to evolve and reach to the near to optimal network topology 
and input schema that yields accurate predictions and will have a reasonably small size (i.e., 
number of neurons) so that the computational cost will not radically increase. 

4.3 A hybrid ANN & GA 
The rationale behind this attempt was that the performance of ANN obtained thus far 
highly depended on the size, structure and connectivity of the network and results may be 
further improved if the right ANN configuration parameters are found. Therefore, we 
applied a GA to investigate whether we can find the ideal network settings by means of a 
cycle of generations including candidate solutions that are pruned by the criterion ‘survival 
of the fittest’, meaning the best performing ANN in terms of effort prediction accuracy. 
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parallel slabs activated by different functions. Empirical variations of this architecture were 
employed regarding the number of inputs and neurons in the internal hidden layers, 
whereas the difference between the actual and the predicted effort was again manifested at 
the output layer (forecasting deviation). Again, the ANN were trained in a supervised 
manner, using the backpropagation algorithm and 70% of the training data samples. Also, 
20% of the original data samples were used for validation of the training of the ANN and 
finally, 10% holdout samples were used for testing the model. 

4.2.2 Results 
The empirically conducted experiments investigated mainly the appropriate number and 
type of inputs and internal neurons forming the layers of the ANN. Here, a more complex 
ANN architecture was used with three different hidden slabs in the internal layers. In 
addition, in these experiments several ANN parameters were kept constant as some 
preliminary experiments conducted initially showed that varying the type of the activation 
function in each layer had no effect on the forecasting quality. More specifically, we 
employed the following functions: for the input layer the linear function [-1, 1], for each 
respective hidden layer the Gaussian, the tanh, and the Gaussian complement and finally, for 
the output the logistic function.  
In addition, for each experiment performed, a sliding-window technique was applied on the 
randomly generated subsets of training to extract the input vector and feed it to the ANN. 
Therefore, the selected projects were manifested to the ANN with specific order, so that they 
would couple size and effort information of past projects developed. Practically, this is 
expressed in Table 2, covering the following Input Methods (IM) of a varying length (or size 
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of the ith project we estimate the effort required for the (i+1)th project. 
In each input method the number of past samples included in the sliding-window, that is, 
the size i of the window, is specified from 1 to 5 (i index). These combinations enabled us to 
draw conclusions regarding the dependent variable (effort) for each coupling of input cost 
drivers and identify its ability to approximate the effort value. 
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the i data are fed to the model, the third refers to the ANN topology and the rest of the 
columns refer to the error metrics during the training and testing phase. The last two columns 
indicate the number of predicted projects that have the same sign tendency, in the sequence of 
the effort samples and the total percentage of the successful tendencies during testing. 
The figures in Table 3 show that an ANN model deploying a mixture of architectures and 
input methods yields various accuracy levels. More specifically, the DESH`89 dataset 
achieves high prediction accuracy, with lowest MRE equal to 0.05 and CC equal to 1.0. The 
KEM`87 dataset also performs adequately well with relatively low error figures. The worst 
prediction performance is obtained with ALGAF`83 and COKEM`87 datasets. These failures 
may be attributed to the extremely small number of projects involved in the prediction in 
the first case, and to the use of a heterogeneous dataset in the latter case. Finally, in 
comparison with the simple ANN models developed previously, the overall prediction 
accuracy yielded is higher for COC`81, KEM`87 and COKEM`87 datasets, but considerably 
lower for ALGAF`83 and DESH`89 datasets.  
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Table 3. Experimental Results obtained with the ANN-model coupling size-effort metrics. 
In addition, as the results listed suggest, the COC`81, KEM`87 and DESH`89 datasets 
achieve adequately fit predictions and thus for some cases, the method is able to 
approximate the actual development cost. Another observation is that the majority of the 
best yielded results employ a large number of internal neurons. Therefore, further 
investigation is needed with respect to different ANN topologies and Input Methods (IM) 
for the various datasets. To this end, we resorted to using a hybrid scheme, combining ANN 
with GA, the latter attempting to evolve and reach to the near to optimal network topology 
and input schema that yields accurate predictions and will have a reasonably small size (i.e., 
number of neurons) so that the computational cost will not radically increase. 

4.3 A hybrid ANN & GA 
The rationale behind this attempt was that the performance of ANN obtained thus far 
highly depended on the size, structure and connectivity of the network and results may be 
further improved if the right ANN configuration parameters are found. Therefore, we 
applied a GA to investigate whether we can find the ideal network settings by means of a 
cycle of generations including candidate solutions that are pruned by the criterion ‘survival 
of the fittest’, meaning the best performing ANN in terms of effort prediction accuracy. 
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4.3.1 Model description 
The following steps were employed for the Genetic Algorithm implementation: 
1. The initial population of individuals was created randomly containing an encoding of 

the necessary pieces of information, that is, the number of internal hidden neurons and 
the Input-Method (IM). 

2. From each individual of the generation we extracted the information regarding the 
network architecture and the structure of the input vector. Then the corresponding 
network was initialised, trained for a number of epochs and finally, simulated. From 
the simulation results obtained, all individuals were evaluated and the network state 
and performance results were stored. 

3. Once all individuals of the respective generation have been trained and tested on 
generalisation, the generation was evaluated as a whole. 

4. The top 5% of best individuals were forwarded to the next generation (elitism) and the 
rest individuals missing to complete the next generation were obtained through 
reproduction steps applying the selection, crossover and mutation operators. The 
offsprings produced through these steps replaced their parents in the original 
population. 

5. Steps (2), (3) and (4) were repeated until finally, a predefined number of generations 
have been reached. 

More specifically, the first task for implementing the hybrid model was to determine a type 
of encoding so as to express the potential solutions. The encoding used was a binary string 
representing the ANN structure, the internal hidden neurons and the varying input’s 
coupling of effort and size attributes. The inputs were inserted into the ANN models created 
within the hybrid algorithm following the Input Methods (IM) specified earlier. The number 
of neurons used in the hidden slabs was restricted not to exceed 20 neurons to avoid 
building ANN models that would lead to overfitting. The space of all feasible solutions (i.e., 
the set of solutions among which the desired solution resides) was called the search space. 
Each point in the search space represents one possible solution. Each possible solution was 
"marked" by its fitness value, which in our case was expressed by equation (13), minimizing 
the MRE and the overall size of the network, i.e., the total number of internal neurons, to 
avoid creating overly large and complex networks.  

 
1

1
fitness

MRE size
=

+ +
 (13) 

The GA searches the problem space to locate the best solution among a number of possible 
solutions.  Searching for a solution is then equal to looking for some extreme value 
(minimum or maximum) in the search space.  
The GA developed included three types of operators: selection (roulette wheel), crossover 
(with crossover rate=0.25) and mutation (with mutation rate=0.01). Selection chooses 
members from the population of chromosomes proportionally to their fitness and elitism 
was used to ensure that the best members of each population are always selected for the 
new population. Crossover adapts the genotype of two parents by exchanging parts of them 
and creating a new chromosome with a modified genotype. Crossover was performed by 
selecting a random gene along the length of the chromosomes and swapping all the genes 
after that point. Finally, the mutation operator simply changes a specific gene of a selected 
individual in order to create a new chromosome with a different genotype. 
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4.3.2 Results 
In this section we present and discuss the results obtained using the Hybrid model on the 
various available datasets. The best ANN architectures yielded are listed in the third column 
of Table 4 with the various error figures obtained both during the training and the testing 
phase.  
The performance of the different ANN architectures constructed with the aid of the GA 
shows high learning ability. The main observation is that for all of the datasets the hybrid 
model was able to optimise prediction accuracy. This is remarkably consistent through both 
the training and the testing error figures reported by the best solutions summarised in Table 
4. In fact, for all the datasets investigated, the hybrid model performs adequately well in 
terms of generalisation ability and prediction accuracy. During training and testing the MRE 
is significantly lowered compared to the results of the experiments conducted with the 
simple ANN (Table 1) and the empirical coupling ANN (Table 3), the CC improves in all 
cases, whereas the NRMSE is also highly improved.  
Moreover, it is observed that there is a strong relationship between the success of a 
particular model and the type of attributes used as inputs. In all datasets, IM1 utilising in 
each case LOC or FP as inputs, yields the best prediction results compared to IM2 and IM3. 
Accuracy is usually diminished when adding the effort values in IM2 and in all other cases, 
except in the dataset DESH`89 case, where IM3 accuracy is considerably improved. This 
shows that the size metric for all datasets improves effort approximations and that LOC or 
FP are noticeably highly descriptive factors of effort. We would expect that adding the effort 
values in the inputs of the ANN models would have improved estimates, but this is not the 
case due to the existence of some projects outliers in respect to their effort values. 
Moreover, it seems that the experiments using KEM`87 showed similar MRE and CC error 
figures and an improved NRMSE in favor of FP instead of LOC, both during training and 
testing. The ALGAF`83 dataset showed similar NRMSE and CC error figures, whereas an 
improved MRE was observed using LOC. Overall, the experiments conducted using one of 
these two size measures for predicting effort (i.e., in IM1 and IM2) produce superior results 
consistently throughout all the datasets indicating that both LOC and FP are very good 
descriptors of effort. Of course this is something that on one hand agrees with what is 
 

TRAINING PHASE TESTING PHASE DATASET INPUT TOPOLOGY MRE CC NRMSE MRE CC NRMSE 
COC`81 IM1 1-9-17-10-1 0.004 1.000 0.014 0.003 1.000 0.014 
COC`81 IM3 2-20-18-3-1 0.092 0.963 0.270 0.075 0.961 0.278 
COC`81 IM5 3-19-20-4-1 0.043 0.990 0.149 0.044 0.981 0.199 
KEM`87 IM1 1-17-13-16-1 0.008 1.000 0.015 0.009 1.000 0.019 
KEM`87 IM3 2-18-14-18-1 0.246 0.825 0.539 0.211 0.822 0.550 
KEM`87 IM5 3-19-15-20-1 0.004 1.000 0.006 0.028 0.997 0.081 

ALGAF`83 IM2 1-17-20-11-1 0.006 1.000 0.005 0.009 1.000 0.006 
ALGAF`83 IM4 2-19-1520-1 0.041 0.998 0.074 0.062 0.993 0.122 
ALGAF`83 IM6 3-19-9-16-1 0.029 0.999 0.045 0.031 0.999 0.051 
DESH`89 IM2 1-13-20-6-1 0.002 1.000 0.008 0.005 1.000 0.024 
DESH`89 IM4 2-19-20-8-1 0.087 0.990 0.136 0.163 0.977 0.210 
DESH`89 IM6 3-19-11-10-1 0.089 0.990 0.139 0.173 0.975 0.218 

Table 4. Hybrid model (coupling ANN and GA) results. 
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cases, whereas the NRMSE is also highly improved.  
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consistently throughout all the datasets indicating that both LOC and FP are very good 
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already pointed out by numerous studies in literature and on the other suggests that our 
model behaves as it should. Also, another observation is that the best accuracy is 
significantly lowered (error rates are higher) when the effort is given as an additional input 
to the ANN (in the IM3 or IM4 cases), meaning that the model’s ability to capture the 
correlation between size and effort is decreased. This shows that outlying values for the 
effort of these projects exist and indicates that some sort of filtering could improve the 
results. Another observation is that ANN could be therefore used in the case of software cost 
estimation as a filtering process to eliminate outlying project values. We additionally 
observe that prediction accuracy is significantly and consistently improved when the LOC 
or FP of the project whose effort is being predicted, is given to the model (in the IM5 or IM6 
cases). Heuristically, this is a logical conclusion as the model in the latter case is fed with 
information regarding the project’s LOC or FP and therefore, the prediction accuracy is 
enhanced by this additional information. Overall, the proposed model seems to work under 
these assumptions consistently well. 

4.4 Regression investigating size-effort relation 
In this section we present the results obtained from a simple Regression so as to provide 
some comparative assessment of the models proposed thus far. Regression assesses how 
well the regression line approximates the real effort and it is built using the same samples 
used in the ANN training and testing phase. 
Regression analysis is used to capture and explain the relationship between the size and 
effort of projects in the form of an exponential function which can be represented by a 
polynomial transformed to linear using the natural logarithm.  

4.4.1 Model description 
We denote Y as the dependent variable of the total cost for developing software projects 
(usually expressed as the effort spent) and X the independent variables representing the size 
of projects (usually in LOC or FP). Each vector {(x1,y1), …, (xl,yl)} represents a sample of 
projects, where xi ∈ ℜn and yi ∈ ℜ for each project i and are used in the regression model 
defined in (14). We assume that the errors εi are independent and have a zero mean. The goal 
is to find the polynomial coefficients β0 and β1 representing the constant and the slope of the 
regression linear function ( )if x  respectively, the latter being defined in (15). 

 ( )i i iy f x ε= +  (14) 

 0 1( )i if x xβ β= +  (15) 
 

In case the relationship between the dependent and independent variables is not linear we 
assume that a simple transformation such as the logarithmic can be used to estimate a model 
of the form (16).  

 0 1i i iy xβ β ε= + +  (16) 
 

The error function the approach is trying to minimise is based on the least-squares form.  
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4.4.2 Results 
Regression is built under the assumption that the dependent variable (effort) is linearly 
related with the independent variable(s) (size and/or next effort values). The model 
produces the slope of a line that best fits the data of the training set and then, during the 
testing phase, we estimate the value of the dependent variable. We utilise the yielded 
regression coefficients from the training phase to estimate the values of effort for the testing 
samples. Finally, we compare the estimated effort values to the actual effort using the 
performance metrics mentioned above. 
The Regression approach is tested on all the datasets as they were originally separated into 
the training and testing subsets and were used by the ANN in the previous experiments. 
Thus, a comparison with the initial ANN models built is feasible. The results of Regression 
indicate average performance for all datasets with accuracy staying lower compared to that 
of the approaches previously proposed in this work (simple and hybrid ANN). This 
indicates that the form of the problem is considered quite complex and cannot be easily 
addressed by a simple form of Regression. However, although the ANN approach 
demonstrated some significant advantages in terms of prediction performance in the 
experiments of this work, it doesn’t mean that it can replace Regression but should be 
regarded as a promising approach for these certain circumstances. 
 

TRAINING PHASE TESTING PHASE 
DATASET INPUT

MRE CC NRMSE Pred(.25) MRE CC NRMSE Pred(.25) 
COC`81 LOC 0.608 0.834 0.579 0.233 1.022 0.639 1.045 0.154 
KEM`87 FP 0.424 0.764 0.663 0.500 0.196 0.974 0.289 0.667 
KEM`87 LOC 0.330 0.776 0.627 0.500 0.234 0.825 0.566 0.667 

COKEM`87 LOC 1.082 0.893 0.591 0.053 0.999 0.607 0.791 0.188 
ALGAF`83 FP 0.354 0.930 0.472 0.364 0.248 0.969 0.453 0.600 
ALGAF`83 LOC 0.408 0.837 0.530 0.364 0.397 0.970 0.556 0.200 
DESH`89 FP 0.514 0.543 0.848 0.395 0.311 0.708 0.819 0.467 

Table 5. Regression Results. 

The main problem of the Regression method yielding mediocre results may be attributed 
mainly to the method’s dependence on the distribution and normality of the data points 
used and its inability to approximate unknown functions, as opposed to the ability 
demonstrated by the simple ANN model as well as the hybrid approach with the GA. 
However, we recognise that in order to comparatively assess the results of a range of models 
statistical tests, like Wilcoxon’s, or t-tests need to be performed to investigate the statistical 
difference between the errors yielded by the comparative models. 

5. Conclusions  
In this chapter, we considered the problem of reliable and accurate software cost estimations 
through computational intelligence techniques. Effective modelling of the relationship 
between software effort and size has always been a challenge, especially for people involved 
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4.4.2 Results 
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5. Conclusions  
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between software effort and size has always been a challenge, especially for people involved 
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in project resource management, due to the high level of complexity and uniqueness of the 
software projects developed. The majority of existing estimation models and methods fail to 
reproduce this relationship so as to yield successful development effort approximations, or 
have difficulties even to converge to suggesting an explicit, measurable and concise set of 
factors affecting productivity. Nevertheless, there is a large discussion on the relationship of 
cost factors and effort and since this relationship is the core of any cost model, it is essential 
to describe it accurately. 
Many studies in the software cost estimation literature encourage the use of Artificial 
Neural Networks (ANN) as cost predictors showing that they may perform better or at least 
as well as other approaches. Adopting this position, this chapter involved the investigation 
of building the relationship of size and effort using ANN. Software size obtained from past 
historical project data has been proposed as one of the most important attributes affecting 
effort and has been extensively used to build a variety of cost models.  
Essentially, this chapter proposed a modelling approach utilising ANN and the most 
common size-related factors found in benchmark datasets. These factors refer to software 
Lines of Code (LOC) and Function Points (FP). The basic assumption of this work was that 
error-free size measurements are available for a number of software projects obtained from 
a set of past historical project data which are used as inputs for the ANN cost models 
created. In addition, a sliding-window of variable length was used to extract size-related 
sample data from the datasets (i.e., LOC or FP counts) targeting at coupling them with effort 
subsets from previously completed projects. This coupling was realised in the form of 
training patterns fed to ANN so as to investigate if a modelling relationship between size 
and effort may be established.  Moreover, a Genetic Algorithm (GA) was implemented to 
undertake the optimisation of the ANN architecture of the core model to reduce the Mean 
Relative Error (MRE). The near-to-optimal ANN topologies and type of inputs selected for 
each dataset were discussed and compared to Regression models built across the same 
training and testing data samples. 
The results obtained with the ANN models indicated that the performance of such a model 
mainly depends on its architecture and parameter settings, and relying on empirical rules to 
determine these settings is not the optimal approach. The problem was thus reduced to 
finding the ideal ANN architecture to formulate a reliable prediction model for software 
cost estimation. The first experimental results indicated mediocre prediction success, 
comparable to the simple Regression, except in a few dataset cases. Also, as the 
combinations of inputs used in the ANN models increased, we observed that designing an 
appropriate internal ANN architecture to deal with the complexity in each case (i.e., type of 
attributes and dataset) was a quite difficult task. Common methods, such as empirical or 
trial-and-error, often run the risk of overlooking more promising architectures and also, as a 
result, it was considered particularly hard to further optimise the results yielded by the 
ANN models. In addition, it became evident that there was need for more extensive 
exploration of solutions in the search space of various topologies and input methods as the 
results obtained by the investigated ANN models did not converge to a general solution.  
Therefore, this chapter introduced a hybrid model consisting of ANN and Genetic 
Algorithms (GA). The latter evolved a population of networks to select the optimal 
architecture and inputs that provided the most accurate software cost predictions. The 
results of this work showed that the ANN approach combined with a GA yields better 
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estimates than the empirically created ANN and Regression models, something that 
suggests that the technique is very promising.  
The main limitation of this method, as well as any other size-based approach, is that 
especially LOC size estimates must be known in advance to provide accurate enough effort 
estimations, which is never the case. Also, there is always the risk that if the same project 
was counted twice would not give exactly the same size (LOC or FP) or effort 
measurements, and this basic limitation is usually recognised between practitioners. In 
addition, these errors in measurements of size and effort should be taken into consideration 
in any approach used for cost estimation and especially if a large discrepancy between the 
actual and estimated size is occurring in estimations made in the early project phases.  
Another limitation is the lack of a satisfactory volume of homogeneous data, as well as of a 
clear definition and measurement rules for size units, such as LOC and FP, which result in 
uncertainty to the estimation process.  The software size is also affected by other factors that 
are not investigated by the models of this chapter, such as the programming language and 
platform used during development. This means that we have consciously focused only on 
coding effort, irrespective of the type of software and development method in this work, 
which accounts for only a percentage of the total effort in software development. Another 
important limitation related with the technologies used is that the ANNs are considered 
“black boxes” and so the GA requires an extensive search of the solution space, something 
which is considered very time-consuming.  
In future research steps we will emphasise on other aspects affecting the prediction 
performance of ANN, i.e., optimising other ANN parameters of different types of ANN, 
such as activation functions and learning techniques. Also, evolutionary processes on 
genetic search could help to automate and improve, if not optimise, ANN design required to 
represent complex behaviours. An evolutionary algorithm thus could be coupled with ANN 
in other ways, such as: (i) Employing fixed network structures with connection weights 
under evolutionary control, which includes both supervised learning applications and 
reinforced learning applications, (ii) Designing the ordering and organisation of the nodes 
from the input to the output layer of the network, including arrangement of 
interconnections, (iii) Pre-processing the input types of the training data, which can be also 
used to reduce the input set by discarding less informative, or descriptive cost drivers for 
approximating development effort.  
Future research steps may also concentrate on ways to improve the performance of the 
proposed approach, examples of which may be: (i) Study of more factors affecting 
development effort and their interdependencies, (ii) Further adjustment of the ANN and GA 
parameter settings, such as modification of the fitness function, (iii) Improvement of the 
efficiency of the algorithms by testing more homogeneous or clustered data and, (iv) 
Improvement of the quality of the data to achieve better convergence. Consequently, more 
experiments and more thorough investigation of the capabilities of the proposed approaches 
needs to be conducted but there is also the necessity for the consideration of a larger range 
of cost drivers.  
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estimates than the empirically created ANN and Regression models, something that 
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such as activation functions and learning techniques. Also, evolutionary processes on 
genetic search could help to automate and improve, if not optimise, ANN design required to 
represent complex behaviours. An evolutionary algorithm thus could be coupled with ANN 
in other ways, such as: (i) Employing fixed network structures with connection weights 
under evolutionary control, which includes both supervised learning applications and 
reinforced learning applications, (ii) Designing the ordering and organisation of the nodes 
from the input to the output layer of the network, including arrangement of 
interconnections, (iii) Pre-processing the input types of the training data, which can be also 
used to reduce the input set by discarding less informative, or descriptive cost drivers for 
approximating development effort.  
Future research steps may also concentrate on ways to improve the performance of the 
proposed approach, examples of which may be: (i) Study of more factors affecting 
development effort and their interdependencies, (ii) Further adjustment of the ANN and GA 
parameter settings, such as modification of the fitness function, (iii) Improvement of the 
efficiency of the algorithms by testing more homogeneous or clustered data and, (iv) 
Improvement of the quality of the data to achieve better convergence. Consequently, more 
experiments and more thorough investigation of the capabilities of the proposed approaches 
needs to be conducted but there is also the necessity for the consideration of a larger range 
of cost drivers.  
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1. Introduction 
Distributed systems have become increasingly common because they offer significant 
computational power and are cost-effective and scalable. Moreover, collaboration between 
users that are part of these distributed systems improves efficiency and effectiveness for a 
better utilization of this computational power. Because of this, new specific 
collaboration/cooperative models for distributive systems are needed for enabling effective 
collaboration/cooperation between users of these dynamic environments or Cooperative 
Distributed Environments (CDEs). A CDE is then an environment in which multiple users in 
remote locations participate in shared activity aiming to achieve a common goal. Most of the 
CDE work towards providing reliable, customized and QoS guaranteed dynamic computing 
environments for end-users. The success of achieving this goal in proper time (efficiency) 
and/or to obtain the higher quality of results (effectiveness) depends on implementing an 
appropriate collaboration model that should include learning abilities necessary for the use 
of the previous experience acquired (with situations that occurred in the past) in order to 
improve new required collaborations. 
On the other hand, according to CSCW (Computer Supported Cooperative Work) 
awareness is a useful concept used to achieve cooperation and collaboration in CDE as it 
increases communication opportunities (Matsushita & Okada, 1995). A collaborative process 
is leaded by five processes (Kuwana & Horikawa, 1995) (Malone & Crowston, 1994): 1) co-
presence, that gives the feeling that the user is in a shared environment with some other 
user at the same time; 2) awareness, a process where users recognize each other´s activities 
on the premise of co-presence, for instance “What are they doing?”, “Where are they 
working?”; 3) communication; 4) collaboration which together with communication permit 
users to collaborate between each other for accomplishing the tasks and common goals; and 
5) coordination which is needed to resolve the conflicts towards effective collaboration. 
In the same order of ideas, in CSCL (Computer Supported Collaborative Learning), 
awareness plays an important role as it promotes collaboration opportunities in a natural 
and efficient way (Ogata & Yano, 1998) and improves effectiveness of collaborative learning. 
In this matter, Gutwin et al identified the following types of awareness (Gutwin et al, 1995): 
social, task, concept, workspace, and knowledge. 
Moreover, SMI (Spatial Model of Interaction) (Benford & Fahlén, 1993) is one of the 
awareness models proposed with the purpose to obtain any knowledge of the immediately 
closer world in collaborative virtual environments. It is based primarily on the use of a 
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variety of mechanisms that were defined for this model and to steer the interaction in a 
virtual environment. These are the concepts of medium, aura, focus, nimbus and awareness. 
The concept of awareness in this context, more explicitly awareness of interaction, is defined 
for quantifying the degree, nature and quality of the interaction between the elements of the 
environment. 
This chapter focuses on the use of Artificial Neural Networks (ANNs) as an option to 
provide learning abilities to a collaborative model to meet goals mentioned above. First, this 
chapter makes a state of the art on this relationship between CDE and ANN specifically as it 
relates to the use of ANN to learn to collaborate and/or to improve collaboration. The 
chapter, then, develops a particular strategy based on the concept of awareness of 
interaction derived from SMI. The reason for using this strategy is because for cooperative 
tasks to be successful in CDEs they require from users to be known. Before this process is 
achieved it is important to know which users are more suitable in the system to cooperate 
with, as well as which tools are needed to achieve the common goal in the system in a 
cooperative way. In this regard, awareness allows users to be aware of others’ activities each 
and every moment. Information about others’ activities combined with their intentions and 
purposes could be used to improve cooperation in CDEs. 
Finally, this chapter also includes the results of a recent research that was carried out which 
combine the concepts of awareness of interaction and ANN applied in a particular model 
known as AMBAR (Awareness-based learning Model for distriButive collAborative 
enviRonment). Some particular comments related with the ANN used in AMBAR are 
included in a different section of this chapter. 

2. A summary of the state of the art 
There are two different categories of works related with ANNs and CDEs: 1) those in which 
CDE is used to improve the ANN performance; and 2) those where an ANN is used aiming 
to improve certain processes relative to the CDE. This chapter is more oriented to the second 
category of researches. 

2.1 Improving ANNs by using CDEs 
Related with improving the ANN performance by using a CDE, Garcia et al (Garcia et al, 
2002 and 2005) proposed a cooperative co-evolutionary model for the evolution of neural 
network topology and weights. Cooperative co-evolution is a recent paradigm in 
evolutionary computation that allows the effective modelling of cooperative environments. 
In a first work, authors proposed MOBNET (Garcia et al, 2002) that evolves subcomponents 
that must be combined in order to form a network, instead of whole networks. The problem 
of assigning credit to the subcomponents is approached as a multi-objective optimization 
task. The subcomponents in a cooperative co-evolutionary model must fulfil different 
criteria to be useful, these criteria is usually conflicted with each other. In this work authors 
show how using several objectives for every subcomponent and evaluating its fitness as a 
multi-objective optimization problem, the performance of the model is highly competitive. 
MOBNET is compared with several standard methods of classification and with other 
neural network models showing the best overall performance of all classification methods 
applied. It also produces smaller networks when compared to other models. Moreover, the 
basic idea underlying MOBNET is extensible to a more general model of co-evolutionary 
computation, as none of its features are exclusive of neural networks design.  
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In a second work of the same authors (Garcia et al, 2005), a general framework is proposed 
for designing neural network ensembles by means of cooperative co-evolution. The authors 
state that although theoretically, a single neural network with a sufficient number of 
neurons in the hidden layer would suffice to solve any problem, in practice many real-world 
problems are too hard to construct the appropriate network that could solve this problems. 
In such problems, neural network ensembles are a successful alternative. Nevertheless, the 
design of neural network ensembles is a complex task. The model proposed in this work has 
two main objectives: first, the improvement of the combination of the trained individual 
networks; second, the cooperative evolution of such networks, encouraging collaboration 
among them, instead of a separate training of each network. Authors concluded that the 
performance of the model is better than the performance of standard ensembles in terms of 
generalization error, as well as the size of the obtained ensembles that is also smaller. 
On the other hand, another example of improving ANN by using CDE is related with 
implementing ANNs on a parallel or distributed platform to improve the training 
performance. Some works related with this subject are (Calbert & Guan, 2005), (Kiran, 2009) 
and (Wesley-Smith, 2006). 

2.2 Improving CDEs by using ANNs 
One of the fields where ANN is used aiming to improve some area related with distributed 
environments has to do with analyzing and monitoring different distributed sources of 
voluminous data, multiple compute nodes, and distributed user community. So that a data 
mining technology designed for distributed applications is required. The field of Distributed 
Data Mining (DDM) deals with this problem mining distributed data by paying careful 
attention to the distributed resources. A complete bibliography of DDM-related publications 
can be consulted in (Liu et al, 2006).  
Another field to mention in this section is related with cooperative learning systems based on 
ANNs. In this regard Cristea and Florea (Cristea & Florea, 1999) present a cooperative distance 
learning system based on the emerging paradigm of intelligent human-computer interaction in 
which the group of learners is assisted by artificial agents with active role in the learning 
process. In this research, the tutor in the system may be a human or an artificial agent and the 
system offers several learning modalities that combine the traditional style of tutorial learning 
with the “problem based” approach. Moreover, cooperative learning is achieved either by 
interaction between the student and the tutor or interaction inside the group of learners.  
On the other hand, an approach for the optimization of the job scheduling in large distributed 
systems, based on a self-organizing neural network is presented in (Newman & Legrand, 
2000). In this approach, the dynamic scheduling system should be seen as adaptive middle 
layer software, aware of current available resources and making the scheduling decisions 
using the past experience. Another example of using neural network in a problem related with 
collaboration can be consulted in (Blanchard & Frasson, 2002). In this matter, authors present 
an architecture aiming to address the collaboration in a learning activity to create groups 
among students. Authors used a neural network algorithm to obtain homogenous groups. In 
(Yildiz, 2006) author described a load balancing approach by using graph partitioning and 
ANNs. The aim of this work is to integrate the successful load balancing decisions of graph 
partitioning algorithms with the efficient decision making mechanism of ANNs. The author 
affirms that the results obtained by him showed that using ANNs to make efficient load 
balancing can be very beneficial due to the fact that, once it is trained enough, the ANN may 
load the balance as good as graph partitioning algorithms or even more efficiently. 
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An interesting work, different than the others previously mentioned, is the proposal of a 
complex neural network model of user behaviour in distributed systems (Shelestov et al, 
2007). This model reflects both dynamical and statistical features of user behaviour and 
consists of three components: 1) the on-line model that reflects dynamical features by 
predicting user actions on the basis of previous ones; 2) the off-line model which is based on 
the analysis of statistical parameters of user behaviour; and 3) the change detection module 
which is intended for trends analysis in user behaviour. In both on-line and off-line models 
neural networks are used to reveal uncharacteristic activity of users.  
Regarding the context of awareness and recognizing the current context of a user or device, 
authors in (Mayrhofer & Radi, 2007) present an approach based on general and heuristic 
extensions to the growing neural gas algorithm classifier which allow its direct application 
for context recognition. The authors here used context awareness features for automatically 
classifying sensor data to recognize user or device context.  
Perhaps the most currently related work that discusses the subject of using ANNs to 
improve some aspect of distributed environments is AMBAR (Awareness-based learning 
Model for distriButive collAborative enviRonment) (Paletta & Herrero, 2010a), and more 
specifically in its particular element called CAwANN (Collaborative Distributed 
Environment by means of an Awareness & Artificial Neural Network strategy) (Paletta & 
Herrero, 2009f). Both will be explained in detail in this chapter. 

3. Cooperative environments by using spatial model of interaction 
The aim of this section is to present a proposal to represent cooperative environments based 
on the SMI.  

3.1 Spatial model of interaction (SMI) 
SMI is, perhaps, the most well-known awareness model for multi-user environments. This 
model was developed between 1991 and 1993 by Professor Steve Benford at Nottingham 
University’s School of Computer Science and Information Technology, Lennart E. Fahlén at 
The Swedish Institute of Computer Science (SICS) and John Bowers at The Royal Institute of 
Technology (KTH) in Stockholm (Sweden).  
Most of the main concepts and ideas of this model emerged from a project, called COMIC, 
which was a three-year [1992-1995] basic research action to investigate techniques and 
develop tools for large-scale real-world CSCW application developers (Benford et al, 1994). 
This project aimed to examine and overcome the practical and theoretical problems limiting 
effective CSCW product development at that time. One such problem is that simultaneous 
interaction between all objects is not computationally manageable in any large-scale 
environment. For this reason, it is important to determine which objects are capable of 
interacting with other given objects at any given time. 
As its name suggests, SMI uses the properties of space as the basis for mediating interaction. 
It was proposed as a way to control the flow of information in the environment. It allows 
objects in the environment to govern their interaction through some key concepts: medium, 
aura (Fahlén & Brown, 1992), awareness, focus, nimbus, adapters (Benford & Fahlén, 1993) 
and boundaries (Bowers & Rodden, 1993). This model provides a synchronous method of 
controlling how users and objects make themselves known to the world and how the world 
is aware of them. It has been driven by a number of objectives (Benford & Fahlén, 1993): 
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• Scalability: It is based on the concept of aura. Each object has an aura for each medium 
(visual, audio, text...) in which it can interact, because the aura defines the volume of 
space within which this interaction is possible. The use of aura facilitates scaling to 
many users by limiting the number of object interactions that must be considered. This 
number will be governed by the extent of the object auras and by the population 
density of the space. 

• Interactions: The SMI assumes a space populated by potentially communicating objects. 
These objects may represent anything: human users or data in a database, for example. 
The space itself may have any form, for example, a three-dimensional Cartesian space, 
an abstract higher-dimensional space or a graph. The SMI provides a framework for 
these objects to manage their interaction, and communication with every pair of objects 
in the environment. A key component of this management of interaction is the use of 
the space itself. Thus by controlling their position, orientation, distance, etc., the objects 
are able to modify their interaction and communication (Greenhalgh, 1994). 

 

 
Fig. 1. Key concepts in The Spatial Model of Interaction (Herrero, 2003) 

As it was mentioned before, the model itself defines five linked concepts: medium, 
awareness, aura, focus and nimbus (see Fig. 1 and 2): 
• Medium: A prerequisite for useful communications is that two objects have a 

compatible medium in which both objects can communicate. This medium might 
include audio, video, graphics and text. 

• Awareness: It is the main concept involved in controlling interaction between objects. It 
quantifies the degree, nature or quality of interaction between two objects. One object’s 
awareness of another object quantifies the subjective importance or relevance of that 
object. The awareness relationship between every pair of objects is achieved on the basis 
of quantifiable levels of awareness between them (Benford & Fahlén, 1992) and it is 
unidirectional and specific to each medium (Benford & Fahlén, 1993). 

• Aura: In 1992, Fahlén and Bowers defined aura as the sub-space which effectively 
bounds the presence of an object within a given medium and which acts as an enabler 
of potential interaction (Fahlén & Brown, 1992). Once aura has been used to determine 
the potential for object interactions (see Fig. 2), the objects themselves are subsequently 
responsible for controlling these interactions. “When two auras collide, interaction 
between the objects in the medium becomes a possibility” (Benford & Fahlén, 1993). 
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• Focus: In each particular medium, it is possible to delimit the observing object's interest. 
This idea was introduced by S. Benford in 1993 as "The more an object is within your 
focus the more aware you are of it" (Benford & Fahlén, 1993), and it was called Focus. 

• Nimbus: similar to what was mentioned above, it is possible to represent the observed 
object's projection in a particular medium. This area is called Nimbus: "The more an 
object is within your nimbus the more aware the object is of you". 

 

 
Fig. 2. Collision of two objects’ auras (Herrero, 2003) 
Therefore, awareness between objects in a given medium is manipulated via Focus and 
Nimbus, requiring a negotiation process. Considering, for example, A's awareness of B, the 
negotiation process combines the observer's (A's) focus and the observer’s (B's) nimbus. In 
the words of Benford and Fahlén: "The level of awareness that object A has of object B in 
medium M is some function of A's focus on B in M and B's nimbus on A in M". For a simple 
discrete model of focus and nimbus, there are three possible classifications of awareness’ 
values when two objects are negotiating unidirectional awareness (Greenhalgh, 1997): 
• Full awareness: The awareness that object A has of object B in a medium M is “full” 

when object B is inside A’s focus and object A is inside B’s nimbus (Fig. 3). 
• Peripheral awareness: The awareness that object A has of object B in a medium M is 

“peripheral” when object B is outside A’s focus but object A is inside B’s nimbus, or 
object B is inside A’s focus but object A is outside B’s nimbus (Fig. 4).  

• No awareness: An object A has no awareness of object B in a medium M when object B 
is outside A’s focus and object A is outside B’s nimbus (Fig. 5). 

 

 
Fig. 3. Full awareness (Herrero, 2003) 

In the SMI an object can control its awareness in different ways (Benford & Fahlén, 1993) by 
modifying its own auras, focus and nimbus: 
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• Implicitly: By moving and changing direction within the space and hence its aura, focus 
and nimbus. 

• Explicitly: By directly modifying the parameters which define aura, focus and nimbus.  
 

 
Fig. 4. Peripheral awareness (Herrero, 2003) 
Additionally, aura, focus and nimbus may be manipulated through Boundaries in space. 
Boundaries have more importance in structuring social interaction (Bowers & Rodden, 
1993). Boundaries are also a way of structuring space and influencing awareness (Bowers & 
Rodden, 1993). Therefore, boundaries "divide space into different areas and regions and 
provide mechanisms for marking territory, controlling movement, and influencing the 
interactional properties of space" (Benford et al, 1995). It is possible to identify several kinds 
of boundaries: 
• Obstructive: The boundary blocks the property in question (movement, aura, focus, and 

nimbus). 
• Conditionally obstructive: The obstruction can be removed when some condition is 

obeyed. 
• Transforming: The boundary alters the property in some way. 
• Non-obstructive: The boundary has no effect on the property.  
 

 
Fig. 5. No awareness (Herrero, 2003) 

3.2 Awareness of interaction and artificial neural network 
Based on the concepts of the SMI model previously mentioned, Herrero et al proposed an 
interesting adaptation related with CDEs (Herrero et al, 2007a & 2007b). Some minor 
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changes were then proposed by Paletta & Herrero in (Paletta & Herrero, 2008 & 2009a). A 
distributed environment E contains a set of n nodes Ni (1 ≤ i ≤ n) and r different types of 
resources Rj (1 ≤ j ≤ r) that nodes can indifferently give. These resources can be shared as a 
collaborative mechanism among different nodes. The following concepts are defined:  
1. Ni.Focus(Rj): It can be interpreted as the subset of the space (distributed environment) 

on which Ni has focused his attention aiming to interact or collaborate, according to the 
resource Rj. 

2. Ni.NimbusState(Rj): Indicates the current grade of collaboration that Ni can give over Rj. 
It could have three possible values: Null, Medium or Maximum. If the current grade of 
collaboration given by Ni about Rj is not high, and this node could collaborate more 
over this resource, then Ni.NimbusState(Rj) will get the Maximum value. If the current 
grade of collaboration given by Ni about Rj is high but Ni could improve the 
collaboration over this service, then Ni.NimbusState(Rj) would be Medium. Finally, 
Ni.NimbusState(Rj) will be Null if Ni cannot offer Rj or if it cannot collaborate any more 
with this service. 

3. Ni.NimbusSpace(Rj): Represents the subset of the distributed environment where Ni aims 
to establish the collaboration over Rj. 

4. Rj.AwareInt(Na, Nb): This concept quantifies the degree of collaboration over Rj between 
a pair of nodes Na and Nb. It is manipulated via Focus and NimbusSpace, and and 
requires a negotiation process. Following the awareness classification introduced by 
Greenhalgh (Greenhalgh, 1997), values of this concept could be Full, Peripheral or Null. 
It is calculated using (1). 
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5. Ni.TaskResolution(R1,…,Rp): Ni requires collaboration with all Rj (1 ≤ j ≤ p) to solve a 
specific task T. 

6. Ni.CollaborativeScore(Rj): Determines the score for Rj to collaborate in Ni. It is represented 
with a value within [0, 1]. The closer the value is to 0 the hardest it will be for Ni to 
collaborate with the necessary Rj. The higher the value is (closer to 1) the completer will 
the willingness to collaborate be. 

Trying to use an ANN to learn specific situations of the CDE, and therefore take decisions at 
the basis of these situations, depends on the ability to represent and inform the ANN about 
the current state of the CDE. Based on the fact that current CDE conditions could be 
represented by the concepts of Ni.Focus(Rj), Ni.NimbusState(Rj) and Ni.NimbusSpace(Rj), and 
from these concepts it is possible to obtain the corresponding Rj.AwareInt(Na, Nb), it is 
possible to identify the following variables: 
1. A value Nst ∈ [0,1] representing Na.NimbusState(Rj) that is further interpreted/ 

represented in (2). 
2. A value AwI ∈ [0,1] representing Rj.AwareInt(Na, Nb) that is further interpreted/ 

represented in (3). 
3. A value Foc that is equal to 1 if Nb ∈ Na.Focus(Rj). If Nb ∉ Na.Focus(Rj) then the entry is 0. 
With these variables and depending of the searched goal, it is possible to define parts of a 
pattern that can be used as an input in an ANN so that the ANN might learn different 
scenarios related with the current CDE. Some examples can be seen in the case study 
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presented in the next section, specifically in the topic related with the heuristic-based 
learning strategies.  
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The next section explains in detail the AMBAR model, as a case study based on the concepts 
presented in this section.  

4. AMBAR: A case study  
AMBAR was proposed as a learning collaboration agent-based model for distributed 
environments endowed with heuristic-based strategies. This was done aiming to take into 
account the information of awareness’ collaborations occurring in the environment for 
achieving the most appropriate future awareness situations. AMBAR is structured by the 
following elements (see Fig. 6): 
1. The awareness representation and collaborative process.  
2. An architecture (SOFIA) used for designing the intelligent agents known as IA-

Awareness.  
3. A negotiation mechanism to deal with saturated conditions.  
4. A mutual exclusion strategy to synchronize the use of critical sections. 
5. A load-balancing strategy (CAwaSA). 
6. A communication protocol that allows agents to exchange messages and hence interact 

with each other. 
7. Heuristic-based learning strategies (CAwANN). 
 

 
Fig. 6. The AMBAR structure 
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changes were then proposed by Paletta & Herrero in (Paletta & Herrero, 2008 & 2009a). A 
distributed environment E contains a set of n nodes Ni (1 ≤ i ≤ n) and r different types of 
resources Rj (1 ≤ j ≤ r) that nodes can indifferently give. These resources can be shared as a 
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1. Ni.Focus(Rj): It can be interpreted as the subset of the space (distributed environment) 
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2. Ni.NimbusState(Rj): Indicates the current grade of collaboration that Ni can give over Rj. 
It could have three possible values: Null, Medium or Maximum. If the current grade of 
collaboration given by Ni about Rj is not high, and this node could collaborate more 
over this resource, then Ni.NimbusState(Rj) will get the Maximum value. If the current 
grade of collaboration given by Ni about Rj is high but Ni could improve the 
collaboration over this service, then Ni.NimbusState(Rj) would be Medium. Finally, 
Ni.NimbusState(Rj) will be Null if Ni cannot offer Rj or if it cannot collaborate any more 
with this service. 

3. Ni.NimbusSpace(Rj): Represents the subset of the distributed environment where Ni aims 
to establish the collaboration over Rj. 

4. Rj.AwareInt(Na, Nb): This concept quantifies the degree of collaboration over Rj between 
a pair of nodes Na and Nb. It is manipulated via Focus and NimbusSpace, and and 
requires a negotiation process. Following the awareness classification introduced by 
Greenhalgh (Greenhalgh, 1997), values of this concept could be Full, Peripheral or Null. 
It is calculated using (1). 
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5. Ni.TaskResolution(R1,…,Rp): Ni requires collaboration with all Rj (1 ≤ j ≤ p) to solve a 
specific task T. 

6. Ni.CollaborativeScore(Rj): Determines the score for Rj to collaborate in Ni. It is represented 
with a value within [0, 1]. The closer the value is to 0 the hardest it will be for Ni to 
collaborate with the necessary Rj. The higher the value is (closer to 1) the completer will 
the willingness to collaborate be. 

Trying to use an ANN to learn specific situations of the CDE, and therefore take decisions at 
the basis of these situations, depends on the ability to represent and inform the ANN about 
the current state of the CDE. Based on the fact that current CDE conditions could be 
represented by the concepts of Ni.Focus(Rj), Ni.NimbusState(Rj) and Ni.NimbusSpace(Rj), and 
from these concepts it is possible to obtain the corresponding Rj.AwareInt(Na, Nb), it is 
possible to identify the following variables: 
1. A value Nst ∈ [0,1] representing Na.NimbusState(Rj) that is further interpreted/ 

represented in (2). 
2. A value AwI ∈ [0,1] representing Rj.AwareInt(Na, Nb) that is further interpreted/ 

represented in (3). 
3. A value Foc that is equal to 1 if Nb ∈ Na.Focus(Rj). If Nb ∉ Na.Focus(Rj) then the entry is 0. 
With these variables and depending of the searched goal, it is possible to define parts of a 
pattern that can be used as an input in an ANN so that the ANN might learn different 
scenarios related with the current CDE. Some examples can be seen in the case study 
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presented in the next section, specifically in the topic related with the heuristic-based 
learning strategies.  
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The next section explains in detail the AMBAR model, as a case study based on the concepts 
presented in this section.  

4. AMBAR: A case study  
AMBAR was proposed as a learning collaboration agent-based model for distributed 
environments endowed with heuristic-based strategies. This was done aiming to take into 
account the information of awareness’ collaborations occurring in the environment for 
achieving the most appropriate future awareness situations. AMBAR is structured by the 
following elements (see Fig. 6): 
1. The awareness representation and collaborative process.  
2. An architecture (SOFIA) used for designing the intelligent agents known as IA-

Awareness.  
3. A negotiation mechanism to deal with saturated conditions.  
4. A mutual exclusion strategy to synchronize the use of critical sections. 
5. A load-balancing strategy (CAwaSA). 
6. A communication protocol that allows agents to exchange messages and hence interact 

with each other. 
7. Heuristic-based learning strategies (CAwANN). 
 

 
Fig. 6. The AMBAR structure 
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4.1 Awareness representation and collaboration process 
Awareness representation is defined as was explained in Section 3.2. Any node Na in the 
distributive environment is endowed with an IA-Awareness agent, that has the 
corresponding information about E, i.e.: Na.Focus(Rj), Na.NimbusState(Rj) and 
Na.NimbusSpace(Rj) for each Rj. The collaborative process in the system follows these steps:  
1. Nb must solve a task T by means of a collaborative task-solving process making use of 

the resources R1,…, Rp, so that, it generates a Nb.TaskResolution(R1,…, Rp). 
2. Nb looks for the current conditions to calculate the values associated to the key concepts 

of the model (Focus, NimbusState and NimbusSpace related to the other nodes), given by 
Ni.Focus(Rj), Ni.NimbusState(Rj) and Ni.NimbusSpace(Rj) ∀i, 1 ≤ i ≤ n and ∀j, 1 ≤ j ≤ r. This 
information is used to decide the most suitable node with which to collaborate related 
with any resource Rj (by using the load-balancing strategy CAwaSA). Nodes in this 
environment respond to requests for information made by Nb. This is done through the 
exchange of messages between agents (by using the communication protocol). As a 
final result of this information exchange the model will calculate the current awareness 
levels given by Rj.AwareInt(Ni, Nb) as well as the collaboration score 
Nb.CollaborativeScore(Rj). 

3. For each resource Rj (1 ≤ j ≤ p) included in Nb.TaskResolution(R1,…, Rp), Nb selects the 
node Na whose Na.CollaborativeScore(Rj) is the most suitable to start the collaborative 
process (greatest score). Then, Na will be the node in which Nb should collaborate on 
resource Rj. 

4. Once Na receives a request for cooperation, it updates its Nimbus (given by 
Na.NimbusState(Rj) and Na.NimbusSpace(Rj)). In like manner, once Na has finished 
collaborating with Nb it must update its Nimbus. 

The IA-Awareness agent, that each node in the system has, is designed to take into account 
the following considerations/features: 
1. While each node may have different agents / processes, the IA-Awareness is the one that 

handles and manages the collaboration process; moreover, it learns to collaborate. In this 
sense, any need for cooperation from a source that is currently running on the node needs 
to communicate through the IA-Awareness service TaskResolution(R1,…, Rp). In response 
to this service, IA-Awareness returns a list of p nodes, one for each resource Rj, better 
suited to collaborate with the current node in relation with the corresponding Rj. 

2. There are services (abilities) that report on current levels of Focus(Rj), NimbusState(Rj) 
and NimbusSpace(Rj) for a specific resource Rj.  

3. Once all the necessary information is achieved, the search for the most suitable nodes to 
collaborate related with any Rj is done by using the service FindSuitableNodes(R1,…, Rp). 

4. When conditions on the environment are not appropriated enough to establish a 
collaboration process (Ni.NimbusState(Rj) = Null for most of the Ni, Rj), the nature of the 
node Nb ,initiating a collaborative process to answer a Nb.TaskResolution(R1,…, Rp), can 
lead to having no options, so that Nb can start a negotiation process that allows for Nb to 
identify new candidates to collaborate with. The detection of this saturated conditions is 
accomplished by using the service IsOverloaded(N, R).  

5. The initiation and completion of the collaboration associated with the resource R is 
achieved through the implementation of services StartCollaboration(R) and 
EndCollaboration(R).  
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4.2 The agent architecture 
SOFIA (SOA-based Framework for Intelligent Agents) (Paletta & Herrero, 2009d and 2009e) 
is the architecture used to design the IA-Awareness agents used in AMBAR. It focuses on 
the design of a common framework for intelligent agents with the following characteristics: 
1) it merges interdisciplinary theories, methods and approaches, 2) it is extensible and open 
as to be completed with new requirements and necessities, and 3) it highlights the agent´s 
learning processes within the environment. SOFIA’s general architecture contains four main 
components (see Fig. 7):  
1. The Embodied Agent (IA-EA) or the “body”: It is a FIPA-based structure (FIPA, 2002b) 

because it has a Service Directory element which provides a location where specific and 
correspondent services’ descriptions can be registered. The IA-EA encloses the set of 
services related to the abilities of sensing stimuli from the environment and interacting 
with it.  

2. The Rational Agent (IA-RA) or the “brain”: This component represents the agent’s 
intelligent part and therefore, it encloses the set of services used by the agent to 
implement the process associated with these abilities. It is also a FIPA-based structure.  

3. The Integrative/Facilitator Agent (IA-FA) or the “facilitator”: It plays the role of 
simplifying the inclusion of new services into the system as well as the execution of 
each of them when it is necessary. The basic function of the IA-FA is to coordinate the 
integration between the IA-SV and the rest of the IA components. This integration is 
needed when a new service is integrated with the IA and therefore it is registered into 
the corresponding Service Directory, even when an existing service is executed. 

4. The IA Services or “abilities” (IA-SV): It is a collection of individual and independent 
software components integrated to the system (the IA) which implements any specific 
ability either to the IA-EA or the IA-RA. 

 

 
Fig. 7. The SOFIA general architecture 

4.3 The negotiation mechanism 
The negotiation mechanism included in AMBAR consists of three elements (Paletta & 
Herrero, 2010b) (see more details below in Section 4.6): 1) a heuristic algorithm used for 
deciding the most suitable node to initiate negotiation based on current conditions; 2) a 
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1. While each node may have different agents / processes, the IA-Awareness is the one that 

handles and manages the collaboration process; moreover, it learns to collaborate. In this 
sense, any need for cooperation from a source that is currently running on the node needs 
to communicate through the IA-Awareness service TaskResolution(R1,…, Rp). In response 
to this service, IA-Awareness returns a list of p nodes, one for each resource Rj, better 
suited to collaborate with the current node in relation with the corresponding Rj. 
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3. Once all the necessary information is achieved, the search for the most suitable nodes to 
collaborate related with any Rj is done by using the service FindSuitableNodes(R1,…, Rp). 

4. When conditions on the environment are not appropriated enough to establish a 
collaboration process (Ni.NimbusState(Rj) = Null for most of the Ni, Rj), the nature of the 
node Nb ,initiating a collaborative process to answer a Nb.TaskResolution(R1,…, Rp), can 
lead to having no options, so that Nb can start a negotiation process that allows for Nb to 
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5. The initiation and completion of the collaboration associated with the resource R is 
achieved through the implementation of services StartCollaboration(R) and 
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heuristic method to accept/decline a need for collaboration during a negotiation; 3) a 
protocol for exchanging messages between agents. 
The basic idea is to find / identify a node N that might will be a potential candidate to 
negotiate with, taking into account the possibility of making changes in its Nimbus in 
relation with the resource R. N can then collaborate with this node in relation with R. 
“Potential” means that N accepts i.e. the negotiation is successful. 

4.4 The mutual exclusion mechanism 
The nature of a node initiating a collaborative process to answer a TaskResolution(R1,…,Rp), 
provokes a change in the conditions of the collaboration levels of the environmental nodes 
involved in the process. Since this information is required by the process of taking action, 
the levels of collaboration between the nodes turn into a critical section, so that a mutual 
exclusion mechanism is required. The strategy used in AMBAR is a variation of the Naimi-
Tréhel’s token-based algorithm (Naimi et al, 1996). In the AMBAR token-based approach 
(Paletta & Herrero, 2009b), the token travels with a queue Q which has the nodes that 
require the exclusive use of the critical section and haven’t been able to satisfy that need.  

4.5 The load-balancing strategy 
Having a set of p resources Rj (1 ≤ j ≤ p). For each resource a particular node must identify 
the most suitable other node in the environment with which to collaborate according to the 
corresponding resource. “Most suitable” means that it should consider the following 
assumptions: 
1. The node Nb that seeks collaboration should be on the Focus of the node Na that needs to 

be identified, i.e. Nb ∈ Na.Focus(Rj). 
2. The score of collaboration given by Na.CollaborativeScore(Rj) must indicate the full 

readiness to collaborate on Rj (value equal or close to 1). 
3. The selection must be done so that there will be a load-balancing process distributed 

equally among all possible nodes with which to collaborate. This should take into 
account the current environment conditions given by Ni.NimbusState(Rj) and 
Ni.NimbusSpace(Rj) ∀i,j 1 ≤ i ≤ n, 1 ≤ j ≤ r. 

4. The answer must be given in a dynamic way and in a reasonable amount of time 
(preferably at the same time as the request is generated). 

The strategy used to solve this problem is based in the Simulated Annealing technique 
(Kirkpatrick, 1984) (Metropolis et al, 1953) which is a generalization of a Monte Carlo 
method that searches for a minimum in a more general system forming the basis of an 
optimization technique to solve combinatorial and other problems. This strategy is called 
CAwaSA (Collaborative Distributive Environment by means of Awareness and SA) and its 
results can be found in (Paletta & Herrero, 2009c). 

4.6 The communication protocol 
Messages for AMBAR-based agent interaction are defined according to the FIPA per-
formative (FIPA, 2002a) and used for: 1) querying the current conditions of each node in the 
environment given by its Focus/Nimbus; 2) performing the mutual exclusion mechanism; 3) 
performing the negotiation mechanism; and 4) informing the initiation and completion of 
the collaboration associated with a particular resource. There are a total of ten different 
messages.  
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4.7 The heuristic-based learning strategies 
An IA-Awareness has learning abilities and in AMBAR the element that has these abilities are 
known as CAwANN. This strategy combines Neural-Gas (NGAS) (Martinetz & Schulten, 
1991), Radial Based Function Network (RBFN) (Lingireddy & Ormsbee, 1998) (Shahsavand & 
Ahmadpour, 2005) and Multi-Layer Perceptron (MLP) (Haykin, 1998) ANN-based models 
aiming to cover different aspects in the learning capabilities of AMBAR: 1) a supervised-based 
method for learning for learning how to collaborate based on levels of awareness; 2) an 
unsupervised-based method for selecting a potential candidate to negotiate on saturated 
conditions; and 3) a supervised-based method to learn the decision whether or not a node 
must change the information that describes its current conditions related with collaboration.  
Just as a quick reminder, NGAS is a Vector Quantization (VQ) (Kohonen et al, 1984) 
(Makhoul et al, 1985) (Nasrabadi and Feng, 1988) (Nasrabadi & King, 1988) (Naylor & Li, 
1988) technique with soft competition between the units. VQ is the process of quantizing n-
dimensional input vectors to a limited set of n-dimensional output vectors usually 
generated by clustering a given set of training vectors. The goal of clustering is to reduce 
large amounts of raw data by categorizing it in smaller sets of similar items. On the other 
hand, radial based functions were originally developed to discuss problems involving the 
adaptation of irregular topographic contours through a series of geographic data. ANN’s 
based on this technique (RBFNs) are among the best choices in models out there as an 
alternative to achieve excellent results in alignment of data caused either by stochastic or 
deterministic functions (Jin et al, 2001). Finally, MLP is one of the most used neural models 
for implementing a variety of problems.  

4.7.1 Learning levels of collaboration 
This process is about learning the association between the current status of the environment, 
given by Ni.Focus(Rj), Ni.NimbusState(Rj) and Ni.NimbusSpace(Rj),  and the levels of 
collaboration obtained from that specific situation, given by the Ni.CollaborativeScore(Rj) (∀i, 
1 ≤ i ≤ n; ∀j, 1 ≤ j ≤ r). 
The ANN used in this solution, called ANN-C, has 2 inputs and 1 output (see Fig. 8). The 
output relates to the learned value of Na.CollaborativeScore(Rj). The inputs correspond to the 
following items: 
1. Nst as is indicated in Section 3.2. 
2. AwI as is indicated in Section 3.2. 
To differentiate one resource from another, given the fact that each node can have a different 
treatment in the levels of collaboration, the IA-Awareness has a different ANN-Cj element 
for each resource Rj. This is an important aspect because: 
1. Each resource can be trained separately from the rest. 
2. The training process is less complex and, therefore, it is expected to obtain a higher 

quality in the response given by each ANN-Cj. 
3. The model is expansible because new ANNs can be added when a new resource has to 

be incorporated into the environment. 
4. Each node has a particular set of ANN-Cj, i.e. IA-Awareness of each node trains and 

uses certain ANNs according to the particular handling a node wants to give to each 
resource Rj, making the collaboration model more flexible. 

Since each ANN-Cj has two inputs, each of them with three possible values, there is a total 
of nine possible patterns for training by combining the Nst values (0, 0.5, and 1) with the 
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heuristic method to accept/decline a need for collaboration during a negotiation; 3) a 
protocol for exchanging messages between agents. 
The basic idea is to find / identify a node N that might will be a potential candidate to 
negotiate with, taking into account the possibility of making changes in its Nimbus in 
relation with the resource R. N can then collaborate with this node in relation with R. 
“Potential” means that N accepts i.e. the negotiation is successful. 

4.4 The mutual exclusion mechanism 
The nature of a node initiating a collaborative process to answer a TaskResolution(R1,…,Rp), 
provokes a change in the conditions of the collaboration levels of the environmental nodes 
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performing the negotiation mechanism; and 4) informing the initiation and completion of 
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4.7 The heuristic-based learning strategies 
An IA-Awareness has learning abilities and in AMBAR the element that has these abilities are 
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dimensional input vectors to a limited set of n-dimensional output vectors usually 
generated by clustering a given set of training vectors. The goal of clustering is to reduce 
large amounts of raw data by categorizing it in smaller sets of similar items. On the other 
hand, radial based functions were originally developed to discuss problems involving the 
adaptation of irregular topographic contours through a series of geographic data. ANN’s 
based on this technique (RBFNs) are among the best choices in models out there as an 
alternative to achieve excellent results in alignment of data caused either by stochastic or 
deterministic functions (Jin et al, 2001). Finally, MLP is one of the most used neural models 
for implementing a variety of problems.  

4.7.1 Learning levels of collaboration 
This process is about learning the association between the current status of the environment, 
given by Ni.Focus(Rj), Ni.NimbusState(Rj) and Ni.NimbusSpace(Rj),  and the levels of 
collaboration obtained from that specific situation, given by the Ni.CollaborativeScore(Rj) (∀i, 
1 ≤ i ≤ n; ∀j, 1 ≤ j ≤ r). 
The ANN used in this solution, called ANN-C, has 2 inputs and 1 output (see Fig. 8). The 
output relates to the learned value of Na.CollaborativeScore(Rj). The inputs correspond to the 
following items: 
1. Nst as is indicated in Section 3.2. 
2. AwI as is indicated in Section 3.2. 
To differentiate one resource from another, given the fact that each node can have a different 
treatment in the levels of collaboration, the IA-Awareness has a different ANN-Cj element 
for each resource Rj. This is an important aspect because: 
1. Each resource can be trained separately from the rest. 
2. The training process is less complex and, therefore, it is expected to obtain a higher 

quality in the response given by each ANN-Cj. 
3. The model is expansible because new ANNs can be added when a new resource has to 

be incorporated into the environment. 
4. Each node has a particular set of ANN-Cj, i.e. IA-Awareness of each node trains and 

uses certain ANNs according to the particular handling a node wants to give to each 
resource Rj, making the collaboration model more flexible. 

Since each ANN-Cj has two inputs, each of them with three possible values, there is a total 
of nine possible patterns for training by combining the Nst values (0, 0.5, and 1) with the 



 Artificial Neural Networks - Application 

 

202 

AwI values (0, 0.5, and 1). Moreover, this strategy is implemented by using the MLP and 
RBFN models (see Section 5 for details). The basic idea is to train both ANNs and each time 
the ANNs are consulted about a specific situation, one of them will choose from the two 
possible responses taking that which originates from the ANN that has achieved a minor 
error in the training process (it is represented with a “?” in Fig. 8). The ANN-Cj training is 
performed automatically after new patterns have been stored on the IA-Awareness agent. 
 

 
Fig. 8. CAwANN: The AMBAR learning strategy 

4.7.2 Learning saturated conditions 
The objective in this part of the process is to find / identify a node N that might be a 
potential candidate to negotiate with, taking into account the possibility to make changes in 
its NimbusState and NimbusSpace in relation with the resource R. N can then collaborate with 
the identified N node in relation with R. “Potential” means that the negotiation is successful, 
i.e. that N accepts.  
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To achieve this goal a competitive-learning-based strategy was defined aiming to correlate 
current information of the nodes in the distributive environment based on clusters. 
Therefore a NGAS-based algorithm is used. The decision that the node must make consists 
on identifying the node closest to the hyper-plane defined by the space given by the current 
environment conditions. In other words, it is necessary to determine the winning unit by 
testing the NGAS with the environment. The goal of this learning process is 1) to cluster the 
input data into a set of partitions such as the intra-cluster variance which remains small 
compared with the inter-cluster variance, and 2) to estimate the probability of the density 
function. This clustering scheme seems possible as we expect a strong correlation among the 
awareness information involved. 
In CAwANN the NGAS-based ANN used is identified as ANN-G. The input vector is 
defined as the same as the ANN-Cj (being Nb the node that requires collaboration on a set of 
services and therefore the one that sends the Nb.TaskResolution(R1,…,Rp), for each Na ≠ Nb): 
1. Nst as is indicated in Section 3.2. 
2. AwI as is indicated in Section 3.2. 
Therefore, the input vectors for this problem have 2n elements, being n the number of nodes 
in the environment. If Na = Nb then Nst = AwI = 0. Patterns for learning are obtained either 
by those scenarios that have been stored during the dynamics of the distributed 
environment, or by an automatic generation, mostly random. 

4.7.3 Learning the decision to alter the current condition 
The latter case of ANN-based learning strategy is similar to that used with the ANN-Cj. In 
this case it has one ANN-Dj for each resource Rj. There are three inputs and one output. The 
output s ∈ [0, 1] represents the decision i.e. it is accepted if s ≥ 0.5, and declined otherwise. 
Inputs are as follows: 
1. A value PhyAsp(Sj) ∈ [0, 1] that indicates the level of physical availability of the resource 

Rj. This physical aspect is related to the current conditions of the resource and the 
node’s physical ability to actually be able to collaborate on the basis of this resource. For 
example, the maximum size of a service requests queue, the physical feature of a 
hardware related with the resource (CPU, memory, communications ports, and others), 
among others. 

2. A value equal to 1 if Nb ∈ Na.Focus(Rj), being Nb the node that requires the decision, and 
Na the node that should make the decision. If Nb ∉ Na.Focus(Rj) then the entry is 0. 

3. A value equal to NcoNR / TNco(R, N) which represents a logical aspect that deals with 
the relationship that Nb might had had in the past regarding a collaboration process. 
The idea is to reward those nodes Nb who collaborated in the past with Na and are now 
requiring collaboration with Na. NcoNR is the number of times a node N (node that 
requires the decision) has collaborated with the current node (node that should make 
the decision) related to resource R. TNco(R, N) is calculated by following (4).  
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To obtain the information related to the physical aspect associated with the resource, IA-
Awareness has the ability to query the corresponding current values. It is represented by a 



 Artificial Neural Networks - Application 

 

202 

AwI values (0, 0.5, and 1). Moreover, this strategy is implemented by using the MLP and 
RBFN models (see Section 5 for details). The basic idea is to train both ANNs and each time 
the ANNs are consulted about a specific situation, one of them will choose from the two 
possible responses taking that which originates from the ANN that has achieved a minor 
error in the training process (it is represented with a “?” in Fig. 8). The ANN-Cj training is 
performed automatically after new patterns have been stored on the IA-Awareness agent. 
 

 
Fig. 8. CAwANN: The AMBAR learning strategy 

4.7.2 Learning saturated conditions 
The objective in this part of the process is to find / identify a node N that might be a 
potential candidate to negotiate with, taking into account the possibility to make changes in 
its NimbusState and NimbusSpace in relation with the resource R. N can then collaborate with 
the identified N node in relation with R. “Potential” means that the negotiation is successful, 
i.e. that N accepts.  

Artificial Neural Network for Cooperative Distributed Environments 

 

203 

To achieve this goal a competitive-learning-based strategy was defined aiming to correlate 
current information of the nodes in the distributive environment based on clusters. 
Therefore a NGAS-based algorithm is used. The decision that the node must make consists 
on identifying the node closest to the hyper-plane defined by the space given by the current 
environment conditions. In other words, it is necessary to determine the winning unit by 
testing the NGAS with the environment. The goal of this learning process is 1) to cluster the 
input data into a set of partitions such as the intra-cluster variance which remains small 
compared with the inter-cluster variance, and 2) to estimate the probability of the density 
function. This clustering scheme seems possible as we expect a strong correlation among the 
awareness information involved. 
In CAwANN the NGAS-based ANN used is identified as ANN-G. The input vector is 
defined as the same as the ANN-Cj (being Nb the node that requires collaboration on a set of 
services and therefore the one that sends the Nb.TaskResolution(R1,…,Rp), for each Na ≠ Nb): 
1. Nst as is indicated in Section 3.2. 
2. AwI as is indicated in Section 3.2. 
Therefore, the input vectors for this problem have 2n elements, being n the number of nodes 
in the environment. If Na = Nb then Nst = AwI = 0. Patterns for learning are obtained either 
by those scenarios that have been stored during the dynamics of the distributed 
environment, or by an automatic generation, mostly random. 

4.7.3 Learning the decision to alter the current condition 
The latter case of ANN-based learning strategy is similar to that used with the ANN-Cj. In 
this case it has one ANN-Dj for each resource Rj. There are three inputs and one output. The 
output s ∈ [0, 1] represents the decision i.e. it is accepted if s ≥ 0.5, and declined otherwise. 
Inputs are as follows: 
1. A value PhyAsp(Sj) ∈ [0, 1] that indicates the level of physical availability of the resource 

Rj. This physical aspect is related to the current conditions of the resource and the 
node’s physical ability to actually be able to collaborate on the basis of this resource. For 
example, the maximum size of a service requests queue, the physical feature of a 
hardware related with the resource (CPU, memory, communications ports, and others), 
among others. 

2. A value equal to 1 if Nb ∈ Na.Focus(Rj), being Nb the node that requires the decision, and 
Na the node that should make the decision. If Nb ∉ Na.Focus(Rj) then the entry is 0. 

3. A value equal to NcoNR / TNco(R, N) which represents a logical aspect that deals with 
the relationship that Nb might had had in the past regarding a collaboration process. 
The idea is to reward those nodes Nb who collaborated in the past with Na and are now 
requiring collaboration with Na. NcoNR is the number of times a node N (node that 
requires the decision) has collaborated with the current node (node that should make 
the decision) related to resource R. TNco(R, N) is calculated by following (4).  

 
⎪⎩

⎪
⎨
⎧

≠
= ∑∑

==

otherwise   ),1,(random

         0   ,),( 11

NR

r

j
Nj

r

j
Nj

Nco

NcoNcoNRTNco

 
(4)

 
To obtain the information related to the physical aspect associated with the resource, IA-
Awareness has the ability to query the corresponding current values. It is represented by a 
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value between [0, 1] which expresses the percentage of current use of the node in relation to R. 
A value equal to 1 which means that R is being used at its maximum capacity (it is saturated). 
Furthermore, each node N keeps the nxr matrix Nco whose elements Ncoij matches the 
number of times the node Ni (1 ≤ i ≤ n) has collaborated with N in relation to the resource Rj 
(1 ≤ j ≤ r). This information as well as N.Focus(Rj) are used to calculate the logical aspects 
needed for taking a decision. 
The training of the ANN-Dj is performed automatically after a new pattern has been stored 
on the IA-Awareness agent. An ANN-Dj is considered trained when a proper number of 
patterns has been stored and used. As happens with the ANN-Cj, the ANN-Dj are trained 
and used by using both MLPs and RBFNs strategies. 

4.7.4 Evaluation 
In summary, and as it can be seen in Fig. 8, CAwANN strategy is the combination of the 
ANN-Cj (1 ≤ j ≤ r),  the ANN-G, and the ANN-Dj (1 ≤ j ≤ r) previously explained. It was 
implemented using Java. Its evaluation was conducted in a TCP/IP-based LAN (Local Area 
Network) which assumes that each node (PC) can directly communicate with any other 
node. The experimentation was conducted by simulating different scenarios aiming to rate 
the capability of the method used for managing the growth of the nodes in the different 
conditions of the environment. The scenarios were defined by changing the quantity of 
nodes/PCs n (agents) as well as the number of resources r according to n ∈ {4, 8} and r ∈ {2, 
6, 10}. Therefore 6 different scenarios were simulated: 1) n = 4, r = 2; 2) n = 4, r = 6; 3) n = 4, r 
= 10; 4) n = 8, r = 2; 5) n = 8, r = 6; and 6) n = 8, r = 10. Moreover:  
1. The hardware platform of the PCs was the same for all the nodes: Intel T2600 (2.16 

GHz) with 2 GB RAM. 
2. The initial condition of the distributed environment for each scenario (Ni.Focus(Rj), 

Ni.NimbusState(Rj) and Ni.NimbusSpace(Rj); 1 ≤ i ≤ n; 1 ≤ j ≤ r) was randomly defined by 
considering the following: one node belongs to the Focus of another node with a 
probability of 0.75 and to the Nimbus with a probability of 0.85. 

3. All Nb nodes execute an automatic process that generates Nb.TaskResolution(R1,…,Rp) by 
randomly selecting the involved resources from the 50% of the total resources in the 
scenario. 

4. PhyAsp(Rj), ∀j 1 ≤ j ≤ r were randomly initialized. 
5. The parameters used for configuring the NGAS-based ANNs (i.e. the ANN-G) are the 

following: ε(0) = 1.58; ε(T) = 0.02; ρ(0) = 5.59; ρ(T) = 0.07. In fact, a genetic program was 
used to find the best configuration to deal with this problem. The network was trained 
with T = 40.000 signals. 

6. The MLP-based ANNs were configured as follows: the transfer function used is the 
sigmoid; additional to the input and output units the topology has one hidden layer 
with two units; the learning rate is equal to 0.125; momentum (Phansalkar & Sastry, 
1994) is used with a rate equal to 0.9. 

7. The RBFN-based ANNs were configured by using a genetic program to find the best 
configuration to deal with this problem. Especially regard to the range of initialization 
of the connections' weights and the learning factors. Only one hidden unit is used. 

Aiming to measure the effectiveness (θ) and efficiency (ξ) of the learning strategy, 
expressions (5) and (6) were defined respectively. Note that both measures (θ, ξ) are positive 
values in [0, 1] where 1 is the maximum effectiveness and efficiency. Where: 
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- PSC: is the percentage of successful collaborations based on the number of resources in 
which there was positive response from a node to collaborate with, in relation to the 
total quantity of resources in which collaboration was required. 

- PSN: is the percentage of successful negotiations made in saturated conditions, based 
on the number of negotiations that receive a positive response from a node requesting 
to change its current saturated conditions in relation to the total attempts made. 

- ATL: is the mean duration in seconds of the learning process. 
- ATC: is the average time of collaboration in seconds calculated since 

TaskResolution(R1,…,Rp) starts until it ends. 

 200/)(θ PSNPSC +=  (5) 

 ATCATL /1ξ −=  (6) 
 

 
Fig. 9. Effectiveness and efficiency of CAwANN obtained from experimentation 

Table 1 shows the measures obtained after a simulation of 120 minutes for each scenario, 
and Fig. 9 shows the effectiveness and efficiency related with these measures. According to 
these results it is possible to make the following observations and/or conclusions: 
1. The efficiency remains stable at a high value. Therefore the learning process shows to be 

faster.  
2. Both effectiveness and efficiency have a similar trend of behavior. 
3. The variation in the number of nodes hasn´t a particular tendency to improve or worsen 

the effectiveness. 
4. The variation in the number of resources has a tendency to undermine the effectiveness. 
5. The average effectiveness is 0.86 and the average efficiency is 1.00.  
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Measure

n=4 
r=2 

n=4 
r=6 

n=4 
r=10 

n=8 
r=2 

n=8 
r=6 

n=8 
r=10 

PSN 100.00 68.13 64.29 93.75 78.13 100.00
PSC 98.96 94.24 97.70 99.89 78.08 57.90 
ATT 2.47 5.86 9.58 6.73 167.38 445.15
ATL 0.01 0.02 0.02 0.01 0.03 0.02 
θ 0.99 0.81 0.81 0.97 0.78 0.79 
ξ 1.00 0.99 0.99 1.00 1.00 1.00 

Table 1. Measures obtained from experimentation 

It is important to stress that, due to the fact that it is a learning-based mechanism from past 
situations, it is assumed that, as there is much more to learn, the metrics associated with it 
must be improved. 

4.8 An example 
This section follows an example of using AMBAR, and therefore CAwANN in real 
applications. This example is related with prediction of banking fraud. It represents a 
distribute system in which financial and national security institutions intervene with the 
purpose of detecting possible bank frauds during a financial transaction. The main objective 
of this application is to uncover bank frauds before these occur. This process benefits certain 
financial institutions, and their respective clients, that are related to transactions that involve 
money withdrawals and can be susceptible to fraud. For example, assuming that the cashing 
of a fraudulent check inside a bank when the information presented, included the signature, 
is false or non valid, goes undetected before the cashing of the check then there will be a loss 
of money that can put the financial institution and its clients in jeopardy.  
According to the experience suffered by financial institutions located in countries where this 
type of fraud is common, the majority of these fraudulent cases are carried out by the same 
group of thieves. If this is true then it is possible to try to uncover the fraud through the 
identification of people that has committed this type of fraud before. It is also known that in 
the majority of cases thieves won’t come back to the same financial institution that was 
robbed so as not to be identified by the employees that work in the institution or by the 
surveillance systems employed. 
In the same order of ideas, recently people involved in frauds is identified automatically by 
the use of biometrical techniques and the existence of data bases that associate this person 
with any other biometrical structure like finger prints, facial features and signature just to 
name a few. These data bases can be used from public offices of national security (such as 
police departments and other departments related) and financial institutions that have 
adopted biometrical techniques as part of their technological solution for banking fraud. By 
using biometrical techniques this institutions hold biometrical information of all of the 
financial institution’s clients and of the people that, at one time, committed fraud in the 
institution. With this in mind the following inquires are presented: 
- How to have online access to the data bases of national public offices such as police 

departments? 
- How can different financial institutions that cannot stand the biometric technology 

benefit themselves? 
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- How different financial institutions can share data bases so that thieves that are 
registered and identified in a certain community can be easily identified trying to 
commit the same crime in another community? 

To solve these questions and to satisfy the main objective of the problem previously 
described a distributive collaborative environment is developed designed to be used by 
financial institutions and national public offices. For this, it is possible to use AMBAR. The 
collaborative distributive environment E is formed by the nodes Ni that represent the 
following items: 
1. Financial institutions that use biometric technology. 
2. Communities that do not possess biometric technology. 
3. National and State Public Offices that are in possession of data bases of current thieves. 
4. Public institutions that do not manage biometric technology but require it as an activity 

to satisfy particular objectives. 
The resources Rj are equivalent to their own purposes for the usage of the biometrical 
technology (enroll, identify and certify) that are associated to each one of the technologies 
(finger print, face and signature). Related to this the next 9 resources are encountered: 
- R1, R2, R3: enroll, identify and certify a finger print respectively. 
- R4, R5, R6: enroll, identify and certify a face respectively. 
- R7, R8, R9: enroll, identify and certify a signature respectively. 
It is interesting to mention that if another biometric metric, different from finger print, face 
or signature, existed it is only necessary to add to the collaborative distributive environment 
new resources that are able to support the different abilities for enrolling, identifying and 
certifying the new metrics.  
Within the same order of ideas, when it is said that N3.Focus(R2) = {N1, N4} this is really 
indicating that when the system associated to N3 has the necessity of identifying a finger 
print (R2), N3 could then ask N1 and N4 for collaboration. N1 and N4 are supposed to be 
nodes that possess data bases of finger prints and the abilities to achieve R2.  The expression 
N4.NimbusState(R2) = Medium indicates, not only that N4 possesses the ability to make R2, but 
also, in that specific moment, N4 is already collaborating in the making of this ability and is 
able to make it for longer. Speaking of N4.NimbusSpace(R2) = {N3} it is essential to make clear 
that in that specific moment N4 is working on a process of identification of finger prints (R2) 
due to a request of collaboration made by N3. 
Learning capabilities with CAwANN in this particular example means: 
1. To learn the better options to ask for collaboration (enroll, identify and certify a finger 

print, a face, or a signature) needed for doing financial transactions. “Better” in this case 
means trying to detect and avoid a possible fraud. 

2. To learn about better options for selecting a potential candidate to negotiate on 
saturated conditions and try to avoid delays in the completion of the financial 
transaction. 

3. To learn the decision of whether or not a node (financial institution, society, public 
institution or office) must change the information that describes its current conditions 
related with collaboration. 

5. Comments related to the ANN  
This section was developed aiming to present some aspects related to the way in which the 
ANN was used in the case study presented in the previous section. One of those aspects 



 Artificial Neural Networks - Application 

 

206 

 
Measure
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r=10 
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deals with the use of both models MLP and RBFN in those cases where a supervised ANN is 
required. Since not all problems can be treated the same way there is always the question: 
“what model should be used to treat a particular problem?” the advantage of using both 
models is to exploit the benefits of both of them to obtain the best results. 
The idea related to the previous subject is very simple: There are two ANNs, one of them 
related to MLP and the other to RBFN. Both ANNs are designed so that the inputs and 
outputs are the same. Both ANNs are trained at the same time and using the same patterns 
and the last training error obtained is saved. When an answer is required to a specific 
situation, both ANNs are consulted with the same input and only that ANN whose last 
training error is smaller is chosen as the right output. 
On the other hand, depending on the problem and specifically on the number of different 
input patterns, the ANNs can be trained automatically by counting the number of situations 
that have occurred in the environment related to that problem, every new situation 
corresponds to a new pattern to be considered for the following training. When the count 
reached a predetermined number then training is working automatically. For supervised 
ANN a non ANN-based alternative to obtain the answer it is required to define the training 
pattern completely. 
Finally, and due to the fact that CDE are dynamically continually changing, having multiple 
small ANNs is better than having only a larger ANN.  As a first consequence, the training 
process is less complex and, therefore, it is expected to obtain a higher quality response. 
Moreover, changing on the environment can be handled properly by adding / removing the 
necessary o corresponding ANNs.  

6. Conclusion 
Collaborative Distributed Environments (CDEs) and Artificial Neural Networks (ANNs) can 
relate to each order to improve either the ANN performance or any other process relative to 
the distributed environment. In this regard, theoretical aspects of the Spatial Model of 
Interaction (SMI), and particularly in the awareness concept are used in this chapter to 
define an ANN-based learning strategy aiming to improve cooperation/collaboration in 
CDEs. In fact, the awareness concept quantifies the degree of collaboration needed or 
occurring over a particular resource between a pair of nodes in the environment. This 
information, as well as the information related with the CDE current condition, can be used 
as the input of any ANN defined to deal with a particular situation or problem in the CDE. 
As a case study, the chapter presents some details of AMBAR (Awareness-based learning 
Model for distriButive collAborative enviRonment), and more specifically, the particular 
element called CAwANN (Collaborative Distributed Environment by means of an 
Awareness & Artificial Neural Network strategy), which has been designed with the 
objective to learn from different types of awareness as well as from previous collaborations 
that were carried out in the environment to foresee future collaborative/cooperative 
scenarios. The results obtained show that the learning strategy has an average efficiency of 
100% and an average effectiveness of 86%. 
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1. Introduction 
During the past 20 years, artificial neural networks was successfully applied for solving 
signal processing problems. Researchers proposed many different models of artificial neural 
networks. A challenge is to identify the most appropriate neural network model which can 
work reliably for solving realistic problem. This chapter provides some basic neural network 
model and efficiently applying these models in facial image processing problem. In detail,  
three techniques : a hybrid model of combining AdaBoost and Artificial Neural Network 
(AANN) to detect human faces, a local texture model based on Multi Layer Perceptron 
(MLP) for face alignment and a model which combines many Neural Networks applied for 
facial expression classification are present. This case study demonstrates how to solve face 
recognition in the neural network paradigm. Each of these techniques is introducted as 
follows:  
Technique 1 - an approach to combine adaBoost and artificial neural network for 
detecting human faces: The human face image recognition is one of the prominent 
problems at present. Recognizing human faces correctly will aid some fields such as national 
defense and person verification. One of the most vital processing of recognizing face images 
is to detect human faces in the images. Some approaches have been used to detect human 
faces. However, they still have some limitations. In the research, some popular methods, 
AdaBoost, Artificial Neural Network (ANN) were considered for detecting human faces. 
Then, a hybrid model of combining AdaBoost and Artificial Neural Network was applied to 
solve the process efficiently. The system which was build from the hybrid model has been 
conducted on database CalTech. The recognition correctness is more than 96%. It shows the 
feasibility of the proposed model.  
Technique 2 - local texture classifiers based on multi layer perceptron for face alignment: 
Local texture models for face alignment have been proposed by many different authors. One 
of popular models is Principle Component Analysis (PCA) local texture model in Active Shape 
Model (ASM). The method uses local 1-D profile texture model to search for a new position for 
every label point. However, it is not sufficient to distinguish feature points from their 
neighbours; i.e., the ASM algorithm often faces local minima problem. In the research, a new 
local texture model based on Multi Layer Perceptron (MLP) was proposed. The model is 
trained from large databases. The classifier of the model significantly improves accuracy and 
robustness of local searching on faces with expression variation and ambiguous contours. 
Achieved experimental results on CalTech database show its practicality. 
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Technique 3 - facial expression classification based on multi artificial neural network: In 
recent years, image classification and facial expression classification have received much 
attention. Many approaches are suggested to solve these problems with aiming to increase 
efficient classification. One of famous suggestions is described as first step, project the 
pattern or image to different spaces; second step, in each of these spaces, patterns are 
classified into responsive class and the last step, combine the above classified results into the 
final result. The advantages of this approach are to reflect fulfill and multiform of image 
classified. Based on these advantages, classification system improves its precision. In the 
research, a model which combines many Neural Networks was developed and applied for 
the last step. This model evaluates the reliability of each space and gives the final 
classification conclusion. Our model links many Neural Networks together, so we call it 
Multi Artificial Neural Network (MANN). The proposal model was applied for 6 basic facial 
expressions on JAFFE database consisting 213 images posed by 10 Japanese female models. 

2. An approach to combine adaBoost and Artificial Neural Network for 
detecting human faces (Thai et al., 2008)  
Face recognition is the problem to search human faces in large image database. In detail, a 
face recognition system with the input of an arbitrary image will search in database to 
output people’s identification in the input image. The face recognition includes the 
processing in figure 1.  
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Fig. 1. Structure of a face recognition system 

Thus, the face detection processing is the first step of the face recognition system. The step 
will decide the efficiency of the system, so it is the most important step of the recognition 
system. Hence, the study only focuses on this step. To carry out it efficiently, many 
researchers have proposed different approaches. In general, according to Yang et al., 2002, 
there are four groups of face detecting methods. 
Knowledge based methods: these methods are based on sets of rules which have been built 
from experts on standard face structures. These rules are based on relationships between 
face features. The methods are mostly used to locate positions of faces. Typical researchers 
are Kanade et al. , 1973, G.Yang et al. , 1994, and Kotropoulos et al., 1997. 
Invariant feature based methods: these methods focus on finding invariant features which 
always exist in every condition: changes in facial appearance, lighting and expression. Then 
these features are used only to locate positions of faces. Works which belong in these 
approaches are K.C.Yow et al., 1997, T.K.Leung et al., 1995. 
Template matching based methods: In the approaches, to describe faces or individual face 
features, face templates would be stored. Detecting faces is based on the correlation between 
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input images and the stored templates. These methods are used both to locate and detect 
faces. Some typical researchers are Craw et al., 1992 and A.Lanitis et al., 1995. 
Machine learning based methods: in contrast to template matching based methods, models 
of the methods will learn from training sets of image. After that these models will be used to 
detect faces. These approaches are used only to detect faces. There are some machine 
learning models based on these methods such as Eigenface ( M.Turk et al., 1991), Probability 
Distribution Based Model (K.Sung et al., 1998), Artificial Neural Network (H.Rowley, 1998), 
SVM (E.Osuna et al., 1997), Bayes Classification (H. Schneiderman et al., 1998), Hidden 
Markov Model (A.Rajagopalan et al., 2005), Reinforcement Learning Model: AdaBoost (  
Viola  et al., 2001); FloatBoost (Stan Z.Li et al., 2004).  
In the study, machine learning methods is only focused because they eliminate subjective 
thinking factors from human experience. Moreover, they only depend on training data to 
make final decisions. Thus if training data is well organized and enough, then these systems 
will achieve high performance without human factors.  
A method of detecting face is to classify the pattern in the sub window as either face or 
nonface. The classifier is trained by the training set which include face images and nonface 
images taken under different conditions or extracted in the process of running the program. 
Face images for training are a part of faces, including left and right eyes, noses and mouths 
in Figure 2a; nonface images for training do not contain any part of faces in Figure 2b. 
Training 20x20 images are used for training classifiers. The trained classifiers are able to 
classify a part of image as face or nonface. In detail, a subwindow 20x20 will be slid on a full 
image (resized to 120x90). The subwindow is verified by the classifiers to contain a face or 
not. If the region contains a face, the program will locate it in Figure 3. 
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Fig. 2. Images for training classifiers 
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Fig. 3. Classifier ‘s process for detecting face 



 Artificial Neural Networks - Application 

 

214 

Technique 3 - facial expression classification based on multi artificial neural network: In 
recent years, image classification and facial expression classification have received much 
attention. Many approaches are suggested to solve these problems with aiming to increase 
efficient classification. One of famous suggestions is described as first step, project the 
pattern or image to different spaces; second step, in each of these spaces, patterns are 
classified into responsive class and the last step, combine the above classified results into the 
final result. The advantages of this approach are to reflect fulfill and multiform of image 
classified. Based on these advantages, classification system improves its precision. In the 
research, a model which combines many Neural Networks was developed and applied for 
the last step. This model evaluates the reliability of each space and gives the final 
classification conclusion. Our model links many Neural Networks together, so we call it 
Multi Artificial Neural Network (MANN). The proposal model was applied for 6 basic facial 
expressions on JAFFE database consisting 213 images posed by 10 Japanese female models. 

2. An approach to combine adaBoost and Artificial Neural Network for 
detecting human faces (Thai et al., 2008)  
Face recognition is the problem to search human faces in large image database. In detail, a 
face recognition system with the input of an arbitrary image will search in database to 
output people’s identification in the input image. The face recognition includes the 
processing in figure 1.  
 
 

 
Face 

Detection
Tracking

Face 
Alignment

Feature 
Extraction

Feature 
Matching

Enrolled 
Users

Face
Location

Size & Pose

Aligned
Face

Feature
VectorImage Face ID

 
Fig. 1. Structure of a face recognition system 

Thus, the face detection processing is the first step of the face recognition system. The step 
will decide the efficiency of the system, so it is the most important step of the recognition 
system. Hence, the study only focuses on this step. To carry out it efficiently, many 
researchers have proposed different approaches. In general, according to Yang et al., 2002, 
there are four groups of face detecting methods. 
Knowledge based methods: these methods are based on sets of rules which have been built 
from experts on standard face structures. These rules are based on relationships between 
face features. The methods are mostly used to locate positions of faces. Typical researchers 
are Kanade et al. , 1973, G.Yang et al. , 1994, and Kotropoulos et al., 1997. 
Invariant feature based methods: these methods focus on finding invariant features which 
always exist in every condition: changes in facial appearance, lighting and expression. Then 
these features are used only to locate positions of faces. Works which belong in these 
approaches are K.C.Yow et al., 1997, T.K.Leung et al., 1995. 
Template matching based methods: In the approaches, to describe faces or individual face 
features, face templates would be stored. Detecting faces is based on the correlation between 

Applications of Artificial Neural Networks to Facial Image Processing  

 

215 

input images and the stored templates. These methods are used both to locate and detect 
faces. Some typical researchers are Craw et al., 1992 and A.Lanitis et al., 1995. 
Machine learning based methods: in contrast to template matching based methods, models 
of the methods will learn from training sets of image. After that these models will be used to 
detect faces. These approaches are used only to detect faces. There are some machine 
learning models based on these methods such as Eigenface ( M.Turk et al., 1991), Probability 
Distribution Based Model (K.Sung et al., 1998), Artificial Neural Network (H.Rowley, 1998), 
SVM (E.Osuna et al., 1997), Bayes Classification (H. Schneiderman et al., 1998), Hidden 
Markov Model (A.Rajagopalan et al., 2005), Reinforcement Learning Model: AdaBoost (  
Viola  et al., 2001); FloatBoost (Stan Z.Li et al., 2004).  
In the study, machine learning methods is only focused because they eliminate subjective 
thinking factors from human experience. Moreover, they only depend on training data to 
make final decisions. Thus if training data is well organized and enough, then these systems 
will achieve high performance without human factors.  
A method of detecting face is to classify the pattern in the sub window as either face or 
nonface. The classifier is trained by the training set which include face images and nonface 
images taken under different conditions or extracted in the process of running the program. 
Face images for training are a part of faces, including left and right eyes, noses and mouths 
in Figure 2a; nonface images for training do not contain any part of faces in Figure 2b. 
Training 20x20 images are used for training classifiers. The trained classifiers are able to 
classify a part of image as face or nonface. In detail, a subwindow 20x20 will be slid on a full 
image (resized to 120x90). The subwindow is verified by the classifiers to contain a face or 
not. If the region contains a face, the program will locate it in Figure 3. 
  

 
(a) Face images 

 
(b) Nonface images 

Fig. 2. Images for training classifiers 

 

Classifier
face

nonface

 
Fig. 3. Classifier ‘s process for detecting face 



 Artificial Neural Networks - Application 

 

216 

Building the classifier is quite feasible because pixels on face images have high correlation to 
totally describe face structures while ones on nonface images have not the characteristic. 
One of the most popular and efficient learning machine based approaches for detecting 
faces is AdaBoost approach (P. Viola et al., 2001). Viola et al. designed a fast, robust face 
detection system where AdaBoost learning is used to build nonlinear classifiers. AdaBoost is 
used to solve the following three fundamental problems: (1) learning effective features from 
a large feature set; (2) constructing weak classifiers, each of which is based on one of the 
selected features; and (3) boosting the weak classifiers to construct a strong classifier. Weak 
classifiers are based on Haar-like features which will be presented in Section 2.1. Viola et al. 
make use of several techniques for effective computation of a large number of such features 
under varying scale and location which is important for realtime performance. Moreover, 
the simple-to-complex cascade of classifiers makes the computation even more efficient, 
which follows the principles of pattern rejection and coarse-to-fine search. Their system is 
the first realtime frontal-view face detector, and it runs at about 14 frames per second on a 
320×240 image (M. H. Yang et al., 2002). However, to achieve high ratios of detecting faces, 
we must increase the number of classifiers and Haar-like features. It will cause a significant 
increase in the performance time. Thus to deal with the issue, we should combine AdaBoost 
with other machine learning techniques to still achieve both the same face detecting ratios 
and the minimum performance time. One of the popular methods having the same 
achievement as well is Artificial Neural Networks (H. A. Rowley et al., 1999). 
ANN is the term on the method to solve problems by simulating neuron’s activities. In 
detail, ANNs can be most adequately characterized as 'computational models' with 
particular properties such as the ability to adapt or learn, to generalize, or to cluster or 
organize data, and which operation is based on parallel processing. However, many of the 
previous mentioned properties can be attributed to non-neural models. 
In the study, a hybrid approach combining AdaBoost and ANN was suggested to detect 
faces with the purpose of decreasing the performance time but still achieving the desired 
faces detecting rate. Section 2.1 is structured as follows. Subsection A will describe in detail 
on applying AdaBoost and Artificial Neural Network for detecting faces. Subsection B will 
present the combination model of two previous methods to efficiently solve the face 
detecting problem and describe experimental result of the proposed system (a software built 
from the model) conducted on standard databases. Subsection C will give our own 
evaluations and discussions on the proposed model. 

2.1 AdaBoost and ANN model for solving the problem 
A.  AdaBoost 
1. Overview of AdaBoost 
AdaBoost is a Boosting algorithm. It originates the PAC learning. It is proved that a 
combination of weak classifiers will construct a strong classifier. AdaBoost is very efficient 
because it combines simple statistical learners while reducing significantly not only the 
training error but also the more vague generalization error.   
2. Applying AdaBoost for detecting faces  
In detecting faces, AdaBoost based approaches has two main steps. In the first step, strong 
classifiers will be constructed from weak classifiers. Since then in the second step, the strong 
classifiers will be combined sequentially to create a cascade of boosted classifier. 
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a. Building strong classifier 
Input: Training data D = n Where xk = ( )1 2
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+1} is a corresponding label (+1 corresponding to face, -1 corresponding to nonface). T weak 
classifiers hj: X → {-1, +1}.  
We use AdaBoost algorithm to build a strong classifier   
Output: The final strong classifier is 
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Weak classifiers hj(x) are simple Haar-like features and a large set of very simple “weak” 
classifiers that use a single feature to classify the image region as face or nonface.  
Each feature is described by the template (shape of the feature), its coordinate relative to the 
search window origin and the size (scale factor) of the feature. Viola et al. proposed 4 basic 
templates of scalar features for face detection. Stewart Taylor used 8 different templates and 
Rainer Lienhart extended to a set of 14 templates (S. Z. Li et al., 2005). Each feature consists of 
two or three connected “black” and “white” rectangles, either up-right. The Haar-like feature’s 
value is computed as a weighted sum of two components: The pixel sum over the black 
rectangle and the sum over the whole feature area. The weights of these two components are 
of opposite signs and for normalization; their absolute values are inversely proportional to the 
areas. In real classifiers, hundreds of features are used, so direct computation of pixel sums 
over multiple small rectangles would make the detection very slow. However, Viola et al. 
suggested a clever method to compute the sums very fast. First, an integral image, Summed 
Area Table (SAT), is computed over the whole image I, where the pixel sum over a rectangle r 
= {(x,y),x0 ≤ x < x0+w, y0 ≤ y < y0+h} can then be computed using SAT by using just the corners 
of the rectangle regardless of size RecSum(r) = SAT(x0+w, y0+h) − SAT(x0+w, y0) − SAT(x0, 
y0+h) + SAT(x0, y0). This is for up-right rectangles. For rotated rectangles, a separate “rotated” 
SAT must be used. The computed feature value xj = wj0RecSum(rj0)+ wj1RecSum(rj1) is then 
used as input to a very simple decision tree classifier that usually has just two nodes which are 
computed in Eq. (2) or three nodes calculated in Eq. (2) 
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Where the response +1 means the face, and −1 means the non-face. Every such classifier, 
called a weak classifier, is not able to detect a face; rather, it reacts to some simple features in 
the image that may relate to the face.  
However, to achieve good results, an AdaBoost based system need a huge number of 
features. For example, for a subwindow of size 20x20, there can be tens of thousands of such 
features for varying shapes, sizes and locations. Since then, this significantly decreases the 
performance speed of the face detecting system. Moreover, final classifier correctness 
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Building the classifier is quite feasible because pixels on face images have high correlation to 
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Weak classifiers hj(x) are simple Haar-like features and a large set of very simple “weak” 
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Where the response +1 means the face, and −1 means the non-face. Every such classifier, 
called a weak classifier, is not able to detect a face; rather, it reacts to some simple features in 
the image that may relate to the face.  
However, to achieve good results, an AdaBoost based system need a huge number of 
features. For example, for a subwindow of size 20x20, there can be tens of thousands of such 
features for varying shapes, sizes and locations. Since then, this significantly decreases the 
performance speed of the face detecting system. Moreover, final classifier correctness 
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depends on the correctness of weak classifiers (Haar-like features). Thus the performance 
effectiveness is not high. 
b. Building  cascade of boosted classifier 
 

C1 C2 ... Cn Face

Cascade of Boosted Classifier

T T T T

F F F F

Image

NonFace  
Fig. 4. Structure of cascade of boosted classifier 

Most good classifiers need much time to have classification results because they must 
consider the great number of features of patterns. The cascade structure of strong or boosted 
classifiers has been suggested in order to reduce performance time, false alarm rates for the 
classifier (figure 4). The cascade tree has some stages; each stage is a stage classifier. During 
the detection stage, each pattern is analyzed sequentially by each of the stage classifier they 
may reject it or let it go through. During the training stage, each stage classifier is trained by 
false negative patterns of the previous stage. It means that it will learn difficult background 
patterns. Thus the combination of classifiers in cascade will decrease false alarm rate. With 
this structure, the classifier can easily recognize background patterns and reject them with 
first stages. Hence it solves two problems which are complexity and performance time. In 
summary, the cascade structure has partly improved the performance time, but the 
detection rate still depends on weak classifiers.  

B. ANN 
1. Feedforward ANN 
There are many prototypes of ANNs. However, this section only concerns feedforward 
ANN.  Feedforward ANN is considered as a mapping between the sets of input and output 
values. It plays a role of a function f that maps the input set I into the output set O, i.e.: f : I 
→ O or y = f(x), where y ∈ O , and x ∈ I. 
Each output neuron is real value ∈ [-1, 1] or [0, 1] depend on the transfer function of ANN. 
A transfer function which can be linear or nonlinear is used to transform information for 
each neuron of ANN. Some popular transfer functions are Tanh, Sigmoid and Linear.  
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The decision object will belong to the class which has maximum neuron. This network is 
trained by a back propagation algorithm (C. Bishop et al., 2006). 
2. Applying the network to verify human faces 
In general, human face verifying problem can be defined as following: it is the problem to 
determine whether a certain image contains any human face or not. Solving the problem is a 
two-phase process: 
Phase 1. Network training phase 
• Preparing a sample image set for training. A training sample set must contain two 

subsets: a subset of human face images and a subset of nonface images. 
• Training the system by the sample. After the training phase, the neural network with 

the new set of weights will be able to verify an image. 
Phase 2. Image verifying phase 
• Feed the image-to-be-verified to trained neural network. The neural network will return 

a result: True if the image contains a human face or False if the image does not contain a 
human face. 

 
(a) Processing steps of Rowley’s system 

 
(b) Input features for neural network 

Fig. 5. Rowley’s system for detecting faces 
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Fig. 5. Rowley’s system for detecting faces 
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The selected neural network here is three-layer feedforward neural network with back 
propagation algorithm. The number of input neurons T is equivalent to the length of 
extracted feature vector, the number of output neurons is just 1 (C=1), will return true if the 
image contains a human face and false if it does not. The number of hidden neurons H will 
be selected basing on the experiment; it depends on the sample database set of images.  
One of the best face verifying system is an ANN based system developed by Rowley (H. A. 
Rowley et al., 1999).  
The input of this first stage is a pre-processed square image (20x20 pixels) and the output of 
the ANN is a real value between -1 (false) and +1 (true). The preprocessing and ANN steps 
are illustrated in Figure 5. 
The original image is decomposed into a pyramid of images as the following: 4 blocks 10x10 
pixels, 16 blocks 5x5 pixels, 5 overlapping blocks 20x6 pixels. Thus the ANN will have 4 + 16 
+ 5 = 25 input nodes. Its goal is to find out important face features: horizontal blocks to find 
out mouths and eyes, square blocks to find out each eyes, noses and mouths. 
The system uses one hidden layer with 25 nodes to represent local features that characterize 
faces well. Its activation function is Tanh function with the learning rate ε = 0.3 (H. A. 
Rowley et al., 1999). 
C. Analyses and Evaluations on AdaBoost and ANN  
1. Database for experiments  
Image set for training: The training database for AdaBoost and ANN has two subsets. One 
of them contains face images and the other contains nonface images. The database is 
collected from sources of CMU database and MIT database. The image set containing faces 
includes 2429 frontal face images. The image set not containing faces includes 4548 images 
which are landscape, animal images. 
Image set for testing: The testing database includes images which have different size, 
illumination, pose and expression. These images are extracted from testing images of 
CalTech database. CalTech database have 450 color images. 
 

 
(a) Face images 

 
(b) Nonface images 

Fig. 6. Some images for training  in CMU and MIT database. 
 

 
Fig. 7. Some images for testing in Caltech database. 
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2. Experimental results of AdaBoost based system 
 

Incorrect images Database Number of 
images 

Correct 
images False negative False positive 

Detecting 
rate 

CalTech 450 389 58 3 86,44% 

Table 1. Experimental results by adaboost 

The model of cascade of boosted classifiers is used, which is built with Haar-like features. 
This experimental model is constructed with 25 strong classifiers (n = 25) with 2888 Haar-
like features and the search window size is 20 x 20 pixel. CMU and MIT database mentioned 
in section (2.C.1) are used to train the classifier. After that, CalTech database is used to test 
the trained classifier and the experimental results are presented in Table 1. 
3. Experimental results of ANN based system 
 

Name Input nodes Hidden nodes Output nodes Learning rate 
ANN_FACE 25 25 1 0.3 

Table 2. The ann structure for detecting faces 

 

Incorrect images Database Number of 
images 

Correct 
images False negative False positive 

Detecting 
rate 

CalTech 450 380 25 45 84.44% 

Table 3. Expermental results by the ann on caltech database 

Rowley’s ANN model is used for detecting faces presented in the Table II. 
Thus a system is implemented by the three-layer feedforward ANN with the Tanh 
activation function and the back-propagation learning algorithm. The system ran on a PC, 
CPU 1.8MHz, RAM 512MB. CMU and MIT database mentioned in subsection (2.1.C.1) is 
used to train the ANN. It took about 8 hours to train the ANN. Then, CalTech database is 
used to test the trained ANN. The performance is presented in the Table 3. 
4. Evaluations  on AdaBoost and ANN 
The experiments prove that AdaBoost and ANN approaches for detecting faces does not 
achieve good results of performance time and detecting rate yet. AdaBoost method is one of 
today’s fastest algorithms. However, false face detecting rate is rather high. The cascade of 
boosted classifier depends on weak classifiers. False images are often false negative. 
According to the experiments, the ratio between false negative and false positive is 58:3. To 
solve the drawback, there are two solutions. First, the large number of stage classifiers can 
be increased in order to achieve desired results. However, increasing the number of both 
classifiers and features too much will decrease the algorithm speed. Second, AdaBoost with 
other classification techniques can be combined to reject false negative images in order to 
increase the correctness of the system. ANN, a strong classification technique, has been used 
efficiently in problem of detecting faces. In addition, the performance time is not high. Since 
then, a hybrid model of AdaBoost and ANN is suggested in section 2.2. On the other hand, 
ANN is appended at the final stage to create a complete hybrid system. 
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2.2 A hybrid model of AdaBoost and ANN for solving the problem 
1. Introduction the hybird model 
The hybrid model is named ABANN. This is the model of combining AdaBoost and ANN 
for detecting faces. In this model, AdaBoost have a role to quickly reject nonface images; 
then ANN continue filtering false negative images to achieve better results. The final result 
is face/nonface.  
In detail, a model of cascade of classifiers includes many strong classifiers and ANN is 
combined with the strong classifiers to be a final strong classifier of the system to achieve 
better results in Figure 8. For example, AB5 includes 5 strong classifiers will be combined with 
ANN, the sixth strong classifier, to be ABANN5.  
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Fig. 8. The process of dectecting faces of ABANN 
2. Experimental results 
This exerimental also used the databases mentioned in Section (2.1.C). CMU and MIT 
databases were used for training; CalTech database was used for testing. Two experiments 
are performed. In the first experiment, AdaBoost classifiers are used with the number of 
stage classifiers which are 5, 10, 15, 20 or 25. The second experiment implements the 
AdaBoost classifiers combined with ANN which is Rowley’s network with structure like 
three-layer feedforward neural network with 25 input nodes, 25 hidden nodes, 1 output 
node and using back-propagation learning algorithm for training (Tanh activation function 
and learning rate 0.3).   These experiments were done on database CalTech. Both of them 
were trained by database CMU and MIT. The training time for these system is about 22 
hours. The results will be showed in Table 4 and 5.     
3. Evaluation of experimental results 
 

Name Number of strong  
classifiers 

Number of Haar-
like features to use 

correctness 
rate 

Testing time (s) 
for CalTech 

AB5 5 131 55.86% 202 
AB10 10 487 66.84% 247 
AB15 15 1094 71.27% 270 
AB20 20 1905 77.67% 337 
AB25 25 2888 86.44% 382 

Table 4. Experimental result of casscade of adaboost(AB) without ANN on caltech database 
(train by CMU and MIT database).  
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The experimental results showed that system ABs yields low diction rate even though there 
is a large increase in strong classifiers. For example, with 25 strong classifiers and 2888 Haar-
like feature, a system achieved only detection rate 86.44% on database CalTech while system 
ABANNs (combining AdaBoost and ANN) achieved higher ones even in cases of the 
number of strong classifier to be low. For instance, ABANN5 (5 strong classifiers + ANN) 
achieved detection rate 84.44%; ABANN10 (10 strong classifiers + ANN) 86.52% and it got 
the best result 97% while increasing the number of strong classifiers to 25. The performance 
time is quite fast and the structure of neural network (Rowley’s model) is fair simple. From 
the achieved results and theoretical analyses presented in Section 2.1.C, the hybrid model of 
associating AdaBoost with ANN is necessary and can be applied in practicality.  
 

ADABoost structure Name 
Number of 

strong 
classifiers 

Number of 
Haar-like 

features to use 

ANN 
structure 

Correctness 
rate 

Testing 
time (s) for 

CalTech 

ABANN5 5 131 84.44% 247 
ABANN10 10 487 86.52% 292 
ABANN15 15 1094 91.30% 315 
ABANN20 20 1905 94.44% 382 
ABANN25 25 2888 

Rowley’s 
model 

97.15% 427 
Table 5. Experimental result of system associating casscade of adaboost  with ANN on 
caltech database (train by CMU and MIT database). 
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Fig. 9. Experimental resutls 

2.3 Conclusions 
To the extent of the paper, the two popular methods of detecting faces are presented, 
AdaBoost and ANN, analyzing, evaluating ones’ advantages and disadvantages. From the 
study, AdaBoost (cascade of boosted AdaBoost) has the fastest performance time; however 
the correctness rate is not high (because detection results depend on weak classifiers or 
Haar-like features); and it is proved by the experiments on database CalTech. ANN will 
reach good verifying results if it has a suitable structure; nevertheless the detection speed is 
quite slow due to the complexness of ANN. Hence in the experiments we used simple ANN 
or three-layer feedforward neural network proposed by Rowley. 
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AB15 15 1094 71.27% 270 
AB20 20 1905 77.67% 337 
AB25 25 2888 86.44% 382 

Table 4. Experimental result of casscade of adaboost(AB) without ANN on caltech database 
(train by CMU and MIT database).  
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The experimental results showed that system ABs yields low diction rate even though there 
is a large increase in strong classifiers. For example, with 25 strong classifiers and 2888 Haar-
like feature, a system achieved only detection rate 86.44% on database CalTech while system 
ABANNs (combining AdaBoost and ANN) achieved higher ones even in cases of the 
number of strong classifier to be low. For instance, ABANN5 (5 strong classifiers + ANN) 
achieved detection rate 84.44%; ABANN10 (10 strong classifiers + ANN) 86.52% and it got 
the best result 97% while increasing the number of strong classifiers to 25. The performance 
time is quite fast and the structure of neural network (Rowley’s model) is fair simple. From 
the achieved results and theoretical analyses presented in Section 2.1.C, the hybrid model of 
associating AdaBoost with ANN is necessary and can be applied in practicality.  
 

ADABoost structure Name 
Number of 

strong 
classifiers 

Number of 
Haar-like 

features to use 

ANN 
structure 

Correctness 
rate 

Testing 
time (s) for 

CalTech 

ABANN5 5 131 84.44% 247 
ABANN10 10 487 86.52% 292 
ABANN15 15 1094 91.30% 315 
ABANN20 20 1905 94.44% 382 
ABANN25 25 2888 

Rowley’s 
model 

97.15% 427 
Table 5. Experimental result of system associating casscade of adaboost  with ANN on 
caltech database (train by CMU and MIT database). 
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2.3 Conclusions 
To the extent of the paper, the two popular methods of detecting faces are presented, 
AdaBoost and ANN, analyzing, evaluating ones’ advantages and disadvantages. From the 
study, AdaBoost (cascade of boosted AdaBoost) has the fastest performance time; however 
the correctness rate is not high (because detection results depend on weak classifiers or 
Haar-like features); and it is proved by the experiments on database CalTech. ANN will 
reach good verifying results if it has a suitable structure; nevertheless the detection speed is 
quite slow due to the complexness of ANN. Hence in the experiments we used simple ANN 
or three-layer feedforward neural network proposed by Rowley. 
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To improve the performance and eliminate their limitations, the hybrid model of AdaBoost 
and ANN (ABANN) for detecting faces is used. The system has achieved better results of 
both correctness rate and performance comparing with individual models (AdaBoost or 
ANN). For example, ABANN25 achieved the detection result 97.15% comparing to AB25 
86.44 % and ANN (based on Rowley’s model) 84.44% on database CalTech and the testing 
time is insignificant. Since then, the hybrid model is very efficient and has a practical 
meaning in the problem of detecting faces. 

3. Local texture classifiers based on multi layer perceptron for face alignment 
(Thai et al., 2008) 
Face recognition is the problem to search human faces in large image database. In detail, a 
face recognition system with the input of an arbitrary image will search in database to 
output people’s identification in the input image. The face recognition system’s stages is 
illustrated in Figure 1.  
The face alignment is one of important stages of the face recognition. Moreover, face 
alignment is also used for other face processing applications; such as face modeling and 
synthesis. Its objective is to localize the feature points on face images such as the contour 
points of eye, nose, mouth and face (illustrated in Figure 10). 
 

 
Fig. 10. Face alignment 

There have been many face alignment methods. Two popular face alignment methods are 
Active Shape Model (ASM) and Active Appearance Model (AAM) proposed by Cootes et al 
(2001).  
The two methods use a statistical model to parameterize a face shape with PCA method. 
However, their feature model and optimization are different. ASM algorithm has a 2-stage 
loop: in the first stage, given the initial labels, searching for a new position for every label 
point in its local region which best fits the corresponding local 1-D profile texture model; in 
the second stage, updating the shape parameters which best fits these new label positions. 
AAM method uses its global appearance model to directly conduct the optimization of 
shape parameters. Owing to the different optimization criteria, ASM performs more 
precisely on shape localization, and is quite more robust to illumination and bad 
initialization. In the section, the classical ASM method is developed to create a new method 
named MLP-ASM which has achieved better results.  
Because ASM only uses a 1-D profile texture feature, which is not enough to distinguish 
feature points from their local regions, the ASM algorithm often fell into local minima 
problem in the local searching stage. A few representative texture features and pattern 
recognition methods are proposed to reinforce the ASM local searching, e.g. Gabor wavelet 
(Jiao et al., 2003), Haar wavelet (Zuo et al., 2004), Ranking-Boost (Yan et al, 2003) and 
FisherBoost (Tu et al., 2004). Nevertheless, an accurate local texture model to large data sets 
is still unachieved target. 
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In the section, an ASM method is proposed with a novel local texture model, which use 
Multi Layer Perceptron (MLP) for ASM local searching. MLP is very sufficient for face 
detecting (Marcel et al., 2004).  
This section is structured as follows: in subsection 3.1, general ASM algorithm is presented; 
in subsection 3.2, classical local texture model with statistical local searching is discussed; in 
subsection 3.3, MLP local texture model is proposed for the ASM local searching; in 
subsection 3.4, the experimental results are presented; in section 3.5, some conclusions about 
the proposed model is discussed. 

3.1 General ASM algorithms 
A. Statistical Shape Models 
A face shape can be represented by n points {(xi, yi)} as a 2n-element vector, X = (x1, y1, …, 
xn, yn)T. Given s training face images, there are s shape vectors {Xi}. Before we can perform 
statistical analysis on these vectors it 0,is important that the shapes represented are in the 
same coordinate frame. Figure 11 illustrates Shape Model. 
In particular, a parameterized model of the form X = Model(b) need be found, where b is a 
vector of parameters of the model. Such a model can be used to generate new vectors, X. If 
the distribution of parameters, pb(b) can be model, we can limit them so the generated X’s 
are similar to those in the training set. Similarly, it should be possible to estimate pX(X) using 
the model.  
 

 
Fig. 11. Shape model of an image 
To simplify the problem, we first wish to reduce the dimensionality of the data from 2n to 
something more manageable. An effective approach is to apply PCA to the data. The data 
form a cloud of points in the 2n-D space. PCA computes the main axes of this cloud, 
allowing one to approximate any of the original points using a model with fewer than 2n 
parameters. The approach is as follows Li et al. 2005. 
Step 1 Compute the mean of the data set 
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Step 2 Compute the covariance matrix of the data set 
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Step 3 Compute the eigenvectors, pj and corresponding eigenvalues λj of the data set S 
(sorted so λj ≥ λj+1). 
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Step 4 We can approximate X from the training set 

 s sX X P b≈ +  (6) 

Where Ps = (p1|p2|…|pt) (t, the number of modes, can be chosen to explain a given 
proportion 98% of the variance in the training data set) and bs = (b1, b2, …, bt), shape model 
parameters, given by 

 ( )T
s sb P X X= − , { }3 , 3i i ib λ λ∈ − +  (7) 

A real shape X of images can be generated by applying a suitable transformation T to the 
points X: X = T ( ), , , , ,s s c c x yX P b x y s s θ+ . This transformation includes a translation (xc, yc), a 
scaling (sx, sy) and a rotation (θ).  
 

 
Fig. 12. Using PCA to compute statistical shape model 
B. ASM Algorithm 

Given a rough starting approximation, the parameters of an instance of a model can be 
modified to better fit the model to a new image. By choosing a set of shape parameters, bs, 
for the model we define the shape of the object in an object centered coordinate frame. We 
can create an instance X of the model in the image frame by defining the position (xc, yc), 
orientation (θ), and scale (sx, sy) parameters. An iterative approach to improve the fit of the 
instance, T ( ), , , , ,s s c c x yX P b x y s s θ+ , to an image proceeds as follows. 
Step 1 Examine a region of the image around each point of X to find the best nearby match 
for the points X’. There are some ways to find X’. A popular method, the classical texture 
model, will be presented in section 3.2, then our method, the MLP local texture model will 
be presented in subsection 3.3.  
Step 2 Repeat until convergence. 
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Update the parameters (bs, xc, yc, sx, sy, θ) to best fit to the new found points X’ to minimize 
the sum of square distances between corresponding model and image points 

2( , , , , , ) | ' ( , , , , , )|s c c x y s s c c x yE x y s s T X x y s sθ θ= − +b X P b  
Step 2.1 Fix bs and find (xc, yc, sx, sy, θ) to minimize E 
Step 2.2 Fix (xc, yc, sx, sy, θ) and find bs to minimize E 
 

 
Fig. 13. Transformation model into image 

2.2 Classical local texture model 
 

 
Fig. 14. 1-D profile texture model 

Objective is to search for local match for each point (illustrated in figure 14.). The model is 
assumed to have strongest edge, correlation, statistical model of profile.  
Step 1 Computing normal vector at point (xi, yi) 
Calculating tangent vector t  

 tx = xi+1 – xi-1,  ty = yi+1 – yi-1  (8) 
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Normalize tangent vector t 

 tx = tx/|t|,  ty = ty/|t| (9) 

Calculate normal vector n 

 nx = -ty, ny = tx   (10) 

Step 2 Calculate g(k) by sampling along the 1-D profile of point (xi, yi) 

 G(k) = image[xi + knx, yi + kny], k ∈ […, -2, -1, 0, 1, 2, …]  (11) 

To noise images, average orthogonal to the 1-D profile 
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Fig. 15. Computing g(k) function 
Making the edges of images clear by image derivation. 
We can select the point at the strongest edge. However, sometimes the true point is not at 
the strongest edge. We use the local probability model to locate the point. For each point, we 
estimate the probability density function (p.d.f) on the 1-D profile from the training data set 
to search for the correct point. 
The classical ASM method has some weak points, such as, since PCA did not consider 
discriminative criterions between positive samples (feature points or true points) and 
negative samples (non-feature points, its neighbors), the result of local searching stage often 
falls into local minima. 
To deal with the problem, distinguishing feature points from non-feature points, which is 
critical to diminish the effects of local minima problem, we propose the local 2D structure 
model for each point, which uses MLP trained over a large training set. After training, the 
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model can classify feature points correctly. Multi Layer Perceptron has been proven to be 
robust and efficient in face detection (Bishop et al., 2006, Marcel et al., 2004). 
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Fig. 16. Selecting the feature point at the strongest edge 

3.4 Multi layer perceptron model for local texture classification 
A. Structure of Multi Layer Perceptron (Bishop et al., 2006, Marcel et al., 2004)  
A Multi Layer Perceptron (MLP) is a function 

 ( ) ( ) ( )1 2 1 2 mˆ ˆ ˆ ˆ ˆ, ,   , ,...,  and y y ,y ,...,yny MLP x W with x x x x= = =  (13) 

W is the set of parameters   { }0, , , ,L L
ij iw w i j L∀  

For each unit i of layer L of the MLP 
Integration: 
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On the input layer (L = 0): L
j jy x=  

On the output layer (L = L): ˆL
j jy y=  

The MLP uses the algorithm of Gradient Back-Propagation for training to update W. 
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model can classify feature points correctly. Multi Layer Perceptron has been proven to be 
robust and efficient in face detection (Bishop et al., 2006, Marcel et al., 2004). 
 

`

k

k

k

g(k)

|g’(k)| = |0 .5 (g(k+1) - g(k-1))|

the strongest 
edge

point
 

Fig. 16. Selecting the feature point at the strongest edge 

3.4 Multi layer perceptron model for local texture classification 
A. Structure of Multi Layer Perceptron (Bishop et al., 2006, Marcel et al., 2004)  
A Multi Layer Perceptron (MLP) is a function 

 ( ) ( ) ( )1 2 1 2 mˆ ˆ ˆ ˆ ˆ, ,   , ,...,  and y y ,y ,...,yny MLP x W with x x x x= = =  (13) 

W is the set of parameters   { }0, , , ,L L
ij iw w i j L∀  

For each unit i of layer L of the MLP 
Integration: 

 1
0

L L L
j ij i

j
s y w w−= +∑  (14) 

Transfer: L
jy = f(s), where 

 ( )

11

1 1f x .

11

x
a

a x x
a a

x
a

⎧− ≤ −⎪
⎪
⎪= − < < +⎨
⎪
⎪ ≥ +⎪⎩

 (15) 

On the input layer (L = 0): L
j jy x=  

On the output layer (L = L): ˆL
j jy y=  
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Fig. 17. Multi Layer Perceptron structure 
B. Applying the Multi Layer Perceptron for Searching for Feature Points 
 

 
Fig. 18. Multi layer perceptron for searching for feature points 

For each feature point, we define the region of a [-15, 15]×[-15, 15] window centered at the 
feature point. Then, positive samples, feature points, are collected from image points within 
a [-1, 1]×[-1, 1] sub-window at the center, while negative samples, none feature point are 
sampled randomly out of the sub-window within the region. Then through learning with 
Gradient Back-Propagation (Marcel, 2004), W weights of the MLP are updated and it 
outputs a value which is (+1) corresponding to the feature point or (-1) corresponding to the 
non-feature point. Figure 18 illustrates MLP for searching for feature points. 
The MLP structure for a sub-window has three layers: an input layer, a hidden layer, an 
output layer. The input layer has 9 units (input values are the first order derivation of pixels 
in the sub-window); the hidden layer has 9 units and the output layer has one unit (output 
value ∈ {-1, 1}). Such that, the MLP has (9 inputs + 1 bias) × 9 + 9 + 1 bias = 100 parameters. The 
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MLP use the transfer function as a linear function with a = 0.5 (equation (12)) (this is the best 
fit value from the experiments over CalTech database (Weber, 1999)).  
A local searching procedure will find around the current feature point to be the new feature 
position. 
Input shape X{(xi, yi)} 
Output new shape X’{(xi’, yi’)} 
For each point (xi, yi) of shape X 
For each sub-window sw’ centered at point (x’, y’) of the window centered at the feature 
point (xi, yi). 
- Computing MLP(sw’, W). If the return value is (+1) then point (x’, y’) is at the edge. 
- Selecting the nearest point (x’, y’) to the point (xi, yi) as the new feature point (xi’, yi’). 

3.5 Experiment results 
 

 
Fig. 19. Experimental results on some images from CalTech database. 
We have conducted experiments on a very large data set consisting of 1,000 front face images 
(450 color images from CalTech data set (Weber, 1999), 550 ones from our data set). They 
include male and female aging from young to old people, many of which are with exaggerated 
expressions such as smiles, closed eyes. The average face size is about 320×320 pixels. We 
randomly chose 600 images for training, and the rest 400 images for testing. The face shape 
model is made up of 89 feature points, and for each feature point a MLP is trained.  
For comparison, classical ASM was also implemented and trained on the same training set. 
A. Accuracy 
The accuracy is measured with point-point error. The feature points were initialized from the 
face window which was detected by Ada-Boost (Bradski et al., 2005, Thai et al., 2008). After the 



 Artificial Neural Networks - Application 

 

230 
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fit value from the experiments over CalTech database (Weber, 1999)).  
A local searching procedure will find around the current feature point to be the new feature 
position. 
Input shape X{(xi, yi)} 
Output new shape X’{(xi’, yi’)} 
For each point (xi, yi) of shape X 
For each sub-window sw’ centered at point (x’, y’) of the window centered at the feature 
point (xi, yi). 
- Computing MLP(sw’, W). If the return value is (+1) then point (x’, y’) is at the edge. 
- Selecting the nearest point (x’, y’) to the point (xi, yi) as the new feature point (xi’, yi’). 

3.5 Experiment results 
 

 
Fig. 19. Experimental results on some images from CalTech database. 
We have conducted experiments on a very large data set consisting of 1,000 front face images 
(450 color images from CalTech data set (Weber, 1999), 550 ones from our data set). They 
include male and female aging from young to old people, many of which are with exaggerated 
expressions such as smiles, closed eyes. The average face size is about 320×320 pixels. We 
randomly chose 600 images for training, and the rest 400 images for testing. The face shape 
model is made up of 89 feature points, and for each feature point a MLP is trained.  
For comparison, classical ASM was also implemented and trained on the same training set. 
A. Accuracy 
The accuracy is measured with point-point error. The feature points were initialized from the 
face window which was detected by Ada-Boost (Bradski et al., 2005, Thai et al., 2008). After the 
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alignment procedure, the errors were measured. The average errors of the 89 feature points are 
compared in Figure 20. The x-axis, which represents the index of feature points, is grouped by 
organ. It shows that the proposed method outperforms classical ASM; especially, the 
improvement of the methods is mainly on feature points of mouth and contour. 
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Fig. 20. Comparison of classical ASM and MLP ASM 
B. Efficiency 
The average performance time is listed in Table 6. All the tests are carried out on a PC with 
Intel Pentium IV - 2.4G CPU, 1G RAM. The classical ASM is the fastest since its computation 
of local texture model is very simple. The method is a little slower but is still comparable 
with the classical ASM.  
 

Algorithm Classical ASM MLP ASM 
Time per iteration 2ms 56ms 

Table 6. The average performance time per iteration (a two-stage process). 

3.6 Conclusions 
In the section 3, we present a robust face alignment algorithm with a local texture model 
(MLP ASM). Instead of modeling a local feature by 1-D profile texture, the classifier is 
learned from its 2-D profile texture patterns against its neighbor ones as a local texture 
model. The classifier is of great benefit to the local searching of feature points because of its 
strong discriminative power. The generality and robustness of the MLP method guarantee 
the performance. Therefore, compared to existing ones achieving their models in relative 
small training sets, our method shows potential in practical applications. 

4. Facial expression classification based on mutil Artificial Neural Network 
(Thai et al., 2010) 
There are many approaches apply for image classification. At the moment, the popular 
solution for this problem: using K-NN and K-Mean with the different measures, Support 
Vector Machine (SVM) and Artificial Neural Network (ANN). 
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K-NN and K-Mean method is very suitable for classification problems, which have small 
pattern representation space. However, in large pattern representation space, the calculating 
cost is high. 
SVM method applies for pattern classification even with large representation space. In this 
approach, we need to define the hyper-plane for classification pattern [1]. For example, if we 
need to classify the pattern into L classes, SVM methods will need to specify 1+ 2+ … + (L-1) 
= L (L-1) / 2 hyper-plane. Thus, the number of hyper-planes will rate with the number of 
classification classes. This leads to: the time to create the hyper-plane high in case there are 
several classes (costs calculation). Besides, in the situation the patterns do not belong to any 
in the L given classes, SVM methods are not defined (Brown et al., 2005). On the other hand, 
SVM will classify the pattern in a given class based on the calculation parameters. This is a 
wrong result classification.  
One other approach is popular at present is to use Artificial Neural Network for the pattern 
classification. Artificial Neural Network will be trained with the patterns to find the weight 
collection for the classification process (Kiem et al., 2000). This approach overcomes the 
disadvantage of SVM of using suitable threshold in the classification for outside pattern. If 
the patterns do not belong any in L given classes, the Artificial Neural Network identify and 
report results to the outside given classes.  
In this section, the Multi Artificial Neural Network (MANN) model is used to apply for 
pattern and image classification. Firstly, patterns or images are projected to difference 
spaces. Secondly, in each of these spaces, patterns are classified into responsive class using a 
Neural Network called Sub Neural Network (SNN) of MANN. Lastly, MANN’s global 
frame (GF) consisting some Component Neural Network (CNN) is used to compose the 
classified result of all SNN. 

4.1 Multi Artificial Neural Network  
 

 
Fig. 21. Image classification 

There are a lot of approaches to classify the image featured by m vectors X= (v1,v2,...,vm). 
Each of patterns is needed to classify in one of L classes: Ω = {Ωi | 1≤ i≤ L}. This is a general 
image classification problem (Kiem et al., 2000) with parameters (m, L). 
A Sub-Neural Network will classify the pattern based on the responsive feature. To 
compose the classified result, we can use the selection method, average combination method 
or build the reliability coefficients… 
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Fig. 22. Processing of Sub neural networks 

The selection method will choose only one of the classified results of a SNN to be the whole 
system’s final conclusion: 

 P(Ωi | X) = Pk(Ωi | X) (k=1..m)  (16) 

Where, Pk(Ωi | X) is the image X’s classified result in the Ωi class based on a Sub Neural 
Network, P(Ωi | X) is the pattern X’s final classified result  in the Ωi. Clearly, this method is 
subjectivity and omitted information. 
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Fig. 23. Average combination method. 
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The average combination method (Thai et al. 2004) uses the average function for all the 
classified result of all SNN: 
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This method is not subjectivity but it set equal the importance of all image features. 
On the other approach is building the reliability coefficients attached on each SNN’s output 
(Thai, 2004, Bac et al., 2005). The fuzzy logic, SVM, Hidden Markup Model (HMM) (Ghoshal 
et al., 2005) is used to build these coefficients:  
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Where, rk is the reliability coefficient of the kth Sub Neural Network. For example, the 
following model uses Genetics algorithm to create these reliability coefficients. 
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Fig. 24. NN_GA model (Thai, 2004) 

In the next section, the Neural Network technique is used. In details, a global frame 
consisting of some CNN(s) is used. The weights of CNN(s) evaluate the importance of 
SNN(s) like the reliability coefficients. This model links many Neural Networks together, so 
it is called Multi Artificial Neural Network (MANN). 

4.2 Multi Artificial Neural Network apply for image classification  
A. The MANN model 
Multi Artificial Neural Network (MANN), applying for pattern or image classification with 
parameters (m, L), has m Sub-Neural Network (SNN) and a global frame (GF) consisting L 
Component Neural Network (CNN). In particular, m is the number of feature vectors of 
image and L is the number of classes.  
Definition 1: SNN is a 3 layers (input, hidden, output) Neural Network. The number input 
nodes of SNN depend on the dimensions of feature vector. SNN has L (the number 
classes)output nodes. The number of hidden node is experimentally determined. There are 
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Fig. 23. Average combination method. 
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Fig. 24. NN_GA model (Thai, 2004) 

In the next section, the Neural Network technique is used. In details, a global frame 
consisting of some CNN(s) is used. The weights of CNN(s) evaluate the importance of 
SNN(s) like the reliability coefficients. This model links many Neural Networks together, so 
it is called Multi Artificial Neural Network (MANN). 

4.2 Multi Artificial Neural Network apply for image classification  
A. The MANN model 
Multi Artificial Neural Network (MANN), applying for pattern or image classification with 
parameters (m, L), has m Sub-Neural Network (SNN) and a global frame (GF) consisting L 
Component Neural Network (CNN). In particular, m is the number of feature vectors of 
image and L is the number of classes.  
Definition 1: SNN is a 3 layers (input, hidden, output) Neural Network. The number input 
nodes of SNN depend on the dimensions of feature vector. SNN has L (the number 
classes)output nodes. The number of hidden node is experimentally determined. There are 
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Fig. 25. MANN with parameters (m, L). 
m (the number of feature vectors) SNN(s) in MANN model. The input of the ith SNN, 
symbol is SNNi, is the feature vector of an image. The output of SNNi is the classified result 
based on the ith feature vector of image. 
Definition 2: Global frame is frame consisting L Component Neural Network which 
compose the output of SNN(s). 
Definition 3: Collective vector kth, symbol Rk (k=1..L), is a vector joining the kth output of all 
SNN. The dimension of collective vector is m (the number of SNN).  
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Fig. 26. Create collective vector for CNN(s). 
Definition 4: CNN is a 3 layers (input, hidden, output) Neural Network. CNN has m (the 
number of dimensions of collective vector) input nodes, and 1 (the number classes) output 
nodes. The number of hidden node is experimentally determined. There are L CNN(s). The 
output of the jth CNN, symbols is CNNj, give the probability of X in the jth class. 
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B. The process of the MANN model 
The training process of MANN is separated in two phases. Phase (1) is to train SNN(s) one-by-
one called local training. Phase (2) is to train CNN(s) in GF one-by-one called global training. 
In local training phase, the SNN1 will be trained first. After that SNN2,…,SNNm will be trained. 
 

 

Fig. 27. SNN1 local training 
In the global training phase, CNN1 will be trained. After that CNN2,…,CNNL will be trained. 
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Fig. 28. CNN1 global training. 
The classification process of pattern X using MANN is below: firstly, pattern X are extract to 
m feature vectors. The ith feature vector is the input of SNNi classifying pattern. Join all the 
kth output of all SNN to create the kth (k=1..L) collective vector, symbol Rk. Rk is the input of 
CNNk. The output of CNNk is the kth  output of MANN. It gives us the probability of X in 
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The classification process of pattern X using MANN is below: firstly, pattern X are extract to 
m feature vectors. The ith feature vector is the input of SNNi classifying pattern. Join all the 
kth output of all SNN to create the kth (k=1..L) collective vector, symbol Rk. Rk is the input of 
CNNk. The output of CNNk is the kth  output of MANN. It gives us the probability of X in 



 Artificial Neural Networks - Application 

 

238 

the kth class. If the kth  output is max in all output of MANN and bigger than the threshold. 
We conclude pattern X in the kth class.  
C. Applying the MANN for six basic facial expressions classification 
In the above section, the MANN is explained in the general case with parameters (m, L) 
apply for pattern classification. Now, MANN model is applied for scenery image of regional 
tourism classification. In fact that this is an experimental setup with (m=4, L=6). The 
dimensions of input vector of all SNN are not the same. An automatic facial feature 
extraction system is used, which is able to identify the eye location, the detailed shape of 
eyes and mouth, chin and inner boundary from facial images (Hung, 2009). 
 

 
Fig. 29. All Features Extraction (Hung, 2009). 
The left eye is the input for SNN1. The right eye is the input for SNN2. When emotional 
expression on the face, the left eye and the right eye may not be completely matched each 
other..The mouth is the input for SNN3. The inner boundary is the input for SNN4. All SNN(s) 
are 6 output nodes matching to 6 basic facial expression (happiness, sadness, surprise, anger, 
disgust, fear) (Michael et al., 1999). The experimental MANN has 6 CNN(s). They give the 
probability of the face in six basic facial expressions. It is easy to see that to build MANN 
model only use Neural Network technology to develop the experimental system. 
The proposed model is applied for 6 basic facial expressions on JAFFE database consisting 213 
images posed by 10 Japanese female models. The experimental result is presented below: 
 

Comparison SNN1 SNN2 SNN3 SNN4 Average MANN 
Precision 71% 73% 76% 56% 80% 83% 

Table 7. Facial Expression Precision 
 

 
Fig. 30. Facial expression using different methods. 
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It is a small experimental to check MANN model and need to improve the experimental 
system. Although the result classification is not high, the improvement of combination 
result shows that the MANN’s feasibility such a new method combines. We need to 
integrate with another facial feature sequences extraction system to increase the 
classification precision.  

4.3 Conclusion 
In this section, the model Multi Artificial Neural Network (MANN) with parameters (m, L) 
is explained. This model is applied for facial expression or image classification. Include, m is 
the number of feature vectors of image. L is the number of classes. MANN model has m 
Sub-Neural Network SNNi (i=1..m) and a Global Frame (GF) consisting L Components 
Neural Network CNNj (j=1..L). Each of SNN uses to process the responsive feature vector. 
Each of CNN use to combine the responsive element of SNN’s output vector. In fact, the 
weight coefficients in CNNj are as the reliability coefficients the SNN(s)’ the jth output. It 
means that the importance of the ever feature vector is determined after the training process. 
On the other hand, it depends on the image database and the desired classification. 
To experience the feasibility of MANN model, in this study, we conducted to develop a 
MANN model with parameters (m=4, L=3) apply for six basic facial expressions on JAFFE 
database. The experimental result shows that the proposed model improves the classified 
result compared with the selection and average combination method.  

5. Conclusion 
This chapter presented some methods for the recognition of human faces using many 
different modes of artificial neural network and combination models. The proposed 
techniques are based on the AdaBoost and Artificial Neural Network (AANN) structure, 
Multi Layer Perceptron (MLP) structure and Multi Artificial Neural Nework (MANN) 
structure. An implementation example is given to demonstrate the feasibility of each 
technique for the human face recognition system. The higher recognition rate conventional 
techniques on the standard database was obtained using these proposed techniques.These 
show the feasibility of many modes of articial neural network for facial image proceesing. 
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1. Introduction 
The exponential growth of spam emails in recent years is a fact of life. Internet subscribers 
world-wide are unwittingly paying an estimated €10 billion a year in connection costs just to 
receive "junk" emails, according to a study undertaken for the European Commission. Though 
there is no universal definition of spam, unwanted and unsolicited commercial email as a mass 
mailing to a large number of recipients is basically known as the junk email or spam to the 
internet community. Spams are considered to be potential threat to Internet Security. Spam's 
direct effects include the consumption of computer and network resources and the cost in 
human time and attention of dismissing unwanted messages. More importantly, these ever 
increasing spams are taking various forms and finding home not only in mailboxes but also in 
newsgroups, discussion forums etc without the consent of the recipients. Overflowing 
mailboxes are overwhelming users, causing newsgroups and discussion forums to be flooded 
with irrelevant or inappropriate messages. As a consequence, users are getting discouraged 
not to use them anymore though these systems can provide numerous benefits to them. 
Combating spam is a difficult job contrast to the spamming. Millions of spammers around 
the world are engaged in spreading spams with ever changing tricks and tactis to 
circumvent the filters deployed by the mailbox providers. As spammers are paid per 
volume for thier job, they invest thier best effort in reaching everyone by all possible ways.  
No antispamming technique is hundred percent accurate for spam problem. Antispamming 
techniques try to make a trade-off between rejecting legitimate e-mail vs. not rejecting all 
spam, and the associated costs in time and effort.  
The simplest and most common approaches are to use filters that screen messages based 
upon the presence of common words or phrases common to junk e-mail. Other simplistic 
approaches include blacklisting and whitelisting.  
• Blacklisting technique automatically rejects messages received from the addresses of 

known spammers.  
• Whitelisting accepts messages received from known and trusted correspondents only.  
The major flaw in the first two approaches is that it relies upon complacence by the 
spammers by assuming that they are not likely to change (or forge) their identities or to alter 
the style and vocabulary of their sales pitches. Whitelisting risks the possibility that the 
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recipient will miss legitimate e-mail from a known or expected correspondent with a 
heretofore unknown address, such as correspondence from a long-lost friend, or a purchase 
confirmation pertaining to a transaction with an online retailer. A detail explanation of these 
techniques is given in (Islam & Chowdhury, 2005). Ramachandran et al. (2007) propose a 
new technique called behavioral blacklisting, which complements existing blacklists by 
categorizing spammers based on how they send email, rather than the IP address (or address 
range) from which they are sending it. The intuition behind their idea is that, while IP 
addresses are ephemeral as identifiers, spam campaigns, spam lists, and spamming 
techniques are more persistent. If one can identify email-sending patterns that are 
characteristic of spamming behavior, then she can continue to classify IP addresses as 
spammers even as spammers change their IP addresses. 
Machine learning algorithms namely Naïve Bayesian classifier, Decision Tree induction, 
Artificial Neural Network and Support Vector Machines, based on keywords or tokens 
extracted from the e-mail’s Subject, Content-Type Header and Message Body, have been 
used successfully in the past (Aery & Chakravarthy, 2005 ; Drucker et al., 1999; Eichler, 2005; 
Islam & Chowdhury, 2005). Very soon they fall short to filter out spam emails as the 
spammer changing themselves in the ways that are very difficult to model by simple 
keywords or tokens (Stuart et al., 2004). The tactics the spammer uses follow patterns and 
these behavioral patterns can be modeled to combat spam. Actually the more they try to 
hide, the easier it is to see them (Stuart et al., 2004). Now the question is: 
Ques 1. Are the patterns that the spammers follow common to all?  
Ques 2. If the spammers follow patterns to spread spams, is it possible to track those 

patterns? 
Ques 3. If one can track the common spammer patterns, is it possible to model them? 
Ques 4. Is it possible to model common spammer patterns by machine learning   

approaches? 
Ques 5. What level of accuracy is possible to achieve if one apply machine learning 

approaches?  
Many researchers observe that spammers follow patterns. These patterns can be discovered 
from many different places: from email corpus (Stuart et al., 2004) by analysing their 
contents, network-level behavioral patterns (Ramachandran et al., 2006; Sperotto et al., 
2009), transfer pattern during transfer sessions (Zhang et al., 2006), resource usage patterns 
(Xu et al., 2010) and spammer behavior in terms of the chain of machines they use to deliver 
their messages (Guerra et al., 2009).  
This study investigates the possibilities of modeling spammer behavioral patterns instead of 
vocabulary as features for spam email categorization and these behavioral patterns are 
discovered by analysing email corpus Subject, Content-Type Header and Message Body. The 
two machine learning algorithms Naïve Bayesian Classifier and Artificial Neural Networks are 
experimented to model common spammer patterns and both of them achieve a promising 
detection rate that can be considered as an improvement of performance compared to the 
keyword-based contemporary filtering approaches. 

2. Methodology 
The success of machine learning algorithms in text categorization (TC) has led researchers to 
investigate learning algorithms for filtering spam emails (Sebastiani, 2002).  The central 
purpose of learning is to accurately predict unseen data. There are two types of learning 
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strategy and those are: supervised and unsupervised. In supervised learning both the data 
objects and their labels are given, but in unsupervised learning only data objects are 
provided. Naïve Bayesian classifier, Decision Tree induction, Artificial Neural Network and 
Support Vector Machines are supervised learning algorithms. Clustering is a good example of 
unsupervised learning algorithm. 
To learn the machine both training and test data are needed. Training data are used to build 
the model and then test data are used to measure the effectiveness of the model. In n-fold cross 
validation technique initial data are divided into n subsets. From these n subsets, n-1 subsets are 
used to train the model and the remaining subset is used to test the model. This process 
continues n times and average performance is taken to judge the effectiveness of the model. 
 

 
Fig. 1. Learning model 

The following two supervised machine learning algorithms are exploited to model spammer 
tricks and techniques in this study. 

2.1 Artificial Neural Network 
Artificial neural networks (ANN) are non-linear statistical data modeling tools that tries to 
simulate the functions of biological neural networks. It consists of interconnected collection 
of simple processing elements or artificial neurons and processes information in a 
connectionist approach to computation (Han & Kamber, 2001; Stuart et al., 2004). ANN is 
generally considered to be an adaptive system that changes its structure in response to 
external or internal information that flows through the network during the learning phase. 
Fig. 2 shows an example of multilayer feed forward neural network (MFFNN). 
 

 
Fig. 2. An example of a multilayer feed-forward artificial neural network 
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In MFFNN nodes represent neurons are denoted by circle, edges represent connections 
between neurons are directed edges and labelled with corresponding weight. Nodes in the 
input layer receive inputs (xi) from external world and nodes in the output layer give output 
(yi) to the user. Nodes in the middle layers (generally called hidden layers) receive inputs from 
the previous layer and deliver it to the next layer. The output of a node in an artificial neural 
network is computed by the equation given below: 

1

n

j ij i j
i

y w x θ
=

= +∑  

where yj is the value that will be passed to the next layer from node j, n is the number of 
incoming edges to node j, xi’s are the inputs coming from previous layer to node j and jθ is 
the bias for node j. 
The topology of an artificial neural network is defined by the number of layers in it and the 
number of nodes that appear in each layer. Once the topology is given of an artificial neural 
network, the learning task is to assign proper weight in each connection or edge so that it can 
correctly identify unknown data. This can be done by the most popular method for learning in 
multilayer networks: backpropagation. In backpropagation neural network learning algorithm, 
initially the weights and the biases are assigned randomly in the range [0, 1]. Then one of the 
example cases is applied to the network and the network produces some output based on the 
current state of its synaptic weights. This output is compared to the known-good output and a 
mean-squared error is calculated. The error value is then propagated backwards through the 
network and changes are made to the weights in each layer. The whole process is repeated for 
each of the example cases, then back to the first case again, and so on. The cycle is repeated 
until the overall error value drops below some pre-determined threshold. After then the 
network assumed to learn the problem well enough. The pseudo code for backpropagation 
artificial neural network learning algorithm is given below: 
               Step 1:  Randomly initialize the weights and the biases in the network  
   Step 2:  For each example e  in the training set 
  // forward pass 
                O  = neural-net-output (network, e)  
                T  = teacher output for e 
                Calculate error (T - O ) at the output units 
 
  // backward pass 
                Compute delta_wh for all weights from hidden layer to output layer  
               Compute delta_wi for all weights from input layer to hidden layer  
                               Update the weights in the network 
  
                Step 3: Continue step 3 until all examples classified correctly or stopping criterion  
                             satisfied 
               Step 4: Return the network 
The detail about backpropagation learning can be found in (Han & Kamber, 2001; Rojas, 1996). 

2.2 Naïve Bayesian classifier 
Bayesian classifier, the simplest and most widely used for filtering spams, is based on the 
so-called Bayes’ theorem.  For a training e-mail E , the classifier calculates for each category, 
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the probability that the e-mail should be classified under iC , where iC is the thi  category, 
making use of the law of the conditional probability: 

( ) ( ) ( )
( )

|
| i i

i
P C P E C

P C E
P E

=  

where ( )iP C is the prior probability of hypothesis iC ; ( )P E  is the prior probability of 
training data E; ( | )iP C E is the probability of iC given E and ( | )iP E C is the probability of E 
given iC . Assuming class conditional independence, that is, the probability of each word in 
an e-mail is independent of the word’s context and its position in the e-mail, ( )| iP E C can be 
calculated as the product of each individual word jW ’s probabilities appearing in the 
category iC  ( jW being the thj  of l words in the e-mail): 
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The category maximizing ( | )iP C E is predicted by the classifier (Han & Kamber, 2001; 
Eichler, 2005). 
Bayesian classifier does not require having lots of observations for each possible 
combination of the variables and are particularly suitable when the dimensionality of input 
data is high. The effect of a variable value on a given class in Bayesian Classifier is 
independent of the values of other variable. This assumption simplifies the computation and 
despite its simplicity, Naive Bayesian Classifier can often outperform more sophisticated 
classification methods (Caruana & Niculescu-Mizil, 2006) makes it particularly popular in 
commercial and open-source spam filters (Metsis et al., 2006). 

2.3 Spammer behavioral patterns 
The keyword-based statistical analyzers mostly depend on tokenization of the email content 
and extracting feature from tokenized keywords to model spammer behavior. Tokenization 
can be misguided in many several ways as today’s email supports character sets other than 
ASCII, non-text attachments and bodies with multiple parts. For example, the following 
HTML tricks can be used to do this: 
GET<!-- banana -->V<!-- 45-->I<!-- wumpus -->A<!-- dskfj -->G <!--  adf -- >R<!--  free -->A 
Thus above nonsense HTML tags only split the special word “viagra” and disguise the 
tokenizer though it would be shown as “GET VIAGRA” to email client. 
Even a word can be replaced with characters of other languages or like same character. For 
example, “V1DEO” can be sent instead of “VIDEO” and “Fántástìç” instead of “Fantastic”.  
A combination of special characters can used to produce alphabetical characters. For 
example, char “V” can be represented as the combination of right slash”\” and left slash 
“/”. A grouping or clustering of these techniques is given Table 1 for quick review. 
Table 1 has 30 different tricks and one can easily verify that HTML based tactics cover most of 
them (70%). It can also be shown that 75% of Cascading Style Sheet (CSS) and 50% of Image-
based tricks are also covered by HTML-based tactics. It is evident from table 1 that Java Script 
and MIME (and/or others) based tricks do not overlap with HTML/CSS based tactics. 
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Bayesian classifier, the simplest and most widely used for filtering spams, is based on the 
so-called Bayes’ theorem.  For a training e-mail E , the classifier calculates for each category, 

Modeling Spammer Behavior: Artificial Neural Network vs. Naïve Bayesian Classifier   

 

245 

the probability that the e-mail should be classified under iC , where iC is the thi  category, 
making use of the law of the conditional probability: 
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The category maximizing ( | )iP C E is predicted by the classifier (Han & Kamber, 2001; 
Eichler, 2005). 
Bayesian classifier does not require having lots of observations for each possible 
combination of the variables and are particularly suitable when the dimensionality of input 
data is high. The effect of a variable value on a given class in Bayesian Classifier is 
independent of the values of other variable. This assumption simplifies the computation and 
despite its simplicity, Naive Bayesian Classifier can often outperform more sophisticated 
classification methods (Caruana & Niculescu-Mizil, 2006) makes it particularly popular in 
commercial and open-source spam filters (Metsis et al., 2006). 

2.3 Spammer behavioral patterns 
The keyword-based statistical analyzers mostly depend on tokenization of the email content 
and extracting feature from tokenized keywords to model spammer behavior. Tokenization 
can be misguided in many several ways as today’s email supports character sets other than 
ASCII, non-text attachments and bodies with multiple parts. For example, the following 
HTML tricks can be used to do this: 
GET<!-- banana -->V<!-- 45-->I<!-- wumpus -->A<!-- dskfj -->G <!--  adf -- >R<!--  free -->A 
Thus above nonsense HTML tags only split the special word “viagra” and disguise the 
tokenizer though it would be shown as “GET VIAGRA” to email client. 
Even a word can be replaced with characters of other languages or like same character. For 
example, “V1DEO” can be sent instead of “VIDEO” and “Fántástìç” instead of “Fantastic”.  
A combination of special characters can used to produce alphabetical characters. For 
example, char “V” can be represented as the combination of right slash”\” and left slash 
“/”. A grouping or clustering of these techniques is given Table 1 for quick review. 
Table 1 has 30 different tricks and one can easily verify that HTML based tactics cover most of 
them (70%). It can also be shown that 75% of Cascading Style Sheet (CSS) and 50% of Image-
based tricks are also covered by HTML-based tactics. It is evident from table 1 that Java Script 
and MIME (and/or others) based tricks do not overlap with HTML/CSS based tactics. 
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In this study, a model has been developed exploiting two machine learning algorithms to 
capture common spammer patterns instead of keyword analysis. The 21 handy crafted 
features from each e-mail message extracted from subject header, priority & content-type 
headers and body shown in Table 2 simulate all possible common spammer tricks. These 
features have also been optimized in their capability of classifying spam emails. The rationale 
of these features can be verified by their statistics both in spam and non-spam emails. For 
example, whether a content-type header appeared within the message headers or whether the 
content type had been set to “text/html” is a common feature of spam, as our investigation 
revealed. The corpus that has been used in our experimentation, we observed that 98% spam 
emails include this feature. Similarly, color element (both CSS and HTML format) is also a 
frequent feature of spam emails. Colorful images those are generally included in the email for 
X-rated and unwanted internet marketing groups send to catch users’ attention.  The use of 
color elements in non-spam mails is very low. We found that 56% spam emails contain color 
elements whereas it exists only for 10% non-spam emails. The inclusion of this feature in our 
classification has improved performance considerably, which shows its practicality. We also 
added feature 19-21 as in Table 2, which are significant features of recent spams. 
 

 Java Script Image CSS HTML MIME/Others 

Title Case    Y  
Sticky Finger    Y  
Accent     Y 
Readable Spell    Y  
Dot Matrix   Y Y  
Right-to-Left    Y  
HTML Numbers    Y  
Comments    Y  
Styles   Y   
Invisible Ink   Y Y  
Matrix   Y Y  
Encoding of MSG     Y 
Encrypted Message Bodies Y     
Copperfield   Y   
Invisible Image  Y    
Zero Image  Y Y Y  
Slice and Dice  Y Y Y  
Cross Word   Y Y  
Honorary Title    Y  
Image Chopping  Y    
Cramp    Y  
Framed    Y  
Big Tag    Y  
Fake Text    Y  
Slick Click    Y  
Phishing    Y  
False Click    Y  
Pump & Dump     Y 
I’m Feeling Lucky    Y  

Table 1. Common spammer tricks 
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2.4 Email corpus 
Classification based spam filtering systems have two major drawbacks. Firstly, building a 
perfect data set free from noise or imperfection as noise adversely affect the classifier’s 
performance (Islam et al., 2009). The nature of spam email is very dynamic and the content 
of email is textually misleading due to obfuscation. This remains a continuous challenge for 
spam filtering techniques. Secondly, most training models of the classifier have limitations 
on their operations (Ranawana & Palade, 2006). Classifiers often produce uncorrelated 
training errors due to the dimension of feature space; a dissimilar output space is generated 
for changing feature space from small dimension to complex high dimension. 
In this work a corpus of 1,000 emails received over a period of several months is used for 
experimentation. The distribution of both spam and non-spam emails in this collection is 
equal. The equal distribution is preferred to make the classifier to eliminate the biasness 
towards a particular category. That is, out of 1,000 emails 500 is spam and 500 is non-spam. 
The collection of this corpus is selected over a time and latest trend in spamming is kept in 
mind. Also the author’s experience with spam research and statistical selection methodology 
is applied to the selection, which made this email bank very much representative of current 
spamming.  
 

Feature Category 1: Features From the Message Subject Header 
1 Binary feature indicating 3 or more repeated characters 
2 Number of words with all letters in uppercase 
3 Number of words with at least 15 characters 
4 Number of words with at least two of letters J, K, Q, X, Z 
5 Number of words with no vowels 

6 Number of words with non-English characters, special characters 
such as punctuation, or digits at beginning or middle of word 

 Category 2:  Features From the Priority and Content-Type Headers 

7 Binary feature indicating whether the priority had been set to any 
level besides normal or medium 

8 
Binary feature indicating whether a content-type header appeared 
within the message headers or whether the content type had been 
set to “text/html” 

 Category 3: Features From the Message Body 

9 Proportion of alphabetic words with no vowels and at least 7 
characters 

10 Proportion of alphabetic words with at least two of letters J, K, Q, 
X, Z 

11 Proportion of alphabetic words at least 15 characters long 

12 Binary feature indicating whether the strings “From:” and “To:” 
were both present 

13 Number of HTML opening comment tags 
14 Number of hyperlinks (“href=“) 
15 Number of clickable images represented in HTML 
16 Binary feature indicating whether a text color was set to white 
17 Number of URLs in hyperlinks with digits or “&”, “%”, or “@” 
18 Number of color element (both CSS and HTML format) 
19 Binary feature indicating whether JavaScript has been used or not 
20 Binary feature indicating whether CSS has been used or not 
21 Binary feature indicating opening tag of table 

Table 2. Features extracted from each e-mail 
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2.4 Email corpus 
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In this work a corpus of 1,000 emails received over a period of several months is used for 
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were both present 

13 Number of HTML opening comment tags 
14 Number of hyperlinks (“href=“) 
15 Number of clickable images represented in HTML 
16 Binary feature indicating whether a text color was set to white 
17 Number of URLs in hyperlinks with digits or “&”, “%”, or “@” 
18 Number of color element (both CSS and HTML format) 
19 Binary feature indicating whether JavaScript has been used or not 
20 Binary feature indicating whether CSS has been used or not 
21 Binary feature indicating opening tag of table 

Table 2. Features extracted from each e-mail 
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2.5 Feature construction 
Each email is parsed as text file to identify each header element to distinguish them from the 
body of the message. Every substring within the subject header and the message body that 
was delimited by white space was considered to be a token, and an alphabetic word was 
defined as a token delimited by white space that contains only English alphabetic characters 
(A-Z, a-z)or apostrophes.  
The tokens were evaluated to create a set of 21 hand-crafted features from each e-mail message 
(Table 2) of which features 1-17 are proposed in (Stuart et al., 2004).  In addition of these 17 
features this study proposes other four features 18-21. The study investigates the suitability of 
these 21 features in classifying spam emails. To do this, each email is represented by a vector of 
dimension 21 in the vector space model (Salton et al., 1975). To learn the neural network the 
input layer of Multilayer Perceptron will have 21 nodes. These nodes receive values from each 
dimension of the vector representing the email. For Naïve Bayesian Classifier, each dimension 
corresponds to spammer behavioral pattern instead of keyword. 

2.6 Evaluation measures 
Estimating classifier accuracy is important since it allows one to evaluate how accurately a 
given classifier will classify unknown samples on which the classifier has not been trained. The 
effectiveness of a classifier is usually measured in terms of accuracy, precision and recall 
(Makhoul et al., 1999). These measures are calculated using the confusion matrix given below: 
 

Category iC  Correct 

Predicted ↓ YES NO 
YES TPi FPi 
NO FNi TNi 

TP=true positives 
FP=false positives 
FN=false negatives 
TN=true negatives 

Table 3. Confusion matrix 

Accuracy of a classifier is calculated by dividing the number of correctly classified samples 
by the total number of test samples and is defined as: 

number of correctly classified samplesAccuracy
total number of test samples

=  

TP TN
TP FP FN TN

+
=

+ + +
 

Precision measures the system’s ability to present only relevant items while recall measures 
system’s ability to present all relevant items. These two measures are widely used in TREC 
evaluation of document retrieval (Makhoul, 1999). Precision is calculated by dividing the 
number of samples that are true positives by the total number of samples classified as 
positives and is defined as: 

Pr number of true positivesecision
total number of samples classified as positives

=  

TP
TP FP

=
+
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Analogously, recall is calculated by dividing the number of samples that are true positives 
by the total number of samples that classifier should classified as positives and is defined as: 

Re number of true positivescall
total number of postive samples

=  

TP
TP FN

=
+

 

3. Experimental results 
Table 4 summarizes the comparative results of Naïve Bayesian Classifier and Artificial 
neural Networks. These algorithms are tested on Weka 3.6.0 suite of machine learning 
software written in Java, developed at the University of Waikato (Holmes et al., 1994). 
Before simulating on Weka Tool we transform the vectors obtained from our dataset into 
Attribute-Relation File Format (ARFF). 
ARFF files have two distinct sections. The first section is the Header information, which is 
followed the Data information. The Header of the ARFF file contains the name of the relation, 
a list of the attributes (the columns in the data), and their types. An example header for our 
dataset is given below: 
 

@RELATION Email_Classification 
 

@ATTRIBUTE feature01  {yes, no} 
@ATTRIBUTE feature02  NUMERIC 
@ATTRIBUTE feature03  NUMERIC 
@ATTRIBUTE feature04  NUMERIC 
@ATTRIBUTE feature05  NUMERIC 
@ATTRIBUTE feature06  NUMERIC 
@ATTRIBUTE feature07  {normal, medium} 
@ATTRIBUTE  feature08  {yes, no} 
@ATTRIBUTE  feature09   NUMERIC 
@ATTRIBUTE feature10  NUMERIC 
@ATTRIBUTE  feature11  NUMERIC 
@ATTRIBUTE feature12  {yes, no} 
@ATTRIBUTE  feature13  NUMERIC 
@ATTRIBUTE  feature14   NUMERIC 
@ATTRIBUTE feature15  NUMERIC 
@ATTRIBUTE feature16  {yes, no} 
@ATTRIBUTE  feature17  NUMERIC 
@ATTRIBUTE  feature18  NUMERIC 
@ATTRIBUTE  feature19  {yes, no} 
@ATTRIBUTE  feature20  {yes, no} 
@ATTRIBUTE feature21  {yes, no} 
@ATTRIBUTE isHam                  {yes, no} 

 
The last attribute is the class column. The Data of the ARFF file looks like the following (only 
few samples out of 1000 are given here): 
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by the total number of samples that classifier should classified as positives and is defined as: 
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3. Experimental results 
Table 4 summarizes the comparative results of Naïve Bayesian Classifier and Artificial 
neural Networks. These algorithms are tested on Weka 3.6.0 suite of machine learning 
software written in Java, developed at the University of Waikato (Holmes et al., 1994). 
Before simulating on Weka Tool we transform the vectors obtained from our dataset into 
Attribute-Relation File Format (ARFF). 
ARFF files have two distinct sections. The first section is the Header information, which is 
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few samples out of 1000 are given here): 
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no, 0, 0, 0, 1, 2, medium, yes, 2, 0, 118, yes, 1, 13, 0, no, 0, 0, no, yes, no, yes 
no, 8, 0, 0, 1, 2, medium, yes, 1, 219, 223, no, 0, 0, 0, no, 0, 0, no, no, no, yes 
no, 0, 1, 0, 0, 1, medium, yes, 5, 4, 48, no, 0, 4, 1, no, 2, 0, no, yes, no,yes 
no, 0, 0, 0, 0, 1, medium, yes, 3, 0, 144, yes, 1, 69, 0, no, 0, 3, no, yes, no, yes 
no, 0, 1, 1, 0, 1, medium, yes, 4, 0, 7, yes, 1, 1, 0, no, 0, 0, no, yes, no,yes 
no, 0, 0, 0, 1, 1, medium, yes, 0, 265, 271, no, 0, 0, 0, no, 0, 0, no, no, no, yes 
no, 0, 1, 0, 0, 1, medium, no, 0, 0, 0, no, 0, 0, 0, no, 0, 0, no, no, no,yes 
no, 0, 0, 0, 1, 0, medium, yes, 0, 0, 1, no, 0, 1, 0, no, 1, 1, no, yes, no,yes 
yes, 0, 0, 0, 3, 5, medium, yes, 0, 0, 2, no, 0, 0, 0, no, 0, 0, no, no, no,yes 
yes, 0, 0, 0, 3, 6, medium, no, 0, 0, 0, no, 0, 0, 0, no, 0, 0, no, no, no,yes 
no, 0, 0, 0, 0, 0, medium, yes, 10, 0, 55, no, 0, 11, 1, yes, 0, 2, no, yes, yes, no  
no, 0, 0, 0, 0, 1, medium, yes, 12, 0, 45, no, 0, 0, 1, no, 0, 15, no, yes, yes, no  
no, 0, 0, 0, 0, 0, medium, yes, 6, 0, 43, no, 0, 11, 1, no, 0, 0, no, yes, yes, no  
no, 0, 0, 0, 0, 1, medium, yes, 2, 0, 3, no, 0, 0, 0, no, 0, 0, no, no, no,no  
no, 0, 0, 0, 0, 0, medium, yes, 2, 0, 21, no, 0, 0, 0, no, 0, 2, no, yes, yes, no  
no, 0, 0, 0, 0, 1, medium, yes, 8, 0, 12, no, 0, 29, 0, no, 0, 0, no, no, no,no  
no, 0, 0, 0, 0, 0, medium, yes, 14, 0, 57, no, 0, 16, 1, yes, 0, 2, no, yes, yes, no  
no, 0, 0, 0, 0, 1, medium, yes, 1, 0, 39, no, 0, 14, 1, no, 0, 0, no, yes, yes, no  
yes, 1, 0, 0, 4, 6, medium, yes, 2, 0, 17, no, 0, 2, 0, no, 0, 0, no, no, no, no  
yes, 4, 0, 0, 4, 5, medium, yes, 3, 0, 8, no, 0, 7, 0, no, 0, 0, no, no, no, no 
 

Naïve  Bayesian Classifier 
(NaiveBayes) 

ANN (Multilayer Perceptron) 
Features 

Accuracy Precision Recall Accuracy Precision Recall 
Category 1 Only 56.5 % 55.7% 56.5% 67.8% 73.1% 67.8% 
Category 2 Only 65.2% 75.0% 65.2% 65.2% 75.0% 65.2% 
Category 3 Only 88. 7 % 88.7% 88.7% 86.1% 86.1% 86.1% 
Category 1+Category 2 66.9 % 67.3% 67.0% 73.1% 77.2% 73.0% 
Category 2+ Category3  92.2 % 92.2% 92.2% 87.8% 88.1% 87.8% 
Category 1+Category 3 80.8 % 80.9% 80.9% 74.7% 75.4% 74.8% 
Category1+ Category 2 + Category 3 86.9 % 87.0% 87.0% 84.3% 85.1% 84.3% 

Table 4. Comparison results for Naïve Bayesian classifier and Artificial Neural Network 
The highest level of accuracy that can be achieved by Naïve Bayesian classifier is 92.2% 
(shown in Table 4) using features from category 2 and 3. The accuracy that can be achieved 
by any learning algorithms using features from category 1 is negligible. Features from 
category 2 and 3 contribute mostly in classifying spam emails from non-spam emails for all 
machine learning algorithm experimented in this study. 
Highest number of features is always desirable only if their inclusion increase classifier’s 
accuracy significantly. Growing number of features not only hinders multidimensional 
indexing but also increases overall execution time. So, this study starves to find an optimal 
number of features that can be effectively used to learn a classifier without degrading the 
level of accuracy. 
Applying best first forward attribute selection method the study gets only 10 features from 
category 2 and category 3 useful for classifying the spam and non-spam emails without 
sacrificing the accuracy as shown in Table 5. The set includes features 8, 9, 10, 12, 13, 14, 15, 
16, 17, and 18 of which feature 18 is identified in this study. The Naïve Bayesian classifier 
again outperforms the Artificial Neural Networks. The optimal feature set obtained by 
applying best first forward attribute selection method for the features proposed in (Stuart et 
al., 2004) includes only features 8, 9, 10, 12, 13, 14, 15, 16 and 17, a total of  9 features. In this 
case ANN outperforms than Naïve Bayesian classification algorithm as shown in Table 5. 
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Naïve  Bayesian 
Classifier(Naïve Bayes) 

ANN (Multilayer Perceptron) 
Features 

Accuracy Precision Recall Accuracy Precision Recall 
Best first: 8, 9, 10, 12, 13, 14, 15, 
16, 17, and 18 [This study] 

92.2% 92.2% 92.2% 90.4% 90.6% 90.4% 

Best first: 8, 9, 10, 12, 13, 14, 15, 
16,  and 17 (Stuart et al., 2004)  

86.1  % 87.4% 86.1% 91.3% 91.4% 91.3% 

Table 5. Comparison results for Naïve Bayesian classifier and Artificial Neural Network 
The study presented in (Stuart et al., 2004) uses neural network for modeling spammer 
common patterns and achieved similar performance, but the limitation of neural network is 
its longer training time and inherent complexity of explaining its derivation (less 
comprehensibility). On the contrary, Bayesian Classifier has the advantage of incremental 
inclusion of features and beforehand calculation. Therefore, Naïve Bayes is suitable for 
adapting itself in modeling new spammer patterns. 

4. Conclusion 
This research studies the modeling of spammer behavior by Artificial Neural Networks and 
Naïve Bayesian Classifier algorithms for spam email classification.  Based on examining 
different features and two different learning strategies, the following conclusions can be 
drawn from the study presented in this study: 
 Lesson 1. Spammer behavior can be modeled using features extracted from 
                    Content-Type header and message Body only. 
 Lesson 2. The contribution of features extracted from subject header in spam email 
                     detection is negligible or insignificant. 
 Lesson 3. Naïve Bayesian classifier models the spammer behavior best than Artificial 
                     Neural Networks.  
 Lesson 4. It is possible to get an optimal number of features that can be effectively 
                 applied to learning algorithms to classify spam emails without sacrificing accuracy 
The preliminary result presented in this study seems promising in modeling spammer 
common behavioral patterns compared to similar research. The contribution of this study is 
threefold:  it shows why keyword based spam email classifier may fail to model spammers’ 
altering tricks, common patterns adopted by spammers and the rationale of using these 
patterns against them to combat spam; suitability of modeling spammer common patterns 
using ANN and Naïve Bayes and finally, establishment of the four concluding remarks. 
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no, 0, 0, 0, 1, 2, medium, yes, 2, 0, 118, yes, 1, 13, 0, no, 0, 0, no, yes, no, yes 
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Naïve  Bayesian Classifier 
(NaiveBayes) 

ANN (Multilayer Perceptron) 
Features 

Accuracy Precision Recall Accuracy Precision Recall 
Category 1 Only 56.5 % 55.7% 56.5% 67.8% 73.1% 67.8% 
Category 2 Only 65.2% 75.0% 65.2% 65.2% 75.0% 65.2% 
Category 3 Only 88. 7 % 88.7% 88.7% 86.1% 86.1% 86.1% 
Category 1+Category 2 66.9 % 67.3% 67.0% 73.1% 77.2% 73.0% 
Category 2+ Category3  92.2 % 92.2% 92.2% 87.8% 88.1% 87.8% 
Category 1+Category 3 80.8 % 80.9% 80.9% 74.7% 75.4% 74.8% 
Category1+ Category 2 + Category 3 86.9 % 87.0% 87.0% 84.3% 85.1% 84.3% 

Table 4. Comparison results for Naïve Bayesian classifier and Artificial Neural Network 
The highest level of accuracy that can be achieved by Naïve Bayesian classifier is 92.2% 
(shown in Table 4) using features from category 2 and 3. The accuracy that can be achieved 
by any learning algorithms using features from category 1 is negligible. Features from 
category 2 and 3 contribute mostly in classifying spam emails from non-spam emails for all 
machine learning algorithm experimented in this study. 
Highest number of features is always desirable only if their inclusion increase classifier’s 
accuracy significantly. Growing number of features not only hinders multidimensional 
indexing but also increases overall execution time. So, this study starves to find an optimal 
number of features that can be effectively used to learn a classifier without degrading the 
level of accuracy. 
Applying best first forward attribute selection method the study gets only 10 features from 
category 2 and category 3 useful for classifying the spam and non-spam emails without 
sacrificing the accuracy as shown in Table 5. The set includes features 8, 9, 10, 12, 13, 14, 15, 
16, 17, and 18 of which feature 18 is identified in this study. The Naïve Bayesian classifier 
again outperforms the Artificial Neural Networks. The optimal feature set obtained by 
applying best first forward attribute selection method for the features proposed in (Stuart et 
al., 2004) includes only features 8, 9, 10, 12, 13, 14, 15, 16 and 17, a total of  9 features. In this 
case ANN outperforms than Naïve Bayesian classification algorithm as shown in Table 5. 
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Naïve  Bayesian 
Classifier(Naïve Bayes) 

ANN (Multilayer Perceptron) 
Features 

Accuracy Precision Recall Accuracy Precision Recall 
Best first: 8, 9, 10, 12, 13, 14, 15, 
16, 17, and 18 [This study] 

92.2% 92.2% 92.2% 90.4% 90.6% 90.4% 

Best first: 8, 9, 10, 12, 13, 14, 15, 
16,  and 17 (Stuart et al., 2004)  

86.1  % 87.4% 86.1% 91.3% 91.4% 91.3% 

Table 5. Comparison results for Naïve Bayesian classifier and Artificial Neural Network 
The study presented in (Stuart et al., 2004) uses neural network for modeling spammer 
common patterns and achieved similar performance, but the limitation of neural network is 
its longer training time and inherent complexity of explaining its derivation (less 
comprehensibility). On the contrary, Bayesian Classifier has the advantage of incremental 
inclusion of features and beforehand calculation. Therefore, Naïve Bayes is suitable for 
adapting itself in modeling new spammer patterns. 

4. Conclusion 
This research studies the modeling of spammer behavior by Artificial Neural Networks and 
Naïve Bayesian Classifier algorithms for spam email classification.  Based on examining 
different features and two different learning strategies, the following conclusions can be 
drawn from the study presented in this study: 
 Lesson 1. Spammer behavior can be modeled using features extracted from 
                    Content-Type header and message Body only. 
 Lesson 2. The contribution of features extracted from subject header in spam email 
                     detection is negligible or insignificant. 
 Lesson 3. Naïve Bayesian classifier models the spammer behavior best than Artificial 
                     Neural Networks.  
 Lesson 4. It is possible to get an optimal number of features that can be effectively 
                 applied to learning algorithms to classify spam emails without sacrificing accuracy 
The preliminary result presented in this study seems promising in modeling spammer 
common behavioral patterns compared to similar research. The contribution of this study is 
threefold:  it shows why keyword based spam email classifier may fail to model spammers’ 
altering tricks, common patterns adopted by spammers and the rationale of using these 
patterns against them to combat spam; suitability of modeling spammer common patterns 
using ANN and Naïve Bayes and finally, establishment of the four concluding remarks. 
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1. Introduction

Recently, growth in the information industry has caused a wide range of uses for information
devices, and the associated need for more complex embedded software, that provides these
devices with the latest performance and function enhancements (Hirayama (2004); Nakamoto
et al. (1997)). Consequently, it is increasingly important for embedded software-development
corporations to ascertain how to develop software efficiently, whilst guaranteeing delivery
time and quality, and keeping development low costs (Boehm (1976); Tamaru (2004);
Watanabe (2004)). Hence, companies and divisions involved in the development of such
software are focusing on various types of improvement, particularly process improvement.
Predicting effort requirements of new projects and guaranteeing quality of software are
especially important, because the prediction relates directly to costs, while the quality
reflects on the reliability of the corporation Komiyama (2003); N. (2004); Nakashima (2004);
Ogasawara & Kojima (2003); Takagi (2003). In the field of embedded software, development
techniques, management techniques, tools, testing techniques, reuse techniques, real-time
operating systems and so on, have already been studied. However, there is little research
on the relationship between the scale of the development and the number of errors, based of
data accumulated from past projects. As a result, previously we described the prediction of the
total scale using multiple regression analysis (Iwata et al. (2006b); Nakashima et al. (2006)) and
collaborative filtering (Iwata et al. (2006a)). In this Chapter we therefore, propose a method
for creating effort and errors prediction model using an Artificial Neural Network (ANN)
for complementing missing values (Iwata et al. (2006a)). The proposed method calculates the
amount of effort and the number of errors by the following 3 steps. The first step, the similarity
between the complementary project data, which include missing values, and the complete
project data is calculated. Next, applies collaborative filtering using the method Tsunoda et al.
(Tsunoda et al. (2005)) to complement missing values in the data and thus produce sufficient
amount of data. In the final step, the prediction target project effort (or errors) is calculated
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1. Introduction

Recently, growth in the information industry has caused a wide range of uses for information
devices, and the associated need for more complex embedded software, that provides these
devices with the latest performance and function enhancements (Hirayama (2004); Nakamoto
et al. (1997)). Consequently, it is increasingly important for embedded software-development
corporations to ascertain how to develop software efficiently, whilst guaranteeing delivery
time and quality, and keeping development low costs (Boehm (1976); Tamaru (2004);
Watanabe (2004)). Hence, companies and divisions involved in the development of such
software are focusing on various types of improvement, particularly process improvement.
Predicting effort requirements of new projects and guaranteeing quality of software are
especially important, because the prediction relates directly to costs, while the quality
reflects on the reliability of the corporation Komiyama (2003); N. (2004); Nakashima (2004);
Ogasawara & Kojima (2003); Takagi (2003). In the field of embedded software, development
techniques, management techniques, tools, testing techniques, reuse techniques, real-time
operating systems and so on, have already been studied. However, there is little research
on the relationship between the scale of the development and the number of errors, based of
data accumulated from past projects. As a result, previously we described the prediction of the
total scale using multiple regression analysis (Iwata et al. (2006b); Nakashima et al. (2006)) and
collaborative filtering (Iwata et al. (2006a)). In this Chapter we therefore, propose a method
for creating effort and errors prediction model using an Artificial Neural Network (ANN)
for complementing missing values (Iwata et al. (2006a)). The proposed method calculates the
amount of effort and the number of errors by the following 3 steps. The first step, the similarity
between the complementary project data, which include missing values, and the complete
project data is calculated. Next, applies collaborative filtering using the method Tsunoda et al.
(Tsunoda et al. (2005)) to complement missing values in the data and thus produce sufficient
amount of data. In the final step, the prediction target project effort (or errors) is calculated
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using the model that is derived from the ANN and with this data. However, the ANN has a
large margin of errors for some projects. We therefore, propose a method to reduce the margin
of errors model. Finally, we also compare the accuracy of the proposed ANN model with that
of a multiple regression analysis model using Welch’s t-test (Student (1908); Welch (1947)).
The rest of the Chapter is organized as follows. In Section 2, we explain software development
management and discuss current problems and the objectives which this study is trying to
achieve, and illustrate software development process and selection of data to establish the
model in Section 3. Then, Section 4 explains a collaborative filtering to complement missing
values. In Section 5 we expound models to predict effort and errors. In section 6 describes
evaluation experiment. Section 7 concludes.

2. Software project management and issues

The embedded software for financial institutions developed by “OMRON software Co.”
is based on the basic software customized for an individual customer’s need to install it
at various sites. To minimize the customization needed during the development of basic
software, parameters are embedded to control the system. This engineering technique assures
productivity and quality. This type of approach is actively taken during the process of
software development. While using this type of technique, the pressures related to delivery
time and quality are more and more intense. This requires improving further the quality and
cost during software development. Hence, we have already studied costs of the processes by
using analysis(Iwata et al. (2006b); Nakashima et al. (2006)) and collaborative filtering(Iwata
et al. (2006a)). To cope with this situation, the tools that can manage the progress status
or results in the database are used to improve the quality and productivity. However, the
more the volume of software development project increases the more the errors increase.
By analyzing the database, we determine the relationship between the volume of software
development project and the errors.

3. Software development processes and selection of data

In software development division of “OMRON software Co.”, the waterfall model(Boehm
(1976)) is used as the basic development-process model. A general description of this model
is given in Table 1.
Regarding the data related to project productivity or quality, data for such things as internal
effort and size information etc. are recorded as shown in Table 2 and Table 3, for 3 points in
time:

1. At the beginning of the project.

2. During the project.

3. At the end of the project.

Before analyzing data, we examined the data and decided which data should be selected to
make the model. Table 2 and Table 3 show the latter data and the results of the selection.

3.1 Data sets for creating models
Using the following data, we create models to predict both the planning effort (E f f ) and errors
(Err).

E f f : “The amount of effort”, which needs be predicted.
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using the model that is derived from the ANN and with this data. However, the ANN has a
large margin of errors for some projects. We therefore, propose a method to reduce the margin
of errors model. Finally, we also compare the accuracy of the proposed ANN model with that
of a multiple regression analysis model using Welch’s t-test (Student (1908); Welch (1947)).
The rest of the Chapter is organized as follows. In Section 2, we explain software development
management and discuss current problems and the objectives which this study is trying to
achieve, and illustrate software development process and selection of data to establish the
model in Section 3. Then, Section 4 explains a collaborative filtering to complement missing
values. In Section 5 we expound models to predict effort and errors. In section 6 describes
evaluation experiment. Section 7 concludes.

2. Software project management and issues

The embedded software for financial institutions developed by “OMRON software Co.”
is based on the basic software customized for an individual customer’s need to install it
at various sites. To minimize the customization needed during the development of basic
software, parameters are embedded to control the system. This engineering technique assures
productivity and quality. This type of approach is actively taken during the process of
software development. While using this type of technique, the pressures related to delivery
time and quality are more and more intense. This requires improving further the quality and
cost during software development. Hence, we have already studied costs of the processes by
using analysis(Iwata et al. (2006b); Nakashima et al. (2006)) and collaborative filtering(Iwata
et al. (2006a)). To cope with this situation, the tools that can manage the progress status
or results in the database are used to improve the quality and productivity. However, the
more the volume of software development project increases the more the errors increase.
By analyzing the database, we determine the relationship between the volume of software
development project and the errors.

3. Software development processes and selection of data

In software development division of “OMRON software Co.”, the waterfall model(Boehm
(1976)) is used as the basic development-process model. A general description of this model
is given in Table 1.
Regarding the data related to project productivity or quality, data for such things as internal
effort and size information etc. are recorded as shown in Table 2 and Table 3, for 3 points in
time:

1. At the beginning of the project.

2. During the project.

3. At the end of the project.

Before analyzing data, we examined the data and decided which data should be selected to
make the model. Table 2 and Table 3 show the latter data and the results of the selection.

3.1 Data sets for creating models
Using the following data, we create models to predict both the planning effort (E f f ) and errors
(Err).

E f f : “The amount of effort”, which needs be predicted.

Process Contents of work

1 Conceptual design(CD) This is so-called “system engineering work”. They
analyze customer requirements and detail the
areas to be addressed as development factors.

2 Design According to the development factors defined in
CD process, designing of software functionality,
combining of software modules, and writing of
source code are performed.

3 Debugging Verify the outcome of the design process with the
actual machine to see if it is designed according to
the design. The same designer in design process
is assigned to debug.

4 Test After finishing debugging, double-check the
software to confirm that it satisfies customer’s
requirements. A different person (not those
assigned to design and debug) is assigned to do
this.

Table 1. Software Development Process

Items Data Selection Reason

Internal effort Effort for each
planned process
and actual
performance

Selected The data are
acquired by effort
management
system. These
data are
quantitative and
accuracy is good.

Project-scale information Number of lines
in new, modified,
original and
reused software

Selected These data are
quantitative and
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using the model that is derived from the ANN and with this data. However, the ANN has a
large margin of errors for some projects. We therefore, propose a method to reduce the margin
of errors model. Finally, we also compare the accuracy of the proposed ANN model with that
of a multiple regression analysis model using Welch’s t-test (Student (1908); Welch (1947)).
The rest of the Chapter is organized as follows. In Section 2, we explain software development
management and discuss current problems and the objectives which this study is trying to
achieve, and illustrate software development process and selection of data to establish the
model in Section 3. Then, Section 4 explains a collaborative filtering to complement missing
values. In Section 5 we expound models to predict effort and errors. In section 6 describes
evaluation experiment. Section 7 concludes.

2. Software project management and issues

The embedded software for financial institutions developed by “OMRON software Co.”
is based on the basic software customized for an individual customer’s need to install it
at various sites. To minimize the customization needed during the development of basic
software, parameters are embedded to control the system. This engineering technique assures
productivity and quality. This type of approach is actively taken during the process of
software development. While using this type of technique, the pressures related to delivery
time and quality are more and more intense. This requires improving further the quality and
cost during software development. Hence, we have already studied costs of the processes by
using analysis(Iwata et al. (2006b); Nakashima et al. (2006)) and collaborative filtering(Iwata
et al. (2006a)). To cope with this situation, the tools that can manage the progress status
or results in the database are used to improve the quality and productivity. However, the
more the volume of software development project increases the more the errors increase.
By analyzing the database, we determine the relationship between the volume of software
development project and the errors.

3. Software development processes and selection of data

In software development division of “OMRON software Co.”, the waterfall model(Boehm
(1976)) is used as the basic development-process model. A general description of this model
is given in Table 1.
Regarding the data related to project productivity or quality, data for such things as internal
effort and size information etc. are recorded as shown in Table 2 and Table 3, for 3 points in
time:

1. At the beginning of the project.

2. During the project.

3. At the end of the project.

Before analyzing data, we examined the data and decided which data should be selected to
make the model. Table 2 and Table 3 show the latter data and the results of the selection.

3.1 Data sets for creating models
Using the following data, we create models to predict both the planning effort (E f f ) and errors
(Err).

E f f : “The amount of effort”, which needs be predicted.
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Items Data Selection Reason

Products information Product
classification and
product models

Selected It is necessary to
make characteristics
of the products
and development
process be reflected
in the model.

Customer name and
sub project name

Rejected The data is
qualitative and
it is difficult to
obtain accurate
data.

Development
type(new or
modification)

Rejected Because there are
only two types, it is
not appropriate as
parameter for the
model.

Delivery time Rejected Because the delivery
time is seldom
changed, this is not
selected.

Outsourcing The estimation of
outsourcing amount
and actual situation

Rejected Because outsourcing
amount includes
sales aspects, this is
not appropriate for
actual project error
status.

The estimation of
outsourcing effort
and actual situation

Rejected Because this is
estimated by
outsourcing amount
and includes sales
aspects, this is not
selected.

Quality information The number of
problems in each
process

Selected It is necessary to
find relationship
between a project
and errors. These
data consist of
“Total Error”,
“Error in CD and
Design”, “Error in
Debugging” and
“Error in Test”.

Table 3. Classifications and Selection of Data 2
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Err: “The number of errors” in a project.

Vnew: “Volume of newly added”, which denotes the number of steps in the newly generated
functions of the target project.

Vmodi f y : “Volume of modification”, which denotes the number of steps modifying and
adding to existing functions to use the target project.

Vsurvey : “Volume of original project”, which denotes the original number of steps in the
modified functions, and the number of steps deleted from the functions.

Vreuse : “Volume of reuse”, which denotes the number of steps in functions of which only an
external method of has been confirmed and which are applied to the target project design
without confirming the internal contents.

4. Collaborative filtering

4.1 Conventional collaborative filtering and complementing values
Collaborative filtering is used as a basic technique in a system (here referred to as a
“recommendation system”), that recommends items from a number of available options by
matching user preferences (Breese et al. (2000); Tsunoda et al. (2005)). The items are any
objects, for which the degree of preference changes according to the user, such as articles, web
pages, books, songs, movies, and so on. A recommendation system based on collaborative
filtering includes the following two steps:

1. Calculating similarity among users (user evaluation values are used in the calculation).

2. Determining items to be recommended (calculated values for the items are based on
similarity). Herein, it is assumed that the preferences of users that are highly similar, will
also be similar, and that new items are recommended to users.

This Chapter applies the method of conceptualizing from a recommendation system based
on collaborative filtering to complement missing values, and references the effort and errors
prediction method proposed by Tsunoda et al., (Tsunoda et al. (2005)). In other words, in
this Chapter we calculate missing values based on the assumption that “if a project has any
missing values, the values are similar to those of other projects that show striking similarities,
because highly similar projects output similar values for each item.”. We use metrics to
calculate the similarity among projects instead of user evaluation values. However, the range
of a metric is different for each class, in contrast to user evaluation values that are all within a
fixed range. Hence, the values by each metric are normalized to set its range. Moreover, the
values by each metric rely on the scale of the project, and the dispersion of the average values
by each metric is extremely large. Because of this, errors will be magnified if the scale of the
project is not considered when calculating missing values. Therefore, to calculate missing
values, we use revised values corresponding to the scale of the project, and do not use those
projects that are too far apart on the scale, even if the similarity is high.

4.2 Complement method for missing value
In this Chapter, the matrix m × n denotes a data set including missing values. pi ∈
{p1, p2, . . . , pm} indicates the ith project, and mj ∈ {m1, m2, . . . , mn} indicates the jth metric.
vi,j ∈ {v1,1, v1,2, . . . , vm,n} means the value of the measurement in the jth matrix mj in the ith
project pi. When vi,j is the missing value, it is denoted as vi,j = φ.
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m1 m2 · · · mj · · · mb · · · mn
p1 v1,1 v1,2 · · · v1,j · · · v1,b · · · v1,n
p2 v2,1 v2,2 · · · v2,j · · · v2,b · · · v2,n
· · · · · · · · · · · · · · · · · ·
pi vi,1 vi,2 · · · vi,j · · · vi,b · · · vi,n
· · · · · · · · · · · · · · · · · ·
pa va,1 va,2 · · · va,j · · · va,b · · · va,n
· · · · · · · · · · · · · · · · · ·
pm vm,1 vm,2 · · · vm,j · · · vm,b · · · vm,n

Fig. 1. Matrix m × n Used in Prediction

Let the value of the bth metric mb in the ath project pa be a missing value va,b = φ and �va,b
mean the prediction value for the metric value va,b.
In calculating �va,b the following three steps are processed.

1. Metric normalization. The range of every metric range is [0, 1] via normalization.

2. Calculation of similarity among projects.

3. Missing value calculation.

4.2.1 Metric normalization
The values of each metric are normalized to set the range for the metric. The range of every
metric range is [0, 1] via normalization. The normalized value for a metric of value vi,j is
denoted as fn(vi,j), and fn(vi,j) is calculated by the Eq. (1).

fn(vi,j) =
vi,j − min(Pj)

max(Pj)− min(Pj)
(1)

where, Pj is the set of projects able to measure the value of the metric mj and max(Pj), min(Pj)
are the maximum and minimum values of {vk,j|pk ∈ Pj}, respectively.

4.2.2 Calculation of similarity among projects
The similarity between the missing value prediction target project pa and another project pi is
described as fsim(pa, pi). The similarity calculation uses a vector calculation algorithm (Breese
et al. (2000)).
The algorithm for calculating similarity is usually used to calculate the similarity between two
documents (Salton & MacGill (1983)). In the algorithm, each vectors contain the frequency of
words appearing in each document, and similarity is calculated using the cosine of the angles
created by the vectors. Breese et al. (Breese et al. (2000)) proposed a recommendation system
based on this algorithm, in which they equate a document with a user, the words with items,
and the word frequency with the item evaluation value. In this Chapter, we calculate the
similarity of projects by equating the user with the project, the item with the metric, and the
item prediction value with the metric value similar to the method of Tsunoda et al. (Tsunoda
et al. (2005)).
The similarity fsim(pa, pi) between the prediction target project pa and the another project pi
is calculated as in Eq. (2).
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fsim(pa, pi) =

∑
j∈Ma∩Mi

fn(va,j)× fn(vi,j)

�
∑

j∈Ma∩Mi

fn(va,j)
2
�

∑
j∈Ma∩Mi

fn(vi,j)
2

(2)

where, Ma and Mi are the set of non missing metrics measured in projects pa and pi
respectively. The value range for the similarity fsim(pa, pi) is [0, 1].

4.2.3 Missing value calculation
The prediction value �va,b of a missing value va,b is calculated using the similarity fsim(pa, pi). It
is necessary to consider the scale of projects in higher similarity to pa to calculate �va,b, because
only the vector angles are used in the similarity calculation and vector size is not taken into
account (Tsunoda et al. (2005)). Hence, for the calculation of missing values, the project scale
reviser ampli f ier : famp(pa, pi) is used as a weight. Furthermore, if famp(pa, pi) exceeds the
constant value ampmax, the project pi is not used in the calculation of �va,b, since the project
scale is considered too different even if the similarity is high. �va,b is calculated from Eq. (3).

�va,b =

∑
i∈knP

vi,b × famp(pa, pi)× fsim(pa, pi)

∑
i∈knP

fsim(pa, pi)
(3)

where, knP means a set that has the k projects with a high similarity to project pa without the
value of ampli f ier exceeding ampmax. famp(pa, pi) is calculated from Eq. (4).

famp(pa, pi) =

�
rn h = (2n − 1)
rn+rn+1

2 h = 2n
(4)

where, h is the number of the product set of Ma and Mi(|Ma ∩ Mi|), and rj equals
fn(va,j)

fn(vi,j)
,

that is, the ratio of the values of the metric mj in projects pa and pi.

5. Effort and error prediction models

5.1 An artificial neural network model
Artificial Neural Networks (ANNs) are essentially simple mathematical models defining
function.

f : X → Y (5)

where X = {xi|0 ≤ xi ≤ 1, i ≥ 1} and Y = {yi|0 ≤ yi ≤ 1, i ≥ 1}.
ANNs are non-linear statistical data modeling tools and that can be used to model complex
relationships between inputs and outputs. The basic model is illustrated in Fig. 2, in which
the output is calculated as follows.
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2. Calculation of similarity among projects.

3. Missing value calculation.

4.2.1 Metric normalization
The values of each metric are normalized to set the range for the metric. The range of every
metric range is [0, 1] via normalization. The normalized value for a metric of value vi,j is
denoted as fn(vi,j), and fn(vi,j) is calculated by the Eq. (1).

fn(vi,j) =
vi,j − min(Pj)

max(Pj)− min(Pj)
(1)

where, Pj is the set of projects able to measure the value of the metric mj and max(Pj), min(Pj)
are the maximum and minimum values of {vk,j|pk ∈ Pj}, respectively.

4.2.2 Calculation of similarity among projects
The similarity between the missing value prediction target project pa and another project pi is
described as fsim(pa, pi). The similarity calculation uses a vector calculation algorithm (Breese
et al. (2000)).
The algorithm for calculating similarity is usually used to calculate the similarity between two
documents (Salton & MacGill (1983)). In the algorithm, each vectors contain the frequency of
words appearing in each document, and similarity is calculated using the cosine of the angles
created by the vectors. Breese et al. (Breese et al. (2000)) proposed a recommendation system
based on this algorithm, in which they equate a document with a user, the words with items,
and the word frequency with the item evaluation value. In this Chapter, we calculate the
similarity of projects by equating the user with the project, the item with the metric, and the
item prediction value with the metric value similar to the method of Tsunoda et al. (Tsunoda
et al. (2005)).
The similarity fsim(pa, pi) between the prediction target project pa and the another project pi
is calculated as in Eq. (2).

fsim(pa, pi) =

∑
j∈Ma∩Mi

fn(va,j)× fn(vi,j)

�
∑

j∈Ma∩Mi

fn(va,j)
2
�

∑
j∈Ma∩Mi

fn(vi,j)
2

(2)

where, Ma and Mi are the set of non missing metrics measured in projects pa and pi
respectively. The value range for the similarity fsim(pa, pi) is [0, 1].

4.2.3 Missing value calculation
The prediction value �va,b of a missing value va,b is calculated using the similarity fsim(pa, pi). It
is necessary to consider the scale of projects in higher similarity to pa to calculate �va,b, because
only the vector angles are used in the similarity calculation and vector size is not taken into
account (Tsunoda et al. (2005)). Hence, for the calculation of missing values, the project scale
reviser ampli f ier : famp(pa, pi) is used as a weight. Furthermore, if famp(pa, pi) exceeds the
constant value ampmax, the project pi is not used in the calculation of �va,b, since the project
scale is considered too different even if the similarity is high. �va,b is calculated from Eq. (3).

�va,b =

∑
i∈knP

vi,b × famp(pa, pi)× fsim(pa, pi)

∑
i∈knP

fsim(pa, pi)
(3)

where, knP means a set that has the k projects with a high similarity to project pa without the
value of ampli f ier exceeding ampmax. famp(pa, pi) is calculated from Eq. (4).

famp(pa, pi) =

�
rn h = (2n − 1)
rn+rn+1

2 h = 2n
(4)

where, h is the number of the product set of Ma and Mi(|Ma ∩ Mi|), and rj equals
fn(va,j)

fn(vi,j)
,

that is, the ratio of the values of the metric mj in projects pa and pi.

5. Effort and error prediction models

5.1 An artificial neural network model
Artificial Neural Networks (ANNs) are essentially simple mathematical models defining
function.

f : X → Y (5)

where X = {xi|0 ≤ xi ≤ 1, i ≥ 1} and Y = {yi|0 ≤ yi ≤ 1, i ≥ 1}.
ANNs are non-linear statistical data modeling tools and that can be used to model complex
relationships between inputs and outputs. The basic model is illustrated in Fig. 2, in which
the output is calculated as follows.
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1. Calculating values for hidden nodes. The value of Hidden Nodej is calculated using the
following equation:

Hidden Nodej = f

�
∑

i
(wi,j × Inputi)

�
(6)

where f (x) equals 1
1+exp(−x) and the wi,j is weight calculated by the learning algorithm.

2. Calculating Output using Hidden Nodej as follows:

Output = f

�
∑
k
(w�

k × Hidden Nodek)

�
(7)

where f (x) equals 1
1+exp(−x) and the w�

k is weight calculated by the learning algorithm.

We can use an ANN to create effort and error prediction models.
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5.1.1 Normalization of data
In an ANN, a range of input values or output values is usually less than or equal to 1 and
greater than or equal to 0. However, most selected data are grater than 1. Each data range
is, therefore, converted to [0, 1] by normalization. The normalized value for tkind is expressed
as fn(tkind) (where kind denotes E f f , Err, Vnew, Vmodi f y, Vsurvey and Vreuse). The normalized
value fn(tkind) is calculated using Eq. (8) , which is the same as Eq. (1).

fn(tkind) =
tkind − min(Tkind)

max(Tkind)− min(Tkind)
(8)

where Tkind denotes the set of tkind, and max(Tkind) and min(Tkind) denote the maximum and
minimum values, respectively, of Tkind.
The normalization is flat and smooth, then, a small change in a normalized value influences a
small-scale project to a greater degree than a large scale project.
For example, let min(TE f f ) equal 10, max(TE f f ) equal 300, tE f f 1 equal 15, tE f f 2 equal 250,

predicted value for tE f f 1 be �tE f f 1 and tE f f 2 be �tE f f 2. If the prediction model has +0.01 error,

then f−1
nl

(0.01) = 2.90. The predicted values result in �tE f f 1 = 17.90 and �tE f f 2 = 252.90. Both
cases has same errors, but their absolute of the relative errors (ARE) are follows:

AREE f f 1 =

�����
�tE f f 1 − tE f f 1

tE f f 1

����� =

����
17.90 − 15

15

���� = 0.1933

AREE f f 2 =

�����
�tE f f 2 − tE f f 2

tE f f 2

����� =

����
252.90 − 250

250

���� = 0.0116

The results indicate the absolute of the relative errors of former is greater than that of the latter.
These distributions for the amount of effort and the number of errors indicate the small-scale
projects are major and more than the large scale projects. Therefore, in order to improve
prediction accuracy, it is important to reconstruct the normalizing way.

5.2 New normalization of data
In order to solve the problem, we adopt new normalizing way in the following equation:

fnc(t) =
�

1 − ( fnl (t)− 1)2 (9)

The comparison between Eq. (8) and Eq. (9) is shown in Figure 3 and 4. The Eq. (9) has a
sharp inclination at the lower original data, then a small change at the lower original data get
magnified.
Using the same assumption, the predicted values result in �tE f f 1 = 15.56 and �tE f f 2 = 271.11.
Their absolute of the relative errors are in Eq. (10) and Eq. (11).
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Fig. 3. Normalizing Results using Eq. (8)

AREE f f 1 =

����
15.56 − 15

15

���� = 0.0373 (10)

AREE f f 2 =

����
271.11 − 250

250

���� = 0.0844 (11)

The results show the absolute of the relative errors for the small-scale project is smaller than
that of old normalization method and, in contrast, that for the large scale project is slightly
larger than that of old normalization method. The more detailed comparison analyses are in
Section 6.

5.2.1 Structure of model
In a feed-forward ANN, the information is moved from input nodes, through the hidden
nodes to the output nodes. The number of hidden nodes is important, because if the number
is too large, the network will over-training. The number of hidden nodes is, generally 2/3
of the number of input nodes or twice the number of input nodes. In this Chapter, we use 8
hidden nodes in our model which is illustrated in Fig. 5.
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Fig. 4. Normalizing Results using Eq. (9)

5.3 Multiple regression analysis model
The multiple regression analysis (MRA) model is derived from Eq. (12), in which the notation
adheres to the meanings defined in Subsection 3.1.

D = α1 × S2 + α2 × S + β (12)

where, D indicates E f f or Err, and S is calculated by Eq. (13).

S = Vnew + Vmodi f y + θ1 × Vsurvey + θ2 × Vreuse (13)

where, θ1 and θ2 are less than 1, thus Eq. (13) emphasizes Vnew and Vmodi f y.

6. Evaluation experiment

6.1 Evaluation criteria
Equations (14) to (16) are used as evaluation criteria for the effort and errors prediction models.
The smaller the value of each evaluation criterion, the higher is the relative accuracy in Eqs.
(14) to (16). The accuracy value is expressed as X, and the predicted value as �X. Also, the
number of data is expressed as n.

1. Mean of Absolute Errors (MAE).

2. Standard Deviation of Absolute Errors (SDAE).
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Fig. 5. Structure of Model

3. Mean of Relative Errors (MRE).

4. Standard Deviation of Relative Errors (SDRE).

MAE =
1
n ∑ | �X − X| (14)

SDAE =

�
1

n − 1 ∑
�
| �X − X| − MAE

�2
(15)

MRE =
1
n ∑

�����
�X − X

X

����� (16)

SDRE =

���� 1
n − 1 ∑

������
�X − X

X

�����− MRE

�2

(17)

6.2 Data used in evaluation experiment
The evaluation experiment uses the complemented data for projects including missing values
by the method described in Subsection 4.2. This complemented project data is divided into

264 Artificial Neural Networks- Application

Fig. 5. Structure of Model

3. Mean of Relative Errors (MRE).

4. Standard Deviation of Relative Errors (SDRE).

MAE =
1
n ∑ | �X − X| (14)

SDAE =

�
1

n − 1 ∑
�
| �X − X| − MAE

�2
(15)

MRE =
1
n ∑

�����
�X − X

X

����� (16)

SDRE =

���� 1
n − 1 ∑

������
�X − X

X

�����− MRE

�2

(17)

6.2 Data used in evaluation experiment
The evaluation experiment uses the complemented data for projects including missing values
by the method described in Subsection 4.2. This complemented project data is divided into

two random sets. One of the two sets is used as training data, while the other is test data.
The training data is used the generation of the effort (or errors) prediction model generation,
which is used to predict the effort (or errors)of the projects in the test data. The prediction
criteria presented in Subsection 6.1 are then used to confirm whether the effort were accurately
predicted or not by. Both data sets, that is, the training data and test data, are divided into 5
sections and these are used to repeat the experiment 5 times.

6.3 Results and discussion
A total of 73 projects were used in the experiment, of which 53 included missing values.
Missing values were added to these 53 projects. For each method, averages of the experiments
results for the 5 experiments are shown in Table 5.

MAE SDAE MRE SDRE

ANN Model 17.440 37.679 0.69892 0.67254
MRA Model 30.825 55.643 0.98884 0.98928

Table 4. Experimental Results for Errors Prediction

MAE SDAE MRE SDRE

ANN Model 11.345 17.403 0.25536 0.33830
MRA Model 24.962 11.941 0.89056 0.91893

Table 5. Experimental Results for Efforts Prediction

6.3.1 Validation analysis of the accuracy of the models
We compare the accuracy of the ANN model with that of the regression analysis model using
Welch’s t-test (Welch (1947)). The t-test (called Student’s t-test)(Student (1908) ) is used as a
test of the null hypothesis that the means of two normally distributed populations are equal.
Welch’s t-test is used when the variances of two samples are assumed to be different to test the
null hypothesis that the means of non two normally distributed populations are equal if the
two sample sizes are equal (Aoki (n.d.)). The t statistic to test whether the means are different
is calculated as follows:

t0 =

��X − Y
��

�
sx
nx

+
sy
ny

(18)

where X and Y are the sample means, sx and sy are the sample standard deviations and nx and
ny are the sample sizes. For use in significance testing, the distribution of the test statistic is
approximated as an ordinary Student’s t-distribution with the following degrees of freedom:

ν =

�
sx
nx

+
sy
ny

�2

s2
x

n2
x(nx−1) +

s2
y

n2
y(ny−1)

(19)

Thus once the a t-value and degrees of freedom have been determined, a p-value can be found
using a table of values from the Student’s t-distribution. If the p-value is smaller than or equal
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to the significance level, then the null hypothesis is rejected. The significance levels are usually
0.05 and 0.01, are represented by the Greek symbol, α.
The null hypothesis, in these cases, is “there is no difference between the means of the
prediction errors for the ANN model and the MRA model”. The results of the t-test for
absolute errors and relative errors are given in Tables 6 and 7,
are given in Tables 8 and 9, respectively.

ANN Model MRA Model

Mean (X) 17.440 30.825
Standard deviation(s) 37.679 55.643

Sample size (n) 189 189
Degrees of freedom (ν) 362.565

t value (t0) 19.0483
p value 2.2 × 10−16

Table 6. Results of t-test for MAE for Effort

ANN Model MRA Model

Mean (X) 0.69892 0.98884
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The results indicate that the means of the absolute (or relative)errors between ANN models
and MRA model shows a statistically significant difference, because the p-values are less than
0.01.

7. Conclusion

In this Chapter, we have established effort and errors prediction models using artificial neural
networks for complementing missing values. The proposed method calculated the amount of
effort and the number of errors by the following 3 steps.

1. Calculating the similarity between the complementary projects data (which include
missing values) and the complete project data,

2. Applying collaborative filtering to complement missing values in the data and thus
produce sufficient amount of data,

3. Creating models to predict target project effort (or errors) by the ANN and with this data.

In addition, we carried out an evaluation experiment that compared the accuracy of the ANN
model with that of the MRA model using Welch’s t-test. The results of the comparison indicate
that the ANN model is more accurate than the MRA model, because the mean errors of the
ANN are statistically significantly lower.
Our future works are the following:

1. In this study, we used a basic artificial neural network. More complex models need to be
considered to improve the accuracy by avoiding over-training.

2. We implemented a model to predict the final amount of effort and number of errors in
new projects. It is also important to predict effort and errors mid-way in the development
process of a project.

3. We used all the data in implementing the model. However, the data include exceptions
and there are harmful to the model. Data needs to be clustered in order to to identify these
exceptions.

4. Finally, more data needs to be collected from completed projects.
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1. Introduction 
Fast pattern detection and identification is a fundamental problem for many applications of 
real-time systems (Bruce & Veloso 2003). Its reliability and performance have a major 
influence in a whole pattern recognition system. Nowadays, neural networks have shown 
very good results for detecting a certain pattern in a given image (Rowley et al. 1998; Feraud 
et al. 2000; Anifantis et al. 1999; Lang et al. 1988; El-Bakry 2001). Among other techniques 
(Schneiderman & Kanade 1998; Zhu et al. 2000; Srisuk & Kurutach 2002; Bao et al. 2006), 
neural networks are efficient pattern detectors (Rowley et al. 1998; Feraud et al. 2000; El-
Bakry 2002,a; El-bakry 2002,b; Essannouni and Ibn Elhaj 2006; Roth et al. 2006; 
Ramasubramanian & Kannan 2006). But the problem with neural networks is that the 
computational complexity is very high because the networks have to process many small 
local windows in the images (Zhu et al. 2000; Srisuk & Kurutach 2002; Yang et al. 2002). The 
main objective of this paper is to reduce the detection time using neural networks. The idea 
is to accelerate the operation of neural networks by performing the testing process in the 
frequency domain instead of spatial domain. Then, cross-correlation between the input 
image and the weights of neural networks is performed in the frequency domain. This 
model is called fast neural networks. Compared to conventional neural networks, fast 
neural networks show a significant reduction in the number of computation steps required 
to detect a certain pattern in a given image under test. Furthermore, another idea to increase 
the speed of these fast neural networks through image decomposition is presented. 
Moreover, the problem of sub-image (local) normalization in the Fourier space which 
presented in (Feraud et al. 2000) is solved.. The number of computation steps required for 
weight normalization is proved to be less than that needed for image normalization. Also, 
the effect of weight normalization on the speed up ratio is theoretically and practically 
discussed. Mathematical calculations prove that the new idea of weight normalization, 
instead of image normalization, provides good results and increases the speed up ratio. This 
is because weight normalization requires fewer computation steps than sub-image 
normalization. Moreover, for neural networks, normalization of weights can be easily done 
off line before starting the search process.  
In section 2, high speed neural networks for pattern detection are described. The details of 
conventional neural networks, high speed neural networks, and the speed up ratio of 
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pattern detection are given. A faster searching algorithm for pattern detection which 
reduces the number of the required computation steps through image decomposition is 
presented in section 3. Accelerating the new approach using parallel processing techniques 
is also introduced. Sub-image normalization in the frequency domain through 
normalization of weights is introduced in section 4. The effect of weight normalization on 
the speed up ratio is presented in section 5. 

2. Fast pattern detection using MLP and FFT 
Here, we are interested only in increasing the speed of neural networks during the test 
phase. By the words “High speed Neural Networks” we mean reducing the number of 
computation steps required by neural networks in the detection phase. First neural 
networks are trained to classify face from non face examples and this is done in the spatial 
domain. In the test phase, each sub-image in the input image (under test) is tested for the 
presence or absence of the required face/object. At each pixel position in the input image 
each sub-image is multiplied by a window of weights, which has the same size as the sub-
image. This multiplication is done in the spatial domain. The outputs of neurons in the 
hidden layer are multiplied by the weights of the output layer. When the final output is high 
this means that the sub-image under test contains the required face/object and vice versa. 
Thus, we may conclude that this searching problem is cross correlation in the spatial domain 
between the image under test and the input weights of neural networks.   
In this section, a fast algorithm for face/object detection based on two dimensional cross 
correlations that take place between the tested image and the sliding window (20x20 pixels) 
is described. Such window is represented by the neural network weights situated between 
the input unit and the hidden layer. The convolution theorem in mathematical analysis says 
that a convolution of f with h is identical to the result of the following steps: let F and H be 
the results of the Fourier transformation of f and h in the frequency domain. Multiply F and 
H in the frequency domain point by point and then transform this product into spatial 
domain via the inverse Fourier transform (Klette&Zamperon 1996). As a result, these cross 
correlations can be represented by a product in the frequency domain. Thus, by using cross 
correlation in the frequency domain a speed up in an order of magnitude can be achieved 
during the detection process (El-Bakry2005; El-Bakry 2006; El-Bakry 2007; El-Bakry 2009).       
In the detection phase, a sub-image X of size mxn (sliding window) is extracted from the tested 
image, which has a size PxT, and fed to the neural network. Let Wi be the vector of weights 
between the input sub-image and the hidden layer. This vector has a size of mxz and can be 
represented as mxn matrix. The output of hidden neurons h(i) can be calculated as follows:  
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where g is the activation function and b(i) is the bias of each hidden neuron (i). Eq.1 
represents the output of each hidden neuron for a particular sub-image I. It can be 
computed for the whole image Ψ as follows: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
−=

∑
−=

+++=
m/2

m/2j

z/2

z/2k  i bk)vj,(uΨ  k)(j,iWgv)(u,ih  (2) 

Design of High Speed Neural Networks for Fast Pattern Detection  
by using Cross Correlation and Matrix Decomposition   

 

271 

Eq.(2) represents a cross correlation operation. Given any two functions f and g, their cross 
correlation can be obtained by (Gonzalez & Woods 2002): 
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Therefore, Eq.(2) can be written as follows: 

 ( )ibΨiWgih +⊗=  (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) is the activity of the hidden unit 
(i) when the sliding window is located at position (u,v) in the input image Ψ and (u,v) ∈[P-
m+1,T-n+1].  
Now, the above cross correlation can be expressed in terms of the Fourier Transform: 
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(*) means the conjugate of the FFT for the weight matrix. Hence, by evaluating this cross 
correlation, a speed up ratio can be obtained comparable to conventional neural networks. 
Also, the final output of the neural network can be evaluated as follows:  
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where q is the number of neurons in  the hidden layer. O(u,v) is the output of the neural 
network when the sliding window located at the position (u,v) in the input image Ψ. Wo is 
the weight matrix between hidden and output layer. bo is the bias of the output neuron. 
The complexity of cross correlation in the frequency domain can be analyzed as follows: 
1. For a tested image of NxN pixels, the 2D-FFT requires a number equal to N2log2N2 of 

complex computation steps. Also, the same number of complex computation steps is 
required for computing the 2D-FFT of the weight matrix for each neuron in the hidden 
layer.  

2. At each neuron in the hidden layer, the inverse 2D-FFT is computed. So, q backward 
and (1+q) forward transforms have to be computed. Therefore, for an image under test, 
the total number of the 2D-FFT to compute is (2q+1)N2log2N2. 

3. The input image and the weights should be multiplied in the frequency domain. 
Therefore, a number of complex computation steps equal to qN2 should be added.  

4. The number of computation steps required by the faster neural networks is complex 
and must be converted into a real version. It is known that the two dimensions Fast 
Fourier Transform requires (N2/2)log2N2 complex multiplications and N2log2N2 
complex additions (Cooley&Tukey 1965). Every complex multiplication is realized by 
six real floating point operations and every complex addition is implemented by two 
real floating point operations. So, the total number of computation steps required to 
obtain the 2D-FFT of an NxN image is: 

 ρ=6((N2/2)log2N2) + 2(N2log2N2) (7) 

which may be simplified to: 
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is described. Such window is represented by the neural network weights situated between 
the input unit and the hidden layer. The convolution theorem in mathematical analysis says 
that a convolution of f with h is identical to the result of the following steps: let F and H be 
the results of the Fourier transformation of f and h in the frequency domain. Multiply F and 
H in the frequency domain point by point and then transform this product into spatial 
domain via the inverse Fourier transform (Klette&Zamperon 1996). As a result, these cross 
correlations can be represented by a product in the frequency domain. Thus, by using cross 
correlation in the frequency domain a speed up in an order of magnitude can be achieved 
during the detection process (El-Bakry2005; El-Bakry 2006; El-Bakry 2007; El-Bakry 2009).       
In the detection phase, a sub-image X of size mxn (sliding window) is extracted from the tested 
image, which has a size PxT, and fed to the neural network. Let Wi be the vector of weights 
between the input sub-image and the hidden layer. This vector has a size of mxz and can be 
represented as mxn matrix. The output of hidden neurons h(i) can be calculated as follows:  
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where g is the activation function and b(i) is the bias of each hidden neuron (i). Eq.1 
represents the output of each hidden neuron for a particular sub-image I. It can be 
computed for the whole image Ψ as follows: 
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Eq.(2) represents a cross correlation operation. Given any two functions f and g, their cross 
correlation can be obtained by (Gonzalez & Woods 2002): 
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Therefore, Eq.(2) can be written as follows: 

 ( )ibΨiWgih +⊗=  (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) is the activity of the hidden unit 
(i) when the sliding window is located at position (u,v) in the input image Ψ and (u,v) ∈[P-
m+1,T-n+1].  
Now, the above cross correlation can be expressed in terms of the Fourier Transform: 
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(*) means the conjugate of the FFT for the weight matrix. Hence, by evaluating this cross 
correlation, a speed up ratio can be obtained comparable to conventional neural networks. 
Also, the final output of the neural network can be evaluated as follows:  
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where q is the number of neurons in  the hidden layer. O(u,v) is the output of the neural 
network when the sliding window located at the position (u,v) in the input image Ψ. Wo is 
the weight matrix between hidden and output layer. bo is the bias of the output neuron. 
The complexity of cross correlation in the frequency domain can be analyzed as follows: 
1. For a tested image of NxN pixels, the 2D-FFT requires a number equal to N2log2N2 of 

complex computation steps. Also, the same number of complex computation steps is 
required for computing the 2D-FFT of the weight matrix for each neuron in the hidden 
layer.  

2. At each neuron in the hidden layer, the inverse 2D-FFT is computed. So, q backward 
and (1+q) forward transforms have to be computed. Therefore, for an image under test, 
the total number of the 2D-FFT to compute is (2q+1)N2log2N2. 

3. The input image and the weights should be multiplied in the frequency domain. 
Therefore, a number of complex computation steps equal to qN2 should be added.  

4. The number of computation steps required by the faster neural networks is complex 
and must be converted into a real version. It is known that the two dimensions Fast 
Fourier Transform requires (N2/2)log2N2 complex multiplications and N2log2N2 
complex additions (Cooley&Tukey 1965). Every complex multiplication is realized by 
six real floating point operations and every complex addition is implemented by two 
real floating point operations. So, the total number of computation steps required to 
obtain the 2D-FFT of an NxN image is: 

 ρ=6((N2/2)log2N2) + 2(N2log2N2) (7) 

which may be simplified to: 
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 ρ=5N2log2N2 (8) 

Performing complex dot product in the frequency domain also requires 6qN2 real 
operations. 

5. In order to perform cross correlation in the frequency domain, the weight matrix must 
have the same size as the input image. Assume that the input object/face has a size of 
(nxn) dimensions. So, the search process will be done over sub-images of (nxn) 
dimensions and the weight matrix will have the same size. Therefore, a number of zeros 
= (N2-n2) must be added to the weight matrix. This requires a total real number of 
computation steps = q(N2-n2) for all neurons. Moreover, after computing the 2D-FFT for 
the weight matrix, the conjugate of this matrix must be obtained. So, a real number of 
computation steps =qN2 should be added in order to obtain the conjugate of the weight 
matrix for all neurons.  Also, a number of real computation steps equal to N is required 
to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex 
numbers are multiplied by the elements of the input image or by previous complex 
numbers during the computation of the 2D-FFT. To create a complex number requires 
two real floating point operations. So, the total number of computation steps required 
for the high speed neural networks becomes: 

 σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N (9) 

which can be reformulated as: 

 σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N (10) 

6. Using a sliding window of size nxn for the same image of NxN pixels, q(2n2-1)(N-n+1)2 
computation steps are required when using traditional neural networks for face/object 
detection process. The theoretical speed up factor η can be evaluated as follows: 

 
   N )2n-2q(8N )2N2log21)(5N(2q

 2 1)n-1)(N-2q(2nη
+++

+
=  (11) 

The theoretical speed up ratio (Eq.(11)) with different sizes of the input image and different 
in size weight matrices is listed in Table 1. Practical speed up ratio for manipulating images 
of different sizes and different in size weight matrices is listed in Table 2 using 2.7 GHz 
processor and MATLAB ver 5.3. An interesting property with high speed neural networks is 
that the number of computation steps does not depend on eith the size of the input sub-
image or the size of the weighth matrix (n). The effect of (n) on the the number of 
computation steps is very small and can be ignored. This is incontrast to conventional 
networks in which the number of computation steps is increased with the size of both the 
input sub-image and the weight matrix (n). 
In practical implementation, the multiplication process consumes more time than the 
addition one. The effect of the number of multiplications required for conventional neural 
networks in the speed up ratio (Eq.(11)) is more than the number of of multiplication steps 
required by the high speed neural networks. In order to clear this, the following equation 
(ηm) describes relation between the number of multiplication steps required by conventional 
and high speed neural networks: 
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Image 
size 

Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 3.67 5.04 6.34 
200x200 4.01 5.92 8.05 
300x300 4.00 6.03 8.37 
400x400 3.95 6.01 8.42 
500x500 3.89 5.95 8.39 
600x600 3.83 5.88 8.33 
700x700 3.78 5.82 8.26 
800x800 3.73 5.76 8.19 
900x900 3.69 5.70 8.12 

1000x1000 3.65 5.65 8.05 
1100x1100 3.62 5.60 7.99 
1200x1200 3.58 5.55 7.93 
1300x1300 3.55 5.51 7.93 
1400x1400 3.53 5.47 7.82 
1500x1500 3.50 5.43 7.77 
1600x1600 3.48 5.43 7.72 
1700x1700 3.45 5.37 7.68 
1800x1800 3.43 5.34 7.64 
1900x1900 3.41 5.31 7.60 
2000x2000 3.40 5.28 7.56 

Table 1. The theoretical speed up ratio for images with different sizes. 

 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 7.88 10.75 14.69 
200x200 6.21 9.19 13.17 
300x300 5.54 8.43 12.21 
400x400 4.78 7.45 11.41 
500x500 4.68 7.13 10.79 
600x600 4.46 6.97 10.28 
700x700 4.34 6.83 9.81 
800x800 4.27 6.68 9.60 
900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 
1100x1100 4.24 6.66 9.62 
1200x1200 4.20 6.62 9.57 
1300x1300 4.17 6.57 9.53 
1400x1400 4.13 6.53 9.49 
1500x1500 4.10 6.49 9.45 
1600x1600 4.07 6.45 9.41 
1700x1700 4.03 6.41 9.37 
1800x1800 4.00 6.38 9.32 
1900x1900 3.97 6.35 9.28 
2000x2000 3.94 6.31 9.25 

Table 2. Practical speed up ratio for images with different sizes using MATLAB Ver 5.3 
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 ρ=5N2log2N2 (8) 

Performing complex dot product in the frequency domain also requires 6qN2 real 
operations. 

5. In order to perform cross correlation in the frequency domain, the weight matrix must 
have the same size as the input image. Assume that the input object/face has a size of 
(nxn) dimensions. So, the search process will be done over sub-images of (nxn) 
dimensions and the weight matrix will have the same size. Therefore, a number of zeros 
= (N2-n2) must be added to the weight matrix. This requires a total real number of 
computation steps = q(N2-n2) for all neurons. Moreover, after computing the 2D-FFT for 
the weight matrix, the conjugate of this matrix must be obtained. So, a real number of 
computation steps =qN2 should be added in order to obtain the conjugate of the weight 
matrix for all neurons.  Also, a number of real computation steps equal to N is required 
to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex 
numbers are multiplied by the elements of the input image or by previous complex 
numbers during the computation of the 2D-FFT. To create a complex number requires 
two real floating point operations. So, the total number of computation steps required 
for the high speed neural networks becomes: 

 σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N (9) 

which can be reformulated as: 

 σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N (10) 

6. Using a sliding window of size nxn for the same image of NxN pixels, q(2n2-1)(N-n+1)2 
computation steps are required when using traditional neural networks for face/object 
detection process. The theoretical speed up factor η can be evaluated as follows: 

 
   N )2n-2q(8N )2N2log21)(5N(2q
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+++

+
=  (11) 

The theoretical speed up ratio (Eq.(11)) with different sizes of the input image and different 
in size weight matrices is listed in Table 1. Practical speed up ratio for manipulating images 
of different sizes and different in size weight matrices is listed in Table 2 using 2.7 GHz 
processor and MATLAB ver 5.3. An interesting property with high speed neural networks is 
that the number of computation steps does not depend on eith the size of the input sub-
image or the size of the weighth matrix (n). The effect of (n) on the the number of 
computation steps is very small and can be ignored. This is incontrast to conventional 
networks in which the number of computation steps is increased with the size of both the 
input sub-image and the weight matrix (n). 
In practical implementation, the multiplication process consumes more time than the 
addition one. The effect of the number of multiplications required for conventional neural 
networks in the speed up ratio (Eq.(11)) is more than the number of of multiplication steps 
required by the high speed neural networks. In order to clear this, the following equation 
(ηm) describes relation between the number of multiplication steps required by conventional 
and high speed neural networks: 
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Image 
size 

Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 3.67 5.04 6.34 
200x200 4.01 5.92 8.05 
300x300 4.00 6.03 8.37 
400x400 3.95 6.01 8.42 
500x500 3.89 5.95 8.39 
600x600 3.83 5.88 8.33 
700x700 3.78 5.82 8.26 
800x800 3.73 5.76 8.19 
900x900 3.69 5.70 8.12 

1000x1000 3.65 5.65 8.05 
1100x1100 3.62 5.60 7.99 
1200x1200 3.58 5.55 7.93 
1300x1300 3.55 5.51 7.93 
1400x1400 3.53 5.47 7.82 
1500x1500 3.50 5.43 7.77 
1600x1600 3.48 5.43 7.72 
1700x1700 3.45 5.37 7.68 
1800x1800 3.43 5.34 7.64 
1900x1900 3.41 5.31 7.60 
2000x2000 3.40 5.28 7.56 

Table 1. The theoretical speed up ratio for images with different sizes. 

 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 7.88 10.75 14.69 
200x200 6.21 9.19 13.17 
300x300 5.54 8.43 12.21 
400x400 4.78 7.45 11.41 
500x500 4.68 7.13 10.79 
600x600 4.46 6.97 10.28 
700x700 4.34 6.83 9.81 
800x800 4.27 6.68 9.60 
900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 
1100x1100 4.24 6.66 9.62 
1200x1200 4.20 6.62 9.57 
1300x1300 4.17 6.57 9.53 
1400x1400 4.13 6.53 9.49 
1500x1500 4.10 6.49 9.45 
1600x1600 4.07 6.45 9.41 
1700x1700 4.03 6.41 9.37 
1800x1800 4.00 6.38 9.32 
1900x1900 3.97 6.35 9.28 
2000x2000 3.94 6.31 9.25 

Table 2. Practical speed up ratio for images with different sizes using MATLAB Ver 5.3 
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.Image size Conventional 
Neural Nets Faster Neural Nets Speed up 

ratio (ηm) 
100x100 7.8732e+007 2.6117e+007 3.0146 
200x200 3.9313e+008 1.1911e+008 3.3007 
300x300 9.4753e+008 2.8726e+008 3.2985 
400x400 1.7419e+009 5.3498e+008 3.2560 
500x500 2.7763e+009 8.6537e+008 3.2083 
600x600 4.0507e+009 1.2808e+009 3.1627 
700x700 5.5651e+009 1.7832e+009 3.1209 
800x800 7.3195e+009 2.3742e+009 3.0830 
900x900 9.3139e+009 3.0552e+009 3.0486 

1000x1000 1.1548e+010 3.8275e+009 3.0172 
1100x1100 1.4023e+010 4.6921e+009 2.9886 
1200x1200 1.6737e+010 5.6502e+009 2.9622 
1300x1300 1.9692e+010 6.7026e+009 2.9379 
1400x1400 2.2886e+010 7.8501e+009 2.9154 
1500x1500 2.6320e+010 9.0935e+009 2.8944 
1600x1600 2.9995e+010 1.0434e+010 2.8748 
1700x1700 3.3909e+010 1.1871e+010 2.8564 
1800x1800 3.8064e+010 1.3407e+010 2.8392 
1900x1900 4.2458e+010 1.5041e+010 2.8229 
2000x2000 7.8732e+007 2.6117e+007 3.0146 

Table 3. A Comparison between the number of multiplication steps required for 
conventional and faster neural nets to manipulate Images with different sizes (n=20, q=30) 
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The results listed in Table 3 prove that the effect of the number of multiplication steps in 
case of conventional neural networks is more than high speed neural networks and this the 
reason why practical speed up ratio is larger than theoretical speed up ratio. 
For general fast cross correlation the speed up ratio (ηg) is in the following form: 
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where τ is a small number depends on the size of the weight matrix. General cross correlation 
means that the process starts from the first element in the input matrix. The theoretical speed 
up ratio for general fast cross correlation (ηg) defined by Eq.(13) is shown in Table 4. 
Compared with MATLAB cross correlation function (xcorr2), experimental results show that 
the proposed algorithm is high speed than this function as shown in Table 5. 
(Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) have proposed a multilayer 
perceptron (MLP) algorithm for fast face/object detection. The same authors claimed 
incorrect equation for cross correlation between the input image and the weights of the 
neural networks. They introduced formulas for the number of computation steps needed by 
conventional and high speed neural networks. Then, they established an equation for the 
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Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 5.59 8.73 12.58 
200x200 4.89 7.64 11.01 
300x300 4.56 7.12 10.26 
400x400 4.35 6.80 9.79 
500x500 4.20 6.56 9.45 
600x600 4.08 6.38 9.20 
700x700 3.99 6.24 8.99 
800x800 3.91 6.12 8.81 
900x900 3.85 6.02 8.67 

1000x1000 3.79 5.93 8.54 
1100x1100 3.74 5.85 8.43 
1200x1200 3.70 5.78 8.33 
1300x1300 3.66 5.72 8.24 
1400x1400 3.62 5.66 8.16 
1500x1500 3.59 5.61 8.08 
1600x1600 3.56 5.57 8.02 
1700x1700 3.53 5.52 7.95 
1800x1800 3.50 5.48 7.89 
1900x1900 3.48 5.44 7.84 
2000x2000 3.46 5.41 7.79 

Table 4. The Theoretical Speed up Ratio for the General Faster Cross Correlation Algorithm 
 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 10.14 13.05 16.49 
200x200 9.17 11.92 14.33 
300x300 8.25 10.83 13.41 
400x400 7.91 9.62 12.65 
500x500 6.77 9.24 11.77 
600x600 6.46 8.89 11.19 
700x700 5.99 8.47 10.96 
800x800 5.48 8.74 10.32 
900x900 5.31 8.43 10.66 

1000x1000 5.91 8.66 10.51 
1100x1100 5.77 8.61 10.46 
1200x1200 5.68 8.56 10.40 
1300x1300 5.62 8.52 10.35 
1400x1400 5.58 8.47 10.31 
1500x1500 5.54 8.43 10.26 
1600x1600 5.50 8.39 10.22 
1700x1700 5.46 8.33 10.18 
1800x1800 5.42 8.28 10.14 
1900x1900 5.38 8.24 10.10 
2000x2000 5.34 8.20 10.06 

Table 5. Simulation results of the speed up ratio for the general faster cross correlation 
compared with the MATLAB cross correlation function (XCORR2) 
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.Image size Conventional 
Neural Nets Faster Neural Nets Speed up 

ratio (ηm) 
100x100 7.8732e+007 2.6117e+007 3.0146 
200x200 3.9313e+008 1.1911e+008 3.3007 
300x300 9.4753e+008 2.8726e+008 3.2985 
400x400 1.7419e+009 5.3498e+008 3.2560 
500x500 2.7763e+009 8.6537e+008 3.2083 
600x600 4.0507e+009 1.2808e+009 3.1627 
700x700 5.5651e+009 1.7832e+009 3.1209 
800x800 7.3195e+009 2.3742e+009 3.0830 
900x900 9.3139e+009 3.0552e+009 3.0486 

1000x1000 1.1548e+010 3.8275e+009 3.0172 
1100x1100 1.4023e+010 4.6921e+009 2.9886 
1200x1200 1.6737e+010 5.6502e+009 2.9622 
1300x1300 1.9692e+010 6.7026e+009 2.9379 
1400x1400 2.2886e+010 7.8501e+009 2.9154 
1500x1500 2.6320e+010 9.0935e+009 2.8944 
1600x1600 2.9995e+010 1.0434e+010 2.8748 
1700x1700 3.3909e+010 1.1871e+010 2.8564 
1800x1800 3.8064e+010 1.3407e+010 2.8392 
1900x1900 4.2458e+010 1.5041e+010 2.8229 
2000x2000 7.8732e+007 2.6117e+007 3.0146 

Table 3. A Comparison between the number of multiplication steps required for 
conventional and faster neural nets to manipulate Images with different sizes (n=20, q=30) 
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The results listed in Table 3 prove that the effect of the number of multiplication steps in 
case of conventional neural networks is more than high speed neural networks and this the 
reason why practical speed up ratio is larger than theoretical speed up ratio. 
For general fast cross correlation the speed up ratio (ηg) is in the following form: 
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where τ is a small number depends on the size of the weight matrix. General cross correlation 
means that the process starts from the first element in the input matrix. The theoretical speed 
up ratio for general fast cross correlation (ηg) defined by Eq.(13) is shown in Table 4. 
Compared with MATLAB cross correlation function (xcorr2), experimental results show that 
the proposed algorithm is high speed than this function as shown in Table 5. 
(Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) have proposed a multilayer 
perceptron (MLP) algorithm for fast face/object detection. The same authors claimed 
incorrect equation for cross correlation between the input image and the weights of the 
neural networks. They introduced formulas for the number of computation steps needed by 
conventional and high speed neural networks. Then, they established an equation for the 
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Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 5.59 8.73 12.58 
200x200 4.89 7.64 11.01 
300x300 4.56 7.12 10.26 
400x400 4.35 6.80 9.79 
500x500 4.20 6.56 9.45 
600x600 4.08 6.38 9.20 
700x700 3.99 6.24 8.99 
800x800 3.91 6.12 8.81 
900x900 3.85 6.02 8.67 

1000x1000 3.79 5.93 8.54 
1100x1100 3.74 5.85 8.43 
1200x1200 3.70 5.78 8.33 
1300x1300 3.66 5.72 8.24 
1400x1400 3.62 5.66 8.16 
1500x1500 3.59 5.61 8.08 
1600x1600 3.56 5.57 8.02 
1700x1700 3.53 5.52 7.95 
1800x1800 3.50 5.48 7.89 
1900x1900 3.48 5.44 7.84 
2000x2000 3.46 5.41 7.79 

Table 4. The Theoretical Speed up Ratio for the General Faster Cross Correlation Algorithm 
 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 10.14 13.05 16.49 
200x200 9.17 11.92 14.33 
300x300 8.25 10.83 13.41 
400x400 7.91 9.62 12.65 
500x500 6.77 9.24 11.77 
600x600 6.46 8.89 11.19 
700x700 5.99 8.47 10.96 
800x800 5.48 8.74 10.32 
900x900 5.31 8.43 10.66 

1000x1000 5.91 8.66 10.51 
1100x1100 5.77 8.61 10.46 
1200x1200 5.68 8.56 10.40 
1300x1300 5.62 8.52 10.35 
1400x1400 5.58 8.47 10.31 
1500x1500 5.54 8.43 10.26 
1600x1600 5.50 8.39 10.22 
1700x1700 5.46 8.33 10.18 
1800x1800 5.42 8.28 10.14 
1900x1900 5.38 8.24 10.10 
2000x2000 5.34 8.20 10.06 

Table 5. Simulation results of the speed up ratio for the general faster cross correlation 
compared with the MATLAB cross correlation function (XCORR2) 
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speed up ratio. Unfortunately, these formulas contain many errors which lead to invalid 
speed up ratio. Recently, other authors developed their work based on these incorrect 
equations (Ishak et al. 2004). So, the fact that these equations are not valid must be cleared to 
all researchers. It is not only very important but also urgent to notify other researchers not to 
waste their time and effort doing research based on wrong equations.  
The authors (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) analyzed their 
proposed fast neural network as follows: For a tested image of NxN pixels, the 2D-FFT 
requires O(N2(log2N)2) computation steps. For the weight matrix Wi, the 2D-FFT can be 
computed off line since these are constant parameters of the network independent of the 
tested image. The 2D-FFT of the tested image must be computed. As a result, q backward 
and one forward transforms have to be computed. Therefore, for a tested image, the total 
number of the 2D-FFT to compute is (q+1)N2(log2N)2 (Ben-Yacoub et al. 1999; Ben-Yacoub 
1997). In addition, the input image and the weights should be multiplied in the frequency 
domain. Therefore, computation steps of (qN2) should be added. This yields a total of 
O((q+1)N2(log2N)2+qN2) computation steps for the fast neural network (Ben-Yacoub et al. 
1999; Fasel 1998). 
Using sliding window of size nxn, for the same image of NxN pixels, qN2n2 computation 
steps are required when using traditional neural networks for the face detection process. 
They evaluated theoretical speed up factor η as follows (Fasel 1998; Ben-Yacoub 1997): 

 
N21)log(q

2qnη
+

=  (14) 

The speed up factor introduced in (Ben-Yacoub et al. 1999) and given by Eq.14 is not correct 
for the following reasons: 
a. The number of computation steps required for the 2D-FFT is O(N2log2N2) and not 

O(N2log2N) as presented in (Fasel 1998; Ben-Yacoub 1997) .  Also, this is not a typing 
error as the curve in Fig.2 in (Ben-Yacoub et al. 1999) realizes Eq.(7), and the curves in 
Fig.15 in (Fasel 1998)  realizes Eq.(31) and Eq.(32) in (Fasel 1998) . 

b. Also, the speed up ratio presented in (Ben-Yacoub et al. 1999) not only contains an error 
but also is not precise. This is because for high speed neural networks, the term (6qN2) 
corresponds to complex dot product in the frequency domain must be added. Such 
term has a great effect on the speed up ratio. Adding only qN2 as stated in (Fasel 1998)  
is not correct since a one complex multiplication requires six real computation steps. 

c. For conventional neural networks, the number of operations is (q(2n2-1)(N-n+1)2) and 
not (qN2n2). The term n2 is required for multiplication of n2 elements (in the input 
window) by n2 weights which results in another new n2 elements. Adding these n2 

elements, requires another (n2-1) steps. So, the total computation steps needed for each 
window is (2n2-1). The search operation for a face in the input image uses a window 
with nxn weights. This operation is done at each pixel in the input image. Therefore, 
such process is repeated (N-n+1)2 times and not N 2 as stated in (Ben-Yacoub et al. 1999; 
Ben-Yacoub 1997). 

d. Before applying cross correlation, the 2D-FFT of the weight matrix must be computed. 
Because of the dot product, which is done in the frequency domain, the size of weight 
matrix should be increased to be the same as the size of the input image. Computing the 
2D-FFT of the weight matrix off line as stated in (Ben-Yacoub et al. 1999; Fasel 1998; and 
Ben-Yacoub 1997)  is not practical. In this case, all of the input images must have the 
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same size. As a result, the input image will have only a one fixed size. This means that, 
the testing time for an image of size 50x50 pixels will be the same as that image of size 
1000x1000 pixels and of course, this is unreliable. 

e. It is not valid to compare number of complex computation steps by another of real 
computation steps directly. The number of computation steps given by pervious 
authors (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  for conventional 
neural networks is for real operations while that is required by the high speed neural 
networks is for complex operations. To obtain the speed up ratio, the authors in (Ben-
Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  have divided the two formulas 
directly without converting the number of computation steps required by the high 
speed neural networks into a real version.  

f. Furthermore, there are critical errors in the activity of hidden neurons given in section 
3.1 in (Ben-Yacoub 1997)  and also by Eq.(2) in (Ben-Yacoub et al. 1999). Such activity 
given by those authors in (Ben-Yacoub et al. 1999; Ben-Yacoub 1997)  as follows: 

 ( )ibiWΨgih +⊗=  (15) 

is not correct and should be written as Eq.(4) given here in this chapter. This is because 
the fact that the operation of cross correlation is not commutative (W⊗Ψ ≠ Ψ⊗W). As a 
result, Eq.(15)  (Eq.(2) in their paper (Ben-Yacoub et al. 1999)) does not give the exact 
correct results as conventional neural networks. This error leads the researchers who 
consider the references (Ben-Yacoub et al. 1999; Ben-Yacoub 1997)  to think about how 
to modify the operation of cross correlation so that Eq.(15) (Eq.(2) in their paper (Ben-
Yacoub et al. 1999)) can give the exact correct results as conventional neural networks. 
Therefore, errors in these equations must be cleared to all the researchers. In (El-Bakry 
2003), the authors proved that a symmetry condition must be found in input matrices 
(images and the weights of neural networks) so that fast neural networks can give the 
same results as conventional neural networks. In case of symmetry W⊗Ψ=Ψ⊗W, the 
cross correlation becomes commutative and this is a valuable achievement. In this case, 
the cross correlation is performed without any constrains on the arrangement of 
matrices. As presented in (El-Bakry 2003), this symmetry condition is useful for 
reducing the number of patterns that neural networks will learn. This is because the 
image is converted into symmetric shape by rotating it down and then the up image 
and its rotated down version are tested together as one (symmetric) image. If a pattern 
is detected in the rotated down image, then, this means that this pattern is found at the 
relative position in the up image. So, if conventional neural networks are trained for up 
and rotated down examples of the pattern, fast neural networks will be trained only to 
up examples. As the number of trained examples is reduced, the number of neurons in 
the hidden layer will be reduced and the neural network will be faster in the test phase 
compared with conventional neural networks.  

g. Moreover, the authors in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  
stated that the activity of each neuron in the hidden layer Eq.(16) (Eq.(4) in their paper 
(Ben-Yacoub et al. 1999)) can be expressed in terms of convolution between a bank of 
filter (weights) and the input image. This is not correct because the activity of the 
hidden neuron is a cross correlation between the input image and the weight matrix. It 
is known that the result of cross correlation between any two functions is different from 
their convolution. As we proved in (El-Bakry 2003) the two results will be the same, 
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same size. As a result, the input image will have only a one fixed size. This means that, 
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2003), the authors proved that a symmetry condition must be found in input matrices 
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same results as conventional neural networks. In case of symmetry W⊗Ψ=Ψ⊗W, the 
cross correlation becomes commutative and this is a valuable achievement. In this case, 
the cross correlation is performed without any constrains on the arrangement of 
matrices. As presented in (El-Bakry 2003), this symmetry condition is useful for 
reducing the number of patterns that neural networks will learn. This is because the 
image is converted into symmetric shape by rotating it down and then the up image 
and its rotated down version are tested together as one (symmetric) image. If a pattern 
is detected in the rotated down image, then, this means that this pattern is found at the 
relative position in the up image. So, if conventional neural networks are trained for up 
and rotated down examples of the pattern, fast neural networks will be trained only to 
up examples. As the number of trained examples is reduced, the number of neurons in 
the hidden layer will be reduced and the neural network will be faster in the test phase 
compared with conventional neural networks.  
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stated that the activity of each neuron in the hidden layer Eq.(16) (Eq.(4) in their paper 
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filter (weights) and the input image. This is not correct because the activity of the 
hidden neuron is a cross correlation between the input image and the weight matrix. It 
is known that the result of cross correlation between any two functions is different from 
their convolution. As we proved in (El-Bakry 2003) the two results will be the same, 
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only when the two matrices are symmetric or at least the weight matrix is symmetric. A 
practical example which proves that for any two matrices the result of their cross 
correlation is different from their convolution unless that they are symmetric or at least 
the second matrix is symmetric as shown in appendix “A”. 

h. Images are tested for the presence of a face (object) at different scales by building a 
pyramid of the input image which generates a set of images at different resolutions. The 
face detector is then applied at each resolution and this process takes much more time 
as the number of processing steps will be increased. In (Ben-Yacoub et al. 1999; Fasel 
1998; and Ben-Yacoub 1997) , the authors stated that the Fourier transforms of the new 
scales do not need to be computed. This is due to a property of the Fourier transform. If 
z(x,y) is the original and a(x,y) is the sub-sampled by a factor of 2 in each direction 
image then: 

 z(2x,2y)y)a(x, =  (16) 
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This implies that we do not need to recompute the Fourier transform of the sub-sampled 
images, as it can be directly obtained from the original Fourier transform. But experimental 
results have shown that Eq.(16) is valid only for images shown in the form presented in 
Eq.(19). In which each block of pixels consists of 4 pixels located beside each other and have 
the same value as shown in Eq.(19). Certainly, there no guarantee that the input image will 
be in that form. Of course, it may have another form different from that one presented in 
Eq.(19).  
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In (Ben-Yacoub et al. 1999), the author claimed that the processing needs O((q+2)N2log2N) 
additional number of computation steps. Thus the speed up ratio will be (Ben-Yacoub et al. 
1999): 
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Of course this is not correct, because the inverse of the Fourier transform is required to be 
computed at each neuron in the hidden layer (for the resulted matrix from the dot product 
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between the Fourier matrix in two dimensions of the input image and the Fourier matrix in 
two dimensions of the weights, the inverse of the Fourier transform must be computed). So, 
the term (q+2) in Eq.(20) should be (2q+1) because the inverse 2D-FFT in two dimensions 
must be done at each neuron in the hidden layer. In this case, the number of computation 
steps required to perform 2D-FFT for the high speed neural networks will be: 

 ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2  (21) 

In addition, a number of computation steps equal to 6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must 
be added to the number of computation steps required by the high speed neural networks. 

3. A new faster algorithm for pattern detection based on image 
decomposition  
In this section, a new faster algorithm for face/object detection is presented. The number of 
computation steps required for faster neural networks with different image sizes is listed in 
Tables 6 and 7. From these tables, we may notice that as the image size is increased, the 
number of computation steps required by high speed neural networks is much increased. 
For example, the number of computation steps required for an image of size (50x50 pixels) is 
much less than that needed for an image of size (100x100 pixels). Also, the number of 
computation steps required for an image of size (500x500 pixels) is much less than that 
needed for an image of size (1000x1000 pixels). As a result, for example, if an image of size 
(100x100 pixels) is decomposed into 4 sub-images of size (50x50 pixels) and each sub-image 
is tested separately, then a speed up factor for face/object detection can be achieved. The 
number of computation steps required by high speed neural networks to test an image after 
decomposition can be calculated as follows: 
1. Assume that the size of the image under test is (NxN pixels). 
2. Such image is decomposed into α (LxL pixels) sub-images. So, α can be computed as: 

 α=(N/L)2 (22) 

3. Assume that, the number of computation steps required for testing one (LxL pixels) 
sub-image is β. So, the total number of computation steps (T) required for testing these 
sub-images resulting after the decomposition process is: 

 T = α β  (23) 

The speed up ratio in this case (ηd ) can be computed as follows: 
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where, 
Ns: is the size of each small sub-image. 
Δ: is a small number of computation steps required to obtain the results at the 
boundaries between sub-images and depends on the size of the sub-image. 

To detect a face/object of size 20x20 pixels in an image of any size by using high speed 
neural networks after image decomposition into sub-images, the optimal size of these sub-
images must be computed. From Table 7, we may conclude that, the most suitable size for  
 



 Artificial Neural Networks - Application 

 

278 
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the second matrix is symmetric as shown in appendix “A”. 
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results have shown that Eq.(16) is valid only for images shown in the form presented in 
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additional number of computation steps. Thus the speed up ratio will be (Ben-Yacoub et al. 
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between the Fourier matrix in two dimensions of the input image and the Fourier matrix in 
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3. A new faster algorithm for pattern detection based on image 
decomposition  
In this section, a new faster algorithm for face/object detection is presented. The number of 
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Tables 6 and 7. From these tables, we may notice that as the image size is increased, the 
number of computation steps required by high speed neural networks is much increased. 
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much less than that needed for an image of size (100x100 pixels). Also, the number of 
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(100x100 pixels) is decomposed into 4 sub-images of size (50x50 pixels) and each sub-image 
is tested separately, then a speed up factor for face/object detection can be achieved. The 
number of computation steps required by high speed neural networks to test an image after 
decomposition can be calculated as follows: 
1. Assume that the size of the image under test is (NxN pixels). 
2. Such image is decomposed into α (LxL pixels) sub-images. So, α can be computed as: 

 α=(N/L)2 (22) 

3. Assume that, the number of computation steps required for testing one (LxL pixels) 
sub-image is β. So, the total number of computation steps (T) required for testing these 
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where, 
Ns: is the size of each small sub-image. 
Δ: is a small number of computation steps required to obtain the results at the 
boundaries between sub-images and depends on the size of the sub-image. 

To detect a face/object of size 20x20 pixels in an image of any size by using high speed 
neural networks after image decomposition into sub-images, the optimal size of these sub-
images must be computed. From Table 7, we may conclude that, the most suitable size for  
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Image size No. of computation steps in case of 
using FNN 

25x25 1.9085e+006 
50x50 9.1949e+006 

100x100 4.2916e+007 
150x150 1.0460e+008 
200x200 1.9610e+008 
250x250 3.1868e+008 
300x300 4.7335e+008 
350x350 6.6091e+008 
400x400 8.8203e+008 
450x450 1.1373e+009 
500x500 1.4273e+009 
550x550 1.7524e+009 
600x600 2.1130e+009 
650x650 2.5096e+009 
700x700 2.9426e+009 
750x750 3.4121e+009 
800x800 3.9186e+009 
850x850 4.4622e+009 
900x900 5.0434e+009 
950x950 5.6623e+009 

1000x1000 6.3191e+009 

Table  6. The number of computation steps required by faster neural networks (FNN) for 
images of sizes (25x25 - 1000x1000 pixels), q=30, n=20 

Image size No. of computation steps in case of 
using FNN 

1050x1050 7.0142e+009 
1100x1100 7.7476e+009 
1150x1150 8.5197e+009 
1200x1200 9.3306e+009 
1250x1250 1.0180e+010 
1300x1300 1.1070e+010 
1350x1350 1.1998e+010 
1400x1400 1.2966e+010 
1450x1450 1.3973e+010 
1500x1500 1.5021e+010 
1550x1550 1.6108e+010 
1600x1600 1.7236e+010 
1650x1650 1.8404e+010 
1700x1700 1.9612e+010 
1750x1750 2.0861e+010 
1800x1800 2.2150e+010 
1850x1850 2.3480e+010 
1900x1900 2.4851e+010 
1950x1950 2.6263e+010 
2000x2000 2.7716e+010 

Table 7. The number of computation steps required by FNN for images of sizes (1050x1050 - 
2000x2000 pixels), q=30, n=20 
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Fig. 1. The speed up ratio for images decomposed into different in size sub-images (L). 
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Fig. 2. A comparison between the number of computation steps required by FNN before and 
after Image decomposition. 

the sub-image which requires the smallest number of computation steps is 25x25 pixels. 
Also, the fastest speed up ratio can be achieved using this sub-image size (25x25) as shown 
in Figure 1. It is clear that the speed up ratio is reduced when the size of the sub-image (L) is 
increased. A comparison between the speed up ratio for high speed neural networks and 
high speed neural networks after image decomposition with different sizes of the tested 
images is listed in Tables 8 and 9. It is clear that the speed up ratio is increased with the size 
of the input image when using high speed neural networks and image decomposition. This 
is in contrast to using only high speed neural networks. As shown in Figure 2, the number 
of computation steps required by high speed neural networks is increased rapidly with the 
size of the input image. Therefore the speed up ratio is decreased with the size of the input 
image. While in case of using high speed neural networks and image decomposition, the 
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Image size No. of computation steps in case of 
using FNN 

25x25 1.9085e+006 
50x50 9.1949e+006 

100x100 4.2916e+007 
150x150 1.0460e+008 
200x200 1.9610e+008 
250x250 3.1868e+008 
300x300 4.7335e+008 
350x350 6.6091e+008 
400x400 8.8203e+008 
450x450 1.1373e+009 
500x500 1.4273e+009 
550x550 1.7524e+009 
600x600 2.1130e+009 
650x650 2.5096e+009 
700x700 2.9426e+009 
750x750 3.4121e+009 
800x800 3.9186e+009 
850x850 4.4622e+009 
900x900 5.0434e+009 
950x950 5.6623e+009 

1000x1000 6.3191e+009 

Table  6. The number of computation steps required by faster neural networks (FNN) for 
images of sizes (25x25 - 1000x1000 pixels), q=30, n=20 

Image size No. of computation steps in case of 
using FNN 

1050x1050 7.0142e+009 
1100x1100 7.7476e+009 
1150x1150 8.5197e+009 
1200x1200 9.3306e+009 
1250x1250 1.0180e+010 
1300x1300 1.1070e+010 
1350x1350 1.1998e+010 
1400x1400 1.2966e+010 
1450x1450 1.3973e+010 
1500x1500 1.5021e+010 
1550x1550 1.6108e+010 
1600x1600 1.7236e+010 
1650x1650 1.8404e+010 
1700x1700 1.9612e+010 
1750x1750 2.0861e+010 
1800x1800 2.2150e+010 
1850x1850 2.3480e+010 
1900x1900 2.4851e+010 
1950x1950 2.6263e+010 
2000x2000 2.7716e+010 

Table 7. The number of computation steps required by FNN for images of sizes (1050x1050 - 
2000x2000 pixels), q=30, n=20 
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Fig. 1. The speed up ratio for images decomposed into different in size sub-images (L). 
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Fig. 2. A comparison between the number of computation steps required by FNN before and 
after Image decomposition. 

the sub-image which requires the smallest number of computation steps is 25x25 pixels. 
Also, the fastest speed up ratio can be achieved using this sub-image size (25x25) as shown 
in Figure 1. It is clear that the speed up ratio is reduced when the size of the sub-image (L) is 
increased. A comparison between the speed up ratio for high speed neural networks and 
high speed neural networks after image decomposition with different sizes of the tested 
images is listed in Tables 8 and 9. It is clear that the speed up ratio is increased with the size 
of the input image when using high speed neural networks and image decomposition. This 
is in contrast to using only high speed neural networks. As shown in Figure 2, the number 
of computation steps required by high speed neural networks is increased rapidly with the 
size of the input image. Therefore the speed up ratio is decreased with the size of the input 
image. While in case of using high speed neural networks and image decomposition, the 
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Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image 
decomposition 

50x50 2.7568 5.0713 
100x100 5.0439 12.4622 
150x150 5.6873 15.6601 
200x200 5.9190 17.3611 
250x250 6.0055 18.4073 
300x300 6.0301 19.1136 
350x350 6.0254 19.6218 
400x400 6.0059 20.0047 
450x450 5.9790 20.3034 
500x500 5.9483 20.5430 
550x550 5.9160 20.7394 
600x600 5.8833 20.9032 
650x650 5.8509 21.0419 
700x700 5.8191 21.1610 
750x750 5.7881 21.2642 
800x800 5.7581 21.3546 
850x850 5.7292 21.4344 
900x900 5.7013 21.5054 
950x950 5.6744 21.5689 

1000x1000 5.6484 21.6260 

Table  8. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (25x25 pixels) for images of different sizes (from N=50 to N=1000, n=25, q=30) 

Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image decomposition

1050x1050 5.6234 21.6778 
1100x1100 5.5994 21.7248 
1150x1150 5.5762 21.7678 
1200x1200 5.5538 21.8072 
1250x1250 5.5322 21.8434 
1300x1300 5.5113 21.8769 
1350x1350 5.4912 21.9079 
1400x1400 5.4717 21.9366 
1450x1450 5.4528 21.9634 
1500x1500 5.4345 21.9884 
1550x1550 5.4168 22.0118 
1600x1600 5.3996 22.0338 
1650x1650 5.3830 22.0544 
1700x1700 5.3668 22.0738 
1750x1750 5.3511 22.0921 
1800x1800 5.3358 22.1094 
1850x1850 5.3209 22.1257 
1900x1900 5.3064 22.1412 
1950x1950 5.2923 22.1559 
2000x2000 5.2786 22.1699 

Table 9. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (25x25 pixels) for images of different sizes (from N=1050 to N=2000, n=25, q=30) 
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Matrix size 
 

Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after matrix 

decomposition 
100000x100000 3.6109 22.7038 
200000x200000 3.4112 22.7092 
300000x300000 3.3041 22.7110 
400000x400000 3.2320 22.7119 
500000x500000 3.1783 22.7125 
600000x600000 3.1357 22.7128 
700000x700000 3.1005 22.7131 
800000x800000 3.0707 22.7133 
900000x900000 3.0448 22.7134 

1000000x1000000 3.0221 22.7136 
1100000x1100000 3.0018 22.7137 
1200000x1200000 2.9835 22.7138 
1300000x1300000 2.9668 22.7138 
1400000x1400000 2.9516 22.7139 
1500000x1500000 2.9376 22.7139 
1600000x1600000 2.9245 22.7140 
1700000x1700000 2.9124 22.7140 
1800000x1800000 2.9011 22.7141 
1900000x1900000 2.8904 22.7141 
2000000x2000000 2.8804 22.7141 

Table  10. The speed up ratio in case of using FNN and FNN after matrix decomposition into 
sub-matrices (25x25 elements) for very large matrices (from N=100000 to N=2000000, n=25, q=30) 

number of computation steps required by high speed neural networks is increased 
smoothly. Thus, the linearity of the computation steps required by high speed neural 
networks in this case is better. As a result, the speed up ratio is increased. Increasing the 
speed up ratio with the size of the input image is considered an important achievement. 
Furthermore, for very large size matrices, while the speed up ratio for high speed neural 
networks is decreased, the speed up ratio still increase in case of using high speed neural 
networks and matrix decomposition as listed in Table 10. Moreover, as shown in Figure 3, 
the speed up ratio in case of high speed neural networks and image decomposition is 
increased with the size of the weight matrix which has the same size (n) as the input 
window. For example, it is clear that the speed up ratio is for window size of 30x30 is larger 
than that of size 20x20. Simulation results for the speed up ratio in case of using fast neural 
networks and image decomposition is listed in Table 11. It is clear that simulation results 
confirm the theoretical computations and the practical speed up ratio after image 
decomposition is faster than using only fast neural networks. In addition, the practical speed 
up ratio is increased with the size of the input image. 
Also, to detect small in size matrices such as 5x5 or 10x10 using only high speed neural 
networks, the speed ratio becomes less than one as shown in Tables 12,13,14, and 15. On the 
other hand, from the same tables it is clear that using fast neural and image decomposition, 
the speed up ratio becomes higher than one and increased with the dimensions of the input 
image. The dimensions of the new sub-image after image decomposition (L) must not be 
less than the dimensions of the face/object which is required to be detected and has the 
same size as the weight matrix. Therefore, the following equation controls the relation 
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Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image 
decomposition 

50x50 2.7568 5.0713 
100x100 5.0439 12.4622 
150x150 5.6873 15.6601 
200x200 5.9190 17.3611 
250x250 6.0055 18.4073 
300x300 6.0301 19.1136 
350x350 6.0254 19.6218 
400x400 6.0059 20.0047 
450x450 5.9790 20.3034 
500x500 5.9483 20.5430 
550x550 5.9160 20.7394 
600x600 5.8833 20.9032 
650x650 5.8509 21.0419 
700x700 5.8191 21.1610 
750x750 5.7881 21.2642 
800x800 5.7581 21.3546 
850x850 5.7292 21.4344 
900x900 5.7013 21.5054 
950x950 5.6744 21.5689 

1000x1000 5.6484 21.6260 

Table  8. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (25x25 pixels) for images of different sizes (from N=50 to N=1000, n=25, q=30) 

Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image decomposition

1050x1050 5.6234 21.6778 
1100x1100 5.5994 21.7248 
1150x1150 5.5762 21.7678 
1200x1200 5.5538 21.8072 
1250x1250 5.5322 21.8434 
1300x1300 5.5113 21.8769 
1350x1350 5.4912 21.9079 
1400x1400 5.4717 21.9366 
1450x1450 5.4528 21.9634 
1500x1500 5.4345 21.9884 
1550x1550 5.4168 22.0118 
1600x1600 5.3996 22.0338 
1650x1650 5.3830 22.0544 
1700x1700 5.3668 22.0738 
1750x1750 5.3511 22.0921 
1800x1800 5.3358 22.1094 
1850x1850 5.3209 22.1257 
1900x1900 5.3064 22.1412 
1950x1950 5.2923 22.1559 
2000x2000 5.2786 22.1699 

Table 9. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (25x25 pixels) for images of different sizes (from N=1050 to N=2000, n=25, q=30) 
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Matrix size 
 

Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after matrix 

decomposition 
100000x100000 3.6109 22.7038 
200000x200000 3.4112 22.7092 
300000x300000 3.3041 22.7110 
400000x400000 3.2320 22.7119 
500000x500000 3.1783 22.7125 
600000x600000 3.1357 22.7128 
700000x700000 3.1005 22.7131 
800000x800000 3.0707 22.7133 
900000x900000 3.0448 22.7134 

1000000x1000000 3.0221 22.7136 
1100000x1100000 3.0018 22.7137 
1200000x1200000 2.9835 22.7138 
1300000x1300000 2.9668 22.7138 
1400000x1400000 2.9516 22.7139 
1500000x1500000 2.9376 22.7139 
1600000x1600000 2.9245 22.7140 
1700000x1700000 2.9124 22.7140 
1800000x1800000 2.9011 22.7141 
1900000x1900000 2.8904 22.7141 
2000000x2000000 2.8804 22.7141 

Table  10. The speed up ratio in case of using FNN and FNN after matrix decomposition into 
sub-matrices (25x25 elements) for very large matrices (from N=100000 to N=2000000, n=25, q=30) 

number of computation steps required by high speed neural networks is increased 
smoothly. Thus, the linearity of the computation steps required by high speed neural 
networks in this case is better. As a result, the speed up ratio is increased. Increasing the 
speed up ratio with the size of the input image is considered an important achievement. 
Furthermore, for very large size matrices, while the speed up ratio for high speed neural 
networks is decreased, the speed up ratio still increase in case of using high speed neural 
networks and matrix decomposition as listed in Table 10. Moreover, as shown in Figure 3, 
the speed up ratio in case of high speed neural networks and image decomposition is 
increased with the size of the weight matrix which has the same size (n) as the input 
window. For example, it is clear that the speed up ratio is for window size of 30x30 is larger 
than that of size 20x20. Simulation results for the speed up ratio in case of using fast neural 
networks and image decomposition is listed in Table 11. It is clear that simulation results 
confirm the theoretical computations and the practical speed up ratio after image 
decomposition is faster than using only fast neural networks. In addition, the practical speed 
up ratio is increased with the size of the input image. 
Also, to detect small in size matrices such as 5x5 or 10x10 using only high speed neural 
networks, the speed ratio becomes less than one as shown in Tables 12,13,14, and 15. On the 
other hand, from the same tables it is clear that using fast neural and image decomposition, 
the speed up ratio becomes higher than one and increased with the dimensions of the input 
image. The dimensions of the new sub-image after image decomposition (L) must not be 
less than the dimensions of the face/object which is required to be detected and has the 
same size as the weight matrix. Therefore, the following equation controls the relation 
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between the sub-image and the size of weight matrix (face/object to be detected) in order 
not to loss any information in the input image. 
 

Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image 
decomposition 

100x100 10.75 34.55 
200x200 9.19 35.65 
300x300 8.43 36.73 
400x400 7.45 37.70 
500x500 7.13 38.66 
600x600 6.97 39.61 
700x700 6.83 40.56 
800x800 6.68 41.47 
900x900 6.79 42.39 

1000x1000 6.59 43.28 
1100x1100 6.66 44.14 
1200x1200 6.62 44.95 
1300x1300 6.57 45.71 
1400x1400 6.53 46.44 
1500x1500 6.49 47.13 
1600x1600 6.45 47.70 
1700x1700 6.41 48.19 
1800x1800 6.38 48.68 
1900x1900 6.35 49.09 
2000x2000 6.31 49.45 

Table 11. The practical speed up ratio in case of using FNN and FNN after image 
decomposition into sub-images (25x25 pixels) for images of different sizes (from N=100 to 
N=2000, n=25, q=30) 
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Fig. 3. The speed up ratio in case of image decomposition and different window size (n), 
(L=25x25). 

Design of High Speed Neural Networks for Fast Pattern Detection  
by using Cross Correlation and Matrix Decomposition   

 

285 

Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image decomposition

50x50 0.3361 1.3282 
100x100 0.3141 1.4543 
150x150 0.2985 1.4965 
200x200 0.2872 1.5177 
250x250 0.2785 1.5303 
300x300 0.2716 1.5388 
350x350 0.2658 1.5448 
400x400 0.2610 1.5493 
450x450 0.2568 1.5529 
500x500 0.2531 1.5557 
550x550 0.2498 1.5580 
600x600 0.2469 1.5599 
650x650 0.2442 1.5615 
700x700 0.2418 1.5629 
750x750 0.2396 1.5641 
800x800 0.2375 1.5652 
850x850 0.2356 1.5661 
900x900 0.2339 1.5669 
950x950 0.2322 1.5677 

1000x1000 0.2306 1.5683 

Table 12. The speed up ratio in case of using FNN and FNN after image decomposition into 
Sub-Images (5x5 pixels) for Images of different sizes (from N=50 to N=1000, n=5, q=30) 

 
Image size Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition
1050x1050 0.2292 1.5689 
1100x1100 0.2278 1.5695 
1150x1150 0.2265 1.5700 
1200x1200 0.2253 1.5704 
1250x1250 0.2241 1.5709 
1300x1300 0.2230 1.5713 
1350x1350 0.2219 1.5716 
1400x1400 0.2209 1.5720 
1450x1450 0.2199 1.5723 
1500x1500 0.2189 1.5726 
1550x1550 0.2180 1.5728 
1600x1600 0.2172 1.5731 
1650x1650 0.2163 1.5733 
1700x1700 0.2155 1.5735 
1750x1750 0.2148 1.5738 
1800x1800 0.2140 1.5740 
1850x1850 0.2133 1.5742 
1900x1900 0.2126 1.5743 
1950x1950 0.2119 1.5745 
2000x2000 0.2112 1.5747 

Table 13. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=1050 to N=2000, n=5, q=30) 
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between the sub-image and the size of weight matrix (face/object to be detected) in order 
not to loss any information in the input image. 
 

Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image 
decomposition 
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1300x1300 6.57 45.71 
1400x1400 6.53 46.44 
1500x1500 6.49 47.13 
1600x1600 6.45 47.70 
1700x1700 6.41 48.19 
1800x1800 6.38 48.68 
1900x1900 6.35 49.09 
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Table 11. The practical speed up ratio in case of using FNN and FNN after image 
decomposition into sub-images (25x25 pixels) for images of different sizes (from N=100 to 
N=2000, n=25, q=30) 
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Fig. 3. The speed up ratio in case of image decomposition and different window size (n), 
(L=25x25). 
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Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image decomposition

50x50 0.3361 1.3282 
100x100 0.3141 1.4543 
150x150 0.2985 1.4965 
200x200 0.2872 1.5177 
250x250 0.2785 1.5303 
300x300 0.2716 1.5388 
350x350 0.2658 1.5448 
400x400 0.2610 1.5493 
450x450 0.2568 1.5529 
500x500 0.2531 1.5557 
550x550 0.2498 1.5580 
600x600 0.2469 1.5599 
650x650 0.2442 1.5615 
700x700 0.2418 1.5629 
750x750 0.2396 1.5641 
800x800 0.2375 1.5652 
850x850 0.2356 1.5661 
900x900 0.2339 1.5669 
950x950 0.2322 1.5677 

1000x1000 0.2306 1.5683 

Table 12. The speed up ratio in case of using FNN and FNN after image decomposition into 
Sub-Images (5x5 pixels) for Images of different sizes (from N=50 to N=1000, n=5, q=30) 

 
Image size Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition
1050x1050 0.2292 1.5689 
1100x1100 0.2278 1.5695 
1150x1150 0.2265 1.5700 
1200x1200 0.2253 1.5704 
1250x1250 0.2241 1.5709 
1300x1300 0.2230 1.5713 
1350x1350 0.2219 1.5716 
1400x1400 0.2209 1.5720 
1450x1450 0.2199 1.5723 
1500x1500 0.2189 1.5726 
1550x1550 0.2180 1.5728 
1600x1600 0.2172 1.5731 
1650x1650 0.2163 1.5733 
1700x1700 0.2155 1.5735 
1750x1750 0.2148 1.5738 
1800x1800 0.2140 1.5740 
1850x1850 0.2133 1.5742 
1900x1900 0.2126 1.5743 
1950x1950 0.2119 1.5745 
2000x2000 0.2112 1.5747 

Table 13. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=1050 to N=2000, n=5, q=30) 
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Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image decomposition

50x50 1.1202 3.1369 
100x100 1.1503 3.9558 
150x150 1.1303 4.2397 
200x200 1.1063 4.3829 
250x250 1.0842 4.4691 
300x300 1.0647 4.5267 
350x350 1.0474 4.5678 
400x400 1.0321 4.5987 
450x450 1.0185 4.6228 
500x500 1.0063 4.6420 
550x550 0.9952 4.6578 
600x600 0.9851 4.6709 
650x650 0.9758 4.6820 
700x700 0.9672 4.6915 
750x750 0.9593 4.6998 
800x800 0.9519 4.7070 
850x850 0.9451 4.7133 
900x900 0.9386 4.7190 
950x950 0.9325 4.7241 

1000x1000 0.9268 4.7286 

Table 14. The speed up ratio in case of using FNN and FNN after Image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=50 to N=1000, n=10, q=30) 

 
Image size Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition
1050x1050 0.9214 4.7328 
1100x1100 0.9163 4.7365 
1150x1150 0.9114 4.7399 
1200x1200 0.9068 4.7431 
1250x1250 0.9023 4.7460 
1300x1300 0.8981 4.7486 
1350x1350 0.8941 4.7511 
1400x1400 0.8902 4.7534 
1450x1450 0.8865 4.7555 
1500x1500 0.8829 4.7575 
1550x1550 0.8795 4.7594 
1600x1600 0.8762 4.7611 
1650x1650 0.8730 4.7628 
1700x1700 0.8699 4.7643 
1750x1750 0.8669 4.7658 
1800x1800 0.8640 4.7672 
1850x1850 0.8613 4.7685 
1900x1900 0.8586 4.7697 
1950x1950 0.8559 4.7709 
2000x2000 0.8534 4.7720 

Table 15. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=1050 to N=2000, n=10, q=30) 
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 nL ≥  (25) 

For example, in case of detecting 5x5 pattern, the image must be decomposed into sub-
images of size not less than 5x5.  
To further reduce the running time as well as increase the speed up ratio of the detection 
process, a parallel processing technique is used. Each sub-image is tested using a high speed 
neural network simulated on a single processor or a separated node in a clustered system. 
The number of operations (ω) performed by each processor / node (sub-images tested by 
one processor/node) =  

 
/nodesprocessors ofNumber 

images-sub ofnumber   totalThe
ω=  (26) 

 
Pr
αω =  (27) 

where, Pr is the number of processors or nodes. 
The total number of computation steps (γ) required to test an image by using this approach 
can be calculated as: 

 γ=ωβ (28) 

By using this algorithm, the speed up ratio in this case (ηdp) can be computed as follows: 

 
)/pr)sN)2n-2

sαq(8N)2
sN2log2

sα)(5N1)ceil(((q(α

21)n1)(N2q(2n
dp ++++

+−−
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where, ceil(x) is a MATLAB function rounds the elements of x to the nearest integers 
towards infinity. 
As shown in Tables 16 and 17, using a symmetric multiprocessing system with 16 parallel 
processors or 16 nodes in either a massively parallel processing system or a clustered 
system, the speed up ratio (with respect to conventional neural networks) for face/object 
detection is increased. A further reduction in the computation steps can be obtained by 
dividing each sub-image into groups. For each group, the neural operation (multiplication 
by weights and summation) is performed for each group by using a single processor. This 
operation is done for all of these groups as well as other groups in all of the sub-images at 
the same time. The best case is achieved when each group consists of only one element. In 
this case, one operation is needed for multiplication of the one element by its weight and 
also a small number of operations (ε) is required to obtain the over all summation for each 
sub-image. If the sub-image has n2 elements, then the required number of processors to 
multiply each element in the sub-image matrix by the relevant element in the weight matrix; 
at the same time; will be n2. As a result, the number of computation steps will be αq(1+ε), 
where ε is a small number depending on the value of n. For example, when n=20, then ε=6 
and if n=25, then ε=7. The speed up ratio can be calculated as: 

 η=(2n2-1)(N-n+1)2/α(1+ε) (30) 
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Image size Speed up ratio in 
case of using FNN 

Speed up ratio in case of using 
FNN after image decomposition
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950x950 0.9325 4.7241 
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Table 14. The speed up ratio in case of using FNN and FNN after Image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=50 to N=1000, n=10, q=30) 
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 nL ≥  (25) 

For example, in case of detecting 5x5 pattern, the image must be decomposed into sub-
images of size not less than 5x5.  
To further reduce the running time as well as increase the speed up ratio of the detection 
process, a parallel processing technique is used. Each sub-image is tested using a high speed 
neural network simulated on a single processor or a separated node in a clustered system. 
The number of operations (ω) performed by each processor / node (sub-images tested by 
one processor/node) =  
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where, Pr is the number of processors or nodes. 
The total number of computation steps (γ) required to test an image by using this approach 
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where, ceil(x) is a MATLAB function rounds the elements of x to the nearest integers 
towards infinity. 
As shown in Tables 16 and 17, using a symmetric multiprocessing system with 16 parallel 
processors or 16 nodes in either a massively parallel processing system or a clustered 
system, the speed up ratio (with respect to conventional neural networks) for face/object 
detection is increased. A further reduction in the computation steps can be obtained by 
dividing each sub-image into groups. For each group, the neural operation (multiplication 
by weights and summation) is performed for each group by using a single processor. This 
operation is done for all of these groups as well as other groups in all of the sub-images at 
the same time. The best case is achieved when each group consists of only one element. In 
this case, one operation is needed for multiplication of the one element by its weight and 
also a small number of operations (ε) is required to obtain the over all summation for each 
sub-image. If the sub-image has n2 elements, then the required number of processors to 
multiply each element in the sub-image matrix by the relevant element in the weight matrix; 
at the same time; will be n2. As a result, the number of computation steps will be αq(1+ε), 
where ε is a small number depending on the value of n. For example, when n=20, then ε=6 
and if n=25, then ε=7. The speed up ratio can be calculated as: 

 η=(2n2-1)(N-n+1)2/α(1+ε) (30) 
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Image size Speed up ratio 

50x50 81.1403 
100x100 199.3946 
150x150 250.5611 
200x200 277.7780 
250x250 294.5171 
300x300 305.8174 
350x350 313.9482 
400x400 320.0748 
450x450 324.8552 
500x500 328.6882 
550x550 331.8296 
600x600 334.4509 
650x650 336.6712 
700x700 338.5758 
750x750 340.2276 
800x800 341.6738 
850x850 342.9504 
900x900 344.0856 
950x950 345.1017 

1000x1000 346.0164 

Table 16. The speed up ratio in case of using FNN after image decomposition into sub-
images (25x25 pixels) for images of different sizes (from N=50 to N=1000, n=25, q=30) using 
16 parallel processors or 16 nodes 

Image size Speed up ratio 

1050x1050 346.8442 
1100x1100 347.5970 
1150x1150 348.2844 
1200x1200 348.9147 
1250x1250 349.4946 
1300x1300 350.0300 
1350x1350 350.5258 
1400x1400 350.9862 
1450x1450 351.4150 
1500x1500 351.8152 
1550x1550 352.1896 
1600x1600 352.5406 
1650x1650 352.8704 
1700x1700 353.1808 
1750x1750 353.4735 
1800x1800 353.7500 
1850x1850 354.0115 
1900x1900 354.2593 
1950x1950 354.4943 
2000x2000 354.7177 

Table 17. The speed up ratio in case of using FNN after image decomposition into sub-
images (25x25 pixels) for images of different sizes (from N=1050 to N=2000, n=25, q=30) 
using 16 parallel processors or 16 nodes 
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Moreover, if the number of processors = αn2, then the number of computation steps will be 
q(1+ε), and the speed up ratio becomes: 

 η=(2n2-1)(N-n+1)2/ (1+ε) (31) 

Furthermore, if the number of processors = qαn2, then the number of computation steps will 
be (1+ε), and the speed up ratio can be calculated as: 

 η=q(2n2-1)(N-n+1)2/ (1+ε)  (32) 

In this case, as the length of each group is very small, then there is no need to apply cross 
correlation between the input image and the weights of the neural network in frequency 
domain.  

4. Sub-image centering and normalization in the frequency domain  
(Feraud et al. 2000) stated that image normalization to avoid weak or strong illumination 
could not be done in the frequency space. This is because the image normalization is local 
and not easily computed in the Fourier space of the whole image. Here, a simple method for 
image normalization is presented. In (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 
1997), the authors stated that centering and normalizing the image can be obtained by 
centering and normalizing the weights as follows (Ben-Yacoub et al. 1999; Fasel 1998; and 
Ben-Yacoub 1997) : 
Let Xrc  be the zero-mean centered sub-image located at (r,c) in the input image ψ: 

 rcxrcXrcX −=  (33) 

where, Xrc is the mean value of the sub-image located at (r,c). We are interested in 

computing the cross correlation between the sub-image Xrc and the weights Wi that is: 

 iWrcxiWrcXiWrcX ⊗−⊗=⊗  (34) 

where,  

 2n
rcX

rcx =  (35) 

Combining (34) and (35), the following expression can be obtained: 

 iW2n
rcX

iWrcXiWrcX ⊗−⊗=⊗  (36) 

which is the same as: 

 
2

n

iW
rcXiWrcXiWrcX ⊗−⊗=⊗  (37) 

The centered zero mean weights are given by: 
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Moreover, if the number of processors = αn2, then the number of computation steps will be 
q(1+ε), and the speed up ratio becomes: 

 η=(2n2-1)(N-n+1)2/ (1+ε) (31) 

Furthermore, if the number of processors = qαn2, then the number of computation steps will 
be (1+ε), and the speed up ratio can be calculated as: 

 η=q(2n2-1)(N-n+1)2/ (1+ε)  (32) 

In this case, as the length of each group is very small, then there is no need to apply cross 
correlation between the input image and the weights of the neural network in frequency 
domain.  

4. Sub-image centering and normalization in the frequency domain  
(Feraud et al. 2000) stated that image normalization to avoid weak or strong illumination 
could not be done in the frequency space. This is because the image normalization is local 
and not easily computed in the Fourier space of the whole image. Here, a simple method for 
image normalization is presented. In (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 
1997), the authors stated that centering and normalizing the image can be obtained by 
centering and normalizing the weights as follows (Ben-Yacoub et al. 1999; Fasel 1998; and 
Ben-Yacoub 1997) : 
Let Xrc  be the zero-mean centered sub-image located at (r,c) in the input image ψ: 

 rcxrcXrcX −=  (33) 

where, Xrc is the mean value of the sub-image located at (r,c). We are interested in 

computing the cross correlation between the sub-image Xrc and the weights Wi that is: 

 iWrcxiWrcXiWrcX ⊗−⊗=⊗  (34) 

where,  
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Combining (34) and (35), the following expression can be obtained: 
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W

iWiW −=  (38) 

also, Eq. (37) can be written as: 
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So, it can be concluded that: 

 iWrcXiWrcX ⊗=⊗  (40) 

which means that cross-correlating a normalized sub-image with the weight matrix is equal 
to the cross-correlation of the  non – normalized sub-image with the normalized weight 
matrix (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) . However, this proof 
which presented in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  is not correct 
at all because it is proved here mathematically and practically that cross-correlating a 
normalized sub-image with the weight matrix is not equal to the cross-correlation of the  
non – centered image with the normalized weight matrix          
During the test phase, each sub-image in the input image is multiplied (dot multiplication) 
by the weight matrix and this operation is repeated for all possible sub-images in the input 
image. Repeating this process for all sub-images in the input image is equivalent to the cross 
correlation operation. Therefore, there is no cross correlation between each sub-image and 
the weight matrix. The cross correlation is done between the weight matrix and the whole 
input image. Thus, this proves that there is no need to the proof of Eq.(40) (presented in 
(Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) ) which is mathematically wrong. 
The result of Eq.(40) is correct only for the center value which equals to the dot product 
between the two matrices (sub-image and weight matrices). For all other values except the 
center value: 

 iWrcXiWrcX ⊗≠⊗  (41) 

This fact is true for all types and values of matrices except symmetric matrices and our new 
technique of image decomposition presented in last section III. A practical example is given 
in appendix “B”.  
Furthermore, the definition of the mean value, Eq. (35) presented in (Ben-Yacoub et al. 1999; 
Fasel 1998; and Ben-Yacoub 1997)  is not correct and must be: 

 
2n

n

1i

n

1j
)j,i(rcX∑

=
∑
=
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which makes the proof of Eq.(40) (presented in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-
Yacoub 1997) ) not correct.  
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Moreover, the operation performed between the weight matrix and each sub-image is dot 
multiplication. Our new idea is to normalize each sub-image in the frequency domain by 
normalizing the weight matrix. The dot product of two matrices is defined as follows: 

 ∑
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∑

=

=•
n

1i

n

1j
ijWijXWX  (43) 

The result of dot product is only one value. We have also the following definitions: 
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1ji, ijXnxn1XXnxn1  (44) 

where, 1nxn is a nxn matrix where every element is 1.  

 ∑
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1ji, ijWnxn1WWnxn1  (45) 

Lemma :    Wnxn1xXnxn1w •=•  
Proof: 
From Eqs. 42,43,44,and 45, we can conclude that:  
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which can be reformulated as: 
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also, 
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which is the same as: 
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It is clear that Eq.(47) is the same as Eq.(49), which means:  

 Wnxn1xXnxn1w •=•  (50) 
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Moreover, the operation performed between the weight matrix and each sub-image is dot 
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normalizing the weight matrix. The dot product of two matrices is defined as follows: 

 ∑

=

∑

=

=•
n

1i

n

1j
ijWijXWX  (43) 

The result of dot product is only one value. We have also the following definitions: 

 ∑
=

=•=•
2n

1ji, ijXnxn1XXnxn1  (44) 

where, 1nxn is a nxn matrix where every element is 1.  

 ∑
=

=•=•
2n

1ji, ijWnxn1WWnxn1  (45) 

Lemma :    Wnxn1xXnxn1w •=•  
Proof: 
From Eqs. 42,43,44,and 45, we can conclude that:  

 ∑
=

•∑
=

∑
=

==•
2n

1ji, ijX
2n

1ji, ijW
2n

1ji, 2
n

1
ijXwXnxn1w  (46) 

which can be reformulated as: 

 ∑
=

•∑
=

=•

2n

1ji,
ijX

2n

1ji,
ijW

2n

1
X

nxn
1w  (47) 

also, 

 ∑
=

•∑
=

∑
=

==•
2n

1ji, ijW
2n

1ji, ijX
2n

1ji, 2
n

1
ijWxWnxn1x  (48) 

which is the same as: 

 ∑
=

•∑
=

=•
2n

1ji, ijW
2n

1ji, ijX
2

n

1
Wnxn1x  (49) 

It is clear that Eq.(47) is the same as Eq.(49), which means:  

 Wnxn1xXnxn1w •=•  (50) 



 Artificial Neural Networks - Application 

 

292 

Theorem: 
XW WX •=•  

Proof: 

W)nxn1x-(XWX •=•  

Wnxn1x-WX ••=  

wnxn1X-WX ••=  

)nxn1w-X(W •=  

WX •=  

So, we may conclude that: 

 iWrcXiWrcX •=•  (51) 

which means that multiplying a normalized sub-image with a non-normalized weight 
matrix dot multiplication is equal to the dot multiplication between the non – normalized 
sub-image and the normalized weight matrix. The validation of Eq. (51) and a practical 
example is given in appendix “C”.  
As proved in the previous paper (El-Bakry 2002,a), the relation defined by Eq. (40) is true only 
for the resulting middle value. This is under two conditions. The first is to apply the technique 
of high speed neural networks and image decomposition. In this case, the cross correlation is 
performed between each input sub-image and the weight matrix which has the same size as 
the resulting sub-image after image decomposition. The resulting middle value equals to the 
dot product between the input sub-image and the weight matrix (the value which we 
interested in). The second is that the required face/object is completely located in one of these 
sub-images (not between two sub-images). However applying cross correlation consumes 
more computation steps than applying dot product which makes Eq. (40) useful less. 

5. Effect of weight normalization on the speed up ratio 
Normalization of sub-images in the spatial domain (in case of using traditional neural 
networks) requires 2n2(N-n+1)2 computation steps. On the other hand, normalization of sub-
images in the frequency domain through normalizing the weights of the neural networks 
requires 2qn2 operations. This proves that local image normalization in the frequency 
domain is faster than that in the spatial one. By using weight normalization, the speed up 
ratio for image normalization Γ can be calculated as:  

 
q

21)n(NΓ +−
=  (52) 

The speed up ratio of the normalization process for images of different sizes is listed in 
Table 18. As a result, we may conclude that: 
1. Using this technique, normalization in the frequency domain can be done through 

normalizing the weights in spatial domain.  
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Image size Speed up ratio 

100x100 62 
200x200 328 
300x300 790 
400x400 1452 
500x500 2314 
600x600 3376 
700x700 4638 
800x800 6100 
900x900 7762 

1000x1000 9624 
1100x1100 11686 
1200x1200 13948 
1300x1300 16410 
1400x1400 19072 
1500x1500 21934 
1600x1600 24996 
1700x1700 28258 
1800x1800 31720 
1900x1900 35382 
2000x2000 39244 

Table 18. The speed up ratio of the normalization process for images of different sizes (n 
=20, q =100) 

 
2. Normalization of an image through normalization of weights is faster than 

normalization of each sub-image.  
3. Normalization of weights can be done off line. So, the speed up ratio in the case of 

weight normalization can be calculated as follows: 
a) For Conventional Neural Networks:  

The speed up ratio equals the number of computation steps required by conventional neural 
networks with image normalization divided by the number of computation steps needed by 
conventional neural networks with weight normalization, which is done off line. The speed 
up ratio ηc in this case can be given by: 

 21)n1)(N2q(2n

21)n(N22n21)n1)(N2q(2n
cη

+−−

+−++−−
=  (53) 

which can be simplified to: 
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b) For High speed neural networks: 

The over all speed up ratio equals the number of computation steps required by 
conventional neural networks with image normalization divided by the number of 
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Theorem: 
XW WX •=•  

Proof: 

W)nxn1x-(XWX •=•  

Wnxn1x-WX ••=  

wnxn1X-WX ••=  

)nxn1w-X(W •=  

WX •=  

So, we may conclude that: 

 iWrcXiWrcX •=•  (51) 

which means that multiplying a normalized sub-image with a non-normalized weight 
matrix dot multiplication is equal to the dot multiplication between the non – normalized 
sub-image and the normalized weight matrix. The validation of Eq. (51) and a practical 
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The speed up ratio of the normalization process for images of different sizes is listed in 
Table 18. As a result, we may conclude that: 
1. Using this technique, normalization in the frequency domain can be done through 

normalizing the weights in spatial domain.  
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Image size Speed up ratio 
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600x600 3376 
700x700 4638 
800x800 6100 
900x900 7762 

1000x1000 9624 
1100x1100 11686 
1200x1200 13948 
1300x1300 16410 
1400x1400 19072 
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1900x1900 35382 
2000x2000 39244 
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b) For High speed neural networks: 
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computation steps needed by high speed neural networks with weight normalization, which 
is done off line. The over all speed up ratio ηo can be given by: 

 
  N)2n-2q(8N)2N2log21)(5N(2q
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The relation between the speed up ratio before (η) and after (ηo) the normalization process 
can be summed up as: 
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The overall speed up ratio (Eq. (56)) with images of different sizes and different sizes of 
windows is listed in Table 19. We can easily note that the speed up ratio in case of image 
normalization through weight normalization is larger than the speed up ratio (without 
normalization) listed in Table 1. This means that the search process with normalized high 
speed neural networks is done faster than conventional neural networks with or without 
normalization of the input image. The overall practical speed up ratio (Eq. (56)) after 
normalization of weights off line is listed in Table 20.  
 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 3.7869 5.2121 6.5532 
200x200 4.1382 6.1165 8.3167 
300x300 4.1320 6.2313 8.6531 
400x400 4.0766 6.2063 8.7031 
500x500 4.0152 6.1467 8.6684 
600x600 3.9570 6.0796 8.6054 
700x700 3.9039 6.0132 8.5334 
800x800 3.8557 5.9502 8.4603 
900x900 3.8120 5.8915 8.3891 

1000x1000 3.7723 5.8369 8.3212 
1100x1100 3.7360 5.7862 8.2568 
1200x1200 3.7027 5.7391 8.1961 
1300x1300 3.6719 5.6952 8.1389 
1400x1400 3.6434 5.6542 8.0849 
1500x1500 3.6169 5.6158 8.0340 
1600x1600 3.5922 5.5798 7.9858 
1700x1700 3.5690 5.5458 7.9403 
1800x1800 3.5472 5.5138 7.8971 
1900x1900 3.5266 5.4835 7.8560 
2000x2000 3.5072 5.4547 7.8169 

 

Table 19. Theoretical Results for the Speed up Ratio in case of Image Normalization by 
Normalizing the Input Weights 
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Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 8.91 12.03 16.74 
200x200 7.43 10.42 15.39 
300x300 6.72 9.72 14.45 
400x400 5.99 8.61 13.59 
500x500 5.75 8.32 12.94 
600x600 5.61 8.09 11.52 
700x700 5.49 7.97 11.04 
800x800 5.41 7.83 10.74 
900x900 5.32 7.71 10.56 

1000x1000 5.29 7.58 10.45 
1100x1100 5.41 7.83 10.81 
1200x1200 5.36 7.77 10.76 
1300x1300 5.32 7.71 10.71 
1400x1400 5.28 7.65 10.66 
1500x1500 5.24 7.60 10.62 
1600x1600 5.21 7.56 10.58 
1700x1700 5.18 7.52 10.52 
1800x1800 5.14 7.48 10.47 
1900x1900 5.11 7.44 10.43 
2000x2000 5.08 7.41 10.38 

Table 20. The theoretical speed up ratio for images with different sizes 

6. Conclusion   
Normalized neural networks for fast pattern detection in a given image have been 
presented. It has been proved mathematically and practically that the speed of the detection 
process becomes high speed than conventional neural networks. This has been 
accomplished by applying cross correlation in the frequency domain between the input 
image and the normalized input weights of the neural networks. A new general formulas 
for fast cross correlation as well as the speed up ratio have been given. A new high speed 
neural network approach for pattern detection has been introduced. Such approach has 
decomposed the input image under test into many small in size sub-images. Furthermore, a 
simple algorithm for fast pattern detection based on cross correlations in the frequency 
domain between the sub-images and the weights of the neural net has been presented in 
order to speed up the execution time. Simulation results have shown that, using a parallel 
processing technique, large values of speed up ratio could be achieved. In addition, by using 
high speed neural networks and image decomposition, the speed up ratio has been 
increased with the size of the input image. Moreover, the problem of local sub-image 
normalization in the frequency space has been solved. It has been generally proved that the 
speed up ratio in the case of image normalization through normalization of weights is faster 
than sub-image normalization in the spatial domain. This speed up ratio is faster than the 
one obtained without normalization. Simulation results have confirmed theoretical 
computations by using MATLAB. The proposed approach can be applied to detect the 
presence/absence of any other object in an image. 
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6. Conclusion   
Normalized neural networks for fast pattern detection in a given image have been 
presented. It has been proved mathematically and practically that the speed of the detection 
process becomes high speed than conventional neural networks. This has been 
accomplished by applying cross correlation in the frequency domain between the input 
image and the normalized input weights of the neural networks. A new general formulas 
for fast cross correlation as well as the speed up ratio have been given. A new high speed 
neural network approach for pattern detection has been introduced. Such approach has 
decomposed the input image under test into many small in size sub-images. Furthermore, a 
simple algorithm for fast pattern detection based on cross correlations in the frequency 
domain between the sub-images and the weights of the neural net has been presented in 
order to speed up the execution time. Simulation results have shown that, using a parallel 
processing technique, large values of speed up ratio could be achieved. In addition, by using 
high speed neural networks and image decomposition, the speed up ratio has been 
increased with the size of the input image. Moreover, the problem of local sub-image 
normalization in the frequency space has been solved. It has been generally proved that the 
speed up ratio in the case of image normalization through normalization of weights is faster 
than sub-image normalization in the spatial domain. This speed up ratio is faster than the 
one obtained without normalization. Simulation results have confirmed theoretical 
computations by using MATLAB. The proposed approach can be applied to detect the 
presence/absence of any other object in an image. 
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Appendix “A” 
An Example Proves that the Cross Correlation between any Two Matrices s Different from their 
Convolution 
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The convolution between W and X can be obtained as follows: 
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which proves that W⊗X ≠ W◊X.  
When the second matrix W is symmetric, the cross correlation between W and X can be 
computed as follows: 
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while the convolution can be between W and X can be obtained as follows: 
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which proves that under the condition that the second matrix is symmetric (or the two 
matrices are symmetric) the cross correlation between any the two matrices equals to their 
convolution. 

Appendix “B” 
A cross correlation Example between a normalized matrix and other non-normalized one and Vise 
versa 
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Then the normalized matrices X, and W can be computed as :
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Now, the cross correlation between a normalized matrix and the other non-normalized one 
can be computed as follows: 
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which means that WXWX ⊗≠⊗ . 
However, the two results are equal only at the center element which equals to the dot 
product between the two matrices. The value of the center element (2,2) =6 as shown above 
and also in appendix “C”. 
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while the convolution can be between W and X can be obtained as follows: 
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Appendix “C” 
A dot product Example  between a Normalized Matrix and other Non-Normalized one and Vise 
Versa 

This is to validate the correctness of Eq. (51). The left hand side of Eq. 51 can be expresseded 
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and also the right hand side of the same can be repressented as:  
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X and W are defined as follows :
− −
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By substituting from Eq.(60) in Eq.(58) and Eq.(59), then simplifying the results we can 
easily conclude that iWrcXiWrcX •=• . 
Here is also a practical example:  
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Then the normalized matrices X, and W can be computed as :
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Now, the dot product between a normalized matrix and the other non-normalized one can 
be performed as follows: 
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which means generally that the dot product between a normalized matrix X and non-
normalized matrix W equals to the dot product between the normalized matrix W and non-
normalized matrix X. On the other hand, the cross correlation results are different as proved 
in appendix “C”. 
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Appendix “C” 
A dot product Example  between a Normalized Matrix and other Non-Normalized one and Vise 
Versa 

This is to validate the correctness of Eq. (51). The left hand side of Eq. 51 can be expresseded 
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Study for Application of Artificial Neural 
Networks in Geotechnical Problems 

Hyun Il Park 
Samsung C&T  

Korea of Republic 

1. Introduction  
The geotechnical engineering properties of soil exhibit varied and uncertain behaviour due 
to the complex and imprecise physical processes associated with the formation of these 
materials (Jaksa, 1995). This is in contrast to most other civil engineering materials, such as 
steel, concrete and timber, which exhibit far greater homogeneity and isotropy. In order to 
cope with the complexity of geotechnical behaviour, and the spatial variability of these 
materials, traditional forms of engineering design models are justifiably simplified. 
Moreover, geotechnical engineers face a great amount of uncertainties. Some sources of 
uncertainty are inherent soil variability, loading effects, time effects, construction effects, 
human error, and errors in soil boring, sampling, in-situ and laboratory testing, and 
characterization of the shear strength and stiffness of soils.  
Although developing an analytical or empirical model is feasible in some simplified 
situations, most manufacturing processes are complex, and therefore, models that are less 
general, more practical, and less expensive than the analytical models are of interest. An 
important advantage of using Artificial Neural Network (ANN) over regression in process 
modeling is its capacity in dealing with multiple outputs or responses while each regression 
model is able to deal with only one response. Another major advantage for developing NN 
process models is that they do not depend on simplified assumptions such as linear 
behavior or production heuristics. Neural networks possess a number of attractive 
properties for modeling a complex mechanical behavior or a system: universal function 
approximation capability, resistance to noisy or missing data, accommodation of multiple 
nonlinear variables for unknown interactions, and good generalization capability.  
Since the early 1990s, ANN has been increasingly employed as an effective tool in 
geotechnical engineering, including: constitutive modelling (Agrawal et al., 1994; Gribb & 
Gribb, 1994; Penumadu et al., 1994; Ellis et al., 1995; Millar & Calderbank, 1995; Ghaboussi & 
Sidarta 1998; Zhu et al., 1998; Sidarta & Ghaboussi, 1998; Najjar & Ali, 1999; Penumadu & 
Zhao, 1999); geo-material properities (Goh, 1995; Ellis et al., 1995; Najjar et al., 1996; Najjar 
and Basheer, 1996; Romero & Pamukcu, 1996; Ozer et al., 2008; Park et al., 2009; Park & Kim, 
2010; Park & Lee, 2010; Bearing capacity of pile (Chan et al., 1995; Goh, 1996; Bea et al., 
1999; Goh et al., 2005; Teh et al., 1997; Lee & Lee, 1996; Abu-Kiefa, 1998; Nawari et al., 1999; 
Das & Basudhar, 2006, Park & Cho, 2010); slope stability (Ni et al., 1995; Neaupane and 
Achet, 2004; Ferentinou & Sakellariou, 2007; Zhao, 2007; Cho, 2009); liquefaction (Agrawal 
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et al., 1997; Ali & Najjar, 1998; Najjar & Ali, 1998; Ural & Saka, 1998; Juang and Chen, 1999; 
Goh, 2002; Javadi et al., 2006; Kim & Kim, 2006); shallow foundations (Sivakugan et al., 1998; 
Provenzano et al., 2004; Shahin et al., 2005); and tunnels and underground openings (Lee & 
Sterling, 1992; Moon et al., 1995; Shi, 2000; Yoo & Kim, 2007). For example, the behavior of pile 
foundations installed in soils is considerably complicated, uncertain, and not yet entirely 
understood (Baik, 2002). This fact has encouraged many researchers to apply the ANN 
technique to the prediction of the behavior of foundations such as, modeling the axial and 
lateral load capacities of deep foundations. Constitutive modeling of soil behavior plays an 
important role in dealing with issues related to soil mechanics and foundation engineering. 
Over the past three decades many researchers devoted enormous effort collectively to model 
soil behavior. However, proposed constitutive models based on elasticity and plasticity 
theories have limited capability to simulate properly the behavior of soils. This is attributed to 
reasons associated with the formulation complexity, idealization of soil behavior, and 
excessive empirical parameters. In this regard, many ANNs have been proposed as a reliable 
and practical alternative to model the constitutive behavior of soils. Geotechnical properties 
soils are controlled by factors such as mineralogy; stress history; void ratio; pore water 
pressure, and the interactions of these factors are difficult to establish solely by traditional 
statistical methods due to their interdependence. Based on the application of ANNs, 
methodologies have been developed for estimating several soil properties, including the 
compression index, shear strength, permeability, soil compaction, lateral earth pressure, and 
others. 
The performance and computational complexity of NNs are mainly based on network 
architecture, which generally depends on the determination of input, output and hidden 
layers and number of neurons in each layer. The number of layers and neurons in each layer 
affect the complexity of NN architecture. NN architectures are discussed at length in several 
research works (Hecht-Nelson,1987; Bounds et al., 1988; Lawrence & Fredrickson, 1988; 
Cybenko, 1989; Marchandani & Cao, 1989; Fahlman & Lebiere, 1990; Lawrence, 1994; Goh, 
1995; Swingler, 1996; Öztütk, 2003). Nevertheless, there is no clear framework to select the 
optimum NN architecture and its parameters. Structural design of NN involves the 
determination of layers and neurons in each layer and selection of training algorithm. In 
general, parameters of NN architecture are determined by trial and error approach such that 
the number of neurons in input layer, number of hidden layers, number of neurons in 
hidden layers and number of neurons in output layer are found using several repeated runs 
of the system.  
The main objective of this chapter is to provide a brief overview of the operation of ANN 
models, the area, the areas of geotechnical engineering to which ANNs have been applied, 
and highlights and discusses four important issues which require further attention in the 
future. The chapter is divided into seven major parts. The first part reviews the background 
for application of ANN methodology to getechnical engineering. In the second part, an 
introduction to basic neural network architectures is followed. In the third part, 
methodologies for designing appropriate network architectures and practical guidelines on 
finding optimum structure of neural network are shortly discussed. The forth part is the 
application section, which summarizes the completed applicable work in geotechnical 
engineering problems and mathematical calculation of an ANN model is illustrated in the 
fifth part. In the sixth part of this chapter, in order to investigate further research directions 
of ANNs in geotechnical engineering, author’s latest issues of researches related to ANNs 
are reviewed and then the conclusion is followed in the seventh part. 
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2. Oververw of the Artificial Neural Network 
2.1 The concept of artificial neuron 
Much is still unknown about how the brain trains itself to process information, so theories 
abound. In the human brain, a typical neuron collects signals from others through a host of 
fine structures called dendrites (See Fig. 1). The neuron sends out spikes of electrical activity 
through a long, thin stand known as an axon, which splits into thousands of branches. At the 
end of each branch, a structure called a synapse converts the activity from the axon into 
electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit 
or excite activity in the connected neurones. When a neuron receives excitatory input that is 
sufficiently large compared with its inhibitory input, it sends a spike of electrical activity 
down its axon. Learning occurs by changing the effectiveness of the synapses so that the 
influence of one neuron on another changes. An artificial neuron is a device with many 
inputs and one output. The neuron has two modes of operation; the training mode and the 
using mode. In the training mode, the neuron can be trained to fire (or not), for particular 
input patterns. In the using mode, when a taught input pattern is detected at the input, its 
associated output becomes the current output. If the input pattern does not belong in the 
taught list of input patterns, the firing rule is used to determine whether to fire or not. 
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2.2 Mathematical modeling of artificial neuron 
A neuron is an information-processing unit that is fundamental to the peration of a neural 
network. As shown in Fig. 2, we may identify three basic elements of the neuron model. A 
set of synapses, each of which is characterized by a weight or strength of its own. Specifically, 
a signal xj at the input of synapse j connected to neuron k is multiplied by the synaptic 
weight wkj. It is important to make a note of the manner in which the subscripts of the 
synaptic weight wkj are written. The first subscript refers to the neuron in question and the 
second subscript refers to the input end of the synapse to which the weight refers. The 
weight wkj is positive if the associated synapse is excitatory; it is negative if the synapse is 
inhibitory. An adder for summing the input signals, weighted by the respective synapses of 
the neuron. An activation function for limiting the amplitude of the output of a neuron. The 
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et al., 1997; Ali & Najjar, 1998; Najjar & Ali, 1998; Ural & Saka, 1998; Juang and Chen, 1999; 
Goh, 2002; Javadi et al., 2006; Kim & Kim, 2006); shallow foundations (Sivakugan et al., 1998; 
Provenzano et al., 2004; Shahin et al., 2005); and tunnels and underground openings (Lee & 
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architecture, which generally depends on the determination of input, output and hidden 
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The main objective of this chapter is to provide a brief overview of the operation of ANN 
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of ANNs in geotechnical engineering, author’s latest issues of researches related to ANNs 
are reviewed and then the conclusion is followed in the seventh part. 
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2. Oververw of the Artificial Neural Network 
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electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit 
or excite activity in the connected neurones. When a neuron receives excitatory input that is 
sufficiently large compared with its inhibitory input, it sends a spike of electrical activity 
down its axon. Learning occurs by changing the effectiveness of the synapses so that the 
influence of one neuron on another changes. An artificial neuron is a device with many 
inputs and one output. The neuron has two modes of operation; the training mode and the 
using mode. In the training mode, the neuron can be trained to fire (or not), for particular 
input patterns. In the using mode, when a taught input pattern is detected at the input, its 
associated output becomes the current output. If the input pattern does not belong in the 
taught list of input patterns, the firing rule is used to determine whether to fire or not. 
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a signal xj at the input of synapse j connected to neuron k is multiplied by the synaptic 
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activation function is also referred to in the literature as a squashing function in that it 
squashes (limits) the permissible amplitude range of the output signal to some finite value. 
Typically, the normalized amplitude range of the output of a neuron is written as the closed 
unit interval [0, 1] or alternatively [-1, 1]. The model of a neuron also includes an externally 
applied bias (threshold) wk0 = bk that has the effect of lowering or increasing the net input of 
the activation function. In matrix form, we may describe a neuron k by writing the following 
matrix. 
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Fig. 2. Basic elements of an artificial neuron 

2.3 Activation function 
In this section, three of the most common activation functions are presented. An activation 
function performs a mathematical operation on the output. More sophisticated activation 
functions can also be utilized depending upon the type of problem to be solved by the 
network. As is known, a linear function satisfies the superposition concept. The function is 
shown in Fig. 3(a). The mathematical equation for the above linear function can be written 
as 

 Y = f (u) = α.u  (2) 

where α is the slope of the linear function. If the slope α is 1, then the linear activation 
function is called the identity function. The output (y) of identity function is equal to input 
function (u). Although this function might appear to be a trivial case, nevertheless it is very 
useful in some cases such as the last stage of a multilayer neural network. 
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As shown Fig. 3(b), sigmoidal(S shape) function is the most common nonlinear type of the 
activation used to construct the neural networks. It is mathematically well behaved, 
differentiable and strictly increasing function. A sigmoidal transfer function can be written 
in the following form: 

 1( )
1 xf x

e α−=
+

 , 0 ≤ f (x ) ≤ 1 (3) 

where α is the shape parameter of the sigmoid function. By varying this parameter, different 
shapes of the function can be obtained as illustrated in Fig. 3(b). This function is continuous 
and differentiable.  
Tangent sigmoidal function is described by the following mathematical form: 
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Fig. 3. Activation Function. 

2.4 Multilayered Neural Network 
The source nodes in the input layer of the network supply respective elements of the 
activation pattern (input vector), which constitute the input signals applied to the neurons 
(computation nodes) in the second layer (i.e. the first hidden layer). The output signals of the 
second layer are used as inputs to the third layer, and so on for the rest of the network. 
Typically, the neurons in each layer of the network have as their inputs the output signals of 
the preceding layer only. The set of output signals of the neurons in the output layer of the 
network constitutes the overall response of the network to the activation pattern supplied 
by the source nodes in the input layer. The commonest type of artificial neural network 
consists of three groups, or layers, of units: a layer of “input” units is connected to a layer of 
“hidden” units, which is connected to a layer of “output” units (see Fig. 4). The activity of 
the input units represents the raw information that is fed into the network. The activity of 
each hidden unit is determined by the activities of the input units and the weights on the 
connections between the input and the hidden units. The behaviour of the output units 
depends on the activity of the hidden units and the weights between the hidden and output 
units.  
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2.4 Back-propagation 
Backpropagation algorithm (BP) is the most widely used search technique for training 
neural networks. Information in an ANN is stored in the connection weights which can be 
thought of as the memory of the system. The purpose of BP training is to change iteratively 
the weights between the neurons in a direction that minimizes the error E, defined as the 
squared difference between the desired and the actual outcomes of the output nodes, 
summed over training patterns (training dataset) and the output neurons. The algorithm 
uses a sample-by-sample updating rule for adjusting connection weights in the network. In 
one algorithm iteration, a training sample is presented to the network. The signal is then fed 
in a forward manner through the network until the network output is obtained. The error 
between the actual and desired network outputs is calculated and used to adjust the 
connection weights. Basically, the adjustment procedure, derived from a gradient descent 
method, is used to reduce the error magnitude. The procedure is firstly applied to the 
connection weights in the output layer, followed by the connection weights in the hidden 
layer next to output layer. This adjustment is continued backward through to network until 
connection weights in the first hidden layer are reached. The iteration is completed after all 
connection weights in the network have been adjusted. Rumelhart, Hinton, and Williams 
(1986) popularized the use of BP for learning internal representation in neural networks. 
Despite their popularity, BP has the drawback of converging to an optimal solution slowly 
when the gradient search technique is applied. That is, a BP using the gradient search 
technique has two serious disadvantages: the gradient search technique converges to an 
optimal solution with inconsistent and unpredictable performance for some applications 
and when trapped into some local areas, the gradient search technique performs poorly in 
getting a globally optimal solution. The most major problem during the training process of 
the neural network is the possible overfitting of training data. That is, during a certain 
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training period, the network no longer improves its ability to solve the problem. In this case, 
the training stopped in a local minimum, leading to ineffective results and indicating a poor 
fit of the model. In order to attempt to prevent these disadvantages, researchers have 
modified the basic algorithm to try to escape local optima and find the global solution. 
Numerous modifications have been implemented in order to overcome this problem.  
Over-fitting problem or poor generalization capability happens when a neural network over 
learns during the training period. As a result, such a too well-trained model may not 
perform well on unseen data set due to its lack of generalization capability. Several 
approaches have been suggested in literature to overcome this problem. The first method is 
an early learning stopping mechanism in which the training process is concluded as soon as 
the overtraining signal appears. The signal can be observed when the prediction accuracy of 
the trained network applied to a test set, at that stage of training period, gets worsened. The 
second approach is the Bayesian Regularization. This approach minimizes the over-fitting 
problem by taking into account the goodness-of-fit as well as the network architecture. Early 
stopping approach requires the data set to be divided into three subsets: training, test, and 
verification sets. The training and the verification sets are the norm in all model training 
processes. The test set is used to test the trend of the prediction accuracy of the model 
trained at some stages of the training process. At much later stages of training process, the 
prediction accuracy of the model may start worsening for the test set. This is the stage when 
the model should cease to be trained to overcome the over-fitting problem. The Bayesian 
Regularization approach involves modifying the usually used objective function, such as the 
mean sum of squared network errors (MSE) The modification aims to improve the model’s 
generalization capability. The objective function in Eq. (5) is expanded with the addition of a 
term, w E which is the sum of squares of the network weights: 

 F=βEd+αEw (5) 

where the α and β are parameters which are to be optimized in Bayesian framework of 
MacKay (1992a; 1992b). It is assumed that the weights and biases of the network are random 
variables following Gaussian distributions and the parameters are related to the unknown 
variances associated with these distributions.  

3. Designing the structure of Artificial Neural Network 
Structural design of NN involves the determination of layers and neurons in each layer and 
selection of training algorithm. The selection of only effective input parameters to the NN is 
one of the most difficult processes since: (1) there may be interdependencies and 
redundancies between parameters, (2) sometimes it is better to omit some parameters to 
reduce the total number of input parameters, and therefore computational complexity of the 
problem and topology of the network, and (3) NN is usually applied to problems where 
there is no strong knowledge about the relations between input and output, and therefore it 
is not clear which of the input parameters are most useful. Moreover, other design 
parameters of NN architecture, such as the number of neurons in input layer, number of 
hidden layers, number of neurons in hidden layers and number of neurons in output layer, 
are found using several repeated runs of the system based on trial and error method. There 
is no clear framework to select the optimum NN architecture and its parameters (Chung and 
Kusiak, 1994; Kusiak and Lee, 1996). Nevertheless, some research work has contributed to 
determine the number of hidden layers, the number of neurons in each layer, selecting the 
learning rate parameter, and others. 
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2.4 Back-propagation 
Backpropagation algorithm (BP) is the most widely used search technique for training 
neural networks. Information in an ANN is stored in the connection weights which can be 
thought of as the memory of the system. The purpose of BP training is to change iteratively 
the weights between the neurons in a direction that minimizes the error E, defined as the 
squared difference between the desired and the actual outcomes of the output nodes, 
summed over training patterns (training dataset) and the output neurons. The algorithm 
uses a sample-by-sample updating rule for adjusting connection weights in the network. In 
one algorithm iteration, a training sample is presented to the network. The signal is then fed 
in a forward manner through the network until the network output is obtained. The error 
between the actual and desired network outputs is calculated and used to adjust the 
connection weights. Basically, the adjustment procedure, derived from a gradient descent 
method, is used to reduce the error magnitude. The procedure is firstly applied to the 
connection weights in the output layer, followed by the connection weights in the hidden 
layer next to output layer. This adjustment is continued backward through to network until 
connection weights in the first hidden layer are reached. The iteration is completed after all 
connection weights in the network have been adjusted. Rumelhart, Hinton, and Williams 
(1986) popularized the use of BP for learning internal representation in neural networks. 
Despite their popularity, BP has the drawback of converging to an optimal solution slowly 
when the gradient search technique is applied. That is, a BP using the gradient search 
technique has two serious disadvantages: the gradient search technique converges to an 
optimal solution with inconsistent and unpredictable performance for some applications 
and when trapped into some local areas, the gradient search technique performs poorly in 
getting a globally optimal solution. The most major problem during the training process of 
the neural network is the possible overfitting of training data. That is, during a certain 
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training period, the network no longer improves its ability to solve the problem. In this case, 
the training stopped in a local minimum, leading to ineffective results and indicating a poor 
fit of the model. In order to attempt to prevent these disadvantages, researchers have 
modified the basic algorithm to try to escape local optima and find the global solution. 
Numerous modifications have been implemented in order to overcome this problem.  
Over-fitting problem or poor generalization capability happens when a neural network over 
learns during the training period. As a result, such a too well-trained model may not 
perform well on unseen data set due to its lack of generalization capability. Several 
approaches have been suggested in literature to overcome this problem. The first method is 
an early learning stopping mechanism in which the training process is concluded as soon as 
the overtraining signal appears. The signal can be observed when the prediction accuracy of 
the trained network applied to a test set, at that stage of training period, gets worsened. The 
second approach is the Bayesian Regularization. This approach minimizes the over-fitting 
problem by taking into account the goodness-of-fit as well as the network architecture. Early 
stopping approach requires the data set to be divided into three subsets: training, test, and 
verification sets. The training and the verification sets are the norm in all model training 
processes. The test set is used to test the trend of the prediction accuracy of the model 
trained at some stages of the training process. At much later stages of training process, the 
prediction accuracy of the model may start worsening for the test set. This is the stage when 
the model should cease to be trained to overcome the over-fitting problem. The Bayesian 
Regularization approach involves modifying the usually used objective function, such as the 
mean sum of squared network errors (MSE) The modification aims to improve the model’s 
generalization capability. The objective function in Eq. (5) is expanded with the addition of a 
term, w E which is the sum of squares of the network weights: 

 F=βEd+αEw (5) 

where the α and β are parameters which are to be optimized in Bayesian framework of 
MacKay (1992a; 1992b). It is assumed that the weights and biases of the network are random 
variables following Gaussian distributions and the parameters are related to the unknown 
variances associated with these distributions.  

3. Designing the structure of Artificial Neural Network 
Structural design of NN involves the determination of layers and neurons in each layer and 
selection of training algorithm. The selection of only effective input parameters to the NN is 
one of the most difficult processes since: (1) there may be interdependencies and 
redundancies between parameters, (2) sometimes it is better to omit some parameters to 
reduce the total number of input parameters, and therefore computational complexity of the 
problem and topology of the network, and (3) NN is usually applied to problems where 
there is no strong knowledge about the relations between input and output, and therefore it 
is not clear which of the input parameters are most useful. Moreover, other design 
parameters of NN architecture, such as the number of neurons in input layer, number of 
hidden layers, number of neurons in hidden layers and number of neurons in output layer, 
are found using several repeated runs of the system based on trial and error method. There 
is no clear framework to select the optimum NN architecture and its parameters (Chung and 
Kusiak, 1994; Kusiak and Lee, 1996). Nevertheless, some research work has contributed to 
determine the number of hidden layers, the number of neurons in each layer, selecting the 
learning rate parameter, and others. 
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3.1 Determining the number of hidden layers 
Determining the number of hidden layers and the number of neurons in each hidden layer 
is a considerable task. The number of hidden layers is usually determined first and is a 
critical step. The number of hidden layers required depends on the complexity of the 
relationship between the input parameters and the output value. Most problems only 
require one hidden layer, and if relationship between the inputs and output is linear the 
network does not need a additional hidden layer at all. It is unlikely that any practical 
problem will require more than two hidden layers(THL). Cybenko (1989) and Bounds et al. 
(1988) suggested that one hidden layer (OHL) is enough to classify input patterns into 
different group.  
Chester (1990) argued that a THL should perform better than an OHL network. More than 
one hidden layer can be useful in certain architectures, such as cascade correlation (Fahlman 
& Lebiere, 1990) and others. A simple explanation for why larger networks can sometimes 
provide improved training and lower generalization error is that the extra degrees of 
freedom can aid convergence; that is, the addition of extra parameters can decrease the 
chance of becoming stuck in local minima or on “plateaus”. The most commonly used 
training methods for back-propagation networks are based on gradient descent; that is, error 
is reduced until a minimum is reached, whether it be a global or local minimum. However, 
there isn’t clear theory to tell how many hidden units are needed to approximate any given 
function. If only one input availavle, one sees no advantages in using more than one hidden 
layer. But things get much more complicated when two or more inputs are given. The rule 
of thumb in deciding the number of hidden layers is normally to start with OHL (Lawrence, 
1994). If OHL does not train well, then try to increase the number of neurons. Adding more 
hidden layers should be the last option.   

3.2 Determining the number of hidden neurons 
The choice of hidden neuron size is problem-dependent. For example, any network that 
requires data compression must have a hidden layer smaller than the input layer (Swingler, 
1996). A conservative approach is to select a number between the number of input neurons 
and the number of output neurons. It can be seen that the general wisdom concerning 
selection of initial number of hidden neurons is somewhat conflicting. A good rule 
  

Formula Comments 
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Hecht-Nelson (1987) used Kolmogorov’s theorem which any 
function of I variavles may be represented by the superposition 
of set of 2i+1 univariate functions-to derive the upper bound for 
the required number of hidden neurons. 
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Lawrence and Fredrickson (1988) suggested that a best estimation 
for the number of hidden neurons is to half the sum of inputs and 
outputs. Moreover, they proposed the range of number of hidden 
neurons. 

2logh i P=  Marchandani and Cao (1989) proposed a equation for best  
number of hidden neurons 

*. h = the number of hidden neurons, i = the number of input neurons, o = the number of output 
neurons. 

Table 1. Rule of thumbs to select the number of neurons in hidden layer 
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of thumb is to start with the number of hidden neurons equal to half of the number of input 
neurons and then either add neurons if the training error remains above the training error 
tolerance, or reduce neurons if the training error quickly drops to the training error tolerance. 

3.3 Determining the number of training data 
In order to train the neural network well, the number of data set must be carefully decided. 
An over fitted model could approximate the training data well but generalize poorly to the 
validation data set. On the other hand, an underfitted model would generalize to the 
validation data set well but approximate the training data poorly. To avoid over fitting and 
underfitting is to determine the best number of training observations. No general guidelines 
are available to achieve this. However, Lawrence and Fredrickson (1988) suggested the 
following rule of thumb. 

 2 (i + h +o) ≤ N ≤ 10((i + h +o) (6) 

4. ANN applications in geotechnical engineering 
4.1 Constitutive Modelling of geo-materials 
During the past decades, increasing interest has been shown in the development of a 
satisfactory formulation for the stress–strain relationships of geo-materials that incorporates 
a concise statement of nonlinearity, inelasticity and stress dependency based on a set of 
assumptions and proposed failure criteria. In spite of the considerable complexities of these 
constitutive models, and due to an inadequate understanding of the mechanisms and all 
factors involved, it is not possible to capture the complete material response along all 
complex stress paths and densities. Furthermore, the degree of complexity of these 
constitutive models (in many cases) inhibits their incorporation into general purpose 
numerical codes, thus restricting their usefulness in engineering practice (Shin and Pande, 
2000). On the other hands, for the convenience of practical in engineering, the model seems 
to be established simple enough. In the process of establishing the model, the conventional 
method oversimplifies the soil mechanic behavior. When simplifying the model, parameters 
have been artificially lessened and only a few of them could be applied in setting up the soil 
constitutive model while the remaining large number of test data is neglected. Eventually, 
the model will be poor. 
Unlike conventional constitutive models, it needs no prior knowledge, or any constants 
and/or assumptions about the deformation characteristics of the geo-materials. Other 
powerful attributes of ANN models are their flexibility and adaptivity, which play an 
important role in material modeling (Ghaboussi & Sidarta 1998). When a new set of 
experimental results cannot be reproduced by conventional models, a new constitutive model 
or a set of new constitutive equations, needs to be developed. However, trained ANN models 
can be further trained with the new data set to gain the required additional information 
needed to reproduce the new experimental results. These features ascertain the ANN model to 
be an objective model that can truly represent natural neural connections among variables, 
rather than a subjective model, which assumes variables obeying a set of predefined relations 
(Zhu et al., 1998). So far, ANNs have been applied to the constitutive modeling of rocks, clays, 
sands, gravels and other geo-materials (Zhu et al., 1998; Millar & Calderbank, 1995; Penumadu 
et al., 1994; Ellis et al., 1995; Penumadu & Zhao, 1999; Najjar & Ali, 1999) 
Ghaboussi and co-workers originally proposed an NN-based framework for constitutive 
modeling in geomechanics (Ghaboussi & Sidarta, 1998; Sidarta & Ghaboussi, 1998). They 
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3.1 Determining the number of hidden layers 
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1994). If OHL does not train well, then try to increase the number of neurons. Adding more 
hidden layers should be the last option.   
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1996). A conservative approach is to select a number between the number of input neurons 
and the number of output neurons. It can be seen that the general wisdom concerning 
selection of initial number of hidden neurons is somewhat conflicting. A good rule 
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of thumb is to start with the number of hidden neurons equal to half of the number of input 
neurons and then either add neurons if the training error remains above the training error 
tolerance, or reduce neurons if the training error quickly drops to the training error tolerance. 

3.3 Determining the number of training data 
In order to train the neural network well, the number of data set must be carefully decided. 
An over fitted model could approximate the training data well but generalize poorly to the 
validation data set. On the other hand, an underfitted model would generalize to the 
validation data set well but approximate the training data poorly. To avoid over fitting and 
underfitting is to determine the best number of training observations. No general guidelines 
are available to achieve this. However, Lawrence and Fredrickson (1988) suggested the 
following rule of thumb. 

 2 (i + h +o) ≤ N ≤ 10((i + h +o) (6) 

4. ANN applications in geotechnical engineering 
4.1 Constitutive Modelling of geo-materials 
During the past decades, increasing interest has been shown in the development of a 
satisfactory formulation for the stress–strain relationships of geo-materials that incorporates 
a concise statement of nonlinearity, inelasticity and stress dependency based on a set of 
assumptions and proposed failure criteria. In spite of the considerable complexities of these 
constitutive models, and due to an inadequate understanding of the mechanisms and all 
factors involved, it is not possible to capture the complete material response along all 
complex stress paths and densities. Furthermore, the degree of complexity of these 
constitutive models (in many cases) inhibits their incorporation into general purpose 
numerical codes, thus restricting their usefulness in engineering practice (Shin and Pande, 
2000). On the other hands, for the convenience of practical in engineering, the model seems 
to be established simple enough. In the process of establishing the model, the conventional 
method oversimplifies the soil mechanic behavior. When simplifying the model, parameters 
have been artificially lessened and only a few of them could be applied in setting up the soil 
constitutive model while the remaining large number of test data is neglected. Eventually, 
the model will be poor. 
Unlike conventional constitutive models, it needs no prior knowledge, or any constants 
and/or assumptions about the deformation characteristics of the geo-materials. Other 
powerful attributes of ANN models are their flexibility and adaptivity, which play an 
important role in material modeling (Ghaboussi & Sidarta 1998). When a new set of 
experimental results cannot be reproduced by conventional models, a new constitutive model 
or a set of new constitutive equations, needs to be developed. However, trained ANN models 
can be further trained with the new data set to gain the required additional information 
needed to reproduce the new experimental results. These features ascertain the ANN model to 
be an objective model that can truly represent natural neural connections among variables, 
rather than a subjective model, which assumes variables obeying a set of predefined relations 
(Zhu et al., 1998). So far, ANNs have been applied to the constitutive modeling of rocks, clays, 
sands, gravels and other geo-materials (Zhu et al., 1998; Millar & Calderbank, 1995; Penumadu 
et al., 1994; Ellis et al., 1995; Penumadu & Zhao, 1999; Najjar & Ali, 1999) 
Ghaboussi and co-workers originally proposed an NN-based framework for constitutive 
modeling in geomechanics (Ghaboussi & Sidarta, 1998; Sidarta & Ghaboussi, 1998). They 
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introduced a concept of nested adaptive NNs, which considers the nested structure of the 
material test data, e.g. dimensionality, stress path dependency or drainage conditions. By 
means of the finite element (FE) method and the autoprogressive training algorithm 
proposed in (Ghaboussi et al., 1998), they trained NNs with experimental nonuniform 
triaxial test data, in order to capture and reproduce the non-linear response of the soil 
without conventional concepts of the theory of plasticity. In addition, further research 
proved that the NN-constitutive models can be successfully embedded within the FE codes 
to compute the consistent tangent stiffness matrix (Shin and Pande, 2000; Hashash et al., 
2004). Hashash et al. (2004) demonstrated that a tangent stiffness matrix can be derived from 
the NN-based material models, using the explicit formulation represented by network 
parameters. However, the main drawback of the NN-constitutive models is that it is valid 
only for a specific material for which a new NN has to be adopted each time. Moreover, a 
material model loses its ‘flexibility’, which is inherent in the case of conventional models 
and which is controlled by parameters explicitly describing concepts of plasticity, such as 
yield surface, flow rule and hardening law. 

4.2 Properties of geo-materials 
In geotechnical engineering, empirical relationships are often used to estimate certain 
engineering properties of soils. Using data from extensive laboratory or field testing, these 
correlations are usually derived with the aid of statistical methods. The relationships 
between soil parameters are clearly complex, but the degree of interaction enables a degree 
of statistical correlation to be established, suggesting the promise of a potential for 
estimation. Developing engineering correlations between various soil parameters is an issue 
discussed by Goh (1995). Goh used neural networks to model the correlation between the 
relative density and the cone resistance from cone penetration test (CPT), for both normally 
consolidated and over-consolidated sands. Laboratory data, based on calibration chamber 
tests, were used to successfully train and test the neural network model. 
The neural network model used soil parameters as inputs and the compression index as a 
single output(Ozer et al., 2008; Park & Lee, 2010). The ANN models was found to give higher 
coefficients of correlation than empirical equations for the training and testing data, 
respectively, which indicated that the neural network was successful in modelling the complex 
relationship between the compression index and the other soil parameters. Many other studies 
have successfully used ANNs for modelling soil properties. Ellis et al. (1995) developed an 
ANN model for sands based on grain size distribution and stress history. Najjar et al. (1996) 
showed that neural network-based models can be used to accurately assess soil swelling, and 
that neural network models can provide significant improvements in prediction accuracy over 
statistical models. Romero and Pamukcu (1996) showed that neural networks are able to 
effectively characterise and estimate the shear modulus of granular materials. Agrawal et al. 
(1994); Gribb and Gribb (1994) and Najjar and Basheer (1996) all used neural network 
approaches for estimating the permeability of clay liners. Park et al. (2010) used ANN models 
to develop an empirical model for the resilient modulus of subgrade soils and subbase 
materials from basic material properties and in-situ conditions related to stresses. 
Park and Kim (2010a) proposed an ANN model to predict the unconfined compressive 
strength of reinforced lightweight soil (RLS). RLS consisting of dredged soil, cement, air-
foam, and waste fishing net is considered to be an eco-friendly backfilling material in 
construction because it provides a means to recycle both dredged soil and waste fishing net. 
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Several series of laboratory tests were performed to investigate the unconfined compressive 
strength of RLS in various mixing ratios. It may be difficult to find an optimum mixing ratio 
of RLS considering the design criteria and the construction’s situation using the limited test 
results because the unconfined compressive strength is complicatedly influenced by various 
mixing ratios of admixtures. As a result, in order to expedite the field application of 
reinforced lightweight soil, an appropriate prediction method is needed. However, since the 
strength of RLS is strongly influenced by the mixing ratio of each admixture (i.e., cement, 
water, air foam, and waste fishing net), it is difficult to empirically formulate a mathematical 
relationship between the strength and the admixture content of the composite materials. An 
ANN model that predict the strength of RLS at a given mixing ratio was developed using 
experimental test results performed on various mixing admixture contents. 
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Fig. 5. Schematic diagram of (a) unreinforced and (b) reinforced light-weight soil (Park & 
Kim, 2010) 
As shown in Fig.6(a) the proposed NN model has four nodes in the input layer, four nodes 
in the hidden layer, and one node in the output layer Fig. 6(a). Fig. 6(b) shows the 
relationship between the output targets (measured values) and predicted values obtained 
through the training and testing process. the model shows very good correlation to the  
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Fig. 6. Architecture for the developed artificial neural network (Park & Kim, 2010) 
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introduced a concept of nested adaptive NNs, which considers the nested structure of the 
material test data, e.g. dimensionality, stress path dependency or drainage conditions. By 
means of the finite element (FE) method and the autoprogressive training algorithm 
proposed in (Ghaboussi et al., 1998), they trained NNs with experimental nonuniform 
triaxial test data, in order to capture and reproduce the non-linear response of the soil 
without conventional concepts of the theory of plasticity. In addition, further research 
proved that the NN-constitutive models can be successfully embedded within the FE codes 
to compute the consistent tangent stiffness matrix (Shin and Pande, 2000; Hashash et al., 
2004). Hashash et al. (2004) demonstrated that a tangent stiffness matrix can be derived from 
the NN-based material models, using the explicit formulation represented by network 
parameters. However, the main drawback of the NN-constitutive models is that it is valid 
only for a specific material for which a new NN has to be adopted each time. Moreover, a 
material model loses its ‘flexibility’, which is inherent in the case of conventional models 
and which is controlled by parameters explicitly describing concepts of plasticity, such as 
yield surface, flow rule and hardening law. 

4.2 Properties of geo-materials 
In geotechnical engineering, empirical relationships are often used to estimate certain 
engineering properties of soils. Using data from extensive laboratory or field testing, these 
correlations are usually derived with the aid of statistical methods. The relationships 
between soil parameters are clearly complex, but the degree of interaction enables a degree 
of statistical correlation to be established, suggesting the promise of a potential for 
estimation. Developing engineering correlations between various soil parameters is an issue 
discussed by Goh (1995). Goh used neural networks to model the correlation between the 
relative density and the cone resistance from cone penetration test (CPT), for both normally 
consolidated and over-consolidated sands. Laboratory data, based on calibration chamber 
tests, were used to successfully train and test the neural network model. 
The neural network model used soil parameters as inputs and the compression index as a 
single output(Ozer et al., 2008; Park & Lee, 2010). The ANN models was found to give higher 
coefficients of correlation than empirical equations for the training and testing data, 
respectively, which indicated that the neural network was successful in modelling the complex 
relationship between the compression index and the other soil parameters. Many other studies 
have successfully used ANNs for modelling soil properties. Ellis et al. (1995) developed an 
ANN model for sands based on grain size distribution and stress history. Najjar et al. (1996) 
showed that neural network-based models can be used to accurately assess soil swelling, and 
that neural network models can provide significant improvements in prediction accuracy over 
statistical models. Romero and Pamukcu (1996) showed that neural networks are able to 
effectively characterise and estimate the shear modulus of granular materials. Agrawal et al. 
(1994); Gribb and Gribb (1994) and Najjar and Basheer (1996) all used neural network 
approaches for estimating the permeability of clay liners. Park et al. (2010) used ANN models 
to develop an empirical model for the resilient modulus of subgrade soils and subbase 
materials from basic material properties and in-situ conditions related to stresses. 
Park and Kim (2010a) proposed an ANN model to predict the unconfined compressive 
strength of reinforced lightweight soil (RLS). RLS consisting of dredged soil, cement, air-
foam, and waste fishing net is considered to be an eco-friendly backfilling material in 
construction because it provides a means to recycle both dredged soil and waste fishing net. 

Study for Application of Artificial Neural Networks in Geotechnical Problems 

 

313 

Several series of laboratory tests were performed to investigate the unconfined compressive 
strength of RLS in various mixing ratios. It may be difficult to find an optimum mixing ratio 
of RLS considering the design criteria and the construction’s situation using the limited test 
results because the unconfined compressive strength is complicatedly influenced by various 
mixing ratios of admixtures. As a result, in order to expedite the field application of 
reinforced lightweight soil, an appropriate prediction method is needed. However, since the 
strength of RLS is strongly influenced by the mixing ratio of each admixture (i.e., cement, 
water, air foam, and waste fishing net), it is difficult to empirically formulate a mathematical 
relationship between the strength and the admixture content of the composite materials. An 
ANN model that predict the strength of RLS at a given mixing ratio was developed using 
experimental test results performed on various mixing admixture contents. 
 

Air-foam

Dredged soil

Cement

Waste 
fishing net

 
Fig. 5. Schematic diagram of (a) unreinforced and (b) reinforced light-weight soil (Park & 
Kim, 2010) 
As shown in Fig.6(a) the proposed NN model has four nodes in the input layer, four nodes 
in the hidden layer, and one node in the output layer Fig. 6(a). Fig. 6(b) shows the 
relationship between the output targets (measured values) and predicted values obtained 
through the training and testing process. the model shows very good correlation to the  
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training and testing data. As shown in Fig. 7, the developed ANN model is able to obtain 
the complex behaviors between the compressive strength of RLS and the mixing ratios of 
admixitures. It has been proven that NN is well suited to modeling the complex behavior of 
most geo-materials which, by their very nature, exhibit extreme variability.  
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Fig. 7. The unconfined compressive strength with variation of input parameters (Park & 
Kim, 2010)  

4.3 Pile capacity 
Design of axial loaded pile can be done be solving equations of static equilibrium whereas 
design of lateral loaded piles requires solution of nonlinear differential equations (Poulos & 
Davis, 1980). Other semi-empirical methods used for lateral load capacity of piles are due to 
Hansen (1961), Broms (1964) and Meyerhof (1976). Although numerous investigations have 
been performed over the years to predict the behavior and capacity of piles, the mechanisms 
are not yet entirely understood. Predicting pile capacity is a difficult task because there are a 
large number of parameters affecting the capacity which have complex relationships with 
each other. It is extremely difficult to develop appropriate relationships between various 
essential parameters, including the soil condition, pile type, driving condition, time effect, 
and others. Baik (2002) illustrated that these factors include the soil condition (type of soil, 
density, shear strength, etc.), information related to the piles’ shape (diameter, penetration 
depth, whether the tip of pile is open-ended or closed-ended, etc.), and other information 
(driving method, driving energy, set-up effect, etc.). Although many methods predicting 
pile resistance have been presented, they did not appropriately consider the various 
parameters that affect pile resistance. The main criticism of these methods is that they 
oversimplify the complicated mechanism of pile resistance, and the soil characteristics, type 
of pile, and information on driving conditions are not properly taken into account.  
Hence, ANN models could be an alternate approach for the above case. Goh (1995) used 
back propagation neural network (BPNN) to predict the skin friction of pile in clay. Goh 
(1995; 1996) observed that ultimate load capacity of driven timber, pre-cast concrete and 
steel piles in cohesionless soils using ANN was found to outperform the methods like 
Engineering News formula, the Hiley formula and the Janbu formula. Chan et al. (1995) and 
Teh et al. (1997) found that the static pile capacity predicted by using neural network have 
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excellent agreement with the same obtained by using the commercially available computer 
code CAPWAP (GRL, 1972). Lee and Lee (1996) used neural networks to predict the 
ultimate bearing capacity of piles based on model and in situ pile load test results. Abu-
Kiefa (1998) used a generalized regression neural network (GRNN), which is a type of 
probabilistic neural network to predict the pile load capacity considering separately the tip, 
the shaft and total load capacity of piles driven in cohesionless soils. Nawari et al. (1999) 
have used neural networks for prediction of axial load capacity of steel H-piles, steel piles 
and pre-stressed and reinforced concrete piles using both BPNN and GRNN. They also 
predicted the top settlement of drill shaft due to lateral load based on in situ testing.  
Park and Cho (2010) applied an artificial neural network (ANN) to predict the resistance of 
driven piles in dynamic load tests. They collected 165 data sets for driven piles at various 
construction sites in Korea. Predictions on the tip, shaft, and total pile resistance were made 
for piles with available corresponding measurements of such values. The results indicate 
that the ANN model serves as a reliable and simple predictive tool to appropriately consider 
various essential parameters for predicting the resistance of driven piles. The proposed 
neural network model has seven nodes in the input layer, eight nodes in the hidden layer, 
and three nodes in the output layer (Fig. 8). In order to find an appropriate combination of 
transfer functions providing good correlation in training and testing stage, various 
combinations using log-sigmoid, tan-sigmoid and linear was applied to hidden layer and 
output layer. The combination of transfer functions applied to the hidden layer and output 
layer neurons are tan-sigmoid ( 22 /(1 ) 1ne−+ − ) and linear, respectively. 
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training and testing data. As shown in Fig. 7, the developed ANN model is able to obtain 
the complex behaviors between the compressive strength of RLS and the mixing ratios of 
admixitures. It has been proven that NN is well suited to modeling the complex behavior of 
most geo-materials which, by their very nature, exhibit extreme variability.  
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Fig. 7. The unconfined compressive strength with variation of input parameters (Park & 
Kim, 2010)  

4.3 Pile capacity 
Design of axial loaded pile can be done be solving equations of static equilibrium whereas 
design of lateral loaded piles requires solution of nonlinear differential equations (Poulos & 
Davis, 1980). Other semi-empirical methods used for lateral load capacity of piles are due to 
Hansen (1961), Broms (1964) and Meyerhof (1976). Although numerous investigations have 
been performed over the years to predict the behavior and capacity of piles, the mechanisms 
are not yet entirely understood. Predicting pile capacity is a difficult task because there are a 
large number of parameters affecting the capacity which have complex relationships with 
each other. It is extremely difficult to develop appropriate relationships between various 
essential parameters, including the soil condition, pile type, driving condition, time effect, 
and others. Baik (2002) illustrated that these factors include the soil condition (type of soil, 
density, shear strength, etc.), information related to the piles’ shape (diameter, penetration 
depth, whether the tip of pile is open-ended or closed-ended, etc.), and other information 
(driving method, driving energy, set-up effect, etc.). Although many methods predicting 
pile resistance have been presented, they did not appropriately consider the various 
parameters that affect pile resistance. The main criticism of these methods is that they 
oversimplify the complicated mechanism of pile resistance, and the soil characteristics, type 
of pile, and information on driving conditions are not properly taken into account.  
Hence, ANN models could be an alternate approach for the above case. Goh (1995) used 
back propagation neural network (BPNN) to predict the skin friction of pile in clay. Goh 
(1995; 1996) observed that ultimate load capacity of driven timber, pre-cast concrete and 
steel piles in cohesionless soils using ANN was found to outperform the methods like 
Engineering News formula, the Hiley formula and the Janbu formula. Chan et al. (1995) and 
Teh et al. (1997) found that the static pile capacity predicted by using neural network have 
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excellent agreement with the same obtained by using the commercially available computer 
code CAPWAP (GRL, 1972). Lee and Lee (1996) used neural networks to predict the 
ultimate bearing capacity of piles based on model and in situ pile load test results. Abu-
Kiefa (1998) used a generalized regression neural network (GRNN), which is a type of 
probabilistic neural network to predict the pile load capacity considering separately the tip, 
the shaft and total load capacity of piles driven in cohesionless soils. Nawari et al. (1999) 
have used neural networks for prediction of axial load capacity of steel H-piles, steel piles 
and pre-stressed and reinforced concrete piles using both BPNN and GRNN. They also 
predicted the top settlement of drill shaft due to lateral load based on in situ testing.  
Park and Cho (2010) applied an artificial neural network (ANN) to predict the resistance of 
driven piles in dynamic load tests. They collected 165 data sets for driven piles at various 
construction sites in Korea. Predictions on the tip, shaft, and total pile resistance were made 
for piles with available corresponding measurements of such values. The results indicate 
that the ANN model serves as a reliable and simple predictive tool to appropriately consider 
various essential parameters for predicting the resistance of driven piles. The proposed 
neural network model has seven nodes in the input layer, eight nodes in the hidden layer, 
and three nodes in the output layer (Fig. 8). In order to find an appropriate combination of 
transfer functions providing good correlation in training and testing stage, various 
combinations using log-sigmoid, tan-sigmoid and linear was applied to hidden layer and 
output layer. The combination of transfer functions applied to the hidden layer and output 
layer neurons are tan-sigmoid ( 22 /(1 ) 1ne−+ − ) and linear, respectively. 
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Fig. 8. Architecture of the artificial neural network model (Park & Cho, 2010)  
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Fig. 9. Comparison of predicted and measured pile resistance (Park and Cho, 2010) 

4.4 Slope stability 
Slope stability is important because slope failures or landslides can lead to the loss of life 
and property. Slope failures are complex natural phenomena that constitute a serious 
natural hazard in many countries. Limited data and unclearly defined problems often 
complicate the study of landslides (Nieuwenhuis 1991). To prevent or mitigate the landslide 
damage, slope-stability analyses and stabilization require an understanding and evaluation 
of the processes that govern the behavior of the slopes. The factor of safety based on an 
appropriate geotechnical model as an index of stability, is required in order to evaluate 
slope stability. Black-box models, based on the Artificial Neural Networks (ANNs), 
currently attract many researchers studying slope instability, owing to their successful 
performance in modeling non-linear multivariate problems (Ni et al., 1995; Neaupane & 
Achet, 2004; Sakellariou & Ferentinou, 2005; Cho, 2009; Wang et al., 2005). Many variables 
are involved in slope stability evaluation and the calculation of the factor of safety requires 
geometrical data, physical data on the geologic materials and their shear-strength 
parameters (cohesion and angle of internal friction), information on pore-water pressures, 
etc. To evaluate slope instability, the complexity of the slope system requires employment of 
new methods that are efficient in predicting this nonlinear characteristic of natural 
landslides.  

5. Practical mathematical formulation of ANN  
5.1 Mathematical formulation 
Training a neural network is conducted by presenting a series of example patterns for 
associated input and output values. Initially, when a network is created, the connection 
weights and biases are set to random values. The performance of an ANN model is 
measured in terms of an error criterion between the target output and the calculated output. 
The output calculated at the end of each feed-forward computation is compared with the 
target output to estimate the mean-squared error, as shown in Eq. (7) 
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where, Num = number of target data, Ti = ith target output, ti = ith calculated output, 
respectively.  
An algorithm called back-propagation is then used to adjust the weights and biases until the 
mean-squared error is minimized. The network is trained by repeating this process several 
times. Once the ANN is trained, the prediction mode simply consists of propagating the 
data through the network, giving immediate results. In this study, the training data sets 
(inputs and target outputs) were normalized according to Eq. (8). Processing of the training 
data was performed so that the processed data were in the range of -1 to +1. The output of 
the network was trained to produce outputs in the range of -1 to +1, and we converted these 
outputs back into the same units used for the original targets.  

 pn = 2 ( p - min p ) / ( max p – min p ) – 1 , tn = 2 ( t - min t ) / ( max t – min t ) – 1 (8) 

where p = a matrix of input vectors; t = a matrix of target output vectors; pn = a matrix of 
normalized input vectors; tn = a matrix of normalized target output vectors; max p = a 
vector containing the maximum values of the original input; min p = a vector containing the 
minimum value of the original input; max t = a vector containing the maximum value of the 
target output; and min t = a vector containing the minimum value of the target output. The 
normalized data were then used to train the neural network to obtain the final connection 
weights. The data from the output neuron have to be post-processed to convert it back into 
non-normalized units as shown in Eq. (9). 

 t = 0.5⋅(tn + 1)⋅(max t – min t) + min t (9) 

The normalized output is then obtained by propagating the normalized input vector 
through the network as follows:  

 tn = W2 × logsig (W1 × pn + B1) + B2 (10) 

where W1 = a weight matrix representing connection weights between the input layer 
neurons and the hidden layer; B1 = a weight matrix representing connection weights 
between the hidden layer neurons and the output neuron; W2 = a bias vector for the hidden 
layer neurons; and B2 = a bias for the output neuron. The log-sigmoid function log sig is 
defined in Eq. (3).  
The output t is then obtained using Eq. (9) and (10): 

 t = 0.5⋅( W2 × log sig ( W1 × pn + B1 ) + B2 + 1 )⋅(max t – min t ) + min t (11) 

where the transfer function in the hidden layer is the log-sigmoid activation function  
a=1/(1 - e-n), and the transfer function in the output layer is the linear function a=n. 

5.2 Example calculating pile resistance using ANN model(Park and Cho, 2010) 
The proposed neural network model has seven nodes in the input layer, eight nodes in the 
hidden layer, and three nodes in the output layer (Fig. 8). In this study, the soil types near 
the tip and shaft of pile were classified as shown in Table 2. Weight matrix and bias vector 
used in the ANN model are summarized in Table 3. 
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4.4 Slope stability 
Slope stability is important because slope failures or landslides can lead to the loss of life 
and property. Slope failures are complex natural phenomena that constitute a serious 
natural hazard in many countries. Limited data and unclearly defined problems often 
complicate the study of landslides (Nieuwenhuis 1991). To prevent or mitigate the landslide 
damage, slope-stability analyses and stabilization require an understanding and evaluation 
of the processes that govern the behavior of the slopes. The factor of safety based on an 
appropriate geotechnical model as an index of stability, is required in order to evaluate 
slope stability. Black-box models, based on the Artificial Neural Networks (ANNs), 
currently attract many researchers studying slope instability, owing to their successful 
performance in modeling non-linear multivariate problems (Ni et al., 1995; Neaupane & 
Achet, 2004; Sakellariou & Ferentinou, 2005; Cho, 2009; Wang et al., 2005). Many variables 
are involved in slope stability evaluation and the calculation of the factor of safety requires 
geometrical data, physical data on the geologic materials and their shear-strength 
parameters (cohesion and angle of internal friction), information on pore-water pressures, 
etc. To evaluate slope instability, the complexity of the slope system requires employment of 
new methods that are efficient in predicting this nonlinear characteristic of natural 
landslides.  

5. Practical mathematical formulation of ANN  
5.1 Mathematical formulation 
Training a neural network is conducted by presenting a series of example patterns for 
associated input and output values. Initially, when a network is created, the connection 
weights and biases are set to random values. The performance of an ANN model is 
measured in terms of an error criterion between the target output and the calculated output. 
The output calculated at the end of each feed-forward computation is compared with the 
target output to estimate the mean-squared error, as shown in Eq. (7) 
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where, Num = number of target data, Ti = ith target output, ti = ith calculated output, 
respectively.  
An algorithm called back-propagation is then used to adjust the weights and biases until the 
mean-squared error is minimized. The network is trained by repeating this process several 
times. Once the ANN is trained, the prediction mode simply consists of propagating the 
data through the network, giving immediate results. In this study, the training data sets 
(inputs and target outputs) were normalized according to Eq. (8). Processing of the training 
data was performed so that the processed data were in the range of -1 to +1. The output of 
the network was trained to produce outputs in the range of -1 to +1, and we converted these 
outputs back into the same units used for the original targets.  

 pn = 2 ( p - min p ) / ( max p – min p ) – 1 , tn = 2 ( t - min t ) / ( max t – min t ) – 1 (8) 

where p = a matrix of input vectors; t = a matrix of target output vectors; pn = a matrix of 
normalized input vectors; tn = a matrix of normalized target output vectors; max p = a 
vector containing the maximum values of the original input; min p = a vector containing the 
minimum value of the original input; max t = a vector containing the maximum value of the 
target output; and min t = a vector containing the minimum value of the target output. The 
normalized data were then used to train the neural network to obtain the final connection 
weights. The data from the output neuron have to be post-processed to convert it back into 
non-normalized units as shown in Eq. (9). 

 t = 0.5⋅(tn + 1)⋅(max t – min t) + min t (9) 

The normalized output is then obtained by propagating the normalized input vector 
through the network as follows:  

 tn = W2 × logsig (W1 × pn + B1) + B2 (10) 

where W1 = a weight matrix representing connection weights between the input layer 
neurons and the hidden layer; B1 = a weight matrix representing connection weights 
between the hidden layer neurons and the output neuron; W2 = a bias vector for the hidden 
layer neurons; and B2 = a bias for the output neuron. The log-sigmoid function log sig is 
defined in Eq. (3).  
The output t is then obtained using Eq. (9) and (10): 

 t = 0.5⋅( W2 × log sig ( W1 × pn + B1 ) + B2 + 1 )⋅(max t – min t ) + min t (11) 

where the transfer function in the hidden layer is the log-sigmoid activation function  
a=1/(1 - e-n), and the transfer function in the output layer is the linear function a=n. 

5.2 Example calculating pile resistance using ANN model(Park and Cho, 2010) 
The proposed neural network model has seven nodes in the input layer, eight nodes in the 
hidden layer, and three nodes in the output layer (Fig. 8). In this study, the soil types near 
the tip and shaft of pile were classified as shown in Table 2. Weight matrix and bias vector 
used in the ANN model are summarized in Table 3. 
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Classification of soil Value 
Clay 1 

Silt – Clay 2 
Silt 3 

Sand – Clay 4 
Sand – Silt 5 
Fine Sand 6 

Sand 7 
Sand – Gravel 8 

Table 2. Classification according to soil types near the shaft and the tip of pile  
 

0.910 -1.070 -3.323 1.594 0.376 -1.196 -2.252 1.189 
-0.785 0.189 -1.658 -0.106 0.133 1.922 -0.266 0.169 
2.505 0.625 -1.354 -0.422 -4.459 -0.615 1.252 -1.676 
2.871 2.612 -1.622 -0.413 -4.854 0.259 0.277 -0.712 
1.397 2.235 0.354 -0.972 0.194 -1.625 -2.250 -0.889 
0.227 4.302 -2.049 -0.753 0.391 1.649 -1.787 2.777 
-0.153 -0.506 -0.284 -3.868 -0.795 -1.434 1.386 -3.926 

W1 

0.058 -4.905 -0.370 0.882 -0.158 -0.712 -3.116 

B1 

1.408 
1.510 -0.472 -3.371 3.190 0.110 -1.474 -0.079 -1.192 0.598 
-0.417 -3.524 3.203 -2.910 -3.145 3.588 -0.768 1.880 -0.899 W2 
1.230 -2.128 -1.662 1.631 -1.397 0.317 -0.441 -0.231 

B2 
0.543 

*. Matrix W1 (8×7), B1 (8×1), W2 (3×8), and B2 (3×1) is used in Eq. (9). 

Table 3. Weight matrix and bias vector for ANN Model 
The input vector p is selected obtained given as follows:  
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The normalized input vector pn could be calculated using eq. (8) and min p and max p 
vectors are given in Table 4.  
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*. For the type of pile tip(TPT), 0 represents a closed-ended tip and 1 represents an open-ended one. 

Table 4. Maxiimum and minimum values of input parameters and output values 

The normalized output could be calculated by propagating the normalized input vector as 
follows.   
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The normalized output tn could be translated to real Pile resistance values using Eq. (9). 
t=0.5⋅(tn+1)⋅(max t–min t)+min t= 

0.848 1 5401 154 154 543.7
0.5 0.205 1 2742 158 158 1715.1

0.299 1 6126 360 360 2258.8
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Input parameters Output values 
 DIA 

(m) 
DEP
(m) TPT DE 

(kN⋅m)
ETS 

(day) STS STT Shaft 
(kN) 

Tip 
(kN) 

Total 
(kN) 

Max. 0.273 0 9.6 1.3 0 1 1 154 158 360 
Min 0.610 1 42.8 102.0 43 5 8 5401 2742 6126 



Artificial Neural Networks - Application 

 

318 

Classification of soil Value 
Clay 1 

Silt – Clay 2 
Silt 3 

Sand – Clay 4 
Sand – Silt 5 
Fine Sand 6 

Sand 7 
Sand – Gravel 8 
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*. For the type of pile tip(TPT), 0 represents a closed-ended tip and 1 represents an open-ended one. 

Table 4. Maxiimum and minimum values of input parameters and output values 
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Input parameters Output values 
 DIA 

(m) 
DEP
(m) TPT DE 

(kN⋅m)
ETS 

(day) STS STT Shaft 
(kN) 

Tip 
(kN) 

Total 
(kN) 

Max. 0.273 0 9.6 1.3 0 1 1 154 158 360 
Min 0.610 1 42.8 102.0 43 5 8 5401 2742 6126 
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Measured values for shaft, tip and total resistance of pile are 529.7, 1785.4 and 2315.2 kN and 
predicted values using ANN model are 543.7, 1715.1 and 2258.8 kN, respectively 

6. Advances in ANN technology 
6.1 Automatic design of ANN structure 
6.1.1 Overviews 
Neural network (NN), also called artificial neural system, is an information processing 
technique which is developed to simulate the functions of a human brain. Although ANN is 
an effective algorithm for solving complex engineering problems, only few approaches are 
available to design the network and most of them rely on iterative procedures. The design of 
network architecture mainly consists of the network layers, number of neurons of each 
layer, the transfer functions between layers, and the appropriate selections of a training 
algorithm. Especially, there are some kinds of input variables and values in which some of 
them may not carry important information to define the relationship between the input and 
output. These values can be ignored for the sake of solution convergence and efficiency, 
even sometimes at the cost of losing some input information. This provides smaller network 
models, which may be more desirable because of computational resource requirements and 
generalization capability. Therefore, the present study applies GA to select only effective 
inputs of network to decrease the time required to design smaller network and to reduce the 
computational complexity of problems. GA is used to find the best combination of only 
effective input parameters to provide a solution with less computational process. 
To make an ANN more efficient, the computational complexity of ANN should be reduced. 
The computational complexity of network are generally affected by the number of neurons 
in each layer. And the network performs poorly as the model become larger and more 
complex. Although the design methodology of structure of ANN was described in the 
chapter three, the structure of ANN have to be designed by the trial and error approach, 
which runs repeatedly to find the network architecture. There is no general framework for 
the selection of the optimum ANN architecture and its parameters. 
Genetic Algorithm (GA) is a very effective approach in solving problems from a wide range 
of applications, which is difficult to solve with traditional techniques. GA works by 
repeatedly modifying a population of artificial structures through the application of genetic 
operators (Goldberg, 1989). There have been a large number of applications of the GA for 
the NN especially for the evaluation of the weights and the architecture as a search engine to 
improve the convergence speed of network. Yu and Liang (2001) presented a hybrid 
approach involving ANN and GA to solve job-shop scheduling problem. The computational 
ability of the hybrid approach, ANN’s computability and GA’s searching efficiency, is 
strong enough to deal with complex scheduling problems.  
Park & Kim (2011) proposed the hybrid design method based on ANN and GA. In their 
approach, a trained NN was employed to model the complex relationships among the 
parameters related to the geotechnical problems, whereas GA was applied to determine a 
set of optimal architecture of NN including input parameters, number of hidden layer and 
each layer’s neuron, combination of transfer function between layers. The hybrid approach 
involving ANN and GA was developed and implemented. It consists of two unit: an NN 
prediction unit and a GA optimization unit. As shown in Fig. 10, their procedure can be 
summarized as follows: 

Study for Application of Artificial Neural Networks in Geotechnical Problems 

 

321 

1. First, an initial population, which contains a number of sets including information 
about the structure of ANN, is randomly generated. Then the individuals stored in it 
are fed into a NN-based prediction unit.  

2. The predicted quality measures, which related to objective function, are used to indicate 
the fitness of the individuals. Evaluate the fitness of each individual according to the 
rank-based fitness. 

3. Based on the fitness, select individuals and place them in the mating pool according to 
the rank-based fitness assignment and stochastic universal sampling.  

4. Do crossover and mutation to the current population to create new individuals.  
5. Insert a number of new random individuals replacing old individuals in the current 

population randomly. Make sure that the inserted individuals did not replace the best 
individual in the population. 

6. Evaluate the fitness of each individual. 
7. Steps 3–6 are called a generation, and they are repeated until a certain stop criterion is 

met. Typical stop criteria in a genetic algorithm run include a predefined maximum 
number of generations or an error smaller than a predefined value. In our genetic 
algorithm, maximum number of generations is used. 

 
 

Create initial random population of Nind individuals

for i = 1 to MAXGEN 

end 

  ANN structure of jth individual 

  Calculation Objective function  

  Evaluate fitness  
Select individuals 

Genetic process 
(Crossover & mutation) 

Obtain the optimal structure of ANN  

in MAXGENth generation 

Yes 

Create i+1th population 
of Nsel individuals 

i ≤ MAXGEN 

No 

for j = 1 to Nind or Nsel 

end 

 
Fig. 10. Schematic flow chart of determination of optimal structure of ANN (Park & Kim, 2011) 

6.1.2 Creation of initial population 
The hybrid ANN-GA approach starts with the generation of an initial population, which 
contains a predefined number of chromosomes (strings). Each chromosome is composed of 
binary strings that include the design information of ANN’s structure. For example, in case 
of design condition given in Table 5, a chromosome created is presented in Fig. 11.  
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6.1.2 Creation of initial population 
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contains a predefined number of chromosomes (strings). Each chromosome is composed of 
binary strings that include the design information of ANN’s structure. For example, in case 
of design condition given in Table 5, a chromosome created is presented in Fig. 11.  
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parameters values 
Total number of input variables, Nini 7 

Maximum number of hidden layer, NHL 2 
Maximum node number in hidden layer, NHN = 15 15 

Transfer functions which can be used between 
layers 

linear function, sigmoid function, 
tangent-sigmoid function 

Table 5. An Example of design information to determine the structure of ANN 
 

 

1  1  1  1  1  1  0  0  0  1  0  0  1  0  1  0  1   

Input layer Hidden layer Transfer function

 Node number of input layer, Nin = 6 
 Number of hidden layer, N hl = 1(in case of 0, N hl = 1 and in case of 1, N hl = 2)  
 Number of Node of hidden layer, Nhn = 23×0+22×1+21×0+20×1=5 
 Information of transfer function : Determination of the combination  

of transfer functions using five binary strings

No. of node of hidden layer
No. of hidden layer 

 
Fig. 11. Design information about the structure of ANN included in chromosome (Park & 
Kim, 2011) 

This chromosome is composed of the eighteen binary strings. First seven binary strings in 
the chromosome include the information about the selection of input parameters. Six binary 
strings deal with the input variables used for the network architecture, with the 0 code 
indicating that a variable that cannot be used and with the 1 code indicating that a variable 
can be used. There are seven input variables, in this chromosome; seven binary strings 
present that the first six inputs should be kept, and the last two inputs removed. One 
Hidden layer was selected and five node was applied to the hidden layer. The information 
about transfer function is included in the other five binary strings. For example, a 
population of q individuals can be created as follows: 

 

1

2

1 0 1 1 0 1 0 0 1 1 1 0 1 0 1

0 1 0 0 1 1 1 0 1 0 1 1 0 0 1

1 1 1 0 1 0 0 1 0 0 1 1 0 1 0q

P

P

P

=

=
=

=

  (11) 

6.1.3 Genetic operation 
GA is an optimization procedure that operates on sets of design variables. Each set is called a 
string and it defines a potential. Each string consists of a series of characters representing the 
values of the discrete design variables for a particular solution. The fitness of each string is the 
measurement of the performance of the design variables as defined by the objective function. 
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In its simplest form, a genetic algorithm consists of three operations: (1) reproduction, (2) 
crossover, and (3) mutation (Goldberg, 1989). Each of these operations is described below.  
The reproduction operation is the basic engine of Darwinian natural selection by the 
survival of the fittest. The reproduction process promotes the information stored in strings 
with good fitness values to survive into the next generation. The next generation of 
offspring strings is developed from the selected pairs of parent strings exposed to the 
application of explorative operators such as crossover and mutation. 
Crossover is a procedure in which a selected parent string is broken into segments, some of 
which are exchanged with corresponding segments of another parent string. In this manner, 
the crossover operation creates variations in the solutions population by producing new 
solution strings that consist of parts taken from a selected parent string.  
 

 

parent 1 

i th node 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1   

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

0  0  0  1  1  1  1  0  0  0  0  1  1  1  1   

1  1  1  0  0  0  0  1  1  1  1  0  0  0  0   

offspring 1 

parent 2 

offspring 2 

j th node k th node 

 
Fig. 12. Genetic process using crossover (Park & Kim, 2011) 

The mutation operation is introduced as an insurance policy to enforce diversity in a 
population. It introduces random changes in the solution population by exploring the 
possibility of creating and passing features that are nonexistent in both parent strings to the 
offsprings. Without an operator of this type, some possibly important regions of the search 
space may never be explored.  

6.1.4 Definition of objective function  
The objective function for each individual is computed by Eq. 12. The objective function of 
the ith individual, ObjV(i) is composed of the error function, Ei, calculated as the difference 
between measured values and predicted values, and the penalty function, Pi , calculated on 
the basis of the complexity of structure of ANN. The complex structure of an ANN model 
increases the probability that the value of the error function will decrease, but generality is 
more likely to decrease due to overfitting. Therefore, the penalty function, Pi, is included in 
the objective function to control the decrease of generality. 
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where α = 0.01;Nmea = the total number of measured data; Tmax = the maximum value among 
measured values; Tk = kth measured value; and tk = kth predicted value; Nin = total number 
of nodes used in the ith chromosome; Nmax= the maximum number of nodes that  can be 
applied to the structure of ANN in this study; CWi= total number of connections used in the 
ith chromosome; and CWmax= the maximum number of connections that can be applied to 
the structure of ANN in this study. 

6.2 Example analysis 
The developed methodology was estimated through it’s application to the geotechnical 
problem which ANN was used. The optimal ANN model obtained through opmization 
process based the developed GA-NN method was compared with the ANN model obtained 
in basis of researcher’s experiance. Rahman et al. (2001) develoved an ANN model to predict 
the uplift capacity of suction caissons which are frequently used for the anchorage of large 
compliant offshore structures. The uplift capacity of the suction caissons is a critical issue in 
these applications. the developed neural network model has five nodes in the input layer, 
ten nodes in the hidden layer, and one nodes in the output layer. The five input parameters 
to the neural network model are the aspect ration of caisson (L/d), the undrained shear 
strength of the caly soil in which the caisson is installed (su), the relative depth of the lug to 
which the caisson forces is applied (D/L), the angle that the chain force makes with the 
horizontal (θ), and the loading rate defined with respect ot the soil permeability (Tk). the 
transfer functions applied to the hidden layer and output layer neurons are tan-sigmoid and 
log-sigmoid functions, respectively. 
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L θ 

 
Fig. 13. Description for suction cassion 

Design information for the application of GA-NN method is given in Table 6. Through the 
optimization process using the developed method, the optimal structure of ANN model is 
obtained in Table 7. Three input variables, D/L, Tk, and θ was removed through the 
optimization based GA-NN method. The optimized number of hidden node was decreased 
compared with Rahman et al. (2001)‘s model. the transfer functions of the hidden layer and 
output layer were obtained as tan-sigmoid and linear functions, respectively.  
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Parameters Values 
Number of initial population, Nind 400 

Number of maximum generation, MAXGEN 40 
Number of seleced individuals for genetic process, Nsel 400×0.9 = 360 

GA 
paraemters 

Probability of mutation, Pmut 0.005 
Maximum number of input node, ILmax 11 

Maximum number of hidden layer, HLmax 2 
NN 

parameters 
Maximum node number in each hiddlayer, NHmax 16 

Table 6. Design condition for application of the developed GA-NN method 

 

*. I-H means transfer function connecting input layer to hidden layer, H-O means transfer function 
connecting hidden layer to output layer. Tansig and logsig means tangent-sigmoid and log-sigmoid 
function, respectively. 

Table 7. Parameters of structure of ANN model obtained by each methods  
In Fig. 14, the predictied uplift capacity of ANN model obtained by GA-NN method was 
compared with those of Rahman et al. (2001)‘s ANN model. Even though three input 
variables were ommited in the prediction and also number of hidden node was decreased, it 
gave almost same correlation in traing and testing stage. the same the ANN model. It means 
that three input variable ommitted in input layer couldn’t affect to output value, uplift 
capacity in the data sets given by Rahman et al. (2001).  
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Fig. 14. Comparison of the uplift capacity predicted by each methods (Park & Kim, 2011) 

Transfer function R2 
Method 

No of 
input 
node 

No. of 
hidden 
node I-H H-O Training Testing 

Traditional method 5 10 tansig logsig 0.970 0.997 
GA-NN 2 7 tansig linear 0.984 0.982 
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Table 7. Parameters of structure of ANN model obtained by each methods  
In Fig. 14, the predictied uplift capacity of ANN model obtained by GA-NN method was 
compared with those of Rahman et al. (2001)‘s ANN model. Even though three input 
variables were ommited in the prediction and also number of hidden node was decreased, it 
gave almost same correlation in traing and testing stage. the same the ANN model. It means 
that three input variable ommitted in input layer couldn’t affect to output value, uplift 
capacity in the data sets given by Rahman et al. (2001).  
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Fig. 14. Comparison of the uplift capacity predicted by each methods (Park & Kim, 2011) 

Transfer function R2 
Method 

No of 
input 
node 

No. of 
hidden 
node I-H H-O Training Testing 

Traditional method 5 10 tansig logsig 0.970 0.997 
GA-NN 2 7 tansig linear 0.984 0.982 
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In Fig. 15, the values of correlation coefficient, R2 were obtained with variations of number 
of hidden node and transfer functions in the ANN model obtained by GA-NN method. The 
R2 increased with the number of hidden nodes and then converged to a value after 
exceeding about seven node. In Eq. 11, Even though the value of error function doesn’t 
decrease any more, the value of complexity fuction should be continually increased with 
increasing hidden node after seven node. It implies that if seven hidden node gives the 
minimum value of objective function in comparison of other hidden nodes.  
Park & Kim (2011) suggested a hybrid NN/GA approach which is able to design optimal 
structure of ANN. The proposed approach combines the characteristics of GA and NN to 
overcome the shortcomings of NN structure design. The results of the proposed approach 
show that GA may enable the researchers to use NN more effectively and as an efficient tool 
for the solution of complex problems and reduces the risk of over designing the network 
architecture. The results of example showed that the performance of NN can be easily 
guaranteed with GA by selecting the optimal combination of input variables, number of 
hidden layer, node number of each hidden layer, and transfer functions between layers. GA 
reduces the complexity and over design of the network structure, as it helps to design 
smaller network architecture. Processing time of hybrid NN/GA for grouping parts can be 
decreased nearly to half of the preliminary NN-based approach. In summary, it is seen that 
GA enables to consider NN as an effective and efficient technique for the computationally 
complex type problems since it simultaneously reduces the computational complexity and 
enhances the prediction performance.  
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Fig. 15. The values of correlation coefficient with varing the design parameters of ANN 
model obtained by GA-NN method (Park & Kim, 2011) 

6.2 Generalization of Neural Network using committee methodology 
6.2.1 Generaliability of Neural Network 
Over-training is the most serious problem in neural network training. The drawback is that 
such a network is quickly over-trained which means that the network error is driven to a 
small value for the training samples but will become large when new input is presented. 
This indicates that the network has memorized the training samples but is not able to 
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generalize to give reasonable answers on unseen input parameter combinations. As a result, 
such a too well-trained model may not perform well on unseen data set due to its lack of 
generalization capability. In this section, we focus on one particular problem with learning 
which is typical for neural networks: their generalization capabilities. Generalization is the 
ability to train with one data set and then successfully classify independent test sets. 
Although continued training will increase the training set accuracy, the danger exists that 
test set accuracy decreases after a certain point.  
Approaches considered overcoming the over-fitting problems are early stopping, Bayesian 
Regularization approach, and others (Hirschen & Schäfer, 2006). One approach is to use 
early stopping, where the algorithm which minimizes the error function prevent it from 
doing so by stopping the algorithm at some point. In early stopping the available data is 
divided into a training, a validation and a test subset. The training set is used for training 
the network and updating the network weights. The validation subset is not used for 
training, yet the performance function indicates how the trained network responds to these 
samples. The validation error will normally decrease during the initial phase of training, as 
does the training set error. When the network begins to overfit the data, the error on the 
validation set will typically begin to increase. The test set is not used during the training, but 
utilized to compare different networks. If the response on the test set is too weak one may 
decide to restart the network training with a different division of data sets. The second 
approach is the Bayesian Regularization(MacKay, 1992a). This approach minimizes the 
over-fitting problem by taking into account the goodness-of-fit as well as the network 
architecture. The following is the short description about the Bayesian regularization. 
Typically, training aims to reduce the sum of squared errors F = ED. However, 
regularization adds an additional term; i.e. the objective function becomes F=α⋅ED+β⋅EW, 
where EW is the sum of squares of the network weights, and α and β are objective function 
parameters. The relative size of the objective function parameters dictates the emphasis for 
training. If α << β, then the training algorithm will drive the errors smaller. If α << β 
training will emphasize weight size reduction at the expense of network errors, thus 
producing a smoother network response (Foresee & Hagan, 1997). 
Single multilayer perceptrons (MLPs), consisting of an input layer, a hidden layer and an 
output layer, trained by a back-propagation algorithm (e.g. Levengerg-Marquardt, see Hagan, 
Demuth & Beale 1996, pp. 12-19), have been the conventional method of choice for most 
practical applications over the last decade. However, single MLP, when repeatedly trained on 
the same patterns, tends to reach different minima of the objective function each time and 
hence give a different set of neuron weights, because the solution is not unique for noisy data, 
as in most geotechnical problems. Therefore, a common approach is to train many nets, and 
then select the one that yields the best generalization performance. Nevertheless, selecting the 
single best neural network is likely to result in loss of information. While one network 
reproduces the main patterns, the others may provide the details lost by the first. The aim 
should be to exploit, rather than lose, the information contained in a set of imperfect 
generalizers. This is the motivation for the committee neural network approach, where a 
number of individually trained networks are combined to improve accuracy and increase 
robustness. Reddy & Buch (2003), Das et al. (2001), Gopinath & Reddy (2000), and Reddy et al. 
(1995) developed the concept of committee neural networks in which a large number of 
networks are trained. Based on initial testing with data obtained from subjects not used in 
training, a few networks are recruited into a committee. A final evaluation of the committee is 
conducted with data obtained from subjects not used in training or in initial testing.  



Artificial Neural Networks - Application 

 

326 

In Fig. 15, the values of correlation coefficient, R2 were obtained with variations of number 
of hidden node and transfer functions in the ANN model obtained by GA-NN method. The 
R2 increased with the number of hidden nodes and then converged to a value after 
exceeding about seven node. In Eq. 11, Even though the value of error function doesn’t 
decrease any more, the value of complexity fuction should be continually increased with 
increasing hidden node after seven node. It implies that if seven hidden node gives the 
minimum value of objective function in comparison of other hidden nodes.  
Park & Kim (2011) suggested a hybrid NN/GA approach which is able to design optimal 
structure of ANN. The proposed approach combines the characteristics of GA and NN to 
overcome the shortcomings of NN structure design. The results of the proposed approach 
show that GA may enable the researchers to use NN more effectively and as an efficient tool 
for the solution of complex problems and reduces the risk of over designing the network 
architecture. The results of example showed that the performance of NN can be easily 
guaranteed with GA by selecting the optimal combination of input variables, number of 
hidden layer, node number of each hidden layer, and transfer functions between layers. GA 
reduces the complexity and over design of the network structure, as it helps to design 
smaller network architecture. Processing time of hybrid NN/GA for grouping parts can be 
decreased nearly to half of the preliminary NN-based approach. In summary, it is seen that 
GA enables to consider NN as an effective and efficient technique for the computationally 
complex type problems since it simultaneously reduces the computational complexity and 
enhances the prediction performance.  
 

 

0.90

0.92

0.96

1.00

No. of Node of Hidden Layer, NNHL 

C
oe

ffi
ci

en
t o

f c
or

re
la

ti
on

, R
2  

0.94

0.98

2 6 14

logsig-linear
logsig-tansig
tansig-linear

4 8 10 12 16

NNHL=7

 
Fig. 15. The values of correlation coefficient with varing the design parameters of ANN 
model obtained by GA-NN method (Park & Kim, 2011) 

6.2 Generalization of Neural Network using committee methodology 
6.2.1 Generaliability of Neural Network 
Over-training is the most serious problem in neural network training. The drawback is that 
such a network is quickly over-trained which means that the network error is driven to a 
small value for the training samples but will become large when new input is presented. 
This indicates that the network has memorized the training samples but is not able to 
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generalize to give reasonable answers on unseen input parameter combinations. As a result, 
such a too well-trained model may not perform well on unseen data set due to its lack of 
generalization capability. In this section, we focus on one particular problem with learning 
which is typical for neural networks: their generalization capabilities. Generalization is the 
ability to train with one data set and then successfully classify independent test sets. 
Although continued training will increase the training set accuracy, the danger exists that 
test set accuracy decreases after a certain point.  
Approaches considered overcoming the over-fitting problems are early stopping, Bayesian 
Regularization approach, and others (Hirschen & Schäfer, 2006). One approach is to use 
early stopping, where the algorithm which minimizes the error function prevent it from 
doing so by stopping the algorithm at some point. In early stopping the available data is 
divided into a training, a validation and a test subset. The training set is used for training 
the network and updating the network weights. The validation subset is not used for 
training, yet the performance function indicates how the trained network responds to these 
samples. The validation error will normally decrease during the initial phase of training, as 
does the training set error. When the network begins to overfit the data, the error on the 
validation set will typically begin to increase. The test set is not used during the training, but 
utilized to compare different networks. If the response on the test set is too weak one may 
decide to restart the network training with a different division of data sets. The second 
approach is the Bayesian Regularization(MacKay, 1992a). This approach minimizes the 
over-fitting problem by taking into account the goodness-of-fit as well as the network 
architecture. The following is the short description about the Bayesian regularization. 
Typically, training aims to reduce the sum of squared errors F = ED. However, 
regularization adds an additional term; i.e. the objective function becomes F=α⋅ED+β⋅EW, 
where EW is the sum of squares of the network weights, and α and β are objective function 
parameters. The relative size of the objective function parameters dictates the emphasis for 
training. If α << β, then the training algorithm will drive the errors smaller. If α << β 
training will emphasize weight size reduction at the expense of network errors, thus 
producing a smoother network response (Foresee & Hagan, 1997). 
Single multilayer perceptrons (MLPs), consisting of an input layer, a hidden layer and an 
output layer, trained by a back-propagation algorithm (e.g. Levengerg-Marquardt, see Hagan, 
Demuth & Beale 1996, pp. 12-19), have been the conventional method of choice for most 
practical applications over the last decade. However, single MLP, when repeatedly trained on 
the same patterns, tends to reach different minima of the objective function each time and 
hence give a different set of neuron weights, because the solution is not unique for noisy data, 
as in most geotechnical problems. Therefore, a common approach is to train many nets, and 
then select the one that yields the best generalization performance. Nevertheless, selecting the 
single best neural network is likely to result in loss of information. While one network 
reproduces the main patterns, the others may provide the details lost by the first. The aim 
should be to exploit, rather than lose, the information contained in a set of imperfect 
generalizers. This is the motivation for the committee neural network approach, where a 
number of individually trained networks are combined to improve accuracy and increase 
robustness. Reddy & Buch (2003), Das et al. (2001), Gopinath & Reddy (2000), and Reddy et al. 
(1995) developed the concept of committee neural networks in which a large number of 
networks are trained. Based on initial testing with data obtained from subjects not used in 
training, a few networks are recruited into a committee. A final evaluation of the committee is 
conducted with data obtained from subjects not used in training or in initial testing.  
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6.2.2 Overviews of Committee Neural Network (CNN) 
The committee technique for neural networks has been used for engineering problems 
(Reddy & Buch, 2003; Das et al., 2001; Gopinath & Reddy, 2000; Reddy et al., 1995). It was 
observed that the committee provided good estimates by means of averaging the results of 
individual networks in the committee, when the individual errors are uncorrelated. In the 
committee technique, several multiple neural networks (Fig. 16) are constructed and each 
individual neural network is trained independently with different initial synaptic weights 
using the training patterns as 

 ( ){ }1 1 1,TP x t= ,  ( ){ }2 2 2,TP x t= , …, ( ){ },N N NTP x t=  (13) 

where TPi is a training patterns for the ith networks, and xi and ti are an input vector and 
target vector for the ith networks, respectively.  
 

 
Fig. 16. Illustration of committee of networks (Kim & Park, 2011) 

In Fig. 16, yi is an output vector calculated from the ith networks. A mapping function fi(xi) is 
determined from the ith networks based on the training patterns TPi, and the error of this 
function can be calculated as 

 ( ) ( ) ( )i i i i i ie x d x f x= −  (14) 

where di(xi) is a desired function for the ith networks and is represented as di(xi) =E[ti|xi] 
The desired function for the committee of networks is determined as 

 ( ) [ | ]d x E T X=  (15) 

where X={(x1, x2, … , xN)} and T={(t1, t2, … , tN)}.  
The committee mapping function can be represented as 

 
1 1 1 1 1
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com i i i i i i i i i i i
i i i i i

f X f d e d e d eα α α α α
= = = = =

= = − = − = −∑ ∑ ∑ ∑ ∑  (16) 

where, αi is a weighting factor for the ith networks, and Σαi=1. Therefore, the committee 
output can be calculated as Eq. (17), where the outputs from different neural networks were 
averaged as 
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The mean square error (MSE) of fcom can be calculated as 
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where Cij is a correlation matrix as Cij=E[eiej]. 
The local minima in determining the synaptic weights of a single MLP and the non-
uniqueness of the solution due to the noise and a limited number of measurements may be 
resolved by employing the committee technique, which is a statistical approach averaging 
the outputs in the functional space. 

6.2.3 Case study for CNN 
Kim and Park (2010) examined the feasibility of committee neural network theory for the 
improvement of accuracy and consistency of the neural network model on the estimation of 
preconsolidation pressure from the field piezocone measurements. The validity of the 
committee technique was also examined through the comparison with a single NN model, 
an empirical and a theoretical model.  
The case records from Chen (1994) are evaluated using neural network. A total of 119 case 
records are used for the training phase and 28 (randomly selected) for the testing phase. The 
proposed neural network model has four nodes in the input layer, seven nodes in the 
hidden layer, and one node in the output layer. In input layer, the total and effective 
overburden pressures σvo, σ’vo, the cone tip resistance qT, and pore pressure measurement 
behind the cone tip u2 were selected as input variables.  
In their study, twenty single neural networks were trained from the different initial weights 
and biases but with the same training patterns. Fig. 17(a) and (b) show the coefficients of 
determination between measured and predicted preconsolidation pressure using the 
piezocone test result from each of the 20 single NNs for the training data and testing data, 
respectively. As shown in Fig. 17(a), coefficients of determination for training data from 
each NN model show very similar accuracy i.e., coefficients of determination R2 are almost 
around 0.93. However, the prediction results for testing data from each NN model aren’t as 
accurate as those of the training data. They significantly fluctuates i.e., they range from 0.84 
to 0.94, even though they have the same structural characteristics. Therefore, if a single NN 
is to be used, the best model must be selected which gives the relatively highest coefficient 
of determination among various models, e.g., second NN among 20 neural networks, which 
gives the coefficients of determination of 0.93 and 0.94 in the training and testing phase, 
respectively. However, in reality, it is quite difficult to choose the best model among a 
number of candidate NNs. 
Several committees of 20 NNs were constructed by changing the accumulated number n of 
NN in the committee to the equal weighting factor (αi=1/n). Prediction results of each 
committee are plotted in Fig. 18(a) and 18 (b) with respect to the increase of the accumulated 
number of NN for training data and testing data, respectively. As can be seen in Fig. 18 (a), 
the coefficients of determination of the committee neural network still increase with an 
increase of the number of accumulated NN in the committee for training data. Furthermore,  
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where Cij is a correlation matrix as Cij=E[eiej]. 
The local minima in determining the synaptic weights of a single MLP and the non-
uniqueness of the solution due to the noise and a limited number of measurements may be 
resolved by employing the committee technique, which is a statistical approach averaging 
the outputs in the functional space. 
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improvement of accuracy and consistency of the neural network model on the estimation of 
preconsolidation pressure from the field piezocone measurements. The validity of the 
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an empirical and a theoretical model.  
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proposed neural network model has four nodes in the input layer, seven nodes in the 
hidden layer, and one node in the output layer. In input layer, the total and effective 
overburden pressures σvo, σ’vo, the cone tip resistance qT, and pore pressure measurement 
behind the cone tip u2 were selected as input variables.  
In their study, twenty single neural networks were trained from the different initial weights 
and biases but with the same training patterns. Fig. 17(a) and (b) show the coefficients of 
determination between measured and predicted preconsolidation pressure using the 
piezocone test result from each of the 20 single NNs for the training data and testing data, 
respectively. As shown in Fig. 17(a), coefficients of determination for training data from 
each NN model show very similar accuracy i.e., coefficients of determination R2 are almost 
around 0.93. However, the prediction results for testing data from each NN model aren’t as 
accurate as those of the training data. They significantly fluctuates i.e., they range from 0.84 
to 0.94, even though they have the same structural characteristics. Therefore, if a single NN 
is to be used, the best model must be selected which gives the relatively highest coefficient 
of determination among various models, e.g., second NN among 20 neural networks, which 
gives the coefficients of determination of 0.93 and 0.94 in the training and testing phase, 
respectively. However, in reality, it is quite difficult to choose the best model among a 
number of candidate NNs. 
Several committees of 20 NNs were constructed by changing the accumulated number n of 
NN in the committee to the equal weighting factor (αi=1/n). Prediction results of each 
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                             (a) training stage                                                  (b) testing stage 

Fig. 17. Prediction performance of 20 MLPs which are optimized with different initial 
weights and biases by trial-and-error method (Kim & Park, 2010) 

as shown in Fig. 18 (b) for testing data, even though the R2 value of each single NN model 
shows severe variation, the R2 values of CNNs don‘t show such a dramatic variation after 
accumulating two NN models in the committee. From these figures, it can be concluded that 
any single NN model still cannot avoid the variation on the prediction due to initial 
dependency of weight and bias. However, such variation can be eliminated by connecting 
those NNs with an appropriate weighting factor αi as a committee neural network. Besides, 
by introducing Committee methodology, the conventional trial-and-error method for the 
optimization of the structure of a neural network can be used without any consideration of 
initial weight dependency and structural optimization. The authors observed that a 
committee neural network system is able to provide improved performance compared with 
a single optimal neural network. The committee technique has been found to be a very 
effective technique to improve the accuracy of the estimation of the preconsolidation 
pressure σ‘p. 
The performance of NN has suffered because of its variation on the prediction of target 
value due to the localization of weight and bias during the optimization process on the 
structure. To overcome such problems of the single NN, in this study, structural 
optimization was carefully carried out by the trial-and-error method. Nevertheless, a single 
MLP, although it has successfully optimized structures, still cannot avoid the large variation 
on the prediction of preconsolidation pressure due to its initial weight dependency. 
Therefore, CNN is introduced to overcome the initial weight dependency of the single 
neural network model. Various committees of the single MLP were tested. It was found that 
if 8 single NNs, which have the same structure but have been trained with a different initial 
weight and bias, are accumulated in the committee with the same weighting factor iα , any 
variation on the prediction of the preconsolidation pressure from the piezocone test result 
can be simply and successfully eliminated. A comparison of the prediction results of CNN 
with the theoretical and empirical method shows that CNN is significantly more precise and 
consistent than conventional statistical and theoretical methods.  
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                                (a) training stage                                               (b) testing stage 

Fig. 18. Improvement of estimation accuracy by accumulating the optimized single NNs in 
the committee (Kim & Park, 2010) 

7. Conclusions 
Artificial neural networks (ANNs) have been applied to various problem in geotechnical 
engineering. This include dams, earth retaining structures, environmental geotechnics,  
ground anchors, liquefaction, pile foundations, shallow foundations, slope stability, soil 
properties and behavior, site characterization, tunnels, underground openings, and other 
areas. In mathematical modeling to solve problem of above the geotechnical engineering 
area, the lack of understanding for complicated physical behavior is easily supplemented by 
either over-simplifying the problem or incorporating several assumptions into the model. 
Consequently, many mathematical models are apt to fail to simulate the complex behavior 
of geotechnical problems. In contrast, ANN methodology is based on the data alone in 
which the model can be trained on data sets to find the relationship between inputs and out 
values. There is no need to simplify the problem nor incorporate an any assumption. As 
geotechnical engineering exhibits extreme variability, ANNs are particularly amenable to 
modelling the complex behaviour of these materials and have generally demonstrated 
superior predictive performance when compared with traditional methods.  
In science and engineering problems, there is still no clear procedure to design NN 
architecture. Therefore, this often causes over design or inefficient network structures 
especially in the case of complex problems. Although considerable research has been 
accounted in NN and GA applications, their use in optimal NN design is quite recent. 
Nevertheless, it is seen that GA enables to consider NN as an effective and efficient 
technique for the computationally complex type problems since it reduces the 
computational complexity and enhances the search performance.  
In training of ANN model, over-fitting problem or poor generalization capability happens 
frequently when a neural network over learns during the training period. As a result, such a 
too well-trained model may not perform well on unseen data set due to its lack of 
generalization capability. Several approaches have been suggested in literature to overcome 
this problem. The author introduced the feasibility of committee neural network theory for 
the improvement of accuracy and consistency of the neural network model on the 
geotechnical probleme. 
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Fig. 17. Prediction performance of 20 MLPs which are optimized with different initial 
weights and biases by trial-and-error method (Kim & Park, 2010) 
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those NNs with an appropriate weighting factor αi as a committee neural network. Besides, 
by introducing Committee methodology, the conventional trial-and-error method for the 
optimization of the structure of a neural network can be used without any consideration of 
initial weight dependency and structural optimization. The authors observed that a 
committee neural network system is able to provide improved performance compared with 
a single optimal neural network. The committee technique has been found to be a very 
effective technique to improve the accuracy of the estimation of the preconsolidation 
pressure σ‘p. 
The performance of NN has suffered because of its variation on the prediction of target 
value due to the localization of weight and bias during the optimization process on the 
structure. To overcome such problems of the single NN, in this study, structural 
optimization was carefully carried out by the trial-and-error method. Nevertheless, a single 
MLP, although it has successfully optimized structures, still cannot avoid the large variation 
on the prediction of preconsolidation pressure due to its initial weight dependency. 
Therefore, CNN is introduced to overcome the initial weight dependency of the single 
neural network model. Various committees of the single MLP were tested. It was found that 
if 8 single NNs, which have the same structure but have been trained with a different initial 
weight and bias, are accumulated in the committee with the same weighting factor iα , any 
variation on the prediction of the preconsolidation pressure from the piezocone test result 
can be simply and successfully eliminated. A comparison of the prediction results of CNN 
with the theoretical and empirical method shows that CNN is significantly more precise and 
consistent than conventional statistical and theoretical methods.  
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                                (a) training stage                                               (b) testing stage 

Fig. 18. Improvement of estimation accuracy by accumulating the optimized single NNs in 
the committee (Kim & Park, 2010) 

7. Conclusions 
Artificial neural networks (ANNs) have been applied to various problem in geotechnical 
engineering. This include dams, earth retaining structures, environmental geotechnics,  
ground anchors, liquefaction, pile foundations, shallow foundations, slope stability, soil 
properties and behavior, site characterization, tunnels, underground openings, and other 
areas. In mathematical modeling to solve problem of above the geotechnical engineering 
area, the lack of understanding for complicated physical behavior is easily supplemented by 
either over-simplifying the problem or incorporating several assumptions into the model. 
Consequently, many mathematical models are apt to fail to simulate the complex behavior 
of geotechnical problems. In contrast, ANN methodology is based on the data alone in 
which the model can be trained on data sets to find the relationship between inputs and out 
values. There is no need to simplify the problem nor incorporate an any assumption. As 
geotechnical engineering exhibits extreme variability, ANNs are particularly amenable to 
modelling the complex behaviour of these materials and have generally demonstrated 
superior predictive performance when compared with traditional methods.  
In science and engineering problems, there is still no clear procedure to design NN 
architecture. Therefore, this often causes over design or inefficient network structures 
especially in the case of complex problems. Although considerable research has been 
accounted in NN and GA applications, their use in optimal NN design is quite recent. 
Nevertheless, it is seen that GA enables to consider NN as an effective and efficient 
technique for the computationally complex type problems since it reduces the 
computational complexity and enhances the search performance.  
In training of ANN model, over-fitting problem or poor generalization capability happens 
frequently when a neural network over learns during the training period. As a result, such a 
too well-trained model may not perform well on unseen data set due to its lack of 
generalization capability. Several approaches have been suggested in literature to overcome 
this problem. The author introduced the feasibility of committee neural network theory for 
the improvement of accuracy and consistency of the neural network model on the 
geotechnical probleme. 
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1. Introduction 
Feedforward neural networks have been theoretically proved to be able to approximate a 
nonlinear function to any degree of accuracy as long as enough nodes exist in the hidden 
layer(s) (Hornik et. al. 1989). However, when feedforward neural networks are applied to 
modeling physical systems in the real world, people care more about their prediction 
capabilities than accurate modeling abilities. If a neural network is trained with noisy data 
measured from an experiment, what is the predictive performance of the neural network 
when unseen input data is fed into it?  In this chapter, the confidence interval and prediction 
interval of a neural network model will be discussed. In particular, how the nonlinear 
structure of a feedforward neural network, impacts the confidence interval will be analyzed. 
Then, as an application, the measure of confidence to estimate nonlinear elastic behavior of 
reinforced soil is demonstrated. 
This chapter starts with a description of the structure of feedforward neural networks and 
basic learning algorithms. Then, nonlinear regression and its implementation within the 
nonlinear structure like a feedforward neural network will be discussed.  The presentation 
will show confidence intervals and prediction intervals as well as applying them to a one-
hidden-layer feedforward neural network with one, two or more hidden node(s). Next, it is 
proceeded to apply the concepts of confidence intervals to solving a practical problem, 
prediction of the constitutive parameters of reinforced soil that is considered as composite 
material mixed with soil, geofiber and lime powder.  Prediction intervals for the practical 
case is examined so that more quality information on the performance of reinforced soil for 
better decision-making and continuous improvement of construction material designs can 
be provided.  Finally, the neural network-based parameter sensitivities will be analyzed. 
In order to clearly present the algorithms discussed in this chapter, some notations are 
declared as follows: matrices and vectors are written in boldface letters, and scalars in italics. 
Vectors are defined in column vectors. The superscript T of a matrix (or vector) denotes the 
transpose of the matrix (or vector).      
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2. Neural network architecture and learning algorithms  
 

 
Fig. 1.1a. An m-layer feedforward neural network 

 

 
Fig. 1.1b. Weights and biases in the kth layer 
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2.1 Architecture of feedforward neural networks  
A feedforward neural network is a massive net consisting of a number of similar computing 
units, which are called nodes.  The morphology of a neural network can change depending 
on the way the nodes are interconnected and the operations performed at each node. As 
shown in Figs. 1.1a and 1.1b, in an m-layer feedforward neural network, the nodes are 
arranged in layers.  All nodes in a layer are fully connected to the nodes in adjacent layers 
by weights, adjustable parameters to represent the strength of connections.  The summation 
of weighted inputs to a node will be mapped by a nonlinear activation function, h[.].  There 
are no connections between nodes in the same layer.  Data information is passed through 
the network in such a manner that the outputs of the nodes in the first layer become the 
inputs of the nodes in the second layer and so on.  
Mathematically, an m-layer feedforward neural network can be expressed as follows,  

 1k k k k−= +o w a b   and   ( )        ( 1, , )k k k k m= =a h o  (1) 

where 0a =x
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sa a  are the linear output vector of the summation, the activation 

function vector and the output vector in the kth layer, respectively; ks  is the number of 
nodes in the kth layer; kw and kb represent the weight matrix and the bias vector in the kth 

layer (see Fig. 1.1b), which  can be respectively expressed by 
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in which the jth row of kw is defined by 
11 2[ ]

k
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j j j jsw w w

−
=w   (j=1, …, sk). 

2.2 Learning algorithms 
2.2.1 Standard backpropagation  
Given a set of s0-dimensional input vector, xi, (i= 1,…,Q), and the corresponding sm-dimensional 
output vector, ti,(i= 1,…,Q), the weights and biases of a feedforward neural network are 
adjusted such that the following performance index is minimum, 

 T

1

1    with   ( ) ( )
2

Q
m m

i i i i i i
i

E E E
=

= = − −∑ t a t a  (3) 

where ( )m m
i i i=a a x  is the output of the feedforward neural network with input xi  and Q is 

the number of samples. Since the structure of a feedforward neural network is the same for 
all samples, for simplicity, the subscript i will be dropped in the derivation of the 
backpropagation algorithm. 
For a single input/output sample, Equation (3) is denoted by iE .  According to the gradient 
descent algorithm, the weight matrix and bias vector of the kth layer will be updated 
according to the following equations so that iE can be minimized, 

 Δ Δ T( / ), ( / )k k k k
i iE               Eη η= − ∂ ∂ = − ∂ ∂w b bw  (4) 

where η is the learning rate (η > 0). 
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By defining the gradient of iE  with respect to the linear output vector ko  of the kth layer as  

 T
1 2: [ ]k k

k k k k
i sE δ δ δ= ∇ =oδ ,       ( 1, , )k m= ,  (5) 

the differentiation of iE  with respect to the weight matrix and bias vector is presented as 
follows, (See Appendix for application of the chain rule to the differentiation of a scalar 
function with respect to a matrix.) 
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From Equations (1) and (3), it can be seen that Ei  is a function of the vector 1k+o and ka  is 
also a function of the vector ko .  Using the general chain rule (See Appendix), therefore, it 
leads to the following relation, 
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Again, by applying  the general chain rule and the definition (5) of kδ , the recurrence 
relation of the gradient term kδ  can be written by 
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This recurrence computation is initialized at the final layer, i.e. the mth layer.  According to 
the general chain rule, mδ will be 

 ( ) ( )m m m
m m m m m

i i i iE E= ∇ = ∇ ⋅∇ = − ⋅ −o o aδ a H o t a . (11) 

The learning algorithm of the standard backpropagation proceeds as follows: first, using 
Equation (1) to calculate the output of each layer ka  (k=1,…,m); Then, using Equations (11) 
and (8), the gradient terms kδ (k=m,…,1) is computed backward from the mth layer to the 1st 
layer; Next, the increments of weights and biases are calculated using Equations (6) for 
k=1,...,m; Finally, the weights and biases are updated using Equations (4) with a chosen 
learning rate η (k=1,..., m). 

Confidence Intervals for Neural Networks and Applications to Modeling Engineering Materials 

 

341 

2.2.2 Levenberg-Marquardt backpropagation algorithm 
The standard backpropagation algorithm has been widely applied in neural network 
learning.  However, due to the low speed of convergence,  considerable research works have 
been done to improve it. A lately developed algorithm, the Levenberg-Marquardt 
backpropagation, has been used to train feedforward neural networks since it can yield a 
speed-up of large factors via limited modifications of the standard backpropagation 
algorithm.  
Consider the feedforward neural network (1) as a nonlinear least squares problem, the 
performance index (3) can be written as below, 
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The n-element vector of weights and biases of an m-layer neural network can be written as 
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With the Newton method, the increment Δw, by minimization of E with respect to the 
parameter vector w, is 

 2 1( ( )) ( )Δ E E−= − ∇ ∇w w w , (14) 

where 2 ( )E∇ w  is the Hessian matrix of E(w) and ( )E∇ w is the gradient of E(w).  
Given the performance index (12), the gradient and the Hessian matrix of E(w) can be 
written as 
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where J(w) is the Jacobian matrix of a(w) with respect to the vector w, 
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Since the second term on the right-hand side of Equation (15) is difficult to obtain, the 
Levenberg-Marquardt method is introduced to approximate the function as follows, 
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where I is the identity matrix and μ is an adaptive factor (μ > 0).  μ  is multiplied by a 
positive parameter γ  (normally chosen as 10) whenever a step results in a decreased E(w) in 
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By defining the gradient of iE  with respect to the linear output vector ko  of the kth layer as  
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From Equations (1) and (3), it can be seen that Ei  is a function of the vector 1k+o and ka  is 
also a function of the vector ko .  Using the general chain rule (See Appendix), therefore, it 
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This recurrence computation is initialized at the final layer, i.e. the mth layer.  According to 
the general chain rule, mδ will be 
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The learning algorithm of the standard backpropagation proceeds as follows: first, using 
Equation (1) to calculate the output of each layer ka  (k=1,…,m); Then, using Equations (11) 
and (8), the gradient terms kδ (k=m,…,1) is computed backward from the mth layer to the 1st 
layer; Next, the increments of weights and biases are calculated using Equations (6) for 
k=1,...,m; Finally, the weights and biases are updated using Equations (4) with a chosen 
learning rate η (k=1,..., m). 
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2.2.2 Levenberg-Marquardt backpropagation algorithm 
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Equation (12).  Otherwise, μ is divided by γ. Note that when μ  is sufficiently large, the 
algorithm becomes the steepest gradient descent. For a small value of μ, the algorithm 
becomes the Gauss-Newton algorithm.   
In order to apply the backpropagation technique to solving the Jacobian matrix (16), the 
research work reported by Hagan and Menhaj (Hagan & Menhaj, 1994) provided a detailed 
algorithm with which the elements of the Jacobian matrix (16) can be calculated backward 
layer-by-layer, and therefore, the weights of a neural network can be updated 
simultaneously. 

3. Parameter estimates with confidence intervals 
The purpose to train a neural network is not solely to get an exact representation of the 
training data, but to build a satisfactory model that can exhibit intrinsic relationship 
between input data and output data. Therefore, the trained neural network model is 
expected to make good predictions for unseen input data. Hence, the performance 
evaluation of a neural network with unseen data has been intensively studied in the area of 
applied neural computations.  
Traditionally, the performance of generalization of a neural network is examined by testing 
data, i.e. a set of data is separated into two subsets, training data and testing data, 
respectively. The neural network trained using the training data should also result in small 
sum of squared errors (3) when the testing data is fed into it. The method can detect whether 
a neural network overfits noisy data, but it does not provide quantitative metric to show 
“how good” the predicted output is.  
On the other hand, as far as empirical modeling is concerned, regression analysis is a widely 
used statistical technique in many practical cases.  Since a neural network can be considered 
as a special nonlinear structure, neural network modeling can be categorized into a 
nonlinear regression problem.  
When a neural network model is used for prediction with a set of inputs that are different 
from the training patterns, the accuracy of estimation can be represented by a best guess of 
predicted outcomes plus a range of likely future outcomes around the best guess.  Such a 
range is commonly referred to as a confidence interval with certain confidence level, which 
provides information indicating where the output is likely to be and how much percent of 
chances the output is probably to be with the estimates.  Hence, solving the neural network 
regression problem consists of two parts - developing a nonlinear regression model and 
computing the range of likely future outputs. The range of possible outputs will 
quantitatively provide how large difference between the real output and the best guess from 
a statistical point of view when unseen data are fed into the model.  Moreover, as discussed 
below, the confidence interval varies with the structure of a neural network, which provides 
a practical reference for people to select the structure of a neural network.  In this section, 
the concepts of neural network regression,  confidence intervals and prediction intervals 
will be presented. Then, how a prediction interval changes with the structure of a neural 
network will be demonstrated through an example.       

3.1 Prediction interval for neural network regression   
From Equation (1), it is assumed that the true output of an m-layer neural network is 

( , )i
m ∗a x w , where x is the input vector, and w* represents the true values of the weight vector 

from the weight value space Ω . For simplicity, m
ia is replaced by ia for future derivation.  In 

Confidence Intervals for Neural Networks and Applications to Modeling Engineering Materials 

 

343 

addition, the output of the neural network will be considered as a one-dimensional vector, i.e. 
ai=ai. The error, εi, associated with the function in modeling is supposed to be independently 
and identically distributed with variance, 2σ , where the distribution has the form N(0, 2σ ), 
i.e. normal distribution with the mean of zero and the variance of 2σ .  With each of Q 
experimental data, the output of the function is represented by  

 ( , )i i i ia a ε= +x w ,   i=1,2,..,Q;  ŵ ∈Ω (18) 

The estimated vector, ŵ , is obtained by minimizing the performance index (12) using 
training data.  However, due to many factors, e.g. noisy training patterns or limited number 
of nodes, the vector, ŵ , can be a good estimation of, or say close to, the true value, w*, of the 
weight parameters but not equal to them. Considering a neural network as a nonlinear 
regression model, the linear approximation to this nonlinear regression model can be 
obtained via the Taylor series expansion of the function to the first order (Seber et al., 1989).  
Therefore, an estimated value, ˆia , under the input vector, xi, is  

 T
*ˆ ( , ) ( , ) | ( )i i i i i i wa a a a∗ ∗= = +∇ −wx w x w w w  (19) 

where T
*|i wa∇w denotes the gradient of the function ai with respect to the weight vector at 

the true values, w*. The error between the input/output pairs and the estimated value from 
the neural network model yields  
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The expected value and variance of the difference will be  

 mean [ ]ˆi it a− =mean[εi] - T |ia ∗∇w w ×mean *( )−w w ≈0  

 var [ ]ˆi it a− =var[εi]- var[ T ˆ| ( )ia ∗
∗∇ −w w w w ] (21) 

Note that the assumptions that ai is continuously differentiable and that the matrix 
T( ) ( )J w J w (with 

T
1 2( ) Qa a a⎡ ⎤= ∇ ∇ ∇⎣ ⎦w w wJ w ) is nonsingular are essential in the 

statistical evaluation.  The distribution of *ˆ −w w  can be approximated with the 
distribution, NQ (0, 2 T 1[ ( ) ( )]σ −J w J w ), where ( )J w  is also the Jacobian matrix (16).  In fact, 
given a large value of Q, εi being the random numbers with independent and identical 
distribution and the parameter space of the weights, Ω, being a compact subset of n 
dimensional real number space, the values of the weight vector, ŵ , are certain to be within 
a small neighborhood of the true value vector, w* . Therefore, in late calculation,  the weight 
vector, ŵ , is used to replace w*  and is written as w.  
With the number of samples, Q, and the number of estimated parameters, n, the unbiased 
estimator of 2σ  is 
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algorithm with which the elements of the Jacobian matrix (16) can be calculated backward 
layer-by-layer, and therefore, the weights of a neural network can be updated 
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training data, but to build a satisfactory model that can exhibit intrinsic relationship 
between input data and output data. Therefore, the trained neural network model is 
expected to make good predictions for unseen input data. Hence, the performance 
evaluation of a neural network with unseen data has been intensively studied in the area of 
applied neural computations.  
Traditionally, the performance of generalization of a neural network is examined by testing 
data, i.e. a set of data is separated into two subsets, training data and testing data, 
respectively. The neural network trained using the training data should also result in small 
sum of squared errors (3) when the testing data is fed into it. The method can detect whether 
a neural network overfits noisy data, but it does not provide quantitative metric to show 
“how good” the predicted output is.  
On the other hand, as far as empirical modeling is concerned, regression analysis is a widely 
used statistical technique in many practical cases.  Since a neural network can be considered 
as a special nonlinear structure, neural network modeling can be categorized into a 
nonlinear regression problem.  
When a neural network model is used for prediction with a set of inputs that are different 
from the training patterns, the accuracy of estimation can be represented by a best guess of 
predicted outcomes plus a range of likely future outcomes around the best guess.  Such a 
range is commonly referred to as a confidence interval with certain confidence level, which 
provides information indicating where the output is likely to be and how much percent of 
chances the output is probably to be with the estimates.  Hence, solving the neural network 
regression problem consists of two parts - developing a nonlinear regression model and 
computing the range of likely future outputs. The range of possible outputs will 
quantitatively provide how large difference between the real output and the best guess from 
a statistical point of view when unseen data are fed into the model.  Moreover, as discussed 
below, the confidence interval varies with the structure of a neural network, which provides 
a practical reference for people to select the structure of a neural network.  In this section, 
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will be presented. Then, how a prediction interval changes with the structure of a neural 
network will be demonstrated through an example.       
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From Equation (1), it is assumed that the true output of an m-layer neural network is 
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m ∗a x w , where x is the input vector, and w* represents the true values of the weight vector 

from the weight value space Ω . For simplicity, m
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addition, the output of the neural network will be considered as a one-dimensional vector, i.e. 
ai=ai. The error, εi, associated with the function in modeling is supposed to be independently 
and identically distributed with variance, 2σ , where the distribution has the form N(0, 2σ ), 
i.e. normal distribution with the mean of zero and the variance of 2σ .  With each of Q 
experimental data, the output of the function is represented by  
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The estimated vector, ŵ , is obtained by minimizing the performance index (12) using 
training data.  However, due to many factors, e.g. noisy training patterns or limited number 
of nodes, the vector, ŵ , can be a good estimation of, or say close to, the true value, w*, of the 
weight parameters but not equal to them. Considering a neural network as a nonlinear 
regression model, the linear approximation to this nonlinear regression model can be 
obtained via the Taylor series expansion of the function to the first order (Seber et al., 1989).  
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Hence, the confidence interval 100 (1 )α× −  for the estimated value, ˆia , will be  

 T 1 1/2
/2,ˆ (1 { ( ) ( )} )i Q n i ia t s a aα

−
−± × × +∇ ∇T

w wJ w J w  (23) 

where the parameter,α , denotes the level of significance and /2,Q ntα − is the (1 / 2)α−  
quartile of a t - distribution with Q-n degrees of freedom.  
In order to use the above equation to estimate the likely range of a system output, the model 
errors should be independently and normally distributed with zero means (Chryssolouris  
et al., 1996) which can be generally satisfied by practical cases. However, it is also indicated 
that the confidence bound estimation method is asymptotically valid when a large set of 
training data is available (Hwang & Ding, 1997). With a small set of training data and 
relatively large set of parameters, the matrix JT(w)J(w) can be singular. In this case, the 
estimated confidence intervals are unreliable.  According to Yang et. al (Yang et al., 2002), 
the performance index can be changed into the following,  

 2 2

1 1
( ) ( ( , ))

Q n

i i i i
i i

E t a wλ
= =

= − +∑ ∑w x w , (24) 

where 0λ >  is a decay parameter.  The confidence interval for feedforward neural networks 
trained by weight decay is  

 T T TT 1 1 1/2
/2,ˆ (1 { ( ) ( ) } ( ) ( ){ ( ) ( ) } )i Q n i ia t s a aα λ λ− −

−± × × +∇ + + ∇w wJ w J w I J w J w J w J w I  (25) 

3.2 An example of neural network regression 
In order to illustrate how a neural network regression model works, an example is taken 
below.  Consider the following function, 

 ( )  0.5 0.4sin(2 )f x xπ ε= + + , (26) 

where ε is the random noise normally distributed with the mean of zero and the standard 
deviation of 0.05.  A data set of 21 points with equal intervals between 0 and 1 is chosen as 
inputs to the function.  
For convenience of discussion, the feedforward neural network is chosen as one hidden 
layer and linear nodes in the output layer.  Hence, it can be mathematically represented by 
the following equation, 

 2 1 1 2( ) ( )i ia x b= +h ow ;   1 1 1
ix= +o w b ;     i=1,...,21 (27) 

where xi and ai, as defined previously, denote input and output, respectively; 
 and k kw b (k=1,2) , as the same as in Equation (2), are the weights and biases of the network 

with 1 11 12 1,s s× ×∈ℜ ∈ℜw w , 12 1,∈ℜ ∈ℜsb b  where 1s is the number of hidden nodes; h1(.) is 
the activation function vector in the hidden layer.  The activation function h1(o1) is chosen as 
a hyperbolic tangent sigmoid function and can be alternatively written by 1 1( ) =h o  

2 2

T1 1 1
1 1 2 2( ) ( ) ( )s sh o h o h o⎡ ⎤

⎣ ⎦ with 1( ) tanh( ) ( ) /( )i i i io o o o
i i ih o o e e e e− −= = − + . 

In order to train the neural network, the initial weights and biases are random numbers 
uniformly distributed between -1 and 1. The Levenberg-Marquardt backpropagation 
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algorithm is used to train the neural network. The initial value of μ is chosen as 0.001. The 
parameter γ  is chosen as 10. The number of epochs is 1000. Equation (25) is used to calculate 
the prediction interval, where the parameter, λ, is chosen as 0.0001. And 95% confidence 
level is used for the simulation.  
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Fig. 2. Neural model of f(x) with one hidden node. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks - testing data; solid line - neural network 
output; dashed lines - 95% confidence interval 
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Fig. 3. Neural model of f(x) with two hidden nodes. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks -  testing data; solid line - neural 
network output; dashed lines - 95% confidence interval 
Fig. 2 shows the training data points and the neural network output with one hidden node 
(left figure). After training, the neural network model is used to predict the output of 15 
unseen inputs which are corrupted with normally distributed noise of N(0, 0.052).  The right 
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Hence, the confidence interval 100 (1 )α× −  for the estimated value, ˆia , will be  
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where ε is the random noise normally distributed with the mean of zero and the standard 
deviation of 0.05.  A data set of 21 points with equal intervals between 0 and 1 is chosen as 
inputs to the function.  
For convenience of discussion, the feedforward neural network is chosen as one hidden 
layer and linear nodes in the output layer.  Hence, it can be mathematically represented by 
the following equation, 

 2 1 1 2( ) ( )i ia x b= +h ow ;   1 1 1
ix= +o w b ;     i=1,...,21 (27) 

where xi and ai, as defined previously, denote input and output, respectively; 
 and k kw b (k=1,2) , as the same as in Equation (2), are the weights and biases of the network 

with 1 11 12 1,s s× ×∈ℜ ∈ℜw w , 12 1,∈ℜ ∈ℜsb b  where 1s is the number of hidden nodes; h1(.) is 
the activation function vector in the hidden layer.  The activation function h1(o1) is chosen as 
a hyperbolic tangent sigmoid function and can be alternatively written by 1 1( ) =h o  

2 2

T1 1 1
1 1 2 2( ) ( ) ( )s sh o h o h o⎡ ⎤

⎣ ⎦ with 1( ) tanh( ) ( ) /( )i i i io o o o
i i ih o o e e e e− −= = − + . 

In order to train the neural network, the initial weights and biases are random numbers 
uniformly distributed between -1 and 1. The Levenberg-Marquardt backpropagation 
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algorithm is used to train the neural network. The initial value of μ is chosen as 0.001. The 
parameter γ  is chosen as 10. The number of epochs is 1000. Equation (25) is used to calculate 
the prediction interval, where the parameter, λ, is chosen as 0.0001. And 95% confidence 
level is used for the simulation.  
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Fig. 2. Neural model of f(x) with one hidden node. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks - testing data; solid line - neural network 
output; dashed lines - 95% confidence interval 
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Fig. 3. Neural model of f(x) with two hidden nodes. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks -  testing data; solid line - neural 
network output; dashed lines - 95% confidence interval 
Fig. 2 shows the training data points and the neural network output with one hidden node 
(left figure). After training, the neural network model is used to predict the output of 15 
unseen inputs which are corrupted with normally distributed noise of N(0, 0.052).  The right 
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side of Fig. 2 provides the predicted output of the neural network, which is drawn in solid line, 
the testing data (in asterisk symbol) and the confidence interval (in dashed line) with 95% 
confidence level. As can be seen, the neural network model provides a wide prediction range 
as a consequence of limited capability of the neural network with only one hidden node.   
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Fig. 4. Neural model of f(x) with five hidden nodes. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks - testing data; solid line - neural network 
output; dashed lines - 95% confidence interval. 
The simulation was repeated 100 times. After each simulation, the maximal predicted 
interval of 15 points was recorded. The average of the maximal predicted intervals for 100 
times of simulations is 0.7524. By comparing to the range of the function f(x), which is 
between 0 and 1, the predicted interval is found to be too wide. A better fit and prediction 
ability of the neural network can be obtained by increasing the number of hidden nodes.  
Fig. 3 shows the neural network output with two hidden nodes, which gives a much better 
approximation to f(x). The average of maximal predicted intervals over 100 times of 
simulations is 0.2889. However, if the number of hidden nodes is too large, then, the error 
due to approximation to the underlying function becomes worse. Fig. 4 shows the result of 
fitting the function f(x) using the neural network that contains five hidden nodes.  Since the 
neural network has fitted the data by developing some dramatic oscillations, it eventually 
provides a poor prediction of f(x) with wide confidence interval at some points, where the 
neural network fitting to noisy data points can be seen. 
In order to examine how the number of hidden nodes impacts the prediction interval, the  
number of hidden nodes was chosen to be one, two, three, four and five. For each case, the 
simulation was repeated 100 times, and the average of the maximal prediction intervals 
were calculated accordingly. The results are shown in Table 1. From Table 1, it can be 
observed, that, for this example, the neural network with two hidden nodes provides the 
best prediction. When the number of hidden nodes increases, redundant nodes exist in the 
neural network, which lead the neural network to overfit some noisy data.  Consequently, a 
wide confidence interval at some points indicates imprecise prediction. 
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Number of hidden nodes 1 2 3 4 5 
Average of maximal prediction 
intervals by 100 times simulations 0.7524 0.2889 0.3117 0.3149 5.3223 

Table 1. Average of maximal prediction intervals versus the number of hidden nodes 

4. Modeling and prediction of nonlinear elastic behavior of reinforced soil  
In this section, a practical application of feedforward neural networks to modeling of 
nonlinear behavior of composite materials will be presented. In particular, soil reinforced 
with geofiber and lime powder is taken as a composite material to be investigated as an 
example of such an application. 
Mechanical behavior of soil under static and dynamic loading plays an important role in 
performance of infrastructures such as durability of pavement and road beds, and stability 
of slopes and bridge foundations, etc. To improve engineering properties, soil reinforced 
with other materials becomes widely applied in geotechnical engineering (Michalowiski & 
Zhao, 1995, and Li & Ding, 2002). Although the performance can be significantly improved 
when soil is reinforced with short fiber and stabilized with lime powder, quantitative 
evaluation of enhancement of soil mechanical behavior is still difficult since the stress-strain 
relation is highly nonlinear and sensitive to various factors such as lime and fiber contents, 
confining pressures, sample curing periods mixed with lime, etc. (Li & Zhang, 2003).  
Traditionally, modeling of engineering materials was conducted by taking the following three 
steps. First, a constitutive model (e.g., a nonlinear elastic model) needs to be established.  
Second, constitutive parameters are identified and calibrated with experimental data using a 
conventional method (e.g. linear regression). Third, the constitutive model needs to be 
validated using experimental data from a laboratory or field (e.g., shearing tests). Since the 
constitutive parameters are nonlinear functions of multiple variables, a traditional approach 
cannot calibrate the parameters accurately and efficiently. In particular, when soil is mixed 
with lime powder and fibers, the constitutive parameters become a function of many 
interrelated variables. Under the circumstance, the coupling effects among different variables 
may significantly impact on the relationship of stress and strain. The coupling effects, 
however, cannot be practically described in a traditional model due to their intrigued nature 
and significant amount of experimental work. In this section, it is proposed that the nonlinear 
elastic behavior of composite soils is to be modeled using a feedforward neural network.  
Applying neural network regression to modeling of reinforced soil is a new research topic. 
Till now, very few discussions of the potential application of neural networks in civil 
engineering have been found, for instance, modeling of shear strength of reinforced concrete 
beams (Rajasekaran & Amalraj, 2002) and estimation of resilient modulus of aggregate base 
using a feedforward neural network (Issa & Zamam, 1999). Therefore, relatively detailed 
description of the necessary knowledge regarding experimental investigation and data 
acquisition is provided in this section. Then, neural network training as well as the 
prediction using a neural network regression model with unseen inputs will be presented, 
which provides statistical justification for the case analysis and decision making in 
construction using the neural network model. Finally, the parameter sensitivities to the 
inputs such as fiber and lime contents, confining pressure, sample aging period are analyzed 
based on the neural network regression model (He & Li, 2008 and 2006). 
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Fig. 4. Neural model of f(x) with five hidden nodes. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks - testing data; solid line - neural network 
output; dashed lines - 95% confidence interval. 
The simulation was repeated 100 times. After each simulation, the maximal predicted 
interval of 15 points was recorded. The average of the maximal predicted intervals for 100 
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Fig. 3 shows the neural network output with two hidden nodes, which gives a much better 
approximation to f(x). The average of maximal predicted intervals over 100 times of 
simulations is 0.2889. However, if the number of hidden nodes is too large, then, the error 
due to approximation to the underlying function becomes worse. Fig. 4 shows the result of 
fitting the function f(x) using the neural network that contains five hidden nodes.  Since the 
neural network has fitted the data by developing some dramatic oscillations, it eventually 
provides a poor prediction of f(x) with wide confidence interval at some points, where the 
neural network fitting to noisy data points can be seen. 
In order to examine how the number of hidden nodes impacts the prediction interval, the  
number of hidden nodes was chosen to be one, two, three, four and five. For each case, the 
simulation was repeated 100 times, and the average of the maximal prediction intervals 
were calculated accordingly. The results are shown in Table 1. From Table 1, it can be 
observed, that, for this example, the neural network with two hidden nodes provides the 
best prediction. When the number of hidden nodes increases, redundant nodes exist in the 
neural network, which lead the neural network to overfit some noisy data.  Consequently, a 
wide confidence interval at some points indicates imprecise prediction. 
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with geofiber and lime powder is taken as a composite material to be investigated as an 
example of such an application. 
Mechanical behavior of soil under static and dynamic loading plays an important role in 
performance of infrastructures such as durability of pavement and road beds, and stability 
of slopes and bridge foundations, etc. To improve engineering properties, soil reinforced 
with other materials becomes widely applied in geotechnical engineering (Michalowiski & 
Zhao, 1995, and Li & Ding, 2002). Although the performance can be significantly improved 
when soil is reinforced with short fiber and stabilized with lime powder, quantitative 
evaluation of enhancement of soil mechanical behavior is still difficult since the stress-strain 
relation is highly nonlinear and sensitive to various factors such as lime and fiber contents, 
confining pressures, sample curing periods mixed with lime, etc. (Li & Zhang, 2003).  
Traditionally, modeling of engineering materials was conducted by taking the following three 
steps. First, a constitutive model (e.g., a nonlinear elastic model) needs to be established.  
Second, constitutive parameters are identified and calibrated with experimental data using a 
conventional method (e.g. linear regression). Third, the constitutive model needs to be 
validated using experimental data from a laboratory or field (e.g., shearing tests). Since the 
constitutive parameters are nonlinear functions of multiple variables, a traditional approach 
cannot calibrate the parameters accurately and efficiently. In particular, when soil is mixed 
with lime powder and fibers, the constitutive parameters become a function of many 
interrelated variables. Under the circumstance, the coupling effects among different variables 
may significantly impact on the relationship of stress and strain. The coupling effects, 
however, cannot be practically described in a traditional model due to their intrigued nature 
and significant amount of experimental work. In this section, it is proposed that the nonlinear 
elastic behavior of composite soils is to be modeled using a feedforward neural network.  
Applying neural network regression to modeling of reinforced soil is a new research topic. 
Till now, very few discussions of the potential application of neural networks in civil 
engineering have been found, for instance, modeling of shear strength of reinforced concrete 
beams (Rajasekaran & Amalraj, 2002) and estimation of resilient modulus of aggregate base 
using a feedforward neural network (Issa & Zamam, 1999). Therefore, relatively detailed 
description of the necessary knowledge regarding experimental investigation and data 
acquisition is provided in this section. Then, neural network training as well as the 
prediction using a neural network regression model with unseen inputs will be presented, 
which provides statistical justification for the case analysis and decision making in 
construction using the neural network model. Finally, the parameter sensitivities to the 
inputs such as fiber and lime contents, confining pressure, sample aging period are analyzed 
based on the neural network regression model (He & Li, 2008 and 2006). 
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4.1 Problem background and experiment setup    
4.1.1 Shear stress-strain relation 
The nonlinear elastic behavior exhibited by soil mixed with short fiber and lime powder can 
be affected by many factors. The shear stress-strain relation of soil skeleton in terms of the 
second invariants of deviatoric tensors in a three-dimensional space can be expressed by 

 s sσ Eε=  (28) 

where εs denotes a shear strain invariant related to the second invariant of a deviatoric stress 
tensor; σs denotes a shear strain invariant associated with the second invariant of a 
deviatoric strain tensor. E is the shear modulus and a function of mechanical properties of 
the reinforced soil such as the initial shear modulus and strength of reinforced soil.  
Since the objective of experiment under the investigation aims to understand the mechanical 
behavior of subgrade soil reinforced with short fiber and stabilized with lime, consequently, 
the shear modulus, E, is assumed to be a function of multi-variables, such as shear strain, 
confining stress, fiber and lime contents. Moreover, when the soil samples are mixed with 
lime powder, the curing time (or aging period) before a shearing test will be an auxiliary 
variable with lime content.  
For convenience of experimental investigations using a conventional triaxial apparatus, it is 
necessary to simplify the stress-strain relation (28) from a true three-dimensional space to an 
expression in a quasi three-dimensional space. In the simplified space, the stress-strain 
relation in Equation (28) reduces to 

 σa = E (σ0, εa, βF, βL, t) εa  (29) 

where σ0 is confining pressure; σa and εa denote the principal stresses and strains in three-
dimension that are individually simplified from the invariants of the deviatoric stress and 
strain tensors; βF and βL are contents of fiber and lime, respectively; t is the curing time of soil 
sample before shear testing. For conventional triaxial shearing tests, σa and εa can simply 
represent the axial stress and strain respectively. To provide the input data for training and 
validating a feedforward neural network model, experimental tests need to be conducted in 
laboratory first so that the stress-strain relationship in Equation (29) can be determined. 

4.1.2 Experiment and testing data 
In laboratory, nine groups of unsaturated and reinforced soil samples were subjected to 
triaxial shearing tests. The tested soil has the following physical properties: the wet unit 
weight γwet = 16.66 kN/m3; plastic limit PL = 5%; the soil classification (AASHTO) is A4. The 
specimen is cylindrical with a dimension of 6.86 cm in diameter and 13.72 cm in height. The 
sample preparation and testing followed the AASHTO code T297 (or ASTM D4767) with 
special consideration for the procedure of mixing short geofiber (5 cm) with soil. Nine 
groups of soil specimens were prepared with βF = 0%, 0.2% and 0.5%; βL = 0% and 5%; and t 
=1, 7, 14 and 28 days before shearing tests.  Unsaturated specimens were tested under a 
consolidated-undrained condition using a conventional triaxial apparatus. The controlled 
shear loading rate was 0.006 min-1. Four different confining pressures (σ0 = 50, 100, 150, and 
200 kPa) were applied to specimens in each group. The combination of selected fiber 
contents, lime contents, confining pressures and aging periods of soil specimens generates 
thirty four sets of experimental setup which is listed in Table 2. 
Testing results from 34 shear tests were collected and processed through a data acquisition 
system. For purpose of demonstration, testing curves of 30 stress-strain (σa -εa) relations are 
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Set No. Test No. βF(%) βL(%) σ0 (kPa) t(day) 
1 S11 0 0 50.0 1 
2* S12 0 0 100.0 1 
3 S13 0 0 150.0 1.0 
4 S14 0 0 200.0 1.0 
5 F5 0.2 0 50.0 1.0 
6 F6 0.2 0 100.0 1.0 
7 F7 0.2 0 150.0 1.0 
8 F8 0.2 0 200.0 1.0 
9 F5-5 0.5 0 50.0 1.0 

10 F5-6 0.5 0 100.0 1.0 
11 F5-7 0.5 0 150.0 1.0 
12 F5-8 0.5 0 200.0 1.0 
13 Slf2 0.2 5.0 50.0 7.0 
14 Slf1,11, 9 0.2 5.0 100.0 7.0 
15 Slf6,17 0.2 5.0 150.0 7.0 
16 Slf3,15 0.2 5.0 200.0 7.0 
17 Slf5,12,16 0.2 5.0 50.0 14.0 
18 Slf4 0.2 5.0 100.0 14.0 
19 Slf7,8 0.2 5.0 150.0 14.0 
20 Slf14 0.2 5.0 50.0 28.0 
21* Slf13 0.2 5.0 100.0 28.0 
22 Slf18,19,20 0.2 5.0 150.0 28.0 
23* Slf5-1 0.5 5.0 50.0 7.0 
24 Slf5-2 0.5 5.0 100.0 7.0 
25 Slf5-4,5-10 0.5 5.0 150.0 7.0 
26 Slf5-6,5-12 0.5 5.0 200.0 7.0 
27 Slf5-3 0.5 5.0 50.0 14.0 
28 Slf5-5 0.5 5.0 100.0 14.0 
29 Slf5-7, 5-11 0.5 5.0 150.0 14.0 
30 Slf5-8 0.5 5.0 200.0 14.0 
31 Slf5-16 0.5 5.0 50.0 28.0 
32 Slf5-13 0.5 5.0 100.0 28.0 
33 Slf5-14 0.5 5.0 150.0 28.0 
34* Slf5-15 0.5 5.0 200.0 28.0 

 
 

Table 2. Experimental Conditions 

drawn in Fig. 5. In the figure, solid squares, down-triangles, asterisks and five-point stars 
represent experimental data with confining pressures, σ0, of 50, 100, 150 and 200 kPa, 
individually.  In each subfigure of Fig. 5, the chosen fiber content βF, lime content βL, as well 
as the curing period of soil sample t, are provided at the bottom of each subfigure.  From the 
subfigures, it can be seen that the strength of reinforced soil can be improved by increasing 
the fiber content, βF, without adding lime powder (βL = 0%) and holding the aging period of 
1 day.  If the fiber content changes from 0% to 0.5%, the maximum value of axial stress, σa, 
can vary from 280 kPa to 500 kPa (see subfigures 1~3 of Fig. 5). Furthermore, by adding lime 
and prolonging the aging period, the axial stress (soils strength) can be notably enhanced 
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(see subfigures 4~6 of Fig. 5).  Similarly, soil elastic modulus and strength are also evidently 
improved with increasing the fiber content βF (see subfigures 7~9 of Fig. 5). 
Testing results in Fig. 5 indicate high nonlinearity between the axial stress and axial strain 
affected by four variables. To describe such mechanical behavior, a feedforward neural 
network model is used to predict the nonlinear relationship between multiple inputs and 
the output.   

4.2 Modeling and predicting nonlinear elastic behavior of reinforced soil    
As indicated in Equation (28), the axial stress, σa, is a nonlinear function of variables σ0, βF, 
βL, t and the axial strain, εa.  The  function is to be approximated using a feedforward neural 
netowork. To validate the results of neural network regression, the prediction confidence of 
soil deformation using the feedforward neural network is analyzed. 

4.2.1 Modeling of the reinforced soil  
To train the feedforward neural network, the variables of fiber content βF, lime content βL, 
confining pressure σ0 , sample curing period t and axial strain εa  are applied as inputs to the 
  

 
Fig. 5. Relationship of σa vs.  εa with different confining pressures (CP) (Experiment data: 
Symbols with CP values: ■50 kPa, ▼100 kPa, ✸150 kPa, 200 kPa;   The outputs of  the 
neural network are in solid lines) 
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neural network while the corresponding axial shear stress, σa, is designated as the output.  
Thirty four sets of data in Table 2 (Seventeen axial strain values in each set within a range 
from 0.3% to 15.25%) generate 578 (=34×17) input patterns. Accordingly, 578 measured 
values of the axial shear stress are the targets for neural network to learn and test. As 
presented in Fig. 5, thirty sets of data which produces 510 input/output patterns 
(30×17=510) are used to train the neural network, whereas the remaining 68 input/output 
patterns (4 sets) marked with the asterisk sign, *, in Table 2 are applied to test the neural 
network model.  The testing data are chosen to represent low, median and high nonlinearity 
of soil mechanical behavior. 
Without loss of generality, one-hidden-layer feedforward neural network with linear output 
layer is chosen. In addition, in order to make the neural network converge quickly, the 
scaling factors 0.01, 10, 1.0, 0.1 and 0.1 are used for the inputs σ0 (kPa), βF (%), βL (%), t (day) 
and εa (kPa), respectively.  Similarly, the axial shear stress, σa, is scaled by a factor of 0.0001.  
Thus, the input vector for training the neural network is x = [0.01σ0, 10βF, βL, 0.1t, 0.1εa]T and 
the desired output is 0.0001σa. With the input, x and the output, aNσ , the neural network 
model is defined as follows, 

 2 1 1 2
a( ) ( )iN bσ = +x h ow ;   = +1 1 1

io w x b ;     i=1,...,510 (30) 

As discussed in Section 3, the number of hidden nodes should be  chosen so that the neural 
network model will not overfit the noisy data.  After several times of pretraining and 
prediction capability analysis, the number of hidden nodes has been accordingly chosen as 6.   
The Levenberg Marquardt backpropagation training algorithm is chosen to train the neural 
network. The parameters are chosen as follows: the weights and biases are initialized with 
the random numbers uniformly distributed between -1 and 1; the maximal number of 
training epochs is 1,500; the error goal is that the sum of squared errors (SSE) is less than or 
equal to 0.002.  The adaptive factor, μ, is initialized as 0.0001 and the update factor, γ, is 
assumed to be 10. After 702 epochs, the sum of squared errors (SSE) monotonically 
decreases to 0.00199. After the training, the outputs from the neural network are plotted in 
Fig. 5 in solid lines along with testing data.  

4.2.2 Approximation error and prediction performance  
As aforementioned, the most important criterion to evaluate a neural network model is its 
capacities of generalization and prediction. The prediction intervals for the trained neural 
network (30) are calculated and analyzed. 
Before Equation (30) is used to predict the axial stress, σa, with unseen values of the variables 
σ0, βF, βL, t and εa, the modeling errors between the experimental data and the neural network 
regression model are computed. The errors are sorted with the interval of 20 (i.e., -120, -100, ...,-
20, 0, 20, …,100, 120) and depicted in Fig. 6. The mean value of the errors is 0.05 kPa.  
Compared to the shear stress values of the experiment, which are between 11.2 kPa and 3667.8 
kPa, the mean value is small enough to be considered as zero. The standard deviation of the 
normal distribution is 19.8 kPa.  The unbiased estimator, s, is 20.69 kPa. 
With the trained weights, when the testing input patterns are fed into the neural network, 
the corresponding outputs are predicted.  The mean value and standard deviation of errors 
between experimental data and the outputs of the neural network are 12.2 kPa and 39.5 kPa, 
respectively, which is relatively larger than the errors provided by training data.     
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(see subfigures 4~6 of Fig. 5).  Similarly, soil elastic modulus and strength are also evidently 
improved with increasing the fiber content βF (see subfigures 7~9 of Fig. 5). 
Testing results in Fig. 5 indicate high nonlinearity between the axial stress and axial strain 
affected by four variables. To describe such mechanical behavior, a feedforward neural 
network model is used to predict the nonlinear relationship between multiple inputs and 
the output.   

4.2 Modeling and predicting nonlinear elastic behavior of reinforced soil    
As indicated in Equation (28), the axial stress, σa, is a nonlinear function of variables σ0, βF, 
βL, t and the axial strain, εa.  The  function is to be approximated using a feedforward neural 
netowork. To validate the results of neural network regression, the prediction confidence of 
soil deformation using the feedforward neural network is analyzed. 

4.2.1 Modeling of the reinforced soil  
To train the feedforward neural network, the variables of fiber content βF, lime content βL, 
confining pressure σ0 , sample curing period t and axial strain εa  are applied as inputs to the 
  

 
Fig. 5. Relationship of σa vs.  εa with different confining pressures (CP) (Experiment data: 
Symbols with CP values: ■50 kPa, ▼100 kPa, ✸150 kPa, 200 kPa;   The outputs of  the 
neural network are in solid lines) 
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Fig. 6. Distribution of the errors between desired outputs (from 510 experimental data) and 
corresponding neural network outputs 
 

 
Fig. 7. Testing data with 95% confidence intervals (Experimental data are drawn with the 
inverse triangle, asterisks, solid squares and five-point stars; the outputs of the neural 
network are drawn in solid lines. The confidence levels are drawn in dashed lines.) 
According to Equation (23), the confidence intervals (with 95% confidence level) are 
calculated. Dashed lines in Fig. 7 show the envelope of confidence intervals of predicted 
outputs along the increase of axial shear strain for four sets of data. Actual experimental 
data are filled in the figure with down-triangles, asterisks and five-point stars and solid 
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squares, respectively. Although some points are close to certain lower bound values, e.g., 
the outputs of the neural network around 3,000 kPa in subfigure 4 of Fig. 7, all testing data 
are within its upper and lower bound values. The confidence intervals provide the envelope 
for prediction of a shear stress output. 

4.2.3 Sensitivity analysis of neural network-based parameters  
In opposition to the conventional model-based nonlinear technique, a neural network 
generalizes a model by learning from experimental data, which is particularly important 
when the underlying relationships of a researched object are unknown. Using the trained 
neural network model, soil mechanical behavior can be quantitatively analyzed with limited 
experimental data. 
 

 

Fig. 8. Axial stress vs. confining pressure and fiber content 
 

 
Fig. 9. Axial stress vs. confining pressure and sample aging period 

x10-3 
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Fig. 10. Axial stress vs. fiber content and sample aging period 

 
 

 
Fig. 11. Sensitivity analysis with dimensionless relations between the axial shear stress and 
variables (σ0*, βF*, βL*, t*) 

1. Soil mechanical behavior in response to variable coupling effects  
The diagrams in Figs. 5 and 7 provide a set of σa ~εa relations. Beyond the relations, one may 
be interested in how the variables like fiber content and lime content as well as aging period 
co-influence the strength of reinforced soil. In order to investigate parameter coupling 
effects, the axial strain at 10% is assumed for convenience of analysis. Based on the 
assumption, joined impacts of multiple variables on axial shear stress are calculated and 
illustrated by Figs. 8, 9 and 10, respectively. 
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Firstly, in Fig. 8, a joined impact of confining pressure, σ0, and fiber content, βF, on the 
estimated axial shear stress ( i.e. aNσ in Fig. 8) is presented for given lime content (βL= 0%) 
and sample curing period t (1 day). According to Fig. 8, if no fiber is added to the soil 
sample (i.e. βF = 0%), the axial stress appears linearly increased when the confining pressure 
changes from 50 kPa to 200 kPa. However, it can be observed that when 0.5% short fiber is 
mixed with the soil, the axial stress increases exponentially with the change of the confining 
pressure.  This suggests that the stress-strain relation is more sensitively in response to the 
fiber content than to the confining pressure though both of the two variables have 
significant impact in soil mechanical behavior. 
Secondly, the joined impact of confining pressure, σ0, and, aging period, t, on soil stress, σa, 
due to adding lime (βL=5%) is examined. Fig. 9 presents the increase of estimated stress 
value verse curing time of the lime mixed soil and confining pressure (with fiber content of 
0.2%).  Again it can be noted that the estimated stress curve, aNσ , is nonlinearly changed 
with the variations of aging period and confining pressure.  When aging period is short, e.g. 
1 day, adding lime powder seems to have less influence on axial shear stress.  The value of 
axial shear stress will be increased about 290 kPa (from 480 kPa to 770 kPa) with confining 
pressure raising from 50 kPa to 200 kPa. However, when aging period is extended to 28 
days, the variation of the axial stress along with the same range of confining pressure raises 
to 960 kPa (from 1,130 kPa to 1,990 kPa). This indicates that soil strength can be largely 
improved by prolonging aging period.  In addition, compared to Fig. 8, where the range of 
axial shear stress is between 100 kPa and 400 kPa, the value of axial shear stress in Fig. 9 can 
be increased from 500 kPa to 2,000 kPa. This implies that axial resistance between soil 
granular particles has been substantially enhanced by the extra bonding force due to 
chemical stabilization because of adding lime powder.  
Although Fig. 9 exhibits a significant contribution of lime powder with a longer aging 
period to the strength of the reinforced soil, it can also be observed that the axial stress is 
increased logarithmically along the aging period. 
Finally, Fig. 10 is used to illustrate the combined impact of the fiber contents and 5% lime 
content with different aging periods on nonlinear soil stress-strain relations. For given lime 
content βL = 5 % and confining pressures σ0 = 100 kPa, the change of axial shear stress along 
with different curing periods and fiber contents is shown in the figure. Besides highly 
nonlinear relation between axial shear stress and aging period and fiber content, it can be 
clearly observed that the values of axial stress increase exponentially with the increase of 
fiber content, whereas it increases logarithmically with the increase of aging period. This 
indicates the short fiber with additional tensile and shear resistance may play a more 
important role on further improvement of strength of the soil since an exponential function 
can increase much faster than a logarithmic function with same amount of input. 
The results presented in Figs. 8, 9 and 10 indicate: 1) the axial shear stress is a nonlinear 
function of multiple variables σ0, βF, βL, t and σa; 2) the strength of soil can be improved 
significantly by adding short fiber and lime powder with an aging period; 3) the axial shear 
stress increases exponentially with the increase of fiber content and logarithmically with a 
prolonging aging period when mixed with lime powder. 
2. Soil mechanical behavior in response to an individual variable 
In above section, the coupling effect among confining pressure, fiber content and lime 
content as well as aging period are qualitatively analyzed and tendencies of parameter 
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Firstly, in Fig. 8, a joined impact of confining pressure, σ0, and fiber content, βF, on the 
estimated axial shear stress ( i.e. aNσ in Fig. 8) is presented for given lime content (βL= 0%) 
and sample curing period t (1 day). According to Fig. 8, if no fiber is added to the soil 
sample (i.e. βF = 0%), the axial stress appears linearly increased when the confining pressure 
changes from 50 kPa to 200 kPa. However, it can be observed that when 0.5% short fiber is 
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pressure.  This suggests that the stress-strain relation is more sensitively in response to the 
fiber content than to the confining pressure though both of the two variables have 
significant impact in soil mechanical behavior. 
Secondly, the joined impact of confining pressure, σ0, and, aging period, t, on soil stress, σa, 
due to adding lime (βL=5%) is examined. Fig. 9 presents the increase of estimated stress 
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1 day, adding lime powder seems to have less influence on axial shear stress.  The value of 
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to 960 kPa (from 1,130 kPa to 1,990 kPa). This indicates that soil strength can be largely 
improved by prolonging aging period.  In addition, compared to Fig. 8, where the range of 
axial shear stress is between 100 kPa and 400 kPa, the value of axial shear stress in Fig. 9 can 
be increased from 500 kPa to 2,000 kPa. This implies that axial resistance between soil 
granular particles has been substantially enhanced by the extra bonding force due to 
chemical stabilization because of adding lime powder.  
Although Fig. 9 exhibits a significant contribution of lime powder with a longer aging 
period to the strength of the reinforced soil, it can also be observed that the axial stress is 
increased logarithmically along the aging period. 
Finally, Fig. 10 is used to illustrate the combined impact of the fiber contents and 5% lime 
content with different aging periods on nonlinear soil stress-strain relations. For given lime 
content βL = 5 % and confining pressures σ0 = 100 kPa, the change of axial shear stress along 
with different curing periods and fiber contents is shown in the figure. Besides highly 
nonlinear relation between axial shear stress and aging period and fiber content, it can be 
clearly observed that the values of axial stress increase exponentially with the increase of 
fiber content, whereas it increases logarithmically with the increase of aging period. This 
indicates the short fiber with additional tensile and shear resistance may play a more 
important role on further improvement of strength of the soil since an exponential function 
can increase much faster than a logarithmic function with same amount of input. 
The results presented in Figs. 8, 9 and 10 indicate: 1) the axial shear stress is a nonlinear 
function of multiple variables σ0, βF, βL, t and σa; 2) the strength of soil can be improved 
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In above section, the coupling effect among confining pressure, fiber content and lime 
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changes are depicted.  Furthermore, sensitivity of axial shear stress to each of the variables 
can be quantitatively analyzed. To present the work clearly, the neural network based axial 
stress-strain relation and relative variables are defined as follows, 

 a a 0 F L a( , , , , )N N tσ σ σ β β ε= . (31) 
 

where aNσ  represents the axial shear stress predicted by the feedforward neural network to 
distinguish the notations of the axial stress σa in early sections.  For purpose of investigation, 
the axial strain at failure is assumed (a =10%) and the initial values of other variables in (31) 
are individually chosen as 0i =100 kPa, βFi=0.25%, βLi =2.5% and ti =14 days where the 
subscript i denotes the initial value. Also for convenience of sensitivity analysis, the 
normalized deviations from initial input values and the corresponding outputs defined as 
the following form: X* = (X - Xi )/Xi = ∆X/Xi  and Y* = (Y -Yi )/Yi  = Y/Yi -1 where X and Y 
represent the inputs (i.e., 0, βF, βL or t) and the output [i.e., aNσ (0, βF, βL, t)]; Xi and Yi 
stand for the initial values of X and Y.  The normalized deviation of input variables can be 
alternatively written by X* = ∆X/Xi that changes from -1 to +1 when the incremental value 
∆X (i.e. ∆0, ∆βF, ∆βL or ∆t)  varies from -Xi to +Xi as the range chosen for sensitivity analysis.  
The dimensionless relation below exemplifies how the axial shear stress responds to the 
confining pressure: 
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The relation Na*(0*) in (31) against 0* in (32) is graphically drawn in a solid blue line in 
Fig. 11.  Similar to (31) and (32), the dimensionless relation Y* vs. X* for other variables such 
as Na*(βF*) ~ βF*, Na*(βL*) ~βL*, and Na*(t*) ~t* can be found accordingly and plotted in the 
same figure.   
The results in Fig. 11 display how sensitive the axial shear stress is when changing confining 
pressure, fiber content, lime content or aging period. In comparison of the relations Na* ~βL* 
(in a dash line) and Na* ~ t* (in a dot line) with Na* ~ βF*(in a dash-dot line), it can be 
observed that the soil axial shear stress is more responsive to the lime content than to the 
fiber content, and most sensitive to the soil-lime curing period among the four input 
variables.  For instance, for the given axial strain and initial values (0i = 100 kPa, βFi = 0.25%, 
βLi = 2.5% and a = 10%), if βF*, βL*, and t* increase by 100% (X* = 1.0) from their initial values, 
the soil axial strength is improved by 20%, 25% and 35%, respectively. The quantitative 
results in Fig. 11 are consistent with the coupling effects shown in Figs. 8, 9 and 10. The  fact 
that confining pressure substantially affects soil strength can be also observed in Fig. 11. 

5. Summaries and conclusions  
In this chapter, the standard backpropagation algorithm and the Levenberg-Marquardt 
backpropagation algorithm were derived in vector forms.  Then, the confidence intervals 
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and prediction intervals for the nonlinear structure like feedforward neural networks were 
discussed.  Particularly, the impact of neural network structure, i.e. the number of hidden 
nodes, to confidence intervals was analyzed and demonstrated via a simple example.  
Finally, modeling of nonlinear elastic behavior of the reinforced soil using a feedforward 
neural network was conducted. As an application, the sensitivity of the strength of 
reinforced soil to the constitutive parameters was analyzed using the neural network-based 
model.  From the work presented in this chapter, the following conclusions can be drawn:  
1. The standard backpropagation algorithm and the Levenberg-Marquardt backpro-

pagation algorithm were derived in vector forms. The vector forms of the 
backpropagation algorithms make training neural networks and computing confidence 
intervals more efficient and less error prone.  

2. Confidence intervals and prediction intervals for neural network regressions were 
presented.  Especially, when the Levenberg-Marquardt backpropagation algorithm is 
used to train a neural network, since the Jacobian matrix has been calculated to update 
the weights and biases of the neural network, the confidence interval with a confidence 
level can be easily computed to evaluate the predictive capability of the neural network 
which the unseen data is fed into.  A demonstrated example shows that too many 
hidden nodes in a neural network may result in a poor prediction, i.e. the prediction 
interval will be too wide since the trained neural network overfits noisy data.  
Meanwhile, not enough hidden nodes will also lead a poor prediction since the 
nonlinearity of a model cannot be fully identified. 

3. Modeling of nonlinear elastic behavior of the soil reinforced with short fiber and 
stabilized with lime powder using a feedforward neural network was performed. This 
is the first attempt to model the nonlinear elastic behavior of fiber-lime reinforced soil 
under multi-axial shear loading using a neural network. The results of modeling 
reinforced soil are satisfactory. From the experimental data, neural network model and 
prediction intervals calculation, the following three points can be summarized and 
concluded,  

a. Testing results indicate that the axial stress-strain relation is a nonlinear function of 
multiple variables, such as confining pressure, fiber content, lime content and sample 
curing time. To simulate such a nonlinear stress-strain relationship, a feedforward 
neural network is a good tool. The adopted neural network has one hidden layer with 
six nodes in it.  Five variables are designated as inputs to model nonlinear elastic 
behavior of the soil.  To train and test the neural network, thirty sets of data from 
conventional triaxial shear tests are selected to train the neural network and four sets of 
unseen data are adopted to evaluate the trained neural network. Using the derived 
approximate confidence interval equation (23), all predicted values of axial shear stress by 
the neural network model are within the envelope of the confidence interval with 
confidence level of 95%.  

b. Parameters sensitivity and coupling effect were analyzed using the neural network 
based model. The sensitivity analysis of soil mechanical property to the model inputs 
such as the fiber content, the lime content, confining pressure and the sample curing 
period was conducted. The quantitative results show that the soil mechanical property 
is more sensitive to the lime content than to the fiber content. The mechanical property 
of the soil-lime mixture can be substantially improved with a prolonging curing period, 
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changes are depicted.  Furthermore, sensitivity of axial shear stress to each of the variables 
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5. Summaries and conclusions  
In this chapter, the standard backpropagation algorithm and the Levenberg-Marquardt 
backpropagation algorithm were derived in vector forms.  Then, the confidence intervals 
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and prediction intervals for the nonlinear structure like feedforward neural networks were 
discussed.  Particularly, the impact of neural network structure, i.e. the number of hidden 
nodes, to confidence intervals was analyzed and demonstrated via a simple example.  
Finally, modeling of nonlinear elastic behavior of the reinforced soil using a feedforward 
neural network was conducted. As an application, the sensitivity of the strength of 
reinforced soil to the constitutive parameters was analyzed using the neural network-based 
model.  From the work presented in this chapter, the following conclusions can be drawn:  
1. The standard backpropagation algorithm and the Levenberg-Marquardt backpro-

pagation algorithm were derived in vector forms. The vector forms of the 
backpropagation algorithms make training neural networks and computing confidence 
intervals more efficient and less error prone.  
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used to train a neural network, since the Jacobian matrix has been calculated to update 
the weights and biases of the neural network, the confidence interval with a confidence 
level can be easily computed to evaluate the predictive capability of the neural network 
which the unseen data is fed into.  A demonstrated example shows that too many 
hidden nodes in a neural network may result in a poor prediction, i.e. the prediction 
interval will be too wide since the trained neural network overfits noisy data.  
Meanwhile, not enough hidden nodes will also lead a poor prediction since the 
nonlinearity of a model cannot be fully identified. 

3. Modeling of nonlinear elastic behavior of the soil reinforced with short fiber and 
stabilized with lime powder using a feedforward neural network was performed. This 
is the first attempt to model the nonlinear elastic behavior of fiber-lime reinforced soil 
under multi-axial shear loading using a neural network. The results of modeling 
reinforced soil are satisfactory. From the experimental data, neural network model and 
prediction intervals calculation, the following three points can be summarized and 
concluded,  

a. Testing results indicate that the axial stress-strain relation is a nonlinear function of 
multiple variables, such as confining pressure, fiber content, lime content and sample 
curing time. To simulate such a nonlinear stress-strain relationship, a feedforward 
neural network is a good tool. The adopted neural network has one hidden layer with 
six nodes in it.  Five variables are designated as inputs to model nonlinear elastic 
behavior of the soil.  To train and test the neural network, thirty sets of data from 
conventional triaxial shear tests are selected to train the neural network and four sets of 
unseen data are adopted to evaluate the trained neural network. Using the derived 
approximate confidence interval equation (23), all predicted values of axial shear stress by 
the neural network model are within the envelope of the confidence interval with 
confidence level of 95%.  

b. Parameters sensitivity and coupling effect were analyzed using the neural network 
based model. The sensitivity analysis of soil mechanical property to the model inputs 
such as the fiber content, the lime content, confining pressure and the sample curing 
period was conducted. The quantitative results show that the soil mechanical property 
is more sensitive to the lime content than to the fiber content. The mechanical property 
of the soil-lime mixture can be substantially improved with a prolonging curing period, 
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particularly within a duration from 0 to 28 days. From the analysis of coupling effect, 
the axial shear stress of composite soil increases exponentially with the increase of fiber 
content and logarithmically with an increasing aging period for the soil mixed with 
lime powder.  Sample curing time plays a more significant role than other factors. 

c. The neural network model provides a convenient and useful tool for analysis of 
mechanical behavior of composite soil and for applications to various engineering 
designs. With the confidence interval evaluation, the neural network model can be 
further applied to the stress-strain relation for large soil deformation  

6. Appendix  
Neural networks derive their advantages from their special structures – the massive 
interconnection of simple processing units.  If the weights and biases of a neural network are 
considered as elements of matrices, the matrix calculus will become very useful for 
developing new algorithms for training neural networks.  This appendix provides two basic 
chain rules for matrix derivatives.  Detailed information can be found in the books authored 
by Cichocki and Unbehauen (Cichocki and Unbehauen, 1993) and Lewis (Lewis, 1995). 
1. The general chain rule 
Theorem 1 Let : mD→ℜf be a differentiable real vector on an open r-dimensional  set rD ⊂ℜ , and 
let : S D→u  be differentiable on an open set n-dimensional nS ⊂ℜ . Then, the composite vector 
function F(x)=f(u(x)) is differentiable on the open set S. The general chain rule of the differentiation 
of the vector function F(x) is  

 / ( ) ( ( )) ( )∂ ∂ = =F f uF x J x J u x J x  (A.1) 

and the gradient matrix ∇xF  is 

  ∇ = ∇ ∇x x uF u f  (A.2) 

Proof is omitted. 
2. The chain rule for differentiation of a scalar function with respect to a matrix 
Theorem 2 Let ( )F h= f  be a differentiable real-valued scalar function of a real vector f, h: ℜm→ℜ 
and let T
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Proof: from the derivative of the scale function with respect to a variable matrix, one has  

Confidence Intervals for Neural Networks and Applications to Modeling Engineering Materials 

 

359 

 

11 12 1

21 22 2

1 2

( )

l

l

n n nl

f f f
w w w

f f f
f w w w

f f f
w w w

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

∂ ⎢ ⎥∂ ∂ ∂= ⎢ ⎥∂ ⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂⎣ ⎦

w
w

 (A.4) 

For each element of Equation (A.4), use the general chain rule to reach  
ij ijw wF F∇ = ∇ ∇f f , 

which can be alternatively expressed by: 

 ( ) ( )
( )ij ij

F h
w w

∂ ∂ ∂
=

∂ ∂ ∂
w f w

f w
 (A.5) 

For  
1 2

( )
m

h h h h
f f f

⎡ ⎤∂ ∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

f
f

 and T1 2( ) [ ]m

ij ij ij ij

f f f
w w w w

∂ ∂ ∂∂
=

∂ ∂ ∂ ∂
f w , Expression (A.5) 

becomes 

 
1

( )( )
( )

m
k

kij k ij

fF h
w f w=

∂∂ ∂
=

∂ ∂ ∂
∑

ww
w

. (A.6) 

When  i =1,…,n; j=1,…,l, (A.6) becomes: 

 
1

( )( )
( )

m
k

k k

fF h
f=

∂∂ ∂
=

∂ ∂ ∂
∑

ww
w w w

. (A.7) 

7. References  
Cichocki, A. & Unbehauen, R. (1993). Neural Networks for Optimisation and Signal Processing, 

New York: John Willey and Sons. 
Chryssoloiuris, G., Lee, M., and Ramsey, A., (1996), Confidence Interval Prediction for 

Neural Network Models,  IEEE Trans. Neur. Networks, 1, 229-232 
Hagan, M.T. & Menhaj, M.B. (1994).  Training feedforward networks with the Marquardt 

Algorithm, IEEE Trans. Neur. Networks, 5, 989-993 
He. S & Li, J. (2008).  Modeling Nonlinear Elastic Behavior of Reinforced Soil Using Artificial 

Neural Networks, Applied Soft Computing, 9(3), 954-961. 
He. S & Li, J.  (2006). Parameter Estimation of Reinforced Soil Based on Neural Networks, in: 

Proc. Int. Conf. on Computational Intelligence for Modeling, Control and 
Automation Sydney, Australia, 137-143. 

Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are 
universal approximations, Neur. Networks, 2, 359-366. 

Hwang, J.T.G. & Ding, A. A. (1997) Prediction intervals for artificial neural networks. J. 
American Statistical Association 92(438), 748-757. 



Artificial Neural Networks - Application 

 

358 

particularly within a duration from 0 to 28 days. From the analysis of coupling effect, 
the axial shear stress of composite soil increases exponentially with the increase of fiber 
content and logarithmically with an increasing aging period for the soil mixed with 
lime powder.  Sample curing time plays a more significant role than other factors. 

c. The neural network model provides a convenient and useful tool for analysis of 
mechanical behavior of composite soil and for applications to various engineering 
designs. With the confidence interval evaluation, the neural network model can be 
further applied to the stress-strain relation for large soil deformation  

6. Appendix  
Neural networks derive their advantages from their special structures – the massive 
interconnection of simple processing units.  If the weights and biases of a neural network are 
considered as elements of matrices, the matrix calculus will become very useful for 
developing new algorithms for training neural networks.  This appendix provides two basic 
chain rules for matrix derivatives.  Detailed information can be found in the books authored 
by Cichocki and Unbehauen (Cichocki and Unbehauen, 1993) and Lewis (Lewis, 1995). 
1. The general chain rule 
Theorem 1 Let : mD→ℜf be a differentiable real vector on an open r-dimensional  set rD ⊂ℜ , and 
let : S D→u  be differentiable on an open set n-dimensional nS ⊂ℜ . Then, the composite vector 
function F(x)=f(u(x)) is differentiable on the open set S. The general chain rule of the differentiation 
of the vector function F(x) is  

 / ( ) ( ( )) ( )∂ ∂ = =F f uF x J x J u x J x  (A.1) 

and the gradient matrix ∇xF  is 

  ∇ = ∇ ∇x x uF u f  (A.2) 

Proof is omitted. 
2. The chain rule for differentiation of a scalar function with respect to a matrix 
Theorem 2 Let ( )F h= f  be a differentiable real-valued scalar function of a real vector f, h: ℜm→ℜ 
and let T

1 2( ) [ ( ) ( ) ( )]mf f f=f w w w w be a differentiable vector function of the matrix w with 

11 12 1

21 22 2

1 2

l

l

n n nl

w w w
w w w

w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

w

.  
 

Then, the chain rule for the differentiation of the scalar function F with respect to the matrix w yields  
 

 
1

( )( )
( )

m
k

k k

fF h
f=

∂∂ ∂
=

∂ ∂ ∂
∑

ww
w w w

 (A.3) 

 

Proof: from the derivative of the scale function with respect to a variable matrix, one has  

Confidence Intervals for Neural Networks and Applications to Modeling Engineering Materials 

 

359 

 

11 12 1

21 22 2

1 2

( )

l

l

n n nl

f f f
w w w

f f f
f w w w

f f f
w w w

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

∂ ⎢ ⎥∂ ∂ ∂= ⎢ ⎥∂ ⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂⎣ ⎦

w
w

 (A.4) 

For each element of Equation (A.4), use the general chain rule to reach  
ij ijw wF F∇ = ∇ ∇f f , 

which can be alternatively expressed by: 

 ( ) ( )
( )ij ij

F h
w w

∂ ∂ ∂
=

∂ ∂ ∂
w f w

f w
 (A.5) 

For  
1 2

( )
m

h h h h
f f f

⎡ ⎤∂ ∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

f
f

 and T1 2( ) [ ]m

ij ij ij ij

f f f
w w w w

∂ ∂ ∂∂
=

∂ ∂ ∂ ∂
f w , Expression (A.5) 

becomes 

 
1

( )( )
( )

m
k

kij k ij

fF h
w f w=

∂∂ ∂
=

∂ ∂ ∂
∑

ww
w

. (A.6) 

When  i =1,…,n; j=1,…,l, (A.6) becomes: 

 
1

( )( )
( )

m
k

k k

fF h
f=

∂∂ ∂
=

∂ ∂ ∂
∑

ww
w w w

. (A.7) 

7. References  
Cichocki, A. & Unbehauen, R. (1993). Neural Networks for Optimisation and Signal Processing, 

New York: John Willey and Sons. 
Chryssoloiuris, G., Lee, M., and Ramsey, A., (1996), Confidence Interval Prediction for 

Neural Network Models,  IEEE Trans. Neur. Networks, 1, 229-232 
Hagan, M.T. & Menhaj, M.B. (1994).  Training feedforward networks with the Marquardt 

Algorithm, IEEE Trans. Neur. Networks, 5, 989-993 
He. S & Li, J. (2008).  Modeling Nonlinear Elastic Behavior of Reinforced Soil Using Artificial 

Neural Networks, Applied Soft Computing, 9(3), 954-961. 
He. S & Li, J.  (2006). Parameter Estimation of Reinforced Soil Based on Neural Networks, in: 

Proc. Int. Conf. on Computational Intelligence for Modeling, Control and 
Automation Sydney, Australia, 137-143. 

Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are 
universal approximations, Neur. Networks, 2, 359-366. 

Hwang, J.T.G. & Ding, A. A. (1997) Prediction intervals for artificial neural networks. J. 
American Statistical Association 92(438), 748-757. 



Artificial Neural Networks - Application 

 

360 

Issa, R. & Zaman, M. (1999). Estimating resilient modulus of aggregate base by 
backpropagation neural network model, in: Proc. 4th Int. Conf. on Constitutive Laws 
for Engineering Materials, New York, July, 493-496. 

Li, J. & Ding, D. W. (2002). Nonlinear elastic behavior of fiber-reinforced soil under cycle 
loading, J. of Soil Dynamics and Earthquake Engineering, 22 (9) (2002) 265-271. 

Li, J. & Zhang, L.J. (2003). Nonlinear elastic behavior of soil reinforced with fiber and lime, 
in: Proc. 12th Pan-American Conf. on Soil Mechanics and Geotechnical Engineering 
(eds. P. J. Culligan,, H. H. Einstein, and A. J. Whittle),  610-618. 

Lewis, F. L. (1995). Optimal Control, New York: Wiley-Interscience. 
Michalowiski, R. L. &  Zhao, A. (1995). Continuum versus structural approach to stability of 

reinforced soil, J. of Geotechnical Engineering ASCE, 121 (2) 152-162. 
Rajasekaran, S.  & Amalraj, R. (2002). Prediction of design parameter in civil engineering 

problems using SLNN with a single hidden RBF neuron, Computers & Structure, 80 
(31) 2495-2505. 

Seber, G.A.F. &  Wild, C.J.  (1989). Nonlinear Regression, New York, John Wiley and Sons. 
Yang, L., Kavli, T., Carlin, M., Clausen, S, & Groot, P. (2002). An evaluation of confidence 

bound estimation methods for neural networks, in Advances in Computational 
Intelligence and Learning: Methods and Applications, Kluwer Academic Publishers.  

17 

Landslide Susceptibility Mapping: 
an Assessment of the Use of an  

Advanced Neural Network Model  
with Five Different Training Strategies  

Dr. Biswajeet Pradha, Shattri Mansor and Saied Pirasteh 
Institute of Advanced Technology, Spatial & Numerical Modelling Laboratory 

University Putra Malaysia  
Serdang, 43400, Selangor Darul Ehsan 

Malaysia 

1. Introduction 
Landslide presents a significant constraint to development in many parts of Malaysia which 
experiences frequent landslides, with the most recent occurring in 2000, 2001, 2004, 2007 and 
2008. Damages and losses are regularly incurred because; historically there has been too little 
consideration of the potential problems in land use planning and slope stability analysis. 
Landslides are mostly occurred in Malaysia mainly due to heavy tropical rainfall. In recent 
years greater awareness of landslide problems has led to significant changes in the control of 
development on unstable land. So far, few attempts have been made to predict these 
landslides or preventing the damage caused by them. In last few years, landslide susceptibility 
analysis using GIS and data mining such as fuzzy logic, and artificial neural network methods 
have been applied by researchers in different countries (Akgun et al., 2008; Ercanoglu & 
Gokceoglu 2002; Gomez & Kavzoglu, 2005; Pistocchi et al. 2002; Lee et al. 2003a, 2003b, 2004a, 
2004b). But their result output can not be directly used in the Malaysian landslide 
susceptibility analysis. This is due to the changes in the geographical environment set up, litho 
types and different climatic conditions. The local geographical settings cause different 
landslide types based on completely different mechanisms and are absolute incomparable. 
Through scientific analysis of landslides, we can assess and predict landslide-susceptible areas, 
and thus decrease landslide damage through proper preparation. To achieve this aim, 
landslide susceptibility analysis techniques have been applied, and validated in the study area 
using five different training strategies with the aid of artificial neural network.  
In landslide literature, there have been many studies carried out on landslide susceptibility 
and hazard mapping using GIS. There are number of different approaches for the 
measurement of landslide hazard, including direct and indirect heuristic approaches, and 
deterministic, probabilistic, statistical and data mining approaches. Recently, there have 
been studies on landslide susceptibility mapping using GIS, and many of these studies have 
applied probabilistic models (Baeza and Corominas, 2001; Clerici et al., 2002; Dahal et al., 
2008; Dai et al., 2001; Lee & Dan, 2005; Lee & Lee, 2006; Lee & Min, 2001; Lee & Sambath, 



Artificial Neural Networks - Application 

 

360 

Issa, R. & Zaman, M. (1999). Estimating resilient modulus of aggregate base by 
backpropagation neural network model, in: Proc. 4th Int. Conf. on Constitutive Laws 
for Engineering Materials, New York, July, 493-496. 

Li, J. & Ding, D. W. (2002). Nonlinear elastic behavior of fiber-reinforced soil under cycle 
loading, J. of Soil Dynamics and Earthquake Engineering, 22 (9) (2002) 265-271. 

Li, J. & Zhang, L.J. (2003). Nonlinear elastic behavior of soil reinforced with fiber and lime, 
in: Proc. 12th Pan-American Conf. on Soil Mechanics and Geotechnical Engineering 
(eds. P. J. Culligan,, H. H. Einstein, and A. J. Whittle),  610-618. 

Lewis, F. L. (1995). Optimal Control, New York: Wiley-Interscience. 
Michalowiski, R. L. &  Zhao, A. (1995). Continuum versus structural approach to stability of 

reinforced soil, J. of Geotechnical Engineering ASCE, 121 (2) 152-162. 
Rajasekaran, S.  & Amalraj, R. (2002). Prediction of design parameter in civil engineering 

problems using SLNN with a single hidden RBF neuron, Computers & Structure, 80 
(31) 2495-2505. 

Seber, G.A.F. &  Wild, C.J.  (1989). Nonlinear Regression, New York, John Wiley and Sons. 
Yang, L., Kavli, T., Carlin, M., Clausen, S, & Groot, P. (2002). An evaluation of confidence 

bound estimation methods for neural networks, in Advances in Computational 
Intelligence and Learning: Methods and Applications, Kluwer Academic Publishers.  

17 

Landslide Susceptibility Mapping: 
an Assessment of the Use of an  

Advanced Neural Network Model  
with Five Different Training Strategies  

Dr. Biswajeet Pradha, Shattri Mansor and Saied Pirasteh 
Institute of Advanced Technology, Spatial & Numerical Modelling Laboratory 

University Putra Malaysia  
Serdang, 43400, Selangor Darul Ehsan 

Malaysia 

1. Introduction 
Landslide presents a significant constraint to development in many parts of Malaysia which 
experiences frequent landslides, with the most recent occurring in 2000, 2001, 2004, 2007 and 
2008. Damages and losses are regularly incurred because; historically there has been too little 
consideration of the potential problems in land use planning and slope stability analysis. 
Landslides are mostly occurred in Malaysia mainly due to heavy tropical rainfall. In recent 
years greater awareness of landslide problems has led to significant changes in the control of 
development on unstable land. So far, few attempts have been made to predict these 
landslides or preventing the damage caused by them. In last few years, landslide susceptibility 
analysis using GIS and data mining such as fuzzy logic, and artificial neural network methods 
have been applied by researchers in different countries (Akgun et al., 2008; Ercanoglu & 
Gokceoglu 2002; Gomez & Kavzoglu, 2005; Pistocchi et al. 2002; Lee et al. 2003a, 2003b, 2004a, 
2004b). But their result output can not be directly used in the Malaysian landslide 
susceptibility analysis. This is due to the changes in the geographical environment set up, litho 
types and different climatic conditions. The local geographical settings cause different 
landslide types based on completely different mechanisms and are absolute incomparable. 
Through scientific analysis of landslides, we can assess and predict landslide-susceptible areas, 
and thus decrease landslide damage through proper preparation. To achieve this aim, 
landslide susceptibility analysis techniques have been applied, and validated in the study area 
using five different training strategies with the aid of artificial neural network.  
In landslide literature, there have been many studies carried out on landslide susceptibility 
and hazard mapping using GIS. There are number of different approaches for the 
measurement of landslide hazard, including direct and indirect heuristic approaches, and 
deterministic, probabilistic, statistical and data mining approaches. Recently, there have 
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2006; Lee, 2004; Lee et al., 2002a, 2002b; Gokceoglu et al., 2000; Lee & Choi, 2003; Lee & 
Pradhan, 2006, 2007; Nefeslioglu et al., 2008; Santacana et al., 2003; Pradhan et al., 2006; 
Youssef et al., 2009). One of the multivariate models available, the logistic regression 
models, has also been applied to landslide susceptibility mapping (Chau & Chan, 2005; Dai 
& Lee, 2003; Lee, 2005, 2007a; Pradhan, 2010a; 2010c; Pradhan et al., 2008; Pradhan & Lee, 
2010a; Pradhan et al., 2010a; Pradhan & Youssef, 2010; Ohlmacher & Davis, 2003; Suzen & 
Doyuran, 2004a, 2004b). In last few years, a new approach to landslide hazard evaluation 
using GIS, data mining using fuzzy logic, and artificial neural network, neuro-fuzzy models 
have been applied (Catani et al., 2005; Caniani et al., 2008; Chang & Chao, 2006; Ercanoglu 
and Gokceoglu, 2002; Ercanoglu et al., 2004; Ermini et al., 2005; Kanungo et al., 2006; Lee, 
2007b; Lee & Evangelista, 2006; Lee et al., 2006, 2007; Neaupane & Achet, 2004; Pradhan, 
2010b, 2010d; 2010c; Pradhan et al., 2009; Pradhan et al., 2010a, b, c, d; Pradhan & 
Buchroithner, 2010; Pradhan & Lee, 2007, 2009, 2010a, 2010b, 2010c; Pradhan & Pirasteh, 
2010; Tangestani, 2004; Yesilncar & Topal, 2005). 
In recent years, Lee & Pradhan (2006), Lee & Pradhan (2007), and Pradhan & Lee (2010a) 
investigated the landslide susceptibility in Malaysia. Pradhan & Lee (2010a) evaluated three 
models for landslide susceptibility analysis using frequency ratio, logistic regression and 
artificial neural network model. Pradhan & Lee (2010a) analyzed the rainfall precipitation in 
the Penang area using back-propagation neural networks. However, they could not have a 
detail landslide hazard analysis due to lack of rainfall intensity data. Slope stability and 
rainfall intensity is very important factors causing most of the landslides in Malaysia. 
Besides these two important factors of rainfall and slope, soil weight and distance to 
drainage are also important factors in some regions. Pradhan et al., (2009) investigated the 
landslide susceptibility using fuzzy model at Penang Island and they pointed out some 
important factors, such as topographic slope, topographic aspect, topographic curvature, 
distance to drainage, lithology, distance to faults, soil texture, landcover, vegetation index 
and accumulated rainfall intensity.   
The objective and motivation of this study is to demonstrate artificial neural network model 
with five different training strategies for landslide susceptibility mapping with the aid of 
GIS. In order to get a stable and reliable result, in this paper, nine geological and 
geomorphological factors including, topographic slope, topographic aspect, topographic 
curvature, stream power index (spi), distance from drainage;, flow length, flow 
accumulation, topographic wetness index, distance to road, lithology, distance to the fault 
lines, soil types, land cover, and ndvi were used to predict landslide susceptible areas. These 
fourteen factors constructed an ANN using the back propagation algorithm for landslide 
susceptibility mapping. To meet the objectives, firstly the ANN model was trained using 
training sites which can be directly utilized for the landslide susceptibility analysis as long 
as the recorded nine factors are fed into an ANN model. Five different training samples 
were selected to train the ANN in order to avoid bias effect in the final results. Finally, the 
results of the landslide susceptibility maps were validated using the existing landslide 
location data with the aid of receiver operating characteristics (ROC) approaches. 

2. Study area characteristics 
In this research, a landslide-prone area in the Cameron Highlands in Peninsular Malaysia  
(Fig. 1) was selected for landslide susceptibility assessment using ANN model. The study area 
(Fig. 1) falls in the districts of Cameron Highlands which seeing a rapid development with 
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land clearing for housing estate, hotel /apartment causing erosion and landslides. Cameron 
Highland is a district of Pahang state which is one of the 13 states of the Federation of 
Malaysia. The District of Cameron Highlands is located in western Pahang bordering the 
states of Perak and Kelantan. The Pahang – Perak boundary runs approximately in a north – 
south direction along a sharp divide with numerous high peaks that rise over 1500m above the 
mean sea level. From north to south along this divide, the following peaks, Gunung Pass 
(1587m), two unnamed peaks (1501m and 1796m), Gunung Irau (2110m), Gunung Brinchang 
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Duri (1530m) are present. At Gunung Duri, the divide turns eastwards for about 10km before 
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an area of 285 km2 and is located near the northern central part of peninsular Malaysia. It is 
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and 2007 for collecting ground data. 
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scrub, grassland and ex-mining area. The slope angle of the area ranges from 0 degrees to as 
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Highlands peaks between March and May and also from November to December. The 
single-day rainfall high that had been recorded ranged from 87 to 100 mm. It is during such 
times that many streams and rivers in the Cameron Highlands may overflow, flooding the 
surrounding areas, and landslides such as debris flow may occur along the river valleys. 
The intensity of the rain is another factor that affects the fill slopes, causing severe sheet, rill, 
and gully erosion. During such times, many of the natural and man-made slopes are 
marginally stable. 

3. GIS data used 
For the landslide-susceptibility mapping, the main steps were data collection and 
construction of a spatial database from which the relevant landslide conditioning factors are 
extracted, followed by assessment of the landslide susceptibility using the relationship 
between landslide and landslide-conditioning factors, and validation of the results. In the 
first step, landslides were detected in the study area by interpretation of aerial photographs 
and extensive field surveys. A landslide inventory map was compiled from 1:10,000 – 
1:50,000 scale aerial photographs, and was used to evaluate the frequency and distribution 
of shallow landslides in the area. In addition, all historical landslide reports, newspaper 
records, and archived data have been assembled for the period under examination. The 
source material varies in quality with respect to the precise location of the landslide event. 
Based on the site description, archived database, and aerial photo interpretation, the 
locations of the individual landslides were drawn on 1:25, 000 maps, and the location was 
plotted as close as possible based on the classification scheme proposed by Varnes (1984). 
Field observations were used to confirm the fresh landslide locations (scars) and types. In 
the aerial photographs, historical landslides could be observed as breaks in the forest 
canopy, bare soil, or geomorphological features, like head- and side scarps, flow tracks, and 
soil- and debris deposits below a scar. These landslides were then classified and sorted out 
based on their modes of occurrence. The landslide inventory map was very helpful in 
understanding different triggering factors that control different slope movement types 
(Cruden & Varnes, 1996). Most of the landslides are shallow rotational, and there are a few 
translational and flow types. However, during the analyses that were performed in the present 
study, only the rotational failures are considered, and the other types of failures were 
eliminated because the occurrence of the other types of failures is rare and ignorable. 
Consequently, the susceptibility maps that are produced in this paper are valid for the shallow 
rotational failures. To assemble a database to assess the surface area and number of landslides 
in the study area, a total of 48 shallow rotational failures were mapped in the study area. The 
landslide inventory map that was compiled in the present study is shown in Fig. 1b. 
In order to develop a method for the assessment of landslide susceptibility, determination of 
the conditioning factors for the landslides is crucial (Ercanoglu & Gokceoglu, 2002). In fact, 
the regional landslide assessments should be practical and applicable for the study area. For 
the first requirement for this statement, the input parameters should be representative, 
reliable and obtained easily. In this study, we selected the input parameters considering 
field observations performed on the actual landslides. There were a total of seven landslide 
conditioning factors considered in the analyses performed. The basic landslide conditioning 
factors such as altitude, slope angle, plan curvature, distance to drainage, soil texture and 
stream power index were employed. As a result of the field observations, it was observed 
that the landslides have a close relation with the distance from the roads. For this reason, the 
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distance to the road was considered as a landslide conditioning factor for the study area, in 
addition to the basic landslide conditioning factors. All of the factors that were employed in 
this paper were transformed into a grid-type spatial database using the GIS (Fig. 2). 
Topography, soil, and road transport databases were constructed for the analysis (Fig. 2) 
(Table 1). Maps relevant to landslide occurrences were constructed from a vector-type 
spatial database using Arc/Info GIS software (ESRI). These included 1:25,000 scale 
topographic maps (National Mapping Agency, Malaysia) and 1:100,000 scale soil maps 
(Department of Irrigation and Drainage, Malaysia). For the digital elevation model (DEM) 
creation, 20-m interval contours, spot heights and survey base points showing the elevation 
values were extracted from the 1:25, 000-scale topographic maps. This is used to generate 
the DEM with 10-m pixel size and triangulated irregular network from which the altitude, 
slope angle, aspect, curvature and stream power index are derived [Fig. 2(a)–(d)]. The 
accuracy of the DEM was quantitatively accessed based on the several field-surveyed points 
using GPS and total station points (Pradhan et al., 2010d). A total of 130 GPS check points 
were used are used to evaluate the vertical accuracy of the DEM. As a quality assurance of 
DEM, the vertical accuracy of a set of terrain points is first determined by its root mean 
square error (RMSE), the square root of the average of the set of squared differences 
between two points. The RMSE between the “true” values and estimated values is defined 
as in Eq. (1): 
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where n is the number of field reference points, fieldZ  is the terrain height of points 
measured by GPS, DEMZ  is the height obtained from the DEM. In addition, the height 
differences between the DEM for the surveyed-check points were analyzed using standard 
statistical mean and standard deviation to determine the error. The analysis results (Table 2) 
revealed that the RMSE error for the obtained DEM was ± 2.39 m which is within the 
acceptable limit (Toz & Erdogan, 2008). Validation results of DEM revealed that, significant 
differences were not observed from the RMSE values which only differ slightly on each 
checking locations. 
 

Classification Sub-Classification GIS Data Type Scale 
Geological Hazard Landslide Polygon coverage 1:25,000 

Topographic Map Point, Line and 
Polygon coverage 1:25,000 

Geological Map Polygon coverage 1:63,300 
Drainage Line coverage 1: 25,000 

Land Cover GRID 2.50 m × 2.5 m 
Soil Map GRID 1:100,000 

Basic Map 

Normalised 
Differentiated 

Vegetation Index (ndvi)
GRID 2.5 m × 2.5 m 
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Based on the site description, archived database, and aerial photo interpretation, the 
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based on their modes of occurrence. The landslide inventory map was very helpful in 
understanding different triggering factors that control different slope movement types 
(Cruden & Varnes, 1996). Most of the landslides are shallow rotational, and there are a few 
translational and flow types. However, during the analyses that were performed in the present 
study, only the rotational failures are considered, and the other types of failures were 
eliminated because the occurrence of the other types of failures is rare and ignorable. 
Consequently, the susceptibility maps that are produced in this paper are valid for the shallow 
rotational failures. To assemble a database to assess the surface area and number of landslides 
in the study area, a total of 48 shallow rotational failures were mapped in the study area. The 
landslide inventory map that was compiled in the present study is shown in Fig. 1b. 
In order to develop a method for the assessment of landslide susceptibility, determination of 
the conditioning factors for the landslides is crucial (Ercanoglu & Gokceoglu, 2002). In fact, 
the regional landslide assessments should be practical and applicable for the study area. For 
the first requirement for this statement, the input parameters should be representative, 
reliable and obtained easily. In this study, we selected the input parameters considering 
field observations performed on the actual landslides. There were a total of seven landslide 
conditioning factors considered in the analyses performed. The basic landslide conditioning 
factors such as altitude, slope angle, plan curvature, distance to drainage, soil texture and 
stream power index were employed. As a result of the field observations, it was observed 
that the landslides have a close relation with the distance from the roads. For this reason, the 
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using GPS and total station points (Pradhan et al., 2010d). A total of 130 GPS check points 
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In the present study, substantial attention has been given for slope conditions, because there 
is a physical relation between the landslide occurrence and slope gradient. Increase in slope 
gradient results in increase of driving forces. For this reason, slope configuration and 
steepness plays an important role on the susceptibility of a slope to landsliding. This makes 
slope an important factor in preparing the landslide susceptibility map. The slope map was 
reclassified into four classes following the standard classification scheme set by the Ministry 
of Science, Technology and Environment Malaysia for hill land: (1) < 15 degrees, (2) 16 – 25 
degrees, (3) 26 – 35 degrees, and (4) > 35 degrees (Fig. 2a) (Pradhan & Lee, 2010c). In the case 
of aspect layer, eight directions are shown for the different direction of slope (Fig. 2b). 
 

Average error (m.) 1.58 m 
Absolute average error (m.) 1.81 m 
RMSE (m.) ± 2.39 m 

Table 2. Errors of the DEM for the study area 

The term curvature is generally defined as the curvature of a line formed by intersection of a 
random plane with the terrain surface (Ercanoglu & Gokceoglu, 2002). The influence of plan 
curvature on the land degradation processes is the convergence or divergence of water 
during downhill flow. In addition, this parameter constitutes one of the main factors 
controlling the geometry of the terrain surface where landslides occur (Ercanoglu & 
Gokceoglu, 2002). In the case of the curvature negative curvatures represent concave, zero 
curvature represent flat and positive curvatures represents convex surface. The plan 
curvature map was prepared using the avenue routine in ArcView 3.2 (Fig. 2c).  
The fourth parameter considered in the present study is stream power index (SPI) and is 
shown in Fig. 2d. According to the Moore et al., (1991), SPI is a measure of erosive power of 
water flow based on the assumption that discharge (q) is proportional to specific catchment 
area sA   (Equation 2).  

 tansSPI A β=  (2) 

where sA is the specific catchment area (m2m-1) while β  is the slope gradient in degree. 
In addition, the distance from drainage was calculated using the topographic database. The 
drainage buffer was calculated based on Euclidean distance method at 50 m intervals as 
shown in Fig. 2e. The sixth and seventh parameters used in the study are flow length and 
flow accumulation which were derived from the digital elevation model in ArcGIS (Fig. 2f, 
2g). Road-cuts are usually sites of anthropologically instability. A given road segment may 
act as a barrier, a net source, a net sink or a corridor for water flow, and depending on its 
location in the area (Ercanoglu & Gokceolgu, 2002). It usually, serves as a source of 
landslides. The road map is derived from the topography map. From the field observation, it 
has been noticed that most of the landslides have occurred along the cut-slopes and roads. 
The distance to road buffer is selected based on the occurrence of landslides to the proximity 
of the road. Therefore, a 50 m buffer zone is calculated based on the Euclidean distance 
method in ArcGIS 9.0 (Fig. 2h). Subsequently, the topographic wetness index map was 
prepared in the ArcGIS (Fig. 2i). The lithology map was prepared from the hardcopy 
geology map (Fig. 2j). The proximity to major fault lines is calculated based on Euclidean 
distance method in ArcGIS 9.0 (Fig. 2k). The soil texture map was prepared from a 
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1:100,000-scale soil map (Fig. 2l), which is the only existing soil map for the studied area.  
The landcover map was extracted from the Spot 5 satellite images using supervised 
classification techniques (Fig. 2m). Finally, the normalised difference vegetation index map 
(ndvi) was also prepared from the Spot 5 satellite image (Fig. 2n).  
All the fourteen landslide conditioning factors were converted to a raster grid with 10 m × 
10 m cells with 2418 rows by 1490 columns for the application of the ANN model. GIS 
ArcGIS 9.0 version software package and MATLAB was used as the basic analysis tools for 
spatial management and data manipulation.  
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Fig. 2. Input data layers (a) Slope; (b) Aspect; (c) Curvature; (d) Stream power index (spi); (e) 
Distance from drainage; (f) Flow length; (g) Flow accumulation; (h) Topographic wetness 
index; (i) Distance to road; (j) Lithology; (k) Distance to the fault lines; (l) Soil types; (m) 
Land cover; and (n) Vegetation index (NDVI)  

4. Artificial Neural Network model: preview 
The artificial neural network approach has many advantages compared with other statistical 
methods (Basheer & Hajmeer, 2000). Firstly, the artificial neural network method is 
independent of the statistical distribution of the data and there is no need for specific 
statistical variables. Neural networks allow the target classes to be defined in relation to 
their distribution in the corresponding domain of each data source (Zhou, 1999), and 
therefore integration of remote sensing data or GIS data is convenient. An artificial neural 
network is a “computational mechanism able to acquire, represent, and compute a mapping 
from one multivariate space of information to another, given a set of data representing that 
mapping” (Atkinson & Tatnall, 1997). Most ANN models share a number of characteristics. 
These will be identified before proceeding to describe particular models (Moody & Katz, 
2003). First, unlike expert systems, ANNs are not initialized with any external rule base. 
Rather the goal of the ANN is to internally identify a set of rules for matching input data to 
output conclusions. An ANN is composed of a set of nodes and a number of interconnected 
processing elements. ANN uses learning algorithms to model knowledge and save this 
knowledge in weighted connections, mimicking the function of a human brain (Turban & 
Aronson, 2001; Schalkoff, 1997). One of the most commonly used ANN models is the feed-
forward back-propagation ANN. This is a supervised, pattern recognition model that needs 
to be trained using a data set for which both the input values (x) for a set of predictors and 
the correct output values (y) are known for a set of examples. The architecture of this ANN 
is based on a structure known as the Multi-Layer Perceptron (MLP). The MLP, as the name 
implies, consists of a set of layers, each of which is composed of a set of nodes (alternatively 
referred to as “processing elements”, “units”, “processing units”, or “neurons”). The MLP 
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with the back-propagation algorithm is trained using a set of examples of associated input 
and output values (Hines, 1997). The purpose of an artificial neural network is to build a 
model of the data-generating process, so that the network can generalize and predict 
outputs from inputs that it has not previously seen. This learning MLP algorithm is trained 
with the “Back-Propagation algorithm”, which consists of an input layer, hidden layer, and 
an output layer.  
The first layer of the network, or input layer, contains a node for each of  l  input variables 
(Fig. 3). The l  input variables are analogous to the independent variables in multiple 
regressions. When a given set of l  input values for one of the n samples in the training data 
set is presented to the input nodes, we say that the network is presented with an input 
pattern , ,1 ,2 ,3( , , , ,i l i i ix p x x x= …… where 1i= to n ). The superscript indicates terms that 
consists of or refer to a given pattern of values (Moody & Katz, 2003).  
The last layer of the network, or output layer, contains nodes, one for each output type (Fig. 3). 
In this case, there are nine input nodes (one each for slope, aspect, curvature, stream power 
index (spi),  distance from drainage;, flow length, flow accumulation, topographic wetness 
index, distance to road, lithology, distance to the fault lines, soil types, land cover, and ndvi). 
Sandwiched between the input and output layers is one “hidden” layer which will allow 
complexities to develop in the mapping functions. In this case, a three tired ANN architecture 
model is used. The hidden layer, like the input and output layer, consists of nodes.  
 

 
Fig. 2. Three tiered architecture of feed-forward, back-propagation neural network 
(multilayer perception). 

The hidden and output layer neurons process their inputs by multiplying each input by a 
corresponding weight, summing the product, and then processing the sum using a 
nonlinear transfer function to produce a result. An artificial neural network “learns” by 
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adjusting the weights between the neurons in response to the errors between the actual 
output values and the target output values. At the end of this training phase, the neural 
network provides a model that should be able to predict a target value from a given input 
value. 
There are two stages involved in using neural networks for multi-source classification: the 
training stage, in which the internal weights are adjusted; and the classifying stage. 
Typically, the back-propagation algorithm trains the multi-layered until some targeted 
minimal error is achieved between the desired and actual output values of the network. 
Once the training is complete, the network is used as a feed-forward structure to produce a 
classification for the entire data (Paola & Schwengerdt, 1995; Swingler, 1996). For this study, 
the neural networks were simulated in the neural network module of Mathworks MATLAB 
(The MathWorks Inc. 1999). The back propagation multilayer perceptron (MLP) is a 
commonly used and widely available neural network structure in geospatial analysis and 
was used in this study. 

5. Landslide susceptibility mapping using the Artificial Neural Network model 
5.1 Application of frequency ratio model 
Frequency ratio approaches are based on the observed relationships between distribution of 
landslides and each landslide-related factor, to reveal the correlation between landslide 
locations and the factors in the study area. Using the frequency ratio model, the spatial 
relationships between landslide-occurrence location and each factors contributing landslide 
occurrence were derived. The frequency is calculated from analysis of the relation between 
landslides and the attribute factors (Lee & Pradhan, 2006). In the relation analysis, the ratio 
is that of the area where landslides occurred to the total area, so that a value of 1 is an 
average value. If the value is greater than 1, it means a higher correlation, and value lower 
than 1 means lower correlation.  
To calculate the Landslide Susceptibility Index (HSI), each factor’s frequency ratio values 
were summed to the training area as in equation (3). The landslide susceptible value 
represents the relative susceptibility to landslide occurrence. So the greater the value, the 
higher the susceptible to landslide occurrence and the lower the value, the lower the 
susceptible to landslide occurrence. 

 HSI = Fr1 + Fr2 +  …… + Frn (3) 

(HSI: Landslide Susceptibility Index; Fr: Rating of each factors’ type or range) 

5.2 Application of logistic regression model 
Logistic regression allows one to form a multivariate regression relation between a 
dependent variable and several independent variables. Logistic regression, which is one of 
the multivariate analysis models, is useful for predicting the presence or absence of a 
characteristic or outcome based on values of a set of predictor variables. The advantage of 
logistic regression is that, through the addition of an appropriate link function to the usual 
linear regression model, the variables may be either continuous or discrete, or any 
combination of both types and they do not necessarily have normal distributions. In the case 
of multi-regression analysis, the factors must be numerical, and in the case of a similar 
statistical model, discriminant analysis, the variables must have a normal distribution. In the 
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present situation, the dependent variable is a binary variable representing presence or 
absence of landslide. Where the dependent variable is binary, the logistic link function is 
applicable (Atkinson & Massari, 1998). For the present study, the dependent variable must 
be input as either 0 or 1, so the model applies well to landslide possibility analysis. Logistic 
regression coefficients can be used to estimate ratios for each of the independent variables in 
the model. 
Quantitatively, the relationship between the occurrence and its dependency on several 
variables can be expressed as: 

 p = 1 / (1 + e-z) (4) 

where p is the probability of an event occurring. In the present situation, the value p is the 
estimated probability of landslide occurrence. The probability varies from 0 to 1 on an S-
shaped curve and z is the linear combination. It follows that logistic regression involves 
fitting an equation of the following form to the data: 

 z = b0 + b1x1 + b2x2 + … + bnxn (5) 

where b0 is the intercept of the model, the bi (i = 0, 1, 2, …, n) are the slope coefficients of the 
logistic regression model, and the xi (i = 0, 1, 2, …, n) are the independent variables. The 
linear model formed is then a logistic regression of presence or absence of landslides 
(present conditions) on the independent variables (pre-failure conditions). 
Using the logistic regression model, the spatial relationship between landslide-occurrence 
and factors influencing landslides was assessed. The spatial databases of each factor were 
converted to ASCII format files for use in the statistical package, and the correlations 
between landslide and each factor were calculated. Though there were two cases, in the first 
case only one factor was used. Besides, logistic regression mathematical equations were 
formulated for each case. Finally, the probability that predicts the possibility of landslide-
occurrence was calculated using the spatial database, equations (4) and (5). However, in the 
second case all factors were used logistic regression mathematical equations were 
formulated as shown in equations (4) and (5) for each case.  Using formula (4) and (5), the 
landslide susceptibility index was calculated.  

6. Landslide susceptibility mapping using Artificial Neural Network model  
The probabilities of occurrence of landslides were calculated based on (a) the various input 
attributes that have been listed in table 1 and their cumulative influence (weightage values 
were derived from ground-based information) and (b) knowledge based classification. 
Before running the artificial neural network program, the training site should be selected. 
So, the landslide-prone (occurrence) area and the landslide-not-prone area were selected as 
training sites. Pixels from each of the two classes were randomly selected as training pixels, 
with 327 pixels denoting areas where landslide not occurred or occurred. First, areas where 
the landslide was not occurred were classified as “areas not prone to landslide” and areas 
where landslide was known to exist were assigned to an “areas prone to landslide” training 
set. Training sites were selected based on landslide location as prone training site and with a 
varying slope values as non-prone training site and then the MLP trained back propagation 
algorithm was computed. Five different training sites were selected randomly to produce 
five susceptibility maps.  
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present situation, the dependent variable is a binary variable representing presence or 
absence of landslide. Where the dependent variable is binary, the logistic link function is 
applicable (Atkinson & Massari, 1998). For the present study, the dependent variable must 
be input as either 0 or 1, so the model applies well to landslide possibility analysis. Logistic 
regression coefficients can be used to estimate ratios for each of the independent variables in 
the model. 
Quantitatively, the relationship between the occurrence and its dependency on several 
variables can be expressed as: 

 p = 1 / (1 + e-z) (4) 

where p is the probability of an event occurring. In the present situation, the value p is the 
estimated probability of landslide occurrence. The probability varies from 0 to 1 on an S-
shaped curve and z is the linear combination. It follows that logistic regression involves 
fitting an equation of the following form to the data: 
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where b0 is the intercept of the model, the bi (i = 0, 1, 2, …, n) are the slope coefficients of the 
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occurrence was calculated using the spatial database, equations (4) and (5). However, in the 
second case all factors were used logistic regression mathematical equations were 
formulated as shown in equations (4) and (5) for each case.  Using formula (4) and (5), the 
landslide susceptibility index was calculated.  
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The probabilities of occurrence of landslides were calculated based on (a) the various input 
attributes that have been listed in table 1 and their cumulative influence (weightage values 
were derived from ground-based information) and (b) knowledge based classification. 
Before running the artificial neural network program, the training site should be selected. 
So, the landslide-prone (occurrence) area and the landslide-not-prone area were selected as 
training sites. Pixels from each of the two classes were randomly selected as training pixels, 
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the landslide was not occurred were classified as “areas not prone to landslide” and areas 
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set. Training sites were selected based on landslide location as prone training site and with a 
varying slope values as non-prone training site and then the MLP trained back propagation 
algorithm was computed. Five different training sites were selected randomly to produce 
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The MLP trained with the Back-Propagation algorithm was then applied to the input 
attribute layers by modifying the number of hidden nodes and the learning rate. 
Distribution of hidden layers and entire training dataset is shown in Fig. 3. Hidden layers 
were selected two times of input attribute layers. So obviously, the output will have both 
“existing” and “non-existing” landslide areas. Some of the input attributes layers are 
continuous and others categorical in nature. Therefore, these data were converted to raster 
grid in order to apply the ANN model. Three-layered feed-forward network was 
implemented using the MATLAB software package. Here, “feed-forward” denotes that the 
interconnections between the layers propagate forward to the next layer. The number of 
hidden layers and the number of nodes in a hidden layer required for a particular 
classification problem are not easy to deduce. In this study, a 9 x 19 x 2 structure was 
selected for the network, with input data normalized in the range 0.1-0.9. The nominal and 
interval class group data were converted to continuous values ranging between 0.1 and 0.9. 
Therefore, all the layers were normalized in the range 0.1- 0.9. The categorical data and their 
interval class group were converted to a continuous values ranging 0.1 - 0.9. In this way, the 
continuous values became nominal for back propagation modeling.  
The learning rate was set to 0.01, and the initial weights were randomly selected between 0.1 
and 0.3. The MLP trained back-propagation algorithm was used to minimize the error 
between the predicted output values and the calculated output values. The algorithm  
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Fig. 3. Distribution of entire and training data set  (continued next page) 
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The MLP trained with the Back-Propagation algorithm was then applied to the input 
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propagated the error backwards iteratively by adjusting the weights. The number of epochs 
was set to 2,500, and the root mean square error (RMSE) value used for the stopping 
criterion was set to 0.01. Most of the training datasets met the 0.01 RMSE goal. The results of 
the learning rate for the training datasets are shown in Figure 3. However, if the RMSE  
value was not achieved, then the maximum number of iterations was terminated at 2,000 
epochs. When the latter case occurred, then the maximum RMSE value was 0.213. Finally, 
the landslide susceptibility maps were generated using the five training sites (Fig. 4- 8). The 
values were classified by equal areas and grouped into four classes (highest 10%, second 
10%, third 20% and reminding 60%) based on equal area classification for visual 
interpretation. 
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Fig. 4. Landslide susceptibility map using Case 1: Use of landslide location as prone training 
site and slope is 0 as non-prone training site 
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propagated the error backwards iteratively by adjusting the weights. The number of epochs 
was set to 2,500, and the root mean square error (RMSE) value used for the stopping 
criterion was set to 0.01. Most of the training datasets met the 0.01 RMSE goal. The results of 
the learning rate for the training datasets are shown in Figure 3. However, if the RMSE  
value was not achieved, then the maximum number of iterations was terminated at 2,000 
epochs. When the latter case occurred, then the maximum RMSE value was 0.213. Finally, 
the landslide susceptibility maps were generated using the five training sites (Fig. 4- 8). The 
values were classified by equal areas and grouped into four classes (highest 10%, second 
10%, third 20% and reminding 60%) based on equal area classification for visual 
interpretation. 
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Fig. 4. Landslide susceptibility map using Case 1: Use of landslide location as prone training 
site and slope is 0 as non-prone training site 
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Fig. 5. Landslide susceptibility map using case 2: use of landslide location as prone training 
site and result from likelihood ratio as non- prone training site 

Landslide Susceptibility Mapping:an Assessment of the Use of an  
Advanced Neural Network Model with Five Different Training Strategies 

 

379 

 
 
 

 
 
 
 

Fig. 6. Landslide susceptibility map using case 3: use of landslide location as prone training 
site and result from logistic regression as non- prone training site 



Artificial Neural Networks - Application 

 

378 

 
 
 

 
 
 
 

Fig. 5. Landslide susceptibility map using case 2: use of landslide location as prone training 
site and result from likelihood ratio as non- prone training site 
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Fig. 6. Landslide susceptibility map using case 3: use of landslide location as prone training 
site and result from logistic regression as non- prone training site 
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Fig. 7. Landslide susceptibility map using case 4: use of result from likelihood ratio as prone 
training site and result from likelihood ratio as non-prone training site 
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Fig. 8. Landslide susceptibility map using case 5: use of result from logistic regression as 
prone training site of result from logistic regression as non-prone training site 
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Fig. 7. Landslide susceptibility map using case 4: use of result from likelihood ratio as prone 
training site and result from likelihood ratio as non-prone training site 
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Fig. 8. Landslide susceptibility map using case 5: use of result from logistic regression as 
prone training site of result from logistic regression as non-prone training site 
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7. Accuracy assessment and comparison of susceptibility maps 
The landslide susceptibility analysis result was verified using landslide test locations which 
were not used during the modelling process. Global Positioning System data for landslide 
locations has been collected for various parts of study area. 32 active landslides have been 
recorded and added to the inventory to be used for the validation of the neural network 
model output. The rate curves were created and its areas of the under curve were calculated 
for all cases. The rate explains how well the model and factor predict the landslide. So, the 
area under curve can assess the prediction accuracy qualitatively. To obtain the relative 
ranks for each prediction pattern, the calculated index values of all cells in the study area 
were sorted in descending order. Then the ordered cell values were divided into 100 classes, 
with accumulated 1% intervals. The rate verification results appear as a line in Fig. 9. For 
example, in the case of all factor used, 90 to 100% (10%) class of the study area where the 
landslide susceptibility index had a higher rank could explain 35% of all the landslides. In 
addition, the 80 to 100% (20%) class of the study area where the landslide susceptibility 
index had a higher rank could explain 58% of the landslides. To compare the result 
quantitative, the areas under the curve were re-calculated as the total area is 1 which means 
perfect prediction accuracy. So, the area under a curve can be used to assess the prediction 
accuracy qualitatively.  
Validation results show that in the training site 1 (case 1) where slope equal to “zero” used 
for susceptibility map, the area ratio was 0.6935 and the prediction accuracy was 69%. In the 
training site 2 (case 2) for high frequency ratio values, the area ratio was 0.7465 and the 
prediction accuracy was 75%. In the training site 3 (case 3) for low frequency ratio values, 
the area ratio was 0.7030 and the prediction accuracy was 80%. In the training site 4 (case 4) 
for high logistic regression values, the area ratio was 0.8345 and the prediction accuracy was 
83%. In the training site 5 (case 5) for low logistic regression values, the area ratio was 0.8670 
and the prediction accuracy was 87%. So from the prediction accuracy graphs (Fig 9), it is 
quite evident that, training site 5 shows the best prediction accuracy of 87%, where as 
training site 1 shows the least prediction accuracy of 69% with difference is about 18%. 
Therefore, one can conclude that the selection of training site is very important for the 
landslide susceptibility mapping.  

8. Concluding remarks 
Landslides present a significant constraint to development in Malaysia, notably through the 
inadvertent reactivation of ancient inland landslides. A series of Government funded research 
projects has provided much background information and identified suitable methods for the 
use of landslide susceptibility information in land use planning. However, a number of 
significant problems remain over the use of this information. In this study, a neural network 
approach with weights derived from frequency ratio and logistic regression model to 
estimating the susceptible area of landslides using GIS and remote sensing is presented. 
An artificial neural network approach has been used to estimate areas susceptible to 
landslides using a spatial database for a Cameron Highland. Five different sampling 
strategies employing different training sites were used for comparison purposes. The results 
using result from logistic regression as prone training site and result from logistic regression 
as non-prone training site (Case 5) and result from likelihood ratio as prone training site and 
result from likelihood ratio as non-prone training site (Case 4) were better than the other 
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three estimation cases, with the results using of landslide location as prone training site and 
result from likelihood ratio as non- prone training site being the worst.  
The back-propagation training algorithm presents difficulties when trying to follow the 
internal processes of the procedure. The method also involves a long execution time, has a 
heavy computing load, and there is the need to convert the database to another format. 
However, landslide susceptibility can be analyzed qualitatively. In addition to using a 
multi-faceted approach to a solution, they enable the extraction of reliable results for a 
complex problem, and for continuous and discrete data processing.  
Decision making under uncertainty is closely related to susceptibility analysis. Landslide 
susceptibility map will help for decision making for planners. These decisions are usually in 
the form of technical countermeasures, regulatory management or combinations of the two. 
Classic examples of regulatory management are zoning maps which, for instance, exclude 
some areas from habitation. Regulatory management is often quite intricate in prescribing 
different permit procedures which may include detailed evaluations and additional 
exploration or even go so far to prescribing particular slope designs (slope grades e.g.). The 
latter is actually a combination of regulatory and technical management. Technical 
mitigating measures range from a variety of stabilizing measures to protective measures 
such as rock fall galleries to warning devices. One of the most important steps of developing 
a hazard mitigation plan is assessing risks, or estimating potential losses to the people and 
properties within the landslide prone area. 
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Dynamic Fuzzy Neural-Network  
Model for Estimating Heavy Metal  

Concentration in Rice Using Spectral  
Indices and Environmental Parameters  

Xiangnan Liu and Meiling Liu 
School of Information Engineering, China University of Geosciences 

China 

1. Introduction 
1.1 Predictors of heavy metal concentrations in rice  
Several spectral indices and environmental parameters were analyzed in order to determine 
heavy metal concentrations in rice. Excessive heavy metal concentrations in rice affect its 
chlorophyll content and cell structure(Huang et al., 2007;Liu et al., 2010b), which can be 
reflected by hyperspectral reflectance(Yoder and Pettigrew-Crosby 1995; Blackburn 1998; 
Curran et al., 2001). So, it is feasible to estimate the heavy metal concentrations in plants 
using hyperspectral data. That is to say, spectral indices deriving from hyperspectral 
reflectance were utilized to examine rice’s physiological responses to heavy metal 
contamination in paddy fields. Whereas environmental parameters including those relating 
to soil and weather were important factors for determining heavy metal diffusion in rice. 
They were selected as input variables on the basis of two important reasons. On the one 
hand, the involvement of environmental parameters facilitates the application of GDFNN 
model in different environmental conditions and thus increases the ability of model to  be 
used extensively. On the other hand, the involvement of environmental parameters can 
improve the accuracy of prediction of heavy metal concentrations in rice leaves. Therefore, 
in this research, predictors of heavy metal concentrations in rice are composed of spectral 
indices and environmental parameters. 

1.2 Spectral parameters 
A number of studies have demonstrated that the variation in spectra curve of plant induced 
by heavy metal pollution occurred in both the visible and the near-infrared (NIR) part of the 
spectrum (Kooistra et al., 2004). In order to improve the accuracy for estimating heavy metal 
concentrations in rice, spectral indices sensitive to heavy metal concentrations in rice were 
selected according to previous studies. Five spectral parameters including red edge position 
(REP), optimized soil adjusted vegetation index (OSAVI), ratio vegetation index (RVI), 
normalized difference vegetation index (NDVI) and difference vegetation index (DVI) were 
selected in this study (Table 1). 
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Spectral indices Wavebands 
(nm)

Formula Reference 

REP  between 680 
and 760 nm 

1 1

1 1

( ) ( )
i

i i

i i

R RDλ
λ λ
λ λ
+ −

+ −

−
=

−
, when 

i
Dλ  is maximum 

value  

Chang and 
Coll1ins, 
1983 

OSAVI[670,800] 670,800 800 670 800 670OSAVI = (1 + 0.5)(R - R ) /(R + R + 0.5)  Huete et 
al., 1988 

RVI[700,750]  700,750 750 700RVI = R /R  Schuerger 
et al., 2003  

NDVI[695,760]  695,760 760 695

760 695

R - RNDVI =
R + R

 
Schuerger 
et al., 2003 

DVI[682,734]  682,734 734 682DVI = R - R  Kooistra et 
al., 2004 

Note: Ri is the reflectance of band i. 

Table 1. Five spectral indices used as input variables of GDFNN model  

1.3 Soil parameters  
The physical and chemical properties of soil, such as pH, soil texture, organic matter (OM), 
colloid type and granularity, etc. have great influence on the transfer of heavy metals from soil 
to crop (Jackson and Alloway, 1992; De Vries et al., 2005).That is to say, the mobility and 
bioavailability of heavy metals are influenced by various soil properties. But different 
researchers drew different conclusions. But most researchers agreed that, of all physical and 
chemical properties of soil, soil pH and organic matter in soil have the greatest effect on the 
bioavailability of heavy metals, especially for soil pH. Since the extent of soil contamination 
can also be evaluated by comparing the maximum allowable concentrations (MAC) (National 
Environmental Protection Agency of China, 2006) of the metals in agricultural land. As soil pH 
partially governs the speciation and bioavailability of heavy metals, MAC values are adjusted 
according to soil pH (Fu et al., 2008). Liao et al.(2008) demonstrated that the contents of Cr, Cu, 
Pb, Hg, Ni and Cd etc. represent an obvious negative correlation with pH and the content of 
As represents a positive correlation with pH; that the contents of Cd, Cr, Cu, Pb and Hg, etc. 
are positively correlated with OM; the contents of Ni and As are negatively correlated with 
OM by conducting a correlation analysis on seven kinds of heavy metal in soil pH and OM in 
the study area. Likely, other researchers investigated that phytotoxicity and availability of 
heavy metal is strongly influenced by the pH and OM of soil (Foy et al., 1978; Fernandes and 
Henriques, 1991; Das et al., 1997).. Jung and Thornton (1997) investigation of relatively high 
metal concentrations in rice found it to occur under conditions of decreased pH and increasing 
OM in soil. Other studies also showed that heavy metal concentrations in rice have a 
significant negative correlation with soil pH and are positively correlated with OM (Fu et al., 
2008; Liao et al., 2008; Hang et al., 2009).  

1.4 Meteorological parameters 
Since meteorological conditions have influence on the metabolism, transpiration and 
absorption capabilities of plant roots, they affect the diffusion and translocation of heavy 
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metals in plants (Reber, 1989; Kádár, 1995). Some researchers have investigated 
meteorological factors, such as air temperature, relative humidity, sunlight, precipitation, 
etc., and have seen that they have important influence on the diffusion of metals in plants 
(Cui et al., 2004; Pan et al., 2007). The most important factors affecting metal bioavailability 
in paddy soil are temperature, sunlight and precipitation (Jung and Thornton, 1997; Cheng 
et al., 2005). So, temperature, sunlight and precipitation can belong to the set of possible 
predictors of heavy metal concentrations in rice. In this analysis, values for temperature (T; 
mean month temperature), sunlight (S; month accumulative sunlight) and precipitation (P; 
month accumulative precipitation) during rice growing seasons from July to October in 2008 
were measured. 

2. Models for estimating of heavy metal concentrations in rice 
2.1 Model architecture 
In this paper, a generalized dynamic fuzzy neural network (GDFNN) model was constructed 
to obtain heavy metal concentrations in rice leaves. GDFNN is a hybrid system that combines 
the fuzzy logic interference and theories of neural networks. ‘Dynamic’ indicates the network 
structure of fuzzy neural network is not predetermined. Namely, the system starts with no 
rules. Then, rules can be recruited or deleted according to the significance of each rule on 
output parameters of the structure in existing fuzzy neural network so that not only can the 
parameters but also the structure can be self-adaptive. GDFNN is a four-layer hybrid neural 
network with the ability to self-organize its own neurons in the learning process (Wu et al., 
2001). The structure of the GDFNN is also shown in Fig. 1. 
The layered operation of the GDFNN is as follows: 
Layer 1: The input layer—Each neuron in this layer represents an input variable, 
xi, i=1; 2, …, r.  
Layer 2: The EBF layer—Each neuron in the EBF layer represents an if-part of a fuzzy rule. 
The outputs of EBF neurons are computed by products of grades of member function (MF). 
In this layer physical variables are converted into fuzzy variables. Each MF is in the form of 
a Gaussian function: 
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where ijμ  is the ith membership function in the jth neuron, ijc  is the centre of the ith 
membership function in the jth neuron, ijσ is the width of the ith membership function in the 
jth neuron, r  is the number of input variables, u  is the number of neurons and also 
represents the numbers of fuzzy rules. 
Layer 3: The then-part of a fuzzy rule for the fuzzy model—The output of the jth neuron in 
this layer is  
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Layer 4: The output layer—Each neuron in this layer represents an output variable as the 
summation of incoming signals. In this GDFNN a unique output variable is considered: 
heavy metal concentrations in rice .The output of a neuron in this layer is 
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et al., 2003  
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al., 2004 

Note: Ri is the reflectance of band i. 

Table 1. Five spectral indices used as input variables of GDFNN model  
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structure of fuzzy neural network is not predetermined. Namely, the system starts with no 
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network with the ability to self-organize its own neurons in the learning process (Wu et al., 
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Here, Wj the weight of jth rule in neural network. 
 

 

 
Fig. 1. A simple structure of GDFNN model  

2.2 Model algorithms 
GDFNN is based on ellipsoidal basis function (EBF) and is functionally equivalent to a 
Takagi-Sugeno-kang fuzzy system (Wu et al., 2001; Leng et al., 2005). Fig. 2 shows the 
process for learning algorithm in GDFNN.  
As seen in Fig. 2, the GDFNN can extract fuzzy rules from the training data without 
predefined fuzzy rules. In addition, fuzzy rules can be generated automatically according to 
the systematic error ( ke ) and ε -completeness of fuzzy rules. A new rule is created in the 
case where min

k
dmd k>  and k ee k> . Whereas, if the conditions min

k
dmd k< and k ee k> are 

satisfied, the width of Gaussian function in each rule are adjusted. Else only the consequent 
parameters are modified under other conditions. However, whether or not an existing rule 
should be deleted according to the error reduction ratio of each EBF neuron and fuzzy rules 
to the system performance.  If j errkη < , then the rule is deleted. Namely, the less important 
EBF neurons will be deleted. Based on the learning algorithm in GDFNN, the methods of 
the structure and parameter learning are based on new adding and pruning techniques and 
a gradient descent learning algorithm, so GDFNN has high accuracy with a compact 
structure. 
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Fig. 2. The process flow chart for the learning algorithm of GDFNN model 

2.3 Model evaluation 
Generally, the root mean square error (RMSE) and absolute percent error (APE) have been 
used to measure the performance of DFNN (Jang, 1993; Pai et al., 2009). In this study, the 
parameters were: (i) RMSE ; (ii) APE; and (iii) the correlation coefficient ( 2R ). The three 
parameters were computed by: 
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where yai , ymi , APE  are the real-valued output variable, measured output variable, 
absolute percent error respectively; N is the sample number. APE  provides information on 
the accuracy that the model can yield using a given data set. The nearer the value 
approaches 0, the better the performance of the model. 

 
( )

2N

ai mi
i=1

y - y
RMSE =

N- 1

∑
 (5) 

Here, RMSE  is root mean square error between real-valued output variable and measured 
output variable. The lower RMSE, the better the performance of the model. 
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Here, 2R , my and ay are the correlation coefficient, the average measured output variable 
and the average real-valued output variable, respectively. R2 represents the correlation 
between predicted and measured variables. It is assumed that the predicted and measured 
variables follow a normal distribution. Its value ranges from 0 to 1. The higher the value of 
the correlation, the stronger the indication of existing linear relations between the actual and 
predicted variables. 
With the exception of the above three evaluation indicators, a fuzzy rule (labelled u) was also 
taken into consideration in this analysis. This is due to the fact that the degree of complexity of 
the network largely depends on the number of fuzzy rules in the GDFNN model. With 
sufficiently high accuracy, fewer fuzzy rules are generated in model and the performance of 
the model improves. Hence, the model has a compact structure as well as a high accuracy. 

3. Methodology 
The crucial procedures for estimating heavy metal concentrations in rice were the selection 
of input variables and the establishment of a data retrieval model (Fig.3). Firstly, spectral 
parameters, soil parameters and meteorological parameters were taken into consideration as 
input variables for the model. The reasons were follows: spectral parameters were selected 
to examine rice physiological responses to heavy metal contamination, while soil parameters 
and meteorological parameters were regarded as important factors influencing rice uptake 
of heavy metal. Moreover, to be useful for practical simulations, specific parameters were 
needed to satisfy the following requirements: (1) dominant principle: the parameters should 
be significantly correlated to heavy metal concentrations in crops; (2) ready availability: the 
parameters could be obtained quickly and at a large scale. Secondly, GDFNN was 
developed to integrate spectral parameters, soil parameters and meteorological parameters 
in order to estimate heavy metal concentrations in rice. This model consisted of an input 
layer, an output layer and several hidden layers, with the hidden layers belonging to fuzzy 
interference system by carrying out fuzzy reasoning using the structure of neural network.  
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Fig. 3. The general flow chart for estimating heavy metal concentrations in rice 

4. Examples 
4.1 Site description 
The city of Changchun, Jilin Province in China is an important industrial and agricultural 
location. Some areas have been contaminated by industrial pollutants, particularly by heavy 
metals. Suburban farms have soil with copper (Cu) and cadmium (Cd) at higher  
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concentrations than what is considered to be normal for the area. Three field experiments (43° 
51' 34.8" N–43° 51' 37.0" N, 125° 09' 07.2" E–125° 10' 25.3" E) adjacent to the important industrial 
district (i.e., the contamination source) in Changchun were selected (Fig. 4). Heavy metal 
contamination stress levels in the soil of the three field experiments (labeled A, B, and C) 
varied. The soil and the stress rates were determined according to a soil sample analysis (Table 
2) to be at a safe level, level I pollution and level II pollution, respectively. The site is within the 
temperate continental climate zone with a mean annual rainfall of 522-615 mm, where the land 
is predominantly black soil, with a pH of 6.5-7.3 and 2-4% of sufficient organic matter. The 
crop selected in this site was rice which is one of the most important staples in China. 
 
Site Geographical 

location 
Copper 
Content 
(mgkg-1) 

Cadmium 
Content 
(mgkg-1) 

Pollution 
level 

Soil quality 
standard* (mgkg-1) 

A 43° 52.2' N, 125° 10.2' E 68.2±2.86 0.465±0.002 Ⅱ Ⅱ(50≤Cu≤400; 
0.3≤Cd≤1.0) 

B 43° 54.6' N, 125° 10.4' E 45.5±2.44 0.182±0.002 I I (35≤Cu <50; 
0.2≤Cd <0.3) 

C 44° 06.3' N, 125° 10.2 E 20.4±2.44 0.093±0.002 Safe Safe (Cu <20.8; 
Cd <0.097) 

Note: * Soil quality standard according to the Environment Monitoring Centre of China  

Table 2. The location and heavy metal concentrations of the experiment sites 

4.2 Data collecting  
The data collection was carried out in sunny days during a typical rice growth season: 8 
July, 4 August, 29 August, 18 September 2008, which corresponded to the seeding, tillering, 
booting and mature growth stages of rice. All spectral measurements were taken under 
cloudless or near cloudless conditions between 10:00 and 14:00, using an ASD FieldSpec Pro 
spectrometer (Analytical Spectral Devices, Boulder, CO. USA). The spectrometer was fitted 
with 10° field of view fibre optics, operated in the 350-2500 nm spectral region with 
sampling intervals of 2 nm. A BaSO4 calibration panel was used for determining the black 
and baseline reflectance. A panel radiance measurement was taken before and after rice 
measurement using two scans each time. Rice radiance measurements were made at 30-40 
sites in each plot and every measurement was recorded as the average of 10 consecutively 
acquired spectra in order to reduce the noise level. Five spectral indices derived from 
hyperspectral reflectance were calculated in Table 3. 
The measurement of soil property and heavy metal concentrations in rice and soil  were 
taken almost synchronously with rice spectral reflectance measurements. In this context, soil 
pH was determined in a paste with a ratio of 1:2.5 soils to water using a pH meter (Model 
PHS-3C, Shanghai Precision and Scientific Instrument Co. Ltd.). Soil organic matter was 
analyzed according to Chinese CRM/RM information center (http://www.gbw114.org). 
The metal content was analyzed at the Chinese Academy of Agricultural Sciences, Beijing, 
China. Soil and rice total heavy metals (Cu, Zn, Pb, Cd, Cr, As) were determined by flame 
atomic absorption spectrometry (AAS), after nitric-perchloric acid (2:1) digestion. Soil 
extractable metals  were extracted with 5 mM diethylenetriaminepentaacetic acid 
(DTPA)/10 mM CaCl2/100 mM triethanolamine at pH 7.3 (Lindsay and Norvell, 1978). The 
measured meteorological data for the Changchun station were obtained from the CMA 

Dynamic Fuzzy Neural-Network Model for Estimating Heavy Metal  
Concentration in Rice Using Spectral Indices and Environmental Parameters   

 

399 

(http://cdc.cma.gov.cn/).Soil parameters and meteorological data were also summarized in 
Table 3. 
 

Variables Abbreviation Unit Min Max Medium Mean SD 
Red edge position REP nm 694 730 695 699 10 
Optimized soil 
adjusted 
vegetation index 

OSAVI - 0.24 0.56 0.39 0.38 0.07 

Normalized 
difference 
vegetation index 

NDVI - 0.19 0.68 0.39 0.40 0.13 

Ratio vegetation 
index 

RVI - 1.30 3.68 1.87 2.06 0.72 

Difference 
vegetation index 

DVI - 0.08 0.36 0.18 0.19 0.06 

pH pH - 6.5 7.0 6.8 6.8 0.1 
Organic matter OM % 2.4 3.2 2.7 2.8 0.15 
Sunlight S hours 149.3 261.3 - - - 
Temperature T ° 9.5 23.5 - - - 
Precipitation  P mm 17 199.8 - - - 
Cu concentration 
in rice leaves 

Cu mgkg-1 18.77 31.12 23.34 24.29 2.87 

Cd concentration 
in rice leaves 

Cd mgkg-1 0.036 0.042 0.039 0.039 0.001 

Notes: values for T (mean month temperature), S (month accumulative sunlight) and P(month 
accumulative precipitation).SD, Standard deviation 

Table 3. Basic statistics of the measured spectral indices and environmental parameters in 
field experimental sites 

4.3 Data processing  
In this study, to avoid data saturation, the input variables in this model were normalized, 
based on their possible ranges using the following equation: 

 i min
norm=

max min

x - xx
x - x

 (7) 

where ix , minx , maxx  and normx  are the real-valued input variable, the minimum input 
variable, maximum input variable and its normalized value respectively. The output from 
the GDFNN model is an indexed value that corresponds to the input variable. To get the 
real-predicted value, the indexed output value needs to be de-normalized according to the 
following equation: 

 ai min+ norm max miny = y y (y - y )  (8) 

Where yai , miny , maxy  and normy  are the real-predicted value, the minimum and maximum 
values of the real-valued output, and the indexed output value from the GDFNN model 
respectively. 
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analyzed according to Chinese CRM/RM information center (http://www.gbw114.org). 
The metal content was analyzed at the Chinese Academy of Agricultural Sciences, Beijing, 
China. Soil and rice total heavy metals (Cu, Zn, Pb, Cd, Cr, As) were determined by flame 
atomic absorption spectrometry (AAS), after nitric-perchloric acid (2:1) digestion. Soil 
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(http://cdc.cma.gov.cn/).Soil parameters and meteorological data were also summarized in 
Table 3. 
 

Variables Abbreviation Unit Min Max Medium Mean SD 
Red edge position REP nm 694 730 695 699 10 
Optimized soil 
adjusted 
vegetation index 

OSAVI - 0.24 0.56 0.39 0.38 0.07 

Normalized 
difference 
vegetation index 

NDVI - 0.19 0.68 0.39 0.40 0.13 

Ratio vegetation 
index 

RVI - 1.30 3.68 1.87 2.06 0.72 

Difference 
vegetation index 

DVI - 0.08 0.36 0.18 0.19 0.06 

pH pH - 6.5 7.0 6.8 6.8 0.1 
Organic matter OM % 2.4 3.2 2.7 2.8 0.15 
Sunlight S hours 149.3 261.3 - - - 
Temperature T ° 9.5 23.5 - - - 
Precipitation  P mm 17 199.8 - - - 
Cu concentration 
in rice leaves 

Cu mgkg-1 18.77 31.12 23.34 24.29 2.87 

Cd concentration 
in rice leaves 

Cd mgkg-1 0.036 0.042 0.039 0.039 0.001 

Notes: values for T (mean month temperature), S (month accumulative sunlight) and P(month 
accumulative precipitation).SD, Standard deviation 

Table 3. Basic statistics of the measured spectral indices and environmental parameters in 
field experimental sites 

4.3 Data processing  
In this study, to avoid data saturation, the input variables in this model were normalized, 
based on their possible ranges using the following equation: 

 i min
norm=

max min

x - xx
x - x

 (7) 

where ix , minx , maxx  and normx  are the real-valued input variable, the minimum input 
variable, maximum input variable and its normalized value respectively. The output from 
the GDFNN model is an indexed value that corresponds to the input variable. To get the 
real-predicted value, the indexed output value needs to be de-normalized according to the 
following equation: 

 ai min+ norm max miny = y y (y - y )  (8) 

Where yai , miny , maxy  and normy  are the real-predicted value, the minimum and maximum 
values of the real-valued output, and the indexed output value from the GDFNN model 
respectively. 
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5. Results and discussions 
Since the maximal absolute value of the difference of heavy metal concentrations in rice 
leaves from different contaminated levels occurred at the tillering growth stage, this 
indicates the best stage for estimating heavy metal concentrations is at that stage (Liu et al., 
2010a). Therefore, in this research, 138 training data sets and 69 test data sets from the 
tillering growth stage of rice were obtained for different levels of heavy metal pollution. 
Considering that spectral parameters were considered as dominant input variables and 
environmental parameters as complementary input variables of GDFNN model. In GDFNN, 
five parameters were taken as input variables, i.e., three spectral parameters, one soil 
parameter and one meteorological parameter, while the individual concentrations of Cu and 
Cd in rice served as output variables. By trying different combinations of input data sets 
(three selected from the five spectral parameters, the fourth was taken from the two soil 
parameters, and the fifth came from the three meteorological parameters). 60 groups 
( 3 1 1

5 3 2 60C C C× × = ) different input parameters were developed (Table 4).  Fuzzy rules (u), 
APE, R2 and RMSE of all groups for estimating Cu concentration and Cd concentration are 
shown (Fig. 5). From Fig. 5, regardless of the group for Cu and Cd, fewer u were achieved in 
GDFNN, with u ranging from 2 to 14. Additionally, the more u in the developed model, the 
lower value APE. When it comes to R2 and RMSE, R2 of all groups, the values were over 0.6 
and the RMSE of all models were below 2.5. According to the parameters for assessing the 
performance of GDFNN, the optimal group should have a low RMSE and APE, and an R2 

value close to 1. Four groups of optimal combined parameters for estimating Cd 
concentration are displayed in Fig. 6. Their input variables were NDVI-RVI-DVI-OM-P, 
NDVI-RVI-DVI-OM-S, NDVI-RVI-DVI-pH-P and NDVI-RVI-DVI-pH-S. All four groups 
were highly accurate and had compact architectures. Specifically, u was nearly 10, while R2 
was over 0.9, and APE was below 1.0%. With respect to combined parameters, the three best 
spectral parameters (NDVI, RVI and DVI) and soil parameters (pH and OM) were found as 
the main factors controlling the availability and concentration of Cd in rice. Meanwhile, 
precipitation (P) and sunlight (S) were shown to be chief factors affecting Cd concentration 
in rice. However, temperature (T) was determined to be a negligible factor influencing Cd 
concentration in rice. Similarly, four groups of optimal combined parameters for estimating 
Cu concentration are displayed in Fig.7. Their input variables were OSAVI-NDVI-DVI-OM-
P, REP-NDVI-DVI-OM-T, OSAVI-RVI-DVI-pH-P and REP-OSAVI-NDVI-pH-T. All four 
groups were highly accurate and had compact architectures. Specifically, u was nearly 10, R2 
was over 0.9, APE was below 1.5%.Concerning combined parameters, it was observed that 
spectral parameters differed with respect to soil parameters and meteorological parameters. 
The main factors controlling the availability of Cu were pH and OM in soil, and this affected 
the Cu concentration in rice. Precipitation (P) and temperature (T) mainly affectd Cu 
concentration in rice. However, sunlight (S) was merely a negligible factor in influencing Cu 
concentration in rice. 
To examine whether combined parameters can improve the performance of predictions for 
heavy metal concentrations in rice, a comparison between the application of GDFNN with 
combined parameters (including spectral parameters, soil parameters and meteorological 
parameters) and simply with spectral parameters alone was made (Fig.8). The linear fitting 
equation between predicted heavy metal concentrations and measured heavy metal 
concentrations gave the following results through the application of these two methods with 
the different respective input variables: 
1. Five spectral parameters including REP, OSAVI, NDVI, DVI and RVI for estimating Cu 

and Cd concentration in rice are: 
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 ai miy = 0.8353y 3.9194cu cu+  (9) 

 ai miy = 0.8150 y 7.2685cd cd+  (10) 
Here, R2= 0.7848 and 0.8235 respectively. Values for yaicu and yaicd  predicted Cu and Cd 
concentration respectively, while ymicu ymicd  are measured for Cu and Cd concentration 
respectively. 
2. The best model of combined parameters for estimating Cu and Cd concentration in rice 

are: 

 ai miy = 0.9921y 0.1924cu cu+  (11) 

 ai miy = 0.9967 y 0.1278cd cd+  (12) 
Here, R2= 0.9929 and 0.9921 respectively. Values for yaicu and yaicd  predicted Cu and Cd 
concentration respectively, while ymicu ymicd  are measured Cu and Cd concentration 
respectively. 
 

Group Parameters Group Parameters 
1 REP, OSAVI, NDVI, OM, P 31 REP, OSAVI, NDVI, pH, P 
2 REP, OSAVI, RVI, OM, P 32 REP, OSAVI, RVI, pH, P 
3 REP, OSAVI, DVI, OM, P 33 REP, OSAVI, DVI, pH, P 
4 REP, NDVI, RVI, OM, P 34 REP, NDVI, RVI, pH, P 
5 REP, NDVI, DVI, OM, P 35 REP, NDVI, DVI, pH, P 
6 REP, RVI, DVI, OM, P 36 REP, RVI, DVI, pH, P 
7 OSAVI, NDVI, RVI, OM, P 37 OSAVI, NDVI, RVI, pH, P 
8 OSAVI, NDVI, DVI, OM, P 38 OSAVI, NDVI, DVI, pH, P 
9 OSAVI, RVI, DVI, OM, P 39 OSAVI, RVI, DVI, pH, P 

10 NDVI, RVI, DVI, OM, P 40 NDVI, RVI, DVI, pH, P 
11 REP, OSAVI, NDVI, OM, S 41 REP, OSAVI, NDVI, pH, S 
12 REP, OSAVI, RVI, OM, S 42 REP, OSAVI, RVI, pH, S 
13 REP, OSAVI, DVI, OM, S 43 REP, OSAVI, DVI, pH, S 
14 REP, NDVI, RVI, OM, S 44 REP, NDVI, RVI, pH, S 
15 REP, NDVI, DVI, OM, S 45 REP, NDVI, DVI, pH, S 
16 REP, RVI, DVI, OM, S 46 REP, RVI, DVI, pH, S 
17 OSAVI, NDVI, RVI, OM, S 47 OSAVI, NDVI, RVI, pH, S 
18 OSAVI, NDVI, DVI, OM, S 48 OSAVI, NDVI, DVI, pH, S 
19 OSAVI, RVI, DVI, OM, S 49 OSAVI, RVI, DVI, pH, S 
20 NDVI, RVI, DVI, OM, S 50 NDVI, RVI, DVI, pH, S 
21 REP, OSAVI, NDVI, OM, T 51 REP, OSAVI, NDVI, pH, T 
22 REP, OSAVI, RVI, OM, T 52 REP, OSAVI, RVI, pH, T 
23 REP, OSAVI, DVI, OM, T 53 REP, OSAVI, DVI, pH, T 
24 REP, NDVI, RVI, OM, T 54 REP, NDVI, RVI, pH, T 
25 REP, NDVI, DVI, OM, T 55 REP, NDVI, DVI, pH, T 
26 REP, RVI, DVI, OM, T 56 REP, RVI, DVI, pH, T 
27 OSAVI, NDVI, RVI, OM, T 57 OSAVI, NDVI, RVI, pH, T 
28 OSAVI, NDVI, DVI, OM, T 58 OSAVI, NDVI, DVI, pH, T 
29 OSAVI, RVI, DVI, OM, T 59 OSAVI, RVI, DVI, pH, T 
30 NDVI, RVI, DVI, OM, T 60 NDVI, RVI, DVI, pH, T 

Note: REP-red edge position, OSAVI-optimized soil-adjusted vegetation index, ratio RVI-vegetation 
index, NDVI-normalized difference vegetation index, DVI-difference vegetation index), pH, OM-
organism matter for soil, T-temperature, S-sunlight, P- precipitation 

Table 4. Sixty groups of combined parameters as input variables for GDFNN 
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Since the maximal absolute value of the difference of heavy metal concentrations in rice 
leaves from different contaminated levels occurred at the tillering growth stage, this 
indicates the best stage for estimating heavy metal concentrations is at that stage (Liu et al., 
2010a). Therefore, in this research, 138 training data sets and 69 test data sets from the 
tillering growth stage of rice were obtained for different levels of heavy metal pollution. 
Considering that spectral parameters were considered as dominant input variables and 
environmental parameters as complementary input variables of GDFNN model. In GDFNN, 
five parameters were taken as input variables, i.e., three spectral parameters, one soil 
parameter and one meteorological parameter, while the individual concentrations of Cu and 
Cd in rice served as output variables. By trying different combinations of input data sets 
(three selected from the five spectral parameters, the fourth was taken from the two soil 
parameters, and the fifth came from the three meteorological parameters). 60 groups 
( 3 1 1

5 3 2 60C C C× × = ) different input parameters were developed (Table 4).  Fuzzy rules (u), 
APE, R2 and RMSE of all groups for estimating Cu concentration and Cd concentration are 
shown (Fig. 5). From Fig. 5, regardless of the group for Cu and Cd, fewer u were achieved in 
GDFNN, with u ranging from 2 to 14. Additionally, the more u in the developed model, the 
lower value APE. When it comes to R2 and RMSE, R2 of all groups, the values were over 0.6 
and the RMSE of all models were below 2.5. According to the parameters for assessing the 
performance of GDFNN, the optimal group should have a low RMSE and APE, and an R2 

value close to 1. Four groups of optimal combined parameters for estimating Cd 
concentration are displayed in Fig. 6. Their input variables were NDVI-RVI-DVI-OM-P, 
NDVI-RVI-DVI-OM-S, NDVI-RVI-DVI-pH-P and NDVI-RVI-DVI-pH-S. All four groups 
were highly accurate and had compact architectures. Specifically, u was nearly 10, while R2 
was over 0.9, and APE was below 1.0%. With respect to combined parameters, the three best 
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Table 4. Sixty groups of combined parameters as input variables for GDFNN 
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Based on the above analysis, the GDFNN model using combined parameters as input 
variables showed better prediction performance than that with only five spectral 
parameters. It confirmed that soil parameters and meteorological parameters had improved 
the accuracy in estimating Cu and Cd concentration in rice. Yet it should be noted that three 
different experiment sites are adjacent, consequently the difference in the physical and 
chemical properties of soil, and meteorological condition are subtle. A GDFNN model using 
combined parameters requires testing under different environmental conditions. In the 
current study, we focused on proposing a new methodology and developing ideas for 
estimating heavy metal concentrations in crop by using spectral parameters and 
environmental parameters as input variables of GDFNN. 

 
Fig. 5. The four evaluation parameters (u, APE, R2 and RMSE) results for sixty groups of 
combined parameters as input variables for estimating Cu and Cd concentration in rice 
leaves. Each group consists of parameters according to Table 4. 

Dynamic Fuzzy Neural-Network Model for Estimating Heavy Metal  
Concentration in Rice Using Spectral Indices and Environmental Parameters   

 

403 

 
Fig. 6. Measured and predicted Cd concentration in rice leaves for four groups of optimal 
combined parameters using GDFNN 

 

 
Fig. 7. Measured and predicted Cu concentration in rice leaves for four groups of optimal 
combined parameters using GDFNN 
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Fig. 8. Comparison of predicted Cu and Cd concentration in rice leaves using spectral 
parameters and combined parameters as input variables for GDFNN 

6. Conclusions 
The aim of this study is to develop a GDFNN model based on fuzzy theory and neural 
network theory to predict heavy metal concentrations in rice. Spectral indices and 
environmental parameters were integrated as input variables. Spectral indices were utilized 
to examine rice’s physiological responses to heavy metal contaminations (Cu and Cd) in 
paddy fields, while environmental parameters including those relating to soil and weather 
were important factors for determining heavy metal diffusion in rice. Five parameters, three 
of which were selected from the five spectral parameters (REP, OSAVI, NDVI, DVI, RVI), 
one of which came from the two soil parameters (pH, OM), with the final one coming from 
the three meteorological parameters (T, S, P) were used as input variables in GDFNN. 
Additionally, different combined parameters were treated as input variables in order to 
achieve the best GDFNN prediction for heavy metal concentrations in rice. The analysis 
revealed that the best input variables in predicting Cu concentrations in rice were the REP, 
OSAVI, NDVI, pH and T, where this model had u, APE, R2 and RMSE values of 11, 0.59%, 
0.9926 and 0.2489 respectively. While the best input variables in predicting Cu 
concentrations in rice were the NDVI, RVI, DVI, OM and P, which had respective u, APE, 
and R2 values of 11, 0.19%, 0.9948 and 0.1231. It indicated that the GDFNN developed in this 
study had a high accuracy as well as a compact structure (i.e. fewer fuzzy rules: u=11, R2 

was over 0.99 nearly 1). Compared with only spectral parameters as input variables of 
GDFNN, the use of combined parameters as input variables showed slightly better 
performance in estimating Cu and Cd concentrations in rice. After testing a trial set, our 
results showed that the GDFNN developed using fewer input variables can accurately 
estimate heavy metal concentrations in rice, thus aiding the assessment of pollution levels of 
heavy metals in soil. It can be concluded that by using a GDFNN model, hyperspectral 
parameters and environmental parameters can provide sufficient information to detect the 
level of pollutants in field operations efficiently. 
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1. Introduction 
Study on the impact of greenhouse gases emissions on the environment is currently an issue 
undertaken by scientists and policy makers around the world. The observed increase in the 
average temperature is often interpreted as a result of normal cyclical changes and long-
term phenomenon and global warming is in dispute. In accordance with the precautionary 
principle efforts are undertaken to stabilize greenhouse gas concentrations in the 
atmosphere by limiting their anthropogenic emissions and put in place mechanisms to 
intensify their absorption. During the past 150 years the amount of carbon dioxide in the 
earth’s atmosphere has increased from 280 parts per million to more than 380 parts per 
million on account of burning of fossil fuels (Srinivasan, 2008). The simulations and 
forecasts which are being carried out show that the global temperature may increase by 1.6 – 
2.0ºC in the second half of the 21st century (Timofeev, 2006). 

1.1 CO2 emission in Poland 
Poland needs to reduce greenhouse gases emissions by 6%, which means in 2008-2012 the 
average, annual level must be so lower to compared to 1988 emissions. To attain its 
objectives, we must limit emissions from all spheres of social life. 
In accordance with the European Parliament resolution the European Committee considers 
that by 2020 the EU will have to reduce greenhouse gas emissions by 15-20%, and for the 
next 30 years up to 60-80% (compared to 1990). 
The main producer of anthropogenic CO2 in the world is first of all the energy and industry, 
transport, agriculture and progressive deforestation. The EU directives oblige Poland to 
maintain specific levels of total national emissions of CO2, regardless of its source.  It is 
expected that in the coming years, Polish economic development financed from the EU 
structural and cohesion funds will contribute to the growth of CO2 emissions.  
Particularly important in recent years is the necessity to predict possible scenarios in the 
greenhouse gases production due to the progressive greenhouse effect. It should be stressed 
that this is a complex issue because of the diversity and overlapping factors affecting the 
emission. European Union climate policy is a serious challenge for Poland. To implement 
this policy in accordance with current recommendations and announced restrictions will 
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that this is a complex issue because of the diversity and overlapping factors affecting the 
emission. European Union climate policy is a serious challenge for Poland. To implement 
this policy in accordance with current recommendations and announced restrictions will 
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constitute a significant burden on the Polish economy. It should be noted that transport, 
despite the fact that Poland produces some tons of million of CO2 is not covered by the ETS.  
Economic development increases the mobility and traffic loads, causing a steady increase in 
energy demand, which is the main source of coal and fuel oil. 
Polish automotive industry is characterized by a strong growth. A dramatic change 
occurred with the free market reforms in the 90s. Cars in Poland contribute to emission to 
atmospheric average 30% pollution and in large cities and agglomerations, their share is 
much higher and may reach 70% to even 90%. According to Polish Climate Policy, the 
country should focus primarily on the restructuring of economic sectors towards the 
diversification of fuels, resulting in a reduction of air pollution. 
The transport share in greenhouse gas emissions is increasing. The most difficult in this sector 
is to carry out activities aimed at emission reductions because of its dependence on petroleum 
fuels and coal (Resources-use, 2008). You cannot expect on easy successes in reducing 
greenhouse gas emissions without a change in lifestyles and consumption models, 
management space use, which conditioning mobility and transport absorptivity. It is predicted 
a permanent intensity of road traffic in Poland. By 2020, EU countries are obliged to reduce 
greenhouse gas emissions by 20%.  In the same year, we are also supposed to reach the level of 
20% of energy generated from renewable sources in the total energy production balance, 
increase energetic effectiveness of the whole European Union by 20% and increase the share of 
energy coming from renewable sources in transport by 10%. For the Polish, this may mean 
instability in the sense of danger of power shortages due to more stringent requirements on 
emissions of CO2 and equally ever-increasing demand for energy.  
Difficulty in matching the imposed by the European Commission limits may hit the 
economy functioning. Hard coal plays a very important role in the Polish energy mix, 
occupying a large share in electricity generation and primary energy consumption, resulting 
in high and intensity emissions of CO2.  
High CO2 emission in Poland to result from the fact that the energy sector is based primarily 
on coal power plants (table 1). Although overall coal consumption in Poland is falling still 
the share of fossil fuels in electricity production in Poland is near 92% and is the highest 
among EU countries. 
According to current forecasts, the average emissions in Poland in 2008-2012 should not 
exceed 400 million tons per year. Due to a radical reduction of emission in the 1990s caused 
by conversion and modernisation of the economy, the cheapest ways of volume reduction 
concerning the greenhouse gases emission have already been used. The next reductive 
actions are associated with high capital expenditure and realisations of such investments 
frequently exceed financial capabilities of companies. It is a fact that the power industry 
system in Poland is efficient in 33-35%, compared to market-available power blocks with 
efficiency reaching 50% (Kolasa-Więcek, 2009). 
International programs will aim to eliminate power plants based on traditional resources - 
coal and petroleum. Coal power plants will be gradually phased out in Poland.  More and 
more energy will be generated from alternative sources. The share of renewable energy in 
total energy production in Poland in 2008 amounted to 7.24% (Environmental protection, 
2009), dominated mainly by biomass and hydropower plant. It is expected to increase the 
participation of wind energy. Undoubtedly, the direction of fuel sources structure 
development in Poland will result in the emission of energy-fuel sector in the coming years. 
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Specification CO2 emission  
Electricity together: 
 Fuel combustion: 
- power industry 
- manufacturing and construction 
industry  
- transport 
Ethereal fuels emission  

310 592,29 
310 341,40 
187 500,65 
33 724,50 
37 381,40 

250,88 

Industrial processes: 
Mineral products 
chemical industry 
metals producion  
Other industrial process 

19 040,21 
9 147,39 
4 276,75 
4 471,88 
1 144,19 

Solvents and other products use 581,75 
Waste 309,32 

Table 1. Total CO2 emission by major sources of emission in 2007 (COS, 2009). 

Modern technology can provide Poland with the potential reduction in greenhouse gas 
emissions, but their development is uncertain. Would be needed life style population  
changes including technologies that increase energy efficiency in transport and construction. 
The most important measures have to be taken in improving energy efficiency, its use of 
low-carbon energy sources and sequestration of CO2 but it involves a costly investment. 
Participation in the emission reduction will have, among others nuclear power plants. It is 
estimated that in 2020 Poland should have the first nuclear power plant. Much of the 
traditional coal power plants will end his use period in coming years, and how they will be 
replaced by is crucial to the country emissivity. 
Polish forests are an asset. In industrialized Europe forests occupy a relatively large area in 
Poland. In recent decades, their surface increasing very slowly but gradually. 
There has been observed a theme of making the modeling of CO2 emissions and spread in  
many scientific-research institutes in the world, although the modeling in this area is a difficult 
process even though because of many factors which determine the nature of the phenomenon. 

2. Methodology and tools 
2.1 ANN in environmental sciences  
The character of climatic phenomena is highly complex, with the result that modeling 
attempts are still taken, which would allow the predictions of high probability. It should be 
noted that the continuous increase in computing power of modern computers and the 
development of advanced artificial intelligence tools and statistical tools allow to obtain an 
application enabling the simulation to gain satisfactory results in modeling. 
Present-day, such a far-reaching and widespread interest in neural networks, among both 
engineers, representatives of science – mathematics, physics and biologists or 
neurophysiologists stems primarily from research on ways to build more efficient and more 
reliable information processing equipment, and the nervous system is an unattainable model. 
There are many successful examples of applications. Just to mention some: electronic systems 
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diagnosis, biological research interpretation, pattern recognition, speech recognition, medical 
diagnostics, control theory and optimization issues. 
Thanks to the artificial networks it is possibile to solve the tasks, which are struggling to 
cope with traditional computational techniques. Indeed, neural networks, can be used 
wherever there are problems with the processing and data analysis, with their prediction, 
classification and control.  
The original inspiration for the artificial networks structure was the construction of natural 
neurons and neural systems. Artificial neural network consists of a large number of items in 
parallel information processing. These elements are just neurons, although in relation to the 
real nerve cells their functions are very simplified. 
The relatively new insights in environmental sciences provide computational methods 
based on the idea of artificial intelligence. They are extremely useful in disposing of the 
noise measurement data information, emerging as a result of overlapping impact of external 
and internal effects. Thanks to Artificial Neural Networks it is possible to identify the 
dominant factors. 
Theme of modeling the CO2 emission and dispersion is taken by many research institutes 
around the Word (Auffhammer et al., 2006; IPCC, 2000; Nickerson, 2004; Samoilov 
&Nakutin, 2009; Sarrat et al., 2007; Schmalensee et al., 1998). Modeling in this area is a 
difficult process because of for instance the multitude of factors which determine the 
phenomenon nature (Soon et al., 2001). More importantly, aspects that may seem less 
related to carbon emissions themselves, such as regulation and private sector strength, or 
the relative percentage of industry compared to agriculture, or a measure of science and 
technology are worth exploring so that we may discover a new way to combat this 
environmental problem (Nickerson, 2004). Modeling is but one approach to understanding 
climate change. To place more confidence in climate modeling by computer, observational 
capability must advance (Soon et al., 2001). Simulations carried out by scientists show that 
even with a dramatic reduction of CO2 emission, the temperature will not decrease for a 
certain period of time (Alexiadis 2007). 
A significant advantage of the neural network as a forward-looking devices is that through a 
learning process the network can acquire the ability to predict the output signals based on the 
observations during the training data. The network is able to predict the output signals, even 
when using researcher it does not know anything about the nature of the relationship between 
the conditions with conclusions (Tadeusiewicz, 1993). The neural networks advantage is that 
they can be used wherever there are problems with the mathematical models creation. 
Network creator does not have to declare a model sought form and may not even be sure 
whether any relationship that is possible to a mathematical model even exists. Another 
important advantage of artificial neural networks is the ability to detect and use any 
nonlinearities that may occur in the data, even in incomplete data or in the presence of so-
called "Noise-information." In order to detect overfitting problems and develop a useful and 
fair modeling exercise, researchers must follow the technical and practical recommendations 
and guidelines proposed in the literature on computer science (Bishop, 1995).  
Actually, it has been shown that a neural network which is properly designed can approach 
any continuous function to any desired level of accuracy. Thus in this way the technique is 
more appropriate than traditional methods in order to model and predict phenomena 
distinguished by a complex behavior. 
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Artificial intelligence tools are more and more frequently used in solving issues related to 
environmental sciences due to, to name just a few, high likelihood of results reception and a 
possibility to find an alternative solution. There should be also mentioned the 
disadvantages, which are cited. One of them states that there is no economic theory behind 
an artificial neural Network.  Sometimes this method is criticized because it is considered a 
black-box without any economic foundation (Álvarez-Díaz, 2009).  Another complaint is 
difficulty in analyzing the impact of input variables to output variable, and moreover it is 
difficult to verify the statistical importance of predictions. Time-consuming and tedious 
procedure for the design of neural networks is also emphasized. Another shortcoming is fact 
that the results can strongly vary depending on the determination of some technical 
parameters. The last one and more important, the great power of the neural networks to 
replicate data can be also a serious disadvantage. There is a risk that the network merely 
mimic data and it cannot generalize new observations (Álvarez-Díaz et al., 2009).   

2.2 Research metodology 
In this paper, the neural analysis has been made with the use of a neural network of the 
Flexible Bayesian Models on Neural Networks, Gaussian Processes, and Mixtures, operating 
in the UNIX/Linux environment (Neal, 2004). Properly designed input–output neural 
network can learn from the data and provide a reasonable estimate of carbon emissions. 
Flexible Bayesian models for regression and classification applications are carried out by 
this software. The base for these models is multilayer perceptron neural networks or 
Gaussian processes while in the implementation Markov chain Monte  Carlo methods are 
used. Software modules not only support Markov chain sampling but they also support the 
distribution and may be useful in other applications. 
Flexible Bayesian Neural Networks shows that Bayesian methods allow complex neural 
network models to be used without fear of the "overfitting" that can occur with traditional 
neural network learning methods. They can safely be used when training data is limited 
(Neal, 1996). They can be used to model complex relationships between inputs and outputs 
or to find patterns in data.  
The Bayesian approach treats the issue of model complexity very differently and in 
particular it allows all of the avalible data to be used for "training". Since the evidence can be 
evaluated using training data, we see that Bayesian method are able to deal with the issue of 
model complexity , without the need to use cross-validation  (Bishop, 1995). 
This paper analyses the functional relation between the CO2 emissions and some factors 
like:  
- CO2 emissions from the energy industry, transport and other industrial processes in 

general,  
- the size of afforestation,  
- hard coal consumption,  
- cars and tractors burdensome for clean air (COS, 1991 – 2009).  
Analyzed factors are not coincidental, they play and will play a significant role in 
greenhouse gas emissions in coming years. Training set comprise data from the years 1990-
2008 obtained from the CSO database. It was built a network with 4 neurons ine the input 
layer, 8 neurons in the hidden layer and 1 output.  
Samples of input signals of training set is shown in the table 2. 



Artificial Neural Networks - Application 

 

410 

diagnosis, biological research interpretation, pattern recognition, speech recognition, medical 
diagnostics, control theory and optimization issues. 
Thanks to the artificial networks it is possibile to solve the tasks, which are struggling to 
cope with traditional computational techniques. Indeed, neural networks, can be used 
wherever there are problems with the processing and data analysis, with their prediction, 
classification and control.  
The original inspiration for the artificial networks structure was the construction of natural 
neurons and neural systems. Artificial neural network consists of a large number of items in 
parallel information processing. These elements are just neurons, although in relation to the 
real nerve cells their functions are very simplified. 
The relatively new insights in environmental sciences provide computational methods 
based on the idea of artificial intelligence. They are extremely useful in disposing of the 
noise measurement data information, emerging as a result of overlapping impact of external 
and internal effects. Thanks to Artificial Neural Networks it is possible to identify the 
dominant factors. 
Theme of modeling the CO2 emission and dispersion is taken by many research institutes 
around the Word (Auffhammer et al., 2006; IPCC, 2000; Nickerson, 2004; Samoilov 
&Nakutin, 2009; Sarrat et al., 2007; Schmalensee et al., 1998). Modeling in this area is a 
difficult process because of for instance the multitude of factors which determine the 
phenomenon nature (Soon et al., 2001). More importantly, aspects that may seem less 
related to carbon emissions themselves, such as regulation and private sector strength, or 
the relative percentage of industry compared to agriculture, or a measure of science and 
technology are worth exploring so that we may discover a new way to combat this 
environmental problem (Nickerson, 2004). Modeling is but one approach to understanding 
climate change. To place more confidence in climate modeling by computer, observational 
capability must advance (Soon et al., 2001). Simulations carried out by scientists show that 
even with a dramatic reduction of CO2 emission, the temperature will not decrease for a 
certain period of time (Alexiadis 2007). 
A significant advantage of the neural network as a forward-looking devices is that through a 
learning process the network can acquire the ability to predict the output signals based on the 
observations during the training data. The network is able to predict the output signals, even 
when using researcher it does not know anything about the nature of the relationship between 
the conditions with conclusions (Tadeusiewicz, 1993). The neural networks advantage is that 
they can be used wherever there are problems with the mathematical models creation. 
Network creator does not have to declare a model sought form and may not even be sure 
whether any relationship that is possible to a mathematical model even exists. Another 
important advantage of artificial neural networks is the ability to detect and use any 
nonlinearities that may occur in the data, even in incomplete data or in the presence of so-
called "Noise-information." In order to detect overfitting problems and develop a useful and 
fair modeling exercise, researchers must follow the technical and practical recommendations 
and guidelines proposed in the literature on computer science (Bishop, 1995).  
Actually, it has been shown that a neural network which is properly designed can approach 
any continuous function to any desired level of accuracy. Thus in this way the technique is 
more appropriate than traditional methods in order to model and predict phenomena 
distinguished by a complex behavior. 

Application of Artificial Intelligence in  
Environmental Sciences – Forecasting CO2 Emission in Poland 

 

411 

Artificial intelligence tools are more and more frequently used in solving issues related to 
environmental sciences due to, to name just a few, high likelihood of results reception and a 
possibility to find an alternative solution. There should be also mentioned the 
disadvantages, which are cited. One of them states that there is no economic theory behind 
an artificial neural Network.  Sometimes this method is criticized because it is considered a 
black-box without any economic foundation (Álvarez-Díaz, 2009).  Another complaint is 
difficulty in analyzing the impact of input variables to output variable, and moreover it is 
difficult to verify the statistical importance of predictions. Time-consuming and tedious 
procedure for the design of neural networks is also emphasized. Another shortcoming is fact 
that the results can strongly vary depending on the determination of some technical 
parameters. The last one and more important, the great power of the neural networks to 
replicate data can be also a serious disadvantage. There is a risk that the network merely 
mimic data and it cannot generalize new observations (Álvarez-Díaz et al., 2009).   

2.2 Research metodology 
In this paper, the neural analysis has been made with the use of a neural network of the 
Flexible Bayesian Models on Neural Networks, Gaussian Processes, and Mixtures, operating 
in the UNIX/Linux environment (Neal, 2004). Properly designed input–output neural 
network can learn from the data and provide a reasonable estimate of carbon emissions. 
Flexible Bayesian models for regression and classification applications are carried out by 
this software. The base for these models is multilayer perceptron neural networks or 
Gaussian processes while in the implementation Markov chain Monte  Carlo methods are 
used. Software modules not only support Markov chain sampling but they also support the 
distribution and may be useful in other applications. 
Flexible Bayesian Neural Networks shows that Bayesian methods allow complex neural 
network models to be used without fear of the "overfitting" that can occur with traditional 
neural network learning methods. They can safely be used when training data is limited 
(Neal, 1996). They can be used to model complex relationships between inputs and outputs 
or to find patterns in data.  
The Bayesian approach treats the issue of model complexity very differently and in 
particular it allows all of the avalible data to be used for "training". Since the evidence can be 
evaluated using training data, we see that Bayesian method are able to deal with the issue of 
model complexity , without the need to use cross-validation  (Bishop, 1995). 
This paper analyses the functional relation between the CO2 emissions and some factors 
like:  
- CO2 emissions from the energy industry, transport and other industrial processes in 

general,  
- the size of afforestation,  
- hard coal consumption,  
- cars and tractors burdensome for clean air (COS, 1991 – 2009).  
Analyzed factors are not coincidental, they play and will play a significant role in 
greenhouse gas emissions in coming years. Training set comprise data from the years 1990-
2008 obtained from the CSO database. It was built a network with 4 neurons ine the input 
layer, 8 neurons in the hidden layer and 1 output.  
Samples of input signals of training set is shown in the table 2. 



Artificial Neural Networks - Application 

 

412 

Ordinal 
number 

Afforestation Number of 
Vehicles  

Hard coal 
consumption 

2CO  
emissions 
from 
transport 

2CO  
emissions 

1 9.98 9.51 19.45 9.43 14.02 

2 9.98 9.6 19.2 9.55 12.64 

3 9.98 9.63 18.42 9.67 13.1 

4 9.98 9.65 18.36 9.49 12.27 

5 9.98 9.7 16.76 9.68 13.1 

6 9.98 9.73 17.47 9.6 10.76 

7 9.99 9.79 19.43 9.56 13.19 

8 9.99 9.84 17.64 9.71 12.1 

9 9.99 9.88 15.61 9.98 9.68 

10 10 9.93 13.57 10.31 8.84 

11 10 10.02 11.9 10.06 7.35 

12 10 10.08 12.15 10 7.65 

13 10.01 10.16 11.54 9.99 6.43 

14 10.01 10.2 13.06 10.07 7.54 

15 10.02 10.28 11.33 10.25 7.56 

16 10.02 10.29 11.57 10.44 7.69 

17 10.03 10.41 12.81 10.63 8.83 

18 10.03 10.56 12.65 10.78 8.69 

19 10.04 10.74 12.1 10.82 8.57 

Table 2. The input signals of training set 

The forecasts show a possible direction for the development emissions level, assuming a 
continuation of current trends and the slight additional measures to prevent climate change. 
Modelling also shows the other scenarios - optimistic resulting from e.g. introduction of 
modern technology reducing the emission and pessimistic, assuming such a parameters like 
expected growth vehicles and thus increasing emissions from transport or other taking into 
account the increase in coal consumption. 
It was analyzed the situation taking into consideration the expected increase in the number 
of vehicles with the reduction in transport emissions resulting from e.g the initiation of 
alternative fuels inter alia biofuels.  
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To determine the factors most connected with CO2 emissions and try to find a model 
describing the relationship between input and output variables the linear regression was used. 
The above analysis was made using R-Project. R is a modern tool that allows programming, 
advanced statistical analysis and visualization of research results (Biecek 2008). 

3. Results and their interpretation 
3.1 Forecasting with FBM  
The gained selected (numerical and graphic) parameters of the quality of the network learning, 
among others, so called recoil index and the trajectory graph of the control values, so called 
weight hyper-parameters, show proper and relatively optimal course of the process of the 
network learning. About a balance in the impulses flow through the network, provides the 
resulting coefficient - 0.503 (Fig. 1), which is within the range of variability 0.2-0.8. 
 

 
Fig. 1. Obtained coefficients size 

The results of modelling allow for making certain remarks. The forecasts show that limiting 
or increasing analysed factors affects the volume of CO2 emission.  In consequence, along 
with an rise in the parameters increasing CO2 emission. 
In Figure 2 the different scenarios of CO2 emissions were presented.   
It appears that "coal consumption" is a very important variable. It is the most important 
variable and primarily decisive about  the CO2 emission in the analyzed cases.   
Based on the modeling results on the figure 2 the observed relationships between variables 
were presented. For this purpose scatter plots were used, which may even visually help us 
to assess the force and nature of relationships between variables. The diagrams show the 
observations for three variables. If the points are arranged in an irregular cloud, then there is 
no relationship between variables (Figure 2a). 
If, however, the points are arranged along a straight line or a curve, it can be discerned a 
connection between variables. 
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Fig. 2. Forecasting CO2 emissions taking into account different scenarios: serie 1 – observed 
trends, serie 2 – CO2 emissions reduction in transport, Rest parameters with observed 
trends, serie 3 – reduction hard coal consumption and emissions from transport,  serie 4 - 
reduction hard coal consumption with permanent emissions from transport, 5 – increase of 
afforestation, 6 - reduction hard coal consumption, reduction emissions from transport from 
90 years, permanent number of vehicles, 7 - hard coal consumption increase, emissions from 
transport and number of vehicles increase. 

a) 

 
Points contracting perfectly along a straight are very infrequent. Figure 2b is a excellent 
example that reflects the existence of a negative linear correlation (case of a reduction in coal 
consumption). 
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b) 

 
Graph 2c presents a relationship in case when the analyzed parameters are rising. A strong 
positive correlation between variables was observed. With an increase in the number of 
vehicles, emissions from transport and coal consumption, CO2 emissions rise. 
 

c) 

 
 

Fig. 2. Scatterplots for chosen parameters  
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3.1 Modelling using linear regression 
The next stage of this study was to define a model describing the relationship between the 
explanatory variables and the amount of CO2 emissions. In this case, a linear regression 
analysis was used.  It is a popular and widely used statistical analysis which allows to find 
the relationship between inputs and outputs. It takes into account the interdependence 
modeling of the studied traits. This technique is based on estimation of some data from the 
other. There are known and used many regression techniques. Linear regression assumes 
that between the input and output variables, there is a linear relationship (Faray, 2002). 
Using lm () function fit a linear model to the data was conducted (fig. 3).  
In case 3a with explanatory variable "vehicles" obtained a negative coefficient, which means 
that this parameter is not significantly different from zero and can be omitted in the model. 
Taking into consideration other factors it is a small value. 
Coefficient value of R2 and Adjusted R2 testifies to fit a linear model. Adjusted R2 takes into 
account the number of variables in the model. If the coefficient is closer to 1 the better model 
fits in the data. 
Adjusted R2 showing the percentage of variance explained by the model is highest. 
 
a) 

 
Statistically non-significant variable was rejected and modeling were carried out again (e.g. 
3b). 
In case 3b also obtained high coefficients of R2 and modified R2.  
With three independent variables  least statistically significant was variable "forests", which 
was also omitted and modeling were carried out again (e.g. 3c). 
Important parameters were variables: a highly significant - "coal" and a less important -  
"CO2transpor”. 
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b) 
 

 
c)  
 

 
Fig. 3. The results of fitting the model to data. 

With higher results (fig. 3c), the model is as follows: 

 Emisja CO2 = 1,064e+05 + 8,975e-03 * coal + 1,160e-01 * CO2transport (1) 

Figures show a graphic interpretation of evaluation model coefficients, which clearly show 
that the explanatory variable of the highest importance is the coal consumption (variables 
are arranged along a straight line – e.g. 4a).  
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a) 

 
 
b) 

 
Fig. 4. Scatter diagram showing the emission of CO2 a) depending on the size of coal 
consumption, b) depending on CO2 emissions from transport 

We can examine the model assumptions, verifying the properties of residues. If the 
stipulations are achieved, the random noise should have a normal distribution with equal 
variances. That’s why diagnostic graphs were used (fig. 5). This is a good method when the 
model is adequate. 

Application of Artificial Intelligence in  
Environmental Sciences – Forecasting CO2 Emission in Poland 

 

419 

a) The chart “Residuals vs Fitted”shows that the average value of residuals is close to 0 and the 
variance is homogeneous. On the horizontal axis shown values are matched by the model and 
the vertical axis are shown the elements of the residuals of standardized modules. 
 

 
 
b) Figure “Normal Q-Q” it is a fractile graph for a normal distribution. The horizontal axis 
shows the values corresponding to the normal distribution quantiles residuals, and the 
vertical axis for the standardized empirical quantile of residuals. Contracting points along a 
straight line suggests that the model can be considered adequate and the distortion has a 
normal distribution. 
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c) Graph "Scale-Location" present, as in the case a) on the horizontal axis shown values are 
matched by the model and the vertical axis - the elements of the residuals of standardized 
modules.  Results was observed in the form of derogations unevenly spaced points.  
 

 
 
d) Graph "Residuals vs Leverage" takes into account the confidence range. It is very useful 
chart for detecting abnormal values. 
 

 
Fig. 4. Diagnostic diagrams for the tested model 
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4. Conclusion 
Phenomena occurring in the natural environment are usually random or stochastic 
processes. Conventional calculation and statistic methods are sometimes inefficient when 
solving certain environmental problems. In the recent years, scientists all over the world 
have been trying to use methods based on artificial neural networks to solve environmental 
issues. The success of generating forecasts by a neural network is determined by having a 
representative collection of data which manifest the phenomenon being modelled. This 
investigation and model allowed to make an analysis of sensitivity in order to calculate the 
impact of each input parameter of the neural network on the total emission. From the 
experimental results it is possible to argue that coal consumption has the greatest impact on  
CO2 emissions in polish situation. 
Taking into consideration all the parameters in the model it is not easy and often impossible. 
Often, a determining factor is the availability of data.  
The resultant match factor Adjusted R2, provides high-fit model to the data. In the test case 
linearregression proved to be a good tool for estimating the correlation of the tested variables. 
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4. Conclusion 
Phenomena occurring in the natural environment are usually random or stochastic 
processes. Conventional calculation and statistic methods are sometimes inefficient when 
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have been trying to use methods based on artificial neural networks to solve environmental 
issues. The success of generating forecasts by a neural network is determined by having a 
representative collection of data which manifest the phenomenon being modelled. This 
investigation and model allowed to make an analysis of sensitivity in order to calculate the 
impact of each input parameter of the neural network on the total emission. From the 
experimental results it is possible to argue that coal consumption has the greatest impact on  
CO2 emissions in polish situation. 
Taking into consideration all the parameters in the model it is not easy and often impossible. 
Often, a determining factor is the availability of data.  
The resultant match factor Adjusted R2, provides high-fit model to the data. In the test case 
linearregression proved to be a good tool for estimating the correlation of the tested variables. 
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1. Introduction 
Irrigation ponds, or pi-tang in Chinese, are defined as an artificial construction made to 
impound water by constructing a dam or an embankment, or by excavating a pit or dugout. 
Some ponds at both microhabitat and the landscape scales may be a relevant influence for 
explaining bird communities due to a habitat effect or more-moderate and complex effects 
(Froneman et al., 2001).  These ponds, regarding as wintering waterbird refuges, represent 
some of the multi-functional dimensions in the restoration results of agro-ecosystems.  
Previous studies detected that causes of species diversity are affected by habitat 
heterogeneity (Forman and Godron, 1986; Forman, 1995; Begon et al., 1996; Francl & Schnell, 
2002; Fang et al., 2009). According to habitat selection as bio-choices, irrigation pond 
patterns associated with various microhabitats provide environmental clues that are used by 
birds to select stopover sites, such that ponds within the range of avian communities may 
potentially remain unoccupied or under-occupied if they lack those clues.  Therefore, the 
appropriate microhabitats for a particular species in a guild might not be spatially constant 
if the habitat status changes the distance to the edge between pond cores to peripheral 
habitats, i.e., by water-table drawdown, farmland consolidation, or other anthropogenic 
influences.  Pond-species relationships, thus, are connected like a neural network with a 
non-parametric nature, as clues suggest.  
In fact, estimating the avian community is a difficult task as various species may inhabit 
same patch in a heterogeneous landscape, so taxonomic analysis of avian guilds would be 
advantageously coupling them here with the development of forecasting techniques based 
on habitat characteristics.  Surprisingly, attempts to estimate entire avian guilds with 
scientific rigor on such grounds are scarce in the literature, except with a few taxonomic 
studies (McArthur et al., 1967).  Conversely, a wealth of work deals with linear predictions 
on a regional scale (McArthur et al., 1967; Froneman et al. 2001). In this respect, they 
proposed theoretical linear-relationship models using a wide range of multivariate 
techniques, including several methods of multivariate linear discriminant analyses, 
canonical analyses, and logistic regressions. 
Many critical reviews have indicated that these conventional models, usually based on 
multiple regressions, assume simple linear relationships between variables (Palmer, 1990; 
Reby et al., 1997). Some authors argued that regression model did not fit non-linear 
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relationships and interactions among variables. Virkkala (2004) stipulated that avian habitat 
selection is a dynamic and nonlinear process. Based on linear principles, they produce 
exclusive results since the main processes that determine the level of biodiversity or species 
abundance are often non-linear.  To some extent, these methods are often rather inefficient 
after variable transformation when the data are non-linearly distributed. Therefore, species-
habitat relationships often yield skewed and bimodal data. There are also other complexities 
associated with fluctuating avian populations and hierarchical decision-making on different 
scales before a final habitat selection. This highly complex relationship is inherently 
unpredictable between birds and their microhabitats. However, on the local scale many habitat 
models for birds have achieved considerable success in predicting habitat selection.  
In addition, there is no specific a priori mathematical tool for predicting guild biodiversity, so 
the techniques used for prediction should also work for non-linear transformation.  In ecology, 
multivariate-based models relating environmental variables to avian communities have been 
presented by several authors sometimes using non-linear transformations of independent or 
dependent variables to improve results. Even so, the results are still insufficient, with a low 
percentage of variance explained.  Therefore, additive variables regarding bird and pondscape 
relationships require that networks be interwoven for detailed studies. 
According to aforementioned analyses, this study assesses a non-linear relationship using 
neural network models instead of linear regression. We developed an approach adopted by 
Artificial Neural Networks (ANN) to model the relationship between pondscape and 
waterbird diversity. Study areas with thousands of irrigation ponds are unique geographic 
features from the original functions of irrigation converted to waterbird refuges. An 
important advantage of using an artificial neural network model is its non-parametric 
nature.  It is not necessary to transform data to match a certain distribution.  ANN models 
can be non-linear and can model logical expressions such as “and”, “or”, “not”, and 
“exclusive or” as the pages that follows.  
The groundwork for neural networks was laid out in the 1940s in the field of neurophysiology. 
ANN, which originated about several decades ago (McCulloch & Pitts, 1943), was inspired by 
a desire to emulate human learning. ANN is highly effective for modeling nonlinear problems.  
Only recently it was shown that ANN models may efficiently model some non-linear 
systems in ecology. In recent avian studies, some authors have focused on an approach of  
ANN, which were developed as an original prediction method according to the principle of 
the operation of the human neural system (Ozesmi et al., 2006; Fang et al., 2009).  The practical 
implication is that an ANN can accurately predict nest occurrence and breeding success of red-
winged blackbird in response to ecological applications (Ozesmi et al., 2006).  
Neural networks are determined by the neurons, or units, which are interconnected within 
the entire dynamic system.  In this research, therefore, we attempted to apply this method to 
relate the structure and diversity of an assemblage of wintering birds to microhabitats.  Our 
model considers pond shape and size, neighboring farmlands, and constructed areas in 
calculating parameters pertaining to the interactive influences on avian diversity, among 
them the Shannon-Wiener diversity index (Shannon and Weaver, 1949; Oertli et al., 2002).   

2. ANN’s methods 
In our research, we used multiple logistic regression (MLR) models associated with ANN’s 
models. The multiple logistic regression (MLR) models are identical to a neural network 
with no hidden units. For neural network hidden units, each hidden unit computed a 
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logistic regression (different for each hidden unit), and the output is therefore a weighted 
sum of logistic regression outputs.  Initially, (ANN) were developed to provide simplified 
models of biological neural architecture. Each of these domains can be characterized as ones 
in which (a) multiple hypotheses need to be pursued in parallel, (b) enormous amounts of 
data need to be processed, and (c) the best current systems are far from equaling human 
performance. 
The error back-propagation (BP) training algorithm has proven to be one of the most useful 
approaches in training the development of an ANN. This algorithm adjusts the connection 
weights according to the back-propagated error computed between the observed and the 
estimated results. This is a supervised learning procedure that attempts to minimize the 
error between the desired and the predicted outputs.  
For this research, we chose a three-layered model with one input layer of three to four neurons 
(one for each input variable), one hidden layer of two to eight neurons (it is the number which 
gave the best prediction result), and one output layer of one neuron which was the output 
variable (see Fig. 1). Each input layer was connected to each neuron in the hidden layer via 
adjustable weighted links and likewise between the hidden layer and the output layer.  

 

 
Fig. 1. Structure of neural networks used in this study based on the error back-propagation 
(BP) training algorithm. Input layer of neurons comprising as many neurons as pondscape 
variables at the entry of the system; hidden layer of neurons whose number is determined 
empirically; output layer of neurons with a single neuron (i.e., diversity) corresponding to 
the single dependent variable. 

In the processes of BP training, the input data pattern is presented at the input neurons. 
These values are propagated through the network from the input to the hidden layer and 
then from the hidden layer to the output layer. At each stage the values, summed weighting 
inputs, are multiplied by the individual links on each connection. Then, the output layers 
are generated by the network based on the input data set. The errors, based on the 
differences between the “true” output and the “test” output, are fed back through the 
propagated loops.  The individual weights associated with each of the connections to the 
hidden neurons are adjusted slightly to diminish the error. 
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relationships and interactions among variables. Virkkala (2004) stipulated that avian habitat 
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Modelling was carried out in two phases to adjust with the training set and then test with 
the test set to determine the best ANN configuration. First, testing the model to calibrate the 
model variables. Second, to test the ANN models, we selected at random a training set (80% 
of the pond records, i.e., 35) and a validation set (20% of the pond records, i.e. 10). For each 
of the two sets, the model was determined with the training set and then validated with the 
test set. The quality of the model was judged through the correlation between observed and 
predicted values in the validation set. The ANN analysis was performed with the computer 
package, MATLAB 6.1 (MathWorks, Inc., Natick, MA, 2001). 

3. Materials and supported methods 
3.1 Materials sampled 
In general, this study would detect differences between the linear model and non-linear 
model by logistic regression and ANN in the low-density rural population pondscape areas.  
There was a necessity to carefully select the predicted area of pondscape as well as 
environmental gradients between these models. Regarding the scientific rigor, all cases of 
sampling ponds, waterbirds, and other data related to this study are examined in material 
details as follows. 
We selected ecologically significant Taoyuan Tableland associated irrigation ponds as our 
study area because one fifth of all the bird species find home on these ponds in Taiwan 
(Chen, 2000; Fang, 2004a). This tableland, at an area of 757 km2 in size, comprises an area of 
2,898 ha of irrigation ponds on the northwestern portion of Taiwan. Located approximately 
30 km from the capital city of Taipei, this rural area was easily converted to urban lands due 
to the aggregated effects of urbanization and commercialization. Socioeconomic benefits are 
driving public opinion which is urging the government to approve land-use conversion 
from farmlands into urban uses. The Taoyuan Tableland lies between the northern border of 
the Linkou Tableland (23°05'N, 121°17'E) and the southern border of the Hukou Tableland 
(22°55'N, 121°05'E); it borders the town of Yinge in the east (22°56’N, 121°20’E) and the 
Taiwan Strait in the west (22°75’N, 120°99'E) (Department of Land Administration, Ministry 
of the Interior, 2002)(see Fig. 2.).  It sits at elevations from sea level to 400 m and is composed 
of tableland up to 303 m and hills with sloping gradients from 303 to 400 m. It runs in a 
southeast-to-northwest trend, abutting mountains in the southeastern corner and the shore 
of the Taiwan Strait at the far end. With a high average humidity of 89%, the tableland is 
located in a subtropical monsoon region with humid winters and warm summers. January 
temperatures average 13 °C, and July temperatures average 28 °C. Annual average 
precipitation ranges from 1,500 to 2,000 mm. 
The tableland gradually rose approximately 180,000 years ago. At that time, the Tanshui 
River had not yet captured the flow from the ancient Shihmen Creek, which directly poured 
out of the northwestern coast forming alluvial fans.  Eventually, foothill faults caused by 
earthquakes during the same era, resulted in the northern region of Taiwan abruptly 
dropping by 200 m, and thus, the Taipei basin was born. Since the Taipei area had subsided, 
the ancient Shihmen Creek which meandered across the Taoyuan Tableland was captured 
by northward-flowing rivers some 30,000 years ago.  The middle streams changed their 
courses because of the subsidence in the Taipei basin. The resulting Tahan Creek, became 
the upstream portion of the Tanshui River in the Taipei Basin.  Due to blockage of water 
sources, downstream areas on the Taoyuan Tableland were deficient in water.  This caused 
high flushing and drops in water yields. Historically, it was difficult to withdraw and 
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supply irrigated surface water from rivers due to the tableland’s unique topography, thus, 
forming an obstacle for the development of agriculture (Huang, 1999; Chen, 2000). 
This area has a population density of 2,331 persons/km2 and its population is increasing at a 
rate of 2,000~3,000/month. Population pressures have contributed to reductions in historical 
areas of farmlands and irrigation ponds (Fang, 2001).  Losses of farm-pond and farmland 
habitats have had series effects on a range of avian communities as well as other fauna and 
flora (Fang and Chang, 2004). On the Taoyuan Tableland, agricultural practices are 
intensifying, which is reducing the heterogeneity of the existing landform, and adding 
pollutants, also resulting from industrial practices. 
 

 

Fig. 2. Location away the city limits more than 2 km of forty-five study ponds in the range of 
the tableland. 

3.2 Pond sampled 
The pond complex in the Tableland is typical of the many farm-pond complexes found in 
the Taoyuan and Hsinchu Counties. The Tableland was first stratified into nine sub-regions, 
six in the north, five in the south, and thirty-four in the western regions. Data were collected 
at forty-five study sites in farm ponds in various size gradients (43 individuals > 1 ha; 2 
individuals < 1 ha) according to large areas of ponds accounted for 628 individuals (>1 
hectare) in Taoyuan Tableland (Fig. 2.). The number of farm-pond sites selected in each 
region was roughly proportional to the accessible area of each region riding by automobiles. 
We did not place sampling sites in eastern and southern urbanized high-density areas 
where the population was relatively intact. This was done because the bird composition of 
such an urban sites containing a large proportion of generalists would have driven a large 
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Modelling was carried out in two phases to adjust with the training set and then test with 
the test set to determine the best ANN configuration. First, testing the model to calibrate the 
model variables. Second, to test the ANN models, we selected at random a training set (80% 
of the pond records, i.e., 35) and a validation set (20% of the pond records, i.e. 10). For each 
of the two sets, the model was determined with the training set and then validated with the 
test set. The quality of the model was judged through the correlation between observed and 
predicted values in the validation set. The ANN analysis was performed with the computer 
package, MATLAB 6.1 (MathWorks, Inc., Natick, MA, 2001). 

3. Materials and supported methods 
3.1 Materials sampled 
In general, this study would detect differences between the linear model and non-linear 
model by logistic regression and ANN in the low-density rural population pondscape areas.  
There was a necessity to carefully select the predicted area of pondscape as well as 
environmental gradients between these models. Regarding the scientific rigor, all cases of 
sampling ponds, waterbirds, and other data related to this study are examined in material 
details as follows. 
We selected ecologically significant Taoyuan Tableland associated irrigation ponds as our 
study area because one fifth of all the bird species find home on these ponds in Taiwan 
(Chen, 2000; Fang, 2004a). This tableland, at an area of 757 km2 in size, comprises an area of 
2,898 ha of irrigation ponds on the northwestern portion of Taiwan. Located approximately 
30 km from the capital city of Taipei, this rural area was easily converted to urban lands due 
to the aggregated effects of urbanization and commercialization. Socioeconomic benefits are 
driving public opinion which is urging the government to approve land-use conversion 
from farmlands into urban uses. The Taoyuan Tableland lies between the northern border of 
the Linkou Tableland (23°05'N, 121°17'E) and the southern border of the Hukou Tableland 
(22°55'N, 121°05'E); it borders the town of Yinge in the east (22°56’N, 121°20’E) and the 
Taiwan Strait in the west (22°75’N, 120°99'E) (Department of Land Administration, Ministry 
of the Interior, 2002)(see Fig. 2.).  It sits at elevations from sea level to 400 m and is composed 
of tableland up to 303 m and hills with sloping gradients from 303 to 400 m. It runs in a 
southeast-to-northwest trend, abutting mountains in the southeastern corner and the shore 
of the Taiwan Strait at the far end. With a high average humidity of 89%, the tableland is 
located in a subtropical monsoon region with humid winters and warm summers. January 
temperatures average 13 °C, and July temperatures average 28 °C. Annual average 
precipitation ranges from 1,500 to 2,000 mm. 
The tableland gradually rose approximately 180,000 years ago. At that time, the Tanshui 
River had not yet captured the flow from the ancient Shihmen Creek, which directly poured 
out of the northwestern coast forming alluvial fans.  Eventually, foothill faults caused by 
earthquakes during the same era, resulted in the northern region of Taiwan abruptly 
dropping by 200 m, and thus, the Taipei basin was born. Since the Taipei area had subsided, 
the ancient Shihmen Creek which meandered across the Taoyuan Tableland was captured 
by northward-flowing rivers some 30,000 years ago.  The middle streams changed their 
courses because of the subsidence in the Taipei basin. The resulting Tahan Creek, became 
the upstream portion of the Tanshui River in the Taipei Basin.  Due to blockage of water 
sources, downstream areas on the Taoyuan Tableland were deficient in water.  This caused 
high flushing and drops in water yields. Historically, it was difficult to withdraw and 
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supply irrigated surface water from rivers due to the tableland’s unique topography, thus, 
forming an obstacle for the development of agriculture (Huang, 1999; Chen, 2000). 
This area has a population density of 2,331 persons/km2 and its population is increasing at a 
rate of 2,000~3,000/month. Population pressures have contributed to reductions in historical 
areas of farmlands and irrigation ponds (Fang, 2001).  Losses of farm-pond and farmland 
habitats have had series effects on a range of avian communities as well as other fauna and 
flora (Fang and Chang, 2004). On the Taoyuan Tableland, agricultural practices are 
intensifying, which is reducing the heterogeneity of the existing landform, and adding 
pollutants, also resulting from industrial practices. 
 

 

Fig. 2. Location away the city limits more than 2 km of forty-five study ponds in the range of 
the tableland. 

3.2 Pond sampled 
The pond complex in the Tableland is typical of the many farm-pond complexes found in 
the Taoyuan and Hsinchu Counties. The Tableland was first stratified into nine sub-regions, 
six in the north, five in the south, and thirty-four in the western regions. Data were collected 
at forty-five study sites in farm ponds in various size gradients (43 individuals > 1 ha; 2 
individuals < 1 ha) according to large areas of ponds accounted for 628 individuals (>1 
hectare) in Taoyuan Tableland (Fig. 2.). The number of farm-pond sites selected in each 
region was roughly proportional to the accessible area of each region riding by automobiles. 
We did not place sampling sites in eastern and southern urbanized high-density areas 
where the population was relatively intact. This was done because the bird composition of 
such an urban sites containing a large proportion of generalists would have driven a large 
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proportional bias with the other sites with more specialists, thus making it inappropriate for 
diversity analysis. Although we did not select sites based on any predetermined definition 
of the degree of urbanization along a rural-urban gradient (e.g. distance from urban core), 
the relatively large number of randomly selected survey sites ensured that there was a good 
representation of sites far away from major urbanized corridors approximately more than 2 
km area, and far from natural forest areas in the eastern regions. The farm ponds studied 
ranged from the slight disturbed farmlands to the fairly natural farmlands. We placed the 
linear transect routes on areas that were accessible by trails and footpaths around ponds.  
Therefore, forty sites were situated within table range in western range, and five sites were 
situated in relatively continuous interlocked ponds in southern range.  All pond sites were 
stratified selected randomly to minimize variability in vegetation structure and composition.  
Detailed measurements from tree species records on a subset showed them to be 
structurally very similar areas.  
 

 

Fig. 3. Avian observers recorded all bird species seen within a 100-ha radius at 564.19-m 
basal radius of the bird census point at pond edge (photo by Wei-Ta Fang). 

3.3 Waterbirds sampled 
Avian observers recorded all bird species seen within a 100-ha radius at 564.19-m basal 
radius of the bird census point at pond edge associated with line transects along pond-edge 
trails during 30-minute periods (one case of irrigation ponds see Fig. 3.). Sites were visited 
four times in the winter seasons between November and February. To reduce the effects of 
bird-observer bias, three to four observers were grouped and rotated between ponds. The 
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observers counted birds that were in any habitats. All counts were conducted between 7:00 
a.m. and 10:00 a.m. on days without rainy days when visibility was good (Bookhout, 1996).  
Foliage-loving species was also recorded followed the point-count method. Avian 
presence/absence on foliage strata was recorded in each pond at each of the following 
height intervals: edge ground, wetland grasses (< 0.5 m in height), bushes (> 0.5- 2.5 m in 
height), trees (> 2.5 m in height).  Points were sampled at 10-m internals along edge trails 
established down each side of each pond. Waterbirds were grouped into microhabitat guilds 
based on actual observations on the sites.  Foliage-loving species were initially classified into 
four height categories: pond-edge ground, low foliage (< 0.5 m in height), middle foliage (> 
0.5- 2.5 m in height), and high foliage (> 2.5 m in height). Species were subsequently 
classified into two groups: understory (ground and low foliage groups) and canopy (middle 
and high foliage groups). 
We calculated the number of individuals detected of each species at each pond for each 
month. Then, we calculated mean values of these variables for each study microhabitat 
across all study ponds in a wintering season.  

3.4 Pond metrics calculation 
Most pondscape studies imply a comparison with rural or natural habitats and tend to 
group urban or suburban areas into a simple type (Boothby, 1997). But pondscape 
associated with farmlands is not alike. They vary greatly in internal and external factors.  To 
find a habitat relationship, the major variables for species diversity in pondscape patches are 
categorized to meso-scale and micro-scale distribution, such as: (a) matrix heterogeneity 
(meso-scale), and (b) habitat diversity (micro-scale) in size, shape, isolation from sources, 
and boundary delineation of disturbances.  Variables were selected concerning the main 
differences in vegetation, the intensity of anthropogenic influences, and their distance from 
urban limits and ocean edges. In this study, matrix heterogeneity was decided by insensitive 
farming by consolidation.  Habitat diversity indices in area and shape were calculated by 
FRAGSTAT® according to Taoyuan’s Geographic Aerial Map (1:5,000 of scale in digital 
database form) (Department of Land Administration, Ministry of the Interior, 2002).  
These diversity indices were categorized as follows: (1) Largest Pond Index (LPI), (2) Mean 
Pond Size (MPS), (3) Number of Ponds (NP), (4) Mean Pond Fractal Dimension (MPFD), (5) 
Mean Shape Index (MSI), (6) Edge Density (ED), and (7) Total Edge (TE). The indices (1)- (3) 
were categorized as the indices of “area”; and the (4)- (7) were categorized as the indices of 
“shape” (McGarigal et al, 2002). Disrupted by anthropogenic influences, an isolation index 
was calculated: (8) the distance to city limit (in m), (9) the ratio of constructed area within a 
radius of 100 ha from the pond’s geometric center (in (m2)/ha), and (10) the ratio of all road 
and trail areas within a radius of 100 ha from the pond’s geometric center (in (m2)/ha). A 
source connectivity index was calculated: (11) the distance to coastline (in m), (12) the ratio 
of all surrounding pond areas within a radius of 100 ha from the pond’s geometric center (in 
(m2)/ha), and (13) the ratio of all river and canal system areas within a radius of 100 ha from 
the pond’s geometric center (in (m2)/ha). Afterwards, the disturbance and buffer zone was 
measured using the density of drawdown and foliage cover, and windbreak boundaries 
were delineated by field surveys and an examination of aerial photographs, 1:5,000 of scale 
(Agricultural and Forestry Aerial Survey Institute, 2003).  The composition of the complex 
landscape matrix mentioned above could modify the degree of effects, probably by 
increasing or limiting the availability of foraging sources and resting sites for avian 
communities. All elevation (in m) of ponds and perimeters (in m) of pond edges were 
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proportional bias with the other sites with more specialists, thus making it inappropriate for 
diversity analysis. Although we did not select sites based on any predetermined definition 
of the degree of urbanization along a rural-urban gradient (e.g. distance from urban core), 
the relatively large number of randomly selected survey sites ensured that there was a good 
representation of sites far away from major urbanized corridors approximately more than 2 
km area, and far from natural forest areas in the eastern regions. The farm ponds studied 
ranged from the slight disturbed farmlands to the fairly natural farmlands. We placed the 
linear transect routes on areas that were accessible by trails and footpaths around ponds.  
Therefore, forty sites were situated within table range in western range, and five sites were 
situated in relatively continuous interlocked ponds in southern range.  All pond sites were 
stratified selected randomly to minimize variability in vegetation structure and composition.  
Detailed measurements from tree species records on a subset showed them to be 
structurally very similar areas.  
 

 

Fig. 3. Avian observers recorded all bird species seen within a 100-ha radius at 564.19-m 
basal radius of the bird census point at pond edge (photo by Wei-Ta Fang). 

3.3 Waterbirds sampled 
Avian observers recorded all bird species seen within a 100-ha radius at 564.19-m basal 
radius of the bird census point at pond edge associated with line transects along pond-edge 
trails during 30-minute periods (one case of irrigation ponds see Fig. 3.). Sites were visited 
four times in the winter seasons between November and February. To reduce the effects of 
bird-observer bias, three to four observers were grouped and rotated between ponds. The 
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observers counted birds that were in any habitats. All counts were conducted between 7:00 
a.m. and 10:00 a.m. on days without rainy days when visibility was good (Bookhout, 1996).  
Foliage-loving species was also recorded followed the point-count method. Avian 
presence/absence on foliage strata was recorded in each pond at each of the following 
height intervals: edge ground, wetland grasses (< 0.5 m in height), bushes (> 0.5- 2.5 m in 
height), trees (> 2.5 m in height).  Points were sampled at 10-m internals along edge trails 
established down each side of each pond. Waterbirds were grouped into microhabitat guilds 
based on actual observations on the sites.  Foliage-loving species were initially classified into 
four height categories: pond-edge ground, low foliage (< 0.5 m in height), middle foliage (> 
0.5- 2.5 m in height), and high foliage (> 2.5 m in height). Species were subsequently 
classified into two groups: understory (ground and low foliage groups) and canopy (middle 
and high foliage groups). 
We calculated the number of individuals detected of each species at each pond for each 
month. Then, we calculated mean values of these variables for each study microhabitat 
across all study ponds in a wintering season.  

3.4 Pond metrics calculation 
Most pondscape studies imply a comparison with rural or natural habitats and tend to 
group urban or suburban areas into a simple type (Boothby, 1997). But pondscape 
associated with farmlands is not alike. They vary greatly in internal and external factors.  To 
find a habitat relationship, the major variables for species diversity in pondscape patches are 
categorized to meso-scale and micro-scale distribution, such as: (a) matrix heterogeneity 
(meso-scale), and (b) habitat diversity (micro-scale) in size, shape, isolation from sources, 
and boundary delineation of disturbances.  Variables were selected concerning the main 
differences in vegetation, the intensity of anthropogenic influences, and their distance from 
urban limits and ocean edges. In this study, matrix heterogeneity was decided by insensitive 
farming by consolidation.  Habitat diversity indices in area and shape were calculated by 
FRAGSTAT® according to Taoyuan’s Geographic Aerial Map (1:5,000 of scale in digital 
database form) (Department of Land Administration, Ministry of the Interior, 2002).  
These diversity indices were categorized as follows: (1) Largest Pond Index (LPI), (2) Mean 
Pond Size (MPS), (3) Number of Ponds (NP), (4) Mean Pond Fractal Dimension (MPFD), (5) 
Mean Shape Index (MSI), (6) Edge Density (ED), and (7) Total Edge (TE). The indices (1)- (3) 
were categorized as the indices of “area”; and the (4)- (7) were categorized as the indices of 
“shape” (McGarigal et al, 2002). Disrupted by anthropogenic influences, an isolation index 
was calculated: (8) the distance to city limit (in m), (9) the ratio of constructed area within a 
radius of 100 ha from the pond’s geometric center (in (m2)/ha), and (10) the ratio of all road 
and trail areas within a radius of 100 ha from the pond’s geometric center (in (m2)/ha). A 
source connectivity index was calculated: (11) the distance to coastline (in m), (12) the ratio 
of all surrounding pond areas within a radius of 100 ha from the pond’s geometric center (in 
(m2)/ha), and (13) the ratio of all river and canal system areas within a radius of 100 ha from 
the pond’s geometric center (in (m2)/ha). Afterwards, the disturbance and buffer zone was 
measured using the density of drawdown and foliage cover, and windbreak boundaries 
were delineated by field surveys and an examination of aerial photographs, 1:5,000 of scale 
(Agricultural and Forestry Aerial Survey Institute, 2003).  The composition of the complex 
landscape matrix mentioned above could modify the degree of effects, probably by 
increasing or limiting the availability of foraging sources and resting sites for avian 
communities. All elevation (in m) of ponds and perimeters (in m) of pond edges were 
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measured by Global Position System (GPS)(GarminVista-Etrex, made in Taiwan) and rolling 
rulers (in m) associated with the calibration of aerial photographs, 1:5,000 of scale 
(Agricultural and Forest Aerial Survey Institute, 2003). Indices were required to calculate 
class and landscape levels as follows (McGarigal et al, 2002):  
1. Largest Pond Index, LPI. 

 1
max( )

(100)

n

ij
j

a

LPI
A
==  (1) 

ija = maximum pond ij area (in m2). 
A = pond areas (in ha). 
Level: CLASS, LANDSCAPE 
Units: Percent 
Range: 0 < LPI > 100 
Description: LPI equals the pond area (m2) divided by total pond areas, multiplied by 100 
(to convert to a percentage). 
2. Mean Pond Size, MPS. 
MPS is the mean size of ponds (in ha.)  
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ija =the area of pond ij (in m2). 
in = the number of the pond ij, a single pond size (PS) in this case equal to 1. 

Level: CLASS, LANDSCAPE 
Units: Ha 
Range: MPS > 0, without limit. 
Description: MPS equals the pond area (m2) of all ponds of the corresponding patch type, 
divided by 10,000 (to convert to ha). 
3. Number of Ponds, NP. 
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ija = the area of pond ij (in m2). 
in = the number of the pond ij.  
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pij = the perimeter of pond ij (in m). 
Level: CLASS, LANDSCAPE 
Units:  None 
Range: 1 < MPFD < 2 
Description: MPFD reflects shape complexity across a range of pond size. It equals 2 times 
the logarithm of pond perimeter (m) divided by the logarithm of pond area (m2) (Li and 
Reynolds, 1994). MPFD approaches 1 for shapes with very simple perimeters such as circles 
or squares, and approaches 2 for shapes with highly convoluted and plane-filling 
perimeters. 
5. Mean Shape Index, MSI. 
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ijp = the perimeter of pond ij (in m). 
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Range: MSI > 1, without limit. 
Description: MSI equals the sum of the pond perimeter (m) divided by the square root of 
pond area (m2), and divided by the number of ponds. MSI represents the mean shape 
pattern. If MSI = 1, the pond is circular and increases without limit as pond shape becomes 
more curvilinear. 
6. Edge Density, ED. 
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ike = the total parameters between pondi and landscapek (in m).  
n = the number of the pond; a single pond in this case equal to 1.  
A = pond area (in m2). 
Level: CLASS, LANDSCAPE 
Units: None 
Range: MSI > 1, without limit. 
Description: Edge density (in m/ha) equals the pond perimeter (in m) divided by the pond 
area. Edge density is a measurement of the complexity of the shape of pond. 
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ike = the total perimeters between pondi and landscapek (in m).  
n = the number of the pond; a single pond in this case equal to 1.  
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measured by Global Position System (GPS)(GarminVista-Etrex, made in Taiwan) and rolling 
rulers (in m) associated with the calibration of aerial photographs, 1:5,000 of scale 
(Agricultural and Forest Aerial Survey Institute, 2003). Indices were required to calculate 
class and landscape levels as follows (McGarigal et al, 2002):  
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pij = the perimeter of pond ij (in m). 
Level: CLASS, LANDSCAPE 
Units:  None 
Range: 1 < MPFD < 2 
Description: MPFD reflects shape complexity across a range of pond size. It equals 2 times 
the logarithm of pond perimeter (m) divided by the logarithm of pond area (m2) (Li and 
Reynolds, 1994). MPFD approaches 1 for shapes with very simple perimeters such as circles 
or squares, and approaches 2 for shapes with highly convoluted and plane-filling 
perimeters. 
5. Mean Shape Index, MSI. 
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Description: MSI equals the sum of the pond perimeter (m) divided by the square root of 
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pattern. If MSI = 1, the pond is circular and increases without limit as pond shape becomes 
more curvilinear. 
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area. Edge density is a measurement of the complexity of the shape of pond. 
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Level: CLASS, LANDSCAPE 
Units: meters 
Range: MSI > 0, without limit. 
Description: Total Edge (TE) represents the total pond perimeters in meters. 

3.5 Waterbird diversity analyses 
There are two traditional bird analyses for entire avian communities and specific avian 
groups, richness, and diversity. Differences in the characteristics of avian groups and 
pondscape configuration may vary according to species-area relationships among regions. 
Therefore, to find differences in the response of species to habitat area and isolation, studies 
must include multiple analytical approaches to detect which analysis was better based on an 
entire community, or on a specific group.   
Descriptive statistics for entire communities were used as the first stage of statistical avian 
data processing. The main aim was initial analysis of the distribution of avian communities 
sooner, such as an average individual value and; or a guild value was described for specific 
groups later.  Afterwards, avian diversity was described in the result of diversity indices for 
all communities or a single group. To detect species evenness and abundance, we used 
Shannon-Wiener diversity index (H’) (also named for Shannon index or Shannon-Weaver 
index), which is given a measure of the richness and relative density of a species to calculate 
diversity (Shannon and Weaver, 1949). This diversity measure conducted by Shannon and 
Weaver which originally came from information theory and measures the order observed 
within a particular system. Regarding to my studies, this order was characterized by the 
number of avian individuals observed for each species in the sampling ponds.  The first step 
was to calculate Pi for each category (i.e., avian species), and then we multiplied this number 
by the log of the number. The index was computed from the negative sum of these numbers. 
In short, the Shannon-Wiener index (H’) is defined as (8):  

 H′＝－
1

S

i
i

P
=
∑ log2 Pi   (8) 

S: avian species richness  
Pi: The percentage of the i species in avian community 
This index reflected bird richness in species and evenness amongst the avian community.  
The benefits of H’ was sensitive by the change in threatened birds by avian study than that 
of Simpson’s diversity index (D)(Dean et al., 2002).  If the value of H’ is higher, it means that 
species is abundant, or species distribution is even.  However, species diversity is sometimes 
difficult to see relationships with spatial heterogeneity by limited survey data. Grouping 
and classification are required as well as for spatial heterogeneity reduction from the 
analyzed variables. It is the main procedure in this methodology for invoking avian groups 
with similar attributes of spatial behavior. The main approach in cluster analysis application 
is based on the idea to represent the grouping structure by avian data classification, based 
on the similarity in guilds between the species. 

4. Results and discussion 
The procedure was applied to waterbird assemblage of the Taoyuan Tableland, Taiwan. 
One variable was selected to describe its structure: Shannon-Wiener’s diversity index (H’) of 
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the same waterbird guild. Four environmental variables were selected as explanatory 
variables: pond size (PS), pond shape (MPFD)(see equation (4)), proportion of farmland area 
in peripherals (%FARM), and proportion of constructed area in peripherals (%BUILD) than 
that of other variables due to their intensive correlations. Correlations between observed 
values and values estimated by ANN models of the four dependent variables were 
moderately significant. The ANN models were developed from 35 sample sites of farm 
ponds chosen at random and were validated on the 10 remaining sample sites of farm 
ponds. The role of each variable was evaluated by inputting fictitious configurations of 
independent variables and by checking the response of the model. The resulting habitat 
profiles depict the complex influence of each environmental variable on the biological 
parameters of the assemblage, and the non-linear relationships between dependent and 
independent variables. The main results and the ANN potential to predict biodiversity and 
structural characteristics of species assemblages are discussed as follows. 

4.1 Logistic modelling  
Based on logistic regression and criteria selection, we present three strategic landscape 
scenarios as follows. The multiple linear regression (MLR) models decided as equation (4) 
and developed advanced Logit models by equation (9): 

 Logit (Y) = 1.90 -3.02PS + 0.01TE     (9) 
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     where TEkm = total edge (in km), PS = pond size (in ha) 
The pond-loss likelihood (p), Logit (Y), PS, and TEkm were calculated as the Table 1. 
According to Table 1, the strategic landscape scenarios for farm pond adjacent land-uses 
were divided as: (a) Scenario A: conservative land use, (p =0.25); (b) Scenario B: moderate 
land use (p = 0.50); (c) Scenario C: intensive land use (p = 0.75) for waterbird refuges: 
We used Scenario A for a conservative land use. If the likelihood of pond lossas a lower 
value is equal to 0.25, all ponds noted as threatened red spots (pond size > 0.996 ha, TEkm > 
0.997 km) are required conservatively protected due to their loss likelihood. The base map of 
waterbird’s diversity H’ is suggested to designate waterbird refuges in 2 yellow patches 
(H’>1.5) against pond-loss likelihood overlaid by threatened red spots (Hpool: pond size > 
0.996 ha, TEkm > 0.997 km). [Diversity H’:0.4~0.6; 0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; 
Distance (km); 12].  
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Level: CLASS, LANDSCAPE 
Units: meters 
Range: MSI > 0, without limit. 
Description: Total Edge (TE) represents the total pond perimeters in meters. 

3.5 Waterbird diversity analyses 
There are two traditional bird analyses for entire avian communities and specific avian 
groups, richness, and diversity. Differences in the characteristics of avian groups and 
pondscape configuration may vary according to species-area relationships among regions. 
Therefore, to find differences in the response of species to habitat area and isolation, studies 
must include multiple analytical approaches to detect which analysis was better based on an 
entire community, or on a specific group.   
Descriptive statistics for entire communities were used as the first stage of statistical avian 
data processing. The main aim was initial analysis of the distribution of avian communities 
sooner, such as an average individual value and; or a guild value was described for specific 
groups later.  Afterwards, avian diversity was described in the result of diversity indices for 
all communities or a single group. To detect species evenness and abundance, we used 
Shannon-Wiener diversity index (H’) (also named for Shannon index or Shannon-Weaver 
index), which is given a measure of the richness and relative density of a species to calculate 
diversity (Shannon and Weaver, 1949). This diversity measure conducted by Shannon and 
Weaver which originally came from information theory and measures the order observed 
within a particular system. Regarding to my studies, this order was characterized by the 
number of avian individuals observed for each species in the sampling ponds.  The first step 
was to calculate Pi for each category (i.e., avian species), and then we multiplied this number 
by the log of the number. The index was computed from the negative sum of these numbers. 
In short, the Shannon-Wiener index (H’) is defined as (8):  

 H′＝－
1

S

i
i

P
=
∑ log2 Pi   (8) 

S: avian species richness  
Pi: The percentage of the i species in avian community 
This index reflected bird richness in species and evenness amongst the avian community.  
The benefits of H’ was sensitive by the change in threatened birds by avian study than that 
of Simpson’s diversity index (D)(Dean et al., 2002).  If the value of H’ is higher, it means that 
species is abundant, or species distribution is even.  However, species diversity is sometimes 
difficult to see relationships with spatial heterogeneity by limited survey data. Grouping 
and classification are required as well as for spatial heterogeneity reduction from the 
analyzed variables. It is the main procedure in this methodology for invoking avian groups 
with similar attributes of spatial behavior. The main approach in cluster analysis application 
is based on the idea to represent the grouping structure by avian data classification, based 
on the similarity in guilds between the species. 

4. Results and discussion 
The procedure was applied to waterbird assemblage of the Taoyuan Tableland, Taiwan. 
One variable was selected to describe its structure: Shannon-Wiener’s diversity index (H’) of 
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the same waterbird guild. Four environmental variables were selected as explanatory 
variables: pond size (PS), pond shape (MPFD)(see equation (4)), proportion of farmland area 
in peripherals (%FARM), and proportion of constructed area in peripherals (%BUILD) than 
that of other variables due to their intensive correlations. Correlations between observed 
values and values estimated by ANN models of the four dependent variables were 
moderately significant. The ANN models were developed from 35 sample sites of farm 
ponds chosen at random and were validated on the 10 remaining sample sites of farm 
ponds. The role of each variable was evaluated by inputting fictitious configurations of 
independent variables and by checking the response of the model. The resulting habitat 
profiles depict the complex influence of each environmental variable on the biological 
parameters of the assemblage, and the non-linear relationships between dependent and 
independent variables. The main results and the ANN potential to predict biodiversity and 
structural characteristics of species assemblages are discussed as follows. 

4.1 Logistic modelling  
Based on logistic regression and criteria selection, we present three strategic landscape 
scenarios as follows. The multiple linear regression (MLR) models decided as equation (4) 
and developed advanced Logit models by equation (9): 

 Logit (Y) = 1.90 -3.02PS + 0.01TE     (9) 
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     where TEkm = total edge (in km), PS = pond size (in ha) 
The pond-loss likelihood (p), Logit (Y), PS, and TEkm were calculated as the Table 1. 
According to Table 1, the strategic landscape scenarios for farm pond adjacent land-uses 
were divided as: (a) Scenario A: conservative land use, (p =0.25); (b) Scenario B: moderate 
land use (p = 0.50); (c) Scenario C: intensive land use (p = 0.75) for waterbird refuges: 
We used Scenario A for a conservative land use. If the likelihood of pond lossas a lower 
value is equal to 0.25, all ponds noted as threatened red spots (pond size > 0.996 ha, TEkm > 
0.997 km) are required conservatively protected due to their loss likelihood. The base map of 
waterbird’s diversity H’ is suggested to designate waterbird refuges in 2 yellow patches 
(H’>1.5) against pond-loss likelihood overlaid by threatened red spots (Hpool: pond size > 
0.996 ha, TEkm > 0.997 km). [Diversity H’:0.4~0.6; 0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; 
Distance (km); 12].  
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Land-use 
Scenarios 

Pond-Loss 
Likelihood (p) 

PS 
(in ha) 

TEkm 
(in km) 

Logit (Y)= 
ln(p/1-p) 

Extremely Conservative 0.05 1.6087 1.4284 -2.9444 

Highly Conservative 0.10 1.3609 1.2600 -2.1972 

Conservative 0.25 0.9962 0.9971 -1.0986 

Moderate  0.50 0.6310 0.7080 0 

Intensive 0.75 0.2666 0.3710 1.0986 

Table 1. The Pond-loss likelihood rate and Logit functions. 

We also used Scenario B for a moderate land use. If the likelihood of pond lossas a moderate 
value is equal to 0.50, all ponds noted as threatened red spots (pond size > 0.631 ha, TEkm > 
0.708 km) are required moderately protected due to their loss likelihood. The base map of 
waterbird’s diversity H’ is suggested to designate waterbird refuges in 3 yellow patches 
(H’>1.5) against pond-loss likelihood overlaid by threatened red spots (Hpool: pond size > 
0.631 ha, TEkm > 0.708 km). [Diversity H’:0.4~0.6; 0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; 
Distance (km); 12]. 
Actually, Scenario C was used for an intensive land-use pattern, too (Fig. 4.). If the 
likelihood of pond loss as a high value is equal to 0.75, all ponds noted as threatened red 
  
 

 
 
 

Fig. 4. Scenario C was used for an intensive land-use pattern (before ANN’s application) 

Applying Artificial Neural Network on  
Modelling Waterbird Diversity in Irrigation Ponds of Taoyuan, Taiwan 

 

435 

spots (pond size > 0.2666 ha, TEkm > 0.371 km) are required intensively protected due to 
their loss likelihood. The base map of waterbird’s diversity H’ is suggested to designate 
waterbird refuges in 4 yellow patches (H’>1.5) against pond-loss likelihood overlaid by 
threatened red spots (Hpool: pond size > 0.2666 ha, TEkm > 0.371 km). [Diversity H’:0.4~0.6; 
0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; Distance (km); 12]. 

4.2 ANN’s application 
On the basis of the results of this study, there were limitations for waterbird’s diversity on 
the linear model simulation. First, the linear relationship is so simple that it could not 
indicate all non-linear relationship. Second, the pond sites numbers merely ranging from 1 
to 45 simply could affect the precision of simulation results of bird distribution.   
The diversity of waterbirds was predicted throughout the exercise using the 
backpropagation (BP) algorithm with a three mutli-layered neural network. The first layer, 
called the input layer, comprised 4 cells representing each of the environmental variables. 
The second layer, or hidden layer, is composed of a further set of neurons whose number 
depends on the best-calculated results without bias. Since BP algorithm was trained by the 
least mean square method. The least mean square training could reduce the error, or 
distance between the actual output and the desired output, by adjusting the weights. 
Training cases were presented sequentially and the weights are adjusted. We determined 
the number of second-layer neurons through a serious of iterations varied from two, four, 
and eight neurons. In each case, we calculated the correlation coefficients between true 
values of H’ and the predicted value of ANN’s H’. In our study, a network with one hidden 
layer of four neurons was selected. It was emphasized in a stable fit and avoided 
overtraining (see Figs. 5. & 6.).  
In this study, the backpropagation (BP) neural network architecture is shown and consists of 
four layers of neurons connected by weights. We used MATLAB 6.1 (MathWorks, Inc., 
Natick, MA, 2001) to calculate a refining simulation model for extra values of H’. 
The information was captured by the network when input data passed through the hidden 
layer of neurons to the output layer. The weights connecting from neuron one to neuron 
four were denoted as wji. Each neuron was calculated its output based on the amount of 
stimulation it received from the given input vector xi, while xi was the input of neuron i. 
The net input of a neuron was calculated as the weights of its inputs, and the output of the 
neuron was based on some sigmoid function which indicated the magnitude of this net 
input.  So the net output uj from a neuron can be indicate as equations (14) and (15) (Fang et 
al, 2009). 
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Where 
jiw  is the incremental change in the weight from xi to uj 

jθ  is a threshold to be passed through by non-linear activation function ( )ϕ ⋅   
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Land-use 
Scenarios 

Pond-Loss 
Likelihood (p) 

PS 
(in ha) 

TEkm 
(in km) 

Logit (Y)= 
ln(p/1-p) 

Extremely Conservative 0.05 1.6087 1.4284 -2.9444 

Highly Conservative 0.10 1.3609 1.2600 -2.1972 

Conservative 0.25 0.9962 0.9971 -1.0986 

Moderate  0.50 0.6310 0.7080 0 

Intensive 0.75 0.2666 0.3710 1.0986 

Table 1. The Pond-loss likelihood rate and Logit functions. 

We also used Scenario B for a moderate land use. If the likelihood of pond lossas a moderate 
value is equal to 0.50, all ponds noted as threatened red spots (pond size > 0.631 ha, TEkm > 
0.708 km) are required moderately protected due to their loss likelihood. The base map of 
waterbird’s diversity H’ is suggested to designate waterbird refuges in 3 yellow patches 
(H’>1.5) against pond-loss likelihood overlaid by threatened red spots (Hpool: pond size > 
0.631 ha, TEkm > 0.708 km). [Diversity H’:0.4~0.6; 0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; 
Distance (km); 12]. 
Actually, Scenario C was used for an intensive land-use pattern, too (Fig. 4.). If the 
likelihood of pond loss as a high value is equal to 0.75, all ponds noted as threatened red 
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spots (pond size > 0.2666 ha, TEkm > 0.371 km) are required intensively protected due to 
their loss likelihood. The base map of waterbird’s diversity H’ is suggested to designate 
waterbird refuges in 4 yellow patches (H’>1.5) against pond-loss likelihood overlaid by 
threatened red spots (Hpool: pond size > 0.2666 ha, TEkm > 0.371 km). [Diversity H’:0.4~0.6; 
0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; Distance (km); 12]. 

4.2 ANN’s application 
On the basis of the results of this study, there were limitations for waterbird’s diversity on 
the linear model simulation. First, the linear relationship is so simple that it could not 
indicate all non-linear relationship. Second, the pond sites numbers merely ranging from 1 
to 45 simply could affect the precision of simulation results of bird distribution.   
The diversity of waterbirds was predicted throughout the exercise using the 
backpropagation (BP) algorithm with a three mutli-layered neural network. The first layer, 
called the input layer, comprised 4 cells representing each of the environmental variables. 
The second layer, or hidden layer, is composed of a further set of neurons whose number 
depends on the best-calculated results without bias. Since BP algorithm was trained by the 
least mean square method. The least mean square training could reduce the error, or 
distance between the actual output and the desired output, by adjusting the weights. 
Training cases were presented sequentially and the weights are adjusted. We determined 
the number of second-layer neurons through a serious of iterations varied from two, four, 
and eight neurons. In each case, we calculated the correlation coefficients between true 
values of H’ and the predicted value of ANN’s H’. In our study, a network with one hidden 
layer of four neurons was selected. It was emphasized in a stable fit and avoided 
overtraining (see Figs. 5. & 6.).  
In this study, the backpropagation (BP) neural network architecture is shown and consists of 
four layers of neurons connected by weights. We used MATLAB 6.1 (MathWorks, Inc., 
Natick, MA, 2001) to calculate a refining simulation model for extra values of H’. 
The information was captured by the network when input data passed through the hidden 
layer of neurons to the output layer. The weights connecting from neuron one to neuron 
four were denoted as wji. Each neuron was calculated its output based on the amount of 
stimulation it received from the given input vector xi, while xi was the input of neuron i. 
The net input of a neuron was calculated as the weights of its inputs, and the output of the 
neuron was based on some sigmoid function which indicated the magnitude of this net 
input.  So the net output uj from a neuron can be indicate as equations (14) and (15) (Fang et 
al, 2009). 
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ix  is the pondscape ith variable 

ju  is the jth neuron from an outgoing signal to the magnitude of all observations  

( )ϕ ⋅  activation function 

jy  is the output of jth neuron in any layer 
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Fig. 5. The correlation trends between true H’ and ANN’s predicted H’ in training sets for 
four neurons. (correlation coefficient (r) = 0.725537 ≒ 0.722752, n = 35). 
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Fig. 6. The correlation trends between true H’ and ANN’s predicted H’ in validated sets 
fitting for four neurons. (correlation coefficient (r) = 0.722752 ≒ 0.725537, n = 10). 

The structure of the neural network used in this study. The input layer comprises 4 cells 
representing each of the 4-pondscape variables Xi (i =1, 4). The hidden layer comprises 4 
neurons which calculate the dot products between its vector of weights wj =[wji, i =1,4] and 
x = [xi, i=1,4] from MATLAB 6.1. 
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This research chose continuous sigmoid as basic function:  
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where v  is the net effect, and c is a constant.  
For a given input set, the network produced an output, and this response was compared to 
the known desired response of each neuron. The weights of the network were then changed 
to correct or reduce the error between the output of the neuron and desired response, and 
this process was keeping on. The weights were continually changed until the total error of 
all training set was reduced below the acceptable sums of errors. The BP algorithm for 
determining the optimal weights from training sets could be seen as similar to any function 
approximation technique like least square regression. But BP had an improved function to 
learn highly complex and non-linear data.   
According to BP simulation, the strategic landscape scenarios for farm pond adjacent land-
uses were refined as: (1) Scenario A: conservative land use, (p =0.25); (2) Scenario B: 
moderate land use (p = 0.50); (3) Scenario C: intensive land use (p = 0.75) for waterbird 
refuges as the pages that follow by Fig. 7. The Scenario B (moderate land use) has simulated 
to increase one waterbird’s refuge (r = 0.72); and the Scenario C (intensive land use) has 
simulated to increase two waterbird’s refuges (r = 0.72) (see Fig. 7.). 
 

 
 

 
 
 

Fig. 7. Scenario C was used for an intensive land-use pattern (after ANN’s application). 
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where v  is the net effect, and c is a constant.  
For a given input set, the network produced an output, and this response was compared to 
the known desired response of each neuron. The weights of the network were then changed 
to correct or reduce the error between the output of the neuron and desired response, and 
this process was keeping on. The weights were continually changed until the total error of 
all training set was reduced below the acceptable sums of errors. The BP algorithm for 
determining the optimal weights from training sets could be seen as similar to any function 
approximation technique like least square regression. But BP had an improved function to 
learn highly complex and non-linear data.   
According to BP simulation, the strategic landscape scenarios for farm pond adjacent land-
uses were refined as: (1) Scenario A: conservative land use, (p =0.25); (2) Scenario B: 
moderate land use (p = 0.50); (3) Scenario C: intensive land use (p = 0.75) for waterbird 
refuges as the pages that follow by Fig. 7. The Scenario B (moderate land use) has simulated 
to increase one waterbird’s refuge (r = 0.72); and the Scenario C (intensive land use) has 
simulated to increase two waterbird’s refuges (r = 0.72) (see Fig. 7.). 
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Scenario A was refined by the ANN’s model for a conservative land use. If the likelihood of 
pond loss as a lower value is equal to 0.25, all ponds noted as threatened red spots (pond 
size > 0.996 ha, TEkm > 0.997 km) are required conservatively protected due to their loss 
likelihood. The base map of waterbird’s diversity H’ is suggested to designate waterbird 
refuges in 2 yellow patches (H’>1.5) against pond-loss likelihood overlaid by threatened red 
spots (Hpool: pond size > 0.996 ha, TEkm > 0.997 km)[Diversity H’: 0.4~0.6; 0.6~0.8; 0.8~1.0; 
1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72). 
Scenario B was refined by the ANN’s model for a moderate land use. If the likelihood of 
pond loss as a moderate value is equal to 0.50, all ponds noted as threatened red spots (pond 
size > 0.631 ha, TEkm > 0.708 km) are required moderately protected due to their loss 
likelihood. The base map of waterbird’s diversity H’ is suggested to designate waterbird 
refuges in 4 yellow patches (H’>1.5) against pond-loss likelihood overlaid by threatened red 
spots (Hpool: pond size > 0.631 ha, TEkm > 0.708 km)[Diversity H’: 0.4~0.6; 0.6~0.8; 0.8~1.0; 
1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72).  
Scenario C was refined by the ANN’s model for an intensive land-use pattern (see Fig. 7.).  If 
the likelihood of pond loss as a high value is equal to 0.75, all ponds noted as threatened red 
spots (pond size > 0.2666 ha, TEkm > 0.371 km) are required intensively protected due to 
their loss likelihood. The base map of waterbird’s diversity H’ is suggested to designate 
waterbird refuges in 6 yellow patches (H’>1.5) against pond-loss likelihood overlaid by 
threatened red spots (Hpool: pond size > 0.2666 ha, TEkm > 0.371 km)[Diversity H’:0.4~0.6; 
0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72). 

4.3 Discussion 
The pondscape configuration was in fact a very relevant factor for avian diversity. However, 
pond shape (MPFD) was not recognized for its significant influences on waterbird’s 
diversity. The final prediction results for a detailed H’ contourmap were satisfactory, 
testifying then a good prediction of avian diversity which was better with ANN model (r = 
0.72) than with linear regression model (r < 0.28), confirming the non-linearity of the 
relationship between the variables. From an ecological point of view, MPFD, the pond shape 
and %FARM, the ratio of farmland area, were the most significant variables in non-linear 
model rather than the linear model.  
Some of the most significant findings came from the ANN’s model. ANN was detected one 
of the tools that could resolve prediction problems, and this ANNs property is now well 
understood. On such finding was that pond shape (i.e., MPFD) to the pondscape might pose 
a tremendous influence to waterbird’s diversity in Taoyuan Tableland.  The value from 
ANN’s method provided a good indication of the cumulative influences for the four 
environmental factors: such as %BUILD, %FARM, PS, and MPFD. The cumulative 
influences were those that resulted from the anthropogenic influences, and became 
statistically significant on waterbird’s diversity.  The above-mentioned environmental 
factors were selected from correlation analysis associated with linear regression model, and 
each factor to be detected its impact trend by ANN’s model testing. Finally, the impact 
trends were calculated as the sequences of MPFD, %FARM, PS, and %BUILD, respectively.  
However, the correlation coefficients (r) of MPFD, %FARM, PS, and %BUILD were not 
following this sequence.  Another significant finding from the extended simulation data 
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may suggest that consolidated area has contributed to a negative influence on the 
cumulative impacts to decline diversity H’.  Therefore, non-consolidated area has become 
important to design wintering bird refuge due to its domination of the tableland, the refuge 
structures of regular pond shape, big pond size, high-density green spaces, and low-density 
housing development seemed to be regarded. 
 Conservation of avian diversity is influenced greatly by the extent to which intensive 
anthropogenic practices are applied in the pondscape. The models suggest small and 
curvilinear ponds together with urban development associated with high-density rural 
population landscapes will adversely affect waterbird species to a greater magnitude than 
agricultural practices in low-density rural population landscapes. Extensive agricultural 
practices associated with ranching enterprises appear to maintain the native plant 
communities essential for maintaining waterbirds. Considering the tremendous increase in 
development and intensive agricultural practices applied at the rural-urban fringe, native 
vegetation will continue to be replaced with human-made construction and introduced 
woodland species. Therefore, biologists and conservationists should focus their educational 
programs on maintaining avian species in the rural-urban fringe. 
Increased species and structural diversity within these pond units would result in higher 
ecological values of spatial diversity resulting from the occurrence of habitat and regional 
scales. At the same time this reduces the need for making microhabitat density 
measurements to emphasize the “edge-effect” and also, to some extent, compensates for the 
under-representation of small habitats in the measurement of ecological value. For example, 
drawdown can be beneficial to shorebirds; foliage building at waterfront can be beneficial to 
waterfowl. There is clearly some mechanism responsible for the convergence of taxon 
density and composition across the pond size gradient for the greater part of the species 
assemblages. According to MacArthur & Wilson (1967), the nature of this mechanism is 
interesting as the island biogeographic concept predicts that smaller microhabitats should 
contain fewer species due to the effects of reduced immigration rates. For area-sensitive 
species, their incidence is expected to increase as pond size increases. In addition, a larger 
pond is also more likely to contain at least one individual of a species, especially an 
uncommon or rare one.  

5. Conclusion 
In Taoyuan Tableland, all ponds are similarly isolated. Within the complex pondscape, 
ponds are similarly isolated from each other and steppingstone colonization can take place 
to enable species to establish throughout the complex (Forman, 1995). A population may 
become move to surrounding ponds, or nearly so, due to stochastic or deterministic 
mechanisms and steppingstone recolonization might then ensure the persistence of that 
population among wintering stopovers. This is effectively the colonization effect where 
functional groups are continuously moving by colonization from nearby neighboring ponds.  
Because there are many ponds within the tableland and they are close together in space, 
vulnerable populations are likely to be enhanced by immigrants from multiple neighboring 
populations during migration. Stable microhabitats are also likely to receive immigrants 
from several neighboring populations. Migration between farm ponds is thus likely to be 
high and thus the whole pond complex is likely to be responding as a multiple community. 
There is likely to be a concentric-ringed gradient in pond systems between waterside species 
and habitat “islands”. We confirmed that, due to similar mechanisms operating in all ponds 
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Scenario A was refined by the ANN’s model for a conservative land use. If the likelihood of 
pond loss as a lower value is equal to 0.25, all ponds noted as threatened red spots (pond 
size > 0.996 ha, TEkm > 0.997 km) are required conservatively protected due to their loss 
likelihood. The base map of waterbird’s diversity H’ is suggested to designate waterbird 
refuges in 2 yellow patches (H’>1.5) against pond-loss likelihood overlaid by threatened red 
spots (Hpool: pond size > 0.996 ha, TEkm > 0.997 km)[Diversity H’: 0.4~0.6; 0.6~0.8; 0.8~1.0; 
1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72). 
Scenario B was refined by the ANN’s model for a moderate land use. If the likelihood of 
pond loss as a moderate value is equal to 0.50, all ponds noted as threatened red spots (pond 
size > 0.631 ha, TEkm > 0.708 km) are required moderately protected due to their loss 
likelihood. The base map of waterbird’s diversity H’ is suggested to designate waterbird 
refuges in 4 yellow patches (H’>1.5) against pond-loss likelihood overlaid by threatened red 
spots (Hpool: pond size > 0.631 ha, TEkm > 0.708 km)[Diversity H’: 0.4~0.6; 0.6~0.8; 0.8~1.0; 
1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72).  
Scenario C was refined by the ANN’s model for an intensive land-use pattern (see Fig. 7.).  If 
the likelihood of pond loss as a high value is equal to 0.75, all ponds noted as threatened red 
spots (pond size > 0.2666 ha, TEkm > 0.371 km) are required intensively protected due to 
their loss likelihood. The base map of waterbird’s diversity H’ is suggested to designate 
waterbird refuges in 6 yellow patches (H’>1.5) against pond-loss likelihood overlaid by 
threatened red spots (Hpool: pond size > 0.2666 ha, TEkm > 0.371 km)[Diversity H’:0.4~0.6; 
0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72). 

4.3 Discussion 
The pondscape configuration was in fact a very relevant factor for avian diversity. However, 
pond shape (MPFD) was not recognized for its significant influences on waterbird’s 
diversity. The final prediction results for a detailed H’ contourmap were satisfactory, 
testifying then a good prediction of avian diversity which was better with ANN model (r = 
0.72) than with linear regression model (r < 0.28), confirming the non-linearity of the 
relationship between the variables. From an ecological point of view, MPFD, the pond shape 
and %FARM, the ratio of farmland area, were the most significant variables in non-linear 
model rather than the linear model.  
Some of the most significant findings came from the ANN’s model. ANN was detected one 
of the tools that could resolve prediction problems, and this ANNs property is now well 
understood. On such finding was that pond shape (i.e., MPFD) to the pondscape might pose 
a tremendous influence to waterbird’s diversity in Taoyuan Tableland.  The value from 
ANN’s method provided a good indication of the cumulative influences for the four 
environmental factors: such as %BUILD, %FARM, PS, and MPFD. The cumulative 
influences were those that resulted from the anthropogenic influences, and became 
statistically significant on waterbird’s diversity.  The above-mentioned environmental 
factors were selected from correlation analysis associated with linear regression model, and 
each factor to be detected its impact trend by ANN’s model testing. Finally, the impact 
trends were calculated as the sequences of MPFD, %FARM, PS, and %BUILD, respectively.  
However, the correlation coefficients (r) of MPFD, %FARM, PS, and %BUILD were not 
following this sequence.  Another significant finding from the extended simulation data 
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may suggest that consolidated area has contributed to a negative influence on the 
cumulative impacts to decline diversity H’.  Therefore, non-consolidated area has become 
important to design wintering bird refuge due to its domination of the tableland, the refuge 
structures of regular pond shape, big pond size, high-density green spaces, and low-density 
housing development seemed to be regarded. 
 Conservation of avian diversity is influenced greatly by the extent to which intensive 
anthropogenic practices are applied in the pondscape. The models suggest small and 
curvilinear ponds together with urban development associated with high-density rural 
population landscapes will adversely affect waterbird species to a greater magnitude than 
agricultural practices in low-density rural population landscapes. Extensive agricultural 
practices associated with ranching enterprises appear to maintain the native plant 
communities essential for maintaining waterbirds. Considering the tremendous increase in 
development and intensive agricultural practices applied at the rural-urban fringe, native 
vegetation will continue to be replaced with human-made construction and introduced 
woodland species. Therefore, biologists and conservationists should focus their educational 
programs on maintaining avian species in the rural-urban fringe. 
Increased species and structural diversity within these pond units would result in higher 
ecological values of spatial diversity resulting from the occurrence of habitat and regional 
scales. At the same time this reduces the need for making microhabitat density 
measurements to emphasize the “edge-effect” and also, to some extent, compensates for the 
under-representation of small habitats in the measurement of ecological value. For example, 
drawdown can be beneficial to shorebirds; foliage building at waterfront can be beneficial to 
waterfowl. There is clearly some mechanism responsible for the convergence of taxon 
density and composition across the pond size gradient for the greater part of the species 
assemblages. According to MacArthur & Wilson (1967), the nature of this mechanism is 
interesting as the island biogeographic concept predicts that smaller microhabitats should 
contain fewer species due to the effects of reduced immigration rates. For area-sensitive 
species, their incidence is expected to increase as pond size increases. In addition, a larger 
pond is also more likely to contain at least one individual of a species, especially an 
uncommon or rare one.  

5. Conclusion 
In Taoyuan Tableland, all ponds are similarly isolated. Within the complex pondscape, 
ponds are similarly isolated from each other and steppingstone colonization can take place 
to enable species to establish throughout the complex (Forman, 1995). A population may 
become move to surrounding ponds, or nearly so, due to stochastic or deterministic 
mechanisms and steppingstone recolonization might then ensure the persistence of that 
population among wintering stopovers. This is effectively the colonization effect where 
functional groups are continuously moving by colonization from nearby neighboring ponds.  
Because there are many ponds within the tableland and they are close together in space, 
vulnerable populations are likely to be enhanced by immigrants from multiple neighboring 
populations during migration. Stable microhabitats are also likely to receive immigrants 
from several neighboring populations. Migration between farm ponds is thus likely to be 
high and thus the whole pond complex is likely to be responding as a multiple community. 
There is likely to be a concentric-ringed gradient in pond systems between waterside species 
and habitat “islands”. We confirmed that, due to similar mechanisms operating in all ponds 
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and the high connectivity between them, farm ponds are very close to the environmental 
gradients. Given the wide range examining in my study, it is quite possible that the 
predicted group diversity exist at different positions along this gradient. Therefore, the 
colonization effect can be helpful to predict waterbird’s diversity (H’) in surrounding study 
ponds throughout the values of input pondscape variables by ANN algorithm to determine 
a detailed regional contour map surrounding by urbanized areas.  
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1. Introduction 
Noise pollution in large cities is an ever-growing problem, due to several factors: the 
increase in demographic density, the increase in the number of per capita devices, 
appliances and vehicles capable of generating loud noise, and the fact that society is getting 
used to higher noise levels. 
One of the most important factors that help us to explain this fact is the road traffic, since as is 
generally established, road traffic is the most important and generalized sound source in the 
urban zones of the developed countries. Generally speaking, this one is also, with difference, 
the sound source that produces more disturbances and nuisances on the urban residents. 
However, road traffic is not the only noisy source in urban environments:  other noisy sources 
relating to construction work, commercial activity, recreation, etc. have been found. At the 
same time, sound spaces where road traffic does not have a direct incidence and in which 
natural and social sounds predominate, e.g. green areas, can be observed (Torija et al., 2010a). 
The European Directive 2002/49/EC on the Assessment and Management of Environmental 
Noise aims to create a common framework for assessing exposure to environmental noise in 
all Member States. With the use of indicators and evaluation methods harmonized the 
results will be grouped into strategic maps. These maps are designed to comprehensively 
assess noise exposure in a given area, or for overall predictions in that area.  In addition, 
they will be the basis for developing both action plans and strategies in the fight against 
noise (Directive 2002/49/EC). 
For the development of assessment and achievement of the objectives stated in the above 
mentioned directive, from the European Commission the methods used to predict different 
emission sources present in urban environments (industrial noise, road traffic, railway 
traffic and aircraft traffic) are recommended (Commission Recommendation 2003/613/EC).  
All these methods are based only on the obtaining of the A-weighted energy-equivalent 
sound pressure level (LAeq). Nevertheless, any physical characterization of a sound 
environment calls not only for consideration of the A-weighted sound pressure level (LAeq), 
but also requires description of the temporal structure and spectral composition of the 
sound (Berglund & Nilsson, 2001; Botteldooren et al., 2006). These factors bear great weight 
in the perception of noise (Viollon & Lavandier, 2000; Berglund & Nilsson, 2001; 
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1. Introduction 
Noise pollution in large cities is an ever-growing problem, due to several factors: the 
increase in demographic density, the increase in the number of per capita devices, 
appliances and vehicles capable of generating loud noise, and the fact that society is getting 
used to higher noise levels. 
One of the most important factors that help us to explain this fact is the road traffic, since as is 
generally established, road traffic is the most important and generalized sound source in the 
urban zones of the developed countries. Generally speaking, this one is also, with difference, 
the sound source that produces more disturbances and nuisances on the urban residents. 
However, road traffic is not the only noisy source in urban environments:  other noisy sources 
relating to construction work, commercial activity, recreation, etc. have been found. At the 
same time, sound spaces where road traffic does not have a direct incidence and in which 
natural and social sounds predominate, e.g. green areas, can be observed (Torija et al., 2010a). 
The European Directive 2002/49/EC on the Assessment and Management of Environmental 
Noise aims to create a common framework for assessing exposure to environmental noise in 
all Member States. With the use of indicators and evaluation methods harmonized the 
results will be grouped into strategic maps. These maps are designed to comprehensively 
assess noise exposure in a given area, or for overall predictions in that area.  In addition, 
they will be the basis for developing both action plans and strategies in the fight against 
noise (Directive 2002/49/EC). 
For the development of assessment and achievement of the objectives stated in the above 
mentioned directive, from the European Commission the methods used to predict different 
emission sources present in urban environments (industrial noise, road traffic, railway 
traffic and aircraft traffic) are recommended (Commission Recommendation 2003/613/EC).  
All these methods are based only on the obtaining of the A-weighted energy-equivalent 
sound pressure level (LAeq). Nevertheless, any physical characterization of a sound 
environment calls not only for consideration of the A-weighted sound pressure level (LAeq), 
but also requires description of the temporal structure and spectral composition of the 
sound (Berglund & Nilsson, 2001; Botteldooren et al., 2006). These factors bear great weight 
in the perception of noise (Viollon & Lavandier, 2000; Berglund & Nilsson, 2001; 
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Botteldooren et al., 2006) and in its negative impact (specific annoyance) on the population 
(Berglund et al., 2002; Björk, 2002; Lercher & Schulte-Fortkam, 2003). 
The heterogeneous physiognomy of urban environments, together with the characteristics of 
environmental noise, with their great spatial, temporal and spectral variability, makes the 
matter of modeling and prediction a very complex and non-linear problem, to which we may 
apply a powerful tool of data mining —artificial neural networks.  These constitute a 
paradigm of automatic processing that ultimately seek to emulate the biological brain, or at 
least some of its functions, such as learning (Patra & Panda, 1998).  Artificial neural networks 
(ANNs) are widely used in environmental modeling and prediction (Chelani et al., 2002; 
Hamed et al., 2004; Maier et al., 2004; Almasri & Kaluarachchi, 2005; Ordieres et al., 2005) as a 
preference to more conventional statistical techniques (Maier & Dandy, 1998). The reason is 
that ANNs are non-linear (Chakraborty et al., 1992), relatively insensitive to data noise (Tang 
et al., 1991; Burke & Ignizio, 1992), they perform reasonably well when limited data are 
available (Tang et al., 1991; Schizas et al., 1994), and they provide flexibility, accuracy and 
some amount of fault tolerance in changing environments (Patra & Panda, 1998).  

2. Literature review of the application of soft-computing techniques in urban 
noise field 
 Artificial Neural 

Networks 
Fuzzy Techniques Genetic 

Algorithms 
Hidden 
Markov 
Models 

Sound 
Pressure 
Level 
Prediction 

(Cammarata et al., 
1995; Avsar et al., 2004; 
Genaro et al., 2010) 

(Aguilera de Maya, 1997; 
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(Caponetto et 
al., 1997) 
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This section deals with a detailed review of publications at the international level that link 
urban noise with soft-computing techniques.  To carry out this review, four soft-computing 
techniques are considered: Artificial Neural Networks, Fuzzy Techniques, Genetic 
Algorithms and Hidden Markov Models.  In turn, we explore its use in the treatment of the 
following aspects of environmental noise: Sound Pressure Level Prediction, Noise 
Annoyance Prediction, Noise Classification and Urban Traffic Flow Prediction.  A taxonomy 
of the found articles is shown in table 1. 

2.1 Sound pressure level prediction 
Cammaratta et al. (1995) develop a model for predicting noise based on a back-propagation 
neural network.  In this work it was proposed an architecture based on two levels.  In the 
first level, a network LVQ (Learning Vector Quantization) filtered the data, eliminating the 
data considered erroneous, while in the second tier, the back-propagation neural network 
predicts the sound pressure level. 
Turkish standards allow up to 45 dB in places of study environment. In (Avsar et al., 2004) it 
is studied whether these standards are met using a multilayer perceptron neural network 
with noise data of 16 points in a Turkish campus. The neural network is built with seven 
inputs: position of the measuring point, distance from the source to the point of action, wind 
speed and direction, air temperature, relative humidity and time of day. The output is the 
descriptor A-weighted energy-equivalent sound pressure level (LAeq). 
A method based on fuzzy logic for urban noise prediction is briefly described in (Aguilera 
de Maya, 1997).  The results obtained are not accurate enough, however in the section of 
conclusions it is indicated that the results of the fuzzy model have been contrasted with 
actual data from measurements made in the prediction scenarios and it has been proved to 
be highly successful. 
Caponetto et al. (1997) put forth a method based on genetic algorithms, which seeks the 
optimization of fuzzy rules based system for environmental noise prediction.  The obtained 
results demonstrate the success of their method. 
In (Genaro et al., 2010) a neural network based model for urban noise prediction is 
developed.  In this paper a selection of 12 street locations with different characteristics of the 
city of Granada (Spain) is carried out to obtain a representative sample of the complexity of 
urban streets with presence of road traffic.  A set of 289 data vectors, each one with 26 
components, was obtained.  A total of 25 input variables were used (Torija et al., 2010a), 
being the only output variable the A-weighted energy-equivalent sound pressure level 
(LAeq).  The results were compared to those obtained with mathematical models.  It was 
found that the proposed ANN system was able to predict noise with greater accuracy, and 
thus was an improvement on these models. 

2.2 Noise annoyance prediction 
With regard to noise annoyance prediction, Zaheeruddin & Garima (2006) propose a 
neurofuzzy model to predict the annoyance suffered by workers exposed to high noise 
levels.  Once demonstrated that the parameters that most affect workers are noise pollution, 
type of task and the exposure time to it, a neurofuzzy system is developed. 
The most prolific authors who have dealt with techniques based on fuzzy logic modeling of 
environmental noise are Botteldooren and Verkeyn (Botteldooren & Verkeyn, 2001; 
Botteldooren & Verkeyn, 2002a,b,c,d,e; Botteldooren et al., 2002a,b; Botteldooren et al., 
2003a,b; Botteldooren & Lercher, 2004). Their main field of study is the prediction of the 
noise annoyance level on people. For this reason, a fuzzy model is used in the majority of its 
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Botteldooren et al., 2006) and in its negative impact (specific annoyance) on the population 
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proposals, looking for a set of rules that describe the fuzzy system. It deals with the study 
creating a fuzzy rules based system that predicts responses from the public about the noise 
annoyance caused by road and railway traffic noise. 

2.3 Noise classification 
Couvreur & Laniray (2004) describes an Automatic Noise Recognition System. The system is 
based on neural networks and Hidden Markov Models and is able to distinguish, from 1000 
sound recordings, between two sounds: horn or motorcycle engine. The neural network 
phase includes a multilayer perceptron ANN, where the coefficients were obtained by 
supervised training. 
Another noise classifier is developed in (Berg, 2002), which recognizes sounds of planes, 
with the use of neural networks. The neural network is built with a backpropagation 
architecture with three neurons in the hidden layer. 
In (Beritelli et al., 2000) an urban noise classifier based on fuzzy techniques is presented. 
Considering a set of acoustic characteristics it tries to distinguish among seven categories: 
bus, car, rail, construction works, people talking, street and factory. 
Several works (Gaunard et al., 1998; Couvreur et al., 1998; Ma et a., 2003a,b)  develop a 
Hidden Markov Model based noise classifier system.  These publications describe how a 
Hidden Markov Model can be used to develop a recognition system based on the ambient 
noise frequency analysis. A preprocessor provides frequency representation in time of the 
audio signal, which is then used by a classifier. The classifier makes a decision depending on 
the nature of the noise source, according to the characteristics given by the preprocessor. 
Two ways of improving the performance of automatic noise recognition are presented in 
(Betkowsa et al., 2005). Firstly, it is proposed the minimization of the number of parameters 
of a Hidden Markov Model based noise classifier, in order to reduce its complexity. 
Secondly, it seeks to combine the results of different recognition systems, applying the 
method of combining expert (MoE, Mixture of Experts). It uses neural networks, which are 
applied to combine the results and make a final decision on the status of the signal. 

2.4 Urban traffic flow prediction 
There are some works that develop urban traffic flow prediction models. It is necessary 
annotate here as most mathematical noise prediction models consider traffic flow the most 
influential variable. Urban traffic flow is predicted in (Fortuna et al., 2004; Dougherty & 
Cobbett, 1997; Ledoux, 1997; Dia, 2001; Yin et al., 2002). 

3. Pursued goal 
After review the use of ANN for modeling and prediction of sound levels, we will introduce 
a new model to predict both temporal structure and spectral composition of the sound 
pressure level by using artificial neural networks. The process of model developing is made 
in an inductive way, first selecting the input and output variables and then building an 
ANN based on an error minimization criterion. The net is then validated using real noise 
data. An extensive measurement campaign, conducted in the city of Granada (Spain), gives 
a wide database, which includes the spatial and temporal heterogeneity characteristic of 
urban agglomerations. With this measurement campaign the short-term information 
(integration period of 5 minutes) necessary for the input and output variables involved in 
model development is obtained. 
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The constructed ANN model allows not only the equivalent sound level to be predicted but 
also the average temporal and spectral structure of sound. In view of the large impact of 
temporal and spectral structure on sound perception, the model could achieve both a 
precise modeling and evaluation of the studied soundscape. The accompanying results 
given in this chapter show that this prediction model based on ANN along with a 
perceptual and psychosocial assessment of sound ambient can be a very useful tool for 
urban soundscapes management becoming an interesting application of Neural Networks 
for environmental sound modeling. 

4. Selection of input and output variables for the development of the model 
This section focuses on the selection of input and output variables for the construction of 
temporal structure and spectral composition of the sound pressure level prediction model. 
To accurately describe and assess urban noise, a critical issue is the selection of input 
variables, conducive to the implementation of a model, which is representative of urban 
complexity (Torija et al., 2010a). In our opinion, prior to the model construction stage, it is 
necessary to study the acoustic variables for the characterization of the sound environment, 
as well as their range of possible values. This is a necessary condition for the development of 
an urban noise prediction model.  For this purpose, as we see in Table 2, a series of 24 input 
variables was selected. 
The input variables for the built of the artificial neural network based model are chosen 
from a previous existing knowledge in the field, both obtained from our own experience in 
our experimental work and the used and studied bibliography about environmental 
acoustics (see references at Torija et al., 2010a). 
On the other hand, 30 output variables, the A-weighted equivalent sound pressure level 
(LAeq) and no weighted equivalent sound pressure level (Leq), the temporal sound level 
variance (TSLV) and the crest factor (temporal composition) (Torija et al., 2010b), as well as 
the sound level for each of the 1/3-octave bands between 31.5-10000 Hz (spectral 
composition) have been selected. 
The  energy equivalent sound pressure level (Leq) is a parameter that corresponds to the 
value of sound pressure level in dB, of a hypothetical steady sound that in a time interval T 
has the same mean squared sound pressure that the measured sound and whose level varies 
with time.  Its mathematical expression is: 
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where: 
Leq is the continuous sound level in dB (dB(A) for the descriptor LAeq), determined in the 
time interval T, between instants t1 and t2. 
P0 is the reference sound pressure (20 μPa). 
Pi(t) is the instantaneous sound pressure. 
With respect to the descriptor TSLV, let Lp(t) with t in [0 s, 300 s] be the one second 
measured sound pressure. The standard deviation of the instantaneous sound pressure is 
noted as σL. Furthermore, let us define the energy-equivalent sound pressure level Leq(T) of 
the sound measured up to time T, as  
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and let us further note the standard deviation of Leq(T) as σeq. We then define the Temporal 
Sound Level Variance (TSLV) as  

 L eqTSLV σ σ= ∗  (3) 

With this indicator, the more commonly used standard deviation of the instantaneous (1 s) 
sound level, σL is multiplied or 'weighted' by σeq (Torija et a., 2010b). 
Finally, the Crest Factor (CF) is defined as the ratio between the maximum sound pressure 
and the RMS value of the sound pressure:  
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We have Lp(ti) as the instantaneous sound pressure level (one second SPL) and Leq,T as the 
energy-equivalent sound pressure level in 5-min period. The CF gives the value of sound-
pressure impulsiveness within 5-min of measurement (Torija et al., 2010b). 
 

Nº Input variable 
1 Type of day 
2 Day period 
3 Commercial/leisure environment 
4 Type of location 
5 Presence of vegetation 
6 Statilization time of the sound level 
7 Type of traffic flow dynamic 
8 Anomalous sound events related to traffic 
9 Anomalous sound events no related to traffic
10 Ascendant light vehicles 
11 Descendant light vehicles 
12 Ascendant heavy vehicles 
13 Descendant heavy vehicles 
14 Ascendant buses 
15 Descendant buses 
16 Ascendant motorcycles-mopeds 
17 Descendant motorcycles-mopeds 
18 Vehicles with siren 
19 Average speed 
20 Number of upward lanes 
21 Number of downward lanes 
22 Street geometry 
23 Street width 
24 Street height 

Table 2. Input variables used for the development of the prediction model 
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5. Data sampling 
To carry out this study a representative sample of locations (120 locations) of the city of 
Granada (Spain) was selected.  Locations were selected in such a way that they included the 
higher variability in the value range of the input variables given in table 2. In the given 
subset of locations is included all the input variables (street geometry, ascendant or 
descendant flow, stabilization time etc) in such way that one or more elements of the subset 
of variables will be noteworthy or with a high change range in at least one location point. 
The selection included locations where the main source of environmental noise at the time 
of measurement was road traffic. Some locations were affected by other noise sources as 
well. Overall, there were variations in traffic intensity, traffic flow dynamics, geometry of 
the traffic routes, types of road surface, traffic slope and speed, and situation within the city. 
Moreover, because urban environments do not necessarily entail the direct incidence of road 
traffic noise, we also selected settings with other predominant sound sources, such as 
pedestrian areas, locations with commercial/leisure activities, and squares or urban parks 
where the soundscape would principally comprise social and natural sounds. 
Measurements were obtained following european procedures of reference; all microphones 
were mounted away from reflecting facades, at a height of 4 m above local ground level 
(Directive 2002/49/EC). Once all the measurements had been taken, the acoustical 
descriptors used in this research were calculated, so that from the different selected input 
variables and with 5 minutes set as the integration time period, the prediction of each one of 
the used acoustical indicators could be effected. 

6. Artificial Neural Network structure 
To undertake the goal established in this work, we chose to apply a back-propagation neural 
network. The ANN based prediction model involves implementation of the Levenberg-
Marquardt variant with Bayesian regulation back-propagation. The internal parameters and 
geometry of the back-propagation neural network were carefully studied (Maier and 
Dandy, 1998), and the ANN structure affording major precision, minor prediction error, and 
low computation time was selected. 
 

 ANN 
Configuration 

Input Variables 24 
Output Variables 30 
Neurons on Hidden Layer 17 
Divide Function dividerand 
Learning Function learngdm 
Performance Function mse 
Training Function trainbr 
Transfer Function tansig + purelin 
Mu Parameter 0.005 

Table 3. Artificial neural network (ANN) configuration 

The structure of the ANN can be seen in Table 3 and Fig. 1. The adaptation learning function 
is Learngdm and the performance function is MSE. The ANN has 24 input variables, 17 
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Table 2. Input variables used for the development of the prediction model 
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5. Data sampling 
To carry out this study a representative sample of locations (120 locations) of the city of 
Granada (Spain) was selected.  Locations were selected in such a way that they included the 
higher variability in the value range of the input variables given in table 2. In the given 
subset of locations is included all the input variables (street geometry, ascendant or 
descendant flow, stabilization time etc) in such way that one or more elements of the subset 
of variables will be noteworthy or with a high change range in at least one location point. 
The selection included locations where the main source of environmental noise at the time 
of measurement was road traffic. Some locations were affected by other noise sources as 
well. Overall, there were variations in traffic intensity, traffic flow dynamics, geometry of 
the traffic routes, types of road surface, traffic slope and speed, and situation within the city. 
Moreover, because urban environments do not necessarily entail the direct incidence of road 
traffic noise, we also selected settings with other predominant sound sources, such as 
pedestrian areas, locations with commercial/leisure activities, and squares or urban parks 
where the soundscape would principally comprise social and natural sounds. 
Measurements were obtained following european procedures of reference; all microphones 
were mounted away from reflecting facades, at a height of 4 m above local ground level 
(Directive 2002/49/EC). Once all the measurements had been taken, the acoustical 
descriptors used in this research were calculated, so that from the different selected input 
variables and with 5 minutes set as the integration time period, the prediction of each one of 
the used acoustical indicators could be effected. 

6. Artificial Neural Network structure 
To undertake the goal established in this work, we chose to apply a back-propagation neural 
network. The ANN based prediction model involves implementation of the Levenberg-
Marquardt variant with Bayesian regulation back-propagation. The internal parameters and 
geometry of the back-propagation neural network were carefully studied (Maier and 
Dandy, 1998), and the ANN structure affording major precision, minor prediction error, and 
low computation time was selected. 
 

 ANN 
Configuration 

Input Variables 24 
Output Variables 30 
Neurons on Hidden Layer 17 
Divide Function dividerand 
Learning Function learngdm 
Performance Function mse 
Training Function trainbr 
Transfer Function tansig + purelin 
Mu Parameter 0.005 

Table 3. Artificial neural network (ANN) configuration 

The structure of the ANN can be seen in Table 3 and Fig. 1. The adaptation learning function 
is Learngdm and the performance function is MSE. The ANN has 24 input variables, 17 
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neurons on the hidden layer and 30 output variables. The transfer function is Tangsig (layer 
1) + Purelin (layer 2) and the Marquardt adjustment parameter (mu) is 0.005. 
 

 
Fig. 1. Artificial neural network (ANN) structure 
We have divided the available 543 input records into three data subsets (Training, validation 
and test) which are different from each other.  The training subset contains 400 records (75% 
of the 543 input records), the validation subset comprises 27 records (5% of the 543 input 
records) and the test subset includes 116 records (20% of the 543 input records). 

7. Results 
Once established the structure of the artificial neural network (ANN) and to evaluate the 
precision of the prediction model, this ANN has been trained and tested 25 times, 5 times for 
each of the previously established 5 training-validation-test subsets.  As we can see in Table 4, 
the ANN was trained with a number of epochs between 24 (data subset 3) and 51 (data subset 
5).  The time spent on the completion of the training phase has been between 77.77 sec (data 
subset 3) and 161.62 sec (data subset 5).   
 

 Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
Epochs 30 26 24 34 51 
Training time (sec) 116.29 84.98 77.77 109.33 161.62 

Table 4. Number of epochs and training time for the 5 data subsets used 
Table 5 shows the mean squared error (MSE) of the 5 training subsets for the ANN based 
prediction model.  As can be seen from the results shown in Table 5, for the case of descriptors 
LAeq (between 8.3·10-5 in subset 1 and 1.2·10-4 in subsets 2, 3) and Leq (1.2·10-4 in subset 1 and 
1.5·10-4 in subsets 2, 3, 4 and 5), the value of the mean squared error (MSE) remains relatively 
stable for all the five data subsets. 
 

Acoustical descriptors Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
LAeq  8.3·10-5 1.2·10-4 1.2·10-4 1.1·10-4 1.0·10-4 
Leq  1.2·10-4 1.5·10-4 1.5·10-4 1.5·10-4 1.5·10-4 

TSLV  5.5·10-4 4.9·10-4 5.5·10-4 5.9·10-4 5.3·10-4 

CF 4.8·10-4 5.1·10-4 3.8·10-4 4.1·10-4 3.8·10-4 

1/3-octave bands (31.5-10000 Hz) 4.4·10-4 5.6·10-4 5.5·10-4 5.3·10-4 5.0·10-4 

Table 5. Mean squared error (MSE) of the training subsets for the proposed ANN based 
prediction model 
As for the descriptors for the characterization of temporal structure, that is TSLV (between 
4.9·10-4 in subset 2 and 5.9·10-4 in subset 4) and CF (between 3.8·10-4 in subsets 3, 5 and 5.1·10-4 
in subset 2), the MSE value fluctuates slightly in the five used data subsets.  Something very 
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similar happens in the case of output variables related to the spectral composition (1/3-octave 
bands between 31.5-10000 Hz), where fluctuations in the MSE value between 4.4·10-4 (subset 1) 
and 5.6·10-4 (subset 2) are found. 
 

Acoustical descriptors Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
LAeq  2.3·10-4 2.3·10-4 1.9·10-4 1.9·10-4 1.8·10-4 
Leq  1.3·10-4 1.5·10-4 1.7·10-4 1.7·10-4 1.8·10-4 

TSLV  4.0·10-4 4.2·10-4 5.0·10-4 3.8·10-4 4.5·10-4 

CF 5.0·10-4 3.5·10-4 3.3·10-4 3.1·10-4 2.9·10-4 

1/3-octave bands (31.5-10000 Hz) 6.4·10-4 8.4·10-4 7.2·10-4 7.2·10-4 7.6·10-4 

Table 6. Mean squared error (MSE) of the test subsets for the proposed ANN based 
prediction model 
In Table 6 we can observe the MSE value of the 5 test subsets for the ANN based prediction 
model.  In view of the obtained results, the MSE value follows a quite similar pattern to that 
observed for the case of training subsets (Table 4) with regard to the MSE value found in the 
different test subsets. 
 

1/3-octave bands [Hz]  Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
31.5 0.79 0.76 0.79 0.80 0.76 
40 0.79 0.78 0.80 0.79 0.76 
50 0.88 0.87 0.87 0.86 0.86 
63 0.86 0.87 0.85 0.86 0.86 
80 0.77 0.76 0.78 0.78 0.78 
100 0.81 0.79 0.83 0.79 0.81 
125 0.84 0.87 0.88 0.88 0.88 
160 0.86 0.86 0.87 0.88 0.87 
200 0.86 0.86 0.87 0.88 0.87 
250 0.88 0.88 0.89 0.91 0.89 
315 0.90 0.89 0.90 0.92 0.91 
400 0.90 0.89 0.90 0.91 0.91 
500 0.88 0.87 0.88 0.89 0.87 
630 0.88 0.89 0.89 0.90 0.89 
800 0.88 0.89 0.90 0.89 0.92 
1000 0.87 0.88 0.88 0.88 0.90 
1250 0.88 0.88 0.88 0.88 0.90 
1600 0.90 0.89 0.89 0.89 0.89 
2000 0.89 0.88 0.90 0.90 0.90 
2500 0.88 0.87 0.88 0.89 0.89 
3150 0.85 0.83 0.85 0.86 0.85 
4000 0.88 0.85 0.87 0.88 0.88 
5000 0.84 0.84 0.86 0.87 0.86 
6300 0.82 0.80 0.83 0.84 0.83 
8000 0.82 0.80 0.82 0.83 0.82 
10000 0.81 0.80 0.83 0.84 0.82 

Table 7. R2-value for the 1/3-octave bands (31.5-10000 Hz) of the ANN test subsets 
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As for descriptors LAeq and Leq MSE values between 1.8·10-4 (subset 5) - 2.3·10-4 (subsets 1 
and 2) and between 1.3·10-4 (subset 1) - 1.8·10-4 (subset 5) are found respectively.  The 
variability of the MSE value in the different test subsets for the descriptors TSLV (3.8·10-4 in 
subset 4 and 5.0·10-4 in subset 3), CF (2.9·10-4 in subset 5 and 5.0·10-4 in subset 1) and 1/3-
octave bands between 31.5-10000 Hz (6.4·10-4 in subset 1 and 8.4·10-4 in subset 2) is greater 
than that observed for the two previous descriptors. 
Regarding the R2-value of the third octave bands for all the used test subset (Table 7), it can 
be observed that the correlation factor of prediction varies depending on the frequency band 
considered.  We found that the frequency band with a lower correlation factor corresponds 
to the third octave band of 80 Hz (R2 = 0.76-0.78). On the other hand, the 1/3-octave band of 
315 Hz has the highest value of R2 factor (R2 = 0.89-0.92). 

 
Fig. 2. Mean Squared Error (MSE) differences between training and test subsets 
In view of the results shown in Tables 5 and 6, we can check that the magnitude of the MSE 
value is practically similar between the training and test data subsets. This finding is 
confirmed by the results reflected in Fig. 2.  This figure represents the difference in the MSE 
value between the training and test subsets for all used data subsets (1-5).  According to the 
Fig. 2, the MSE value decreases slightly from the training to the test subsets in a value 
between 2.2·10-4 and 1.5·10-4. 
These results inform us about the great ability of generalization of the developed prediction 
model, since not only accurately predicts the output variables of the training subsets but 
also the output variables of the test subsets, which correspond to the blind data for the 
neural network (not used in the training phase). 
In order to certify the good results obtained with the developed ANN based prediction 
model in Figs. 3-7 (a), are shown as an example the correlation values between measured 
and estimated by the model output variables for the case of data subset 5.  In addition, as an 
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example in Figures 3-7 (b) display the evolution of measured and estimated value of the 
output variables (LAeq, Leq, TSLV, CF and 800 Hz sound level) for all records used for the test 
phase (in the case of the data subset 5). 
 

 

 
Fig. 3. (a) R2-value between estimated and measured LAeq and (b) Evolution of the estimated 
and measured LAeq for the used test records (subset 5) 

(a)

(b)
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Fig. 4. (a) R2-value between estimated and measured Leq and (b) Evolution of the estimated 
and measured Leq for the used test records (subset 5) 

(b)

(a)
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Fig. 5. (a) R2-value between estimated and measured TSLV and (b) Evolution of the 
estimated and measured TSLV for the used test records (subset 5) 

(b)
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Fig. 4. (a) R2-value between estimated and measured Leq and (b) Evolution of the estimated 
and measured Leq for the used test records (subset 5) 
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Fig. 5. (a) R2-value between estimated and measured TSLV and (b) Evolution of the 
estimated and measured TSLV for the used test records (subset 5) 
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Fig. 6. (a) R2-value between estimated and measured CF and (b) Evolution of the estimated 
and measured CF for the used test records (subset 5) 

(b)

(a)
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Fig. 7. (a) R2-value between estimated and measured 800 Hz Sound Level and (b) Evolution 
of the estimated and measured 800 Hz Sound Level for the used test records (subset 5).  *The 
results with respect to the output variable 800 Hz Sound Level are shown as an example of 
the ANN behavior to predict the 1/3-octave Sound Level between 31.5-10000 Hz. The 
correlation value for all the other frequency bands is shown in Table 7. 

(b)

(a)
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In view of the obtained results, where the proposed ANN based model achieves prediction 
with a reasonably low mean squared error (MSE), and shows a great capacity for 
generalization, we may affirm that the proposed neural network is capable of predicting, 
with considerable precision and accuracy, both the sound pressure level (A-weighted and 
not weighted) and the temporal and spectral composition of the different types of situations 
presented to the network. 

8. Discussion and conclusions 
It has been widely recognized that noise pollution is one of the most important environmental 
problems in urban agglomerations (Miedema & Vos, 1998). It is fully assumed and research 
studies in various countries have shown that noise affects daily activities and causes sleep 
disturbance as well as a poorer life quality (Lercher, 1996). 
Undertake a proper modeling and prediction of environmental noise in urban environments 
is a challenging task.  This is due to several reasons but mainly to the great variability 
(temporal and spatial) of sound sources. Road traffic is the main source of environmental 
noise in urban areas, nevertheless, road traffic is not the only noisy source in urban settings; 
we also encounter noise coming from construction works, commercial activities, recreation, 
etc. At the same time, we can find urban locations in which road traffic does not have a 
direct incidence, e.g. green urban areas, in which natural and social sounds predominate.  
This latter aspect is indicative of the great urban heterogeneity.  In this sense, one of the 
most salient characteristics of urban agglomerations is the great heterogeneity of situations 
that can arise in them. From the perspective of environmental modelling, this heterogeneity 
is a serious problem since this situational diversity must be accounted for in any well-
designed environmental model. Regarding the characterization of sound environments, 
something similar occurs because the number of variables that influence both the sound 
emission and the sound spread is very high (Torija et al., 2010a). 
For these reasons, to undertake the problem of noise modelling in cities, it is more effective 
to fully characterize the sound space of a given urban area. To carry out an adequate 
characterization of a sound space is necessary to address not only the evaluation of sound 
pressure level but is also necessary to consider the temporal structure and spectral 
composition of the sound (Torija et al., 2010b). We choose these variables as defining of the 
given sound space, going beyond the classical noise level prediction. 
Once the problem is established, a critical step is to select the variables that affect the sound 
space. Based on a deep study of the problem, several variables are selected, together with 
the output variables we need to define the sound space. The tool selected for performing the 
modeling, due to the reasons stated above, are neural networks. Due to their well-known 
characteristics, the use of artificial neural networks to approach the complex problem of 
modeling and prediction of urban noise seemed highly recommended.  In this paper, this 
hypothesis is certified in view of the obtained results.  The developed ANN based 
prediction model is able to predict, with great accuracy, the short-term level and both 
temporal and spectral composition of the sound pressure in urban agglomerations.  In the 
cases studied, the proposed model is not only able to learn and predict those records 
presented during the training phase, but also it is able, with a high success degree, to predict 
those records used for the testing phase, which inform about its great capacity of 
generalization.  This fact reports that the proposed methodology will not only be very useful 
for the measured situations/locations, but it may be of great usefulness in any 
situation/location of other Southern Europe medium-sized cities.  
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9. Future research work 
As future work, there are several proposals that have emerged from this research. 
Firstly, it would be of great interest to implement the proposed ANN based prediction 
model in a GIS tool, so that we could represent the spatial distribution of the obtained 
results. This will allow obtaining mapping with the value of each one of the different used 
descriptors, being this information of great value for the urban planner, as for decision 
making in the management of a sound space. 
Secondly it will be very useful to test the model in other cities. Although the methodology 
describes here is fully applicable to any urban areas, the model should be refined to take 
into account new sound spaces arising in other cities. This would increase the applicability 
and generality of the model. 
Finally, another aspect of great interest to consider for future work is to use another data 
mining techniques or new algorithms to improve the above described model. In the latter 
case, we are considering the use of genetic algorithms to optimize an artificial neural 
network, in order to evaluate their potential pros and cons regarding the development of an 
urban noise prediction model.  The principal goal would be to analyze the main differences 
found between the use of backpropagation algorithms and genetic algorithms to carry out 
the training of an artificial neural network. 
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In view of the obtained results, where the proposed ANN based model achieves prediction 
with a reasonably low mean squared error (MSE), and shows a great capacity for 
generalization, we may affirm that the proposed neural network is capable of predicting, 
with considerable precision and accuracy, both the sound pressure level (A-weighted and 
not weighted) and the temporal and spectral composition of the different types of situations 
presented to the network. 

8. Discussion and conclusions 
It has been widely recognized that noise pollution is one of the most important environmental 
problems in urban agglomerations (Miedema & Vos, 1998). It is fully assumed and research 
studies in various countries have shown that noise affects daily activities and causes sleep 
disturbance as well as a poorer life quality (Lercher, 1996). 
Undertake a proper modeling and prediction of environmental noise in urban environments 
is a challenging task.  This is due to several reasons but mainly to the great variability 
(temporal and spatial) of sound sources. Road traffic is the main source of environmental 
noise in urban areas, nevertheless, road traffic is not the only noisy source in urban settings; 
we also encounter noise coming from construction works, commercial activities, recreation, 
etc. At the same time, we can find urban locations in which road traffic does not have a 
direct incidence, e.g. green urban areas, in which natural and social sounds predominate.  
This latter aspect is indicative of the great urban heterogeneity.  In this sense, one of the 
most salient characteristics of urban agglomerations is the great heterogeneity of situations 
that can arise in them. From the perspective of environmental modelling, this heterogeneity 
is a serious problem since this situational diversity must be accounted for in any well-
designed environmental model. Regarding the characterization of sound environments, 
something similar occurs because the number of variables that influence both the sound 
emission and the sound spread is very high (Torija et al., 2010a). 
For these reasons, to undertake the problem of noise modelling in cities, it is more effective 
to fully characterize the sound space of a given urban area. To carry out an adequate 
characterization of a sound space is necessary to address not only the evaluation of sound 
pressure level but is also necessary to consider the temporal structure and spectral 
composition of the sound (Torija et al., 2010b). We choose these variables as defining of the 
given sound space, going beyond the classical noise level prediction. 
Once the problem is established, a critical step is to select the variables that affect the sound 
space. Based on a deep study of the problem, several variables are selected, together with 
the output variables we need to define the sound space. The tool selected for performing the 
modeling, due to the reasons stated above, are neural networks. Due to their well-known 
characteristics, the use of artificial neural networks to approach the complex problem of 
modeling and prediction of urban noise seemed highly recommended.  In this paper, this 
hypothesis is certified in view of the obtained results.  The developed ANN based 
prediction model is able to predict, with great accuracy, the short-term level and both 
temporal and spectral composition of the sound pressure in urban agglomerations.  In the 
cases studied, the proposed model is not only able to learn and predict those records 
presented during the training phase, but also it is able, with a high success degree, to predict 
those records used for the testing phase, which inform about its great capacity of 
generalization.  This fact reports that the proposed methodology will not only be very useful 
for the measured situations/locations, but it may be of great usefulness in any 
situation/location of other Southern Europe medium-sized cities.  
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9. Future research work 
As future work, there are several proposals that have emerged from this research. 
Firstly, it would be of great interest to implement the proposed ANN based prediction 
model in a GIS tool, so that we could represent the spatial distribution of the obtained 
results. This will allow obtaining mapping with the value of each one of the different used 
descriptors, being this information of great value for the urban planner, as for decision 
making in the management of a sound space. 
Secondly it will be very useful to test the model in other cities. Although the methodology 
describes here is fully applicable to any urban areas, the model should be refined to take 
into account new sound spaces arising in other cities. This would increase the applicability 
and generality of the model. 
Finally, another aspect of great interest to consider for future work is to use another data 
mining techniques or new algorithms to improve the above described model. In the latter 
case, we are considering the use of genetic algorithms to optimize an artificial neural 
network, in order to evaluate their potential pros and cons regarding the development of an 
urban noise prediction model.  The principal goal would be to analyze the main differences 
found between the use of backpropagation algorithms and genetic algorithms to carry out 
the training of an artificial neural network. 
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1. Introduction 
Artificial neural networks (ANNs), as techniques that mimic the processing way of 
information in human brain have emerged as promising methods in dealing with non-linear 
and complex relations. The ability to learn, tolerance to data noises and capability to model 
incomplete data have made them unique analyzing approaches in many scientific 
procedures. When employing neural nets, once the network has been trained, new data in 
similar domain may be analyzed and predicted avoiding the time- and money- consuming 
experiments. Taking into account that to solve problems, ANNs may combine the data from 
literature and experiments, the potential of this approach can be easily estimated in 
nanoscience and nanotechnology. 
Two types of training are commonly employed when using ANNs. While in unsupervised 
networks, the training procedure is not affected by the output(s) of the network; supervised 
networks attempt to modify the neurons weights so that the network output(s) becomes as 
close as possible to the desired output. As application in nanotechnology, supervised 
associating networks may be considered as alternatives to conventional response surface 
methodology (RSM). The unsupervised feature-extracting networks are alternatives to 
principal component analysis (PCA) and are able to map multidimensional data sets onto 
two-dimensional spaces. Therefore, ANNs not only have attracted the attention of many 
computer scientists, but also a huge number of successful applications of them is found in 
the literature, reporting problems solving in various areas of sciences, engineering and 
business. 
Although increasing number of ANNs applications are now observed in diverse scientific 
fields, nanotechnologists do not generally appear to be interested or fully aware of the 
potentials of such approaches. Here we have described principles of the ANNs in dealing 
with certain properties of nano-materials. To present the ‘state of the art’, available 
publications on nanotechnology and nanoscience which have used the advantages of ANNs 
have been evaluated. In this chapter, a brief description about importance of 
nanotechnology has been given. We then have summarized common applications of ANNs 
and tried to identify various areas in nanoscience and nanotechnology where the successful 
application of ANNs can be envisaged, followed by the areas of future developments. 
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2. Importance of nanotechnology 
The lecture "There's Plenty of Room at the Bottom" by Richard R. Feynman in 1959 -that it is 
nowadays considered as one of the classic science talks in twentieth century- is now 
regarded as the basic idea for nanotechnology (Bhushan, 2004). In this lecture the potentials 
of nano-sized materials has been considered (Poole Jr. and Owens, 2003) and publishing 
Encyclopedia Brittanica on a pin head has been predicted (Balaz, 2008). The quote by the 
American visionary about nanotechnology is also amazing: “Just wait-the next century is 
going to be incredible. We are about to be able to build things that work on the smallest 
possible length scales, atom by atom. These little nano-things will revolutionize our 
industries and our lives” (Smalley, 1999). It is predicted that in near future, nanotechnology 
will play an important role in our economy and society, as is being observed in computers, 
cellular/molecular biology and many others fields. Nanotechnology is about to show its 
significant role in areas such as medicine, materials and manufacturing, energy, information 
technology, electronics, etc (Bhushan, 2004). 
Nanotechnology in Oxford dictionary means: “the branch of technology that deals with 
dimensions and tolerances of less than 100 nanometers, especially the manipulation of 
individual atoms and molecules” (Oxford Online Dictionary, 2010). The National Science 
Foundation, defines nanotechnology as “research and technology development at the 
atomic, molecular or macromolecular levels, in the length scale of approximately 1–100 
nanometer range, to provide a fundamental understanding of phenomena and materials at 
the nanoscale and to create and use structures, devices and systems that have novel 
properties and functions because of their small and/or intermediate size” (National 
Nanotechnology Initiative, 2004). 
In order to realize the importance of nanotechnology, analysis of nanotechnology market is 
probably the first approach. In 2000, the market of microsystems was about 15 billion USD. 
Considering an annual increase rate of 10-20%, more than 100 billion USD is anticipated as the 
market size of microsystems for the end of 2010. In 2001, the nanosystems market was about 
100 million USD, while the expected market for the integrated nanosystems is about 25 billion 
USD by the end of 2010. Such notable increase is thought to be due to the extensive impact 
they may have in their different applications. Certainly, the role of governments in supporting 
nano-related technologies should be considered, too (Bhushan, 2004). So far, a large variety of 
nano- devices and structures have been employed in areas such as sensors, actuators, and 
miniaturized systems and a large market is anticipated for nano/micro electromechanical 
machines (NEMS/MEMS) in the near future (Bhushan, 2004; Lyshevski, 2001). Development 
of NEMS and MEMS is necessary to the economy and society, since these electromechanical 
systems have shown important effects in medicine, manufacturing and fabrication, aerospace 
and avionics, information technologies, automotives, public safety, etc (Lyshevski, 2001). 
Bearing in mind the fact that many initiatives and governments have devoted considerable 
funds for research and development in nanotechnology, and will probably continue to do so, 
nanotechnology can still be regarded as “intact” area of research and development in both its 
science and technology aspects. 

3. Classification of applications of ANNs 
Reviewing the literature, several classes of applications may be identified for ANNs 
(Mehrotra et al., 1997; Gardner and Dorling, 1998; Kalogirou, 2001; Agatonovic-Kustrin and 
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Beresford, 2000; Manisha et al., 2008; Achanta et al., 1995). To avoid the common 
complications raised when attempting to distinguish between such classes, here we review 
the ANNs applications without scrutinizing the differences suggested for each application 
class. 
ANNs may be used to recognize a specific output pattern when presenting an input sample 
(Mehrotra et al., 1997). Employing this ability, ANNs can effectively solve difficult problems 
such as recognition of sounds, images or videos. Interestingly, this task may be performed 
with no priori definition for the pattern.  In this case, a completely new pattern is identified 
by the network. 
Recognizing the laws underlying the system behavior is the most accurate way for 
prediction. However, finding these laws is not usually easy. Studying the variables together 
instead of investigating a single variable at a time (i.e. one-factor-at-a-time approach) is 
usually a suitable option to obtain better knowledge, thus taking better prediction. Perfect 
prediction is not possible, but reasonable prediction can be obtained by neural networks 
(Mehrotra et al., 1997; Weigend et al., 1990; Li et al., 1990). 
Another application for the ANNs is what usually called as function approximation. 
Computational models are often some functions that map numerical inputs to numerical 
outputs (Mehrotra et al., 1997). Function approximation is described as constructing a 
function that with acceptable approximation generates similar outputs from input valuables. 
This process is done through learning based on available training data. Unlike most 
statistical techniques, which usually end up in a distinct equation, when using ANNs, 
mathematical function relating the outputs to the input variables may not be clear (Mehrotra 
et al., 1997). Tracking the behavior in a moving object can be regarded as a good example for 
function approximation. Herein one may approximate behavior of the object understudy as 
a function of time (Mehrotra et al., 1997). 
When the goal of a problem is optimization of a function, ANNs may be employed as 
attractive option. For example when attempting to arrange the components on a circuit 
board to reach the minimum length for the wire while certain parts should be connected to 
certain others, we are optimizing the components structure. Problems in this category can 
also be dealt by ANNs (Mehrotra et al., 1997). 

4. Application of ANNs in nanotechnology 
In this section, we group the applications of ANNs in three classes: applications in 
nanomaterials, in nanomedicine, and in nanophysics.  

4.1 Nanomaterials 
The science and technology of nanomaterials consist of subfields which study or develop 
materials with nanoscale dimension having unique properties (Clarkson et al., 2004). The 
majority of nanotechnology works include preparation and characterization of nanomaterials. 
The first report on application of ANNs in nanomaterials was in 2000 (Lee et al., 2000), 
where the sensitivity signals of an array was modelled using artificial neural network, and a 
gas recognition system was implemented for the classification and identification of 
explosive gases. The properties of multi-dimensional sensor signals obtained from the nine 
sensors were analyzed using PCA technique, and a gas pattern recognizer was implemented 
using a multi-layer neural network with an error back propagation (EBP) learning 
algorithm. As shown in Fig. 1, the network contained an input layer with nine nodes 
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receiving the data from the sensors on the sensor array, a hidden layer with eight neurons, 
and an output layer with nine nodes. The simulation and experimental results showed that 
the proposed gas recognition system is capable of identifying explosive gases. 
 

 
Fig. 1. Schematic of the multi-layer neural network structure for gas recognition system. 

Lee et al. (Lee et al., 2001) (Lee et al., 2002) have published two papers on developing 
recognition systems which can classify and quantify the volatile organic compounds 
(VOCs). The gas pattern recognizer was implemented using a multi-layer Neural Network 
with an EBP learning algorithm. The neural network consisted of an input layer (which 
received data from the sensors on the sensor array), a hidden layer and an output layer. The 
overall network structure used in this study was similar to the one shown in Fig. 1. The 
work indicated that the proposed gas recognition system is effective in identifying VOCs. 
A three-layer BP-ANNs model (five-input model) was developed to predict purity of SrTiO3 
nano-crystals (Qing-li and Quan-xi, 2006). The network used in this study included reaction 
time, reaction temperature, molar rate of TiCl4 to HCl, NaOH concentration and SrCl2 
concentration as input variables and purity of SrTiO3 as the output. It was found that the BP 
neural network is efficient for predicting the purity of perovskite-type SrTiO3 nano-crystals. 
In another study, finite element (FE) simulation and ANNs approach was used (Lee et al., 
2007) to describe the elasto-plastic stress–strain behaviour in coated layers using nano-
indentation tests. A single-bahaviour model, with one stress-strain behaviour and a layer-
behaviour model with separate layers and substrates were used. The loading–unloading 
data (i.e., force displacement) with changes in yield strength and strain hardening exponents 
obtained from the FE simulations were employed as training data for the ANN, and the 
loading–unloading data from the indentation tests were used as the input data. The outputs 
of the ANNs were the yield strength and strain hardening exponent, which generated the 
same loading–unloading data as the indentation test did. The layer-behaviour model was 
shown to be satisfactorily accurate. 
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Combination of finite-element (FE) simulation and ANNs modelling is becoming an 
interesting tool in nanomaterials. A study by Haj-Ali (Haj-Ali et al., 2008) reported the use of 
ANNs models in dealing with nanohardness tests in a wide range of materials with 
nonlinear behavior. ANNs models were trained with separate FE simulations with 
nonlinear properties and different geometries. When generating the model, from load-
displacement indentation response, only the monotonic loading part was utilized, which is a 
key difference from classical experiments which normally use the unloading portion. The 
experimental nanoindentation tests included a silicon substrate with and without a copper 
film in its nanocrystalline form. Comparing the results from the modelling with those 
available in the literature, the obtained model was suggested as very efficient with the 
ability to calibrate and predict the inelastic material properties for depths above 50 nm. The 
overall resisting force in the study was found to be a continuum response. 
Optimal variables for preparation of sol-gel prepared colloids of titania were determined 
using ANNs in a report by Liau et al (Liau and Dai, 2008). In this work, the inputs are 
concentration of [NH3], [H2O], and reaction temperature; while the outputs are the titania 
particle size (PS) and particle size distribution (PSD). The relationship of the operating 
variables (inputs) and PS and PSD (outputs) can be built using the ANN approach. The built 
ANN model can then represent the input–output relation in the sol–gel processing system 
and predict PS and PSD in relation to operating conditions. The model was then used to 
optimize the operating variables in order to obtain desired particle size with narrow particle 
size distribution. The feasible optimal operating conditions can be determined to fabricate 
monodispered uniform TiO2 particles for practical cases. 
Preparation of composites of polyphenylene sulfide (PPS) filled with short carbon fibers 
(SCFs) and sub-micron particles of TiO2 to study the tribological behaviour of the composite 
using ANNs has been reported by Jiang et al. (Jiang et al., 2008). The extrusion and injection-
molding technique to prepare the particles followed by sliding wear tests to optimize the 
composition of PPS, suggested 15 vol.% SCF and 5 vol.% TiO2 as the lowest specific wear 
rate. More optimal composition was estimated from the ANNs as 15 vol.% SCF and 6 vol.% 
TiO2 chosen input variables in neural network were material compositions (PPS matrix, 
short carbon fiber, nano-TiO2 particles and lubricant contents) and testing conditions 
(sliding speed and applied pressure) while the output variables were specific wear rate and 
friction coefficient, as well as the range of the experimental values. 
In 2009, Madadlou et al. (Madadlou et al., 2009) predicted micelles particle size. The 
following five variables were used as inputs to networks: pH value of casein solutions, 
frequency of ultrasonic bath (kHz), frequency of ultrasonic probe (kHz), acoustic power of 
sonication (W) and time of sonication (min). The output of system was particle size (nm) of 
re-assembled casein micelles. It was measured with a laser diffraction based particle size 
analyzer. The size of micelles differed from 203 to 431nm. A feed-forward network having 
one hidden layer was used in this study. Optimization was performed on number of hidden 
neurons, epochs and training runs as well as momentum coefficient and step size. They also 
stated that RSM can be successfully used in optimizing the topology of ANNs but RSM 
considered as a complicated and time-consuming task. Using this approach results in 
shortening the time required for optimization and providing the possibility of analyzing the 
influence of more variables on performance of networks. 
Prediction of heat transfer in copper–water nanofluid by ANNs was reported in 
differentially heated square cavity (Santra et al., 2009). The nanofluid was taken as a non-
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Newtonian fluid and the network was trained based on resilient-propagation (RPROP) 
algorithm. Input and output data were from a numerical simulation. Results of simulation 
and ANNs model were compared and was reported to be correct in the range of training 
data. Furthermore, taking into account the considerable longer times required for 
simulations, the RPROP based ANNs was suggested as competitive alternative in prediction 
of heat transfer. 
In 2009, Shokuhfar et al. (Shokuhfar et al., 2009) studied the effect of different training 
approaches on the ANNs when dealing with Al2TiO5- based ceramics. Herein, addition of 
micron size talc led to satisfactory stabilizing behaviour. In addition, nano boehmite and 
colloidal silica managed to improve other physical properties. Subsequently, using BP-ANNs, 
the effect of temperature and additives percentages on the density of bulk was estimated. 
Levenberg–Marquardt algorithm was found to have the best estimation and the response 
surfaces between the variables (additives percentage and temperature) are presented. The 
model was then suggested to be used in optimizing the sintering process for the particles. 
The effect of concentration of MnS on the nano-crystalline Cd1−xMnxS size ustilizing feed-
forward multilayer perceptron was reported by Jajarmi et al (Jajarmi and Valipour, 2009). 
The reports pointes out that the generated ANNs model can be considered as applicable 
method in predicting of the size of nano-crystalline nickel coatings. The grain size of nano-
crystalline nickel was also the subject of another study by Rashidi et al (Rashidi et al., 2009). 
In their study, operation conditions were used as the inputs variables and the grain size of 
coating was taken as the single output of the model. Good agreement was shown between 
the predictions of the model and the experimental data. Performing the sensitivity analysis 
on the model, it was indicated that the current density was the most important factor, while 
the temperature had the lowest impact on the grain size. 
In 2009, Sarkar et al. (Sarkar et al., 2009) used ANNs as tools to study the diameter of 
electrospun nanofibers. The input variables in this study were concentration of the solution, 
electrical conductivity, flow rate, and strength of the electric field. The results of the 
computer model indicated satisfactory viability for the neural network to predict the 
diameter of the nanofibers. From this study, insights into employing ANNs models in 
investigating electrospinning processes is determined. 
In a series of ANNs models in 2009, Ma et al. (Ma et al., 2009) using back-propagation 
technique, studied the correlations between processing factors (high-energy planetary ball 
milling) and the morphology of nanocomposite WC–18at.%MgO powders. Milling speed, 
diameter of ball and weight ratio of ball-to-powder was investigated on the crystallite and 
particle size as well as specific surface. The model was shown to be capable of predicting 
properties of the composite at different milling parameters. Optimization in processing 
parameters and ball milling conditions was also suggested as another ability of ANNs in 
such situations. 
A report by Corni et al. (Corni et al., 2009) detailed the effect of deposition time and applied 
potential as well as their interactions on synthesis of nano-composite films of Al2O3–
polyetheretherketone on stainless steel. The process was performed in non-aqueous 
colloidal suspensions using electrophoretic deposition. In their study, the numbers of 
hidden layers, neurons in each layer and epochs were optimized to improve the results from 
this approach. Furthermore, this work was complemented by the use of Monte Carlo 
simulation to better study the effect of deposition time and difference of applied potential 
on the deposition yield of deposition. 
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In studies by Haciismailoglu et al. and Kucuk et al. (Haciismailoglu et al., 2009; Kucuk et al., 
2009), dynamic hysteresis models from measurements in wide frequency range (1–50 kHz) 
were developed using ANNs by delta-bar-delta learning. They showed computation of 
hysteresis loops in nano-crystalline cores by ANNs, using dynamic Preisach model to be 
fast, with no need to so much of computational efforts. Using geometrical dimensions of 
cores, peak magnetic induction and magnetizing frequency as input parameters, the ANNs 
was shown to have acceptable estimation capability. The model is fast, and allows the 
application of standard learning algorithms for the neural network. 
In a study by Averett (Averett et al., 2010), ANNs examined the effect of stress ratio, 
maximum fatigue stress, unreformed modulus, cycles and residual strain from fatigue as 
input variables on residual strength behaviour and elastic modulus degradation in 
filaments. The results indicate that ANNs can be used to predict the residual strength and 
modulus degradation behavior of poly(ethylene terephthalate) and poly(ethylene 
terephthalate) fibers with vapor grown carbon nanofibers under different loading 
conditions. In their study, back propagation were used along with momentum and 
conjugate gradient algorithms. The multilayer perception network was trained to model the 
mechanical behaviour in single filaments after loading of fatigue.  
Catalytic conversion of two substrates namely, ethyl acetate and toluene, using two 
nanostructures catalysts HZSM-5 and Co-ZSM-5 was investigated by Hosseini et al. 
(Hosseini et al., 2010). The ANNs model was based on experimental data from wet 
impregnation prepared catalysts. Good agreement was shown between the results from the 
model and those of experiments. This study in agreement with other reports shows that the 
nanostructure catalysts show higher activity than other catalysts because of having higher 
specific surface area. The model makes it possible to predict how much each variable affects 
on the conversion efficiency. 
Baseri et al. (Baseri et al., 2010) estimated the effect of concentration of liquid phase and the 
ratio liquid/powder on the mechanical strength of cement as well as both initial and final 
setting times in hydroxyapatite (HA). They employed back propagation ANNs with variety 
of inputs. The comparison of the predicted values and the experimental data indicated that 
the developed model had a satisfactory performance in estimation of the setting times and 
the mechanical strength in HA bone cement. Also, it was concluded that the prediction 
accuracy of 3-outputs model is better than those of other 1-output models. 
Detailing the dialysis process performance under as a function of different conditions in 
dialysis has also been reported using ANNs by Godini et al. (Godini et al., 2010). Charged 
micelles were transferred through neutral and charged membranes and the behaviour of the 
micelles was studied using ANNs. High interconnections of the parameters as well as 
problems associated with the available models in tracking the performance of the process 
made the ANNs as interesting approach to study this case. The mass transfer was analyzed 
in terms of its amounts and the mechanism in both membranes in different conditions. The 
report shows that the developed model can deal with the process when manipulating the 
parameters individually or simultaneously with adequate accuracy. 

4.2 Nanomedicine 
Nanomedicine has been defined as “medical application of nanotechnology“. Nanomedicine 
includes use of nanomaterials in medical applications, nanoelectronic biosensors, and future 
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applications of molecular nanotechnology. The main problem in nanomedicine nowadays is 
the toxicity issues and environmental aspects of nanomaterials (Freitas Jr., 1999). 
The factors controlling the nanoemulsion particle size was studied by our group in 2008 (A. 
Amani, et al., 2008). Oil in water nanoemulsion samples with different percentages of co-
surfactant and drug, applying various amount and rate of applied energy were prepared 
and the particle size was measured. The generated ANNs model demonstrated the ability of 
ANNs in dealing with such systems. The model indicated that the total energy amount was 
the dominant factor in influencing the final particle size. 
We also (Amani et al., 2010) identified the parameters affecting the stability of 
nanoemulsions, using ANNs. A nanoemulsion preparation of budesonide containing 
polysorbate 80, ethanol, medium chain triglycerides and saline solution was designed, and 
the particle size of samples with various compositions, prepared using different rates and 
amounts of applied ultrasonic energy, was measured 30 min and 30 days after preparation. 
Data modelling and assessing were carried out using ANNs. The derived predictive model 
was validated statistically and then used to determine the effect of different formulation and 
processing input variables on particle size growth of the nanoemulsion preparation as an 
indicator of the preparation stability. The results of this study indicated that the data can be 
satisfactorily modelled using ANNs, while showing a high degree of complexity between 
the dominant factors affecting the stability of the preparation. The total amount of applied 
energy and concentration of ethanol were found to be the dominant factors controlling the 
particle size growth. 
In a microfluidic reactor when nanoprecipitating a hydrophobic drug, ANNs was employed 
to find out the relationships between input parameters and the size of prepared 
nanoparticles (Ali et al., 2009). In this study saturation levels of drug, flow rates for solvent 
and antisolvent, angles for the inlet of microreactors and internal diameters were 
investigated and rate of antisolvent was found to have dominant role on determining final 
particle size. 

4.3 Nanophysics 
The subject of nanophysics is physics of systems having some tens of atoms (Joachim and 
Plevert, 2009). Considerable number of reports has been mentioned the use of ANNs in 
nanophysics: 
In 2006, Kucuk and Derebasi (Kucuk and Derebasi, 2006) using the data from toroidal 
wound cores developed a mathematical model for core losses. The improved model was 
used to optimize the parameters for ANNs. Geometrical parameters, frequency of 
magnetising, resistivity of the soft magnetic materials and magnetic induction were input 
parameters while power loss and correlation coefficients comprised the output neurons. The 
correlation coefficients for calculation of power loss can simply be estimated from the ANN 
and GA genetic algorithm within acceptable error limits. This means that the ANN and GA 
could help to assess the core performance before manufacture, thereby reduce the material 
wastage. Studying nanoscale complementary metal-oxide-semiconductor (CMOS) circuits, 
Djeffal et al. (Djeffal et al., 2007) used ANNs and showed very acceptable comparisons 
between the results from numerical models and those of ANNs where L, VDS, VGS, tsi, tox, 
and ID were channel length, drain source voltage, gate source voltage,silicon film thickness, 
gate oxide thickness and drain current, respectively. Each of these parameters was indexed 
with one neuron. The activation function used in this ANN structure was the sigmoid  
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Fig. 2. Neural network consisting of two hidden layers. 

function. It is important to denote that the number of input parameters of our ANN model 
can be extended for other parameters (temperature, band-to-band leakage current, and gate 
direct tunnelling current and ...). Is this work two hidden layer was used (Fig. 2) and the 
developed ANNs model indicated to be particularly appropriate as SPICE-like (simulation 
program with integrated circuit emphasis) tools for simulation of nanoscale CMOS circuits. 
Three commercial membranes, based on nanofiltration techniques (ie. NF90, NF270, N30F) 
were utilized to treat solutions of three different salts in high concentrations (Al-Zoubi et al., 
2007). Obtained data were modelled using ANNs and Spiegler–Kedem model. The model 
determined the reflection coefficients and the of the solute permeability at different levels of 
salinity. No more than 5% deviation was observed between the predictions by the ANNs 
and the experimental data. In total, the obtained results indicated that NF90 and NF270 
hadhigh rejection at pressures above 5 bar for two salts (ie. Na2SO4, and MgSO4), while the 
rejection for KCl was 30–89%. The third membrane produced lesser rejection for Na2SO4 and 
MgSO4 salts with very low rejection for KCl. 
In 2007, Farsi et al. (Farsi and Gobal, 2007) used a four-layer ANNs structure with two 
hidden to model the performance of a model capacitor. The output variables in this study 
were power and energy density and utilization to the intrinsic, synthetic and operating 
characteristics and the inputs included size of crystals (in range of 5-30 nm), lattice length 
and exchange current density of active material as well as employed cell current. The 
findings showed that results have a very good agreement with models, developed 
previously. 
Incorporation into SPICE-like tools for simulation of nanoscale circuits has also been by 
Hayati et al. (Hayati et al., 2010), where ANNs modeled carbon nanotube metal–oxide-
semiconductor field-effect transistors (CNT-MOSFETs). The ANNs model needed less 
computational time compared with other conventional models like non-equilibrium Green’s 
function (NEGF) formalism with having similar accuracy. The ANN model was 
subsequently imported into HSPICE software as a subcircuit.  
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One of the most recent uses of ANNs in nanophysics is to generate explicit nonlinear empirical 
physical formulas (EPFs) in nonlinear electro-optical responses from doped nematic liquid 
crystals (NLCs) (Yildiz et al., 2010). Layered feed-forward neural network (LFNN) was used 
due to its ability in nonlinear function approximation. The obtained responses were 
successfully fitted to the model to predict the new response data. It was then concluded that 
generally, LFNN may be applied to construct different EPFs in various physical perturbation 
data such as thermal, molecular and optical conditions in doped NLCs. 
ANNs have also been used to determine a relationship between diffuse reflectance spectra 
in near-infrared region and particle size. Back-propagation artificial neural network (BP-
ANN) was utilized in by Khanmohammadi et al. (Khanmohammadi et al., 2010) to estimate 
the particle size from diffuse reflectance spectra. 44 nano TiO2 samples were analyzed to 
validate the applicability of the new method in determining the particle size. It was shown 
that the BP-ANN caould successfully predict the size of nanoparticles. 

5. Conclusion 
The high number of reports of researches at nano-levels, manipulting and/or creating novel 
materials and processes has provided enormous applications in all aspects of human life. 
Nantechnology has shown its great potential in industrial processes, computers, 
pharmaceuticals and many other fields. Such a scientific breakthrough, as an inter-
disciplinary tool has proved efficient in utilizing various sciecntific approaches such as 
physics, chemistry and medicine in dealing with a single problem. Surprisingly, the 
literature review on nanotechnology reports shows no large number. This chapter aims to 
highlight the need for increased understanding of applications of ANNs in nanotechnology 
so that these networks can be used even more efficiently in future applications. It should be 
clarified that here we have only focused on so far reported applications and undoubtedly 
much more uses can be suggested for ANNs dealing with nano-issues. 
Models from ANNs are multifactorial models which can predict, classify, approximate 
function or recognise patterns in many disciplines. Theoretically, ANNs are able to estimate 
any function and if used properly, can be used effectively in any discipline, including 
nanotechnology. Outputs from ANNs models are generated from non-linear combinations 
of input variables and as shown in this chapter, such models can be effectively employed to 
deal with experimental data routinely observed in nanotechnology and to find rules 
governing a process from raw input data. 
ANNs are now considered as easy-to-use, while reliable methodology, which is a new 
emerging technique in the new emerging science “nanotechnology”. To see more 
applications of ANNs in nanotechnology in future, we suggest that researchers in both 
academic and commercial areas of nanotechnology should be more familiarized with the 
idea of neural networks. Additionally, forming team groups of experimentalists with those 
working on neural networks and statistics needs to be promoted. We believe ANNs, as the 
tools with the ability to handle the nonlinear processes and avoiding the commonly 
observed noises in experimental data, are fascinating means of working with data observed 
by nanotechnologists.  
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ANNs have also been used to determine a relationship between diffuse reflectance spectra 
in near-infrared region and particle size. Back-propagation artificial neural network (BP-
ANN) was utilized in by Khanmohammadi et al. (Khanmohammadi et al., 2010) to estimate 
the particle size from diffuse reflectance spectra. 44 nano TiO2 samples were analyzed to 
validate the applicability of the new method in determining the particle size. It was shown 
that the BP-ANN caould successfully predict the size of nanoparticles. 

5. Conclusion 
The high number of reports of researches at nano-levels, manipulting and/or creating novel 
materials and processes has provided enormous applications in all aspects of human life. 
Nantechnology has shown its great potential in industrial processes, computers, 
pharmaceuticals and many other fields. Such a scientific breakthrough, as an inter-
disciplinary tool has proved efficient in utilizing various sciecntific approaches such as 
physics, chemistry and medicine in dealing with a single problem. Surprisingly, the 
literature review on nanotechnology reports shows no large number. This chapter aims to 
highlight the need for increased understanding of applications of ANNs in nanotechnology 
so that these networks can be used even more efficiently in future applications. It should be 
clarified that here we have only focused on so far reported applications and undoubtedly 
much more uses can be suggested for ANNs dealing with nano-issues. 
Models from ANNs are multifactorial models which can predict, classify, approximate 
function or recognise patterns in many disciplines. Theoretically, ANNs are able to estimate 
any function and if used properly, can be used effectively in any discipline, including 
nanotechnology. Outputs from ANNs models are generated from non-linear combinations 
of input variables and as shown in this chapter, such models can be effectively employed to 
deal with experimental data routinely observed in nanotechnology and to find rules 
governing a process from raw input data. 
ANNs are now considered as easy-to-use, while reliable methodology, which is a new 
emerging technique in the new emerging science “nanotechnology”. To see more 
applications of ANNs in nanotechnology in future, we suggest that researchers in both 
academic and commercial areas of nanotechnology should be more familiarized with the 
idea of neural networks. Additionally, forming team groups of experimentalists with those 
working on neural networks and statistics needs to be promoted. We believe ANNs, as the 
tools with the ability to handle the nonlinear processes and avoiding the commonly 
observed noises in experimental data, are fascinating means of working with data observed 
by nanotechnologists.  
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1. Introduction 
1.1 Nanoscience 
Nanoscience is an interdisciplinary field which deals with the unconventional phenomena 
observed in materials with at least one characteristic dimension in the range of 1-100nm. 
Nanoscale materials exhibit some novel and/or improved properties over either 
atoms/molecules or bulk state which is resulted from limited size of their constituent 
components. There are two main issues discussed in nanomaterials. One of them is high 
surface to volume ratio for nanomaterials over bulk. In nanomaterials, higher percentage of 
atoms is located on the surface which leads to high specific surface area, as shown in figure 1. 
 

 
Fig. 1. Variations of the percentage of surface atoms by increasing the total number of atoms 
in close packed icosahedron clusters (adapted from geometrical model data in (Allpress & 
Sanders, 1970)) 

Atoms at the surface have fewer direct neighbors than atoms in the bulk. Therefore, 
nanomaterials have a large fraction of their atoms at surface with a low average 
coordination number (which is the number of nearest neighbors), high surface energy and 
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1. Introduction 
1.1 Nanoscience 
Nanoscience is an interdisciplinary field which deals with the unconventional phenomena 
observed in materials with at least one characteristic dimension in the range of 1-100nm. 
Nanoscale materials exhibit some novel and/or improved properties over either 
atoms/molecules or bulk state which is resulted from limited size of their constituent 
components. There are two main issues discussed in nanomaterials. One of them is high 
surface to volume ratio for nanomaterials over bulk. In nanomaterials, higher percentage of 
atoms is located on the surface which leads to high specific surface area, as shown in figure 1. 
 

 
Fig. 1. Variations of the percentage of surface atoms by increasing the total number of atoms 
in close packed icosahedron clusters (adapted from geometrical model data in (Allpress & 
Sanders, 1970)) 

Atoms at the surface have fewer direct neighbors than atoms in the bulk. Therefore, 
nanomaterials have a large fraction of their atoms at surface with a low average 
coordination number (which is the number of nearest neighbors), high surface energy and 
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diffusion rates (Jiang et al., 2004). Surface properties are of particular interest in this subject 
because of their importance in chemistry (Burda et al., 2005) and influence on electronic and 
optical properties (Puzder et al., 2002). Solid–gas or solid–liquid chemical reactions can be 
mostly confined to the surface and/or subsurface regions of the solid. The interior atoms in 
particles are more highly coordinated, form more bonds and therefore are more stable than 
those at the surface. For this reason, the surface (especially edge and corner) atoms normally 
exhibit the highest affinity to form bonds with other molecules. This fact is of utmost 
importance for chemical activity (Burda et al., 2005). Thus, particle size distribution and 
shape play important role in determining properties of nanomaterials. Another issue is 
quantum confinement effect which is change of electronic and optical properties of materials 
when their structural size is sufficiently small - typically 10 nanometers or less (Stucky & 
Mac Dougall, 1990).  

1.2 Nanosemiconductors 
Nanocrystalline semiconductors and specially their electrical and optical properties have 
been studied extensively in recent years (Pal, 1999; Schmitt-Rink et al., 1987). These 
materials behave differently from bulk semiconductors. With decreasing particle size the 
band structure of the semiconductor changes; the band gap increases and the edges of bands 
split into discrete energy levels. Specifically, the phenomenon results from electrons and 
holes being squeezed into a dimension that approaches a critical quantum measurement, 
called the exciton Bohr radius. But researchers have also found band gap increase in some 
nanomaterials having sizes far beyond the quantum confinement regime (Chen et al., 2006). 
The band gaps have a major influence on the properties of the semiconductors including 
optical absorption, electrical conductivity and index of refraction. According to the band gap 
type, semiconductors are normally classified as direct and indirect. 
 

 
Fig. 2. a) Direct and b) Indirect transition of electrons in semiconductors. 

When the carriers transfer between the conduction and valence band, in direct band gap the 
momentum (or k) is conserved but it’s changed for indirect band gap semiconductors. The 
direct band gap semiconductors are found to be advantageous over indirect band gap 
semiconductors, as they do not require phonons to satisfy crystal momentum conservation 
(Sze, 1981). 

a b 
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In semiconductors, the main characteristic of light absorption is slightly different from 
metals and insulators. This is due to their band structure where the band gap between 
lowest point of conduction and upper point of valance bands is low enough to allow the 
transferring of electrons from valance band to conduction band by exciting with energy 
sources like light, electrical field, etc. Thus, the energy difference between conduction and 
valance bands (i.e. band-gap) could be detected by considering the energy absorbance of 
semiconductors (Sze & Ng, 2007).  
When a light beam propagates into a media rather than vacuum, based on its photon 
energy, a portion of light is absorbed, another part is transferred and a small portion could 
be reflected. The physical meaning of absorbance could be defined as the logarithmic 
proportion of intensity of propagating light with specified wavelength passed through a 
sample to the intensity of the light before entering it. The absorbance which is detected via 
UV-Vis spectroscopy always shows this absorbance which is defined as optical density 
(Zhang, 2009). 
On the other hand, the light absorbance can be expressed by light absorption coefficient 
α(hυ), which is the relative decrease rate of propagating light intensity I(hυ) passing through 
a matter along its propagating path (x) (Gaponenko, 1998): 
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Absorption coefficients of colloidal suspension (α, cm-1) have been calculated using the 
following equation:  
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where, D is the optical density of a solution which is measurable by UV-Vis absorbance 
spectroscopy, ρ is the density of dispersed particles, C is its concentration and l is the optical 
path (cm). The main interest in calculating α(hυ) is due to its relation with semiconductor’s 
band gap energy. This relation can be expressed as follow: 
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where Eg is semiconductor’s band gap A is a coefficient of the given electronic transition 
probability and n equals to 0.5 (for direct band gap semiconductors) and 2 (for indirect band 
gap semiconductors) in allowed direct and indirect transitions (Zhang, 2009).  
When a photon with sufficient energy is absorbed with a semiconductor, an electron can be 
excited from valance band and move to conduction band and subsequently, an electron-hole 
pair is generated in the semiconductor. In this sense an optical excitation is a two-particle 
transition, an electron and a hole. Existing two different type particles (i.e. an electron and a 
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hole) makes a Columbus interaction between the electron and hole and thus it is act as a 
hydrogen atom. This electron-hole is namely known as exciton. Excitons are potentially 
mobile and, due to producing a positive hole by exciting a negative electron, are neutral 
charged (Klingshirn, 2005). 
Excitons are divided into two general categories, Mott-Wannier excitons and Frenkel 
excitons. Mott-Wannier excitons have weak electron-hole interactions caused by a small 
Coulomb attraction due to relatively far distance between constituents. Corresponding 
binding energies are on the order of 10meV. By contrast, in Frenkel excitons the carriers are 
close and have strong Coulomb interactions. Corresponding binding energies are on the 
order of 100meV. Frenkel excitons are commonly seen in organic semiconductors while in 
nonorganic semiconductors Mott-Wannier excitons are the main detectable excitons 
(Klingshirn, 2005). 
Excitons can be detected in the absorption spectrum of semiconductors as extrema points in 
absorption or transmission spectra. They generally appear just below the band edge of the 
semiconductor. This is because the energy of the exciton is lower than the band edge 
transition by its binding energy. 
Although most oxides are good insulators but some of them such as ZnO and TiO2 are well-
known semiconductors. Oxide semiconductors are very interesting materials because they 
combine easily adjustable electronic properties with relatively high working temperature. 
Some examples of the oxide semiconductors (with their corresponding band gaps energy) are 
Cu2O (2.1 eV), Bi2O3 (2.8 eV), TiO2 (3.2 eV), ZnO (3.4 eV) and SnO2 (3.7 eV), BaTiO3 (3 eV), 
SrTiO3 (3.3 eV) and LiNbO3 (4 eV). These materials are employed in a variety of electronic 
applications, such as positive temperature coefficient thermistors (Goodman, 1963), varistors 
(i.e., resistors with nonlinear, but symmetric, current–voltage characteristics which are used for 
the protection of electronic devices and circuits) (Levinson & Philipp, 1975), capacitors of high 
dielectric constant (Robertson, 2004) and gas sensors (Eranna et al., 2004). 

1.3 Zinc oxide 
Among the studied metal oxide nanomaterials, zinc oxide is a notable case. Zinc oxide is a 
II-VI wide band-gap semiconductor, with a direct band gap of 3.37 eV (at room temperature 
in bulk state) and large exciting band energy (60 meV) (Madelung et al., 1999).  
Thermodynamically stable crystalline structure of ZnO under ambient conditions is hexagonal 
wurtzite (space group P63mc ) with a = 0.32501 nm and c = 0.52071 nm (Kisi & Elcombe, 1989). 
This structure can also be described as alternating stacking of O and Zn ionic planes along the 
c axis. Absence of inversion symmetry (center of symmetry) in this crystalline structure is the 
origin of its piezoelectric and pyroelectric properties (Hübner, 1973).  
Wurtzite crystals are dominated by four low Miller index surfaces: the nonpolar ( 1010 ) and 
( 1120 ) surfaces and the positively charged polar zinc terminated (0001)–Zn and the 
negatively charged oxygen terminated ( 0001 )–O surfaces (Diebold et al., 2004). These polar 
surfaces results in a normal dipole moment and spontaneous polarization along the c axis as 
well as a divergence in surface energy which influences the adsorption of existing ions in 
reaction media which can affect the morphology (Wang, 2005) and properties (Jang et al., 
2006) of resulted materials. 
X-ray diffraction is one of the most important characterization tools in materials science. X-
ray diffraction can be used for characterization of crystalline materials and the 
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Fig. 3. Stick-and-ball model of a) alternating stacking of O and Zn ionic planes along the c 
axis, and b) unit cell of wurtzite structure from the results of (Xu & Ching, 1993)  

determination of their structure. The diffraction of X-rays by a crystalline solid results in a 
pattern of sharp Bragg diffractions characteristic of the different d-spacings of a solid. A 
typical X-Ray diffraction pattern of wurtzite zinc oxide is shown in figure 4. 
 

 
Fig. 4. X-Ray diffraction pattern of wurtzite zinc oxide (JCPDS No.036-1451) 

Broadening of these reflections beyond that arising due to instrumental factors is generally 
attributed to crystallite size effects. The average crystallite sizes of particles can be estimated 
from the full width at half maximum (FWHM) of the highest X-ray diffraction peaks using 
the Debye–Scherrer equation (Cullity, 1978): 

 kλD
βcosθ

=  (5) 

where D is the mean crystallite size; k is a grain shape dependent constant (0.89 for spherical 
particles); λ is the wavelength of the incident beam; θ is the Bragg diffraction peak angle; 
and β is the full width at half maximum. 
Nanocrystalline ZnO is widely used in many applications such as blue light emitting diodes 
(Tsukazaki et al., 2005), photo detectors (Jun et al., 2009), gas sensors (Xu et al., 2000), 
photocatalysts (Hariharan, 2006), and field-effect transistors (Arnold et al., 2003). Various 
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chemical methods have been successfully used for synthesizing nanostructured ZnO material, 
such as hydrothermal (Xu et al., 2004), sol-gel processing (Ristic et al. 2005; Li et al., 2005), 
chemical bath deposition (Wu et al., 2006) and sonochamical synthesis (Kandjani et al., 2008). 

1.4 Design of experiments and chemical synthesis 
Increase in the demands for chemical goods with specific desired properties has made 
controlling of synthesis methods as a challenging scope in production of these goods. As the 
variables for a synthesis could vary from less than ten to the thousands based on the 
synthesis route and also the fact that most of synthesis parameters influence each other’s 
effects, controlling and obtaining the situations in which the desired properties could be 
achieved from synthesis has become one of the most important complexity for many 
researches (Box & Draper, 2007). Thus, for obtaining optimal properties of the final product 
a lot of experiments should be conducted in classical method. Although, the simultaneous 
effects of variables on final properties can’t be clearly determined due to exponentially 
increase in experiments needed for covering all features of the synthesis by increase in the 
numbers of the variables (Lazic, 2004). Thus, designing a method for decreasing costs and 
also time schedule for understanding a process has become almost crucial for high-tech 
systems where costs and speed in achieving the answers has a critical role in getting results 
and survival in technological competition. 
To design an experiment means to choose the optimal experiment design to be used 
simultaneously for varying all the effective parameters. By designing an experiment one 
gets more precise data and more complete information on a studied phenomenon with a 
minimal number of experiments and the lowest possible cost. Two approaches are available 
for design of experiments; first, classical experimental design (one factor at a time-OFAT) 
and second, statistically designed experiments (DOE) (Ferreira et al., 2007). The latter which 
allow the simultaneous study of several control variables, are faster to implement and more 
cost-effective than traditional uni-variable approach.  
There are two different conditions occurs on most of experiments, first-order and second-
order models. When a linear function can be used to describe a phenomenon, first-order 
model is applicable. For data which do not obey simple linear functions or when an 
optimization is necessary, first-order models are not a suitable so the second-order models 
are usually used such as Box–Behnken design (BBD), central composite (CCD), and Doehlert 
(DD) designs. The efficiency of these designs decreases by increase of the variables. The 
efficiency decrease rate in Doehlert design is much slower than other designs by increasing 
variables. In the other words, among the mentioned second-order models Doehlert is the 
most efficient design (Ferreira et al., 2004). The main characteristic of this model could be 
summarized as (Bezerra et al., 2008): 
• Total number of needed experiments are N= k2 + k + 1, where k is the variables number; 
• Each variable is studied at a different number of levels; 
• The intervals between its levels make a uniform distribution; displacement of the 

experimental matrix to another experimental region can be achieved using previous 
adjacent points. 

For three variables, DD is represented by a geometrical cuboctahedron, and, depending on 
how this shape is projected on the plane, it can generate different experimental matrices. 
Table 1 shows the experimental matrix of DD for a two variables experiment and two 
different matrices for DD with three-variable. The explanation of how these matrixes 
obtained is beyond the scope of this chapter.  
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Two Variables Three Variables (Type 1) Three Variables (Type 2) 
X1 X2 X1 X2 X3 X1 X2 X3 
0 0 0 0 0 0 0 0 
1 0 0 -1 0 1 0 0 

0.5 0.866 1 0 0 0.5 0.866 0 
-0.5 -0.866 -1 0 0 -1 0 0 
0.5 -0.866 -0.5 -0.5 0.707 -0.5 -0.866 0 
−0.5 0.866 0.5 -0.5 0.707 -0.5 -0.289 -0.817 

  0.5 0.5 0.707 0.5 -0.866 0 
  -0.5 0.5 0.707 0.5 -0.289 -0.817 
  -0.5 -0.5 -0.707 -0.5 0.866 0 
  0.5 -0.5 -0.707 0 0.577 -0.817 
  0.5 0.5 -0.707 -0.5 0.289 0.817 
  -0.5 0.5 -0.707 0 -0.577 0.817 

Table 1. Doehlert matrices for two and three variables 

1.5 ANN application in nanotechnology 
Statistical experimental designs have been widely used in nanoscience and technology to 
determine the combined effects of variables for the goal of optimizing desired properties but 
they need a mathematical model to estimate the results in the domain of interest. 
Unfortunately the underlying relations between the processing parameters and the 
properties of nanomaterials have not yet been fully understood so usually no analytical 
model is available as the relation of parameters under investigation and using empirical 
models often gives inaccurate results. For this purpose using artificial neural network is 
usually considered a more beneficial approach for modeling these poorly understood 
datasets of experimental results. Artificial neural networks have been reported to be 
successfully used for modeling of growth rate (Yo et al., 2009), grain size (Rashidi et al., 
2009), particle size (Khanmohammadi et al., 2010), photocatalytic properties (Kandjani et al., 
2010), magnetic properties (Mohorianu et al., 2009), oxidation kinetic (Straszko et al., 2008) 
and emulsion stability (Amani et al., 2010) of nanomaterials and also the effects of 
parameters in ball milling processing (Ma et al., 2009), sol-gel synthesis (Fan & Liu, 2009), 
spray reaction synthesis (Zhang et al., 2007) on resulted materials. 

1.6 Hydrothermal synthesis 
The term “hydrothermal” first was used by British geologist Sir Roderick Murchison in 
1840s for describing the action of water at high pressures and temperature on earth crust 
which leads to natural formation of rocks and minerals. It’s now referred to heterogeneous 
reactions in aqueous solution or mineralization in high temperature and pressure. 
Hydrothermal process permits dissolution and recrystallization of materials which are not 
soluble under normal conditions. Thus, hydrothermal can be used in various processes i.e. 
crystallization (Matthews, 1976), crystal growth (Laudise & Nielsen, 1961), synthesis 
(Sōmiya & Roy, 2000), decomposition (Jomaa et al., 2003), extraction (Goguel, 1985), etc. Lots 
of researches in this field have been dedicated to “Hydrothermal synthesis” which usually 
involves aqueous chemical reactions at temperatures higher than 100ºC in a closed system. 
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Two Variables Three Variables (Type 1) Three Variables (Type 2) 
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This synthesis method in comparison with other conventional chemical methods has higher 
efficiency and controllability and its products have high purity and good crystalline quality 
with narrow particle size distributions.  
Hydrothermal method has been successfully used for synthesizing a wide variety of 
nanomaterials with different morphologies which an extensive review can be found in 
(Byrappa & Adschiri, 2007). 
There are a number of parameters which can influence the products of hydrothermal 
synthesis. Some of the most important variables include temperature, duration and 
concentration of reactants. The temperature determines the solubility of materials in water and 
the pressure in closed autoclaves and also influences the diffusion/reaction rate and Gibbs free 
energy changes for various reactions. Duration of synthesis provides needed time to reach the 
thermodynamically stable state of phase, size and morphology (in elevated temperature and 
pressure). Initial concentration of reactants determines the reaction rate and influences the 
nucleation and growth rate, reaction mechanism and final obtained phase. 
One of the models, which can describe formation and growth mechanism of crystalline ZnO 
from solution, is growth unit model (Li et al., 1999).  
Zhong firstly presented the growth unit model in early 1990s (Zhong et al., 1991; Zhong et 
al., 1994). In this model, growth units are the polyhedral complexes with ( )OH −  ligands, in 
which the cations have the same coordination number as in the oxide crystal lattice. 
According to this model, the growth units of ZnO crystals are 2

4( )Zn OH −  complexes which 
produce zinc oxide by sharing elements as following: 

 2 2 4
4 4 2 6 2( ) ( ) ( )Zn OH Zn OH Zn O OH H O− − −+ → +  (6) 

These reactions yield ZnO particles with OH−
 ligands on their surfaces. It has been 

reported that, Zn(OH)2 is predominantly formed at pH 6-9, while wurtzite ZnO is mainly 
obtained at pH 9-13 (Yamabi & Imai, 2002). 
Drying of samples cause to Zn(OH)2 crystals to decompose into ZnO by forced hydrolysis 
(Matijevic, 1985): 

 2 2( )Zn OH ZnO H O→ +  (7) 

2. Materials preparation 
Sodium hydroxide, NaOH and zinc acetate, Zn(O2CCH3)2.2(H2O) were purchased from 
Merck and were both used without further purification. 
Doehlert experimental design was used for investigating the effect of synthesis temperature, 
synthesis time and initial concentrations of precursors on the properties of synthesized 
nanopowders. The ratio of the Zn(Ac)2 to NaOH was kept equal to 1/2. The complete 
experimental design and variables are listed in table 2. 
First; aqueous solution of Zn(Ac)2 was added dropwisely to the same amount of NaOH 
aqueous solution with defined concentration. The obtained solution was poured into 35ml 
PTFE lined autoclaves (up to 80%Vol). Then the autoclaves were kept at defined 
temperature. After a defined period of time, autoclaves were cooled to room temperature 
naturally and the resulted precipitates were filtered and washed with distilled water and 
ethanol for several times. Finally obtained powders were dried at 50°C for 24 hours. 
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Sample Temp. [°C] Time [hrs] Zn(Ac)2 [mol] 
S1 150 12:00 0.75 
S2 190 12:00 0.75 
S3 170 17:12 0.75 
S4 170 13:44 0.5 
S5 110 12:00 0.75 
S6 130 6:48 0.75 
S7 130 10:18 0.5 
S8 170 6:48 0.75 
S9 170 10:18 0.5 

S10 130 17:12 0.75 
S11 150 15:30 0.5 
S12 130 13:44 1 
S13 150 8:30 1 

Table 2. Mulivariate experimental design for present study 

3. ANN modeling 
In these studies, special software was developed to be able to compute accurate neural 
network results. This program was written in C++ and tried to be as fast as possible to 
create more results in shorter time. It is developed under windows operating system. In this 
program every training function used are implemented strictly to follow the mathematical 
code of mentioned functions.  
The experimental data used for ANN design and training were divided into two separate 
sets which were used as training and testing data. Considering low number of overall 
available data due to high cost of experiments for providing them, both sets were used as 
testing and training. In each time of training one of them were chosen as the training set and 
the other as the testing set. Following this procedure, all data were affected the overall 
performance of artificial neural network. Without testing set, artificial neural network may 
incur overfitting problem. If this phenomena occurs we may add unusual or unnecessary 
curves in predicted data that will distance us from real behavior of the function and if we 
use less data for our training we may incur underfitting problem and produced artificial 
neural network produced won’t be the network we need and its prediction ability will be 
less than what is expected in the testing set. So selecting a good percentage of data as 
training and testing will enable us to reach better behavior. Experiments has shown that 
using 75% of data as training set and the remaining parts as testing set will yield most 
satisfiable result in data under investigation.  
The tested data were normalized before usage in artificial neural network training. As it is 
shown in table 3 for choosing correct normalization range, different sets of normalized input 
data were used which were 0 - 1, 0 - 2, and -1 - 1. Also it was tried to use unnormalized data 
to see whether normalization is beneficial or not. The experiments has shown that if 
normalization is around zero it will have slightly better performance and the data produced 
are better mapped to real data. 
In this study two different classes of artificial neural networks were used. The first class was 
consisted of multi- layer feed forward backpropagation network and the other class was 
recurrent networks where each layer uses its own output as one of the inputs of that layer. 
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Normalization method No normalization 0 - 2 0 - 1 -1 - 1 
Average Mean Squared 

Error 2e-2 4e-4 3e-4 2e-4 

Table 3. Effects of normalization on average Mean Squared Error (MSE) in training the 
recurrent and feed-forward ANN 

As recurrent class tries to use more parameters to define the output and input relationship, 
the vector space defining their relation will have more dimensions. These added dimensions 
give the network more power than the same network structure without feedback. The base 
structure used for computation is three layers artificial neural network. This structure is the 
most used structure in scientific prediction and modeling. The first layer is input layer and 
the third layer is the output layer and the second layer is the hidden layer which will do the 
main job of modeling the relationship between input and output data. Each layer has an 
activation function which was selected from logarithmic sigmoid, tangent sigmoid and 
linear function. These functions use following formula respectively: 

 1log ( )
1 nsig n

e−
=

+
 (8) 

 2
2tan ( ) 1

1 nsig n
e−

= −
+

 (9) 

 ( )lin n n=  (10) 

Each of the three layers will use one of the functions said. If we want to try different 
combinations of these function 27 different combinations are used in experiments which 
involves all of the functions.  
It can be seen that all of the neurons in the layer will affect the output. Considering this 
effect we have to determine the right number of neurons in each layer. Input layer will have 
the number of factors and the output layer is the number of outputs. For determining the 
number of hidden layer neurons as it is shown in table 4 we have to try different numbers of 
neurons and deduce the right number by using best result achieved. Different experiments 
have shown the 13 neurons for feed-forward network and 9 neurons for recurrent network 
yield the best result. 
 

Nodes deleted 1 2 3 4 5 6 
Recurrent ANN 3e-4 4e-4 1e-3 1e-3 1e-2 2 

MSE Feed-forward 
ANN 0.5e-3 1e-3 2e-3 2.1e-3 3.6e-3 4e-3 

Table 4. Effects of nodes number on average MSE of training ANNs 

4. Results and discussion 
4.1 Materials characterization 
The XRD patterns of synthesized nanoparticles are shown in figure 5. All peaks are 
attributed to wurtzite ZnO (JCPDS 036-1451) and no other crystalline phases were detected. 

Application of Artificial Neural Networks in Optical Properties of Nanosemiconductors 

 

489 

The diffractions from (101) plane sets were chosen for estimating the crystallites size of 
synthesized particles using equation (5).  
 

 
Fig. 5. XRD Patterns of synthesized ZnO nanoparticles 
Figure 6 illustrates the UV-Vis spectra of the samples. All samples have an extremum point 
which is related to generation of exciton in the absorption just below the band edge of the 
semiconductor. All synthesized particles show a blue shift (Shift to lower wavelengths) in 
their absorption spectra in comparison with bulk ZnO. The absorption coefficient of the 
samples was calculated using equation (2). The density of bulk ZnO, nanoparticles 
concentration and optical path used in this derivation were equal to 5.606 3

g
cm , 3×10-4 3

g
cm  

and 1 cm, respectively.  
 

 
Fig. 6. Absorption spectra of synthesized samples 

The exciton band energy was determined by plotting ( )
dα

d hν
⎛ ⎞
⎜ ⎟
⎝ ⎠

vs. hν , as shown in figure 7.  
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Fig. 7. Transformed absorption spectra of synthesized samples 
The band gap energy of the synthesized nanoparticles were calculated using equation (4) 
and considering the allowed direct transition probability (n=0.5).  

4.2 ANN results 
4.2.1 Physical explanation using multi- layer feed forward backpropagation network 
The ANN results for samples with 0.75 M initial concentration of Zn(Ac)2 are shown in 
figure 8. The contours are shown below the 3D surfaces of the modeled properties.  
 

 
Fig. 8. ANN results for [Zn(Ac)2]=0.75M; a) Crystallite size, b) Band gap energy and c) 
Exciton energy 
As it can be seen in this figure, increasing synthesis time and temperature resulted in bigger 
crystallite sizes. From thermodynamics point of view, nucleation of new solid phase in 
aqueous medium has some energy barrier. Temperature can provide the needed energy to 
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overcome this barrier. It also increases solubility of materials in water which can accelerate 
the rate of materials solution and precipitation in saturated aqueous medium.  
Ostwald ripening is the phenomenon of dissolution of unstable phases and their 
recrystallization in a more stable form. This process involves solution of materials in water 
and their precipitation in more stable condition. 
Plane defects as grain boundaries and particles surfaces are the main forms of high energy 
defects in materials which can be partially fixed by crystallites and particles growth. 
Materials with bigger crystallites have less grain boundary per unit volume so they are more 
stable. Thus, by increasing synthesis time and temperature, Ostwald ripening processes 
causes an increase in crystallites size. 
When the first stable nuclei of ZnO are formed with sub-nano sizes, due to quantum 
confinement effects these particles have widest band gap (Wang & Herron, 1991). As 
crystallite size increases band gap will decrease. When the band gap of particles is equal to 
bulk material, it can be seen that the band gap energies and the exciton energy bands 
respectively become lower and higher. 
Considering these changes, the overall changes in the properties by increase of time and 
temperature should be similar to what is shown in figure 8. In conclusion, by increase in 
time and temperature: 
• Crystallite size of the obtained ZnO nanoparticles should increase. 
• Band gap energy of the obtained ZnO nanoparticles should decrease. 
• Exciton energy of the obtained ZnO nanoparticles should increase. 

4.2.2 Comparison between recurrent ANN and feed-forward ANN 
The ANN models for crystallites size, band-gap and exciton energy of obtained nanoparticles 
are shown in figures 9, 10 and 11, respectively. As could be seen in these figures, results of 
models designed by recurrent and feed-forward ANN estimate greatly differ from each other.  
 

 
Fig. 9. Crystallite sizes for initial concentration of Zn(Ac)2 equal to a) 0.5, b) 0.75 and c) 1 molar. 
Right column results are obtained from recurrent and left column from feed-forward ANN. 



Artificial Neural Networks - Application 

 

490 

 
Fig. 7. Transformed absorption spectra of synthesized samples 
The band gap energy of the synthesized nanoparticles were calculated using equation (4) 
and considering the allowed direct transition probability (n=0.5).  

4.2 ANN results 
4.2.1 Physical explanation using multi- layer feed forward backpropagation network 
The ANN results for samples with 0.75 M initial concentration of Zn(Ac)2 are shown in 
figure 8. The contours are shown below the 3D surfaces of the modeled properties.  
 

 
Fig. 8. ANN results for [Zn(Ac)2]=0.75M; a) Crystallite size, b) Band gap energy and c) 
Exciton energy 
As it can be seen in this figure, increasing synthesis time and temperature resulted in bigger 
crystallite sizes. From thermodynamics point of view, nucleation of new solid phase in 
aqueous medium has some energy barrier. Temperature can provide the needed energy to 

Application of Artificial Neural Networks in Optical Properties of Nanosemiconductors 

 

491 

overcome this barrier. It also increases solubility of materials in water which can accelerate 
the rate of materials solution and precipitation in saturated aqueous medium.  
Ostwald ripening is the phenomenon of dissolution of unstable phases and their 
recrystallization in a more stable form. This process involves solution of materials in water 
and their precipitation in more stable condition. 
Plane defects as grain boundaries and particles surfaces are the main forms of high energy 
defects in materials which can be partially fixed by crystallites and particles growth. 
Materials with bigger crystallites have less grain boundary per unit volume so they are more 
stable. Thus, by increasing synthesis time and temperature, Ostwald ripening processes 
causes an increase in crystallites size. 
When the first stable nuclei of ZnO are formed with sub-nano sizes, due to quantum 
confinement effects these particles have widest band gap (Wang & Herron, 1991). As 
crystallite size increases band gap will decrease. When the band gap of particles is equal to 
bulk material, it can be seen that the band gap energies and the exciton energy bands 
respectively become lower and higher. 
Considering these changes, the overall changes in the properties by increase of time and 
temperature should be similar to what is shown in figure 8. In conclusion, by increase in 
time and temperature: 
• Crystallite size of the obtained ZnO nanoparticles should increase. 
• Band gap energy of the obtained ZnO nanoparticles should decrease. 
• Exciton energy of the obtained ZnO nanoparticles should increase. 

4.2.2 Comparison between recurrent ANN and feed-forward ANN 
The ANN models for crystallites size, band-gap and exciton energy of obtained nanoparticles 
are shown in figures 9, 10 and 11, respectively. As could be seen in these figures, results of 
models designed by recurrent and feed-forward ANN estimate greatly differ from each other.  
 

 
Fig. 9. Crystallite sizes for initial concentration of Zn(Ac)2 equal to a) 0.5, b) 0.75 and c) 1 molar. 
Right column results are obtained from recurrent and left column from feed-forward ANN. 
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Fig. 10. Band gap energy for initial concentration of Zn(Ac)2 equal to a) 0.5, b) 0.75 and c) 1 
molar. Right column results are obtained from recurrent and left column from feed-forward 
ANN  
 

 
Fig. 11. Exciton energy for initial concentration of Zn(Ac)2 equal to a) 0.5, b) 0.75 and c) 1 
molar. Right column results are obtained from recurrent and left column from feed-forward 
ANN 
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As it can be seen in figures 9, 10 and 11, the lack of training data in borders of studied 
domain causes physically incorrect results around central points. This problem can be 
solved by getting more experimental results in border area.  
As it is shown in table 5, the average MSE achieved in recurrent ANN is much better than 
feed-forward ANN. Although recurrent network has a better fitness, its results are not 
physically realistic. This is due to introducing unexplainable curvatures in the parts with 
insufficient experimental points. This kind of variations in curvature could not be 
happening from physical point of view due to explanations cited in previous sections. As we 
have little training data for recurrent network considering it has more parameters than feed-
forward one, the recurrent network tries to cope with this problem by adding curves in 
places where it lacks the data needed and it will try to predict this data and it will 
underfitted regarding real physical models. 
 

Average MSE Modeled property
Recurrent ANN Feed-forward ANN 

Exciton energy 3e-4 3e-3 
Band gap energy 2e-4 1e-3 
Crystallite size 3e-4 2e-3 

Table 5. Comparing the average MSE achieved in recurrent and feed-forward ANN  
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1. Introduction

1.1 Artificial neural networks
Artificial Neural Networks (ANN), are highly simplified models of the brain processes
(Graupe, 2007; Kasabov, 1998). An ANN is a biologically inspired computational model which
consists of a large number of simple processing elements called neurons, units, cells, or nodes
which are interconnected and operate in parallel (Galushkin, 2007; Lakhmi & Fanelli, 2000).
Each neuron is connected to other neurons by means of directed communication links, which
constitute the neuronal structure, each with an associated weight (Dreyfus, 2005). The weights
represent information being used by the net to solve a problem. Figure 1 shows an abbreviated
notation for an individual artificial neuron, which is used in schemes of multiple neurons
(Beale et al., 1992). Here the input p, a vector of R input elements, is represented by the solid
dark vertical bar at the left. The dimensions of p are shown below the symbol p in the figure
as Rx1. These inputs post multiply the single-row, R − column matrix W. A constant 1 enters
the neuron as an input and is multiplied by a bias b. The net input to the transfer function f is
n, the sum of the bias b and the product Wp. This sum is passed to the transfer function f to
get the neuron’s output a.

Fig. 1. Abbreviated notation for an individual artificial neuron
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Although a single neuron can perform certain simple information-processing functions, a
single node is insufficient for many practical problems, and networks with a large number
of nodes are frequently used. A single layer of neurons having different transfer functions
can be created simply by putting the neuron shown earlier in parallel (Kishan et al., 2000).
All the neurons would have the same inputs, and each neuron would create the outputs,
however, a layer of neurons is not constrained to have the number of its inputs equal to the
number of its neurons, and it is common for the number of inputs to a layer to be different
from the number of neurons. To describe networks having multiple layers, it needs to make
a distinction between weight matrices that are connected to inputs and weight matrices that
are connected between layers. It also needs to identify the source and destination for the
weight matrices. Weight matrices connected to inputs are called input weights (IW), whereas
weight matrices coming from layer outputs are called layer weights (LW). Further, superscripts
are used to identify the source (second index) and the destination (first index) for the various
weights and other elements of the network.
Figure 2 shows an abbreviated notation of a single layer of neurons. As can be seen from this
figure, the weight matrix connected to the input vector p is labeled as an input weight matrix
(IW1,1). The input vector elements enter the network through the weight matrix W. The row
indices on the elements of matrix W indicate the destination neuron of the weight, and the
column indices indicate which source is the input for that weight. Thus, the indices in w1,2
say that the strength of the signal from the second input element to the first (and only) neuron
is w1,2. Elements of layer 1, such as its bias, net input, and output have a superscript 1 to say
that they are associated with the first layer.

Fig. 2. Abbreviated notation of a single layer of neurons

Multiple-layer networks are quite powerful and can solve more complicated problems than
can single-layer nets. A multilayer neural network consists of a combination of neurons or
nodes and synaptic connections, which are capable of passing data trough multiple layers
(Fausett, 1993). Each layer has a weight matrix W, a bias vector b, and an output vector a.
The layers of a multilayer network play different roles, i.e., the x-y-z neural network structure
refers to number of neurons in the input, hidden and output layers respectively. Input layers
receive input signal or values from an external source, output layer transmit the result of the
neural network processing and hidden layer(s) make up the internal layer(s) between input
and output node layers (Haykin, 1999). To distinguish between the weight matrices, output
vectors, etc., as mentioned previously, the number of the layer is appended as a superscript to
the variable of interest.
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Figure 3 shows a three-layer network using abbreviated notation. From this figure can be seen
that the network has R1 inputs, S1 neurons in the first layer, S2 neurons in the second layer,
etc. A constant input 1 is fed to the bias for each neuron. The outputs of each intermediate
layer are the inputs to the following layer. Thus layer 2 can be analyzed as a one-layer network
with S1 inputs, S2 neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; the
output is a2. Now that all the vectors and matrices of layer 2 have been identified, it can be
treated as a single-layer network on its own. This approach can be taken with any layer of the
network.

Fig. 3. Three-layer neural network using abbreviated notation

The arrangement of neurons into layers and the connection patterns within and between
layers is called the net architecture (Jain et al., 1996; Zupan, 1994). According to the absence or
presence of feedback connections in a network, two types of architectures are distinguished:

• Feedforward architecture. There are no connections back from the output to the input
neurons; the network does not keep a memory of its previous output values and the
activation states of its neurons; the perceptron-like networks are feedforward types.

• Feedback architecture. There are connections from output to input neurons; such a
network keeps a memory of its previous states, and the next state depends not only on
the input signals but on the previous states of the network; the Hopfield network is of this
type.

The central idea of neural networks, where w and b are both adjustable parameters of the
neuron, is that such parameters can be adjusted by means of learning or training, so that the
network exhibits some desired or interesting behavior (Fausett, 1993; Graupe, 2007; Haykin,
1999; Kasabov, 1998; Kishan et al., 2000; Lakhmi & Fanelli, 2000). Learning is not an individual
ability of a single neuron, it is a collective process of the whole neural network and a result
of a training procedure. Training is the algorithmic procedure whereby the parameters of the
neurons of the network are estimated, in order for the neural network to fulfill, as accurately
as possible, the task it has been assigned.
As shows figure 4, an ANN is trained so that a set P of input vectors produces the desired,
or at least a consistent, set of target output vectors T, or the network learns about internal
characteristics and structures of data from a set P. The set P used for training a network
is called training set and the elements p of this set P are called training examples. The
training process is reflected in changing the connection weights of the network. The default
performance function for feedforward networks is the mean square error (mse), which is the
average squared error between the network outputs a and the target outputs T. During
training, the network weights should gradually converge to values such that each input vector
p from the data set training causes a desired output vector t produced by the network.
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Learning occurs if after supplying a training example, a change in at least one synaptic weight
takes place. Input vectors and the corresponding target vectors are used to train a network
until it can approximate a function, associate input vectors with specific output vectors, or
classify input vectors in an appropriate way as defined by the experimenter.

Fig. 4. Training procedure of neural networks

The learning ability of a neural network is achieved through applying a learning or training
algorithm. Training algorithms are mainly classified into three groups:

• Supervised. This training algorithm has been the most used mainly because the training
examples comprise input vectors p and the desired target output vectors t. Training
is performed until the neural network "learns" to associate each input vector p to its
corresponding and desired output vector t.

• Unsupervised. Only input vectors p are supplied; the neural network learns some internal
features of the whole set of all the input vectors presented to it.

• Reinforcement learning. Sometimes called reward-penalty learning, is a combination of
the above two paradigms; it is based on presenting input vector p to a neural network and
looking at the output vector calculated by the network. If it is considered "good," then
a "reward" is given to the network in the sense that the existing connection weights are
increased; otherwise the network is "punished," the connection weights, being considered
as "not appropriately set," decrease. Thus reinforcement learning is learning with a critic,
as opposed to learning with a teacher.

Several different training algorithms for feedforward networks use the gradient of the
performance function to determine how to adjust the weights to minimize performance.
The gradient is determined using a technique called Back-Propagation (BP), which involves
performing computations backward through the network, which refine one of the principal
components of neural networks: the connection weights. The BP computation is derived using
the chain rule of calculus (Taylor, 1993). BP was created by generalizing the Widrow-Hoff
learning rule to multiple-layer networks and nonlinear differentiable transfer functions
(Fausett, 1993; Graupe, 2007; Haykin, 1999; Kasabov, 1998; Kishan et al., 2000; Lakhmi &
Fanelli, 2000).
Despite the apparent success of the BP learning algorithm, there are some aspects, which make
the algorithm not guaranteed to be universally useful.

• One of the problems of BP is that it can get stuck in a local minimum. This is not too bad if
the local minimum turns out to be close to the global minimum, but there is no guarantee
that is the case.
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the local minimum turns out to be close to the global minimum, but there is no guarantee
that is the case.

• Another problem associated with BP is that the place at which one starts on the error
surface (which is determined by the initial weight settings, which are often random)
determines whether or not a good or the best solution is found. When a solution is found
that performs well on the training set, the network might still perform badly on the overall
set of input, if the training set was not representative.

• A last problem is the occurrence of interference. This occurs when a network is supposed
to learn similar tasks at the same time. Apart from the fact that smaller networks are
unable to learn to many associations, they simply are full after a certain amount of learned
associations, there is also the danger of input patterns being so hard to separate, that the
network can’t find a way to do it.

ANN has been well known for its effectiveness in representing nonlinear process system
(Apolloni et al., 2009). The power of neural computation comes from connecting neurons
in networks, and the way these nodes are connected, determines how computations proceed,
and constitutes an important early design decision by a neural network developer. However,
ANN can not solve all problems in the real world. One of the biggest drawbacks in the use
of neural networks nowadays is the problem of finding an appropriate structure for a given
task, mainly because it is very hard to know beforehand the size and the structure of a neural
network one needs to solve a given problem (Ortiz-Rodríguez et al., 2006; Packianather &
Drake, 2004; Packianather et al., 2000; Peterson et al., 1995). An ideal structure is a structure
that independently of the starting weights of the net, always learns the task, i.e. makes almost
no error on the training set and generalizes well.
The problem with neural networks is that a number of parameter have to be set before any
training can begin. However, there are no clear rules how to set these parameters. Yet
these parameters determine the success of the training. Among the limitation of ANN, the
followings should be given added emphasis:

1. Network architecture. There is a lack of fixed rule or systematic guideline for optimal
ANN architecture design. Since there is no a prior knowledge about the problem
complexity, the network architecture was typically set arbitrarily. The network topology
was often determined by trial and error. This subjected the network to performance
uncertainties since the size of network influence the network performance: too small a
network cannot learn well, but too large may lead to overfitting. Thus, algorithms that
can find appropriate network architecture are needed. This includes the determination of
optimum number of neuron in each layer as well as number of hidden layer needed.

2. Training algorithm. The best training algorithm still cannot be singled out for general
neural network. Although BP algorithm has been widely used, it does not guarantee the
global optimal solution. The training may result in ANN model that is only accurate in
the same operating zones as in the training data set but inaccurate in others. Besides, the
selection of some parameters in BP training, such as learning rate and momentum, also
lacks of systematic guideline.

3. Training data. The quality and quantity of training data is an important issue for ANN
modeling. Usually, the success of ANN relies heavily on a large amount of data, but this
demand more computing time for training. In order to reduce the amount of data whilst
maintaining the model quality, the data used must be carefully selected to ensure that
they are sufficiently rich. This demands project understanding on the process involved.
Additionally, to eliminate noise and outliers, process data may require pre-processing prior
to application in neural network model development.
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Learning occurs if after supplying a training example, a change in at least one synaptic weight
takes place. Input vectors and the corresponding target vectors are used to train a network
until it can approximate a function, associate input vectors with specific output vectors, or
classify input vectors in an appropriate way as defined by the experimenter.

Fig. 4. Training procedure of neural networks

The learning ability of a neural network is achieved through applying a learning or training
algorithm. Training algorithms are mainly classified into three groups:

• Supervised. This training algorithm has been the most used mainly because the training
examples comprise input vectors p and the desired target output vectors t. Training
is performed until the neural network "learns" to associate each input vector p to its
corresponding and desired output vector t.

• Unsupervised. Only input vectors p are supplied; the neural network learns some internal
features of the whole set of all the input vectors presented to it.

• Reinforcement learning. Sometimes called reward-penalty learning, is a combination of
the above two paradigms; it is based on presenting input vector p to a neural network and
looking at the output vector calculated by the network. If it is considered "good," then
a "reward" is given to the network in the sense that the existing connection weights are
increased; otherwise the network is "punished," the connection weights, being considered
as "not appropriately set," decrease. Thus reinforcement learning is learning with a critic,
as opposed to learning with a teacher.

Several different training algorithms for feedforward networks use the gradient of the
performance function to determine how to adjust the weights to minimize performance.
The gradient is determined using a technique called Back-Propagation (BP), which involves
performing computations backward through the network, which refine one of the principal
components of neural networks: the connection weights. The BP computation is derived using
the chain rule of calculus (Taylor, 1993). BP was created by generalizing the Widrow-Hoff
learning rule to multiple-layer networks and nonlinear differentiable transfer functions
(Fausett, 1993; Graupe, 2007; Haykin, 1999; Kasabov, 1998; Kishan et al., 2000; Lakhmi &
Fanelli, 2000).
Despite the apparent success of the BP learning algorithm, there are some aspects, which make
the algorithm not guaranteed to be universally useful.

• One of the problems of BP is that it can get stuck in a local minimum. This is not too bad if
the local minimum turns out to be close to the global minimum, but there is no guarantee
that is the case.
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4. Training set. Since it is normally impossible to present a network with all possible inputs,
we only present it with part of it, the training set. This set has to be chosen in such a way
that the network also gives correct output for an input that was not in the training set.
If the network also responds well to inputs that were not in the training set, it is said to
generalize well. Often an ANN is trained with one set of patterns (the training set) and
tested with another (the test set). If the training set was not a good representation of all
possible inputs, the network probably will not perform too well on inputs that are not in
the training set. Generalization is quite similar to interpolation in mathematics.

5. Process relationship. Being black-box method for modeling, ANN is criticized for unable
to explain and analysis the relationship between inputs and outputs. This may cause
difficulties in interpreting results from the network.

All of these limitations have motivated researchers to generate ideas of merging or
hybridizing ANN with other approaches in the search for better performance. Some of the
available schemes include expert systems, statistical methods (Ortiz-Rodríguez et al., 2006;
Packianather & Drake, 2004), fuzzy logic (Chennakesava, 2008), wavelet transform and as well
as Neuro Evolutionary (NE) Approaches (Floreano & Mattiussi, 2008; Leardi, 2003; Melin &
Castillo, 2005; Yao, 1993). In this work, the use of NE is considered.

1.2 Neuro Evolution
Neuro Evolution (NE) leverages the strengths of two biologically inspired areas of Artificial
Intelligence (AI) (Coppin, 2004; Luger, 2005; Rasskin-Gutman, 2009): Artificial Neural
Networks (ANN) and Evolutionary Algorithms (EA) (Gen et al., 2009; Munakata, 2008;
Rothlauf, 2006; Whiteson & Stone, 2006). EA are stochastic and adaptive population-based
search methods based on the principles of natural evolution. They involve a population of
individuals represented in a genotypic form (chromosomes/genotypes), each of which is a
potential solution to the problem. Each individual has a fitness score associated with it,
and individuals with better fitness scores are better solutions. Between one generation and
the next, individuals are selected from which to create offspring by applying mutation and
crossover operators. Generally selection is biased towards fitter individuals, and unpromising
areas of the search space are abandoned with the loss of poorer performing individuals
from the population over time. EA encompass Genetic Algorithms (GA), Evolutionary
Programming (EP) and Evolution Strategies (ES) (Affenzeller et al., 2009; Goldberg, 1989;
Haupt & Haupt, 2004; Mitchell, 1998; Periaux & Winter, 1995).
Although EA and ANN have in common that they are general search strategies, they vary
in their range. EA perform a more global search than ANN with BP. Figure 5, illustrates the
convergence of the strategies. BP takes more time to reach the neighborhood of an optimal
solution, but then reaches it more precisely. On the other hand, EA investigate the entire
search space. Hence, they reach faster the region of optimal solutions, but have difficulties
to localize the exact point. This happens, because for the final “fine-tuning” of the solution
relies almost entirely on mutation. Combining both strategies seems to be the best thing to
do (Floreano & Mattiussi, 2008; Leardi, 2003; Melin & Castillo, 2005; Yao, 1993), and the NE
approach outperforms EA as well as ANN in finding a satisfying solution.
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Fig. 5. Convergence of ANN and EA

Because GAs sample many points in the search space simultaneously, they are less susceptible
to local minima than single solution methods (BP), and are capable of rapidly locating high
payoff regions of high dimensional search spaces. Figure 6, shows a hypothetical fitness
landscape to illustrate how a GA operates. The fitness of each individual in the population is
represented by its position on the landscape. In a single solution method, such as BP training,
if the initial search point (the yellow circle) happens to fall in the neighborhood of a local
maxima, the algorithm can become trapped because it has only local information with which
to make a next guess and improve the solution. Therefore, it will climb the gradient towards
the local maxima. In a GA, although some individuals (the red circles) may reside near local
maxima, it is less likely to get trapped because the population provides global information
about the landscape. There is a better chance that some individual will be near the global
maxima, and the genetic operators allow the GA to move the population in large jumps to
focus the search in the most fruitful regions of the landscape.

Fig. 6. Fitness landscape which illustrates how a GA operates

As is showed in figure 7, the basic idea of NE is to search the space of neural network policies
directly by using a GA. From this figure can be seen that each chromosome is transformed
into a neural network phenotype and evaluated on the task. The agent receives input from
the environment (observation) and propagates it through its neural network to compute an
output signal (action) that affects the environment. At the end of the evaluation, the network
is assigned a fitness according to its performance. The networks that perform well on the task
are mated to generate new networks.
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Fig. 7. Neuro Evolution approach

GA were introduced by John Holland in 1975 (Goldberg, 1989), and are a class of stochastic
search procedures founded on the principles of natural selection. Unlike conventional search
methods that iteratively improve a single solution, a GA maintains a set or population of
candidate solutions that sample the search space at multiple points. These solutions are
encoded as strings called chromosomes that represent the genotype of the solution. The
chromosomes are usually composed of a fixed number of genes that can take on some set
of values called alleles.

1.2.1 Genetic algorithms
GA belongs to a class of population-based stochastic search algorithm that are inspired from
principles of natural evolution known as EA. Similar to other EA algorithms, GA is based on
the principle of ”survival of fittest”, as in the natural phenomena of genetic inheritance and
Darwinian strife for survival. In other words, GA operates on a population of individuals
which represent potential solutions to a given problem. Mimicking the biological principles
in nature, a single individual of a population usually is affected by other individuals as well
as the environment. Normally, the better an individual performs under these competitive
conditions the greater is the change for the individual to survive and reproduce. This in
turn inherits the good parental genetic information. Hence, after several generations, the bad
individual will be eliminated and better individuals are produced.
The most important terms used in the GA, analogous to the terms used to explain the
evolutionary processes, are:

• Gene. A basic unit, which controls a property of an individual.

• Chromosome. A string of genes; it is used to represent an individual, or a possible solution
of a problem in the solution space.

• Population. A collection of individuals.

• Operation of crossover or mating. Substrings of different individuals are taken and new
strings (offsprings) are produced.

• Mutation. Random change of a gene in a chromosome.

• Fitness or goodness function. A criterion which evaluates each individual.

• Selection. A procedure for choosing a part of the population that will continue the process
of searching for the best solution, while the other part of the population "dies".
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Although the evolutionary principle of GA is similar with other EA varieties, its
implementation is different. Initially, the evolutionary process of GA starts with the creation
of the blind random population defined by the problem statement. This is followed by the
series of activity including solutions encoding, fitness evaluation, selection, genetic operator
alteration and replacement which are iteratively executed until the stopping criterion is
satisfied. Figure 8 outlines a typical evolutionary structure of GA.

Fig. 8. Evolutionary structure of a GA

As a population-based search algorithm, information exchange among the individual is
particularly important for GA. Such mechanisms are achieved by genetic operators, the more
common ones are reproduction, crossover and mutation. Following a process analogous
to natural evolution, each genotype is transformed into its phenotype and evaluated on
a given problem to assess its fitness. Those genotypes with high fitness are then mated
using crossover and mutation at low levels to produce new solutions or offspring. Figure
9 illustrates how crossover and mutation work. Crossover produces two offspring from two
parents by exchanging chromosomal substrings on either side of a random crossover point,
each offspring is a concatenation of contiguous gene segments from both parents. When an
offspring is mutated, one of its alleles is randomly changed to a new value. By mating only
the most fit individuals, the hope is that the favorable traits of both parents will be transmitted
to the offspring resulting in a higher scoring individual, and eventually leading to a solution.
In general, GA is applicable to a wide range of problem in learning and optimization.
They can deal with complex problems which are multimodal and discontinuous. GA
has two prominent features that are different from other search algorithms. First, it is
population-based. Second, there is information exchange among individuals in a population.
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GA were introduced by John Holland in 1975 (Goldberg, 1989), and are a class of stochastic
search procedures founded on the principles of natural selection. Unlike conventional search
methods that iteratively improve a single solution, a GA maintains a set or population of
candidate solutions that sample the search space at multiple points. These solutions are
encoded as strings called chromosomes that represent the genotype of the solution. The
chromosomes are usually composed of a fixed number of genes that can take on some set
of values called alleles.

1.2.1 Genetic algorithms
GA belongs to a class of population-based stochastic search algorithm that are inspired from
principles of natural evolution known as EA. Similar to other EA algorithms, GA is based on
the principle of ”survival of fittest”, as in the natural phenomena of genetic inheritance and
Darwinian strife for survival. In other words, GA operates on a population of individuals
which represent potential solutions to a given problem. Mimicking the biological principles
in nature, a single individual of a population usually is affected by other individuals as well
as the environment. Normally, the better an individual performs under these competitive
conditions the greater is the change for the individual to survive and reproduce. This in
turn inherits the good parental genetic information. Hence, after several generations, the bad
individual will be eliminated and better individuals are produced.
The most important terms used in the GA, analogous to the terms used to explain the
evolutionary processes, are:

• Gene. A basic unit, which controls a property of an individual.

• Chromosome. A string of genes; it is used to represent an individual, or a possible solution
of a problem in the solution space.

• Population. A collection of individuals.

• Operation of crossover or mating. Substrings of different individuals are taken and new
strings (offsprings) are produced.

• Mutation. Random change of a gene in a chromosome.

• Fitness or goodness function. A criterion which evaluates each individual.

• Selection. A procedure for choosing a part of the population that will continue the process
of searching for the best solution, while the other part of the population "dies".
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Primarily, GA was designed to optimally solve sequential decision processes more than to
perform function optimization but over the years, it has been used widely in both learning
and optimization. For these reasons, GAs are well suited for searching the space of neural
networks. Instead of training a network by performing gradient descent on an error surface,
the GA samples the space of networks and recombines those that perform best on the task in
question.

Fig. 9. Crosover and mutation genetic operators

Today neural networks can be trained to solve problems that are difficult for conventional
computers or human beings, and have been trained to perform complex functions in various
fields, including pattern recognition, identification, classification, speech, vision, and control
systems. Recently, the use of ANN technology has been applied with success in the research
area of nuclear sciences, mainly in the neutron spectrometry and dosimetry domains.

1.3 Artificial neural networks and neutron spectrometry
Nowadays, neutrons are widely used in many fields of both research and technology
(Wielunski et al., 2008b). Reliable determination of neutron doses is still an issue in the field
of radiation protection (Lacoste et al., 2007). In recent years, the characterization of ionizing
radiation fields in workplaces is one of the challenging activities over the world (Mazrou et al.,
2008). The workers subject to these radiations especially those who are submitted to neutron
risk have to be well monitored and protected according to relevant national regulations which
are more and more restrictive. As a result, there is an increasing demand in the field of
radiation protection to quantify these various neutron fields and to determine the radiation
doses involved (Mazrou et al., 2008). The dosimetry of neutron radiation is one of the
most complicated tasks in radiation protection (Wielunski et al., 2008a), mainly because is a
complex technique (Bedogni et al., 2007), and highly neutron energy dependent, and a precise
knowledge on neutron spectrometry is highly essential for all dosimetry-related studies as
well as many nuclear physics experiments. In consequence, it becomes necessary to develop
additional measuring techniques to enhance the actual workers monitoring systems.
The term radiation spectrometry can be used to describe measurements of the intensity of a
radiation field with respect to energy, wavelength, momentum, mass, angle of incidence or
any other related quantity (Thomas, 2004; Vega-Carrillo et al., 2009a; 2010). The distribution
of the intensity with one of these parameters is commonly referred to as the spectrum, i.e.,
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the measurement of neutron energy spectra is the variation of the intensity of these radiations
with energy (Vega-Carrillo et al., 2009b).
One of the suitable approaches to improve the knowledge on neutron radiation fields to
which individuals are exposed during their work, is based on spectrometric measurements
(Brooks & Klein, 2002; McDonald et al., 2002; Thomas, 2004). The measured yield of a neutron
source is the convolution of the neutron energy distribution with the response function of the
spectrometer summed over the interaction energy range. As is shown in equation 1, which
represents the discrete form of the Fredholm’s integral equation of the first kind (Vega-Carrillo
et al., 2006).

Cj =
N

∑
i=1

Ri,jΦi −−− > j = 1, 2, ..., m (1)

where Cj is jth detector’s count rate; Ri,j is the jth detector’s response to neutrons at the ith

energy interval; Φi is the neutron fluence within the ith energy interval and m is the number
of spheres utilized. Equation 1 is an ill-conditioned problem wich has an infinite amount of
solutions
Although there is a wide range of different devices used for neutron spectrometry, the majority
of the instruments can be grouped together into a small number of broad categories, each one
based on a common underlying technique (Matzke, 2003; McDonald et al., 2002; Thomas,
2004). Among the many available neutron spectrometry techniques, the multisphere or
Bonner sphere spectrometer (BSS) system is the most used for radiation protection purposes
(El Messaoudi et al., 2004; Lacoste et al., 2004; Vylet, 2002), due to advantageous characteristics
as wide energy range (from thermal to GeV neutrons), large variety of active or passive
thermal sensors allowing adapting the sensitivity to the specific workplace, good photon
discrimination and simple signal management. Disadvantages are the poor energy resolution,
which does not allow appreciating fine structures as narrow peaks, the weight, and the need
to sequentially irradiate the spheres, requiring, in general, long exposure periods (Bedogni
et al., 2007).
The BSS consists of a thermal neutron sensor such as 6LiI(Eu), which is placed at the centre
of a number of moderating spheres of different diameter. With the BSS, neutron spectrum can
be obtained, however, the derivation of the spectral information is not simple. The unknown
neutron spectrum is not given directly as a result of the measurement. The BSS response
matrix, the count rates and the neutron spectrum are related trough the equation 1. The
most delicate part in the neutron spectrometry based on the BSS, is the unfolding process.
The unfolding spectra of the neutrons measured consist on establishing the rate of energy
distribution of fluency φ(E), known as the response matrix, Ri,j , and the group of carried
out measures, Cj. Because the number of unknowns overcome to the number of equations,
this is an ill-conditioned system and has an infinite number of solutions. The procedure of
selecting the solution that has meaning for the problem type, is part of the unfolding process
(Vega-Carrillo et al., 2005; 2006). The spectral information needs to be unfolded from the BSS
system detector responses by using a suitable computational code, most of them are based in
some of these methods: least square, iterative (Bedogni et al., 2007; Miller, 1993), bayesian and
maximum entropy (Reginatto & Zimbal, 2008), and Monte-Carlo (Vega-Carrillo et al., 2007a).
The current interest in the neutron spectrometry problem, has stimulated the development
of diverse unfolding procedures which try to obtain a better energy resolution through the
reconstruction of the spectrum. During the past decades have been carried out intents to
develop new neutron spectra unfolding codes like BUNKIUT (Miller, 1993), FRUIT (Bedogni
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et al., 2007), MAXED, UMG (Roberts, 2007), etc., to attain improved energy resolution
through spectrum unfolding. However, these methods still present the serious drawback of
requiring a very expert user for their operation and the necessity to provide an initial guess
spectrum for the deconvolution of the spectrum. To overcome these drawbacks, alternative
approaches have been studied and proposed, to make an efficient neutron dosimetry, and
several unfolding procedures combined with various types of experimental methods have
been reported such as Genetic Algorithms (GA) (Freeman et al., 1999; Mukherjee, 2004), and
Artificial Neural Networks (ANN) (Vega-Carrillo et al., 2007b; 2005; 2006; 2009a; 2010).
Many of the previous studies in neutron spectrometry and dosimetry by using the ANN
approach have found serious drawbacks in the ANN design process itself, mainly in the
proper determination of the structural and learning parameters of the networks being
designed (Ortiz-Rodríguez et al., 2006). These parameters are significant contributing factors
to the ANN performance, however, the optimal selection of these parameters follows in
practical use no rules, and their value is at most arguable, mainly because they are generally
heuristically chosen by using the trial and error technique, which produces poor artificial
neural networks with low generalization capacity and poor performance. For the anterior, the
nuclear research community needs approaches that implement ANN models faster than what
is currently available. In consequence, more research has been suggested in order to overcome
these drawbacks (Bedogni et al., 2007; Vega-Carrillo et al., 2007b; 2006; 2010).
At present, one promising technique to design the structural and learning parameters of ANN
is by introducing adaptation of network training using EA. EA seems to be a proper alternative
to solve the ANN optimization problem and can be used to assist in the ANN design and
training (Ortiz-Rodríguez et al., 2008; 2009b; 2010a). However, as a novel approach in the
nuclear sciences area, the lack of information and tools for the analysis of the results obtained
whit these new technologies, makes difficult the work in this research area.
The aim of the present work is focused in analyzing the intersection of ANN and GA,
analyzing like it is that GA can be used to help in the design processes and training of ANN,
i.e., in the optimum selection of the structural and learning parameters of ANN, improving its
generalization capacity, in such a way that the neural network designed is able to unfold in an
efficient way neutron spectra, starting only from the count rates obtained with a BSS system.
Because the novelty of Evolutionary Artificial Neural Networks (EANN) technology in
neutron spectrometry, lack of tools for the analysis is observed. For this reason, an unfolding
code based on EANN technology, devoted to the operational workplace neutron monitoring,
would be of great help to the radiation protection community. With this purpose, in this
work a new computer tool based on EANN technology called “Neutron Spectrometry and
Dosimetry based on Evolutionary Artificial Neural Networks” (NSDEann), was developed in
a customized front end user capable to unfold neutron spectra and to simultaneously calculate
13 equivalent doses, by using only as input data the count rates coming of a BBS system, in
just a few seconds if compared with the time spent with the classical techniques, not being
needed a priori information about the spectra being calculated.

2. EANN in neutron spectrometry

EANN technology was used for the modeling and optimization of ANNs capable to solve
the neutron spectra unfolding problem, starting from the count rates coming from a BSS
with a 6LiI(Eu) thermal neutron detector, 7 polyethylene spheres of 0, 2, 3, 5, 8, 10, and, 12
inches of diameter respectively, and the UTA4 response matrix expressed for 31 energy bins
(Vega-Carrillo et al., 2009a). In this study, two neutron spectra were produced using a 239PuBe
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inches of diameter respectively, and the UTA4 response matrix expressed for 31 energy bins
(Vega-Carrillo et al., 2009a). In this study, two neutron spectra were produced using a 239PuBe

neutron source (Vega-Carrillo et al., 2009b). A neutron spectrum was produced by the 239PuBe
neutron source located at 100 cm of distance, in an open space at 200 cm above floor level,
and was measured using the BSS previously described. Then, the same neutron source was
inserted in a cylindrical container with water, and the neutron spectrum was measured again.
The count rates measured in both cases with the BSS, were utilized to unfold the neutron
spectra and to calculate the dosimetric features using four EANN designed for each case,
varying some GA and ANN parameters during training stage. To analyze the performance
and generalization capability of the evolved networks, a new neutron spectra unfolding code
denominated ”Neutron Spectrometry and Dosimetry based on Evolutionary Artificial Neural
Networks“ (NSDEann), was used. Also, the spectra were unfolded with the BUNKIUT code
and UTA4 response matrix (Vega-Carrillo et al., 2009a), and compared with that obtained with
NSDEann code using a computer tool known as ”Neutron Spectrometry and Dosimetry Tool
Box“ (NSDTB) (Ortiz-Rodríguez et al., 2009a;b; 2010b).
The general idea of combining EA and ANN is illustrated in figure 10. The EANN approach
is based on a fundamental cyclic process which consists of:

1. Creating an initial population of genotypes (genetic representations of the ANN).

2. Building neural networks (phenotypes) based on the genotypes.

3. Training and testing the neural networks to determine how fit they are.

4. Comparing the fitness of the networks and keeping the best.

5. Selecting those networks in the population which are better, discarding those which aren’t.

6. Refilling the population back to the defined size.

7. Pairing up the genotypes of the neural networks.

8. Mating the genotypes by exchanging genes (features) of the networks.

9. Mutating the genotypes in some random fashion; Then returning back to step (2) and
continuing this process until some stopping criteria is reached or manually stops the
process.

Through the process described previously, the better networks survive and their features
carry forward into future generations and are combined with others to find better and better
networks for the problem considered. This genetic search capability is much more effective
than random searching, as the genetic process of recombining features vastly improves the
speed of identifying highly fit networks.
To train the evolved networks, a data set of 187 neutron spectra, compiled by the International
Atomic Energy Agency (IAEA) (IAEA, 2001) was used (Iñiguez & Vega-Carrillo, 2002;
Vega-Carrillo et al., 2005; 2006). The ANN genetically evolved were designed by meas of
the NeuroGenetic Optimizer (NGO) software (BiocompSystems, 2010). In the use of NGO,
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et al., 2007), MAXED, UMG (Roberts, 2007), etc., to attain improved energy resolution
through spectrum unfolding. However, these methods still present the serious drawback of
requiring a very expert user for their operation and the necessity to provide an initial guess
spectrum for the deconvolution of the spectrum. To overcome these drawbacks, alternative
approaches have been studied and proposed, to make an efficient neutron dosimetry, and
several unfolding procedures combined with various types of experimental methods have
been reported such as Genetic Algorithms (GA) (Freeman et al., 1999; Mukherjee, 2004), and
Artificial Neural Networks (ANN) (Vega-Carrillo et al., 2007b; 2005; 2006; 2009a; 2010).
Many of the previous studies in neutron spectrometry and dosimetry by using the ANN
approach have found serious drawbacks in the ANN design process itself, mainly in the
proper determination of the structural and learning parameters of the networks being
designed (Ortiz-Rodríguez et al., 2006). These parameters are significant contributing factors
to the ANN performance, however, the optimal selection of these parameters follows in
practical use no rules, and their value is at most arguable, mainly because they are generally
heuristically chosen by using the trial and error technique, which produces poor artificial
neural networks with low generalization capacity and poor performance. For the anterior, the
nuclear research community needs approaches that implement ANN models faster than what
is currently available. In consequence, more research has been suggested in order to overcome
these drawbacks (Bedogni et al., 2007; Vega-Carrillo et al., 2007b; 2006; 2010).
At present, one promising technique to design the structural and learning parameters of ANN
is by introducing adaptation of network training using EA. EA seems to be a proper alternative
to solve the ANN optimization problem and can be used to assist in the ANN design and
training (Ortiz-Rodríguez et al., 2008; 2009b; 2010a). However, as a novel approach in the
nuclear sciences area, the lack of information and tools for the analysis of the results obtained
whit these new technologies, makes difficult the work in this research area.
The aim of the present work is focused in analyzing the intersection of ANN and GA,
analyzing like it is that GA can be used to help in the design processes and training of ANN,
i.e., in the optimum selection of the structural and learning parameters of ANN, improving its
generalization capacity, in such a way that the neural network designed is able to unfold in an
efficient way neutron spectra, starting only from the count rates obtained with a BSS system.
Because the novelty of Evolutionary Artificial Neural Networks (EANN) technology in
neutron spectrometry, lack of tools for the analysis is observed. For this reason, an unfolding
code based on EANN technology, devoted to the operational workplace neutron monitoring,
would be of great help to the radiation protection community. With this purpose, in this
work a new computer tool based on EANN technology called “Neutron Spectrometry and
Dosimetry based on Evolutionary Artificial Neural Networks” (NSDEann), was developed in
a customized front end user capable to unfold neutron spectra and to simultaneously calculate
13 equivalent doses, by using only as input data the count rates coming of a BBS system, in
just a few seconds if compared with the time spent with the classical techniques, not being
needed a priori information about the spectra being calculated.

2. EANN in neutron spectrometry

EANN technology was used for the modeling and optimization of ANNs capable to solve
the neutron spectra unfolding problem, starting from the count rates coming from a BSS
with a 6LiI(Eu) thermal neutron detector, 7 polyethylene spheres of 0, 2, 3, 5, 8, 10, and, 12
inches of diameter respectively, and the UTA4 response matrix expressed for 31 energy bins
(Vega-Carrillo et al., 2009a). In this study, two neutron spectra were produced using a 239PuBe
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neutron source (Vega-Carrillo et al., 2009b). A neutron spectrum was produced by the 239PuBe
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8. Mating the genotypes by exchanging genes (features) of the networks.

9. Mutating the genotypes in some random fashion; Then returning back to step (2) and
continuing this process until some stopping criteria is reached or manually stops the
process.
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Fig. 10. General approach of Evolutionary ANN

3. Train Back-propagation Neural Network. In this step, network for learning would be
derived from the past data by assigning numbers of hidden neuron as equal as the value
from decoding. Before data could be applied in learning, data must be made into normal
design. Afterwards, data must be divided into 2 set, one in training, another in testing.
Learning process is the reverse learning process with variance that could be reversed back
to adjust weight so that variance may be reduced.

4. Fitness evaluation. In this step, calculation is done to find variance of network which
considered proper fitness value of heredity by using the Root-Mean-Square Error of
Prediction (RMSEP) as objective function. RMSEP is the square root of the sum of the
squared differences between the observed and predicted values for all observations in the
test set divided by the number of such observations, to estimate the prediction error, as
ishowed in the following equation:

RMSE =


1

n − 1
Σn

i=1(yi − yi)2 (2)

where n is the number of trials, yi is the measured values of each response and yi is the
neural model output.

5. Stop criteria. This is the step to check when the design stops working by setting up
conditions for numbers of result compilation. If answers in each round are still stable,
it should stop working. For examples, stop at 10 rounds of compilation or receiving
duplicate answers 5 times in the row. If the stop conditions are real, operation may stop at
step 10. On the contrary, for unreal stop conditions, proceed further with step 6.

6. Selection. In this step, two chromosomes with the least fitness values are selected from
population to be the breeders.

7. Crossover. This is the step for crossing species by exchanging genes among selected
breeders in Step 6 for offspring.

512 Artificial Neural Networks- Application

Fig. 10. General approach of Evolutionary ANN

3. Train Back-propagation Neural Network. In this step, network for learning would be
derived from the past data by assigning numbers of hidden neuron as equal as the value
from decoding. Before data could be applied in learning, data must be made into normal
design. Afterwards, data must be divided into 2 set, one in training, another in testing.
Learning process is the reverse learning process with variance that could be reversed back
to adjust weight so that variance may be reduced.

4. Fitness evaluation. In this step, calculation is done to find variance of network which
considered proper fitness value of heredity by using the Root-Mean-Square Error of
Prediction (RMSEP) as objective function. RMSEP is the square root of the sum of the
squared differences between the observed and predicted values for all observations in the
test set divided by the number of such observations, to estimate the prediction error, as
ishowed in the following equation:

RMSE =


1

n − 1
Σn

i=1(yi − yi)2 (2)

where n is the number of trials, yi is the measured values of each response and yi is the
neural model output.

5. Stop criteria. This is the step to check when the design stops working by setting up
conditions for numbers of result compilation. If answers in each round are still stable,
it should stop working. For examples, stop at 10 rounds of compilation or receiving
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6. Selection. In this step, two chromosomes with the least fitness values are selected from
population to be the breeders.

7. Crossover. This is the step for crossing species by exchanging genes among selected
breeders in Step 6 for offspring.

8. Mutation. After deriving at offspring with 2 chromosomes after crossover, mutation
would be done by randomly selected position of gene with the possibility of mutation.
Then, after randomly selected position, value of gene would have opposite value.

9. Replacement. The offspring with fitness value would take place of the suitable
chromosome in order to derive at new group of population before going back to 2nd step.

10. Stop. After the stop conditions had been verified, the operation of model would stop with
only the best network design had been collected for being used for measuring effectiveness
of network.

The following steps were carried out for developing four EANN models with NGO:

1. Identify data by dividing into 2 sets. Input layer data set, comprised for the count rates
coming from polyethylene spheres of BSS and, output layer data set, comprised for neutron
spectra unfolded and equivalent doses.

2. Specifying neuron in the structure of ANNs. Input layer has 7 neurons, corresponding
to spheres of BSS, hidden layer(s) use GAs to specify neurons and, output layer has 44
neurons, first 31 are for the neutron spectra unfolded and the remaining 13 for different
equivalent doses (Vega-Carrillo et al., 2010).

3. Input data classification. A data set with 187 neutron spectra was used. Training and
testing data sets were created by dividing the whole data set, by using a random procedure,
into 80% for training and 20% for testing.

4. Neural Parameters. In this work, ANNs with supervised learning through BP were
chosen, the net architecture was optimized with the application of GAs to find suitable
networks. Sigmoid function was employed as transfer function for hidden layer(s) and
linear for output layer. The optimizer of the network structure, used all inputs, and
searched the neural architecture.

5. Genetic Parameters. In this study, as is showed in table 1, in four experimental cases,
two configuration parameters of GA were varied by using the trial and error technique:
the number of generations run (GR) and population size (PS). However, a major difficulty
encountered when using GAs is the parameter setting (Pongcharoen et al., 2007). There
exist many forms and variations of GAs and the best choice is problem dependant on the
proper selection of the genetic operators. A GA can show good or weak results even when
applied on the same problem. More research is needed in order to overcome the drawbacks
associated with the optimum selection of GA parameters.

NET GR PS SEL ROP MAT MUT
1 10 60 50%S CS TST RET25%S
2 10 60 50%S CS TST RET25%S
3 5 30 50%S CS TST RET25%S
4 10 30 50%S CS TST RET25%S

Table 1. GA configuration parameters

where GR are the Generations Run, PS is the Population Size, SEL is the Selection
technique, 50%S is the top 50% Surviving, ROP is the Refilling of the Population Technique,
CS is Cloning the Survivors technique, MAT is the Mating technique, TST is the TailSwap
Technique, MUT is the Mutation technique and RET25%S is Random Exchange Technique
at a rate of 25%.
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where GR are the Generations Run, PS is the Population Size, SEL is the Selection
technique, 50%S is the top 50% Surviving, ROP is the Refilling of the Population Technique,
CS is Cloning the Survivors technique, MAT is the Mating technique, TST is the TailSwap
Technique, MUT is the Mutation technique and RET25%S is Random Exchange Technique
at a rate of 25%.
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6. Training Parameters. As can be seen from table 2, by using the trial and eror technique,
in first three experiments, the minimum network training passes (MNTP) and the cutoff
for network training passes (CNTP) were selected between 200-250 respectively for each
network trained. In a similar way, in the last experiment, the same parameters were
selected between 50-55. The Limit on Hidden Neurons (LHN) was varied as well, as is
showed in table 2. In experiments one and three, each evolved network was trained five
and three times respectively and then the results were averaged. In all experiments, the
weight initialization was between 0-0.3, and the learning rate and momentum between
0.1-0.4 and 0.1-0.3 respectively. The performance of the EANN is highly dependant on the
proper selection of these parameters, however, from the literature reviewed, there is not
a methodological criteria for this selection, and more research is needed to overcome this
drawback.

NET MNTP CNTP LHN
1 200 250 8
2 200 250 32
3 200 250 256
4 50 55 256

Table 2. EANN training configuration parameters

where MNTP are the minimum network training passes for each network, CNTP are the
cutoff for network training passes for each network, and LHN is the the Limit on Hidden
Neurons in the design process of the EANN methodology.

After optimum net topologies were determined, was observed that NGO presents several
inconveniences when applied in the neutron spectroscopy domain. First problem is due the
way the compendium of neutron spectra of IAEA compilation was realized. These spectra
are normalized to one and are used to train the different EANNs. This does not represent
a problem in the training and testing stages of EANN design, however, after training was
done and the neural net is used to solve real experimental problems, this becomes a drawback
because the spectra unfolded and doses calculated resulting are normalized to one and this
has not physical meaning. Because the anterior, in the solution of real experimental problems
a procedure to un normalize the spectra unfolded was needed. Another drawback when
NGO is used in the neutron spectrometry domain is that has not the capability to graph in a
proper way the spectra and doses calculated. The anterior suggested the necessity to design a
customized computer tool to overcome the drawbacks mentioned.
Because the novelty of EANN methodology applied in the neutron spectrometry research
and the lack of tools for the analysis of the spectrometric and dosimetric results obtained
with NGO, a customized computer code denominated ”Neutron Spectrometry and Dosimetry
based on Evolutionary Artificial Neural Networks“ (NSDEann), showed in figure 11, was
designed in a graphical user interface, under the LabVIEW programming environment, which
is easy, intuitive, friendly and quick in their use. This code is oriented to be used by the end
user in laboratory, experimental and/or research environments, and its aim is to overcome
the drawbacks associated with NGO when applied to solve the neutron spectra unfolding
problem.
The principle of operation of NSDEann is the following: after executing the main program, a
window, as showed in figure 11, will open. To unfold the spectra by using the NSDEann code,
the user should execute the following steps:
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designed in a graphical user interface, under the LabVIEW programming environment, which
is easy, intuitive, friendly and quick in their use. This code is oriented to be used by the end
user in laboratory, experimental and/or research environments, and its aim is to overcome
the drawbacks associated with NGO when applied to solve the neutron spectra unfolding
problem.
The principle of operation of NSDEann is the following: after executing the main program, a
window, as showed in figure 11, will open. To unfold the spectra by using the NSDEann code,
the user should execute the following steps:

1. Select a file text with the rate counts measured with the BSS system through the ”BSS
counts rate” tool. Previously, the end user should be created a file with extension *.txt,
with the rate counts arranged in column form. In the case of several measurements, the
text file could contain several rate counts in columns tabulation separated. The tool “Select
BSS from file” can be used to select one spectra from the file created just adjusting the
number of column selection.

2. Store the normalized rate counts in a file text with extension *.txt by means of the button
”Save normalized counts“. In this step, the program calculates a normalized value of rate
counts which has two purposes, normalize the BBS measurements to be used with NGO
and to un normalize the spectra and doses calculated.

3. Open the optimum EANN trained with NGO and make a prediction with this
configuration, using the normalized rate counts calculated in step two.

4. Store the neutron spectra unfolded and doses calculated by NGO, which are normalized
to one, saving this information in a similar way than step one.

5. Open the file with the spectra and doses calculated with NGO by means of the tool
”Evolved Spectra&Doses“. This tool works similar to described in step one.

6. Click the button ”Plot Spectra&Doses“ to see the spectrometric and dosimetric information
un normalized in the graph and numeric form in the middle and right areas of the main
window.

7. The numerical values of the spectra and doses can be stored in a file text using the button
”Save Spectra&Doses“

For each spectra, the procedure before described must be repeated.
As described previously, four EANN architectures were designed with NGO for two
experimental cases: the neutron spectra of a 239PuBe neutron source in water and on air. To
compare the several spectra obtained in both experiments and to analyze the performance and
generalization capability of the nets designed, the tool known as ”Neutron Spectrometry and
Dosimetry ToolBox” (NSDTB), was used (Ortiz-Rodríguez et al., 2009a; 2010b). NSDTB code
has the capability to analyze spectrometric and dosimetric information obtained with several
neutron unfolding techniques as for example: iterative procedures and the approaches based
on ANN or EANN, as is the case of the present work.

3. Results

In this work, the EANN technology was analyzed and applied in the neutron spectrometry
research area. The spectrometric and dosimetric features of a 239PuBe neutron source
measured under two different experimental conditions were unfolded by using the NSDEann
unfolding code. The results obtained in this work reveals that the hybrid technology
of EA-ANN applied in the neutron spectrometry and dosimetry problems, present some
drawbacks in the optimum selection of the GA and ANN training parameters. When these
parameters were varied before GA execution, in the four experimental cases considered,
different network architectures were obtained, as is showed in table 3. As can be seen from
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6. Training Parameters. As can be seen from table 2, by using the trial and eror technique,
in first three experiments, the minimum network training passes (MNTP) and the cutoff
for network training passes (CNTP) were selected between 200-250 respectively for each
network trained. In a similar way, in the last experiment, the same parameters were
selected between 50-55. The Limit on Hidden Neurons (LHN) was varied as well, as is
showed in table 2. In experiments one and three, each evolved network was trained five
and three times respectively and then the results were averaged. In all experiments, the
weight initialization was between 0-0.3, and the learning rate and momentum between
0.1-0.4 and 0.1-0.3 respectively. The performance of the EANN is highly dependant on the
proper selection of these parameters, however, from the literature reviewed, there is not
a methodological criteria for this selection, and more research is needed to overcome this
drawback.

NET MNTP CNTP LHN
1 200 250 8
2 200 250 32
3 200 250 256
4 50 55 256

Table 2. EANN training configuration parameters

where MNTP are the minimum network training passes for each network, CNTP are the
cutoff for network training passes for each network, and LHN is the the Limit on Hidden
Neurons in the design process of the EANN methodology.

After optimum net topologies were determined, was observed that NGO presents several
inconveniences when applied in the neutron spectroscopy domain. First problem is due the
way the compendium of neutron spectra of IAEA compilation was realized. These spectra
are normalized to one and are used to train the different EANNs. This does not represent
a problem in the training and testing stages of EANN design, however, after training was
done and the neural net is used to solve real experimental problems, this becomes a drawback
because the spectra unfolded and doses calculated resulting are normalized to one and this
has not physical meaning. Because the anterior, in the solution of real experimental problems
a procedure to un normalize the spectra unfolded was needed. Another drawback when
NGO is used in the neutron spectrometry domain is that has not the capability to graph in a
proper way the spectra and doses calculated. The anterior suggested the necessity to design a
customized computer tool to overcome the drawbacks mentioned.
Because the novelty of EANN methodology applied in the neutron spectrometry research
and the lack of tools for the analysis of the spectrometric and dosimetric results obtained
with NGO, a customized computer code denominated ”Neutron Spectrometry and Dosimetry
based on Evolutionary Artificial Neural Networks“ (NSDEann), showed in figure 11, was
designed in a graphical user interface, under the LabVIEW programming environment, which
is easy, intuitive, friendly and quick in their use. This code is oriented to be used by the end
user in laboratory, experimental and/or research environments, and its aim is to overcome
the drawbacks associated with NGO when applied to solve the neutron spectra unfolding
problem.
The principle of operation of NSDEann is the following: after executing the main program, a
window, as showed in figure 11, will open. To unfold the spectra by using the NSDEann code,
the user should execute the following steps:
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has the capability to analyze spectrometric and dosimetric information obtained with several
neutron unfolding techniques as for example: iterative procedures and the approaches based
on ANN or EANN, as is the case of the present work.
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this table, a total of 1650 evolutionary network architectures were designed, trained and tested
by means of EA, under four different experimental conditions. The accuracy on training and
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Fig. 11. Main window of NSDEann unfolding code

NET NET-TOP ATrS MATtS NT TIME FOG
1 7-8-44 98.67% 91.89 % 600 06:04:49 9
2 7-19(1)-44 98.00% 94.59% 600 01:54:30 10
3 7-183(14)-123(39)44 100.00% 97.30% 150 04:42:35 4
4 7-66-44 97.33% 94.59% 300 01:16:34 10

Table 3. Evolved network topologies and performance

TIME is the time used by GA to train all net topologies and FOG is the best network Found
on Generation.
The accuracy on training and testing reveals that the four network architectures learned well
the training and testing data sets, which lets infer that the performance and generalization
capability of all networks architectures is good, which was confirmed by using the NSDTB
code, as is showed in figure 12. In this figure can be seen the four neutron spectra unfolded
with the four network architectures showed in table 3, for a 239PuBe neutron source measured
at 1m in water. Here, spectra-1 and doses-1 corresponds to the spectra unfolded with the
architecture of the NET 1, spectra-2 and doses-2 corresponds to the spectra unfolded with the
architecture of the NET 2, etc. From this figure can be seen that although the four EANN with
different architectures were used to unfold the neutron spectra of the source before mentioned,
by using in all cases the same rate counts measured with the BSS system, the results are similar.
By comparing the spectra calculated with the codes NSDEann and BUNKIUT, as is showed
in figure 13, can be seen that are alike. The spectra have a peak in the thermal region and
between 0.1 and 10 MeV (Vega-Carrillo et al., 2010).
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Fig. 12. Neutron spectra unfolded with the NSDEann code for a 239PuBe at 1m in water

The NSDTB code realizes a chi square statistical test among the spectra analyzed, as is showed
at right side of the main window. As can be seen from table 4, Spectra-1 and Doses-1 are
statistically compared whit the rest of spectra and doses of row 1, Spectra-2 and Doses-2
are compared with spectra and doses of row 2, etc. This comparison reveals that there
are statistical differences between most of the spectra unfolded with the different network
topologies, mainly spectra 3 and 4. In the case of the equivalent doses, the test reveals
that statistically there are not differences between doses calculated with the four network
architectures.
Chi square test compares two groups of data, as in the case of the energy bins that conform the
neutron spectra calculated with the several EANN architectures, however, when the energy
bins presents high variations in some of the values of the data being compared, as can be
appreciated in figures 12 to 15, this test tends to fail. From the analysis realized in the
present work, has been observed that the chi square test presents some drawbacks, and a
more accurate statistical test is needed.

NET S1 S2 S3 S4 D1 D2 D3 D4
1 0 9.378 53.355 58.761 0 1.032 1.366 1.346
2 9.634 0 22.043 45.063 1.373 0 0.359 0.145
3 7E+199 3E+199 0 1E+200 1.972 0.357 0 0.945
4 1E+201 3E+200 8E+200 0 1.624 0.206 1.007 0

Table 4. Chi square test of NSDTB code for a 239PuBe at 1m in water

Figure 13 shows a comparison of the four neutron spectra obtained with the NSDEann code
with respect to the neutron spectra calculated using the BUNKIUT code. Here, spectra-1
corresponds to the spectra calculated with the BUNKIUT code and the rest as was explained
for figure 12.
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Fig. 13. BUNKIUT-NSDEann comparison of the spectra of a 239PuBe at 1m in water

In the case of figure 13, the chi square test fails because the high variations of some of the
values of the energy bins that compose the several spectra compared, despite the similarity
between the shape and features of the spectra, as was explained for figure 12.
Figure 14 shows the neutron spectra unfolded for a 239PuBe measured at 1m on air. As can
be seen from this figure, the spectra are very similar in shape and features, however, the chi
square test fails when compare the different spectra, as is showed in table 5.
Table 5 shows the statistical test realized by the NSDTB code. As can be seen, despite the
similarities of the spectra, the test fails. A more accurate statistical test for comparing the
neutron spectra obtained with several unfolding codes is needed.

NET S1 S2 S3 S4 D1 D2 D3 D4
1 0 2E+200 5E+201 6E+201 0 0.261 0.153 1.74
2 14.892 0 108.52 98. 579 0.27 0 0.413 0.711
3 7E+198 1E+200 0 5E+200 0.162 0.419 0 1.788
4 5E+201 2E+201 4E+201 0 1.888 0.741 1.893 0

Table 5. Chi square test of NSDTB code for a 239PuBe at 1m in air

Figure 15 shows a comparison of the four neutron spectra obtained with the NSDEann
code with respect to the neutron spectra calculated using the BUNKIUT code for a 239PuBe
measured at 1m on air. Here, spectra-1 corresponds to the spectra calculated with the
BUNKIUT code. As can be seen from this figure, the spectra are very similar in shape and
features, however, the chi square test fails when compare the different spectra.
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4. Conclusions

In this work, the intersection of GA and ANN in the neutron spectrometry research by
means of ANN technology was analyzed. The most common and widely used methods
of optimization in ANN are classical gradient methods, such as BP. These methods are
characterized by a very fast reaching the optimum, yet, they have a considerable disadvantage
”converging the algorithm to the closest optimum“. So never is known whether the result
of the optimization is a local or a global optimum. On the other hand, the genetic search
capability in ANN design is much more effective than random searching approaches, as the
genetic process of recombining features vastly improves the speed of identifying highly fit
networks. It also has a potential advantage over just using personal experience in building
neural networks, as new and potentially better solutions may be found through this process
than might be found using the nearly unavoidable assumptions made by the user.
Contrary to the classical methods, the Evolutionary Algorithms cope with the global optimum
searching quite well, but they are not as precise as the classical methods. Another
disadvantage of the EA is a big (sometimes very big) amount of compilations. A major
difficulty encountered when using GAs is the parameter setting. There exist many forms and
variations of GAs and the best choice is problem dependant. Accordingly, a GA can show a
good or weak result even when applied on the same problem. Like other learning paradigms,
the performance of GA is dependent on the parameter choice, on the problem representation
and on the fitness landscape.
The new ideas and concepts of EA and ANN bring new life into artificial intelligence research
applied in the nuclear ciences. However, new problems arise of combining EA and ANN,
such as the proper determination of the EA parameters or the need of computer tools to apply
this new technology.
Because the novelty of EANN technology in neutron spectrometry and the lack of tools for the
analysis, an unfolding code based on EANN technology, called “Neutron Spectrometry and
Dosimetry based on Evolutionary Artificial Neural Networks” (NSDEann), was developed in
a customized front end user capable to unfold neutron spectra and to simultaneously calculate
13 equivalent doses, by using only as input data the count rates coming of a BBS system, in
just a few seconds if compared with the time spent with the classical techniques, not being
needed a priori information about the spectra being calculated.
One disadvantage of the NSDEann code is the dependency with NGO software. Because the
anterior, a customized and independent code should be of help in the neutron spectrometry
field where EANN technology is applied. At present, work is being done in this sense.
When the NSDTB code was used to compare the spectra unfolded with four evolutionary
network architectures obtained with the NGO software and analyzed with the NSDEann
unfolding code, was observed that the chi square statistical test failed. This is due of high
variations in some of the energy bins that compose the neutron spectra. From the analysis
realized in the present work, has been observed that the chi square test presents some
drawbacks, and a more accurate statistical test for comparing the neutron spectra obtained
with several unfolding codes is needed.
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genetic process of recombining features vastly improves the speed of identifying highly fit
networks. It also has a potential advantage over just using personal experience in building
neural networks, as new and potentially better solutions may be found through this process
than might be found using the nearly unavoidable assumptions made by the user.
Contrary to the classical methods, the Evolutionary Algorithms cope with the global optimum
searching quite well, but they are not as precise as the classical methods. Another
disadvantage of the EA is a big (sometimes very big) amount of compilations. A major
difficulty encountered when using GAs is the parameter setting. There exist many forms and
variations of GAs and the best choice is problem dependant. Accordingly, a GA can show a
good or weak result even when applied on the same problem. Like other learning paradigms,
the performance of GA is dependent on the parameter choice, on the problem representation
and on the fitness landscape.
The new ideas and concepts of EA and ANN bring new life into artificial intelligence research
applied in the nuclear ciences. However, new problems arise of combining EA and ANN,
such as the proper determination of the EA parameters or the need of computer tools to apply
this new technology.
Because the novelty of EANN technology in neutron spectrometry and the lack of tools for the
analysis, an unfolding code based on EANN technology, called “Neutron Spectrometry and
Dosimetry based on Evolutionary Artificial Neural Networks” (NSDEann), was developed in
a customized front end user capable to unfold neutron spectra and to simultaneously calculate
13 equivalent doses, by using only as input data the count rates coming of a BBS system, in
just a few seconds if compared with the time spent with the classical techniques, not being
needed a priori information about the spectra being calculated.
One disadvantage of the NSDEann code is the dependency with NGO software. Because the
anterior, a customized and independent code should be of help in the neutron spectrometry
field where EANN technology is applied. At present, work is being done in this sense.
When the NSDTB code was used to compare the spectra unfolded with four evolutionary
network architectures obtained with the NGO software and analyzed with the NSDEann
unfolding code, was observed that the chi square statistical test failed. This is due of high
variations in some of the energy bins that compose the neutron spectra. From the analysis
realized in the present work, has been observed that the chi square test presents some
drawbacks, and a more accurate statistical test for comparing the neutron spectra obtained
with several unfolding codes is needed.
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1. Introduction 
Particularly in the past decade, a very large effort has been expended in developing 
numerical methods for solving complex multidimensional problems in area of engineering 
processes. In the last few years the complex behaviour of biological, chemical and industrial 
systems has been explained in terms of dynamic analysis and many techniques to obtain 
predictions have been developed. The dynamic investigations of a various processes have 
focused attention on the problem of the mathematical description. In principle, this 
knowledge may be obtained by many computational modelling. As an easier alternative, the 
experimental data may be used to find out a black-box model or an empirical correlation 
defining the system behaviour. The limitation of this approach is that it requires assumption 
of the functional form of the proposed correlation.  
The popular approach to analyse the unsteady and steady heat transfer problems is 
associated with the availability of non-linear empirical modelling methodologies, such as 
neural networks, inspired by the biological network of neurons in the brain (Hussain, 1999; 
Ou & Achenie, 2005). Authors (Liau & Chen, 2006) proposed this methodology to model 
optimal concentrations of reactants for preparing sub-micron silica particles. Different sets 
of the reactant concentrations were selected within an operating range and were designed to 
evaluate the PSD data. The relationship between the reactant concentration and resultant 
PSD can be evaluated by means of the ANN modelling approach. The neural network 
models can be successfully used to compute PSD of particles with different shapes in highly 
concentred suspensions from laser diffraction measurements (Nascimento et al., 1997; 
Guardani et al. 2002). The ANN pattern recognition (ANNPR) approach has also been 
proposed for fed-batch cultivation processes of Escherichia coli (Duan et al., 2006). A novel 
data mining macro-kinetic approach based on ANN was proposed to develop the macro-
kinetic model of oxidation of p-xylene to terephthalic acid in a industrial type of continuous 
stirred tank reactor (Yan, 2007). Authors (Liu & Kim, 2008) used the purely mathematic and 
mechanical model with ANN to model membrane filtration process. As a tool of modelling, 
neural network technique has been used by (Jones et al., 1999) to magnetic inverse problem 
of determining the anisotropy field distribution from experimental transverse susceptibility 
data. Approximation models such as artificial neural networks (ANNs) are powerful and 
reliable in predicting the complex conditions such as nonlinear and time-variant biological 
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processes (Liu et al., 2008). Consequently, this approach has been used to predict hold-up in 
slurry pipelines (Lahiri & Ghanta, 2008), for mapping the structure of a liquid spray 
(Heinlein et al., 2007), for analysis of heat and mass transfer (Kahrs & Marquardt, 2007). 
The dynamic investigations of the unsteady heat transfer process has focused attention on 
the problem of the mathematical description. In principle, this knowledge can be obtained 
by many computational modelling. As an easier alternative, the experimental data may be 
used to find out a black-box model or an empirical correlation defining the system 
behaviour. The limitation of this approach is that it requires assumption of the functional 
form of the proposed correlation. The popular approach to analyse the unsteady and steady 
heat transfer problems is associated with the availability of non-linear empirical modelling 
methodologies, such as neural networks, inspired by the biological network of neurons in 
the brain. The implementation of ANN technique in heat transfer science literature is 
limited. For the identification or analysis of heat transfer problems a neural network 
approach has been attempted by authors (Thibault & Grandjean, 1991; Christtofindes, 2001; 
Alotaibi et al., 2004; Zdaniuk, 2006; Ashforth-Frost et al.,1995 and Yilmaz & Atik,2007).  
In the relevant thermal scientific literature is most concerned with the performance 
prediction and control of heat exchangers (Islamoglu, 2003; Diaz et al., 2001; Pacheco-Vega 
et al. 2001).  
In the present work, an attempt has been made to use ANN to model the thermal transient 
process and the thermal behaviour of reciprocating mixer. We believe that this modelling 
approach is considerably interesting than the more conventional empirical correlation 
approach. This encouraged us to investigate the problem which is presented in this chapter.  

2. Experimental details  
The investigations of the temperature transient processes were made using the experimental 
set-up shown in Figure 1. The experimental investigations were performed using a vertical 
cylindrical vessel of 0.248 m in inside diameter and 0.678 m in height. The mixing was 
varied out with a single perforated plates agitators with the different degree of perforation 
(ratio of hole-to-solid area of plate) oriented horizontally were reciprocating in a vertical 
direction. The agitator was always placed at half of the liquid height in the vessel and the 
diameter is equal to 0.241 m. An electric a.c. motor coupled through a variable gear and  
V-belt transmission turned a flywheel. A vertical oscillating shaft with a single plate 
perforated and a hardened steel ring through a sufficiently long crankshaft were articulated 
eccentrically to the flywheel. This system were used to generate reciprocating movements of 
agitator. The water was used as the mixed liquid as well as cooling medium. The flow rates 
of municipal water continuously flowing through the mixer and  jacket surrounding internal 
tubular vessel were established and controlled by means of flow meters. The temporal 
variations of temperature as a transient thermal processes were measured by using the 
microprocessor sensors. Therefore, these processes were obtained by means of the thermal-
response technique. This method is very flexible and may be applied to large scale systems 
but it required very sensitivity measuring sensors. The measured electronic signals 
proportional to the temperature were passed through converter and system of temperature 
sequential sampling to personal computer where the temperature transient  processes may 
be easily  analytically recorded and formed the database including the characteristic 
quantities of this process. These processes were generated by the thermal disturbance of the 
cold water stream introducing on the free surface of the mixer vessel by means of centrally 
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mounted perforated distributor. This loading device was protected against premature 
penetration of cold bulk liquid in the mixer vessel 
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Fig. 1. Experimental set-up: 1 - tubular vessel, 2 - perforated plate agitator, 3 - external 
overflow, 4 - generator of  input temperature signal and hot liquid feeder,  
5 - hardened ring with  inductive transducer,  6 – flow meters, 7 - temperature sensors, 
8 - distributor of cold liquid, 9 -  electromechanical eccentric drive,  
10 - power cube, 11 -  controller of motor speed, 12 - system of temperature sequential 
sampling, 13 - personal computer 

The thermal disturbance as the pulse temperature input signal was the volume of hot liquid 
described by parameters ,w wG T  and wt . Before the experimental measurements the mixer 
bulk was mixed to constant field temperature inside the mixed and flowing water. This field 
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The thermal disturbance as the pulse temperature input signal was the volume of hot liquid 
described by parameters ,w wG T  and wt . Before the experimental measurements the mixer 
bulk was mixed to constant field temperature inside the mixed and flowing water. This field 
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was controlled by the set of movable temperature sensors. Next the hot water was injected to 
the stream of cold water and the temperature transient process was recorded simultaneously. 
The transient process was regarded as a complete when the temperature variation in the 
stream flowing out the mixer vessel did not change with time. Then the transient response 
curve  is asymptotic to the time axis. As mentioned above, experimental studies of the thermal 
transient processes were conducted in the reciprocating mixer and the databases included the 
operational parameters, such as: perforation degree of the reciprocating plate agitator - ψ , 
amplitude of reciprocating motion - Γ , frequency of reciprocating motion - ω , mass flow rate 
of water in mixer vessel - pG , mass flow rate in cooling  jacket - jG , mass of hot water 
introduced into the steam of  the water flowing through the mixed vessel - wG , time duration 
of the thermal impulse signal - wt , temperature of hot water - wT and temperature of the mixed 
water - kT  are collected in Table 1.  
 

parameter 
2 2m mψ −⎡ ⋅⎣

 
[ ]mΓ
 

1sω −⎡ ⎤⎣ ⎦

 

1
p kg sG −⎡ ⎤⋅⎣ ⎦

 

1
j kg sG −⎡ ⎤⋅⎣ ⎦

 

1
w kg sG −⎡ ⎤⋅⎣ ⎦

 
[ ]w st
 

o
w CT ⎡ ⎤⎣ ⎦

 

o
k CT ⎡ ⎤⎣ ⎦

 

minimal 
value 0.05 0.01 0.028 0.02778 0.0692 1 5 32.1 3.2 

maximal 
value 0.45 0.14 2.5 0.1667 0.1528 6 120 92.9 10 

Table 1. The range of operational parameters  

Such programming of the experimental investigations enables to explore many aspects of 
the unsteady heat transfer realised by using the mixed vessel equipped with the 
reciprocating agitator. The results of the experiments for the various set of the operational 
parameters may be graphically presented as a dependence of the output temperature 
response on the time duration of the temperature variation. Figure 2 illustrates the typical 
example of transient response curve. The response curves obtained for the different 
combination of the operational parameters were similar to the typical example of thermal 
response curve (see Figure 2).  
 

 
Fig. 2. Typical example of thermal-response curve 
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The influence of the operational parameters on the transient process may be assessed by the 
analytically approximated of transient curves or characterized in the more simple way using 
the specially chosen characteristic quantities of these curves. As follows from the 
comparison of these thermal transient process for the different sets of operational 
parameters, it may be found that these thermal-response curves should be defined by means 
of the five characteristic parameters such as: the time lag of thermal process - 0t , the 
maximal value of temperature - maxT , the time of the achievement of maximal value of 
temperature - maxt , the time duration of thermal process - pt  and the quantity of area 
between the thermal response of transient process and the time axis - A . 
The typical example of thermal response curve with the marked characteristic quantities is 
graphically presented in Figure 3.  
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Fig. 3. Typical example of thermal-response curve with the marked characteristic  quantities 

The series of the 3000 experimental values of the five characteristic quantities were obtained 
for the various sets of operational parameters. Recent approaches to building mathematical 
description have been based on the statistical or numerical modelling of experimental 
database. In the case of the absence of accurate theoretical models, regression methods have 
been employed to find an approximate functional form that can best describe the 
relationship between the independent variables and the observed dependent parameters. 
Artificial neural networks (ANN) are an attempt to predict the effect of changing input data 
on the dependent variables. Earlier experimental works have reported from the use of the 
various types of networks to analysis the number of engineering problems. The produce 
ANN model estimates the five characteristic parameters with respect to the establish values 
of operational condition. The great advantage of the proposed methodology is that the 
complex mathematical relationship for the non-linear unsteady heat transfer processes is 
omitted. Consequently, the computational time required to solve the classical mathematical 
models is significantly reduced and the description of the dynamic behaviour of thermal 
transient process with various effects under constantly changing conditions is possible.  
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was controlled by the set of movable temperature sensors. Next the hot water was injected to 
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water - kT  are collected in Table 1.  
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The influence of the operational parameters on the transient process may be assessed by the 
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temperature - maxt , the time duration of thermal process - pt  and the quantity of area 
between the thermal response of transient process and the time axis - A . 
The typical example of thermal response curve with the marked characteristic quantities is 
graphically presented in Figure 3.  
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models is significantly reduced and the description of the dynamic behaviour of thermal 
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3. Results and discussion 
3.1 Predictions of operational characteristics value by using the ANN model 
The nature of obtained databases is permitted to analyse and describe the experimental 
results applying the statistical or numerical modelling. In the case of the absence of accurate 
theoretical models, regression methods should be exploded to find an approximate 
functional form for description of the relationship between the independent variables and 
the observed dependent quantities. Artificial neural networks have offered of the splendid 
attempt to predict the effect of changing input data on the dependent variables. The produce 
ANN model estimates the power characteristics for the novel construction of static mixer 
with respect to the establish values of operational parameters. The great advantage of the 
proposed methodology is that the computational time required to solve the classical 
mathematical models is significantly reduced and the description of the operational 
behaviour of the static mixer under constantly changing conditions is possible.  
Traditionally, ANN has been used to model complex non-linear systems and appeared to be 
a good alternative to traditional empirical, phenomenological or statistical correlations. The 
ANN models are more powerful and can manipulate non-linear input-output relationships 
more successfully than available literature conventional correlations.  
The critical step in building a robust ANN is to create an architecture, which should be as 
simple as possible and has a fast capacity for learning of the data set. The choice of the input 
variables is the key to insure complete description of the analysed systems, whereas the 
experimental data set have a tremendous impact on the reliability and performance of the 
ANN model. This type of model provides a non-linear mapping between input and output 
variables and is also useful in providing cross correlation among these variables. The ANN 
is a very useful tool in rapid predictions such as steady-state or transient process flow sheet 
simulations, on-line process optimization and visualisation and parameter estimation.  
The experimental database are processed using ANN models. The neural network approach 
was thus carried out by means of the Statistica Neural Network software. The multi layer 
perceptron (MLP) networks consist of three layers, namely the input layer, the hidden layer 
and the output layer. For practical application, the RBF network is structured so that it can 
approximate the five characteristic quantities of thermal-transient curves (transient 
processes) and estimate the dynamic behaviour of temperature at unsteady heat transfer in 
the reciprocating mixer. To achieve this, the input layer of the analysed network is 
formulated so that it contains the input parameters as follows: 

 
T

p j w w w kx G G G t T Tψ ω⎡ ⎤= Γ⎣ ⎦  (1) 
 

The neural network output is the estimation of the five characteristic parameters of the 
thermal-transient processes, which are calculated as a weighted sum of the responses of the 
hidden layer nodes. Figure 4 presents the structure of the MLP network used to model the 
thermal-transient processes. 
It should be noticed that the training a MLP network is conducted by the minimal deviation 
between the predicted and the true values of the output variables over the set of the 
available experimental database. As follows from the realised analysis, the MLP model 
consisting of 11 nodes in the hidden layers. This number of nodes is caused by the 
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Fig. 4. The MLP neural network architecture for the characteristic quantities of the thermal 
transient process 

complexity of the analysed heat transfer problem and the non-linear relationship between 
the input vector of the operational parameters and the approximated values of output 
parameters. As follows from the analysis of the proposed ANN architecture model, the 
values of qualitative coefficients for the training, validating and testing sets are amount to 
0.991136, 0.987181 and 0.989819, respectively. Moreover, the operational parameters (input 
parameters) may be reorganised from the most to the least important parameter for the 
proposed architecture of the MLP model as follows: 

 
T

w p k w w jx t G T T G Gψ ω⎡ ⎤= Γ⎣ ⎦  (2) 

 

Figure 5 gives the generalization result, by plotting the power characteristics for the novel 
type of static mixer calculated by using the ANN model as a function of the experimental 
investigations.  
The first conclusion drawn from the inspection of these graphs is that the proposed neural 
network is predicted the analysed experimental data very well. Therefore, these results 
suggest that the characteristic parameters for the novel type of static mixer my be 
successfully approximated by means of the ANN methods.  
Moreover, the radial basic function (RBF) network was used to model the thermal-transient 
curves. Figure 6 presents the values of time duration of thermal-transient process, pt , 
obtained from the RBF model and the values measured from experiments. Almost all the 
results lay in the limits of the ±30% maximal error. As follows form the analysis of the 
obtained results, the MLP model is shown to be superior to the RBF network approach.  
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Fig. 5. The graphical comparison of values of characteristic quantities for results obtained 
experimentally and using ANN model: a) the time lag of thermal process - 0t ,  
b) the maximal value of temperature - maxT , c) the time of the achievement of maximal value 
of temperature - maxt  d) the time duration of thermal process - pt  and the e) quantity of area 
between the thermal response of transient process and the time axis - A  
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Fig. 6. The graphical comparison of the experimental and predicted values of the time lag  of 
thermal process ( )0t  for the RBF network model 

3.2 Effects of operational parameters on characteristic quantities of thermal  transient 
process 
The practical utility of the results presented here is to illustrate the effects of operational 
parameters on the characteristic quantities for the realized transient process in the 
reciprocating mixing system. In recognition this fact, the three-dimensional response 
surfaces were generated and used to study the liquid properties and operating conditions 
on characteristic quantities.   
Figure 7 illustrate the effect of the selected operational parameters on the time lag of thermal 
transient process ( )0t . As it can be observed in Figure 7, this parameter depends 
significantly on the operational conditions.  
 

a) b) c) 

  
Fig. 7. The effect of selected operational parameters on the time lag of thermal transient 
process ( )0t  

Figure 7a shows the effect of the parameter connected with the reciprocating mixer on on 
the time lag of thermal transient process ( )0t  as an attempt to simulate the effect of 
changing the perforation degree of the reciprocating plate agitator ( )ψ  and the amplitude of 
reciprocating motion ( )Γ . It was found that, 0t  values seem to decrease with increasing the 
amplitude of reciprocating motion of the tested mixer. Moreover, this figure shows that the 
obtained 0t  values increase with increasing amplitude of reciprocating motion. In this 
study, the effect of the temperature of hot water (impulse temperature - wT ) appears to be 
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stronger than the mixed water temperature ( )kT  leading to an increase of the time lag of 
thermal transient process ( )0t , as can be seen in Fig.6b. In analyzed reciprocating mixer, the 
lag time values were found to change with the mass flow rate in cooling  jacket ( )jG  and  
mass of hot water introduced into the steam of  the water flowing through the mixed vessel 
( )wG . Therefore, the Figures 7a-c indicate that the time lag of thermal transient process 
( )0t is considerably changed with variation of operational conditions.  
As follows from the realized simulations, the complicated hydrodynamics in the tested 
reciprocating mixer may successfully described by means of the ANN technique. The  
non-linear relationship between the input vector of the operational parameters and the 
approximated values of output parameters is approximated. The appropriate design, scale-
up and optimization of industrial processes is depended on the description of influence of 
operating conditions on the characteristics parameters of the thermal transient process.  
Figures 8a-c shows the effect of operational conditions on the maximal value of temperature 
( )maxT . As can be observed in this figure, the maximal value of temperature ( )maxT  seem to 
increase with increasing the operational parameters ( ), , , ,k w w jT T G GΓ,ψ . 
 

a) b) c) 

  
Fig. 8. The effect of selected operational parameters on the maximal value of  
temperature ( )maxT  
Figures 9a-c presents the effect of operational conditions on the time of the achievement of 
maximal value of temperature ( )maxt , and as can been seen, this parameter appears to  
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Fig. 9. The effect of selected operational parameters on the time of the achievement of 
maximal value of temperature ( )maxt  
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decrease with the changes of operational parameters range, which is in agreement with the 
realized experimental works.  
Figure 10 depict the effect of operational conditions on the time duration of thermal process 
( )pt . In agreement with the realized experimental investigations, this parameter was found 
to decrease with the operational conditions. This figure may be used to speculate the effect 
of mixing device on the mixing time in industrial applications. From practical point of view, 
this parameter may treated as an important criterion in analysis of the mixing process.  
Moreover, this magnitude may be used in the selection of the suitable agitator or the mixing 
manner for the homogenisation process. The most importance of costs of production which 
should be depends on the time duration of mixing process. The operational costs of the 
production process are obviously an important element in the economic design. The capital 
costs will be comprised of the expenditure on the driving units and the employed of suitable 
mixing device. Longer mixing time will inevitable demand a higher cost of production.  
In the case of this experimental investigations, the time duration of mixing process 
progressively decreases with increasing of the operational conditions.  
 

a) b) c) 

  
Fig. 10. The effect of selected operational parameters on the time duration of thermal process 
( )pt  

Figure 11 depicts the effect of operational conditions on the the quantity of area between the 
thermal response of transient process and the time axis ( )A . 
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Fig. 11. The effect of selected operational parameters on the quantity of area between the 
thermal response of transient process and the time axis ( )A  
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It should be noticed that the MLP model successfully captures different thermal-transient 
curves. Therefore, the unsteady heat transfer processes as given by this ANN model have 
been developed. According to the realized analysis, the time duration of the thermal 
impulse signal, wt , and the mass flow rate of water in mixer vessel, pG , are mostly 
influenced on the output parameters of the MLP model (see Equation 2). Therefore, three 
different cases have been considered: the first one concerns small values of operational 
parameters (variant I). In the second, the values of these parameters are maximum (variant 
III). In order to have a accurate analysis of thermal-transient processes, a middle values of 
operational parameters is obviously required in the ANN model (variant II). A procedure 
was followed with the time duration of the thermal impulse signal, wt , and the mass flow 
rate of water in mixer vessel, pG , taking values between 5÷120oC and 0.02778÷0.1667 kg·s-1, 
respectively. The performance of the produced MLP neural network model with respect to 
the values of operational parameters collected in table 2.  
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variant I 0.05 0.01 0.028 0.0692 1 32.1 3.2 

variant II 0.255 0.07 1.25 0.0764 3 60,5 6,6 

variant III 0.45 0.14 2.5 

0.02778
÷ 

0.1667 0.1528 6 

5÷ 
120 

92.9 10 

Table 2. The set of operational parameters for the analysis of the performance of the 
produced RBF neural network model 

Figures 12 and 13 have been drawn using the successfully produced MLP model of the 
unsteady heat transfer in the reciprocating mixer to depict the effect of the operational 
parameters on the five characteristic quantities of thermal-transient curve while wt and pG  
parameters are varied in the established range. Some of the presented figures reveal 
interesting aspects. These figures show that the values of five characteristic quantities for the 
selected arbitrary sets of the operational parameters (variant I, II and III) may be predicted 
by MLP model.  
As gives in this figures, the operational parameters affects significantly the values of 
characteristic quantities. It can be noticed that the differences between the values for the 
various variants of the operational parameters are significant. The effect of the operational 
parameters on the characteristics quantities of thermal-transient processes was examined by 
increasing the operational parameters from the minimal values up to the maximal values 
(see Table 2) for which the variation of these quantities are observed. 
Figures 12 and 13 may be used to obtain the values of the characteristic parameters of 
thermal-transient process without the complicated analysis of the experimental curve. The 
dynamic behaviour of the tested reciprocating mixer may be predicted by means of the 
analysed thermal transient process. The dynamic response of the investigated system may 
be predicted by means of the five characteristic parameters (see figure 3). The obtained  
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Fig. 12. Predictions of the time lag of thermal process (a), the maximal value of temperature 
(b) and the time of the achievement of maximal value of temperature (c) depending on the 
time duration of the thermal impulse signal ( )wt  and the mass flow rate of water in mixer 
vessel ( )pG  
results suggest significant influence of the operational conditions (especially the time 
duration of the thermal impulse signal and the mass flow rate of water in mixer vessel) on 
the obtained parameters of the thermal response curves. Referring to the graphical 
presentation of the reliable simulation results, it is observed that the different configuration 
of operational parameters has been reported to change the turbulences at the mixed liquid 
leading to a variation of the thermal-transient response curves. 
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It should be noticed that the MLP model successfully captures different thermal-transient 
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respectively. The performance of the produced MLP neural network model with respect to 
the values of operational parameters collected in table 2.  
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Table 2. The set of operational parameters for the analysis of the performance of the 
produced RBF neural network model 

Figures 12 and 13 have been drawn using the successfully produced MLP model of the 
unsteady heat transfer in the reciprocating mixer to depict the effect of the operational 
parameters on the five characteristic quantities of thermal-transient curve while wt and pG  
parameters are varied in the established range. Some of the presented figures reveal 
interesting aspects. These figures show that the values of five characteristic quantities for the 
selected arbitrary sets of the operational parameters (variant I, II and III) may be predicted 
by MLP model.  
As gives in this figures, the operational parameters affects significantly the values of 
characteristic quantities. It can be noticed that the differences between the values for the 
various variants of the operational parameters are significant. The effect of the operational 
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(see Table 2) for which the variation of these quantities are observed. 
Figures 12 and 13 may be used to obtain the values of the characteristic parameters of 
thermal-transient process without the complicated analysis of the experimental curve. The 
dynamic behaviour of the tested reciprocating mixer may be predicted by means of the 
analysed thermal transient process. The dynamic response of the investigated system may 
be predicted by means of the five characteristic parameters (see figure 3). The obtained  
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b) 

  

c) 

  

Fig. 12. Predictions of the time lag of thermal process (a), the maximal value of temperature 
(b) and the time of the achievement of maximal value of temperature (c) depending on the 
time duration of the thermal impulse signal ( )wt  and the mass flow rate of water in mixer 
vessel ( )pG  
results suggest significant influence of the operational conditions (especially the time 
duration of the thermal impulse signal and the mass flow rate of water in mixer vessel) on 
the obtained parameters of the thermal response curves. Referring to the graphical 
presentation of the reliable simulation results, it is observed that the different configuration 
of operational parameters has been reported to change the turbulences at the mixed liquid 
leading to a variation of the thermal-transient response curves. 

 Gp [kg·s-1] 

tw
[s] tw

[s]

tw
[s]

 
tw  [s] 

 
tw  [s] 

 
tw  [s] 

 Gp [kg·s-1]  Gp [kg·s-1] 

 Gp [kg·s-1]  Gp [kg·s-1]  Gp [kg·s-1] 

tw
[s]

tw
[s]

tw
[s]

 Gp [kg·s-1]  Gp [kg·s-1]  Gp [kg·s-1] 



Artificial Neural Networks - Application 

 

538 
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Fig. 13. Predictions of the time duration of thermal process (a) and the quantity of area 
between the thermal response of transient process and the time axis (b) depending on the 
 time duration of the thermal impulse signal ( )wt  and the mass flow rate of  water in mixer 
vessel ( )pG  

4. Conclusion 
The main aim of this paper is to present the application of artificial neural network (ANN) 
technique for the development of a mathematical description of thermal-transient processes 
for a mixer equipped with reciprocating agitator. The proposed ANN model, describing the 
thermal behavior of this type mixer, is developed and compared with the experimental 
measurements.  
Unsteady heat transfer process prediction of the reciprocating mixer by using MLP model is 
investigated. The simulation results indicate that the MLP network model can appropriately 
predict the characteristic quantities of thermal transient processes (the time lag of thermal 
process, the maximal value of temperature, the time of the achievement of maximal value of 
temperature, the time duration of thermal process and the quantity of area between the 
thermal response of transient process and the time axis) by using the set of input operational 
parameters. The predictions obtained by computational simulation are very good agreement 
with experimental data. This good agreement leading to the conclusion that ANN technique 
is a powerful tool for modeling parametrical sensitivity in the dynamic investigations of the 
heat transfer phenomena for the realized mixing process. Therefore, neural network can be 
an alternative approach to assessment of the thermal-transient processes without the 
nonlinear sequential estimation of the shape of transient curves.   
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1. Introduction 
In this chapter Artificial Neural Networks are presented and used to solve different 
parameter estimation inverse problems, that is, Gas-liquid Adsorption Mass Transfer, 
Radiative Transfer Problems, and Simultaneous Heat and Mass Transfer. Besides, results 
obtained using hybrid methods are also presented, combining the Artificial Neural Network 
(ANN) method to other inverse problem solutions techniques, such as Simulated Annealing 
(SA) and Levenberg-Marquardt (LM). 
The first problem studied is the radiative transfer phenomenon, modeled with an integro-
differential equation known as Boltzmann equation. This equation describes mathematically 
the interaction of the radiation with the participating medium, i.e., a medium that may 
absorb, scatter and emit radiation. The inverse radiative transfer problem considered the 
simultaneous estimation of the absorption and scattering coefficients of a two-layer 
medium, using measured exit radiation intensities. In this sense, a study is presented 
regarding the estimation of radiative properties using ANN and hybrid methods combining 
ANN and LM. 
Then, the inverse problem of simultaneous heat and mass transfer modeled by Luikov 
equations is studied using a hybrid combination of the ANN, LM and SA. Direct and 
inverse problems are presented, formulated and solved. An ANN was used to generate the 
initial guess for the LM, another ANN to approximate the gradient needed by LM, and 
finally the global minimum was searched using the SA. The experimental data used was 
generated using the solution for the direct problem with the addition of artificial noise. 
The gas-liquid interface adsorption isotherm identification is also investigated using the 
same hybrid approach, that is, the combination of an ANN, LM and SA methods. The 
bubble and foam fractionation columns system works basically through the injection of a 
gas at the base of a column containing the solution. The gas bubbles formed in the 
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1. Introduction 
In this chapter Artificial Neural Networks are presented and used to solve different 
parameter estimation inverse problems, that is, Gas-liquid Adsorption Mass Transfer, 
Radiative Transfer Problems, and Simultaneous Heat and Mass Transfer. Besides, results 
obtained using hybrid methods are also presented, combining the Artificial Neural Network 
(ANN) method to other inverse problem solutions techniques, such as Simulated Annealing 
(SA) and Levenberg-Marquardt (LM). 
The first problem studied is the radiative transfer phenomenon, modeled with an integro-
differential equation known as Boltzmann equation. This equation describes mathematically 
the interaction of the radiation with the participating medium, i.e., a medium that may 
absorb, scatter and emit radiation. The inverse radiative transfer problem considered the 
simultaneous estimation of the absorption and scattering coefficients of a two-layer 
medium, using measured exit radiation intensities. In this sense, a study is presented 
regarding the estimation of radiative properties using ANN and hybrid methods combining 
ANN and LM. 
Then, the inverse problem of simultaneous heat and mass transfer modeled by Luikov 
equations is studied using a hybrid combination of the ANN, LM and SA. Direct and 
inverse problems are presented, formulated and solved. An ANN was used to generate the 
initial guess for the LM, another ANN to approximate the gradient needed by LM, and 
finally the global minimum was searched using the SA. The experimental data used was 
generated using the solution for the direct problem with the addition of artificial noise. 
The gas-liquid interface adsorption isotherm identification is also investigated using the 
same hybrid approach, that is, the combination of an ANN, LM and SA methods. The 
bubble and foam fractionation columns system works basically through the injection of a 
gas at the base of a column containing the solution. The gas bubbles formed in the 
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distributor rise and along this path adsorb the solute, which is extracted in the foam region, 
formed above the bubble column. The inverse problem approach described allows the 
determination of the adsorption isotherms needed to solve the mathematical and numerical 
models developed.  

2. Formulation of the direct heat and mass transfer problems 
2.1 Radiative transfer 
Consider the problem of radiative transfer in a composite medium with two plane-parallel, 
isotropically scattering, gray layers, with diffusely reflecting boundary surfaces and 
interface, as shown in Fig. 1. The medium is subjected to external irradiation at both sides 
with intensity ( )1f μ  at 0x =  and ( )2f μ  at 1 2x L L= + , where μ  is the cosine of the polar 
angle, and 1L  and 2L  represent the thickness of layers 1 and 2, respectively. 
 

 
Fig. 1. Two-layer semitransparent medium. 

The mathematical formulation of the direct steady-state radiative transfer problem with 
azymuthal symmetry is given by (Özisik, 1973) 
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where ( ),iI x μ   represents the radiation intensity in layer i , with 1 2i or= , iβ , is the total 
extinction coefficient 

 
i ii a skβ σ= +  (3) 

iak  is the absorption coefficient, 
isσ  is the scattering coefficient, and jρ  are the diffuse 

reflectivities, with 1, ,4j = … . 
When the geometry, the radiative properties, and the boundary conditions are known, 
problem (1-2) may be solved yielding the values of the radiation intensities ( )1 ,I x μ , for 

10 x L≤ ≤  and 1 1μ− ≤ ≤ , and ( )2 ,I x μ , for 1 1 2L x L L≤ ≤ +   and 1 1μ− ≤ ≤ . This is the 
direct problem. For the solution of the direct problem we use in the present work a 
combination of Chandrasekhar’s discrete ordinates method (Chandrasekhar, 1960) with the 
finite difference method (Soeiro and Silva Neto, 2006). 

2.2 Drying (simultaneous heat and mass transfer) 
In Fig. 2, adapted from Mwithiga and Olwal, 2005, it is represented the drying experiment 
setup considered in this section. In the approach considered it was introduced the 
possibility of using a scale to weight the samples, and sensors to measure temperature in the 
sample, as well as inside the drying chamber.  
 

 
Fig. 2. Drying experiment setup (Adapted from Mwithiga and Olwal, 2005). 
In accordance to the schematic representation shown in Fig. 3, consider the problem of 
simultaneous heat and mass transfer in a one-dimensional porous media in which heat is 
supplied to the left surface of the porous media, at the same time that dry air flows over the 
right boundary surface. 
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where ( ),iI x μ   represents the radiation intensity in layer i , with 1 2i or= , iβ , is the total 
extinction coefficient 

 
i ii a skβ σ= +  (3) 

iak  is the absorption coefficient, 
isσ  is the scattering coefficient, and jρ  are the diffuse 

reflectivities, with 1, ,4j = … . 
When the geometry, the radiative properties, and the boundary conditions are known, 
problem (1-2) may be solved yielding the values of the radiation intensities ( )1 ,I x μ , for 

10 x L≤ ≤  and 1 1μ− ≤ ≤ , and ( )2 ,I x μ , for 1 1 2L x L L≤ ≤ +   and 1 1μ− ≤ ≤ . This is the 
direct problem. For the solution of the direct problem we use in the present work a 
combination of Chandrasekhar’s discrete ordinates method (Chandrasekhar, 1960) with the 
finite difference method (Soeiro and Silva Neto, 2006). 

2.2 Drying (simultaneous heat and mass transfer) 
In Fig. 2, adapted from Mwithiga and Olwal, 2005, it is represented the drying experiment 
setup considered in this section. In the approach considered it was introduced the 
possibility of using a scale to weight the samples, and sensors to measure temperature in the 
sample, as well as inside the drying chamber.  
 

 
Fig. 2. Drying experiment setup (Adapted from Mwithiga and Olwal, 2005). 
In accordance to the schematic representation shown in Fig. 3, consider the problem of 
simultaneous heat and mass transfer in a one-dimensional porous media in which heat is 
supplied to the left surface of the porous media, at the same time that dry air flows over the 
right boundary surface. 
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The mathematical formulation used in this work for the direct heat and mass transfer 
problem considered a constant properties model, and in dimensionless form it is given by 
(Luikov and Mikhailov, 1965; Mikhailov and Özisik, 1994), 
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m mBi Bi ε Pn Ko Lu⎡ ⎤= − −⎣ ⎦  (14) 

and the dimensionless variables are defined as 
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When the geometry, the initial and boundary conditions, and the medium properties are 
known, the system of equations (4-11) can be solved, yielding the temperature and moisture 
distribution in the media. The finite difference method was used to solve the system (4-11). 
Many previous works have studied the drying inverse problem using measurements of 
temperature and moisture-transfer potential at specific locations of the medium. But to 
measure the moisture-transfer potential in a certain position is not an easy task, so in this 
work it is used the average quantity 
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=
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known, the system of equations (4-11) can be solved, yielding the temperature and moisture 
distribution in the media. The finite difference method was used to solve the system (4-11). 
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temperature and moisture-transfer potential at specific locations of the medium. But to 
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or  

 ( )
1

2 2
0

( , )
X

X
X dXθ τ θ τ

=

=

= ∫  (26) 

Therefore, in order to obtain the average moisture measurements, ( )u t , one have just to 
weight the sample at  each time (Lugon and Silva Neto, 2010, Silva Neto et al., 2010).  

2.3 Gas-liquid adsorption 
The mechanism of proteins adsorption at gas-liquid interfaces represented in Fig. 4 has been 
the subject of intensive theoretical and experimental research, because of the potential use of 
bubble and foam fractionation columns as an economically viable means for surface active 
compounds recovery from diluted solutions, (Özturk et al., 1987; Deckwer and Schumpe, 
1993; Graham and Phillips, 1979; Santana and Carbonell, 1993a,b; Santana, 1994; Krishna 
and van Baten, 2003; Haut and Cartage, 2005; Mouza et al., 2005; Lugon, 2005). 
The system works basically through the gas injection at the base of a column containing the 
solution. The gas bubbles formed in the distributor rise and along this path adsorb the 
solute. In the foam region, formed above the bubble column, the extraction of the material of 
interest is made (see Fig. 4). 
The direct problem related to the gas-liquid interface adsorption of bio-molecules in bubble 
columns consists essentially in the calculation of the depletion, that is, the reduction of 
solute concentration with time, when the physico-chemical properties and process 
parameters are known. 
 

 
Fig. 4. Gas-liquid adsorption process in a bubble and foam column. 

The solute depletion is modeled by 

 
6

1

vdC gb
dt Hdg bε

= − Γ
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (27) 
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where bC  is the liquid solute concentration (bulk), bd  is the bubble diameter, H  is the 
bubble column height, gv  is the superficial velocity (gas volumetric flow rate divided by the 
area of the transversal section of the column, A), and Γ  is the surface excess concentration of 
the adsorbed solute. 
The symbol gε  represents the gas volumetric fraction, which can be calculated from the 
dimensionless correlation of Kumar (Özturk et al., 1987),  

 2 30.728 0.485 0.095g U U Uε = − +  (28) 

where  
( )

1
42

l
g

l g

U v
g

ρ
γ ρ ρ

⎡ ⎤
⎢ ⎥=
⎢ ⎥−⎣ ⎦

 (29) 

lρ  is the liquid density, γ  is the surface tension, g  is the gravity acceleration, and gρ  is the 
gas density. 
The quantities Γ  and C  are related through adsorption isotherms such as:  
i. Linear isotherm 

 B KCΓ = +  (30) 
ii. Langmuir isotherm 

 ( )
( )

1
1

1

1
1

K T C
â K T C
⎡ ⎤

Γ = ⎢ ⎥
+⎢ ⎥⎣ ⎦

 (31) 

iii. Two-layer isotherm 
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1 2
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â K C
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λ

⎡ ⎤− Γ +⎣ ⎦Γ = Γ + Γ =
⎡ ⎤+ − Γ⎣ ⎦

 (32) 

where 1Γ  and 2Γ  are the excess superficial concentration in the first and second adsorption 
layers respectively (see Fig. 4). 
Considering that the superficial velocity, bubble diameter and column cross section are 
constant along the column, 

 ( ) ( ) ( ) ( ),,
6

l b b s

g

k a d C t C z tz t
z v

⎡ ⎤−∂Γ ⎣ ⎦=
∂

 (33) 

where z  represents the spatial coordinate along the column, sC  is the solute concentration 
next to the bubbles and ( )lk a  is the volumetric mass transfer coefficient. 
There are several correlations available for the determination of ( )lk a  but following the 
recommendation of Deckwer and Schumpe (1993) we have adopted the correlation of 
Öztürk et al. (1987) in the solution of the direct problem: 
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where bC  is the liquid solute concentration (bulk), bd  is the bubble diameter, H  is the 
bubble column height, gv  is the superficial velocity (gas volumetric flow rate divided by the 
area of the transversal section of the column, A), and Γ  is the surface excess concentration of 
the adsorbed solute. 
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where 
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, Schmidt number (35) 
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= , Bond number (37) 
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where iD  is the tensoactive diffusion coefficient and lν  is the liquid dynamic viscosity. 
Combining Eqs. (27) and (33) and using an initial condition, such as 0b bC C=  when 0t = , 
and a boundary condition, like 0Γ =  at 0z = , the solute concentration can be calculated as 
a function of time, ( )bC t . Santana and Carbonell (1993a,b) developed an analytical solution 
for the direct problem in the case of a linear adsorption isotherm and the results presented a 
good agreement with experimental data for BSA (Bovine Serum Albumin). 
In order to solve Eq. (27) a second order Runge Kutta method was used, known as the mid 
point method. Given the physico-chemical and process parameters, as well as the boundary 
and initial conditions, the solute concentration can be calculated for any time t  (Lugon et 
al., 2009). 

3. Formulation of inverse heat and mass transfer problems 
The inverse problem is implicitly formulated as a finite dimensional optimization problem 
(Silva Neto and Soeiro, 2003; Silva Neto and Moura Neto, 2005; Silva Neto and Becceneri, 
2009), where one seeks to minimize the cost functional of squared residues between the 
calculated and experimental values for the observable variable, 

 ( ) ( ) ( ) ( ) ( )T T
calc meas calc measS = − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦P V P V P W V P V P F F  (39a) 

where measV  is the vector of measurements, calcV  is the vector of calculated values, P  is the 
vector of unknowns, W  is the diagonal matrix whose elements are the inverse of the 
measurement variances, and the vector of residues F  is given by 

 ( ) ( )calc meas= −F V P V P  (39b) 

The inverse problem solution is the vector *P  which minimizes the norm given by Eq. (39a), 
that is 

 *( ) min ( )S S=
P

P P  (40) 

Depending on the direct problem considered, as described in sections 2.1 - 2.3, different 
measurements are to be taken, that is: 
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a. Radiative problem 
We are interested in obtaining estimates for the vector of unknowns P , given by: 

1sσ , 
1ak , 

2sσ  and 
2ak . Measured data were used on the emerging radiation intensity acquired at  the 

boundary surfaces 0x =  and 1 2x L L= + , and the interface 1x L= , iY , with  1,2, ,i N= … , 
being N  the total number of experimental data. 
b. Drying problem 
Using temperature measurements, T , taken by sensors located inside the medium, and the 
average of the moisture-transfer potential, u , during the experiment, we try to estimate the 
vector of unknowns P , for which a combination of variables was used: Lu  (Luikov 
number), δ  (thermogradient coefficient), r c  (relation between latent heat of evaporation 
and specific heat of the medium), h k  (relation between heat transfer coefficient and 
thermal conductivity), and m mh k  (relation between mass transfer coefficient and mass 
conductivity). 
c. Gas-liquid adsorption problem 
Different vectors of unknowns P  are possibly considered, which are associated with 
different adsorption isotherms: (i) K  and B  (Linear isotherm); (ii) 1( )K T  and â  (Langmuir 
isotherm); (iii) 1( )K T , 2( )K T , λ  and â  (two-layers isotherm). Here the BSA (Bovine Serum 
Albumin) adsorption phenomenon was modeled using a two-layer isotherm. 

4. Solution of the inverse problems with Artificial Neural Networks, simulated 
annealing and hybrid methods 
Instead of going directly to the description of the inverse problem solution methods, we 
opted for presenting first the approach considered in the analysis of the sensitivity of the 
observable variables with respect to the unknown parameters to be determined with the 
inverse problem solution.  

4.1 Design of experiments  
The sensitivity analysis plays a major role in several aspects related to the formulation and 
solution of an inverse problem (Dowding et al., 1999; Beck, 1988). Such analysis may be 
performed with the study of the sensitivity coefficients. Here we use the modified, or scaled, 
sensitivity coefficients 

 ( )
( ) , 1,2,...,

jP V t j p
j

V tY P j N
P

∂
= =

∂
 (41) 

where V  is the observable state variable (which can be measured), jP  is a particular 
unknown of the problem, and pN  is the total number of unknowns considered. 
As a general guideline, the sensitivity of the state variable to the parameter we want to 
determine must be high enough to allow an estimate within reasonable confidence bounds. 
Moreover, when two or more parameters are simultaneously estimated, their effects on the 
state variable must be independent (uncorrelated). Therefore, when represented graphically, 
the sensitivity coefficients should not have the same shape. If they do it means that two or 
more different parameters affect the observable variable in the same way, being difficult to 
distinguish their influences separately, which yields to poor estimations. 
Another important tool used in the design of experiments is the study of the matrix 
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 ( )
( ) , 1,2,...,

jP V t j p
j

V tY P j N
P

∂
= =

∂
 (41) 

where V  is the observable state variable (which can be measured), jP  is a particular 
unknown of the problem, and pN  is the total number of unknowns considered. 
As a general guideline, the sensitivity of the state variable to the parameter we want to 
determine must be high enough to allow an estimate within reasonable confidence bounds. 
Moreover, when two or more parameters are simultaneously estimated, their effects on the 
state variable must be independent (uncorrelated). Therefore, when represented graphically, 
the sensitivity coefficients should not have the same shape. If they do it means that two or 
more different parameters affect the observable variable in the same way, being difficult to 
distinguish their influences separately, which yields to poor estimations. 
Another important tool used in the design of experiments is the study of the matrix 
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where iV  is a particular measurement of the observable variable, i.e. radiation intensity, 
concentration, temperature or moisture potential, and m  is the total number of measurements. 
Maximizing the determinant of the matrix TY Y  results in higher sensitivity and 
uncorrelation (Beck, 1988). 

4.2 Artificial Neural Network (ANN) 
The multi-layer perceptron (MLP) is a collection of connected processing elements called 
nodes or neurons, arranged in layers (Haykin, 1999). Signals pass into the input layer nodes, 
progress forward through the network hidden layers and finally emerge from the output 
layer (see Fig. 5). Each node i is connected to each node j in its preceding layer through a 
connection of weight, ijw , and similarly to nodes in the following layer. 
In order to solve the inverse problem we use here a multi-layer perceptron (MLP) neural 
network (Soeiro et al., 2004). In Fig. 5 is given a representation of the MLP with the input 
and output layers, and one hidden layer for the solution of the inverse problem of 
determining the vector of unknowns P . By providing measV  at the input layer we expect 
that the ANN will provide at the output layer an estimate for P . 
Each neuron j , with 1,2, , Hj N= … , in the hidden layer performs a linear combination of 
the input values provided at the input layer 

 (1) (1) (1) (1)
0 0

1 1
, 1,2, ,

N N

j i i Hji j ji j
i i

p w x w w Y w j N
= =
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where (1) , 1,2,..., , 1,2,...,Hjiw j N i N= =  are the weights of the connections between the 
nodes of the input layer and the neurons of the hidden layer, N  is the number of nodes in 
the input layer, and HN  is the number of neurons in the hidden layer. 
The weighted sum jp  given by Eq. (43) is viewed as an excitation to neuron j  of the hidden 
layer, which provides in response 

 ( ) , 1,2,...,j j Hq f p j N= =  (44) 

where ( ).f  is an activation function. Various choices for the function ( ).f  are possible 
(Haykin, 1999). 
Each neuron k , 1,2,..., unk N=  of the output layer performs a linear combination of the 
response jq , 1,2,..., Hj N= , of the neurons of the hidden layer 
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where (2)
kjw , 1,2,..., uk N= , 1,2,..., Hj N= , are the weights of the connections between the 

neurons of the hidden layer and the neurons of the output layer, and unN  is the number of 
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neurons in the output layer, which coincides with the number of unknowns of the inverse 
problem.. 
The weighted sum ks  given by Eq. (45) is viewed as an excitation to neuron k  of the output 
layer, which provides in response 

 ( )k kt g s= ,        1,2,..., unk N=  (46) 

where ( ).g  is an activation function. Various choices for the function ( ).g  are possible 
(Haykin, 1999). 
Combining Eqs. (43-46) we get 
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Considering available the experimental data , 1,2,...,iY i N= , we observe in Eq. (47) that kt , 
1,2,..., unk N= , are estimates for the unknowns kZ , 1,2,..., unk N= , obtained by the ANN. 

But before we can use Eq. (47) we must determine the weight parameters (1)w  and (2)w . 
 

 
Fig. 5. Multi-layer perceptron network with one hidden layer for the inverse radiative 
transfer problem. 

The determination of the weights (1)w  and (2)w  is accomplished by presenting a set of 
patterns (known input exactP  and outputs exactV ) and calculating the weights that provides 
the best match between the calculated values t  and the target values exactP . The patterns 
used in this supervised training stage of the ANN were generated by calculating the values 

exactV  from known sets exactP  with the discrete ordinates and finite difference solution 
(Soeiro and Silva Neto, 2006; Silva Neto and Becceneri, 2009). 
For the determination of (1)w  and (2)w  we used the back propagation algorithm. We start 
with an initial guess for the weights, (1)nw , (2)nw , with 0n = , and the set of inputs V  is 
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neurons in the output layer, which coincides with the number of unknowns of the inverse 
problem.. 
The weighted sum ks  given by Eq. (45) is viewed as an excitation to neuron k  of the output 
layer, which provides in response 
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Considering available the experimental data , 1,2,...,iY i N= , we observe in Eq. (47) that kt , 
1,2,..., unk N= , are estimates for the unknowns kZ , 1,2,..., unk N= , obtained by the ANN. 

But before we can use Eq. (47) we must determine the weight parameters (1)w  and (2)w . 
 

 
Fig. 5. Multi-layer perceptron network with one hidden layer for the inverse radiative 
transfer problem. 

The determination of the weights (1)w  and (2)w  is accomplished by presenting a set of 
patterns (known input exactP  and outputs exactV ) and calculating the weights that provides 
the best match between the calculated values t  and the target values exactP . The patterns 
used in this supervised training stage of the ANN were generated by calculating the values 

exactV  from known sets exactP  with the discrete ordinates and finite difference solution 
(Soeiro and Silva Neto, 2006; Silva Neto and Becceneri, 2009). 
For the determination of (1)w  and (2)w  we used the back propagation algorithm. We start 
with an initial guess for the weights, (1)nw , (2)nw , with 0n = , and the set of inputs V  is 
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passed forward through the network yielding trial outputs 0n=t  which are compared with 
the desired outputs exactP  leading to the errors, 

 
n
kexactk

n
k tPe −= ,  unNk ,...,2,1=  (48) 

The weights are then adjusted using the information provided by the output error (Haykin, 
1999) 

 (2) 1 (2) (2)(2)n n n n
jkj kj kw w qη δ+ = +  (49a) 

 (1) 1 (1) (1)(1)n n n
iji ji jw w Yη δ+ = +  (49b) 

where 

 ( )(2)n n n
k kk e g sδ ′=  (50a) 

 ( )(1) (2) (2)

1

uN
n n nn

jj k kj
k

f p wδ δ
=

′= ∑  (50b) 

( )1η  and ( )2η  are the learning rates, which can assume different values for the weights 
between input-hidden layers (1) and hidden-output layers (2). 
The forward and backward sweeps procedure is continued until a convergence criterion 
related to errors  ke , 1,2,..., unk N= , is satisfied. 
The presentation of a full set of patterns is denominated epoch. After one epoch is 
completed the set of patterns is presented again, in a different (random) order. After a 
number of epochs, once the comparison error is reduced to an acceptable level over the 
whole training set, the training phase ends and the ANN is established. 

4.3 Simulated Annealing method (SA) 
Based on statistical mechanics reasoning, applied to a solidification problem, Metropolis et 
al. (1953) introduced a simple algorithm that can be used to accomplish an efficient 
simulation of a system of atoms in equilibrium at a given temperature. In each step of the 
algorithm a small random displacement of an atom is performed and the variation of the 
energy ΔE is calculated. If ΔE<0 the displacement is accepted, and the configuration with the 
displaced atom is used as the starting point for the next step. In the case of ΔE>0, the new 
configuration can be accepted according to Boltzmann probability, 

 ( ) ( )exp / BP E E k TΔ = −Δ  (51) 

A uniformly distributed random number p in the interval [0,1] is calculated and compared 
with P(ΔE). Metropolis criterion establishes that the new configuration is accepted if 
p<P(ΔE), otherwise it is rejected and the previous configuration is used again as a starting 
point. 
Using the objective function ( )S P , given by Eq. (39a), in place of energy and defining 
configurations by a set of variables { } , 1,2,...,i pP i N= where Np represents the number of 
unknowns we want to estimate, the Metropolis procedure generates a collection of 
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configurations of a given optimization problem at some temperature T (Kirkpatric et al., 
1983). This temperature is simply a control parameter. The simulated annealing process 
consists of first “melting” the system being optimized at a high “temperature”, then 
lowering the “temperature” until the system “freezes” and no further change occurs. 
The main control parameters of the algorithm implemented (“cooling procedure”) are the 
initial “temperature”, 0T , the cooling rate, tr , number of steps performed through all 
elements of vector P , sN , number of times the procedure is repeated before the 
“temperature” is reduced, tN , and the number of points of minimum (one for each 
temperature) that are compared and used as stopping criterion if they all agree within a 
tolerance ε , Nε . 

4.4 Levenberg-Marquardt method (LM) 
The Levenberg-Marquardt is a deterministic local optimizer method based on the gradient 
(Marquardt, 1963). In order to minimize the functional ( )S P  we first write 

 ( ) 0 0T TdS d
d d

= = → =F F J F
P P

 (52) 

where J  is the Jacobian matrix, with the elements  ps p sJ V P= ∂ ∂   being  1,  2,  ...,  p M= , 
and 1,  2,  ...,  ps N= , where M  is the total number of measurements and pN  is the number 
of unknowns. It is observed that the elements of the Jacobian matrix are related to the scaled 
sensitivity coefficients presented before. 
Using a Taylor’s expansion and keeping only the terms up to the first order, 

 ( ) ( )+ Δ ≅ + ΔF P P F P J P  (53) 

Introducing the above expansion in Eq. (52) results 

 ( )T TΔ = −J J P J F P  (54) 

In the Levenberg-Marquardt method a damping factor nγ  is added to the diagonal of 
matrix TJ J   in order to help to achieve convergence. 
Equation (54) is written in a more convenient form to be used in the iterative procedure, 

 ( ) ( ) ( )n n T n n n T nγ⎡ ⎤Δ = − +⎣ ⎦P J J I J F P  (55) 

where I  is the identity matrix and n  is the iteration index. 
The iterative procedure starts with an estimate for the unknown parameters, 0P , being new 
estimates obtained with 1n n n+ = + ΔP P P , while the corrections nΔP  are calculated with Eq. 
(55). Actually in most cases the vector nPΔ  is obtained directly from the solution of the 
linear system of equations (54). This iterative procedure is continued until a convergence 
criterion such as 

 ,       1,  2,  ,  n n
k k pP P n NεΔ < =  (56) 

is satisfied, where ε  is a small number, e.g. 10-5. 
The elements of the Jacobian matrix, as well as the right side term of Eq. (54), are calculated 
at each iteration, using the solution of the direct problem with the estimates for the 
unknowns obtained in the previous iteration. 
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configurations of a given optimization problem at some temperature T (Kirkpatric et al., 
1983). This temperature is simply a control parameter. The simulated annealing process 
consists of first “melting” the system being optimized at a high “temperature”, then 
lowering the “temperature” until the system “freezes” and no further change occurs. 
The main control parameters of the algorithm implemented (“cooling procedure”) are the 
initial “temperature”, 0T , the cooling rate, tr , number of steps performed through all 
elements of vector P , sN , number of times the procedure is repeated before the 
“temperature” is reduced, tN , and the number of points of minimum (one for each 
temperature) that are compared and used as stopping criterion if they all agree within a 
tolerance ε , Nε . 

4.4 Levenberg-Marquardt method (LM) 
The Levenberg-Marquardt is a deterministic local optimizer method based on the gradient 
(Marquardt, 1963). In order to minimize the functional ( )S P  we first write 
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and 1,  2,  ...,  ps N= , where M  is the total number of measurements and pN  is the number 
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The iterative procedure starts with an estimate for the unknown parameters, 0P , being new 
estimates obtained with 1n n n+ = + ΔP P P , while the corrections nΔP  are calculated with Eq. 
(55). Actually in most cases the vector nPΔ  is obtained directly from the solution of the 
linear system of equations (54). This iterative procedure is continued until a convergence 
criterion such as 
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is satisfied, where ε  is a small number, e.g. 10-5. 
The elements of the Jacobian matrix, as well as the right side term of Eq. (54), are calculated 
at each iteration, using the solution of the direct problem with the estimates for the 
unknowns obtained in the previous iteration. 
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In order to calculate the gradient, a central difference approximation was used (Lugon Jr. 
and Silva Neto, 2010; Silva Neto et al., 2010) 

 ( ) ( )
2

V P P V P PV
P P

+ Δ − − Δ∂
=

∂ ×Δ
 (57) 

In the beginning of the process, an ANN trained to solve the direct problem was used to 
approximate ( )V P P+ Δ  and ( )V P P− Δ . This faster scheme proved to be accurate enough 
to begin the process. Afterwards, the direct problem solution itself was used in Eq. (57) and 
although being slower, it offers better results at the final stages of the LM method. 

4.5 Hybrid combination of ANN, LM and SA optimizers 
Due to the complexity of the design space, if convergence is achieved with a gradient based 
method it may in fact lead to a local minimum. Therefore, global optimization methods are 
required in order to reach better approximations for the global minimum. The main 
disadvantage of these methods is that the number of function evaluations is high, becoming 
sometimes prohibitive from the computational point of view (Soeiro et al., 2004). 
In this chapter different combinations of methods are used for the solution of inverse heat 
and mass transfer problems, involving in all cases Artificial Neural Networks: 
a. when solving  radiative inverse problems, it was used a combination of the ANN and 

LM; 
b. when solving adsorption and drying inverse problems, it was used a combination of 

ANN, LM and SA. 
Therefore, in all cases studied ANN was used after the training stage in order to quickly 
provide an inverse problem solution. This solution was used as an initial guess for the LM. 
In order to improve the solution, we have also studied the combination of ANN, LM and SA 
methods. After using LM, reaching within a few iterations a point of minimum, we run the 
SA. If the same solution is reached, it is likely that a global minimum was reached, and the 
iterative procedure is interrupted. If a different solution is obtained it means that the 
previous one was a local minimum, otherwise we could run again the LM and SA until the 
global minimum is reached. 

5. Test case results 
As real data for the three problems considered were not available we simulated the 
experimental data using 

 p p pmeas calc
V V r σ= +  , 1,2,..., pp N=  (58) 

where pr  is a random number in the range 1,1−⎡ ⎤⎣ ⎦  and σ  simulates the standard deviation 
of the measurements error. 

5.1 Radiative transfer problem 
In Table 1 we present the results obtained with the LM method starting with the initial 
guess: 

1
0.10sσ = 1cm− , 

1
0.8ak =  1cm− , 

2
0.10sσ = 1cm−  and 

2
0.8ak = 1cm−  for the particular 

case with the exact values for the unknowns 
1

0.45sσ = 1cm− , 
1

0.05ak = 1cm− , 
2

0.45sσ = 1cm−  and 05.0
2
=ak  1cm−  (maximum noise in the experimental data = 8%,  
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i.e. σ = 0.002 in Eq. (58). Note that LM does not converge with such initial guesses for the 
unknown parameters. 
For the test case presented it is also considered 1 2 2L L cm= = , 1 0.1ρ = , 2 3 0ρ ρ= = , 

4 0.9ρ = , 1 1.0f =  and 2 0f = , which represents a difficult test case. 
 

Iteration 
1sσ ( 1cm− ) 

1ak ( 1cm− ) 
2sσ ( 1cm− ) 

2ak ( 1cm− ) Obj. Func. 
[Eq.(39a)] 

0 0.10 0.8 0.10 0.8 7.439 
5 0.52 0.049 2.1E09 0.01 6.86E-01 

10 0.45 0.05 5.5E07 3.7E07 1.216 

Table 1. Estimates obtained with LM (10 iterations). Noisy data (8%) 

In Table 2 are shown the results for the same test case using ANNs, and in Tables 3 and 4 are 
presented the results obtained when the ANN is used to generate the initial guess for the 
LM method. Here we used noisy data (maximum 8%), i.e., σ = 0.002 in Eq. (58). The 
experimental data used for the solution of the inverse problem consisted of a set of 40 
radiation intensities measured at different polar angles, 20 intensities measured by external 
detectors and 20 intensities measured by internal detectors located at the interface between 
the two-layers, i.e. 1x L= . Therefore, there are N = 40 entries in the input layer of the ANN. 
For the hidden layer we considered NH = N = 40. We used 500 patterns (NP) and a 
decreasing number of epochs (NE) in order to save computational time. 
In this work the Neural Network Toolbox of the software MATLAB (Mathworks, Inc.) was 
used with the following neuron model in the backpropagation network: 40 elements in the 
input vector, log-sigmoid (logsig) transfer (activation) function between the input layer and 
the hidden layer (with 40 elements) and a linear transfer function (purelin) in the output 
layer (with 4 elements in the output vector). 
 

Estimates (ANN) 
NE CPU time(min) 1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
500 120 0.40 0.01 0.43 0.01 
200 48 0.34 0.01 0.33 0.01 
100 22 0.35 0.09 0.32 0.09 
30 7,5 0.50 0.10 0.60 0.05 

Exact values: 145.0
21

−== cmss σσ , 105.0
21

−== cmkk aa  

Table 2. Neural Network solutions for the inverse problem and CPU time considering 
different number of epochs (NH = 40, NP = 500) and noisy data (8%) 
It can be observed from Table 2 that the ANN did not provide good estimates for the 
unknowns. An improvement can be obtained, but at the expense of a higher CPU time 
requirement. A different strategy is then adopted with a hybridization ANN-LM. In Table 3 
are presented the results obtained with such hybridization in which the former method 
provides an initial guess for the latter. The solution of the ANN was obtained considering 
100 epochs in the training stage of the ANN. An improvement in the results of the inverse 
problem is then observed. 
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In order to calculate the gradient, a central difference approximation was used (Lugon Jr. 
and Silva Neto, 2010; Silva Neto et al., 2010) 

 ( ) ( )
2

V P P V P PV
P P

+ Δ − − Δ∂
=

∂ ×Δ
 (57) 

In the beginning of the process, an ANN trained to solve the direct problem was used to 
approximate ( )V P P+ Δ  and ( )V P P− Δ . This faster scheme proved to be accurate enough 
to begin the process. Afterwards, the direct problem solution itself was used in Eq. (57) and 
although being slower, it offers better results at the final stages of the LM method. 

4.5 Hybrid combination of ANN, LM and SA optimizers 
Due to the complexity of the design space, if convergence is achieved with a gradient based 
method it may in fact lead to a local minimum. Therefore, global optimization methods are 
required in order to reach better approximations for the global minimum. The main 
disadvantage of these methods is that the number of function evaluations is high, becoming 
sometimes prohibitive from the computational point of view (Soeiro et al., 2004). 
In this chapter different combinations of methods are used for the solution of inverse heat 
and mass transfer problems, involving in all cases Artificial Neural Networks: 
a. when solving  radiative inverse problems, it was used a combination of the ANN and 

LM; 
b. when solving adsorption and drying inverse problems, it was used a combination of 

ANN, LM and SA. 
Therefore, in all cases studied ANN was used after the training stage in order to quickly 
provide an inverse problem solution. This solution was used as an initial guess for the LM. 
In order to improve the solution, we have also studied the combination of ANN, LM and SA 
methods. After using LM, reaching within a few iterations a point of minimum, we run the 
SA. If the same solution is reached, it is likely that a global minimum was reached, and the 
iterative procedure is interrupted. If a different solution is obtained it means that the 
previous one was a local minimum, otherwise we could run again the LM and SA until the 
global minimum is reached. 

5. Test case results 
As real data for the three problems considered were not available we simulated the 
experimental data using 

 p p pmeas calc
V V r σ= +  , 1,2,..., pp N=  (58) 

where pr  is a random number in the range 1,1−⎡ ⎤⎣ ⎦  and σ  simulates the standard deviation 
of the measurements error. 

5.1 Radiative transfer problem 
In Table 1 we present the results obtained with the LM method starting with the initial 
guess: 

1
0.10sσ = 1cm− , 

1
0.8ak =  1cm− , 

2
0.10sσ = 1cm−  and 

2
0.8ak = 1cm−  for the particular 

case with the exact values for the unknowns 
1

0.45sσ = 1cm− , 
1

0.05ak = 1cm− , 
2

0.45sσ = 1cm−  and 05.0
2
=ak  1cm−  (maximum noise in the experimental data = 8%,  
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i.e. σ = 0.002 in Eq. (58). Note that LM does not converge with such initial guesses for the 
unknown parameters. 
For the test case presented it is also considered 1 2 2L L cm= = , 1 0.1ρ = , 2 3 0ρ ρ= = , 

4 0.9ρ = , 1 1.0f =  and 2 0f = , which represents a difficult test case. 
 

Iteration 
1sσ ( 1cm− ) 

1ak ( 1cm− ) 
2sσ ( 1cm− ) 

2ak ( 1cm− ) Obj. Func. 
[Eq.(39a)] 

0 0.10 0.8 0.10 0.8 7.439 
5 0.52 0.049 2.1E09 0.01 6.86E-01 

10 0.45 0.05 5.5E07 3.7E07 1.216 

Table 1. Estimates obtained with LM (10 iterations). Noisy data (8%) 

In Table 2 are shown the results for the same test case using ANNs, and in Tables 3 and 4 are 
presented the results obtained when the ANN is used to generate the initial guess for the 
LM method. Here we used noisy data (maximum 8%), i.e., σ = 0.002 in Eq. (58). The 
experimental data used for the solution of the inverse problem consisted of a set of 40 
radiation intensities measured at different polar angles, 20 intensities measured by external 
detectors and 20 intensities measured by internal detectors located at the interface between 
the two-layers, i.e. 1x L= . Therefore, there are N = 40 entries in the input layer of the ANN. 
For the hidden layer we considered NH = N = 40. We used 500 patterns (NP) and a 
decreasing number of epochs (NE) in order to save computational time. 
In this work the Neural Network Toolbox of the software MATLAB (Mathworks, Inc.) was 
used with the following neuron model in the backpropagation network: 40 elements in the 
input vector, log-sigmoid (logsig) transfer (activation) function between the input layer and 
the hidden layer (with 40 elements) and a linear transfer function (purelin) in the output 
layer (with 4 elements in the output vector). 
 

Estimates (ANN) 
NE CPU time(min) 1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
500 120 0.40 0.01 0.43 0.01 
200 48 0.34 0.01 0.33 0.01 
100 22 0.35 0.09 0.32 0.09 
30 7,5 0.50 0.10 0.60 0.05 

Exact values: 145.0
21

−== cmss σσ , 105.0
21

−== cmkk aa  

Table 2. Neural Network solutions for the inverse problem and CPU time considering 
different number of epochs (NH = 40, NP = 500) and noisy data (8%) 
It can be observed from Table 2 that the ANN did not provide good estimates for the 
unknowns. An improvement can be obtained, but at the expense of a higher CPU time 
requirement. A different strategy is then adopted with a hybridization ANN-LM. In Table 3 
are presented the results obtained with such hybridization in which the former method 
provides an initial guess for the latter. The solution of the ANN was obtained considering 
100 epochs in the training stage of the ANN. An improvement in the results of the inverse 
problem is then observed. 
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Noise ANN estimates Results (LM) 

 1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
8% 0.35 0.09 0.32 0.09 0.447 0.050 0.455 0.050 
4% 0.40 0.03 0.45 0.04 0.450 0.050 0.445 0.049 
2% 0.39 0.04 0.42 0.05 0.450 0.049 0.449 0.050 
0% 0.37 0.04 0.40 0.05 0.45 0.05 0.45 0.05 

Table 3. Combined method results with ANN to obtain estimates for the LM, with noisy 
data and number of epochs NE = 100. Exact values 

1
0.450sσ = , 

1
0.05ak = , 

2
0.450sσ =  and 

2
0.050ak =  

In Table 4 are shown the results obtained using also the hybridization ANN-LM, but now 
with only 30 epochs in the training stage of the ANN. It can also be observed that very good 
results are obtained for the inverse problem. 
 

Noise ANN estimates Results (ANN-LM) 

 1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
8% 0.50 0.10 0.60 0.05 0.447 0.050 0.455 0.050 
4% 0.49 0.01 0.47 0.01 0.450 0.050 0.445 0.049 
2% 0.54 0.03 0.53 0.04 0.449 0.050 0.449 0.050 
0% 0.51 0.02 0.49 0.04 0.45 0.05 0.450 0.050 

Table 4. Combined method results with ANN providing estimates for the LM, with noisy 
data and number of number of epochs NE = 100. Exact values 

1
0.450sσ = , 

1
0.05ak = , 

2
0.450sσ =  and 

2
0.050ak =  

It must be stressed that the solution of the inverse problem with either the LM or ANN 
methods using only external detectors led to non-unique solutions of the inverse radiative 
transfer problem. That is the reason why internal detectors located at the interface of the two 
layers were also considered for the solution of the inverse problem. 

5.2 Drying (simultaneous heat and mass transfer) 
Much research effort has already been made in order to estimate the Possnov, Kossovitch, 
heat Biot and mass Biot numbers (Dantas et al., 2003; Huang and Yeh, 2002; Lugon Jr. and 
Silva Neto, 2004), but it was considered the possibility of optimizing the number and 
location of temperature sensors, experiment duration, etc. In this work instead, δ , r c , h k  
and m mh k  are estimated using an “optimum” experiment (Dowding et al., 1999 and Beck, 
1988) for wood drying, and doing so, it was also considered the following process control 
parameters: heat flux, Q , the medium width, l , the difference between the medium and the 
air temperatures, 0sdT T T= − , and the difference between the medium and the air moisture 
potential, *

0= −du u u .  
There is no difference between the sensitivity coefficients for the two sets of variables, that 
is, the scaled sensitivity coefficients are exactly the same for both vectors 
{ }, , , , ,

T
q mLu Pn Ko Bi Bi ε and { }, , , , ,

T
m mLu r c h k h kδ ε , 

Application of Artificial Neural Networks  
and Hybrid Methods in the Solution of Inverse Problems 

 

557 

 ( ) ( ) ( ) ( ), ,
, ,

V X V X
SC X Pn SC XPnPn

τ τ
τ δ τδ δ

∂ ∂
= = =

∂ ∂
 (59a) 

 ( ) ( ) ( ) ( ), ,
, ,

V X V X
SC X r c Ko SC Xr c Kor c Ko

τ τ
τ τ

∂ ∂
= = =

∂ ∂
 (59b) 

 ( ) ( ) ( ) ( ), ,
, ,q

qq

V X V X
SC X h k Bi SC Xh k Bih k Bi

τ τ
τ τ

∂ ∂
= = =

∂ ∂
 (59c) 

 ( ) ( ) ( ) ( ), ,
, ,m mmm mm m mm

V X V X
SC X h k Bi SC Xh k Bih k Bi

τ τ
τ τ

∂ ∂
= = =

∂ ∂
 (59d) 

The reasons for changing the estimated variables are the use of the design of experiment tools 
and interpretation. Consider the heat and mass Biot numbers for example. If one changes the 
media width, l , both heat and mass Biot numbers change. The mathematical problem would 
be different, even though the material is still the same, because one is estimating two different 
heat and mass Biot numbers. In order to solve this problem, it was decided to estimate the 
relation between heat transfer coefficient and thermal conductivity, h k , and the relation 
between mass transfer coefficient and mass conductivity, m mh k , so that we could change the 
media width and continue with the same value for both variables to be estimated. 
The same idea was used, choosing to estimate the thermogradient coefficient ( δ ) and the 
relation between latent heat of evaporation and specific heat of the medium ( r c ), instead of 
the Possnov ( Pn ) and Kossovitch ( Ko ) numbers. Doing so, one is able to optimize the 
experiment considering the difference between the medium and the air temperatures, 

0sdT T T= − , and the difference between the moisture-transfer potential between the 
medium and the air, *

0du u u= − , without affecting the estimated parameters values. 
In Fig. 7 is represented the variation of the value of the matrix TY Y  determinant as a 
function of the temperature differences and moisture potential differences between the 
medium and the air flowing over it. It is not difficult to understand that one could not build 
such a graph using a vector of unknown parameters containing Possnov ( Pn ) and 
Kossovitch ( Ko ) numbers. In order to achieve greater sensitivities, while the temperature 
difference has to be the lowest, the moisture potential difference has to be the highest 
possible.  The solid square represents the chosen designed experiment, considering the 
existence of practical difficulties that may limit our freedom of choice. 
 

 
Fig. 7. Determinant of matrix TY Y  as a function of temperature ( dT ) and moisture 
potential ( du ) differences. 
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Noise ANN estimates Results (LM) 
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Table 3. Combined method results with ANN to obtain estimates for the LM, with noisy 
data and number of epochs NE = 100. Exact values 
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0.450sσ = , 

1
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2
0.450sσ =  and 
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0.050ak =  

In Table 4 are shown the results obtained using also the hybridization ANN-LM, but now 
with only 30 epochs in the training stage of the ANN. It can also be observed that very good 
results are obtained for the inverse problem. 
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It must be stressed that the solution of the inverse problem with either the LM or ANN 
methods using only external detectors led to non-unique solutions of the inverse radiative 
transfer problem. That is the reason why internal detectors located at the interface of the two 
layers were also considered for the solution of the inverse problem. 

5.2 Drying (simultaneous heat and mass transfer) 
Much research effort has already been made in order to estimate the Possnov, Kossovitch, 
heat Biot and mass Biot numbers (Dantas et al., 2003; Huang and Yeh, 2002; Lugon Jr. and 
Silva Neto, 2004), but it was considered the possibility of optimizing the number and 
location of temperature sensors, experiment duration, etc. In this work instead, δ , r c , h k  
and m mh k  are estimated using an “optimum” experiment (Dowding et al., 1999 and Beck, 
1988) for wood drying, and doing so, it was also considered the following process control 
parameters: heat flux, Q , the medium width, l , the difference between the medium and the 
air temperatures, 0sdT T T= − , and the difference between the medium and the air moisture 
potential, *

0= −du u u .  
There is no difference between the sensitivity coefficients for the two sets of variables, that 
is, the scaled sensitivity coefficients are exactly the same for both vectors 
{ }, , , , ,
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T
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The reasons for changing the estimated variables are the use of the design of experiment tools 
and interpretation. Consider the heat and mass Biot numbers for example. If one changes the 
media width, l , both heat and mass Biot numbers change. The mathematical problem would 
be different, even though the material is still the same, because one is estimating two different 
heat and mass Biot numbers. In order to solve this problem, it was decided to estimate the 
relation between heat transfer coefficient and thermal conductivity, h k , and the relation 
between mass transfer coefficient and mass conductivity, m mh k , so that we could change the 
media width and continue with the same value for both variables to be estimated. 
The same idea was used, choosing to estimate the thermogradient coefficient ( δ ) and the 
relation between latent heat of evaporation and specific heat of the medium ( r c ), instead of 
the Possnov ( Pn ) and Kossovitch ( Ko ) numbers. Doing so, one is able to optimize the 
experiment considering the difference between the medium and the air temperatures, 

0sdT T T= − , and the difference between the moisture-transfer potential between the 
medium and the air, *

0du u u= − , without affecting the estimated parameters values. 
In Fig. 7 is represented the variation of the value of the matrix TY Y  determinant as a 
function of the temperature differences and moisture potential differences between the 
medium and the air flowing over it. It is not difficult to understand that one could not build 
such a graph using a vector of unknown parameters containing Possnov ( Pn ) and 
Kossovitch ( Ko ) numbers. In order to achieve greater sensitivities, while the temperature 
difference has to be the lowest, the moisture potential difference has to be the highest 
possible.  The solid square represents the chosen designed experiment, considering the 
existence of practical difficulties that may limit our freedom of choice. 
 

 
Fig. 7. Determinant of matrix TY Y  as a function of temperature ( dT ) and moisture 
potential ( du ) differences. 
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In Fig. 8 are represented the values of the determinant of matrix TY Y  for different values of 
the heat flux Q  and media thickness l . It is also easy to understand that one could not build 
such a graph using a vector of unknown parameters containing heat and mass Biot 
numbers. For practical reasons it was chosen to limit the sample temperature to 130° C. In 
Fig. 8 the same curve has a continuous-line part and a dashed-line one, when the sample 
temperature exceeds the limit of 130° C. The solid square shows the chosen designed 
experiment. 
 

 
Fig. 8. Determinant of TY Y  matrix for different values of the heat flux Q and medium 
thickness l . 

Considering the previous analysis of the sensitivity graphs and matrix the YYT  
determinant, it was designed the experiment whose geometric and process parameters are 
shown in Table 5. Since the average moisture potential, u , is more difficult to measure than 
the temperature, 1θ , the measurement interval for the average moisture potential, uτΔ , was 
considered larger than the interval for the temperature 

1θτΔ .  
 

Geometric or process parameter Values Geometric or process parameter Values 
0sdT T T= −  12 oC Q  6.0 

0T  24 oC l  0.03 m 

sT  36 oC 0τ  0 
*

0du u u= −  78 oM fτ  20 

0u  86 oM 1θτΔ  0.2 
*u  8 oM uτΔ  1 
ε  0.2 - - 

0τ  and fτ  represent the initial and sampling times, respectively. 

Table 5. Reference values for the designed experiment. 

An experiment was designed to perform the simultaneous estimation of Lu , δ , r c , h k  
and m mh k . In order to study the proposed method, since real experiment data were not 
available, we generated synthetic data using 

 
11 1 ( )

i imeas calc exact iP rθθ θ σ= + , 
1

1,  2,  ...,  i Mθ=  (60a) 
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i imeas calc exact u iu u P rσ= + , 1,  2,  ...,  ui M=  (60b) 

where ir  are random numbers in the range [-1,1], 
1

Mθ  and uM  represent the total number 
of temperature and moisture-transfer potential experimental data, and 

1θσ  and uσ  
emulates the standard deviation of measurement errors. It was established a standard 
deviation of 

1
0.03θσ =  considering 100 temperature measurements ( 0.2τΔ = ), resulting in a 

maximum error of 2%, and 0.001uσ =  considering 20 moisture measurements ( 1.0τΔ = ), 
resulting in a maximum error of 4%.  
In Fig. 9 the temperature ( 1θ ) and moisture potential ( 2θ ) measurements are presented. The 
continuous line represents the direct problem solution and the squares represent noisy data. 
In order to show a better representation, only 20 temperature ( 1θ ) measurements were 
represented. 
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Fig. 9. Temperature ( 1θ ) and moisture potential ( 2θ ) artificially simulated data. 

The results obtained using the methods LM 1 (gradient approximated by FDM - Finite 
Difference method), LM 2 (gradient approximated by Artificial Neural Networks), ANN, SA 
and hybrid combinations, for different levels of noise represented by different values of the 
standard deviation of measurements errors in temperature and average moisture potential, 

Tσ  and uσ , respectively in Eqs. (60a,b) are  shown in Table 6.  
One observes that when there is no noise, that is, the standard deviation of measurements 
errors are zero, the LM method was able to estimate all variables very quickly (see test cases 
1 and 2). When noise is introduced, the LM is retained by local minima (test cases 3 and 4); 
the ANN did not reach a good solution, but quickly got close to it (test case 5). The ANN 
solution was then used as a first guess for the LM method with good performance in test 
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In Fig. 8 are represented the values of the determinant of matrix TY Y  for different values of 
the heat flux Q  and media thickness l . It is also easy to understand that one could not build 
such a graph using a vector of unknown parameters containing heat and mass Biot 
numbers. For practical reasons it was chosen to limit the sample temperature to 130° C. In 
Fig. 8 the same curve has a continuous-line part and a dashed-line one, when the sample 
temperature exceeds the limit of 130° C. The solid square shows the chosen designed 
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The results obtained using the methods LM 1 (gradient approximated by FDM - Finite 
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and hybrid combinations, for different levels of noise represented by different values of the 
standard deviation of measurements errors in temperature and average moisture potential, 
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One observes that when there is no noise, that is, the standard deviation of measurements 
errors are zero, the LM method was able to estimate all variables very quickly (see test cases 
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cases 6 and 7. The SA reached a good solution but required the largest CPU time, and finally 
the combination of all methods was able to reach a good solution, without being retained by 
local minima, and also without taking too much time, i.e. one sixth of the SA time. The time 
shown in the eleventh column of Table 6 corresponds to the CPU time on a Pentium IV 2.8 
GHz processor (Lugon Jr., 2005; Silva Neto et al., 2010). 
 

 
Table 6. Results obtained using LM 1 (partial derivatives obtained with finite differences), 
LM 2 (partial derivatives obtained with Artificial Neural Network), ANN, and, and hybrid 
combinations. 

5.3 Gas-liquid adsorption 
Recently, the inverse problem of interface adsorption has attracted the attention of an 
increasing number of researchers (Lugon Jr., 2005; Forssén et al., 2006; Garnier et al., 2007; 
Voelkel and Strzemiecka, 2007; Ahmad and Guiochon, 2007). 
Based on sensitivity analysis we concluded that in order to solve the inverse problem of gas-
liquid adsorption, considering the two-layer isotherm given by Eq. (32), it was necessary to 
design two different experiments. One to estimate 2( )K T  and â , called experiment 1, and 
another one to estimate λ , called experiment 2. In all cases studied the sensitivity to 1( )K T  
is low and therefore this parameter was not estimated with the inverse problem solution. 
In Fig. 10 are shown the sensitivity coefficients related to the parameters 1( )K T , 2( )K T , λ  
and â  in  experiment 1. It is observed that the sensitivity to 2( )K T  and â  for BSA (Bovine 
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Serum Albumin) are higher than the sensitivity to the other parameters and their shapes are 
different, indicating that these variable are uncorrelated. 
 

 
Fig. 10. Scaled sensitivity coefficients for BSA – Experiment 1. 

In Fig. 11 are shown the sensitivity coefficients related to the parameters 1( )K T , 2( )K T , λ  
and â  for BSA in experiment 2. It is observed that the sensitivity to λ  is higher than the 
sensitivity to the other parameters.  
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cases 6 and 7. The SA reached a good solution but required the largest CPU time, and finally 
the combination of all methods was able to reach a good solution, without being retained by 
local minima, and also without taking too much time, i.e. one sixth of the SA time. The time 
shown in the eleventh column of Table 6 corresponds to the CPU time on a Pentium IV 2.8 
GHz processor (Lugon Jr., 2005; Silva Neto et al., 2010). 
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Fig. 12. Matrix TY Y  determinant for BSA – Experiment 1. 
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The results achieved using the ANN, LM 1 (gradient approximated by FDM), LM 2 
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the direct problem solution corrupted with white gaussian noise with standard deviation 
10 /mg lσ = , which corresponds to measurement errors of the order of 4%. While in test 

cases  1, 2, 3, 4 and 8 the initial guesses are 2
2 0.0080 /( %)K mg m wt=  and 20.100 /â m mg= ,in 

test cases 6, 7 and 9 the initial guesses are the estimates obtained with the ANN. 
In Table 9 are presented the results obtained for the estimation of λ , using the designed 
experiment number 2. Test cases 3-9  used simulated artificial data generated with the direct 
problem solution corrupted with white gaussian noise with standard deviation 

0.10 /mg lσ = , which corresponds to measurement errors of the order of 3%. While in test 
cases numbers 1, 2, 3, 4 and 8 the initial guess is 20.700 /m mgλ = , in test cases 6, 7 and 9 the 
initial guesses are the estimates obtained with the ANN. 
 

 
The exact value used is: 21.117 /m mgλ = . 

Table 9. Results obtained using ANN, LM 1, LM 2, SA and hybrid combinations for 
experiment 2. 

6. Conclusions 
6.1 Radiative transfer 
In this case, Artificial Neural Networks (ANN), Levenberg-Marquardt (LM) and hybrid 
combinations of methods were used to solve the inverse radiative transfer problem. The 
solution with ANN and LM methods using only external detectors led to non-unique 
solutions of the inverse radiative transfer problem. It was demonstrated that the hybid 
combination of ANN-LM obtained better results than using either methods alone.   

6.2 Drying (simultaneous heat and mass transfer) 
The direct problem of simultaneous heat and mass transfer in porous media modeled with 
Luikov equations can be solved using the finite difference method, yielding the temperature 
and moisture distribution in the media, when the geometry, the initial and boundary 
conditions, and the medium properties are known. 
Inverse problem techniques can be useful to estimate the medium properties when they are 
not known. After the use of an experiment design technique, the hybrid combination ANN-
LM-SA resulted in good estimates for the drying inverse problem using artificially 
generated data. 
The design of experiments technique is of great importance for the success of the estimation 
efforts, while previous works studied the estimation of Lu , Pn , Ko , qBi  and mBi ,  here is 
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considered Lu , δ , r c , h k  and m mh k . The main advantage of such approach is to be able 
to design an “optimum” experiment using different medium width, l , porous medium and 
air temperature difference, 0sT T− , and porous medium and air moisture potential 
difference, *

0u u− . 
The combination of deterministic (LM) and stochastic (ANN and SA) methods achieved 
good results, reducing the time needed and not being retained by local minima. The use of 
ANN to obtain the derivatives in the first steps of the LM method reduced the time required 
for the solution of the inverse problem. 

6.3 Gas-liquid adsorption 
After the use of an experiment design technique, the hybrid combination ANN-LM-SA 
resulted in good solutions for the gas-liquid adsorption isotherm inverse problem. 
The use of the ANN to obtain the derivatives in the first step of the LM method reduced the 
time necessary to solve the inverse problem.  
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1. Introduction 
Complex network systems are pervasive in life sciences at all levels, from molecules and 
genes to organisms and ecosystems. All these systems are characterized by being constituted 
of numerous components or nodes (molecules, genes, cells, tissues, organisms), which are 
interconnected by many links in an intricate tangle, just as biological neural networks 
consist of many interacting neurons (Fig. 1). Apart from its structural complexity, complex 
networks are inherently difficult to understand because interactions are non-linear, 
distributed non-randomly, and are adaptive, that is, changing continuously in response to 
the state of the system itself (Strogatz, 2001; Pascual & Dunne, 2006). Understanding the 
functioning of these systems consisting of a large number of strongly interacting units 
represents therefore a major endeavour for biologists and ecologists. 
As complex networks, ecosystems are non-linear systems constituted by countless interacting 
pieces, both biotic and abiotic, constituting the entangled web of life. In a world threatened by 
global environmental problems such as biodiversity loss, climate change, fishing 
overexploitation or pollution, ecologists are challenged by the need to understand and predict 
the dynamics of ecosystems as never before. Along with the complexity of ecological systems, 
ecologists are also faced with a huge amount of information that recent advances in data 
collection technology such as remote sensing have produced. To cope with the ecosystem 
complexity and large data sets currently available, ecologists nowadays have the opportunity 
to use machine-like learning techniques such as the artificial neural networks (ANNs). 
As their name implies, ANNs are biologically inspired and were initially intended to mimic 
the neural activity in the human or animal brains (Garson, 1991; Goh, 1995; Stern, 1996). 
ANNs models are based on the same learning processes as the animal brain, which gathers 
information from the environment (input data) and gives an answer (output data) after 
using learned training algorithms. However, given that the architecture and dynamics of the 
animal brain is exceedingly complex, even the most elaborated ANN models are mere 
caricatures of the biological brain. Although the original works on ANNs date back to the 
forties (McCulloch & Pitts, 1943; Pitts & McCulloch, 1947), they not became really popular 
until the eighties after the work of the physicist John Hopfield. Hopfield (1982) introduced 
an oversimplified neural network, comprising a set of fully connected binary units, as a 
metaphor of neural computation. The most remarkable feature of this model was that it 
could learn by association and was quiet insensitive to noise. This capacity to recognize 
previously learned patterns, which was thought to be an exclusive property of brains, is 
precisely what the Hopfield model does (Solé & Goodwin, 2000). 
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Fig. 1. Examples of complex networks in living systems: a) Caribbean Reef food web. The 
image is organized vertically, with basal species in the bottom, top predators above and 
intermediate species in between. b) Metabolic pathways of H. sapiens and two bacteria 
present in the human intestine and considered key commensals in the human intestinal 
microflora. c) Depiction of highly interconnected neurons in the animal brain. 
The first applications of ANNs did not appear until the early 1990s after the publication of 
the error back-propagation algorithm (Rumelhart et al., 1986). ANNs have enjoyed 
explosive growth since then and have been successfully applied across a broad range of 
scientific domains, as shows this book and other previous works (e.g. Bishop, 1995; Sarle, 
1997; Picton, 2000). However, a review of the literature reveals only a modest use of these 
approaches in ecology as compared to other disciplines, which could be related to the lack of 
the computational background necessary to implement these methods among ecologists 
(Olden et al., 2008). In spite of these limitations, ecologists have nowadays good 
comprehensive overviews of ANN applications in ecological sciences, such as the books of 
Fielding (1999), Lek & Guegan (2000), Lek et al. (2005) and Recknagel (2006). These books 
adds to an ever-increasing number of papers being published during the last years in many 
scientific journals, among which is worth highlighting some specialized ones such as 
Ecological Modelling (www.elsevier.com/locate/ecolmodel) and the recently launched 
Ecological Informatics (www.elsevier.com/locate/ecolinf). 
In this chapter we review the use of ANNs in marine and freshwater ecology, including 
fisheries science, during the 1990s and 2000s. Such review is restricted to works published in 
international journals and is not intended to be exhaustive but simply to familiarize the 
reader with the capabilities and practical applications of ANNs in aquatic ecology. Detailed 
insights on the methodology are not given because those general aspects of ANNs are 
already discussed either on other chapters of this book or in other works (e.g. Bishop, 1995; 
Picton, 2000), and those issues specific to ecological applications have been reviewed 
elsewhere (e.g. Maier & Dandy, 2000; Lek & Guegan, 2000; Ozesmi et al., 2006). 
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2. Handling ecological data with ANNs 
The characteristics of ecological data are quite different from those data handled by sciences 
traditionally considered harder than ecology like mathematics or physics. Ecological data 
are generally bulky, non-linear and highly complex, showing noise, redundancy, internal 
relations and outliers (Park et al., 2003a). In many cases researchers have rather unbalanced 
data sets, such as in community or taxonomical studies when data contain both a lot of 
uncommon, or not present species, and a reduced number of very abundant species. 
Traditionally, multivariate analyses of ecological data have been done using conventional 
techniques based on linear principles, such as multiple regression or discriminant analysis. 
However, relationships between variables in ecology are often non-linear or even unknown, 
which demands non-linear transformations to improve the results. Despite transformations 
by logarithmic, power or exponential functions, results are not satisfactory in many cases 
(Lek et al., 1996b; Brosse et al., 1999). In this respect ANNs constitute a promising alternative 
approach since they are powerful tools that manage large, complex datasets well, and are 
especially suitable when relationships between variables are non-linear or unknown (Lek et 
al., 1996b). This idea that neural networks do not require distributional assumptions is fully 
shared by ecologists and is generally claimed as the most important advantage of ANNs 
over classical statistical models. In fact, Maier & Dandy (2000) recommend that the primary 
focus should be on achieving good results, rather than statistical optimality, as this is one of 
the features that has attracted water resources modellers to ANNs in the first place. 
According to Sarle (1997), however, ANNs are subjected to the same assumptions as 
statistical models, and the explanation is simply that, whereas statisticians are concerned 
about the implications of those assumptions, many neural network users ignore them. 
Formerly, ANNs were compared to “black boxes” because they always give an answer 
(output) when they are fed with data (input), although the internal processes taking place 
inside the network were not clearly understood. This prevented knowing the contribution of 
the independent variables in the prediction process, which is a major concern to ecologists, 
who are always interested in uncovering the causal relationships driving ecological 
phenomena (Olden & Jackson, 2002). The “black box” term is no longer a suitable term, since 
recent advances in the field of environmental sciences have provided a set of techniques to 
determine the relative importance of each input variable. These techniques include sensitivity 
analyses (Scardi, 1996; Lek et al., 1996a; Recknagel et al., 1997), input variable relevancies and 
neural interpretation diagrams (Ozesmi & Ozesmi, 1999), randomization tests of significance 
(Olden, 2000; Olden & Jackson, 2002), and partial derivatives (Dimopoulos et al., 1999; Reyjol 
et al., 2001; Gevrey et al., 2006). All these approaches are based on the fact that the contribution 
of each independent variable depends on the magnitude and direction of the connection 
weights between neurons (Olden et al., 2008). Good examples of papers dealing with the 
performance of several of these methods are Olden & Jackson (2002) and Gevrey et al. (2003). 
Olden & Jackson (2002) reviewed both qualitative and quantitative algorithms, but also 
described a randomization procedure for testing the statistical significance of the input 
variables. Gevrey et al. (2003) compared up to seven approaches and found that the partial 
derivatives method was the most useful in an empirical example predicting the density of 
brown trout spawning redds using habitat characteristics. 
There are many different types of ANNs, which are classified according to their learning 
process and learning algorithm (Sarle, 1997). In supervised learning, the known target 
values are given to the ANN during training, after which the network is tested using 
exclusively the input values. In unsupervised learning, the target values are not provided to  
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N Reference Type of 
ANN 

Dependent  
variables Independent variables 

1 Xu et al. (2005) BRBPNN Algal  
abundance (1) 

Environmental 
variables (3-5) 

2 Park et al. (2003b) CPN  Fish richness (1) Environmental 
variables (34) 

3 Jeong et al. (2008a) TARNN Algal biomass (1) Algal  
biomass (1) 

4 Palmer et al. (2009) GRNN, 
MLP 

Fishing  
strategies (4) Fish catches (33, 6) 

5 Iglesias et al. (2004) FNN, 
MLP Fish landings (1) Environmental 

variables (6) 

6 Scardi (1996) MLP Algal  
abuncance (1) 

Environmental 
variables (3, 4) 

7 Scardi & Harding 
(1999) MLP Algal  

abundance (1) 
Environmental 
variables (12) 

8 Scardi (2001) MLP Algal  
abundance (1) 

Environmental 
variables (11) 

9 Wilson & Recknagel 
(2001) MLP Algal  

abundance (1) 
Environmental 
variables (4, 5) 

10 Recknagel et al. (1997) MLP Algal  
abundance (10) 

Environmental 
variables (7, 10, 11) 

11 Ozesmi & Ozesmi 
(1999) MLP Bird nesting 

probability (1, 3) 
Environmental 
variables  (6) 

12 Manel et al. (1999) MLP Bird occurrence (1) Environmental 
variables (32) 

13 Fang et al. (2009) MLP Bird richness (1) Environmental 
variables (4) 

14 Dedecker et al. (2005) MLP Crustacean  
density (1) 

Environmental 
variables (24) 

15 Mouton et al. (2010) MLP Crustacean  
density (1) 

Environmental 
variables (24) 

16 Huse & Gjosaeter 
(1999) MLP Fish abundance (1) Environmental 

variables (6) 

17 Joy & Death (2004) MLP 
Fish and 
crustacean 
occurrence (14) 

Environmental 
variables (31) 

18 Dagorn et al. (1997) MLP Fish behaviour (1) Environmental 
variables (7) 

19 Huse & Ottersen 
(2003) MLP Fish density (1) Environmental 

variables (10) 
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N Reference Type of 
ANN 

Dependent  
variables Independent variables 

20 Baran et al. (1996) MLP Fish density (1) Environmental 
variables (11) 

21 Brosse et al. (1999) MLP Fish density (1) Environmental 
variables (8) 

22 Gevrey et al. (2003) MLP Fish density (1) Environmental 
variables (10) 

23 Lae et al. (1999) MLP Fish density (1) Environmental 
variables 

24 Lek et al. (1996b) MLP Fish density (1) Environmental 
variables (11) 

25 Gutierrez-Estrada et al. 
(2009) MLP Fish landings (1) Environmental 

variables (18) 

26 Olden et al. (2006) MLP Fish  
occurrence (16) 

Environmental 
variables (24) 

27 Maravelias et al. (2003) MLP Fish occurrence (2) Environmental 
variables (5) 

28 Mastrorillo et al. (1997) MLP Fish occurrence (2) Environmental 
variables (10) 

29 Olden (2003) MLP Fish  
occurrence (27) 

Environmental 
variables (9) 

30 Chen & Hare (2006) MLP Fish recruitment 
(1) 

Environmental 
variables (2) 

31 Ibarra et al. (2003) MLP Fish richness (1) Environmental 
variables (5) 

32 Beauchard et al. (2003) MLP Invertebrate 
richness (1) 

Environmental 
variables (7) 

33 Dedecker et al. (2004) MLP Invertebrates 
occurrence (1) 

Environmental 
variables (15) 

34 Engelhard & Heino 
(2004) MLP Age  

at maturation (1) 
Annual  
growth layers (3-9) 

35 Engelhard et al. (2003) MLP Age  
at maturation (1) 

Annual  
growth layers (3-9) 

36 Dreyfus-Leon (1999) MLP Fishermen 
strategies (3, 16) Fishing variables (9, 20) 

37 Newbury et al. (1995) MLP Fish density (10) Frequency  
image data (51) 

38 Power et al. (2005) MLP Fishing location (3) Parasite abundances (5) 

39 Haralabous & 
Georgakarakos (1996) MLP Fish  

identification (3) 
School  
descriptors (25) 
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N Reference Type of 
ANN 

Dependent  
variables Independent variables 
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N Reference Type of 
ANN 

Dependent  
variables Independent variables 

40 Song et al. (2006) SOM Sampling sites; invertebrates assemblages 
41 Jeong et al. (2008b) SOM Sampling sites 
42 Brosse et al. (2001) SOM Fish assemblages 
43 Hyun et al. (2005) SOM Fish assemblages 
44 Zhu et al. (2006) SOM Fish genetic structure 
45 Chon et al. (1996) SOM Invertebrates assemblages 
46 Cereghino et al. (2001) SOM Invertebrates assemblages 
47 Park et al. (2006) SOM Invertebrates assemblages 
48 Cho et al. (2009) SOM Sampling sites 

49 Hardman-Mountford 
et al. (2003) SOM Sea level variations 

50 Park et al. (2003a) SOM, 
MLP 

SOM: sampling sites; 
MLP: invertebrate assemblages 

51 Gevrey et al. (2004) SOM, 
MLP 

SOM: sampling sites; 
MLP: diatom assemblages 

52 Tison et al. (2007) SOM, 
MLP 

SOM: sampling sites; 
MLP: diatom assemblages 

53 Park et al. (2004) SOM, 
ART Invertebrates assemblages  

54 Chon et al. (2000) SOM, 
ART Invertebrates assemblages 

Table 1. List of papers with applications of ANNs in aquatic ecology: source, type of ANN, 
dependent variable and independent variables. In the case of MLPs, the numbers into 
brackets are the number of input neurons (independent variables) or output neurons 
(dependent variables). In the case of SOMs, the single cell under the dependent and 
independent variable headers contains the type of data that was patternized by means of the 
SOM. In those papers (50-53) using unsupervised (SOM) followed by supervised neural 
networks (MLP), the variable to be predicted by the MLP it is also shown. 

the network, which usually performs some kind of dimensionality reduction or clustering. 
Depending on the existence or not of cycles in the connections between nodes the networks 
are classified as feedback, or recurrent ANNs, and feed-forward ANNs. Up to now, the most 
popular ANNs in ecological applications are the multilayer perceptron (MLP) with back-
propagation algorithm and the Kohonen network or self-organizing map (SOM), although 
examples of other family of models have also been applied. In this work, for instance, we 
have reviewed a total of 54 papers dealing with applications of ANNs in the field of marine 
and freshwater ecology (Table 1): the MLP and the SOM were used in 39 and 15 cases, 
respectively, whereas other types of networks (see Section 8) were only used in 7 cases. In 
later sections, we give a succinct description of these methods and revise their main 
applications among researchers working on aquatic ecology. 
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3. Development of ANN models 
Several papers have reviewed the use of ANNs in ecological applications and summarized 
both the main drawbacks in the available works and the main methodological issues that 
should be considered in the development of new models (Maier & Dandy, 2000; Maier & 
Dandy, 2001; Ozesmi et al., 2006). Maier & Dandy (2000) analysed different modelling issues 
of ANNs for the prediction and forecasting of water resources variables by reviewing up to 
43 papers published until the end of 1998. One year later, the same authors (Maier & Dandy, 
2001) published a systematic approach to the development of ANNs for environmental 
studies, which was intended to act as a guide for users of feed-forward, back-propagation 
ANNs. Ozesmi et al. (2006) also analysed different methodological issues in building, 
training and testing ANNs in ecological applications and made useful suggestions on its 
use. More recently, Suryanarayana et al. (2008) performed a thorough revision of the use of 
neural networks in fisheries research; after a brief description of ANNs the authors 
reviewed their applications in forecasting, classification, distribution and fisheries 
management since 1978 (97 and 103 papers during 1978-1999 and 2000-2006, respectively). 
What follows is an extract from all these papers; although they focused on the MLP, most of 
their recommendations also apply to other types of ANNs.  
In general the modelling process is not described clearly, what prevents to assess the 
optimality of the results and the comparison between models. The major problem was 
overtraining (over-fitting), which could be avoided by limiting the complexity of the model. 
To do so, there are some rules of thumb, such as using at least 10 times the number of 
samples as parameters in the model (Burnham & Anderson, 2002). Another important 
concern refers to the lack of independent data sets, what makes that some data are used 
both in the training and testing processes. Given that it is difficult or costly to obtain a 
sufficient number of replicates in ecological studies, examples with independent test data 
sets are rather scarce. As an alternative, researchers use different methodologies to create a 
testing data set such as jack-knife or cross-validation. Finally, the choice of the type of 
model, its architecture and the internal parameters (e.g. number of hidden layers) are also 
poorly described in most cases. 
In order to avoid all these concerns and to optimize the performance of the models, 
specialists recommend considering the following methodological issues. First, the input 
variables should be standardized and, although there is no need to transform data, it is 
recommended in order to remove trends and heteroscedasticity. Next, appropriate input 
variables should be determined with the aid of a priori knowledge, by using analytical 
techniques or a stepwise model-building approach. Learn rate and weight range should also 
be determined since these network parameters influence the performance of the model by 
affecting the weights. The choice of adequate network geometry involves the optimization 
of the architecture, the number of hidden layers and number of hidden neurons. Although 
there are guidelines in the literature to obtain optimal network geometries, for each 
application it has been done traditionally by a process of trial and error. To compare the 
performance of models created with the same data set it is recommended the use of criteria 
such as the Akaike Information Criteria (AIC). Finally, model performance should be 
assessed using independent data sets to ensure that the results obtained are valid, since the 
real model test does not involve the training but the testing phase. 
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N Reference Type of 
ANN 

Dependent  
variables Independent variables 

40 Song et al. (2006) SOM Sampling sites; invertebrates assemblages 
41 Jeong et al. (2008b) SOM Sampling sites 
42 Brosse et al. (2001) SOM Fish assemblages 
43 Hyun et al. (2005) SOM Fish assemblages 
44 Zhu et al. (2006) SOM Fish genetic structure 
45 Chon et al. (1996) SOM Invertebrates assemblages 
46 Cereghino et al. (2001) SOM Invertebrates assemblages 
47 Park et al. (2006) SOM Invertebrates assemblages 
48 Cho et al. (2009) SOM Sampling sites 

49 Hardman-Mountford 
et al. (2003) SOM Sea level variations 

50 Park et al. (2003a) SOM, 
MLP 

SOM: sampling sites; 
MLP: invertebrate assemblages 

51 Gevrey et al. (2004) SOM, 
MLP 

SOM: sampling sites; 
MLP: diatom assemblages 

52 Tison et al. (2007) SOM, 
MLP 

SOM: sampling sites; 
MLP: diatom assemblages 

53 Park et al. (2004) SOM, 
ART Invertebrates assemblages  

54 Chon et al. (2000) SOM, 
ART Invertebrates assemblages 
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brackets are the number of input neurons (independent variables) or output neurons 
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To do so, there are some rules of thumb, such as using at least 10 times the number of 
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concern refers to the lack of independent data sets, what makes that some data are used 
both in the training and testing processes. Given that it is difficult or costly to obtain a 
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testing data set such as jack-knife or cross-validation. Finally, the choice of the type of 
model, its architecture and the internal parameters (e.g. number of hidden layers) are also 
poorly described in most cases. 
In order to avoid all these concerns and to optimize the performance of the models, 
specialists recommend considering the following methodological issues. First, the input 
variables should be standardized and, although there is no need to transform data, it is 
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real model test does not involve the training but the testing phase. 
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N Reference Type of 
ANN 

ANN 
Performance

Type of 
MSM 

MSM 
Performance 

1 Haralabous & 
Georgakarakos (1996) MLP 95.92% DA 89.29% 

2 Baran et al. (1996) MLP 0.92, 0.93 GLM 0.54, 0.69 

3 Lek et al. (1996b) MLP 0.96 MLR 0.471, 0.722 

4 Brosse et al. (1999) MLP 66, 97% MLR 46, 95% 

5 Lae et al. (1999) MLP 0.95, 0.83 MLR 0.621, 0.812 

6 Gevrey et al. (2003) MLP 0.75, 0.76 MLR 0.47 

7 Ibarra et al. (2003) MLP 0.55, 0.82 MLR 0.33, 0.72 

8 Engelhard et al. 
(2003) MLP 66.6% DA 68.0% 

9 Engelhard & Heino 
(2004) MLP 0.976 DA 0.985 

10 Maravelias et al. 
(2003) MLP 83.3, 85.6% DA 49.5, 83.3% 

11 Mastrorillo et al. 
(1997) MLP 82.1, 90.1% DA 62.5, 78.0% 

12 Fang et al. (2009) MLP 0.28 MLR 0.28 

13 Gutierrez-Estrada et 
al. (2009) MLP 0.98t, 0.92s MLR, 

GAM 
MLR: 0.69t, 0.70s 
GAM: 0.87t, 0.86s 

14 Jeong et al. (2008a) TARNN 0.97, 0.98t, 
0.94, 0.92s 

SARIMA, 
SES 

SARIMA: 0.54t, 0.28s 
SES: 0.88t, 0.38s 

15 Olden et al. (2006) MLP 66, 91% MDA, 
LOG 

MDA: 46%, 
LOG: 83% 

16 Power et al. (2005) MLP 92, 94% 
DA, 

QDA, 
KKN 

DA: 93, 94% 
QDA: 92, 93% 
KNN: 94, 96% 

17 Lae et al. (1999) MLP 0.95t, 0.83s MLR 0.81 

18 Scardi (1996) MLP 0.90, 0.954 MLR 0.273, 0.744 

Table 2. Performance of ANNs compared to classical multivariate statistical models (MSM) 
in aquatic ecological applications. The indexes used to calculate the performance are not 
specified (mainly determination coefficient and percentage of correctly classified instances) 
but are the same in each reference for comparisons. When available, results are given for the 
training (t) and testing (s); numbers in superscripts refer to raw (1) vs. transformed (2) data, 
and single (3) vs. composite (4) linear model. MLR: multiple linear regression; GLM: 
generalized linear models; DA: discriminant analysis; GAM: generalized additive models; 
SARIMA: seasonal auto-regressive integrated moving average; SES: simple exponential 
smoothing; MDA: multiple discriminant analysis; LOG: logistic regression analysis; QDA: 
quadratic discriminant analysis; KKN: k-nearest neighbour classification. 
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4. ANNs vs. multivariate analyses 
Several studies indicate that ANNs are identical or similar to different standard statistical 
models. Changing some parameters of the network structure, such as the transfer function 
or the number of hidden nodes, gives rise to existing models. Feed-forward networks with 
no hidden layer, for instance, are basically generalized linear models, whereas Kohonen 
SOMs are discrete approximations to principal curves and surfaces (Sarle, 1997). The 
training and learning phases in neural networks are not different from the parameter 
estimation phase in conventional statistical models (Maier & Dandy, 2000). 
Many of the published works on ANNs in marine and freshwater ecology compare this 
modelling method with classical multivariate statistical procedures, such as multiple linear 
regression (MLR) or discriminant analysis (DA). In all cases, these works found that ANNs 
either clearly outperformed (e.g. Baran et al., 1996; Lek et al., 1996b; Mastrorillo et al., 1997; 
Brosse et al., 1999) or at least performed as well (e.g. Engelhard et al., 2003; Engelhard & 
Heino, 2004; Power et al., 2005; Fang et al., 2009) as classical techniques (Table 2). 
Differences between methods are very important in some applications. Analysing the 
relationships between density of trout spawning sites and habitat characteristics, for 
instance, Lek et al. (1996) obtained values of determination coefficients of 0.96 for the MLP 
and 0.47 (raw data) or 0.72 (transformed data) for the MLR. In a similar study, Gevrey et al. 
(2003) also found important differences, about 0.77 for MLP and 0.47 for MLR. However, the 
highest differences were obtained by Jeong et al. (2008a) comparing a type of ANN known 
as temporal autoregressive recurrent neural network (TARNN) and two model types based 
on root mean square error (RMSE), seasonal auto-regressive integrated moving average 
(SARIMA) and simple exponential smoothing (SES). 
The work of Manel et al. (1999) exemplifies the concerns raised by most researchers when 
ANNs were not more performant than linear models. In their analysis of a river bird species 
distribution, substitute major conclusion was that ANN does not currently have major 
advantages over logistic regression and DA in the particular case of modelling species 
distribution, providing these latter methods are correctly applied. They also noted that the 
best method would depend on the aims of the study. When models are intended to be 
explanatory, any of the three approaches compared might be suitable, since all produced 
good overall fit to the data, but when there exist complex or non-linear influences on species 
distribution, the ANN may well turn out to be advantageous.  
In spite of all these considerations, and provided that enough information is available, it is 
not possible that a multiple regression outperforms an ANN because if a process is 
inherently linear, an ANN is as effective as a linear model although it may take more data to 
be properly generalized (Palmer et al., 2009). When ANNs were not found to perform better 
than linear methods it was most probably due to non-optimal training strategies, ANN 
architectures or data-limited situations. 
Haralabous & Georgakarakos (1996) reported that comparing ANNs and DA is not 
straightforward, because an ANN can only be tested on a subset of training-free cases, while 
DA can be acceptably tested on the whole dataset. However, this is not exactly correct because 
the performance of DA cannot be tested without an independent test set. The accuracy of DA 
can be inferred according to the underlying statistics, but these inferences rely on several 
assumptions that are probably not met in real world applications (e.g. multi-normality). 
Consequently, a proper comparison should take a single subset of the data to train the ANN 
and DA, and then a separate subset to test both methods (Palmer et al., 2009). However, this 
would require having a sufficiently large number of cases to obtain enough examples in each 
subset, which is not usual in environmental sciences where sampling programs are costly. 
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5. Multilayer perceptron (MLP) 
The MLP is a supervised ANN which architecture is defined by highly interconnected 
neurons (units or nodes) that process information in parallel along three successive layers 
(Fig. 2). The input layer contains as many neurons as independent variables or descriptors 
used to predict the dependent variables, which in turn constitute the output layer. The third 
layer, called the hidden layer, is situated between the input and output layers and its 
number of layers/neurons is an important parameter since it optimizes the performance of 
the ANN. Neurons from one layer are interconnected to all neurons of neighbouring layers, 
but no connections are established within a layer or feedback connection. Training any type 
of supervised ANN consists in using a training dataset to adjust the connection weights in 
order to minimize the error between observed and predicted values. Once the connections 
have been established by training they remain fixed in the hidden layer and the ANN can be 
used for testing. After the network has been trained it should be able to correctly classify 
patterns that are different from those used during the training phase. 
Since the MLP was first used in ecological studies (Komatsu et al., 1994; Lek et al., 1995), the 
network has been extensively implemented in diverse fields (Park & Chon, 2007). A good deal 
of examples (39 cases) of applications in marine and freshwater ecology is shown in Table 1. 
Most studies used the predictability capabilities of MLPs to infer some dependent variable 
from a set of environmental variables (29 cases). This dependent variable was generally an 
index of the quantity of individuals of a certain species (16 cases) such as the abundance, 
biomass or density or, to a lesser extent, the species occurrence (presence/absence; 7 cases). In 
other cases the dependent variable referred to community indexes (species richness; 4 cases). 
In the overall set of papers the number of input and output neurons ranged between 2-51 and 
1-27 respectively. An output layer with a single neuron was by far the most usual network 
architecture (28 cases), representing this single output the value to be predicted by the MLP for 
a single species (e.g. abundance, biomass, species richness). In other cases, the MLP was used 
to predict those values for a set of species. Recknagel et al. (1997), for instance, predicted the 
abundance of 10 algae species from four different lakes using different sets of environmental 
variables (7, 10 and 11). Joy & Death (2004) predicted the occurrence of 14 species of fish and 
crustaceans taking into account up to 31 driving variables. Similarly, Olden (2003) predicted 
the occurrence of 27 fishes considering 9 physical variables, whereas Olden et al. (2006) used 
24 variables to infer the occurrence of 16 fish species. 
Other applications in aquatic ecology different from the prediction of species abundances or 
occurrences are reported in this paragraph. In two cases the MLP has been used to 
determine the age at maturation of fish species from annual growth layers in scales or 
otoliths (Engelhard et al., 2003; Engelhard & Heino, 2004). Ozesmi & Ozesmi (1999) 
predicted the nesting probability of two riverine bird species using 6 environmental 
variables. The MLP has also been used to identify three different fish species from 25 
variables corresponding to the main school descriptors (Haralabous & Georgakarakos, 
1996). Power et al. (2005) made use of MLP to classify a marine fish species according to the 
three different fisheries from which it was harvested using as predictors the abundance of 
different sets of parasites (3-6). Dreyfus-Leon (1999) built a model to mimic the search 
behaviour of fishermen with two MLPs to cope with two separate decision-making 
processes in fishing activities. One MLP (20 input neurons, 16 output neurons) dealt with 
decisions to stay or move to new fishing grounds and the other one was constructed to 
finding prey within the fishing areas (9 inputs, 3 outputs). 
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Fig. 2. Scheme of the architecture of a multilayer perceptron (MLP). The example was taken 
from Palmer et al. (2009), who used the MLP to infer the fishing tactics used by fishermen in 
their daily trips, taking as predictors the species composition present in the landings 
statistics. The figure represents a three-layered MLP with 10 neurons in the hidden layer 
and 33 neurons in the input layer corresponding to the landings of the 33 most important 
commercial species. The 4 nodes in the output layer are the 4 different fishing tactics to be 
predicted. 

6. Self-organizing map (SOM) 
The SOMs, also referred to as Kohonen network, are unsupervised ANNs that approximates 
the probability density function of the input data to display the data sets in a more 
comprehensible representation form (Kohonen, 2001). In terms of grouping the input data, 
the SOM is equivalent to conventional multivariate methods such as principal component 
analysis; it maps the multidimensional data space of complex data sets on two or a few more 
dimensions, preserving the existing topology as much as possible (Chon et al., 1996). The 
description that follows on the SOM functioning is based on the book of Lek et al. (2005). 
The SOM consists exclusively of two layers, the input and output layers, connected by 
weights that give the connection intensity; the outputs are usually arranged into two 
dimensional grids on a hexagonal lattice for better visualization (Fig. 3). When an input 
vector is sent through the network, each neuron in the network computes the distance 
between the weight vector and the input vector. Among all the output neurons, the one 
having the minimum distance between the weight and input vectors is chosen. The weights 
of both this winner neuron and its neighbouring neurons are then updated using the SOM 
algorithm to further reduce the distance between the weight and the input vector. The 
training is usually done in two phases: a rough training for ordering based on a large 
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5. Multilayer perceptron (MLP) 
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Fig. 2. Scheme of the architecture of a multilayer perceptron (MLP). The example was taken 
from Palmer et al. (2009), who used the MLP to infer the fishing tactics used by fishermen in 
their daily trips, taking as predictors the species composition present in the landings 
statistics. The figure represents a three-layered MLP with 10 neurons in the hidden layer 
and 33 neurons in the input layer corresponding to the landings of the 33 most important 
commercial species. The 4 nodes in the output layer are the 4 different fishing tactics to be 
predicted. 

6. Self-organizing map (SOM) 
The SOMs, also referred to as Kohonen network, are unsupervised ANNs that approximates 
the probability density function of the input data to display the data sets in a more 
comprehensible representation form (Kohonen, 2001). In terms of grouping the input data, 
the SOM is equivalent to conventional multivariate methods such as principal component 
analysis; it maps the multidimensional data space of complex data sets on two or a few more 
dimensions, preserving the existing topology as much as possible (Chon et al., 1996). The 
description that follows on the SOM functioning is based on the book of Lek et al. (2005). 
The SOM consists exclusively of two layers, the input and output layers, connected by 
weights that give the connection intensity; the outputs are usually arranged into two 
dimensional grids on a hexagonal lattice for better visualization (Fig. 3). When an input 
vector is sent through the network, each neuron in the network computes the distance 
between the weight vector and the input vector. Among all the output neurons, the one 
having the minimum distance between the weight and input vectors is chosen. The weights 
of both this winner neuron and its neighbouring neurons are then updated using the SOM 
algorithm to further reduce the distance between the weight and the input vector. The 
training is usually done in two phases: a rough training for ordering based on a large 
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neighbourhood radius, followed by fine tuning with a small radius. As a result, the network 
is trained to classify the input vectors according to the weight vectors that are closest to 
them. Given that there are not still boundaries between clusters in the trained SOM map, it 
has to be subdivided into different groups according to the similarity of the weight vectors 
of the neurons. To analyse the contribution of variables to clusters, each input variable 
calculated during the training process is visualised in each neuron of the trained SOM in 
grey scale. The resulting clusters can outperform the results obtained using conventional 
classification methods, although there is the drawback that the size and shape of the map 
have to be fixed in advance. 
Since Chon et al. (1996) first applied the SOM to patterning benthic communities, it has 
became the most popular unsupervised neural network in aquatic ecology applications for 
classification and patterning purposes (Park & Chon, 2007). In most cases the SOM has been 
used to classify sampling sites according to different environmental variables or faunal 
assemblages from their species composition. Jeong et al. (2008b), for instance, classified the 
different habitats present in a lagoon from a set of 21 limnological characteristics, whereas Cho 
 

 
Fig. 3. Example of an output of a two dimensional hexagonal lattice obtained using a self-
organizing map (SOM). The figure comes from Park et al. (2003a), who used the SOM to 
classify sampling sites with different environmental variables. The Latin numbers (I–V) 
represent different clusters, and the acronyms in the hexagonal units represent different 
water types. The font size of the acronym is proportional to the number of sampling sites in 
the water types in the range of 1–18 samples. 
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et al. (2009) characterized the habitat preferences of a river otter species taking into account 
several environmental variables. Song et al. (2006) used the SOM with two different objectives: 
first to define hydro-morphological patterns of the sampling sites based on four environmental 
variables, and then to reveal temporal changes in the macro-invertebrate communities 
inhabiting the sites clustered by SOM. Concerning the classification of faunal communities, the 
SOM has been mainly used to pattern invertebrate (Chon et al., 1996; Cereghino et al., 2001; 
Park et al., 2006) and fish (Brosse et al., 2001; Hyun et al., 2005) assemblages. In an original 
paper, Park et al. (2006) used SOM to patternize benthic macro-invertebrate communities in 
terms of exergy, which is a measure of the free energy of a system and it is used as an 
ecological indicator. Hyun et al. (2005) used the SOM to pattern temporal variations in long-
term fisheries data (1954-2001) according to the 30 commercially most important species; five 
clusters were identified corresponding to different time periods reflecting environmental and 
economic forcings on fish catch. Other SOM applications include the study of the genetic 
population structure of a sturgeon species (Zhu et al., 2006) and the identification of 
characteristic patterns from sea level differences using a seven-year time series of satellite-
derived data (Hardman-Mountford et al., 2003; Fig. 4). Further SOM applications, in 
combination with other neural network types, are reviewed in the following section. 
In most cases, the ecological studies dealing with SOM applications manage complex, large 
data matrices. The results of all these works agree that the SOM is a powerful tool to extract 
information from such complex datasets which outperforms conventional approaches used 
previously in ecology for patterning purposes (e.g. principal component analysis). 

7. Combined networks 
Although ANNs are mainly used for prediction (e.g. MLP) or classification (e.g. SOM), there 
are also networks performing both functions at the same time. One example used in some 
ecological applications is the counter-propagation network (CPN), which consists of 
unsupervised and supervised learning algorithms to classify input vectors and predict output 
values. The CPN, which name alludes to the counter-flow of data through the network with 
data flowing inward from both sides, functions as a statistically optimal self-adapting look-up 
table (Hecht-Nielsen, 1988). Park et al. (2003b) applied a CPN to predict species richness and 
diversity index of benthic macro-invertebrate communities using 34 environmental variables. 
The trained CPN was useful for finding the corresponding values between environmental 
variables and community indices and displayed a high accuracy in the prediction process. 
In some cases, researchers simply use two different networks in sequential steps for 
classification purposes first, followed by prediction. Chon et al. (2000) analysed patterns of 
temporal variation in community dynamics of benthic macro-invertebrates by combining two 
unsupervised ANNs, the adaptive resonance theory (ART) and the SOM. Park et al. (2004) also 
used the combination of ART and SOM to assess benthic communities in stream ecosystems, 
first using the SOM to reduce the dimension of the community data and secondly the ART to 
further classify the groups in different scale. Park et al. (2003a) used the SOM to classify 
sampling sites using species richness of aquatic insect orders and afterwards applied the MLP 
to predict the arrangements obtained using a set of environmental variables. Gevrey et al. 
(2004) used the SOM to classify samples according to their diatom composition, and then MLP 
to predict these assemblages using environmental characteristics of each sample. Similarly, 
Tison et al. (2007) classified diatom samples using the SOM and then predicted the community 
types with different environmental variables through a MLP. 
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clusters were identified corresponding to different time periods reflecting environmental and 
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Fig. 4. The SOM of sea level differences obtained by Hardman-Mountford et al. (2003) using 
remote sensing data. The 15 patterns in a 5 by 3 array, where the land is shown in grey, 
correspond to different time periods with contrasting oceanographic scenarios. 

8. Other types of ANNs 
Apart from MLP and SOM there are still very few examples of applications of other types of 
ANNs in ecological studies. We have only found the use of four different types of networks 
in our review: functional neural network (FNN), Bayesian regularized back-propagation 
neural network (BRBPNN), temporal autoregressive recurrent neural network (TARNN) 
and generalized regression neural network (GRNN). 
Iglesias et al. (2004) applied the FNN, a type of network in which the weights of the neurons 
are substituted by a set of functions, to predict the catches of two pelagic fish species taken 
as independent variables a set of oceanographic parameters obtained from remote sensors. 
The results of this study showed that functional networks considerably improved the 
predictions obtained using MLP. Xu et al. (2005) used the BRBPNN to predict chlorophyll 
trends in a lake; the advantage of this model is that it can automatically select the 
regularization parameters and integrate the characteristics of high convergent rate of 
traditional back-propagation neural networks and prior information of Bayesian statistics. 
Jeong et al. (2008a) developed a TARNN model to predict time-series changes of 
phytoplankton dynamics in a regulated river ecosystem. The TARNN algorithms were 
found to be an alternative solution to overcome the increasing size and structural 
complexity of the models used in freshwater ecology. Palmer et al. (2009) used the GRNN, 
together with MLP and DA, to predict fishing tactics from daily landing data. In this 
application, the GRNN, which is a type of ANN having the same number of neurons as 
there are cases in the training data set, outperformed both the MLP and DA. 
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9. Conclusion 
The study of the highly complex structure and dynamics of ecological systems demands 
appropriate powerful tools such as ANNs. This is especially relevant nowadays, when the 
scientific community handles a lot of bulky databases and has to cope with global 
environmental threats that require urgent international attention. The purpose of this review 
is twofold. First, to familiarize ANNs users from other scientific disciplines, such as the ones 
covered in this book, with the use that ecologists make of these methods. Second, introduce 
ecologists unfamiliar with the ANNs to the capabilities of these tools and show them the 
palette of practical applications currently available in the domain of the aquatic ecology. 
Although the majority of ecologists lack the theoretical and computational background 
needed to implement these approaches (Fielding, 1999), they can take advantage of the user-
friendly software that is being rapidly developed during recent years (Olden et al., 2008). 
One important drawback is, however, the fact that ANN modelling is a very active research 
area and the dissemination of useful information for practitioners constitutes one of the 
greatest challenges facing ANNs users (Maier & Dandy, 2000). By contrast, these approaches 
are flexible and readily combinable with other methods (Lek et al. 2005; Recknagel 2006), 
which would allow ecologists to develop models of increasing complexity as requires the 
analysis of ecological systems. 
According to Pascual & Dunne (2006), understanding the ecology and mathematics of 
ecological networks is central to understanding the fate of biodiversity and ecosystems in 
response to perturbations. Knowing the network structure is essential to understand the 
properties of the network and the use of ANNs in ecological models constitutes a first step 
towards this understanding. We hope our review could awake the interest of ecologists in 
ANN modelling and maybe to help them with the use of these approaches in their studies 
on aquatic ecology. 
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